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Preface

The MODELS series of conferences is the premier venue for the exchange of
innovative technical ideas and experiences relating to model-driven approaches
in the development of software-based systems. Following the tradition of previous
conferences, MODELS 2010 hosted several satellite events in Oslo during the
three days before the main conference. There were two MODELS symposia and
12 MODELS workshops:

– Doctoral Symposium
– Educators’ Symposium
– Model-Based Architecting and Construction of Embedded Systems (ACES-

MB)
– Aspect-Oriented Modeling (AOM)
– Equation-Based Object-Oriented Modeling Languages and Tools (EOOLT)
– Model-Driven Interoperability (MDI)
– Models and Evolution (ME)
– Models@run.time
– Model-Driven Engineering, Verification and Validation (MoDeVVa)
– Multi-paradigm Modeling: Concepts and Tools (MPM)
– Non-functional System Properties in Domain-Specific Modeling Languages

(NFPinDSML)
– OCL and Textual Modeling
– Quality of Service-Oriented Software Systems (QUASOSS)
– Model-Based Engineering for Robotics (RoSym)

In addition, the MODELS 2010 satellite event program included two industry-
oriented events (Project Presentations and Industry Track), four Tutorials (DSL1,
DSL2, Methods and Tools, and Eclipse/EMF), and one MODELS co-located
event (The 6th Workshop on System Analysis and Modelling (SAM 2010)).

New this year was a more flexible organization of the satellite events which
allowed and encouraged participants to move around and create their own cus-
tomized MODELS 2010 satellite event program. For example, participants could
follow a session of a workshop, then shift to another session of another workshop
or participate in a tutorial or follow some presentations of the Industry Track
or Project Track. During the satellite events there where up to eight parallel
sessions. This flexibility was received very well, and we believe it helped create a
setting which offered something interesting to attend for everybody at any point
in time.

MODELS 2010 had a record number of more than 400 attendees, of which
about 350 attended the satellite events. The workshops and symposia provided
a collaborative forum for groups of participants to exchange recent and/or pre-
liminary results, to conduct intensive discussions on a particular topic, or to
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coordinate efforts between representatives of a technical community. The discus-
sions were lively and the attendance was high.

These proceedings include the selected best papers of the MODELS work-
shops and symposia. Fourteen MODELS workshop proposals were submitted.
The selection of workshops was performed by the Workshop Committee which
consisted of the following experts:

– Juergen Dingel, Queen’s University, Canada (Co-chair)
– Arnor Solberg, SINTEF, Norway (Co-chair)
– James Bieman, Colorado State University, USA
– Jean-Marc Jézéquel, INRIA, France
– Alexander Pretschner, TU Kaiserslautern, Germany

The focus of the Educators’ Symposium was on sharing experience related to
teaching modeling techniques and on developing resources to support effective
training of future practitioners of model-driven development.

The Doctoral Symposium provided a forum in which PhD students could
present and get feedback on their work in progress. The symposium fostered the
role of MODELS as a premier venue for research in model-driven engineering.
The symposium provided the students with independent and constructive feed-
back about their already completed work and more importantly their planned
research work.

The organizers of the 12 workshops and the two symposia invited the authors
of the selected best papers to revise and extend their papers for publication
in these proceedings. The selected papers went through two rounds of reviews
before being included in the proceedings. Each workshop and symposium also
provided a summary of the event; these summary reports are included in these
proceedings.

We would like to thank everyone involved in making the satellite events
highly successful, especially the organizers of the satellite events, the members
of the Workshop Committee, the General Chair, Øystein Haugen, the chair of
the MODELS Steering Committee Heinrich Hussmann and last, but not least,
all the active participants.

February 2011 Juergen Dingel
Arnor Solberg
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The Doctoral Symposium at MODELS 2010 

Bernhard Schätz1 and Brian Elvesæter2 

1 Fortiss GmbH, Guerickestrasse 25, D-80805 München, Germany 
schaetz@fortiss.org 

2 SINTEF ICT, P.O. Box 124 Blindern, N-0314 Oslo, Norway 
brian.elvesater@sintef.no 

Abstract. The research of 10 doctoral students was selected for presentation at 
the symposium from a total of 28 submissions. All submissions received detailed 
feedback via written reviews by three members of the program committee. At the 
symposium, the research described in the accepted submissions was presented, 
discussed, and additional, detailed feedback was provided. This summary 
provides a brief overview of the symposium. 

Keywords: Doctoral Symposium, MODELS 2010. 

1   Introduction 

The Doctoral Symposium at the ACM/IEEE 13th International Conference on Model 
Driven Engineering Languages and Systems took place on October 4, 2010 in Oslo, 
Norway. The goal of the Doctoral Symposium is to provide a forum in which PhD 
students can present their work in progress and to foster the role of MODELS as a 
premier venue for research in model-driven engineering. The symposium aims to 
support students by providing independent and constructive feedback about their 
already completed and, more importantly, planned research work. 

The symposium was preceded by the submission and review of 28 papers from 12 
countries. Reviews were conducted by a program committee which consisted of the 
following international experts: 

• Ruth Breu, Universität Innsbruck, Austria 
• Betty Cheng, Michigan State University, USA 
• Jürgen Dingel, Queens University, Canada 
• Brian Elvesæter, SINTEF, Norway 
• Gregor Engels, Universität Paderborn, Germany 
• Robert France, Colorado State University, USA 
• Jeff Gray, University of Alabama, USA 
• Gerti Kappel, TU Wien, Austria 
• Gabor Karsai, Vanderbilt University, USA 
• Jost-Pieter Katoen, RWTH Aachen, Germany 
• Ingolf Krüger, University of Californa at San Diego, USA 
• Jochen Küster, IBM Research Zürich, Switzerland 
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• Peter Mosterman, The MathWorks, USA 
• Ivan Porres, Åbo Akademi, Finland 
• Alexander Pretschner, Fraunhofer IESE, Germany 
• Bernhard Rumpe, RWTH Aachen, Germany 
• Bernhard Schätz, fortiss GmbH, Germany 
• Jonathan Sprinkle, University of Arizona, USA 
• Friedrich Steimann, Fernuni Hagen, Germany 
• Ketil Stølen, SINTEF, Norway 
• Stefan Wagner, TU München, Germany 
 

Each submission received three reviews and was evaluated with respect to the overall 
quality of the submission itself and the potential impact of the completed and 
proposed research. The committee decided to accept 10 papers for presentation in the 
symposium. 

2   Summary of Presentations and Feedback 

The following 10 papers, available online at [1], were accepted for presentation: 
 

• Towards the Verification of State Machine-to-Java Code Generators for 
Semantic Conformance, Lukman Ab Rahim, Lancaster University, UK 

• Reuse in Modelling Method Development based on Meta-modelling, 
Alexander Bergmayr,  University of Vienna, Austria 

• Rearrange: Rational Model Transformations for Performance Adaptation, 
Mauro Luigi Drago, Politecnico di Milano, Italy 

• A Model Driven Approach to Test Evolving Business Process based Systems, 
Qurat-ul-ann Farooq, Technische Universitäat Ilmenau, Germany 

• A Transformational Approach for Component-Based Distributed 
Architectures, Fabian Gilson, University of Namur, Belgium 

• Modeling Complex Situations in Enterprise Architecture, Hyeonsook Kim, 
Thames Valley University, UK 

• Reference Modeling for Inter-organizational Systems, Dieter Mayrhofer, 
Vienna University of Technology, Austria 

• Applying Architecture Modeling Methodology to the Naval Gunship Software 
Safety Domain, Joey Rivera, US Naval Postgraduate School, USA 

• A Model-based Framework for Software Performance Feedback, Catia 
Trubiani, University of L’Aquila, Italy 

• Scenario-based Analysis of UML Design Class Models, Lijun Yu, Colorado 
State University, USA 

 

Each presentation was about 20 minutes in length and followed by a 10-minute 
discussion, which included the program committee members present and the students. 

During the lively and constructive discussion, feedback was provided by the fellow 
participants, the committee members Betty Cheng, Gregor Engels, Robert France, and 
Stefan Wagner, as well as the organizing chairs.  
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In the following, we will summarize some of the advice and suggestions that were 
given repeatedly and are also relevant to future participants of a Doctoral Symposium. 

• Focus your PhD topic and problem: Often, comments indicated that the 
scope of thesis – and specifically the problem statement – was not defined 
clearly enough. More precisely, it was not clear exactly what kinds of 
problems the thesis work would address. 

• Be realistic about your intended achievements: Being overambitious will 
necessarily lead to the frustration of non-achievement. Rather, try a “Think big 
– start small” approach. Specifically, also use this scoping to make clear, 
which kind of problems your thesis will not address.  

• Be conscious about your research method: Upon scoping your problem and 
research questions, you need to design your research methodology. How do 
you intend to validate your research? Are the research methods chosen the 
correct ones? 

• Provide an illustrative example: It is often helpful to provide an illustrative 
example when presenting your PhD topic. One often asked questions by the 
committee members were: “What is the killer app?” 

• Be clear about your own contributions: It is important to be very clear on 
what contribution and improvement the work makes over existing research. 
Failure to do this will invite questions about the significance of the work. 

 

During the feedback session it was suggested that a presentation template to help 
doctoral students to focus on key issues to present would have been beneficial.  

After the symposium, the following two papers were selected for inclusion in the 
MODELS 2010 Workshop and Symposia Proceedings after additional review and 
revision cycles. 

• Reuse in Modelling Method Development based on Meta-modelling, Alexander 
Bergmayr,  University of Vienna, Austria 

• A Model-based Framework for Software Performance Feedback, Catia 
Trubiani, University of L’Aquila, Italy 

3   Conclusions 

The Doctoral Symposium at MODELS 2010 continued the successful tradition of 
previous doctoral symposia. It featured high-quality presentations and mutually 
beneficial and enjoyable interaction. The chair would like to thank the members of the 
program committee for their excellent work, Jürgen Dingel for sharing his experience 
from the symposium in 2009, and the MODELS 2010 general chairs Øystein Haugen 
and Birger Møller-Pedersen for their support. 

References 

1.  Schätz, B., Elvesæter, B. (eds.): Preliminary Proceedings of the MODELS 2010 Doctoral 
Symposium (2010), http://models2010.ifi.uio.no/papers/DocSymp2010 
PrelimProceedings.pdf 



ReuseMe - Towards Aspect-Driven Reuse

in Modelling Method Development�

Alexander Bergmayr

Faculty of Computer Science, University of Vienna
Bruenner Strasse 72, 1210 Vienna, Austria

ab@dke.univie.ac.at

Abstract. Today, the construction of individual modelling methods is
a commonly accepted practice in different application domains. Method
engineers are, however, faced with complexity and high effort involved,
especially during modelling language development, considered as one ma-
jor task when developing methods. To alleviate this, one obvious step is
to promote reuse, thereby increasing productivity and quality similar to
what can be expected from reuse in software and information systems
engineering. Although considerable progress in language modularization
and composition is observable, the reuse principle is still rarely adopted
in practice. Therefore, in this work, a research roadmap for ReuseMe
(Reuse Methods), a novel aspect-oriented reuse approach is proposed.
By involving artefacts generated during a method’s conceptualization
down to its implementation and putting forth fundamental ingredients
for a comprehensive method reuse process on top of an Open Model
Repository, method reuse becomes leveraged. This paves the way for
establishing a library, populated with potential reusable aspects that
modularize method artefacts based on separating language concerns.

Keywords: Modelling Method Development, Reuse, Aspect-orientation.

1 Introduction

The construction of new modelling methods is one major challenge in Model-
Driven Engineering (MDE) as they provide the necessary concepts capable of
capturing the relevant knowledge of an application domain in terms of models.
Assuming that a modelling method consists of three major building blocks, i.e.,
modelling language, process, and functionality (e.g., comparison, composition,
translation etc.) [1,2], in this work the primary focus is on modelling languages.
Although, likewise in research as well as practice the development of Domain-
Specific Modelling Languages (DSMLs) has become a commodity, it is still a
complex task and the effort involved is usually extensive [3,4].

One obvious step to mitigate this complexity and high effort is to empha-
size reuse during method development. Systematic reuse in the development of
� This work has partly been supported by the EU project plugIT (ICT-231430) and

the Austrian Federal Ministry of Science and Research (BMWF).

J. Dingel and A. Solberg (Eds.): MODELS 2010 Workshops, LNCS 6627, pp. 4–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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modelling methods is, however, rarely adopted, although Brinkkemper coined
the notion of reusable fragments about 15 years ago [5]. Recent approaches (as
further discussed in related work Section 4) that contribute to the reuse princi-
ple are indeed promising, particularly in the composition of different language
modules. But still, there is a need for improving the way composition semantics
is made explicit if at all and the support of composition directives, necessary
to cope with more complicated reuse scenarios. Furthermore, lack of flexibility
during language modularization restricts the composition of language modules
to their exposed parts which is unfavorable when modules being composed hide
potential composable elements. Finally, although language modules can be com-
posed in various different ways (e.g., extending, interleaving, binding or overrid-
ing, cf. [6]) which may even include removing modularized language elements,
current approaches do not provide the required flexibility to adapt the compo-
sition strategy to a particular situation in a feasible way.

As a consequence, method reuse is hardly applicable even though recent work
on the investigation of modelling language support for the area of nuclear inspec-
tion [7], for instance, exposed that the availability and accessibility of a method
reuse library would have beneficial effects on the language development. From a
conceptual point of view, concerns addressed in the area of business process and
organisational modelling (e.g., connected activities, roles and skills) were of in-
terest to be composed with the specific language concerns core to the application
domain. In general, the provisioning of a method reuse library, method engineers
can draw on support during the development life-cycle is worthwhile. The fact
that modelling methods may then become realized by considering existing ones
that might partly or entirely be reused rather from scratch, enables similar to
the software engineering area increase of productivity and higher quality results.

The goal is, thus, clearly to support the separation of potential reusable lan-
guage concerns and their composition resulting in new modelling languages.
To achieve this goal ReuseMe (Reuse Methods), a novel aspect-oriented (AO)
reuse approach is advocated and further discussed in Section 2 by exploring its
conceptual grounding and providing insights into the process leveraging the pro-
posed reuse approach. Developing a method reuse process is considered as the
first main contribution while the second main contribution is collecting reusable
language aspects in the form of a method reuse library. Aspects are considered
as modular units of elements that satisfy language concerns while AO techniques
provide the grounding for composing them. The provisioning of an Open Model
Repository (OMR), serving as the basis for operationalizing the reuse process
and managing the reuse library is the third expected contribution. More detail
is given in Section 3. Section 4 reports on work that is related to ReuseMe.
Observing current efforts to establish an Open Model Initiative1 with the vision
of dealing with models in a way similar to how the open-source community is
dealing with source-code, ReuseMe is discussed in the realm of such an environ-
ment to validate its feasibility and applicability as outlined in Section 5. Current
status and next steps are summarized in Section 6.

1 www.openmodels.at

www.openmodels.at
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2 Aspect-Driven Reuse in Method Development

When adopting the principle of reuse during development of new modelling meth-
ods, higher quality results with reasonable effort can be expected. Consequently,
a novel aspect-oriented reuse approach is layed out that allows bringing together
reusable language concerns of possibly different domains, resulting in a cohe-
sive hybrid modelling method. Language concerns are codified through aspects,
thereby separating modelling languages in different modules. Obviously, the pro-
visioning of modules that tend to be generally useful, i.e., independent of their
original application domain in an appropriate way is indeed worthwhile as known
from the area of software development. Similar to programming libraries (e.g.,
Java Class Library) the idea is to promote libraries managing reusable crosscut-
ting language concerns (e.g., identification, reflection or element naming) as well
as non-crosscutting (e.g., organization, strategy, or process) ones. To beneficially
apply such a reuse library during method development, clarification is required
how the reuse principle can be incorporated in a language development life-cycle
and what core tasks actually leverage the reuse of language concerns. The fo-
cus in this paper is on static descriptions of a modelling language’s structure
expressed through a meta-model. A conceptual overview of ReuseMe is given in
Section 2.1, addressing the above raised questions. The concepts proposed are
then applied for a simple example in Section 2.2.

2.1 Conceptual Overview of Method Reuse

A typical modelling language development life-cycle comprises different phases
(cf. [8,3]) similar to engineering processes known from the software or infor-
mation systems discipline (cf. [9]). Language Conceptualization is dedicated to
capture fundamental concepts, relationships in between and properties adher-
ing to them, usually obtained through the analysis of a selected domain [10].
On the basis of identified domain elements, the basic structure of a modelling
language becomes derived and aligned to functional and non-functional require-
ments, or architecture and language anatomy relevant decisions (cf. [4]). Al-
though explicit language conceptualizations are indeed desirable and vital for
several application scenarios (cf. [11]), in practice they are most often created
after the modelling language has already been released, i.e., reverse engineered
from a language design, if at all. The actual realization of the designed language
on a selected platform is part of the Language Implementation and again design
relevant elements may be reverse engineered from a concrete implementation
for the purpose of refactoring, for instance. Observing modern workbenches for
modelling language development (cf. MDD-TIF07 workshop2, introducing a list
of commercial and research tools, or ADOxx, currently advocated by the Open
Model Initiative [12,13]), reasonable support is provided for the last phase while
the support becomes weaker when turning the focus towards language concep-
tualization. Nonetheless, from a theoretical viewpoint (at least) the assumption

2 www.dsmforum.org/tools.html

www.dsmforum.org/tools.html
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Fig. 1. Conceptual Overview of ReuseMe in Method Development

of a common language development formalism, i.e., a Meta Language allowing
to express Language Development Artefacts of each phase is feasible. Although
in the literature additional phases like, for instance, deployment, maintenance
or evolution are discussed, in this work the spectrum from conceptualization to
implementation as shown at the top of Figure 1 is primarily addressed.

Considering the incorporation of the reuse principle into the discussed life-cyle
phases, the entry point for method engineers interested in drawing support on a
reuse library is to explore and discover language concepts that fit the needs of do-
main experts. The management of language development artefacts is concerned
by an Open Model Repository. Note, that the use of ontological and linguistic re-
lationships is in line with the work of Atkinson & Kühne [14], allowing to address
the structure of a repository independent of possibly various regarded ontological
layers. This is indeed of relevance, since the repository provides the grounding for
the advocated reuse approach. To retrieve a potential design artefact for a given
conceptualization3 such a repository needs to ensure the traceability between
development artefacts constructed throughout different life-cycle phases. Having
identified appropriate language designs, i.e., Reusable Aspects collected within a
Method Reuse Library that allows accessing these modularized design elements,
their composition is required to obtain a cohesive result. At the design level this
means static composition of meta-model elements (cf. [15], discussing aspect
composition of UML models) satisfying a structural language concern rather
than program code weaving based on explicit join points in the execution of a

3 In fact, a given language conceptualization may have several different designs that
satisfy the needs of the former while similarly a particular design can be implemented
in various ways [9].
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program as typically supported by aspect-oriented programming (AOP). This
static composition needs to be reflected on the implementation level, thereby
bringing together concretely realized structural language concerns that form the
hybrid character of a resulting modelling method.

Let’s particularly concentrate on the composition of such concerns at the level
of language design and vital prerequisites by addressing the major tasks involved,
their input and output, relationships in-between, and roles involved as presented
in Figure 2, targeting to outline the overall advocated method reuse process of
ReuseMe.
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Fig. 2. Method Reuse Process

Modularization separates language concerns at the design level into reusable
aspects (e.g., through selection, generalization, or filter [16]) and populates a
method reuse library with logically connected language design elements. This
separation preserves compatibility [17] if (instance) models conforming to a de-
fined aspect still conform to the original language structure, i.e, its abstract
syntax. Compatibility is, however, not always intended (e.g., deep inheritance
hierarchies) hence, flexibility is required during the separation of language de-
signs. The latter influence the parts of a language design actually considered
during concern composition. In fact, arbitrary language artefacts may serve as
composable parts, allowing to interleave reusable aspects at certain points, i.e.,
pointcuts as known from the AspectJ4 AOP approach. These points are actually
defined through a dedicated model, determining possible join points (e.g., class

4 www.eclipse.org/aspectj/

www.eclipse.org/aspectj/
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or method). Thus, a join point model (cf. [18,19]) allows controlling possible
model composition scenarios.

Another main prerequisite for concern composition is to determine the lan-
guage elements potential for being composable by taking into account the in-
tension to compose them when required. This task is subsumed under the term
Matching, addressing generally the finding of corresponding language elements.
Having identified a correspondence between language elements, the assumption
is made that a binary equivalence relation, describing composable elements holds
between matched elements, resulting in what is called explicit composition se-
mantics. Obviously, this requires involving domain experts as they know the
concepts underlying the elements of a language design. Turning the focus on the
conceptualization level when describing composition semantics appears worth-
while and allows at the same time clearly separating it from language designs,
thereby avoiding to unnecessarily expand them with details about concept cor-
respondences across language designs.

Now, the way is paved to bring together reusable aspects selected during the
development life-cycle. Composition addresses this task by producing a cohesive
language implementation and reporting on composed language concerns at the
design level. Modularized structural language concerns and explicitly defined
composition semantics enable such a composition. To allow delegating composi-
tion results from the design level to the level of implementation, the correspond-
ing language implementation details need to be provided to the composition as
well. Combining the notions of these three core tasks involved, language concerns
become considered by ReuseMe from three perspectives. This is in accordance
with the development phases addressed in Figure 1. While the language con-
ceptualization hides details about the composition semantics of language con-
cerns from the design phase, the latter in turn hides the applied AO techniques
from the composed language implementation. From the viewpoint of a mod-
elling language’s implementation it seems to be irrelevant how it has actually
been produced. This consideration is similar to the way AspectJ produces Java
Bytecode. The produced composition result of ReuseMe is influenced by possible
Composition Directives (e.g., through composite pointcuts) in addition to the
composition semantics and the selected Composition Strategy. Considering the
literature in the area of aspect-orientation, symmetric and asymmetric concern
composition is generally differentiated [20]. Roughly speaking, the latter requires
a base in which aspects that crosscut the base are woven into. In contrast to the
asymmetric view, the notion underlying the symmetric view does not explicitly
separate concerns in crosscutting and non-crosscutting ones. Consequently, the
symmetric view does not mandate the existence of a base for composing aspect.
Their practical application is demonstrated in the following Section 2.2 for the
purpose of composing reusable aspects involved by the example.

2.2 Method Reuse by Example

To promote a better understanding of the concepts underlying ReuseMe and the
generic method reuse process presented, let’s address a concrete method reuse
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scenario. The sample scenario considers a language’s abstract syntax from the
design point of view and the corresponding conceptualization while omitting
implementation details since they naturally depend on a selected platform. Re-
member, the approach underlying ReuseMe primarily operates on a language’s
conceptualization and design and produces when applied to a specific platform
composed language implementations that adhere to the internal platform format,
i.e., the format of the language used express meta-models.
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On the top-right part of Figure 3 the requested language design is depicted. It
consists of Composed Language Concerns that allow constructing the Example
Model given beneath to make the sample scenario more concrete. Let’s incre-
mentally identify the requirements for the requested modelling language based
on the modelled situation which is about the intention of a sales manager to
attract more customers and how a process could particularly support this goal.
Clearly, this is a rather straightforward approach but the focus here is not on
requirements elicitation but instead to point out the assumptions made for the
selection of reusable aspects. In fact, this is indeed influenced by the mental
model of a domain expert, determining required aspects such as Strategy, Orga-
nization or Process (cf. top-left of Figure 3). To be able to model Roles, Goals
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and Contribution Links in-between, prospective language concepts are known
from the i* method [21], hence being the first potential reusable aspect. In a sim-
ilar way, Process and Activity concepts could be reused from UML’s activity
diagram and the Organisational Unit concept could be found in a method
called Adonis-BPMS [22]. Note that the above mentioned concepts may also be
available in other modelling methods as well, i.e., the selected methods could
be arbitrarily exchanged. Finally, support for naming elements (i.e., ’Sales Man-
ager’, for instance) is required as well although this is rather a design aspect
than a matter of conceptualization. Let’s assume the availability of a Language
Conceptualization as given by the sample scenario and the isComposable re-
lation defining the composition semantics for the Process and Task concept.
Remember, the latter is addressed by Matching. Provided that the traceability
between language concepts and design elements is ensured, reusable aspects at
the language design level can be obtained. Considering the highlighted Strat-
egy Aspect, Process Aspect and Organization Aspect, it becomes clear that they
fit the above identified requirements of the pursued language. While separating
these language concerns in terms of reusable aspects is dedicated to Modular-
ization, their composition for a specific problem domain is part of Composition.
The composition strategy applied for composing these two symmetric aspects
involves (i) Concern Merge (cf. (1)) for Role elements from the Strategy and
Organization Aspect, thereby rectifying attribute duplications, i.e., the name at-
tribute in this scenario and (ii) Concern Override (cf. (2)) for Task and Process
elements from the Strategy and Organization Aspect by keeping the latter ele-
ment. In both cases, the defined composition semantics on the conceptual level
serves as a foundation for the performed aspect compositions. Assuming that
isComposable is an equivalent relation (cf. Section 2.1) the composition of the
Role elements become obvious. Finally, let’s consider the asymmetric Element
Naming Aspect and how it is woven into the other three considered aspects to
fulfill the requirement for naming modelled elements (at the instance level). One
obvious step to achieve this requirement is to inherit from the NamedElement
design element. In this way, a Class Pointcut (cf. 3) has been applied to enforce
the composition directive that each element of the Strategy, Organization and
Process Aspect need to be inherited from NamedElement. The last aspect weav-
ing changes the viewpoint of defining element specialization as in this case the
class pointcut encapsulates the necessary statements at a central point instead
of adapting each affected element.

3 Contribution Expected from Method Reuse

Three main contributions expected by ReusMe are discussed in the following.
Development of Method Reuse Process. Establishing a comprehensive method

reuse library requires support particularly when existing modelling methods are
going to be separated in reusable aspects and these separated aspects become
composed to form new methods. In fact, modularization is not restricted to
be applied on existing modelling methods, only, but instead proactively sepa-
rating language concerns during method development, i.e., the construction of
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innovative (reusable) aspects leverage the reuse principle even better. The lat-
ter implies, however, domain experts explicate composition semantics between
reusable aspects in terms of matching since a useful set of related concepts facil-
itates composition and its automation. In this way, the first main contribution is
the development of a method reuse process although it is not claimed that this
process can fully be automated. The finding of correspondences between lan-
guage concepts for defining composition semantics, for instance, requires human
interpretation and cognitive capabilities since a language’s intrinsic meaning can
not easily be expressed through an explicit conceptualization. When turning the
focus on realizing concrete functionality supporting the method reuse process,
available formalisms (cf. ECORE, EMOF or KM3, to mention just a few) for
meta-modelling and intractable diversities (e.g., different terminology for con-
cepts identical in meaning) that come along with them affect its applicability for
a broad range of method development scenarios. Since most formalisms, how-
ever, adhere to class-based concepts (cf. [23]), adapting realized functionality
for different platforms is feasible. Considering modularization [24] may serve as
a source for deriving requirements while on the other hand, literature address-
ing meta-model composition (as further discussed in Section 4) and approaches
introducing aspect-orientation into DSML (cf. [25]) pose grounding for further
investigation on weaving reusable aspects.

Collection of Reusable Language Aspects. To allow utilizing a concrete method
reuse library populated with various different reusable language aspects, the
second main contribution is separating such aspects from existing modelling
methods and their cataloguing. This investigation is initiated by considering
areas such as knowledge, requirements or business process engineering but not
restricted to them. The latter is of particular interest due to the diversity of
available formalisms with different expressiveness but also concepts that are
common to all of them. A valuable source for existing modelling methods pro-
vides the Open Model Initiative currently hosting more than 10 projects, most
of them dealing with the conceptualization, design and implementation of mod-
elling methods. Concrete projects address the area of requirements engineering5,
business process engineering6 or knowledge management7. In this way, a method
reuse library addressing different problem domains becomes established primar-
ily for experiments to validate the proposed method reuse approach but also
possibly useful for method engineers developing new modelling methods.

Reuse Enhanced Open Model Repository. One major prerequisite for providing
useful support to the method reuse process and establishing a library populated
with reusable aspects is the availability of a repository powerful enough to cope
with language definition artefacts from different development phases, their trace-
ability from early phases down to the actual implementation and aspect-oriented
techniques incorporated for realizing method reuse. Potential reusable aspects
become in this way anchored to the body of domain knowledge [11] a modelling

5 www.openmodels.at/web/istar
6 www.openmodels.at/web/ben
7 www.openmodels.at/web/melca

www.openmodels.at/web/istar
www.openmodels.at/web/ben
www.openmodels.at/web/melca
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method is (explicitly or implicitly) committing to. Providing a reuse enhanced
open model repository is, hence, the third main contribution. Openness in this
context is considered similar to comprehensive programming libraries usually
available for contemporary general-purpose languages, thereby making such a
repository the first place for sharing results during modelling method develop-
ment and even more important reusable aspects. The repository reflects the shift
of method artefacts from ordinary elements in the repository to reusable aspects
in case the potential for reuse has been understood. This implies incorporating
aspect-orientation as a concept into model repositories.

4 Related Work

The investigation of existing approaches is primarily focused on their capabilities
to deal with the reuse principle in general and composition of language concerns
(or modules) in particular. A selected set of representative approaches has been
characterized and analyzed according to (1) the way they define Composition
Semantics, i.e., either implicit or explicit, (2) restrictions concerning Composable
Parts, (3) the Reuse Granularity, i.e., black-box or white box-reuse and (4) the
ability to allow for explicit Composition Directives, as summarized in Figure 4.
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Recent work incorporating ontological foundation in the area of MDE needs to
be considered as well since significant results may influence the development life-
cycle of modelling methods particularly when their conceptualization is requested
in an explicit way. The availability of explicit language conceptualizations is obvi-
ously of considerable interest for the current work. Sharing the analysis results of a
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particular domain across methods with similar needs, requires carefully consider-
ing their intended meaning which may include operational semantics particularly
when methods are behavioral in nature. Available literature aiming to couple on-
tologies and meta-modelling in general (cf. [26] a workshop series dedicated to
ontologies in MDE), and proposals for capturing method concepts in terms of on-
tological descriptions (cf. [27]) and model-based (cf. [28]) as well as ontology-based
search (cf. [29]) in particular are of relevance.

Modelling Language Reuse. In the work of [30] techniques known from software-
product lines are adopted to improve the reuse in DSML development by refine-
ment of existing DSMLs. Although this approach does not actually compose
language elements (the composable parts and composition directives criteria
have, thus, not been evaluated), the way semantics for potential refinements be-
comes defined is, however, interesting. White et al. [30] suggest feature models to
define correspondences between language concepts, related to design elements.
Similarly, in ReuseMe a language’s conceptualization is considered as the first
place for explicating composition semantics.

A template-based reuse approach to alleviate reoccurring language design prob-
lems is advocated in the work of [31]. Templates capture these design problems
and allow their instantiation. In fact, instantiated templates become embedded in
languages, hence extending them. The extension of Architecture Description Lan-
guages (ADLs) is discussed in [32], addressing concrete operators (e.g., inherit)
that allow for extending a given base ADL. Language elements are obliged to be
connected to a fixed set of meta-classes, thus restricting the scope of composable
parts.

Another approach for reuse comprises the composition of existing language
elements as suggested in [33] and [34]. Whereas the former approach is inspired
by UML’s package merge mechanism and particularly addresses the generaliza-
tion of reused elements of different packages, the latter suggests components in
terms of UML to provide reuse. Their actual composition is based on coupling
required interfaces and provided interfaces related to concrete elements of the
reused components. Another compositional approach is proposed by [35] dis-
cussing the concept of modularity in terms of textual domain-specific languages
defined by a grammar-based approach, thus integrating the abstract and a tex-
tual concrete syntax into a single language design. The approaches of Weisemller
& Schürr [34] and Krahn et al. [35] provide composition semantics through in-
terfaces of language elements whereas in ReuseMe the latter is clearly separated
from the language design.

Considering proposals relying on AO techniques, in [36] extension mechanisms
for EMF-based meta-models are discussed. Concerning composable parts, a rather
liberal approach is advocated by ReuseMe. Theoretically, any language element of
a reusable aspect could be addressed during the composition, although a dedicated
join point model defines possible pointcuts as known from aspect-oriented mod-
elling which may also include to delete language elements. The consideration of
reusable aspects as logically connected language design elements and the separa-
tion of their composition semantics by addressing composable parts independent
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of the conducted modularization allows a composition at an arbitrary granular-
ity. Composition directives are provided by Quintero & Valderrama [36] although
their approach is restricted to language extension in terms of element specializa-
tion only.

Ontologies in Language Development. In [37], a domain-specific modelling lan-
guage development framework relying on class-based meta-concepts enriched by
description logics (DLs) using the Web Ontology Language (OWL) is proposed.
Another alternative approach to the traditional class-based development of mod-
elling languages is [38], proposing a meta-language based on a philosophical
theory although a reference implementation is missing. While both approaches
expose insights into ontology-based meta-modelling, their focus is not on reuse.

5 Strategy for Evaluating Aspect-Driven Reuse

ReuseMe will be evaluated according to a three-level strategy.
Assessment of Reuse Library. To evaluate the utility of a reuse library pop-

ulated with reusable aspects from various different domains both the technical
as well as the human viewpoint will be considered according to the work of
Mili et al. [39], supporting criteria for each viewpoint (e.g., precision and recall
or difficulty of use and transparency, respectively). Regarding the human view-
point, empirical studies based on questionnaires are planned to be conducted
with partners of the plugIT8 project. This project proposes a model-based ap-
proach for the currently imposed practice of a tight coupling between business
and IT, achieving integration [40]. Members of the Open Model Initiative may
also contribute to evaluate ReuseMe since high reusability is also one success
factor of this initiative.

Controlled experiments with Reusable Aspects. Considering this criterion, stu-
dents from our lectures will be instructed to evaluate the feasibility and applicabil-
ity of the proposed method reuse process and reusable aspects from the business
process modelling area. The task involves reassembling modelling methods sep-
arated into useful structural language concerns and extend assembled ones with
new method artefacts by relying on a predefined baseline. The exploitation of the
reuse capability assumed needs to be evaluated based on corresponding metrics
[41] (e.g., ratio of reused to total size of life-cycle constructs and properties). Fur-
thermore, these controlled experiments are a first attempt to assess the validity
of ReuseMe. The adoption of ReuseMe on an industrial use case is currently be-
ing elaborated in cooperation with plugIT partners. This should indicate whether
ReuseMe scale to an industrial setting. Research work that put effort in similar ex-
periments (cf. [42]) and address structural refactoring on graph-based structures
(cf. [43]) are useful sources for this criterion.

Increase of Productivity and Quality. To assess this criterion, several small
development teams composed of students with similar experience are going to
realize an excerpt of a modelling method specification. One half of the teams
need to implement the specification from scratch, while the other half is allowed
8 www.plug-it-project.eu

www.plug-it-project.eu
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accessing a method reuse library consisting of potential reusable aspects. The
evaluation is conducted based on empirical studies, investigating the produc-
tivity and quality of reuse in modelling method development while applying
corresponding reuse metrics [41] (e.g., ratio of reused to manually implemented
’code’ or error rates, respectively).

6 Current Status and Next Steps

In this work, a research roadmap for promoting reuse in modelling method de-
velopment by incorporating aspect-orientation as a fundamental ingredient has
been outlined. ReuseMe is a novel aspect-oriented reuse approach that puts forth
a first attempt to establish a comprehensive method reuse process on top of an
open model repository, thereby leveraging the reuse principle in developing new
modelling methods. This research effort is still in an initial state currently ad-
dressing the elaboration of an environment that allows conducting experiments.
The scope is currently on structural language concerns and their reuse in terms
of reusable aspects. Analyzing the potential of such reusable aspects in exist-
ing domain-specific modelling languages and conceptual investigations on the
pursued method reuse process are considered as next steps.
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Abstract. The problem of interpreting the results of performance anal-
ysis is quite critical in the software performance domain: mean values,
variances, and probability distributions are hard to interpret for pro-
viding feedback to software architects. Support to the interpretation of
such results that helps to fill the gap between numbers and architectural
alternatives is still lacking.

The goal of my PhD thesis is to develop a model-based framework ad-
dressing the results interpretation and the feedback generation problems
by means of performance antipatterns, that are recurring solutions to
common mistakes (i.e. bad practices) in the software development. Such
antipatterns can play a key role in the software performance domain,
since they can be used in the search of performance problems as well as
in the formulation of their solutions in terms of architectural alternatives.

Keywords: Software Architecture, Performance Evaluation, Antipat-
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1 Problem

The trend in modeling and analyzing the performance of software systems is to
build a cycle where models are derived form design artifacts, and results from
models are evaluated in terms of design artifacts, so that the performance issues
are brought to the forefront early in the design process [30]. Most of the activities
connected to this cycle should be automated to make it actually applicable and
able to provide timely feedbacks.

Figure 1 schematically represents the typical steps that must be executed in
the software life-cycle to run a complete performance process. Rounded boxes
in the figure represent operational steps whereas square boxes represent in-
put/output data. Arrows numbered from 1 through 4 represent the typical for-
ward path from an (annotated) software architectural model all the way through
the production of performance indices of interest. While in this path quite well-
founded approaches have been introduced for inducing automation in all steps
(e.g. [31]), there is a clear lack of automation in the backward path that shall
bring the analysis results back to the software architecture.

The core step of the backward path (i.e. the shaded box of Figure 1) is the
results interpretation and feedback generation: the performance analysis results

J. Dingel and A. Solberg (Eds.): MODELS 2010 Workshops, LNCS 6627, pp. 19–34, 2011.
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Fig. 1. Automated software performance process

have to be interpreted in order to detect, if any, performance problems, and once
performance problems have been detected (with a certain accuracy) somewhere
in the model, solutions have to be applied to remove those problems1. A perfor-
mance problem is an unfulfilled requirement (e.g. the estimated response time of
a service is higher than the required one), and if all the requirements are satisfied
then the feedback obviously suggests no changes.

The introduction of sophisticated performance modeling notations (e.g. Queue-
ing Networks (QNs) [21], Generalized Stochastic Petri Nets (GSPNs) [22]) and
powerful tools to solve such models (e.g. WinPEPSY-QNS [5], GreatSPN [1])
makes indeed the problem of interpreting the results of performance analysis
quite complex as each modeling notation is intended to give a certain represen-
tation of the software system, expressed in its own syntax, and the performance
results are necessarily tailored to that modeling notation [6].

Additionally, a large gap exists between the representation of performance
analysis results and the feedback expected by software architects. The former
usually contains numbers (such as mean response time, throughput variance),
whereas the latter should embed architectural suggestions useful to overcome
performance problems (such as split a software component in two components
and re-deploy one of them).

The search of performance problems in the architectural model may be quite
complex and needs to be smartly driven towards the problematic areas of the
model. The complexity of this step stems from several factors: (i) performance
indices are basically numbers and often they have to be jointly examined: a sin-
gle performance index (e.g. the utilization of a service center) is not enough to
localize the critical parts of a software architecture, since a performance problem
can be detected only if other indices (e.g. the throughput of a neighbor service
center) are analyzed; (ii) performance indices can be estimated at different levels
of granularity (e.g. the response time index can be evaluated at the level of a

1 Note that this task very closely corresponds to the work of a physician: observing a
sick patient (the model), studying the symptoms (some bad values of performance
indices), making a diagnosis (performance problem), prescribing a treatment (per-
formance solution).
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cpu device, or at the level of a service that spans on different devices) and it is
unrealistic to keep under control all indices at all levels of abstraction; (iii) archi-
tectural models can be quite complex, and the origin of performance problems
emerges only looking at the architectural elements described in different views
of a system (such as static structure, dynamic behaviour, etc.).

The research activity of this work is focused on the core step, and in Figure 1
the most promising elements that can drive this search have been explicitly rep-
resented, i.e. performance antipatterns (input labeled 5.b to the core step). The
rationale of using performance antipatterns is two-fold: on the one hand, a per-
formance antipattern identifies a bad practice in the software model that affects
the performance indices negatively, thus to support the result interpretation op-
erational step; on the other hand, a performance antipattern definition includes
a solution description that lets the software architect devise refactoring actions,
thus to support the feedback generation operational step.

The aim is to introduce automation in the backward path providing a feed-
back to the software model (label 6 of Figure 1) in the form of an architectural
alternative that removes the original performance problems. Such automation
provides several gains since it notifies the software architect of the interpre-
tation of the analysis results by outlining the performance issues, and of the
subsequent architectural emendations aimed at removing such issues, without
the intervention of performance experts.

The main reference we consider for performance antipatterns is the work done
across the years by Smith and Williams [25] that have ultimately defined four-
teen modeling notation-independent antipatterns (one example is presented in
Section 2). Some other works present antipatterns that occur throughout differ-
ent technologies, but they are not as general as the ones defined in [25] (more
references are provided in Section 3).

The benefit of using antipatterns when closing the software performance cycle
is that they base on a comprehensive view of the system, thus to capture com-
plex phenomena. An antipatterns-based approach differs from: (i) design space
exploration techniques that blindly examine all architectural alternatives with a
doubtful efficiency; (ii) rule-based approaches that identify problems based on a
predefined set of rules with a questionable level of abstraction; (iii) metaheuristic
search techniques (e.g. genetic algorithms) that search for local changes in the
architectural model with uncertain optimality.

The remainder of the paper is organized as follows. Section 2 briefly provides
some background on performance antipatterns by showing one example of the
ones we examine. Section 3 discusses existing work in the research area. Section
4 presents the framework to automate the software performance feedback, and
in Section 5 the expected contributions of the proposed approach are listed.
Section 6 describes the methodologies being used in order to outline a prototype
implementation. Finally, Section 7 concludes the paper by pointing out the pros
and cons of using antipatterns in the software performance process.



22 C. Trubiani

2 Performance Antipatterns: One Example

Performance antipatterns have only been defined, up to now, in natural lan-
guage [25]. From the original list of fourteen antipatterns defined by Smith and
Williams two antipatterns are not considered for the following reason: the Falling
Dominoes antipattern refers to reliability and fault tolerance issues and it is out
of interest; the Unnecessary Processing antipattern deals with the semantics of
the processing by judging the importance of the application code that it is an
abstraction level not included in software architectural models. Hence, twelve is
the total number of the antipatterns we examine.

Table 1 reports one example (i.e. the Blob antipattern [25]): the problem col-
umn identifies the system properties that define the antipattern and are useful
for detecting it2; the solution column suggests the architectural changes useful
for solving the antipattern.

Table 1. One example of Performance Antipatterns [25]

Antipattern Problem Solution
Blob Occurs when a single class or component ei-

ther 1) performs all of the work of an applica-
tion or 2) holds all of the applications data.
Either manifestation results in excessive mes-
sage traffic that can degrade performance.

Refactor the design to distribute intel-
ligence uniformly over the applications
top-level classes, and to keep related
data and behavior together.

Figure 2 provides a graphical representation of the Blob antipattern (see Table
1), and visualized here in UML[3]-like notation for a quick comprehension. Note
that the graphical representation of the Blob antipattern provides our interpre-
tation of the informal definition reported in Table 1. Different formalizations
of antipatterns can be originated by laying on different interpretations of their
textual specification [25].

The upper side of Figure 2 describes the system properties of a (Anno-
tated) Software Architectural Model S with a BLOB problem. Such properties
are grouped accordingly to the Three-View Model [29]: (a) Static View, a com-
plex software resource, i.e. Sx, is connected to other software resources, e.g. Sy,
through many usage dependencies; (b) Dynamic View, the software resource Sx

generates excessive message traffic to elaborate data belonging to the software
resource Sy; (c) Deployment View, it includes two sub-cases: (c1) centralized,
i.e. if the communicating software resources are deployed on the same hardware
resource then the latter one will show high utilization value, i.e. $utilHwRes;
(c2) distributed, i.e. if the communicating software resources are deployed on dif-
ferent hardware resources then network resource will be a critical one with a high
utilization value, i.e. $utilNet3. The occurrence of such properties leads to assess
2 Such properties refer to software and/or hardware architectural characteristics as

well as to the performance indices obtained by the analysis.
3 The characterization of antipattern parameters related to system characteristics (e.g.

many usage dependencies, excessive message traffic) or to performance results (e.g.
high, low utilization) is based on thresholds values (see more details in Section 4).
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Fig. 2. A graphical representation of the Blob antipattern
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that the software resource Sx originates an instance of the Blob antipattern in
the Software Architectural Model S.

The lower side of Figure 2 contains the architectural changes that can be ap-
plied accordingly to the BLOB solution, thus a new software model is built (i.e.
the (Annotated)Software Architectural Model S’ ). The following refactoring ac-
tions are represented: (a) the number of usage dependencies between software re-
sources Sx and Sy must be decreased by delegating some functionalities to the
resource Sy; (b) the number of messages sent by Sx must be decreased by remov-
ing the management of data belonging to Sy. As consequences of previous actions:
(c1) if the communicating software resources were deployed on the same hardware
resource then the latter will not be a critical resource anymore by showing a low
utilization value, i.e. $utilHwRes′; (c2) if the communicating software resources
are deployed on different hardware resources then the network will not be a critical
resource anymore by showing a low utilization value, i.e. $utilNet′.

3 Related Work

The term antipattern appeared for the first time in [11] in contrast to the trend of
focus on positive and constructive solutions. Differently from patterns, antipat-
terns look at the negative features of a software system and describe commonly
occurring solutions to problems that generate negative consequences.

Performance Antipatternshave been previously documented and discussed in
different works: technology independent performance antipatterns have been de-
fined in [25] and they represent the main reference in this work; technology
specific such as J2EE and EJB antipatterns have been specified in [17] and [26].

Few related works can be found in literature that deal with the interpretation
of performance results and the generation of architectural feedback. Most of
them are based on monitoring techniques [7] and therefore are conceived to only
act after software deployment for tuning its performance.

An approach that aims at achieving good performance results through a deep
understanding of the architectural features has been introduced in [28]. Such
approach is the one that better defines the concept of antipatterns, however it is
strongly based on the interactions between software architects and performance
experts, therefore its level of automation is quite poor.

One of the first proposals of generation of feedback due to the software per-
formance analysis can be found in [15], where the detection of performance flaws
is demanded to the analysis of a specific performance modeling notation, i.e.
Layered Queued Network (LQN) models, and informal interpretation matrices
are used as support for the feedback generation.

The issue of solving performance issues through antipatterns has been ad-
dressed in [24], where a Performance Antipattern Detection (PAD) tool is pre-
sented. However, PAD only deals with Component-Based Enterprise Systems
and targets Enterprise Java Bean (EJB) applications. It is based on monitoring
data from running systems from which it extracts the run-time system design and
detects only EJB antipatterns. Its scope is restricted to running EJB systems,
therefore it is not applicable in the early development stages.
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Another interesting work on the software performance diagnosis and improve-
ments has been proposed in [32]: performance flaws are identified before the
implementation, even if they are related only to bottlenecks and long paths.
Performance antipatterns, compared to simple bottleneck and long paths iden-
tification, help to find more complex situations that embed software and/or
hardware problems. Additionally in [32] performance issues are identified at the
level of the LQN performance model, and the translation of these model prop-
erties into architectural changes might hide some possible refactoring solutions,
whereas performance antipatterns give a wider degree of freedom for architec-
tural alternatives since they embed the solutions in their definition.

By taking a wider look out of the performance domain, the management of an-
tipatterns is a quite recent research topic, whereas there has already been a sig-
nificant effort in the area of software design patterns. It is out of scope to address
such wide area, but it is worth to mention some works that use model-driven in-
struments to deal with patterns.

In [18] a metamodeling approach to pattern specification has been introduced.
In the context of the OMGs 4-layer metamodeling architecture, the authors
propose a pattern specification language (i.e. Epattern, at the M3 level) used to
specify patterns in any MOF-compliant modeling language at the M2 layer. In
[19] a UML-based pattern specification technique has been introduced. Design
patterns are defined as models in terms of UML metamodel concepts: a pattern
model describes the participants of a pattern and the relations between them
in a graphical notation by means of roles, i.e. the properties that a UML model
element must have to match the corresponding pattern occurrence.

4 Proposed Approach

In this Section a vision of the approach is discussed: the problem of interpreting
the performance results and generating architectural alternatives is addressed
with a model-based framework that supports the management of antipatterns.

The main activities performed within such framework are schematically shown
in Figure 3: specifying antipatterns, to define in a well-formed way the properties
that lead the software system to reveal a bad practice as well as the changes
that provide a solution; detecting antipatterns, to locate antipatterns in software
models; solving antipatterns, to remove the detected performance problems with
a set of refactoring actions that can be applied on the system model.

The activity of specifying antipatterns is performed by introducing a meta-
model (i.e. a neutral and a coherent set of interrelated concepts) to collect the
system elements that occur in the definition of antipatterns (e.g. software re-
source, network resource utilization, etc.), which is meant to be the basis for
a machine-processable definition of antipatterns. An antipattern definition in-
cludes: (i) the specification of the problem, i.e. a set of rules that interrogate
the system elements to look for occurrences of the corresponding antipattern;
(ii) the specification of the solution, i.e. a set of actions that are applied on the
system elements to remove the original performance issues.
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Fig. 3. The main activities of the model-based framework

The activities of detecting and solving antipatterns are performed by respec-
tively translating the antipatterns rules and actions into concrete modeling no-
tations. In fact, the modeling language used for the target system, i.e. the box
(annotated) software architectural model of Figure 1, is of crucial relevance, since
the antipatterns neutral concepts must be translated into the actual concrete
modeling languages, if possible4. The framework is currently considering three
notations: a system modeling language such as UML [3] and Marte profile5 [4];
an architectural language such as Æmilia [9]; a domain specific modeling lan-
guage such as Palladio Component Model (PCM) [8]. In general, the subset of
target modeling languages can be enlarged as far as the concepts for representing
antipatterns are available; for example, architectural description languages such
as AADL [2] can be also suited to validate the approach.

As stated in Section 2, the “Blob” antipattern [25] can be detected, for ex-
ample, when a software resource requires a lot of information from another one,
it generates excessive message traffic that lead to over utilize the available net-
work resource (i.e. the distributed case). Figure 4 shows an example of the Blob
problem in the UML and Marte profile modeling language where the shaded
boxes highlight the excerpts of the architecture evidencing the “Blob” instance
(i.e. the libraryController UML component)6. Such antipattern can be solved by
applying the Blob solution, e.g. by balancing in a better way the business logic
among the available software resources with a consequent improvement for the
utilization of the network resource (see the lower side of Figure 4).

More technical details on the main activities of the framework (i.e. specifying,
detecting and solving antipatterns) are reported in the following.

4 It depends on the expressiveness of the target modeling language.
5 MARTE profile provides facilities to annotate UML models with information re-

quired to perform performance analysis.
6 For example, a software resource can be represented as a UML component, the

network resource utilization can be represented as the tagged value utilization of the
MARTE stereotype GaCommHost applied to a UML node, etc.



A Model-Based Framework for Software Performance Feedback 27

Fig. 4. An example of the “Blob” antipattern in the UML and Marte profile modeling
language
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4.1 Specifying Antipatterns

This section briefly presents the metamodel, named Performance Antipattern
Modeling Language (PAML), collecting all the system elements identified by
analyzing the antipatterns definition in literature [25].

The PAML metamodel structure is shown in Figure 5. It is constituted of
two main parts as delimited by the horizontal dashed line: (i) the Antipattern
Specification part is aimed at collecting the high-level features such as the views
of the system (i.e. static, dynamic, deployment) characterizing the antipatterns’
specification; (ii) the Model Elements Specification part is aimed at collecting
the concepts that will be used to explore the software architectural models and
the performance indices (see Figure 1).

Fig. 5. The Performance Antipattern Modeling Language (PAML) structure

The specification of model elements to describe antipatterns is a quite complex
task, because such elements can be of different type: (i) elements of a software
architectural model (e.g. software resource, message, hardware resource); (ii)
performance analysis outcoming indices (e.g. utilization of a network resource);
(iii) structured information that can be obtained by processing the previous ones
(e.g. the number of messages sent by a software resource towards another one);
(iv) bounds that give guidelines for the interpretation of the system features
(e.g. the upper bound for the network resource utilization).

These two latter model elements, i.e. (iii) structured information and (iv)
bounds, are respectively defined by introducing supporting functions that elab-
orate a certain set of system elements, and thresholds that need to be compared
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with the observed properties of the software system. Note that threshold numer-
ical values (e.g. the utilization of a network resource is considered high if greater
than 0.8) can be assigned by software architects basing on heuristic evaluations,
or they can be obtained by the monitoring of the system7.

All the architectural model elements and the performance indices occurring
in antipatterns’ specifications are grouped in a metamodel called SML+ (see
Figure 5). SML+ obviously shares many concepts with existing Software Model-
ing Languages, however, it is not meant to be another modeling language, rather
it is oriented to specify the basic elements of performance antipatterns8.

In this way an antipattern can be specified as a PAML-based model that is in-
tended to formalize its textual description [25]. For example, following the graph-
ical representation of the Blob antipattern (see Figure 2), the corresponding Blob
model (see Figure 4) will be constituted by an AntipatternSpecificationwith
three AntipatternViews: (a) the StaticView, (b) the DynamicView, (c) the
DeploymentView for which two AntipatternSubViews are defined, i.e. (c1) the
centralized one and (c2) the distributed one. A BooleanRestriction can be
defined between these sub-views, and the type is set by the BooleanOperator
equal to the OR value. Each subview will contain a set of ModelElements.

4.2 Detecting and Solving Antipatterns

Performance antipatterns are built on the basis of SML+ that contains the
minimal amount of concepts essentials for their specification. The activities of
detecting and solving antipatterns are performed by translating the concepts of
SML+ into the corresponding elements of the concrete notations the framework
considers (i.e. UML and Marte profile, Æmilia, and PCM).

Figure 6 shows how the specification of performance antipatterns can be trans-
lated into the actual modeling languages. Each antipattern will shadow on a set
of model elements belonging to the modeling language SML+ we propose. For
example, the blob antipattern specification (see Figure 2) contains the softwar-
eResource and hardwareResource model elements, whereas it is not related to
the resourceDemand element (see Figure 6).

SML+ is aimed at providing the infrastructure upon which constructing the
semantic relations among different modeling languages. Note that such semantic
relations depend on the expressiveness of the target modeling language. For
example, a softwareResource is respectively translated in a UML component,
a ARCHI ELEM TYPE, and a PCM basic component ; on the contrary, the
full mapping is not possible for the hardwareResource whose translation is only
possible with a UML node and a PCM resource container, whereas in Æmilia
the concept remains uncovered.

7 For example, the threshold numerical value for the upper bound of network resource
utilization can be estimated as the average utilization value overall the network
instances in the software system under analysis, plus the corresponding variance.

8 For sake of space we do not detail SML+ here. However, a restricted set of model
elements, such as software resource, resource demand, etc., are shown in Figure 6.
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Fig. 6. Translating the specification of antipatterns into concrete modeling languages

We can conclude that in a concrete modeling language there are antipatterns
that can be automatically detected and/or automatically solved (i.e. the entire
set of model elements is translated) and some others that are neither detectable
and solvable (i.e. no model element is translated). There is an intermediate level
of antipatterns that are semi-automatically detectable by relaxing some rules,
and/or semi-automatically solvable by devising some actions to be manually
performed (i.e. a restricted set of model elements is translated).

5 Expected Contributions

The activity of specifying antipatterns provides several contributions: (i) the
identification of the system elements of the antipatterns specification (e.g. soft-
ware resource, network resource utilization, hardware resource, etc.); (ii) the
formalization of the antipatterns specification as logical predicates that identify
the system properties characterizing their occurrence in software architectural
models (e.g. a software resource generates an excessive message traffic); (iii) the
definition of a metamodel able to capture the antipatterns properties.

The benefit of introducing a metamodel approach is manifold: (i) expressive-
ness, it currently contains all the concepts needed to specify twelve performance
antipatterns introduced in [25]; (ii) usability, it allows a user-friendly represen-
tation of all antipatterns as models capturing performance flaws; (iii) reusability,
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i.e. if new antipatterns will be found, then it can also represent the new ones, if
based on the same concepts; (iv) extensibility, i.e. if new antipatterns are based
on additional concepts the metamodel can be refined to introduce such concepts.

The subset of the antipatterns types can be enlarged as far as the concepts
for representing such types are available. Technology-specific antipatterns such
as EJB and J2EE antipatterns [17] [26] can be also suited to validate how the
current metamodel is reusable in domain-specific fields. For example, the EJB
Bloated Session Bean Antipattern [17] can be currently specified as a PAML-
based model, since it describes a situation in EJB systems where a session bean
has become too bulky and it is very similar to the Blob antipattern in the Smith-
Williams’ classification.

The activities of detecting and solving antipatterns, based on their specifica-
tions, provide the operational support to the results interpretation and feedback
generation problems, thus to automate the backward path in the software per-
formance process.

6 Current Status

The activity of specifying antipatterns is addressed in [14]: a structured descrip-
tion of the system elements that occur in the definition of antipatterns is pro-
vided, and performance antipatterns are modeled as logical predicates. Such
predicates could be further refined by looking at probabilistic model checking
techniques, as Grunske experimented in [20]. Additionally, in [14] the opera-
tional counterpart of the antipattern declarative definitions as logical predicates
is implemented with a java rule-engine application. Such engine is able to detect
performance antipatterns in an XML representation of the software system that
groups the software architectural model and the performance indices data.

A Performance Antipattern Modeling Language, i.e. a metamodel specifically
tailored to describe antipatterns, is introduced in [12]. It is also discussed a vision
on how model-driven techniques (e.g. weaving models [10]) can be used to build
a notation-independent approach that addresses the results interpretation and
feedback generation steps via performance antipatterns management.

The activities of detecting and solving antipatterns are currently implemented
by translating the antipattern rules and actions into two modeling languages: (i)
the UML and Marte profile notation in [13]; (ii) the PCM notation in [27]. In
particular, in [13] performance antipatterns are automatically detected in UML
models using OCL [23] queries, whereas in [27] a restricted set of antipatterns is
automatically detected and solved in PCM models through a benchmark tool.

The current work is on investigating how to specify, detect, and solve perfor-
mance antipatterns in the Æmilia architectural language.

Additionally, instead of blindly moving among the antipattern solutions with-
out eventually achieving the desired results, a technique to rank the antipatterns
on the basis of their guiltiness for violated requirements is defined in [16], thus
to decide how many antipatterns to solve, which ones and in what order.
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7 Plan for Evaluation

The aim of this work is to provide automation in the backward path from the
performance analysis to software modeling by means of antipatterns. The experi-
mentation on the UML and Marte profile and PCM modeling languages validates
the applicability of the whole approach, i.e. the support to results interpretation
and feedback generation by specifying, detecting, and solving antipatterns.

As a short term future goal the approach has to be validated in order to deter-
mine the extent to which it can offer support to user activities. The validation of
the approach includes two dimensions: (i) it has to be exposed to a set of target
users, such as graduate students in a software engineering course, model-driven
developers, more or less experienced software architects, in order to analyze its
scope and usability; (ii) it has to be applied to complex case studies by involving
industry partners, in order to analyze its scalability. Such experimentation is of
worth interest because the final purpose would be to integrate the framework in
the daily practices of the software development process.

In a longer term, some critical pending issues have to be faced in order to
automate the whole process. The detection of antipatterns generates two main
categories of problems: (i) the accuracy problem, i.e. false positive/negative in-
stances might be introduced; (ii) the relationship problem, i.e. the detected in-
stances might be related each other, e.g. one instance can be the generalization
or the specialization of another instance. The solution of antipatterns gener-
ates three main categories of problems: (i) the convergence problem, i.e. the
solution of one or more antipatterns might introduce new antipatterns; (ii) the
requirement problem, i.e. when one or more antipatterns cannot be solved due
to pre-existing (functional or non-functional) requirements; (iii) the coherency
problem, i.e. when the solution of a certain number of antipatterns cannot be
unambiguously applied due to incoherencies among their solutions.

Acknowledgments. I would like to thank my PhD Advisor Vittorio Cortellessa
and my co-authors of the cited papers for their fundamental contribution on this
topic.
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Abstract. The Educators’ Symposium (EduSymp) yields a major fo-
rum for software modeling education. Traditionally collocated with the
ACM/IEEE International Conference on Model-Driven Engineering Lan-
guages and Systems (MODELS), EduSymp offers a unique opportunity
for educators to present and discuss innovative pedagogical software
modeling approaches. In this paper, a short retrospective on the 6th
edition of EduSymp hosted in Oslo is presented. The program was a
manifold of activities including interesting and thought-provoking oral
presentations, an interactive breakout-session, and a panel discussion.

1 Overview

Research and academic instruction complement each other and eventually, the
results of research become the foundation of the curriculum in academic disci-
plines. Whereas in some academic disciplines the knowledge taught to students
is well established for a long time, in other disciplines, such as computer sci-
ence, the knowledge mainly used is the result of recent or ongoing research.
The training of computer scientists requires both established and cutting-edge
knowledge, which are indispensable in preparing scientists for the challenges of
the professional world.

In the field of software modeling, which continues to be an emerging research
field with many highly innovative and practically relevant technological advance-
ments, knowledge rapidly gets outdated. The challenge for teachers in the field
of software modeling is to communicate well-established basic principles to the
students, as well as to educate them on the scope and limitations of the novel and
exciting technologies being developed. The Educators’ Symposium (EduSymp),
collocated with the ACM/IEEE International Conference on Model-Driven Engi-
neering Languages and Systems (MODELS), offers a unique opportunity for edu-
cators to present anddiscuss innovative pedagogical softwaremodeling approaches.
� This work has been partly funded by the Austrian Federal Ministry of Transport,

Innovation, and Technology and the Austrian Research Promotion Agency under
grant FIT-IT-819584.
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Although many of the software modeling technologies are very mature from
a conceptual point of view, the concrete implementations often provide several
pitfalls to the users. Consequently, there are many questions educators are con-
fronted with when developing software engineering curricula. A few of these
questions are as follows:

– The field of software modeling continues to change rapidly. At what point in
the continuum of change shall we start to teach modeling?

– Do students consider models to aid in software development or are they
viewed as pretty pictures only?

– Can the benefits of modeling be realized without having proper tool support?
– Are tools imposing an extra inhibition/threshold in teaching modeling?
– Is it necessary for modeling tools to conform to standards or is it more impor-

tant that they provide simplified concepts tailored for didactical purposes?
– Is it positive/negative when students are forced to use a specific tool im-

plementation from a specific vendor? Do we teach them knowledge with an
expiration date?

The 2010 EduSymp started with the thought provoking keynote “Formality
in Education – Bitter Medicine or Bitter Administration?” given by Thomas
Kühne1. The results of an online survey2 conducted prior to the symposium
offered an open forum for people interested and involved in software modeling
education to discuss and exchange ideas on the questions previously listed.

The general consensus of the attendees at the 2010 EduSymp was that in
software modeling education hands-on experience is extremely valuable for the
students. The requirements for the modeling tools naturally vary based on the
specific aims of the different courses (e.g., basic modeling, software engineering,
model-driven engineering, and model engineering, among others). Overall it was
thought that the available tools are mature enough, with respect to stability
and documentation, that they may be successfully applied in software modeling
courses. A huge point of criticism was their usability and user-friendliness which
still poses a major burden to the students. In the context of these discussions
many experiences and ideas were exchanged between the participants of the
symposium.

This year’s symposium was very well attended (between 20 and 50 participants
attended the various sessions) which clearly indicates that software modeling
education is an important issue within the modeling research community. We
hope that the discussions initiated at the 2010 EduSymp will result in interesting
and novel pedagogical ideas to support software modeling education. In addition,
we expect the next edition of EduSymp will continue to increase the awareness
on the importance of high quality education, and provide a forum for educators
to meet, share, and discuss relevant issues in software modeling education.
1 Associate Professor, School of Engineering and Computer Science, Victoria Univer-

sity of Wellington, New Zealand.
2 A summary of the survey results is available at
http://edusymp.big.tuwien.ac.at/slides/survey.pdf

http://edusymp.big.tuwien.ac.at/slides/survey.pdf
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2 Contributions

Seven papers (three long papers and four short papers) were selected to be
presented at the 2010 edition of EduSymp covering a broad spectrum in software
modeling education.

Teaching Model Driven Language Handling
Terje Gjøsæter and Andreas Prinz

Many universities teach computer language handling by mainly focussing on
compiler theory, although MDD (model-driven development) and meta-modelling
are increasingly important in the software industry, as well as in computer sci-
ence. In this article, we share some experiences from teaching a course in com-
puter language handling where the focus is on MDD principles.

The Role of User Guidance in the Industrial Adoption of
AUKOTON MDE Approach

Jari Rauhamäki, Outi Laitinen, Seppo Sierla, and Seppo Kuikka

Model-Driven Engineering (MDE) has emerged as an actively researched and
established approach for next generation control application development. Tech-
nology transfer to the industry is a topical research problem. Since most pro-
fessional factory process control engineers do not have computer science back-
grounds, there is an urgent need for studies of the role of user guidance in the
professional learning, and thus, of industrial adoption of MDE approaches. In
this study professionals were invited to a hands-on assessment of the AUKO-
TON MDE approach for factory process control engineering. Qualitative empir-
ical material was collected and analyzed to identify the role of user guidance in
the context of other factors impacting industrial adoption. Challenges in adop-
tion that could be solved by user guidance were identified with the theory of
organizational knowledge creation (SECI) model.

Implementation of the Concept-Driven Approach in an
Object-Oriented Analysis and Design Course

Ven Yu Sien

As one of the most important tasks in object-oriented analysis and design
(OOAD) is the abstraction of the problem domain into specific concepts or ob-
jects, information technology (IT) students need appropriate skills of abstraction
in order to identify the essential concepts and relationships within a problem do-
main. However students in higher education generally find difficulty performing
abstractions of real-world problems within the context of OOAD.

Concept mapping is a popular tool used in education for facilitating learning,
comprehension and the development of knowledge structures. We have success-
fully adopted concept maps as stepping-stones to assist students in constructing
class and sequence diagrams. In this paper, we present a framework for teaching
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object-oriented (OO) modelling using concept maps. This framework compris-
ing four teaching modules could be integrated into existing OOAD courses at
the undergraduate or postgraduate level, and OOAD workshops to help soft-
ware engineering educators resolve some of the difficulties they face in trying to
teach OOAD. We also report results of an evaluative study on the effectiveness
of integrating concept mapping techniques into an introductory OOAD course.

Teaching OCL Standard Library: First Part of an OCL 2.x Course
Joanna Chimiak-Opoka, Birgit Demuth

Our aim is to provide a complete set of materials to teach OCL. They can be used
in bachelor or master programs of computer science curricula and for training
in an industrial context. In this paper we present the first part of the course
related to the OCL Standard Library. This part provides model independent
examples to teach OCL types and their operations. It enables users to gain
a basic understanding of the OCL Standard Library, which can be used as a
starting point to write model constraints (OCL specifications) or model queries.
Additionally, to the content of the paper, we provide a set of OCL packages,
exercise proposals and lecture slides.

Role Allocation and Scheme in Software Engineering Course-Project
Ghafour Alipour

Role is a set of behavioural actions and responsibilities one takes in a specific
situation. We all have many roles in our life. Differences among the role defi-
nitions reach mainly from the different emphasis of the software development
method itself. Agile software development methods define roles to enhance com-
munication and to produce a better product. In this paper, we describe a role
allocation and scheme method whose data were gathered in students projects in
software engineering course in the university.

New Media in Teaching UML in the Large - an Experience Report
Marion Brandsteidl, Konrad Wieland, and Christian Huemer

Huge classes with more than 800 students pose a major challenge to lecturers
as well as to students, especially when a practical part is included. In order to
successfully master lectures of this size, novel kinds of teaching media provide a
multitude of enhanced opportunities. In this paper, we present our experiences
with the application of new media in our undergraduate course Introduction to
Object-Oriented Modeling (OOM). In this course, we teach approximately 800-
1000 students per year the principles and techniques of UML 2.0. New media,
i.e., technologies other than the traditional blackboard presentation like a doc-
ument camera, web-based self assessments, or lecture recordings, are applied to
support both, students and lecturers when learning and teaching, respectively.
We empirically underline the acceptance of our concept with the feedback of our
students concerning the newly used technologies gained through an extensive
survey.
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m2n: Translating Models to Natural Language Descriptions
Petra Brosch and Andrea Randak

To describe the structure of a system, the UML Class Diagram yields the means-
of-choice. Therefor, the Class Diagram provides concepts like class, attribute,
operation, association, generalization, aggregation, enumeration, etc. When stu-
dents are introduced to this diagram, they often have to solve exercises where
texts in natural language are given and they have to model the described sys-
tems. When analyzing such exercises, it becomes evident that certain kinds of
phrases describing a particular concept appear again and again contextualized
to the described domain.

In this paper, we present an approach which allows the automatic generation
of textual specifications from a given Class Diagram based on standard phrases
in natural language. Besides supporting teachers in preparing exercises, such an
approach is also valuable for various e-learning scenarios.

3 Program Committee

The papers presented at EduSymp have been selected based on the novelty of
the ideas, the impact of modeling during software development education, and
relevance to the topics of the symposium. All papers passed through a rigorous
review process, each paper received at least three detailed reviews prepared by
internationally renowned experts. The list of the International Program Com-
mittee is shown below:

– Jordi Cabot, École des Mines de Nantes, France
– Fábio Costa, Universidade Federal de Goiás, Brazil
– Gregor Engels, University of Paderborn, Germany
– Robert France, Colorado State University, USA
– Martin Gogolla, University of Bremen, Germany
– Jeff Gray, University of Alabama, USA
– Øystein Haugen, SINTEF, Norway
– Gerti Kappel, Vienna University of Technology, Austria
– Ludwik Kuźniarz, Blekinge Institute of Technology, Sweden
– Timothy Lethbridge, University of Ottawa, Canada
– Werner Retschitzegger, Johannes Kepler University Linz, Austria
– Jean-Paul Rigault, University of Nice, France
– Patricia Roberts, University of Westminster, UK
– Michal Smialek, Warsaw University of Technology, Poland
– Dániel Varró, Budapest University of Technology and Economics, Hungary
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Abstract. Huge classes with more than 800 students pose a major chal-
lenge to lecturers as well as to students, especially when a practical part
is included. In order to successfully master lectures of this size, novel
kinds of teaching media provide a multitude of enhanced opportunities.

In this paper, we present our experiences with the application of
new media in our undergraduate course Introduction to Object-Oriented
Modeling (OOM). In this course, we teach approximately 800-1000 stu-
dents per year the principles and techniques of UML 2.0. New media,
i.e., technologies other than the traditional blackboard presentation like
a document camera, web-based self assessments, or lecture recordings,
are applied to support both, students and lecturers when learning and
teaching, respectively. We empirically underline the acceptance of our
concept with the feedback of our students concerning the newly used
technologies gained through an extensive survey.

Keywords: Teaching Object-Oriented Modeling, Teaching UML, Basic
Modeling Course.

1 Introduction

Since computers have become a consumer product and the internet has become
a mainstream medium, many tools and techniques supporting teaching electron-
ically as well as learning have emerged. The rich variety poses a major challenge
for teachers in order to effectively apply the new possibilities.

The application of new media in education has also always been an active re-
search field. New technologies emerge bringing new ways for teaching and learn-
ing. Today, e-learning, d-learning1 or m-learning2 have become indispensable in
education [3]. Also other digital media affect education. In the area of model-
ing, Qi et al. [2] present the application of e-whiteboards, which serve perfectly
for modeling in small teams. Another example is given by Zupancic et al. [8].
They have recorded the whole lectures and have streamed them together with

1 Distance learning.
2 Mobile learning.
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the notes of the lecturer. Mock et al. [6] presented their experiences of using a
tablet PC for teaching computer science courses.

In this paper we present our experiences with the selection of new media
tools we used for our course Introduction to Object-Oriented Modeling (OOM),
namely lecture recordings, a document camera, and self assessment tests. Those
tools help us to teach a big number of students at the same time while still
supporting the students as good as possible and offering them multiple learning
channels.

At the end of summer term 2010, the students were asked to voluntarily take
part in a survey covering the teaching methods of the lecture and about 180 out
of 500 students took part in the survey which results in a participation rate of
36%. The results of parts of this survey are presented within this paper.

The paper is structured as follows: In the next section, we introduce our
course and teaching environment. In Section 3 we present the self assessments
for students in our e-learning platform. In addition, the platform also provides
lecture streams, which we present in Section 4. The application of our document
camera is discussed in Section 5. Before we conclude in Section 7, we present
our ongoing work in Section 6.

2 Background

Our course Introduction to Object-Oriented Modeling (OOM) is offered twice
per year and attended by 800-1000 undergraduate students who study computer
science or business informatics at the Vienna University of Technology. In OOM
we teach modeling basics by introducing syntax and semantics of UML 2 mod-
els3 [4,7]. Despite the huge number of students, we try to avoid mass processing,
but we establish personal mentoring instead. Besides a traditional lecture where
structural as well as behavioral modeling techniques are introduced, we organize
the lab as exercise courses in smaller groups where the theoretical contents of the
lecture are practiced. Furthermore we provide support via online forums on the
e-learning platform TUWEL4 (a Moodle adaptation of the Vienna University of
Technology). A detailed description of the course is given in [1].

The lecture consists of six units covering the following UML 2 diagrams: class
and object diagram, sequence diagram, state diagram, activity diagram, and use
case diagram. Each lecture is given with powerpoint slides accompanied by small
practical modeling examples and syntax illustrations which are developed live
during the lecture.

For the practical part the students are divided into groups of about 50 persons.
Each group meets six times during the semester for a so-called “lab session” in
order to discuss the solution of exercise sheets for practicing modeling. For each
exercise the assistant professor chooses one student who must present and explain
his/her solution.

For further support, we provide various e-learning exercises including multiple-
choice questions and practical modeling exercises. The students can voluntarily
3 http://www.uml.org/
4 http://tuwel.tuwien.ac.at

http://www.uml.org/
http://tuwel.tuwien.ac.at
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use the e-learning exercises to test their knowledge about the syntax and the
theoretical background of the diagrams as well as the interpretation of given
diagrams and they can gain some modeling practice.

In our course, we use different media to teach UML supporting the different
learning methods and needs of our students. The students can choose between
learning the UML diagrams with the help of a book [4,7], attending the lecture,
listening to the lecture at home or a combination of the three. The lab sessions
are not simply used for assessing the students’ knowledge, but also to answer
questions and to examine each covered UML diagram from a more practical point
of view — given that the students already have a basic knowledge of the syntax
after the corresponding lecture as well as the preparation of the lab exercises
have taken place. Three exams assess whether the students have reached the
learning goals — if they understand the teaching material as well as if they are
able to apply the taught concepts to small “real world problems”.

To apply this teaching concept, we use traditional methods and material such
as powerpoint or the blackboard as well as more recent methods such as lecture
videos or e-learning. In this paper we concentrate on the more recent methods
and technologies which assist us in teaching OOM.

3 Self Assessments

In OOM, the students have the possibility to practice all UML diagram types
presented in the lecture with the help of our e-learning platform. In 2008, we
started the first experiments on web-based self assessments for modeling [1],
which we have extended providing now a higher amount of questions and more
different types of questions presented in the following. In general, we distinguish
between multiple choice and open questions with the overall goal that our stu-
dents learn to understand both the syntax and semantics of UML by exercising
on the basis of several examples on their own responsibility. Beside multiple
choice questions checking the theory of object-oriented modeling, we mainly fo-
cus on multiple choice questions with practical background, where examples of
UML diagrams are given and the students have to understand and interpret
them. When exercising open questions where a textual description of a UML
model is given, students have to develop the dedicated model from scratch.

All questions may be exercised during the whole term and may be repeated
by the students as often as they like. Solving these exercises is not mandatory.
Moreover, they are also a good starting point for fruitful discussions in our online
forum, which is actively used by most students.

Multiple choice questions are evaluated immediately and presented to the
students, where wrong answers are marked. In contrast, open questions where
students have to develop a model are not checked automatically by the system.
However, the students may control their exercise by fading in the correct solution.

In summer term 2010, 73% of all students used the multiple choice questions
for practising and approximately 50% of all students tried them two or more
times, whereas 43% of all students worked through the open examples and only



Novel Communication Channels in Software Modeling Education 43

very good 88 votes (56%)

good 48 votes (30%)

fair 3 votes (2%)

poor 0 votes (0%)

undecided 17 votes (11%)

very good 72 votes (46%)

good 56 votes (35%)

fair 6 votes (4%)

poor 2 votes (1%)

undecided 20 votes (13%)

How did you like the self assessments in TUWEL?

Did the self assessments help you studying the course material?

very good
good
fair
poor
undecided

very good
good
fair
poor
undecided

Fig. 1. Survey results concerning the self assessments

approximately 15% of all students repeated them. Of course, there is a huge
increase of attempts a few days before the tests. Nearly 100% of all attempts
happen during these days.

The self assessments support various types of learning (cf. [5]) in the following
sense:

– Learning by doing. In the lecture the students get a profound theoretical
background of UML and in the lab they have to work out several exercises.
Our students enhance their practical modeling skills with the help of the self
assessments.

– Learning by repeating. Another major advantage of the self assessments is
that students may exercise whenever and wherever they want. If a student
has some problems with a specific topic, he/she may repeat the exercises as
often he/she likes to consolidate the newly acquired knowledge.

– Fast feedback for students. By getting feedback immediately, students may
quickly find out their strengths and weaknesses in the specific topics.

– Qualified feedback. If the students select a wrong answer to a multiple choice
question, they get qualified feedback to know why this answer is wrong.

– Self-evaluations during the learning process. Another advantage for our stu-
dents, which we have identified, are self-evaluations during the whole term.
Students may check with the help of the assessments how much progress
they make in studying.

According to the survey, 86% of our students appreciate the self assessments
and 64% out of them even appreciate them very much as depicted in Figure 1.
Furthermore, only 5% of the students stated the self assessments as not helpful
for studying the UML diagrams.

In the following, students’ comments about the self assessments are
summarized:

– The self assessments are a good method to learn UML.
– The slides are not enough to understand the principles and techniques of

UML. The self assessments support the learning process very well.
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– More exercises would be helpful.
– More qualified feedback would be supportive.

As mentioned before, only multiple choice questions can be evaluated automat-
ically by our e-learning system and we assume that this is one of the reasons
why a much higher percentage of the students do the multiple choice questions
than the opening modeling examples. Therefore, in future work, we will con-
centrate on extending the multiple choice questions about given diagrams and
on developing new e-learning exercise types where the solutions can be checked
automatically. In particular, we will focus on the five exercise types described in
the following:

Questions about given diagrams. In this type of exercise, a small UML diagram
is presented to the student and he/she has to mark if certain statements about
this diagram are true or false. The given model can either be a concrete example
about a defined problem domain or an abstract diagram as shown in Exercise 1.
Doing such exercises is an easy way to find out if the syntax of a given diagram
is understood correctly.

Exercise 1. The given Use Case diagram was modeled strictly according to the
UML 2 standard. Are the following statements true or false?

M

U

S
L

O

Q

D

C

A

B

N

P

T

R

«extend»

«include»

«include»

«extend»

Actor B is involved in use case O. � true � false
Actor A can execute Q. � true � false
The behavior of O may be extended by the behavior of P. � true � false
Every time N is executed, L is also executed. � true � false
T can extend Q. � true � false

Fill in missing diagram elements. This kind of e-learning task focuses on the
practice of certain concepts of a UML diagram type. The student is given an
incomplete diagram and a corresponding description of the problem domain
and he/she has to fill out the missing parts of the model. In Exercise 2, the
student has to fill in the multiplicities of the associations between classes in a
class diagram by choosing from several options. By doing this, he/she can test
and/or practice the knowledge about multiplicities and the answers can still be
checked automatically. Furthermore, feedback for the student is provided if a
wrong multiplicity is selected. For example if the student states the multiplicity
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of the association between Room and House incorrect, resulting in the fact that
one room is part of mutliple (*) houses. The feedback would be: “You marked the
multiplicity next to the Aggregation with *, which would mean that one Room
can be part of zero houses, one house or more than one houses. Due to the fact
that one room is always part of exactly one house, the correct multiplicity is
1.” This very detailed feedback helps the student finding out what he/she did
wrong and why it is wrong. In the best case, it also gives a possible explanation
why this particular mistake happened.

Exercise 2. You are given the following textual specification about a certain
situation and a corresponding class diagram which has been modeled using UML
2.0. Unfortunately, all the multiplicities have been deleted. Fill in the multiplic-
ities!
A House consists of several rooms whereas a room can be part of one house.
Each house is owned by a company or by a (private) Person, companies and
(private) persons can own multiple houses.

Company

House

xor

Person

Rooms

Modeling very small diagrams. In this challenge, a very short description of a
domain that has to be modeled and several ways how to model that clipping
are given. The student has to decide which of the given choices would be an
adequate model of the given situation. If the student marks an incorrect model
as correct, feedback tells him/her why this is not a convenient way to model the
given problem. In Exercise 3, a model for the fact that “a person either wears
one pair of boots or one pair of slippers” has to be found. Out of the five possible
solutions, two model clippings fulfill the assignment specification.

Exercise 3. You are given the following textual specification about a certain
situation that has to be modeled using a UML 2.0 class diagram. Look at the
different answers beyond the specification and mark if the certain clipping of the
UML diagram is consistent with the textual description.
A person either wears one pair of boots or one pair of slippers.
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Boots0..1 Person Shoes

Person

Slippers

1

1

0..1 Boots Slippers

1 1

0..1

1

0..1

1true
false

true
falsexor xor

Person Shoes

0..1 Boots pp

Person Shoes

Boots Slippers

1 1

Person

Boots

Slippers

true
false

true
false

Slippers

Linking between different diagram types. That exercise type offers a good possi-
bility to show the students that the taught UML diagram types are not isolated
everyone for itself, but are linked to each other and the student can find out if
he/she interprets those links correctly. Two diagrams of different diagram types
showing the same modeled situation are presented to the student. One of the two
diagrams is considered correct, the other one contains some mistakes and the
task is to find those mistakes and correct them – how to correct them depends
on the concrete task. Exercise 4 shows a correct class diagram and an incorrect
corresponding object diagram and the student is asked to delete as many asso-
ciations and objects as necessary – but not more – to make it compliant to the
class diagram.

Exercise 4. You are given the following UML 2 Class Diagram. A modeler tried
to create a corresponding Object Diagram. Unfortunately, the modeler made
some mistakes. Delete as many associations and objects of the Object Diagram
as necessary to make the Object Diagram conform to the Class Diagram.

OwnerDog

SheepdogCollie

Scottish Sheepdog

Grower

* 1

* 1

O1 O G1 GO1:Owner

O2:Owner

D1:Dog

S1: Sheepdog

G1:Grower

O3:Owner

p g

SC2: Scottish Sheepdog

G2:Grower

O3:Owner

C1:Collie
G3:Grower

O4:Owner C2:Collie

Linking code fragments to diagrams. The last variety of an e-learning task ad-
dresses the ability to link source code to a UML diagram. In the specification,
a clipping of pseudo-code and a corresponding diagram, which is supposed to
represent the given code correctly, are given. Once again, the diagram contains
some errors and the student has to mark the errors by clicking on the diagram
parts that are supposed to be wrong. With this kind of exercise, it can be checked
automatically if the student found all the wrong parts, unfortunately, it is not
possible to check if the student stated a diagram part as wrong for the right
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reason. For example in Exercise 5, the syntax of the arrow of m2() is definitely
wrong. However, the system cannot determine if the student marked it as wrong
for this reason.

Exercise 5. You are given the following pseudo-code. A modeler tried to visualize
the communication with a UML 2 Sequence Diagram. Unfortunately, the modeler
made some mistakes. Find 3 errors and mark them in the diagram by clicking
on the parts that are wrong.
Assume that all used variables are already declared and initialized and that the
method calls are modeled correctly.

class Main {
...

Worker x = new Worker();
if (x == 8) { y = x.m2(); }
else { y = x.m1(); }
for (int c = 0; c < 3; c++) {
x.m3();

}
...
}

:Main

x : Worker

loop (0,3)

opt

[x == 8]

[else]

new()

m2()

m1()

m3()

4 Lecture Streams

One part of the course OOM are six lectures covering the theoretical background
of the five taught UML diagrams (class and object diagram, sequence diagram,
state diagram, activity diagram, and use case diagram). These lectures proceed
in quite “traditional” ways, a professor or assistant professor is standing in a
big lecture hall, presenting powerpoint slides and answering questions whenever
they occur. The attendance of the lectures is not mandatory, nevertheless about
40% of the students visit the lectures.

In the long run, we plan to enhance all the lecture slides with spoken text
thus producing lecture videos and exchanging the classical lecture with lectures
that prepare the students for the lab sessions and focus more on the practical
use of UML (for further information please refer to Section 6). Before actually
combining our presentations with audio recordings we decided to do a test run
with a less time-consuming method and, therefore, we simply recorded the actual
lectures5 to find out if the students find lecture videos useful and which features
are important to them. With the kind help of the Teaching Support Center of the
Vienna University of Technology we recorded the lectures and made them avail-
able through our e-learning platform TUWEL. The students had to be online
and logged in to the platform to view the recordings. The videos were provided
“just the way they were” with hardly any post processing at all. One file for
each lecture exist, which is played directly in TUWEL, allowing the students to
5 http://www.big.tuwien.ac.at/external/OOM.html

http://www.big.tuwien.ac.at/external/OOM.html
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pause the recording, control the volume and jump back or forward, but with-
out any chapter structure, subtitles or similar mechanisms helpful for navigating
through a video file. Simply recording the lecture and publishing it in TUWEL
did not require a lot of additional work or knowledge, but pleased the students
a lot. The greatest advantages of recording lectures in general and our method
of doing it are the following:

– Low effort, big effect. The teachers’ workload does not change when recording
his/her lectures. He/she simply attaches the laptop to a lecture recorder
which is then attached to the LCD projector (instead of directly connecting
the laptop to the LCD projector) and starts the recording.

– Nearly time- and place-independent. Students who are motivated to learn
but cannot attend the lecture, can watch the video independently of time
and place. Especially in the field of computer science a lot of students are
already working part time or full time during their study, recording lectures
is one way of facilitating that.

– High learning outcome. In the lab sessions, we also explain the theoretical
background and syntax of the UML model, because after the lecture about
a specific diagram type most students still did not have enough background
knowledge to fully understand and discuss all the lab exercises concerning
that diagram type. In summer term 2010, we increased the focus on prac-
tical issues in the labs, for the students seemed to have gained much more
knowledge out of the lectures.

– Student satisfaction. Offering the students one more learning channel and
giving them more flexibility than they are used to make them satisfied —
even the ones who did not watch the videos at all seemed to feel more
confident, because they “could watch them if they wanted”.

When we decided to record the lectures, we were sure that the students would
like it, but we did not expect that much acceptance. The students’ comments
on the newly used tool were not only good, they were almost enthusiastically
encouraging us even more in our plans to produce lecture videos. An overview
of the statements is given in the following:

– Students with previous knowledge of UML may decide only watching parts
of the recordings.

– The students may choose time and place of watching the lecture by them-
selves, depending on when and where they can concentrate best.

– The students may take a break whenever they feel that their concentration
is dropping.

– The students may watch parts they did not understand (either during the
classical lecture or when watching the recording for the first time) again or
they can watch the video again right before the test to refresh their memory
about the specific topic.

– During the lecture, the students may concentrate on the speaker instead of
taking notes, because they know that they may listen to the lecture again if
they want.
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According to the survey, students prefer lecture videos to traditional lectures
held in a lecture hall, but even more students like a combination of both. Fur-
thermore, for most of the students, completely disposing traditional lectures is
not an option since they want the opportunity to ask questions personally and
meet fellow students instead of sitting in front of their PC all the time and
only communicating via Skype or similar tools. More detailed results about the
survey questions concerning the lecture recordings may be found in Figure 2.

very good 126 votes (80 %)

good 16 votes (80 %)

fair 1 votes (1 %)

poor 1 votes (1 %)

undecided 11 votes (7 %)

Traditional Lecture 18 votes (11%)

Lecture Recordings 54 votes (34%)

Both 83 votes (53%)

yes 22 votes (14%)

no 133 votes (84%)

How did you like the lecture recordings?

Do you prefer traditional lectures or lecture recordings?

Do you consider it a good idea to completely exchange the traditional 

lectures with online lecture videos?

Traditional Lecture
Lecture Recordings
Both

very good
good
fair
poor
undecided

yes
no

Fig. 2. Survey results concerning the lecture recordings

We also asked the students what they would like to improve about the record-
ings, thereby gathering valuable information for our future project. The desired
features stated in the survey are as follows:

– Downloading the videos to view them offline on laptops and other mobile
devices.

– Chapters or a structure of any kind to facilitate the navigation through the
video.

– The option to search the video for certain words or phrases.
– A possibility to take notes comfortably while watching the video.
– Improved sound (due to some technical problems the sound of most lectures

was only mono).
– The lecturer picture-in-picture with the video of the slides.
– Questions from the audience have to be repeated by the teacher to make

sure they are recorded.

Most of the students’ wishes can be fulfilled when enhancing the powerpoint
slides with spoken text. During this summer, built-in lecture recorders are going
to be installed in the first few lecture rooms of the Vienna University of Technol-
ogy, eliminating the only hard factor, namely having to carry a lecture recorder
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with you for each lecture you wish to record. Due to the great success of the
lecture recordings compared to the small extra effort, we think about using this
technique in other lectures as well.

5 Document Camera

During our lectures, the lecturer often demonstrates how to model concrete
scenarios with a UML diagram “on the fly” while the students are watching.
Sometimes the teacher even develops small UML models together with the stu-
dents. Before summer term 2010, a blackboard was used for this task, but with
the ambitions to record the lectures as described in Section 4, we had to find an
alternative which allows us to record these demonstrations and to easily include
them in the lecture recordings.

The solution was the usage of a document camera6 in combination with a LCD
projector. A document camera is basically a camera which is fixated on a holding.
Connected to a LCD projector, it is possible to place paper documents or other
objects under the camera and project them onto a screen. For demonstrations
the lecturer formerly would have done at the blackboard, he/she now sits down
next to the camera, places a sheet of paper under it and develops the UML
model on the paper.

In our teaching environment, the document camera is the best solution for
our needs. We can use the LCD projectors and the screens which are already
installed in every lecture room, so we just have to take the document camera
with us for each lecture — hopefully there will be built-in document cameras at
least in the larger lecture rooms of the Vienna University of Technology soon.
The document camera has many advantages for the students as well as for the
teachers, the most important advantages we have identified during our lectures
are listed below:

– People are used to paper. Teachers as well as students are used to model
on paper and they usually prefer it to writing on a blackboard, tablet PC,
or overhead projector. They usually also write or draw more readable on a
piece of paper, clean neat writing on other material such as overhead sheets
requires much more training.

– Document cameras are easy to use. Most document cameras are designed
with only a small set of functions, enabling easy usage. The handling is very
intuitive, basically it just has to be switched on and connected to a LCD
projector.

– Document cameras also work in very large lecture rooms. The filmed image
can also be projected on large screens in big lecture halls and the document
camera can even zoom in on certain parts of a document. In contrast to
blackboards, the teacher may write or draw as small as he/she likes and
even the students in the last row can see the drawings.

6 http://www.big.tuwien.ac.at/external/OOM.html (In this video, the document
camera is used, e.g. at minute 45).

http://www.big.tuwien.ac.at/external/OOM.html
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– Teacher stays turned to the students all the time. The teacher does not have
to turn around to look to the blackboard, he/she can stay focused on the
students all the time.

– Document cameras support vivid teaching. Developing models on the fly
makes lectures more interesting, the document camera is offering a simple
possibility to not monotonously presenting the whole lecture with power-
point slides but still being able to preserve the results and to provide them
in TUWEL together with the lecture slides, videos etc.

Since the document camera proved its value in the lectures, we decided to use
it in the lab sessions as well. In the past years, the students had to copy their
solutions from their personal sheets to an overhead sheet or the blackboard before
they could explain the UML model and discuss it with the teacher. Depending
on the size of the model this could take very long time and the risk of a nervous
student making copy-paste errors was very high. With the usage of the document
camera, the student simply places his/her solution under the camera or — if
developing the model together with the class and/or the one student is more
appropriate for the given exercise — the student can sit down next to the camera
and draw the model on paper instead of nervously scribbling on the blackboard.
According to the survey, 82% of the students prefer the document camera to
the blackboard or the overhead projector and they like the usage of it in the lab
sessions and even more in the lectures — Figure 3 shows the results of this part
of the survey. Among others, they stated the following advantages of the use of
a document camera during the lab sessions:

– The students can present their own notes.
– Showing the results with the document camera instead of copying the so-

lution to the blackboard saves time, especially with large diagrams. The
teacher can use the extra time for giving more examples and explanations.

– The teacher does not have to clean the blackboard all the time.
– The students are less nervous because they can use a medium they are al-

ready used to (paper).
– The students can fully concentrate on explaining their model and answering

questions instead of worrying about nice handwriting or copy-paste errors.

To sum up, the main advantage for the students seems to be the fact that
they do not have to copy their solution to the blackboard before presenting it
to the teacher, which seems to reduce their nervousness and the risk of making
errors.

With the use of the document camera in the lectures, the fact that the whole
lecture content can easily be preserved and that the lecture is more varied are
the most important advantages from the students’ point of view. Concretely,
they stated the following advantages:

– Students who cannot attend the lecture for whatever reason get all lecture
material instead of only the powerpoint slides.

– The students can also see details from behind rows.
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– Demonstrations help the students understanding the teaching matter.
– The teacher does not talk to a blackboard while giving “live” examples.

During the summer term 2010, we used the document camera in our lecture
for the first time and both, the students as well as the instructors, first had to get
used to the different technology. Most of the problems the students mentioned are
linked to this lack of experience in the use of the document camera. The students
specified the following drawbacks concerning the use in the lab sessions, some of
them also apply to the lectures:

– The light in the lecture room is too bright to see the projection.
– Pencil-drawn models and models on squared paper are very difficult to see.
– Errors cannot be corrected as easily as with the use of a blackboard.
– There sometimes is a time interval between the students’ actions on the

paper and the display on the screen.
– In contrast to models on a blackboard, the paper sheets often “disappear”

too quick, giving the students not enough time to take a detailed look at the
model and take notes.

– The teachers should be trained in using the camera.

After this term’s test run, keeping those things in mind, most of the mentioned
downsides can be overcome and the document camera can also be of great use
in our lab sessions. In future, we will tell the students to properly prepare their
solutions like modeling each diagram on a separate white sheet of paper and ask
each teacher to train a little bit with the camera before using it in the course
like watching their speed and the lighting conditions.

very good 120 votes (76%)

good 25 votes (16%)

fair 1 votes (1%)

poor 0 votes (0%)

undecided 11 votes (7%)

very good 95 votes (60%)

good 49 votes (31%)

fair 10 votes (6%)

poor 3 votes (2%)

undecided 0 votes (0%)

blackboard 16 votes (10%)

document camera 129 votes (82%)

overhead projector 12 votes (8%)

How did you like the use of the document camera in the lectures?

How did you like the use of the document camera in the lab sessions?

