
Chapter 2 
Service Grid Architecture 

Yohei Murakami1, Donghui Lin1, Masahiro Tanaka1, Takao akaguchi2,  
and Toru Ishida3 

1 National Institute of Information and Communications Technology (NICT), Language Grid 
Project, 3-5 Hikaridai, Seika-Cho, Soraku-Gun, Kyoto, 619-0289, Japan, e-mail: {yohei, 
lindh, mtnk}@nict.go.jp 

2 NTT Advanced Technology Corporation, 12-1 Ekimae-Honmachi, Kawasaki-Ku, 
Kanagawa, 210-0007, Japan, e-mail: takao.nakaguchi@ntt-at.co.jp 

3 Department of Social Informatics, Kyoto University, Yoshida Honmachi, Sakyoku, Kyoto 
606-8501 Japan, e-mail: ishida@i.kyoto-u.ac.jp 

Abstract The Language Grid is an infrastructure for enabling users to share lan-
guage services developed by language specialists and end user communities. Us-
ers can also create new services to support their intercultural/multilingual activi-
ties by composing language services from a range of providers. Since the 
Language Grid takes the service-oriented collective intelligence approach, the 
platform requires the services management to satisfy stakeholders’ needs: access 
control for service providers, dynamic service composition for service users, and 
service grid composition and system configurability for service grid operators. To 
realize the Language Grid, this chapter describes the design concept and the sys-
tem architecture of the platform based on the service grid. 

2.1 Introduction 

Although there are many language resources (both data and programs) on the 
Internet (Choukri 2004), most intercultural collaboration activities still lack multi-
lingual support. To overcome language barriers, we aim to construct a novel lan-
guage infrastructure to improve accessibility and usability of language resources 
on the Internet. To this end, the Language Grid has been proposed (Ishida 2006). 
The Language Grid takes a service-oriented collective intelligence approach to 
sharing language resources and creating new services to support their intercul-
tural/multilingual activities by combining language resources.  

In previous works, many efforts have been made to combine language re-
sources, such as UIMA (Ferrucci and Lally 2004), GATE (Cunningham et al. 
2002), D-Spin (Boehlke 2009), Hart of Gold (Callmeier et al. 2004), and CLARIN 
(Varadi et al. 2008). Their purpose is to analyze a large amount of text data by lin-
guistic processing pipelines. These pipelines consist of language resources, most 

 19
, DOI 10.1007/978-3- - - _ ,

 © Springer-Verlag  Berlin Heidelberg 2011  

T. Ishida (ed.), The Language Grid: Service-Oriented Collective Intelligence for Language
Resource Interoperability Cognitive Technologies, 642 21178 2 2



of which are provided as open sources by universities and research institutes. Us-
ers can thus collect language resources and freely combine them on those frame-
works without considering other stakeholders. 

Different from the above frameworks, the purpose of the Language Grid is to 
multilingualize texts for supporting intercultural collaboration by service work-
flows. A workflow combines language resources associated with complex intellec-
tual property issues, such as machine translators, parallel corpora, and bilingual 
dictionaries. These resources are provided by service providers who want to pro-
tect their ownership, and used by service users who need a part of the resources. 
Therefore, the Language Grid must coordinate these stakeholders’ motivations. 
That is, it requires language service management to satisfy the following stake-
holders’ needs as well as language service composition for service users.  

 Protecting intellectual properties of resources: Some service providers can 
agree on providing their services if they can retain ownership of their resources 
and specify the extent that service users utilize the services. For detecting frau-
dulent usage, they also want to know what their service is used for. 

 Utilizing necessary services when needed: Service users want to utilize neces-
sary services when needed, but not own the resources. Moreover, they may 
want to customize composite services for their goals by freely combining ser-
vices. 

 Configuring platform according to operation models: Operators create various 
operation models to meet stakeholders’ needs. To fit their platforms to their op-
eration models, they need to optimize system configuration. In addition, by 
connecting their platforms, they want to allow service users to share and invoke 
services on other platforms. 

