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Abstract—Four different time-frequency representation 

(TFR) techniques were tested on synthetic wheezes to deter-

mine the best one in order to analyze the time-frequency 

course of this kind of continuous adventitious lung sounds 

(LS). The best TFR may be help to gain a deeper understand-

ing of the genesis of the wheeze and its relation with lung dis-

eases. In this study, the Spectrogram was included as the clas-

sical analysis tool in the field but it has disadvantages when 

working with nonstationary signals. We also include the Reas-

signed Spectrogram, the TFR obtained via the Time-Varying 

Autoregressive Modeling (TVAR), and the more recently de-

veloped the Hilbert-Huang Spectrum based on Empirical 

Mode Decomposition (EMD). Since the theoretical TFR of a 

synthetic wheeze is known beforehand, performance mea-

surements can be obtained and used to select the appropriate 

TFR. Performance indexes are based on both the TFR image 

as well as signal approaches. According to the performance 

indexes, the Hilbert-Huang Spectrum was the best TFR with ρρρρ 

equals to 0.9247, ρρρρmean of 0.9521, NRMSE of 0.0601 and resTF 

of 2.47x10-6 . Finally, the Hilbert-Huang Spectrum (HHS) was 

applied to real wheezes acquired from diffuse interstitial 

pneumonia patients. TFR with both HHS and Spectrogram 

were contrasted to point out the meaningful differences. 

Keywords— Time-frequency analysis, empirical mode decom-

position, respiratory sounds, adventitious lung sounds,              

wheezes. 

I. INTRODUCTION  

Continuous adventitious lung sounds considered in this 

work are the so-called wheezes. According to the Computa-

rized Respiratory Sound Analysis (CORSA) guidelines [1], 

a wheeze is acoustically characterized by a periodic wave-

form with a dominant frequency commonly higher than 100 

Hz with duration greater than 100 ms and they can be mo-

nophonic or polyphonic. Physiopathological mechanisms 

that explain the genesis of wheezes are not well understood. 

In line with the fluid dynamic flutter theory [2], whezees are 

produced by airway walls vibration and gas airflow. Walls 

oscillations start when gas velocity inside airways reaches a 

critical value given by dimensions and mechanical proper-

ties of airway walls and mechanical properties of the gas.  

In time domain, the Time Expanded Waveform Analysis 

(TEWA) of wheezes has shown that they possesses sinu-

soidal deflections and continuous undulations [3]. While in 

frequency domain, description of this sound is classically 

done by computing their spectrums with a FFT algorithm. 

Additionally, autoregressive modeling (AR) has also been 

used. 

The first time-frequency representation (TFR) of wheez-

es was done using the sound spectrograph [4]. Later, suce-

sive spectrums obtained via the FFT where plotted showing 

that this method is useful to follow changes in wheezes 

parameters as frequency and duration during medical treat-

ment [5]. Since then, TFRs have also been used for auto-

mated analysis; the spectrogram [7] is included as the clas-

sical tool in the field of respiratory sounds, as well as others 

as AR modeling [6] and the continuous wavelet transform 

[8]. Although the importance of TFRs of wheezes, there 

have not been questioning about if the classical spectrogram 

is the best TF technique for analyzing this adventitious lung 

sound or if another more recent developed technique per-

forms better allowing to extract information more accurate-

ly and even, providing better understanding of its genesis. 

According to the former idea, we propose to compare the 

performance of four time-frequency representations (TFR) 

techniques, including the classical tool, with the help of 

synthetic sounds. Later, the best TFR is applied to real ac-

quire wheezes to contrast the results and point out meaning-

ful differences. 

II. TIME-FREQUENCY REPRESENTATIONS TECHNIQUES 

 The existence in nature of signals with a time-varying 

spectrum, leads to the requirement of a function that allows 

us to determine which frequencies of the signal are present 

at certain time, such signal-dependent function is a time-

frequency representation.  

 

A.  The Spectrogram 

 The spectrogram of a signal s(t) is given by the square 

magnitude of its Short-Time Fourier Transform as [9] 
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where h(t) is a temporal window used to enhance the signal 

information around time t. However, h(t) implies a tradeoff 

between localization in time and frequency, dependency 

that is supported by the uncertainty principle. Temporal 
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windows used for the spectrogram computation are the 

same for harmonic analysis [10].  

 

B.  TVAR Modeling and Instantaneous Power Spectrum.  

 For a discrete stochastic process {s(n)} the TVAR 

model is given by 
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where M is the model order, the set {ak(n)}k=1,...,M are the 

TVAR coefficients at time index n, {s(n-k)}k=1,...,M  represent 

past samples of s(n), and {v(n)} is a white noise process. 