Which medium do you prefer for demonstrating your solutions in the lab sessions?

very good
good
fair
poor
undecided

very good
good
fair
poor
undecided

blackboard
document camera
overhead projector

Fig. 3. Survey results concerning the document camera
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6 Ongoing Work

In the near future, we will start to enhance our lecture slides with voice record-
ings. First an appropriate tool for combining slides and audio has to be found.
The software has to allow the combination of each slide (separately) with spoken
text and be able to exchange single slides and their audio later on. Then, we will
prepare text for each of the slides and apply some minor changes to the slides
themselves to prepare them for operation in a video. Finally, we ourselves will
record the text passages and combine them with the powerpoint presentation,
generating one video for each of the five taught UML diagrams. It is planned
that the videos will provide a search function not only to search for text in the
slides but also to search for parts of the spoken text as well as a navigation
bar and a chapter structure to easily navigate within the video. Furthermore,
possibilities to watch the videos online and to download them will be offered.
Video versions to watch it on a laptop or other mobile device such as a mobile
phone will be provided.

We plan to have the first lectures combined with audio ready for use in the
winter term of 2010. In our survey, we also asked the students if they would
still need a traditional lecture given that lectures enhanced with spoken text
are available. Most students stated that they would still want an additional tra-
ditional lecture — it should be noted that the quantity of students that want
traditional lectures is significantly higher than the quantity of students that ac-
tually visited the traditional lectures. The following reasons for still additionally
offering traditional lectures were named:

– They want to ask questions personally.
– The teacher listens and responds to the students, adapting the lecture to the

student’s needs and interests.
– Personal contact to teachers and fellow students is important.
– A fixed timetable is good for those who need to be forced a little bit.
– In a lecture room a higher level of concentration is possible than at home

with lots of distractions.

We agree that personal contact and the possibility to ask questions are essen-
tial for each university course, thus we will not completely eliminate the lectures
but exchange them with tutorials, preparing the students for the lab sessions and
the test by modeling and discussing a lot of examples “live” together with the
students. This offers the students an additional possibility to gain more practical
knowledge about UML diagrams.

We consider this approach very valuable, not at last because OOM is taught
each semester and we would not be forced to explain the theoretical basics in
traditional lectures each semester any more. The lecture videos sort of teach the
students the theoretical background whereas we can concentrate on the practical
aspects, questions and discussions.
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7 Conclusion

In this paper, we have presented our experiences in our undergraduate course
Object-Oriented Modeling. Due to the huge number of participants we apply al-
ternative media like a document camera instead of the traditional blackboard on
the one hand to support the learning process of our students and on the other
hand to reduce time and effort for teaching. Furthermore, to improve the quality
of our course we have introduced web-based self assessments, which are used by
our students to exercise UML modeling. Additionally, we recorded the lecture
allowing the students to listen to it at any time. Especially when learning mod-
eling, practical exercising (e.g., by self assessments) is of significant importance
for students. Furthermore, developing small UML diagrams live in the lecture to-
gether with the students is more effective than just presenting powerpoint slides.
However, since the lecturers’ knowledge is based on personal experiences (e.g., in
modeling Use Case Diagrams), traditional face-to-face lectures are indispensable.

To evaluate our newly designed course, we have done an extensive survey,
where we got responses of 180 students and beneficial feedback. In summary,
our e-learning support providing self assessments and lecture streams, as well as
the application of our document camera are considered very useful for studying.
However, for our students it is of huge importance, despite the time of Web 2.0,
to have personal contact to the teachers and to have, beside lecture streams,
face-to-face lectures.
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Abstract. One of the most important tasks in object-oriented analysis and 
design (OOAD) is the abstraction of the problem domain into specific concepts 
or objects. Information technology (IT) students need appropriate skills of 
abstraction in order to identify the essential concepts and relationships within a 
problem domain. However students in higher education generally find difficulty 
performing abstractions of real-world problems within the context of OOAD. In 
this paper, we present a framework comprising four teaching modules for 
teaching object-oriented (OO) modelling using concept maps. We also report 
results of an evaluative study on the effectiveness of integrating concept 
mapping techniques into an introductory OOAD course by classifying the UML 
diagrams produced by the participants in design categories.  

Keywords: abstraction, UML models, concept map, class diagram, sequence 
diagram. 

1   Introduction 

Abstraction skills are especially important for solving complicated problems as they 
enable the problem solver to think in terms of conceptual ideas rather than their 
details [1]. Abstraction skills are also necessary for the construction of the various 
models, designs, and implementations that are required for a software system. As 
models are a simplification of reality that help us to understand and analyse large and 
complex systems, students must therefore possess the necessary abstraction skills to 
produce them [2]. However, being able to understand what details are important to the 
problem is a difficult skill that requires a great deal of practice. Kramer [2] believes 
that the reason why ‘some software engineers and computer scientists are able to 
produce clear, elegant designs and programs, while others cannot, is attributable to 
their abstraction skills’.  

In this paper we present a set of guidelines for teaching OO modelling using 
concept mapping techniques to assist students with their abstraction skills within the 
context of OOAD. We also report results of an evaluative study on the effectiveness 
of integrating this approach in an introductory OOAD course by comparing the results 
of participants who were exposed to concept mapping techniques with participants 
who were not exposed to concept mapping techniques. 
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2   Background Review 

A model of an OO system is an abstract representation of the system. It represents the 
problem domain and emphasises some characteristics of the real-world. Modelling a 
system, however, requires the representation of different perspectives or views of the 
system and therefore there are different types of diagrams for modelling each of these 
views.  

Frosch-Wilke [3] found in his teaching experience that his students:  

− may have an ‘extensive knowledge of diagram notations but the majority of 
them are not able to put this (theoretical) knowledge into an application 
context’; and 

− may be successful in drawing some OO models separately but do not understand 
the relationship and interdependencies between these different models. 

Cianchetta [4] considers teaching the fundamental concept of identifying objects from 
the problem domain to be one of the most difficult tasks that he encountered when 
training OO developers. He found that even though object-oriented analysis (OOA) 
and object-oriented design (OOD) can be easily defined as ‘the modeling of a specific 
problem domain and a pragmatic solution for that domain’, the essential problem is 
‘defining how one should go about modeling a problem domain and its practical, 
efficient, and cost-effective solution’.  

Bolloju and Leung [5] conducted a study to identify errors produced by novice 
systems analysts in use case diagrams, use case descriptions, and class and sequence 
diagrams. The errors that they found in class diagrams were: 

− operations that had not been included in classes; 
− misassigned operations; 
− incorrect multiplicities; 
− misassigned attributes; and  
− incorrect usage of generalisation-specialisation hierarchies.  

Some of the faults they found in sequence diagrams were: 

− missing messages; 
− missing message parameters; 
− missing objects; and  
− incorrect delegation of responsibilities.  

Concept mapping is a technique for representing the structure of information visually. 
It was developed by Joseph Novak [6] in 1972 at Cornell University and is commonly 
used for visualising relationships between concepts. Concept maps are two-
dimensional diagrams that represent the structure of knowledge within a particular 
domain as nodes (or concepts) and connecting links. A concept is ‘an idea or notion 
that we apply to the things, or objects, in our awareness’ [7]. Concepts are related to 
each other by a link, and each link has a word or word-phrase describing the 
relationship between the concepts. In this paper we use concept maps as a graphical 
representation of fundamental concepts and their relationships within a problem 
domain. Instead of a class diagram, the concept map is the initial domain model to be 
derived from a set of functional requirements or textual use cases.  
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3   Proposed Concept-Driven Approach 

In order to resolve some of the issues discussed in Section 2, we presented a concept-
driven approach to introduce concept mapping as a tool to help students with OO 
modelling [8, 9]. There are many inherent problems associated with modelling the 
problem domain with class and sequence diagrams – these are discussed in Section 2. 
We do not claim that it is easy to model the problem domain by using concept maps. 
We do however consider that concept maps have the following advantages over class 
diagrams: 

− It is easier to distinguish between classes and attributes in concept maps by 
using specifically defined labelled links e.g., ‘has’. 

− It is easier to identify generalisation-specialisation hierarchies in concept maps 
by using specifically defined labelled links e.g., ‘is-a’. 

− Relationships between concepts that do not fall in the ‘is-a’ or ‘has’ categories 
are defined by an appropriate transitive verb from the case study.    

− Substantial guidelines to produce concept maps have been developed. These 
are defined in [8, 9].  

− It is relatively easy to teach concept maps. There are only two types of 
notations used in a concept map – nodes and links [10]. 

An evaluation study [8] was conducted to determine the effectiveness of adopting 
concept maps as the first and essential model to be derived from a set of functional 
requirements. The data from this study was analyzed and there is sufficient statistical 
evidence to support the claim that the participants do produce more comprehensive 
class diagrams after being exposed to concept mapping techniques.  

3.1   Static and Dynamic Concept Maps  

Within the context of OO modelling, we used concept maps as an initial abstraction of 
the problem domain. A static concept map is a type of static structure diagram that 
describes the structure of a system by illustrating the system’s concepts and the 
relationships between these concepts. The concepts defined in the static concept map 
model classes (and attributes) in the analysis class diagram. For example, a static 
concept map (see Fig. 1) is constructed by identifying concepts and their relationships 
from an expanded use case (Table 1). We adapted some processes from [11] for 
constructing static concept maps. These processes involve the identification of 
candidate concepts and their relationships from expanded use cases. We included 
some construction constraints by defining only three types of relationships that 
concepts can have with each other i.e., attribute, generalisation-specialisation and 
association. If the type of relationship between two concepts does not fall into the first 
two relationship categories, then it is considered to be an association.    

The static concept map is built incrementally from the use cases – it is 
subsequently transformed to a UML class diagram using the rules described in [8]. 
These rules were constructed by examining the linking words between two concepts 
to determine whether: 

− a concept should be converted to a class or an attribute; and 
− a link should be converted to an association or generalisation-specialisation 

hierarchy.  
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Fig. 1. Static concept map converted to a class diagram 

Table 1. Expanded use case 

Use Case 1 Add New Employee 
Goal in Context An employee is correctly entered into the system. 
Primary Actor HR Manager   
Main Course  
Description 

Step Action

1 The HR Manager enters the employee’s name, address and 
birth date. 

2 A unique employee number is allocated by the system. 
Alt. Course 
Description 

Step Branching Action

1a The HR Manager enters the full-time employee’s name, 
address, birth date and monthly salary. 

1b The HR Manager enters the part-time employee’s name, 
address, birth date and hourly rate.  

A dynamic concept map provides a dynamic view of the system behaviour by 
showing the key responsibilities that need to be fulfilled by specific concepts in order 
to fulfil a particular scenario of a use case. The concepts defined in the dynamic 
concept map model objects in the sequence diagram. For each use case, its key 
responsibilities are identified and added to the static concept map so as to produce a 
dynamic concept map. A dynamic concept map is constructed and subsequently 
transformed to a UML sequence diagram using the rules described in [9].  

Fig. 2 illustrates an example of how a dynamic concept map for creating a part-
time employee concept is transformed to a sequence diagram. 
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Fig. 2. Dynamic concept map converted to a sequence diagram 

The class and sequence diagrams are selected for our study because they represent 
the essential static and behavioural aspects of a problem domain. The class diagram is 
fundamental to the OO modelling process and provides a static description of system 
components and structures in terms of classes and their relationships. The sequence 
diagram is selected because it is identified as the ‘major UML diagram that captures 
the detailed behaviour of objects in the system’ [12] and it is one of the most widely 
used dynamic diagrams in UML [13].  

One of the main motivations for developing this concept-driven approach is to 
assist students produce more appropriate class and sequence diagrams. Our concept 
mapping techniques are developed based on some of the design errors that are 
reported in Section 2:  

− The processes for deriving appropriate concepts from use cases should help 
novices avoid producing inappropriate classes, missing controller classes, and 
missing attributes. 

− Labelled links between concepts should help prevent misassigned attributes 
and inappropriate relationships.  

− As the dynamic concept map is based on the static concept map, there should 
be fewer inconsistent objects, missing objects, and missing controller objects 
defined in the sequence diagrams. 

− The processes involved in identifying responsibilities and the assignment of 
these responsibilities to candidate concepts should help novices understand 
how objects can interact with each other via messages to fulfil the 
responsibilities of a particular scenario of a use case.  

 
It must be emphasised that the concepts defined in the static concept map are 
transformed to classes (and attributes) in the analysis class diagram, whilst the concepts 
defined in the dynamic concept map are transformed to objects in the sequence diagram.  
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3.2   Integrating the Concept-Driven Approach into an Existing OOAD Course  

Teaching OOAD is not easy. Educational institutions have developed/adopted various 
approaches [14, 15] to help resolve the problems discussed in Section 2. Our 
framework consists of the following four modules with three guided practice sessions 
in each module. 
 
Module 1: Static Concept Map (estimated duration: 1 hour 30 minutes). This 
module covers real-world problems conceptualised as abstractions; introduction to 
concept maps; guidelines for producing concept maps to represent a problem domain 
within the context of OOAD [8]; exercises to produce a static concept map 
representing the problem domain from a case study. The students are provided with a 
case study containing three expanded use cases that describe the functional 
requirements of the system, and are expected to work on them during the following 
practice sessions:  

− First practice session: the students are provided with a partially completed 
concept map and a list of concepts derived from the first use case (UC1).The 
students have to update the concept map using the supplied concepts and 
linking words. 

− Second practice session: the students are provided with an incomplete list of 
concepts derived from the second use case (UC2). The students have to update 
the concept map produced from UC1. They are allowed to add their own 
concepts. 

− Third practice session: the students are asked to individually produce a concept 
map from the third use case (UC3).  

 
Module 2: Static Concept Map  Analysis Class Diagram (estimated duration: 1 
hour 15 minutes). This module covers transformation rules for converting a static 
concept map to an analysis class diagram [8]; exercises to produce a class diagram – 
students continue with the case study that they worked on in Module 1.  

− First practice session: the students are provided with a static concept map for 
UC1. They are shown how to generate a class diagram from this concept map 
using the rules supplied.  

− Second practice session: the students are provided with a static concept map 
for UC1 and UC2. The students are expected to generate a class diagram from 
this concept map using the rules supplied.  

− Third practice session: the students are provided with a static concept map for 
UC1, UC2 and UC3. The students are expected to generate a class diagram 
from this concept map using the rules supplied.  

 
Module 3: Dynamic Concept Map (estimated duration: 2 hours). This module 
covers multi-objects/containers in a concept map; naming convention for messages; 
identification of responsibilities from the use case; assignment/delegation of 
responsibilities to appropriate concepts using basic design patterns; guidelines for 
producing dynamic concept maps [9]; exercises to produce dynamic concept maps – 
students continue with the case study that they worked on in Module 1. They will be 
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provided with a static concept map and a class diagram representing the problem 
domain.  

− First practice session: the students are provided with a static concept map for 
UC1. The students are shown how to identify responsibilities from the use case 
and how to translate them to messages in the concept map.  

− Second practice session: the students are provided with a static concept map 
and responsibilities for UC2. They are expected to translate the responsibilities 
to messages in the concept maps.  

− Third practice session: the students are provided with a static concept map for 
UC3. The students are expected to identify appropriate responsibilities from 
the use case and to translate them into messages in the concept map.  

 
Module 4: Dynamic Concept Map  Sequence Diagram (estimated duration: 1 
hour 45 minutes). This module covers transformation rules for converting a dynamic 
concept map to a sequence diagram using the rules defined in [9]; exercises to 
produce sequence diagrams – students continue with the case study that they worked 
on in Module 1.  

− First practice session: the students are provided with a dynamic concept map 
for UC1. The students are shown how to generate a sequence diagram from 
this concept map using the rules supplied.  

− Second practice session: the students are provided with a dynamic concept 
map for UC2. The students are expected to generate a sequence diagram from 
the dynamic concept map using the rules supplied.  

− Third practice session: the students are provided with a dynamic concept map 
for UC3. They are expected to generate a sequence diagram from this concept 
map using the rules supplied.  

 

These modules can be used as a stand-alone workshop or integrated into existing 
OOAD courses or workshops. The times allocated to the modules are based on our 
experience conducting concept mapping workshops. There are many constraints to 
consider e.g., the time that the facilitator can afford for these topics in his/her 
syllabus, the speed with which the students can complete the guided sessions, the 
amount of help that the students require, etc.  

In a typical introductory OOAD course, many OO concepts and definitions are 
presented first (e.g., objects, classes, inheritance, encapsulation, polymorphism, UML 
notation) followed by the application of these notations in the various types of UML 
analysis models. Once these topics have been covered, the facilitator can integrate 
Module 1 into the curriculum. It should be noted that the students do not need to 
know how to produce an analysis class diagram from the expanded use cases at this 
stage – the students only need to reach a basic understanding of the UML notations 
that are used in the class diagram. Module 2 can commence immediately after Module 
1. The facilitator can then continue with the remaining syllabus in the analysis phase. 
Modules 3 and 4 can only be introduced when the topics on sequence diagrams have 
been covered. Once all the concept mapping techniques have been covered, the 
facilitator can continue teaching the remaining OOAD syllabus.  
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We incorporated these modules in the workshops reported in [8, 9] to evaluate the 
effectiveness of using concept maps to produce class and sequence diagrams. Since 
the evaluation results provided strong evidence that the concept-driven approach can 
be used successfully, we implemented the modules in an introductory OOAD course 
in the February 2009 semester at HELP University College, Malaysia.  

3   Evaluation Study  

A study was conducted to evaluate the pedagogical effectiveness of adopting concept 
maps as a stepping stone to assist novices in developing class and sequence diagrams. 
The research question for this study is:  

 
Are there any improvements in the class and sequence diagrams produced by 
students as a consequence of using our concept mapping techniques?  

 
We use the Goal/Question/Metric (GQM) template (see Table 2) to help us define the 
goal of this study.  

Table 2. Goal according to GQM 

Analyse the integration of concept mapping techniques in an OOAD 
course

For the purpose of minimising the types of errors in class and sequence diagrams, 
and evaluating whether the concept mapping techniques 
improve the appropriateness of class and sequence diagrams 
produced by OOAD students 

With respect to the students’ OO modelling skills  
From the point of view of software engineering educators 
In the context of teaching students how to develop UML class and sequence 

diagrams during the analysis and design phases of a software 
development project  

Therefore, in order to investigate the effectiveness of integrating the concept 
mapping techniques in an introductory OOAD course, we compared the results of two 
studies. The participants in Study 1 were not exposed to concept mapping techniques 
while the participants in Study 2 were taught concept mapping techniques as part of 
their OOAD course. Consequently, we expect the students in Study 2 to individually 
produce more concise models in terms of complexity and completeness – suggesting 
that concept maps have helped in the overall understanding of abstraction. While we 
are aware that we are comparing results from two different sets of students, we can 
nonetheless use the outcome as a basis for considering the implications of 
incorporating concept mapping techniques in an OOAD course. Study 1 consisted of 
fifty-one Year 2 IT undergraduate students and Study 2 consisted of twenty-one Year 
2 IT undergraduate students. All the participants were volunteers and were not paid to 
take part in the study. Information captured on the background of the participants and 
their experience with OOAD is summarised in Table 3. The OO experience reported 
for these participants is based on the experience they gained from their university 
courses that include OO concepts.  
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Table 3. Background information on participants 

Study 1 (N=51) Study 2 (N=21) 
Average age (years) 22 22 
Age range (years) 20-27 19-28 
Gender

male 
female

61%
39%

90%
10%

OO experience  
< 1 year  
1- 2 years  
3-5 years  
> 5 years  

35%
49%
16%
0%

48%
52%
0%
0%

 

The participants from both studies were asked to work on a case study containing 
four expanded use cases that describe the functional requirements of the system. The 
solution for the case study consists of nine appropriate classes, two generalisation-
specialisation hierarchies and eight associations. The participants in Study 1 were 
given a case study to work on after they had completed their OOAD course at HELP 
University College, Malaysia. In the subsequent semester Modules 1, 2, 3 and 4 were 
integrated into the OOAD course. After completing Module 4, the participants in 
Study 2 were given the same case study to work on. The participants in Study 1 were 
given 1 hour to work on the case study as they were required to produce a class and 
sequence diagram. The participants in Study 2, however were given 1 hour 30 
minutes to work on the case study as they were required to produce a static concept 
map, a class diagram, a dynamic concept map and a sequence diagram.  

4   Results  

In order to evaluate the effectiveness of the concept-driven approach, an analysis of 
the UML diagrams produced by participants from Studies 1 and 2 are provided as 
follows. 

 
Expected classes. Study 2 shows a significant improvement in the identification of 
expected classes – see Table 4. 

Table 4. Analysis of class diagrams with expected classes 

 Classes1 
 1 2 3 4 5 6 7 8 

Study 1 (N=51) 2% 2% 8% 14% 10% 22% 35% 8% 
Study 2 (N=21) 0% 0% 0% 0% 5% 14% 33% 48% 

                                                           
1 The totals do not add up to 100% due to rounding errors. 
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Inappropriate Class Names. In Study 1, 26% of class diagrams have one or more 
class names that do not represent a real-world concept. All the classes produced in 
Study 2 represent appropriate real-world concepts. 
 
Attributes. There is a significant improvement in assigning attributes to appropriate 
classes in Study 2 – see Table 5. A higher percentage of missing attributes for Study 2 
is caused by the larger number of appropriate classes defined in the class diagrams 
(the percentage of misassigned and missing attributes is calculated based on the 
appropriate classes that have been defined in the class diagrams).  

Table 5. Analysis of class diagrams with one or more inappropriate attributes identified  

 Misassigned Attributes One or More Missing Attributes 

Study 1 (N=51) 86% 20% 
Study 2 (N=21) 38% 24% 

 

 
Associations. In Study 2, 76% of associations were defined inappropriately in the 
class diagrams produced. Study 2 has a higher percentage of associations that have 
been defined inappropriately and missing associations because this percentage is 
calculated with respect to the number of appropriate classes defined in the 
participants’ class diagrams – see Table 6.  

Table 6. Class diagrams with one or more inappropriate associations 

 One or More Associations 
Defined Inappropriately 

One or More Missing 
Associations 

Study 1 (N=51) 65% 49% 
Study 2 (N=21) 76% 76% 

 
Generalisation-Specialisation Hierarchies. The results in Table 7 show a significant 
improvement in the identification of generalisation-specialisation hierarchies in Study 
2. The totals do not add up to 100% for both studies because: 

− 6% of participants in Study 1 produced some appropriate and some 
inappropriate generalisation-specialisation hierarchies in their class diagrams. 

− 5% of participants in Study 2 produced some appropriate and some 
inappropriate generalisation-specialisation hierarchies in their class diagrams. 
The remaining 1% is due to rounding errors.  

Table 7. Analysis of class diagrams with generalisation-specialisation 

Inappropriate Use of 
Inheritance Hierarchy

Appropriate Use of 
Inheritance Hierarchy

Inheritance 
Hierarchies 
not Defined

Study 1 (N=51) 12% 45% 49% 
Study 2 (N=21) 10% 86% 10%  
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Objects. The sequence diagrams produced in Study 2 were greatly improved – see 
Table 8. Only 47% of the sequence diagrams in Study 1 included an appropriate 
controller object (representing the façade controller). All the sequence diagrams in 
Study 2 however included an appropriate controller object. 70% of the students in 
Study 1 were able to produce at least one appropriate object, and some of the objects 
defined in the sequence diagrams did not relate to corresponding classes identified in 
the class diagram. These examples provide evidence that some students from Study 1 
do not understand that they should use the objects that have been identified from the 
problem domain (defined in the class diagram) in their sequence diagram. In Study 2, 
however all the objects defined in the sequence diagrams relate to corresponding 
classes in the class diagrams. 

Table 8. Sequence diagrams with objects identification 

 Controller 
Object 

Included 

One or More 
Objects 

Correctly 
Identified 

One or 
More 

Missing 
Objects 

One or More Multi-
Objects Correctly 

Included & 
Accessed 

Study 1 (N=51) 47% 70% 100% 20% 
Study 2 (N=21) 100% 100% 43% 71% 

 
Messages. The correct identification of parameters and delegation of responsibilities 
improved significantly in Study 2. 

Table 9. Analysis of messages defined in sequence diagrams 

 Correct Identification of 1 or 2 
Parameters Defined in Messages 

Evidence of Some Delegation 
of Responsibilities 

Study 1 (N=51) 27% 40% 
Study 2 (N=21) 77% 88% 

 
We classified the class and sequence diagrams produced by our participants 

according to the design categories proposed by Eckerdal et al. [16]. The design 
categories, in order of appropriateness are: Complete, Partial, First Step, Skumtomte2, 
Restatement and Nothing. The descriptions of the categories for class diagrams have 
been modified to make them more appropriate for our study e.g., 

− Complete: diagrams contain all of the expected classes, attributes and 
associations. Generalisation-specialisation hierarchies and whole-part associa- 
tions are appropriately applied.  

− Partial: diagrams are a good representation of the problem domain with most 
of the expected classes, attributes and associations defined.  

− First Step: diagrams are a good representation of a partial overview of the 
problem domain with an appropriate number of expected classes.  

                                                           
2 Skumtomte is a Swedish word referring to a pink-and-white marshmallow, shaped like a 

Santa Claus. It looks as if it contains some matter but in reality it does not contain much 
substance. 
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− Skumtomte: incomplete diagrams with missing classes, misassigned or 
irrelevant attributes, and missing or inappropriately defined associations.  

− Restatement: level of detail provided is insufficient. There are significant 
errors and misunderstandings.  

− Nothing: diagrams do not contain any logical content.  
 

The descriptions of the categories for sequence diagrams have been modified to make 
them more appropriate for our study e.g., 

− Complete: diagrams contain appropriate sequence of messages passed to the 
relevant objects to fulfil the responsibilities of the use case.  

− Partial: diagrams include an appropriate number of correct objects fulfilling 
some responsibilities of the use case.  

− First Step: evidence of some understanding of the required delegation of 
responsibilities among the objects.  

− Skumtomte: diagrams are incomplete but contain at least 1 appropriate 
interaction between 2 appropriately defined objects. The majority of messages 
are inappropriate. 

− Restatement: diagrams are incomplete but contain at least 2 appropriate 
objects. All the messages are inappropriate.  

− Nothing: diagrams contain significant errors and misunderstandings. 
 

This method allows us to adopt a holistic approach for evaluating the appropriateness of 
the UML diagram. We are, however, aware that this may not be a reliable assessment as 
it does not explicitly assess the appropriateness of individual components of the 
diagram. 

In Table 10, the names of the design categories have been abbreviated: 
Complete=CP, Partial=PT, First Step=FS, Skumtomte=SK, Restatement=RS and 
Nothing=NT. A higher percentage of class and sequence diagrams produced in Study 
2 are found to be in better design categories than the diagrams produced in Study 1 – 
see Table 10.  There are 36% of class diagrams produced in Study 1 that belong in the 
Restatement and Nothing categories – participants in Study 2 did not produce any 
class diagrams belonging in these two categories. There are no sequence diagrams 
produced in Study 1 that belong in the Complete category, compared to 35% of 
sequence diagrams produced in Study 2 belonging in the Complete category.  

Table 10. Analysis of diagrams produced by participants 

Group Diagram CP PT FS SK RS NT 
Study 1 Class 2% 10% 21% 31% 23% 13% 
Study 2 Class 57% 14% 14% 14% 0 0 

Study 1 Sequence 0% 3% 3% 10% 17% 67% 
Study 2 Sequence 35% 6% 12% 6% 24% 18%  

Some of the most common faults found in the models produced in Study 1 were 
similar to the types discussed in Section 2. We find in Study 2 that the number of 
faults has significantly decreased especially in the following areas: 
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− identification of expected classes representing the key concepts in the problem 
domain; 

− assignment of  attributes to appropriate classes; 
− identification of appropriate generalisation-specialisation hierarchies. 
− identification of appropriate objects participating in the scenario of the use 

case; 
− identification of objects in the sequence diagram that correspond to classes 

defined in the class diagram; and 
− delegation/assignment of responsibilities to objects. 

5   Threats to Validity  

This section discusses some threats to validity that may affect this study. 
 

Internal Validity. Internal validity refers to the extent to which we can correctly state 
that the introduction of concept mapping techniques caused the participants to 
produce more appropriate class and sequence diagrams. One of the threats to internal 
validity consists of the expectations of a particular result by the researcher. In this 
context, the researcher was responsible for marking the class and sequence diagrams 
produced by the two groups of participants, and she is fully aware that the scores for 
the diagrams may bias the hypotheses. To this end, the marking scheme was strictly 
adhered to. However, in order to eliminate this threat, we should consider using 
independent assessors to mark the pre-test and post-test diagrams. We have not 
'employed' the services of independent assessors due to logistical problems e.g., lack 
of funding and time constraints. Note: the case study, marking scheme and a sample 
of the marked diagrams were moderated by independent assessors.  

There may be other factors that contributed to the quality of class and sequence 
diagrams produced by the participants of Study 2 e.g., 

− the students from Study 2 may be more intelligent than the students from 
Study 1;  

− as the students from Study 2 are currently enrolled in the OOAD course, their 
knowledge of OOAD concepts and experience in OO modelling  is still fresh 
in their minds; 

− the students in Study 2 have been given a good foundation on OOAD 
concepts;  

− sufficient emphasis has been placed on the necessary topics that are being 
evaluated. 

 
Construct Validity. Construct validity refers to whether the study was actually 
evaluating what it was trying to evaluate. Study subjects are likely to be anxious about 
being evaluated and this apprehension may influence the results. We did not detect 
any evaluation apprehension as the students were assured that the results of the 
exercises would not contribute towards their overall course scores 

 
External Validity. The main threat to external validity is generalising our results as 
our sample may not be representative of all IT undergraduate students.  
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6   Conclusion 

We have presented an approach that introduces a concept-driven approach to help 
novices in OOAD understand and master the technique of abstraction in order that 
they can improve their OO modelling skills. We have also provided a set of teaching 
modules that can be easily integrated into existing introductory OOAD courses or can 
be used independently in workshops. There are several clear benefits to adopting 
these modules:  

− Students are explicitly taught how to identify concepts to represent the 
problem domain, how to distinguish classes from attributes and how to identify 
appropriate relationships for the concepts.  

− Students are taught how to produce sequence diagrams that use objects derived 
from the classes defined in the class diagrams.  

− The modules include graduated exercises for students to practise with. 
 

Results of two studies were compared to investigate the effectiveness of integrating 
the concept mapping techniques in an introductory OOAD course. The participants in 
Study 1 were not exposed to concept mapping techniques while the participants in 
Study 2 were taught concept mapping techniques as part of their OOAD course. It is 
evident from the results reported that the quality of class and sequence diagrams 
improved in Study 2. We find that concept maps are particularly effective at helping 
students identify appropriate classes and associations in class diagrams; and 
appropriate objects and feasible sequence of messages in sequence diagrams. Hence, 
we can state that concept maps can play an important and effective role in helping 
novices produce more appropriate class and sequence diagrams. 
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1 K.U. Leuven - DistriNet, Belgium
Stefan.VanBaelen@cs.kuleuven.be

2 University of Toulouse - IRIT, France
Iulian.Ober@irit.fr

3 Tecnalia, Spain
Huascar.Espinoza@tecnalia.com

4 Missouri University of Science and Technology, USA
weigert@mst.edu

5 University of Toulouse - IRIT, France
Ileana.Ober@irit.fr
6 CEA - LIST, France

Sebastien.Gerard@cea.fr

Abstract. The third ACES-MB workshop brought together researchers
and practitioners interested in model-based software engineering for real-
time embedded systems, with a particular focus on the use of models for
architecture description and domain-specific design, and for capturing
non-functional constraints. Twelve presenters proposed contributions on
metaheuristic search techniques for UML, modelling languages and map-
pings, model based verification and validation, software synthesis, and
embedded systems product lines. In addition, a lively group discussion
tackled these issues in further detail. This report presents an overview
of the presentations and fruitful discussions that took place during the
ACES-MB 2010 workshop.

1 Introduction

The development of embedded systems with real-time and other critical con-
straints raises distinctive problems. In particular, development teams have to
make very specific architectural choices and handle key non-functional con-
straints related to, for example, real-time deadlines and to platform parameters
like energy consumption or memory footprint. The last few years have seen an
increased interest in using model-based engineering (MBE) techniques to cap-
ture dedicated architectural and non-functional information in precise (and even
formal) domain-specific models in a layered construction of systems.

MBE techniques are interesting and promising because they allow to capture
dedicated architectural and non-functional information in precise (and even for-
mal) domain-specific models, and they support a layered construction of systems,
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in which the (platform independent) functional aspects are kept separate from
architectural and non-functional (platform specific) aspects, where the final sys-
tem is obtained by combining these aspects later using model transformations.

The Third Workshop on Model Based Architecting and Construction of Em-
bedded Systems (ACES-MB 2010) brought together researchers and practitioners
interested in all aspects of model-based software engineering for real-time embed-
ded systems. The participants discussed this subject at different levels, from re-
quirements specifications, model specification languages and analysis techniques,
embedded systems product lines, model synthesis, to model based verification
and validation.

2 Workshop Contributions

The keynote [2] was given by Prof. Lionel C. Briand from the University of
Oslo and the Simula Research Laboratory, Norway, who discussed the use of
metaheuristic search for the analysis and verification of UML models.

There is a growing research activity around the use of metaheuristic search
techniques (e.g., genetic algorithms) in software engineering, for example to sup-
port test case generation, often referred to as search-based software engineering
(SBSE). Several years of research have focused on using metaheuristic search to
support the analysis and verification of UML models and its extensions such as
MARTE and OCL. Examples include the analysis of real-time deadlines (schedu-
lability analysis), concurrency problems, and constraint solving, for example
for supporting model-based test case generation. Results suggest that applying
metaheuristic approaches to these problems lead to practical and scalable solu-
tions that rely solely on UML and extensions, and does not require translations
into other languages and formalisms.

6 full papers and 5 short papers had been accepted for the workshop, see [1].
A synopsis of each presentation is given below. Extended versions of articles [5]
and [6] are included in this workshop reader.

[3] presents a MARTE to AADL mapping that is valuable for MARTE users in
order to enable the use AADL analysis tools on MARTE models. For example,
CAT, the Consumption Analysis Toolbox, allows for system-level power and
energy consumption estimation for AADL models.

[4] addresses the problem that real-time embedded software today is com-
monly built using programming abstractions with little or no temporal seman-
tics. The paper discusses the use of an extension to the Ptolemy II framework
as a coordination language for the design of distributed real-time embedded sys-
tems. Specifically, the paper shows how to use modal models in the context of
the PTIDES extension of Ptolemy II.

[5] uses UML Interaction Overview Diagrams as the basis for a user-friendly,
intuitive, modelling notation that is well-suited for the design of complex, het-
erogeneous, embedded systems developed by domain experts with little back-
ground on modelling software based systems. To allow designers to precisely
analyse models written with this notation, a part of it is provided with a formal
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semantics based on temporal logic, upon which a fully automated, tool supported
verification technique is built.

[6] argues that system development and integration with a sufficient maturity
at entry into service is a competitive challenge in the aerospace sector, and can
only be achieved using efficient model-based techniques for system design as well
as for system testing. Building on the general idea of model-based systems en-
gineering, an integrated virtual verification environment for modelling systems,
requirements, and test cases is proposed, so that system designs can be simulated
and verified against the requirements in the early stages of system development.
The paper exemplifies its application in a ModelicaML modelling environment.

[7] addresses the early validation of automobile electronic systems by provid-
ing a transformation of EAST-ADL models to SystemC at different layers of
abstraction. This allows specific analysis with hardware-software co-simulation
iteratively in the development process. The proposed approach is realized in a
tool chain and demonstrated by an automotive use case, showing the potential of
an early validation of system and software designs based on architecture models.

[8] argues that modelling tools should become development environments and
support a methodologically guided development in which milestones are indi-
cated and warnings are generated to inform the user about issues that are to
be solved to reach these milestones. The paper indicates model maturity levels
that correspond to an underlying development method and shows in the model
maturity view which elements or parts of the model do not yet reach a certain
level and why.

[9] proposes to abstract away from architectural platforms and their induced
architectural styles to more abstract representation of applications. Architecture-
independent application models, developed using modern model-based develop-
ment techniques, can be mapped to application architectures in a variety of
architectural styles. Architectural mappings therefore play an important role in
synthesis of software implementations from abstract application models.

[10] proposes to integrate multiple partially overlapping models from different
tools, since each tool and associated modelling language have different strengths
and weaknesses. It is crucial that relevant dependencies between models and
related timing properties are explicitly captured, allowing the analysis of the
impact of changes on the timing properties and timing requirements. The paper
proposes to use the concept of megamodels as a solution for the support of those
dependencies relevant for timing properties, so that no violation may remain
undetected.

[11] presents a model of an evolutionary product line process based on ar-
chitecture transformations. The model attempts to give an accurate description
of how real architects actually work. Key elements of the approach are how
the transformations interact with consistency constraints and with feasibility in
terms of resource limitations.

[12] proposes an approach for the identification of features supported by class
models annotated with stereotypes. The models are automatically reverse en-
gineered by a tool called Rejasp/Dmasp where attributes and methods are
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stereotyped if they have some relation with candidate features. The approach
consists of four guidelines and focuses on identifying features in embedded sys-
tems for ground vehicles.

[13] states that much meaning can be given to a model using a domain spe-
cific language (DSL), and the code generation rate can be increased. Model-based
product line development is possible using code generation to realize variabil-
ity. The paper presents a case study where a high rate of code generation was
achieved by using two DSLs, the characteristics of which supplement each other.
Structure is described by a highly general DSL and behaviour by a specialised
DSL. Various kinds of products have been developed from a product line effi-
ciently by using code generation from DSLs to realize variability.

3 Summary of the Workshop Discussions

The workshop was divided into 3 sessions: modelling languages and mappings,
verification and validation, and a position statement session. After each session,
a group discussion was held on issues raised during the session presentations.
The following integrates and summarizes the conclusions of the discussions.

Mappings between modelling languages
An important issue for mappings between modelling formalisms concerns
the level of detail that can be expressed in each formalism and the ability
to transform information from one modelling formalism into another. One
viewpoint is to consider a mapping between modelling formalisms as a ded-
icated transformation for a specific purpose, e.g., model analysis in the case
of the MARTE to AADL mapping. This means that a mapping can abstract
away certain details from the source model that are useless for the transfor-
mation purpose. In addition, specific information can be refined or added to
the target model by enlarging the target model or by using an in-between
Platform-Specific Model (PSM) profile on top of the source model, e.g., an
AADL profile for MARTE. OCL constraints can added to the PSM profile
in order to validate the correctness of the added information. In order to
bridge the semantic gap between the two modelling levels, abstraction pat-
terns can be introduced, e.g., by creating user-defined extensions for AADL.

Constructing architectural models
The construction of architectural models raises a number of issues, such as
dealing with a multitude of inter-model dependencies and coping with model
changes and the ripple effects they can cause. In addition, a product line ap-
proach can be beneficial but even further complicates the architectural mod-
elling phase, since one should focus on an architecture for the whole product
line instead of for a single product. When generative techniques are used,
there was a common agreement on never touching the generated models or
code. If changes seem necessary, either the source model or the generator
itself should be changed.
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Using a megamodel approach
Although the use of megamodels was recognised as a need in order to support
different modelling formalisms, it was not clear if one should stay in the
same technological space or not. It can be difficult to arrive at a combined
megamodel. Therefore, it is sometimes better to use transformations or filters
to combine different models rather than try to squeeze them into a single
megamodel.
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Abstract. System development and integration with a sufficient ma-
turity at entry into service is a competitive challenge in the aerospace
sector. With the ever-increasing complexity of products, this can only be
achieved using efficient model-based techniques for system design as well
as for system testing. However, natural language requirements engineer-
ing is an established technique that cannot be completely replaced for a
number of reasons. This is a fact that has to be considered by any new
approach. Building on the general idea of model-based systems engineer-
ing, we aim at building an integrated virtual verification environment for
modeling systems, requirements, and test cases, so that system designs
can be simulated and verified against the requirements in the early stages
of system development. This paper provides a description of the virtual
verification of system designs against system requirements methodology
and exemplifies its application in a ModelicaML modeling environment.

Keywords: Requirements, Verification, ModelicaML, Modelica, MBSE,
Model-based testing.

1 Introduction

The ever-increasing complexity of products has had a strong impact on time
to market, cost and quality. Products are becoming increasingly complex due
to rapid technological innovations, especially with the increase in electronics
and software even inside traditionally mechanical products. This is especially
true for complex, high value-added systems such as aircraft and automobile
that are characterized by a heterogeneous combination of mechanical and elec-
tronic components. System development and integration with sufficient maturity
at entry into service is a competitive challenge in the aerospace sector. Major
achievements can be realized through efficient system specification and testing
processes. Limitations of traditional approaches relying on textual descriptions
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are progressively addressed by the development of model-based systems engi-
neering1 (MBSE) approaches. Building on this general idea of MBSE, we aim at
building a virtual verification environment for modeling systems, requirements
and test cases, so that a system design can be simulated and verified against the
requirements in the early system development stages.

1.1 Scope

For our methodology we assume that the requirements from the customer have
been elicited2 as requirement statements according to common standards in
terms of quality, e.g. according to Hull et al.[4] stating that the individual re-
quirements should be unique, atomic, feasible, clear, precise, verifiable, legal, and
abstract, and the overall set of requirements should be complete, non-redundant,
consistent, modular, structured, satisfied and qualified. The methods to achieve
this have been well defined and can be considered to be established. Further-
more, the overall MBSE approach to system design, that is the development of
a system design model from textual requirements, is not within the scope of this
paper3.

Paper structure: First we establish and describe the idea of virtual verification
of system designs against system requirements (Section 2). Then we present
background information on ModelicaML and the running example (Section 3)
before we will explain the methodology in detail with the help of said running
example (Section 4). Tool support and automation will be discussed in section
5. Finally, we close with a summary of the current status and propose a number
of ideas for future research (Sections 6 and 7).

2 Virtual Verification of System Designs against System
Requirements

This chapter provides the motivation behind our work, a general description
thereof and the benefits of using the virtual verification of system design against
system requirements (vVDR) approach. Furthermore, related work is discussed.

2.1 Objectives

A number of studies have demonstrated that the cost of fixing problems increases
as the lifecycle of the system under development progresses, e.g. Davis[7].
1 The International Council on Systems Engineering (INCOSE) defines MBSE as fol-

lows: ”Model-based systems engineering (MBSE) is the formalized application of
modelling to support system requirements, design, analysis, verification and valida-
tion activities beginning in the conceptual design phase and continuing throughout
development and later life cycle phases”[1].

2 A description of the various requirement elicitation, i.e. capturing, techniques can
be found in [2] and [3].

3 The interested reader can find a detailed overview of existing solutions for that in
[5] and [6].
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Thus, the business case for detecting defects early in the life cycle is a strong
one. Testing thus needs to be applied as early as possible in the lifecycle to keep the
relative cost of repair for fixing a discovered problem to a minimum. This means
that testing should be integrated into the system design phase so that the system
design can be verified against the requirements early on. To enable an automatic
verification of a design model against a given set of requirements, the requirements
have to be understood and processed by a computer. MBSE typically relies on
building models that substitute or complement the textual requirements. Links
between the model elements and the textual requirements are usually kept at the
requirements’ granularity level, meaning that one or more model elements are
linked to one requirement. This granularity is good enough for basic traceability
and coverage analysis but fails when an interpretation of a requirement’s content
by a computer is necessary. There is research concerning the automatic translation
of natural language requirements into behavioral models to support the automa-
tion of system and acceptance testing (see e.g. [8]) but it is not widely adopted
in industrial practice[9]. Formal mathematical methods may be used to express
requirements, but their application requires high expertise and, hence, they are
not very common in industrial practice. A recent survey came to the conclusion
that ”in spite of their successes, verification technology and formal methods have
not seen widespread adoption as a routine part of systems development practice,
except, arguably, in the development of critical systems in certain domains.”[10].
The bottom line is that natural language is still the most common approach to
express requirements in practice[9]. We want to provide a solution to the question
of how to formalize requirements so that they can be processed and evaluated dur-
ing system simulations in order to detect errors or inconsistencies in a way that is
easy to understand and to apply.

2.2 vVDR Concept

Figure 1 depicts the relationship of the various engineering artifacts in the frame
of vVDR.

A subset of a given set of textual requirements is selected and formalized into
so-called requirement violation monitors by identifying measurable properties
addressed in the requirement statement. A requirement violation monitor is ba-
sically an executable model for monitoring if the constraints expressed by the

Fig. 1. Engineering data relations overview
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requirement statement are adhered to. To test a given design model, the require-
ment violation monitors are linked to the design model using explicit assignment
statements. Furthermore, a test suite consisting of a test context and a number
of test cases has to be built manually. The test suite uses the formalized require-
ments as test oracles for the test cases, i.e., if a requirement is violated during
a test, the test case is deemed failed. The separation of requirement and system
design modeling provides a degree of independence that ensures a high fidelity
in the testing results. The test cases, requirement violation monitors and the de-
sign model can be instantiated and run automatically. Visual graphs (e.g. plots)
allow the monitoring of the requirement violation monitors during run-time to
see if the design model fails to implement a requirement.

2.3 Benefits

Our approach contributes to three main steps in the system development lifecy-
cle: requirements analysis, system design and system testing. Experience shows
that the main benefit of modeling in general is a contribution to the identifi-
cation of ambiguities and incompleteness in the input material. Even though
we assume that the textual requirements that are provided as an input to the
process adhere to a high quality standard, vVDR enables the requirements an-
alyst to further improve the quality by modeling the requirements in a formal
representation as this forces a detailed analysis of the requirements. The main
contribution of vVDR is to the quality of the system design. The automatic
verification of a design model based on the formalized requirements allows the
detection of errors in the system design. The separation of requirements mod-
eling and design modeling allow a reuse of the requirements for the verification
of several alternative system designs. Furthermore, even for one design model
the same requirements violation monitors can be instantiated several times. As
described in [11], the benefits of using a model-based testing approach during
the system design phase facilitates error tracing and impact assessment in the
later integration and testing stages by providing a seamless traceability from the
initial requirements to test cases and test results. Furthermore, it allows reusing
the artifacts from the engineering stage at the testing stage of the development
cycle which results in a significant decrease in overall testing effort. By integrat-
ing the requirements model in a test bench the test models can also be reused
for hardware-in-the-loop test setups.

2.4 Related Work

In [12] an approach to the incremental consistency checking of dynamically de-
finable and modifiable design constraints is presented. Apart from focusing on
design constraints instead of design requirements which can be argued as be-
ing a marginal issue, the main difference to vVDR is that the constraints are
expressed using the design model variables whereas our approach is based on
a separation of the requirements and the design model. Only for a specific test
context are they connected using explicit assignment statements. Additionally,
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the monitoring of model changes and the evaluation of the defined constraints
is done by a separate ”Model Analyzer Tool” whereas our approach relies on
out-of-the-box modeling capabilities. The Behavior Modeling Language (BML)
or more specifically the Requirement Behavior Tree technique that is a vital
part of the BML is another method for formalizing requirements into a form
that can be processed by computers[13][14]. But whereas vVDR relies on a sep-
aration between the set of independent requirements that are used to verify a
design model and the building of a design model by the system designer, the
BML methodology merges the behavior trees that each represent single require-
ments into an overall design behavior tree (DBT). In other words, the transition
from the requirements space to the solution space is based on the formalized
requirements.

3 Background

This chapter provides background information on the graphical modeling nota-
tion ModelicaML [15] and its underlying language Modelica [16] which was used
to implement our approach, and introduces the running example that will be
used to illustrate the vVDR methodology in Section 4.

3.1 Technical Background

Modelica is an object-oriented equation-based modeling language primarily aimed
at physical systems. The model behavior is based on ordinary and differential
algebraic equation (OAE and DAE) systems combined with difference equa-
tions/discrete events, so-called hybrid DAEs. Such models are ideally suited
for representing physical behavior and the exchange of energy, signals, or other
continuous-time or discrete-time interactions between system components.

The Unified Modeling Language (UML) is a standardized general-purpose
modeling language in the field of software engineering and the Systems Model-
ing Language (SysML) is an adaptation of the UML aimed at systems engineer-
ing applications. Both are open standards, managed and created by the Object
Management Group (OMG), a consortium focused on modeling and model-based
standards.

The Modelica Graphical Modeling Language is a UML profile, a language ex-
tension, for Modelica. The main purpose of ModelicaML is to enable an efficient
and effective way to create, visualize and maintain combined UML and Modelica
models. ModelicaML is defined as a graphical notation that facilitates different
views (e.g., composition, inheritance, behavior) on system models. It is based on
a subset of UML and reuses some concepts from SysML. ModelicaML is designed
to generate Modelica code from graphical models. Since the ModelicaML profile
is an extension of the UML meta-model it can be used as an extension for both
UML and SysML4.
4 SysML itself is also a UML Profile. All ModelicaML stereotypes that extend UML

meta-classes are also applicable to the corresponding SysML elements.
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3.2 Running Example: Automated Train Protection System

In this section we introduce an example, which will be used in the remainder
of this paper to demonstrate the vVDR approach. It is based on the example
from[13]. Most railway systems have some form of train protection system that
uses track-side signals to indicate potentially dangerous situations to the driver.
Accidents still occur despite a train protection system when a driver fails to
notice or respond correctly to a signal. To reduce the risk of these accidents,
Automated Train Protection (ATP) systems are used that automate the train’s
response to the track-side signals. The ATP system in our example design model
has three track-side signals: proceed, caution and danger. When the ATP system
receives a caution signal, it monitors the driver’s behavior to ensure the train’s
speed is being reduced. If the driver fails to decrease the train’s speed after a
caution signal or the ATP system receives a danger signal then the train’s brakes
are applied. The textual requirements for the ATP can be found in Appendix A.

4 Methodology Description

The following subsections contain a description of the method steps and illustrate
the methodology using our running example.

4.1 Role: Requirements Analyst

Generally speaking, a requirements analyst acts as the liaison between the busi-
ness professionals and the customer on the one hand and the system design team
on the other hand. The requirements analyst is responsible for ensuring the cor-
rectness and completeness of the input requirements that are handed down from
a business analyst. The objective is to create a set of requirements, which ensure
that the product fulfils its original intent. The analyst needs analytical skills
to critically evaluate the information gathered from multiple sources, reconcile
conflicts and distinguish solution ideas from requirements[17]. In our scope, the
requirements analyst is responsible for translating the textual requirements into
a set of requirement violation monitors. This task includes selecting suitable re-
quirements, creating the requirements in a formal model, identifying measurable
properties and defining the requirements violation monitors.

4.2 Role: System Designer

A system designer develops the system design based on the system requirements
received from the requirements analyst. An engineer in this role creates the
static architecture and defines the dynamic behavior of the system. The system
designer needs technical and creative skills in his work[18]. As the building of
the system model is not in the scope of this paper, the system designer only
has a supporting role here. He/she supports the requirements analyst in select-
ing the requirements for formalization and the tester in linking the formalized
requirements’ properties to the system design model.
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4.3 Role: System Tester

[4] states that ”in its broadest sense, testing is any activity that allows defects
in the system to be detected or prevented, where a defect is a departure from
requirements”. The system tester therefore has to confirm that a particular sys-
tem design meets the system requirements. The system tester builds a test model
that defines the test context for a given system. He creates test cases, links re-
quirements to design models, executes test cases, and reports test results.

4.4 Method Step: Select Requirements to Be Verified

From the set of agreed input requirements the requirements analyst selects re-
quirements that are to be verified by means of simulation. The selection criteria
depend on the requirement types as well as on the system design models that
are planned to be created. Generally speaking, the requirements analyst needs
to decide if the vVDR approach is suitable to test a given requirement. This
step requires a close collaboration between the requirements analyst and the
system designer. The output of this activity is a selected subset of the input
requirements. This activity contributes to the system design modeling by clari-
fying the level of detail that is required of the model for an automatic evaluation
of the selected requirements. For example, the requirements 001, 001-2 and 002
would not be selected because appropriate models will be missing or simulation
is not best suited5 for their verification. In contrast, the requirements 003-009
are good candidates for the verification using simulations. The selected subset
of requirements will then be transferred into the modeling tool and used in the
subsequent steps.

4.5 Method Step: Formalize Textual Requirements

The second step is to formalize each requirement in order to enable its automatic
evaluation during simulations. Note, that in an ideal world, i.e. in a company
where the vVDR method is used throughout the development process, the re-
quirements were already formalised at a higher engineering level by the person
that formulated the requirements and allocated them to our system under de-
velopment in the first place.

Consider requirement 006-1: ”If at any time the controller calculates a ”cau-
tion” signal, it shall, within 0.5 seconds, enable the alarm in the driver cabin.”
Based on this statement we can:

– Identify measurable properties included in the requirement statement, i.e.,
the reception of a caution signal, the activation of the alarm and the time
frame constant,

– Formalize properties as shown in Fig. 2 and define a requirement violation
monitor as illustrated in Fig. 3.

5 For example, design inspection could be sufficient.
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Fig. 2. Formalized requirement properties in ModelicaML

Fig. 3. Requirement violation monitor example

In order to determine if a requirement is fulfilled the following assumption is
made: A requirement is implemented in and met by a design model as long as
its requirement violation monitor is evaluated but not violated. Now the viola-
tion relations can be defined. This example uses a state machine6 (as shown in
Fig. 3) to specify when the requirement is violated. In general, it is recommended
to create the following attributes for each requirement:

– evaluated: Indicates if the requirement was evaluated at least once,
– violated: Indicates if this requirement was violated at least once.

The evaluated attribute is necessary, because, while a violation during a simula-
tion provides sufficient indication that a requirement is not met, a non-violation
is not enough to ensure the satisfaction of a requirement. For example, if the
value of ”caution signal received” is never true during a particular test case sim-
ulation this can mean that either this requirement is not addressed by the design
(i.e., the caution signals are not received by the controller at all), or that this re-
quirement is not verified by this test case because the test case does not provide
appropriate stimuli for the design model.
6 A ModelicaML state machine is one possible means to express the violation of a

requirement. It is also possible to use other formalisms, equations or statements for
it.
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This method step supports the requirements analyst in improving the quality
of the selected requirements by identifying ambiguities or incompleteness issues.
Any issues that are identified in this step have to be resolved with the stake-
holders and all affected textual requirements have to be updated accordingly.

4.6 Method Step: Select or Create Design Model to Be Verified
against Requirements

The actual system design is not in the scope of this paper. The system designer
builds a design model for each design alternative that he comes up with7. Since
the requirements are kept separate from the design alternatives, the same re-
quirements can be reused to verify several designs, and the same requirement
violation monitors can be reused in multiple test cases.

4.7 Method Step: Create Test Models, Instantiate Models, Link
Requirement Properties to Design Model Properties

After the formalization of the requirements and the selection of one design model
for verification, the system tester starts creating test models, defining test cases
and linking requirement properties to values inside the design model. The rec-
ommended procedure is as follows:

– Define a test model that will contain test cases, a design model, the require-
ments and their requirement violation monitors.

– Define test cases for evaluating requirements. One test case can be used for
evaluating one or more requirements.

– Create additional models if necessary, for example, models that simulate the
environment, stimulate the system or monitor specific values.

– Bind the requirements to the design model by setting the properties of a
requirement to values inside the design model using explicit assignments.

Particularly the last step will require the involvement of the system designer in
order to ensure that the requirement properties are linked properly, i.e. to the
correct properties values inside the design model. For example, the assignment
for the requirement property caution signal received is as follows:

caution_signal_received =
design_model.train1.pc1.tcs.controller.tracks_signals_status == 1

This means that the requirement property caution signal received will become
true when the controller property tracks signals status is equal to one8.

7 For ease of use, the design will normally be modelled in the same notation and the
same tool as the requirements. However, it can be imagined to build interfaces to
executable models that were built using different modelling notations in different
tools and then subsequently use vVDR to test these models.

8 ”1” denotes a caution signal in the design model.



84 W. Schamai et al.

Another example is the assignment of the requirement property alarm is
activated. Here the system tester will have to decide which design property it
should be linked to. It could be accessed from the ATP controller or from the
HMI system, that is between the controller and the driver, or from the driver
HMI port directly. The answer will probably be: It should be accessed from the
driver HMI port because failures in HMI system may also affect the evaluation
result. Furthermore, it is recommended to create the following attributes and
statements9 for each test model:

– test_passed := evaluated and not violated;
Indicates if the test is passed or failed.

– evaluated := if req1.evaluated and ... and reqN.evaluated
then true ...;
Indicates if the test case has evaluated all requirements.

– violated := when {req1.violated,... ,reqN.violated}
then true ...;
Indicates if any of requirements was violated.

These definitions enable an automated test case results evaluation by using the
requirement violation monitors of the involved requirements as a test oracle
for the test case. Figure 4 presents an example of a test case that drives the
simulation.

Fig. 4. Test case example

4.8 Method Step: Test and Observe Requirement Violations

After having created the test models, the system tester can run simulations and
observe the results. Hereby, the system tester will be interested in knowing if
test cases have passed or failed. A test case is deemed to have failed when not
all requirements were evaluated or some requirements were violated during the
execution of the test case.
9 These statements are written in Modelica.
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4.9 Method Step: Report and Analyze Test Results

After the execution of all test cases, the system tester creates a simulation report.
This information is the basis for discussions among the involved parties and may
lead to an iterative repetition of the system design and testing process described
here. Furthermore, it allows the precise reproduction of test results at a later
state. Additionally, these reports can be reused as a reference for later product
verification activities, i.e., the physical system testing at a test bench.

5 Tool Support and Automation

Past experience shows that the acceptance of new methods by systems engineers
highly correlates with the ease of application of said new method. The field
of formal methods, although it is proven that its application can reduce errors
drastically, is just one example were a good method was not adapted widely in
the daily work of the engineers mainly due to its steep learning curve. To ease the
adaptation of vVDR by systems engineers, a number of assistant tools has been
developed that is constantly growing. These tools that are integrated into the
vVDR development environment aim at simpliyfing complex and/or repetitive
tasks within the vVDR method by automation.

For the linking of requirement properties to design properties a wizard for
preparing the binding statements has been developed as shown by Fig. 5. The
wizard collects all requirements that have been instantiated within a selected
simulation model and prepares a Modelica modification in that simulation model
with assignment statements that have the input variables of the requirements
on the left hand side of the equation and ”TBD” on the right hand side of
the equation. Therefore, the tester who prepares the simulation now only has
to go through these statements and can replace the ”TBD” on the right hand
side with a pointer to the appropriate variable in the design model. Without
this helper, the tester would need to look manually through each instantiated
requirement and the manually write the complete assignment statement for all
the requirement’s input variables.

A second improvement in the vVDR development environment aims at sim-
plifying the same task for the system tester. As shown in Fig. 6 a dedicated view
supports the task of binding requirements properties to design model properties
and the task of discovering the right stimuli for the design model in a test case.
This view filters the model instance tree for inputs and outputs. Inputs are po-
tential stimuli. Outputs are potential observation points. This view limits the
potential possibilities that can be placed on the right hand side of the properties
binding assignment and gives the system tester an easy tool for identifying the
right ones.

Another helper was built for automatically writing the overall test evaluation
code (see 4.7) were the evaluation and violation of the individual requirements
is combined to provide an overall test verdict. The helper is able to create the
code and update it after a model change.
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Fig. 5. Wizard for variables binding support

6 Current Status and Future Directions

The methodology presented in this paper has been successfully applied in several
case studies. However, the case studies included only a small number of require-
ments. In the future, a real-sized case study is planned, i.e., one that contains
more than a hundred requirements to be verified using the vVDR method to
determine the applicability and scalability of this approach.

The traceability between requirements and design artefacts is a critical issue in
the daily engineering work, particularly with regards to change impact analysis.
vVDR already support this but we aim at improving its capabilities. We see
the need to improve the level of granularity at which requirements and model
elements are linked with each other to support change impact analysis more
efficiently. For example, parts of a requirement statement, i.e.,. single words, can
be linked to the model elements that they are referring to. Moreover, an effective
visualization and dependencies exploration is necessary.

A model-based development approach enables an effective and efficient re-
porting on and monitoring of the requirements implementation. For example, a
bidirectional traceability between requirement and design allows the determina-
tion of the system development status and supports project risk management
and planning. Template-based reporting engines support automatic generation
of various kinds of reports on demand.

While the test cases for our running example can be easily derived directly
from the input requirements, manual test case generation becomes an increas-
ingly tedious task for real-life specifications with hundreds of requirements.
Model-based testing provides methods for automated test case generation some
of which already work on UML models[19] and look promising to be adapted to
vVDR.
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Fig. 6. View to support input and output variables connection

Requirements traceability, a higher test automation through adaptation of
model-based testing techniques as well as reporting topics are subject to our
future work.

7 Conclusion

This paper presents a method for the virtual verification of system designs
against system requirements by means of simulation. It provides a detailed de-
scription of all method steps and illustrates them using an example case study
that was implemented using ModelicaML. It points out that this method strongly
depends on the design models that are planned to be created and that not all
type of requirements can be evaluated using this method. In the vVDR ap-
proach, formalized requirements, system design and test cases are defined in
separate models and can be reused and combined into test setups in an efficient
manner. In doing so, a continuous evaluation of requirements along the system
design evolution can be done starting in the early system design stages. This ap-
proach enables an early detection of errors or inconsistencies in system design,
as well as of inconsistent, not feasible or conflicting requirements. Moreover,
the created artifacts can be reused for later product verification (i.e., physical
testing) activities.
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A ATP Requirements

ID Requirement Text (based on [13])
001 The ATP system shall be located on board the train.
001-2 The ATP system shall consist of a central controller and five boundary

subsystems that manage the sensors, speedometer, brakes, alarm and a
reset mechanism.

002 The sensors shall be attached to the side of the train and read informa-
tion from approaching track-side signals, i.e. they detect what the signal
is signaling to the train driver.

002-2 Within the driver cabin, the train control display system shall display
the last track-side signal values calculated by the controller.

003 Three sensors shall generate values in the range of 0 to 3, where 0, 1 and
2 denote the danger, caution, and proceed track-side signals respectively.
Each sensor shall generate the value 3 if a track-side signal that is out
of the range 0..2 is detected.

004 The controller shall calculate the majority of the three sensor readings.
If no majority exists then the value shall be set to ”undefined” (i.e. 3).

005 If the calculated majority is ”proceed” (i.e. 0) then the controller shall
not take any action with respect to the activation of the braking system.

006-1 If at any time the controller calculates a ”caution” signal, it shall, within
0.5 seconds, enable the alarm in the driver cabin.

006-2 If the alarm in the driver cabin has been activated due to a ”caution”
signal and the train speed is not decreasing by at least 0.5m/s2 within
two seconds of the activation, then the controller shall within 0.5 seconds
activate the automatic braking.

007-1 If at any time the controller calculates a ”danger” signal it shall within
0.5 seconds activate the braking system and enable the alarm in the
driver cabin.

007-2 If the alarm in the driver cabin has been activated due to a ”caution”
signal, it shall be deactivated by the controller within 0.5 seconds if a
”proceed” signal is calculated and the automatic braking has not been
activated yet.

008 If at any time the automatic braking has been activated, the controller
shall ignore all further sensor input until the system has been reset.

009 If the controller receives a reset command from the driver, then it shall
within 1 second, deactivate the train brakes and disable the alarm within
the driver cabin.
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designed by teams of engineers with different backgrounds (e.g., telecommuni-
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ity of the designed system when it is accompanied and followed by verification
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notations that can be used with ease by experts of domains other than computer
science; (ii) rigorous, possibly formal, verification can be carried out on the afore-
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This work, which is part of a larger research effort carried out in the MADES
European project1 [1], focuses on aspects (i) and (ii) mentioned above. In partic-
ular, it is the first step towards a complete proposal for modeling and validating
embedded systems. The plan is to exploit both “conventional” UML diagrams
[15] and a subset of the MARTE (Modeling and Analysis of Real-Time and Em-
bedded systems) UML profile [14]. We want to use Class Diagrams to define the
key components of the system. State Diagrams to model their internal behaviors,
and Sequence and Interaction Overview Diagrams to model the interactions and
cooperations among the different elements. These diagrams will be augmented
with clocks and resources taken from MARTE. The result is a multi-faceted
model of the system, automatically translated into temporal logic to verify it.
Temporal Logic helps glue the different views, create a single, consistent rep-
resentation of the system, discover inconsistencies among the different aspects,
and formally verify some global properties.

This paper starts from Interaction Overview Diagrams (IODs) since they are
often neglected, but they provide an interesting means to integrate Sequence
Diagrams (SDs) and define coherent and complex evolutions of the system of
interest. IODs are ascribed a formal semantics, based on temporal logic, upon
which a fully automated, tool supported, verification technique is built.

The choice of IODs as the starting point for a modeling notation that is
accessible to experts of different domains, especially those other than software
engineering, is borne from the observation that, in the industrial practice, SDs
are often the preferred notation of system engineers to describe components’
behaviors [3]. However, SDs taken in isolation are not enough to provide a com-
plete picture of the interactions among the various components of a complex
system; hence, system designers must be given mechanisms to combine different
SDs into richer descriptions, which is precisely what IODs offer.

In this article we provide a preliminary formal semantics of IODs based on
metric temporal logic. While this semantics is not yet complete, as it does not
cover all possible mechanisms through which SDs can be combined into IODs,
it is nonetheless a significant first step in this direction. The provided semantics
has been implemented into the �ot bounded satisfiability/model checker [16]2,
and has been used to prove some properties of an example system.

This paper is structured as follows. Section 2 briefly presents IODs; Section 3
gives an overview of the metric temporal logic used to define the formal semantics
of IODs, and of the �ot tool supporting it; Section 4 introduces the formal
semantics of IODs through an example system, and discusses how it has been
used to prove properties of the latter; Section 5 discusses some relevant related
works; finally, Section 6 draws some conclusions and outlines future works.

2 Interaction Overview Diagrams

Most UML behavioral diagrams have undergone a significant revision from ver-
sion 1.x to version 2.x. To model interactions, UML2 offers four kinds of
1 http://www.mades-project.org
2
�ot is available at http://home.dei.polimi.it/pradella/Zot

http://www.mades-project.org
http://home.dei.polimi.it/pradella/Zot
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diagrams: communication diagrams, sequence diagrams, timing diagrams and
interaction overview diagrams. In this work we focus on Sequence Diagrams
(SDs) and Interaction Overview Diagrams (IODs).

SDs have been considerably revised and extended in UML2 to improve their
expressiveness and their structure. IODs are new in UML2. They allow a de-
signer to provide a high-level view of the possible interactions in a system. IODs
constitute a high-level structuring mechanism that is used to compose scenarios
through mechanisms such as sequence, iteration, concurrency or choice. IODs
are a special and restricted kind of UML Activity Diagrams (ADs) where nodes
are interactions or interaction uses, and edges indicate the flow or order in which
these interactions occur. Semantically, however, IODs are more complex com-
pared to ADs and they may have different interpretations. In the following the
fundamental operators of IODs are presented. Figure 2 shows an example of
IOD for the application analyzed in Section 4, which will be used throughout
this section to provide graphical examples of IOD constructs. IODs include also
other operators whose study is left to future works.

IODs include the initial node, final node and flows final node operators,
which have exactly the same meaning of the corresponding operators found in
ADs. For example, The IOD of Figure 2 has an initial node at the top, but no
final or flow final nodes.

A control flow is a directed connection (flow) between two SDs (e.g., between
diagrams delegateSMS and downloadSMS in Figure 2). As soon as the SD at the
source of the flow is finished, it presents a token to the SD at the end of the flow.

A fork node is a control node that has a single incoming flow and two or
more outgoing flows. Incoming tokens are offered to all outgoing flows (edges).
The outgoing flows can be guarded, which gives them a mechanism to accept
or reject a token. In the IOD of Figure 2, there is one fork node at the top of
the diagram (between the initial node and SDs waitingCall and checkingSMS )
modeling two concurrent execution of the system. The dual operator is the join
node, which synchronizes a number of incoming flows into a single outgoing flow.
Each (and every) incoming control flow must present a control token to the join
node before the node can offer a single token to the outgoing flow.

A decision node is a control node that has one incoming flow and two or more
outgoing flows. In the IOD of Figure 2 there are four decision operators (e.g.,
the one between SDs waitingCall and delegateCall) with their corresponding
Boolean conditions. Conversely, a merge node is a type of control node that
has two or more incoming flows and a single outgoing flow.

3 TRIO and �ot

TRIO [7] is a general-purpose formal specification language suitable for describ-
ing complex real-time systems, including distributed ones. TRIO is a first-order
linear temporal logic that supports a metric on time. TRIO formulae are built
out of the usual first-order connectives, operators, and quantifiers, as well as a
single basic modal operator, called Dist, that relates the current time, which
is left implicit in the formula, to another time instant: given a formula F and
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Table 1. TRIO derived temporal operators

Operator Definition

Past(F, t) t ≥ 0 ∧ Dist(F,−t)

Futr(F, t) t ≥ 0 ∧ Dist(F, t)

Alw(F ) ∀d : Dist(F, d)

AlwP(F ) ∀d > 0 : Past(F, d)

AlwF(F ) ∀d > 0 : Futr(F, d)

SomF(F ) ∃d > 0 : Futr(F, d)

SomP(F ) ∃d > 0 : Past(F, d)

Lasted(F, t) ∀d ∈ (0, t] : Past(F, d)

Lasts(F, t) ∀d ∈ (0, t] : Futr(F, d)

WithinP(F, t) ∃d ∈ (0, t] : Past(F, d)

WithinF(F, t) ∃d ∈ (0, t] : Futr(F, d)

Since(F, G) ∃d > 0 : Lasted(F, d) ∧ Past(G, d)

Until(F, G) ∃d > 0 : Lasts(F, d) ∧ Futr(G, d)

a term t indicating a time distance (either positive or negative), the formula
Dist(F, t) specifies that F holds at a time instant whose distance is exactly t
time units from the current one. While TRIO can exploit both discrete and
dense sets as time domains, in this paper we assume the nonnegative integers �
as discrete time domain. For convenience in the writing of specification formu-
lae, TRIO defines a number of derived temporal operators from the basic Dist,
through propositional composition and first-order logic quantification. Table 1
defines some of the most significant ones, including those used in this paper.

The TRIO specification of a system includes a set of basic items, such as pred-
icates, representing the elementary modeled phenomena. The system behavior
over time is formally specified by a set of TRIO formulae, which state how the
items are constrained and how they vary in time, in a purely descriptive (or
declarative) fashion.

The goal of the verification phase is to ensure that the system S satisfies some
desired property R, that is, that S |= R. In the TRIO approach S and R are both
expressed as logic formulae Σ and ρ, respectively; then, showing that S |= R
amounts to proving that Σ ⇒ ρ is valid.

TRIO is supported by a variety of verification techniques implemented in pro-
totype tools. In this paper we refer to �ot [16], a bounded model checker which
supports verification of discrete-time TRIO models. �ot encodes satisfiability
(and validity) problems for discrete-time TRIO formulae as propositional satis-
fiability (SAT) problems, which are then checked with off-the-shelf SAT solvers.
More recently, we developed a more efficient encoding that exploits the features
of Satisfiability Modulo Theories (SMT) solvers [2]. Through �ot one can verify
whether stated properties hold for the system being analyzed (or parts thereof)
or not; if a property does not hold, �ot produces a counterexample.
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4 Formal Semantics of Interaction Overview Diagrams

This section introduces the formal semantics of IODs defined in terms of the
TRIO temporal logic. The semantics is presented by way of an example system,
whose behavior modeled through a IOD is described in Section 4.1. Then, Sec-
tion 4.2 discusses the TRIO formalization of different constructs of IODs, and
illustrates how this is used to create a formal model for the example system.
Section 4.3 briefly discusses some properties that were checked for the modeled
system by feeding its TRIO representation to the �ot verification tool. Finally,
Section 4.4 provides a measure of the complexity of the translation of IODs into
metric temporal logic.

4.1 Example Telephone System

The example system used throughout this section is a telephone system com-
posed of three units, a TransmissionUnit, a ConnectionUnit and a Server, de-
picted in the class diagram of Figure 1. The ConnectionUnit is in charge of
checking for the arrival of new SMSs on the Server (operation checkSMS of class
Server) and to handle new calls coming from the Server (operation IncomingCall
of class ConnectionUnit). The TransmissionUnit is used by the ConnectionUnit
to download the SMSs (operation downloadSMS ) and to handle the call’s data
(operation beginCall). The TransmissionUnit receives the data concerning SMSs
and calls from the Server (operations receiveSMSToken and receiveCallData).

The behavior of the telephone system is modeled by the IOD of Figure 2. The
fork operator specifies that the two main paths executed by the system are in
parallel; for example the checkingSMS and receiveCall sequence diagrams run
in parallel. Branch conditions are used in order to distinguish between different
possible executions; for example after checking for a new SMS on the Server the
system will continue with downloading the SMSs if one is present, otherwise it
will loop back to the same diagram. It can be assumed that the Server allocates
a dedicated thread to each connected telephone; this is why the sequence dia-
grams of Figure 2 report the interaction between only one ConnectionUnit, one
TransmissionUnit and one Server.

Server

tUnit [*]: TransmissionUnit
cUnit [*]: ConnectionUnit

nextSMSToken()
checkSMS()

ConnectionUnit

tUnit: TransmissionUnit
server: Server

incomingCall()

TransmissionUnit

cUnit: ConnectionUnit
server: Server

downloadSMS()
receiveSMSToken()
beginCall()
receiveCallData()

1 1

* 0..1

0..1*

Fig. 1. Class diagram for the telephone system
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Connection
Unit

Server

incomingCall()

waiting call

Server

receiveCallData()

Connection
Unit

Server

checkSMS()

checkingSMS

reply

Connection
Unit

Transmission
Unit

beginCall()

delegateCall

reply

Connection
Unit

Transmission
Unit

downloadSMS()

delegateSMS

reply

receiveCall

Transmission
Unit

Server

receiveSMSToken()

downloadSMS

Transmission
Unit

newSMSToken()

[accept]

[deny] [no SMS]

[SMS]

[more data] [more data]

[call closed] [no more data]

Fig. 2. Interaction Overview diagram for the telephone system

4.2 TRIO Formalization

The formalization presented here was derived from the diagram of Figure 2 by
hand. The availability of a tool, which we are building, will allow us to analyze
more complex models and assess the actual scalability of the proposed technique.
The formalization is organized into sets of formulae, each of them corresponding
to one of the SDs appearing in the IOD. Every set can be further decomposed
into three subsets modeling different aspects of the SDs:

– diagram-related formulae, which concern the beginning and the end of
the execution of each SD, and the transition between a SD and the next
one(s);
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– message-related formulae, which concern the ordering of the events within
a single SD;

– component-related formulae, which describe constraints on the execu-
tion of operations within single components.

These subsets are presented in the rest of this section.

Diagram-related Formulae. In this presentation of the semantics of IODs
we assume, for the sake of simplicity, that, within each SD of an IOD, messages
are totally ordered, hence we can clearly identify a begin message and an ending
message. This assumption is not restrictive because, given any IOD that does not
satisfy it, we can use the fork/join operators to obtain an equivalent IOD that
satisfies the assumption, simply by splitting diagrams where messages may occur
in parallel, into diagrams where messages are totally ordered. Then, for each SD
Dx, it is possible to identify two messages, ms and me, which correspond to
the start and the end of the diagram. For each SD Dx, we introduce predicates
DxSTART and DxEND that are true, respectively, at the beginning and at
the end of the diagram. We also introduce, for each message m appearing in
diagram Dx, a predicate m that holds in all instants in which the message occurs
in the system (this entails that components synchronize on messages: send and
receive of a message occur at the same time). Then, the correspondence between
DxSTART (resp. DxEND) and the starting (resp. ending) message ms (resp.
me) is formalized by formulae (1-2)3. In addition, we introduce a predicate Dx

that holds in all instants in which diagram Dx is executing; hence, predicate Dx

holds between DxSTART and DxEND, as stated by formula (3).

DxSTART ⇔ ms (1)
DxEND ⇔ me (2)

Dx ⇔ DxSTART ∨ Since(¬DxEND, DxSTART) (3)

For example, the instances of formulae (1-3) for diagram delegateSMS correspond
to formulae (4-6).

delegateSMSSTART ⇔ downloadSMS (4)

delegateSMSEND ⇔ reply3 (5)

delegateSMS ⇔ delegateSMSSTART ∨ (6)

Since(¬delegateSMSEND,delegateSMSSTART)

Notice that if the IOD contains k different occurrences of the same message
m, k different predicates m0...mk are introduced. For this reason in formula (5)
reply3 appears instead of reply.
3 Note that TRIO formulae are implicitly temporally closed with the Alw operator;

hence, DxSTART ⇔ ms is actually an abbreviation for Alw(DxSTART ⇔ ms) .
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A diagram Dx is followed by a diagram Dy for either of two reasons: (1) Dx

is directly connected to Dy, in this case the end of Dx is a sufficient condition
to start Dy; (2) Dx is connected to Dy through some decision operator, in this
case a sufficient condition for Dy to start is given by the end of Dx, provided
(i.e. conjoined with the requirement that) the condition associated with the
decision operator is true. If a diagram Dx is preceded by p sequence diagrams,
we introduce p predicates DxACTCi (i ∈ {1...p}), where DxACTCi holds if the
i-th sufficient condition to start diagram Dx holds. We also introduce predicate
DxACT , which holds if any of the p necessary conditions holds, as defined by
formula (7). After the necessary condition to start a diagram is met, the diagram
will start at some point in the future, as stated by formula (8). Finally, after a
diagram starts, it cannot start again until the necessary condition to start it is
met anew, as defined by formula (9).

DxACT ⇔ DxACTC0 ∨ ... ∨ DxACTCm (7)
DxACT ⇒ SomF(DxSTART ) (8)

DxSTART ⇒ ¬SomF(DxSTART ) ∨ Until(¬DxSTART, DxACT ) (9)

In the case of SD downloadSMS of Figure 2, the instances of formulae (7-9) are
given by (12-14). In addition, formulae (10-11) define the necessary conditions
to start diagram downloadSMS : either diagram delegateSMS ends, or diagram
downloadSMS ends and condition moredata holds. Currently, we can only deal
with atomic Boolean conditions. The representation of more complex data, and
conditions upon them, is already in our research agenda.

downloadSMSACTC1 ⇔ delegateSMSEND (10)
downloadSMSACTC2 ⇔ downloadSMSEND ∧ moredata (11)

downloadSMSACT ⇔
(

downloadSMSACTC1

∨ downloadSMSACTC2

)
(12)

downloadSMSACT ⇒ SomF(downloadSMSSTART) (13)
downloadSMSSTART ⇒

¬SomF(downloadSMSSTART) ∨
Until(¬downloadSMSSTART, downloadSMSACT ) (14)

Message-related Formulae. Suppose that, in a SD, a message mi is followed
by another message mj . Then the occurrence of mi entails that mj will also
occur in the future; conversely, the occurrence of mj entails that mi must have
occurred in the past. This is formalized by formulae (15-16). In addition, after
an instance of mj , there can be a new instance of the same message only after
a new occurrence of mi; this is stated by formula (17), which defines that, after
mj , there will not be a new occurrence of mj until there is an occurrence of mi.
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mi ⇒ SomF(mj) ∧ ¬mj (15)
mj ⇒ SomP(mi) ∧ ¬mi (16)
mj ⇒ ¬SomF(mj) ∨ Until(¬mj , mi) (17)

If, for example, formulae (15-17) are instantiated for SD checkingSMS of Fig-
ure 2, one obtains formulae (18-20).

checkSMS ⇒ SomF(reply1) ∧ ¬reply1 (18)
reply1 ⇒ SomP(checkSMS) ∧ ¬checkSMS (19)

checkSMS ⇒ ¬SomF(checkSMS) ∨ Until(¬checkSMS, reply1) (20)

Component-related Formulae. This set of formulae describes the conditions
under which the entities of the system are busy, hence cannot perform further
operations until they become free again. For example, in the telephone system
of Figure 2, when the execution is inside the checkingSMS diagram, the Connec-
tionUnit cannot perform any other operations during the time interval between
the invocation of operation ckechSMS and its corresponding reply message, since
the invocation is synchronous (as highlighted by the full arrow).

In general, a synchronous invocation between objects A and B that starts
with message mi and ends with message mj blocks both components from the
moment of the invocation until its end; this is formalized by formulae (21-22),
in which h and k are indexes identifying the occurrences of invocations (either
received of issued) related to objects A and B in the IOD. In case of an asyn-
chronous message m between A and B (such as, for example, incomingCall in
SD waitingCall, as denoted by the wire-like arrow), the semantics is the one
defined by formulae (23-24), which state that the objects are blocked only in the
instant in which the message occurs.

mi ∨ Since(¬mj , mi) ⇔ ABLOCKEDh (21)
mi ∨ Since(¬mj , mi) ⇔ BBLOCKEDk (22)

m ⇔ ABLOCKEDh (23)
m ⇔ BBLOCKEDk (24)

Finally, if n is the number of occurrences of invocations involving object A
in the IOD, formula (25) states that all executions involving A are mutually
exclusive.

∀1 ≤ i, j ≤ n(i 	= j ∧ ABLOCKEDi ⇒ ¬ABLOCKEDj) (25)

The following formulae are instances of (21-25) for object ConnectionUnit,
which is involved in four separate invocations in the IOD of Figure 2:



From Interaction Overview Diagrams to Temporal Logic 99

ConnectionUnitBLOCKED1 ⇔ checkSMS∨
Since(¬reply1, checkSMS)

ConnectionUnitBLOCKED2 ⇔ incomingCall
ConnectionUnitBLOCKED3 ⇔ downloadSMS∨

Since(¬reply2, donwloadSMS)
ConnectionUnitBLOCKED4 ⇔ beginCall∨

Since(¬reply3, beginCall)
∀1 ≤ i, j ≤ 4(i 	= j ∧ ConnectionUnitBLOCKEDi ⇒

¬ConnectionUnitBLOCKEDj)

4.3 Properties

Using the formalization presented above, we can check whether the modeled
system satisfies some user-defined properties or not, by feeding it as input to the
�ot verification tool.4

We start by asking whether it is true that, if no SMS is received in the fu-
ture, then nothing will ever be downloaded. This property is formalized by the
following formula:

¬SomF(SMS) ⇒ ¬SomF(downloadSMS) (26)

After feeding it the system and the property to be verified, the �ot tool
determines that the latter does not hold for the telephone system of Figure 2. In
fact, between the check for a new SMS and its download there can be an arbitrary
delay; hence, the situation in which the last SMS has been received, but it has
not yet been downloaded, violates the property. �ot returns this counterexample
in around 8.5 seconds.5

The following variation of the property above, instead, holds for the system:

¬(SomP(SMS) ∨ SMS) ⇒ ¬WithinF(downloadSMS, 3) (27)

Formula (27) states that, if no SMS has yet been received, for the next 3
instants there will not be an SMS download. �ot takes about 7 seconds to
determine that formula (27) holds.

The following formula states that after a nextSMSToken request from Trans-
missionUnit to Server, no data concerning an incoming call can be received by
the TransmissionUnit until a new SMS is received.

nextSMSToken ⇒ Until(¬receiveCallData, receiveSMSToken) (28)
4 The complete �ot model can be downloaded from
http://home.dei.polimi.it/rossi/telephone.lisp

5 All tests have been performed with a time bound of 50 time units (see [16] for the role of
time bounds in BoundedModel/Satisfiabliity Checking), using the Common Lisp com-
piler SBCL 1.0.29.11 on a 2.80GHz Core2 Duo laptop with Linux and 4 GB RAM. The
verificationengineusedwastheSMT-based�otplugin introduced in [2],withMicrosoft
Z3 2.8 (http://research.microsoft.com/en-us/um/redmond/projects/z3/) as the
SMT solver.

http://home.dei.polimi.it/rossi/telephone.lisp
http://research.microsoft.com/en-us/um/redmond/projects/z3/
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�ot verifies that property (28) does not hold in around 8 seconds. As wit-
nessed by the counterexample produced by �ot, the reason why (28) does not
hold is that the downloadSMS diagram and the receiveCall diagram can run in
parallel, and after sending a nextSMSToken message the TransmissionUnit and
the Server are free to exchange a receiveCallData message.

4.4 Complexity

In this section we estimate the complexity of the translation from the IOD of
the system into a set of temporal logic formulas. The purpose of this analysis
is to provide an a priori estimation of the feasibility of the approach, i.e., to
ensure that the approach is scalable and effectively implementable by means of
an automatic software tool. It is to be noted that the estimation of the num-
ber of predicates and formulas produced by the translation procedure does not
allow us to draw conclusions about the complexity of the algorithms for model
verification (e.g., through simulation or property proof), because this depends
on several features of the verification engine that will be employed by the veri-
fication tool (which could be, for instance, a SAT-based or SMT-based solver).
Such an analysis is therefore left for future work.

We measure the complexity of the translation in terms of the number of
predicates and the size of the TRIO formulas that are produced, and we consider,
as parameters of such evaluation, the number nd of SDs in the IOD and the
number no of objects composing the system. The worst case occurs when every
SD is connected to all the others (including itself) in an IOD, and thus every SD
has nd incoming flows. Moreover, still in a worst case scenario, every object in
every SD sends one synchronous message to all the other objects in the system.
According to these hypotheses, an estimation of the number of predicates and
of the order of magnitude of the number of logic formulae generated by the
translation can be carried out as follows.

For every SD the translation generates 3nd predicates (Dx, DxSTART ,
DxEND) and 3nd formulae according to axioms (1–3). Further, since every SD
has nd incoming flows the translation generates nd(nd+1) predicates (DxACTC0,
..., DxACTCnd

, DxACT ) and nd(nd + 3) formulae (7–9).
If we assume that every object in every SD sends one synchronous message

to every other object in the same SD, we have 2ndno(no − 1) messages. Every
message instance has its own predicate and this results in 2ndno(no−1) generated
predicates. Moreover we have 5 · 2ndno(no − 1) generated formulae, according to
axioms (15–17,21,22).

Finally, since every object is blocked while sending or receiving a message,
in every SD the number of operation executions for a single object is 2(no − 1)
(the object sends no − 1 messages and receives no − 1 messages). This generates
ndno2(no − 1) predicates overall. The mutual exclusion of these predicates is
stated in axiom (25); because every object has nd2(no−1) operation executions,
we have nd2(no − 1)(nd2(no − 1) − 1) instances of axiom (25) for each object,
and nond2(no − 1)(nd2(no − 1) − 1) formulae overall.
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If ndec is the number of decision operators in the IOD, the overall number of
predicates is:

3nd + nd(nd + 1) + 4ndno(no − 1) + ndec

which is in the order of O(n2
d+ndn

2
o), since the number ndec of decision operators

can be safely assumed to be O(nd); also, the overall number of formulae is:

3nd + nd(nd + 3) + 5 · 2ndno(no − 1) + nond2(no − 1)(nd2(no − 1) − 1)

which is in the order of O(n2
d ∗ n3

o).
Note, however, that real-world models do not follow this kind of worst-case

topology. For a more realistic analysis, we can assume that each diagram is
connected to a constant number of diagrams (nc

d, number of diagrams connected,
which also entails that the number of decision operators is a constant nc

dec), and
that each object sends a constant number of messages (e.g., m synchronous
messages) to the other objects. In this case, the number of predicates becomes:

3nd + nd(nc
d + 1) + 4ndnom + nc

dec

which is in the order of O(ndno), and the number of formulae becomes:

3nd + nd(nc
d + 3) + 5 · 2ndnom + nond2m(nd2m − 1)

which is in the order of O(n2
dno).

Looking at the number of formulae, the term that weighs the most is the last
one, which originates from the fact that every execution occurrence cannot be
true at the same time instant as another execution occurrence. This can only
happen if the execution occurrences are inside diagrams that can be executed
in parallel (because of fork operators). If we assume, like in our example, that
the system only has p parallel paths, then the generated number of formulae
becomes: 3nd +nd(nc

d +3)+5 ·2ndnom+nond2m(nd

p 2m−1), but its complexity
remains in the order of O(n2

dno). Also, the number of predicates is not affected.
If the system is implemented in a modular fashion, we can also assume that

each object does not appear in every SD, but that each diagram comprises
a maximum number nd

o of objects. This means that an object is used in ndnd
o

no

diagrams, and it has 2m
ndnd

o

no
execution occurrences. These hypotheses transform

the number of generated predicates into:

3nd + nd(nc
d + 1) + 4ndn

d
om + nc

dec

which is in the order of O(nd) and the number of generated formulae into:

3nd + nd(nc
d + 3) + 5 · 2ndn

d
om + no(2m

ndn
d
o

no
)((2m

ndn
d
o

no
) − 1)

with a further reduction to the order of O(n2
d

no
).

The above complexity figures agree with the intuition that the verification
can be carried out more efficiently if the model of the system under analysis is
adequately modularized.
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Finally, note that the current formal model has not yet been optimized to
minimize the number of generated formulae: improvements can surely be ob-
tained, at least as far as the constant factors in the above complexity measures
are concerned.

5 Related Work

The research community has devoted a significant effort to studying ways to
give a formal semantics to scenario-based specifications such as UML sequence
diagrams, UML interaction diagrams, and Message Sequence Charts (MSCs).

Many works focus on the separate formalization of sequence diagrams and
activity diagrams. Störrle analyzes the semantics of these diagrams and pro-
poses an approach to their formalization [18]. More recently, Staines formalizes
UML2 activity diagrams using Petri nets and proposes a technique to achieve
this transformation [17]. Also, Lam formalizes the execution of activity diagrams
using the π − Calculus, thus providing them with a sound theoretical founda-
tion [13]. Finally, Eshuis focuses on activity diagrams, and defines a technique
to translate them into finite state machines that can be automatically verified
[9][8].

Other works investigate UML2 interaction diagrams. Cengarle and Knapp in
[6] provide an operational semantics to UML 2 interactions, and in [5] they ad-
dress the lack of UML interactions to explicitly describe variability and propose
extensions equipped with a denotational semantics. Knapp and Wuttke trans-
late UML2 interactions into automata and then verify that the proposed design
meets the requirements stated in the scenarios by using model checking [12].

When multiple scenarios come into play, like in IODs, there is the problem of
finding a common semantics. Uchitel and Kramer in [19] propose an MSC-based
language with a semantics defined in terms of labeled transition systems and
parallel composition, which is translated into Finite Sequential Processes that
can be model-checked and animated. Harel and Kugler in [10] use Live Sequence
Charts (LCSs) to model multiple scenarios, and to analyze satisfiability and
synthesis issues.

To the best of our knowledge very little attention has been paid to IODs. Kloul
and Küster-Filipe [11] show how to model mobility using IODs and propose a
formal semantics to the latter by translating them into the stochastic process
algebra PEPA nets. Tebibel uses hierarchical colored Petri nets to define a for-
mal semantics for IODs [4]. Our work is quite different, because it uses metric
temporal logic to define the semantics of IODs; as briefly discussed in Sections
1 and 6, this opens many possibilities as far as the range of properties that can
be expressed and analyzed for the system is concerned.

6 Conclusions and Future Works

In this paper we presented the first steps towards a technique to precisely model
and analyze complex, heterogeneous, embedded systems using an intuitive UML-
based notation. To this end, we started by focusing our attention on Interaction
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Overview Diagrams, which allow users to describe rich behaviors by combining
together simple Sequence Diagrams. To allow designers to rigorously analyze
modeled systems, the basic constructs of IODs have been given a formal se-
mantics based on metric temporal logic, which has been used to prove some
properties of an example system.

The work presented in this paper is part of a longer-term research, and it will
be extended in several ways.

First, the metric features of TRIO will be used to extend the formalization
of SDs and IODs to real-time features that will be introduced in the modeling
language by providing support for the MARTE UML profile.

Furthermore, we will provide semantics to constructs of IODs that are not yet
covered. This semantics will be used to create tools to automatically translate
IODs into the input language of the �ot tool, and to show designers the feed-
back from the verification tool (e.g., counterexamples) in a user-friendly way. In
particular, we will define mechanisms to render graphically the counterexamples
provided by �ot as SDs. These tools will allow domain experts who have little
or no background in formal verification techniques to take advantage of these
techniques in the analysis of complex systems.
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Abstract. This report summarizes the outcome of the 15th Workshop
on Aspect-Oriented Modeling (AOM) held in conjunction with the 13th
International Conference on Model Driven Engineering Languages and
Systems – MoDELS 2010 – in Oslo, Norway, on the 4th of October 2010.
The workshop brought together researchers and practitioners from two
communities: aspect-oriented software development (AOSD) and soft-
ware model engineering. This report gives an overview of the accepted
and presented submissions, and summarizes the questions addressed in
the discussion.

1 Introduction

This report summarizes the outcome of the 15th edition of the successful Aspect-
Oriented Modeling Workshop series. An overview of what happened at previous
editions of the workshop can be found at http://dawis2.icb.uni-due.de/aom/.
The workshop took place at the Oslo Congress Center in Oslo, Norway on Mon-
day, October 4th 2010, as part of the 13th International Conference on Model
Driven Engineering Languages and Systems – MoDELS 2010.

Participation to the workshop was open to anyone attending the conference,
and as a result there were approximately 25 participants. A total of 9 position
papers were submitted and reviewed by the program committee, 7 of which were
presented at the workshop.

The rest of this report is structured as follows: Section 2 gives an overview of
the presentations of the accepted papers that took place in the morning sessions.
Section 3 gives an overview of the questions that were voiced in the second
afternoon session. Section 4 concludes the report.

2 Overview of Presentations

Marko Boscovic from Athabasca University in Canada presented the paper
“Aspect-Oriented Feature Models” [1]. In his presentation he argued that
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feature models for real-world systems tend to grow very large in size, citing as an
example the feature model of the Linux Kernel which contains over 6000 features.
Since feature models are trees, repetition of features or even entire subtrees of
features is not uncommon. In consequence he suggests to apply aspect-oriented
modularization techniques to reuse subtrees of features at several places within
a model and also to share subtrees of features among different feature models.
The proposed Aspect Feature Models (AFM) make it possible to define features
of crosscutting concerns separately, and then to define a Pointcut Feature Model
(PFM) to express patterns and composition rules that define how the AFM is to
be composed with a base feature model. Tagging of model elements in the PFM
allows a developer to specify which features of the base are to be matched, which
features are to be added to the base, which features are to be removed from the
base, and, as an interesting novelty, which features are to be removed from the
AFM. This last technique makes it possible to define generic AFMs that can be
applied in the context of different software product lines, even if not all features
from the AFM are to be used in the base model.

Leonardo Tizzei from the University of Campinas in Brazil presented “An
Aspect-oriented View to Support Feature-oriented Reengineering” [2]. He pointed
out that feature selection impacts the product line architecture, which impacts
the design, and that hence early identification of concerns is important. He
showed how to add aspect-oriented feature views to the feature-oriented reengi-
neering process, an approach that provides guidelines for developers to build
software product lines from legacy applications. In Tizzei’s approach, an aspect-
oriented feature view comprises crosscutting features (represented by a diamond
in the feature diagram) and standard non-crosscutting features, as well as “cross-
cuts” and “preceded-by” relationships among them. The resulting feature view is
therefore an acyclic graph, as opposed to standard feature diagrams which are
usually trees. Tizzei also showed how to extend the feature-oriented reengineer-
ing process with aspect-oriented feature analysis, defining guidelines on how to
produce an aspect-oriented feature view.