The above requirements are not only inherent in the Language Grid and lan-
guage resources, but in any system composing services provided by others. Here 
we call the platform to share and compose services provided by different providers 
as the service grid, and design the service grid architecture. The service grid is a 
general platform independent of specific service domains so that it can be applied 
to a specific domain by defining services specific to the domain. For example, the 
Language Grid is a service grid specific to the language resource domain. Firstly, 
based on these requirements, this chapter clarifies functions that the service grid 
should provide, and explains its design concept and system architecture. Further-
more, we validate the service grid architecture by using it as basis for constructing 
the Language Grid. 

2.2 Design Concept 

The purpose of the service grid is to accumulate services and compose them. To 
realize the service grid, system architecture should be designed to satisfy different 
requirements from the stakeholders. Therefore, this section summarizes require-

20 Y. Murakami et al. 



ments of each of the stakeholders, and clarifies the required functions of the ser-
vice grid. 

2.2.1 

Service providers demand prevention of data leaks and fraudulent usage of re-
sources because the resources represent intellectual properties. Specifically, the 
service providers want to deploy their services on their servers and provide their 
services following their provision policies, but not publish their resources under a 
common license, like Wikipedia. Furthermore, to check whether service users em-
ploy their services properly, they may want to know when their services are ac-
cessed and who accesses them.  

On the other hand, service users prefer flexibility in customizing services and 
convenience in invoking the services to acquiring ownership of the resources. This 
is because they want to concentrate on developing application systems by reduc-
ing the resource maintenance cost. Specifically, they need to access the services 
through standard Web service technologies over HTTP. Moreover, they also need 
to create composite services freely and change service combinations. 

Finally, service grid operators require flexibility of system configuration so that 
they can adapt the configuration to stakeholders’ incentives. For example, the op-
erators operate the service grid on a single cluster of machines by collecting ser-
vices if the provision policies of the services are relaxed. Meanwhile, they operate 
the service grid in a distributed environment by deploying services on each pro-
vider’s server if the provision policies of the services are too strict. In the former 
case, the operators place high priority on performance of services. In the latter 
case, they put priority on resource security. Further, they may want to expand 
available services by allowing their users to access services on other service grids. 

2.2.2 

The service grid platform should provide the following functions extracted from 
the stakeholders’ requirements in the previous subsection. 

(1) Service access control and monitoring: Service providers can set out their 
provision policies defining the terms of service use, and the platform con-
trols access to the services according to these policies. For instance, re-
strictions on users who may be licensed to use the service, on the purpose 
for which the service may be used, and on the number of times the service 
may be accessed, the amount of data that may be transferred from the ser-
vice, and so on. Furthermore, the platform accumulates service request 
messages and service response messages as access logs, and enables ser-
vice providers to monitor service invocation histories and the status of 

21 Service Grid Architecture 

    Requirements 

    Functions 



their services. Service monitoring involves monitoring events or informa-
tion produced by the services; viewing services’ statistics, including the 
number of accesses; viewing the status, or a summary, of selected ser-
vices; and suspending, resuming, or terminating selected services. 

(2) Service workflow execution and service dynamic binding: Service users 
can invoke a composite service consisting of several services on the ser-
vice grid according to a service workflow. By employing standard work-
flow technologies such as WS-BPEL, the service grid platform allows 
service users to independently create and register service workflows. Be-
sides, by standardizing service interfaces, the service grid platform en-
ables service users to freely change the alternative services with a dy-
namic service binding function. This leads to various composite service 
invocations. 

(3) Service grid composition: Service grid operators can compose several ser-
vice grids in order to increase the number of services in the same domain 
and different domains. The service grid platform realizes information 
sharing among service grids, and service invocation across service grids. 

(4) Modularization of system components: Service grid operators can change 
implementations of each component in the service grid platform in order 
to build their own service grids compliant with their operation models. In 
particular, switching communication components is necessary to operate 
the platform both in a centralized environment and a distributed environ-
ment. The platform combines implementations of each component based 
on a configuration file defined by the operator. 

In designing the service grid architecture that provides the above functions, 
there are several technical constraints. For example, the architecture should be in-
dependent of domains because service profiles and service interfaces vary depend-
ing on domains. In addition, the architecture should be independent of specifica-
tions of service invocations because there are several such specifications over 
HTTP, such as SOAP, REST, JSON, and Protocol Buffers. Moreover, it is neces-
sary to distribute the platform to handle physically distributed services if the ser-
vices are deployed on their providers’ severs. In the next section, we explain the 
system architecture of the service grid platform considering these constraints. 