Among the several procedures to estimate the AR coeffi-

cients, the Burg algorithm is one of the most used. This 

method is based on the minimization of the sum of the for-

ward and backward errors of the lineal prediction filters, 

subject to the constraint that the AR coefficients satisfy the 

Levinson-Durbin recursion to ensure a stable system [11]. 

After estimating the TVAR parameters for all signal extend, 

the TFR can be computed by 
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where σ2
 represents the variance of model error at time n. 

 

C.  The Reassigned Spectrogram. 

 The reassignment method was introduced to increment 

the energy concentration of signal’s components in the 

spectrogram and later on, it was reintroduced and extended 

to more distributions [12]. One can express the SP of a 

signal s(t) as the 2D convolution between its Wigner-Ville  

distribution (WVD) and the WVD of a temporal window 

h(t). Here, the WVD of h(t) delimits a time-frequency do-

main around (t,ω), where a weighted average of the values 

of the WVD of s(t) is obtained. In the reassignment method, 

each value obtained for (t,ω) is moved to another point 

(t’,ω’), the center of gravity of this domain, which is more 

representative of the signal’s energy location in the neigh-

borhood of (t,ω) to produce the reassigned spectrogram 
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whose value at any point (t’,ω’) is the sum of all the spec-

trogram values reassigned to this point. 

 

D.  The Hilbert-Huang Spectrum. 

 Huang et. al. developed the empirical mode decomposi-

tion (EMD), a technique for processing nonstationary and 

nonlinear signals [13]. This decomposition is based on iden-

tify and extract the intrinsic oscillatory modes of the signal 

s(t), the so-called IMFs, through its characteristics time 

scales and directly from the original data via a sifting 

process. After this sifting process, s(t) can be represented as 
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where N represents the number of extracted IMFs, and rN(t) 

can be interpreted as the residue component. Due to local 

conditions imposed on each IMF, it is possible to obtain 

without ambiguity its associated analytical or complex sig-

nal z(t), and then their amplitude and phase by 
)()()}({)()( tjetAtIMFjHtIMFtz ϕ=+=          (6) 

where H{•} corresponds to the Hilbert transform, A(t) is the 

instantaneous amplitude, and ϕ(t) is the instantaneous phase 

of each oscillatory mode. The instantaneous frequency fi(t) 

can be obtained using Ville’s definition, consequently, the 

signal s(t) can be represented by  
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Equation (7) can be interpreted as a generalization of the 

Fourier expansion of s(t). Now, amplitude and frequency 

are time-dependent functions, allowing to obtain a TFR 

called the Hilbert-Huang Spectrum denoted as HHS. 

III. METHODOLOGY 

A.  Synthetic Wheezes 

 Wheezing sound simulation was done by generating a 

waveform similar to those found in non-healthy subjects 

and that satisfy CORSA standards. We simulated a mono-

phonic wheeze with a central frequency of 275 Hz and dura-

tion of 130 ms by  
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where A(t) is the amplitude modulation function, and f0 is 

the frequency of the pitch. Different authors have used a 

Hamming function as the amplitude modulation function. 

The sampling frequency was set to 5 kHz. The resulting 

wheeze waveform and its ideal or theorical TFR, produced 

by mapping A(t) and f0 functions to an image, are shown in 

figure 1. 

 

 B.  TFRs Performance Measurements. 

 The ideal TFR of the synthetic wheeze in Fig. 1(b) 

offers a reference to compare the performance of the pre-

viously introduced TFRs and to select the best TFR to ana-

lyze real acquired wheeze sounds.  

 

Fig. 1 Synthetic continuous adventitious lung sound. a) Wheeze time 

waveform. b) Ideal TFR, the number of frequency bins was fixed at 

512 
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B.1. Central 2D Correlation 

 This index is given by 
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where TFRe(l,k) corresponds to the ideal TFR, TFRd(l,k) 

corresponds to the estimated TFR for each technique, and l 

and k represent the discrete time and frequency indexes, 

respectively [14]. This index was used in two ways: 1) in a 

global way, i. e., applying the former equation directly con-

sidering the TFR as a complete image, and 2) in a local way 

dividing the TFR in sub-images and then, computing an 

average value ρmean to asses local behavior. A correlation 

index value closer to one is associated with the best perfor-

mance. 