Mauricio Alférez from the Universidade Nova de Lisboa in Portugal presented
the paper “Towards Consistency between Features and SPL Use Cases” [3]. He
argued that in the context of software product line (SPL) engineering consis-
tency checking, i.e. the description and verification of semantic relationships
among system views and models, between feature models in the domain space
and their realizations in the solution space is crucial. In his presentation he
proposed an aspect-oriented, requirements-specific composition language that
allows developers to describe consistency constraints between a feature model
for a SPL and a set of use cases of the SPL. The work goes beyond checking
for syntactic conformness of the feature model and use case model to their meta
models. With the approach it is possible to verify the consistency of domain
constraints (e.g., requires and excludes relationships in feature models) with
the relationships among elements in a use case model (e.g. includes, generaliza-
tion and containment between use cases) according to the established mapping
between the models.
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Everton Tavares from the Pontifical Catholic University of Rio de Janeiro in
Brazil presented an empirical study in his paper entitled “Analyzing the Effects
of Aspect Properties on Model Composition Effort: A Replicated Study” [4] that
compared the effects of aspect-oriented modeling to non-aspect-oriented model-
ing when developers need to perform model composition. The study, which was
the second of this kind performed by the authors, aimed in particular at analyz-
ing if obliviousness has an effect on the number of model composition conflicts.
The experiment was performed on component models and aspect-oriented com-
ponent models of subsequent releases of the Health Watcher system. The com-
position conflict rates were gathered manually and quantified by a set of conflict
metrics. The results confirmed the results from a previous study, which showed
that the advanced modularization of aspect-oriented models was beneficial in lo-
calizing model conflicts. The experiment also confirmed that a higher degree of
obliviousness between the base model and the aspect model led to a significant
decrease of conflicts, whereas aspects with higher degree of quantification were
the cause of higher conflict rates.

Aram Hovsepyan from the Catholic University of Leuven in Belgium pre-
sented the design of an empirical study in his paper entitled “An Experimental
Design for Evaluating the Maintainability of Aspect-Oriented Models Enhanced
with Domain-Specific Constructs” [5], which aimed at investigating if there is
a benefit to keeping concerns that have been identified at the modeling level
also separate at the implementation level, or, in other words, if weaving should
be done at the model level or if is it better to map models to apsect-oriented
code and rely on a code weaver to produce the executable model. To answer this
question, Aram proposes three empirical studies: 1) a quantitative one, which
uses static analysis of the final systems obtained using both approaches to col-
lect size metrics, coupling and cohesion, and scattering and tangling metrics;
2) a quantitative user study, in which the time developers need to complete a
set of maintenance tasks (2 functional with impact on non-functional aspects,
and 2 non-functional tasks with impact on functionality) using either of the two
approaches as well as the number of errors made is gathered and evaluated;
3) an open interview and task specific questionnaire with positive and negative
questions.

Max Kramer from McGill University in Canada talked about the challenge
of “Mapping Aspect-Oriented Models to Aspect-Oriented Code” [6]. By show-
ing how to map a concrete aspect modeled using the Reusable Aspect Models
modeling approach to the aspect-oriented programming language AspectJ, Max
highlighted the general issues that need to be addressed when defining such a
mapping: mapping structure and behaviour of a single aspect, mapping the in-
stantiation of structure and behaviour within a target model, mapping conflict
resolution between aspect models, and mapping aspect dependencies and vari-
abilities, if any. The solutions he presented make use of AspectJ’s annotation
and reflection mechanisms and support sophisticated aspect-oriented modeling
constructs such as recursive advice and generic aspects with type parameters.
Other mapping rules ensure for example that all intended information from the
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modeling level is conveyed to the code by automatically reusing Java libraries
and by generating default implementations for common design patterns. In ad-
dition to these solution strategies, Max presented a first evaluation of this model
to code mapping using an extended case study for transactions. More than 84%
of the final AspectJ code for the transaction system and more than 96% of the
code for its extension were obtained using the presented mapping.

Dominik Stein from the University of Duisburg-Essen in Germany presented
the paper “Facilitating the Exploration of Join Point Selection In Aspect-Oriented
Models [7]”. He outlined a scenario in which developers frequently look at the
woven results of an aspect-oriented weaver in order to understand how a join
point selection is effectuated, and he detailed the problems that they are facing
when they need to gather all relevant model chunks (or code chunks) from the
woven result, and to infer their interdependencies. As a solution, he presents a
mapping which translates the specification of a join point selection (expressed
as a “JPDD”) into a description of the selection process (expressed in terms of
states and state transitions). He argues that by means of such (state-based) de-
scription of the selection process, developers are freed from reconstructing that
selection process from the woven results. Instead, they are pointed to the (and
only the) relevant steps of join point selection right away as well as to their
interdependencies. In consequence, developers are expected to understand easier
why certain join points are (are not) selected. The description of the selection
process may be still complex, but it is not tangled with the base model. Stein
sees possible application domains for this mapping in the development of new
aspect weavers or in the debugging of applications.

3 Question Addressed in the Discussion Session

The following research questions have been gathered by the audience and have
been addressed during the discussion session in the afternoon:

– How do we map requirements to features? What kind of process can be used?
– Should we preserve feature modularity at the code level?
– What is the relation between features and model fragments?
– Is the information in a feature model sufficient to compose the model frag-

ments?
– What are advantages and disadvantages of different ways to resolve conflicts

among aspects in feature models (LTL, Alloy, SAT solvers...)?
– How can we assess aspect-oriented feature models quantitatively and quali-

tatively?
– Is there any metric suite to evaluate AOM at early phases?
– Is aspect-oriented programming vs. aspect-oriented modeling similar to

feature-oriented programming vs. feature-oriented modeling?
– How much modeling should we do with MDD in general and with AOM in

particular (simpler structure vs. complex behaviour vs. full specification)?
– How do the aspects/concerns that are identified on different levels relate to

each other (e.g. requirements → feature model → design → code)?
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– What are some large and open experimental platforms that can be used for
assessment?

– What kind of validation can be done? Syntactic? Semantic?
– Can we define a model for aspect interferences?

4 Concluding Remarks

The organizers for this edition of the workshop were Walter Cazzola, Jeff Gray,
Jörg Kienzle, and Dominik Stein. An expert program committee provided as-
sistance in reviewing the submitted papers. The members of the program com-
mittee were Aswin van den Berg, Phil Greenwood, Stefan Hanenberg, Philippe
Lahire, Ana Moreira, Alfonso Pierantonio, Ella Roubtsova, Pablo Sánchez, Be-
dir Tekinerdogan, and Julie Vachon. Last but not least, we’d like to thank all
submitters and participants of the workshop who contributed with their papers
and positions.
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Abstract. Software Product Lines (SPLs) have emerged as a promi-
nent approach for software reuse. SPLs are sets of software systems
called families that are usually developed as a whole and share many
common features. Feature models are most typically used as a means
for capturing commonality and managing variability of the family. A
particular product from the family is configured by selecting the de-
sired features of that product. Typically, feature models are considered
monolithic entities that do not support modularization well. As indus-
trial feature models tend to be large, their modularization has become
an important research topic lately. However, existing modularization ap-
proaches do not support modularization of crosscutting concerns. In this
paper, we introduce Aspect-oriented Feature Models (AoFM) and argue
that using aspect-oriented techniques improves the manageability and
reduces the maintainability effort of feature models. Particularly, we ad-
vocate an asymmetric approach that allows for the modularization of
basic and crosscutting concerns in feature models.

Keywords: Software Product Lines, Feature Models, Aspect-oriented
Modeling.

1 Introduction

The increase in the number of software systems containing extensive sets of
common requirements has led to widespread interest in Software Product Line
Engineering (SPLE) [26]. Software Product Line Engineering is a methodological
framework for engineering Software Product Lines (SPLs), or software families.
SPLs are sets of software systems with an extensive number of common func-
tional and non-functional properties. SPLs are developed as a whole and share
many assets, herewith increasing reusability.

An SPL generally consists of three kinds of artifacts, representing the prob-
lem space, the solution space, and the mappings between problem and solution
spaces [10]. Artifacts in the solution space represent design and implementa-
tion of all members of the family. The problem space, on the other hand, is
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comprised of all the features for the family members. Typically, the problem
space is captured with feature models. A feature model, first introduced by
Kang [17], is represented with a feature diagram, a tree-like structure whose
root represents the whole SPL and whose descendant nodes represent poten-
tial features of its members. A particular product of the family is defined by
selecting the desired features from the feature model. Based on such feature se-
lection and with the help of defined mappings, artifacts of the solution space
are composed to form the desired product. The process of selecting desired fea-
tures is called configuration and the set of selected features a feature model
configuration [11].

Contemporary feature models often tend to grow very large in size and dif-
ferent groups of experts are usually dedicated to different parts of feature model
development [14]. These parts must be assembled into one large feature model.
Treating such large feature models as monolithic entities makes them very hard
to develop, manage, understand, and evolve. Typically, every change performed
on a feature model must be verified by experts with different expertise [23],
which is time consuming and costly.

To address this problem, recent work by Mannion et al. [23], Hubaux et
al. [14], and others introduce approaches for the modularization of feature mod-
els. However, separation of concerns can still be improved as these approaches
lack support for the modularization of crosscutting concerns such as security
and other non-functional properties. In this paper, we leverage principles of
Aspect-oriented Modeling (AOM) [9] to address this issue. In dealing with simi-
lar problems, AOM has been applied in several requirement formalisms like use
cases [15], problem frames [22], URN [25], and UML models [28]. By applying
these principles, we therefore aim at enabling better understandability, main-
tainability, and scalability of feature models.

This paper presents Aspect-oriented Feature Models (AoFM), which introduce
the notion of concerns in feature models. Particularly, we distinguish between
non-crosscutting concerns called base concerns and crosscuting concerns called
aspects. AoFM describes feature models for these two types of concerns as well
as the specification of their composition rules with the aim to reduce the impact
of changes in one concern’s feature model on other concerns’ feature models.

The reminder of the paper is as follows. Section 2 describes the basics of fea-
ture models. Our extension of basic feature modeling, i.e., AoFM, is introduced
in Section 3. A validation of our approach by application to a trial case is given in
Section 4. Section 5 highlights potential and promising enhancements to AoFM
that require further investigation. Section 6 summarizes identified contemporary
related work. Finally, Section 7 concludes the paper and discusses future work.

2 Feature Models

Feature models are widely accepted means of capturing commonality and manag-
ing variability within SPLs. They are modeled as feature diagrams, i.e., tree-like
structures consisting of nodes that represent features of a modeled SPL and their
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Fig. 1. An E-shop Feature Model

interrelationships. Figure 1 shows an example of a feature diagram of an E-shop
SPL, inspired by Lau [21].

Typically, a feature diagramconsists of features, specified as nodes, and of inter-
feature relationships. The latter are either mandatory and optional parent-child
feature relationships or alternative feature groups and or feature groups, graphi-
cally presented in Figure 1. Mandatory parent-child relationships specify that, if a
parent feature is included in a certain feature model configuration, its mandatory
child features also have to be included (e.g., the relationships between the E-shop
and Store Front features and the E-shop and Business management features specify-
ing that every E-shop consists of the interface that the customer uses for accessing
the E-shop and one concerned with back office operations, respectively). An op-
tional parent-child relationship specifies that when a parent feature is selected in a
configuration, its optional child features may but do not have to be included (e.g.,
the relationship between the Store Front and User Behaviour Tracking features).
Alternative feature groups consist of features from which exactly one must be se-
lected (XOR) (e.g., the group consisting of the Manual and Automatic features -
fraud detection in an E-shop application can be either manual or automatic, but
not both). An or feature group specifies a group of features from which at least one
must be selected (IOR) (e.g., the group consisting of the Credit Card, Debit Card,
and Money Order features - to enable customers to pay for selected items, at least
one payment method must be selected).

Finally, feature models also contain feature relationships that cannot be cap-
tured with a tree structure. Such relationships are called cross-tree constraints, or
integrity constraints [6]. Most often, these constraints are includes and excludes
constraints. An includes constraint specifies a relationship between two features
that ensures that one feature is selected when the other is. In the feature model in
Figure 1, includes constraints exist between the Reporting and Analysis and User
Behaviour Tracking features and between the User Behaviour Tracking and Regis-
tration features. The excludes integrity constraint specifies a relationship between
two features that ensures that one feature is not selected when another one is. Such
a constraint exists between the Credit Card and the Manual features.
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Even in such a small example as in Figure 1, it can be recognized that not
all features are of interest to the same stakeholders. While features for pass-
word policies are the major concern for security experts, they are not of high
relevance to higher management. Furthermore, the developers of user interface
functionality are not interested in back office operations and vice versa. More-
over, different parts of a family might require different security policies. Namely,
the password policy for back office administration of an E-shop application is
usually stricter compared to the user interface’s and might require the inclusion
of special characters and an expiration after a certain amount of days. For this
reason, a subtree for password policy specification of back office administration
contains the additional (S. Char) and (In Days) features. Finally, the addition of
new security policies would result in revisions to sub-models related to security
policy in the store front and back office sub-parts. Considering the size of con-
temporary feature models, separation of different concerns is an important task
for achieving better understandability, maintainability, and scalability of mod-
els. To provide separation of concerns in feature models, we introduce AoFM in
the next section.

3 Aspect-Oriented Feature Models

Aspect-oriented Modeling (AOM) applies concepts originating from Aspect-
oriented Programming (AOP) [18] to requirements and design models. AOM
emerged as one of the most prominent approaches for software modularization.
Particularly, AOM facilitates modularization of aspects, i.e., concerns which can-
not be encapsulated properly with other contemporary modularization tech-
niques. Aspects are concerns that often repeat with small variations in other
concerns. Examples of aspects are performance and security, each being imple-
mented by different mechanisms such as load-balancing/caching and authentica-
tion/encryption, respectively. In AoFM, we distinguish between non-crosscutting
concerns, or base concerns, and crosscutting concerns, or aspects. Note that
this distinction, however, does not preclude aspects from being applied to other
aspects.

3.1 Base Concerns in AoFM

Base concerns in feature models are specific viewpoints of a feature model [27].
Viewpoints are different perspectives on the same feature model. A viewpoint
contains those parts of a feature diagram that are of interest to the users associ-
ated with the viewpoint. In the E-shop case study in Figure 1, we have identified
three concerns as illustrated in Figure 2.

The E-shop System Concern is a high level business concern representing the
major functionalities of the E-shop SPL. This base concern contains the root
feature E-Shop and its two child features Store Front and Business Management.
The User Interface Concern is a concern of particular interest to developers of
user requirements and interactions. It contains the parts of the feature model
representing Registration, User Behaviour Tracking, and Payment functionalities.
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Fig. 2. Base Concerns in the E-shop Feature Model

In addition to the features in Figure 1, the User Interface Concern contains the
Registration Enforcement feature which represents actions that mandate user reg-
istration such as buying products. Finally, the Back Office Concern contains all
functionality related to the operation of an E-shop application.

Concerns in AoFM have the same tree-like structure and relationships as the
basic feature models introduced in Section 2. However, the modularization of
feature models into base concerns introduces two kinds of integrity constraints,
namely intra- and inter-concern integrity constraints. Intra-concern integrity
constraints exist between features of one concern. They are essentially the same
as the integrity constraints of the basic feature models, i.e., includes and excludes
constraints. In the example in Figure 2, there is an includes constraint between
the User Behaviour Tracking and Registration features of the User Interface Concern
and an excludes constraint between the Credit Card and Manual features of the
User Interface Concern.

Inter-concern integrity constraints are specified between features in different
concerns. The set of possible inter-concern constraints also contains includes
and excludes constraints. To provide a way of representing the same feature in
different concerns, we introduce the equivalent inter-concern integrity constraint.
Such constraints enable the separation of base concerns that are not highly
crosscutting but still should be encapsulated into their own modules based on the
viewpoint principle mentioned earlier. Hence, inter-concern integrity constraints
constitute the composition rules for base concerns. For example, an equivalent
constraint exists between the Store Front feature of the E-shop System Concern
and the Store Front feature of the User Interface Concern, allowing these two
concerns to be sufficiently separated. Using equivalent constraints, the feature
diagrams of base concerns can be re-composed, if desired, into the original, much
larger, and more monolithic feature diagram.
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Fig. 3. Excerpt of Security Aspect Feature Model for E-shop SPL

3.2 Aspects in AoFM

To facilitate modeling of aspects in feature models, AoFM must support the
specification of feature models for crosscutting concerns and their composition
with base concerns. This composition requires the specification of:

– Patterns defining where the aspect is to be applied,
– Composition rules specifying how the aspect is to be applied at the locations

identified by the patterns, and
– A join point model, i.e., the set of all locations that an aspect is allowed to

change and hence may be matched by the patterns.

Therefore, we introduce the concepts of a) join point model for feature models,
b) aspects, c) aspect feature models, d) pointcut feature models, e) patterns,
and f) composition rules.

The join point model for feature models contains the feature nodes and in-
tegrity constraints of a feature diagram, allowing any feature node or integrity
constraint to be changed by an aspect. Aspects are purely organizational units
consisting of aspect feature models and pointcut feature models. An example of
an aspect is the Security aspect of the E-shop case study, a portion of which is
presented in Figure 3. It contains one aspect feature model and two pointcut
feature models.

Aspect Feature Models (AFMs) are feature models of crosscutting concerns.
Structurally, they do not differ from feature models of base concerns. In Fig-
ure 3, the Password Policy is the crosscutting concern of password policies, a
sub-concern of the Security aspect. The Password Policy aspect defines the fea-
ture model for all possible password policies configurations.

Pointcut Feature Models (PFMs) express patterns as well as composition rules.
Structurally, they are again not different from feature models of base concerns
except that they may be tagged with two kinds of markers. Patterns and com-
position rules together must enable all changes an aspect in AoFM may possibly
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want to impose on a base concern, i.e., the adding and removal of feature dia-
gram elements. To achieve this, the pattern to be matched in the base concern
is first identified by the © tag in the PFM. Second, any element from an AFM
that is also used on a PFM is, by default, added to the matched base concern.
The element from the AFM is added together with its descendant features and
their relationships. In addition, we can also add features and relationships that
are not specified in the AFM by simply specifying them in the PFM.

Third, any element tagged with × in the PFM is removed from the feature
model. The × tag may be applied to an element from the AFM or an element
already tagged with ©. In the former case, this tag indicates that the element
from the AFM is not to be added to the composed model. The same applies
to the descendant features of the element from the AFM and their integrity
constraints. In the latter case, the tag may be visualized as

⊗
and indicates

that the matched element from the base concern is to be removed. Again, this
applies to its descendant features and their relationships.

Beside features, integrity constraints can also be part of the matching pattern.
Therefore, we apply the same operators on integrity constraints. Namely, if an
integrity constraint needs to be matched it will be marked with the © marker in
the PFM. If it needs to be removed from the aspect, it will be marked with the
× operator. Finally, if it needs to be matched in the base concern and removed,
the operator

⊗
is used.

Therefore, the composition rule consists of a) the set of links in the PFM that
connect elements tagged with © and elements from the AFM, b) any remove
operations indicated by the × tag, and c) any new integrity constraints between
features of the target feature model and features of the aspect.

It is necessary to allow the specification of elements from the AFM that are
not to be added to the matched base concern, because aspects in AoFM should
be very generic and applicable to multiple SPLs from very different domains, i.e.,
an aspect is applied multiple times not to just one SPL but multiple times to
multiple SPLs. Therefore, it is very likely that not all features of the aspect are
applicable to all domains. Consequently, the × marker is necessary to indicate
such features. Note that a PFM is invalid if the links among features from an
AFM are not the same as the links defined in the AFM.

For example, two PFMs are defined in Figure 3. AdministrationPFM specifies
adding a password policy to the Administration operations, while RegistrationPFM
adds a password policy to the Registration feature in the base feature model.
For AdministrationPFM, the pattern to be matched is the Administration feature
as indicated by the © tag. The composition rule for AdministrationPFM states
that the complete Password feature sub-tree from the AFM except for the Never
feature is to be attached to the Administration feature with a mandatory parent-
child relationship. The Never feature and its relationship to the Expiration feature
are excluded because of the × tag.

For RegistrationPFM, the pattern to be matched is the Registration and Reg-
istration Enforcement features connected with a mandatory parent-child rela-
tionship. The composition rule for RegistrationPFM states that the complete
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Password feature sub-tree from the AFM except for the Special Char feature is
to be attached to the Registration feature with a mandatory parent-child rela-
tionship. In addition, the Registration Enforcement feature and its relationship
to the Registration feature must be removed from the base concern, as indicated
by the

⊗
tag.

Finally, if there is a need for integrity constraints between features of target
feature models and aspects, they are specified as part of the PFM.

4 Validation

To validate the proposed approach to feature modeling, we apply it to a trial
case [24]. As a crosscutting concern, we use fault tolerance, and particularly the
AspectOptima [19] framework, a framework consisting of aspects for implement-
ing various transaction concurrency control and recovery mechanisms. We apply
it to the Online Auction System, a case study introduced by Kienzle et al. [20]
and whose feature model is presented in Figure 4.

The Online Auction System is a family of web-based systems that allows for
selling and buying items by means of different types of auctions, like English,
Dutch, and 1st Price. A particular member of the family may support any com-
bination of these auction types. A User Interface of the system supports Starting
Auction, Browsing Auction, Participating and Bidding in an auction, Closing an
open auction, and browsing through the History of a user. Prior to performing
these operations, a user has to carry out Registration and Login activities. Deliv-
ery of goods may be the responsibility of the seller, and quality of the delivery
is in this case computed by buyers’ Voting. Alternatively, a system may provide
a special Escrow service that blocks the money of the buyer until the goods are
received and the buyer is satisfied.

In an Online Auction System member, crashes of any of the client computers
must not corrupt the state of the auction system. Therefore, there is a need for
adding fault tolerance in the form of transactions to the system. As previously
mentioned, we use the AspectOptima framework for this purpose and add trans-
action configuration options to the Registration and English Auction features. An
AspectOptima feature model aspect is presented in Figure 5.

Fig. 4. An Online Auction System Feature Model
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Fig. 5. An AspectOptima Framework Aspect-oriented Feature Model

The AFM of the AspectOptima framework is modeled as a set of optional
features, because in different methodologies, like PLUS [13], aspects are consid-
ered as means for implementing optional features. The AspectOptima framework
consists of ten reusable aspects: 1) AccessClassified for classifying methods of a
transactional object into read, write, and update operations, 2) Named for as-
sociating a unique name with the object that is created, 3) Shared for ensuring
mutual exclusion of shared object modifications within one transaction, 4) Copy-
able for enabling copying of object states, 5) Serializable for moving an object’s
state to another location in the system, 6) Versioned for encapsulating multiple
versions of the same object, 7) Tracked for generic monitoring of transactional
objects, 8) Recoverable for providing the ability to undo state changes in case
of an aborted transaction, 9) AutoRecoverable for region-based recovery, and
10) Persistent for writing the state of an object to a stable storage. Additionally,
interdependencies between these aspects are specified as integrity constraints.

In an Online Auction System, such as the one previously presented, user in-
formation is of central importance to the auction process. For this reason, a
system must ensure that a crash in a communication with a user during the
entry of the information will not allow for participation in an auction with in-
complete user information. Therefore, the entry of user information must be one
transaction. Due to the fact that user information can be entered only by the
user himself, this transaction is single threaded. To facilitate the configuration
of this transaction, AspectOptima features are added to the Registration feature
with the RegistrationPFM PFM. Features Shared and Tracked, are used for mul-
tithreaded transactions and therefore undesirable for this case. By adding the
includes integrity constraints to the RegistrationPFM, the selection of Serializ-
able, Named, Persistent, Copyable, and AccessClassified is mandatory, and ensures
that fault tolerance is added to the system. However, the selection of Recoverable,
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AutoRecoverable, and Versioned is left optional to allow for different recovery and
concurrency controls, such as optimistic and pessimistic concurrency control.

Even more important than registration is the fault tolerance of auctions. The
system must ensure that when the auction is successful, the money is withdrawn
from the buyer, and sent to the seller. Furthermore, if the auction is unsuc-
cessful, the state must be returned to the state before the auction. Therefore,
an auction must also be considered as one transaction. Due to the fact that in
one auction several users may participate, an auction should be a multithreaded
transaction. To enable the specification of fault tolerance for English auctions,
as in [20], we add the AspectOptima aspect to the English feature by the means
of the EnglishAuctionPFM PFM. Furthermore, to ensure that the fault toler-
ance mechanism treats auctions as multithreaded transactions, the selection of
Shared, Tracked, Persistent, Copyable, AccessClassified, Named and Serializible is
mandated, similarly to RegistrationPFM, by the means of includes integrity con-
straints.

5 Potential Enhancements

AoFM introduces a new way of modularizing very large feature models that exist
in real world applications. However, the work presented in this paper is still in
its initial phase, and several enhancements may be introduced to even further
support modularization and reduce the maintainability effort.

One potential enhancement is adding a substitution composition rule. The
substitution rule allows for features to be substituted while all relationships of the
substituted and of the substituting feature are retained. The potential benefits of
such an operator can be seen when using aspects for feature model evolution [8].
Namely, new relationships may be added by aspects, while retaining the old
ones.

An enhancement to the specification of aspects is the additional specification
of ordering of compositions in cases where several aspects are added to the same
feature. An example of a problem that might appear when applying several as-
pect to the same part of the feature model is that a feature may be deleted in
one of the aspects, and matched for the purpose of adding some new features
in another aspect. Similarly to the case presented by Jayaraman et al. [16], the
pattern matching mechanism will not work. Therefore, there is a need for spec-
ifying an appropriate ordering, which will enable the application of all selected
aspects.

One more possible enhancement is the support for regular expressions in the
specification of the names of features and integrity constraints. Regular expres-
sions could be as simple as a wildcard (*) combined with a partial name (e.g., *Case
would match Upper Case and Lower Case in our example). This kind of specifica-
tion may reduce the number of PFMs in a feature model aspect and increase the
matching power of the pattern. For a more complex example, consider the Pass-
word Policy aspect. If the same password policy were to be applied to both the
Administration and Registration and no elements of the base concerns needed to be
removed, only one PFM would be sufficient and the feature taggedwith© could be
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named (Admin|Reg)istration. This example also demonstrates the modularization
power of this approach. Namely, the number of PFMs and repetition of features
from base concerns in PFMs depend only on the differences between subsets of
AFMs that are added to different join points. However, whether support for full
regular expressions is beneficial requires further investigation.

Wildcards could also be allowed on relationships in the feature model to be
able to match mandatory and optional parent-child feature relationships at the
same time as well as alternative feature groups and or feature groups at the same
time.

To enhance manageability and maintainability even more, semantic-based
pattern matching specifications could also be considered. One semantic-based
pattern matching example could be the specification of general parent-child re-
lationships in the pattern of the aspect. When specifying such a general parent-
child relationship, it is possible to match any child feature of a feature, and
hence, it is possible to apply an aspect to all of its child features. This may not
be constrained to just the immediate child features of a feature, but also the child
features of each child feature, possibly up to a specified depth. Finally, AoFM
may also be extended to enable the specification of an ancestor/descendant fea-
ture relationship. If the relationship between two features is specified as ances-
tor/descendant in a pattern, a match of the pattern is successful if a hierarchical
trace through the feature model from one feature to the other feature exists.
Benefits of such relationships are twofold. First, the size of PFMs can be sig-
nificantly reduced. Second, AoFM models become more robust to changes and
modifications in base concerns, hence mitigating the fragile pointcut problem.

6 Related Work

Due to the large size of feature models, the need for modularization has been
recognized by several researchers.

Czarnecki et al. [11] introduce a reference concept in feature models as the
principal means for modularization. A reference points to one feature of a fea-
ture model that defines a subtree, which will be copied to the reference location.
Compared to this approach, AoFM allows for variability and flexibility in the
composition rules of concerns, herewith better encapsulating crosscutting con-
cerns.

Mannion et al. [23] propose a viewpoint-based approach for the development
of feature models that facilitates the development of large feature models by
merging several smaller ones. Smaller feature models represent viewpoints from
the perspective of different stakeholders. This approach allows for the modular-
ization of feature models similar to base concerns in AoFM, but fails at capturing
crosscutting concerns, which is the main benefit of AoFM.

Hubaux et al. [14] also introduce an approach for multiview feature models.
According to Hubaux et al., a large feature model is supported by multiple views,
or concerns, which are used for configuration performed by different stakeholders.
Compared to this approach, AoFM additionally supports the specification of
crosscutting concerns.
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Acher et al. [1] present a textual, domain-specific language for managing and
evolving feature models1. This language includes operators for feature composi-
tion (e.g., for inserting and merging models), comparison and analysis (e.g., to
determine the validity of the resulting model). Compared to AoFM, their ap-
proach does not support crosscutting concerns well as their feature composition
targets a single feature in a model where another can be, for instance, inserted.
Their feature merging is name-based but is limited to only one operator at a
time (e.g., union or difference), whereas AoFM supports a mixture of operators
simultaneously.

Dhungana et al. [12] observe that problem and solution space models may both
have crosscutting concerns. For this reason, they introduce model fragments, i.e.,
models of reusable assets and their variability points, as separate modules. In
their approach, crosscutting concerns in the problem space are merged with
base concerns by means of placeholders. If there is a need for different variants
of a crosscutting concern, the concern needs to be copied and adapted for each
placeholder. AoFM allows for better modularization as base models are unaware
of crosscutting concerns and different variants of crosscutting concerns can be
specified in PFMs.

At this time, AOM techniques are used mostly for solution space models
instead of feature models. Zschaler et al. [30] present VML*, which addresses
variability management across several modeling notations such as feature mod-
els, use cases, activity diagrams, and UML 2.0 architectural models. While AOM
techniques are used to ease the engineering of new family members from a given
feature model, feature models themselves are not structured in an aspect-oriented
way. An example related to SPL is the DiVA Project2, which intends to manage
dynamic variability in adaptive systems with the help of AOM techniques. Again,
variability models in the problem space are not structured in an aspect-oriented
way but solution space artifacts are. AoFM, on the other hand, structures feature
models based on aspect-oriented principles.

Jayaraman et al. [16] also introduce an approach where aspect-oriented mod-
els are considered only in the solution space. To specify aspect-oriented solution
space models, they apply the MATA technique [28]. In their approach, kernel
features, i.e., features that exist in all models, are specified as base concerns.
Optional features and features that do not appear in all models are hence spec-
ified as aspects. As a method for detecting inconsistencies, they apply Critical
Pair Analysis. A recent research proposal by Barreiros and Moreira [4] attempts
to extend this approach by applying this analysis not only to feature interac-
tions but also to the verification of traceability relationships between different
solution space models. Our work is complementing this work as we introduce
aspect-oriented modularization in problem space models.

Also recently, Zhang [29] introduced a notion of aspect-oriented feature mod-
eling. According to Zhang’s method, feature models should be extended with
aspectual features representing system concerns. Aspectual features are used for

1 See also the FAMILIAR Web page at http://nyx.unice.fr/projects/familiar/
2 http://www.ict-diva.eu

 http://nyx.unice.fr/projects/familiar/
http://www.ict-diva.eu
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adapting the base feature model according to selected system concerns. AoFM
is somewhat different as AFMs capture commonalities and manage variabilities
of a crosscutting concern, and rules for their integration into major concerns
are provided. Furthermore, a crosscutting concern is not necessarily a system
concern in AoFM, but may be a part of a subsystem.

7 Conclusions and Future Work

In this paper we have introduced the notion of Aspect-oriented Feature Models
(AoFM). We argue that AoFM further enhances the modularization of feature
models by enabling encapsulation of crosscutting concerns. The approach has
been validated by adding a fault tolerance crosscutting concern to a family of
web based software systems. For validation, the AspectOptima framework has
been used as a fault tolerance framework and an Online Auction System as a
trial case. The validation has shown benefits of the proposed approach by demon-
strating reuse of feature models of the fault tolerance framework. However, full
integration of AoFM in the process of SPLE is still in its early stage. Partic-
ularly, there is a need for extending composition rules, providing tool support,
and automatically analyzing SPLs consisting of problem space models in AoFM
and their aspect-oriented implementations for the solution space.

For tool support, we intend to extend FeaturePlugin [2], an Eclipse plug-in for
feature model development. To avoid overwhelming users of the tool with new
concepts, we plan to perform a lightweight extension to the existing notation
used by the FeaturePlugin. The extensions will facilitate only the annotation of
existing elements of the FeaturePlugin notation with concepts needed for AoFM.

Due to the large size of feature models, there is a need for automated anal-
ysis of feature model designs [5]. A comprehensive set of analysis operations
can be found in [6]. To provide analysis operations and explanations for differ-
ent stakeholders, and to reduce the time required for the analysis, we plan to
use Distributed Description Logics (DDL) [7]. DDL is a formalism for modu-
larized conceptual modeling and reasoning. In our previous work [3], we have
applied DDL for the verification of inconsistencies in modular feature model
specifications and irregular FM configurations. Our initial results show a signif-
icant reduction of reasoning time, because only needed information from other
modules is imported when reasoning about a particular module. To evaluate the
claimed benefits of using DDL, we intend to analyze the time needed for the
verification of feature models specified by AoFM and their DDL representation,
and compare it to the equivalent, monolithic feature model represented in basic
description logic.

Typically, in an SPL, problem space models in AoFM are connected to the
solution space implementation of the family. During design time, there is a need
for ensuring that interdependencies of crosscutting concerns in the problem space
are not contradictory to mappings and crosscutting concerns in the solution
space, i.e., we need to ensure that every valid configuration produces a valid
product. We also intend to use DDL for this kind of verification.
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Abstract. When aspect-oriented modeling techniques are used in the
context of Model-Driven Engineering, a possible way of obtaining an
executable from an aspect-oriented model is to map it to code written
in an aspect-oriented programming language. This paper outlines the
most important challenges that arise when defining such a mapping:
mapping structure and behavior of a single aspect, mapping instantiation
of structure and behavior in target models, mapping conflict resolution
between aspects, and mapping aspect dependencies and variability. To
explain these mapping issues, our paper presents details on how to map
Reusable Aspect Models (RAM) to AspectJ source code. The ideas
are illustrated by presenting example models and corresponding mapped
code from the AspectOptima case study.

1 Introduction

Aspect-Oriented Software Development (AOSD) aims at providing systematic
means for the identification, separation, representation, and composition of cross-
cutting concerns. Aspect-Oriented Modeling (AOM) applies aspect technology
in the context of Model-Driven Engineering (MDE), and therefore focuses on
modularizing and composing crosscutting concerns during the design of a soft-
ware system. The resulting models can be used to describe or analyze system
properties, and eventually be executed.

Although there is a growing community of researchers that build virtual ma-
chines that can interpret and execute software models at runtime [3], code gen-
eration is for performance and portability reasons still by far the most popular
way of turning models into running software.

There are two ways to obtain code from an aspect-oriented design model:
1) One can use a model weaver to generate a non-aspect-oriented model, and
then use standard code generation technology to generate code for a non-aspect-
oriented programming language, or 2) One can map the aspect-oriented model
directly to aspect-oriented code and rely on the weaver of the aspect-oriented
target language to deal with crosscutting concerns.

Weaving at the model level has the obvious advantage of allowing the devel-
oper to exploit existing code generation technology and to target any platform.
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c© Springer-Verlag Berlin Heidelberg 2011
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It also gives the developer the possibility to verify that the different aspects
were composed correctly by analyzing the woven model. Most aspect-oriented
modeling techniques have focused on model weaving in the past.

Mapping aspect-oriented models to an AOP language, however, has also sev-
eral advantages. It has been shown that the resulting code is in general smaller,
more modular and hence easier to understand. In some cases this is beneficial
during the maintenance phase of software development [8].

This paper presents a step-by-step transformation that maps models specified
using the Reusable Aspect Models (RAM) approach to AspectJ source
code. The goal of this exercise is to illustrate the challenges that have to be
faced when a aspect-oriented model consisting of several interdependent aspects
is mapped to AOP code. The presented mapping preserves the modularity of the
model within the generated code in order to maintain traceability of concerns and
to ease maintenance. The generated code-level aspects are individually reusable
– just like their model counterparts – and they contain all information that was
modeled in order to minimize the necessity of manual implementation efforts.

The paper outline is as follows: Section 2 presents the background on RAM and
AspectJ ; Section 3 describes the mapping of a single aspect model; Section 4 and
Section 5 show how to generate code that allows one aspect to reuse structure
and behavior provided by another aspect; Section 6 demonstrates how conflict
resolution models can be mapped to code equivalents; Section 7 shows how our
mapping supports aspect variability; Section 8 summarizes the solution strategies
that we developed; Section 9 discusses related work, and the last section draws
some final conclusions.

2 Background

2.1 Reusable Aspect Models

RAM [12, 13] is an aspect-oriented multi-view modeling approach that 1) inte-
grates existing class diagram, sequence diagram, and state diagram AOM tech-
niques into one coherent approach; 2) packages aspect models for easy and
flexible reuse; 3) supports the creation of complex aspect dependency chains; 4)
performs consistency checks at the model level to verify correct aspect composi-
tion and reuse; 5) defines a detailed model weaving algorithm that resolves depen-
dencies to generate independent aspect models and the final application model.

How our mapped AspectJ code for RAM achieves 1), 2) and 3) is outlined
in the rest of the paper. The interested reader is referred to [12] and [11] for
additional details and explanations on 4) and 5).

2.2 AspectJ

AspectJ [10] is an aspect-oriented extension of the Java [6] programming
language. Crosscutting structure and behavior is encapsulated in a class-like
construct called an aspect that may contain constructs of four new concepts:
join points, pointcuts, advice, and inter-type declarations.
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aspect AccessClassified

structural view

+ AccessKind getAccessKind(Method)
+ * | classifiedMethod <AccessKind>(..)

|AccessClassified

|AccessClassified, 
|classifiedMethod<AccessKind>

Read
Write
Update

<<enumeration>>
AccessKind

Fig. 1. The aspect AccessClassified from the AspectOptima case study

Join points are well-defined points in the execution of a program. These in-
clude method and constructor calls, their executions, field access operations,
object and class initializations, and others. A pointcut is a construct used to
designate a set of join points of interest. It can expose to the programmer the
context of a matched join point, such as the current executing object (with ex-
pressions like this(ObjectIdentifier)), the target object of a call or execution
(target(ObjectIdentifier)) and the arguments of a method call (args(..)).

An advice defines the actions to be taken at the join point(s) captured by a
pointcut. A before advice runs just before the captured join point; an after
advice runs immediately after the captured join point; an around advice sur-
rounds the captured join point and has the ability to augment, bypass or allow
its execution. Finally, inter-type declarations allow an aspect to define methods
and fields for other classes and interfaces.

3 Mapping a Single Aspect Model

In RAM, the structure and behavior of an aspect is encapsulated inside a UML
package that contains three different types of diagrams. The structural view
compartment of a RAM aspect is a UML class diagram that contains all the
classes pertaining to the design of the aspect together with their attributes,
operations and associations. The set of public operations defined in the structural
view of an aspect model define the aspect’s interface [1].

Figure 1 shows a simple RAM aspect model of AspectOPTIMA, an aspect-
oriented framework that realizes run-time support for transactions. The aspect
makes it possible to associate an access kind (i.e., read, write, or update) with
every operation of a class. To achieve this, the aspect model defines a class
|AccessClassified that contains a method parameter |classifiedMethod.
The “|“ that was prepended to the names marks the class and its method as
mandatory instantiation parameters, which means that they have to be bound
to a complete class and its method(s) when the aspect is used. In RAM, every
class that is not a parameter and that contains a constructor is complete. Incom-
plete classes can be completed by binding complete classes to them. Incomplete
elements are exposed in the top right corner of the RAM aspect package similar
to UML’s template parameters.
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To keep the mapping from models to code as simple as possible, we map each
RAM aspect model to a Java package. Each class in the structural view is then
analyzed to determine if it is a complete class, an incomplete class, or if it can
be implemented by reusing the Java library.

Reusing the Java Library. In order to allow modelers to reuse existing Java

library classes we maintain a list of supported classes and interfaces and associate
every interface on that list to a default implementation class. If a complete class
in the aspect model bears the name of a class or interface of the library list and
the signatures of the modeled operations match the signatures of the methods
defined on the class or interface, then the Java library is automatically reused. In
cases where modeled classes define template parameters, their types and number
must also match that of the Java library class.

As an example of Java library reuse, imagine a modeled class named Map
with template parameters Context and |AccessClassified, and operations
put(Context,|AccessClassified) and remove(|AccessClassified). Such a
class would be recognized as an instance of the library interface java.util.Map,
and the modeled parameters Context and |AccessClassifiedwould be mapped
to the template parameters K and V. Every call to a constructor of Map would be
mapped to a call to a constructor of the class java.util.HashMap as we defined
this class as the default implementation of the interface java.util.Map.

Mapping of Classes. If a complete class (i.e. a class that contains a construc-
tor) in the aspect model is not recognized as an instance of an existing Java

class, a Java implementation is generated from scratch. The straightforward
idea of mapping the complete class to a standard Java class is unfortunately
not a good solution, because it is possible that the modeled class is later bound
to another class when the aspect is used (see Section 4). Therefore we create
a new public Java interface and an AspectJ aspect for every complete class
of the model. In this aspect we introduce fields and methods into the interface
using AspectJ’s inter-type declaration mechanism. This allows us to imple-
ment the merging of modeled classes with Java classes that implement multiple
interfaces that have been augmented as described in Section 4. In order to instan-
tiate complete classes we create empty Java classes that implement the created
interfaces.

An incomplete class (i.e. a class that contains no constructor and is exposed as
a parameter or bound to a parameter) is mapped in the same way as a complete
class, except that no empty implementation class is generated, since incomplete
classes cannot be instantiated.

Since one of the goals of our mapping is to reduce manual implementation
refinements to a minimum, we also map modeled attributes and associations
to Java fields and methods that we introduce into the generated interfaces.
Declared operations that follow common signature patterns like getters, setters,
incrementors etc. are completely generated using default implementations.

Mapping of Instantiation Parameters. If an incomplete class is exposed as
a mandatory instantiation parameter of the aspect model, we create a custom
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@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface AccessClassifiedClass {
// empty

}

Fig. 2. Custom Java annotation for the parameter class |AccessClassified

Java annotation for it so that binding the parameter can be done by annotating
existing classes. Figure 2 presents such a custom annotation for the mandatory
instantiation parameter |AccessClassified of the aspect presented in Figure 1.

Likewise, for each operation that is exposed as a mandatory instantiation pa-
rameter, a Java annotation is created. Sometimes, parameters themselves are
parameterized, such as the operation |classifiedMethod<AccessKind> of the
aspect AccessClassified that we presented in Figure 1. The AccessKind param-
eter associates a concrete type of access with the operation. In case of such a
parameterization, we add corresponding methods for each parameter to the gen-
erated annotation. Figure 3 presents the annotation for the |classifiedMethod
operation that contains the method AccessKind value as a parameter.

4 Enabling Reuse of Structure

In RAM, an aspect model is applied within a target model using instantiation
directives that map (at least) all mandatory instantiation parameters to target
model elements. A target model can either be a base model that uses the func-
tionality of the aspect model or it can be another aspect model that extends or
modifies the functionality of the reused aspect model.

Traceable is an aspect of the AspectOptima case study that reuses the struc-
ture and behavior of the AccessClassified aspect in order to provide the infras-
tructure that is necessary to create traces of calls to access classified operations.
The structural view of the aspect Traceable is shown in Figure 4.

Mapping Instantiation Directives. RAM’s instantiation directives are used
to map mandatory instantiation parameters to target model elements. For exam-
ple, the directive in Figure 4 specifies that the |AccessClassifiedclass should be
merged with |Traceable, and that the method parameter |classifiedMethod
corresponds to the |traceableMethod parameter. This means that every class
that is bound to the parameter |Traceable is also an |AccessClassified class
and if an operation of it is bound to the |traceableMethod parameter this oper-
ations is also a |classifiedMethod.

@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface ClassifiedMethod {
AccessKind value();

}

Fig. 3. Mapped code for the method parameter |classifiedMethod<AccessKind>
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aspect Traceable depends on AccessClassified

+ Trace createTrace(Method)
+ * |traceableMethod <AccessKind>(..)

|Traceable

structural view

~ create(Method, AccessKind, |Traceable)
+ |Traceable getTarget()
+ AccessKind getAccessKind()

- Method method
- AccessKind accessKind

Trace

1

target

|Traceable,
|traceableMethod<AccessKind>

AccessClassified instantiation
|AccessClassified → |Traceable

|classifiedMethod<AccessKind> → |traceableMethod<AccessKind>

Fig. 4. The Traceable aspect that reuses the aspect AccessClassified

In our mapping, instantiation directives are implemented by type hierarchy
modifications and annotation inheritance. The Java interface of the instantiating
class extends the interface of the instantiated class and corresponding parameter
annotations of the instantiated class are added to the instantiating class. As a re-
sult, the directive |AccessClassified → |Traceable is mapped to an extends
inheritance relation between the Java interfaces of |AccessClassified and
|Traceable (see Figure 5, line 1). At the same time, if the target model element
is also a mandatory instantiation parameter like it is the case for |Traceable,
we also make sure that the corresponding Java annotations are inherited. In our
example, this results in a statement that tells the AspectJ compiler to auto-
matically add the annotation @AccessClassifiedClass to each class that has
been annotated using @TraceableClass (Figure 5, line 2).

If a parameterized method parameter is instantiated using another parameter,
we use a similar mechanism to inherit the annotation while preserving parameter
values: for every possible parameter value we create an AspectJ statement
that passes the annotation together with the parameter value on to the target
annotation of the instantiated method (Figure 5, line 3-5).

1 public interface Traceable extends AccessClassified {
...
}

2 aspect TraceableAspect {
declare @type :
@TraceableClass * : @AccessClassifiedClass;

3 declare @method :
(@TraceableMethod(AccessKind.READ) * *.*(..)) :

@ClassifiedMethod(AccessKind.READ);
4 declare @method :

(@TraceableMethod(AccessKind.WRITE) * *.*(..)) :
@ClassifiedMethod(AccessKind.WRITE);

5 declare @method :
(@TraceableMethod(AccessKind.UPDATE) * *.*(..)) :

@ClassifiedMethod(AccessKind.UPDATE);
}

Fig. 5. Implementing instantiation directives through annotation inheritance
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caller:
Caller

target:
|Traced

|tracedMethod(..)

Pointcut Advice

context := getContext() context:
TracingContext

*

Default 
Instantiation
caller → *
Caller → *
target → *

trace := createTrace(|m)

message view traceMethod affected by Traceable.createTrace, Context,getContext

<<metaclass>>
|TracingParticipant

p := current()
p: |TracingParticipant

caller:
Caller

target:
|Traced

|tracedMethod(..)

addTrace(trace)

*

Fig. 6. The message view traceMethod from the Tracing aspect showing the advisory
of the mandatory instantiation parameter |tracedMethod

5 Enabling Reuse of Behavior

In RAM, an aspect model specifies the behavior of operations defined in the
interface of the aspect using message views. A message view is a UML sequence
diagram that supports advice and describes how instances of the classes of the
aspect collaborate to achieve the desired functionality.

For space reasons we cannot present the mapping for message views in detail.
We assume that the reader is familiar with the mapping of sequence diagrams
to code in general, and concentrate our discussion on the most challenging cir-
cumstances in which message views can be used in RAM.

A message view either defines the behavior of a method that was newly de-
clared, or it advises an existing concrete method, or it advises a method param-
eter. The resulting AspectJ advice and their pointcuts are slightly different for
concrete methods and parameters, but since the generation of a pointcut for a
single specific method is straightforward it is not discussed in this paper.

Advising Method Parameters. In the AspectOptima case study, the as-
pect Tracing reuses the infrastructure that is provided by Traceable in or-
der to trace every call to an operation. To achieve this, Tracing contains a
message view traceMethod that advises the mandatory instantiation parameter
|tracedMethod as shown in Figure 6. The pointcut models an arbitrary call
to a method that is bound to the parameter. The involved caller and target
objects are named in order to be able to refer to them in the advice model, but
we specify with a default instantiation that the caller can be arbitrary and
that the name of the target is not fixed. As we cannot know in advance which
methods are going to be bound to the parameter |tracedMethod, we represent
the original behavior of an advised method with a box that contains a star as
wildcard parameter. In the advice we can use this box in order to specify that
the newly defined behavior should occur before the original method behavior.

The mapped code for the message view traceMethod is an AspectJ before
advice that is presented in Figure 7. It makes use of the annotation that was
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@AdviceName( "traceMethod" )

before(Traced target):
1 execution(@TracedMethod * *.*(..))
2 && target(target) {

TracingParticipant p = TracingParticipant.current();
TracingContext context = (TracingContext) p.getContext();

3 Method tracedMethod =
((MethodSignature) thisJoinPointStaticPart.getSignature()).
getMethod();

4 Trace trace = target.createTrace(tracedMethod);
context.addTrace(trace);

}

Fig. 7. Mapped code for traceMethod

created for the mandatory instantiation parameter |tracedMethod in order to
restrict the advice to executions of bound methods (Figure 7, line 1) and binds
the target object to a variable (Figure 7, line 2). As such message views may
contain logic that needs to know exactly which method is currently advised,
we support this by retrieving the corresponding java.lang.reflect.Method object
from AspectJ ’s join point information (Figure 7, line 3). In our example this
information is used as an argument for a method call during the creation of a
trace (Figure 7, line 4).

Instead of proceeding with the unmodified behavior of an advised method, a
message view can also contain a new call to the advised method. The result is a
new invocation of the method, which can trigger the re-execution of aspects that
are linked to the advised method, including the current aspect. To implement
such calls we obtain the currently advised method from the join point infor-
mation object of the advice and invoke it using Java’s Reflection API. An
example for such a new call that leads to a recursive application of an advice is
found in the message view addChildrensResults that we present in Figure 9.

Mapping Behavior Involving Generic Types. Whenever a method param-
eter makes use of a generic type we cannot use our mapping with annotations,
as AspectJ does not support pointcuts with type parameters. For this rea-
son we resort to abstract aspects that can be parameterized with a type. We
wrap the advice that corresponds to a message view with type parameters in
an abstract aspect and define an abstract pointcut that is used in the advice.
Instead of binding parameters to such message views with annotations, we need
to define concrete aspects that extend the abstract aspect, provide values for the
type parameters and instantiate the abstract pointcut in order to specify which
method(s) should be bound. This means that the code of models with generic
types, in contrast to all other code that can be obtained with our mapping,
cannot be used in legacy systems where adding AspectJ code is not an option.

An example use of this technique can be shown with the Nested aspect of the
AspectOptima case study, which makes it possible for transaction contexts to
be nested inside each other. Nested defines a behavioral template with a generic
type in a message view addChildrensResults as shown in Figure 8. In the model
the unmodified behavior of the advised method is executed, and then an iteration



Mapping Aspect-Oriented Models to Aspect-Oriented Code 133

message view addChildrensResults

Pointcut

Advice

target:
NestedContext

result := m()

caller: Caller

caller: Caller

*

target:
NestedContext

result := m()

*

Default 
Instantiation
caller → *
Caller → *
target → *

result: 
Collection<T>

loop [c within children]

childResult := m()

c: NestedContext

children := getChildren()

addAll(childResult)

recursive

Fig. 8. The template message view addChildrensResults showing a non-recursive pro-
ceed in form of a wildcard box and a recursive call for the method parameter m

over all children contexts is performed and the parameter method is recursively
applied to every child context. The result of each recursive invocation is added
to the overall result which is returned after the iteration is completed.

In the code that corresponds to the message view addChildrensResults
(Figure 9) the type parameter T is created and it is specified that this type
parameter extends the Java library class java.util.Collection (line 1), so
that it becomes unnecessary to include this information in every instantiation
of our abstract pointcut (line 2). It is sufficient to use T as return type of our
around advice (line 3) and wherever it is used for variables. The currently ex-
ecuting method is retrieved from AspectJ’s join point information (line 4)
in order to invoke it recursively on the children objects (line 5). The invoke
method can throw exceptions if it is used improperly so it has to be wrapped
in a try-catch block (line 6) even if our code is generated in a way that en-
sures that no reflection exceptions are ever thrown. However, the bound method
itself may throw arbitrary exceptions that Java’s Reflection API wraps in
InvocationTargetExceptions. These exceptions need to be re-thrown (line 7)1.
An example use of the template addChildrensResults and the corresponding code
is given in the context of a conflict resolution aspect in Section 6 in Figure 10
and Figure 11.

6 Mapping Conflict Resolutions

In order to automatically detect and resolve conflicts between reused aspects
RAM support the definition of conflict resolution aspects. These aspects have
all features of ordinary aspects, but they cannot be instantiated. Instead, they
are automatically applied if their interference criteria are met. To support that,

1 Since the advised methods do not need to declare to throw the checked
InvocationTargetException, we must wrap all exceptions in AspectJ’s predefined
SoftException similarly to the result of AspectJ’s declare soft expression.
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public abstract aspect AddChildrensResultsAspect
1 <T extends java.util.Collection<?>> {
2 public abstract pointcut m(NestedContext target);

@AdviceName( "addChildrensResults" )

3 T around(NestedContext target) : m(target) {
T result = null;
try {

result = proceed(target);
Set<NestedContext> children = target.getChildren();
for (NestedContext c : children) {

4 Method m = ((MethodSignature) thisJoinPointStaticPart.
getSignature()).getMethod();

5 T childResult = (T) m.invoke(c, (Object[]) null);
result.addAll(childResult);

}
6 } catch (Exception e) {

if (e instanceof InvocationTargetException)
7 throw new SoftException(e);

e.printStackTrace(); // swallow reflection exceptions
}
return result;

}
}

Fig. 9. Mapped code for the template addChildrensResults involving a generic type
parameter

our mapping has to generate code for conflict resolution aspects that is only
executed when the corresponding criteria hold.

If a conflict resolution aspect contains a criterion of the type ClassA = ClassB
and a message view that advises a method parameter, we need to make sure that
the behavior of the method is only changed if both classes are merged. We achieve
this by inserting an additional class parameter to the annotation of the advised
method. This class parameter defaults to the class that contains the method
parameter. In a conflict resolution aspect the parameter can be used to specify
the class of which the executing object needs to be an instance of in order for
the advice to apply. In our code we retrieve the corresponding annotation with a
@annotation pointcut and bind it to a variable. After we obtained the parameter
value targetClass from the annotation variable, we frame the complete advice
in the block of an if-statement that defines targetClass.isInstance(target)
as condition. The effect is that the advice is only applied when the target object
is an instance of the class that was provided by the annotation.

In the AspectOptima case study there is a conflict between the aspects Nested
and Tracing: traces gathered in a child context should also be made available

message view getTraces affected by Nested.addChildrensResults
Nested binding
getTraces → m

List<Trace> → Collection<T>

Fig. 10. The message view getTraces binding the template addChildrensResults
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aspect GetTracesAddChildrensResultsAspect
extends AddChildrensResultsAspect<List<Trace>> {

public pointcut m(NestedContext target) :
execution(List<Trace> TracingContext.getTraces())
&& target(target);

}

Fig. 11. Code for getTraces extending the abstract aspect for addChildrensResults

to the parent context. To achieve the desired effect, a RAM conflict resolution
aspect applies the behavior of the message view addChildrensResults that
we discussed in the previous section (Figure 8) to the method getTraces (Fig-
ure 10). The results is that all traces of children contexts are added to the traces
of a context before the result is returned.

To achieve the same effect in AspectJ, our mapping produces a concrete as-
pect that extends the abstract aspect (Figure 9) as shown in Figure 11. The con-
flict criteria TracingContext = NestedContext is also visible in the generated
code: in the pointcut definition we intercept executions of the getTracesmethod
of a TracingContext, but the declared target type of the call is NestedContext.

7 Mapping Variability

The RAM approach can be used effectively in the context of product line devel-
opment thanks to its support for optional and alternative aspect dependencies.
The dependencies between aspect models are captured using feature diagrams.
Figure 12 shows an extract of the feature diagram of the AspectOptima case
study, which defines 35 aspects that can be combined in different ways to im-
plement run-time support for transactions. To generate a specific product, it
suffices to choose which optional or alternative features are to be included in the
product as conflicts are automatically resolved.

To support variability, each individual RAM aspect model must specify the
structure and behavior needed for each variant. Figure 12 specifies, for example,
that the Recovering aspect either depends on the Checkpointing aspect or on the
Deferring aspect. In the aspect model of Recovering, instantiation directives and
message views are tagged with a variant name (e.g. Checkpointing variant)
if they are relevant to a particular variant only.

Optimistic Validation

Transaction

Recovering

Checkpointing

ConcurrencyControl

UpdateStrategy

Deferring

Legend
Mandatory
Optional

Alternative

Fig. 12. Feature diagram extract demonstrating variability support
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If we map an aspect model with support for variability to code, we need to
implement every possible variation. In case of an alternative variant we create a
Java enumeration that lists all possibilities. The enumeration is named according
to the feature diagram and it is used in involved annotations to specify the chosen
alternative. Optional dependencies are represented by boolean variables.

We then determine for every class whether it contains variation specific struc-
ture or behavior as a result of varying instantiation directives or variant-specific
message views. If a class is not variation independent, we create a variant-specific
interface that extends the original interface of that class and has the name of
the aspect that causes the variation appended to its name. Additionally, we
parameterize the class’s annotation to account for the variation.

As variations are preserved in reusing aspects we need to apply the same
technique to classes that are merged with varying classes in reusing aspects. This
means that for every class we need to account for every possible configuration
that results in a different structure or behavior for this class. An example where
such indirect variation effects occur is the Transaction aspect as it inherits the
alternative UpdateStrategy from the reused Recovering aspect (Figure 12).

All code that results from the variation independent part of the structural
view and from message views that do not list a special variant is introduced
into the variation independent interfaces. These general interfaces extend all
interfaces that correspond to bound or instantiated classes of directives that are
valid for all variations. The remaining variation specific structure and behavior
is introduced into the variant-specific interfaces for those variants. This strategy
of keeping as much code as possible in the general interfaces helps to avoid code
duplication and keeps the size and complexity of the resulting implementation
as small as the model permits it. To ensure that a user or modeler can never
choose both options of an alternative we declare weaver errors whenever an
involved class is marked with annotations that correspond to both alternatives.

8 Solution Strategies

After our detailed description of some of the mapping rules we summarize the
problems that we encountered together with the solution strategies that we ap-
plied to them. We hope that these general implementation strategies can help
other researchers that map aspect-oriented models to aspect-oriented code to
solve similar problems.

We help to minimize the design efforts for the modeler by providing an un-
obtrusive and automatic possibility to reuse the Java library if class names and
method signatures are matched. The work load for the modeler is further de-
creased by automatic default implementations for common design patterns like
getters and setters. Both strategies make it unnecessary to model already exist-
ing structure or behavior but do not impose target language specific constraints.

The problems that may arise from the merging of modeled classes as a result
of instantiation or binding are indirectly avoided as we decided to use interfaces
as introduction containers for fields and methods. This gives us the possibility to
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make classes implement multiple interfaces whenever a merge of the correspond-
ing classes is modeled and bypasses Java’s prohibition of multiple inheritance.

We achieve bindable parameters by generating custom Java annotations. Pa-
rameter instantiation is implemented with type hierarchy modifications and
annotation inheritance. The advisory of parameters is possible thanks to As-

pectJ’s parameter-based pointcuts and thanks to its Reflection API that
gives access to additional context information. This information is also used for
recursive method invocations that make it possible to re-apply advice.

Due to AspectJ’s incapability to directly support dynamic advice that in-
volves type parameters we create parameterized abstract aspects with abstract
pointcuts. When such a generic advice is used the corresponding abstract point-
cuts are instantiated in concrete aspects that extend the abstract aspect.

Aspects that have to apply if and only if some conditions are met are imple-
mented through additional restrictions in pointcuts or additional check clauses.
These checks use information that was obtained from parameterized annotations.

Variation-specific structure and behavior is achieved by creating variation-
specific interfaces that serve as introduction containers. These variations are
preserved in reusing aspects by propagating annotation parameters and specific
interfaces to reusing aspects. Variation independent information is kept separate.

In order to maintain the modeled order of advice, the precedence that is im-
plicitly defined by the order of reuse is made explicit in corresponding statements
that declare a precedence of reusing aspects over reused aspects.

9 Related Work

In 2004 Clarke and Walker present a detailed mapping from Theme/UML to
AspectJ [5], [4]. Theme/UML [2] is an asymmetric AOM approach that has
some points in common with RAM, and thus leads to a similar mapping. Anal-
ogous to our mapping, pattern classes are implemented with interfaces and non-
template operations become methods that are introduced in these interfaces. If
a template operation has no supplementary behavior it is mapped to abstract
methods in contrast to our mapping. Template operations with additional be-
havior are mapped to abstract pointcuts. That means that template methods
without supplementary behavior need to be bound by implementing the cor-
responding abstract method with a delegating call. This is more verbose than
marking existing methods with annotations but it makes it possible to adapt
to incompatible signatures. The disadvantage of this solution, however, is that
concrete pointcuts have to be defined for bound methods. This makes it difficult
to use the code that is obtained from the Theme/UML mapping in projects
were AspectJ constructs in the code base have to be avoided. For our mapping
this is not true as our generated annotations are pure Java that can be ignored
during compilation whenever the aspectual information is not wanted.

The main difference, however, is that RAM and our mapping support more
complex constructs like generic or recursive advice and aspect variations than
the Theme/UML approach and the corresponding mapping. This higher ex-
pressiveness has also to be taken into account when the size and readability of
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the resulting code for both mappings is compared. Furthermore, the code for
Theme/UML is less flexible when seen from a user perspective. This is mainly
due to the fact that when the Theme/UML mapping was defined, AspectJ

did not support annotations and Java did not include Generics yet.
Apart from an article by Jackson et al. [9] that describes the adaption of

the Theme/UML mapping to the requirements of CaesarJ we are not aware
of any furhter work that discusses a detailed mapping from constructs of an
aspect-oriented modeling language to aspectual code. Much work (e.g. [7], [14])
mentions the generation of AOP code without providing any details on which
modeling artifacts correspond to which code elements and how common prob-
lems are solved.

10 Conclusions

When using aspect-oriented modeling in the context of Model-Driven Engineer-
ing, one possible way of obtaining an executable from the models is to map them
to aspect-oriented code. As opposed to weaving at the model level and then gen-
erating object-oriented code, traceability of concerns is made easier if aspects
at the model level are mapped to code-level aspects. This in turn can benefit
software evolution and maintenance.

This paper presents solutions to the most important challenges that a mod-
eler has to face when mapping aspect-oriented models to an aspect-oriented
programming language: mapping structure and behavior of a single aspect, map-
ping instantiation of structure and behavior in target models, mapping conflict
resolution between aspects, and mapping aspect dependencies and variability.
To illustrate the mapping issues, the paper presents details on how to map
Reusable Aspect Models to AspectJ source code. Finally, general solution
strategies that can be used to solve similar problems when attempting to map
other aspect-oriented modeling techniques to aspect-oriented code are outlined.

We implemented the AspectOptima case study and an extension to it that
supports Open Multithreaded Transactions (OMTTs)2. 84% of the base code and
96% of the code of the extension could be obtained by a rigorous application
of the mapping presented in this paper. This gives us hope that a future code
generator for RAM will lead to very elaborate implementations with little need
for manual refinement.

We believe that this mapping in a combination with a meta-model for RAM
and a textual representation of it may be a first step on our way to automatic
transformations of aspect models to aspect-oriented code.
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Abstract. EOOLT 2010 was the third edition of the EOOLT workshop series. 
The workshop is intended to bring together researchers and practitioners from-
different equation-based object-oriented (EOO) modeling language communi-
ties. This year’s workshop also expands the scope to include the whole design 
space of languages for cyber-physical systems, where physical dynamics are 
mixed with networks and software. The workshop gathered 31 participants to 
present and discuss thirteen different papers grouped into the four areas of real-
time oriented modeling languages and tools, modeling language design, simula-
tion and model compilation, and modeling and simulation tools. 

1   Introduction 

During the last decade, integrated model-based design of complex cyber-physical 
systems (which mix physical dynamics with software and networks) has gained sig-
nificant attention. Hybrid modeling languages based on equations, supporting both 
continuous-time and event-based aspects (e.g. Modelica, SysML, VHDL-AMS, and 
Simulink/ Simscape) enable high-level reuse and integrated modeling capabilities of 
both the physically surrounding system and software for embedded systems. Using 
such equation-based object-oriented (EOO) modeling languages, it has become possi-
ble to model complex systems covering multiple application domains at a high level 
of abstraction through reusable model components.  

The interest in EOO languages and tools is rapidly growing in the industry be-
cause of their increasing importance in modeling, simulation, and specification of 
complex systems. There exist several different EOO language communities today 
that grew out of different application areas (multi-body system dynamics, electronic 
circuit simulation, chemical process engineering). The members of these disparate 
communities rarely talk to each other in spite of the similarities of their modeling 
and simulation needs.  

The EOOLT workshop series aims at bringing these different communities to-
gether to discuss their common needs and goals as well as the algorithms and tools 
that best support them. 
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It was a good response to the call-for-papers. Eleven papers were accepted for full 
presentations and two papers for short presentations in the workshop program out of 
eighteen submissions. All papers were subject to rather detailed reviews by the pro-
gram committee, on the average four reviews per paper. The workshop program 
started with a welcome and introduction to the area of equation-based object-oriented 
languages, followed by paper presentations. Discussion sessions were held after pres-
entations of each set of related papers. There were 31 participants in the workshop, 
more than doubled compared to EOOLT 2008 which was held in conjunction with 
ECOOP 2008. 

After the event of the workshop, a nomination request for the best paper of the 
workshop was sent out to all PC members, authors, and workshop participants. Au-
thors were not allowed to nominate themselves. Seven different papers were nomi-
nated, where the paper “Modal Models in Ptolemy” by Edward A. Lee and Stavros 
Tripakis received a clear majority of the nominations. This paper was selected as the 
best paper of EOOLT 2010, and the abstract is published in a post proceedings of the 
MODELS conference. 

The venue for EOOLT 2010 was Oslo, Norway, in conjunction with the MODELS 
2010 conference. 
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3   Publication 

All papers are published electronically by Linköping University Electronic Press [1] 
and available in the electronic proceedings at http://www.ep.liu.se/ecp/047/.  

All presentations (together with the papers) are also available at the EOOLT 2010 
web site: http://www.eoolt.org/2010/. 

4   Sessions 

The workshop sessions are briefly described below. Each session starts with paper 
presentations, followed by a discussion related to the topic of that particular session. 
Some discussion also took place during the paper presentations. 

4.1   Real-Time Oriented Modeling Languages and Tools 

Session chair: David Broman 

In this session, research work was presented related to graphical modeling languages, 
real-time applications, and profiling. Three papers were presented and discussed. 

In “Execution of UML State Machines Using Modelica,” Wladimir Schamai, Uwe 
Pohlmann, Peter Fritzson, Christiaan J.J. Paredis, Philipp Helle, and Carsten Strobel 
present the ModelicaML language and how it can be used for modeling UML state 
machines. Wladimir presented a translational approach for code generation of Mode-
lica code as well as a priority schema for handling the problem of conflicting transi-
tions in UML diagrams.  

In “Modal Models in Ptolemy,” Edward A. Lee and Stavros Tripakis discuss the 
concepts and semantics of modal models and how time is handled in refined sub-
models in finite state machines (FSMs). Examples were given in the Ptolemy II envi-
ronment. One conclusion is that refined modes should have a local notation of time 
that does not advance while a mode is inactive. Hence, the gap between local time and 
global time is monotonically increasing. 

In “Profiling of Modelica Real-Time Models,” Christian Schulze, Michaela Huhn, 
and Martin Schüler present an approach and implementation for profiling of Modelica 
models used in real-time applications. It was concluded using a case study that profil-
ing can help identifying the workload for parts of a model. It was also pointed out that 
it is important to separate the process of saving result data to a hard disk drive into a 
non real-time application. 

In the following discussion session, questions and comments from the audience 
concerned all three paper presentations. The main questions and comments for the 
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first presentation related to Stategraph, static checking, and possibility of round-trip 
engineering. For the second presentation, questions concerned the similarity to Simu-
link and semantics for stream processing in Ptolemy. It was pointed out that the  
semantics are not built into the system, but are defined by different directors. The 
discussions concerning the last presentation focused on different challenges of im-
plementation of a profiling system, in particular regarding the possibility of tracing 
back to the original Modelica model. 

4.2   Modeling Language Design 

Session chair: Edward A. Lee 

The second session focused on design and implementation aspects of Modelica. 
“Towards Improved Class Parameterization and Class Generation in Modelica,” 

Dirk Zimmer introduces the idea that class parameterization and class generation 
should be separate concepts in Modelica. The goal is to partially redesign Modelica, 
to unify concepts, and to simplify the language. 

In “Notes on the Separate Compilation of Modelica,” Christoph Höger, Florian Lo-
renzen, and Peter Pepper discuss different problems and implications of introducing 
separate compilation of Modelica models, e.g., runtime instantiation, introducing co-
ercion functions, and handling of dynamic binding. It is noted that the Modelica lan-
guage is very complex and that special cases of the semantics need to be reduced.  

In “Import of Distributed Parameter Models into Lumped Parameter Model Librar-
ies for Linearly Deformable Solid Bodies,” Tobias Zaiczek and Olaf Enge-Rosenblatt 
show how distributed parameter models can be included in libraries of lumped pa-
rameter models. Discretization, connector definitions, and model order reduction are 
analyzed with regards to flexible bodies modeling and simulation. 

In the following discussion session, the discussion related to the first talk con-
cerned types, models as first class, and different aspects of concrete syntax. The dis-
cussion about the second talk focused on when elaboration/flattening and symbolic 
manipulation should take place. Should it be at compile-time, link-time, or at run-
time? Finally for the last talk, questions were raised about related work, i.e., perform-
ance comparison with simulation tools such as Dymola and comparison to other PDE 
Modelica efforts. 

4.3   Simulation and Model Compilation 

Session chair: François E. Cellier  

In this session, three research papers were presented related to synchronous event 
handling together with a numerical solver, distributed simulation using TLM tech-
niques, and profiling. 

In “Synchronous Events in the OpenModelica Compiler with a Petri Net Library 
Application,“ Willi Braun, Bernhard Bachmann, and Sabrina Proß describe improved 
techniques for synchronous event handling using the DASSL solver in OpenMode-
lica, with applications in a Petri Net library. 

In “Towards Efficient Distributed Simulation in Modelica using Transmission Line 
Modeling,” Martin Sjölund, Robert Braun, Peter Fritzson, and Petter Krus describe 
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the TLM model partitioning technique, how this can be integrated in Modelica to en-
able efficient simulation, and results from a prototype implementation. 

In “Compilation of Modelica Array Computations into Single Assignment C for 
Efficient Execution on CUDA-enabled GPUs,” Kristian Stavåker, Daniel Rolls, Jing 
Guo, Peter Fritzson, and Sven-Bodo Scholz describe methods to compile repetitive 
equations and array equations to SAC code running on GPUs, with measurements. 

Discussions touched issues like convergence of event iteration, synchronous event 
handling (1st talk), fixed or flexible time steps, interpolation (2nd talk), and large  
arrays, need for combination of task and data parallelism, size of equation systems 
that can be handled, and handling models with algebraic loops (3rd talk). 

4.4   Modeling and Simulation Tools 

Session chair: Peter Fritzson  

This session presented research related to tool functionality such as XML representa-
tion of systems of equations, computer algebra operations on models, a comparison 
between DASSL and QSS numeric solvers, and model debugging through model re-
duction. Two long papers followed by two short were presented and discussed. 

In “An XML Representation of DAE Systems Obtained from Continuous-time 
Modelica Models,” Roberto Parrotto, Johan Åkesson, and Francesco Casella describe 
an XML format for model equations and its usage for model export to other tools. 

In “Towards a Computer Algebra System with Automatic Differentiation for Use 
with Object-Oriented Modelling,” Joel Anderson, Boris Houska, and Moritz Diehl 
describe a special-purpose small C++ based tool for automatic differentiation. 

In “Discretising Time or States? A Comparative Study between DASSL and QSS,” 
Xenofon Floros, François E. Cellier, and Ernesto Kofman describe a new simulation 
run-time system for OpenModelica based on quantized state systems (QSS) simula-
tion and compares this approach to the standard DASSL solver. 

In “Model Verification and Debugging of EOO Models Aided by Model Reduction 
Techniques,” Anton Sodja and Borut Zupančič give an overview of model reduction 
techniques and argue that such techniques are useful for debugging and verification. 

The following discussion covered e.g., the difference between FMI and the XML, 
advantages / issues with QSS, the current status of model reduction techniques, etc. 
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Abstract. This paper provides a summary of the First International Workshop
on Model Driven Interoperability (MDI 2010), held on October 5, 2010, in con-
junction with the MODELS 2010 conference in Oslo, Norway.

1 Introduction

The MDI 2010 workshop was held on October 5, 2010, in conjunction with the MOD-
ELS 2010 conference in Oslo, Norway. This was the first edition of this workshop,
which is devoted to discuss the potential role of models as key enablers for all kinds of
systems and data interoperability.

The MDI workshop was created with the goal to provide a venue where researchers
and practitioners concerned with all aspects of models and systems interoperability
could meet, disseminate and exchange ideas and problems, identify some of the key
issues related to model-driven interoperability, and explore together possible solutions
and the challenges ahead.

This paper contains a summary of the MDI 2010 workshop. It is an extended ver-
sion of [1], which provided an editorial introduction to the full MDI 2010 workshop
Proceedings [2].

2 Model-Driven Interoperability

Interoperability can be defined as the ability of separate entities, systems or artifacts (or-
ganizations, programs, tools, etc.) to work together. Although there has always been the
need to achieve interoperability between heterogeneous systems and notations [3], the
difficulties involved in overcoming their differences, the lack of consensus on the com-
mon standards to use and the shortage of proper mechanisms and tools, have severely
hampered this task.

Model-Driven Engineering (MDE) is an emergent discipline that advocates the use of
(software) models as primary artifacts of the software engineering process. In addition
to the initial goals of being useful to capture user requirements and architectural con-
cerns, and to generate code from them, models are proving to be effective for many other
engineering tasks. New model-driven engineering approaches, such as model-driven
modernization, models-at-runtime, model-based testing, etc. are constantly emerging.

Model interoperability is much more complex than simply defining a local serial-
ization format, e.g., XMI. This would just resolve the syntactic (or “plumbing”) issues

J. Dingel and A. Solberg (Eds.): MODELS 2010 Workshops, LNCS 6627, pp. 145–149, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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between models and modeling tools. However, interoperability should also involve fur-
ther aspects, including behavioral specifications of models (which in turn describe the
behavioral aspects of the systems being modeled), and other “semantic” issues [4] such
as agreements on names, context-sensitive information, agreements on concepts (on-
tologies), integration conflict analysis (including for example automatic data model
matching), semantic reasoning, etc. Furthermore, interoperability not only means being
able to exchange information and to use the information that has been exchanged [5],
but also to exchange services and functions to operate effectively together. All these in-
teroperability issues and needs become clear in any complex system, as it has recently
happened in the HL/7 and DICOM healthcare projects, for instance.

Models and MDE techniques (especially metamodeling and model transformations)
can play a fundamental role for fully accomplishing these tasks. Thus, models can
become cornerstone elements for enabling and achieving interoperability between all
kinds of systems and artifacts, including data sets (under the presence of different data
schemata, and possibly at different levels of abstraction), services (despite their differ-
ences in data representation, access protocols and underlying technological platforms),
event systems (with different complex types and origins), languages (that use differ-
ent notations and may have different semantics), tools (with different data formats and
semantic representations), technological platforms (with different notations, tools and
semantics), etc. It should also be emphasized that the success of MDE has created ac-
cidental complexity, for example by generating a number of overlapping metamodels
(UML, SySML, BPML, etc.) and this situation reveals itself in a number of contexts as
an additional metamodel interoperability problem.

3 The MDI 2010 Workshop

The organizers decided to set up a workshop with the goal of gathering rearchers and
practitioners working on topics related to interoperability, coming from different com-
munities and with different backgrounds. The idea was to exchange experiences and
proposals, and to foster potential cross-fertilization of ideas among participants.

An excellent Program Committee was assembled to help with the review process,
which included very well-known and respected experts in the topics of the workshop:
Patrick Albert, Uwe Assmann, Colin Atkinson, Jorn Bettin, Jean Pierre Bourey, Tony
Clark, Robert Claris, Gregor Engels, Jean Marie Favre, Robert France, Dragan Gase-
vic, Sbastien Grard, Martin Gogolla, Jeff Gray, Esther Guerra, Tihamer Levendovszky,
Richard Paige, Alfonso Pierantonio, Bernhard Rumpe, Jim Steel, Hans Vangheluwe,
Andrew Watson, Jon Whittle and Manuel Wimmer.

In response to the call for papers, a total of 19 submissions were received. Submit-
ted papers were formally peer-reviewed by three referees, and 12 papers were finally
accepted for presentation at the workshop and publication at the Proceedings, that have
been published in the ACM Digital Library [2].

We counted on some external reviewers that helped PC members to review the
papers: Fabian Buettner, Lars Hamann, Mirco Kuhlmann, Ivano Malavolta, Antonio
Navarro Perez, Ingo Weisemoeller, Christian Wende and Claas Wilke.
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4 Workshop Papers

The following 12 papers were presented in the workshop:

– “Model Driven Interoperability in practice: preliminary evidences and issues from
an industrial project” by Youness Lemrabet, David Clin, Michel Bigand, Jean-
Pierre Bourey and Nordine Benkeltoum. [6]

– “Semantic Interoperability of Clinical Data Exchange” by Idoia Berges, Jess
Bermudez, Alfredo Goi and Arantza Illarramendi. [7]

– “A Process Model Discovery Approach for Enabling Model Interoperability in Sig-
nal Engineering” by Wikan Danar Sunindyo and Thomas Moser. [8]

– “Efficient Analysis and Execution of Correct and Complete Model Transformations
Based on Triple Graph Grammars” by Frank Hermann, Hartmut Ehrig, Ulrike Go-
las and Fernando Orejas. [9]

� “Towards an Expressivity Benchmark for Mappings based on a Systematic Clas-
sification of Heterogeneities” by Manuel Wimmer, Gerti Kappel, Angelika Kusel,
Werner Retschitzegger, Johannes Schoenboeck and Wieland Schwinger. [10]

� “Specifying Overlaps of Heterogeneous Models for Global Consistency Checking”
by Zinovy Diskin, Yingfei Xiong and Krzysztof Czarnecki. [11]

– “Anticipating Unanticipated Tool Interoperability using Role Models” by Mirko
Seifert, Christian Wende and Uwe Aßmann. [12]

– “Behavioural Interoperability to Support Model-Driven Systems Integration” by
Alek Radjenovic and Richard Paige. [13]

– “Aligning Business and IT Models in Service-Oriented Architectures using BPMN
and SoaML” by Brian Elvesæter, Dima Panfilenko, Sven Jacobi and Christian
Hahn. [14]

– “Domain-specific Templates for Refinement Transformations” by Lucia Kapova ,
Thomas Goldschmidt , Jens Happe and Ralf Reussner. [15]

– “Advanced Modelling Made Simple with the Gmodel Metalanguage” by Jorn Bet-
tin and Tony Clark. [16]

– “Model-driven Rule-based Mediation in XML Data” by Yongxin Liao, Dumitru
Roman and Arne.J. Berre. [17]

These papers contribute in different aspects to the area of model driven interoperability,
from its foundations to the potential benefits it may bring to the emerging field of MDE.
The slides of these presentations are available from the workshop Web site http://
mdi2010.lcc.uma.es. Two of the papers (these marked with a circled asterisk �
in the list above) were invited to submit an extended version for this LNCS volume, and
are included in this volume, after this workshop summary.

5 Workshop Discussions

The workshop was organized in four sessions. The first three were dedicated to the pre-
sentation of the selected papers. The last session was dedicated to discussions among
the participants about the open issues and topics identified during the paper presenta-
tions. The detailed agenda of the workshop is in http://mdi2010.lcc.uma.es/
Agenda.html.

http://mdi2010.lcc.uma.es
http://mdi2010.lcc.uma.es
http://mdi2010.lcc.uma.es/Agenda.html
http://mdi2010.lcc.uma.es/Agenda.html
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The first session started with a welcome to the participants and a keynote opening
talk by Jean Bézivin, who described the key concepts related to Model-Driven Interop-
erability, identified the essential aspects involved in this topic and presented some of
the efforts currently in progress within the software community. The talk served as an
introduction to the workshop and also helped setting a context for the rest of the presen-
tations and discussions. The slides of the talk are available from http://mdi2010.
lcc.uma.es/slides/MDI2010-JBezivinPresentation.ppsx.

The remainder of the first session and the next two were devoted to paper presenta-
tions and short questions and answers.

A final session was dedicated to discuss some of the issues that came up during the
paper presentations. More than 30 people participated in the discussions, that covered
different topics including syntactical vs. semantic interoperability, why it the problem
of interoperability so hard, what kinds of mechanisms are required to deal with some of
the issues that were identified during the workshop, etc.

Finally, it was agreed that a mail list was set up in order to distribute information
related to the topics of the workshop. Such a list is already in use: mdi@lcc.uma.es.
Subscription can be done on-line via http://sol10.lcc.uma.es/mailman/
listinfo/mdi.
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Abstract. One of the key challenges in the development of model trans-
formations is the resolution of recurring semantic and syntactic hetero-
geneities. Thus, we provide a systematic classification of heterogeneities
building upon a feature model that makes the interconnections between
them explicit. On the basis of this classification, a set of benchmark
examples was derived and used to evaluate current approaches to the
specification of model transformations. We found, that approaches on
the conceptual level lack expressivity whereas execution level approaches
lack support for reuse. Moreover, only few of the approaches evaluated
provide key features such as an automatic trace model or the ability to
reuse specifications by inheritance.

Keywords: Syntactic and Semantic Heterogeneities, Mapping
Benchmark.

1 Introduction
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Fig. 1. Heterogenous MMs

With the rise of model-driven engineering
(MDE), models and associated transforma-
tions for migrating, merging, or evolving
models have become the main artifacts of the
software engineering process [3]. One of the
key challenges in this respect is the resolution
of recurring heterogeneities between the cor-
responding metamodels (MMs) to preserve se-
mantics, (i) at the conceptual level by means
of mapping tools that provide reusable components as, for instance proposed in
[7] and [21], and (ii) at the execution level by means of dedicated transforma-
tion languages [5]. Heterogeneities result from the fact that semantically similar
metamodeling concepts (M2) can be defined by different meta-metamodeling
concepts (M3), which leads to differently structured metamodels. As a simple
example, Fig. 1 shows two MMs of fictitious, domain-specific tools that admin-
istrate publications. Whereas Tool1 models the type of a publication by the
∗ This work has been funded by the Austrian Science Fund under grant P21374-N13.

J. Dingel and A. Solberg (Eds.): MODELS 2010 Workshops, LNCS 6627, pp. 150–164, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



From the Heterogeneity Jungle to Systematic Benchmarking 151

attribute Publication.kind (e.g., conference or journal), Tool2 represents the
same semantics by using the class Publication, which refers to a class Kind, to
determine the kind of publication.

Up to now, it has been unclear which kinds of heterogeneity must be resolved
in model-to-model transformations. Therefore, this paper proposes a systematic
classification of heterogeneities between object-oriented MMs by adapting and
extending existing classifications in data and ontology engineering. The design
rationale was to identify a complete set of potential points of variation between
two Ecore-based MMs. This provided the basis for establishing a benchmark that
allows evaluation of existing approaches with respect to their ability to resolve
heterogeneities. To show the applicability of this benchmark, existing mapping
tools and transformation languages from different domains were evaluated by
using selected example scenarios defined for our benchmark, each posing certain
challenges to the benchmarked approaches. Further example scenarios of our
benchmark can be found in [22] and on our project web page1.

The remainder of this paper is structured as follows. Section 2 presents the
identified points of variation of meta-metamodels and gives a first overview of
our classification. The exemplary benchmark scenarios together with their chal-
lenges and how existing approaches deal with them are discussed in Section 3.
Lessons learned are summarized in Section 4. Finally, related work is referred to
in Section 5, and Section 6 reports on future work.

2 Systematic Classification of Heterogeneities

According to a substantial body of literature [2,4,9,12,13,14,15,18,20],
heterogeneities can be divided into two main classes: (i) syntactic heterogeneities,
i.e., differences with respect to how something is represented by a MM and (ii) se-
manticheterogeneities, i.e., differenceswithrespect towhat is representedbyaMM.
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Fig. 2. Variation Points in Ecore-based MMs

Syntactic Hetero-
geneities. Syntactic het-
erogeneities result from
the fact that semantically
similar concepts can be de-
fined by different meta-
modeling concepts, which
leads to differently struc-
tured metamodels. To
obtain a systematic classi-
fication of different kinds
of syntactic heterogeneity,
we investigated potential points of variation between two Ecore2-based meta-
models. Fig. 2 depicts the relevant part of the Ecore meta-metamodel poten-
tially causing syntactic heterogeneities, and omits all the Ecore concepts which
1 www.modeltransformation.net
2 http://www.eclipse.org/modeling/emf/

www.modeltransformation.net
http://www.eclipse.org/modeling/emf/


152 M. Wimmer et al.

Table 1. Common Core Concepts in Different Domains

Common Core Concepts Ecore XML Schema OWL
Class EClass <xs:complexType> <owl:Class>

Attribute EAttribute <xs:attribute> <owl:DatatypeProperty>
Reference EReference <xs:key>, <xs:keyRef> <owl:ObjectProperty>
Inheritance eSuperTypes <xs:extension base> <rdfs:subClassOf>

are used merely for Java code generation in the EMF framework. It must be em-
phasized at this point that the core concepts of Ecore resemble the fundamental
ingredients of semantic data models [11], which are also prevalent in other do-
mains such as data and ontology engineering (as depicted in Table 1). Hence,
the following findings apply to a broader field.

Based on this design rationale, we introduce a classification of heterogeneities
(cf. Fig. 3). It is expressed by means of the feature model formalism [6], which al-
lows us to identify clearly the interconnections between the different kinds of het-
erogeneity. We distinguish two types of syntactic heterogeneity: simple naming
differences (i.e., differences in the values of the name attribute of ENamedElement:
cf. Fig. 2) and more challenging structural differences. Although names play an
important role when deriving the semantics of a concept, the semantics cannot
be inferred automatically, which leads to the synonym and homonym problem.
With respect to structural differences, two main cases can be distinguished: core
concept differences and inheritance differences. The former occur due to differ-
ent usage of classes, attributes, and references (represented by C, A, and R in
Fig. 3) and can be further divided into heterogeneities between (a) the same
and (b) different metamodeling concepts. Two main differences may emerge in
case (a) – either the concepts exhibit different attribute/reference settings (cf.
Fig 2) or a different number of concepts has been used in the MMs to express
the same semantic concept (cf. Source-Target-Concept Cardinality in Fig. 3). An
example of the first case would be that one of two EClasses used is defined as
abstract, which leads to a concreteness heterogeneity. An example of the second
case is that in the left hand side (LHS) MM, two EAttributes, firstName and
lastName, are used whereas in the right hand side (RHS) MM, this information
is contained in just one EAttribute: name. Concerning case (b), heterogeneities
are derived by systematically combining the identified core concepts. For in-
stance, an EAttribute in the LHS MM is represented by an EClass in the RHS
MM (cf. example in Fig. 1). Finally, heterogeneities may not only be caused
by the concepts of classes, attributes, and references but also by the concept
of inheritance. In this respect, we distinguish between heterogeneities that may
occur although both MMs use inheritance (cf. “same metamodeling concept in-
heritance” in Fig. 3) and heterogeneities that occur if only one MM makes use
of inheritance (cf. “different metamodeling concept inheritance” in Fig. 3).

Semantic Heterogeneities. Two main cases of semantic heterogeneity can
be distinguished: (i) differences in the number of valid instances and (ii) dif-
ferences in the interpretation of the instance values [12]. In case (i), all the
set-theoretic relationships may occur as modeled by the corresponding sub-
features. In case (ii), a variety of modifications of the values may be necessary
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to translate LHS MM values into RHS MM values such that the values conform
to the interpretation of the RHS MM. Thus, semantic heterogeneities cannot
be derived from the syntax (since in both cases the MMs can be represented
syntactically in the same way) but only by incorporating interpretation, i.e.,
by assigning meaning to each piece of data [10]. For further details about the
classification the reader is referred to [22].

3 Benchmark Examples Applied

The proposed classification was then used to derive appropriate benchmark
examples. Since the classification makes the interconnections between hetero-
geneities explicit, a systematic set of benchmark examples, i.e., a set that fully
covers the feature model, can be built. Each benchmark example is character-
ized by a description, source and target metamodels and corresponding models.
To aid comprehension, examples using ontological concepts were preferred over
those using linguistic concepts. Below, we present three of the proposed exam-
ples that we used to evaluate the ability of mapping tools and transformation
languages to resolve certain heterogeneities. Each example is a representative of
a main branch in the feature model: (i) core concepts with same metamodeling
concept heterogeneities, (ii) core concept with different metamodeling concept
heterogeneities and (iii) inheritance heterogeneities.

Evaluated Approaches. The benchmark examples were applied to a care-
fully selected bundle of approaches: at the conceptual level, three mapping tools
from different domains and, at the execution level, two dedicated model trans-
formation languages. Among the mapping tools were AMW [7] from the area of
model engineering, the commercial tool MapForce3 from data engineering, and
3 http://www.altova.com/de/mapforce.html

http://www.altova.com/de/mapforce.html
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MAFRA4 from ontology engineering. AMW allows the definition of so-called
weaving links between Ecore-based MMs to form a mapping definition which
can be transformed into executable ATL code. In contrast, MapForce allows
mapping definitions between diverse schema languages, for instance, relational
or XML schemas. For executing the specified mapping definitions, several target
languages such as Java and XSLT are supported. Finally, MAFRA supports for
mappings between RDF- and OWL-based ontologies and XML schemas which
are directly executed within the tool. Among the transformation languages evalu-
ated were ATL5, a representative of hybrid rule-based transformation languages,
and AGG6, a declarative graph-based transformation language. The results of
the comparison are summarized in Table 2 and described in detail below.

3.1 Benchmark Example 1

The first benchmark example belongs to the category of core concept hetero-
geneities between the same MM concepts (cf. Fig. 3), and poses four main chal-
lenges, as detailed below (cf. Fig. 4). Since the overall goal of all our transfor-
mations is to minimize information loss and to produce only valid instances,
instance P2 remained in the RHS although it does not reference any journal
publication in the LHS model. Interestingly, the RHS MM in this example is
more restrictive than the LHS MM, since the EAttribute Prof.bornIn always
requires a value, and since each instance of Prof requires at least one link to
a journal publication. Since these restrictions do not exist in the LHS MM, in-
stances of it may break them. Therefore, some resolution strategy is needed –
either by auto-generating values or by incorporating user-interaction in order to
produce valid instances of the RHS MM.

Challenge 1: A2A, Multiplicity Difference, Datatype Difference. In
our example, this challenge arises between the EAttributes Professor.date-
OfBirth and Prof.bornIn. The main challenge is to extract the year of birth
as an integer value from the LHS date structure. In the absence of a date either
(i) a null-value (with semantics exists but not known, leading to an invalid tar-
get model), or (ii) a (user- or auto-generated) value requiring a corresponding
function is produced. All evaluated approaches were able to meet this challenge,
although the specification effort varied. For example, in MapForce dedicated
components such as substitute-missing (cf. Fig. 5 (a)) are available, whereas
in the other tools the function must be defined from scratch.

Challenge 2: Semantic Heterogeneity, A2A. The second challenge ex-
hibits a semantic heterogeneity between the EAttributes Professor.salary
and Prof.salary, since Professor.salary is encoded in dollars, whereas Prof.-
salary is encoded in euros, i.e., there is a difference in the interpretation of the
values. A conversion of values from dollars to euros must thus be realized in a
function. This imposes requirements similar to those in the first challenge, and

4 http://mafra-toolkit.sourceforge.net
5 http://www.eclipse.org/atl
6 http://user.cs.tu-berlin.de/~gragra/agg

http://mafra-toolkit.sourceforge.net
http://www.eclipse.org/atl
http://user.cs.tu-berlin.de/~gragra/agg
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Fig. 4. Benchmark Example 1 – Heterogeneities between same MM concepts

the evaluation therefore results in similar findings. The exemplary solution of
this challenge in MapForce is shown in Fig. 5 (a).

Challenge 3: Semantic Heterogeneity, C2C. The third challenge again
includes a semantic heterogeneity – but this time a difference in the number of
valid instances, since only journal instances should be transformed. Resolving
the heterogeneity requires a corresponding condition, that identifies instances
that remain valid in the context of the RHS EClass. All approaches were able
to achieve this. The exemplary solution of this challenge in AMW is shown in
Fig. 5 (b).

Challenge 4: R2R, Multiplicity Difference. Finally, the fourth challenge
consists of a multiplicity difference between the EReferences Professor.publi-
cations and Prof.journals. Since challenge 3 requires transformation only of
journal instances, the first sub-challenge here is to identify links that do not
refer to journal instances. Ideally, this should be achieved automatically by a
built-in trace model that keeps track of which source elements have been used
to create certain target elements. Moreover, since the goal is to generate only
valid target instances, the second sub-challenge is to generate journals and link
them correctly (instead of generating null values with semantics does not exist
when a professor does not have any). All approaches were able to resolve the
heterogeneity of the first sub-challenge. However, the effort needed differed, since
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( ) E l 1 Ch ll 1 2 l d i M F(a) Example 1: Challenges 1 + 2 resolved in MapForce

Weaving links 

(b) Example 1 partly resolved in AMW

g
describing the

mapping

(b) Example 1 partly resolved in AMW

Fig. 5. Exemplary Solutions for Benchmark Example 1

the condition required for filtering journal instances (as in challenge 3) had to
be duplicated in all mapping approaches due to insufficient trace model support.
As for the second sub-challenge, AMW and MAFRA were not able to link newly
generated objects due to insufficient trace model support. Although MapForce
does not support a trace model, it resolved this example, since only one journal
object with a fixed key value had to be generated, and this can be referred to
by the foreign key. Both, ATL and AGG were able to resolve this heterogene-
ity using their trace models. ATL provides a built-in trace model which can be
queried (resolveTemp mechanism), whereas in AGG the trace model must be
maintained manually.

In summary, the fourth challenge appeared to be the most problematic one
in this example for the approaches evaluated.

3.2 Benchmark Example 2

The second benchmark example belongs to the category of core concept hetero-
geneities when using different metamodeling concepts (cf. Fig. 3) and poses two
main challenges. The example instances reveal that the intention is to create a
Kind object only for distinct values of the attribute Publication.kind. There-
fore, the RHS model contains only a single Kind object named Journal (cf. K1
in Fig. 6), which is referenced by the Publication objects P1 and P2.