2.3 System Architecture 

2.3.1 

The service grid architecture consists of six parts: Service Manager, Service Su-
pervisor, Grid Composer, Service Database, Composite Service Container, and 
Atomic Service Container. Fig. 2.1 (a) focuses on the first four parts, and Fig. 2.1 
(b) focuses on the last two parts. 

22 Y. Murakami et al. 

    Overview 



Service Database

Service Manager
Service Management 

Interface

Service Supervisor

Invocation Processor

Intra-Grid Executor

Web UI

Composite 
Service

Container

Atomic 
Service

Container

Application System
Resources

Web Browser

Access 
Control

Access 
Logging

SOAP API 

HTTP
Invoker

U
ser

M
anagem

ent
Service

M
anagem

ent
Resource

M
anagem

ent
N

ode
M

anagem
ent

G
rid

M
anagem

ent
D

om
ain

M
anagem

ent

(a)

Domain Definition Profile Repository
Access Log

Java
Method 
Invoker

User Request Handler

HTTP Request Handler Java Method Handler

Grid Composer
Inter-Grid Data AccessIntra-Grid Data Access

PostgreSQL
Data Access

Other 
Service 

Grid

JXTA 
Data Access

Inter-Grid Executor

HTTP Invoker

Profile Database
(Flexible)

Profile List
(Fixed)Definition 

Database

File 
Access

Composite Service Container
Service 

Component 
Executor

Service DecoratorService Request 
Handler

Service Workflow 
Executor

ProtocolBuffers
RPC Handler

Thread Control 
Decorator

Result Filter 
Decorator

Axis SOAP 
(RPC/ENC) Handler

BPEL Engine Axis SOAP 
(RPC/ENC) 

Invoker

ProtocolBuffers
RPC Invoker

Java Method 
Invoker

Service Container Framework

Java-Coded 
Workflow

Java Method
Handler

Resources

Atomic Service Container
Service DecoratorService Request 

Handler
Service Wrapper 

Executor

ProtocolBuffers 
RPC Handler

Thread Control 
Decorator

Result Filter 
Decorator

Axis SOAP 
(RPC/ENC) Handler

Java-Coded 
Wrapper

Service Container Framework

Java Method
Handler

Program

Data

Application
System

JavaScript Engine

Parameter 
Validation Decorator

Parameter 
Validation Decorator

WS-BPEL Workflow

JavaScript Workflow

HTTP SOAP
P2P sharing

protocol
Protocol
Buffers

Java method
invocation

(b)

Other
protocols

Service
Supervisor

…

…

… … …

…

… … … …

… …

…

…

 
Fig. 2.1 Service grid architecture 

23 Service Grid Architecture 



The Service Manager manages domain definition, grid information, node in-
formation, user information, service information and resource information regis-
tered in the service grid. The service information includes access control settings 
and access logs. Since the information is registered through the Service Manager, 
it plays a front-end role for any functions other than service invocation. The Ser-
vice Supervisor controls service invocations according to the requirements of the 
service providers. Before invoking the services on the Composite Service Con-
tainer and Atomic Service Container, it validates whether the request satisfies pro-
viders’ policies. The Grid Composer connects its service grid to other service grids 
to realize service grid composition for operators. The connection target is set 
through the Service Manager. The Service Database is a repository to store vari-
ous types of information registered through the Service Manager and service in-
vocation logs. The Composite Service Container provides composite service de-
ployment, composite service execution, and dynamic service binding so that 
service users can customize services. The Atomic Service Container provides sev-
eral utilities that service providers need in deploying atomic services. By using a 
SOAP message handler, providers can deploy their services on their servers. 

In the remaining parts of this section, we provide the details of the Service 
Manager, Service Supervisor, Grid Composer, and Composite/Atomic Service 
Container, such as configuration of components. 

2.3.2 

The Service Manager consists of components managing various types of informa-
tion necessary for the service grid, such as domain definition, and grid, node, re-
source, service, and user information. 

The Domain Management handles a domain definition that applies a general 
service grid to a specific domain. This component sets service types, standard in-
terfaces of services, and attributes of service profiles according to domain defini-
tions. 