 

B.2. NRMSE 

 It is possible to estimate the instantaneous frequencies 

of a signal by means of the first moment of its TFR. Then, 

the relative error index is defined as  
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where IFd(l) and IFe(l) correspond to the instantaneous 

frequencies obtained from the ideal and estimated TFR, 

respectively, and l represents the discrete time index. Ac-

cording to the former definition, the TFR with the minimum 

value of NRMSE is associated with the best performance.  

 

B.3. Time-Frequency Resolution Index 

 This index measures the energy concentration or resolu-

tion of the estimated TFRs, and is given by 
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 where TFRe(l,k) corresponds to the estimated TFRs by each 

TF technique, N represents the number of time and frequen-

cy samples in the TFR, and l and k represent the discrete 

time and frequency indexes, respectively [14]. The mini-

mum resTF value implies the TFR with best performance. 

 

C.  Computation of TFRs 

 In general, there is a tradeoff in performance for a TFR 

that depends on different parameters as for the Spectrogram. 

This tradeoff is non trivial and requires a prior knowledge 

of the theoretical signal TF distribution. Fortunately, we 

possess the ideal TFR of the synthetic wheeze. Consequent-

ly, the TFRs were computed and compared for different set 

of parameters, as shown in table 1, and the best one for each 

technique was selected according to the performance index 

ρmean for a final comparison between different TFRs. Each 

TFR, including the ideal one, was normalized with respect 

to their maximum and minimum values to produce an inten-

sity image in the interval [0,1]. 

 

D.  Real acquired wheezes 

  Wheezes sounds were selected from a database created 

by the digital signal and image processing laboratory of the 

Universidad Autónoma Metropolitana at Mexico City; the 

multichannel acquisition system is described in [15]. Partic-

ularly, wheezes were obtained from diffuse interstitial 

pneumonia patients from the National Institute of Respirato-

ry Diseases (INER) at Mexico City. Patients were asked to 

breathe at a maximum airflow of 1.5 L/s, and the breathing 

maneuver was controlled by a physician, including an initial 

5 s period of inspiratory apnea followed by 5 s of breathing 

and a final 5 s period of expiratory apnea. Afterward FIR 

digital filtering, temporal windows including wheezes were 

visually extracted and finally, they were processed by the 

selected TFR technique.  

IV. RESULTS 

 The parameters of selected TFRs for the synthetic 

wheeze are shown in table 1 along with their corresponding 

performance indexes. The corresponding selected TFRs of 

synthetic wheeze are shown in figure 2. 

Table 1. Sets of parameters used to compute the TFRs and performance indexes  

TFR Set of parameters used Parameters selected ρρρρ ρρρρmean NRMSE resTF 

SP 
Window type 

Window length 

Rectangular, Hamming and Blackman-Harris. 

9 linearly equidistant values in [13 - 65] ms. 

Hamming  

65 ms 
0.5300 0.8851 0.0074 0.0029 

PBURG 

Model Order 
Window type 

Window length 

[2 - 5]. 
Hamming and Blackman-Harris. 

9 linearly equidistant values in [13 - 65] ms. 

M=4 
Hamming  

65 ms 

0.4564 0.8798 0.0199 0.0048 

SPR 
Window type 

Window length 

Rectangular, Hamming and Blackman-Harris. 

9 linearly equidistant values in [13 - 65] ms. 

Hamming  

13 ms 
0.8821 0.9163 0.1400 5.83x10-5 

HHS - - - 0.9247 0.9521 0.0601 2.47x10-6 
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V. DISCUSION 

 According to the performance indexes, and as expected 

by visual inspection, HHS results the best TFR technique 

for the continuous adventitious lung sound, having the best 

performance achieving three of four indexes. Then, HHS 

technique was applied to real acquired wheezes. An exam-

ple is shown in figure 3 where the Spectrogram is compared 

with the HHS. As can be seen, the HHS shows a time-

varying spectral behavior that is lost in the Spectrogram due 

to the HHS improved TF resolution. 

VI. CONCLUSIONS 

 HHS, based on empirical mode decomposition, offers a 

better TF resolution compared with the classical spectro-

gram to analyze continuous adventitious lung sounds. This 

improved resolution revealed for real wheeze certain time-

varying spectral behavior that could help to understand in a 

better way the physiological genesis of this kind of lung 

sounds.   
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Fig. 2 Selected time-frequency representations for the syn-

thetic wheeze according to criteria in equations (9)-(11)

Fig. 3 Real acquired wheeze. a) Time waveform.                       

b) Spectrogram, Hamming window of 65 ms. c) HH Spec-

trum, smoothed version 
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