Challenge 1: A2C. The first challenge in this benchmark example is the
generation of Kind objects for distinct values of the kind attribute. A trace
model is required to keep track of whether an object has already been created
for a value. Since no explicit trace model is available in AMW and MAFRA,
they were not able to resolve this heterogeneity. Although MapForce also does
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not provide explicit trace information, it offers a dedicated distinct-values
component, which produces target elements for distinct input values only. In ATL
a so-called unique lazy rule can be applied (cf. Fig. 7 (b)). Using the built-in trace
model, this type of rule always generates and returns the same target object.
AGG offers no dedicated support: the heterogeneity must be resolved by using
user-defined graph transformation rules and a negative application condition
that prevents multiple creation of Kind objects (cf. Fig. 7 (a)).
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Challenge 2: CA2R. In addition to creating objects based on distinct LHS
values, the second challenge in this example is to correctly link the generated
target elements. Establishing such links requires information about the rela-
tionships between the concepts to be linked in the LHS model. In the LHS
MM of this example, the source of the EReference Publication.kind is rep-
resented by the EClass Publication and the target of the EReference by the
EAttribute Publication.kind. Therefore, this heterogeneity is classified as
C(lass)A(ttribute)2R(eference). To obtain the information needed to establish
the links, the approaches must again support queries to the trace model. Since
AMW and MAFRA could not cope with challenge 1, they were also not able to
resolve this heterogeneity. MapForce was also unable to resolve this kind of het-
erogeneity, since the internal trace model of the distinct-values component
cannot be queried. Although the trace model produced by the unique lazy rule
in ATL also cannot be queried, the elements produced can be linked correctly
by calling the unique lazy rule in the assignment (cf. Fig. 7 (b)). In AGG the
user-maintained trace model can be used to resolve this heterogeneity.

In summary, the mapping tools evaluated provide only limited support for res-
olution of the various metamodeling concept heterogeneities. Detailed knowledge
of the transformation languages is required when using them to resolve hetero-
geneities, which further emphasizes the need for direct support by dedicated
components.

3.3 Benchmark Example 3

The third benchmark example belongs to the category of inheritance hetero-
geneities with different metamodeling concepts (cf. Fig. 3) and poses one chal-
lenge. As the example instances show (cf. Fig. 8), the type of an LHS
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ResearchStaff object is identified by the value of its EAttribute Research-
Staff.kind, whereas the RHS MM provides an explicit type hierarchy. Thus, the
problem may arise, that the EAttribute of the LHS MM contains values that do
not correspond to any (concrete) EClass in the RHS MM. This is the case in the
example with the instance R1, since the corresponding EClass Professor in the
RHS MM is abstract and can thus not be instantiated, which causes information
loss.

Challenge 1: A2I. To resolve this heterogeneity, objects must be filtered by
using a certain attribute value and should provide means to deal with inheritance
in order to reduce the specification overhead. With the exception of MapForce,
which cannot display correctly XML schemas that make use of type derivation,
all mapping tools were able to resolve this heterogeneity, although no dedicated
components are available. In contrast to AMW, MAFRA allows for inheritance
between mappings and thus reduces specification overhead (cf. Fig. 7 (c)). Of
the transformation languages evaluated, only ATL supports inheritance between
rules, whereas AGG does not.

In summary, although the resolution of this heterogeneity can be achieved in
all approaches except in MapForce, no approach provides dedicated support. The
approaches that enable resolution can be further divided into those supporting
inheritance (ATL, MAFRA), which allow reuse in specifications, and those not
supporting inheritance (AMW, AGG), which require duplication of parts of the
specification.

Table 2. Comparison of Approaches
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4 Lessons Learned

In this section, we present the lessons learned from applying our examples.
Absence of Trace Model Limits Applicability. Current mapping tools

in the area of data engineering typically rely on the specification of simple
correspondences between source and target elements, which may be refined by
conditions or functions. However, these correspondences do not offer trace infor-
mation, which would support the definition of dependent mappings. For instance,
a value mapping always occurs in the context of a certain object mapping and
is thus dependent on the element mapping. This deficiency leads to less expres-
sive mapping specifications, as also discussed in [16]. The developers of mapping
tools in the area of ontology engineering and model engineering recognized this
need and thus implemented dependent mappings. However, simple dependencies
between mappings, for instance, composition of mappings, are still insufficient,
which leads to the problems, for example, in an A2C heterogeneity, in which
explicit queries to the trace model are needed. Transformation languages can
be divided into approaches providing automatic trace information, as in ATL,
and approaches requiring manual generation of trace information, as in AGG.
ATL provides trace information only for the declarative parts (matched rules)
and not for the imperative parts of the language. Finally, a user-specified trace
model leaves the entire tedious and error-prone process of setting up the trace
information correctly to the transformation designer.

Transformation Languages Lack Reuse Facilities. Transformation lan-
guages such as ATL and AGG provide the expressivity to overcome the het-
erogeneities identified in our examples. Nevertheless, they lack adequate reuse
facilities, which forces the transformation designer to respecify the resolution of
recurring heterogeneities over and over. Especially in complex scenarios (e.g.,
when generating new target elements, as in the first example, or when dealing
with unequal concept heterogeneities, as in the second example), the transforma-
tion designer must handle low-level intricacies of the transformation language.
In order to avoid this tedious and error-prone task, transformation languages
should provide idioms that resolve these structural heterogeneities, for instance,
predefined, parameterizable rules in ATL or in AGG. A fact that hinders the
provision of such predefined components is that transformation rules are based
on the specific types defined in the corresponding metamodels. Thus, a notion
of generic transformations which resembles the concept of templates in C++ or
generics in Java is required.

Lack of Inheritance Support Encourages Code Duplication. Inheri-
tance, which is heavily used in metamodels, supports the reuse of attribute and
reference definitions. Thus, when a mapping is specified between subclasses, then
it should be able to reuse attribute and reference mappings of mappings between
superclasses; i.e., inheritance between mappings should be supported. The same
holds true for transformation languages. Otherwise, duplicated mapping defini-
tions or transformation rules induce both, a bigger specification overhead and
maintenance problems in the future, as is the case in AGG.
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Mapping Tools Struggle with Function/Condition Definitions. Map-
ping tools have the main advantage of providing predefined components for the
resolution of heterogeneities, but the definition of functions and conditions poses
a major problem. Each mapping tool provides a specific basic set of components.
For instance, MapForce provides a library of low-level functions such as string
conversion functions. However, such a library is naturally never complete, which
leads to limitations in expressivity. Thus, incorporating an expressive language
with which the transformation designer is familiar could resolve this problem.

Mapping Tools Lack Adequate Extension Mechanisms. Since map-
ping tools struggle with resolving certain kinds of heterogeneity, an adequate
extension mechanism that allows addition of user-defined components should
be offered. MapForce supports user-defined components but only on the basis
of predefined ones. Although this enhances the scalability of the approach by
composing several low-level components, expressivity is not increased. In con-
trast, both AMW and MAFRA allow increasing expressivity by user-defined
components but require heavyweight programmatic extensions. In AMW, both,
the metamodel describing the set of predefined components and the transfor-
mation generating ATL code from a mapping specification must be extended.
MAFRA supports new components, but they must be coded manually in so-
called user-defined services.

Mapping Tools Lack Comprehensive Validation Support. A major ad-
vantage of describing model transformations at a conceptual level by means of
mapping tools is that comprehensive validations can be done at design time. To
verify that the components are configured correctly, structural validations exam-
ine the required input and output parameters and metamodel-based validations
check the interpretation of the mapped metamodels. For instance, a reference is
only mapped correctly if both its source and target class have also been mapped.
MapForce and MAFRA support only structural validations. AMW does not sup-
port validation at all, which results in potentially erroneous ATL code.

5 Related Work

Two threads of related work are considered: First, we compare our feature-based
classification to existing classifications. Second, we relate the mapping benchmark
to existing mapping benchmarks. We startwith examining the most closely related
area, model engineering, and then proceed to the more widely related areas of data
engineering and ontology engineering.

5.1 Heterogeneity Classifications

Model Engineering. Although model transformations, and thus the resolution
of heterogeneities between MMs, play a vital role in MDE, to the best of our knowl-
edge no dedicated survey exists that examines potential heterogeneities.

Data Engineering. In the area of data engineering, in contrast, extensive lit-
erature exists, over decades, highlighting various aspects of heterogeneities in the
context of database schemata. Batini et al. [2] presented a first classification of
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semantic and structural heterogeneities that arise when two different schemas are
integrated. Kim et al. [13] introduced a systematic classification of possible vari-
ations in an SQL statement, detailing Table-Table and Attribute-Attribute het-
erogeneities (e.g., with respect to cardinalities). The classification of Kashyap et
al. [12] provides a broad overview of potential heterogeneities in a data integra-
tion scenario with semantic heterogeneities and conflicts that occurr between the
same modeling concepts. Blaha et al. [4] described patterns that resolve syntac-
tic heterogeneities, both between the same and different MM concepts. Finally,
the classification of Härder [9] and Legler [15] presented a systematic approach to
attribute mappings by combining attribute correspondences with potential cardi-
nalities.

OntologyEngineering. In ontology engineering, both pattern collections and
classifications exist. A pattern collection by Scharffe et al. in [17] presented corre-
spondence patterns for ontology alignments, but on a rather coarse-grained level.
For instance, their conditional patterns dealing with attribute differences and trans-
formation patterns deal only vaguely with different metamodeling concept het-
erogeneities. Visser et al. [20] and Klein [14] provided classifications in the form
of comprehensive lists of semantic heterogeneities but neglected syntactic hetero-
geneities.

In summary, although there are several classifications available, none focuses
explicitly on the domain of MDE. Since the benchmarks in the area of data en-
gineering base on the relational data model, they do not include potential het-
erogeneities stemming from the explicit concepts of references and inheritance in
object-oriented metamodels. Although in ontology engineering references and in-
heritance are explicit concepts, their interest is to resolve semantic heterogeneities
rather than syntactic heterogeneities. Finally, current classifications fail to expli-
cate how types of heterogeneity relate to each other. We formalized these relation-
ships in a feature model.

5.2 Mapping Benchmarks

Model Engineering. To the best of our knowledge, no benchmark for mapping
systems in the area of MDE exists. However, a benchmark for evaluating the exe-
cution performance of graph transformations [19] has been proposed.

Data Engineering. In the area of data engineering Alexe et. al. [1] proposed
a first benchmark for mapping systems that focuses on resolving syntactic and se-
mantic heterogeneities in information integration. Although the benchmark pro-
vides a first set of mapping scenarios, it remains unclear how the scenarios were
obtained and whether they provide full coverage in terms of expressivity. Even
though XQuery expressions are given to define the semantics, some of the XQuery
functions assume the availability of custom functions which are not provided. Since
RHS models are also not given, it is hard to know the actual outcome of the trans-
formation. A further benchmark called THALIA was presented by Hammer et. al
[8], which provides researchers with a collection of twelve benchmark queries ex-
pressed in XQuery. They focus on the resolution of syntactic and semantic hetero-
geneities in an information integration scenario. For each query a so-called
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reference schema (i.e., global schema) and a challenge schema (i.e., the schema
to be integrated) are provided together with corresponding instances. Although
the authors claim to provide a systematic classification of semantic and syntactic
heterogeneities resulting in the queries, the rational behind the systematic is not
explained further.

Ontology Engineering. In ontology engineering, no dedicated mapping
benchmark exists. However, there have been efforts to evaluate matching tools,
i.e., tools for automatically discovering alignments between ontologies, which re-
sulted in an ontology matching benchmark7. Although the goal of the evaluation
is different, the examples could also be of interest for a dedicated mapping bench-
mark.

In summary, although both benchmarks from the area of data engineering pro-
vide useful scenarios in the context of XML, they do not provide a systematic clas-
sification that results in a systematic set of benchmark examples for evaluating the
expressivity of a mapping tool.

6 Conclusion and Future Work

In this paper we have introduced a systematic classification of heterogeneities be-
tween Ecore-based MMs. This classification can also be applied to other domains,
that use the same core concepts on which this classification is based, i.e., classes,
attributes, references and inheritance. Furthermore, three of the proposed bench-
mark examples were used to evaluate mapping tools from diverse engineering do-
mains and to compare solutions realized with the transformation languages ATL
and AGG. Further work includes the completion of the benchmark examples to
fully cover the classification and the evaluation of further approaches.
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19. Varro, G., Schürr, A., Varro, D.: Benchmarking for graph transformation. In: Proc.
of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing
(VLHCC 2005), pp. 79–88 (2005)

20. Visser, P.R.S., Jones, D.M., Bench-Capon, T.J.M., Shave, M.J.R.: An analysis of
ontological mismatches: Heterogeneity versus interoperability. In: Proc. of AAAI
1997 Spring Symposium on Ontological Engineering, pp. 164–172 (1997)

21. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J.,
Schwinger, W.: Surviving the Heterogeneity Jungle with Composite Mapping Op-
erators. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 260–275.
Springer, Heidelberg (2010)

22. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,
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Abstract. Software development often involves a set of models defined
in different metamodels, each model capturing a specific view of the sys-
tem. We call this set a multimodel, and its elements partial or local mod-
els. Since partial models overlap, they may be consistent or inconsistent
wrt. a set of global constraints.

We present a framework for specifying overlaps between partial models
and defining their global consistency. An advantage of the framework is
that heterogeneous consistency checking is reduced to the homogeneous
case yet merging partial metamodels into one global metamodel is not
needed. We illustrate the framework with examples and sketch its formal
semantics based on category theory.

1 Introduction

Fig. 1. Three globally in-
consistent models

Software development often involves a set of het-
erogeneous models, such as use cases, process mod-
els, UML design models, and code. These models
are defined by different metamodels, and are often
built by different teams, but collectively represent
a single system. Due to possible overlaps between
models, individually consistent models may be glob-
ally inconsistent if taken together. Many existing
approaches focus on checking consistency of a single
model or a pair of models [1]. However, individual
consistency or pairwise consistency do not guaran-
tee global consistency. For example, Fig. 1 shows
three UML class diagrams D1,2,3, where the classes
connected by a dashed line are considered to be the same class (even though
named differently). Each of the three diagrams is consistent, and each pair of
them is consistent, but taken together the three diagrams are inconsistent: there
is a cycle in the inheritance chain.

The example shows two phases in checking global consistency. First, we need
to specify the models’ overlap. For models like code and UML class diagrams
extracted from code, we may know their overlap by matching the elements by
name. But for models in the conceptual stage, we cannot deduce their overlap
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automatically. For example, an entity “Person” created by a business analyst
and a table “Employee” existing in a legacy database may refer to the same

Order

Online Offline

D1

Order
type: {online,offline}

D2

Fig. 2. Indirectcor-
respondence

concept despite their different names. Moreover, there are
cases when elements in different models are related but their
relationship cannot be specified by direct linking and we
need something more intelligent. For example, Fig. 2 shows
two models that present basically the same information but
structure it differently. Whatever means are used for speci-
fying the overlap, in the second phase we need to check the
global consistency of the system (= models + overlap).

Sabezadeh et al.[2] proposed to check global consistency
of homogeneous models by their merging. The models’ over-
lap is specified by a correspondence diagram: a set of aux-
iliary models and mappings “in-between” the local model,
which declare some elements in different local models as be-
ing actually the same. Then all local models are merged into one model modulo
the correspondence, i.e., elements declared to be the same in the correspondence
diagram become one element. Finally, consistency of the merged model is checked
against the constraints declared in the metamodel. Thus, verifying global consis-
tency amounts to checking consistency of a single model. However, the approach
was developed for the case of homogeneous models only, and indirect overlaps
(like shown in Fig. 2) were not considered.

The goal of the paper is to adopt the consistency-checking-by-merging (CCM)
idea for the heterogeneous situation. A straightforward solution could be, first,
to merge all involved metamodels so that all local models become instances of the
same global metamodel; then we can merge these instances and check the result
wrt. the constraints in the global metamodel. Though theoretically possible, in
practice this approach leads to dealing with huge models and metamodels result-
ing from the merge, which is cumbersome and not effective. We present another
approach in which merging metamodels is significantly reduced to an unavoid-
able minimum, and merging models is reduced to only merging their relevant
parts. Briefly, we find common views between metamodels, project related mod-
els to spaces of instances (overlaps) determined by those views, and then apply
the CCM approach to each of the homogeneous sets of projections.

Realization of the approach requires several challenging issues to be solved:
type-safe model matching, specification of indirect overlap between metamodels,
inter-metamodel constraints, and constraints over the entire schema of metamod-
els and their overlaps. We will discuss these issues in more detail in Section 2.2
after we briefly outline the basics of CCM-approach in Section 2.1. Section 3
describes our main techniques with simple examples. In Section 4 we abstract
the examples and sketch a much more general framework. Section 5 presents a
brief survey of approaches to heterogeneous multimodeling, and highlights the
advantages of our framework. Section 6 concludes.

The present paper is an extended version of our MDI’2010 Workshop paper
[3]. It presents a new issue of consistency between correspondence spans, and a
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Fig. 3. Graph representation of a UML class diagram

new survey of approaches to heterogeneous multimodeling. Description of our
formal framework is omitted due to space limits but Section 4 presents a rough
sketch of the ideas.

2 From Homo- to Heterogeneous Multimodeling

2.1 Background: Homogeneous Overlap and Consistency

We briefly review the basics of the CCM-approach, and also show how to manage
conflicts between values.

Software models are typed graphs. We follow the approach to metamod-
eling developed by the graph transformation community, and treat models as
typed graphs. A metamodel is a pair M = (GM , CM ) with GM a graph and
CM a set of constraints. A model (M ’s instance) is a graph typed over M , i.e.,
a pair D = (GD, tD) with GD a graph (typically much bigger than GM ) and
tD : GD → GM a graph mapping (which preserves the incidence relationship be-
tween arrows and nodes) such that all constraints in set CM are satisfied.

For example, Fig. 3 shows how to represent a UML class diagram D as a typed
graph tD : GD → GM with GM being the graph representing a simple metamodel
mmD for class diagrams. Classes, attributes, primitive values and generalization
relations are represented as nodes; their relationships are captured by arrows.
The value of mapping tD at element e ∈ GD is given after colon, e.g., expression
“10:Class” means tD(10)=Class for node 10; identifiers of arrows are omitted
but their types are kept.

Any UML class diagram can be represented by a typed graph as above but
not the converse. To ensure that a typed graph is a correct diagram, constraints
must be declared and added to the metamodel. Examples of constraints are (C1)
a class has only one name; (C2) a class has only one parent class; (C3) classes
with stereotype ’singleton’ are instantiated with at most one object.

Matching models via spans. Suppose two business analysts have indepen-
dently built two UML diagrams, D1 and D2 in Figure 4. To check their global
consistency, we first need to specify overlap between the diagrams. Suppose we
know that class ’OnlineOrder’ in diagram D1 and class ’Order’ in D2 refer to
the same class of objects, and their ’price’ attributes refer to the same attribute.
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Fig. 4. Homogeneous Model Matching. Frames of models provided by the user are
solid, those computed automatically are dashed; user-defined mappings are shaded,
computed mappings are blank.

We could write the following two informal equations: (E1) OnlineOrder@D1 =
Order@D2; (E2) price@D1 = price@D2.

These equations conform to the type system of class diagrams: we match a
class to a class and an attribute to an attribute. Hence, we can represent the set
of equations by a class diagram D0 shown in the middle of Fig. 4 equipped with
two functions fi : D0 → Di, i = 1, 2, mapping “equations” to their left and right
terms resp. Formally, f1 and f2 are graph mappings which map nodes to nodes
and arrows to arrows so that their incidence is preserved. The question mark
indicates that the name of the class is unknown and the corresponding Name-slot
is empty (see the fragment in the top-right corner of the figure). Thus, equation
(E1) encodes two formal equations (for classes and Name-slots) and (E2) gives
three (equating, in addition, two string values).

We call a pair of mappings with a common source a (binary) span. The source
(model D0) is called the head of the span, mappings f1, f2 are legs and their tar-
gets (models D1, D2) are feet (these names are borrowed from category theory).
Thus, an overlap of two homogeneous models is specified by a correspondence
span over the same metamodel; for n models we need an n-ary span with n legs
and feet. Note that the span pattern allows us to record inconsistencies and keep
them for future resolution according to the living with inconsistencies paradigm
[4]. A precise formalization and details can be found in [5, Section 3].

Merging and conflicts. After specifying the overlap by a correspondence span,
we merge two models into one and check whether it satisfies all constraints
declared in the metamodel.

The merge procedure consists of two parts. We first disjointly merge the
graphs underlying the models, and then glue together elements declared to be
the same by the span. The result is shown as diagram DΣ in Fig. 4, in which
the merged graph has five rather than six class nodes because of gluing. Class
named {OnlineOrder,Order}has one Name-slot because the two local slots were
glued, but this slot holds two names since they are not (and cannot be) equated
in the head. Besides graph DΣ, merging also produces two graph mappings
gi : Di → DΣ that show how the local models are embedded into the merge.
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Fig. 5. Motivating example: mmXX is the metamodel of model xx

The merge procedure is fully automatic and can be precisely formalized in
terms of the colimit operation developed in category theory. A detailed expla-
nation and examples of how colimit works can be found in [6] or [5]. It follows
from general properties of colimit that the merged graph GDΣ is correctly typed
over graph GM (with M denoting the metamodel of class diagrams).

To make reading figures like Fig. 4 easier, we adopt the following notation.
Frames of models provided by the user, and those computed automatically, are
solid and dashed resp; user-defined mappings are shaded whereas computed map-
pings are blank.

After the merged graph is built, we can check whether it satisfies all con-
straints declared in the metamodel (say, with a checking tool). In our example,
we find that constraints (C1) and (C2) specified above are violated.

2.2 The Problems

Existing CCM-approaches [2] handle the homogeneous case well, but software
models are often heterogeneous. For example, Fig. 5 presents three UML models
of the same system developed independently by three teams: a class diagram cd,
a sequence diagram sd, and a statechart sc (with their simplified metamodels).
Since the models are developed independently, we need to specify their overlap
and check the global consistency. However, the heterogeneity of the models gives
rise to several new problems.

A) Type-safety is important for overlap specification. In the homogeneous
situation, we allow only elements of the same type to be matched to ensure
type safety. However, in heterogeneous cases different models are declared in
different metamodels, and hence their elements have disjoint types. We need a
new method to ensure type-safety in overlap specifications.

B) Indirect overlap often occurs in heterogeneous multimodeling. For example,
in class diagrams operations are linked to their owning classes. Such linking
also exists but is implicit in sequence diagrams (through consecutive linking
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Fig. 6. Matching basic and derived meta-elements

Classes, Objects, Lifelines, Messages, and MsgTypes). Hence, we cannot
use direct matching to describe overlap between sets of Class-Operation links in
class diagrams and Class-MsgType links in sequence diagrams.

C) Inter-metamodel constraints appear in heterogeneous multimodeling. For
example, we may require that the interaction described by the sequence dia-
gram should conform to the state machine described by the state chart. Such
constraints regulate interaction of partial models, and hence are not captured by
metamodels of any of them. Such constraints are inherently global and should
be explicitly specified.

D) Metamodel inter-relations are crucial for heterogeneous multimodeling.
“The metamodel” of a heterogeneous multimodel is a system of metamodels to-
gether with their relationships rather than a discrete set of isolated metamodels.
We need a language for specifying systems of interacting metamodels.

3 Heterogeneous Overlap and Consistency by Examples

In this section we incrementally introduce our approach. We will consider very
simple examples addressing the four challenges.

3.1 Type-Safety and Indirect Overlap

To ensure type-safety in heterogeneous case, we first need to know which types
are safe to be matched. We get this information by asking the user to specify the
overlap between metamodels first. For example, suppose in Fig. 5 we know that
class Order together with methods addItem, setSettled in cd refer to the same
elements as class Order together with message types addItem, settled in sd.
To match these elements, we first match their metamodels, mmCD and mmSD,
as shown in Fig. 6. Since metamodels are graphs, we can match them as homo-
geneous models. We state that metaclasses Class@mmCD and Class@mmSD
refer to the same concepts, and Operation@mmCD and MsgType@mmSD are
also “the same”.

However, as we described in the previous section, there is also an indirect
overlap between the metamodels: operations and message types are both related
to classes, but operations are directly related by an association while message
types are indirectly related via four associations. To declare this indirect overlap,
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Fig. 7. Matching basic and derived elements (see Fig. 6 for view definitions)

we augment metamodel mmSD with a new element mtp (read “messageType”)
and specify how it is derived (e.g., in OCL):
context Class
inv: self.mtp=self.objects.lifeline.messages.type.

Now we declare the sameness of associations oper@mmCD and mtp@mmSD
by placing association act into the head of the span as shown in Fig. 6, and
defining m1(act) = oper, m2(act) = /mtp. The indirect overlap in Fig. 2 can
be specified in a similar way. We first augment diagram D2 with two derived
subclasses of class Order (defined by the respective two queries), and then declare
their sameness with the corresponding classes in diagram D1.

After we have the overlap of metamodels, we can match models type-safely.
Consider again the span we declared. We may consider the head of the span
mmCA as a view on both models, and the two legs m1 and m2 as view defini-
tions. Then the view definitions can be executed on models. For example, view
definition m1 : mmCA → mmCD can be executed for any instance of mmCD
(i.e., for any class diagram) by extracting its mmCA-portion and its respective
retyping. A concrete view execution is shown in Fig. 7, where class diagram cd
shown in left upper corner is translated into diagram cd′ typed over metamodel
mmCA. We write cd′ = getm1(cd) with getm1 denoting the operation of view
execution (getView) determined by view definition m1 (in figures we omit the
superscript). We will also say that model cd is projected into the overlap space
mmCA, and call model cd′ the mmCA-projection of cd. Note also that getView
not only produces cd′ but also the traceability mappings m1 : cd′ → cd.

Similarly, sequence diagram sd in the top right corner of Fig. 7 is translated
into diagram sd′ = getm2(sd) also typed over mmCA, along with its traceability
mapping m2 . (This translation involves execution of the OCL-query specified
above). Since both views are instances of the same metamodel, we can type-
safely build a span (ca1, f1, f2) to match them and check consistency. This span
and the corresponding merge (colimit) are shown in the middle part of Fig. 7,
and the two models are consistent with respect to the constraints in mmCA.
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Fig. 8. Specifying inter-metamodel constraints

3.2 Inter-metamodel Constraints

So far we only checked the constraints declared in the head of the correspon-
dence span (mmCA in our examples). These constraints are common for both
feet metamodels (mmCD and mmSD). However, there may be important con-
straints residing in neither of the feet metamodels. For example, traces of actions
exhibited by a sequence diagram must conform to the state machine specified by
the corresponding statechart. We will denote this constraint by ttt�smsmsm meaning
“Traces are to conform to the StateMachine”. Since constraint ttt�smsmsm involves
elements of both metamodels, mmSD and mmSC, it cannot be declared in either
of them. Hence, a new metamodel in which ttt�smsmsm could be specified has to be
built. Below we first show how to build such a metamodel; then we show how
to project partial models sd and sc to the space of this metamodel instances, in
which projections can be matched, merged and checked against ttt�smsmsm.

To declare ttt�smsmsm, we need a metamodel encompassing metaclasses for Classes,
Traces (sequences of actions), StateMachines, and related notions: States, Tran-
sitions, Events as specified by metamodel mmCTrSM in the middle of Fig. 8.
The upper half of this metamodel is “taken” from the sequence diagram meta-
model mmSD as specified by mapping m1 in Fig. 8. Note that m1 maps class
Trace@mmCTrSM to derived class /Trace@mmSD, whose instances are
sequences of actions described by the sequence diagram and hence can be com-
puted by a suitable query. The lower half of mmCTrSM is taken from the
statechart metamodel mmSC as specified by mapping m2 in Fig. 8 (and we
again use derived elements). Having built metamodel mmCTrSM, we declare in
it the constraint ttt�smsmsm with its intended semantics. We call the configuration
(m1, mmCTrSM, m2) a partial span because mappings m1 and m2 are partially
defined (on the upper and lower halves of mmCTrSM resp.). In Fig. 8 and other
figures below, a semi-arrow head indicates partiality of the mapping.

The next step is to project models sd and sc to the metamodel mmCTrSM.
We cannot directly execute view definitions m1, m2 because they are partial,
but we can execute them in three steps.
Step 0. We explicitly specify the domains mmCTr and mmCSM of mappings
mj on which they become totally defined mappings m!j (j = 1, 2; see Fig. 9);
inclusion mappings ij embed the domains into the head of the span.
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Fig. 9. Verifying inter-metamodel constraints

Step 1. Total view definitions m!j are executed for models sd and sc and produce
views sd∗ and sc∗ over metamodels mmCTr and mmCSM resp.
Step 2. As the two latter metamodels are included into mmCTrSM, we may con-
sider their instances as “partial” instances of mmCTrSM. Formally, we compose
typing mappings of models sd∗, sc∗ with inclusion mappings i1, i2 and get new
typing mappings into mmCTrSM (marked by ∗ in Fig. 9).

The three steps are performed automatically and may be hidden from the user,
for whom operations getm1 and getm2 appear as if mappings mj were ordinary
total view definitions.

Now we have two models sd∗ and sc∗ over the same metamodel mmCTrSM.
To finish consistency checking, the user must match the models and build a cor-
respondence span, say, (f1, ca2, f2). The head is denoted by ca2 because it is an
instance of metamodel mmCA built in Section 4.2 (it can be formally proved).
After that, models are automatically merged modulo the span and checks the
result against the constraints in mmCTrSM, including the inter-metamodel con-
straint ttt�smsmsm. The right half of Fig. 9 specifies the entire procedure: data provided
by the user are shown with bullet nodes and solid arrows (and are black), data
automatically computed are shown with blank nodes and dashed arrows (and
are blue). Note that span (f1, ca2, f2) is a part of the multimodel.

3.3 Metamodel Inter-relations

We consider our full example with three models, cd, sd and sc.
First we build a ternary span (mmCA, m1, m2, m3) specifying “the sameness”

of the concepts of operation, message and transition in the respective metamodels
as shown in Fig. 10(a); superscript ’+’ near a target metamodel indicates that
it is augmented with derived elements defined by queries. Ternary span mmCA
is a straightforward extension of binary span mmCA built in Section 3.1 with a
new leg towards mmSC. Then we turn to models. We project the three models
to head mmCA (see Fig. 10(b)), match projections ca′, sd′, sc′ with a ternary
correspondence span ca3, merge projections modulo ca3, and finally check the
merge against the constraints declared in mmCA.
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Fig. 10. Consistency checking of the example in Fig. 5

In a similar way we check consistency of models sd and sc wrt. the inter-model
constraint ttt�smsmsm declared in mmCTrSM as explained above (span ca2 describes
correspondences between projections sc∗ and sd∗). However, now a new aspect of
global consistency checking appears: we need to check that model correspondence
spans ca3 and ca2 are consistent between themselves.

An important property of the metamodel schema in Fig. 10(a) is commuta-
tivity of the two triangle diagrams (denoted by “=” labels):
(=)m m6; m4 = m2 and m6; m5 = m3.

Because view execution and retyping are compatible with metamodel mapping
composition, we have commutativity for view execution mappings as well:
(=)get getm4;getm6=getm2 and getm5;getm6=getm3.
Hence, the mmCA-views of xx∗-models must be equal to the respective xx′-
models. Now we can check the consistency between spans. We first derive a
binary projection ca32 of the ternary span ca3, which relates sd′ and sc′. Then
we check whether the mmCA-view of the span ca2 is equal to ca32.

The simple example above shows how local model interaction is governed by
the multimodel schema specifying metamodels’ inter-relationships. The example
also demonstrates that N-ary multimodeling may exhibit sufficiently complex
metamodels schemas bearing their own constraints like commutativity.

4 Making Multimodeling Precise: A General Framework

A key message of the paper is that a multimodel is not just a set of models.
A multimodel is a set of base models and a structure of auxiliary models and
model mappings specifying correspondences between base models. For instance,
the multimodel of our example in the previous section consists of three models
(cd,sd,sc) and two inter-model spans (ca3, ca2) shown in Fig. 10(b). Respectively,
the metamodel of a multimodel is a graph consisting of base metamodels and a
system of spans specifying their overlap like shown in Fig. 10(a); we call it the
metamodel schema.
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In a nutshell, a heterogeneous multimodel is a pair (A, C) with A = {A1:M1..
..Ak:Mk} a family of base models Ai over their metamodels Mi, and C = {C1:O1..
..Cl:Ol} a system of model correspondence spans Cj over a system of (heads of)
spans Oj specifying metamodel overlap. In other words, the correspondence part
of a multimodel is a network of auxiliary models and model mappings in-between
models Ai, which resides over the respective network of auxiliary metamodels
and mappings in-between metamodels Mi. The two-level structure of the overlap
specification is essential: models may overlap only via paths declared in the
metamodel schema.

Our formal framework [7] provides a detailed description of the sketch above.
The three basic ingredients are (a) metamodels and their mappings, (b) models
and their mappings, and (c) a mechanism of model translation from one meta-
model to another. A (minimal in a sense) mathematical framework integrating
these constructs turns out close to the institution theory [8] — a framework for
model translation developed in mathematical logic and model theory. In more
detail, the concept of abstract multimodeling framework described in [7] is a vari-
ant of the so called liberal institutions, which have two translation mechanisms
corresponding to our view computation and retyping. The framework is fairly
abstract: no details are given on what conformance of a model to a metamodel
is, or how the view mechanism is realized. Nevertheless, the notions of hetero-
geneous multimodel and its consistency can be well defined and give rise to the
corresponding algorithm for global consistency checking.

To bridge the gap between the abstract framework and practical applications,
the notion of a concrete multimodeling framework is also defined in [7]. For a
concrete framework, conformance of models to metamodels is realized via typ-
ing mappings (and retyping plainly amounts to mapping composition), and the
view mechanism is realized via an algebra of query operations. A wide class of
multimodeling systems appearing in practice are instances of concrete frame-
works. Any concrete framework gives rise to an abstract framework, and thus
the general algorithm of global consistency checking can be applied.

5 Related Work and Discussion

Approaches to heterogeneous multimodeling can be roughly divided into global
and local. For the global approaches, heterogeneity is managed by relating all lo-
cal models to one global model, and checking consistency wrt. this global model.
In contrast, there is no global model in local approaches (including ours). An-
other crucial dimension of multimodeling is how correspondences between local
models and their inter-relationships are specified. Below the space of existing
approaches is discussed in more detail.

Global approaches. We distinguish two main types.
1) Monitoring satisfiability of consistency rules. This is the most di-

rect global approach to consistency checking. All local models are considered as
partial instances of some all-embracing global model given a priori, e.g., System
model in [9] or the entire UML model (if UML modeling is treated as suggested
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by OMG). Inter-model consistency is given by rules specified in a special lan-
guage “understanding” all local models. For this goal, local models are translated
into an expressive common formalism, e.g., FOL in the well-known Viewpoints
framework [10], XMI in xlinkit [11], description logic in [12], and again FOL in
Egyed’s framework [13]. Configuration of model overlap (which may be very in-
tricate as our examples show) is thus flattened and hidden in arrays of formulas.
As a result, the approaches mainly handle cases with simple overlap structures,
e.g., binary overlaps with elements matched by names.

2) Consistency checking via merging. Close relations between consis-
tency and model merging are noticed in [14] for behavioral, and in [2] for struc-
tural modeling. The global model is not given a priori but is computed by
merging all local models modulo their correspondences; the latter must be ex-
plicitly specified. Much work in this direction is done in databases in the context
of view integration, where they work mainly with enhanced ER-diagrams [15] or
similar but more expressive formalisms [16]. A serious limitation of this work is
that only the homogeneous case is considered because so far it was unclear how
to merge heterogeneous models.

To manage heterogeneity, local models can be translated into an a priori given
common expressive formalism (e.g., generalized sketches [17] or graph transfor-
mation systems [18]), where they are merged. A more intelligent approach is
to build a minimal common formalism by merging together all local metamod-
els. Different versions of this idea have been elaborated in the area of model
composition [19]; a survey can be found in [20]. Of course, composition of local
metamodels requires correspondences between them to be explicitly specified.
Usually only binary cases are considered, but [17,18,2] address also the general
N-ary case by using the colimit operation.

Local approaches. Although the idea of local consistency checking seems intu-
itive, we are not aware of its practical realization. A partial reason for this may
be that an abstract general formulation of the framework is not easy (compare
our concrete examples in Section 4 and their abstract description in [7]). The
problem is currently being investigated by the Algebraic Specification commu-
nity within the institution framework [8]. Models are translated into theories in
suitable institutions, and relationships between the latter are specified by spans
(or cospans) of institution comorphisms (resp., morphisms) [21]. The commu-
nity is experimenting with different types of structures specifying institution
overlaps, and a recent paper [22] uses mixed pairs (comorphism, morphism) to
relate two institutions. It is not clear how this mixed setting can be extended to
the multi-ary situation.

A fundamental distinction between these and our frameworks is that they
do not consider derived elements in correspondence specifications. It makes the
theory much simpler but much less expressive (and inapplicable to practically
interesting situations we considered in the paper). Another fundamental dis-
tinction is that they consider local models consistent if their projections to the
overlap are equal (or one is a subset of the other), but matches between projec-
tions are not considered. In contrast, in our framework model matches are an
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integral part of the multimodel. Other distinctions are (a) they consider only
binary correspondences, (b) do not work with inter-metamodel constraints, and
(c) treat consistency semantically (the set of instances is not empty) rather
than syntactically (as in our framework). However, if the institution satisfies the
corresponding completeness theorem, syntactic and semantic consistencies coin-
cide. Also, we do not translate metamodels into theories: for us metamodels are
theories, and model translation is given by the view execution mechanism.

Correspondences via spans. For local and global-2 approaches, explicit spec-
ification of inter-model correspondences is a central issue, and different types of
notation and techniques were developed [23]. A distinctive feature of our ap-
proach is that the set of correspondences is reified as a special model endowed
with projection mappings — a span. This is a standard categorical idea, which
was repeatedly employed in homogeneous multimodeling frameworks based on
category theory, eg, [24,17,18,6,25]. Independently, the same idea of reifying
correspondences by a model was discovered in work on model management in
databases [26,16].

The most difficult issue is indirect correspondences, when sets of elements in
different models are related but their relationships cannot be specified by equat-
ing the elements (e.g., Fig. 2). Such correspondences are usually specified by
correspondence rules [23] or expressions [26] attached to nodes reifying corre-
spondences. When such annotated spans are composed, it is not clear how to
compose the rules — the importance and difficulty of this problem was stressed
in [26]. In our approach, the problem is solved with specifying indirect correspon-
dences by equations involving derived elements, then composition amounts to
term substitution (see [5,27] for examples and details). Moreover, the use of de-
rived elements allows us to specify structural conflicts between models uniformly
by equations; e.g., all structural conflicts considered in [16] can be managed in
this way [28].

6 Conclusion

The paper describes a general approach to global consistency checking of hetero-
geneous multimodels. It is based on finding common views between metamodels
of the models involved, projecting all models to these views, merging projec-
tions and checking the result against the constraints specified in the view. The
approach gives rise to a novel framework for heterogeneous multimodeling, in
which a network of interrelated metamodels — the metamodel schema — plays
the central role.

The framework has a number of advantages. First, heterogeneous consis-
tency checking is reduced to homogeneous with a minimal amount of metamodel
merging; the latter is unavoidable if we want to treat inter-metamodel constraints
yet we work as locally as possible. Second, the framework is applicable to a wide
class of models and metamodels satisfying not too restrictive conditions. Third
is the adaptability of the framework to the living with inconsistencies paradigm
[4]: conflicts between models can be recorded in the heads of the correspondence
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spans and resolved later. Forth, heterogeneous multimodeling becomes directly
related to the institution theory and hence to a source of important mathemat-
ical results about interrelation of logical theories and their models.

However, the approach still needs practical, and in part also theoretical, vali-
dation. On the practical side, the main question is how effectively a multimodel-
ing tool based on the framework could be implemented. On the theoretical side,
the cornerstone of the approach is a default assumption that our “as local as
possible” consistency checking is equivalent to consistency checking via building
a global metamodel (global-2 approaches). There are strong formal arguments
justifying this assumption but an accurate proof is still to be completed.

Another important theoretical line of future work is to develop a useful classi-
fication of heterogeneous multimodels. We may classify multimodels by the type
of their metamodel schema: whether it is a plain collection of spans, or there
are spans over spans over spans, or perhaps even more complex configurations.
Types of mappings in the metamodel schema are also essential: whether they are
plain projections or complex views involving non-trivial queries. Complexity of
queries involved in the metamodel schema of a multimodel is its important prop-
erty, and many useful results can be found in the database literature. Defining
multimodeling in abstract mathematical terms [7] would allow useful interaction
of the two fields.
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1 Introduction

In general, software artifacts and applications are subject to many kinds of
changes, which range from technical changes due to rapidly evolving technol-
ogy platforms, to modifications in the applications themselves due to the natural
evolution of the businesses supported by those software applications. These mod-
ifications include changes at all levels, from requirements through architecture
and design, to source code, documentation and test suites. They typically affect
various kinds of models including data models, behavioral models, domain mod-
els, source code models or goal models. Coping with and managing the changes
that accompany the evolution of software assets is therefore an essential aspect
of Software Engineering as a discipline.

In this context, models can play an important role. They can help and guide
software evolution and can enforce and reduce critical risks and important re-
sources (e.g., costs, personnel, time) involved in software evolution, by employing
high-level abstractions. Models can thus help to direct evolution. Model-Driven
Engineering (MDE) is an approach to software design and development in which
models are the primary artifacts, and play a key role. The major objective of
MDE is to increase productivity and reduce time-to-market by raising the level
of abstraction and using concepts closer to the problem domain at hand, rather
than those offered by programming languages. Models represent domain-specific
concepts and conform to metamodels. A core task of MDE is the manipulation
and transformation of models. Manipulating and transforming models can be
very useful to manage software evolution. The objective is to enforce and reduce
critical risks and important costs involved in software evolution, by employing
high-level abstractions and by considering several facets.

Similar to traditional software engineering approaches, MDE is also suscep-
tible to evolution. The MDE context poses unique challenges which require the
conception and development of novel techniques, dedicated approaches, and ad-
vanced tool support. In fact, there is an increasing need for more research in-
vestigating disciplined techniques and engineering tools to support a wide range
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of model evolution activities, including model-driven software evolution, model
differencing, model comparison, model refactoring, model inconsistency manage-
ment, model versioning and merging, and (co-)evolution of models.

The different dimensions of evolution in the MDE context make the problem
intrinsically difficult. This is because modifications can reflect coherent adapta-
tions of correlated artifacts at several layers of the metamodeling architecture
and at several levels of abstractions. For example, some well-formed rules can be
invalidated when a metamodel evolves. The same happens with the associated
model transformations. Furthermore, model adaptations should be propagated
to artifacts interconnected by means of model transformations. Finally, evolution
of model transformations should be reflected in both source and target models.
In addition, the exploitation of differences is an appropriate solution for version
management, because in general the complete system model is far larger than
the modifications that occur from one version to another.

Furthermore, there is a substantial difference between the modeling of evo-
lution and the evolution of models. There are plenty of works on the former
topic, while the focus of this workshop is on the evolution of models, hence its
name: “Models and Evolution” (ME). ME 2010 was the result of merging two
successful series of international yearly workshops that were in existence since
2007 (for the MoDSE workshop), and 2008 (for the MCCM workshop).

2 Workshop Contributions

In addition to the content-wise objectives described above, one of the main goals
of the workshop series is to provide an open discussion space where the MDE
and software evolution communities can meet on a yearly basis. As usual we also
encouraged young researchers to participate and submit their work to get into
contact with this growing community.

The full-day workshop included four thematic sessions which we used to group
the presentations and focus the discussions:
Semantics

– A Manifesto for Semantic Model Differencing,
by Shahar Maoz, Jan Ringert and Bernhard Rumpe

– Towards Semantics-Preserving Model Migration,
by Markus Herrmannsdoerfer and Maximilian Koegel

– Documenting Stepwise Model Refinement using Executable De-
sign Decisions,
by Matthias Biehl

Model merging

– Representation and Visualization of Merge Conflicts with UML
Profiles,
by Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, Manuel
Wimmer, Horst Kargl and Gerti Kappel
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– Decoupling Operation-Based Merging from Model Change Record-
ing,
by Stephen Barrett, Patrice Chalin and Greg Butler

– Merging Model Refactorings - An Empirical Study,
by Maximilian Koegel, Markus Herrmannsdoerfer, Otto von Wesendonk and
Jonas Helming

– The Case for Batch Merge of Models Issues and Challenges,
by Lars Bendix, Maximilian Koegel and Antonio Martini

Model Inconsistencies, Model Differences

– Automated Planning for Resolving Model Inconsistencies: A Scal-
ability Study,
by Jorge Pinna Puissant, Ragnhild Van Der Straeten and Tom Mens

– RCVDiff - a stand-alone tool for representation, calculation and
visualization of model differences ,
by Zvezdan Protic, Mark van den Brand and Tom Verhoeff

Meta models and transformations

– Semi-Automated Correction of Model-to-Text Transformations,
by Gábor Guta, András Pataricza, Wolfgang Schreiner and Dániel Varró

– Transformation Migration After Metamodel Evolution,
by David Méndez, Anne Etien, Alexis Muller and Rubby Casallas

– Towards Metamodel Evolution of EMF Models with Henshin,
by Stefan Jurack and Florian Mantz

– Comparing Model-Metamodel and Transformation-Metamodel Co-
evolution,
by Louis Rose, Anne Etien, David Méndez, Dimitrios Kolovos, Richard Paige
and Fiona Polack

As a tradition in the workshop series we always organise a plenary debate. The
basis for these debates comes from the questions and challenges provided by the
authors, program chairs, and participants. Below we briefly summarize the ones
that were used to guide and fuel this year’s discussion(s):

– Why don’t we focus more on proactive support for model evolution (possibly
facilitated and backed up by a MDE process), instead of fixing problems after
they occur?

– How to deal with the semantic aspect of model evolution?
– How to preserve model semantics when evolving models, meta-models, trans-

formations, ...?
– When to use semantic model differencing instead of syntactic model differ-

encing?
– How to manage model-metamodel co-evolution and transformation-

metamodel co-evolution? And what about the link between both?
– Isn’t it time to move towards a unification of model evolution approaches

(terminology, frameworks, ...)? And how would this impact/advance our re-
search (and collaborations)?
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– There is still a lot of work to be done in resolving the problems detected when
evolving models. Knowing the problem is one thing, resolving it another?

– Wouldn’t a benchmarking methodology/tool be benificial for comparing our
different approaches?

– Which types of models do we want to consider in ME research (e.g. physical
models, process models, domain specific models, design models, hardware
models, ...)?

– What are the limitations of evolution approaches with respect to the kinds
of models they can address and is it possible to make these more generic?

– How to make models and transformations more resilient to changes in the
meta-models? Is there a way to encapsulate changes (e.g. in a first class
artifact) and apply them to all impacted artifacts?

– How to deal with ME when confronted with a heterogeneous set of meta-
models?

– What about large scale models and evolution?

3 Summary and Outlook

The Models and Evolution workshop series is maturing, and every year we wit-
ness an increase of interest by the MoDELS community. This is clearly evidenced
by the steady growing number of participants that we are happy to welcome
each year (over 50). The quality of the submissions we received was exception-
ally high, which is why we have set up a theme issue on Models and Evolution in
the Springer Software and Systems Modelling journal (www.sosym.org). Given
the fact that the Models and Evolution research community is a very lively one,
we are looking forward to learn about the results in future editions of the ME
workshops. Full versions of the presented contributions are available online at
www.modse.fr.
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Abstract. The urgent demand for optimistic version control support for
software models induced active research within the modeling community.
Recently, several approaches have been proposed addressing the task
of detecting conflicts when merging two concurrently changed versions
of a model. In this context, the holistic representation and supportive
visualization of detected merge conflicts pose a challenge.

In this paper, we present a modeling language independent conflict
model comprising all necessary information to profoundly represent merge
conflicts. From this conflict model, we leverage the dynamic extension
power of UML profiles by introducing a dedicated conflict profile to vi-
sually assist modelers in resolving merge conflicts of UML models. As a
result, modelers may resolve conflicts in the concrete graphical syntax
conducting their familiar UML editors without tool extensions.

Keywords: model versioning, conflict visualization, UML profile.

1 Introduction

Like traditional program code, software models are not resistant to change, but
evolve over time by steadily undergoing extensions, corrections, and updates.
Especially in the context of model-driven engineering (MDE) models are not used
for mere documentation purposes only. Instead, models are leveraged as first-
class development artifacts. Hence, models are subject to continuous evolution
requiring adequate techniques to manage the development process in general and
to support the collaborative creation and modifications in particular [8,17].

The application of version control systems (VCS) is one important way to
improve cooperation in software development [6]. Following the optimistic ver-
sioning paradigm, every modeler works independently from other team members
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on her personal local copy. When merging the isolated updates into one com-
mon version, conflicts might be raised due to divergences in the different replicas
triggering the conflict resolution process necessary to obtain a consolidated and
reconciled merged version of the modified artifacts [13].

To provide collaborative modeling support, text-based versioning systems suc-
cessfully applied for the versioning of code such as Subversion1 and CVS2 have
been reused. It has been quickly realized that XMI serializations are not the
appropriate representation for detecting and resolving conflicts between concur-
rently edited model versions, because modelers are familiar with the concrete
graphical syntax but not with computer internal representations. Thus, some
dedicated approaches have been proposed for visualizing differences of UML
models. They construct a dedicated view using the concrete syntax, which com-
bines and highlights changes of both models using coloring techniques [12,15].
Hence, the modeler remains in her familiar modeling environment. However,
these approaches require the implementation of special editor extensions.

In this paper we pursue this idea by proposing an approach for representing
and visualizing merge conflicts for UML models based on UML profiles. As a
conceptual basis, we first present a holistic and language independent model for
representing conflicts. From this model, we derive a dedicated conflict diagram
view with additional annotations for marking changes and conflicts between
UML models. These annotations are defined by a UML profile, which allows
on the one hand, to display annotated models in arbitrary UML editors without
requiring any tool extensions. On the other hand, it yields a specification for tool
vendors to integrate mechanisms for user friendly conflict resolution and filtering
support. This additional information is valuable for the final merge process.

Starting with a brief motivating example in Section 2, we continue with dis-
cussing how to represent conflicts emerging from two concurrently modified ver-
sions of one model in Section 3. In Section 4, we present a visualization of conflicts
using UML profiles. Finally, in Section 5 we conclude and give an outlook on
future work.

2 Motivating Example

Harry and Sally check out the UML Class Diagram V0 depicted in Fig. 1 from
a central repository and concurrently perform several modifications.

Sally renames the class Element (C1) to Shape and sets this class abstract.
Next, she performs the refactoring pullUpField by removing the common attribute
area from all subclasses Square (C2), Circle (C3), and Line (C4) and adding it to
the common superclass Element (C1). Furthermore, she adds two new attributes
to the class Circle (C3), namely perimeter and radius. Finally, the class Square
(C2) is set as superclass of Rectangle (C6). The result of Sally’s work is depicted
as V0’ in Fig. 1, which she commits to the repository.

1 http://subversion.tigris.org
2 http://cvs.nongnu.org

http://subversion.tigris.org
http://cvs.nongnu.org
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Shape(C1)

area

update(C1.isAbstract, true); 
pullUpField(C1, area); 
update(C1.name, "Shape");

Sally

V0‘
update(C1.isAbstract, true); 

Operation Contract Violation
pullUpField(C1, area); 

Square(C2) Circle(C3) Line(C4)

update(C1.name, Shape );
addAttribute(C3, perimeter);
addAttribute(C3, radius);
update(C6.superclass, C2);

radius
perimeter

p p ( , );
addClass(C5);

Operation Contract Violation
pullUpField(C1, area); 
delete(C4 area);

S (C2) Ci l (C3) Li (C4)

Element(C1)

perimeter

Rectangle(C6)V0

delete(C4.area);

Update/Update
update(C1.name, "Shape");
update(C1.name, "Figure");

Square(C2) Circle(C3) Line(C4)

area area area
Figure(C1)

Rectangle(C6)

V0‘‘ Delete/Update
addAttribute(C3, perimeter);
delete(C3);

Square(C2) Point(C5) Line(C4)

delete(C3);
addClass(C5);
delete(C4 area);

area

l ( )

Delete/Update
addAttribute(C3, radius);
delete(C3);

delete(C4.area);
update(C1.name, "Figure");
update(C2.superclass, C6);

Harry

Rectangle(C6) Post Merge Violation
update(C6.superclass, C2);
update(C2.superclass, C6);

Fig. 1. An example scenario

In parallel, Harry removes the class Circle (C3) as well as the attribute area
from the class Line (C4). Next, he introduces a new class Point (C5) which is
set as subclass of Element (C1). In addition, he renames Element (C1) to Figure.
Finally, Harry sets the class Rectangle (C6) as superclass of the class Square (C2).

When Harry tries to check in his modifications, several conflicts are reported
(cf. right part of Fig. 1). Only the operation update(C1.isAbstract, true) may be
merged unproblematically (depending on the unit of versioning). The refactoring
pullUpField(C1, area) is conflicting with both, the introduction of the class Point
(C5) and the deletion of the attribute area of the class Line (C4). Neither the new
class Point (C5), nor the updated class Line (C4) provide the required attribute,
which results in a contract violation of the refactoring operation. Since both,
Harry and Sally, have renamed the class Element (C1), an update/update conflict
is reported. Furthermore, two delete/update conflicts have occurred, because
Harry deleted the class Circle (C3) in which Sally added the attributes perimeter
and radius. Finally, the violation “Inheritance Cycle” is reported between the
classes Square (C2) and Rectangle (C6) which is raised by a constraint in the
metamodel.

3 A Holistic Conflict Model

In this section, we present a conceptual representation of changes and conflicts
between two independent modifications of a common base model. An outright
representation is mandatory for modeling environments to construct a supportive
visualization of all occurred conflicts.
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3.1 Prerequisites

Before elaborating on the representation of conflicts, we shortly discuss preced-
ing steps which are mandatory to finally explicate conflicts. These steps are (i)
capturing the changes performed between two versions of a model, and subse-
quently, (ii) identifying conflicting pairs of changes.

(i) Capturing changes. A prerequisite for detecting conflicts is to capture the
actual changes that have been concurrently performed by two modelers on the
same original model. Generally, there are two different techniques to accomplish
this task [6]: State-based approaches compare different states, i.e., versions of a
model to derive the differences between these states. In contrast, change-based
approaches capture changes by observing and recording the modifications while
the user performs them.

Recently, it has been widely recognized that the additional knowledge on
applied composite operations like refactorings is highly beneficial for version-
ing. Respecting refactorings enables a faster and better understanding of the
modeler’s original intention and enables a smarter conflict detection and reso-
lution [1,7]. Some change-based approaches allow to directly capture applied
refactorings at execution time (e.g., [9]). However, such approaches strongly
depend on the modeling environment and only predefined refactorings for a
specific modeling language may be detectable. Manually performed refactorings
remain unrevealed. To overcome these shortcomings, refactoring occurrences may
also be retrospectively detected using state-based approaches as realized in the
model versioning system AMOR [1]. Nevertheless, state-based refactoring de-
tection may accomplish a lower precision compared to change-based refactoring
detection.

(ii) Detecting conflicts. Having captured all performed changes, conflicts may
be detected. In this paper, we consider three kinds of conflicts which are in-
depth discussed in [2]. The simplest kind of conflict arises if two opposite changes
modify the same feature of a model element in a contradicting way resulting in
update/update and delete/update conflicts. Regarding refactorings, another kind
of conflict may occur, if the execution of a refactoring is not possible anymore
after incorporating the opposite modeler’s changes. Such conflicts are referred to
as operation contract violation since opposite changes violate the preconditions
of a refactoring. Finally, so called post merge violations may also arise if the
merged model violates metamodel constraints.

The first kind of conflict is supported by several approaches like [1,4,10,14,16]).
Additionally, refactorings are regarded in the approaches presented in [10], [16],
and [1], however, only the approach introduced in [1] has explicitly specified
preconditions of refactorings and, thus, also supports more complex operation
contract violations. Violations of the metamodel are usually revealed by reusing
existing validation frameworks as done by [1] and [10].

3.2 A Model for Conflicts

The essence of a conflict are the involved model elements, the performed changes
as well as the violated constraints. These constraints are either preconditions of a
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Fig. 2. Conflict Model

change or conformance rules defined in the metamodel of a modeling language.
Hence, in our conflict model depicted in Fig. 2, we assemble two sources of
information for obtaining a conflict report, namely the change report, comprising
all applied changes, and additional language specifications formulating language
specific operations like refactorings and conformance rules. With this conflict
model we may profoundly express the three different kinds of conflicts.

– ContradictingChange. A conflict caused by contradicting changes always ref-
erences two changes which interfere each other. These changes may either
be atomic or composite changes. For example, in Fig. 1 the two concurrent
updates of C1’s name are contradicting changes as well as the introduction
of an attribute into a class which is concurrently deleted.

– OperationContractViolation. A conflict due to the violation of an operation
contract always involves at least one composite change like a refactoring.
This change cannot be performed because another change violates a precon-
dition. Composite changes may be specified with a tool like the Operation
Recorder as proposed in [3]. We distinguish between two cases: a compos-
ite change is either not applicable because a model element violating the
change’s precondition has been added (e.g., class C5 in Fig. 1) or an existing
model element necessary for the execution has been changed or deleted (e.g.,
an attribute of class C4 in Fig. 1).

– PostMergeViolation. Furthermore, conflicts may arise if the merged model
violates metamodel constraints. For example in Fig. 1, a naively merged
version would contain a cyclic inheritance relationship between the classes
C2 and C6.

The idea of representing conflicts in terms of a model is not new. Cicchetti
et al. [5] recently proposed a metamodel to describe conflict patterns used to
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Fig. 3. Change Profile and Conflict Profile

match against a change report for detecting conflicts. In contrast to Cicchetti
et al., our approach is designed for the automatic calculation of conflicts by
using additional language information like composite change specifications and
metamodel constraints. The detection of contradicting changes does not require
any additional information. Thus, we are able to derive conflict descriptions
automatically.

4 Representing and Visualizing Conflicts in UML Models

In the previous section, we have introduced a model for representing conflicts.
However, when it comes to showing the conflicts to the user, appropriate visu-
alization techniques are a must. Thus, in this section we leverage the dynamic
extension power of UML profiles by introducing a dedicated change profile and
conflict profile (cf. Fig. 4). Both profiles are used to visualize the evolution of a
model and occurred conflicts. The design rationale for choosing UML profiles is
based on the following requirements:

– User-friendly visualization: Merge conflicts as well as the information on
performed changes shall be presented in the concrete syntax of UML.

– Integrated view : All information shall be visualized within a single diagram
to provide a complete overview of conflicts.

– UML-conform models: The models incorporating the conflict information
shall be compliant with the UML metamodel.

– No editor modifications : The visualization of conflicts in UML models shall
be possible without modifying the graphical editors of UML tools.

– Model-based representation: If models are exchanged between UML tools,
the conflict information shall not be lost. Thus, conflicts should be explicitly
represented as model elements. Then, conflicts may be resolved later.
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UML profiles typically comprise stereotypes, tagged values, and additional con-
straints stating how profiled UML models may be built. Stereotypes are used to
introduce additional modeling concepts to extend standard UML metaclasses.
Once a stereotype is specified for a metaclass, the stereotype may be applied to
instances of the extended metaclass to provide further semantics. With tagged
values, additional properties may be defined for stereotypes. These tagged val-
ues may then be set on the modeling level for applied stereotypes. Furthermore,
syntactic sugar in terms of icons for defined stereotypes may be configured to
improve the visualization of profiled UML models. The major benefit of UML
profiles is that profiled models are still compliant to UML and, thus, are natu-
rally handled by current UML tools.

In the remainder of this section, we first present the Change Profile and the
Conflict Profile. Second, we elaborate on the algorithm for computing the Con-
flict Diagram View, i.e., the merged model including change information as well
as conflicts in terms of stereotypes and tagged values. Finally, we discuss possible
interaction techniques with this conflict diagram view from a user perspective.

4.1 A UML Profile for Conflicts

As depicted in Fig. 2, the conflict model assembles the change report comprising
all atomic and composite changes as well as the conflict report which subsumes
all detected conflicts. A conflict links to the actual conflicting changes in the
change report. This separation is also considered in the UML profile by providing
a dedicated profile for visualizing changes and a dedicated profile for visualizing
conflicts (cf. Fig. 4). Both profiles are derived from the previously presented con-
flict model. Please note that the UML profile comprises additional information,
e.g., subtypes and properties, which is implicitly stated in the conflict model.

Change Profile. The change profile provides stereotypes for each kind of change.
The stereotypes for atomic changes, like adds, updates, and deletions may be
applied to all concrete UML concepts. Thus, the stereotype AtomicChange�
extends the root metaclass Element of the UML metamodel. In contrast to atomic
changes, composite changes involve several model elements. Therefore, we de-
cided to explicitly introduce a UML Collaboration annotated with a
CompositeChange� stereotype for each composite change. The collaboration
links via UML Connectors to the involved model elements to which appropriate
Add�, Delete�, and Update� stereotypes are applied. Finally, for each
change the responsible user is saved as meta information.

Conflict Profile. For each of the aforementioned conflict kinds, the conflict
profile provides a stereotype with appropriate tagged values. For contradicting
changes, the profile provides an Update/Update� and Delete/Update�
stereotype. Both may be applied to any UML element. In contrast to contradict-
ing changes, violations may involve several model elements. Hence, similar as for
composite changes, for each violation a UML Collaboration annotated with the re-
spective stereotype OperationContractViolation� or PostMergeViolation�
is introduced. A collaboration refers to elements involved in the violation using
UML Connectors. In case of operation contract violations, to add more semantics
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to these connectors, they are annotated with respective stereotypes (inspired
from graph transformation theory [11]) for marking how the contract is violated
by the model element (cf. lower right hand side of Fig. 4).

4.2 Generating the Conflict Diagram View

Resolving conflicts by manually exploring the base model as well as changed
models in combination with the change report and a list of conflicts seems to be
too cumbersome and error-prone in practice. Thus, we generate a dedicated Con-
flict Diagram View showing the merged model comprising all relevant changes
and detected conflicts at a single glance (cf. Fig. 4 for the running example).
This view is obtained as follows:

1. All non-conflicting atomic updates and additions are applied to the common
base model. Deletions are skipped, to allow annotating deleted elements with
the respective stereotype (e.g., area in class Line in Fig. 4). Also composite
changes are left out in this step since they are handled in Step 4.

2. To each changed element, the corresponding change type is annotated by
applying the respective stereotype of the change profile (e.g., Point in Fig. 4).

3. Contradicting changes are annotated by applying Delete/Update� and
Update/Update� stereotypes to the involved elements (e.g., Element in
Fig. 4). Updated features and its changed values are stored in tagged values.

4. The applied composite changes are considered by checking their precondi-
tions with the merged model. If the preconditions are still valid, they are
re-executed on the merged model. If the preconditions are invalid, an opera-
tion contract violation is at hand. Since such conflicts involve several model
elements, we add a UML Collaboration for each of these conflicts. The added
collaboration references (i) model elements to which the composite change
has been originally applied (e.g., gray lines from Pull Up Field in Fig. 4), (ii)
the elements which are no longer fulfilling the precondition, i.e., all classes
must have the field to be pulled up, due to changes by another user (e.g.,
red line annotated with Delete/Use� in Fig. 4), and (iii) elements added
by another user which violate the change’s preconditions (e.g., red line an-
notated with Add/Forbid� in Fig. 4).

5. Finally, all post merge violations are marked adding collaborations referring
to the involved model elements (e.g., Inheritance Cycle in Fig. 4).

4.3 Interaction with the Conflict Diagram View

The Conflict Diagram View provides several benefits concerning the resolution
of the conflicts. First of all, necessary information to resolve the occurred con-
flicts is provided at a single glance. Furthermore, different diagram filters based
on the stereotypes may be used. With the help of these filters, specific kinds
of stereotypes, i.e., conflicts, may be hidden enabling the user to focus on a
specific conflict scenario. For example, a conflict resolution process can be sup-
ported such as firstly representing contradicting changes, subsequently, operation
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Fig. 4. Conflict Diagram View for the Running Example

contract violations, and finally, post merge conflicts. Based on the stereotypes,
additional mechanisms for visualizing conflicts are supported by state-of-the-
art UML modeling tools. As depicted in Fig. 4, specialized colors are used for
stereotyped elements. Moreover, for each stereotype, possible resolution methods
may be provided and, in addition, after resolving a conflict the selected resolution
is stored for preserving the history of the resolution process. Finally, conflicts
may be temporarily tolerated and kept in the model to be handed over to another
user as issue report.

5 Conclusions and Future Work

In this paper, we proposed a holistic conflict model for optimistic model ver-
sioning. By using information of the modeling language such as metamodel con-
straints and specifications of refactorings, we are able to automatically detect
conflicts which go beyond trivial update/update and delete/update conflicts.
For representing and visualizing conflict reports in UML modeling tools, we
proposed a UML conflict profile. By this, we achieved a tool independent rep-
resentation and visualization without any additional implementation effort for
editor extensions. We realized this approach within Enterprise Architect3 which
provides powerful visualization and filtering techniques based on UML profiles.
The conflict profile and example models are available on our project homepage4.

In future work, we will perform user studies in order to explore the usability
of conflict profiled models. With this, we want to empirically measure how our
visualization approach influences the conflict resolution process. Furthermore,
we will increase the usage of smart filtering techniques to improve the support
of huge and intensely modified models. We also plan to apply our approach to
other Ecore-based modeling languages.
3 http://www.sparxsystems.eu
4 http://www.modelversioning.org/conflict-profile

http://www.sparxsystems.eu
http://www.modelversioning.org/conflict-profile
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Abstract. Models are heavily used in software engineering and together
with their systems they evolve over time. Thus, managing their changes is
an important challenge for system maintainability. Existing approaches
to model differencing concentrate on heuristics matching between model
elements and on finding and presenting differences at a concrete or ab-
stract syntactic level. While showing some success, these approaches are
inherently limited to comparing syntactic structures.

This paper is a manifesto for research on semantic model differ-
encing. We present our vision to develop semantic diff operators for
model comparisons: operators whose input consists of two models and
whose output is a set of diff witnesses, instances of one model that are
not instances of the other. In particular, if the models are syntactically
different but there are no diff witnesses, the models are semantically
equivalent. We demonstrate our vision using two concrete diff operators,
for class diagrams and for activity diagrams. We motivate the use of se-
mantic diff operators, briefly discuss the algorithms to compute them, list
related challenges, and show their application and potential use as new
fundamental building blocks for change management in model-driven
engineering.

1 Introduction

Effective change management, a major challenge in software engineering in gen-
eral and in model-driven engineering in particular, has attracted much research
efforts in recent years (see, e.g., [5,7,12,13,15]). Due to iterative development
methodologies, changing requirements, and bug fixes, models continuously evolve
during the design, development, and maintenance phases of a system’s lifecycle.
Managing their changes using formal methods to follow their different versions
over time is thus an important task. Fundamental building blocks for this task
are diff operators one can use for model comparisons.

Existing approaches to model differencing concentrate on matching between
model elements using different heuristics related to their names and structure and
on finding and presenting differences at a concrete or abstract syntactic level.While
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showing some success, these approaches are also limited. Models that are syntac-
tically very similar may induce very different semantics (in the sense of ‘mean-
ing’ [9]), and vice versa, models that semantically describe the same system may
have rather different syntactic representations. Thus, a list of syntactic differences,
although accurate, correct, and complete, may not be able to reveal the real impli-
cations these differences have on the correctness and potential use of the models
involved. In other words, such a list, although easy to follow, understand, and ma-
nipulate (e.g., for merging), may not be able to expose and represent the semantic
differences between two versions of a model, in terms of the bugs that were fixed
or the features (or new bugs. . . ) that were added.

This paper is a manifesto for research on semantic model differencing. We
present our vision to develop semantic diff operators for model comparisons:
operators whose input consists of two models and whose output is a set of diff
witnesses, instances of the first model that are not instances of the second. Such
diff witnesses serve as concrete proofs for the real change between one version
and another and its effect on the meaning of the models involved.

We demonstrate our ideas using two examples of concrete semantic diff op-
erators, for class diagrams (CDs) and for activity diagrams (ADs), called cddiff
and addiff , respectively. Given two CDs, cddiff outputs a set of diff witnesses,
each of which is an object model that is an instance of the first CD and not an
instance of the second. Given two ADs, addiff outputs a set of diff witnesses,
each of which is a finite action trace that is possible in the first AD and is not
possible in the second. Each operator considers the specific semantics of the rel-
evant modeling languages, e.g., in terms of multiplicities, inheritance, etc. for
CDs, and decision nodes, fork nodes, etc. for ADs.

In addition to finding concrete diff witnesses (if any exist), our operators can
be used to compare two models and decide whether one model semantics includes
the other model semantics (the latter is a refinement of the former), whether they
are semantically equivalent, or whether they are semantically incomparable (each
allows instances that are not allowed by the other). When applied to the version
history of a certain model, such an analysis provides a semantic insight into the
model’s evolution, which is not available in existing syntactic approaches.

We have already implemented prototype versions of cddiff and addiff : all
examples shown in this paper were computed by our prototype implementations.
Section 4 gives a brief overview of the algorithms and tools we have used.

It is important not to confuse diffing with merging. Merging is a very impor-
tant problem, dealing with reconciling the differences between two models that
have evolved independently from a single source model, by different developers,
and now need to be merged back into a single model (see, e.g., [2,7,12]). Diffing,
however, is the problem of identifying the differences between two versions, for
example, an old version and a new one, in order to better understand the course
of a model evolution during some step of its development. Thus, diff witnesses
are not conflicts that need to be reconciled. Rather, they are proofs of features
that were added or bugs that have been fixed from one version to another along
the history of the development process.
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Finally, our vision of semantic diffing does not come to replace existing syn-
tactic diffing approaches. Rather, it is aimed at augmenting and complementing
existing approaches with capabilities that were not available before. As seman-
tic differencing is so different from existing syntactic differencing approaches, it
brings about new research challenges. We overview these challenges in Section 5.

The next section presents motivating examples, demonstrating the unique fea-
tures of our vision. Section 3 presents a formal definition of a generic semantic
diff operator and its specializations for CDs and ADs. Section 4 briefly describes
the algorithms used to compute the two operators and their prototypes imple-
mentations, and Section 5 discusses new challenges emerging from our vision.
Related work is discussed in Section 6 and Section 7 concludes.

2 Examples

We start off with a number of motivating examples, demonstrating the unique
features of our vision.

Example 1. Consider cd1.v1 of Fig. 1, describing a first version of a model for
(part of) a company structure with employees, managers, and tasks. A design
review with a domain expert has revealed two bugs in this model: first, employees
should not be assigned more than two tasks, and second, managers are also
employees, and they can handle tasks too.

Following this design review, the engineers created a new version cd1.v2,
shown in the same figure. The two versions share the same set of named elements
but they are not identical. Syntactically, the engineers added an inheritance rela-
tion between Manager and Employee, and set the multiplicity on the association
between Employee and Task to 0..2. What are the semantic consequences of
these differences?

Using the operator cddiff we can answer this question. cddiff (cd1.v1, cd1.v2)
outputs om2, shown in Fig. 1, as a diff witness that is in the semantics of cd1.v1
and not in the semantics of cd1.v2; thus, it demonstrates that the bug of having
more than two tasks per employee was fixed. In addition, cddiff (cd1.v2, cd1.v1)
outputs om1, shown in Fig. 1, as a diff witness that is in the semantics of cd1.v2
and not in the semantics of cd1.v1. Thus, the engineers should perhaps check
with the domain expert whether the model should indeed allow managers to
manage themselves.

Example 2. cd5.v1 of Fig. 2 is another class diagram from this model of com-
pany structure. In the process of model quality improvement, an engineer has
suggested to refactor it by introducing an abstract class Person, replacing the
association between Employee and Address by an association between Person
and Address, and redefining Employee to be a subclass of Person. The resulting
suggested CD is cd5.v2.

Using cddiff we are able to prove that despite the syntactic differences, the
semantics of the new version is equivalent to the semantics of the old version,
formally written cddiff (cd5.v1, cd5.v2) = cddiff (cd5.v2, cd5.v1) = ∅. The refac-
toring is indeed correct and the new suggested version can be committed.
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Fig. 1. cd1.v1 and its revised version cd1.v2, with example object models representing
the semantic differences between them

Example 3. AD ad.v1 of Fig. 3 describes the company’s workflow when hiring a
new employee. Roughly, first the employee is registered. Then, if she is an internal
employee, she gets a welcome package, she is assigned to a project and added to
the company’s computer system (in two parallel activities), she is interviewed
and gets a manager report, and finally her payments are authorized. Otherwise,
if the new employee is external, she is only assigned to a project before her
payments are authorized.

After some time, the company deployed a new security system and every
employee had to receive a key card. A revised workflow was created, as shown
in ad.v2 of Fig. 3.

Later, a problem was found: sometimes employees are assigned to a project
but cannot enter the building since they do not have a key card yet. This bug
was fixed in the next version, ad.v3, shown in Fig. 4. Finally, the company has
decided that external employees should report to managers too. Thus, the merge
between the two branches for internal and external new employees has moved

Fig. 2. Two example class diagrams of equivalent semantics
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Fig. 3. Version 1 and version 2 of the hire employee workflow

‘up’, in between the interview and the report nodes. The resulting 4th version
of the workflow, ad.v4, is shown in Fig. 4.

Comparing ad.v1 and ad.v2 using addiff reveals that they are incomparable:
some executions of ad.v1 are no longer possible in ad.v2, and some executions of
ad.v2 were not possible in ad.v1. Moreover, it reveals that handling of internal
employees has changed, but handling of external ones remained the same between
the two versions.

Comparing ad.v2 and ad.v3 reveals that the latter is a refinement of the
former: ad.v3 has removed some traces of ad.v2 and did not add new traces. In
particular, addiff (ad.v2, ad.v3) shows that the trace where a person is assigned
to a project before she gets a security card was possible in ad.v2 and is no longer
possible in ad.v3, i.e., it demonstrates that the bug was fixed.

Finally, comparing ad.v3 and ad.v4 using addiff reveals that although hiring
of external employees has changed between the two versions, hiring of internal
employees did not: addiff (ad.v3, ad.v4) contains a single trace, where the em-
ployee is external, not internal. That is despite the syntactic change of moving
the merge node from after to before the report node, which is part of the handling
of internal employees.

3 Formal Definitions

Consider a modeling language ML = 〈Syn, Sem, sem〉 where Syn is the set
of all syntactically correct (i.e., well-formed) expressions (models) according to
some syntax definition, Sem is a semantic domain, and sem : Syn → P(Sem)
is a function mapping each expression e ∈ Syn to a set of elements from Sem
(see [9]).

The semantic diff operator diff : Syn×Syn → P(Sem) maps two syntactically
correct expressions e1 and e2 to the (possibly infinite) set of all s ∈ Sem that
are in the semantics of e1 and not in the semantics of e2. Formally:
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Fig. 4. Version 3 and version 4 of the hire employee workflow

Definition 1. diff(e1, e2) = {s ∈ Sem|s ∈ sem(e1) ∧ s /∈ sem(e2)}.
Note that diff is not symmetric, diff (e1, e1) = ∅, and diff (e1, e2)∩diff (e2, e1) =
∅. The elements in diff (e1, e2) are called diff witnesses. We define specializations
of diff for CDs and ADs.

Our semantics of CDs is based on [8] and is given in terms of sets of objects
and relationships between these objects. More formally, the semantics is defined
using three parts: a precise definition of the syntactic domain, i.e., the syntax of
the modeling language CD and its context conditions (we use MontiCore [11,14]
for this); a semantic domain - for us, a subset of the System Model (see [3,4]) OM,
consisting of all finite object models; and a mapping sem : CD → P(OM), which
relates each syntactically well-formed CD to a set of constructs in the semantic
domain OM. For a thorough and formal account of the semantics see [4].

To make the operator cddiff computable and finite, we bound the number of
objects in the witnesses we are looking for. Thus, we define a family of bounded
operators. Formally:

Definition 2 (cddiff). ∀k ≥ 0, cddiffk(cd1, cd2) = {om|om ∈ sem(cd1) ∧ om /∈
sem(cd2) ∧ |om| ≤ k}, where |om| is the maximal number of instances per class
in om.

We use UML2 Activity Diagrams for the syntax of our ADs. In addition to action
nodes, pseudo nodes (fork, decision, etc.), the language includes input and local
variables (over finite domains), transition guards, and assignments. Roughly, the
semantics of an AD is made of a set of finite action traces from an initial to a final
node, considering interleaving execution of fork branches, the guards on decision
nodes etc. (a formal and complete semantics of ADs is outside the scope of this
paper).

In diffing ADs, we are looking only for shortest witnesses: diff traces that have
another diff trace as prefix are not considered interesting. Formally:
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Definition 3 (addiff). addiff(ad1, ad2) = {tr|tr ∈ sem(ad1)∧ tr /∈ sem(ad2)∧
�tr′ : tr′ ∈ sem(ad1) ∧ tr′ /∈ sem(ad2) ∧ tr′ � tr}.

4 Implementations and Applications

To evaluate our vision and demonstrate its feasibility, we have defined and im-
plemented prototype versions of cddiff and addiff . Indeed, all examples shown
in the previous section have been computed by our prototype implementations.

We compute a variant of cddiff using a transformation to Alloy [10]. Given
two CDs, cd1 and cd2, we construct a single Alloy model consisting of the joint
set of class signatures from the two CDs and a set of predicates that describe the
relations between them in each of the CDs. We do not compute all instances of
each CD and compare the two sets of instances; rather, we define a diff predicate,
which specifies that all the cd1 predicates hold and that at least one of the cd2

predicates does not hold. We then use the Alloy Analyzer to compute instances
of this diff predicate: these instances represent object models of the first CD that
are not object models of the second CD. The transformation to Alloy considers
the semantics of CDs, including multiplicities, inheritance, singleton and abstract
classes etc.

Our implementation of cddiff can be used to compute diff witnesses, if any, or
to show that no diff witnesses exist (up to a user-defined bound on the number
of objects of each class in the model).

We compute a variant of addiff by modeling ADs as finite state machines,
and defining a transformation to SMV [17]. Given two ADs, ad1 and ad2, we
construct two SMV modules whose possible execution traces are exactly the
set of possible traces of each of the ADs. We then use BDD-based algorithms,
implemented using JTLV APIs [16], to find whether there are traces of ad1 that
are impossible in ad2. The transformation to SMV and the algorithms used
consider the semantics of ADs, including input variables, guarded branching in
decision nodes, parallel interleaving execution following fork nodes, etc.

Our implementation of addiff can be used to compute diff witnesses, each of
which is a finite trace which is a sequence of actions possible in one AD and
not possible in the other (a trace includes the values of its input variables). If
no such traces are found, we know that all traces of the first are also possible
in the second, i.e., that the first is a refinement of the second. If, in addition,
no such traces are found when reversing first and second, we know that the two
ADs have equal semantics: their syntactic differences, if any, have no effect on
their meaning.

We have integrated our implementations into Eclipse plug-ins. The plug-ins
allow an engineer to compare two models from a project or two versions of a
model from the history of a version repository. The engineer can then browse
the diff witnesses that were found, if any.

Moreover, we have used addiff and cddiff to implement a COMPARE command,
used to compare two selected models and output one of four answers: ≡ if
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the two models are semantically equivalent, < or >, if the second (first) is a
semantic refinement of the first (second), and <> if the two are incomparable,
that is, if each of them allows instances (i.e., object models, traces) not possible
in the other (in the case of cddiff the results of COMPARE are limited by the
user-defined bound). COMPARE can be integrated with existing SVN history view,
to provide a high-level semantic differencing summary of a model’s evolution.

The details of the above transformations and algorithms for cddiff and addiff ,
and their related Eclipse plug-ins, are omitted from this workshop paper. We
hope to present them in detail in follow-up publications.

5 Challenges

Semantic differencing is rather different from syntactic differencing approaches,
so it raises a number of new research challenges.

5.1 Computation

Computing diff witnesses may not be algorithmically easy and sometimes even
impossible. When computable, its complexity depends on the specific modeling
language semantics at hand. For example, computing cddiff requires the use of
a constraint solver (such as Alloy); to make it tractable, it must be bounded
(see Section 3). Computing addiff requires a traversal of the state space induced
by the ADs at hand. Depending on the use of fork nodes, input variables, and
guards, this state space may be exponential in the size of the ADs themselves.

In general, depending on the available syntactic concepts and the semantics of
the relevant modeling language, computing diff witnesses may be undecidable.
In some cases, the set of computed witnesses may be sound but incomplete: all
computed witnesses are indeed correct, but there may be infinitely many others
that are harder to find. Thus, for each modeling language, a language specific diff
operator needs to be defined and a new algorithm needs to be developed for its
computation. Abstraction/refinement methodologies, partial-order reductions,
and other approaches may be required in order to improve the efficiency of the
computations and allow them to scale.

5.2 Presentation

To be useful, diff witnesses must be presented textually or visually to the en-
gineer. Just like for computation, the presentation of diff witnesses is language
specific; it depends on the specific modeling language of the models involved and
its semantics. For example, for cddiff , differencing object models may be visually
presented using generated object diagrams; for addiff , differencing traces may
be visually presented on the ADs themselves, e.g., by coloring and numbering
the nodes that participate in the diff trace on both diagrams, from the initial
node up until the point where the two diagrams differ. Alternatively, one may
use a collaboration diagram like notation, possibly with the aid of animation.

Moreover, as there may be (possibly infinitely) many diff witnesses, it is nec-
essary to define sorting and filtering mechanisms, to select the ‘most interesting’
witnesses for presentation and efficiently iterate over them at the user’s request.
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5.3 Integration with Syntactic Differencing

Many works have suggested various syntactic approaches to model differencing
(see Section 6). It may be useful to combine syntactic differencing with semantic
differencing, for example:

– Extend the applicability of semantic diffing in comparing models whose ele-
ments have been renamed or moved in the course of evolution, by applying
a syntactic matching before running a semantic diffing: this would result in
a mapping plus a set of diff witnesses.

– Use information extracted from syntactic diffing as a means to localize and
thus improve the performance of semantic diffing computations.

6 Related Work

The challenge of model change management and versioning has attracted much
research efforts in recent years. In particular, many works have investigated
various kinds of model comparisons. We review some of these briefly below.

[1] describes the difference between two models as a sequence of elementary
transformations, such as element creation and deletion and link insertion and
removal; when applied to the first model, the sequence of transformations yields
the second. A somewhat similar approach is presented in [12] in the context
of process models, focusing on identifying dependencies and conflicts between
change operations. [7] presents the use of a model merging language to recon-
cile model differences. Comparison is done by identifying new/old MOF IDs
and checking related attributes and references recursively. Results include a set
of additions and deletions, highlighted in a Diff/Merge browser. [15] compares
UML documents by traversing their abstract-syntax trees, detecting additions,
deletions, and shifts of sub-trees.

As the above shows, some works go beyond the concrete textual or visual
representation and have defined the comparison at the abstract-syntax level,
detecting additions, removals, and shifts operations on model elements. However,
to the best of our knowledge, no previous work considers model comparisons at
the level of the semantic domain, as suggested in our vision.

Some works, e.g., [6,18], use similarity-based matching before actual differenc-
ing. As our vision focuses on semantics, it assumes a matching is given. Semantic
diffing can be applied after the application of matching algorithms.

7 Conclusion

In this paper we described our vision on semantic diff operators for model compar-
ison, as new fundamental building blocks for change management in model-driven
engineering. We motivated our vision with examples, and gave a brief overview of
the formal background and the algorithms used in our prototype implementations.
Finally, we listed new research challenges that emerge from our vision, related to
the computation and presentation of semantic model differences.
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Abstract. The 5th edition of the workshop Models@run.time was held at the 
13th International Conference MODELS. The workshop took place in the excit-
ing city of Oslo, Norway, on the 5th of October 2010. The workshop was  
organised by Nelly Bencomo, Gordon Blair, Franck Fleurey, and Cédric Jean-
neret. It was attended by at least 33 people from more than 11 countries. In this 
summary we present a synopsis of the presentations and discussions that took 
place during the workshop.  

Keywords: runtime adaptation, MDE, reflection, run-time abstractions. 

1   Introduction 

The Models@run.time workshop series provides a forum for exchange of ideas on the 
use of run-time models. The workshop series targets researchers from different com-
munities, including  model-driven software engineering, software architectures, com-
putational reflection, adaptive systems, autonomic and self-healing systems, and  
requirements engineering. This edition of the workshop successfully brought together 
researchers from different communities and, at least, thirty three (33) people from 
eleven (11) countries attended the workshop.   

In response to the call for papers, fifteen (15) papers were submitted, of which four 
(4) papers and six (6) posters were accepted. Every submitted paper was reviewed by at 
least 3 program committee members. The papers presented during the workshop are 
published in a workshop proceeding [1]. Two papers were selected as the best papers. 
Extended and improved versions of these two papers are published in this post work-
shop proceedings with other selected papers from all the workshops at MODELS 2010. 

2   Workshop Format and Session Summaries 

The workshop activities were structured into presentations, posters, and discussion 
sessions. In the opening presentation, Nelly Bencomo and Franck Fleurey set the 
context of the workshop by summarizing the major results from past workshop edi-
tions and outlining the path to follow during the workshop. The opening presentation 
was followed by the papers and posters sessions.  
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In the paper sessions four (4) papers were presented. Authors presented their pa-
pers in a twenty-minute-time slot, and five minutes were allowed for questions and 
discussion. Robert France and Arnor Solberg chaired these presentations. In the 
poster session, six (6) authors also presented their work to the workshop attendees.  

Ppaper and poster presentations were done during the morning to allow enough 
time for discussion during the second part of the day. In the afternoon, the workshop 
participants formed three groups. Each group took care of discussing specific relevant 
topics. At the end of the workshop, each group selected a delegate who presented the 
conclusions and research questions raised by the group. More details about the discus-
sion session can be found in Section 3. The four (4) paper presentations and the six 
(6) posters were divided into the following two sessions:  

 

Session 1: Fundamental Concepts  
 

- Meta-Modeling Runtime Models, by Grzegorz Lehmann, Marco Blumendorf, Frank 
Trollman and Sahin Albayrak.   
 

- Toward Megamodels at Runtime, by Thomas Vogel, Andreas Seibel and Holger 
Giese.   
 

 

Session 2: Evaluation and Experimentation  
 

- Applying MDE Tools at Runtime: Experiments upon Runtime Models, by Hui Song, 
Gang Huang, Franck Chauvel and Yanchun Sun.   
 

- Run-Time Evolution through Explicit Meta-Objects, by Jorge Ressia, Lukas Reng-
gli, Tudor Girba and Oscar Nierstrasz.   
 

 

Session 3: Applications  
 

The following posters were displayed, presented and discussed with the workshop 
attendees. 

 
 

- A Model-Driven Approach to Graphical User Interface Runtime Adaptation, by 
Javier Criado, Cristina Vicente-Chicote, Nicolás Padilla and Luis Iribarne 
-  Monitoring Model Specifications in Program Code Patterns, by Moritz Balz, Mi-
chael Striewe and Michael Goedicke 
-  Separating Local and Global Aspects of Runtime Model Reconfiguration, by  Frank 
Trollmann, Grzegorz Lehmann and Sahin Albayrak. 
-  Using Models at Runtime For Monitoring and Adaptation of Networked Physical 
Devices: Example of a Flexible Manufacturing System, by  Mathieu Vallee, Munir 
Merdan and Thomas Moser. 
- Monitoring Executions on Reconfigurable Hardware at Model Level, by Tobias 
Schwalb, Graf Philipp and Klaus D. Müller-Glaser. 
- .Knowledge-based Runtime Failure Detection for Industrial Automation Systems, by  
Martin Melik-Merkumians, Thomas Moser, Alexander Schatten, Alois Zoitl and 
Stefan Biffl.   
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3   Discussions 

During the afternoon, three discussions groups were established. Each group was 
asked to discuss a set of topics based on the questions raised during the presentations 
and the research interests of the attendees. The following are the main topics dis-
cussed during the afternoon: 
 

Topic of discussion group 1:  

- Classification and applications of models@run.time 
 

Topics of discussion group 2:  
- Abstraction gap  
- Causal connection. 
- Temporal Gap. 

 

Topic of discussion group 3:  

- Difference between design time and run-time models 
 
After spending two hours debating the presentations and shared research interests, 
each group presented a summary of their discussions and conclusions.  

Thomas Moser was the representative of the breakout discussion group with the 
topic "classification and applications of models@run.time". The discussions of the 
group started based on the figure “Categories of run-time models” from the paper by 
Thomas Vogel et al. (Fig 1, page 15 in [1]). Thomas Vogel et al. identified the follow-
ing types of models: implementation models, configuration and architectural models, 
configuration space and variability models, context and resource models, as well as 
rules, strategies, constraints, requirements and goals. Based on this figure, the group 
defined reasoning (analysis) and decision as the two major purposes of mod-
els@run.time. Examples for reasoning could be faults and defects detection and 
model checking; examples for decisions could be changes to running systems such as 
runtime adaptation or the generation of reports about behaviour.  

Using these two major purposes for models@run.time, the group developed a ta-
ble-based structure showing which types of models are used and for which purposes, 
i.e., for which type of reasoning and for which type of decision. The columns of the 
table can also be considered as the dimensions of models@run.time: namely type of 
model, type of reasoning and type of decision. Thomas commented that a fourth di-
mension could also be considered if context is included. 

Mathieu Vallee was the representative of the group with the topic "causal connec-
tion and abstraction gap". The causal connection, i.e., how a running system is re-
flected in a runtime model (and conversely), has been discussed in previous editions 
of the workshop. However, this year participants focused on the difficulties that arise 
when the abstraction gap between a runtime model and the modelled system expands. 
Typically, as systems become more complex (larger, and distributed), it looks  
relevant the use of models that are more abstract and therefore easier to understand. 
However, and at the same time, this makes the causal connection more difficult to 
establish and to maintain. A lengthy discussion took place to clarify the problems, and 
is summarized as follows: 
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• In state-of-the-art solutions using runtime models, the abstraction gap is kept 
small, so that the relation between the system and the models is relatively easy to 
establish. A typical example is the use of a runtime architectural model together with 
a component-based infrastructure, in which concepts in the model (e.g., component) 
directly represent elements in the system. 

• In some works, the abstraction gap becomes broader due to the adoption of 
higher level models. For instance, research on requirements at runtime raises ques-
tions on how to establish a causal link between a model of requirements and compo-
nents in an underlying system. 

• In other works, the abstraction gap may become broader due to the manipula-
tion of the system at a finer level of granularity. For instance, using meta-objects at 
runtime enables the manipulation of a system at a fine granularity, but it was not clear 
to the group how it can be linked to an architectural model. 

Similar issues arise regarding the “temporal gap”, which appears when the model 
and the system cannot be synchronized anymore or at least temporarily, i.e., the sys-
tem still evolves while building the runtime model. In some pure software systems 
(i.e. no hardware is taken into account), it is possible to keep the model and the sys-
tem always synchronized (e.g. by freezing execution while building the model). In 
systems involving physical components, as well as in more complex software sys-
tems, continuously maintaining the synchronization may not be possible. Mathieu 
emphasized that we need to take into account that a runtime model may not always 
accurately reflect the current system state, and that we need to design methods for 
estimating the temporal gap, as well as compensating it (e.g. through prediction of 
future states).From the discussions in the group, it appears that addressing these issues 
is a rather long-term objective. Nevertheless, the group believe that difficulties arise 
more due to the purpose of a runtime model than from its level of abstraction. As a 
consequence, the group recommended the following steps: 

1. Elaboration of a classification of runtime models, according to their purpose. 
2. Elaboration of concrete examples involving several models/levels of  

abstraction. 
3. Study of the relationship between different runtime models in a given  

system. 
4. Study of general solutions for managing models with different levels of ab-

straction.The last presentation was given by Betty Cheng who was the representative 
of the group that discussed “differences between design time and run-time models”. 
The discussions of this topic focused on the identification of requirements for run-
time models. Betty reported that the group discussed about the contents of a run-time 
model (in contrast to a design model). According to Betty and colleagues, run-time 
model comprises: 

- Environmental conditions depicted by design info (e.g., plant model) and 
run-time info (e.g., plant model with values). Run-time info would be more 
abstract.  

- System conditions depicted by design info (traditional models like class, 
state, etc.) and run-time info (e.g., current task, service, attributes, processing 
node). Run-time info would also contain traceability information to design-
time info. 
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The group also discussed about the purposes of run-time models and specifically 
focused on the case of self-adaptive systems. The following were the purposes identi-
fied: 

- Monitoring  the state of the system and the environment 
- Decision-making: to process data to adapt; validation and simulation are also 

included 
- Adaptation (mode change; reconfiguration). The changes can affect the struc-

ture and behaviour of the system. 
The group presented the following recommendations: 

- Move towards multiple run-time models, rather than using a monolithic run-
time model 

- Take into account the purpose for run-time models. The kinds of run-time 
models strongly depend on what we want to do with the system (e.g. per-
formance analysis; fault tolerance, diagnosis; adaptive; safety) 

- Identify possible purposes of run-time models and find additional ones 
(change existing model types, and consider to develop new ones) 

 
 

Final Remarks: It is interesting to note that discussions of the different groups  
converged to similar outcomes and recommendations; as for example the need of a 
classification for run-time models and identification of the purposes and relationships 
between the models. A general wrap-up discussion was held at the very end of the 
afternoon. The workshop was closed with a friendly “thank you” from the organizers 
to all participants for a fruitful workshop. After the workshop, the organizers used the 
feedback from attendees and PC members to select the best 2 papers. After careful 
discussion, the best papers were selected and are presented in this book. 
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Abstract. Runtime models enable the implementation of highly adaptive  
applications but also require a rethinking in the way we approach models. 
Metamodels of runtime models have to be supplemented with additional run-
time concepts that have an impact on the way how runtime models are built and 
reflected in the underlying runtime architectures. The goal of this work is the 
generalization of concepts found in different approaches utilizing runtime mod-
els and the provision of a basis for their meta-modeling. After analyzing recent 
work dealing with runtime models, we present a meta-modeling process for 
runtime models. Based on a meta-metamodel it guides the creation of meta-
models combining design time and runtime concepts.  

Keywords: Meta-modeling, Models@Runtime, runtime models, meta-
metamodel. 

1   Introduction 

(Self-)Adaptive applications are required to adapt dynamically at runtime, often to 
situations unforeseeable at design time. Application code generated from design time 
models fails to provide the required flexibility, as the design rationale held in the 
models is not available at runtime. To address this issue the use of runtime models (or 
models@run.time) has been proposed. Runtime models enable the reasoning about 
the decisions of developers when they are no longer available. Additionally, they 
provide appropriate abstractions from code-level details of the applications at runtime. 

Although the idea of utilizing models at runtime is not new, there is still a lack of 
common understanding and suitable methodologies for the definition of runtime mod-
els. Moving the models from design time to runtime raises questions about the con-
nection of the models to the runtime architecture, about synchronization and valid 
modifications of the models at runtime and the identification of model parts specified 
at design time and those determined at runtime. 

The goal of this work is to generalize common concepts found in different ap-
proaches utilizing runtime models and to provide a basis for their meta-modeling. The 
approach brings: 

• A common understanding of runtime models and their concepts 
• Means for comparing and discussing different runtime models 
• A basis for achieving interoperability of models@run.time approaches 
• A basis for the definition of a meta-modeling process for runtime models 



210 G. Lehmann et al. 

The next section presents exemplary works dealing with runtime models (2.1) and 
discusses their common properties (2.2). In Section 3 our approach to meta-modeling 
runtime models is described. Section 4 discusses the EMF-based implementation of 
an example application utilizing runtime models. Section 5 concludes the paper. 