The Grid Management sets a target service grid connected by the Grid Com-
poser. Based on the settings, the Grid Composer determines available services on 
other service grids. The Node Management handles node information of its service 
grid and the connected service grid. Based on this information, the Grid Composer 
decides whether to save information registered on other nodes, and whether to dis-
tribute information to other nodes. 

The Resource Management and Service Management handle resource and ser-
vice information registered on the service grid and the connected service grid. The 
information includes access control settings, service endpoints, intellectual proper-
ties associated with the resources, and access logs. Based on this information, the 
Service Supervisor validates service invocation, locates service endpoints, and at-
taches intellectual property information to service responses. 

24 Y. Murakami et al. 

   Service Manager 



Finally, the User Management manages user information registered on the ser-
vice grid. Based on this information, the Service Supervisor authenticates users’ 
service requests. 

2.3.3 

The Service Supervisor controls service invocation by service users. The control 
covers access control, endpoint locating, load balancing, and access logging. To 
realize architecture independent of service specifications such as SOAP and 
REST, the Service Supervisor conducts such service invocation control based on 
an HTTP header.  

The User Request Handler extracts information necessary to invoke a service 
from the service request over HTTP, and then authenticates the user who sends the 
request. The extracted information is sent to the Invocation Processor. Using the 
information, the Invocation Processor executes a sequence of pre-process, service 
invocation, post-process, and logging process. The access control defined as the 
system requirements is implemented as the pre-process, or the post-process.  

After passing the access control, the Intra-Grid Executor invokes the service 
within its service grid. To invoke the service, the Intra-Grid Executor locates the 
service endpoint using the service ID. If there are multiple endpoints associated 
with the service ID, it chooses the endpoint with the lowest load. Finally, it in-
vokes the service using Java Method Invoker implementation or HTTP Invoker 
implementation, which are selected according to the endpoint location. 

2.3.4 Grid Composer 

The Grid Composer not only creates a P2P grid network within its service grid, 
but also connects to other service grids. The former is needed to improve latency 
if the services are physically distributed. The latter is necessary to realize service 
grid composition defined in the system requirements. 

The Intra-Grid Data Access provides read/write interfaces for the Service Da-
tabase in its service grid. In writing data, the Intra-Grid Data Access broadcasts 
the data to other nodes using a P2P network framework so that it can share the da-
ta with other nodes in the same service grid. As a result service users can improve 
latency by sending their requests to a node located near the service. In this way, 
usage of the P2P network framework contributes to scalability of the service grid 
while keeping data consistency.  

On the other hand, the Inter-Grid Data Access shares various types of informa-
tion with other service grids. The Inter-Grid Data Access also uses the P2P net-
work to share information with other nodes across service grids. However, based 

25 Service Grid Architecture 

  Service Supervisor 

  



on grid information registered through the Service Manager, the Inter-Grid Data 
Access saves only information related to the connected service grids. 

The Inter-Grid Executor invokes services registered on a different service grid. 
To invoke a service across service grids, it replaces a requester’s ID with the op-
erator’s user ID because the different service grid does not store user information 
of the requester, but rather of the operator as a service grid user. In addition, to 
control access to the services on a different service grid, the Inter-Grid Executor 
inserts the user ID of the requester into the request in invoking the service. By 
separating the service grid that performs user authentication from the different 
service grid that performs access control, the two service grids do not have to 
share users’ passwords. 

2.3.5 

The Service Container executes composite services and atomic services. The 
Composite Service Container that executes composite services provides service 
workflow deployment and execution, and dynamic service binding defined as sys-
tem requirements. The Atomic Service Container that executes atomic services 
wraps resources of service providers as services with standard interfaces. 

The Service Request Handler has multiple implementations according to the 
types of service invocation protocols. If the Service Container is deployed on the 
same server as the Service Supervisor, the Java Method Handler implementation 
can be selected. When receiving a service request, the Service Request Handler 
receives from the Service Container Framework a chain of Service Decorator, 
Service Workflow/Wrapper Executor, and Service Component Executor, and exe-
cutes the chain.  

In invoking a component service of a composite service, the Service Workflow 
Executor can select a concrete service based on binding information included in a 
service request. This dynamic service binding is realized because resources are 
wrapped as services with standard interfaces in the Atomic Service Container. 