2   Related Work 

Model-driven engineering is a promising approach for the development of complex 
systems and applications. Since its emergence, model-based development aims at 
expressing different aspects of an application on different levels of abstraction within 
different models. Utilizing formal models takes the design process to a computer-
processable level, on which design decisions become understandable for automatic 
systems. The principles of model-driven architecture [9] have been successfully ap-
plied in different domains, e.g. the user interface engineering domain, where applica-
tion code is generated from models. 

Modern applications are required to adapt dynamically to context of use situations 
unforeseeable at design time. This requirement extends the scope of model utilization 
from design time to runtime. 

2.1   Utilizing Models at Runtime 

Models are utilized at runtime in different domains and for different purposes. This 
section analyzes exemplary approaches from several fields, including model-based 
simulation and validation, adaptive and self-managing systems, executable and recon-
figurable models. Depending on the application domain the models fulfill different 
roles, but some similarities can be identified. 

[12] describes the Cumbia platform for executable runtime models, aiming at the 
provisioning of reusable monitoring and control tools. Integrating the execution logic 
and semantics behind the evolution of the model over time as part of the model leads 
to self-contained executable models. Cumbia's models are based on the idea of open 
objects, consisting of an entity, a state machine describing the entity’s lifecycle and a 
set of actions triggered by the transitions of the state machine. Cumbia identifies four 
types of runtime model information: 

• Structure of models - the static information about the application 
• State of the elements in the models 
• Historical information - the trace of model elements’ state during the execution 
• Derived information - information not directly included in the model but de-

rived from it, e.g. by means of calculations 

A slightly different approach to application monitoring is presented in [1]. The  
authors show how state machine logic can be embedded in object-oriented code. A 
runtime environment extracts the annotated state chart information at runtime and 
executes it. This way the runtime environment provides control of the application, 
enables the logging of its workflow and the debugging of events. In the implementa-
tion, Java code is connected to the state charts by means of special classes, interfaces 
and annotations. Rather than being created and manipulated at design time, the state 
machine model is extracted from code at runtime. 
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Another approach for model-based (rapid) development of software is discussed in 
[7]. The authors propose a layered debugging architecture for their model-based ap-
plications. In an example the authors extend the UML state diagram metamodel with 
elements holding dynamic runtime information. The metamodel is thus split into a 
static and a dynamic part. However the categorization of design and runtime informa-
tion is not further generalized. 

The usage of models at runtime is also common in approaches dealing with model-
based design and adaptation of large, (self-) adaptive systems, like [14], [5] and [6]. 
The configuration of the systems and the possible adaptations are held in models at 
runtime. Adaptations are performed on the running system by transforming the mod-
els of the system. 

In the ALIVE approach [14] executable code is generated from application models 
by means of transformations. If an adaptation is necessary at runtime, the models are 
modified and the executable code is regenerated. A monitoring mechanism assures 
that the application is paused for the time of adaptation and restarted when the new 
executable code is loaded. 

In [5] an adaptation model holds information about possible variants of the system, 
constraints expressing valid configurations of the system and rules defining when 
adaptations should be performed. A context model represents the environment of the 
application and is the basis for the adaptation rules. Sensors deployed in the environ-
ment and in the system assure that the information in the models is up-to-date. 

In the Rainbow framework [6] the architecture monitors and adapts the system 
through abstract models. The system layer consists of probes and effectors. The for-
mer observe and measure system states. The latter carry out the adaptations performed 
on the model level in the system. On the architecture layer, adaptation operators and 
strategies are provided. A set of operators determines the reconfiguration actions that 
can be performed on the system. Strategies describe how operators need to be applied 
to achieve certain system properties. 

The idea of utilizing models at runtime drives the design of executable models and 
languages. Kermeta, presented in [11], extends the Essential Meta Object Facility 
(EMOF) with action semantics. The composition of an existing meta language with an 
action metamodel results in an executable meta-language, enabling the definition of 
domain specific languages with precisely defined operational semantics. The Kermeta 
metamodel enhances the EMOF metamodel with typical action expressions (e.g. 
Conditional, Assignment, Loop). 

[10] presents Kermeta at RunTime (K@RT), a framework for adaptive software 
systems reconfigurable at runtime. K@RT supervises component-based systems by 
maintaining a reference model at runtime. The model provides a high-level view of 
the system. Modifications performed on the model are propagated into the underlying 
running system by automatically generated reconfiguration scripts. The authors pro-
pose a generic and extensible Metamodel for Runtime Models that represents compo-
nent-based systems at runtime and aims at abstracting a running system. Composed of 
three packages (type, instance and implementation) and compatible with the Service 
Component Architecture (SCA), the metamodel enables the description of compo-
nent-based software structures. 

[8] proposes FAME as a polyglot library capable of maintaining the connection of 
models and code at runtime. FAME enables the adaptation of software at runtime 
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through modifications of the models and even the meta-models by means of a set of 
basic operations (Get, Set, Create, Delete). FAME is capable of maintaining the 
causal connection to several programming languages, e.g. Smalltalk, Ruby or Java. 

After presenting different approaches to utilize models at runtime in this section, 
the next section discusses common properties of the different approaches are and 
definitions that can be used to generalize runtime models. 

2.2   Generalizing Runtime Models 

Although many approaches utilize models at runtime, we are not aware of an ap-
proach that explicitly deals with the creation of metamodels of runtime models. Most 
works in the area of runtime models focus on defining special adaptation (e.g. as 
transformations executable at runtime) or system models (e.g. component networks), 
rather than looking at the common characteristics of runtime models. 

An analysis of model executability has been performed in [3], resulting in a classi-
fication of elements in executable models, which comes close to a definition of a 
meta-metamodel. The authors differentiate three parts of dynamic models: 

• Definition part – is the static part of a model, defined at design time 
• Situation part – includes all elements describing the dynamic state of a model 

during its execution 
• Execution part – specifying the transitions of the model from one state to an-

other, in other words its execution logic 

The proposed classification has been a good starting point for our work, but, because 
of its focus on executable models, it does not fully apply to runtime models. For ex-
ample, not every runtime model must have a definition part defined at design time. 
There are runtime models generated completely at runtime. Thus a different or modi-
fied basis is needed for classifying runtime models. 

In our view, the key for classifying and generalizing elements of runtime models 
lies in their causal connection. In [2] a model@run.time is defined as a causally con-
nected self-representation of the associated system that emphasizes the structure, 
behavior, or goals of the system from a problem space perspective. A runtime model 
provides up-to-date information about the system under study (SUS) and enables to 
perform adaptations of the system by means of model modifications. 

In [13] and [4] the classification of descriptive and specification (also called pre-
scriptive) models is discussed. According to [13] a model is descriptive if all state-
ments made in the model are true for the SUS. On the other side a specification model 
prescribes how the system should be: a specific SUS is considered valid relative to 
this specification if no statement in the model is false for the SUS. Favre [4] proposes 
to distinguish whether the model or the system has the truth. In case of runtime mod-
els, both the system and the runtime model have (parts of) the truth. Due to their 
causal connection, runtime models describe systems with their states and, at the same 
time, specify how the systems should behave. 

The importance of the causal connection can be observed in the approaches pre-
sented in section 2.1. Most of them possess means for connecting the runtime models 
with the system under study, although the description/specification ratios strongly 
differ. In works focusing on model executability, e.g. [11], the models have an either 
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strong or sole prescriptive role. In self-adaptive systems, like [5] and [6], the utilized 
runtime models mostly have both, descriptive and specification, parts. On the other 
end, when runtime models are used to debug or monitor applications (e.g. [1]), the 
descriptive character dominates. 

Another common property of runtime models is their ability to evolve over time. 
Modifications of models can be performed in different ways, e.g. by means of trans-
formations, predefined operations or by special tools. Depending on whether the  
prescriptive or descriptive part of the model is modified, the changes have different 
consequences. Modifications of the prescriptive elements (e.g. performed by an adap-
tation engine) lead to changes in the system. Modifications of the descriptive parts of 
runtime models are mostly triggered by the system (e.g. probes in [6]) - whenever the 
system changes, its representation in the model must also change. 

The identified typical properties of runtime models lead to requirements posed on 
their metamodels. Metamodels of runtime models must provide modeling constructs 
enabling the definition of: 

• prescriptive part of the model specifying how the system should be 
• descriptive part of the model specifying how the system is, i.e. the state of the 

SUS at runtime (similar to the situation part defined in [3]) 
• valid model modifications of the descriptive parts, executable at runtime 
• valid model modifications of the prescriptive parts, executable at runtime 
• causal connection in the form of an information flow between the model and 

its SUS 

The following sections present a meta-modeling process addressing the above re-
quirements. 

3   Meta-modeling Runtime Models 

This part presents a process guiding the meta-modeling of runtime models (Sections 
3.1-3.4). Section 3.5 describes the meta-metamodel underlying this process.  

 
 
 
 
 
 
 
 
 

Fig. 1. Metamodel of finite state machines consisting of States with Entry Actions and Transi-
tions bound to Conditions 

For illustration purposes, the process is applied to a simplified finite state machine 
(FSM) metamodel, depicted in Fig. 1. The metamodel defines a finite state machine 
element FSM consisting of states, of which one State is the start state. States are  
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connected with each other via Transitions. The FSM provides conditions bound to 
transitions. Additionally each State can be associated with entry actions (EntryAction 
elements) executed upon the activation of the state. 

The presented metamodel describes typical design-time models, with no runtime 
concepts included. It can be used to statically describe state machines but provides 
limited utility at runtime. However, in our example scenario we wish to use the FSM 
models both at design- and runtime. At design-time we wish to specify the behavior 
of software components in form of FSMs. At runtime we want to execute, monitor 
and inspect the state of the application through runtime FSM models. 

 In the following the metamodel is extended with runtime concepts so it enables the 
definition of FSM runtime models. The meta-modeling process consists of four steps; 
each of the following subsections is dedicated to one of the subsequent steps. 

3.1   Identify the Prescriptive and Descriptive Parts 

To use the FSM models at runtime we must first identify elements of the models, 
which describe the runtime state of the system under study. At runtime, Conditions of 
a FSM become fulfilled and lead to the execution of the associated Transitions, which 
then activate target states. The example metamodel is therefore extended by adding 
an active attribute to the State and an isFulfilled attribute to the Condition. These 
descriptive attributes, marked orange in Fig. 2, hold the state of a FSM at runtime. 

The distinction between the prescriptive and descriptive elements is necessary to 
clearly separate parts of a model altered in order to change the behavior of the system 
from the parts storing the runtime state of the system. In the example FSM meta-
model, a state and the conditions of its transitions belong to the specification part, but 
whether a state has been activated or a condition fulfilled belongs to the descriptive 
part and is determined at runtime. 

The differentiation between prescriptive and descriptive elements is not based on 
their type or class, but depends on the relationship of the element to other elements. 
Model elements of a specific type may in some cases be descriptive elements and in 
other cases prescriptive elements. It only counts whether the element is aggregated in 
a prescriptive- or descriptive field. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Finite state machine metamodel with the orange marked descriptive elements history, 
isFulfilled and active, holding the state of the FSM at runtime 
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In case of the example runtime FSM models, the state and transition hierarchy is de-
fined by the model developer at design time. The states composing the FSM are thus 
prescriptive elements (e.g. elements held in FSM.states, FSM.start or Transition.target). 
However, an FSM may also store a history list of states activated in the past. The history 
is a result of runtime execution of the model and thus belongs to its descriptive part. 
This way, model elements of type State are either prescriptive or descriptive depending 
on their relationship to other model elements. As shown in Fig. 2, States are descriptive 
elements, if they are part of FSM.history, or prescriptive elements, if they belong to the 
design-time state network specification (FSM.states). The latter are defined by the  
developer, the former are determined at runtime. 

3.2   Modifications of Descriptive Elements 

In the previous section the example metamodel has been enhanced with descriptive 
elements that enable to describe the state of a FSM model at runtime. In the next step 
of the meta-modeling process, available operations that can be performed on the de-
scriptive part of the model are identified. The example FSM metamodel is thus en-
hanced with operations, which describe the transitions of FSM models from one state 
to another (i.e. the FSM execution logic). We refer to these operations as Descrip-
tionModificationElements. 

Fig. 3 pictures the FSM metamodel with DescriptionModificationElements altering 
the state of FSMs at runtime. The State type has been enhanced with the Descrip-
tionModificationElements activate and deactivate, which alter the active attribute of 
States. Activation of a State leads to the execution of its entry actions, so the activate 
operation uses the execute operation of EntryAction. States become activated and 
deactivated by executed transitions. Transitions are triggered by the fulfillment of the 
associated conditions. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Finite state machine metamodel with DescriptionModificationElements setFulfilled, 
execute, activate and deactivate 

The DescriptionModificationElements represent procedures or actions altering the 
elements of conforming runtime models. Through them a metamodel provides the abil-
ity to insert new information about the system into the models in a well-defined manner, 
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even at runtime. For example, the DescriptionModificationElement setFulfilled makes it 
possible to inform an FSM model about a condition fulfilled in the system under study. 

At this point of the process the FSM metamodel enables the definition of runtime 
models with state information and execution logic as alteration of this information 
(DescriptionModificationElements). The next step deals with the identification of 
SpecificationModificationElements that enable the modification of the prescriptive 
part of the conforming FSM models. We refer to the modifications of prescriptive 
elements as adaptations, because they change the behavior of the system under study. 

3.3   Modifications of Prescriptive Elements 

One of the main purposes of runtime model utilization is the adaptation of the mod-
eled application to varying context situations by means of model modifications. How-
ever, arbitrary reconfiguration of application models  soon leads to inconsistencies 
and can destroy the integrity of the adapted models. 

The definition of possible model adaptations is an integral part of the meta-
modeling process. It is the task of the meta-modeler to define possible modifications 
of the conforming models and their impact on the models. Only in this way can the 
correctness of the adaptations and the consistency of the adapted models at runtime be 
assumed. 

The meta-modeling of model adaptations can again be exemplified using the FSM 
metamodel. A feasible adaptation of a FSM-based application is the adding of special 
states or entry actions. Such adaptations are necessary if e.g. the context of the appli-
cation changes and parts of the state network must be replaced with alternatives. 

To enable the adding and removing of states in a finite state machine at runtime, 
the example metamodel is extended with SpecificationModificationElements addState 
and respectively delState. Fig. 4 shows the FSM metamodel with the new elements. 
Both alter the states of the adapted FSM. To retain the readability of the figure, we 
did not draw the SpecificationModificationElements addTransition and delTransition 
needed for reconfiguration of the transition network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. FSM metamodel with SpecificationModificationElements addState, delState, addAction 
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The difference between the Description- and SpecificationModificationElements is 
essential. While the former only change the model, so it reflects the state of the SUS 
at runtime (e.g. activate or deactivate in the example FSM metamodel), the latter have 
the power to modify the structure and behavior of the SUS (e.g. FSM.addState or 
FSM.delState). The SpecificationModificationElements have thus a much stronger 
impact on the models and their adaptation capabilities. 

After identifying the runtime elements of a runtime model and defining the valid 
modification of both its descriptive and prescriptive parts, the meta-modeler has to 
deal with one final runtime concept. The next section describes the last step of the 
meta-modeling process, which is the identification of the causal connection between 
the runtime model and its system under study. 

3.4   Identify the Causal Connection 

The connection between a runtime model and its system under study is referred to as 
the causal connection. The concept expresses the interrelation or causal loop between 
the model that represents a system and a system that must act according to the model. 
During the meta-modeling process the causal connections between the conforming 
runtime models and their systems under study must be identified. 

Meta-modeling the causal connection comprises the definition of both directions of 
communication between the runtime models and their SUS. The influence of the 
model on the system and the synchronization of the model, based on the occurrences 
in the system, must be specified. It is thus essential to identify, how descriptive and 
prescriptive elements of the models communicate with the SUS. 

The approaches described in Section 2.1 present different ways of handling the 
causal connection. In Rainbow [6] the effectors are responsible of adapting the system 
to the current structure of the model. Probes, or sensors in [5], assure the information 
flow in the opposite direction – from the system and its environment into the model. 
We generalize such elements by the term of proxy elements. 

A proxy element fulfills the role of an interface between the runtime model and 
its system under study. The proxy type enables the explicit definition of proxies 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. FSM metamodel with Condition and EntryAction proxies handling the causal connection 
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within metamodels and a classification of model elements connected to entities 
outside of the model. 

The information flow between the proxy elements and the outside world can be 
bidirectional. On the one side proxies synchronize the descriptive elements of the 
model with the state of the SUS, and on the other side they adapt the system accord-
ing to the prescriptive part of the model. To achieve the first the proxies expose call-
back DescriptionModificationElements to external SUS processes. For the model to 
SUS synchronization, the proxies forward externalExecution calls to the SUS. 

In the example FSM metamodel two proxy types have been identified: Condition 
and EntryAction. An FSM model must become aware of condition fulfillment occur-
ring in the SUS. Therefore, as shown in Fig. 5, the Condition proxies expose the set-
Fulfilled operation to external condition processes. This way, whenever a condition is 
fulfilled, external components inform the FSM model using the setFulfilled element. 
The EntryAction proxies do not expose any operations to the external processes, but 
trigger action execution in external processes outside of the model. 

The identification of proxy elements enables an explicit and clear definition of the 
boundaries of runtime models. The communication between the model and the system 
via Description- and SpecificationModificationElements ensures that the synchroniza-
tion occurs in a metamodel conformant way and does not interfere with the execution 
logic of the model. In the FSM example, the Condition proxies ensure that the FSM 
model reflects the state of the SUS at runtime. The EntryAction proxies enable the 
model to influence the SUS upon state changes.  

We have presented a meta-modeling process, which identifies and makes explicit 
the runtime concepts necessary for the utilization of models at runtime. The next 
section sums up the ideas behind this process in form of a meta-metamodel. 

3.5   Meta-metamodel 

Defining metamodels of runtime models requires a meta-modeling language that 
provides means for the expression of the described runtime concepts within the 
metamodels. Meta-modeling languages are defined in form of special metamodels, so 
called meta-metamodels. We thus present a meta-metamodel, which provides neces-
sary constructs for formalizing metamodels of runtime models. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Meta-metamodel of runtime models 
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The meta-metamodel, shown in Fig. 6, prescribes that each conforming metamodel 
defines Types composed of Fields and ExecutableElements. Fields represent relation-
ships between types (often referred to as attributes, associations, references, etc.) and are 
classified as either Prescriptive- or DescriptiveFields. Intuitively, model elements held 
in prescriptive fields are prescriptive elements and those held in descriptive fields are 
descriptive elements. The differentiation of fields enables the identification of descrip-
tive and prescriptive parts of conforming models during the meta-modeling process. 

The ExecutableElements represent operations enabling the modification of model 
elements. Depending on whether the modifications influence the descriptive or the pre-
scriptive part of the model, ExecutableElements are refined as either DescriptionModifi-
cationElements (DME) or SpecificationModificationElements (SME). As explained in 
previous sections, the DMEs encapsulate the state synchronization of the models con-
forming to the metamodel, whereas the SMEs represent possible model and system 
adaptations.  

The descriptive elements of the model are held in the DescriptiveFields. Therefore 
each DME defines, which DescriptiveFields it modifies, using the alters association.  
Associating a DME with other DMEs by means of the uses association the meta-
modeler expresses that the execution of the DME is composed of or includes the exe-
cution of the associated DMEs (as the State.activate DME using EntryAction.execute 
in case of the FSM metamodel example). 

Performing an adaptation of the model may not only influence its prescriptive part, 
but will often impact its state as well. For this reason the SMEs can define alters and 
uses associations to both types of Fields and ExecutionElements. 

Finally, the special Proxy type enables the formalization of the causal connection 
of runtime models. It classifies model elements connecting the model with its SUS. At 
runtime a proxy element mediates with an external element through a clearly defined 
communication interface. The interface is specified in form of ExecutableElements, 
either called during the model adaptation to influence the SUS (externalExecution) or 
available to the proxies to push information about the SUS into the model (callbacks).  

4   Implementation 

In this section we first discuss an example application created on the basis of runtime 
models. Then we present a context metamodel created according to the meta-
modeling process introduced in this paper. 

Our implementation is based on the Eclipse Modeling Framework (EMF). To as-
sure compatibility of our models with EMF we define our metamodels as plain EMF 
metamodels enhanced with special annotations (e.g. annotating that an attribute ex-
pressed in Ecore is a DescriptiveField). The use of annotations makes the metamodels 
readable and usable for EMF tools (which ignore our custom annotations) and at the 
same time enables to extract the additional information about the runtime concepts of 
the conforming models. 

Because EMF does not provide meta-metamodeling capabilities, the meta-
metamodel is also defined as an Ecore metamodel. Transformations between the an-
notated Ecore metamodels and the meta-metamodel notation provide the necessary 
“meta-step”. This enables to define metamodels of runtime models with full advan-
tages of EMF tools while using the meta-metamodel constructs and semantics. 
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Fig. 7. Home Control Center application visualizing appliances available in the Office room. 
The HCC uses finite state machine networks for device configuration and control. 

4.1   Example Application 

The Home Control Center (HCC) application communicates with networked appli-
ances in a smart home environment e.g. networked light controls, multimedia devices, 
kitchen appliances like ovens or fridges. Through a user interface the HCC presents 
an overview of the connected home appliances (their status, power consumption, etc.) 
and enables the user to control them. 

The HCC is based on a FSM model, which guides its workflow at runtime. The 
model describes the state of the application and prescribes its transitions during the 
interaction with the user. The FSM model is connected to user interface (UI) compo-
nents through proxies. By communicating with the UI components at runtime, the 
proxies assure that, on the one side, state changes in the FSM model are reflected in 
the user interface and, on the other side, the model reacts to user interaction. Device 
proxies are responsible for the communication between HCC's FSM model and the 
devices. Condition proxies trigger transitions based on the state of the devices; En-
tryAction proxies send control requests from the model to the devices. 

The user interface mask shown in Fig. 7 presents a list of appliances in one of the 
rooms. The user can select a device and turn it on or off. Depending on the device, the 
user has some additional control possibilities (e.g. setting the light dimming level or 
playing a movie in case of a DVD player). 

The set of control functionalities and protocols for home appliances strongly varies 
from one device type or manufacturer to another. For example, turning on a lamp or 
an oven are two completely different processes, requiring different backend calls and 
user interactions. However, an extensibility requirement posed on the HCC demands 
that the application is capable of learning the control processes of new devices, not 
known at design time. If, for example, a manufacturer produces a new series of ovens, 
with new features and functions, the HCC must be able to cope with that. To address 
this requirement, the appliance control functionality of the HCC has been based on an 
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adaptable FSM runtime model. Each device connected to the HCC provides its own 
FSM, describing the interaction with the user and the control process. The FSM is 
integrated in the state network of the HCC at runtime by means of SpecificationModi-
ficationElements of the FSM metamodel. This way, previously unknown types of 
devices can be integrated into the HCC at runtime. 

A part of HCC's finite state machine responsible for controlling an oven is shown 
in Fig. 8 (the figure presents an excerpt, the models implemented in the HCC are 
significantly larger). The presented model conforms to the FSM metamodel intro-
duced in the previous sections. The FSM starts with a configuration of the oven's 
heating curve (Heating curve configuration state). While entering this state the HCC 
executes the Ask user for heating curve entry action. The action activates appropriate 
user interface components, which are presented to the user. Depending on the user's 
response one of the Conditions associated with the following transitions is fulfilled. If 
the user decides to configure a pre-heating process (User selected pre-heating condi-
tion), the interaction branches into the configuration of a time delay for the pre-
heating process. Selecting any other program (User selected a heating curve) leads 
directly to the Temperature configuration. After specifying the temperature (User 
specified temperature condition) the oven is programmed in the Oven programming 
state by means of the Set oven temperature entry action. 

 

Fig. 8. FSM model describing the HCC interaction and control process of an oven. The device 
FSMs are connected to the FSM of the HCC at runtime. 

Besides the communication with the device, the HCC uses the explicit state infor-
mation held in the runtime FSM models to provide help functionality to the user. The 
information about the active / inactive states and fulfilled / unfulfilled conditions, 
stored in the descriptive part of the FSM models, is used to inform the user about the 
current state of the application and the devices. At any point of time the HCC can 
inform the user about the currently active state and the possible transitions based on 
conditions that need to be fulfilled. 

The explicitly modeled causal connection, wrapped in the proxy elements, enables 
the information exchange between the model and the system under study. In HCC’s 
FSM models the Condition and EntryAction proxies handle the communication be-
tween the application, the users and the devices. 
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Fig. 9. Excerpt from a metamodel of runtime context models, used for observing and reasoning 
about an environment at runtime 

4.2   Context Metamodel 

To demonstrate the applicability of our approach to metamodels other than the FSM 
example, we present a context metamodel. It enables the modeling of the context seen 
as a combination of the environment, the users and the available platforms. This  
information is crucial for ubiquitous applications that have to adapt to changing situa-
tions. Runtime context models provide means for reasoning about the dynamic situa-
tion of the application and the user. 

Fig. 9 pictures an excerpt from a metamodel of runtime context models. It defines 
an Environment composed of Rooms and Users. Users are located in rooms and have 
a 3D position in the environment expressed as Vector. Each user is associated with a 
LocalizationTag (e.g. a RFID tag). The context metamodel furthermore specifies the 
necessary DescriptionModificationElements, e.g. the setCoordinates element that 
allows updating the coordinates at runtime. 

Building a context model that reflects the state of the environment at runtime re-
quires the connection of the model with the real world context sensors and actors 
available in the environment. According to the proxy concept, the context metamodel 
describes a LocalizationProvider proxy, which represents a localization system in the 
environment. As visualized in Fig. 9, the LocalizationProvider defines the newPosi-
tion callback element for updating position information of entities based on their 
localization tag and the data gathered from the localization sensors. Whenever a tag 
position change is detected in the environment, the newPosition callback element is 
triggered by the LocalizationSystem to update the position. 

5   Conclusions and Outlook 

On the basis of our experiences with runtime models, we have presented a meta-
modeling process that identifies core runtime concepts reoccurring in runtime models. 
The process and the constructs of the meta-metamodel are sufficient to distinguish the 
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descriptive and prescriptive (specification) parts of runtime models as well as to iden-
tify operations for their modification (ExecutableElements). Furthermore the causal 
connection of the runtime model and its system under study can be described using 
the Proxy type. This way the meta-metamodel covers all aspects of meta-modeling 
runtime models identified in section 2.2. The example FSM and context metamodels, 
as well as the HCC application, demonstrate the usefulness of the presented approach 
while designing, building and executing runtime models. 

In the future we will explore the possibilities of using the meta-metamodel to 
achieve interoperability between different runtime model approaches (across techno-
logical spaces). We are working on additional metamodel transformations that will 
enable us to transform metamodels from technological spaces other than Ecore into 
the format of the meta-metamodel. We are also working on a reconfiguration  
metamodel, defined on the basis of the meta-metamodel. Combined with the trans-
formations it will enable us to reconfigure and adapt runtime models from different 
technological spaces in one reconfiguration model. 
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Abstract. In model-driven software development a multitude of inter-
related models are used to systematically realize a software system. This
results in a complex development process since the models and the rela-
tions between the models have to be managed. Similar problems appear
when following a model-driven approach for managing software systems
at runtime. A multitude of interrelated runtime models are employed si-
multaneously, and thus they have to be maintained at runtime. While for
the development case megamodels have emerged to address the problem
of managing models and relations, the problem is rather neglected for
the case of runtime models by applying ad-hoc solutions.

Therefore, we propose to utilize megamodel concepts for the case of
multiple runtime models. Based on the current state of research, we present
a categorization of runtime models and conceivable relations between them.
The categorization describes the role of interrelated models at runtime
and demonstrates that several approaches already employ multiple run-
time models and relations. Then, we show how megamodel concepts help
in organizing and utilizing runtime models and relations in a model-driven
manner while supporting a high level of automation. Finally, the role of in-
terrelated models and megamodels at runtime is discussed for self-adaptive
software systems and exemplified by a case study.

1 Introduction

According to France and Rumpe, there are two broad classes of models in
Model-Driven Engineering (MDE): development models and runtime models [10].
Development models are employed during the model-driven development of soft-
ware. Starting from abstract models describing the requirements of a software,
these models are systematically transformed and refined to architectural, design,
implementation, and deployment models until the source code level is reached.

In contrast, a runtime model provides a view on a running software system that
is used for monitoring, analyzing or adapting the system through a causal connec-
tion between the model and the system [6,10]. Most approaches, like [11,14], em-
ploy one causally connected runtime model that reflects a running system. While
it is commonly accepted that developing complex software systems using one de-
velopment model is not practicable, we argue that the whole complexity of a run-
ning software system cannot be covered by one runtime model defined by one
metamodel. This is also recognized by Blair et al. who state “that in practice,
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it is likely that multiple [runtime] models will coexist and that different styles of
models may be required to capture different system concerns” [6, p.25].

At the 2009 Workshop on Models@run.time we presented an approach for
simultaneously using multiple runtime models at different levels of abstraction
for monitoring and analyzing a running software system [17]. While abstracting
from the running system, each runtime model provides a different view on the
system since each model is defined by a different metamodel that focuses on a
specific concern, like architectural constraints or performance. At the workshop,
our approach raised questions and led to a discussion about simultaneously cop-
ing with these models since concerns that potentially interfere with each other
are separated in different models. For example, any adaptation being triggered
due to the performance of a running system, which is reflected by one run-
time model, might violate architectural constraints being reflected in a different
model. Thus, there exists relations, like trade-offs or overlaps, between different
concerns or models, which have to be considered and managed at runtime.

A similar issue appears during the model-driven development of software. A
multitude of development models and relations between those models have to be
managed, especially to maintain traceability information and consistency among
the models. An example is the Model-Driven Architecture (MDA) approach that
considers, among others, transformations of platform-independent to platform-
specific models. Thus, different development models are related with each other,
and if changes are made to any model, the related models have to be updated
by synchronizing these changes or repeating the transformation. In this context,
megamodels have emerged as one means to cope with the problem of managing a
multitude of development models and relations. The term megamodel originates
from ideas on modeling MDA and MDE, which basically consider a megamodel
as a model that contains models and relations between those models or between
elements of those models (cf. [2,4,5,9]).

In contrast, the problem of managing multiple models and relations is ne-
glected for the runtime case and to the best of our knowledge there is no approach
that explicitly considers this problem beyond ad-hoc and code-based solutions.
In this paper, which is a revision of [18], we present a categorization of runtime
models derived from the current state of research, and conceivable relations be-
tween models of the same or different categories. The presented categories and
relations demonstrate the role of models at runtime and that multiple interre-
lated models are already or likely to be used simultaneously at runtime. Based
on that, we propose to apply existing concepts of megamodels for managing run-
time models and relations. Such an approach provides a high level of automation
for organizing and utilizing multiple runtime models and their relations, which
supports the domain of runtime system management, for example, by automated
impact analyses across related models. Moreover, we especially discuss the con-
ceptual role of interrelated models and megamodels for self-adaptive systems.

The rest of the paper is structured as follows. Section 2 presents the cat-
egorization of runtime models, conceivable relations between models, and the
application of megamodel concepts at runtime. The role of interrelated models
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and megamodels for self-adaptive systems is discussed in Section 3 and exempli-
fied by a case study in Section 4. Finally, the paper concludes with Section 5.

2 Models, Relations and Megamodels at Runtime

In this section, we present categories of runtime models and conceivable rela-
tions between models of the same or different categories. The categorization is
derived from literature, primarily the Models@run.time workshops [1] and our
own work [12,15,16,17]. However, we do not claim that the categories are com-
plete or that each category has to exist in every approach. Nevertheless, they
indicate the role of models at runtime and demonstrate that different kinds of
interrelated runtime models are already or likely to be employed simultaneously.

2.1 Categories of Runtime Models

Both of the already mentioned approaches [11,14] employ one runtime model that
is causally connected to a running system. In contrast, our approach [15,16,17]
provides multiple runtime models simultaneously, each of which is causally con-
nected to the system and specified by a distinct metamodel. Nevertheless, the
other approaches also maintain additional model artifacts at runtime, which are
not causally connected to a system, but which are used to manage the system.

In the case of Rainbow [11], such artifacts are invariants that are checked
on a causally connected architectural model, and adaptation strategies that are
applied if the invariants are violated. Morin et al. [14] even have in addition to a
causally connected architectural model, a feature model describing the system’s
variability, a context model describing the system’s environment, and a so called
reasoning model specifying which feature should be activated or deactivated on
the architectural model depending on the context model.

Thus, even if only one causally connected runtime model is used for man-
aging a running system, several other models that do not need to be causally
connected are employed at runtime. For the following categories1 as depicted in
Figure 1, we consider any conceivable runtime models regardless whether they
are causally connected to a running system or not. The models are categorized
in a rather abstract manner according to their purposes and contents. As shown
in Figure 1, runtime models (M1 ) of all categories are usually instances of meta-
models (M2 ) that are defined by meta-metamodels (M3 ), which leverages typical
MDE techniques, like model transformation or validation, to the runtime.

Implementation Models are similar to models used in the field of reflection
to represent and modify a running system through a causal connection. Such
models are based on the solution space of a system as they are coupled to the
system’s implementation and computation model [6]. Therefore, these models are
platform-specific and at a rather low level of abstraction. As modeling languages,
class or object diagrams are often employed to provide structural views, and
sequence diagrams or automatons for behavioral views.
1 A detailed description of the categories and supporting literature can be found in [18].
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Fig. 1. Categories of Runtime Models

Configuration and Architectural Models are usually also causally con-
nected to a running system and they reflect the current configuration of the
system. Since software architectures are considered to be at an appropriate ab-
straction level for analysis or adaptation, these models provide architectural
views similar to component diagrams [11,14,15,17]. These diagrams are often
enhanced with non-functional properties to directly support analysis or to trans-
form them to specific analysis models, like queueing networks to reason about
the performance. At a higher level of abstraction, process or workflow models are
also feasible to describe a running system from a business-oriented view. More-
over, model types of the Implementation Models category are also conceivable
in this category, but at a higher level of abstraction. For example, a sequence
diagram would consider the interactions between component instances instead
of the interactions between objects.

In general, models of this category and Implementation Models are often both
causally connected to a system. However, Configuration and Architectural Models
are at a higher level of abstraction, less complex and often platform-independent,
while Implementation Models are at a lower level of abstraction, more complex
and platform-specific. Thus, Configuration and Architectural Models are rather
related to problem spaces, and Implementation Models to solution spaces. This
is similar to the view of Blair et al. [6] on runtime models and reflection models.

Context and Resource Models describe the operational environment of a
running system. This comprises the context, which is “any information that can
be used to characterise the situation of an entity”, while “an entity is a person,
place, or object that is considered relevant to the interaction between a user
and an application” [8, p.5] or in general to the operation of the application. To
represent a context, semi-structured tags and attributes, key value pairs, object-
oriented or logic-based models, or even feature models can be used. Moreover,
the operational environment consists of resources a running system requires and
actually uses for operation. These are logical resources, like any form of data, or
physical resources, like the hardware the system is running on.

Configuration Space and Variability Models specify potential variants
of a system, while Configuration and Architectural Models reflect the currently
running variant of the system. Therefore, models of this category describe a sys-
tem at the type level to span the system’s configuration space and variability.
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Using these models, adaptation points in a running system and possible adap-
tation alternatives can be identified. Examples for models in this category are
aspect and feature models [14], or component type diagrams [12,15].

Rules, Strategies, Constraints, Requirements and Goals may refer to
any model from the other categories and, therefore, their levels of abstraction
are similar to the levels of the referred models. Models in this category define,
among others, when and how a running system should be adapted by following
one of two general approaches. First, rules or strategies usually in some form
of event-condition-action rules describe when and under which conditions, a
system is adapted by performing reconfiguration actions. The second approach is
based on goals a running system should achieve, and guided by utility functions,
adaptation aims at optimizing the system with respect to these goals.

Moreover, constraints on models of the other categories regarding functional
and non-functional properties are used for runtime validation and verification.
Constraints can be expressed, among others, in the Object Constraint Lan-
guage (OCL)or formally in some form of Linear Temporal Logic (LTL). Though
constraints can be seen as requirements that are checked at runtime, recently
the idea of requirements reflection has emerged, which explicitly considers re-
quirements as adaptive runtime entities [3]. Thus, requirements models, like goal
models, become runtime models above the abstraction level of architectures.

The presented model categories show that different aspects have to be consid-
ered for managing a system at runtime. These aspects are at least the running
system at different levels of abstraction, the system’s environment, the system’s
variability, and the validation, verification and adaptation. Rather than covering
all these aspects in a monolithic runtime model being highly complex, multiple
and different kinds of models are possible, and even employed simultaneously for
that. Which categories and especially which kind of and how many models are
employed is specific to each approach. This depends, among others, on the pur-
poses of an approach and on the domain of the system. Nevertheless, separating
aspects in different models requires to consider relations among these models.

2.2 Relations between Runtime Models or Model Elements

In the following, we use the presented model categories to outline exemplars
of relations between runtime models or between elements of different runtime
models. Note that a relation between elements of two different models also con-
stitutes a more abstract relation between these two models. These exemplars
motivate the need for managing relations together with the models at runtime.

As already mentioned, models of the category Rules, Strategies, Constraints,
Requirements and Goals may refer to models of the other categories. For example,
goal modeling approaches refine a top-level goal to subgoals recursively until each
subgoal can be satisfied by an agent being a human or a component (cf. [3]).
Having a goal model at runtime, it is of interest which component of a running
system actually satisfies or fails in satisfying a certain goal. Therefore, goals being
reflected in a goal model refer to corresponding components of Configuration and
Architectural Models, which also relates the goal and architectural model with
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each other. Moreover, goal satisfaction can be influenced by the current context
of a system, such that goals and elements of a context model are related with each
other. As an example, consider an e-mail client application that has the subgoal
of actually sending a message to a mail server for distribution. This subgoal is
fulfilled by a client component that establishes a connection to the server and
transmits the message. Thus, this subgoal and component are related with each
other. Moreover, satisfying this subgoal is influenced by the availability of a
network connection to the server, which is part of the context. This constitutes
a relation between the goal model and the context or resource model.

Configuration and Architectural Models can also be related to Configuration
Space and Variability Models by means of effects the selection of a variant as
defined by a variability model has on the current system configuration or ar-
chitecture. For example, activating or deactivating features in a feature model
specifying the system’s variability requires the adaptation of the currently active
architecture by adding or removing corresponding components. Thus, compo-
nents and their supported features are related with each other. Regarding the
same dimension of abstraction, Implementation Models can be seen as refine-
ments of Configuration and Architectural Models as they describe how a con-
figuration or architecture is actually realized using concrete technologies. Thus,
refinement relations are conceivable between models of these two categories.

Another relation can reflect the deployment or resource utilization of a system
by means of relating Architectural Model elements and Resource Model elements,
or in other words, which components of a running systems are deployed on which
nodes and are consuming which resources. Context and Resource Models can also
refer to Configuration Space and Variability Models since the configuration space
and variability of a system can be influenced by the current context or resource
conditions. For example, a certain variant is disabled due to limited resources.

Besides relations between models of different categories, there may also ex-
ist relations between models of the same category. In [17], several Architectural
Models are employed reflecting the same system, but providing different views on
it. However, these views are overlapping, which can be considered as a relation.
Furthermore, each model focuses on a certain concern, like performance or archi-
tectural constraints, and any adaptation optimizing one concern might interfere
with another concern. As an example, due to a decline in the system perfor-
mance, an additional component of a certain type should be deployed to bal-
ance the load, which however violates the architectural constraint restricting the
number of deployed components of the specific type. Thus, overlaps, trade-offs
or conflicts between concerns respectively between the models are conceivable.

The presented exemplars show that runtime models are usually not isolated
and independent from each other, but they rather compose a network of models.
Therefore, besides the runtime models also the relations between those models
have to be managed at runtime. The concrete relations emerging in an approach
depend, among others, on the purposes of the approach, the domain of the system
and on the models that are employed.
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2.3 Megamodels at Runtime

As it turned out, different kinds of models and relations between them emerge
when managing a system at runtime. In such scenarios, it is important that these
relations are modeled and maintained at runtime because this makes the relations
explicit and, therefore, amenable for analysis or other runtime activities. For
example, an impact analysis is leveraged when knowing which models are related
with each other. Then, the impact of any model change to related models can
be analyzed by following transitively the relations and propagating the change.
Moreover, relations can be classified, for example in critical and non-critical ones,
and for certain costly analyses only the critical relations may be considered.

Nevertheless, relations to other models are usually not covered by all models
because they were not foreseen when designing the corresponding modeling lan-
guages. Thus, a language for explicitly specifying all kinds of relations between
various models and between elements of different models is required. Rather
than applying ad-hoc and code-based solutions to relate models with each other,
megamodels provide a language that supports the modeling of arbitrary models
and relations between those models or between elements of those models. There-
fore, the management of models and relations itself is done in a model-driven
manner enabling the use of existing MDE techniques for it.

In general, megamodels for the model-driven software development serve or-
ganizational and utilization purposes that should also be leveraged at runtime.
Organizational purposes are primarily about managing the complexity of a mul-
titude of models. Therefore, like some kind of a model registry [5], megamodels
help in organizing a huge set of different models together with their relations
by storing and categorizing them. Likewise, megamodels can serve as a means
to explicitly organize and maintain runtime models and their relations in the
domain of runtime system management since several models and relations can
be employed simultaneously at runtime (cf. Sections 2.1 and 2.2).

Utilization purposes of megamodels are primarily about navigation and au-
tomation by actually using the relations that are made explicit due to the organi-
zational purposes. Utilizing relations, megamodels can be the basis for navigating
through various models. Thus, starting from a model, all related models can be
reached in a model-driven manner instead of using mechanisms at a lower level of
abstraction like programming interfaces. Having the conceivable runtime mod-
els and relations in mind (cf. Sections 2.1 and 2.2), navigating between runtime
models is essential for a comprehensive system management approach. Thus, ex-
plicit relations can be utilized by typical operations to read or write models, or to
apply a model on another model. Navigating between models can be considered
as reading models, while writing can be a model update by propagating model
changes along relations. Finally, models, like transformation or generation rules,
can be applied on models resulting in models. This leads to the aspect of au-
tomation aiming to increase efficiency. Relations between models are treated as
executable units that take models as input and produce models as output. Thus,
a megamodel can be considered as an executable process for runtime activities,
like automatically analyzing the impact of changes. Therefore, relations can be
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Fig. 2. Categories of Runtime Models for Self-Adaptive Software Systems

used to synchronize model changes to related models and these synchronized
models are then analyzed to investigate the impact of the initial changes.

Finally, automation considers the efficient maintenance of models and rela-
tions by means of their validity and consistency, because models and relations
are often both dynamic and they change over time.

3 Self-adaptive Software Systems

While in the previous section the model categories are derived from literature
and broken down according to the purposes and primarily the contents of the
models, now we will approach a different categorization by taking a conceptual
view on self-adaptive software systems. Based on the typical feedback loop of a
self-adaptive system, we investigate the role of runtime models and especially
how they are used throughout the loop. This results in a different model cat-
egorization that focuses on the usage of models and that will be compared to
the previously presented categorization in order to foster the comprehension of
conceivable models and their roles at runtime for self-adaptive systems.

3.1 Runtime Models for Self-adaptive Software Systems

Before investigating the usage of models in self-adaptive software systems, we
describe the categories of these models as depicted on top of Figure 2. Runtime
Models are divided into two top categories, Reflection and Adaptation Models,
based on the way they are used at runtime.

Reflection Models reflect the system or the system’s environment either in
a descriptive or prescriptivemanner as indicated by the attributes subject
and mode, respectively. Descriptive models describe the as-is situation of the
running system or environment, while prescriptive models prescribe the to-be
situation, primarily the designated target state of the system. Though it is not
possible to prescribe the environment, to-be environment models are conceiv-
able for reflecting predictions of the future environment. Reflection models can
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be analyzable to support reasoning about the system or environment. Thus,
using basic and incomplete attribute assignments, System Models (subject =
system), Environment Models (subject = environment), and Analysis Models
(analyzable = true) are considered as typical reflection models, while other
models are conceivable regarding the possible combinations of the reflection mod-
els’ attributes. In general, reflection models are primarily read and written to
describe, prescribe or analyze the system and environment.

Adaptation Models on the other hand are primarily applied on reflection
models as they define how reflection models are evaluated or changed. Thus,
Evaluation Models specify the reasoning and analyses that are performed on
descriptive or prescriptive reflection models, while Change Models specify how
prescriptive reflection models can be obtained. This can be done either in an
explicit or implicit mode. Explicit models enumerate patterns that can be
directly compared to reflection models for evaluation or that precisely define
fragments of possible prescriptive reflection models. In contrast, implicit models,
like rules, define operations that are applied on reflection models, which returns
either evaluation results or changed and potentially new reflection models.

This model categorization can be mapped to the categorization previously
presented in Section 2, which is outlined in Figure 2. System Models directly
correspond to Configuration & Architectural Models and Implementation Mod-
els, while Environment Models are equivalent to Context & Resource Models. In
contrast, Analysis Models are only implicitly represented in the previous cat-
egorization by mentioning that analysis can be performed on Configuration &
Architectural Models or on models derived from them. However, this view ne-
glected the important role of the environment for the analysis. Thus, besides
models reflecting the system, also environment models have to be considered
when creating analysis models. Thus, Configuration & Architectural, Implemen-
tation, and Context & Resource Models serve as the input for analysis models
that also contain the analysis results. Technically, these input models or parts
of them can be copied or transformed into the analysis models, or the analysis
models can reference the relevant parts of the original input models. A main
difference between both categorizations is that the previous categorization does
not distinguish between descriptive and prescriptive reflection models.

Finally, Adaptation Models can be mapped to Rules, Strategies, Constraints,
Requirements & Goals and to Configuration Space & Variability Models. The
previous categorization does not clearly distinguish whether the corresponding
models are exclusively used for reasoning (Evaluation Models) or for specify-
ing and executing changes (Change Models). From a conceptual view, applying
Evaluation Models does not modify Reflection Models as they are only read for
reasoning purposes, while the application of Change Models modify or create
new Reflection Models, primarily prescriptive System Models. However, from a
technical view, Evaluation and Change Models can be quite similar as both can
be specified, for example, in some form of rules.

Moreover, Configuration Space & Variability Models can be especially mapped
to explicit Adaptation Models as they, for example, explicitly describe potential
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variants for prescriptive system models. On the other hand, Rules or Strategies
can be mapped to implicit Adaptation Models as the prescriptive System Models
are obtained by sequentially applying the rules or strategies on a descriptive
System Model. Thus, explicit Adaptation Models in the form of Configuration
Space & Variability Models are not necessarily required as the adaptation might
also be specified by implicit Adaptation Models in the form of rules or strategies.

3.2 Model Operations and Relations for Self-adaptive Systems

Using the Reflection and Adaptation Models and their specializations as de-
scribed in Section 3.1, and having both categorizations in mind, we outline how
a self-adaptive system uses runtime models throughout the feedback loop.

The concept of feedback loops is an inherent part of each self-adaptive system
since the loop controls the self-adaptation [7]. A generic loop is proposed in [13]
and whose building blocks can be identified in Figure 3. The Managed System
operates in an Environment and contains the business logic offered to users or
other systems. It provides Sensor and Effector interfaces to enable its manage-
ment by autonomic managers implementing the feedback loop. Using sensors, the
manager monitors and analyzes the system and environment to decide whether
the system fulfills the given goals or not. If not, adaptation is required and thus,
changes are planned and executed to the system through effectors. A manager
itself also provides sensors and effectors to support the hierarchical composition
of managers. Additionally, the original loop [13] considers a generic notion of
Knowledge that is used and shared by the loop activities. In contrast to the ac-
tivities, the knowledge remains rather abstract as it is not clearly substantiated.
Therefore, we elaborated the role of models for the knowledge by investigating
from a conceptual view what types of models are shared and how they are used
by the activities. This has lead to the extended loop as shown in Figure 3.

Since the loop activities use models to perform their tasks and to communicate
with each other, each loop activity can be conceptually considered as a complex
and high level model operation taking models as input and producing models as
output. Thus, the activities can be seen as relations between the input and output
models (cf. Section 2.3). However, from a technical view the models need not to be
completely copied from one activity to another as the same model instances can
also be shared among activities or only single model changes, the deltas, can be
exchanged between the activities. In the following we discuss one reasonable and
conceptual scenario for the loop behavior, while considering the loop activities as
complex model operations that consist of the basic operations of reading, writ-
ing, and applying models. The semantics of these basic operations are substanti-
ated through the application domain of self-adaptive systems. Moreover, the basic
operations are the foundation for advanced MDE techniques, like model trans-
formation, synchronization, or merge, being relevant for engineering self-adaptive
systems employing runtime models.

The monitor writes descriptive System and Environment Models to contin-
uously provide up-to-date views on the running system and environment, re-
spectively. In general, writing a model includes the reading of the model, such
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Fig. 3. Runtime Models and their Usage along the Feedback Loop

that the models do not have to be created every time from scratch but they
can also be maintained and updated at runtime. Likewise, a history of mod-
els can be maintained to keep track on their evolution over time, like the past
states of the system or environment. Moreover, the monitor may filter, merge,
abstract, etc. the monitored data to provide several system and environment
models simultaneously, that differ, for example, in their abstraction levels.

The descriptive system and environment models are read by the analyze step
to transform, synchronize or generally write them to descriptive Analysis Models
for reasoning, like a queueing network model for performance analysis. Moreover,
prescriptive System Models are read since they serve as reference models for
descriptive system models to analyze whether the current system converges to
the designated target state. The analysis itself is defined by Evaluation Models
that describe implicitly or explicitly the goals of the system in an operationalized
form (cf. Section 3.1). Thus, the fulfillment of goals can be analyzed by applying
evaluation models on system, environment, or analysis models. Based on the
analysis results, usually annotated to analysis models, a decision about the need
of adaptation is made. If adaptation is required, the planner comes into play.

The planner reads the descriptive analysis, system and environment models to
devise a plan on how the system should be adapted such that the system fulfills
its goals. This planning process is guided by Change Models that are applied on
the descriptive system and environment models to obtain and write prescriptive
System Models reflecting suitable target configurations. Likewise to evaluation
models, change models specify implicitly or explicitly how prescriptive system
models can be obtained (cf. Section 3.1). Since the planner has to select one
among many possible target configurations, analysis is performed to determine
the best or at least the most appropriate target configuration with respect to the
current system and environment state. Therefore, the planner reads and writes
descriptive and prescriptive Analysis Models by applying Evaluation Models to
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reason about the current and the possible future situations. The planning result
is a predictive system model describing the final target system configuration.

Finally, this predictive and the current descriptive System Models are read by
the execute step, and compared with each other to derive the set of reconfigu-
ration actions. These actions move the managed system from the current to the
target configuration. Therefore, they are executed on the system through effec-
tors, while considering the latest descriptive System and Environment Models to
find a point in time when the running system can be safely reconfigured.

As already mentioned, an autonomic manager providing sensors and effectors
can be managed by another manager, which leads to a hierarchical composition
of managers. A higher level manager comes into play when the lower level man-
ager cannot cope with the adaptation of the system, like the planner is not able
to find any target configuration fulfilling the goals. Therefore, the higher level
manager can perform more sophisticated planning, even at the level of goals, and
provide new Evaluation and Change Models specifying new adaptation mecha-
nisms to the lower level manager. Thus, the higher level manager senses all
required models from the lower level one, but it only effects the evaluation and
change models and thus, the adaptation mechanisms of the lower level manager.
Other triggers for adapting the evaluation and change models of a manager are
the emergence of new application or adaptation goals for this manager.

3.3 Megamodels at Runtime for Self-adaptive Systems

From the previous sections it can be concluded that different kinds of models are
used in different ways throughout the feedback loop of self-adaptive systems. The
models are not only used by the loop activities, but they are also shared between
the different activities and even between different loops. The relations between
models that are described in Section 2.2 also hold for the case of self-adaptive
systems. Moreover, each loop activity can be considered as a complex model
operation taking models as input and producing models as output, which similar
to the view of megamodels on relations as executable units (cf. Section 2.3). Thus,
the whole feedback loop can be interpreted as an executable process that can
be modeled and enacted with a megamodel. By modeling, the comprehension of
the feedback loop will be leveraged, and by enacting, the level of automation for
executing a loop will be increased through model-driven techniques.

4 Case Study: Self-adaptive Software Systems

In this section, we outline a case study in the field of self-adaptive software that
exemplifies the role and benefits of models and megamodels at runtime. The
case study is based on our previous work that employs several runtime mod-
els simultaneously for monitoring [17] and adapting [15] a system as outlined
in Figure 4. Using stereotypes, the models are mapped to the categories pre-
sented in Section 3.1 while neglecting the distinction between descriptive and
prescriptive models due to space constraints. The Managed System is reflected
by an Implementation Model and both are causally connected to realize the
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Fig. 4. A Megamodel Example for a Self-Adaptive Software System

monitoring and the execution of changes. However, the implementation model
is platform-specific, complex, at a low level of abstraction, and related to the
system’s solution space. Therefore, abstract runtime models are derived from the
implementation model using incremental and bidirectional Model Synchroniza-
tion techniques. These abstract models can be causally connected to the system
via the implementation model, and they are similar to Configuration and Ar-
chitectural Models (cf. Section 2.1). Each of these abstract models focuses on a
specific concern of interest, which leverages models related to problem spaces.
An Architecture Model, a Performance Model, and a Failure Model are derived
focusing on architectural constraints, performance, and failures of the system,
respectively. Thus, specific self-management capabilities are supported by dis-
tinct models, like self-healing by the failure model or self-optimization by the
performance model. Consequently, specialized autonomic managers, like a Per-
formance Manager working on the performance model, can be employed. The
managers’ tasks are the analysis of the system and primarily the planning of
adaptations with respect to the specific concerns.

However, adaptations planned by a certain manager due to a specific concern
might interfere with other concerns covered by other managers. For example,
adaptations based on the performance model, like deploying an additional com-
ponent to balance the load, might violate architectural constraints covered by
the Architecture Model, like the affected component can only be deployed once.

Since each concern is covered by a different model, megamodels can be used to
describe relations, like interferences or trade-offs, between the different models
or concerns. This makes these relations explicit such that they can be utilized for
modeling coordination mechanisms between different managers to balance mul-
tiple concerns. Besides describing these mechanisms, they can also be enacted
at runtime as outlined by the following scenario. Before any adaptation planned
by the performance or failure manager who change the performance or failure
model, respectively, is executed on the system by triggering the Model Synchro-
nization, the changes are automatically propagated to the architecture model
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(cf. Change Propagation relations in Figure 4). Then, the architecture manager
applies the Constraint Model on the updated architecture model to analyze the
planned adaptations (Adaptation Analysis) by writing an Adaptation Report.
This report is sent to the manager proposing the adaptation and it instructs
either the execution of the planned adaptation on the system or the rollback of
the corresponding model changes depending on the analysis results.

The presented case study exemplified a potential use case and benefits of
megamodel concepts for self-adaptive systems in organizing and utilizing multi-
ple runtime models and relations, especially regarding the execution of a loop.

5 Conclusion and Future Work

In this paper we have shown that the issue of complexity in model-driven software
development, caused by the amount of development models and their relations,
is also a problem in the domain of runtime system management and self-adaptive
systems. Since for the latter domain this problem is rather neglected by applying
ad-hoc solutions, we proposed to use megamodel concepts at runtime. Therefore,
we presented a categorization of runtime models and potential relations between
the models, which outlined the role of models at runtime. Moreover, it demon-
strated that advanced approaches already or likely use multiple models and
relations simultaneously. Based on that, we showed that megamodels are an ap-
propriate formalism to manage multiple runtime models and their relations. We
especially discussed the role of interrelated models and megamodels at runtime
for the case of self-adaptive systems, which was also exemplified by a case study.

The discussions at the 2010 Models@run.time workshop basically concluded
that multiple runtime models are required to provide views at different levels
of abstraction, for different time scales regarding the feasible performance of
activities working on runtime models, and for various purposes, like monitoring,
analysis, decision-making, or adaptation. These discussions further motivate our
work on investigating multiple runtime models and their relations.

As future work, we plan to elaborate our categorization to incorporate other
preliminary classifications comparing development and runtime models [10], and
describing dimensions of runtime models, like structural/behavioral or procedu-
ral/declarative models [6]. This includes possible categorizations of model rela-
tions, which requires a more profound understanding of the different kinds of
runtime models and their usage. Finally, we will investigate the application of
megamodel concepts in our approach [15,16,17], which will potentially uncover
yet unknown specifics of megamodel concepts for the case of runtime models.
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1 Modeling, Verification, and Validation

The MoDeVVa workshop series is focused on Model-Driven Engineering, Verifi-
cation, and Validation.

Models are purposeful abstractions. They are used to support the focus on
the important aspects and to make complex systems easy to understand. Be-
yond their use as documentation, models can also be used for automatic trans-
formation or code generation. For this, a formal foundation of models with fixed
semantics is necessary. One typical application is the automatic generation of
large parts of system source code. The automation can result in a decrease of
system engineering costs. Thus, the usage of models, model transformations,
and code generation is becoming more and more important for industrial ap-
plications. As one of the most important representatives for the application of
models, Model-Driven Engineering (MDE) is a development methodology that
is based on models, meta models, and model transformations. There is already
a lot of tool support for models, (domain-specific) modeling languages, model
transformations, and code generation. The constant pace at which scientific and
industrial development of MDE-related techniques moves forward shows that
MDE is quickly changing and that new approaches and corresponding issues arise
frequently. Most important, there is a crucial need for verification and validation
(V&V) techniques in the context of MDE. Likewise, V&V is very important in
many domains (e.g., automotive or avionics) and the use of MDE techniques in
the context of V&V is an interesting topic. One prominent representative of this
approach is model-based testing (MBT).

2 Objectives of the Workshop

The objective of the workshop on model-driven engineering, verification, and
validation (MoDeVVa) in 2010 was to offer a forum for researchers and practi-
tioners who are working on V&V and MDE. The main goals of the workshop
were to identify the mutual impact of MDE and V&V: How can MDE improve
V&V and how can V&V leverage the techniques around MDE? Thus, we asked
for submissions that target the following areas:
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– V&V techniques for MDE activities, e.g. V&V for model-to-model or model-
to-text transformations;

– V&V at the level of the models: techniques for validating a model or gener-
ating test cases from models, including simulation, model-checking, model-
based testing, etc.;

– V&V at the level of meta models: techniques for validating meta-models
(languages) or for using meta-models to validate other artifacts;

– The application of MDE to validation, testing and verification;
– Impact analysis of (meta) model changes on validation, i.e. the result of a

change in a (meta-)model on the previous results of validation;
– V&V techniques supporting refinement, abstraction and structuring;
– Difficulties and gains of applying V&V to MDE and vice versa;
– Case studies and experience reports;
– Tools and automation.

This year we especially encouraged the submission of papers on the most dis-
cussed topic in MoDeVVa 2009: the combination of model transformations and
model-based testing.

3 Submissions and Acceptance in 2010

In 2010, there were 14 submissions to MoDeVVa from 8 countries. In the review
process, we chose 9 papers on mainly three topics: transformation verification,
modeling and model-based testing. The transformation verification session was
the largest one, with topics such as the application of mutation analysis to trans-
formation verification or the formal validation of an implementation of a trans-
formation language. Given that transformations are taking on a fundamental
role in MDE, their verification seems to be also assuming an important role in
the community’s research.

4 Discussions during the Workshop

One of the major topics was the applicability of MBT in safety-relevant domains:
“Would you fly an airplane that had been tested ONLY by model-based testing?”

The use of a development based on models is a common practice in several
domains of application. The applicability of model-based strategies in the vali-
dation phase, such as model-based testing, is less common in daily practice of
large companies. The main question is: if MBT offers interesting advantages,
why is it not widely applied? What are the thresholds to overcome?

This question has caught some attention of the academic community and also
of the industrial one. In MoDeVVA 2010, the participation of Antti Huima as
keynote speaker created an interesting opportunity for discussion. Some of the
identified challenges that need to be overcome are:
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– The need for mature tools
One inconvenience of applying MBT in industry is that mature tools able to
automatically generate test code are in general a costly investment. Worst,
the return on investment is not immediately observed when the users are
not familiar with models. On the other hand, in general academic centers
develop their own prototype tools, languages, and small case studies. If this
context allows valuable time to investigate new alternatives on modeling,
algorithms, and strategies for test case generation and selection, it does nec-
essarily promote of applying such approaches in industrial cases.

One alternative to tackle this issue is the collaboration of both worlds
by introducing MBT in industry using prototype tools. This scenario seems
interesting: industrial reduces the risks on investments and academics have
real case studies to analyze. In practice, however, this is not easy to imple-
ment. It requires both knowledge of tools proposed by research groups and
identifying interested groups from the industry.

– Does validation require formal verification?
Some points that seem natural steps for academics may seem expensive
for industrials. For instance, the idea that models used for MBT purposes
should be verified. This brings questions such as: what is the definition of
verification? How far should we go in this phase? Why are MBT tools and
model verification tools are seldom integrated?

Those familiar with model verification know by experience that it is not
possible to do test generation using a model that has not been verified. A
minimum of verification is required, e.g., to detect deadlocks, live locks, or
dead transitions.

The practice in the industry shows that, except for organizations dealing
with critical and safety properties, industrials do not use or even mention
verification in formal terms (for instance, model checking). In general, it is
expected that the test generation tool will verify some basic properties be-
fore launching any test generation. However, in general, only in tools that
come from the academic world these checks seem to be explicit.

– Modeling for test generation
MBT requires time for modeling. This phase can be long, according to the
modeling level of the testers and the knowledge about the feature/system/use
case to be modeled. One reason for this difficulty comes from the university
years: engineers are prepared for modeling for the development phase but
not for validation purposes.

Another problem is the number of modeling languages proposed to de-
scribe a system. How to distinguish a model that describes the system under
test from the model that is going be used for test generation? A possible
response to this question is that we can restrict ourselves to particular mod-
eling languages for which MBT can be done automatically and for which
coverage metrics have been studied and are available.
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– Meta models, models, or code?
Many approaches, languages, tools, and methodologies for V&V and MDE
have been proposed, but the trend seems to be on “keeping on proposing”
rather than evaluating. A possible answer to this question would be to ap-
ply in larger scale at the industrial level or let the questions from industry
permeate into research in a more “open” fashion, i.e. to rethink the research
questions in terms of what is demanded from industry. This may also mean
that a step up from current research is needed in order to find “meta” tools
that will allow this research to take place.

– Model transformations
Model transformations are becoming part of MBT. Transformations can be
used in order to add information relevant for testing to models used by
the development team. Development and validation phases may start from
a common model, however, according to the features under test, it may
be required to abstract some information or go further in detailing other
information.

And the problem may go even further. When we want the generation of
test cases able to be automatically executed, it requires including information
for code generation in the modeling phase. The model may become very
complex and discourage beginners in this practice.

An alternative, especially for those starting on MBT, is going step by step.
First, modeling without taking into consideration the test execution phase.
Second, when automation of test case execution is required, the model is
transformed to include additional information for code generation.

There again, tools developed in academia can be helpful. These tools
are developed having other primary goals than the test execution phase. For
instance, they are developed for the analysis of new algorithms for generating
scenarios or for test case reduction. In addition, academics are interested in
having case studies coming from different industrial domains. Depending on
the industrial partner a distinct programming language may be used during
test execution. The result is thus not automatically executed, but it can be
if a test harness is associated to it.

Another usage of model transformation is for coping automatically with
model changes during the whole test phase.

– Test case reduction
Model transformation has also been used to deal with test case reduction,
test case selection, and even to avoid state explosion problem.

The slicing technique, for instance, is a way to avoid the state explo-
sion problem. From an initial model, several sub-models are sliced that will
contain only the essential information for the test generation. Each slice or
sub-model is generated according to the test objectives. Ideally, this slice is
automatically done such that all sub-models put together recreate the global
model. In addition we guarantee that all parts of the initial global model are
in at least one sub-model.
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Concerning the selection or reduction of automatically generated test
cases, this is a problem that is very present in the industry even for manual
test generation. Which test cases should be prioritized? How to select the
most important ones? Another way to see this problem in MBT is: how to
automatically identify a given requirement in a model? A possibility is that
in the modeling phase the tester would be able to identify important transi-
tions or states by tagging or labeling. The criteria for test generation from
such labeling could be: cover all scenarios where a certain requirement is in-
volved. The results may still require a phase of test case reduction, but using
such a technique could provide an idea about how many tests are required
to cover a specific requirement from a given model. Nowadays, few tools are
able to provide these features.
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Abstract. During the development and maintenance of software, the
size of a test suite often increases to such an extent that the costs allo-
cated for its execution are exceeded. In this case, the test suite needs to
be reduced. A number of approaches address the problem of test suite
reduction. Most of them consider the removal or merging of test cases.
However, less attention has been paid to the identification of test cases
that are suitable for merging.

In this paper, we present a novel approach to fill this gap. Using
this approach allows for the identification of test case pairs that, when
merged, have a high potential for test suite reduction. We show that two
test suites reduced by our approach are considerably smaller in size than
those, whose merged test cases were selected randomly. Additionally, we
examine the effect of composite test goals on the reduction ratio.

1 Introduction

Over the last few years, the complexity of software has significantly increased,
which in turn led to a dramatic increase in test cases [14]. Since resources are
typically limited within the testing process, only a restricted number of test cases
(test suite) can be executed. In model-based testing, a coverage criterion [12] is
often used to select a finite and manageable number of test cases. A coverage
criterion primarily measures how well a test suite covers the model, but it can
also be used as a function that returns test goals for the model [13]. Thereby,
a test goal is satisfied iff the corresponding parts of the model are covered by
at least one test case. Thus, when all test goals in a test suite are satisfied,
the test suite fulfills the chosen coverage criterion. As the number of test goals
is influenced by the used coverage criterion, it can vary for the same model.
Furthermore, a large number of test goals is usually accompanied by a large
number of test cases.

In the testing process, an important figure is the size of a test suite. This
figure correlates with the number and the total length of test cases contained
in the test suite. When the size of a test suite becomes too large, resources as-
signed to the creation and execution of the test suite can be easily exceeded. In
such a situation, the reduction of the test suite should be taken into account. So
far, many approaches [4,5,6,9,10,14] consider the problem of test suite reduction.
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The goal of test suite reduction is to identify a minimal set of test cases that are
required to satisfy the given test goals. In [6] the problem of test suite reduction
is defined as follows:

Given: A test suite T, a set of test goals {g1, g2,..., gn} that must be satisfied
to provide the desired test coverage of the model, and subsets {T1, T2,..., Tn}
of T , one associated with each of the gi’s such that any one of the test cases tj
belonging to Ti covers gi.

Problem: Find a minimal cardinality subset of T that fulfills all gi’s exercised
by the original test suite T .

In case a test suite has already been reduced to such a degree that removing
another test case is impossible without decreasing the number of satisfied test
goals, any further reduction can only be achieved by merging test cases. Two
test cases are merged by the time these are substituted by one newly generated
test case that satisfies the same test goals. Merging a test case pair always leads
to a reduction in the number of test cases. In contrast, the reduction of the test
suite’s total length depends on the chosen test case pair and therefore, merging
a randomly selected pair of test cases may not cause the test suite to be reduced
in its total length at all.

For this reason, we introduce a new approach which allows us to identify those
test case pairs that, when merged, are substituted more often by a shorter test
case, compared to randomly selected test case pairs. Our approach is based on
the finding that the substituting test case often integrates the functionality of
both initial test cases. In addition, if both initial test cases partly fulfill the same
functionality, the substituting test case often integrates this shared functionality
only once instead of twice. Thus, a high reduction is to be expected if the test
case pair has a high functional similarity. To evaluate our approach, we reduce
two test suites, TSt and TStp, that were derived from the same model but satisfy
different test goals. In test suite TSt, each test goal corresponds to exactly one
transition of the model. In contrast, the test goals of test suite TStp are each
mapped to one transition-pair. Since all test goals of test suite TSt are satisfied
by at least one test case, the all-transitions coverage [12, page 117] is fulfilled.
The same applies to test suite TStp that fulfills the all-transition-pairs coverage
[12, page 118]. In this extended version of our previous work [2], we also examine
the effect of composite test goals on the achieved reduction ratio. A composite
test goal can be formed by combining test goals. Furthermore, we discuss reasons
why our approach is only effectively applicable for systematically generated test
cases.

The remainder of the paper is organized as follows: In Section 2, we discuss
related work. Thereafter, we derive test suite TSt in Section 3. In Section 4,
we introduce our approach and thereafter use it for reducing test suite TSt.
Section 5 and 6 present results and discuss the effect of composite test goals on
the reduction ratio. Finally, Section 7 concludes the paper.
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2 Related Work

A detailed and comprehensive survey about approaches to the test suite reduc-
tion problem is given in [14]. The test suite reduction problem is usually classified
as an NP-hard optimization problem [8]. Consequently, often heuristics have to
be applied to achieve an almost minimal size of a test suite. The test suite re-
duction problem only allows for the removal of a test case from a test suite if the
number of the satisfied test goals remains the same. This requirement is fulfilled
by redundant test cases only.

Definition 1. A test case t is redundant in a test suite if the number of satisfied
test goals with and without t stays the same.

Unfortunately, many case studies [10] show that test suite reduction can lead
to a big loss in total fault detection effectiveness of a test suite. The total fault
detection effectiveness is based on the number of satisfied test goals and, ad-
ditionally, on the paths that are taken to satisfy the test goals. The latter is
reasoned by the fact that such a path can identify faults also en passant and,
therefore, a path can contribute to the total fault detection effectiveness, too.
As a result, different approaches [4,5] attempt to keep the total fault detection
effectiveness constant.

Test suite reduction techniques can be divided into pre- and post-processing
techniques. The pre-processing should prevent the generation of test cases that
only contribute little to the total fault detection effectiveness of a test suite but
cause high costs. Therefore, test goals are used to be prioritized before test case
generation so that resources are used first for more useful test cases [9].

If a test suite already exists, it only can be reduced in a post-processing phase.
Today it is a common technique that a test case can be removed from a test suite
if the complete sequence of the test case is already subsumed as prefix in a longer
test case [1]. Thus, in this method the total fault detection effectiveness of the
test suite remains constant despite the reduction. Even if a test suite no longer
contains subsumed test cases there may still exist some test cases that have
an identical prefix sequence. That means, their sequence is the same from the
beginning up to a certain point. These identical prefix sequences also represent
a kind of redundancy related to the total fault detection effectiveness, which can
be removed by merging test cases. Therefore, the method in [4] either expands a
test case for the test goals of another test case with an identical prefix sequence or
substitutes both test cases by a newly generated one that satisfies all test goals.
If there are several test cases with an identical prefix sequence it remains unclear
which of them should be substituted or be extended in order to satisfy the test
goals by a rather short test case. For this purpose a heuristics is presented in [3].
However, the biggest drawback of using the heuristics compared to our approach
is that, if anything at all, test goals and not sequences of already generated test
cases are taken into account as an information resource. Our presented approach
is the first that uses the existing test cases as an information resource to identify
particular pairs of test cases that are especially suited for merging [14].
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Fig. 1. Test model of a ticket machine

3 Generation and Representation of Test Cases

To prepare the presentation of our approach, we next introduce a test suite TSt

which is derived from a test model of a ticket machine. The ticket machine is
our system under test (SUT) and it dispenses tickets at tram stops for public
transport. The associated test model is a UML state machine (see Figure 1) that
formally describes the behavior of the SUT. Due to the fact that the SUT is a
reactive system and, therefore, never terminates there exists an infinite number
of test cases. In order to limit the effort spent on testing the SUT, the all-
transitions coverage criterion [12, page 117] is chosen as test selection criterion
for test suite TSt. Based on the all-transitions coverage criterion, test goals are
derived for the test model such that each test goal covers a certain transition of
the model. The UML state machine in Figure 1 contains 19 transitions, hence
19 test goals exist.

Having defined the test goals, the test cases can be automatically generated
based on the test model by using a test case generator. For our purpose, the
model-based testing framework Azmun [7], instantiated with the model checker
NuSMV, was chosen as test case generator. Using this generator allows us to
generate the shortest test cases for structural test goals like states, transitions,
and transition-pairs. Using the test case generator, for each of the 19 test goals
a single test case is generated.

Several of the generated test cases are redundant (see Definition 1). Conse-
quently, redundant test cases can be removed from the test suite without chang-
ing the number of satisfied test goals. Afterwards, each test case in test suite TSt
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Table 1. Test suite TSt without redundant test cases

created for

test goals

101 Z, A, J ZACEGHHHHHHHHHHHHHHHHHHHH I J 27

102 F,G,H,I,K,L ZBCFGHHHHHHHHHHHHHHHHHHHH I KL 28

103 B,C,D,E,N ZBCEDN 6

104 M, O ZMO 3

105 P, Q, R Z PQQQQQQQQQQR 13

# transition path length

satisfies exclusively at least one test goal that no other test case in the test suite
satisfies. In the end, the number of 19 test cases is decreased to five test cases
(see Table 1). The such reduced test suite TSt does not contain any redundant
test case.

A test case generated by the test generator is a finite sequence of input values
and expected output values. The input values represent the test data while the
expected output values represent the test oracle during the test execution. In case
of our test model in Figure 1, the inputs are incoming signals and the outputs
are outgoing signals. Furthermore, in Figure 1, each transition is labeled with
an alphabetic character. Thus, each test case can be uniquely transformed from
a signal sequence into a transition path.

Definition 2. A transition path tp of length n is a sequence of n consecutive
transitions in a state machine.

An example for both notations of a test case is given next:

Signal sequence: in dayTickets, in next, in cancel, in dayTickets, in cancel
Transition path: Z, B, C, D, O, B, M, O

While transforming a signal sequence into a transition path, particular test
inputs are neglected, such that only those transitions remain that are actually
used in the test case.

The advantage of representing a test case in terms of a transition path is that
any section of the path can be mapped to a unique part of the test model’s
structure. Consequently, if multiple transition paths include the same sections,
it can be assumed that these sections are responsible for traversing the same
transitions in the same order. In contrast, identical sections of signal sequences
can map to different parts of the test model, because an incoming signal can
affect different transitions. For example, the signal in cancel in our test model
can be related to two different transitions, i.e. D and M (see Figure 1). Due to
the fact that our approach exploits this mapping to identify suitable test case
pairs, in the following, test cases are represented as transition paths only.

4 Similarity-Based Test Suite Reduction

To motivate our approach, we assume the following situation: Due to limited
testing resources, it is not possible to handle all test cases in a test suite, in order
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that the number of n test cases has to be decreased by one. In case the test suite
contains only non-redundant test cases, the required reduction is only achievable
by merging test cases since, otherwise, the number of satisfied test goals is also
decreased. Furthermore, we assume that all test goals are not mutually exclusive
and, thus, each possible pair of test cases can be merged.

Obviously, a reduction in the number of test cases can be achieved by merging
an arbitrary pair of test cases. A reduction in the total length of the test suite is
also of interest, in order to save even more testing resources. Therefore, however,
a test case pair first has to be identified, that, when merged, leads to a high
reduction in length.

In a first try, a brute-force approach may be used to find the pair of test
cases that leads to the highest absolute reduction in length. For this purpose,
for each possible pair combination of test cases in the test suite a substituting
test case is generated. The pair whose merging achieves the highest reduction is
finally chosen and substituted by the respective new test case. As the generation
of a test case consumes resources, the brute-force approach is impracticable in
the real-world due to its complexity of O(n2). The problem with the brute-force
approach is that a new test case is generated for all possible pair combinations
although only one test case is used for substitution and all other generated test
cases are discarded.

It would be an advantage to avoid the expensive generation of those test
cases that are finally discarded. For this purpose, a method for estimating the
potential of test case pairs for test suite reduction is needed. In the following,
we present our new approach that effectively and efficiently identifies test case
pairs that, when merged, allow for a high absolute reduction in the total length
of the comprising test suite.

4.1 Identification of Similarity

Our approach is based on the following finding: The new test case that results
from merging a test case pair often integrates sections of the test case pair’s
transition paths to satisfy the test goals. In addition, if the test cases of the
test case pair share identical path sections, the sections often only appear once
in the new test case, instead of twice as before. Thus, a high reduction is to be
expected if the transition paths of the test case pair have a large number of iden-
tical transitions. For example, in Figure 2, the transition paths of test cases 101
and 102 have 24 identical transitions in the same order, i.e. Z, C, G, H, and I.
The newly generated test case 201 integrates these transitions, but only once

# length # length

101 Z - AC - EG I J - - 27 201 ZBACFG I J KL 30

102 ZB - CF - G I - KL 28

matches: + + + + similarity: ˜87%

[H×20]

[H×20]
reduction: ˜45%

merging

+…+

transition path transition path

[H×20]

Fig. 2. Two aligned transition paths
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instead of twice. However, because the identical path sections can be distributed
differently in the transition paths of the test case pair, their identification is
rather complex. In this paper, the problem of identifying the highest number of
identical transitions is solved by applying the Smith-Waterman-Algorithm [11],
well-known from bioinformatics. The Smith-Waterman-Algorithm efficiently de-
termines the highest number of identical transitions for two transition paths by
using a local sequence alignment. The algorithm generates the alignment by in-
serting gaps (depicted as ”-” in Figure 2) into the aligned sequences such that an
optimal number of identical transitions is shifted to matching positions. Thereby,
the algorithm maintains the order of transitions within each transition path. For
example, in Figure 2, the transition paths of test cases 101 and 102 are aligned
to each other.

The similarity of a test case pair can be calculated as follows: The number of
identical transitions in the two aligned transition paths of test cases ti and tj is
set in relation to the total length of both transition paths (see Formula 1, where
match(ti, tj) denotes the number of identical transitions in the alignment). For
example, test cases 101 and 102 have a similarity value of approx. 87%. Note
that the calculated similarity value for a test case pair depends on the used test
model. Using a different, but semantically equivalent model might result in dif-
ferent values.

similarity(ti, tj) =
match(ti, tj) · 2

ti.length + tj .length
. (1)

4.2 Algorithm

In the following the functionality of our approach is described in detail by means
of the test suite TSt that was derived from our test model (see Figure 1). The
consecutive numbering ”#” in the following text refers to the corresponding line
number in the pseudo-algorithm presented in Figure 3.

At the beginning, for each pair of test cases contained in the test suite the
similarity is calculated by applying the sequence alignment (1.-5.). Referring to
test suite TSt, 10 pairs (see Table 2 col. ”test case pair”) can be generated by
combining the original five test cases (see Table 1). For example, the calculated
similarity for pair 101×102 would be approx. 87% (see Table 2 col. ”similarity”).

After that, each test case pair and its calculated similarity is added to the list
listCombinations (5.). Finally, the pairs contained in the list listCombinations
are sorted in descending order according to their similarity (6.). In test suite TSt,
the test case pairs would be arranged as follows: 101×102, 103×104, ...

Subsequently, the test case pairs are successively taken from top (highest
similarity first) of list listCombinations (8.) until function exitCondition() be-
comes true (7.). The function can be substituted by different exit conditions
(e.g. ”Only generate n test cases” or ”The similarity of test case pairs should
not be below n%”). Afterwards, the test generator creates (if feasible) a new test
case tnew (10.) for each selected test case pair in order to satisfy their combined
test goals (9.). For example, we assume that, due to the exit condition, only
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input testsuite : set of test cases 
output testsuite : reduced set of test cases 

0.

 1. 
2.
3.
4.
5.

6.

7.

8.
9.

10.

11.
12.

13.
14.

listCombinations, listCandidates = null; 

for each ti and tj in testsuite
if ( i > j ) then

pair = pair( ti, tj)
pair.similarity = calcSimilarity( align( pair ) )
listCombinatons.add( pair )

 endif 
endfor
listCombinations.sort() //...pairs with highest similarity on top
    

while ( ! exitCondition() ) do //...e.g. pair.similarity < 70%

pair = listCombinations.getNextFromTop()
tnew.testgoals = mergeTestGoals( pair )
tnew.transitionpath = TestGen.generate( tnew.testgoals )

if tnew.transitionpath exists then
listCandidates.add( tnew, reduction( tnew, pair ) )

 endif 
endwhile 

testsuite.substitute( listCandidates.identifyMaxReductionSet() ) 
return testsuite

Fig. 3. Algorithm used in our approach

five new test cases are allowed to be generated for test suite TSt. Then, the
test goals of the following five test case pairs, which have the highest similarity
in list listCombinations, are combined: 101×102, 103×104, 101×103, 102×103,
and 104×105. The combined test goals (A, J and Z, F, G, H, I, K, L) of test
case pair 101×102 are satisfied, for example, by the new test case 201.

For each newly created test case tnew the achieved reduction is calculated.
Subsequently, the reduction value and the newly generated test case tnew are
added to the list listCandidates (11.-12.). Referring to test suite TSt, the five
newly generated test cases 201, 208, 202, 205, and 210 are in this list.

After that, a set of newly created test cases is selected from list listCandidates
so that the highest absolute reduction in total length is achieved. While doing
so, no test case pair in this set is allowed to contain test cases that are also used
for another test case pair in the set. For example, such a set consists of test
cases 201 and 202 for test suite TSt. In this case, this selection is inappropriate,
since test case 101 is substituted by both test cases. On the other hand, a set
which consists of test cases 201 and 208 is appropriate. Furthermore, this set
also achieves the highest absolute reduction in total length for test suite TSt.

Finally, for each test case in the set, the corresponding test case pair is sub-
stituted in the test suite (13.). This means that after substitution test suite TSt

contains three test cases, i.e. 201, 208, and 105.
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Table 2. All test case combinations for test suite TSt

created for

test goals rel.* abs.

101 � 102 87% � 201 Z,A,J,F,G,H,I,K,L ZBACFG I J KL 30 45% 25

101 � 103 18% � 202 Z,A,J,B,C,D,E,N ZBCEDNOACEG I J 33 0% 0

101 � 104 7% � 203 Z, A, J, M, O ZMOACEG I J 29 3% 1

101 � 105 5% � 204 Z, A, J, P, Q, R ZAP RCEG I J 39 3% 1

102 � 103 18% � 205 F,G,H,I,K,L,B,C,D,E,N ZACDOBCEFG I KLN 34 0% 0

102 � 104 6% � 206 F,G,H,I,K,L,M,O ZMOBCFG I KL 30 3% 1

102 � 105 5% � 207 F,G,H,I,K,L,P,Q,R ZBP RCFG I KL 40 2% 1

103 � 104 22% � 208 B,C,D,E,N,M,O ZMOBCEDN 8 11% 1

103 � 105 11% � 209 B,C,D,E,N,P,Q,R ZBP RCEDN 18 5% 1

104 � 105 13% � 210 M, O, P, Q, R Z P RMO 15 6% 1
* = rounded

[H×20]
[H×20]

[H×20]

[H×20]

[H×20]

[H×20]

[H×20]

[Q×10]

[Q×10]

[Q×10]

[Q×10]

reduction
lengthtransition path#simil.*

test case

pair

5 Evaluation of the Achieved Reduction Results

So far we presented how to derive and how to apply our approach on test
suite TSt. Test suite TSt contains five test cases that can be combined to 10
pairs. These 10 pairs are shown on the left side in Table 2 with their correspond-
ing similarity. For each test case pair the corresponding test case, that would
be generated when the pair would be merged, is shown on the right side. The
resultant relative and absolute reduction value, also shown on the right side,
refers to the difference between the length of a newly generated test case and
the total length of the corresponding test case pair.

In the following, we will further evaluate our approach by comparing the re-
duction results achieved for test suite TSt with those achieved for test suite TStp,
which have already been partly presented in [2]. The test goals for test suite TStp

are derived by applying the all-transition-pairs coverage criterion [12, page 118]
to the test model presented in Section 3. As a result, each test goal corresponds
to exactly one of the 62 transition pairs of the model. However, only 55 of these
test goals can be satisfied by a test case. For each of the remaining seven goals,
no test case can be generated that satisfies the respective test goal. Subsequently,
redundant test cases are removed such that, in the end, 26 test cases are con-
tained in the test suite TStp. These 26 test cases can be combined to 325 pairs.

5.1 Similarity in Relation to Achieved Relative Reduction

In Figure 4, the calculated similarity for all 10 test case pairs of test suite TSt

and all 325 test case pairs of test suite TStp is set in relation to the achieved
relative reduction by merging them. With the assistance of trend lines it can be
seen that for test case pairs of TSt and TStp most of the time the following is
valid: The higher the similarity of a test case pair, the higher is the reduction
achieved by substitution.

It is further in evidence that merging test case pairs can also result in growth
of test case length. But this happens more often for test case pairs with low
similarity. This is clearly to be seen in Figure 4(b), where many test case pairs
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Fig. 4. The similarity of test case pairs compared with the achieved relative reduction

with a low similarity value of around 10% are substituted by a test case whose
length exceeds the total length of the test case pair.

5.2 Comparison of Differently Reduced Test Suites

Next, we reduce test suites TSt and TStp in various ways and compare the
achieved results. We therefore use, in addition to our approach, three other
techniques to select particular pairs of test cases for merging:

– Best: Only pairs are selected that in combination achieve the highest abso-
lute reduction in total length (using the brute-force approach).

– Worst: Only pairs are selected that in combination achieve the lowest re-
duction in total length.

– Random: The pairs are selected randomly.

The objective was to substitute two test case pairs in test suite TSt and 10 test
case pairs in test suite TStp by newly generated test cases. In other words, the
number of contained test cases in test suite TSt should be decreased from five
to three (40%) and in test suite TStp from 26 to 16 (approx. 38%).

In Figure 5 the total length of five differently reduced test suites is depicted
in comparison to the original test suites TSt and TStp. For test suites TSRnd

t

and TSRnd
tp , which are reduced by merging randomly selected pairs, the total

length of contained test cases stays nearly the same compared to the original
test suites TSt and TStp. For the test suite TSWorst

tp the total length of contained
test cases has increased significantly. Test suites TSBest

t and TSBest
tp , which are

reduced by using the brute-force approach, achieved the highest reduction in to-
tal length. However, 10 new test cases have to be generated for test suite TSBest

t

and, in the end, 9 of these are discarded. For test suite TSBest
tp , 325 test cases

have to be generated and, in the end, 315 are discarded. Our approach is able
to achieve similar good results (refer to test suites TSAppr

t and TSAppr
tp ) though

consuming less resources. In particular, for test suite TSt, only two new test
cases are generated, and only 10 for test suite TStp, respectively.

These results confirm that our approach is very effective in identifying test case
pairs that lead to a high reduction in the total length of a test suite. Due to its
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Fig. 5. Total length of 5 differently reduced test suites in relation to the original one

high efficiency, our approach should be preferred over the brute-force approach
or the random selection of test case pairs. Our approach should also be effectively
applicable in more complex scenarios related to industrial case studies with test
goals that are derived by other coverage criteria (e.g. MC/DC).

It is important to note that our approach is not limited to model-based tech-
niques; it can also be applied to code-based techniques. In this case, branches of
the control flow of a program would be used instead of transitions.

6 Effect of Composite Test Goals on the Reduction Ratio

Topics like Scalability, Reachability of Combined Test Goals, and Total Fault
Detection Effectiveness have already been discussed in [2]. In the following, we
additionally examine the effect of composite test goals on the reduction ratio
achieved by our approach.

In this paper, we have derived test goals by applying a coverage criterion, used
as our test selection criterion [12, page 107], on the test model. For example,
for test suite TSt the all-transitions coverage criterion is used and the resulting
test goals are, therefore, transitions. From now on, test goals that were derived
in such a way are called atomic test goals. An atomic test goal is satisfied only,
if there exists a valid sequence of inputs for the test model, that leads to states
where the test goal is fulfilled. Executing this sequence on the model, typically,
more than one transition is traversed. As the transitions have conditions that
have to be fulfilled for traversing them, a test goal can also be defined in terms
of such conditions guarding the reachability of the test goal. For example, let
transition C in our test model (see Figure 1) be an atomic test goal. To satisfy
this test goal, the corresponding transition-condition ”[shortT ripT ickets > 0 or
dayT ickets > 0]” has to be fulfilled. Furthermore, in order to reach transition C,
test cases definitely have to traverse transition A or B. Therefore, the conditions
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of transitions A, B, and C can be used in combination to define the corresponding
test goal.

A composite test goal is composed of atomic test goals and/or other composite
test goals. To satisfy a composite test goal, all of its associated test goals have
to be satisfied by one and the same test case. For example, a composite test goal
can be formed by merging test case pairs, as done for our approach. In this case,
the single, newly generated test case must satisfy the composite test goal that
consists of all test goals of the substituted test case pair. Thereby, the conditions
of the combined atomic test goals are taken over.

S
x y

Sx,y
z y

A1 A2

(a)

x y
Sx,y

y

A1 A2
z

(b)

A1
A2z

x y
Sx,y

Sx,y

x y
(c)

x
A2Sx,y

Sx
yA1

Sx,y

(d)

Fig. 6. Merging a test case pair is influenced by the composite test goal

We identified different cases (see Figure 6) how a composite test goal can
influence the generation of a new test case z that is used as substitute for a
pair of test cases, i.e. x and y. In Figure 6, Ai is the set of all test cases that
satisfy test goal i. Test case x satisfies test goal 1 (x ∈ A1). Test case y satisfies
test goal 2 (y ∈ A2). Test case z is generated by merging test case pair x×y
(z ∈ (A1 ∩ A2)). Consequently, test case z satisfies the composite test goal that
is formed by combining test goals 1 and 2. Sx,y is the set of all test cases that
have a high similarity with respect to test case x and test case y. Consequently,
the test case pair x×y has a high similarity (x, y ∈ Sx,y). The similarity for a
test case pair is high, if the similarity value (calculated by using Formula 1) is
≥ 85%.

Our reduction approach exploits the case represented in Figure 6(a). In this
case test case z has a high similarity with respect to test cases x and y. That
means, a large number of transitions in the transition path of the test case z are
identical and are traversed in the same order as in test cases x and y. As a result,
the identical transitions in the newly generated test case z were integrated only
once, instead of twice, which caused a reduction in the length of the test suite.
For example, in Table 3 the similarity for all pair combinations of test cases x, y,
and z of test suite TSt is presented. As can be seen, test case z achieved a high
reduction in length if it exhibits a high similarity with respect to test cases x
and y. The situation in Figure 6(a) typically arises if the composite test goal for
test case z is formed by test goals that depend on each other as little as possible.
Otherwise, situations as depicted in Figure 6(c) or 6(d) can occur.

In case test goals of a composite test goal influence each other, the following
often happens: A new test case z is generated that satisfies the composite test
goal, which itself is formed by combining test goals of other test cases x and y.
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Table 3. All similarity values for test cases x, y, and z of test suite TSt

x y z x and y x and z y and z

101 102 201 87% 91% 97% 45%

101 103 202 18% 87% 31% 0%

101 104 203 7% 93% 19% 3%

101 105 204 5% 76% 50% 3%

102 103 205 18% 87% 15% 0%

102 104 206 6% 93% 18% 3%

102 105 207 5% 76% 49% 2%

103 104 208 22% 71% 55% 11%

103 105 209 11% 33% 84% 5%

104 105 210 13% 22% 93% 6%

similarity for …# of test case relative reduction
( merging x and y )

However, the new test case z exhibits a rather low similarity with respect to
test cases x and y, since the interdependence of test goals for test cases x and y
prevents the generation of a more similar test case. This situation is depicted in
Figure 6(c) and frequently occurs if a high number of test goals are combined
into a composite test goal.

Due to the low similarity of test case z with respect to test cases x and y,
a reduction based on the principle ”integrate once instead of twice” is not ef-
fectively applicable. Therefore, our approach is not useful in such a situation,
though substituting test cases x and y by the new test case z may still imply
a reduction in length: Test case z can exhibit shortcuts and detours, and can
therefore be shorter or longer with respect to the total length of test cases x
and y. However, shortcuts and detours are on average equally distributed such
that the change in length is typically rather marginal.

The number of test goals, which have to be satisfied by one single test case z,
correlates with the probability for the mutual exclusion of fulfillment conditions
for these test goals. In consequence, a new test case z cannot always be derived
for a composite test goal (see Figure 6(d)). Nevertheless, such a situation is
prevented in test suites TSt, due to reachability of the start state for every other
state. As a result, all test goals of test suite TSt can theoretically be satisfied by
one single test case. However, this comprehensive test case is of huge length. In
comparison, in test suite TStp several test goals are mutually exclusive, e.g. the
transition pairs ZA and ZB.

As mentioned above, our approach is only effectually applicable, if the case
depicted in Figure 6(a) occurs. For this case to happen, test cases x, y, and z shall
be generated systematically, e.g. by using a model checker, and not randomly,
as we assume that the generation of a test case z with a high similarity with
respect to x and y is more frequent if test cases are systematically derived. This
can be justified by the fact that even the repeated random generation of a test
case for one and the same test goal results in different test cases. Due to random
generation, a newly generated test case z does not exhibit a high similarity with
respect to test cases x and y (see Figure 6(b)). Therefore, a reduction based on
the principle ”integrate once instead of twice” is not effective.
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In summary, the following conclusions can be drawn: The more test goals are
combined into one composite test goal, the larger is the probability that there
exists no single test case z satisfying the composite test goal (see Figure 6(d)).
However, if such a test case z still exists, this test case is often dissimilar to the
test case pair x×y (see Figure 6(c)). Due to the dissimilarity no high reduction
can be on average achieved by merging the test case pair x×y.

As a consequence, the number of test goals, which have to be satisfied by the
new test case z, is also of interest when selecting test cases x and y for merging.
Furthermore, our approach performs better for test suites that are derived from
large test models, containing a high number of transitions and weak transition
conditions, since these positively affect the size of sets A and S shown in Figure 6.

In our discussion, we have only considered common test models. Of course,
specific models can be used that fail in meeting the above-listed requirements
for our approach.

7 Conclusion and Future Work

Test suite reduction has been a major focus of interest in software testing. As a
result, a number of methods were proposed to reduce the size of a test suite by
merging contained test cases [4,5]. Nevertheless, this paper (an extended version
of [2]) is the first that proposes and develops a technique to identify pairs of
test cases that are especially suited for merging [14]. We therefore introduced a
new approach that efficiently identifies test case pairs that, when merged, are
often capable of largely reducing the size of the test suite. Our approach de-
termines those test case pairs based on their similarity. For this purpose, test
cases are depicted as transition paths and can then be compared by analyzing
their overall lengths and the number of identical path sections. The identical
path sections can be efficiently identified by applying a local sequence alignment
algorithm. Our new approach is evaluated using two different test suites which
were automatically derived from the same test model. It could be shown that the
reductions achieved by our approach were very close to the optimum, while ran-
dom reduction, used for comparison, only achieved average results. Additionally,
we discussed the effect of composite test goals on the reduction ratio that can
be achieved by applying our approach. Based on the promising results, which
we were able to achieve, we will further evaluate and validate our approach by
using larger test suites provided by our industrial partners.
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Abstract. Model transformation can’t be directly tested using program
techniques. Those have to be adapted to model characteristics. In this
paper we focus on one test technique: mutation analysis. This technique
aims to qualify a test data set by analyzing the execution results of
intentionally faulty program versions. If the degree of qualification is not
satisfactory, the test data set has to be improved. In the context of model,
this step is currently relatively fastidious and manually performed.

We propose an approach based on traceability mechanisms in order
to ease the test model set improvement in the mutation analysis process.
We illustrate with a benchmark the quick automatic identification of the
input model to change. A new model is then created in order to raise the
quality of the test data set.

1 Introduction

When a program written in C has not the expected behavior or is erroneous,
the programmers look for the faults in their program. Indeed, they trust in the
compiler. The C compilers have been largely tested for two major reasons. First,
a fault in a compiler may spread over lot of programs since a compiler is used
many times to justify the efforts relative to its development. Secondly, compilers
have to be trustworthy. Indeed, when the execution of a C program leads to an
unexpected behavior, the faults have to be looked for in the program and not in
the compiler. Similarly, model transformations that form the skeleton of model
based system development, and so enable to generate code from high level model
specifications, have to be largely tested and trustworthy.

Model transformations may be considered programs and tested as such. How-
ever, the data structures they manipulate (models conform to metamodels)
implies specific operations that do not occur in traditional programs such as nav-
igating the metamodels or filtering model elements in collections. Thus, classical
but also specific faults may appear in model transformations. For instance, the
programmer may have navigated a wrong association between two classes, thus
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c© Springer-Verlag Berlin Heidelberg 2011



260 V. Aranega et al.

manipulating incorrect class instances of the expected type. The emergence of
the object paradigm has implied an evolution in the verification techniques [13].
Similarly, verification techniques have to be adapted to model transformation
specificity to make profit from the model paradigm. New issues relative to the
generation, the selection and the qualification of input model data are met.

There exist several test techniques. In this paper, we only focus on mutation
analysis. This technique relies on the following assumption: if a given test data
set can reveal the fault in voluntarily faulty programs, then this set is able to
detect involuntary faults. Mutation analysis [6] aims to qualify a test data set
for detecting faults in a program under test. For this purpose, faulty versions of
this program (called mutants) are systematically created by injecting one single
fault by version. The efficiency of a given test data set to reveal the faults in
these faulty programs is then evaluated. If the proportion of detected faulty
programs [20] is considered too low, new data tests have to be introduced [16].

Only the test data improvement step of the mutation analysis process dedi-
cated to model transformation is apprehended in this paper. Indeed, in [12], the
authors argue, with a survey of the development of mutation testing, that few
works deals with that test set improvement step. The creation of new test models
relies on a deep analysis of the existing test models and the execution of the un-
revealed faulty transformations. Currently, this work is manually performed and
fastidious; the tester deals with a large amount of information. Thus, in this pa-
per, we propose an approach to fully automate the information collection. This
automation relies on traceability mechanisms enhanced with mutation analy-
sis characteristics. An algorithm is proposed to effectively collect the required
and sufficient information. Then, the collected information is used to create new
test models. Our enhanced traceability mechanisms helps to reduce the testers
intervention to particular steps where their expertises are essential.

This paper is composed as follows. Section 2 presents mutation analysis to
qualify test data set in model transformation testing. Section 3 describes our
metamodels, foundations of our approach to improve test data set. Section 4
validates our approach with the class2table transformation. Section 5 introduces
works related to the qualification and the improvement of the test data set.
Section 6 draws some conclusions and introduces future work.

2 Mutation Analysis to Qualify Test Data Set

Assuring that a program is undoubtedly fault free is a difficult task requiring a
lot of time and expertise. However, qualifying a test data set (i.e. estimate its
pertinence and its effectiveness) is easier. If this estimation is considered too low,
the test set must be improved. In the following subsections, we briefly describe
the mutation analysis process [6], one way to qualify a given test data set. We
then explain why that software testing method has to be adapted to the model
paradigm.
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2.1 Mutation Analysis Process

The mutation analysis process may be divided into four activities as sketched in
Figure 1. The preliminary step (i.e. activity (a)) corresponds to the definition of
an initial test set, that the tester wants to qualified and the creation of variants
(P1, P2,. . . , Pk) (called mutants) of the program P under test by injecting one
atomic change. In practice, each change corresponds to the application of a single
mutation operator on P . Then, P and all the mutants are successively executed
with each test data of the set that has to be qualified (i.e. activity (b)).

If the behavior of P with one of the test data differs from anyway from the
behavior of at least one of the Pi with the same test data, these mutants are said
to be killed. The faults introduced in those Pi were indeed highlighted by the
test data. In the other case, if P returns the same results as some Pj , they are
said to be live mutants. The activity (c) computes the ratio of killed mutants
also called the mutation score. If this ratio is considered too low, this means that
the test data set is not sensitive enough to highlight the faults injected in the
program. In that latter case, the test data set has to be improved (activity (d))
until it kills each mutant or it only leaves live mutants that are equivalent to
P [6]; i.e. no test data can distinguish P and these live mutants (e.g. the fault
is inserted in dead code).

The mutation analysis process is stopped when the test data set is qualified
i.e. when the mutation score reached 100 % or when it rose above a threshold
beforehand fixed.

Fig. 1. Mutation analysis process

2.2 A Largely Manual Process

Part of the mutation analysis process is automatic but work remains for the tester.
The mutant creation can be automated. However, usually the operators are spe-
cific to the language used in the program to test. For each new language the mu-
tation operators have to be defined and implemented. The execution of P and its
associated mutants with the test data is obviously automated as well as the com-
parison of the outputs. The analysis of a live mutant is manual up to now. Indeed,
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on the one hand, the automatic identification of equivalent mutants is an unde-
cidable problem [6,17]. On the other hand, the test data set improvement can be
difficult. The improvement of the test data set is manually performed. Indeed, the
unrevealed injected fault should be analyzed both statically and dynamically in
order to create a new test data that will kill the considered mutant.

The purpose of this paper is to help in the automation of the test data set
improvement in case where test data are models and program is a model trans-
formation. But let us explore in the next subsection the specificity of model
transformation testing.

2.3 Adaptation to Model Transformation

Model transformations can be considered programs and therefore techniques
previously explained can be used. However, the complexity and the specificity
induced by the data structures (i.e. models conform to their metamodels) ma-
nipulated by the transformations imply modifications in the mutation analysis
process described in the subsection 2.1.

Each step of the mutation analysis process has to be adapted to model trans-
formations. [18] deals with the generation of test models. In [14], dedicated
mutation operators have been designed independently from any transformation
language. They are based on three abstract operations linked to the basic treat-
ments of a model transformation: the navigation of the models through the
relations between the classes, the filtering of object collections, and the creation
and the modification of the model elements. The execution of the transformation
under test T and its mutants T1, T2, . . . , Tk differs from the execution of a pro-
gram but remains common. The comparison of the output model produced by
T and those produced by the Ti can be performed using adequate tools such as
EMFCompare [1]. If a difference is raised by EMFCompare, the mutant is con-
sidered killed, otherwise new test models are built to kill the (non equivalent)
live mutants.

The remainder of this paper focuses on the improvement of the test set
(activity (d)) in the mutation analysis process dedicated to model transforma-
tion. Our proposition relies on the following hypothesis: Building new test models
from scratch can be complex whereas creating a new test model could benefit
from the existing models. Thus we have developed an approach that creates new
test model by adaptation of other existing and pertinent ones.

3 Traceability, a Means to Automatically Collect
Information

Considering that creating a new test model from another one is easier than from
scratch, the issue of the test set improvement raises three questions:

– Among all the existing couples (test model, mutant), which ones are relevant
to be studied?
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– What should the output model look like if the mutant was killed? i.e. what
could be the difference we want to make appear in the output model?

– How to modify the (input) test model to produce the expected output model
and thus kill the mutant?

To help the tester to answer these questions, we provide a method based on
a traceability mechanism.

3.1 Traceability for Model Transformation

According to the IEEE Glossary, Traceability allows one to establish degrees of
relationship between products of a development process, especially products bound
by a predecessor-successor or master-subordinate relationship [11]. Regarding
MDE and more specifically model transformations, the trace links elements of
different models by specifying which ones are useful to generate others.

Our traceability approach [9,2] relies, among others, on the local trace meta-
model presented in Figure 2.

Fig. 2. Local Trace Metamodel

The local trace metamodel is built around two main concepts: Link and El-
ementRef expressing that one or more source elements are possibly bound to
target elements. Furthermore, for each link, the transformation rule producing
it is traced using the RuleRef concept. Finally, for implementation facilities, an
ElementRef has a reference to the real object in the source or target model.
As our environment is based on the Eclipse platform, models are implemented
with EMF, the reference named EObject is an import of the ECore metamodel.
The local trace metamodel and local trace models are independent of any trans-
formation language. However, the generation of the local trace model strongly
depends on the used transformation language.

For each Link instance, the involved elements of the input or output models
are clearly identified thanks to the ClassRef directly referring the EObject. A
continuity between the traceability and the transformation worlds is ensured.
Furthermore, the transformation rule that has created a link is associated to it
via the ruleRef reference. Each time a rule is called a unique new Link is created.
Thus, from a rule, the localTraceModel enables the tester to identify, for each
call (i.e. for each associated link), two sets of elements: those of the input model
and those of the output model created by the rule. In the case of a faulty rule,
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these sets respectively correspond to the elements to modify and the elements
that may be different if the mutant is killed.

3.2 Mutation Matrix Metamodel

Mutation analysis results and traces information are combined to automate a
part of the test data set improvement process. Mutation analysis results are
usually gathered in a matrix. Each cell indicates if an input model has killed a
given mutant or not. A mutant is alive if none of its corresponding cells indicate
a killing. From information contained in all the cells concerning a mutant, it can
be deduced if it is alive or not.

Links between mutants, test models and their traces are managed using a
dedicated matrix at a model level. The advantages are multiple. A cell corre-
sponds to an abstraction of the execution of a mutant Ti for the test model Dk.
By associating its trace to each cell, the matrix model becomes a pivot model.
In this way a continuity is ensured between the traces, the test models and the
information gathered in the mutation matrix. The navigation is eased between
the different worlds. Moreover, the mutation matrix benefits from tools dedi-
cated to models. Thus, the mutation matrix model is automatically produced
from the results of the comparisons between the model produced by the original
transformation and the one generated by Ti.

Fig. 3. Mutation Matrix Metamodel

The mutation matrix metamodel, presented in Figure 3, is organized around
three main concepts. Mutant refers to mutants created from the original transfor-
mation. The mutants have one rule (modifiedRule attribute) modified thanks
to one mutation operator (mutationOp attribute). Model refers to input test
data.Cell corresponds to an abstraction of the couple (mutant Ti, test model
Dk). Its value (false or true) of the property isAlive specifies the state (killed
or live respectively) of the Mutant Ti regarding to the specific Model Dk. The
LocalTraceModel corresponding to the execution of Ti with Dk is thus associated
to the Cell.

The matrix model is generated during the mutation analysis process. It is
the doundation of the test model improvement process presented in the next
subsection.



Traceability for Mutation Analysis in Model Transformation 265

3.3 Data Improvement Process Assisted by Traces

This section aims to clarify and expose the data improvement process enhanced
with our traceability mechanism. An overview of our proposition is shown before
detailing the different steps of this process.

Overview. The data improvement process (activity (d) in Figure 1) is composed
of three activities as shown in Figure 4: (1) the selection of a live mutant, (2)
the identification of a relevant test model and (3) the creation of a new test
model by adaptation of the existing test model previously identified. These three
activities rely on either the mutation matrix, the trace model or both. Indeed, in
the mutation matrix, each cell corresponds to a couple (mutant, test model). The
results of the execution of the considered mutant with the model in question are
gathered in a trace model. We developed some algorithms to scan the mutation
matrix and the trace model in order to gather adequate information. In this
paper we focus on the second activity and give some exploratory ideas on the
third one.

Step 1: Selection of a Live Mutant. A mutant is alive if no test model
has killed it. Live mutants can thus be easily and automatically identified by
exploring the matrix cells. Each cell relative to a mutant is scanned. If for all of
them the property isAlive is set to true, the mutant is considered alive.

Fig. 4. Test Model Improvement Process

Step 2: Identification of a Relevant test model. Identifying a good can-
didate, among the test models, to kill a given live mutant is more difficult. Our
approach relies on the principle that test models for which the faulty rule of the
mutant has been called are better candidates. Indeed, the conditions to apply
this rule were satisfied. Our traceability mechanism helps us to identify these
models and for each of them to highlight the elements impacted by the faulty
rule. The algorithm 1 implements this part of the improvement process (i.e.
corresponding to step 2 and gathering information to perform step 3).

The first five lines correspond to the initialization of the different variables.
The trace variable stores the trace associated to the execution of the mutant
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Algorithm 1. Information Recovering for a Live Mutant
1: trace ← null
2: rule ← null
3: modifiedRule ← mutant.modifiedRule
4: modelsHandled ← ∅
5: eltsHandledSrc ← ∅
6: eltsHandledDest ← ∅
7: for each mutant.cells do
8: trace ← cell.trace
9: rule ← trace.findRule(modifiedRule)

10: if rule �= null then
11: modelsHandled + = cell.model
12: tempEltsSrc ← ∅
13: tempEltsDest ← ∅
14: for each rule.links do
15: tempEltsSrc + = link.srcElements
16: tempEltsDest + = link.destElements
17: end for
18: eltsHandledSrc + = tempEltsSrc
19: eltsHandledDest + = tempEltsDest
20: end if
21: end for

Ti for a given test model Dk. rule refers to a RuleRef in the trace model.
modifiedRule is a String initialized with the name of the modified rule as-
sociated to Ti. The modelsHandled variable is a model list containing the test
models for which the execution of the mutant requires the modified rule. The
eltsHandledSrc and eltsHandledDest variables are similar to the previous one.
They contain lists of input (respectively output) elements (one list by test model)
that are involved in the application of the faulty rule.

The algorithm then scans each cell relative to the studied mutant. The trace
corresponding to the execution of Ti on one input model Dk is stored (line 8).
The trace model is navigated to check if the modified rule has been called during
the corresponding transformation. This search is performed through the findRule
method (not detailed in the algorithm). This method explores the RulesContainer
of the LocalTraceModel associated to the cell until it finds the RuleRef instance
whose name corresponds to the one of the faulty rule (i.e. the assigned value of the
modifiedRule property of the Mutant). This method returns a RuleRef instance
or null if the rule doesn’t appear in the trace. The result is stored in the rule vari-
able (line 9). If the content of the rule variable is null, the analysis stops here for
this cell and goes on with the next one. On the other hand, the model Dk is stored
in the modelHandled (line 10). For each link associated to the rule, the list of the
input model elements (srcElements) is stored in the eltsHandledSrc variable us-
ing the temporary variable tempEltsSrc. The management of the output model
elements is performed from the same way. (line 12 to 17).
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For a given live mutant Ti, this algorithm provides: (1) some test models
(modelsHandled) (2) their elements (eltsHandled) involved in the application
of the faulty rule and (3) the elements of the output models created by this rule.
If the content of the modelHandled variable is empty, the faulty rule has never
been called, whatever the test model. A new model has to be created, possibly
from scratch, containing elements satisfying the application of the faulty rule. On
the other hand, if the modelHandled variable is not empty, the faulty rule has
been called at least once. However, since the mutant is alive, this rule has never
produced a result different from the one generated by the original transformation
T . A new test model is created by adapting the considered test model.

Step 3: Creation of a New Test Model. During this step, a new test model
is produced using the information gathered in the previous one. The step is
composed of three sub-steps. The most important ones are the 3(a) and 3(c)
(figure 4), that modify a test model previously identified as relevant. As these
sub-steps deliberately modify a chosen test model among the existing ones, the
sub-step 3(b) copies the considered test model in order to conserve it unchanged
in the produced new test model set.

The modification of the test model requires both the previously identified el-
ements and the applied operator. Indeed, based on a static analysis, the tester
must understand why the mutant remains alive whereas the mutated rule has
been called on the identified elements. He then must consequently modify the
model. These two activities are currently manually performed. However, we ob-
serve that for each mutation operator, the number of situations letting the mu-
tant alive is low. We have initiated to list, for each operator, all these situations
and identify some related modifications to perform on the model to kill the mu-
tant. For each mutant, the list of the situations must be exhaustive, but for each
of these situations, only one modification enabling the tester to kill the mutant
is enough. We foresee to develop a tool that, given an operator and the identified
relevant model, will automatically detect one of these situations and perform the
modification on this model.

The RSMA mutation operator [14] is taken for the following example. It adds
a useless navigation to an existing navigation sequence while respecting the
metamodel involved in the transformation. Thus, for example, the original trans-
formation navigates the sequence self.a.b and the mutant navigates self.a.b.c.
In only three cases, the mutant may remain alive: (1) the original and the mu-
tated navigation sequence finally point to the same instance; (2) the original and
the mutated navigation sequence finally point to null ; (3) the property values
pointed by the original and the mutated navigation sequence are the same. The
way to modify the test model differs in each of these three cases. The first case
occurs when the added navigation is the same that the last one in the original
sequence. Such a situation is possible if the added navigation corresponds to a
reflexive reference in the metamodel. The mutated navigation is thus self.a.b.b
(for the original navigation sequence self.a.b). The mutant can be killed if the
original and the mutated navigation point to two different instances of the same
metaclass. A new instance (with different properties) of this metaclass must thus
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be added in the test model and references consequently updated. The second case
occurs if one intermediate navigation is not set. In our example, if the a reference
points to null, neither the original navigation sequence self.a.b nor the mutated
one self.a.b.c can be fully performed, the object retrieved in both sequences is
null. The test model can be modified in order to fill in the empty references. The
third case occurs when the class recovered by the sequence self.a.b and the class
recovered by the sequence self.a.b.c both own a property with the same label
(e.g. the property name). The mutant remains alive if, in the test model, these
properties are set to the same value for the two recovered instances (of possibly
two different metaclasses). To solve this problem, the testers can modify one of
the properties changing its value.

By extending such a work on all the operators identified in [14], the cre-
ation of a new test model can be even more automated. However, the algorithm
underlying this automation will rely on the used transformation language. In or-
der to capitalize this work whatever the used transformation language it seems
inevitable to use generic definition of mutation operators. In [19] the authors
propose MuDeL, a language enabling the description of mutant operators inde-
pendently from the used language. Thus a given generic operator can be reused
with several languages. However, the MuDeL operators are dedicated to tradi-
tional programs and not to model transformations. A generic representation of
the mutation operators defined in [14], would largely benefit to the independence
of our approach to any transformation language.

4 Example

This section aims to validate our approach on a case study; the classical UML
to Relation Data Base Management Systems (RDBMS) transformation (class2-
rdbms). For the example, we used a simple version of the UML class diagram
(simpleCD) and a simple version of the class2rdbms transformation. The trans-
formation specification we adopt is the one proposed at the MTIP workshop [5].
We have implemented this transformation with Kermeta [15]. The transforma-
tion counts around 113 lines of code in 11 operations. The choice of the Kermeta
language results in the work initiated in [14]. Using the same transformation
and mutant enables us to compare and evaluate the approach proposed in this
paper.

4.1 Application of Our Approach

For the experimentation, 200 mutants have been manually created (105 for the
navigation category, 75 for the filtering category and 20 for the creation cat-
egory). Initially, 16 test models have been defined. The mutants are executed.
The mutation matrix is filled based on the model comparison. Then, the muta-
tion matrix is automatically explored in order to identify the alive and the killed
mutants. The remainder of the algorithm is applied for an alive mutant. The
first alive mutant identified is the navigation/Class2RDBMS 19.kmt. Listing 1.1
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1 operation createColumnsForAssociation( ...,
2 asso : Association, prefix : String) is
3 do
4 ...
5 var fk : FKey init FKey.new
6 //fk.prefix := prefix + asso.name // orig
7 fk.prefix := prefix + asso.dest.name // mutant
8 ...
9 end

Listing 1.1. Mutate createColumnsForAssociation rule excerpt

Table 1. Test Model Elements Handled by the Modified Rule

Test Model Src. Elements Dest. Elements
(eltsHandledSrc) (eltsHandledSrc)

ClassModel02.simpleuml c:Association c:FKey

ClassModel03.simpleuml b:Association b:FKey

ClassModel04.simpleuml Customer:Association Customer:FKey

ClassModel05.simpleuml blah:Association blah:FKey

ClassModel06.simpleuml c:Association c:FKey

ClassModel07.simpleuml c:Association c:FKey
b:Association b:FKey

ClassModel08.simpleuml a:Association a:FKey
b:Association b:FKey

represents an excerpt of this mutant. The original piece of code is marked by the
orig flag and the modified one by the mutant flag. Initially, the transformation
fills in the prefix attribute of the FKey class by concatenating a variable with the
name attribute of the Association. The mutant concatenates the same variable
with the name of the dest attribute belonging to the Association. A navigation
has been introduced in an existing sequence using the RSMA mutation operator
(Relation Sequence Modification with Addition) [14].

Thanks to the mutation matrix, the mutated rule is recovered from the mod-
ifiedRule property of the Mutant Class. For the studied mutant, the rule create-
ColumnsForAssociation is immediately identified.

The algorithm 1 identified 7 test models that have triggered the mutated
rule (the createColumnsForAssociation rule). The algorithm also provides the
elements of the identified models (the eltsHandledSrc set) involved by the
application of this rule. Moreover, the elements created in the output model
from the elements that reach the mutated rule are, also, highlighted and gath-
ered in the eltsHandledDest set. Table 1 gathers the results. For example,
the classModel04.simpleuml model triggers the mutated rule that only handles
the Customer:Association element and produces the Customer:FKey element in
the destination model.

A quick static analysis of the mutated rule indicates that the prefix is formed
using the name of the dest instead of the name of the Association directly.
Based on these information and on the algorithm results, the remainder of the



270 V. Aranega et al.

improvement test set process is manually performed. The prefix property of the
FKey is set to Customer. The same occurs for the model produced by the original
transformation. Thus, in order to kill the mutant, the model created by the
mutated transformation must provide a different value for the prefix property.
As no difference are raised, the tester can infer that in the 7 identified models,
the name of the Association is the same as the name of the element pointed by
dest. Easily, a new test model is created by modification of an existing one (for
example: ClassModel04.simpleuml). This model is copied, then the name of the
Association is changed from Customer to CustomerAssoc.

In order to check the efficiency of the new test, the mutation analysis process
is performed once again. This time, 17 models are taken in account. The studied
mutant is henceforth killed and this same added model also killed 2 other mutants
that probably modified a rule using in the same way as the studied mutant. Once
the mutation analysis is played again with the new test model set, the process
goes on with another live mutant.

The modifications to perform on the test model to create a new one are not
so easy than the one of the above example. However, this example illustrates the
relevance and the usefulness of the information gathered thanks to our algorithm
in order to raise the quality of a test model set.

4.2 Quantitative Study

This section aims to show that our approach enables the tester to save a consid-
erable amount of time and that the execution time remains largely acceptable
whereas 3200 executions are performed and so many results analyzed. For this
purpose, we perform different benchmarks corresponding to 8, 9 and 16 test
models, respectively.

Identification of the live mutants. The number of mutants remains 200
in the three benchmarks. The only variable parameter is the number of input
model and thus the number of cells to explore for each mutant. The live mutant
identification only uses the mutation matrix that is loaded once. The loading
time is closely bound to the mutation matrix size. The loading time was short
and approximated 1 second. The mutation matrix contains around 3200 cells +
3200 traces, corresponding to a loading time of 5107ms. Then, once the mutation
matrix is loaded, the operations performed in order to identify the live mutants
are only navigations. Fortunately, this kind of operations are quite instantaneous,
and the observed execution time are lower than 1 second for each benchmark (for
the bag of 16 test models, the algorithm identified 24 live mutants in 461ms).

Execution of the algorithm 1 for one live mutant. This part aims to mea-
sure the execution time of the algorithm that identifies the useful tests models.
Three benchmarks with respectively 8, 9 and 16 test models are performed1.
The algorithm identifies three elements: potential useful models, input elements
and output elements impacted by the application of the faulty rule. In the three
1 On a DELL Precision 490/Gentoo-2.6.34.
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Table 2. Identified models for each test models set

Test set size
Number of Execution

identified models time

8 7 308ms
9 7 308ms
16 7 311ms

cases, the algorithm identifies the 7 models in 308ms for the set of 8 and 9 test
models and 311ms for the set of 16 test models (Table 2). The fact that the ex-
ecution time is slightly different in the latter case corresponds to the scan of the
traces relative to the seven more test models (the mutation matrix is considered
already loaded). Of course, these measures depend on the test model and the
trace sizes, but they are largely inferior to the time spend to manually collect
the information. Going in details with these results also shows that the 7 more
test data added to the set are not useful for this mutant and require a more
complex modification in order to reach the mutated rule and kill the mutant.
Nevertheless, their presence in the test model set is relevant because they allow
to kill other mutants.

Our approach has to be tested with hundreds test models and the execution
time measured. However, the quantitative analysis is promising concerning the
scalability of our algorithm.

Comparison with other models. Our approach has also been used with
model transformations written in QVTO [3], in the context of the Gaspard 2
framework. This framework aims to generate, from a UML model enhanced with
the profile dedicated to real time and embedded systems, programs in various
languages depending on the purpose (simulation, execution, verification ...). The
order of magnitude were approximately the same. The loading time of the ma-
trix was smaller (around 1 second) because of the matrix size (only 1120 cells +
1120 traces). However, the execution times of the algorithm were higher because
the models contained much more number of classes and referenced a UML
profile.

Comparison with the manual process. The test set improvement is a hard
and complex task for the testers. They have to perform static analysis to identify
why a mutant has not been killed. However, they may do this analysis with test
model, without leading to any relevant results. Indeed, some existing models have
to be heavily modified before killing a mutant. Manually identifying an adequate
test model from which it will be easy to create a new one killing the mutant
may be very long. For the class2table transformation, the manual information
collection can take from few minutes for some easy cases to few hours for the
most complex ones. Using our algorithm allows the testers to recover the same
piece of information in less than a minute.
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5 Related Work

There are different ways to obtain a qualified test data set. Since model trans-
formation testing has only been briefly studied, few works consider test models
qualification and improvement.

Fleurey et al. [7] propose to qualify a set of test models regarding its coverage
of the input domain. The input domain is defined with metamodels and con-
straints. The qualification is static and only based on the input domain whereas
the mutation analysis relies on a dynamic analysis of the transformation. In
case of very localized transformations, the approach developed by Fleurey et al.
produces more models than necessary.

However, in [8], they also propose an adaptation of bacteriologic algorithm
to model transformation testing. The bacteriologic algorithm [4] is designed to
automatically improve the quality of a test data set. It measures the mutation
score of each data to (1) reject useless test data, (2) keep the best test data,
(3) “combine” the latter to create new test data. Their adaptation consists in
creating new test models by covering part of the input domain still not covered.
The authors use the bacteriologic algorithm to select models whereas we propose
the mutation analysis associated to trace mechanisms.

In [10], authors study how to use traceability in test driven development
(TDD). TDD involves writing the tests prior to the development of the system.
Here, traceability can be used to help the creation of new tests considering
how the system covers the requirements. The trace links the requirement and
the code, and helps the developer to choose the next features which should be
tested, then coded. In that approach they do not consider the fault revealing
power of the test data set, but the coverage of the requirements to assist the
creation of test data.

6 Conclusion

As any other program, it is important to test model transformations. For this
purpose, test data set has to be qualified. Mutation analysis is an existing ap-
proach that has already been approved and adapted to model transformations.
In this paper, we focus on the test model set improvement step and propose a
traceability mechanism in order to ease the tester job. This mechanism com-
pletely adopts the model paradigm and relies on a local trace metamodel and a
matrix metamodel.

Our approach helps the tester to drastically reduces the field of the required
analysis to create a new model. We have shown on the RSMA operator that the
number of situations where a mutated rule is executed for a test model while
letting the mutant alive is low. The modifications to performed in those cases
are well identified. We are currently working on a generic representation of the
mutation operators in order to go towards one step further in the automation
the mutation analysis process and to remain independent from the used trans-
formation language.
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Abstract. Multi-Paradigm Modelling (MPM) is a research field focused
on solving the challenge of combining, coupling, and integrating rigorous
models of some reality, at different levels of abstraction and views, using
adequate modelling formalisms and semantic domains, with the goal to
simulate (for optimization) or realize systems that may be physical, soft-
ware or a combination of both. The key challenges are finding adequate
Model Abstractions, Multi-formalism modelling, Model Transformation
and the application of MPM techniques and tools to Complex Systems.

MPM theories/methods/technologies have been successfully applied
in the field of software architectures, control system design, model inte-
grated computing, and tool interoperability.

The fourth Workshop on Multi-Paradigm Modelling: Concepts and
Tools (MPM) was held this year (2010) in Oslo. It is usually organized as
a satellite event of MoDELS aimed to further the state-of-the-art as well
as to define future directions of this emerging research area by bringing
together world experts in the field for an intense one-day workshop.

In this paper we summarize the results of this year’s event.

1 Introduction

Fred Brooks, in his seminal paper on Essence and Accidents of Software Engi-
neering [1] makes a distinction between accidental complexity (caused by the
approach chosen to solve a problem) and essential complexity (inherent to the
problem and unavoidable). In his work, he analyses the issue of ever increasing
complexity during software development.

A cause of this problem is the continuous increase of the complexity due to
the growing needs in the specific problem domain, complexity of the tools in
the solution domain and increasing complexity associated with Non-Functional
Requirements.

J. Dingel and A. Solberg (Eds.): MODELS 2010 Workshops, LNCS 6627, pp. 274–278, 2011.
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This complexity is typically tackled by raising the level of abstraction in mod-
elling, reducing the accidental complexity. It involves explicitly modelling every
aspect of the system, including relationships between models at different levels of
abstraction and in some cases to compose models in different formalisms. Multi-
formalism modelling emerges as absolutely necessary to specify the different
perspectives of the system. These techniques have been successfully applied and
reported in the MPM workshop in the domain of software architectures, control
system design, model integrated computing, and tool interoperability. Embedded
systems, by nature heterogeneous, is a typical example of a field where we can
find many implementation technologies where multi-paradigm modelling plays a
relevant role.

In what concerns to minimizing the effects of the previously mentioned essen-
tial complexity, changes in the Software Development paradigm like to introduce
Rapid Prototyping, Verification of the rigorous models that use a set of well un-
derstood semantics and Simulation are seen as a relevant support to incremental
validation of the requirements.

The International Workshop on Multi-Paradigm Modelling: Concepts and
Tools (MPM) is a series of annual events that have been a satellite event of
the International Conference on Model-Driven Engineering Languages and Sys-
tems (MoDELS). The roots of MPM can be traced back to the 1993 – 1997
ESPRIT Basic Research Working Group 8467 “simulation for the future: new
concepts, tools and applications” (Simulation in Europe – SiE) where the need
for MPM was identified by a consortium of modelling and simulation researchers
and industry practitioners. In 2000, Mosterman and Vangheluwe introduced the
term Computer Automated Multi-Paradigm Modelling (CAMPaM) in two tracks
at the IEEE CACSD conference. A series of workshops, journal special issues,
keynote lectures, conference tracks, and thesis on the topic have followed since.
The MoDELS MPM workshop was first held in 2006 in Genova, Italy, then in
2007 in Nashville, USA, and 2009 in Denver, USA and the current one held
in Oslo, Norway, on the 3rd of October 2010. The workshop has experienced a
steady growth in participation, attracting 30 participants in the 2009 edition,
as it is a vibrant forum for research and industry experts to join together and
discuss fundamental concepts and tools for Multi-Paradigm Modelling.

In the rest of this paper we summarize the results of this workshop’s discus-
sions and contributions.

2 Current Trends in Multi-Paradigm Modelling

An introductory talk was given by Hans Vangheluwe to define MPM and to
frame the discussions of the workshop. This talk explained what makes MPM
different from MoDELS. Firstly, MPM’s pure goal is to tackle complexity by
modelling everything explicitly, at the most appropriate level(s) of abstraction
using the most appropriate formalism(s). Secondly, software/information and
hardware/physical systems are treated equally (as apparent in software intensive
systems). This should lead to a unified discipline with supporting tools. On the
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one hand, hardware/physical and software/information components are coupled
and on the other hand, software is deployed onto physical platforms.

As explained before, Multi-Paradigm Modelling combines, transforms and re-
lates formalisms, generates maximally constrained domain- and problem-specific
formalisms, methods, and (visual) tools, and verifies consistency between multi-
ple views.

This year’s workshop had 18 submissions. The review process counted 3 to 5
reviewers per paper. Eight contributions were accepted as full papers with a pre-
sentation time of 20 minutes and five were considered short papers with 15 minutes
presentations. From the reviews, both the high quality of the contributions and
the progress made during the last year in MPM research were apparent.

The papers presented at the workshop approached a wide range of topics
within MPM’s concerns. The issue of Multi Paradigm Modelling was presented
from different perspectives highlighting new challenges and re-enforcing the need
to invest in this research area. As we will summarize below, the approached issues
followed the trend of last year’s workshop.

Megamodelling - The topic of Megamodels (or macromodels) first intro-
duced by Favre and Bézivin is surveyed in the paper by Hebig, Seibel ang
Giese[2]. The paper then proposes a core definition of Megamodels.

Transformations - One of the two highlights of this workshop is the paper,
voted by the attendants as one of the two best, by Asztalos, Syriani, Wimmer
and Kessentini [3] on the issue of transformation rule composition. The authors
discuss the possibility of generating a single transformation derived from a chain
of transformations in the context of PIM and PSM models when model evolution
occurs. An example application presented is the transformation of UML models
into EJB 2.0 and then to EJB 3.0. There was also a short paper presentation [4]
that highlights the limitations of the traceability mechanism of QVT through
different scenarios.

Model Debugging - The paper by T. Levendovsky [5] presents a novel way
to develop model transformations in an interactive fashion, where the modeller
is able to select the model elements for the transformation, pause the transfor-
mation engine at run-time, analyse its results, and even change the matched
patterns for the further transformation steps. This interactive technique can be
very useful for domain-specific modellers during refactoring operations and appli-
cation of design patterns to their models. In this paper, the authors demonstrate
their tool by means of the application of rules for unflattening Statecharts.

Verification and Optimization - The paper by Kerzhner and Paredis [6]
(selected as one of the workshop’s two best papers) presents a discussion on how
to verify and optimize design alternatives with respect to system Engineering de-
sign requirements through automated generation of analyses from formal models
expressed in OMG SysUML on the system engineering models. The approach
is demonstrated on the design of a hydraulic subsystem. A paper by Herold [7]
presents an approach for checking architectural compliance of different kinds of
artifacts created in the development of component-based systems. For that pur-
pose, the authors use first order logic in their approach. A case study on Checking
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Architectural Layers for the purpose of quality assurance is presented. There was
a short paper presentation by Astalos et. al. [8] outlining a possible approach for
verifying automatically declarative descriptions of Graph Rewriting-based Model
Transformations. In another short paper, Straeten [9], presented a strategy for
specifying semantics of a Domain Specific Model through properties expressed
already in the used DSL.

Multi-Formalism Composition/Integration - A short paper by Braatz
and Brandt [10] discusses a possible technique for integrating heterogenous
DSMLs by means of rule-based transformations. A example of a visual DSML
for IT and a DSML for firewall configurations are presented as case studies.

Model Evolution - Motivated by the problem of both Model and Metamodel
evolution and the need of migrating instance models Meyers, Wimmer, Cichetti
and Sprinkle [11] discuss a new technique to guide the user in solving migration
issues in a step-wise manner by means of in-place transformations.

Practical Case Studies - The paper by Zellag and Vangheluwe [12] presents
a domain-specific language for the purpose of modelling and simulation of multi-
tier systems. By using graph transformations the instance models in the referred
DSL are translated into Queuing Petri Nets(QPNs) models which can be anal-
ysed and simulated by the SimQPN tool simulator. Within the focus of another
specific domain a paper by Neema et. al. [13] presents a work in progress on the
definition of an architecture that supports the multitude of modelling languages
to address the issue of specifying both physical and computational aspects, and
their relations, of Cyber Physical Systems (CPS).

3 Conclusion

Confirming the tendency of previous editions, the workshop has experienced
a steady growth. More than 40 people have participated in this one day long
workshop that had an intensive programme. Reflecting the nature of MPM, the
audience was composed of researchers from diverse fields of research ranging
from theoretical Computer Science to domain-experts (cybernetics, mechanical
engineering, embedded systems, . . . ). This led to productive cross-disciplinary
discussions.

The workshop was deemed very successful by the participants, and we plan to
continue organizing future workshops. This workshop would not been possible
without the help of many people besides the authors. We wish to acknowledge
our Programme Committee composed of ourselves and: Antonio Vallecillo (Uni-
versidad de Málaga), Bruno Barroca (Universidade Nova de Lisboa), Bernhard
Westfechtel (University of Bayreuth), Chris Paredis (Georgia Tech), Christophe
Jacquet (Supélec), Didier Buchs (University of Geneva), Dirk Deridder (Free
University of Brussels), Esther Guerra (Universidad Carlos III de Madrid), Eu-
gene Syriani (McGill University), Franck Fleurey (SINTEF), Frédéric Boulanger
(Supélec), Gabriela Nicolescu (Polytechnique Montréal), Gergely Mezei (Bu-
dapest University of Technology and Economics), Hessam Sarjoughian (Arizona
State University), Holger Giese (Hasso-Plattner-Institut), Jeff Gray (University
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of Alabama), Jeroen Voeten (Eindhoven University of Technology), Jonathan
Sprinkle (University of Arizona), José Luis Risco-Martín (Universidad Com-
plutense de Madrid), Juan de Lara (Universidad Autonoma de Madrid), Lau-
rent Safa (Silver Egg Technology), Levi Lúcio (University of Luxembourg), Luís
Pedro (D’Auriol Assets), Mamadou K. Traoré (FR Sciences et Technologies),
Manuel Wimmer (Vienna University of Technology), Mark Minas (University of
the Federal Armed Forces), Martin Törngren (KTH Royal Institute of Technol-
ogy), Matteo Risoldi (University of Geneva), Mirko Conrad (The MathWorks),
Peter Bunus (Linkoping University), Pieter van Gorp (Eindhoven University of
Technology), Reiko Heckel (University of Leicester), Stefan Van Baelen (K.U.
Leuven), Steve Hostettler (University of Geneva), Thomas Feng (Oracle), and
Thomas Kühne (Victoria University of Wellington).
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Abstract. As modern systems become increasingly complex, there is a
growing need to support the systems engineering process with a variety
of formal models, such that the team of experts involved in the process
can express and share knowledge precisely, succinctly and unambiguously.
However, creating such formal models can be expensive and time-
consuming, making a broad exploration of different system architectures
cost-prohibitive. In this paper, we investigate an approach for reducing
such costs and hence enabling broader architecture space exploration-
through the use of model transformations. Specifically, a method is pre-
sented for verifying design alternatives with respect to design requirements
through automated generation of analyses from formal models of the sys-
tems engineering problem. Formal models are used to express the struc-
ture of design alternatives, the system requirements, and experiments to
verify the requirements as well as the relationships between the models.
These formal models are all represented in a common modeling language,
the Object Management Group’s Systems Modeling Language (OMG
SysMLTM). To then translate descriptive models of system alternatives
into a set of corresponding analysis models, a model transformation ap-
proach is used to combine knowledge from the experiment models with
knowledge from reusable model libraries. This set of analysis models is
subsequently transformed into executable simulations, which are used to
guide the search for suitable system alternatives. To facilitate performing
this search using commercially available optimization tools, the analyses
are represented using the General Algebraic Modeling System (GAMS).
The approach is demonstrated on the design of a hydraulic subsystem for
a log splitter.

Keywords: systems engineering, SysML, model integration, model to
model transformation, requirements modeling.

1 Introduction

Engineered systems are becoming increasingly complex to design because of
greater consumer expectations, highly integrated products encompassing various
engineering domains, and geographically distributed stakeholders. To manage
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this complexity, systems engineering can be applied; systems engineering is an
interdisciplinary approach to creating and verifying an integrated set of system
solutions to satisfy customer needs. The systems engineering process generally
consists of problem definition, analysis, and interpretation [1]. Formulating the
problem usually involves several common tasks, including defining the system
objectives, deriving requirements for the system, and generating candidate solu-
tions. Several iterations of these core tasks may be needed to derive a suitable
final system. In an effort to precisely and unambiguously express the knowl-
edge present in a systems engineering problem, systems engineers have begun
to adopt the Model-Based Systems Engineering (MBSE) approach [2]. Within
MBSE, engineers represent all aspects of the problem using formal models; such
models generally include system alternatives, requirements, experiments to ver-
ify the requirements and also models relating these different aspects. There are
many MBSE approaches that prescribe a work flow for modeling and solving the
problem [3].

A key challenge during any MBSE process is evaluating objectives and verify-
ing that requirements are met by a particular alternative. To accomplish this in
current approaches, designers manually create the necessary analyses by incor-
porating thier knowledge of various domains. For complex problems, manually
creating such analysis models requires significant time and effort and introduces
many opportunities for error. An additional complication in many MBSE ap-
proaches is that the domain-specific knowledge used to generate these analyses
is captured in diverse and incompatible tools and representation syntaxes.

This paper proposes a method for automatically generating analysis models
for systems engineering problem models. In this method, the entire problem is
represented in a common language, the Systems Modeling Language (SysMLTM)
from the Object Management Group (OMG) [4]. SysML is based on the Unified
Modeling Language (UML) and is chosen because it allows the representation of
the very distinct elements needed to model a systems engineering problem in a
single language partially overcoming the challenge of using diverse tools and rep-
resentations. Because SysML is used as a common language, it also allows for the
expression of relationships between different facets of the problem. Meta-data is
also associated with both models and relationships to efficiently describe their
role within the systems engineering problem and facilitate reuse. Using models
and problem-independent model libraries captured in SysML, model transforma-
tions are utilized to automatically generate corresponding analysis models. The
model libraries facilitate model reuse and can be used to express common struc-
tural components and their relationships to the appropriate analysis models.
Model transformations are also used to transform the problem-specific analysis
models into executable simulations which are used to evaluate an alternatives
performance and verify related requirements.

Other work has identified a need for efficient architecture and have proposed
computational tools for synthesizing alternatives [5,6,7]. To analyze these alter-
natives, usually these works generate one type of analysis model which focuses
either on geometric considerations or simple functionality. This paper supports
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this work by presenting an approach for generating a more varied and compre-
hensive set of analyses to evaluate a potential solution.

The remainder of the paper is presented as follows. In Section 2, the general
approach to formally modeling meta-data and relationships within SysML is
presented. This general approach is applied to the modeling of a hydraulic log
splitter problem in Section 3. The problem definition is then used in conjunction
with model transformations to automatically produce an executable simulation
in Section 4.

2 Approach: Model Management in SysML

MBSE prescribes formal modeling throughout the systems engineering process
which results in a large number of models representing a complex problem. Man-
aging the location and purpose of all these models is difficult, even if these models
are contained in a common repository. To allow the models to be easily searched
and identified, it is important to capture which facet of the problem each model
expresses and how they relate to each other. To faciliate this, our approach re-
lies on expressing relevant models, metadata, and relations in a common model
which is represeted in SysML. The role of a particular model is characterized by
associating related aspects. This alone is insufficient because it only facilitates
expressing relationships between models; a generic, consistent, and computer
interpretable approach for expressing the relationships is also needed.

SysML is chosen because it is a visual language with standardized constructs
designed to represent an entire systems engineering problem [8]. The basic unit
of SysML is a Block, which can be used to describe the system, its components,
or other constructs of interest. SysML is also flexible enough to express the addi-
tional knowledge such as aspects and relationships. Because models of both the
meta-data and relationships are captured within SysML, the entire representa-
tion is in a common formalism.

The approach for characterizing the models is based on Multi-Aspect Com-
ponent Models (MAsCoMs) [9] where aspects are used to characterize analysis
models by describing what the model represents, the representation syntax, and
how it can be composed with other models. Unlike MAsCoMs, aspects are used
here to characterize any model expressing the systems engineering problem, not
just analysis models. We will refer to any models characterized by aspects as
engineering models. The concept of aspects is similar to those in aspect-oriented
programming [10] in that they characterize models based on their function. Mod-
els can have any number of associated aspects to describe their function. Unlike
aspect-oriented modeling [11], these aspects are meant to characterize the models
for composition and search purposes instead of describing crosscutting features.

To formally define engineering models and other relatd constructs, a profile
is used to extend the SysML language[4]. A profile is a Unified Modeling Lan-
guage (UML) concept that is used as a light-weight extension mechanism for
adding new constructs to UML or SysML [12]. The engineering model concept
is captured using a stereotype as is illustrated in Figure 1. The Engineering-
Model stereotype has an aspect property which allows any EngineeringModel to
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EngineeringModel[Profile] Modelspkg [  ]

«stereotype»

EngineeringModel
+url : String

«stereotype»

ExternalLibrary

+ref : String
+url : String

«stereotype»

ExternalModel

«stereotype»

Library

«stereotype»

Aspect

«metaclass»

Class

«metaclass»

Package
«metaclass»

Classifier

aspect

0..*

Fig. 1. Profile for defining engineering models in SysML

be unambiguously classified with aspects. The EngineeringModel also extends
from the Classifier meta-class forcing any engineering model to allow for gener-
alization/specialization relationships. To enable reuse, the possible aspects are
captured in a model library where they are organized in a hierarchical fashion
and stereotyped with the Aspect stereotype. This profile represents the meta-
model for engineering models and aspects.

Along with capturing models of interest, relationships between them are also
captured within SysML. By design, SysML provides many of the relationships
necessary for modeling systems engineering problems. When existing relation-
ships are not suitable, the UML AssociationClass construct is used to define a
new relationship. Usages of these types can then represent a particular instance
of that type of relationship. Again, a profile is used to enumerate the different
relationships used in this approach, illustrated in Figure 2. For example, Com-
positionRelationships describe how models can be composed together into more
complex models.

ModelManagement[Profile] Modelspkg [  ]

+analysisAspect : Aspect [1..*]

«stereotype»

Structure2Analysis

+compositionAspect : Aspect

«stereotype»

CompositionRelationship

«stereotype»

Structure2TestCase

«stereotype»

Analysis2TestCase

«stereotype»

ModelRelationship

«metaclass»

AssociationClass

«stereotype»

CompositionRule

+catalog
+library : Class

«stereotype»

Library2Catalog

Fig. 2. Model Management Profile defining some possible model relationships

An AssociationClass between two models is shown in Figure 3. This illus-
trates the ModelRelationship A2B between EngineeringModels A and B. This
relationship expresses that usages of A and B can be related by usages of Mod-
elRelationship A2B. In addition, one can express how the parameters and ports
of these models are linked when such a model relationship exists.

The other relationships will be discussed in more detail in the following sec-
tions. Now that the general framework for capturing models of interest and
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Relationships Relationships[Package] bdd [  ]

«engineeringModel»

ModelB

«engineeringModel»

ModelA

«modelRelationship»

A2B

«modelRelationship»

A2B modelB

1

modelA

1

Fig. 3. Example Relationship between Model A and B in SysML

relationsships between them in SysML has been presented, the next section will
cover how a systems engineering problem is expressed using this model manage-
ment framework.

3 Defining the Systems Engineering Problem

This section describes how the framework presented in the previous section can
be used to model a systems engineering problem. The design of a hydraulic
subsystem for a horizontal acting hydraulic log splitter is used as an illustrative
example in the subsequent sections. A log splitter is a simple hydraulic system
which is used to divide cylindrical pieces of wood longitudinally. This example is
chosen because the system is defined as a composition of well-defined, modular
components. Although the system itself is simple, the design of the system is
interesting because the system must satisfy several competing requirements; the
hydraulic circuit should be cost effective, light weight, and capable of actuating
the wedge with both high force and high velocity. The definition of this problem
consists of three major parts:

– Requirements the system should be designed to meet.
– Experiments that can be performed on the system to verify that requirements

are met.
– System topologies under consideration.

This section explores how each of these is captured within SysML. We will begin
with the modeling of the system requirements. One advantage of SysML is the
existing constructs for modeling requirements and common relationships. These
existing relationships can be used to capture how requirements are decomposed,
verified, and satisfied.

The requirements on the system begin with abstract specifications that qual-
itatively describe how the system should behave. These requirements are then
decomposed into more focused specifications on the system. To simplify the veri-
fication process, in this approach the requirements are further decomposed to an
abstraction level where they can be quantitatively verified through experiments;
that is until a particular property of the system can be bounded. Currently, this
is accomplished deterministically by constraining a variable with an equality or
inequality condition.

The next step is to model the experiments or test cases needed to verify that a
system satisfies the specified requirements. Experiments or test cases will be re-
ferred to as tests for the rest of this paper. To formally model tests within SysML,
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some additional constructs are needed to formally define a quantitatively-verifiable
requirement (or testable requirement), a test, and the relationship. A profile is
again used to define these constructs, as shown in Figure 4. Two stereotypes are
added, the Testable stereotype for requirements and the Test stereotype for exper-
iments. The Testable stereotype derives from the standard SysML Requirement
with additional properties for capturing precisely which system variable is being
bounded by the requirement.

[Profile] Tests Testspkg [  ]

-Text : String [1] =  
-Id : String [1] =  
-/Derived : Requirement [*]
-/SatisfiedBy : NamedElement [*]
-/RefinedBy : NamedElement [*]
-/TracedTo : NamedElement [*]
-/VerifiedBy : NamedElement [*]

...

«stereotype»
Requirement

greaterThan
lessThan

equalTo

«enumeration»
ConditionEnumeration

«stereotype»
EngineeringModel

+lhs : ValueProperty
+value : Real

«stereotype»
Testable

«stereotype»
Test

«stereotype»
Block

condition

Fig. 4. Profile for defining tests and testable requirements in SysML

The use of these stereotypes along with existing SysML constructs to model
requirements, derived requirements, and tests for a small portion of the log
splitter’s requirements is illustrated in Figure 5. In this example, a high-level
requirement is decomposed into a testable requirement which can be verified
by the defined test. Existing SysML relationships are used to describe that the
testable requirement is derived from a high-level requirement and that the test
should verify the testable requirement.

LogSplitterRequirementsRequirements[Package] req [  ]

constraints

{cycleTime=forwardTime+reverseTime}

values

cycleTime : s{unit = second}

«test»

CycleTimeTestCase

{aspect = Behavior , GAMS}Id = "1.3"

Text = "The system shall be 

capable of fulfilling the 

Hydraulic System 

Requirements. "

«requirement»

HydraulicSystem

«requirement»

Id = "1.3.1"

Text = "The cycle time of the 

system shall be less than 

20 seconds."
«testable»

condition = lt

lhs = cycleTime

value = "20"

«testable»

CycleTime

«deriveReqt» «verify»

Fig. 5. Requirements Breakdown for the Log Splitter’s cycle time

One important characteristic of the test definition is that it is defined inde-
pendently of any particular design alternative. To separate the test definition
from the structural definition, the test is defined using only a system boundary
that captures the interface to the environment that all design alternatives should
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realize. The test specifies the state of the environment through inputs to the sys-
tem as well as the parameters of the system that are to be measured. The state
of the environment is described both by connecting the system boundary inputs
to appropriate models and constraining the appropriate variables. Since the de-
sign alternative extends from the system’s boundary, it has the same interfaces.
Therefore, any constraints placed on the system boundary can be transferred to
the test for a particular design alternative.

Once the modeling of the requirements and tests are complete, models of
possible system topologies are needed. In this example, the system topology
under consideration is that of a very simple hydraulic circuit. In this design,
the wedge of the log splitter is pushed by a hydraulic piston which provides the
force necessary to split the wood. An engine powers a constant displacement
pump that, when engaged, causes fluid to flow through the system pushing the
cylinder. The system topology as modeled in SysML is shown in Figure 6. This
model is a specialization of the system boundary. It realizes the rod interface
which splits the wood and the control interface that receives input from the user
of the log splitter.

System System[Block] ibd [  ]

rod

controldirectionalValve : DirectionalValve

P T

A B

control

cylinder : Cylinder

A B

rodhousing

tank : Tank AB

pump : Pump P

T

rotational

hyd : Hydraulic Subsystem

frame : Frame housing

engine : Engine
out

mech : Mechanical Subsystem

Fig. 6. A SysML model describing the Log splitter architecture. An engine provides
power to the hydraulic subsystem which is used to actuate a splitting wedge.

Since the log splitter is comprised of common modular components, the mod-
eling effort is reduced by storing these components in a model library and reusing
them. The library model for the cylinder is shown in Figure 7. Within this li-
brary model, common properties and ports of the cylinder are defined, such as
the stroke length or bore diameter. This cylinder model can be specialized by
more specific types of cylinders or, as is the case here, specific vendor-provided
products which have certain values for each attribute. A combination of vendor-
provided components can represent a particular system embodiment.

Now that the systems engineering problem has been defined, the next step is
to solve that problem and find a system that fulfills the requirements.
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Cylinder BDD[Package] Cylindersbdd [  ]

stroke : m{unit = metre}
boreDiameter : m{unit = metre}
maxPressure : Pa{unit = pascal}
rodDiameter : m{unit = metre}

«FlowPort»
«FlowPort»A : Hydraulic{direction = inout, isAtomic = false}
«FlowPort»B : Hydraulic{direction = inout, isAtomic = false}
«FlowPort»housing : Flange{direction = inout, isAtomic = false}
«FlowPort»rod : Translational{direction = inout, isAtomic = false}

«engineeringModel»
Cylinder

Fig. 7. A Cylinder model from the model library

4 Modeling and Composition of Analyses

Once the problem has been defined, it needs to be solved by creating appropriate
simulation models from the set of tests. To execute a particular set of tests,
one may need a variety of analysis models. These analysis models then can
be simulated to ensure that a design alternative is capable of satisfying the
requirements. This section addresses how a number of these analyses can be
created for a particular design alternative, and then how they are converted into
executable simulations. This focus in this section will be specifically on analyses
modeled totally within the SysML language.

Analyses completely specified in SysML are modeled as Blocks containing
only ports, constraints, and properties in a port-based modeling approach [13].
These Blocks can be further stereotyped to classify an analysis and provide a
storage mechanism for any additional metadata needed with by the analysis.
The modeled analyses are at a component-level, they model some properties
of components that can be used in a particular system alternative instead of
system alternatives themselves. To specify the equations or code that describes
the model, constraints are used. The constraint’s specification is independent of
any particular syntax or semantics. This makes the constraints very flexible but
also difficult to interpret. Because the equations used in this paper are purely
algebraic , they are modeled using General Algebraic Modeling System (GAMS)
syntax [14] to allow the problem to be solved using a number of commercial
solvers that accompany GAMS. This provides a concrete syntax to use when
specifying the constraints. SysML value properties are used to model any vari-
ables or constants that appear in the equations. These value properties can have
types which represent the units of the variables or constants. In GAMS, vari-
ables do not have units and instead only have primitive types. In this case, it is
assumed that the variables are represented using the international standard of
units (SI).

UML ports are used to describe the interfaces of analyses; these interfaces of-
ten abstract interfaces of the real components being modeled. The interfaces are
any inputs or outputs to the analysis model. Labeling these ports as either input
or output is unnecessary in this case because this causality is automatically de-
termined by a GAMS solver after the analyses are composed. This increases the
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FluidPower FluidPower[Package] bdd [  ]

«gamsModel»

flangeA : TransConnectorFP{causality = inout}
flangeB : TransConnectorFP{causality = inout}
portA : FluidConnectorFP{causality = inout}
portB : FluidConnectorFP{causality = inout}

«gamsModel»

CylinderFP

(GamsModelLibrary)

{force =e= ...
(Pi*0.25*sqr(size.boreDiameter)*portA.p)- ...

(Pi*0.25*(sqr(size.boreDiameter)-...
sqr(size.rodDiameter))*portB.p),

0 =e= flangeA.f + flangeB.f,
flangeB.f =e= force,

abs(length) =l= size.strokeLength,
portA.p =l= size.maxPressure,

portA.q =e= vel*0.25*Pi*sqr(size.boreDiameter),
portB.p =l= size.maxPressure,

portB.q*sqr(size.boreDiameter)+ ...
portA.q*(sqr(size.boreDiameter)-...

sqr(size.rodDiameter)) =e= 0,
size.rodDiameter =e= 0.5*size.boreDiameter,

time =g= 0.00001,
vel*time =e=length,

vel =e= flangeB.v - flangeA.v
}

stroke : m{unit = metre}
boreDiameter : m{unit = metre}
maxPressure : Pa{unit = pascal}
rodDiameter : m{unit = metre}

«FlowPort»A : Hydraulic{direction = inout, isAtomic = false}
«FlowPort»B : Hydraulic{direction = inout, isAtomic = false}
«FlowPort»rod : Translational{direction = inout, isAtomic = false}
«FlowPort»housing : Flange{direction = inout, isAtomic = false}

«engineeringModel»

Cylinder

«participant»descriptionEnd : Cylinder
«participant»analysisEnd : CylinderFP

«structure2Analysis»

Cylinder2CylinderFP

{analysisAspect = GAMS , Behavior}

«structure2Analysis»

Cylinder2CylinderFP

{analysisAspect = GAMS , Behavior}

description

1

analysis

1

Fig. 8. Relationship between Cylinder and Behavior model

opportunity for reusing these component-level models because there are more
valid combinations in which they can be connected together. To represent the
connections between the analysis models, the ports are connected together using
UML connectors. Stereotypes are used in cases where these connectors do not
represent simple equalities but instead more complex behavior. One such exam-
ple is energy flows between the ports which need to use Kirchoff’s laws to sum
the appropriate components of the flow.

Once component-level analyses models are constructed within SysML, model
transformations can be used to automatically compose them into system-level
analyses and then transform them into executable simulations. Because a SysML
model can be thought of as a labeled and directed graph, graph-based model
transformations are used in this approach. This transformation is broken up into
two components: the first from the problem definition into a set of system-level
analysis models and the second from the set of analysis models into executable
simulations. Once the analysis models are created in SysML, another transfor-
mation is used to create an executable simulation in a format compatible with
a paradigm-specific modeling tool.

The input to the transformation is a single model that encompasses the prob-
lem definition and any applicable model libraries. The transformation begins by
locating the elements stereotyped with the Test stereotype; for each of these
elements a corresponding system-level analysis model is necessary. For each test,
a system-level analysis model is created and any variables or constraints owned
by the test are copied into the analysis model. Then, the transformation finds
each system that is a specialization of the system boundary owned by the test.
For all components owned by each system, the transformation selects an appro-
priate component-level analysis model and adds it to the system-level analysis.
The appropriate component-level analysis is selected by matching the aspects
associated with the test to an analysis model with the appropriate aspects and
correspondence relationship. One example correspondence relationship with as-
pects is shown in Figure 8. This particular correspondence relationship relates
the cylinder component with a model described the cylinder’s behavior. The
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Composition Relationship[Package] Testsbdd [  ]

references

boundary : SystemBoundary

values

measuredMass : kg{unit = kilogram}

«test»

MassTestCase

{aspect = Mass , GAMS}

values

cost : Real
mass : kg{unit = kilogram}

«block»
«engineeringModel»

Component

«structure2TestCase»

MassTestCaseComposition

{compositionAspect = Summation }

MassTestCaseComposition

{compositionAspect = Summation }

structure

1

testCase

1

MassTestCaseComposition MassTestCaseComposition[Association Class] par [  ]

measuredMass : kg

testCaseEnd : MassTestCase

{end = testCase }

mass : kg

structureEnd : Component

{end = structure }

Fig. 9. Composition relationship for Mass test used to add up the mass of each com-
ponent into measuredMass

relationship is stereotyped with the Structure2Analysis stereotype and associ-
ated with the GAMS and Behavior aspects. Properties from the cylinder, such
as the stroke, are related to particular properties of the analysis. The use of
similar templates for other types of analyses, mainly Finite Element Analysis
(FEA) was shown by Bajaj et al. [15].

Once all the component-level analysis models are instantiated, they need to
be correctly connected to other component-level models as well as the inputs and
outputs of the system-level analysis model. The first step is to instantiate new
connections in the system-level analysis model for any connections between the
interfaces of two corresponding components. This connections are instansiated
by using information contained in the Structure2Analysis stereotyped Associ-
ationClasses to provide a correspondence between the structural and analyti-
cal models. Based on these AssociationClasses, the corresponding ports of the
stuctural and analytical models can be matched. If two ports in the strucutral
model have a connection, then that same connection is created in the analytical
model by following the correspondence from both of these ports to the appro-
priate analytical ports. Using the Structure2Test stereotyped AssociationClasses
as templates, interfaces of the component-level analysis models are connected to
the inputs and outputs of the system-level model. This includes any attributes
which must be added together into a single variable (i.e. mass or cost) as well
as the interfaces which should be connected. As an example, the composition
relationship that component masses are added into a single mass attribute is il-
lustrated in Figure 9. The relationship is associated with the summation aspect
and owns a connector between the mass and measuredMass attributes which
represents that the mass from each component should be added together into a
single measuredMass attribute.
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[Package] Analyses Analysesbdd [  ]

«GamsVariable»measuredMass{type = free}
«OwnedGamsModel»engineAnalysis : EngineMass
«OwnedGamsModel»pumpAnalysis : PumpMass
«OwnedGamsModel»directionalValveAnalysis : ValveMass
«OwnedGamsModel»cylinderAnalysis : CylinderMass
«OwnedGamsModel»tankAnalysis : TankMass

«GamsModel»
MassTestCaseAnalysis

{measuredMass=l=300,
measuredMass=e=engineAnalysis.size.mass+pumpAnalysis.size.mass+...}

Fig. 10. Analysis generated from the test for the alternatives mass

Once all the analysis models are fully specified, a sizing model is created
to explicitly connect corresponding variables describing a system’s sizing across
analysis models. This sizing model insures that when multiple analysis models
are solved simultaneously in a solution tool the sizing parameters are consistent
among the analysis models. Also, connectors are added between any created anal-
ysis model construct and the original problem definition. This allows any result
of the transformation to be verified by tracing these connectors and insuring
that each aspect of the problem definition has been appropriate transformed.
Although the current implementation for the transformation is a completely
batch process which transformations the entire model, future work will focus on
incremental updates to make the entire process more efficient. These connectors
can also be analyzed when the structural model changes to facilitate incremental
changes to the analytical model. The result of the first phase of the transfor-
mation is system-level analysis models generated from each test such as the one
illustrated in Figure 10. This analysis includes constraints generated from a com-
position relationship (the component masses are added into a single attribute)
and from a testable requirement (the mass should be less than 300 kg).

The transformation between test and analysis models is defined with the Fu-
jaba story-diagram [16] semantic using the MOFLON meta-case tool [17]. As is the
case with many other graph-based model transformation approaches, the trans-
formations are defined using a metamodel. To simplify the specification of this
transformation, a custom SysML metamodel is used as both the source and tar-
get. This metamodel was constructed based on the standard UML infrastructure
metamodel and SysML profile provided by OMG. The stereotypes in the SysML
profile are converted into meta-classes so they are on the same meta-level as the
UML metamodel concepts. A JMI implementation of this metamodel is created
by using MOFLON’s code generator [18]. This implementation is completely tool
independent but requires authored models in to be transformed into it.

After the analyses are created within SysML, they need to be transformed into
executable simulations. In theory, the generated simulations should test every pos-
sible design alternative using appropriate analyses to verify whether it meets the
requirements. Since testing every possible combination would be computationally
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Cylinder Id Pump Id Engine Id Valve Id
Forward 
Force (N)

Total 
Mass (kg)

Total 
Cost ($)

Total 
Time (s)

Maximize Force 
(N)

HMW-5032 SKP1NN_012 DP340E NT-2020 139,833 94.9 993.5 20 2.82

Minimize Total 
Time (s)

HMW-3010 SKP1NN_012 DP390E
NT_Prince-

2036
50,000 51.87 843.97 4.896 3.54

Minimize Total 
Cost ($)

HMW-4010 SKP1NN_012 DP240 NT-2020 53,698 51.3 657.4 9.69 2.45

Minimize Total 
Mass (kg)

PMC-5414 SNP2NN_4_0 DP160V
MSCDirect-
01825629

52,013 32.25 708.6 9.15 78.13

Component Sizing (Selection Id from Catalog) Selected Variable Values

Scenario
CPU Execution 

Time (s)

Fig. 11. Results from the GAMS optimization

explosive, an optimization approach is used instead. The analyses are combined
into a single non-linear mixed integer programming (MINLP) problem as demon-
strated by Shah et al. [19]. This MINLP problem is represented using GAMS and
solved using the Branch-And-Reduce Optimization Navigator (BARON) [20] to
find several candidate alternatives that meet the requirements. A graph-based
code generator specified using MOFLON is used to create the executable simu-
lation code in GAMS syntax. Some solutions are shown in Figure 11. The solu-
tions are composed of vendor products from the model library configured into the
simple topology in Figure 6. Each solution meets the requirements and also maxi-
mizes a given objective function. The most likely cause of the long simulation time
when finding the solution that maximizes mass is that the solver was not able to
quickly eliminate a large number of the possible solutions as clearly inferior.

Although not considered in this paper, future work will investigate how exter-
nal models can be integrated into this framework. Referencing external models
may allow designers to tap into large existing domain-specific analysis model
libraries. When an analysis model is located outside of the SysML environment,
the ExternalModel stereotype defined in Figure 1 can be used to reference it
using a black box approach. A black box model only exposes the parameters
and ports of a model but leaves rest of the specification in the native language.
Unfortunately, referencing external models adds additional complexity when im-
plementing a transformation because their contents may need to be parsed in
order to set parameters or instantiate connections.

In the current implementation, both the transformation from the problem
definition to analysis models and the transformation from anlaysis models to
executable simulation code are wrapped into ModelCenter [21]. ModelCenter is
an integrated environment designed to execute multiple analyses as well as run
trade studies optimizations. ModelCenter is used to control the execution or-
der of the transformations and also to run the simulation using the prescribed
simulation code. Incorporating the transformations within ModelCenter should
allow future work to more easily execute resulting simulation code in a larger
number of tools. Also, this provides a framework which can be expanded by in-
cluding future transformations. Another benefit is that the values in the problem
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definition can be adjusted and multiple analyses can be run using built-in design
exploration tools.

5 Discussion and Closure

As mentioned, the overall goal of MBSE is to explicitly model all aspects of the
systems engineering process. This should include both the actual elements (sys-
tems structure, analyses, tests, and requirements) and the relationships between
them. The overall goal is to improve traceability and reduce tedious effort by the
designer during the design process. The framework presented here addresses only
a small portion of this goal by formally capturing the structure, requirements,
and tests and transforming this captured knowledge into executable simulations.

One limitation of the current framework is that the test execution order is
implicitly handled by a domain-specific solution tool. This approach would be
insufficient if the analyses needed to be executed in different modeling tools or if
they modeled the problem at different levels of fidelity. How to formally model
this execution process within SysML is left for future work.

We view the work presented here as an initial step towards a more complete
tool set where a problem definition is transformed and analyzed to automati-
cally search for good design alternatives. From the problem definition, design
alternatives could be automatically generated using captured knowledge [22],
and then each alternative could be analyzed using models at varying levels of
fidelity. The entire description of the problem could be maintained in a SysML
model, executable simulations could be generated from this model [19,23]. The
ModelCenter implementation provides a platform for which these future trans-
formations can be integrated and future work will focus on integrating each of
these tasks within this framework.

Acknowledgments. This work has been funded by Deere & Company along
with the ERC for Compact and Efficient Fluid Power, supported by the National
Science Foundation under Grant No. EEC-0540834. The authors would like to
thank Roger Burkhart, Sanford Friedenthal, Leon McGinnis, and Russell Peak
for the discussions that helped crystallize the ideas presented in this paper.
The authors would also like to thank No Magic Inc. for providing access to its
MagicDraw UML/SysML tool and Andy Schürr for access to the MOFLON tool.
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Abstract. Many model transformation problems require different inter-
mediate transformation steps, e.g., when platform-specific models (PSM)
are generated from platform-independent models (PIM). This requires
the presence of several intermediate meta-models between those of the
PIM and the PSM. Thus, for achieving the final PSM, a chain of trans-
formation is needed. The solution proposed in this paper is to investi-
gate whether it is possible to generate a single transformation from a
chain of transformations, solely involving the initial PIM and final PSM
meta-models. The presented work focuses on the composition of alge-
braic graph transformations at the rule level. Moreover, we discuss about
the translation of transformations implemented in dedicated model-to-
model transformation languages to algebraic graph transformation spe-
cifications. We apply the automatic procedure for composing rules in the
context of the evolution of Enterprise Java Beans (EJB), transforming
UML models into EJB 2.0 and then to EJB 3.0 models. The composable
transformations are specified in the Atlas Transformation Language.

1 Introduction

Nowadays, software platforms evolve very rapidly. This is also true for mod-
elling languages, which have to reflect the evolution of the underlying platforms.
The evolution of a modelling language requires one to adapt its meta-model
as well as any model transformation involving it. The task of adapting the
transformations to the new version of the language is very tedious and error
prone, especially when this is done manually. Let us take the example scenario of
generating platform-specific models (PSMs) from platform-independent models
(PIMs). Due to the continuous evolution of the platform, while several versions
of the platform-specific meta-model have to be employed, transformations be-
tween these meta-model versions are necessary for migrating the PSMs at version
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n to PSMs at version n + 1. These transformations can be also reused within
a model transformation chain for transforming a PIM over several intermedi-
ate meta-models into a PSM for the latest platform version. Over time, such
transformation chains naturally become larger and larger, which has a negative
impact on maintainability and execution performance.

The goal of this paper is to reduce the manual effort of shortening transforma-
tion chains by eliminating intermediate transformation steps. The presented work
proposes to compose a chain of transformations into one transformation that does
not involve any intermediary meta-model. In particular, this is done by comput-
ing the transitive transformation of two given transformations. Our approach re-
lies on the notion of graph transformations. To support dedicated model-to-model
(M2M) transformation languages, which are commonly employed for generating
PSMs from PIMs, we present how such languages are mapped to graph transfor-
mations by using the Atlas Transformation Language (ATL) [6] as an example.

In Section 2, we first define the composition of transformations in general.
Section 3 reduces the problem to the composition of rules by (1) elaborating
on the criteria for composing graph transformation rules and (2) presenting
an automatic procedure to compose such rules into one. Section 4 elaborates on
how M2M transformation languages can be mapped to graph transformations. In
Section 5, we illustrate the composition approach in the context of the evolution
of the Enterprise Java Beans (EJB) language, transforming UML models into
EJB 2.0 models and then to EJB 3.0 models. Section 6 is dedicated to the related
work and we conclude in Section 7.

2 Transformation Composition

In this section, we define a composition operator to precisely specify the meaning
of a transformation composition. This operation is applied in the context of a
chain of model transformations as defined below.

Definition 1 (Transformation chain). Let Tn = 〈T1, T2, . . . , Tn〉n∈N
be an

ordered sequence of transformations where each Ti defines a mapping from a
meta-model Mi to a different meta-model Mi+1. We denote such a transforma-
tion chain as M1

T1→ M2
T2→ M3

T3→ . . .
Tn→ Mn+1. Note that we enforce that all the

meta-models involved in the chain Tn be different from one another, i.e., each
transformation must be exogenous [8].

We call Mi the domain of Ti and Mi+1 its co-domain. The transformation is
applied on a model mi conforming to its meta-model Mi and results in a new
model mi+1 = Ti(mi) whose meta-model is Mi+1. Note that transformations,
transformation rules, as well as the pre- and post-condition patterns of the rules
are also considered as models conforming to their respective meta-models [7].

The presented approach assumes that each transformation in the chain is
specified using algebraic graph transformation rules. The models involved are
represented as graph objects in the category of typed attributed graphs as de-
fined in [4]. In the remainder of the paper, a model m and its element graph
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G will be used interchangeably. The typed attributed graph G consists of a set
of nodes V (G) and edges E(G), where each node conforms to a specific node
type in a type graph (representing M, the meta-model of m) and can hold at-
tribute values. We however require that graph edges be partitioned in two sets
E(G) = Em(G) ∪ Λ(G), distinguishing trace edges Λ(G) from the edges Em(G)
conforming to those defined in the type graph. A trace edge represents a trace-
ability link connecting any two nodes regardless of their type. While a trans-
formation is applied, traceability links are created such that any newly created
element must have at least a traceability link1.

Definition 2 (Transformation composition). Let T1 and T2 be two consec-
utive transformations in a transformation chain such that M1

T1→ M2
T2→ M3.

We denote T ′ = T2 • T1 the composed transformation of T1 with T2, follow-
ing the composition operator • which satisfies the sequence, elimination, and
transitivity criteria as defined below.

We describe the application criteria of the composition operator given an arbi-
trary input model m1 for T1, m2 = T1(m1), and m3 = T2(m2), where m1, m2,
and m3 conform to M1, M2, and M3 respectively. We denote m′ = T2 • T1(m1)
be the resulting model after the composition. In the case where traceability links
are created explicitly in the rules, m̂ represents the graph model isomorphic to
m without any trace edge.

Sequence. There shall exist three injective graph morphisms (seqi)i=(1,2,3) that
must be defined as: seq1 : m1 → m′, seq2 : m̂3 − m̂2 − m̂1 → m′, and
seq3 : m̂′ → m3. seq1 ensures that the input model is preserved. seq2 ensures
that all the elements from M3 produced by T2 are present in m′. seq3 ensures
that m′ contains no other elements than those found in m3.

Elimination. There should not be any morphism elem : m2 − m̂1 → m′. That
is, m′ shall not contain any occurrence of an element from M2. Moreover,
no traceability links involving elements from M2 shall be present.

Transitivity. We denote by λij a traceability link (trace edge) between an
element from mi and an element from mj . The following predicate must
hold: ∃λ12 ∈ Λ(m3) ∧ ∃λ23 ∈ Λ(m3) ⇒ ∃λ13 ∈ Λ(m′). This ensures the
transitive closure of traceability links, i.e., for any instance element of M2

in m3, if it is connected through trace edges to both an instance element of
M1 and an instance element of M3, then m′ must have a trace edge between
the latter two instance elements.

The sequence criterion ensures soundness and completeness of the composition
operator. The elimination criterion ensures that the resulting transformation is
independent from any intermediate meta-model. Finally, the transitivity crite-
rion ensures that traceability links correctly map the source and target model
elements of the composed transformation T ′. The transformation composition
definition is generalized to an arbitrary number of transformations as follows:
1 Traceability links can be created implicitly such as in [6]. Otherwise, their creation

must be explicitly specified in the rules.
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Definition 3 (Transformation chain composition). Given the chain Tn =
〈T1, T2, . . . , Tn〉n∈N

, the composed transformation of Tn is a transformation T ′ =
Tn • (Tn−1 • . . . (T3 • (T2 • T1)) . . . ) ≡ Tn • Tn−1 • . . . • T3 • T2 • T1.

3 Rule Composition

The task of composing two arbitrary transformations is a very complex problem.
That is because the choice of which rule from one transformation to compose
with a rule from the other transformation often depends on the domain of appli-
cation. For the scope of this paper, we concentrate on applying the composition
operation on two graph transformation rules. In this section, we provide a proce-
dure for composing two individual rules into a single one such that the sequence,
elimination, and transitivity criteria are satisfied.

3.1 Criteria for Rule Composability

In the following, we assume that rewriting rules or productions are defined as
presented in [4]. This means that a rule p = (L ← K → R) consists of three
objects in the category of typed attributed graphs: the left hand side (L), the
interface K, and the right hand side (R) objects respectively. In this paper, we
assume that each transformation transforms an instance of one metamodel into
an instance of another, therefore, the objects L, K, and R may contain elements
from both the source and the target metamodel of the current transformation.

To apply the composition operator on two individual rules, we assume that
each of the transformations involved consists of a single rule for sake of com-
pleteness: T1 = {r1} and T2 = {r2}. The procedure assumes that the rules r1

and r2 are monotonically increasing, i.e., they can only create new elements
and/or modify attribute values. Moreover, all traceability links created during
the application of T1 and T2 shall be preserved. The output of the composition
procedure is a new transformation T3 = T2 • T1 = {r2} • {r1} = {r3} consisting
of a single rule. The following proposition specifies the necessary condition for
the composition procedure to satisfy Definition 2.

Proposition 1 (Composability condition). Two rules r1 = L1 ← K1 → R1

and r2 = L2 ← K2 → R2 satisfy the composability condition if there exists a
partial morphism n : L2 → R1 such that: (i) the domain of n is a subgraph of
L2, which consists of all the elements that is from M2, (ii) the co-domain of n
is a subgraph of R1 consisting of elements only from M2, (iii) the mapping from
the domain to the co-domain of n is a total injective morphism.

The formal definition of the traditional composition of two sequential rewriting
rules is described in [4], this composition is called the E-concurrent production.
The definition states that given two rules p1 and p2, they can be composed into
a new rule p = (L, K, R). Informally, the p is composed along a new graph object
E, which is produced by jointly surjective morphisms from R1—the right-hand
side (RHS) of p1—and L2—the left-hand side (LHS) of p2. The application of
the new rule is equal with the sequential application of the two original rules.
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However, there are often more than one possible composition of the rules, because
of the non-determinism of the matches.

To satisfy the elimination and transitivity criteria of Definition 2, the sub-
procedure in Algorithm 1 is required. Given a model m, the procedure performs
two runs over the trace edges in m. In the first run (lines 1 to 7), it first looks
for a trace edge λ12 linking an element conforming to M1, say e1, to an element
conforming to M2, say e2 and another trace edge λ23 linking e2 to an element
conforming to M3, say e3. It then creates the transitive trace edge λ13, removes
the two other traceability edges as well as e2. In the second run, the elimination
procedure looks for all remaining trace links involving M1 and M2 elements
and removes them from m. Note that there cannot be any trace edge in the
form λ23 remaining after the first run, since any element from M2 must be
linked to an element from M1 by construction. Therefore after the elimination
procedure terminates, the only remaining trace edges in m link elements from
M1 to elements from M3.

Algorithm 1. eliminate(m)

1: for all λ12, λ23 ∈ Λ(m) do
2: if trg(λ12) = src(λ23) then
3: create λ13 such that src(λ13) = src(λ12) and trg(λ13) = trg(λ23)
4: Λ(m) ← Λ(m) ∪ {λ13} − {λ12, λ23}
5: V (m) ← V (m) − {trg(λ12)}
6: end if
7: end for
8: for all λ12 ∈ Λ(m) do
9: Λ(m) ← Λ(m) − {λ12}

10: V (m) ← V (m) − {trg(λ12)}
11: end for

3.2 Composition Procedure

Let r1 = L1 ← K1 → R1 and r2 = L2 ← K2 → R2 be two rules that satisfy
the composability condition of Proposition 1. We want to produce the composite
rule r3 such that {r3} = {r2} • {r1} as defined in Section 2.

Algorithm 2 produces the set of all possible compositions of r1 and r2, based
on the E-based composition where E = R1. r2 is extended with a negative
application condition (NAC) corresponding to its RHS, which results in r′2. This
ensures that r2 is only applied once on every match found in E. It is worth
noting that there can be different R3’s even if r′2 is applied exhaustively on E,
if the order of application affects the result.

Before analyzing the algorithm, we demonstrate its operation on the compo-
sition of two simple rules R1 and R2 presented in Figure 1. Let R′

2 be rule R2

extended by the NAC which consists of the RHS of R2. By Algorithm 2, the
E graph is RHS of R1. If we modify R1 by applying R′

2 once on its RHS, we
get rule R. However, we apply R′

2 exhaustively, therefore, RHS of R is modified
again, which results in rule R′. Note that there are no other possible matches,
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Algorithm 2. compose(r1, r2)
1: K3 ← R1

2: L3 ← eliminate(L1)

3: R ← φ
4: r′2 ← r2 extended with R2 as a NAC, if not present
5: repeat
6: R3 ← apply r′2 exhaustively on E
7: eliminate(R3)

8: R ← R ∪ {(L3, K3, R3)}
9: until all application sequences of r′2 have been exhausted on E

10: return R

because of the NAC in R′
2. The next step is the application of the elimination

algorithm, which performs the transitive closure on the trace edges. RHS of R′

is eliminated, which results in rule R′′.

b1:T2

… a1:T1 a1:T1 T … b:T2 b:T2 c:T3TR1 R2
b2:T2

b1:T2

’
c:T3T

’’
c:T3b1:T2 c:T3T

… a1:T1 a1:T1

b2:T2

TR’
c:T3T

… a1:T1 a1:T1 TR’’
c:T3

… a1:T1 a1:T1

b2:T2

TR
b2:T2 c:T3T c:T3b2:T2

Fig. 1. Example for rule composition

The lemmas below validate the composition procedure. Lemma 1 ensures that
the procedure will output all possible composed rules r3 and Lemma 2 ensures
its correctness.

Lemma 1. If r1 and r2 satisfy the composability condition, then compose(r1, r2)

outputs all compositions of r1 and r2 such that the exhaustive application of
compose(r1, r2) is equivalent to the composition of r1 and r2 using the compo-
sition operator of Definition 2.

Proof. Assume that there is a possible E-based composition r = L ← K → R
such that the E-graph E 	= R1. This implies that ∃e ∈ E : e /∈ R1 where e can be
any type of element in the graph. E is produced by jointly surjective morphisms
from R1 and L2; thus e ∈ L2. Moreover, e is an element conforming to M2 as
it is the domain of r2. However e /∈ R1, which implies that e ∈ L, according to
the definition of the E-concurrent production. But L cannot contain elements
from M2 because if it did, the input model would contain elements conforming
to M2, which is a contradiction.

Lemma 2. The result of the composition procedure {r3} = {r2} • {r1} satisfies
Definition 2.

Proof. Assume that a model m1 is processed by the transformations T1 and T2

through a possible traditional E-based composition r′3 of the rules r1 and r2.
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Let r3 be a rule computed by applying the elimination procedure on the LHS,
RHS, and interface graph of r′3. Let T3 = {r3}, m2 = T1(m1), m3 = T2(m2), and
m′ = T3(m1). We shall now prove that T3 satisfies the sequence, elimination,
and transitivity criteria.

– Sequence Criterion: ∃seq1 : m1 → m′, because L3 = K3 and hence the input
model m1 is not modified. ∃seq2 : m̂3 − m̂2 − m̂1 → m′ as no elements from
r′3 have been deleted during the elimination that was performed to produce
r3. Moreover, ∃seq3 : m̂′ → m3 since R3 contains elements conforming to
M3 because of the exhaustive application of r′2.

– Elimination Criterion: m′ does not contain any element from M2 since ap-
plying the elimination procedure on r′3 ensures that all elements from the
intermediate meta-model are removed from it.

– The Transitivity Criterion is also satisfied because the elimination procedure
generates all the traceability links required by the condition.

When NACs come into play in r1 or r2, we distinguish the following case: (i) If
there is a NAC in r1 and it corresponds to R1, then we extend each composite
rule r3 with a NAC corresponding to R3. (ii) If there is a NAC in r2 and it
corresponds to R2, then it is taken into account when applying r2 to E. (iii)
Any other NAC is not considered in the presented procedure.

4 From ATL to Graph Transformations

M2M transformations are typically defined with dedicated M2M languages. Es-
pecially, ATL has been successfully applied and represents the de-facto standard
transformation language in Eclipse. Before presenting a case study of compos-
ing ATL transformations by applying the presented composition approach, we
briefly introduce ATL and how it is mapped to graph transformations.

4.1 ATL By-Example

As running example for the rest of this paper, a transformation between UML
and EJB is used. Simplified versions of the meta-models and of the transforma-
tion T1 are depicted in Fig. 2 and List. 1, respectively. T1 transforms Packages
into EJBArchives and Classes into either SessionBeans or EntityBeans, de-
pending on the isPersistent attribute, as well as into Interfaces. Further-
more for each Bean, an Entry in the DeploymentDescriptor is generated.

ATL transformations are defined as Modules (cf. line 1 in List. 1) comprising
MatchedRules (cf. rule keyword). A MatchedRule is automatically executed by
the transformation engine in case its InPattern (cf. from keyword) matches.
This requires that for each InPatternElement a suitable element in the input
model is found and that an optional filter condition (cf. e.g., line 14) is ful-
filled. If a complete match for the InPattern is found, the OutPattern (cf. to
keyword) is executed which results in creating an object in the output model
for each OutPatternElement. Properties of the created objects are set as de-
scribed by the Bindings of the OutPatternElements (cf. assignment operator
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UML metamodel EJB 2 metamodel

Package EJBArchive2
1descriptor

0..*interfacesT1

DeployDesc

remote

0..*

Class
classes Interface

name : String

T1

0..*beans

remote
interface
1

0..*entriesClass
name : String
isPersistent: Bool

Bean
name : String

Entry
bean
1

0..entries

EntityBean SessionBean EntityEntrySessionEntryEntityBean SessionBean EntityEntrySessionEntry
isStateful : Bool

Fig. 2. Meta-models of the transformation T1

<-). Bindings range from simple value assignments (cf. line 16) over setting links
between created objects (cf. line 17) to complex assignments which need to query
objects created by other rules by using resolveTemp (cf. line 7). For instance,
resolveTemp is used to query EntityBeans created in rule R2 for setting the
reference beans in rule R1. The input parameter for resolveTemp is a source
element for which the generated output elements are retrieved via the implicitly
created trace model. If several objects are generated for one input element, the
variable name is used for retrieving the desired output elements.

Listing 1. T1 defined in ATL
1: module T1;
2: create OUT : EJB2 from IN : UML;
3:

4: rule R1 {
5: from p : UML!Package
6: to a : EJB2!EJBArchive(
7: beans <- p.classes -> collect (c|thisModule.resolveTemp(c, ’b’)),
8: interfaces <- p.classes -> collect (c|thisModule.resolveTemp(c, ’i’)) ),
9: dd : EJB2!DeploymentDescriptor(

10: entries <- p.classes -> collect (c|thisModule.resolveTemp(c, ’e’)) )
11: }
12:

13: rule R2 {
14: from c : UML!Class (c. isPersistent = ’true ’)
15: to b : EJB2!EntityBean(
16: name <- c.name ,
17: entry <- e ),
18: i : EJB2!Interfaces(
19: name <- c.name ),
20: e : EJB2!EntityEntry(
21: bean <- b,
22: remoteInterface <- i )
23: }
24:

25: rule R3 --analogous to R2 , but different filter (c.isPersistent=’false ’)

4.2 Mapping ATL to Graph Transformation

After briefly introducing the main concepts of ATL, we proceed with describing
how we map ATL to graph transformations. In particular, we employ EMF Tiger
as reference language for graph transformations. To adhere to the behaviour
of ATL, the resulting graph transformation rules have to ensure the following
properties which also comply to the criteria for rule composition:
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– Matchable Elements : ATL is designed as a M2M transformation language
meaning that the target model is completely rebuilt from the source model.
Thus, the only elements that can be matched by a rule are elements of the
source model and elements of the target model already created by previous
rule applications. The latter are only accessible via trace links.

– Creation and Deletion of Elements : In ATL the source model is considered
as read-only, thus elements of this model may not be altered. Furthermore,
elements of the target model are created by executing the transformation,
but once created, they can no longer be deleted by the transformation.

– Trace Model : For each rule execution, a trace element is generated linking
all matched source elements to all generated target elements. Other trans-
formation rules can build on this trace information, e.g., for adding links to
already created target elements.

– Unique Matching: Each transformation rule can only match once for a given
set of elements. Thus, to ensure this behaviour in the graph transformation
rules, each rule comprises a NAC corresponding to the RHS of the rule.

Fig. 3 shows the generated graph transformation for the ATL transformation
depicted in List. 1. We now elaborate on how the rules are generated.

b2:EJBArchive2:EJBArchive2NAC LHS RHS

a1:Package a1:Package

b3 D l D

TR1 a1:Package

D l D

T
b3:DeployDesc:DeployDesc

NAC LHS
b2:EJBArchive2

b2:EJBArchive2

T
NAC LHS RHS

a1:Package
b3:DeployDescT

b3:DeployDesc
b7:EntityEntry

…
R2

a1:Package a4:Class b5:EntityBean

…
T

a4:Class

name = a4.name

b6:Interface
isPersistent = true name = a4.name

b6:Interface

Fig. 3. Graph transformation for T1

Rule R1. The LHS is gen-
erated from the InPattern,
whereas each InPatternEle-
ment is transformed into an
Object. For this rule, only
one Object of type Package is
generated. The same is done
for generating the first part of
the RHS from the OutPattern.
In addition, the Objects in
the LHS should not be deleted
when executing the rule, thus
they have to be duplicated and assigned to the RHS. Furthermore, a TraceLink
has to be explicitly declared in the RHS which links the input elements with
the output elements. The transformation of the resolveTemp Bindings has to
be postponed, because the referred elements are created by the rules R1 and
R2. Finally, the NAC is set equal to the RHS of the rule for ensuring the unique
matching constraint.
Rule R2. The generation of the LHS, RHS, and NAC is analogous to the R1. Please
note that due to space limitations, the NACs are no longer shown. In addition, the
property isPersistent of Class has to be set to the Constant ’true’ according
to the filter condition of the MatchedRule. The Bindings for setting the names
of EntityBeans and Interfaces have to be translated into Variables which
are assigned in the LHS and queried in the RHS. The elements created by this rule
are referenced by R1 using resolveTemp, e.g., consider the binding for the beans
reference. This means that in the resulting graph transformation, the links from
the EJBArchive2 has to be set to the produced EntityBeans. This is ensured



302 M. Asztalos et al.

by merging the RHS of R1 (the referring rule) into the LHS and RHS of R2 (the
producer rule). By this, R2 contains elements of the referring rule R1 for setting
additional links to already produced elements of R1.
Rule R3. Analogues to R2 (cf. Fig. 5-T1 for the resulting rule specification).
Table 1 summarizes the mappings between ATL and EMF Tiger concepts.

Table 1. Mapping from ATL to EMF Tiger

ATL Concept EMF Tiger Concept

Module Transformation
MatchedRule Rule

InPattern LHS, RHS, Mapping(LHS,RHS), NAC
InPatternElement Object
Filter Setting Properties of Objects

OutPattern RHS, NAC
OutPatternElement Object
Binding:
- VarExp Link
- [String|Bool|Int]Exp Constant
- NavigationOrAttributeExp Variable, LHS Property, RHS Property
- ResolveTemp Merging the RHS of Referring Rule into Producer Rule

Implicit Trace Model Explicit Trace Link, NAC (same as RHS)

5 Application

We now apply the composition approach presented in Section 3 in the following
scenario. A company has developed the transformation T1 explained in the pre-
vious section for transforming UML class diagrams to EJB 2.0. However, after
some time, the company decided to use EJB 3.0 due to several simplifications of
the new version of the standard. In particular, the DeploymentDescriptor con-
cept is no longer used in EJB 3.0, because no additional XML configuration files
for Beans are required. Instead, a light-weight approach for configuring Beans
directly in the Java code through Annotations is supported by EJB 3.0. Thus,
they developed a transformation T2 for migrating existing EJB 2.0 models to
EJB 3.0 models (cf. Fig. 5). However, to support the generation of new EJB 3.0
models from UML class diagrams, they would have to implement a dedicated
transformation T3, if applying the transformation chain 〈T1, T2〉 is undesired.
Reasons for this may be related to performance issues for ensuring rapid genera-
tion of EJB 3.0 models. Also, direct traceability between UML models and EJB
3.0 models is desired since EJB 2.0 instances would become obsolete.

5.1 Composing the Transformations

We now apply the composition procedure to our example by composing the
rules of T1 with those of T2. Since the composition procedure is applied on
individual rules, we have implemented a program in Java that first detects which
combinations of rules from T1 can be composed with rules from T2, based on
Proposition 1. The iteration over the rules of T2 follows the order shown in the
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EJB 3 metamodelEJB 2 metamodel
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Fig. 4. Evolution of the EJB metamodel

upper left of Fig. 5. However, this may lead to several possible valid combinations
of rules. The user then selects the most appropriate combination according to his
knowledge of UML class diagrams and EJB. Then, the composition procedure
is applied on these two rules. The result, i.e., the transformation T3, is shown
at the bottom of Fig. 5.

Composing T2 : R1. T2 : R1 is composable with T1 : R1, T1 : R2, and with
T1 : R3 according to the composability condition. However, due to the fact that
T1 : R2 and T1 : R3 both contain a subgraph of the LHS of T2 : R1 in both their
LHS and RHS, T1 : R1 seems to be more appropriate for composition. The reason
is that T1 : R1 actually generates the input elements for T2 : R1 in contrast to
the other two rules which only check for the existence of these elements. The
composite rule T3 : R1 is constructed by composing T1 : R1 and T2 : R1 as
follows. The LHS of T3 : R1 remains the same as the one for T1 : R1. Then to
create the RHS of T3 : R1, the composition procedure connects an EJBArchive3
element to the Package element of T1 : R1 via a trace edge. Then the elimination
procedure removes both the EJBArchive2 and DeployDesc elements from the
result. Finally a trace edge connecting the Package element to the EJBArchive3
is created. T3 : R1 also comprises a NAC corresponding to its RHS since T1 : R1

did have a NAC corresponding to its own RHS. For computing this NAC, we are
currently not using a composition procedure. Instead we just copy the elements
of the RHS into the NAC to ensure the aforementioned unique rule matching.

Composing T2 : R2. T2 : R2 is only composable with T1 : R2 as it is the only
rule of T1 that has a RHS matchable by the LHS of T2 : R2. The two rules are
thus composed in the same way as described in the previous case. In addition,
we now have to compose not only the graph patterns but also the attribute
value computations. For example, consider the assignment name = c4.name in
element d6:EntityBean of the RHS of T2 : R2. It cannot be copied as is since
the assignment refers to an element of the EJB 2.0 meta-model. In this example,
we only have simple value assignments without using more complex functions.
For setting the attribute values in the composed transformation rule, we have
to find out for each attribute value assignment in T2, how the value is actually
computed in T1. In our example, we can easily find out that the name attribute of
the element c4 in T2 : R2 is actually calculated by using the name attribute value
of the element a4. Thus, only this assignment has to be used in the composed
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Fig. 5. Transformations of the case study

transformation rule. Finally, the elimination procedure applied on the LHS of
T3 : R2 not only deletes the DeployDesc element from the RHS of T3 : R2 (as
in the previous case), but also from the LHS of T3 : R2.

Composing T2 : R3. T2 : R3 is only composable with T1 : R3. In this case, in
addition to composing the nodes and edges of the pattern, we also consider the
attribute value condition isStateful = false of the LHS of T2 : R3. However,
the rest of the composition is analogous to the previous case.

Composing T2 : R4. T2 : R4 is not composable with any rule of T1.

5.2 Implementation

The presented composition procedure allows to compose T1 and T2 nearly auto-
matically. The transformation T3 can be entirely produced with the help of some
heuristics to further filter out meaningful composition possibilities (e.g., reason-
ing about if a rule generates the elements or uses them only as context, as
discussed in the first composition). Furthermore, some specific extensions such
as attribute value assignments as well as constraints are necessary in the future
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to allow for a higher automation degree. The user chooses two transformations
to compose. If they are composable, the procedure outputs the composite rule.
In the case where there are more than one possibility, the user can interac-
tively select the most appropriate composition. The implementation relies on a
higher-order transformation implemented in Java. The first step is the genera-
tion of templates out of the LHS of the rules from T2. These templates are then
matched against the RHS of the rules from T1. This match model is the basis for
further composition computations. In a second step, the rules of T1 are rewritten
according to the presented composition procedure. In addition, we have imple-
mented the mentioned heuristic for filtering the composition possibilities and
support simple attribute value assignments. After the composition computation
has finished, the resulting transformation is serialized as T3 expressed again as
an EMF Tiger transformation.

6 Related Work

In this section, we outline how others have investigated in transformation com-
position: in graph transformation theory, in model-driven engineering, and more
widely in the field of data engineering.

Composition of Algebraic Graph Transformations. As mentioned in Sec-
tion 3.2, a formal definition for the composition of two graph transformation
rules was already proposed in [4], by creating the so-called E-concurrent rule.
However, the authors do not explicitly precise how this rule is constructed. In
the current paper, we propose a systematic algorithm to (1) detect if two rules
are composable and (2) explicitly give the steps on how to construct the E-
concurrent rule. Also, the scope of the definitions and algorithms of this paper
are directly applicable in model-driven frameworks.

Composition of Model Transformations. In the latest years, the sequential
composition of model transformations has been an active research field. Several
approaches for modelling transformation chains [10,13,5,12] have been proposed.
Most of them are based on UML Activity Diagrams which orchestrate several
transformations to achieve a larger goal. However, none of these approaches tries
to compute new transformations out of existing transformations as done in this
paper.

In [11], the authors present an approach for composing rules within one trans-
formation: the so called internal composition. For example, considering a trans-
formation from UML class diagrams to Java, two rules can be composed when
they both transform UML classes to Java classes with different mapping details.
In [14], Wagelaar presents sophisticated internal composition techniques for ATL
and QVT [9] in order to improve the design of model transformations. Since these
approaches focus on internal composition only, they do not discuss the compu-
tation of the transitive transformation from two given transformations.

In [3], the compositionality of model transformations is addressed. By composi-
tionality the authors do not mean sequential composition as meant in this paper,
but they are interested in the spatial composition when mapping a model to its
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semantic domain. Compositionality is guaranteed by a transformation T if the
execution of T produces a set of semantic expressions (instances of the semantic
domain) such that their composition represents the semantics of the whole model.

In summary, to our best knowledge no comparable approach to ours exists
in the field of model-driven engineering for composing two transformations into
the transitive transformation.

Composition in Model Management. In the area of data engineering, model
management [2] has gained much interest during the last decade. Model man-
agement stands for the idea of dealing with evolution in data engineering by
using models (i.e., schemas and mappings between them) and operators for pro-
ducing new models out of existing ones. They define schema operators, such as
diff and merge, as well as mapping operators, such as inverse and compose. The
goal of the compose operator is similar to our model transformation composi-
tion approach. However, its realization is quite different (cf. [1] and [15]). First,
in data engineering, only relational and hierarchical schemas are considered in
contrast to object-oriented meta-models, which are the basis for the composition
approach of this paper. Second, in data engineering, pre-defined relational oper-
ators (e.g., project, select, and join) are used for describing mappings between
schemas. In contrast, our approach is built on graph transformations, which is a
significantly different paradigm for describing mappings between object-oriented
meta-models.

7 Conclusion and Future Work

In this paper, we provide a mechanism for composing individual rules from a
transformation chain. This composition allows for the creation of a new trans-
formation involving only the initial and target meta-models. Although some
assumptions must be made on the syntax of rules, the composition procedure is
general enough in the sense that it is independent from the input model. The
presented approach is based on the syntactic composition of the rules. Extend-
ing the procedure to the transformation level requires to take into account the
semantics of the chain of transformations.

The main benefits of our approach are: (1) it is possible to reduce the complex-
ity of transformation chains by eliminating unnecessary transformation steps, (2)
if there is traceability from m1 to m2 and from m2 to m3, we are able to provide
traceability from m1 to m3, and (3) our approach seems to be perfectly suited in
metamodel evolution scenarios where the target metamodel evolves. If there is
already an instance migration transformation from the initial target metamodel
version to the new target metamodel version, this migration transformation may
be composed with the transformation between the source and the initial target
metamodel in order to ensure transformation co-evolution.

For future work, a number of open issues still remain. In the presented ex-
ample, we have only considered the core part of ATL which is comparable to
the core of other M2M transformation approaches, such as QVT-Relations [9].
In particular, we did not focus on transformations requiring an explicit rule
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scheduler (e.g., with a control flow). Also, several other features of ATL should
be supported, such as OCL queries and called rules (rules that are not auto-
matically executed by the transformation engine but that have to be explicitly
invoked in the transformation). Furthermore, our example only considers simple
attribute value assignments in the rules. However, before considering more com-
plex attribute manipulations in the composition, one should first think of how
to map them to graph transformations in order to provide a theoretical basis
for extending the composition procedure. Moreover, dealing with arbitrary OCL
expressions when composing transformations is challenging and should certainly
form a composition topic on its own. Finally, we have to provide tool support
for transforming the composed transformations, expressed as graph transforma-
tions, back to ATL transformations. In this context, we have planed to migrate
our current prototype to a bi-directional model transformation formalism.
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Abstract. The NFPinDSML2010 is the 3rd issue in the series of work-
shops discussing a challenging issue: principles and methods of inte-
grating estimation and evaluation of Non-functional System Properties
(NFP), in Model-driven Engineering (MDE) with Domain Specific Mod-
eling Languages (DSML). Particularly, NFPinDSML2010 topic was in-
tegration of certification and compliance in MDE.

1 Introduction

In software engineering meeting non-functional system requirements (NFR), such
as safety, reliability, timeliness and so on, has been recognized as important as
meeting functional. Model Driven Engineering (MDE) is emerging as a major
paradigm for engineering software systems, and generally, advocates use of mod-
els and transformations in all phases of software engineering process.

In MDE, models are typically specified in Domain Specific Modeling
Languages (DSMLs), languages dedicated to engineering systems of particular
domain. In order to provide support for evaluating meeting of non-functional
system properties, DSMLs need to be complemented by formal languages for
estimation and evaluation languages. Similarly to DSMLs, for particular NFPs
exist standardized languages. Due to large variety of DSMLs and NFPs that
need to be estimated and evaluated, and used formalisms, there is an need for
exploring principles of their synergies. NFPinDSML is a workshop that discusses
such topic. Particularly, NFPinDSML2010 has explored integration of certifica-
tion and compliance in MDE.

2 The Workshop Program

NFPinDSML2010 has consisted of two invited talks, one paper presentation
session, and one interactive panel session with panelists from the domains of
certification and compliance.

J. Dingel and A. Solberg (Eds.): MODELS 2010 Workshops, LNCS 6627, pp. 308–311, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



The 3rd NFPinDSML Workshop on NFPinDSML2010 309

2.1 The Morning Workshop Part

The morning workshop part consisted of two sessions. The first session was an
invited talk by Prof. Richard Paige from the University of York, United Kingdom.
In his talk, he he has introduced a model-driven perspective that goes beyond
software engineering and provides support for organizational problem solving.
Particularly, for complex and very-long term strategic decisions of large organi-
zations. His initial results show that MDE techniques appear as very useful in
supporting strategic decision making. However, there is still a need for thorough
exploration.

The paper presentation session consisted of three presentations. Mauro Luigi
Drago from the Politecnico di Milano, Italy, has presented QVTR2 language.
QVTR2 is an extended QVT-Relations language, and facilitates keeping infor-
mation about the design rationale in declarative transformations. For keeping
the design rationale, QVTR2 borrows variability modeling from the domain of
Software Product Lines, and keeps alternatives as variation points of the trans-
formation. With such a support, various techniques can be used to evaluate can-
didate solutions. Particularly, he was demonstrating performance optimization
transformation.

Thomas Kuhn from the Fraunhofer Institute of Experimental Software Engi-
neering, Keiserslautern, Germany, was the second presenter. He has introduced
an approach for integration of Component Fault Tree analysis into the UML.
Fault Tree Analysis is one of the major techniques for safety engineering. Em-
bedding such formalism in standard languages for software development helps in
automating software analysis and can significantly reduce the cost and effort for
performing one. Thomas and his colleagues have extended the UML component
diagrams with concepts for Component Fault Three modeling in the form of
UML Profile.

The final presenter was Dominik Sojer from the Technical University Mu-
nich, Germany. Dominik’s work was, similarly to Thomas’ a safety engineering
domain. He introduced an approach for propagation, transformation and refine-
ment of safety requirements. The outcome of his work is a set of algorithms
that support previously mentioned operations on safety requirements. These al-
gorithms are implemented as FTOS tool for model driven development of fault-
tolerant embedded systems.

The presentation session was ended with a mini panel. In the mini panel,
the presenters were asked to discuss about potential of synergies of their work.
All participants have seen a big potential in combining approaches for various
analysis purposes. However, a deeper and more thorougher discussion is still
needed.

2.2 The Afternoon Workshop Part

The afternoon workshop part consisted of a second invited talk and a highly
interactive panel with three experienced researchers from the domains of certi-
fication and compliance.
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Prof. Daniel Amyot from the University of Ottawa, Canada, was the second
invited speaker and he has presented the use of User Requirements Notation
(URN) for analyzing compliance. URN is a language for elicitation, modeling,
analysis, specification and validation of requirements, standardized by ITU-T.
In his talk he introduced the main elements of URN, and how these elements
have been used for compliance in the health care domain. In final remarks of his
talk, he outlines that URN appears as a competitive DSML for business process
modeling and analysis. Furthermore, its capabilities also show as very valuable
in measurement and monitoring of processes, compliances, and NFPs. URN also
demonstrates a good potential for modeling process evolution.

The final session was an interactive panel session. The invited panelists were
Prof. Ketil Stolen from SINTEF and Department of Informatics at the Uni-
versity of Oslo, Norway, Dr. Mario Trapp from the Fraunhofer Institute of Ex-
perimental Software Engineering, Keiserslautern, Germany, and Prof. Daniel
Amyot from the University of Ottawa, Canada. Ketil’s major area of research
is security and enforcement of policies within trust management. He pointed out
two major issues in dealing with compliance and security. One of them is diffi-
culties in capturing natural language in some formalism, which is necessary for
reasoning on policies and security. The second concern are modeling languages
themselves. Particularly broadly used languages like UML which have a trace
and not a trace set execution semantics. Such languages restrict enforcement of
policies and security analysis. Mario Trap’s background is safety critical and
embedded systems. He has emphasized integration of standards in software en-
gineering processes as one of the major concerns. Finally, Daniel’s position was
from the compliance perspective. In his talk, he pointed out that compliance also
depends from the maturity of organization. Mature organization, usually have
compliance integrated in the software engineering process, while not so mature
ones do not. Furthermore, he concurred to Ketil on difficulties in capturing laws
in some formalization because of their freeness to the interpretation. Finally,
he concluded that languages should be small in order to have a simple learn-
ing curve. Ideally, lawyers should be modelers, but that implementation of that
vision is still in infant phase.

3 Final Remarks

NFPinDSML2010 was the third successful edition in the series of workshops deal-
ing with integration of NFP assurance and domain specific modeling languages.
It gathered researchers discussing certification and compliance. All papers have
been published at the CEUR workshop proceedings (http://www.CEUR-WS/
Vol-642/). The workshop has also been well attended, having overall more than
35 participants.

The workshop is followed by a special issue of the Springer Computer Sci-
ence — Research and Development (CSRD) journal. This is the second special
issue on this topic. Two special issues in three years, and the attention that the
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workshop attracts clearly demonstrates its need. Furthermore, the number of
research issues that have been identified during the previous three editions give
a very promising future to this workshop.

Acknowledgments. This research was in part supported by Alberta Innovates
– Technology Futures through the New Faculty Award program.
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Abstract. Efficient safety analyses of complex software intensive em-
bedded systems are still a challenging task. This article illustrates how
model-driven development principles can be used in safety engineering to
reduce cost and effort. To this end, the article shows how well accepted
safety engineering approaches can be shifted to the level of model-driven
development by integrating safety models into functional development
models. Namely, we illustrate how UML profiles, model transformations,
and techniques for multi language development can be used to seamlessly
integrate component fault trees into the UML.

1 Introduction

Embedded systems are of crucial importance to our society. We recognize our
dependence in the moments when these systems fail. Headlines in newspapers
about plane crashes or car accidents show the tight coupling of advantages and
dangerous disadvantages of these systems. Therefore, embedded systems devel-
opment comes with a large responsibility. Particularly the development of safety
critical systems is constrained by a series of legislative and normative regulations
making safety to one of the most important non-functional properties of embed-
ded systems. One of the main requirements is a sophisticated safety analysis
of the system. Particularly in the case of software-intensive embedded systems,
their complexity is rapidly increasing and extended analysis techniques are re-
quired that scale to the increasing system complexity. Model driven development
is currently one of the key approaches to cope with increasing development com-
plexity in general. Applying similar concepts to safety engineering is a promising
approach to extend the advantages of model driven development to safety engi-
neering activities. First, it makes safety engineering as a standalone subtask of
system development more efficient. Second, and even more importantly, this is an
essential step towards a holistic development approach closing the gap between
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functional development and safety engineering. This paper illustrates applica-
tion of model driven design principles to safety analysis techniques in order to
enable efficient analysis of complex systems. In contrast to other approaches, it is
not our goal to extend existing development approaches with additional safety
properties. Instead, we shift full-fledged, established, and well-accepted safety
engineering approaches to the level of model-driven development and integrate
them seamlessly to functional development. Safety meta models are seamlessly
integrated into functional meta models, yielding tailored languages for the de-
sign of safety critical embedded sytems. In this paper, we use fault trees as an
established analysis approach and illustrate their integration into a model-driven
design approach. As a starting point we use component fault trees, which extend
standard fault trees with the concept of modularity. In order to shift this ap-
proach to the model driven development level, we define a domain specific model-
ing language and according analysis and transformation algorithms. Since safety
and particularly certification bodies are usually very conservative, it is very im-
portant support proven-in-use tools for performing analyses. Through model
transformations, we generate exchange formats for proven tools like FaultTree+
[11]. Regarding first applications in industry, the advantages of model-driven de-
velopment can be successfully extended to safety engineering. The combination of
modularization, reuse, and automation can tremendously increase the efficiency
of safety analyses of large systems. The remainder of this paper is structured as
following: First, we present related work. Second, we introduce component fault
trees. Third, we present a more formaldefinition of CFTs based on a generic
meta-model for components. Based on, we explain our multi language integra-
tion for integrating CFTs into architectural design models. Afterwards, a short
case study regarding worst case executon time analysis is given that uses inte-
grated safety and architecture models. Finally, we summarize our approach and
discuss its benefits for industrial usage.

2 Related Work

Many approaches exist that try to integrate safety analyses and design models in
order to reduce effort by automatically transforming the integrated model into
a classical safety analysis such as fault trees. These approaches are divided into
Semantic Enriching, Fault Injection, and Failure Logic Modeling.

Semantic Enriching annotates additional safety-relevant semantic informa-
tion to design models such as the role of a class in a fault tolerance mechanism,
the safety requirements of the annotated entity, or failure modes and their like-
lihood of occurrence.

The assumption for approaches belonging to this category is that adding se-
mantic information to entities of the system model is sufficient for the deduc-
tion of a safety analysis model and requires less effort, than modeling safety
behavior manually. In UML models, stereotypes, tagged values, and constraints
are used for this purpose, usually. In [9], such annotations are used to mainly
identify redundancy mechanisms. They concentrate on recurring safety analysis
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model constructs and automatically construct parts of the safety analysis model
at a high level. The annotations presented in [6] can be applied to all elements
of the design model. The used annotations are generically defined to cover the
whole design space and to allow a detailed deduction of the safety analysis model.
This coverage and the high detail of the safety analysis model is in this approach
achieved at the expense of a large number of different annotations.

The advantage of Semantic Enriching is that safety-relevant information is
specified in a language that is intuitive to design engineers and programmers
and within the same model as the analyzed system. It supports consistency
of design safety analysis model and increases communication between devel-
opers and safety engineers. However, the high level of detail needed for safety
analysis is a drawback. Another drawback is that annotations do not support
widely used semantics of fault trees. This makes them difficult to apply, they are
time-consuming, error prone and unfamiliar for safety engineers and certification
bodies.

Fault Injection requires a formal or an executable design model. Undesired
behavior is modeled along with the system model and model checkers or simu-
lations are used for finding inconsistencies between models and safety require-
ments. This enables a high degree of automation and ensures strong correctness
of results. Using model checking for fault injection was invented by Liggesmeyer
in [16]. More examples may be found in [3], [12] and [5]. The drawback this ap-
proach the need for formal models. Furthermore, it does not solve the problem of
finding appropriate failure modes or support humans to think about conceptual
faults that were explicitly specified.

The approach presented in this paper belongs to the third category: Failure
Logic Modeling (FLM) modularly defines the failure propagation of system
modules in parallel to its data-flow similar to standard safety analysis. The dis-
advantage of FLM is that the annotation is still a manual task and very similar
to a manual safety analysis. However, in our opinion this is also its advantage
against Semantic Enriching and Fault Injection. The used development model
is not constrained to be executable, as in fault injection, and the advantages of
semantic enrichment that come from combination of system models and safety
analysis models may be achieved without the drawback of applying a compli-
cated and unfamiliar set of annotations. Examples of Failure Logic Modeling
can be found in [19], [10] an [18]. The most similar approach to this paper are
the Hierarchically Performed Hazard Operation and Propagation Studies (HiP-
HOPS), which annotate subsystems in Matlab/Simulink with propositional for-
mulas, which are mathematically equivalent to fault trees [18]. The approach
has already been integrated into EAST-ADL [4], which extends the UML/
SysML.

In contrast to the approaches discussed before, we propose an approach that
uses model-based concepts to integrate fault tree models with UML models.
This way, safety becomes an integral part of design models, and still remains
analyzable with existing and prooven tools.
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3 Introduction to CFTs

Fault tree analysis is a deductive, top-down method that analyzes the causes of
a hazardous failure of a complex system. Fault trees offer thus a breakdown with
regard to the hierarchy of failure influences. The root of the tree is called top

event and the leaves are called basic events. The decomposition of the top
event into the basic events is defined by the remaining nodes which are logical
operators. However, this kind of hierarchical decomposition is not sufficient when
dealing with complex technical systems. In the functional design, the complexity
of these systems is typically handled by an appropriate component concept that
allows the decomposition into manageable components. To facilitate this archi-
tectural decomposition also for the fault tree analysis, the concept of component
fault trees (CFTs) has been proposed in [14].

CFTs feature a decomposition approach that is used in a similar way in mod-
ern software design notations: subcomponents appear as ”black boxes” on the
next-higher level and are connected to the environment via their interface. The
output interface is given by so-called output events and the input interface
is given by so-called input events. Further, a CFT comprises so-called basic

events that represents internal faults. The CFT relates every output event to
its internally caused basic events and its relevant input events. This decomposi-
tion is modeled with logical operators as it is done in the decomposition of a top
event to a set of basic events in a common fault tree. Similar to a component,
a CFT can be instantiated several times in other CFTs. In their environment,
these instantiations are called ”subcomponent” or ”CFT instances”. These in-
stances can be composed by connecting input and output events. In- and output
events of a CFT appear as subcomponent events when they are instantiated
on the next-higher hierarchy level. The CFT graph as a whole is defined by its
edge connections and the mappings from subcomponents to the corresponding
CFT model describing their ”internals”. The complete CFT can be evaluated
qualitatively and quantitatively like a classical fault tree (see [13] for a formal
specification of CFTs, [14] for a description of the BDD-based and compositional
evaluation algorithm used for CFTs; UWG3, a tool for modelling and evaluation
of CFTs, can be found at [8]).

In the following, we exemplify the modeling of CFTs with the running ex-
ample of this article. It is a system for charging the battery of a car with an
electric power train. This system charging has to fulfill the safety requirement
that the car must not start-up when the male connector is plugged, since other-
wise the charging cable may crack and electrocute somebody. For detecting the
plugging of the male connector, the system comprises a hardware component
ProximitySensor, a hardware component VoltageSensor, and a software compo-
nent PlugDetection.

The hardware components send respectively a signal to the component
PlugDetection that indicates whether the male connector is plugged or not. The
component ProximitySensor outputs the boolean signal proximity that is sup-
posed to be true when the connector is plugged and false when the connector
is unplugged. The component VoltageSensor outputs a signal voltage that is
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Fig. 1. Example for a component fault tree (CFT)

supposed to be true when the plug connection is energized and false otherwise.
If both signals are false then the component PlugDetection sets its Boolean
output signal plugged to true else it sets signal plugged to false. In this way,
the component minimizes the risk of violating the safety requirement due to an
undetected plugged connector.

Figure 1 shows the CFT PlugDetection that refers to the detection of a plugged
connector based on the signals proximity and voltage. The CFT comprises three
output events (top triangles), two input events (bottom triangles) and four
basic events (circles). The event plugged omission refers to the common failure
mode omission, i.e., an unexpected absence of a signal when it is required. The
event unplugged commission refers to the common failure mode commission,
i.e., an unintended provision of a signal when not required, and the third output
event unstable refers to a rapidly changing signal. The input event Proximity FN
captures a false negative value of signal proximity, i.e., the value is false although
a connector is plugged. Accordingly, the input event voltage FN refers to a false
negative value of signal voltage. A false negative value of both input signals
leads to an undetected plugging of the connector. Hence, the CFT defines that
the conjunction of the input events causes both output events. As the outputs
events can also be caused by internal faults of the component PlugDetection, the
CFT comprises the basic events that refer to these internal faults. It has three
basic events in order to distinguish between different kinds of faults. Basic event
fault 1 refers for the class of faults that causes only a omission of signal plugged.
Basic event fault 2 refers to faults that cause an omission and a commision of
signal plugged. Accordingly, it is connected to both OR gates. Basic event fault 3
refers to faults that cause an comission of signal plugged and basic event fault 4
causes an unstable signal. Please note that the identifiers fault 1 fault 2 fault 3
and fault 4 are anonymized due to NDA reasons. In practice the names should
be expressive and semantically meaningful.

The CFT ProximitySensor that describes the failure behavior of the proxim-
ity sensor comprises an output event Proximity FN that refers to a false negative
value of the measured signal proximity. The CFT VoltageSensor that describes
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the failure behavior of the voltage sensor comprises an output event Voltage FN
that refers to a false negative value of the measured signal voltage. As illustrated
in Figure 1, instances of the CFTs ProximitySensor and PlugDetection are com-
posed by connecting output event Proximity FN with input event Proximity FN
in order to define the overall CFT graph of the system. Instances of CFTs Volt-
ageSensor and PlugDetection are composed by connecting output event Volt-
age FN with input event Voltage FN. This means that the fault trees belonging
to output events Proximity FN and Voltage FN are adhered to the fault trees
belonging to output events plugged omission and unplugged comission.

4 Towards Model-Based CFTs

Component fault trees enable developers to formally specify failure-propagation
of their systems and enable formal analysis techniques. CFTs are on the most
abstract level hierarchical components with parts and connections between them.
We therefore define CFTs based on a generic meta-model for component based
software development that resembles the most important principles of component
based development CBD (cf. Figure 2).

Fig. 2. Component Meta model

The meta model consists of components, which define component types,
component proxies, which represent component instances, ports, and di-

rected connections. All are well known concepts in CBD. Components con-
sist of elements, which may be component proxies, connections, or generic
parts. Generic parts are abstract placeholders for more specialized language
constructs therefore and need to be specialized by more concrete meta models.

CFTs are defined based on this abstract meta model (cf. Figure 3). They de-
fine specialized types of components, CFTComponent, and specializes generic
ports to input- and output event ports . Gates and Events are specializa-
tions of the abstract element Part. Gates combine events with each other. Two
predefined gate types are common to all calculation backends, these are the pre-
defined and and or gates. Events represent faults, which are the core of fault
trees. After identifying faults and their propagation logic, the next step is the
definition of counter-measures to mitigate or tolerate the faults. Because classic
(C)FTs do not support the modelling of measures, in practice the workaround
is to model a failing measure as a basic event and relate it to the fault or the
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fault-subtree with an AND-gate. The semantic of this would be that a fault
propagates, whenever the fault occurs AND the counter-measure fails, too. The
disadvantage is that one cannot distinguish original faults from failing counter-
measures. Having a meta-modelled DSML it is straight forward to add a mod-
elling element called Measure. This makes it not only possible to distinguish
faults from measures graphically, but also to use the extended semantic informa-
tion for additional analyses. One analysis could be to reason, whether every fault
is covered by at least one measure. Figure 3 shows the complete meta model of
Component Fault Trees, which is the abstract syntax of the CFT language.

Fig. 3. CFT Meta model

New domain specific languages need to be integrated with existing tool chains.
For this reason, the concrete syntax of CFTs is realized as a UML profile. This
enables the use of UML modeling tools for developing component fault trees,
and it enables us to inherit the UML profiling mechanism for vendor specific
language adaptations. For this reason, the meta model has been converted to a
UML profil.

UML based modeling enables rapid integration of application specific exten-
sions to fault trees. Common extensions are application specific gate types. They
provide special gates that are relevant to specific domains; these are valuable,
and therefore may not be hidden by a modeling framework. Introducing appli-
cation specific gates yielded a challenge for us: a DSML based approach yields
a huge advantage for fault tree modeling on the one hand, on the other hand,
there was demand for supporting several back-ends with vendor specific language
extensions. While some gate types such as m-out-of-n-gates cannot be directly
transformed to the back-end language of other tools, other can’t. Analytical
expressiveness of different back-ends is therefore not necessarily equal

Therefore we decided to apply the aforementioned profile based approach
together with tailored transformation rules for each tool. This way, different
backends may be connected to the DSML; transformations are specific to a tool
and an application domain; adding tool specific transformation rules to support



Integration of Component Fault Trees into the UML 319

new gate types is therefore feasible. Integration of specialized gate types into
the DSML is supported through profile specialization. By creating a profile that
specializes the generic CFT profile, new stereotypes representing application
specific gates may be exposed to users. Similar to other gate types, new gate
types in specialized profiles must specialize the stereotype Gate.

This way, a graphical frontend language for component fault trees was created
that provides a common interface to heterogeneous vendor specific tools. Our
approach enables rapid integration and use of different tools with the same model
without disabling tool specific extensions.

5 UML Profiling as DSML Design

Even though CFTs have been implemented as UML profile, they are an isolated
UML-based language. While this language has its own benefits as a common tool
frontend, even higher value may be generated by integrating several modeling
languages for system development.

System development yields a large number of different artefacts. Systems con-
sist for example of hardware units, software, mechanical parts. Additionally, non
functional properties, such as safety constraints and worst case execution times
need to be integrated. When different modeling languages are used, the same
information needs to be replicated in multiple modeling languages. For example,
consider a System that is modelled by two DSMLs: the Architecture DSL for
defining software architectures, and the CFT DSML for creating component fault
trees. Even if both languages are implemented as UML profiles, are integrated
into the same tools, and even if both languages cover different aspects of the
developed system, it is likely that information needs to be replicated manually
between both languages. This is because different language elements are used
by both languages. With each additional language, the number of new language
elements increase.

Language integration solves this issue. Integrating (domain specific) modeling
languages with each other is however still a challenging and uncommon topic,
In the following, we will therefore document language integration using the ex-
ample languages Architecture DSML and CFT DSML. Therefore, we first need
to briefly introduce the Architecture DSML:

Architecture DSML only very basic concepts of software architectures, which
are components, ports, and relations. Relations are specialized into general-
izations, aggregarions, compositions, and directed/non-directed relations. Com-
ponent types may consist of component proxies that represent instances of types.

When integrating both languages, the following properties must hold: both
languages must remain useable. The presentation of either language must not
be changed. Existing model transformations and validations must remain func-
tional as well as extension mechanisms. In our example, this implies that after
integrating both langauges, tool specific transformations and adaptations of the
CFT language must still be possible. We distinguish between two approaches
for language integration: referencing and harmonization. Referncing provides a
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loose integration between two modeling languages without needing to adapt meta
models. It is therefore suitable for integrating languages that are implemented
in different tools that must not be changed, or for langauges that are built on
mostly different meta models. Hermonization provides a much tighther integra-
tion between two languages, but requires access to meta models, and requires
both languages to be implemented in the same tool(s). This is used preferrably
for UML based languages.

In both cases, we define a meta language to be a tuple lName that consists
of a name Name, a set of Meta Classes M , and a set of relations R. Meta
classes m ∈ M define a tuple that consists of a name Name as well, and a
set of attributes a ∈ A. Operations are not considered here. For this paper, we
consider a subset of properties of attributes: PisReadOnly , PisDerived , Vopposite

represent the properties isReadOnly, isDerived, and opposite of each attribute.
Other properties are handled equally. isReadOnly and isDerived are predicates,
opposite is a property that is empty or holds another attribute a. The set of
relations R consists of Generalizations RGen, Aggregations RAggr , Associations
RAssoc. Properties are handled equally to properties of attributes; a thorough
description is ommitted here for space reasons.

Referencing defines mapping functions between two models mCFT and mArch

that conform to meta models metaCFT and metaArch. here, a set of functions
F defines mappings from metaCFT to metaArch. Each function f ∈ F maps
a part from the CFT DSML to the architecture DSML. The set of functions
f−1 ∈ F−1 define mappings back from mArch to mCFT . When more than two
languages are to be integrated through referencing, it is feasible to define a
common intermediate meta model, and a common model mshared that stores all
information that is to be shared amongst languages.

Mappings do not need to be complete. All aspects that are not covered by
mapping functions are silently ignored. Referncing is therefore a well suited
approach for integrating meta models that have only very little in common, e.g.
UML and Simulink. Integration between two languages enables using of UML
for modeling software architectures, and Simulink for defining detailed behavior
of components.

Referencing may be implemented with various tool-chains and modeling lan-
guages. Its flexibility is an advantage. Additionally, the approach scales very
well, because only relevant parts of language meta models need to be considered.
Drawbacks of referencing is its overhead. Depending on the implementation, the
whole set of functions must be executed to synchronize both languages. A con-
crete realization of a referencing based approach was published in [15], which
illustrates this concept of language integration in greater detail.

Language harmonization provides a much tighther integration between
DSMLs. This is achieved through meta model integration. Therefore, it is nec-
essary that both languages are built on a common meta model. here, we assume
MOF or UML based DSMLs. Harmonization of both DSMLs will be performed
as following:
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– Definition of the harmonized meta model or profile MCommon.
– Harmonization of meta classes/stereotypes from MCFT and MArch. For ev-

ery pair of meta classes mCFT and mArch that are similar in originating
meta models, a new meta class mCommon is created that generalizes mCFT

and mArch is created. If mCFT and mArch are stereotypes, their meta classes
are set to the union of meta classes of mCFT and mArch. Additionally, a new
meta class h that specializes e and f is created.

– Harmonization of class attributes for hermonized meta classes mCFT and
mArch. Every attribute a of meta class mCFT , for which a ∈ mCFT and
a ∈ mArch holds is moved to mCommon, iff meta properties of a can be
harmonized (see below). Attribute remains in mCFT or mArch otherwise, or
need to be harmonized manually by language developers.

– Harmonization of regular associations RAssoc: Regular relations are handled
like attributes, therefore, the rules for attributes apply here as well.

– Harmonization of generalizations RGen: Generalization relations g between
two elements m1

CFT ∈ MCFT , m2
CFT ∈ MCFT are added as new generaliza-

tion relations g′ between elements m1
Common ∈ MCommon and m2

Common ∈
MCommon.

– Harmonization of aggregations a: Aggregation relations are handled like at-
tributes.

For the harmonization of attributes, additional meta properties need to be
checked to ensure proper harmonization. These properties are the following:

– defaultV alue defines the default value of a property. Here, a suitable new
default value must be found if default values from both harmonized elements
mCFT ∈ MCFT and mArch ∈ MArch differ from each other. If no default
value is found, no default value is assumed for mCommon ∈ MCommon.

– isComposite defines whether a property is contained in its owner or not.
If the value of this property differs in source elements mCFT ∈ MCFT and
mArch ∈ MArch, a creative decision is to be made by language developers
to avoid meta modeling conflicts. this may yield the decision of keeping
both properties seperated, because they obviously follow different (static)
language semantics, or to decide for one value for mCommon ∈ MCommon.

– isDerived defines whether a property value may be derived from other prop-
erties. If the value of this property differs in source elements mCFT ∈ MCFT

and mArch ∈ MArch, isDerviced needs to be set to false in mCommon ∈
MCommon, because its value needs to be set manually and cannot be calcu-
lated.

– isReadOnly defines whether a property may be modified. If mCFT ∈ MCFT

and mArch ∈ MArch differ, the value for mCommon ∈ MCommon is false.
This may open unexpected privileges that were not given by original meta
models, which is necessary in this case.

– opposite defines an opposite value for an attribute. If values from both orig-
inating meta models differ, again a creative decision is necessary, because
there is no automated way for harmonization.



322 R. Adler et al.

– The name property is typically the same and kept during harmonization,
the type is set to the harmonized input type that was created during the
second step of our approach.

The outlined algorithm does not cover all properties of meta models that need to
be harmonized. however, its extension to missing properties is streaightforward.
Figure 4 illustrates meta model harmonzation graphically with a subset of both
languages. In the example, harmonization of component language elements of
the two DSMLs is documented.

Fig. 4. Meta model harmonization example

The algorithm that was outlined above ensures a conforming integration of two
DSMLs. The following properties hold after two langauges have been integrated:

– If two language elements e and f were distinct in the originating meta models
M and N , there are two distinct language elements e′ and f ′ in the combined
meta model O.

– All language elements e′ in the integrated meta model O have at least all
properties of their originating language elements e from each originating
meta model.

– All language elements e′ in the integrated meta model O are compatible
to their source type (i.e. also have the type) e from their originating meta
model M .

This guarantees that existing profiles, model transformations, validations, and
model checkers may still be used with the integrated meta model, which is
our definition of compatibility. Integration on the other hand guarantees the
following:

– If two language elements e and f were similar in both originating meta
models M and N , they are represented by only one element g′ in the resulting
meta model O. This applies to language elements, relations, and attributes.

– Attributes with conflicting types from originating meta models are not
harmonized.



Integration of Component Fault Trees into the UML 323

– Attributes with conflicting default values are given a new default value that
conform to the integrated meta model.

These definitions may be extended to integrated meta models that originate from
more than two meta models. Meta model harmonization, as outlined above, is
not a new technique. Both, the UML and the MOF apply this technique to merge
language packages that define subsets of their respective meta models. Package
merging of one package with another creates the union of both packages, which
spans meta classes, attributes, and relations. Current implementation of package
merging is ambiguous in some cases. For example, when two attributes with
different default values or types are being merged. The authors of [7] therefore
propose different semantics for package merging. For our appropach, we fall back
to explicit decitions of language developers, since these cases often imply domain
knowledge and often cannot be solved through generic rules.

Language-specific presentations ensure that in each view only properties that
are of relevance to the currently used DSML are visible. For example, the safety
engineer that models with CFTs only perceives CFT related properties of the
Component modeling elements, software architects only perceive UML related
properties. Realization of views is tool specific - in our case, we used the DSL
engine of MagicDraw [17] to realize these views. Meta model harmonization also
has implications on the semantics of modeling languages. When a component
with an associated CFT is generalized, the sub-components inherit the CFT of
the parent component. Therefore, they may add new failure analysis, for exam-
ple for new ports that are introduced by specialized components. A thorough
analysis of these implications for all possible integration scenarios is considered
to be future work.

6 Case-Study: Considering Worst Case Execution Times

In this section, we highlight an approach that exploits the benefits of DSML-
based fault tree modeling and language integration by combining safety views
and worst case execution times (WCETs) of components to automatically de-
duce probabilistic execution times of fault tolerance mechanisms. Those gener-
ated probabilistic execution times are hard to deduce manually and require a
seamlessly integrated safety analysis and architecture model that is capable to
reflect the structure of the system model with its entities and connections. The
results of the methodology are used for subsequent safety analyses and provide
input for approaches dealing with probabilistic worst case execution times, e.g.,
as presented in [2] and [1].

To automatically deduce probabilistic execution times for fault tolerance mech-
anisms that have a certain amount of timing overhead for redundantly executable
elements, we use the meta-model as depicted in figure 3. It addresses CFTCom-

ponents and OutputEvents and enriches the system model by modeling the
semantics of fault tolerance mechanisms generically. A FTMechanism identi-
fies the component holding the fault tolerance mechanism, that typically consists
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of some redundant Alternates and additional Entities for, e.g., checkpoint-
ing and orchestration. To later on reflect the WCET for an entire FTMech-

anism, Entities get assigned a WCET as a property and, if they are not
a redundant alternate, an execution behavior that describes whether the
Entity is executed before or after certain Alternates. The execPattern

allows modeling the overall behavior of the FTMechanism by defining all com-
binations of executed Alternates that are capable to produce a correct re-
sult (so called runs). Since the probability for a certain run to occur depend
on failures of redundant Alternates, two types of OutputEvents are as-
signed to this model element: failures that can be detected within the mechanism
(detectableOutputEvents) and failures that cannot be detected within the
mechanism (undetectableOutputEvents). A third class of assigned Out-

putEvents affect the property of an Alternate by extending the WCET,
e.g., due to additional hardware failures like an overheated CPU that slows down
the calculation, what is generally uncovered by WCET analyses.

To demonstrate how approaches that encompass entities of safety analysis
models and entities of system development model benefit from the seamless in-
tegration of both models, we extend the example as provided in section 3 and use
the DSML-based fault tree language to apply the above presented annotations
for the automated generation of probabilistic worst case execution times. The
generated results provide then probabilities for different WCETs if the addressed
entities of the safety analysis model are quantified.

The system is here extended by an additional component PlugDetection2
(PD2), that is developed design diversely and executed in parallel to PD1. Both
plug detection mechanisms report their result to a component called Decider (D).
This component is able to detect the outputEvent unstable of PD1 and then
selects the output of component PD2 to tolerate the fault. The outputEvent

unstable of PD1 is tagged as an detectableOutputEvent, both other out-
put events are tagged as undetectableOutputEvents. This system builds
a FTMechanism with PD1 and PD2 as Alternates and D as an additional
Entity. Following the semantic, the system produces acceptable output if PD1
produces an acceptable output (run1 = (PD1)) and if PD1 fails detected and
PD2 produces an acceptable output (run2 = (PD1, PD2)). Both so-called runs
build the execPattern tag of the FTMechanism stereotype. The component
D is always executed once, its execution tag is set to once.

Since the component PD2 is developed design diversely, it has a different
WCET of 4ms compared to PD1 with a WCET of 3ms and the component D
produces an additional WCET overhead of 2ms compared to the system without
the fault tolerant redundant element PD2 and D. The overall WCET for this
system is 6ms compared to the WCET of 3ms for the system without redundancy
and the decider D.

To demonstrate the benfits of language integration, we assume an additional
late failure mode of PD2. The CFT for PD2 is similar to the CFT of PD1, but
PD2 does not produce an unstable OutputEvent, but produces an additional
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timing failure late+1 of one millisecond instead, triggered by the internal event
PD2.fault4. This OutputEvent is tagged as an propertyOutputEvent.

After the system is semantically enriched encompassing the entities of the
mechanism, corresponding failure modes and the semantics, we are able to gen-
erate WCETs as depicted in table 1. The first row with an overall WCET of
5ms corresponds to the run where only PD1 and D are executed. Since PD1 and
PD2 are executed in parallel, the WCET for PD2 does not influence the overall
WCET if PD1 computes no detectable failure, because the WCET of PD1 is
smaller than the WCET of PD2. The second row represents the WCET for a
detectable failure in PD1, and no additional timing failure in PD2, what extends
the WCET in this case to 6ms. The last row represents the overall WCET for
an additional timing failure in PB2. The likelihood for a specific WCET can
be calculated using ordinary fault tree logic by calculating the probability for
the corresponding Boolean formula. The mathematical model to generate those
different WCETs is not described here, since it would exceed the limitations
of this paper. We are able to generate similar results for various numbers of
additional Entity components, propertyOutputEvents and parallel or se-
quentially executed Variants, by generating WCETs for all combinations of
runs and additional timing failures.

Table 1. Generated WCETs and corresponding Boolean formulae

Run overall WCET Boolean Formula

(𝑃𝐷1) 5ms not(PD1.unstable)

(𝑃𝐷1, 𝑃𝐷2) 6ms PD1.unstable

(𝑃𝐷1, 𝑃𝐷2) 7ms PD1.unstable AND PD2.late+1

This approach benefits from the seamless integration of the DSML-based Fault
Tree Language by providing a sophisticated access to the failure models of partic-
ipants of fault tolerance mechanisms, what simplifies the process of identifying
the relevant failure events for this approach. The influence of failure models
on non functional properties like execution times can be educed dynamically
within one coherent model instead of dealing with static probabilistic values,
what would be error prone for repeated events or common cause failures. The
results of the previously described approach can be directly used and integrated
into the existing safety analysis model by inserting new failure modes for ev-
ery row as depicted in table 1 to the CFT for the FTMechanism component.
Thereby, they can be used for subsequent safety analyses and allow a trade-
off between increased safety and additional time overhead for fault tolerance
mechanisms.

7 Conclusion

From a safety point of view, safety analyses are indispensable for ensuring the
safety of embedded systems. Particularly for complex, software intensive systems,
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safety analysis is very time consuming and error-prone. Our approaches have
shown in practical application our method of applying the principles of model
driven engineering to safety analyses reduces required effort for safety analysis
and to increase their quality at the same time. Integration of safety analysis
models amd functional development models leads to higher potential for reuse
as well as automated generation and consistency checks of safety models.

From a DSML point of view, integration of safety models has shown that multi
language integration enables integration of non-functional models and functional
development models. The harmonization of the modeling language based on
profiles as well as model transformations enable the integrated use of accepted
modeling environments and proven-in-use analysis tools.

Our approach has been implemented and evaluated in context of a coopera-
tion project between Fraunhofer IESE and Siemens-CT. Implementation of the
modeling language based on UML profiling mechanisms with language integra-
tion was five times more efficient than traditional development approaches (a
team that developed a standalone CFT modeler using a traditional develop-
ment approach required more than five times the effort that was consumed by
anothe team that was developing the DSML-based modeler). Besides this speed-
up factor, another important advantage is the flexibility of our approach. CFT
extensions may be easily modified and extended, which enables fast tailoring to
organization-specific and even project-specific requirements, which has been a
crucial advantage over inflexible off-the-shelf solutions.
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Abstract. Model transformations glue together models in an MDE pro-
cess and represent the rationale behind it. It is however likely that in a
design/development process different solutions (or alternatives) for the
same problem are available. When alternatives are encountered, engi-
neers need to make a choice by relying on past experience and on quality
metrics. Several languages exist to specify transformations, but all of
them bury deep inside source code rational information about perfor-
mance and alternatives, and none of them is capable of providing feed-
back to select between the different solutions. In this paper we present
QVT-Relations Rational (QVTR2), an extension to the Relations lan-
guage to help engineers in keeping information about the design rationale
in declarative transformations, and to guide them in the alternatives se-
lection process by using performance engineering techniques to evaluate
candidate solutions. We demonstrate the effectiveness of our approach by
using our QVTR2 prototype engine on a modified version of the common
UML-to-RDBMS example transformation, and by guiding the engineer
in the selection of the most reasonable and performing solution.
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Abstract. This paper reports on the 10th OCL Workshop held at the
MODELS conference in 2010. The workshop’s motivation was to bring
together researchers and practitioners in textual modelling standards,
such as OCL, to report advances in the field, to share results, to iden-
tify common areas and potential for integration, and to identify common
tools for developing textual modelling languages, with a view to ad-
vancing the state-of-the art. The workshop included sessions with paper
presentations and a final discussion session.

1 Introduction

Modelling started out with UML and its precursors as a graphical notation. How-
ever, graphical notations were found to have limitations in terms of specifying de-
tailed aspects of a system design and in terms of processing and managing models.
Limitations in using graphical languages include: specifying detailed behaviour;
linking models to other traditional languages; making models executable; model
transformation; extensions to modelling languages; model management. Many of
these limitations have been addressed in recent years by proposals for textual mod-
elling languages (e.g. there is a growing number of tools to textually define UML
models ) that either integrate with or replace graphical notations for modelling.
Typical examples of such languages are OCL, textual MOF, Epsilon, Alloy, etc.

The current textual modelling landscape offers many interesting topics for re-
search and experimentation including (but not limited to): new and/or successful
applications; mappings to other languages/formalisms; new algorithms; evalua-
tion strategies and optimizations for validation, verification and testing, model
transformation and code generation, metamodeling/DSLs, and query and con-
straint specifications; alternative graphical/textual notations; evolution, trans-
formation and simplification of expressions; libraries, templates and patterns;
complexity results, quality models and benchmarks for comparing and evaluat-
ing tools and algorithms; case studies on industrial applications; experience re-
ports; empirical studies about the benefits and drawbacks; and innovative tools.
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The papers presented in the workshop covered many of the aforementioned topic
of interests. All submitted papers were reviewed by three industrial or academic
members from the Program Committee.

2 Workshop Papers

In this section we summarize the contents of the papers presented in the work-
shop, except for those whose full version is published in this volume: namely, In-
tegrating OCL and Textual Modelling Languages by Florian Heidenreich, Jendrik
Johannes, Mirko Seifert, Michael Thiele, Christian Wende and Claas Wilke, and
A Specification-based Test Case Generation Method for UML/OCL by Achim D.
Brucker, Matthias P. Krieger, Delphine Longuet and Burkhart Wolff.

2.1 Re-engineering Eclipse MDT/OCL for Xtext by Edward
Willink

The current tooling used for the Eclipse OCL project uses an LALR parser gener-
ator. Enhancing the tooling to support editing motivated a migration to exploit
the inherently model-driven characteristics of Xtext. This paper summarizes the
experiences of that migration, identifies the many benefits and discusses a few
changes in implementation approach that were required.

2.2 A Feature Model for an IDE4OCL by Joanna Chimiak-Opoka
and Birgit Demuth

An Integrated OCL Development Environment (IDE4OCL) can significantly im-
prove the pragmatics and practice of OCL. This paper presents a feature model
for the IDE4OCL vision. The earlier work identified domain concepts, tool-level
interactions with IDE4OCL, and use cases for OCL developers including a set of
predefined features. In the second step described in this paper, the OCL commu-
nity was asked for their feedback on the proposal. The results provide a valuable
insight in the needs of OCL usage both in usual and advanced OCL applications.

2.3 MySQL-OCL: A Stored Procedure-Based MySQL Code
Generator for OCL by Marina Egea, Carolina Dania and
Manuel Clavel

This paper introduces a MySQL code generator for a significant subset of OCL
expressions which is based on the use of stored procedures for mapping OCL
iterators. The paper discusses the class of OCL expressions covered by the def-
inition (which includes, possibly nested, iterator expressions) as well as some
extensions needed to cover the full OCL language. The paper also discusses the
efficiency of the generated MySQL code.
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2.4 Navigating across Non-Navigable Ecore References via OCL
by Martin Hanysz, Tobias Hoppe, Axel Uhl, Andreas Seibel,
Holger Giese, Philipp Berger and Stephan Hildebrandt

The Eclipse Modeling Framework (EMF) and its meta-meta model Ecore sup-
port uni-directional and bi-directional references. It is quite common that ref-
erences are defined uni-directionally only because of saving storage space or
separating meta models, which is problematic when implementing Object Con-
straint Language (OCL) constraints that require navigation against the direction
of uni-directional references. This paper presents an approach that overcomes the
aforementioned issue by providing navigation across non-navigable Ecore refer-
ences via OCL. Different alternative solutions are discussed. This paper also
briefly describes the realization that was outcome of a project in cooperation
with the SAP AG.

2.5 Towards a Conceptual Framework Supporting Model
Compilability by Dan Chiorean and Vladiela Petrascu

The ever-growing use of modeling languages today is largely due to a matura-
tion of model-based development technologies. However, there is enough room
for improving language specifications and consequently, the efficiency of their
usage. The state of facts in specifying Well Formedness Rules is among the most
important issues calling for improvements. To solve it, there is the need of a rig-
orous conceptual framework supporting the specification of modeling languages’
static semantics. This would stand as a basis for ensuring model compilability, a
mandatory requirement in a model-driven context. This paper aims to provide
core ideas that contribute to the creation of such a framework. The approach is
testing-oriented and promotes the use of OCL specification patterns.

2.6 Verified Visualisation of Textual Modelling Languages by
Fintan Fairmichael and Joseph Kiniry

This paper details a formal relationship between the textual and graphical forms
of a high-level modelling language called the Business Object Notation (BON).
It describes the semantics of the graphical and textual representations and the
relationship that holds between them. It also formally defines a view on an
underlying model as an extraction function, and models difference as a means
of tracking changes as a model evolves. This theoretical foundation provides
a means by which tools guarantee consistency between textual and graphical
notations, as well showing how to efficiently perform model updates, reason
about model views, and interpret properties between modelling perspectives.

2.7 Support for Bidirectional Model-to-Text Transformations by
Anthony Anjorin, Marius Lauder, Michael Schlereth and Andy
Schurr

In recent years, model-driven approaches and processes have established
themselves as pragmatic and feasible solutions with tangible advantages.
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Transformations play a central role in any model-driven solution. This paper iden-
tifies important areas and scenarios for bidirectional model-to-text transforma-
tions that are not, or only partially supported, by currently existing solutions.
Based on the requirements of a real-world case study, it introduces a new concept
that has been inspired by a successful bidirectional model-to-model transforma-
tion approach: Triple Graph Grammars.

2.8 An Overview of F-OML: An F-Logic Based Object Modeling
Language by Mira Balaban and Michael Kifer

F-OML is an F-Logic based Object Modeling Language. It can be used for ex-
tending UML diagrams, reasoning about them, testing UML models, and defin-
ing their syntax (meta-modeling) and semantics. F-OML is layered on top of
an elegant formal language of guarded path expressions, called PathLP, inspired
by F-logic. This paper informally describes the main constructs of PathLP and
F-OML, provides examples that demonstrate the four modes of F-OML usage,
analyzes how language features in F-OML contribute to its expressiveness, and
provides a brief comparison with OCL.

2.9 On the Need of User-Defined Libraries in OCL by Thomas
Baar

User-defined libraries are widely used to share implementation code among dif-
ferent projects. In contrast to this, the specification language OCL merely offers
the OCL Standard Library for reuse in different projects. There is no stan-
dardized way to import user-defined OCL constraints into another project. This
paper argues for the need of a standardized mechanism to make reuse of OCL
specifications within a different context possible.

2.10 Evolution of the OCL OMG Specification by Mariano
Belaunde - Invited Presentation

The OCL language has reached a good acceptance in the model-driven commu-
nity and a variety of commercial or academic tools support the language since
many years. However, maintenance of OMG OCL specification is painful for var-
ious reasons. This paper describes the process for maintaining the specification
and explains some of the reasons the evolution of OCL requires a big amount of
work. It also describes major issues that the revision and finalization task forces
need to solve and the major changes introduced in the specification. Finally some
perspectives on future evolution of OCL standard are provided.

3 Final Discussion

The workshop concluded with a discussion of features that the workshop par-
ticipants would like to see in a future version of OCL. The key points are as
follows:
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User Defined Parameterized Types. OCL contains types such as Set(T ).
However there is no way for the user to define such types which would be
useful to capture polymorphic structures.

Functions. OCL contains many features that are similar to functional lan-
guages such as ML and Scheme. Iterators involve processing that is tra-
ditionally performed by anonymous functions in FP; however iterators are
limited in comparison. Adding anonymous functions (closures) to OCL would
remove the limitations and make OCL much more expressive.

Overloading. Operators in OCL cannot be overloaded with respect to the type
of the operands. Providing a mechanism for defining operator overloading
and dynamic dispatch would make OCL more expressive.

Stereotypes. OCL cannot access or define stereotypes in UML. Since stereo-
types are part of UML that needs to be constrained using OCL, this situation
should be addressed.

Implicit Collection Operations. OCL inserts implicit asSet and collect
operations when multiple links are traversed. The point was raised that this
can cause confusion (as can the difference between ‘−>’ and ‘.’) and makes
tooling difficult. No consensus was reached on this, but the proposal was
made to force the operations to be given explicitly or to introduce different
versions of these operations. It would help if tooling gave smart typing advice
as expressions were typed.

Equality. OCL provides a single equality operations whereas many languages
provide both identity and structural equivalence. These should be added to
OCL.

Reflection. OCL should have better support for reflection. It should be able
to reason about its own meta-definition.

Syntax. OCL should have a concrete to abstraction syntax mapping.
Types. The standard definition of OCL should include a type construction

algorithm.
Frame Condition. It is often the case that a specification needs to define a

state change and also require that everything else stays the same. Currently
OCL requires all state in scope to be explicitly referenced in a state change.
It would be useful to have a frame condition such as modifies only: and to
leave all other state in scope unchanged.

Tool Checking. For OCL versions > 2.2, each chapter should be defined by a
tool checked model. It should be possible to have a clear separation between
an OCL core with no casting and an upper-layer with appropriate syntax
for casting. The specification should define a mapping from the upper layer
to the lower layer, and tools must implement this.
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Abstract. Automated test data generation is an important method for
the verification and validation of UML/OCL specifications. In this paper,
we present an extension of DNF-based test case generation methods to
class models and recursive query operations on them. A key feature of our
approach is an implicit representation of object graphs avoiding a repre-
sentation based on object-id’s; thus, our approach avoids the generation
of isomorphic object graphs by using a concise and still human-readable
symbolic representation.

Keywords: OCL, UML, test case generation, specification-based testing.

1 Introduction

Automated test data generation is an important application domain for OCL
specifications. Instead of verifying concrete code via a Hoare-Calculus for a spe-
cific programming language against OCL method contracts—a technique devel-
oped in detail for OCL in [9, 11]—test generation can be a more light-weighted
(but logically less safe) formal method to reveal errors both in specification and
implementations. A particular advantage of black-box testing is that implemen-
tations may consist of arbitrary mixtures of (dirty) programming languages.

In this paper, we will adapt existing specification-based testing techniques to
UML/OCL, i. e., an object-oriented specification formalism centered around the
concept of an object-graph as state, state-transitions described by class-models
and state-charts (which we will ignore here), and a type system based on sub-
typing and inheritance. The work presented here is based on the previous work
on a formal UML/OCL semantics [7, 11] and attempts to develop, in contrast to
prior works such as [4], a comprehensive test-generation method for the complete
language and for realistic test-scenarios. Overall, our contribution consists in:

1. the extension of specification-based test generation methods to the world of
object-oriented specifications,
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2. a deductive, theorem-prover based test data generation from OCL specifica-
tions including language features such as recursive query-operations, and

3. a particular representation of object-graph classes by our novel concept of an
alias closure; rather than representing the explicit object graphs we represent
the object identity by an equivalence relation.

This paper is written with hindsight to the HOL-TestGen system [10], into
which we will implement the technique presented here in a future step. This im-
plies that our technique must fit to the underlying logical framework Isabelle/HOL
(an embedding of UML/OCL has been presented in [11]), and that it can be or-
ganized into the generation phases of HOL-TestGen.

2 A Gentle Introduction to a Formal OCL 2.2 Semantics

In this section, we briefly present a formal semantics for OCL 2.2 [20], see [7]
for details. With respect to the syntax, we use the mathematical notation of
HOL-OCL [8] which allows for a concise presentation of OCL constraints.

2.1 Higher-Order Logic

Higher-order Logic (HOL) [12] is a classical logic with equality enriched by total
parametrically polymorphic higher-order functions. It is more expressive than
first-order logic, e. g., induction schemes can be expressed inside the logic. Prag-
matically, HOL can be viewed as a typed functional programming language like
Haskell extended by logical quantifiers.

HOL is based on the typed λ-calculus, i. e., the terms of HOL are λ-expressions.
Types of terms may be built from type variables (like α, β, . . . , optionally anno-
tated by Haskell-like type classes as in α :: order or α :: bot) or type constructors
(like bool or nat). Type constructors may have arguments (as in α list or α set).
The type constructor for the function space ⇒ is written infix: α ⇒ β; multiple
applications like α1 ⇒ (. . . ⇒ (αn ⇒ αn+1) . . .) have the alternative syntax
[α1, . . . , αn] ⇒ αn+1. HOL is centered around the extensional logical equality
_ = _ with type [α, α] ⇒ bool, where bool is the fundamental logical type. We
use infix notation: instead of (_ = _) E1 E2 we write E1 = E2. The logical con-
nectives _∧_, _∨_, _ ⇒ _ of HOL have type [bool, bool] ⇒ bool, ¬_ has type
bool ⇒ bool. The quantifiers ∀_._ and ∃_._ have type [α ⇒ bool] ⇒ bool.
The quantifiers may range over types of higher order, i. e., functions or sets.

The type discipline rules out paradoxes such as Russel’s paradox in untyped
set theory. Sets of type α set can be defined isomorphic to functions of type
α ⇒ bool; the definition of the elementhood _ ∈ _, the set comprehension
{_._}, _ ∪ _ and _ ∩ _ is then standard.

2.2 Valid Transitions and Evaluations

We recall that OCL expressions form a typed assertion language whose syn-
tactic elements are composed of (a) operators on built-in data structures such
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as Boolean or collection types like Set or Bag, (b) operators of the user-defined
data-model such as attribute accessors, type-casts and tests, and (c) user-defined,
potentially recursive, side-effect-free method calls.

The topmost goal of the formal semantics for OCL expressions is to define
the notion of a valid transition over states of a system; even concepts like object
invariants can be derived from this notion. Let σ be a pre-state and σ′ a post-
state and let φ be a Boolean OCL expression, then we write

(σ, σ′) � φ

for “the transition from σ to σ′ is valid in φ.” A formula φ is valid if and only if its
evaluation in the transition τ = (σ, σ′) yields true. As all types in HOL-OCL are
extended by the special element ⊥ denoting undefinedness, we define formally:

τ � φ ≡ (
I�φ� τ = �true�

)
.

In OCL, the evaluation of all expressions can result in an undefinedness ele-
ment called invalid which we will write ⊥ for short. The test for definedness
(not _ .oclIsInvalid()) will be written ∂ _ and is defined by ∂ X ≡ not (X �
⊥). Here, _ � _ denotes the strong equality, which is a reflexive, symmetric and
transitive congruence relation; therefore, the strong equality allows for substi-
tuting equals with equals in any OCL expression, even if the expressions are
undefined. In contrast, the standard equality in OCL, i. e. _ .= _, is strict, which
means x

.= ⊥ is strongly equal to ⊥ .= x which is strongly equal to ⊥.
Since all operators of the assertion language depend on the context τ and

results can be ⊥, all expressions can be viewed as evaluations from τ to a type
α⊥. All types of expressions are of a form captured by the type abbreviation:

V(α) = σ × σ ⇒ α⊥ ,

where σ × σ stands for the type of a pair of system states (i. e., the type of τ).

2.3 Semantics of Object Invariants and Operation Contracts

The OCL semantics [20, Annex A] uses different interpretation functions for
invariants and pre-conditions; instead, we achieve their semantic effect by a
syntactic transformation _pre which replaces all accessor functions _. i by their
counterparts _. i @pre. For example, (self . i > 5)pre is just (self . i @pre > 5). The
operation _ .allInstances() is also substituted by its @pre counterpart. Thus,
we can re-formulate the semantics of the two OCL top-level constructs, invariant
specification and method specification, as follows:

I�context c : C inv n : φ(c)�τ ≡
τ � (C .allInstances()->forall(x|φ(x))) ∧
τ � (C .allInstances()->forall(x|φ(x)))pre

(1)

The standard forbids expressions containing @pre constructs in invariants or
preconditions syntactically; thus, mixed forms cannot arise. Since operations
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have strict semantics in OCL, we have to distinguish for a specification of an op
with the arguments a1, . . . , an the two cases where all arguments are defined
(and self is non-null), or not. In the former case, a method call can be replaced
by a result that satisfies the contract, in the latter case the argument is ⊥:

I�context C :: op(a1, . . . , an) : T

pre φ(self , a1, . . . , an)
post ψ(self , a1, . . . , an, result)�τ ≡ ∀s, x1, . . . , xn.

Δ(s, x1, . . . , xn) ∧ τ � φ(s, x1, . . . , xn)pre

−→ τ � ψ(s, x1, . . . , xn, s.op(x1, . . . , xn))

∧ ¬Δ(s, x1, . . . , xn) −→ τ � s.op(x1, . . . , xn) � ⊥

(2)

where Δ(s, x1, . . . , xn) is an abbreviation for τ � s � null ∧ τ � ∂ s ∧ τ �
∂ x1 ∧ . . . τ � ∂ xn. This definition captures the two cases: if the arguments of an
operation are defined and, moreover, self is not null, the result of a method call
must satisfy the specification; otherwise the operation will be strict and return
invalid ⊥. By these definitions an OCL specification, i. e., a sequence of invariant
declarations and operation contracts, can be transformed into a set of (logically
conjoined) statements which is called the context Γτ . The theory of an OCL
specification is the set of all valid transitions τ � φ that can be derived from
Γτ . For the logical connectives of OCL, a conventional Gentzen-style calculus
for pairs of the form Γτ � φ can be developed that allows for inferring valid
transitions from Γτ by deduction (cf. [11]). Due to the inclusion of arithmetic,
any calculus for OCL is necessarily incomplete. It is straight-forward to extend
our notion of context to multi-transition contexts such as:

Γ ≡ {
(σ, σ′) � φ, (σ′, σ′′) � ψ

}

such that we can reason over systems executing several transitions.

2.4 Strict Operations and Their Role in Reasoning

The OCL standard [20] defines most operations as strict, not just the special
case of the strict equality x

.= y mentioned earlier. Overall, we have the rule

f(x1, . . . ,⊥, . . . , xn) � ⊥. (3)

A notable exception from this rule are the logical connectives, which are a
three-valued strong Kleene-logic; e. g., ⊥ andfalse � false and analogously
⊥ or true � true. Overall, using a three-valued logic is a burden if a sim-
ple compilation of OCL to standard automated theorem provers is envisaged.
Looking at the wealth of tools (that are specialized for two-valued logics) like
Kodkod [22] or Z3 [17], this is perceived as a major drawback of OCL by many.

The methodology of OCL (in particular the strictness of most operations and
the fact that most OCL expressions, e. g., invariants, are, by definition, defined)
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enforces that a reduction to a two-valued representation is always possible; it
suffices to apply the case-distinction:

τ � φ(⊥) ∨ (τ � ∂ E ∧ τ � φ(E)) (4)

exhaustively to all sub-expressions E (the τ � φ(⊥)-parts will either reduce
quickly due to Fact 3 to τ � ⊥ which is just false or again be subject to Fact 4).
The result are formulae of the form: τ � ∂ E1 ∧ · · · ∧ τ � ∂ En ∧ τ � φ or just
Δφ∧τ � φ for short. In this form—called Δ-long-form—all implicit definednesses
in a valid OCL-formula are made explicit. We call the process of constructing a
Δ-long-form Δ-saturation. We do not distinguish between {τ � E1∧τ � E2}∪Γ
and {τ � E1, τ � E2} ∪ Γ .

This process can be optimized: if we have, for example, as consequence of
an invariant τ � f(a) .= b in our context Γ (meaning that it holds and, thus,
evaluates to true), we can infer that τ � ∂ f(a) and τ � ∂ b. From there, we can
further infer τ � ∂ a (if f is strict). The same holds for the common connective
τ � X and Y (but not for _ or _). Once that the implicit knowledge on
definedness is established, rules of the following form can be applied:

τ � not X = ¬τ � X if τ � ∂ X

τ � X or Y = τ � X ∨ τ � Y if τ � ∂ X and τ � ∂ Y

τ � X and Y = τ � X ∧ τ � Y if τ � ∂ X and τ � ∂ Y

τ � X
.= Y = τ � X � Y if τ � ∂ X and τ � ∂ Y

By applying this form of equations to Γ and φ, we transform them into sets
of judgments of the form τ � φ, i. e., perfect two-valued statements that can be
treated by conventional SMT solvers like Z3 (provided that we add an appropriate
background theory that axiomatizes the basic operations of the OCL language).

3 Running Example: Linked Lists

In this section, we present a small UML/OCL specification that will serve as a
running example for our test case generation technique. We will also discuss the
translation of OCL into HOL and discuss the implicit invariants of this example.

3.1 Singly-Linked Lists

Fig. 1 illustrates our running example of a singly-linked list: the list stores in-
tegers as data and links between nodes are modeled by an association. As a
node does not necessarily need to have a successor, the association end next has
multiplicity 0..1. An invariant of the class states that the integers are stored
in a descending order in the list. We specify an operation insert that adds an
integer to the list. The postcondition of the insert operation states that the
set of integers stored in the list in the post-state is the set of stored integers in
the pre-state extended by the argument. For defining the set of integers stored
in the list, we separately specify the recursive query operation contents().
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context Node
inv: next <> null implies i > next .i

context Node :: contents (): Set(Integer)
post: result = if next = null

then Set{i}
else next.contents ()-> including (i)

context Node ::insert(x:Integer )
post: contents () = contents@pre ()-> including (x)

Node
i:Integer

contents():Set(Integer)
insert(x:Integer)

next0..1

Fig. 1. A Singly-linked list specified in OCL (excerpt)

In the following, we will describe how to build Γτ from this OCL specifica-
tion via the semantic definitions. We will add to Γτ semantic presentations of
the specification which are already in a “massaged format” suitable for test case
generation later. Since the transition is not changing in the rest of this paper,
we will assume one global transition τ (understood to be relative to the spec-
ification of this example); we will drop the index and abbreviate τ � φ to just
� φ. In our test case generation approach, we assume that all diagrammatic
constraints over the class model are represented as OCL expressions (for details,
see [15]). For example, associations are usually represented by collection-valued
class attributes together with OCL constraints expressing the multiplicity.

3.2 Translating Invariants into Recursive HOL-Predicates

The example in Fig. 1 only includes one explicit invariant. The multiplicity con-
straints in the class model constitute invariants semantically. For our example,
the multiplicity constraints could be expressed as follows in OCL:

inv: (next = null or next <> null ) and i <> null

In the following, we will assume that attributes and arguments that have a basic
datatype (e. g., Integer) have a multiplicity of 1..1, i. e., they cannot be null.
Thus we can simplify the invariant representing the multiplicity constraints to:

inv: (next = null or next <> null )

This simplification improves the readability of the formulae in this paper and is
not a fundamental restriction of our approach.

For our purposes it will be convenient to convert invariants to recursive predi-
cates and add them to Γ , paving the way for the exploration of input parameters
by simply unfolding them rather than making them, based on Fact 1, lengthy
arguments over .allInstances(). Of course, not any recursive predicate is con-
sistent; however these recursive predicates can be derived from the invariants by
using a greatest fixed-point construction and proving that the body of the invari-
ant is monotone—the reader interested in the details is referred to HOL-OCL [9]
where this is done automatically (albeit for OCL 2.0, i. e., without null):
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∀ self . � ∂ self ∧ � self � .= null −→ � invNode(self )
⇐⇒ � self .next .

= null ∨ (� self .next � .= null
∧ � self .i > self .next .i ∧ � invNode(self .next ))

Additionally to this recursive predicate, we add to Γ the fact that any defined
non-null object will satisfy this invariant:

∀ self . � ∂ self ∧ � self � .= null −→ � invNode(self )

Our recursive definitions are a conjunction of the explicit invariant and the
multiplicity constraints of our example; we used Δ-short form in order not to
clutter up our presentation too much, i. e., facts like � ∂ self.i were omitted.
The invariant invNode @pre expresses well-formedness in a pre-state:

∀ self . � ∂ self ∧ � self � .= null
−→ � invNode@pre (self ) ⇐⇒ � self .next@pre .

= null
∨ (� self .next@pre � .= null ∧ � invNode@pre (self .next@pre )

∧ � self .i@pre > self .next@pre .i@pre)

3.3 Translating Contracts into HOL

Given the fact that � (true)pre just collapses to true, the formulae that we add
to Γ is the straight-forward simplification of the semantics rule Fact 2:

∀ self . Δ(self ) −→ � self .contents () �
if self .next .

= null then Set{i}
else self .next .contents ()-> including (i)

∧ ¬Δ(self ) −→ � self .contents () � ⊥

where Δ(self) is a short-cut for � ∂ self ∧ � self  .= null. The variant for
contents@pre() looks as follows:

∀ self . Δ(self ) −→ � self . contents@pre () �
if self .next@pre .

= null then Set{i}
else self .next@pre .contents@pre ()-> including (i)

∧ ¬Δ(self ) −→ � self .contents@pre () � ⊥

4 Test Generation

In the specification-based testing, we are interested in testing the formula φ—
called test specification—in the statement:

Γ � φ

instead of proving it (the � is interpreted as implication). We are interested in
test specifications which contain calls to operations s.op(a1,...,an); the core of
the technique consists in selecting arguments consistent with the specification Γ
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and the semantic rules for the operations of OCL, executing the implementation
of op and checking if the result validates φ. We follow the classical approach
of transforming the test specification into a disjunctive normal form (DNF),
extended by invariant-handling and the treatment of recursive definitions, which
corresponds to partitioning the input space of the operation(s).

Another class of case distinctions arises from aliasing; i. e., the fact that two
object references can designate the same object, i. e., s.next.next is in fact iden-
tical to s due to a cycle in the object graph. Aliasing is a crucial phenomenon in
object-oriented systems. It is likely that a system behaves differently depending
on the aliasing relationships among the objects it handles. Therefore we will add
further case distinctions to the specification under analysis that distinguish dif-
ferent aliasing relationships. We will refer to this transformation as alias closure.

4.1 Test Specifications: Getting Started

Depending on the specific test purposes, there are various ways to test a system:
a test could be concerned with the normal behavior of operations, which will
be the default considered here, or with exceptional behavior (what happens if
the precondition is not satisfied?), or with operation sequences, e. g., (σ, σ′) �
φ ∧ (σ′, σ′′) � ψ. It is even conceivable to express in test specifications the
sharing of pre-state and post-state or different parameters; in our specification,
the implementation of insert can have a copying semantics (all object-contents
in the list were copied to freshly generated objects) as well as a sharing semantics.

Since OCL expressions cannot have side-effects, properties of non-query op-
erations like insert cannot be expressed inside OCL. We therefore suggest to
present the test specification directly in HOL. Thus, following Fact 2, we have
for the case of a “normal behavior unit test”:

Δ(s,x) −→ � s.contents () .
= s.contents@pre ()-> including (x)

∧ ¬Δ(s,x) −→ � s.insert(x) � ⊥

where s is a free variable for which we look for solutions that meet all possible
constraints (arising from the context Γ , but also locally in φ). Since (Δ −→
A) ∧ (¬Δ −→ B) is equivalent to (Δ ∧A) ∨ (¬Δ ∧B) and the latter is closer to
a DNF, we rewrite our test specification and have:

Δ(s,x) ∧ � s.contents () .
= s.contents@pre ()-> including (x)

∨ ¬Δ(s,x) ∧ � s.insert(x) � ⊥

which boils down to:

Δ(s,x) ∧ � s.contents () .
= s.contents@pre ()-> including (x)

∨ � s .
= null ∧ � s.insert(x) � ⊥

∨ � x .
= ⊥ ∧ � s.insert(x) � ⊥

Here, we can already apply unit propagation in clauses and extract the two
test cases: � null.insert(x) � ⊥ and � s.insert(⊥) � ⊥ which essen-
tially test the corner-cases imposed by the semantics of OCL.
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4.2 Test Hypotheses

The test cases � null.insert(x) � ⊥ and � s.insert(⊥) � ⊥ give also
some deeper insight into testing. Test cases are classes of concrete tests, i. e., the
ground instances (e. g., � null.insert(0) � ⊥ or � null.insert(1) � ⊥) of
these formulae . Overall, a test case for an operation op in a DNF is a conjoint:

� φ1(x1, . . . , xn) ∧ · · · ∧ � φn(x1, . . . , xn)

where at least one φi depends on op. In test cases, we can partition the clauses
into two groups: in oracles O, i. e., those � φi(x1, . . . , xn) that depend on op,
and in constraints C, i. e., all others. Constructing a test boils down to finding a
solution, i. e., a ground substitution for x1, . . . , xn, that satisfies all constraints
in C, while the test proceeds by executing the implementation of op for this
solution and check if the oracles evaluate to true.

Logically, this means that we made the assumption “if there is an input vector
(x1, . . . , xn) satisfying all constraints, and if this input passes the oracle execu-
tion, the oracles will pass for all inputs satisfying the constraints.” This type of
assumption underlying a test is called a uniformity hypothesis written:

(∃x1, . . . , xn. C(x1, . . . , xn) ∧ O(x1, . . . , xn))
−→ (∀x1, . . . , xn. C(x1, . . . , xn) −→ O(x1, . . . , xn))

While this is the most fundamental testing hypothesis, there are other useful
ones that help to establish case distinctions used in specification-based tests. A
notable other well-known form of a testing hypothesis is the regularity hypothesis :

(∀x1, . . . , xn.|x1, . . . , xn| < k ∧ C(x1, . . . , xn) −→ O(x1, . . . , xn))
−→ (∀x1, . . . , xn. C(x1, . . . , xn) −→ O(x1, . . . , xn))

or in other words: whenever we tested all data up to a given complexity measure
(like size of collections) k, we assume that the execution of op satisfies the
specification. In the context of OCL testing, there is a similar form of regularity
hypothesis: here, we will implicitly argue over the bound k on the number of
different objects in a state that has been used for the tests.

4.3 Unfolding

For generating a set of test cases, we start with the test specification given above,
restricted to the part where s is defined and not null.

Δ(s,x) ∧ � s.contents () .
= s.contents@pre ()-> including (x)

This test specification does not show any explicit case distinctions. Rather, the
case distinctions are hidden in the recursive specification of contents().

The invariants over the different arguments of the operation (including s) must
be taken into account for the generation of relevant test cases. In our example,
only ordered lists can occur in pre-states and post-states of the insert operation.
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Adding these invariants as constraints over the pre-states or post-states reduces
the number of test cases derived from the test specification by removing as many
non-satisfiable clauses as possible before the test data selection. Because of the
facts contained in Γ , we obtain:

∀ self . � ∂ self ∧ � self � .= null −→ � invNode(self )

These invariants can be inserted at any time during the unfolding process.
For instance, we can already insert the invariant for the pre-states and post-

states of the insert operation, knowing that s is defined and not null:

Δ(s,x) ∧ � invNode@pre (s) ∧ � invNode(s)
∧ � s.contents () .

= s.contents@pre ()-> including (x)

To enrich this condition with explicit case distinctions, we unfold the operation
calls and invariants by replacing them with their specification: an operation call
will be replaced with its contract and an invariant with its definition, which is
allowed here since we have Δ(s, x). For the sake of readability, we do not replace
the contents operation calls directly with their contract but rather conjoin the
contract with the existing formulae. We obtain the following conditions:

Δ(s,x)
∧ (� s.next@pre .

= null
∨ (� s.next@pre � .= null
∧ � s.i@pre > s.next@pre .i@pre ∧ � invNode@pre (s.next@pre )))

∧ (� s.next .
= null

∨ (� s.next � .= null ∧ � s.i > s.next .i ∧ � invNode(s.next )))
∧ � s.contents () .

= s.contents@pre ()-> including (x)
∧ � s.contents () � if s.next .

= null then Set{s.i}
else s.next .contents ()-> including (s.i)

∧ � s. contents@pre () �
if s.next@pre .

= null then Set{s.i@pre}
else s.next@pre . contents@pre ()-> including (s.i@pre)

A second refinement step could be performed by unfolding the invariants and
the operation calls a second time: we could insert the invariant definitions again
and instantiate the operation contract for the contents operation with s.next
(correspondingly for the pre-state).

The unfolding process and invariant insertion can be stopped at any time,
once the refinement is sufficient according to the tester’s needs. Then, the DNF
of the obtained formula is generated to enumerate the different test cases coming
from case distinction. The DNF obtained for the previous formula is the following,
leading to four clauses distinguishing whether s.next and s.next@pre are null.

(Δ(s, x)
∧ � s.next .

= null
∧ � s.next@pre .

= null
∧ � s.contents () .

= s.contents@pre ()-> including (x)
∧ � s.contents () � Set{s.i}
∧ � s. contents@pre () � Set{s.i@pre})
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∨ (Δ(s, x)
∧ � s.next � .= null ∧ � s.i > s.next .i ∧ � invNode(s.next )
∧ � s.next@pre .

= null
∧ � s.contents () .

= s.contents@pre ()-> including (x)
∧ � s.contents () � s.next .contents ()-> including (s.i)
∧ � s. contents@pre () � Set{s.i@pre})

∨ (Δ(s, x)
∧ � s.next .

= null
∧ � s.next@pre � .= null ∧ � s.i@pre > s.next@pre .i@pre
∧ � invNode@pre (s.next@pre )
∧ � s.contents () .

= s.contents@pre ()-> including (x)
∧ � s.contents () � Set{s.i}
∧ � s. contents@pre () � s.next@pre .contents@pre ()

->including (s.i@pre))
∨ (Δ(s, x)

∧ � s.next � .= null ∧ � s.i > s.next .i ∧ � invNode(s.next )
∧ � s.next@pre � .= null ∧ � s.i@pre > s.next@pre .i@pre
∧ � invNode@pre (s.next@pre )
∧ � s.contents () .

= s.contents@pre ()-> including (x)
∧ � s.contents () � s.next .contents ()-> including (s.i)
∧ � s. contents@pre () � s.next@pre .contents@pre ()

->including (s.i@pre))

The first case boils down (due to constant propagation and set reasoning) to:

Δ(s, x) ∧ � s.next .
= null ∧ � s.next@pre .

= null
∧ � s.i � s.i@pre ∧ � s.i � x

All other cases are not yet “ground” enough and contain application redexes like
� invNode(s.next) for further invariant unfolding. The derivation

Δ(s, x)
∧ � s.next � .= null ∧ � s.i > s.next .i ∧ � invNode(s.next )
∧ � s.next@pre .

= null
∧ � s.next.contents ()-> including (s.i) .

= Set{s.i@pre}
->including (x)

for the second case expands to:

(Δ(s, x)
∧ � s.next � .= null ∧ � s.i > s.next .i ∧ � s.next.next .

= null
∧ � s.next@pre .

= null
∧ � s.next.contents ()-> including (s.i) .

= Set{s.i@pre}
->including (x))

∨ (Δ(s, x)
∧ � s.next � .= null ∧ � s.i > s.next .i
∧ � s.next.i > s.next .next.i ∧ � s.next .next � .= null
∧ � invNode(s.next .next )
∧ � s.next@pre .

= null
∧ � s.next.contents ()-> including (s.i) .

= Set{s.i@pre}
->including (x))
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While the second sub-case is unsatisfiable since it asserts that the insertion
increases the list length by two, the first sub-case reduces to:

Δ(s, x)
∧ � s.next � .= null ∧ � s.i > s.next .i ∧ � s.next.next .

= null
∧ � s.next@pre .

= null
∧ � Set{s.next.i}->including (s.i) .

= Set{s.i@pre}
->including (x)

which, due to set reasoning, corresponds to a test case in which the inserted
element x is not already in the list. The test cases still containing an occurrence
of the invariance predicate correspond to the class of “yet to be tested” test cases.

4.4 Alias Closure

Unfolding and invariant insertion represent only a first step of the exploration
of the specification by case distinction. There is another implicit case distinction
that needs to be considered, since the two references s and s.next could actually
refer to the same object, due to a cycle in the object graph. We should then
distinguish the cases where s.next � s and where s.next � s. In the same
way, we should distinguish the cases s.next@pre � s and s.next@pre � s.

To handle these four cases in the test case generation, we add the following
tautology, called alias distinction, to the unfolding of our test specification:

(� s.next � s ∨ � s.next �� s)
∧ (� s.next@pre � s ∨ � s.next@pre �� s)

In the cases s.next � s and s.next@pre � s, the invariants evaluate
to false due to the strict inequality, thus only the cases s.next � s and
s.next@pre � s remain. Computing the DNF in our example leads to al-
most the same formula as in the previous subsection, where � s.next � s ∧
� s.next@pre � s is added to each conjoint.

In the general case, the alias closure of a formula is the conjoint of the tau-
tologies p � q ∨ p � q for all the references p and q occurring in the formula
(all other reference pairs are not relevant for case-splitting; so when we decided
to unfold the invariants to a certain depth, we also made a decision on the maxi-
mum path-sizes and finally the maximum number of nodes in a state). Formally,
let Path(ϕ) be the set of path-expressions (references) occurring in a formula ϕ.
We define AliasClosure(ϕ) as the set of formulae

{ p � q ∨ p � q | p, q ∈ Path(ϕ) ∧ p non-identical to q }
This produces all possible objects graphs, instead of only tree-like structures.

4.5 Generating Test Object-Graphs from Test Cases

Finally, ground instantiations of the underlying object model (i. e., in our exam-
ple, instances of singly-linked lists) need to generated. For example, a concrete
state-pair τ = (σ, σ′) that can be given for test case
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Table 1. Sample set of resulting test cases

List in pre-state Inserted element List in post-state

3 3 3

5 9 9 5

6 1 1 6 1

6 3 5 6 5 3

8 5 1 5 8 5 1

7 6 5 9 9 7 6 5

Δ(s, x) ∧ � s.next � .= null ∧ � s.i > s.next .i
∧ � s.next.next .

= null ∧ � s.next@pre .
= null

∧ � Set{s.next.i}->including (s.i) .
= Set{s.i@pre}

->including (x)

and the ground instance s.insert(2) of the operation call insert() is:

σ = { oid0 �→ �i = 3, next = null �}
σ′ = { oid0 �→ �i = 3, next = oid1�, oid1 �→ �i = 2, next = null�}

which describes the requirement that inserting 2 into the list that only contains
the element 3 should result in the sorted singly-linked list that contains the
elements 3 and 2. Table 1 shows a sample set of test cases resulting from an
unfolding of the test specification up to a list length of 3. For every list length
there are two test cases: one for the case that the inserted element is already in
the list and one for the case of an actual insertion.

5 Integrating the Technique in HOL-TestGen

HOL-TestGen [10] is a specification and test case generation environment ex-
tending the interactive theorem prover Isabelle/HOL [18]. The HOL-TestGen
method is two-staged: first, the original formula is partitioned into test cases by
transformation into a normal form called test theorem. Second, the test cases
are analyzed for ground instances (the test data) satisfying the constraints of
the test cases. Particular emphasis is put on the control of explicit test hypothe-
ses. Finally, HOL-TestGen supports the generation of test drivers that allow
for validating that an implementation fulfills its abstract specification. As such,
developing UML/OCL support for HOL-TestGen, including its integration into
a formal model-driven development toolchain, e. g., [6], enables the validation
that an implementation fulfills the test specifications given in UML/OCL.

Extending HOL-TestGen with support for OCL creates certain challenges:
the unfolding of OCL invariants introduces a new kind of splitting rule that
needs to be supported efficiently by the splitter algorithm of HOL-TestGen.
Moreover, HOL-TestGen does not yet support conjoint clauses that have no
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reference to the program under test (resulting in a failure during test data form
computation). This is motivated by the fact that we cannot generate test drivers
for such conjoint clauses. In the future, the generated test drivers could either
silently drop such test cases or, following the OCL semantics, test for a deadlock.

6 Related and Future Work

6.1 Related Work

While there are several works that discuss specification-based test case genera-
tion based on UML/OCL models, none of them supports the three-valuedness of
OCL. The most closely related works [1, 2, 4, 24] are all inspired by the seminal
work of Dick and Faivre [13] and, thus, share the idea of using symbolic DNF
computation for partitioning the input space. Moreover, there are works using
sequence diagrams as an input for test case generation, e. g., [16], or pairwise
testing of OCL contracts, e. g., [19]. Finally, Gogolla et al. [14] apply random-
testing strategies for analyzing properties of OCL specifications.

For program-based tests, there are two test data generators that apply sym-
bolic techniques: Korat [5] and Java Pathfinder [23]. Korat [5] generates from
preconditions and a bound on the number of nodes of data structures, an in-
put partitioning by a combination of symbolic execution and (simple) constraint
solving. The idea of integrating a symbolic state deeply inside the execution en-
vironment, i. e., inside a Java virtual machine (JVM) as suggested in JPF-SE [3]
(a successor of Java Pathfinder [23]), substantially improved the approach and
inspired systems such as Pex [21] (a model-based testing tools for the .net).

6.2 Future Work

HOL-TestGen’s generation strategies are geared towards inductively generated
data (such as enumeration types, or lists and sets). In this paper, we have shown
how co-inductively generated data such as object graphs can be tackled. The de-
scribed translation is a pre-computation step, but it remains to provide new tac-
tical infra-structure to implement the unfolding strategies and the alias closure.
The concrete model-generation for the resulting specification is a standard-game
for SMT-based model-construction generators in HOL-TestGen.
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Abstract. In the past years, many OCL tools achieved a transition
of OCL from a language meant to constrain UML models to a univer-
sal constraint language applied to various modelling and metamodelling
languages. However, OCL users still experience a discrepancy between
the now highly extensible parsing and evaluation backend of OCL tools
and the lack of appropriate frontend tooling like advanced OCL editors
that adapt to the different application scenarios.

We argue that this has to be addressed both at a technical and
methodological level. Therefore, this paper provides an overview of the
technical foundations to provide an integrated OCL tooling frontend and
backend for arbitrary textual modelling languages and contributes a step-
wise process for such an integration. We distinguish two kinds of inte-
gration: external definition of OCL constraints and embedded definition
of OCL constraints. Due to the textual notation of OCL the second kind
provides particularly deep integration with textual modelling languages.
We apply our approach in two case studies and discuss the benefits and
limitations of the approach in general and both integration kinds in
particular.

1 Introduction and Motivation

The Object Constraint Language (OCL) [1] has originally been developed to
constrain models defined with the Unified Modeling Language (UML) [2]. Its
standardised textual syntax and formal semantics promoted the implementa-
tion and adoption of OCL by different tool vendors which in turn supported
practical adoption of OCL in combination with UML. Beyond its application to
UML, OCL advanced to a constraint language applicable for various modelling
languages. This includes support for modelling [3,4,5,6,7,8] and metamodelling
languages [9,10] like the Meta-Object Facility (MOF) [11] or Ecore [12]. The
request for language-independent reuse of OCL led to extensible and adaptive
approaches for OCL parsing and evaluation [7,10,13,14].

Today, we experience a discrepancy between the technical facilities and their
application in practice. While the Eclipse Modeling Framework (EMF) [12] is
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equipped with an extensible OCL parser and evaluator [10], EMF (meta)models
that use OCL constraints for well-formedness rules or integrate it as a constraint
language are hard to find. We argue that one reason for this observation is a
lack of adequate end-user tooling. While parsers and evaluation engines [10,13]
already provide means to apply OCL on various languages, OCL users still ex-
perience a lack of adequate tooling to write constraints in the first place [15].
Advanced OCL editors that provide name resolution, code navigation, auto
indentation, code macros, code completion, or debugging are highly required.
However, their implementation faces a special challenge, which results from the
manifold applications of OCL. All the above mentioned editor functions are based
on a structural and semantic evaluation of OCL expressions that are strongly
influenced by the language OCL is combined with or applied to.

Our goal is to provide such advanced editing functionality for OCL in com-
bination with arbitrary textual (meta)modelling languages. Achieving this goal
does not just require an appropriate technical infrastructure, but in particular
a systematic process to apply such infrastructure to corporately customise the
OCL backend and frontend for different application scenarios. In this paper we
provide an overview of the technical foundations to integrate OCL with arbi-
trary textual modelling languages and contribute a stepwise process for such
integration. There, we distinguish two kinds of integration: external definition of
OCL constraints and embedded definition of OCL constraints. We evaluate the
benefits and limitations of both types of integration on exemplary case studies.

This paper is structured as follows: In Sect. 2 we motivate OCL integration
using a simple example language, which will later be used to explain the general
integration process in Sect. 3. Here, we systematically present the steps needed
to derive a customised tooling frontend and backend to efficiently apply OCL in
combination with arbitrary textual modelling languages. To show the genericity
of the approach, its application to Ecore is presented in Sect. 4. In Sect. 5, we
report on lessons learnt during application and elaborate current limitations of
our integration technique. Related work is investigated in Sect. 6 and Sect. 7
concludes our contributions.

2 Running Example—The Forms Language

To demonstrate the integration of OCL into a textual modelling language, we
integrate OCL with the Forms Language1—a language to model simple forms
in a textual manner. Such form models can be transformed into PDF or HTML
forms or interpreted by an Eclipse-based wizard providing the form’s fields. The
Forms language was designed using EMFText [16].

Figure 1 shows a pizza order form specified in the Forms language. The Form
consists of two Groups containing multiple Items to enter the order information.
As shown, Items can have different types like FreeText, Number or Choice.
Although the model is fully specified, no integrity checks can be performed.

1 http://www.emftext.org/language/forms/

http://www.emftext.org/language/forms/
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Fig. 1. Example Pizza Order Form Specification

Fig. 2. Example Pizza Order with External Constraints

To overcome this limitation, we like to extend the Forms language with sup-
port for specifying constraints on instances of form models (i.e., completed
forms). To formulate such constraints we want to use OCL. In principle us-
ing OCL in this context can be achieved by embedding OCL directly into form
definitions or by employing external OCL constraints that refer to the form of
interest.

Before we actually start the discussion of the integration process, we first
want to sketch the desired result of this process. Figure 2 shows an excerpt of
an OCL file defining integrity constraints ensuring that undesired compositions
of pizza toppings are not allowed. Furthermore, the entered telephone number
of a pizza order form is checked for correctness. This is one possible style of
integration—the external use of OCL.

Figure 3 shows the same constraints embedded into the pizza order form. This
second integration example corresponds to the second style of integration—the
embedding of OCL. As can be seen, packages and contexts of OCL constraints
have not to be declared as they can be derived implicitly from the given spec-
ification. Besides the advantage of having shorter specifications, OCL is now
specified in the same document as the constrained model. This improves the
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Fig. 3. Example Pizza Order with Embedded Constraints

readability and comprehensibility of constraints since the developer does not
need to switch between multiple views to understand constraints and their con-
texts. Furthermore, if model elements are modified, the constraints’ context is
modified implicitly and no invalid states of constraints referring to non-existing
model elements can occur.

3 Integrating OCL with Textual Modelling Languages

In the previous section we have shown that either the external or embedded
definition of OCL constraints can be used to enrich the Forms language. In the
following we present an integration process applicable for both approaches and
textual modelling languages in general.

3.1 OCL Integration Process

We have developed an integration process to use OCL with different modelling
languages. The process is built around small specifications out of which all nec-
essary artefacts are created. The process itself is tool independent and thus is
not bound to the tools used in our case studies. The presented process consists
of the five steps depicted in Fig. 4. We used Ecore for metamodel definition and
EMFText [16] for textual syntax specification. DresdenOCL [17] was used for
OCL parsing and evaluation. Although the use of other tools should be possible
we did not evaluate further tools. Static semantics integration was realised using
an attribute grammar based on the Scala [18] library Kiama [19].

During Metamodel Integration (1), the metamodels of OCL and the textual
modelling language are combined. The resulting metamodel (FormsOCL.ecore) is
used by the EMF code generator to generate a Java metamodel implementation.
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Fig. 4. The Generative OCL Integration Process (on the example of Forms language)

Next, during Concrete Syntax Integration (2) the textual syntax of both lan-
guages is integrated and used for the generation of a textual parser/editor using
EMFText. Since only an embedded OCL integration requires a new parser/ed-
itor, these first two steps are only required for embedded OCL definitions. The
step Metamodel Adaptation (3) is required for both approaches. The creation of
a Pivot Model representation of the DSL’s model enables DresdenOCL to parse
OCL constraints that refer to DSL model elements. Static Semantics Integration
(4) results in a combined static semantic analysis for integrated languages of step
(2). The additional attributes are only necessary with the embedded approach as
the static semantic analysis has to be extended to refer to DSL model elements
in that case. For external OCL definitions the metamodel adaptation from step
(3) is sufficient to allow semantic analysis of constraints defined on DSL model
elements. The last step (5), the Dynamic Semantics Integration is necessary to
evaluate integrated OCL constraints. Since evaluation is required for all OCL
integrations, both approaches require this step.

3.2 Integration Steps

After presenting the integration process as a whole, we now dive into detailed de-
scriptions of the individual steps using the Forms language integration as exam-
ple for explanation where necessary. We will particularly highlight the problems
that are accompanied with each step and how we solved them.
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(a)

(b)

Fig. 5. (a) Metamodel and (b) Syntax Integration

(1) Metamodel Integration (for embedded integration only). We used Ecore meta-
models to describe the abstract syntax of languages. To create an integrated
language, one has to create a new Ecore metamodel that imports both the meta-
model of OCL and of the language to integrate with. As Ecore is an implemen-
tation of Essential MOF [11], which in turn promotes a plain object-oriented
metamodelling language, the options for metamodel integration are delegation
and inheritance. Thus, one can either subclass one or more metaclasses or add
references to metaclasses of the involved modelling languages. By creating sub-
classes the integrated metamodel will allow to reference new types (i.e., to store
new kinds of objects in existing references). This can be used to allow elements of
the OCL metamodel (e.g., invariants or expressions) in places where the embed-
ding language did not do so before. Alternatively, one can“frame”the embedding
language by introducing a new root metaclass that points to this language as
well as to OCL metaclasses.

To extend the Forms language, a new metaclass called GroupWithOcl that
extends Group and has a reference to multiple DefinitionOrInvariants is cre-
ated (cf. Fig. 5(a)). By subclassing Group, Forms can reference either Groups—as
before—or reference groups with OCL expressions.

Conceptually, metamodel extension by inheritance and delegation was suffi-
cient to embed OCL in the Forms language. This is due to the fact, that we
reused large portions of OCL (invariants and expressions) as a whole. In other
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cases of language integration, dedicated metamodel extension facilities may be
more appropriate (cf. Sect. 5).

(2) Syntactic Integration (for embedded integration only). After the abstract
syntax integration, the textual syntax of the integrated language needs to be
specified. In EMFText, textual syntax is defined by specifying one EBNF-like
grammar rule for each metaclass (cf. [16] for details). The integrated syntax can
import the existing rule sets of the textual modelling language and OCL to reuse
them. For the new metclasses, new rules have to be specified. In the case of the
Forms language, a new rule for metaclass GroupWithOcl was required, which is
shown in Fig. 5(b). EMFText puts the existing and new rules into relation by
considering the inheritance and reference relations between the corresponding
metaclasses that were established in Step (1).

In general the integration of the textual OCL syntax and other textual mod-
elling languages is not as easy as observed for the Forms language. Context-free
grammars are not closed under composition, which is why adaptations of either
the embedding language or of OCL itself can be required. Such adaptations can
be performed by overriding imported syntax rules.

Moreover, even if the syntax definition of OCL and the embedding language
are theoretically compatible w.r.t. composition, we experienced problems with
EMFText and its underlying parser technology. Parsers generated by EMFText
use a scanner to split the input document into tokens, which then control the
derivation of a syntax tree. If tokens of OCL conflict with tokens of the embed-
ding language, no parser can be generated. For the Forms language, prioritising
tokens was sufficient to resolve conflicts, but for more complex host languages,
the situation can be more difficult.

(3) Metamodel Adaptation (for both integration styles). OCL can not be parsed,
typed and evaluated in the context of a language without reasoning on the
elements of the language’s metamodel. As mentioned above, we use DresdenOCL
for parsing and evaluation. DresdenOCL was designed to be independent of a
concrete target metamodel. That is, it can be connected to arbitrary metamodels
as long as they contain concepts that can be mapped to the basic concepts of
object-oriented languages like types, namespaces, properties and (optionally)
operations. DresdenOCL works on standardised interfaces (a Pivot Model [8])
which define these concepts and all operations necessary for DresdenOCL to
reason on them (e.g., to get all operations defined on a type). For each modelling
language that shall be connected to DresdenOCL, an adapter has to be created
that maps the concepts of the language’s metamodel to the pivot model concepts.
To allow OCL evaluation on forms we provided a pivot model adapter for the
forms metamodel. It adapts Groups as Types since they contain typed Items that
can be adapted to Propertys of their Groups. This allows the definition of OCL
constraints on Groups using their Item’s values for integrity checks. The Types of
Items are adapted to Types as well. For instance, the FreeText type is adapted
to String, Choices are adapted to Enumerations. The enclosing Form is adapted
to a Namespace. Since a language’s adaptation to the pivot model contains parts
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that are similar for all adapters, DresdenOCL provides an adapter generator
that allows adapter skeleton code generation for Ecore-based metamodels [20,
Chapter 8].

(4) Semantic Analysis Adaptation (for embedded integration only). The adapta-
tion of semantics analysis is required for the integration of OCL with modelling
languages both by the backend and frontend of an OCL tool. Features like name
resolution, type inference and checking enable advanced editor functions like code
completion and sophisticated error reporting and are also required for static and
dynamic OCL evaluation. In the current EMFText-based DresdenOCL parser,
an attribute grammar [21] is used to implement the static semantics of OCL. The
attribute grammar rules are specified with Scala using the library Kiama [19].

The semantic analysis is integrated in the tooling frontend by helper classes
generated from EMFText that call the attribute grammar during reference re-
solving. E.g., the self variable must be bound to the type of its context to
allow code completion for property and operation calls. Since OCL itself is not
modified by the integration and type bindings to the integrated language are
realised by the pivot model, large parts of the attribute grammar can be reused
for every OCL integration. Nevertheless, many of the reused resolving opera-
tions require context information given by the concrete language concepts OCL
constraints are embedded in. Context computation has to be modified for every
embedded OCL integration. Therefore, a new attribute grammar specifying the
context computation is mixed into the OCL attribute grammar exploiting the
mixin composition capabilities of the Scala language [18, Chapter 27].

(5) Dynamic Semantics Integration (for both integration styles). After integrat-
ing OCL into a DSL it should be possible to evaluate OCL constraints on DSL-
based models. Thus, an OCL evaluation tool has to be integrated as the last
step of the process. In general, two different approaches exist to evaluate OCL
constraints: the interpretative and the generative approach [22]. The first one
interprets OCL constraints whereas the second one generates check code that has
to be integrated into the modelling language’s interpreter implementation (e.g., a
Java program). DresdenOCL allows both approaches. Using the template-based
OCL-to-Java code generator [23], an adaptation to the implementation language
can be achieved by modifying these templates. They describe a transformation
of OCL expressions into the implementation language and the instrumentation
of the constraint evaluation into the implementation code.

In addition, DresdenOCL provides an OCL interpreter [13], which can be used
with various runtime objects (e.g., Java objects, XML nodes or even SWT-based
widgets). In the case of the interpreter of the Forms language, runtime objects
are SWT widgets, which are embedded into a wizard dialog. The evaluation
of OCL constraints is triggered when the user hits a next or a finish button.
Figure 6 shows a screenshot from a wizard page that belongs to the pizza order
example. As can be seen, the pizza topping constraint has been violated and,
thus, an error message is displayed.
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Fig. 6. Form Interpretation with Constraint Violation

4 eOCL - Integrating OCL into Textual Ecore

In addition to the integration of OCL into the Forms language, we implemented
an integration of OCL into a textual variant of the Ecore metamodelling language
that was developed with EMFText.2 The aim of this integration is to lower the
barrier of using OCL in metamodelling. Although OCL is well suited to define
constraints for metamodels [9,10], there seems to be still little usage of OCL in
metamodelling in general. For instance, in the AtlanMod metamodel Zoo [24]—a
collection of around 300 metamodels—no OCL constraints are delivered with any
of the metamodels. We believe that this is to a high degree a tooling issue, since
many people that create metamodels are also familiar with OCL. We address
this issue with our integration of Ecore and OCL, named eOCL, that allows
to describe both a metamodel and OCL well-formedness rules defined on this
metamodel using an integrated textual syntax as shown in Fig. 8. The respective
metamodel integration is shown in Fig. 7 and similar to the extension performed
for the Forms language.

This complex case study showed that the above introduced integration steps
were sufficient for the integration of OCL into a more complex textual modelling
language than the Forms language. The major difference between the OCL in-
tegration into the Forms language and textual Ecore is related to dynamic se-
mantics integration. For the Forms language, we integrated the DresdenOCL
interpreter to evaluate the OCL constraints. For Ecore, a generative integration
is more applicable since Ecore models are typically used for Java code generation.
The desired Ecore/OCL integration generates check code for all OCL constraints
and instruments the Java code generated from Ecore for runtime evaluation of
this check code.

2 http://www.emftext.org/language/textecore/

http://www.emftext.org/language/textecore/
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Fig. 7. Metamodel Integration of Ecore and OCL

Fig. 8. Forms Language Specification in eOCL

Besides the variation of the OCL evaluation technique, the same integration
steps had to be performed for the Forms language and textual Ecore and similar
problems were experienced.

5 Discussion

In this section we conclude the limitations of the introduced process w.r.t. its
application to the different case studies, motivate potential solutions for future
work.

Metamodel Integration. Our integration approach applied inheritance and dele-
gation for the composition of the languages to integrate. This approach was suffi-
cient for OCL integration as we reused the OCL (invariants and expressions) as a
whole and worked with compatible metamodels. However, module composition
with inheritance is discussed controversially for object orientation [25,26] and
language engineering [27]. It breaks the principle of information hiding between
modules, since inherited properties can be accessed and altered in arbitrary
ways. Furthermore, structural conflicts of combined metamodels (e.g., equally
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named attributes in classes to integrate) can not be handled appropriately. In
future work we therefore plan to combine our suggestions for modular language
engineering [27] with the approach presented in this paper.

Syntax Integration. The problems experienced w.r.t. the syntactic integration of
OCL in both case studies are originated from the fact that context-free gram-
mars are not closed under composition. Syntactic ambiguities and token overlaps
occur for languages that use token definitions in their concrete syntax that are
used in OCL as well (e.g., numeric literals, string literals, or operators like +,
-, *). In our case studies manual adaptations of the integrated syntax w.r.t. to-
ken prioritisation and reuse were sufficient to handle such conflicts. However,
a more general solution for this problem could be the application of grammar-
ware approaches that are less restricted w.r.t. syntactic overlaps. In [28], we
used lexer states [29] for syntactic embedding and grammar inheritance [30] to
create a generic composition system for context-free grammars that can be ap-
plied to mainstream parser generators (e.g., JavaCC [31]). Other approaches for
modular language definitions are Parsing Expression Grammars (PEGs) [32,33])
and delegating compiler objects [34]. Beyond that, scannerless parsers [35] and
context-aware scanning [36] are common approaches to overcome the problem of
overlapping token definitions.

Metamodel Adaptation. The implementation of a pivot model adapter to inte-
grate arbitrary languages with OCL is the standard mechanism to couple the
backend of DresdenOCL to arbitrary languages. Equivalent mechanisms can be
found for other OCL tools [7,10]. Future work has to investigate how we can ex-
tend the presented approach to enable completely specification-driven adapter
generation. As pivot model adaptation can be considered a concrete technique for
metamodel integration we also plan to examine the applicability of our modular
language engineering approach [27] in this context.

Semantics Analysis. In Sect. 3.2 we illustrated how the OCL attribute grammar
can be reused for multiple OCL integrations using mixin composition. Unfor-
tunately, the current design requires some boilerplate code that is required to
integrate the mixin configuration into the EMFText-generated parser. Actually,
five classes and two Eclipse extension points are necessary for each language in-
tegration. For the Forms/OCL integration these classes contain about 80 lines of
code. We plan to improve the language integration process by generating most
of this infrastructural code.

Dynamic Semantics Integration. To reuse the same OCL interpreter for various
languages it is necessary to adapt model instance objects. In [13] we presented
an approach to address this issue. Furthermore, the invocation of OCL inter-
pretation has to be included manually into the tooling for the language OCL
is integrated with (e.g., the invocation of OCL interpretation when the finish
button in an SWT form is pressed). Currently, we do not see how the proposed
process could be improved in this regard.
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Generative approaches for semantics integration share the same limitations.
The generation of OCL check code can be reused for different integrations if
their code generation relies on the same target language. However, code instru-
mentation or the adaptation of code generation to a new target language still
requires manual effort.

6 Related Work

Integrating OCL with different languages has been investigated in various sce-
narios before. For example, in [3] a report on the integration of OCL with Triple
Graph Grammars (TGGs) [37] can be found. The integration of OCL and the
RAISE Specification Language (RSL) has been investigated in [4]. OCL has
been integrated with Fujaba [5], business rules [6] and a profile for the railway
domain [38]. While [3] and [5] embed OCL in graphical languages, the host lan-
guage was textual in [4] and [38]. In [6] OCL was not embedded into another
language, but rather integration was performed by transforming OCL to SQL.
In addition, the integration of arbitrary textual languages into graphical lan-
guages has been presented in [39]. The diversity of the approaches to integrate
OCL with other languages shows the necessity for general guidelines on how to
achieve such integration.

As a first step to ease the application of OCL to arbitrary languages, the
adaptation of the query and navigation facilities of OCL has been evaluated
in [40]. This adaptation is part of the overall process to integrate OCL with
other languages as described in this paper. However, we restricted ourselves to
the integration of textual modelling languages and OCL. The semantical aspects
of this integration, which have been the main subject of the works mentioned
above can not be answered here as these highly depend on the host language.
Nonetheless, we tried to provide some best practises to achieve practical lan-
guage integration. For the integration of visual languages with OCL, one may
consult [41,42], where a graphical variant of OCL—Visual OCL—is proposed.

Integrating OCL with Ecore, which served as a case study in this paper, has re-
cently been performed by the Eclipse MDT OCL project.3 Here, the OCLinEcore
Editor was released—a very similar approach to integrate OCL and Ecore more
tightly. However, while the result of this integration is close to ours, no general
procedure to accomplish such a coupling is available. In contrast, the goal of this
paper is to outline the steps that are necessary to perform such an integration
for arbitrary textual languages.

Other constraint languages, besides OCL have also been subject to integra-
tion with modelling languages. For example, the Epsilon Validation Language
(EVL) [43], which is part of the Epsilon tool suite, is based on OCL and extends
the language with guarded constraints (i.e., constraints which are evaluated only
for certain model elements), constraint dependencies and constraint composition
(i.e., to compose complex constraints from sequences of simpler constraints).

3 http://www.eclipse.org/modeling/mdt/?project=ocl

http://www.eclipse.org/modeling/mdt/?project=ocl
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From the perspective of integration, EVL is loosely coupled with its target lan-
guages. While this enables to reuse constraints across multiple metamodels—
given these metamodels share concepts with equal names—it implies that no
static checks are applied to the constraints. For example, the binding of con-
straints to concrete metaclasses or features they navigate on is not achieved at
development time as we do in both integration styles.

7 Conclusion

In this paper we presented a tool-supported process to integrate OCL with arbi-
trary textual modelling languages. Our five step process supports two integration
kinds: external definition of OCL constraints that point into a textual model and
embedded definition of OCL constraints that are directly defined inside a textual
model. Only two of the five steps are required for the first integration kind, while
performing all steps yields support for both kinds. We showed the applicability of
the full process on two examples: an integration of OCL into a textual modelling
language for forms and an integration of OCL into a textual variant of Ecore.

The embedded integration is specific to textual modelling languages and takes
advantage of the fact that both the modelling language and OCL have a textual
notation. It provides integrated end-user tooling that is directly generated from
the specifications defined during the process using EMF, EMFText and Dres-
denOCL. Such a generative approach to develop integrated tooling is required
to increase the willingness of tool vendors to integrate OCL into new textual
modelling languages as well as the acceptance of OCL by end-users through the
deeper integration of OCL tooling. In the future we plan to extend the genera-
tive component of the tool support for our process—in particular by providing
adapter generators for the semantic analysis adaptation.
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Abstract. The 2nd International Workshop on the Quality of Service-
Oriented Software Systems (QUASOSS 2010) brought together
researchers and practitioners to assess current approaches for analyz-
ing the quality of service-oriented software systems. Due to the current
maturation of model-driven methods for service-oriented systems, the
declared goal of QUASOSS 2010 was to assess the state-of-the-art, re-
port on successful or unsuccessful application of these methods, and to
identify a research roadmap for future approaches. QUASOSS 2010 was
attended by 25 participants. It featured a keynote by Prof. Dorina Petriu,
6 paper presentations, and a panel discussion.

1 Introduction

Service-oriented software systems are beginning to pervade many areas of the IT
world and promise to deal with dynamically changing environments and strict
quality-of-service requirements. Currently, platforms for software-as-a-service
(SaaS) applications are emerging, which help to implement service-oriented sys-
tems on cloud infrastructures. Cloud-based environments have to offer strict
service level agreements to be competitive (e.g. Windows Azure and Amazon
EC2 guarantee 99.95% uptime).

Methods for assessing service level agreements regarding extra-functional
properties are often based on modeling approaches, which help to reduce the
complexity of the problem, focus on specific attributes, and rely on sound math-
ematical foundations. Models can be used during all life-cycles stages, such as
design, implementation, runtime, and system evolution to assess the quality of
a system. Here, the term quality refers to extra-functional properties, such as
reliability, maintainability, performance, security, usability, sustainability, etc.

The 2nd International Workshop on the Quality of Service-Oriented Software
Systems (QUASOSS 2010) brought together researchers and practitioners to
assess current approaches for analyzing the quality of service-oriented software
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systems. Due to the current maturation of model-driven methods for service-
oriented systems, the declared goal of QUASOSS 2010 was to assess the state-
of-the-art, report on successful or unsuccessful application of these methods, and
to identify a research roadmap for future approaches.

The program committee accepted 6 papers that cover a variety of topics,
including performance modeling, performance measurements, trade-off analyses
between quality attributes, and monitoring service-oriented system at runtime.
Approx. 25 participants attended the workshop. Besides a keynote and the paper
presentations, the workshop featured a discussion session, where all participants
provided their views on what would a good modeling language for the evaluating
and improving the quality of software of service-oriented software systems.

The remainder of this summary is structured as follows: Section 2 provides an
overview of the keynote speech as well as the paper presentations and Section 3
summarizes the workshop discussions.

2 Workshop Contributions

2.1 Keynote

The keynote speech was given by Prof. Dorina Petriu from Carleton University,
Ottawa, Canada. Her talk was entitled ”Model-based Performance Analysis of
Service-Oriented Systems” . The talk focused on performance analysis of UML
models of service-oriented systems, starting early in the development process and
continuing throughout the software life-cycle. In order to conduct quantitative
performance analysis, an UML model extended with performance annotations is
transformed into a performance model (such as queueing networks, Petri nets,
stochastic process algebra, etc.), which can be solved with existing performance
analysis tools. The ”UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE)” can be used for adding performance annotations
to a given UML model.

The talk discussed at first the kind of performance annotations that need to
be added to UML models and the principles for transforming annotated soft-
ware models into performance models. Such a transformation must bridge a large
semantic gap between the source and target model for two main reasons: per-
formance models concentrate on resource usage and abstract away many details
of the original software model, and the performance model requires platform
information which is not contained in the software application model.

Finally, the talk highlighted other research challenges, such as a) merging
performance modeling and measurements; b) applying variability modeling to
service-oriented systems, and c) use of SOA patterns for evaluating and improv-
ing the performance of service-oriented systems.

2.2 Paper Presentations

6 papers were presented at the workshop, for the full workshop proceedings see
[1]. A synopsis of each presentation is given below, extended versions of the
papers [6] and [3] are included in this workshop reader.
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– Using quality of service bounds for effective multi-objective software architec-
ture optimization [6]
Qais Noorshams, Anne Martens, Ralf Reussner
The authors proposed an extension to a method for automatic quality im-
provement of service-oriented architectures using meta-heuristics. The exten-
sion takes bounds into account to optimize the meta-heuristic search process.

– An integrated tool for trade-off analysis of quality-of-service attributes [4]
Leo Hatvani, Anton Jansen, Cristina Seceleanu, Paul Pettersson
This paper presented a tool based on the Analytical Hierachy Process method
and the results from a architecture-based quality prediction tool for deter-
mining the tradeoffs between performance, reliability, and maintainability of
a service-oriented system.

– Using software performance curves for dependable and cost-efficient service
hosting [7] Dennis Westermann, Christof Momm
The authors introduced the idea of Software Performance Curves and de-
scribed how they can be derived by a service provider hosting a multi-tenant
system.

– Performance-driven stepwise refinement of component-based architectures [5]
Lucia Kapova, Barbora Buhnova
Refining the concept of quality-related ”completions” for prediction models,
the authors proposed a method to a identify and resolve conflicts between
multiple applicable completions.

– Model-based dynamic QoS-driven service composition [2]
Antinisca Di Marco, Antonino Sabetta
This paper proposed a model-based framework, called Smart, that automati-
cally constructs complex services with guaranteed QoS.

– Usage profile and platform independent automated validation of service behav-
ior specifications [3] Henning Groenda
The author showed how model-based testing can be applied to validate a qual-
ity specification’s accuracy and how the attachment of validation settings to
specifications can ease validity assessments.

3 Discussion Summary

After the paper presentations of the QUASOSS workshop, the participants joined
for a 90-minute discussion session on the topic: ”What is the best modeling
language for quality of service in service-oriented systems?”. Many researchers
have proposed modeling languages for service-oriented systems during the last
decade, yet a consensus on an industry standard has not been reached.

Some participants pointed out that the UML modeling language is the de-facto
standard for modeling and should also be used for modeling service-oriented
systems. There are UML profiles for modeling service-oriented systems (i.e.,
Service oriented architecture Modeling Language, SoaML) and QoS properties
(i.e., Modeling and Analysis of Real Time Systems, MARTE), which could be
used especially for the modeling tasks discussed during the workshop.
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The benefits of using UML were then briefly discussed. Reusing and extending
an existing industry standard provides the opportunity to reuse and annotate
existing models and thus save time and efforts for modeling. Rich tool support
exists for creating UML models and there are even some performance or reliabil-
ity prediction tools based on model transformations from UML. Domain-specific
features or particularities of any QoS prediction approach can be integrated into
the UML using the standard mechanism of profiles.

However, some participants also pointed out the drawbacks of the UML. The
complexity of UML and the MARTE profile with several thousand pages of
specification scares many developers from developing more formal models. The
semantics of many concepts are not formally defined, thus different tool vendors
have different implementations of the standard.

The MARTE profile is currently hardly used in industry. This partially stems
from the fact that MARTE has been released only one year ago. However, its pre-
decessor, the SPT profile, released eight years ago was also not broadly adopted
in industry, thus hinting at some deeper underlying issues. Special tool support
for these profiles has always been a concern. For example entering the compli-
cated performance annotations should be assisted in structured manner, whereas
current tools simply rely on free text fields that easily lend themselves to user
input errors.

Other participants favored domain-specific modeling languages, such as ser-
vice modeling languages or components models that can be used to model
service-oriented systems. There are already several component model support-
ing the specification of extra-functional properties, which could be used to an-
alyze service-oriented systems. Applying quality-oriented component models for
service-oriented systems might be even simpler than for component-based sys-
tems, because the degree of freedom for deploying a service is usually not present
for service-oriented systems.

Some members of the discussion group pointed out that the question of the
best modeling language is related to the question of the best programming lan-
guage, which was debated often in former times. Modeling languages shift the
level of abstraction higher, in the same manner as higher-level programming
languages raised the abstraction level from assembly code.

The vision for modeling and analyzing QoS properties in service-oriented sys-
tems was sketched by the workshop participants as follows:

– Interoperable tooling: more emphasis should be put on the interoperability
of modeling tools. Any new modeling language should provide semi-automatic
conversion or migration tools.

– Domain focus: there is a need for domain-specific modeling languages for QoS
properties which focus on restricted aspects and are therefore easy to learn.

– Tool support for QoS annotations: QoS modeling tools should provide
special support for creating QoS annotations (e.g., if text-based, there should
be automatic syntax checking, syntax highlighting, auto-completion, etc.).

– Modeling languages for runtime analysis: very expressive modeling lan-
guages might not allow live QoS analyses during service operation, because



368 H. Koziolek et al.

they might require long simulation runs. Thus, there should be specially re-
stricted languages, whose instances can be used for quick analysis and system
reconfiguration during runtime.

– Future UML standards: future UML standards or profiles should focus on
a smaller number of concepts and define these more formally. There is the
need for involving strong industry partners in any standardization efforts so
that the specification are applied and resource for tool development are given.
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Abstract. Assessing providable service levels based on model-driven predic-
tion approaches requires valid service behavior specifications. Such specifications
must be suitable for the requested usage profile and available hardware to make
correct predictions and decisions on providable service levels. Assessing the pre-
cision of given parameterized performance specifications is often done manually
in an ad-hoc way based on the experience of the performance engineer. In this pa-
per, we show how the accuracy of a specification can be assessed and stated and
how validation settings of model-based testing can ease precision assessments.
The applicability of the approach is shown on a case study. We demonstrate how
our approach allows accuracy statements and can be used in combination with
usage profile and platform independent performance validations, as well as point
out how accuracy assessments are eased.

1 Introduction

Service providers can use model-driven performance prediction approaches to assess
providable service levels before they offer a service level agreement (SLA). The pre-
diction approaches allow reasoning about the resource usage within the provider’s en-
vironment as well as achievable performance metrics for its clients. The more advanced
approaches use parameterized models to allow specification reuse when influencing pa-
rameters change. Depending on the change itself and the generality of the specification,
this can reduce the need of re-executing or re-testing the service itself or its required
services. Additionally, it allows faster responses to SLA requests if the specifications
can be reused.

The overall quality of the predictions depends on the used prediction technique
and the quality of the specifications themselves. Some, e.g. the usage profile, are di-
rectly linked with SLAs, whereas hardware environment and deployment depend on the
service provider. The overall quality depends on how closely specified and real perfor-
mance match. Behavior specifications are in most cases abstractions of an implementa-
tion’s behavior. On the one hand, this allows a significant reduction of the time required
for a prediction compared to an execution of the implementation. On the other hand,
validating these specifications and knowing the deviation due to their abstraction level
is crucial for the correct interpretation of the prediction results.

So far, research has focused on the performance prediction quality of the approaches
under the assumption that specifications are as accurate as possible. Most of these
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specifications were tailored by performance engineers to match an implementation’s
behavior. If re-engineering approaches, e.g. [9], are used to create specifications there
is no guarantee on the quality of the specification and additional validation is required.
This is commonly a manual ad-hoc process requiring specialist knowledge and high
human effort. The resulting specifications generally don’t contain information about
their accuracy and the preconditions on their (input) parameters. This is fine if the spec-
ification is not reused or the person using the specification knows these assumption.
However, this is very unlikely in multi-party scenarios common to service-oriented
environments.

This paper introduces a model for stating the accuracy of service behavior spec-
ifications. Additionally, it shows its use in combination with a model-based testing
techniques to validate parameterized performance specifications. These specifications
constitute a basis for compositional performance prediction approaches and thereby
also SLA management. The contributions of this paper are i) an annotation model
for attaching accuracy information to service behavior specifications, and ii) an au-
tomated validation process for usage profile and hardware environment independent
performance specifications.

The application of both is shown on a case study, which demonstrates necessary user
interactions, achievable validation results, and how the validity assessment process is
eased by the approach.

This paper is structured as follows: Section 2 discusses related work. Section 3 shows
the Accuracy Information Annotation Model used to annotate specifications with qual-
ity information. Section 4 provides details on the validation process and its features.
Section 5 show the practical application of the presented approach on a case study in
which an implementation of the Fibonacci algorithm is validated. Assumptions and lim-
itations are discussed in section 6. Finally, Section 7 concludes the paper and provides
an outlook on future work.

2 Related Work

Performance behavior specification languages for components and services are still
a maturing field. An overview about existing languages is provided in the survey by
Becker et al. [5]. The older languages were based on fixed execution times (or distri-
butions thereof) while newer ones allowed to take additional parameters into account.
These parameters and the languages supporting them are discussed in [8] in detail.
The quality of predictions based on such specifications highly depends on the quality
of these specifications. Adding parametric dependencies to the specifications and the
trend towards more detailed specifications made the validation of these specifications
more complex and at the same time more important. Our approach supports all types
of parameters available in current performance specifications and is exemplary applied
to the Palladio Componen Model (PCM) [18] specifications, which support all of these
parameters.

Reverse engineering approaches for behavior specifications provide the possibility
to synthesize behavior specifications from implementations. Two of these constructive
approaches are presented below:
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The approach of Meyerhöfer [13] uses profiling techniques and black box tests to
synthesize behavior specifications. The resulting measurements are stored in a perfor-
mance repository. The repository is used to query run- and response times in form of
statistical estimators, e.g. minimum or maximum, or distribution function. If the num-
ber of runtime-equivalent continuous subdomains for each input parameter of a service
is known the boundaries between subdomains and values for each subdomain can be
estimated by the approach. The specification can have the abstraction level of statistical
estimators and distribution functions for the resource demand.

The approach of Krogmann [10] uses a combination of genetic programming and
static and runtime Bytecode analysis to create behavior specifications. It significantly
reduces the effort necessary to synthesize a specification based on source code. How-
ever, it does not ensure that the quality of the specification is below a certain threshold.
The dependencies identified by the approach can also be quite complex and a manual
adjustment of the abstraction worthwhile.

Runtime behavior verification of implementations is addressed in worst-case execu-
tion time (WCET) analyses. Harmon and Klefstad conducted a survey [7] and identified
that state-of-the-art analyses are still restricted to a per-method base and often additional
information on loop bounds is required for the algorithms. Return-value dependencies
within a method are also not supported in general. Several service performance, load,
and stress testing tools, e.g. JMeter [3], HP LoadRunner [17], iTKO LISA [14], Open-
STA [1], or PushToTest [2], are available. These tools run predefined service calls on
a running service implementation and measure the end-to-end performance or identify
bottlenecks. The aim is to determine client-side metrics like response time or through-
put. The context of hardware environment and usage scenarios are fixed for the mea-
surements. This leads to meaningful results for the measured context but does not allow
inferences for other contexts.

There are also approaches for the automated generation of functional test case in-
puts, e.g. [4]. This approach uses WSDL-based service descriptions to generate test
cases. Different generation strategies allow to generate test cases to cover all opera-
tions, messages, and XSD-based messages contained in such a description. The test
output must be specified by a developer in order to execute the test cases. The focus is
on identifying unexpected functional behavior of a service and not its execution time.

Extra-functional behavior and component testing is also considered by Hamlet [6].
The article presents a compositional testing theory based on subdomain or partition
testing. Component test points and their (input and output) propagation are considered
to represent the best test criteria or cases. Focus is put on functional behavior but extra-
functional behavior is covered as well. The theoretical approach requires full knowledge
about data-dependencies and has difficulties in finding fix points for loops / iterations.
The specifications are not compositional and systems must be assembled for testing.
Furthermore, Hamlet points out that theoretical comparisons between random and sub-
domain testing have not shown a conclusive advantage either way in detecting failures.
The approach presented in this paper does not require knowledge on data-dependencies
and calculated functions. It allows validating specifications which are composable. Val-
idation is done using random testing.
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The performance modeling standard UML-MARTE (Modeling and Analysis of Real-
Time Embedded, Systems) [16] which was developed based on UML-SPT (UML Pro-
file for Schedulability, Performance, and Time Specification) [15], allows to express
Quality of Service (QoS) requirements, characteristics, and measurement-based per-
formance models. It is allowed to state required, assumed, estimated, and measured
values [15, p.154]. Additionally, statistical properties like minimum, maximum, aver-
age, mean, and percentiles can be modeled. MARTE augmented this by attributes for
measurement sources, precision, and time expressions [16, p.47,p.439]. The precision
is represented by a floating point number between 0 and 1 and its semantic is described
as follows:

Degree of refinement in the performance of a measurement operation, or the
degree of perfection in the instruments and methods used to obtain a result.
Precision is characterized in terms of a Real value, which is the standard devi-
ation of the measurement.

The approach presented in this paper allows stronger and more precise statements about
the precision of a specification and allows to state for which parameter values of a
parameterized specification this precision hold.

3 Accuracy Information Model

In this section, we will present details on the annotation model, which enables attach-
ing accuracy information to service behavior specifications. Tool support for model
instances is provided by using the Eclipse Modeling Framework (EMF). The Accuracy
Information Annotation Model (AIAM) stores quality information in a
QualityRepository (see fig. 1). It consists of two parts, one to store the stip-
ulated quality annotations (QualityAnnotation) and one to store specifications
of the validation(TBValidationQuality. The quality annotations references the
specification of the validations which were instantiated and did not allow to reject the
stipulated quality annotations. If any instantiation and test allowed a rejection this ref-
erence must not exist. Each part is presented in the following in an own chapter.

QualityRepository

TBValidationQuality

internalStateInfluenceAnalysis : EBoolean

QualityAnnotation

isValid : EBoolean

1 + qualityRepository

* + validationQualities

* *

+ validationQualities

1+ qualityRepository

*+ qualityAnnotations

Fig. 1. Quality Repository
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QualityAnnotation

TBValidationQuality

internalStateInfluenceAnalysis : EBoolean

GenerationStrategy

EquidistantPartitionsRandom

numberPartitions : ELong

StopStrategy

NumberTestcases

minimum : ELong

NumberGenerationRuns

number : ELong

*

+ validationQualities

1 + validationQuality

1 + stopStrategy

1 + validationQuality

1 + generationStrategy

Fig. 2. Quality Annotation

3.1 Validation Quality

The quality of the validation allows estimations on the thoroughness of the validation as
well as remaining classes of inconsistencies between a specification and the stipulated
quality. The quality of test-based validations depends on the used test case generation
method and the criteria when sufficient test cases have been generated. How this infor-
mation is stored in the model elements (see fig. 2) is explained in the following.
TBValidationQuality bundles the information for test-based validations. It

references the used test case generation strategy and generation stop strategy.
All available generation strategies are subclasses of GenerationStrategy. A

subclass contains the parameters used for the generation strategy, e.g. the number of
partitions for the EquidistandtPartitionsRandomStrategy. The strategy
itself is implemented in the validation framework and selected based on the type of the
class instance.

All available generation stop strategies are subclasses of StopStrategy. Each
class contains the parameters for a strategy. Examples are the minimum number of over-
all executed test cases for the NumberTestcases strategy or the number of test case
generation rounds for the NumberGenerationRuns strategy. Multiple test cases
can be generated in a generation round, e.g. one for each service input parameter parti-
tion. The strategy itself is implemented in the validation framework and selected based
on the type of the class instance.

3.2 Quality Annotation

The stipulated quality annotations are modeled with Quality Annotation. It con-
sists of four parts: The stipulated precision, the input parameter partitions for which
the specification is precise, the specification for which the quality annotations are stip-
ulated, and information on the influence of internal state on the accuracy of the specifi-
cation. These parts are depicted in figs. 3 and 4 and described in the following.
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The quality annotations consist of a generic part and one specific for a specifica-
tion language. The parts necessary for the specification language Palladio Component
Model (PCM) are shown with gray background in the figures and provide an example
how the annotations are used.

Figure 3 shows the parts for the stipulated precision and the information on the in-
fluence of internal state on the accuracy of the specification.

The information on the influence of internal state on the accuracy of the specifi-
cation is modeled by InternalStateInfluenceAnalysisAggregation. It
is based on repetitions of validation runs on the same service instance. If the inter-
nal state changes between the repetitions the influence can lead to deviations in the
measurements. In order to provide an impression of the potential impact the maxi-
mum measured deviation is stored as percent value. The deviations are aggregated for
each validation run. The specification of the validation run leading to the deviations
is referenced by validationQualitites, the maximum deviation in a parameter
in CallParameterDeviation and the maximum deviation in number of calls in
NumberOfCallsDeviation. The parameter for which the deviation was measured
is referenced by ParameterReference, the required element for which the devia-
tion, in number of calls to it, was measured is referenced by requiredElement.

A RequiredElement is an element required by a component. The elements are
ordered hierarchically (childREs and parentRE). For the PCM (PCMRE), the hier-
archy has 4 levels. The topmost one is a categorization of requested categories
(PCMRECategory), e.g. calls to (Hardware) Resources, Infrastructure
Components or Business Components. The next lower level are interfaces
(PCMREInterface). Interfaces can be required multiple times, each in a different
role (PCMRERole). The lowest level is the call signature (PCMRESignature), iden-
tifying an atomar service operation invocation. A consistent use of the hierarchy levels
is ensured by OCL constraints on the subclasses of PCMRE. The hierarchies of other
specification languages can be modeled analogously.

The information on the stipulated precision is referenced by stipulatedRE
Precisions. The precision for each required element is stored in REPrecision.
A default precision for the number of calls to the element (defaultPrecision
NumberOfCalls) as well as the precision for parameters of the calls (default
PrecisionCallParameter) can be set. These default are applied to the type of
required element as long as no new definition on a lower hierarchy level overrides the
default.

The precision itself is modeled by ValidationPrecision (see fig. 4). One al-
ternative is that the precision is not validated (NoValidationPrecision) which
can be used for example to state that call parameters are not validated for infrastruc-
ture components. A second alternative is that the measured and specified values are
equal (EqualsValidationPrecision). This can be used for example to state
that the number of calls to external components are validated. The last alternative
is that the deviation must not exceed a relative threshold if an absolute threshold is
exceeded (LimitedDeviationValidationPrecision). This allows handling
situations in which small absolute deviations lead to big relative deviations but which
may have only a small performance impact. The thresholds are set by absolute and
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relative. This can be used for example to state that a certain deviation in the number
of calls to infrastructure components is allowed.

Figure 4 shows the parts for the input parameter partitions for which the stipu-
lated precision should hold and the specification for which the quality annotations are
stipulated.

The input parameter partitions are modeled by ParameterPartition. This is
due to the fact that the abstract description of the service’s behavior often only holds for
certain ranges. It additionally allows to focus the validation effort. The parameter parti-
tions must be subclassed for each specification language, e.g. the PCM. For the PCM,
each parameter (parameterReference) can have several performance characteri-
sations (CharacterisedPCMParameterPartition).The ranges or intervals for
each of these characterisations are stored in CharacterisedPCMPara
meterPartitionRange orCharacterisedParameterPartitionInter-
val.

The control flow specification of the service for which the quality annotations are stip-
ulated is modeled by ServiceSpecification. In order check if the specification
has not been changed since the annotation has been created and validated a checksum of
the specification can be stored in checksum. The ServiceSpecificationmust
be subclassed for each possible specification of a specification language. In case of the
PCM, this means that there is one subclass, PCMServiceSpecification, which
references the service specification used in the PCM (ResourceDemandingSEFF).

4 Validation Process

In this section, we introduce our automated validation process for usage profile and
hardware environment independent performance validations of service behavior speci-
fications which uses the AIAM.

The validation works with parameterized models. Parameters influencing the behav-
ior of a service can depend on input parameters of the service call, on returned pa-
rameters from required services, or on the service configuration. We use model-based
testing techniques to validate such parameterized performance specifications. The pro-
cess is exemplary realized for validating Palladio Component Model [18] specifications
against implementations. Our approach uses hardware environment independent spec-
ifications which allow inferring the performance in other environments. Resource load
is measured in Java Bytecode instructions which is combined with benchmarks to cal-
culate the performance for a specific platform. This step is supported by tools, e.g.
ByCounter [11]. Using such specifications in the validation process allows avoiding
any side effects of the instrumentation on the measurements.

The steps of the validation process itself are depicted in figure 5 and explained in
the following. Prerequisites are deployment instructions, an AIAM instance, a service
behavior specification, a service specification including its required and provided inter-
faces, and a mapping model linking the parameterized behavior specification and the
implementation. It is checked if the specified parameters are valid with respect to the
AIAM instance.

In step deploy, the service is deployed in the test environment. This step might
require manual interaction.
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do

while

for
deploy instrument

generate

Testcases

present

Results

check

Stopcondition

[!stop]

[stop] terminate Loop

do

while

for

run

Testcase

validate

Testcase

prepare

Testbed

select 

next Testcase
check

Stopcondition

[!stop]

[stop OR 

no testcase left]
terminate Loop

Fig. 5. Activity Diagram of the Service Behavior Validation Process

In step instrument, the service under test is automatically instrumented for mea-
surements. If the service behavior specification contains different sections, e.g. internal
processing, external calls, loops, or branches, each section is instrumented separately.
The instrumentation measures for each section the resource demand in Bytecodes in-
structions as well as calls to required services (including the used parameters). The
ByCounter approach [12] is used for this instrumentation.

In the stepscheck Stopcondition, the StopCondition in the AIAM model
instance is checked and decided whether new tests should be run or parts of the valida-
tion have finished.

In the steps terminate Loop, the current active loop is successfully terminated.
In step generate Testcases, new test cases are generated based on the selected

GenerationStrategy in the AIAM model instance.
In step select next Testcase, the next testcase which has not been run yet

is selected.
In step prepare Testbed, the mock-ups for required components in the testbed

are prepared according to the behavior stated in the specification.
In step run Testcase, the test case itself is executed.
In step validate Testcase, specified and measured service behavior are com-

pared with respect to the stipulated precision in the AIAM instance.
In step present Results, the results of the validation are presented to the user

and the quality annotation in the AIAM instance is updated accordingly.
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5 Case Study

In this section, a case study shows the applicability of the overall approach. First, we
introduce the service and its structure. We continue with the specification under scrutiny
and its link to the service implementation. Finally, we show how the validation is con-
figured and what the outcome of the validation is.

Figure 6(a) shows the static structure of a component implementing a simple ser-
vice. It depicts a screenshot of the workbench for PCM models. The interface IFibo-
nacciAlgorithm provides the operation fibonacci. This operation returns the
Fibonacci number given its index in the Fibonacci sequence. The modeling notation
does not differentiate between the primitive data types int and long. Input and out-
put parameters are integers, hence int is used.

The interface is provided by the component FibonacciAlgorithm. The imple-
mentation of the component is realized in the class FibonacciAlgorithm and de-
picted in figure 7. A deployed instance of the component is provided as a service.

The service behavior specification for the implementation is shown in figure 6(b).
The service does not call other services and issues only CPU resource demands. The
resource demand is combined in PCM to an InternalAction and stated in the
number of executed Java Bytecode instructions. The numbers can depend on the value
of the input parameter rounds, e.g. the times LLOAD is requested.

The implementation and specification are linked via two models. The first is an ab-
stract view on the source code in form of an Generalized Abstract Syntax Tree (GAST,
see figure 8). The elements of this GAST are then linked with a second model to
the action of the PCM. In this example, the InternalAction (figure 6(b)) starts
and ends at the Block Statement _-iKpQ0YUEd-iYb1IWQK_sg within the
fibonacci Method. These links allow to map the resource demands of a running
service instance to the specification. They can additionally be also used to check if all
source code is covered by the specification.

(a) (b)

Fig. 6. Example specification overview: (a) shows the component implementing the service and
(b) shows the Resource Demanding SEFF for operation fibonacci
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1 p u b l i c c l a s s F i b o n a c c i A l g o r i t h m {

3 /∗ ∗ C a l c u l a t e s a F i b o n a c c i number g i v e n t h e number o f rounds
t h e a l g o r i t h m s h o u l d run .

4 ∗ @param rounds Number o f c a l c u l a t i o n rounds .
5 ∗ @return F i b o n a c c i number .
6 ∗ /
7 p u b l i c long f i b o n a c c i ( long r o u n d s ) {
8 long i 1 = 0 ;
9 long i 2 = 1 ;

10 long i 3 = 0 ;
11 / / n o r m a l i z e d lo op
12 f o r (
13 long i = 0 ;
14 i < r o u n d s ;
15 i ++) {
16 i 3 = i 1 + i 2 ;
17 i 2 = i 1 ;
18 i 1 = i 3 ;
19 }
20 re turn i 3 ;
21 }
22 }

Fig. 7. Validated Implementation

Fig. 8. GAST of Example
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isValid = true

:QualityAnnotation :ValidationQuality

internalStateInfluenceAnalysis = false

numberPartition = 1

:EquidistantPartitions

Random

minimum = 100

:NumberTestcases

stopStrategygenerationStrategy

validationQualities

:PCMRECategory

category = Infrastructure

:NoValidationPrecision:EqualsValidationPrecision

defaultPrecisionNumberOfCalls defaultPrecisionCallParameter

stipulatedREPrecision

:PCMServiceSpecification

forServiceSpecification

:ProvidedRoleOperation

ParameterReference

:CharacterisedPCM

ParameterPartitionInterval

:PCMRandomVariable

specification = 1

:PCMRandomVariable

specification = 1000

from

to

characterisedParameterPartition

:Parameter

parameterName = „rounds“

parameter

validForParameterPartitions

:ResourceDemandingSEFF

id = _VNfWQDD7Ed-JI8LGk6UTnA

rdseff

Fig. 9. Example AIAM Instance

The quality of the validation is stated in the AIAM instance shown in figure 9. We
want to validate the specification shown in figure 6(b) within the range from 0 to 1000 of
the parameter rounds. We want to have an exact matching specification to be sure we
can trust predictions based on the specification. Hence, we do not allow the provided
specification to deviate from measured Bytecode demands (which are infrastructure
calls in PCM). We decide to consider the whole parameter range as one partition and
base the validation on 100 test cases. Internal state influence analysis is not requested.

Running the automated validation process, none of the 100 test cases allows rejecting
the hypothesis that the specification is valid. Hence, it is considered valid.

6 Assumptions and Limitations

The approach is intended for business services. Real-time performance guarantees or
specific optimizations for High Performance Computing, e.g. hardware-specific mem-
ory and data structures, are not addressed.

The validation of specifications is currently limited to resource demand to proces-
sors. Hard disk and network resource demands are not validated yet.

Internal state analysis of services between calls has not been tested yet. Currently, test
cases are executed once and the influence of previous calls is not analyzed. However,
repeated executions of identical test cases would allow drawing conclusions on the size
of the effect. Such state dependencies are currently also not considered in advanced
parameterized performance specifications.

Specification on the abstraction level of Bytecode instructions and link models to
the source code implementation is assumed. These artifacts can be synthesized using
reverse engineering approaches. Manual fine-tuning, optimization and corrections can
be applied to these artifacts without endangering the use of the presented validation
process.

Validating a PCM specification on the abstraction level of how often a Bytecode in-
structions is issued does not guarantee to include all possible effects for a performance
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prediction but provides reasonably prediction results. This is outweight by the advan-
tage that warm-up and instruction caching effects as well as hardware environment
independency can be addressed this way.

7 Conclusion and Future Work

The paper pointed out how the quality of specifications can be expressed and linked
to these specifications using the Accuracy Information Annotation Model (AIAM). It
additionally introduced a validation process using AIAM instances as a basis for model-
based validation of the specifications. The applicability of the fully automated process
was shown on case study containing a usage profile and platform independent PCM
specification. It demonstrated that user interaction is not necessary beyond providing
the specification, implementation, link models between both, and the supposed quality
statements. The case study demonstrates that specifications containing resource demand
dependencies beyond statistical estimators and distribution functions, e.g. linear func-
tions, can be validated. In contrast to the testing theory by Hamlet [6] or functional
testing approaches like WS-TAXI [4], the presented validation process does not require
any statements about the implementation other than the specification and its mapping
to the implementation. The process furthermore supports multiple parametric depen-
dencies and is not limited to a per-method base as WCET approaches. It provides the
advantage of ensuring explicitly stated quality thresholds for specifications and thereby
complements current specification synthesis techniques.

The presented quality statements allow users to check if the precision of the spec-
ifications is high enough for their intended purpose. This also prevents unnecessary
revalidation of specifications. Prediction approaches can additionally use the quality in-
formation for error propagation and prediction quality estimations. Thus, the presented
process fosters the use of compositional prediction approach by sustaining trust in the
prediction results even if usage profile and hardware independent specifications are
used. The case study also showed that cumbersome manual work for choosing appro-
priate instrumentation points, instrumentation, test case execution, and test case evalua-
tion is not necessary with this approach. Hence, performance engineers can focus their
effort on the specification and choosing the appropriate performance abstractions.

We plan to extend the validation to the use of required services within a behavior
specifications. Additionally, we plan to provide more and extended testing strategies.
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Abstract. Quantitative prediction of non-functional properties, such as
performance, reliability, and costs, of software architectures supports sys-
tematic software engineering. Even though there usually is a rough idea
on bounds for quality of service, the exact required values may be un-
clear and subject to trade-offs. Designing architectures that exhibit such
good trade-off between multiple quality attributes is hard. Even with
a given functional design, many degrees of freedom in the software ar-
chitecture (e.g. component deployment or server configuration) span a
large design space. Automated approaches search the design space with
multi-objective metaheuristics such as evolutionary algorithms. However,
as quality prediction for a single architecture is computationally expen-
sive, these approaches are time consuming. In this work, we enhance
an automated improvement approach to take into account bounds for
quality of service in order to focus the search on interesting regions of
the objective space, while still allowing trade-offs after the search. We
compare two different constraint handling techniques to consider the
bounds. To validate our approach, we applied both techniques to an ar-
chitecture model of a component-based business information system. We
compared both techniques to an unbounded search in 4 scenarios. Ev-
ery scenario was examined with 10 optimization runs, each investigating
around 1600 architectural candidates. The results indicate that the inte-
gration of quality of service bounds during the optimization process can
improve the quality of the solutions found, however, the effect depends
on the scenario, i.e. the problem and the quality requirements. The best
results were achieved for costs requirements: The approach was able to
decrease the time needed to find good solutions in the interesting regions
of the objective space by 25% on average.

Keywords: Optimization, Performance, Quality Attribute Prediction,
Reliability, Software Architecture.

1 Introduction

The design of software architecture is crucial to exhibit good quality of service
(cf. [3]), e.g. performance and reliability. Model-driven, quantitative architecture
evaluation approaches help the software architect to reason about the architec-
ture and predict its quality attributes and costs. However, even though there

J. Dingel and A. Solberg (Eds.): MODELS 2010 Workshops, LNCS 6627, pp. 384–399, 2011.
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usually is a rough idea of requirements for the non-functional properties, the
exact required values may be unclear and subject to trade-offs. For example,
the decision of how much response time of the system is acceptable may depend
on the costs to achieve this response time and is subject to negotiation between
stakeholders. Still, they may agree on bounds specifying the worst acceptable val-
ues of the quality attributes, e.g. the mean response time of the system should
not exceed 15 seconds. A system that violates any bounds is declared infeasible,
i.e. useless for the stakeholders.

Designing architectures that provide optimal trade-offs between multiple qual-
ity attributes is difficult. Even with a given functional design, many degrees of
freedom in the software architecture (e.g. component deployment or server con-
figuration) still span a large design space. Automated approaches support the
software architect to improve their architectural designs and find good trade-offs
between quality attributes. They search the design space with multi-objective
metaheuristics such as evolutionary algorithms to find many Pareto-optimal
candidates. However, as quality prediction for a single architecture is compu-
tationally expensive, these approaches are time consuming since many possible
candidates need to be evaluated.

In this work, we present an approach to include bound estimations on qual-
ity of service requirements into an automated improvement approach to make
the search for optimal trade-offs focus on interesting regions of the objective
space. We extend the PerOpteryx approach [15] by two aspects: First, we
translate requirements specified with the Quality of service Modeling Language
(QML) [12] into constraints in an optimization problem. Second, we use two
constraint handling strategies [10,11] to focus the search on the feasible space.

The contribution of this paper is a novel approach that, to the best of our
knowledge, is the first to combine multi-criteria architecture optimization and
quality of service bounds so that the search can focus on feasible regions of the
search space. With this extension, the time needed to find valuable solutions
for the software architects can be reduced. We have implemented the approach
in the PerOpteryx tool. Using this tool, we demonstrate the benefits of our
approach in a case study.

This paper extends a previous publication [19] by providing (1) the integration
of a second constraint handling technique [11] and (2) more sound evaluation
including the second technique, using more optimization runs and four different
quality requirement scenarios. The evaluation leads to results with higher sta-
tistical significance and a more differentiated interpretation of the approaches’
effects. We found that the constraint handling is beneficial in scenarios with
strict quality bounds (i.e., where many candidates are infeasible). In these sce-
narios, our extension was able to find solutions in the interesting regions of the
objective space in average 25.6% faster than the old, unconstrained approach.

This paper is structured as follows: Section 2 presents related work to our
approach. Section 3 gives background on the architecture evaluation approach
Palladio that we use in this work. Section 4 then presents our architecture op-
timization process, which makes use of the specified bounds to focus the search
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on the feasible architecture candidates. A case study in Section 5 shows the
feasibility of our work by applying the process to an example architecture and
comparing the effect of the requirements consideration. Finally, Section 6 con-
cludes.

2 Related Work

Our approach is based on performance prediction [2], reliability prediction [13],
multi-objective metaheuristic optimization [8], and constraint handling in evo-
lutionary algorithms [9,5]. A survey of constraint handling techniques is omitted
here for brevity, but can be found in [18].

In summary, several other approaches to automatically improve software ar-
chitectures for one or several quality properties have been proposed. Most ap-
proaches improve architectures by either applying predefined improvement rules,
or by applying metaheuristic search techniques. All approaches except one do not
support trade-off between quality attributes after the search. In addition, none
of the approaches allows specifying quality requirements for quality attributes
that should be optimized, thus, they do not allow to focus on interesting regions
of the objective space.

Xu et al. [20] present a semi-automated approach to improve performance.
Based on a layered queueing network (LQN) model, performance problems (e.g.,
bottlenecks, long paths) are identified in a first step. Then, mitigation rules
are applied. The search stops as soon as specified response time or throughput
requirements are met. The approach is limited to performance only.

The ArchE framework (McGregor et al. [16]) assists the software architect
during the design to create architectures that meet quality requirements. It pro-
vides the evaluation tools for modifiability or performance analysis, and stepwise
suggests modifiability improvements depending on the yet unsatisfied require-
ments. The search stops as soon as specified requirements are met.

Canfora et al. [7] optimize service composition costs using evolutionary algo-
rithms while satisfying service level agreement (SLA) constraints. They imple-
ment constraint handling with dynamic penalty functions.

Menascé et al. [17] generate service-oriented architectures that satisfy quality
requirements, using service selection and architectural patterns. They model
the degree of requirement satisfaction as utility functions. Then, a weighted
overall system utility is optimized in a single-objective problem using random-
restart hill-climbing. Thus, preferences for quality attributes and importance of
requirements have to be specified in advance.

Aleti et al.[1] present a generic framework to optimize architectural models
with evolutionary algorithms for multiple arbitrary quality properties, thus en-
abling trade-off after the search. In addition, the framework allows to specify
constraints for the search problem, for example available memory consumption.
However, the constraint handling is relatively simple: Infeasible candidates are
just discarded. Quality requirements are mentioned, but not included in the
optimization.
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3 Palladio Component Model

Generally, our concepts can be used for different software architecture models. To
a certain extent, service-oriented architectures can be regarded as a specialization
of component-based software architectures. As a consequence, we focus the scope
of our work on component-based software architectures.

We apply our approach to the Palladio Component Model (PCM) [4], a mod-
elling language for component-based software architectures with an UML-like
syntax. The PCM enables the explicit definition of the i) components , ii) archi-
tecture, iii) allocation, and iv) usage of a system in respective artefacts, which
comprise a PCM instance (cf. Figure 1):

1. Component specifications contain an abstract, parametric description of
components. Furthermore, the behaviour of the components is specified us-
ing a syntax similar to UML activity diagrams.

2. An assembly model defines the software architecture.
3. The resource environment and the allocation of components to resources

are specified in an allocation model.
4. The usage model specifies usage scenarios. For each user, one of the scenarios

applies defining the frequency and the sequence of interactions with the
system, i.e. which system functionalities are used with an entry level system
call.

Using model transformations, the PCM instance can be analysed or simulated to
predict performance (response time and throughput) [4], reliability (probability
of failure on demand (POFOD)) [6], and costs [15] of a system.

Figure 2 illustrates an example PCM instance of the so-called business report-
ing system (BRS) using annotated UML. The BRS provides statistical reports
about business processes and is loosely based on a real system. The system con-
sists of 9 components and is allocated to 4 servers. The behaviour description
(incl. CPU demands) of one component is illustrated here by an activity dia-
gram. Having only one usage scenario, a user interacts with the system every 5s

Fig. 1. Artefacts of a PCM instance
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Fig. 2. PCM instance of the BRS (more detail in [15])

requesting a sequence of reports and views. User requests take different paths
through the system based on passed parameters, expressed here as probabilities.

4 Finding Satisfactory Architectures

The goal of our work is to optimize component-based software architectures. To
achieve this, we use metaheuristic techniques, particularly the multi-objective
evolutionary algorithm (MOEA) NSGA-II developed by Deb et al. [10]. A dis-
advantage of a MOEA is that it may spend too much time exploring uninteresting
regions of the objective space. Integrating quality requirements into the search
aims at improving this algorithm due to the following advantages identified by
Branke [5]:

1. Focus – MOEAs are approximate and non-deterministic. Quality require-
ments can be used to focus the search and identify particularly interesting
alternatives.

2. Speed – Focusing the search avoids wasting computational effort on irrele-
vant regions of the search space.
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3. Gradient – With increasing number of objectives, MOEAs are unable to
determine the most promising search direction (gradient). Quality require-
ments provide additional information ensuring optimization progress.

4.1 Constraint Handling

To integrate requirements into this process, we extended the Opt4J frame-
work [14], which implements basic NSGA-II without constraint handling, by
the constrained tournament method (a.k.a. constrained NSGA-II) [10] and the
goal attainment method [11], both described briefly below.

Requirements are transformed into constraints. If a solution violates any con-
straint, it is infeasible, i.e. useless for the user. Otherwise, it is feasible, thus a
possible candidate to solve the problem. In their constrained tournament method
(C), Deb et al. [10] handle constraints by modifying the dominance relation dur-
ing the mating and the environmental selection of NSGA-II. Infeasible solutions
are ranked according to their degree of infeasibility and declared inferior to fea-
sible solutions.

In their goal attainment method (G), Fonseca et al. [11] define a goal value
for each objective and aim at satisfying all goals by prioritizing objectives not
fulfilling goals. Figuratively speaking, the Pareto-based comparison of two solu-
tions is modified, such that before applying Pareto-dominance, the solutions are
mapped on the goal value in the objectives that already fulfil the goal. Conse-
quently, the objectives not fulfilling the goal have the impact on which solution
dominates the other. Objectives for which no requirements exists are assigned a
goal value of +∞ when minimizing or −∞ when maximizing.

We chose these two methods for constraint handling because of the following
advantages: First, they explicitly distinguish between feasible and infeasible solu-
tions and declare all feasible solutions superior to infeasible solutions as opposed
to e.g. methods based on penalty functions. Second, no additional parameters
are required (an advantage because many other methods are sensitive to param-
eter changes). Finally, they neither require a specific number of constraints nor
assume a relation between objectives and/or constraints.

The difference of both methods is how solutions that violate the same con-
straints are treated: The constrained tournament technique uses a distance mea-
sure and favours solutions that are closer to the required values. In contrast, the
goal attainment method uses standard Pareto-dominance if two solutions satisfy
the same objectives.

4.2 Process

Figure 3 illustrates the optimization process as a whole with four main steps:

1. The system to be optimized is modelled with the PCM. Additionally, the
degrees of freedom, i.e. the possibilities to influence the non-functional prop-
erties of a system without changing its functional properties, are specified.
In a component-based context, the degrees of freedom of a system can be
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Fig. 3. Process Overview

e.g. component selection, component deployment, and hardware configura-
tion (cf. [15]), but this list is extendable to more and custom degrees of
freedom.

2. Quality attributes (e.g. mean response time mrt) and quality requirements
of the system (e.g. mrt< 5sec) are modelled using QML as described in [19].
Requirements are attached to a PCM usage scenario using a QML profile.

3. With our tool PerOpteryx, the models are used to optimize the system.
The optimization starts with one or more initial candidates, i.e.
predefined system configurations, which can also be created randomly. Op-
timizing quality attributes and minimizing costs is pursued using NSGA-II
with consideration of the requirements, using either constrained tournament
or goal-attainment.

4. As solving multi-objective optimization problems results in a set of solutions
rather than one single solution [9], the set of feasible Pareto-optimal1 archi-
tecture configurations with respect to the quality requirements is presented.
Finally, the software architect makes the trade-off decision and chooses one
of the solutions.

5 Case Study

This section describes a case study demonstrating the benefit of the consideration
of requirements during the optimization process. The goal of this case study is to
evaluate the benefits of the two constraint handling methods in different quality
requirement scenarios.

5.1 Setup

The system under study is the business reporting system (BRS) described in
Section 3. The software architect has to choose a candidate that minimizes mean
response time, probability of failure on demand (POFOD), and costs.

As degrees of freedom, the components can be allocated to up to nine dif-
ferent servers. Three different webserver implementations with different costs,
performance and reliability can be chosen. Additionally, each of the nine servers
has a continuously variable CPU rate between 0.75 GHz and 3 GHz. The costs
1 A solution x is Pareto-optimal if no other solution y is better than x w.r.t. all

considered attributes (cf. [9]).
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Table 1. Quality Bound Scenarios

Scenario costs POFOD mean response time

(S1) Weak requirements 3000 0.00175 5.0 sec
(S2) Medium requirements 2000 0.0015 3.0 sec
(S3) Strict requirements 1500 0.0015 2.5 sec
(S4) Only costs requirements 1000 ∞ ∞

of the servers depend on the processing rate and the costs model is derived from
Intel’s CPU price list. A power function is fitted to the data resulting in a costs
model of costs =

∑
i costs(i) =

∑
i 0.7665 p6.2539

i [monetary units (MU)] with
the processing rate of each server pi [GHz]. The coefficient of determination
is R2 = 0.965. Compared to [19], we used more realistic reliability values: the
servers have a mean time to failure (MTTF) of 43800 hours and a mean time to
repair (MTTR) of 3 hours. We get 19 (9+1+9) degree of freedom instances that
can be independently varied.

To study the effects of different quality requirement values on the results, we
ran the optimization for four different levels of requirements (weak, i.e., only few
candidates are excluded from the Pareto front, to strict, i.e., many candidates
are excluded). Table 1 shows the four different scenarios. The requirements are
modelled with our metamodel of QML [19]. For each scenario s ∈ {1, 2, 3, 4}, we
optimized the system once for each constraint handling technique c ∈ {C, G},
resulting in 8 optimization settings Sc

s, 1 ≤ s ≤ 4. As a baseline, we optimized
the system without constraint handling (setting S0).

For each of the 9 settings, the system is optimized using PerOpteryx. For
statistical validity, we ran the optimization 10 times for every setting (runs r,
0 ≤ r ≤ 9), so that in total, 90 runs rSc

s have been performed. To exclude
disturbing effects from differently generated random start populations, we ran-
domly generated 10 start populations with 20 candidates each, and used these
10 start populations to run every setting (so that the rth run of any setting A
starts with the same start population as the rth run of any setting B). Each
optimization was stopped after 200 iterations.

5.2 Evaluation Measures

To compare the performance of the different settings, quality indicators have
been suggested in the literature. Due to the trade-off nature of multi-objective
optimization, there is no single quality indicator that objectively assesses an
optimization run’s performance [21]. The coverage metric C(A, B) [22] is a useful
measure to compare two optimization runs A and B’s results independent of the
scaling of the objectives. However, the metric may be misleading if the Pareto
fronts overlap each other with varying distances to the true optimal Pareto
front. Additionally, both directions C(A, B) and C(B, A) have to be considered
to assess the difference of the fronts. To overcome both problems, we (1) measure
size of the dominated space S(A) [22] to assess the quality of each Pareto front
A separately and (2) modify the coverage metric C(A, B) to make it symmetric.
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Additionally, we include the quality bounds in the coverage metric, resulting
in the following definition: Let A and B be feasible, non-dominated sets2 and
Q ⊆ A∪B be the feasible, non-dominated set of A∪B. The coverage metric C∗

is defined as C∗(A, B) := |A∩Q|
|Q| (∈ [0, 1]). If C∗(A, B) > 0.5 then A is considered

better than B because A has a higher contribution to Q than B.
The size of the dominated space S(A) measures the volume (in the three

dimensional case) of the objective space weakly dominated by a Pareto front A.
For minimisation problems, this measure requires a reference point to define the
upper bounds of this volume. Here, we use the quality of service bounds and
thus measure the size of the feasible space covered by A: S∗(A). For setting (4),
which does not define upper bounds for response time and POFOD, we use the
maximum values in all evaluated candidates of all runs as the upper bounds.
Because the scale of the objectives are very different (POFOD ranges from 0, ...,
1, costs from 500 to 3500), and different upper bounds are used in the different
settings, we normalize the objective values before determining the volume and,
as a result, we cannot compare the absolute volumes across different settings.

We analyse the coverage C∗ of optimization runs with constraint handling
over the basic optimization S0 and compare the size of the dominated space
S∗. We study the effect of the constraint handling separately for each scenario
1 ≤ s ≤ 4. To study the development of the optimization runs, we plot the
coverage measure over the course of the optimization, i.e. determine it for each
iteration 0 ≤ i ≤ 200, written as C∗(A(i)) for a run A. Similarly, we compare
the size of the dominated feasible space over the course of the optimization runs.
The size of the feasible space dominated by the basic approach is determined
anew for each scenario 1 ≤ s ≤ 4 with respect to the quality bounds of this
scenario. Then, for each scenario s and each method c ∈ {C, G}, we aggregate
the measures C∗(rSc

s ,
r S0(i)), S∗(rSc

s(i)), and S∗(rS0(i)) over all 10 runs r to
account for the indeterministic nature of the optimization.

5.3 Results

Figure 4 illustrates the result of the optimization run 0SC
3 with medium con-

straints using the constrained tournament method C. 7 Pareto-optimal candi-
dates that satisfy all three bounds were found and are marked with triangles.

We present the results in the following by scenario. Figures 5 and 6 show the
coverage measure and the size measure for scenario 1. The coverage measure is
around 0.5 in average over most of the iterations for both constraint handling
methods C and G. With both measures, thus, no improvement towards the basic
approach is visible. The size of the dominated feasible space grows similarly for
all approaches, too.

Figures 7 and 8 show the coverage measure and the size measure for scenario
2. For both the coverage measure and the size measure, the runs with constraint
handling start well (coverage > 0.5 and size larger than size of basic approach).
However, the basic approach catches up: At iteration 200, all approaches perform

2 In a non-dominated set, the elements are pairwise non-dominated (cf. [9]).
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Fig. 4. Result of an optimization run 0SC
3 with medium requirements s = 3 and the

constrained tournament method c = C

equally well (G has a slightly better coverage, C a slightly larger dominated
space, so none performs better than the other).

Figures 9 and 10 show the coverage measure and the size measure for scenario
3 with strict quality requirements. Here, we see an improvement of the search:
The coverage measure of method C is higher that 0.5 during all iterations, and
the size measure is significantly larger than for the basic approach, too. Method
G does not perform as well, even has a coverage < 0.5 at the beginning while
still having a better size measure than the basic approach.

Finally, figures 11 and 12 show the results for the common case of a budget-
only limitation. While both constraint handling method do not perform well
in the first 75 iterations, they catch up and provide better results in the last
iterations, both regarding coverage and size measure.

To summarise, we observe that the quality bounds have almost no effect in
lowly constrained scenarios 1 and 2. In scenario 3, the constrained tournament
method C performs well in both coverage and even more so regarding the size
of the dominated feasible space. The goal attainment method is less successful.
In scenario 4, both constraint handling methods perform well. We conclude that
using quality bounds to focus the search is only effective if a large portion of the
search space are excluded by the quality bounds, such as given in scenarios 3 and
4. In the two first scenarios, fewer solutions on the Pareto-front are infeasible,
so that the constraint handling is seldom used and thus cannot steer the search
well. Because it is not necessarily known in advance whether given requirements
are strict or lax, the constraint handling methods should always be used, as they
do not worsen the performance of the search.
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Furthermore, we examined after how many iterations type runs with con-
straint handling find solutions equivalent to the final result of basic approach
runs based on both quality indicators C∗ and S∗. For both indicators, we first find
the smallest j for C∗(rSc

s(j),r S0(200))= 0.5 or S∗(rSc
s(j)) > S∗(rS0(200)), then

we find the smallest i for C∗(S0(i), S0(200)) = 0.5 or S∗(rS0(i)) > S∗(rS0(200)).
In other words, we compare the runs with constraint handling with the earliest
iteration of basic approach runs where there is no change in solutions w.r.t. the
final iteration. We measure the relative time saving t = i−j

max(j,i) . As an exam-
ple, we compare 2Sc

s and 2S0 regarding the coverage C∗. 2Sc
s has an equivalent
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solution set than 2Sc
s(200) after 171 iterations. 2S0 has the last changes in the

solution set in iteration 192. Thus, the run with constraint handling found equiv-
alent results 192−171

192 = 10.9% faster.
Figure 13 shows the relative time savings for scenarios 1, 2, and 4. In scenario

3, too few solutions were feasible and Pareto-optimal at the end, so that a sensible
assessment of the time saving is not possible. We observe that for all scenarios,
the constraint handling methods can find an equivalent front faster than the basic
approach. The average time saving is 11.1% with respect to C∗ and 11.8% with
respect to S∗, and with the most time saving in scenario 4 with the constrained
tournament method (30.3% for C∗ and 21.0% for S∗, average 25.6%).

In further experiments [18], we have also studied to add lower bounds indicat-
ing that a quality values is good enough so that further improvement does not
bring additional benefit, i.e. that other quality properties should not be traded
off for more improvement of this value. However, we found that including such
lower bounds does not significantly improve the optimization performance, nei-
ther in isolation nor in combination with upper bounds as presented in this work.
Note that while we assume minimisation problems in this work, maximization
problems can be inverted and handled as well, so that minimal allowed values
are translated to upper bounds in our approach.
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6 Conclusion

This paper presents a novel extension of multi-criteria architecture optimization
to consider bounds for quality requirements so that the search can focus on
feasible regions of the search space.

We translate the quality requirements modelled in QML to constraints in an
optimization problem. Then, we use existing constraint handling strategies to
make the search focus on the feasible space. We compared the performance of
two constraint handling strategies, namely constrained tournament methods and
the goal attainment method, in several scenarios in a case study. We found that
constraint handling, especially the constrained tournament method, improves
the efficiency of the search if strict requirements are used, i.e. if a significant
portion of the objective space is defined to be infeasible. Additionally, we found
that the constrained tournament method was superior to the goal attainment
method in our setting.

With this extension, software architects can reduce the time needed to find
valuable solutions. Our extension found solutions in the interesting regions of
the objective space in average between 15% and 30% faster than the old, uncon-
strained approach for scenario 4 with strict requirements.

The application of this approach can be interesting in different phases of the
software architecture design process. First, the approach can be applied after
a first phase of creating an architecture with focus on functional requirements
(definition of components and interfaces). This architecture can be used as an
input for the optimization to improve the non-functional properties. Second, the
optimization could already be used to support decisions during the architectural
design: When making a more high level decision, the optimization can be used
to assess the potential of the different alternatives. Finally, by modelling more
high level decisions as transformations, these decisions could be included in the
optimization process as degrees of freedom, thus letting the optimization explore
different combinations of decisions.

As future work, we could investigate the effect of constraint handling if other
metaheuristic optimization approaches than NSGA-II are used. Additionally, we
plan to integrate quality attribute tactics into the search, to allow the search to
improve a given candidate using domain knowledge, e.g. by balancing the load on
the used servers to improve response time. In combination with bounds, tactics
could be used to more directedly steer the search towards feasible regions, which
could be especially beneficial in highly constrained problems.
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for their valuable feedback.
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The main objectives of this workshop are to organize common discussions within 
Model-base Engineering (MBE) and Robotics experts on how MBE can help robotics 
people and to share issues that robotics people have encountered with MBE. Current 
engineering approaches for robotic systems have indeed been demonstrated to be 
insufficient to bypass following constraints that robotics embedded systems are 
currently facing: 

•      the problem space is huge: as uncertainty of the environment and the 
number and type of resources available to the robot increase, the 
definition of the best matching between current situation and correct robot 
resource exploitation becomes overwhelming even for the most skilled 
robot engineer, 

•      the solution space is huge: in order to enhance robustness of complex 
robotic systems, existing cognitive methods and techniques need to 
exploit robotic-specific resources adequately. This means that the robotic 
system engineer should master highly heterogeneous technologies in order 
to integrate them in a consistent and effective way. 

One ideal process for developing robotic software components is to enable the design 
and implementation of highly complex and robust robotic systems to involve in less 
effort as possible. Robotics systems are complex and embedded ones; thanks to MBE 
that has already demonstrated its efficiency on complex and embedded systems. We 
expect MBE to be a real promising solution for the development process of robotics 
software and systems.  

Potentially, new MBE techniques have to be developed for robotics which can also 
be applicable to other domains. Since robotics is a very challenging domain, we are 
confident that new techniques may possibly open new way for Model Based 
Engineering. 
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Abstract. Coming from the Artificial Intelligence (AI) and Semantic Web 
(SW) circles, ontologies are used mainly to represent domains. The Model Dri-
ven Engineering (MDE) field gave birth to Domain Specific Languages to 
represent a particular technical domain. Abstracting from their uses, we consid-
er as many others researchers that ontologies and models are closer than their 
original fields could get to think. Furthermore, their building or development 
are facing the same problems. They are costly and need experts’ interviews in 
order to grasp specific knowledge and structure it. Likewise, ontologies and 
DSL can benefit from each other domains in reusing construction methodolo-
gies and even reusing knowledge modelled in another format. In this paper we 
first present the ontologies and DSL definition we use and some methodologies 
of development enabling the reuse of knowledge (as alignment, fusion). We 
then present how we propose to reuse the knowledge of a robotic ontology to 
develop robotic DSLs within the PROTEUS1 project in order to inject ready-
made domain information to the DSL. 

1   Introduction 

Following (Caplat, 2008), (Guizzardi, 2007), and (Gasevic, 2005), we consider on-
tologies and models/metamodels as highly close. To use both technologies with the 
best interests and find the connection points, we compare them on several criteria. 
The key connection points to use ontologies and models are about the abstraction 
levels that they represent (and then the necessary abstraction level to bind them) and 
more the applications and tools that are available for both technologies (and then 
check which are reusable or interchangeable). 

Observing DSLs and ontologies, the first noteworthy remark is on the build-
ing/development methodology that is identical. An ontology as a DSL can be 
built/developed through inquiry, domain survey and modelling. Then we postulate that 
for the same objective, we should find the same concepts represented (with different 
formats) and then that we can find equivalent items from the DSL to the ontology. 
                                                           
1 The PROTEUS project is a three-years funded by the French National Research Agency. 
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In order to check such hypothesis, we built in parallel, from the same use-cases and 
experts interviews robotic ontology and robotic DSL in the scope of the PROTEUS 
ANR Project. One of the DSLs is built from the PROTEUS ontology knowledge and 
the others from scratch. Here is only presented the development methodology of a 
Robotic Architecture DSL whose requirements are ontology based. 

In this paper, we first present a definition of ontology and DSL and their applica-
tion. In section 3, we then present our analysis grid and in the last section, we present 
how we propose to reuse the knowledge of a robotic ontology to develop robotic 
DSLs within the PROTEUS project in order to inject ready-made domain information 
to the DSL. 

2   Ontology, DSL: Some Definitions 

We first present a short state of the Art on ontologies and DSLs within the view 
adopted in the PROTEUS project. In the first part, we describe ontology as a structure 
of the data and in the second part, we describe the DSL (Domain Specific Language 
as a language designed for, and intended to be useful for, a specific kind of concern. 

2.1   Ontology 

The ontology is one of the favourite tools of the Semantic Web (SW). The SW pro-
poses different tools using normalized data or which helps structuring Web data and 
associating “semantics” to data. A syntactic layer is added to the data available on the 
Web and is claimed to be the semantic enrichment. It’s this layer which aims at ena-
bling a mutual machine-machine or man-machine understanding.  

Ontology is defined by (Gruber, 1993) as an explicit specification of a conceptuali-
zation. In (Gruber and Lytras, 2004), Thomas Gruber refines its definition of this type 
of Knowledge Base (KB) taking into account the necessary cooperation of experts of 
the domain to come to an agreement on the semantics, the ontological commitment: 
“Every ontology is a treaty – a social agreement – among people with some common 
motive in sharing” (p. 5). The process of negotiation is oriented toward the objective 
of the conceptualization more than towards its structure. T. Gruber strongly empha-
sizes the idea of a viewpoint carried by the ontology: 

“The ontology is a representation artefact (a specification), distinct from the world 
it models, and that it is a designed artefact, built for a purpose. […] I would try to 
emphasize that we design ontologies.” (Gruber et Lytras, 2004, p. 1) 

(Lassila and McGuinness, 2001) identify more or less formal ontologies and 
(Uschold and Grüninger, 1996) organize them according to their uses:  

- For human communication (not ambiguous ontology but informal); 
- For computer systems interoperability (exchange format); 
- For system design (formal encoding and metadata). 

We can define a formal ontology as a modelling of knowledge of the World. The 
knowledge is organized on a network of concepts. An ontology, then, consist in a set 
of definitions of basic categories (things, relations, properties) which enables to de-
scribe the things of the domain of interest, their properties and the relations the things 
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maintain among each others. Then, hierarchical relations (isa relations) or horizontal 
relations among concepts or instances are rigorously defined. The concept properties 
can have values in finite and predefined intervals and the strictly defined axioms im-
pose logical constraints enabling the control of logical inferences applicable on data 
(properties inheritance, transitive or inverse properties...). Via these inferences, new 
knowledge can be discovered. Despite this mechanism, domain experts and knowl-
edge engineers should be involved in the ontology building. 

Ontologies are used in several domains. In SW, each element is tagged. The tag is 
understood by software systems which enables their interoperability (as for Web Ser-
vices). These tags, normalized and understandable by Human and Software agents, 
give semantics to the Web. In Artificial Intelligence (AI), the ontologies can be used 
to mime human behaviours, as for example, human language with linguistic ontolo-
gies. In system design (Architecture, Engineering) the ontologies used are formal and 
propose a complex and rigid modelling of knowledge usable by software agents. 

The challenges on ontologies are improvements on knowledge sharing on the Web, 
systems interoperability, Man-Machine/Machine-machine communication and then 
step in ontology building (Buitelaar et al., 2005) and update (Cimiano and Völker, 
2005), use and reuse of ontologies (annotation (Handschuh and Staab, 2003), fu-
sion/merging/alignment (Noy and Musen, 1999)) and ontology language development 
(RDF (Brickley et al., 2004), OWL (McGuinness et al., 2004), Topic Maps (Biezun-
ski et al., 1999) etc.). 

T. Gruber considers that ontologies are always mixes of informal and formal parts. 
The ontologies that are said to be semi-formal are mainly informal and he finally 
concludes that “all practical ontologies are semiformal”. 

2.2   Domain Specific Language 

According to (Bezivin, 2004), initially, the objects technologies were supposed to be 
an integration technology as it was theoretically possible to take into account homo-
geneously, processes, rules, functions, etc., through objects. Nowadays, we return to 
less hegemonic vision where the different programming and management paradigms 
coexist and models are no more considered only as documentary or guiding means for 
a human activity of programming, but that they can be used to feed tools for software 
automatic production. The MDE is an integrated vision through DSL based on differ-
ent paradigms. Indeed, Metamodels and Models are used to ease the whole software 
lifecycle management, i.e. the code generation but also, integration and interoperabil-
ity, documentation generation and the automation of software applications deploy-
ment. The different levels of Models are represented by M0 - data level/instances, M1 
- model level, M2 - metamodel level, M3 - meta-meta-level. 

A Domain Specific Language is a formal language, and then a grammar, tailored to 
a specific application domain. It is then a metamodel at a notation level. Constructs 
and abstractions of the domain are offered within the language increasing its expres-
siveness in comparison to General Purpose Languages (GPL). A DSL (or its graphical 
representation, the DSML - Domain Specific Modelling Language -) is a textual rep-
resentation of a domain and enables the specification of a M1 - model in accordance 
with a defined metamodel (M2). The DSL enables to build and read a model. It adds 
symbols, represents the concepts of a metamodel and enables to handle them. 
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A model is an abstraction of the reality (as a Data-Base) and therefore is only a 
specific viewpoint on the reality.  

The metamodel (MM) is a self defining model and also underlies model(s) 
(whether explicitly or not). The MM establishes the concepts which are useful in a 
specific Domain of interest and the rules of use together. I.e. it defines the relations 
among the concepts in a distorted view of the situation which is to say according to a 
certain viewpoint of the domain.  

A large collection of M2 standard metamodels exists to represent specific domains 
(as well as UML profiles). They are sometimes coupled with specific tools enabling 
to tackle specific principles or methodology. The OMG proposes the MOF meta-meta 
language on which generic meta-languages (UML) as well as specific meta-languages 
are built (OMG, 2006). MOF enables to develop Domain languages (DSL) and UML 
enables to develop Profiles (as MARTE for Modelling and Analysis of Real-Time and 
Embedded Systems). Other metamodel implementations are available for BPMN 
(Business Process Model and Notation) or Information Management Metamodel 
(IMM) systems (SysML) for example2. 

The semantics of the Models is not straightforwardly available. It is more inherent 
to the use of the model (in reading it, transforming it, edit it, modify it…). I.e. the 
semantics are in the interpretation of a model and the rules applied to transform it 
(any rules of decoding/recoding). The rules enable to enrich, filter, add, specialize 
(and even « retro-engineered”) information of the model to generate another model. A 
semi-automated way for interpreting models is available through transformation lan-
guages as QVT (Query, Views, Transformation, (QVT, 2008)) or ATL (ATL, 2010) 
(Lemesle, 1998, and Bezivin, 2004). However, some constraint expression languages 
express semantics as they constrain the interpretation of the information. It is the case 
for the OMG standard OCL (Object Constraints Language) or through a verification 
tool as PRAXIS (Blanc, 2008). 

Even if DSL has for main requirement the proven consistency of the model, it ap-
pears that the same fundamental questions are posed in the two domains. What to 
model, how to model it, how to reconcile user needs and system requirements? But 
also, what does semantics means? What is granularity and what is viewpoint? How 
concepts evolve? Then we pose a number of criteria to compare ontologies and DSL. 
We present them on the next section. 

3   Ontology/DSL Comparison 

In order to fix the gain of using an ontology in comparison to building a DSL, we 
ordered our observation on a comparison grid between ontology and DSL. We present 
this grid here (Tab. 1) as well as other works on the ontology/DSL fusion or reuse.  

The main comparison criteria are the design domain, the building methodology, the 
application domain and the technologies and tools. Another comparison grid could be 
seen in the challenges described by (Walter et al., 2009) regarding 5 challenges, tool-
ing, language interoperability, formal semantics, learning curve and domain analysis 
(p.1). 

                                                           
2 The Catalog of OMG Modelling and Metadata Specifications is available at: http://www. 
omg.org/technology/documents/modeling_spec_catalog.htm 



 Integrating Ontological Domain Knowledge into a Robotic DSL 405 

3.1   Design Domain and Domain Design 

Ontology and DSLs are modelling means to represent a domain. They are used by 
designers of application in engineering field for the DSL and a more Artificial Intelli-
gence and Knowledge Engineering fields for the Ontology. They are meeting the 
needs of structuring data and information for application use. 

3.2   Building Methodology 

According to (Tairas et al., 2009), the ontology building methodology has clearer 
guidelines than the DSL development methodology. 

Some useful guidelines for ontology have been published by ((Biebow and Szul-
man, 1999), (Noy and Mc Guiness, 2001), (Gomez-Perez et al., 2003)). These  
building methodologies are usually supported by a tool (respectively, TERMINAE, 
PROTÉGÉ, ONTOWEB). Though, they are based on more informal principles of 
user needs/requirement gathering as described in RUP (Kruchten, 2001), (Passing, 
2006)), or in Object Oriented Design Methodologies in general. 

The basic iterative steps to build/develop an ontology/DSL are usually:  

1) Need and requirement phase: Find what are the users need (from experts, do-
main documents, definition of the use of the model, explanation of the busi-
ness processes of the users, and eventually, what’s reusable); 

2) Design phase: It’s a knowledge capture and structuring phase where the data 
collected is organized and structured to be useful within the model; 

3) Evaluation: the obtained model is evaluated to check whether it satisfies the 
specification requirements. 

For the DSL, the evaluation is based not only on the design result but also on the DSL 
support tools developed in an 4) Implementation phase, where the necessary tools for 
executable DSLs are developed (i.e. compiler or an application generator that trans-
lates DSL constructs in an existing language for example). 

This 4th phase is considered as differential in DSL vs. ontologies. The ontology 
support tools are not considered as part of the ontology design process. However, an 
ontology is not solely a KB; when it is used, it comes with a set of supporting tools as 
editors, reasoners, etc. 

The building of ontology and developing of DSL both consider as highly useful to 
reuse existing works. Then in the requirement phase, reusable DSLs or ontologies are 
envisaged. Several integration methodologies have been developed in the both fields. 
(Pinto and Martins, 2000), describe several types of integration reusing an existing 
ontology to build a new one.  

1) Integration enables to easily collate large ontologies and to reconcile several 
knowledge sources in keeping their autonomy; 

2) Merging integration enables to create a unique and consistent ontology; 
3) Alignment/Mapping integration is done by creating links among ontologies 

which often have a complementary coverage of a broader domain. 
(Mernick et al, 2005) identify three patterns of design based on an existing  
language:  
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• Piggyback domain-specific features on part of an existing language; 
• Specialisation by restricting an existing language; 
• Extension: by extending an existing language with new features. 

Here are two ways of considering the reuse of existing data but that can be equally 
used in any type of models. 

3.3   Application Domain 

As for their origin, ontology and DSL are models used for different application. We 
mainly recover ontologies in AI application (Classification, Knowledge Base,  
Dictionaries, and Natural Language Generation) or Web application (Automatic Anno-
tation, Web-Services Orchestration). DSL are found in engineering fields as Systems 
modelling, Code Generation, Functional and non-functional verification, Simulations… 

As their applications are different, their design goals are different. They mainly dif-
fer on the automation, security and robustness level they should provide when encap-
sulated in the final application. 

3.4   Technologies and Tools 

A lot of applications are affiliated to DSL and ontologies but in two main different 
ways. We then consider some Specification tools or Meta-tools, used to design/build 
the (Meta-)models, vs. end-use tools. 

The specification tools are on the order of Design tool: Editor, Modeller, Ontology 
GUI, ontology editor, development framework, model composition tool, development 
graphical environment, inference engine or Consistency tools: Model checker, reason-
ing engines… The end-use tools are on the order of an orchestration engine based on 
an ontology, a Web GUI adapting to the concept of the user, the simulation engine 
playing a model… They are not specifically based on an ontology or a model and it is 
on these technologies that we can test the coverage and the semantics abilities of DSL 
and ontologies modelling the same domain for example. 

3.5   Rationale for the Use of Ontology in the Design Process of DSLs 

Several works have used ontologies for their semantic or structural complementarity 
with DSLs (with the limitations underlined in the previous section). Two main types 
of ontologies are referred; (1) the ontology as the explicit specification of a conceptu-
alization (Morin et al., 2009), (Walter, 2009) and (2) the Ontology as the metaphysi-
cal study of the nature of being and existence (Kurtev, 2007). (Kurtev, 2007) is  
designing a meta-language (OGML) based on the metaphysical principles of Ontol-
ogy. It results in a high-level DSL close to the formal ontology metamodels. (Morin et 
al., 2009) and (Walter, 2009) are combining the ontologies with DSL at a meta-level 
to extend the coverage of a DSL (Walter and Ebert, 2009) or to integrate a variability 
viewpoint straightforwardly in a DSML (Morin et al., 2009). In the PROTEUS pro-
ject, the ontology as (2) is firstly used to represent the domain, i.e. inferring informa-
tion from a KB that complements with the Architecture DSL and then to develop the 
DSLs, i.e. as a representation of experts’ knowledge. 
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Table 1. Ontology/DSL Comparison grid  

Comparison 
criteria

Ontology DSL

Design 
Domain

Knowledge Engineering Engineering in general (Computer 
science engineering, System 
engineering, Electronics - for
example: real time embedded 
systems, robotic systems, avionics
systems-)

Building / 
Development 
Methodology

Ontology Building
User need and requirements 
capture
Reuse possibilities
Domain knowledge and 
structuring relations
Evaluation

DSL development
User need and requirements 
capture
Reuse possibilities
Domain knowledge and 
structuring relations
Implementation of executable 
DSL tools (i.e. a compiler or 
translator, …)
Evaluation

Application 
Domains

Classification, Automatic 
Annotation, Web-Services 
Orchestration, Knowledge Base, 
Dictionaries, Natural Language 
Generation, …

Systems modelling, Code 
Generation, Functional and non-
functional verification, 
Simulations, …

Technologies 
and Tools

Ontology GUI, inference engine, 
ontology editor, reasoning 
engines, …

DSL development framework 
(AMMA, Eclipse GMT,…), 
Modeler, model composition tool, 
DSL development graphical 
environment (DSL Toolkit 
Microsoft, Papyrus,…), Code 
generator, Model checker, 
transformation languages 
(ATL,…),…

Format
RDF, OWL, Topic Maps,… MOF, EMF, EMOF, CMOF, 

SMOF,…
 

4   On the Use of Ontology for the Development of the PROTEUS 
DSLs 

4.1   The Proteus Project 

In (PROTEUS, 2009), the robotic market is described as existing and going on grow-
ing at a fast pace. It is then of utmost importance to help French industries have their 
share of it. The PROTEUS project (Plateforme pour la Robotique Organisant les 
Transferts Entre Utilisateurs et Scientifiques meaning Robotic Platform to facilitate 
transfer between Industries and academics) goal is to create a portal for the French 



408 G. Lortal, S. Dhouib, and S. Gérard 

robotic community. Such a portal, to be of use, will be constituted of many parts and 
one key point is a toolset, the technological part of the platform. 

The PROTEUS platform will enable to gain new skills in order to create or  
improve new products, new process or new services by providing easier way to col-
laborate inside a community. The software created through the project will include 
components and architecture description allowing its users to create complex systems 
where they should be able to assess and validate generic software technologies. 
Moreover, the link to real robots will allow these generic technologies to be inserted 
in hardware. 

The shared infrastructure provided will take into account the definition of the so 
called standardized robot architecture for some specific domain as well as generic 
capabilities through the use of formal representations associated with generator tools. 
The platform should enable the community to use real robots operated by end‐users in 
order to directly assess its achievements (e.g. cognition and control algorithms) onto 
real industrial robots. The software‐oriented considerations are taken into account 
through tools facilitating knowledge transfer, executable environments creation, and 
methodologies to make these enabling resources easily exploitable by diverse and 
numerous adopters of the community. The work to be done on this axis will be to 
provide a minimal formal language to support the description of scenarios and model 
integration facilities (model means here an external component, either stand alone 
components or library of components that that provides access point and capability to 
be externally sequenced) and open simulation architecture. 

The robotic fields considered are restricted to mainly aerial and terrestrial robotic 
as well as considerations on humanoid robotic. 

4.2   The PROTEUS Robotic Ontology 

The robotics ontology within PROTEUS is seen as a tool for modelling and analyzing 
robotic systems. Development, test and validation of embedded systems like mobile 
robots involve different knowledge domains. A robot’s physical structure and control 
software are designed in order to fulfil a given type of missions. Testing the robot’s 
functionalities needs a model of a robot as well as a model of its nominal environ-
ment. Ontologies can be used to do this modelling and validate it (PROTEUS, 2009). 

The ontology has been built from the knowledge of robotics experts involved in 
different sub-domain of the field. Their expertise concerns the following domains: 
command, control, perception, navigation, localization, traffic control, optimization, 
mission planning to simulation. To share their knowledge and models it, the experts 
have been brought together in modelling meetings. Their exchanges were supported 
by the description of scenario representing the use of their field within the autono-
mous systems domain. 

From these modelling meetings the requirements of the Robotic ontology in PRO-
TEUS were described. The Robotic ontology should be able to model the mechanical 
and electronic component models, as well as control architectures, consistency detec-
tion systems and simulators, database of components, control tasks or complete sub-
systems. The ontology should help modelling different versions of a given robot and 
follows its evolution. As it comes to model the robot’s behaviour, its ability to  
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perform the missions for which it was designed; there is also a need for modelling its 
environment and its mission in urban area (PROTEUS, 2009). 

The resulting OWL DL ontology (in its primary version) consists of 205 concepts 
linked with 73 relations (OWL properties). A screenshot of this ontology is presented 
in Fig.1. The ontology is organized around a kernel ontology describing the main 
concepts of the field and extended with several sub-domain ontologies describing the 
following topics: Robotic Components, Information, Mission, Environment, and 
Simulation.  

This first version of the robotic ontology has been validated by the industrial users 
involved in the PROTEUS project but extensions’ refinement is planned for the fol-
low-up of the PROTEUS project. 

In the PROTEUS project, the ontology is used not only to represent the domain 
and to develop the Robotic Architecture DSL as presented in this paper, but also to 
validate DSLs manually developed on Communication and Algorithm. 

And then it is also plan to use this ontology: 

1) To normalize the robotic domain;  
2) To support inference at run-time; 
3) To automatically transform Ontology in DSL. 

 

Fig. 1. Screenshot of a part of the kernel ontology 

4.3   From PROTEUS Ontology to PROTEUS DSLs 

4.3.1   Rationale of the Ontology Use in the Architecture DSL Design Process 
The methodology we followed in PROTEUS is described in Fig.2. We show the DSL 
design process that integrates the ontology. The design process consists in four steps: 
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1. The requirements of the DSL are gathered from both following sources: in the 
one hand from the ontology and in the other hand from the state-of-the-art on 
DSL for robotics systems. 

2. Building the domain model of the DSL: The purpose of the domain model is 
to describe formally the concepts of the domain. The domain model will be 
described by the means of one or more class diagrams, as well as in the form 
of textual descriptions. 

3. Domain model verification: this step is intended to verify that the aforemen-
tioned domain model is covering all the requirements expressed in the first 
step. 

4. UML/textual representation: An alternative for the specification of a DSL is 
the use of UML, which is a widely known modelling language that has a lot of 
support tools (Giachetti et al., 2009). Another alternative is a textual represen-
tation of the DSL. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Integrating the ontology in the design process of the DSL  

The ontology is involved in the steps 1 and 2 of the DSL design process. Indeed, 
the first requirement of the DSL is to correspond to domain concepts defined in the 
ontology. The other requirements, coming from the ontology, are derived from this 
one. From the ontology, we extract all the concepts that are specific to the domain. 
Those concepts are then filtered to retain only the relevant ones for the DSL. On the 
other hand, if some concepts are missing in the ontology, they are added to the do-
main model of the DSL. 

1. DSL Requirements 

2. Domain Model 

3. Domain Model Verification 

Ontology 

State of the art on 
DSLs for robotics systems 

4. UML/textual Representation 
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Table 2. Mapping the ontology to the DSL domain model 
 

Ontology (OWL) Domain model (UML class diagram) 
Concept Class 
subClassOf Generalization 
Property Association 
Property:IsA Inheritance 
Property:HasA Composition 
Cardinality Multiplicity  
 
The table 2 shows the transition from the ontology, written in OWL DL language, 

to the DSL domain model specified as a UML class diagram. OMG also proposes the 
ODM (Ontology Definition Metamodel) which defines a set of QVT mappings from 
UML to OWL (IBM et al., 2009). Only the automatic transformation from UML to 
OWL is implemented, the transformation from OWL to UML is not implemented yet. 
So we have not taken advantage of the ODM project to make the transition from 
OWL to UML. 

4.3.2   Architecture DSL Development on Robotic Ontology Based Requirements 
One of the objectives of the PROTEUS project is to provide domain specific lan-
guages (and related tools like editors, consistency checkers, etc ...) suitable to specify 
missions, environments and robot behaviours that have been specified by robotics 
experts involved in the project. The discussions under the PROTEUS project have 
lead to the decision of defining three DSLs: 

1. The "Architecture DSL" which will ease the definition of specific robotic ar-
chitectures (reactive, deliberative, hybrid) and specific components that form 
those architectures (sensors, actuators, planners).  

2. The "Control & Communication DSL" that will control the robotic compo-
nents and will ease the definition of communication mechanisms between 
components (sending/receiving of events and data). 

3. The "Algorithms DSL" that will ease the definition of algorithms which are 
to be used, triggered with the “Control & Communication DSL” for imple-
menting behaviours in the different components of an architecture described 
with the “Architecture DSL”. 

To assist the development of the PROTEUS DSLs, we have used the ontology pre-
sented in section 3.2 to build the domain model of the DSLs. In this section, we only 
present the case of the "Architecture DSL".  

The main entry of the design process of PROTEUS DSLs is the ontology presented 
in section 3.2. As stated before, the ontology is organized around a kernel ontology 
and extended with several sub-domain ontologies describing the following topics: 
Robotic Components, Information, Mission, Environment and Simulation. 

From this ontology, relevant concepts related to robotic architecture are extracted. 
In table 3, we list some of those relevant concepts: 
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Table 3. Subset of concepts extracted from the PROTEUS ontology 

Concept Ontology Source Concept Ontology Source

Component kernel WeaponHardware components

SoftwareComponent Kernel PowerHardware components

HardwareComponent Kernel SensorHardware components

Environment kernel EnvironmentParameterSensor components

ActuatorHardware components ImageSensor components

PhysicDevice components LocalizationSensor components

MotorizationHardware components ObjectDetectionSensor components

PrehensionHardware components ObjectTrackingSensor components
 

From the set of concepts that we have associated to the domain model of the "Archi-
tecture DSL", we have eliminated some concepts that are not relevant for the defini-
tion of the DSL. For example, the concept "Architecture" is too general and is useless 
for the specification of a robotic architecture. 

On the other hand, we have noticed that there are some missing concepts that have 
to be added to the domain model of the DSL. For example, concepts such as "Com-
putingHardware" and "StorageHardware" are not contained in the first version of this 
ontology and are compulsory for an Architecture DSL. 

5   Conclusion 

In this article, we have presented a methodology for reusing ontologies in the devel-
opment process of domain specific languages. The methodology is used in the case of 
the PROTEUS project and has lead to the definition of the specification requirements 
for the Robotic Architecture DSL of PROTEUS. The algorithm DSL and the con-
trol/communication DSL will be developed from scratch but a comparison methodol-
ogy will be set up for validation on the ontology. 

As an ontology is used more to classify things of the World and DSL are more 
used to build engineering artefacts, another work to be done is to handle an ontology 
guided approach to delimitate the borders of these three DSLs from the ontology. Is 
there tracks in the ontology model of the design viewpoint of the architect? Is it pos-
sible to delimitate the scope of the architecture viewpoint? Isn’t a DSL an engineering 
viewpoint on a larger domain in itself?  
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