2.4 Open Source Customization 

The operation model of the service grid varies depending on the target stake-
holders. If service providers demand intellectual property protection, services are 
deployed on their servers and the service grid platform has to provide access con-
trol. That is, priority is placed on security of resources. On the other hand, if ser-
vice providers publish their resources under an open source license, services are 
aggregated and deployed on a cluster of machines, and the service grid platform 
does not provide user authentication and access control. That is, priority is placed 
on service performance. 

26 Y. Murakami et al. 

  Service Container 



The types of stakeholders assumed rely on service grid operators. This implies 
that it is impossible to develop a general platform dealing with various types of 
operation models beforehand. Therefore, we selected open-source style customiza-
tion so that each operator can adapt the platform to his/her operation model. 

We have published the source codes of the service grid platform under an 
LGPL license and begun an open source project wherein each operator can freely 
customize the platform. In the project, the source codes are classified into a core 
component and optional component with different development policies because 
unregulated derivatives prevent interoperability of service grids. The specifica-
tions of core components are decided by core members in the open source com-
munity. On the other hand, the specifications of optional components can be freely 
changed by developers in the open source project, and derivatives can be created. 
This classification is done to improve the interoperability of service grids. As 
shown in Fig. 2.1, the core components are thick-frame rectangles, and optional 
components thin-frame ones. In nested rectangles, outside ones are APIs and in-
side ones are their implementations. These implementations can be changed. Im-
plementations with gray labels have yet to be implemented. 

The Intra-Grid Data Access, Inter-Grid Data Access, Intra-grid Service Execu-
tor, and Inter-Grid Service Executor are core components because they are used to 
communicate with other service grids, and they share information with other ser-
vice grids. In addition to this, Service Decorator, Service Workflow/Wrapper Ex-
ecutor, Service Component Executor, and Service Container Framework in Com-
posite/Atomic Service Container are also core components because the 
implementations of the components are interleaved in atomic services or compos-
ite services by the Service Container Framework. On the other hand, the Service 
Supervisor and Service Manager are optional components so that operators can 
extend them according to their operation model, because their functions are used 
only within the service grid. 

2.5 Realization of the Language Grid 

In this section, we validate the service grid architecture by using it as basis for 
constructing the Language Grid. In particular, we focus on language service com-
position for language service users, language service management for language 
service providers, and system configurability for the Language Grid operators. 

2.5.1 

Among the existing research, EuroWordNet (Vossen 2004) and Global WordNet 
Grid (Fellbaum and Vossen 2007) are pioneering works on connecting dictionaries 
in different languages based on word semantics. The Language Grid, however, 

27 Service Grid Architecture 

  Language Service Composition 



aims to build an infrastructure where users can share and combine various lan-
guage services. The following two types of language services are available in the 
Language Grid: 

 Atomic service: A Web service with a standard interface that corresponds to an 
individual language resource. Examples include bilingual dictionaries, parallel 
texts, morphological analyzers, machine translators, and so on.  

 Composite service: An advanced service described by a workflow that com-
bines several atomic services. Examples include domain-specialized translation 
and multilingual back translation. 

 

Life Science 
Dictionary

(by Kyoto University)

J-Server
(by Kodensha Co., Ltd.)

MeCab
(by NTT)

WEB Transer
(by Cross Language Inc.)

Technical Term Extraction

Technical Term
Multilingual 
Dictionary

remaining
terms?

YesYes

No No

Japanese Morphological Analysis

remaining
terms?

+
Intermediate Code

Insertion

Term Replacement 

Intermediate
Code 
Table

Translation
ja->en

Translation
en->de

Translation
ja->de

Japanese-German 
Specialized Translation

Japanese-German
Translation

Atomic servicesComposite services  
Fig. 2.2 Example of composite services 

Fig. 2.2 shows a domain specialized translation workflow for improving the 
translation quality of technical sentences. The Language Grid uses Java-coded 
workflows, JavaScript, BPEL4WS (Khalaf et al. 2003), and WS-BPEL to describe 
the workflow. Domain specialized translation workflow consists of several com-
ponent services: morphological analysis, multilingual dictionary, and translation. 
To invoke the composite service, service users have to bind a concrete atomic ser-
vice to each component service, such as MeCab to the morphological analysis ser-
vice, Life Science Dictionary to the multilingual dictionary service, and a two-hop 
translation service consisting of J-Server (machine translator) and WEB-Transer 
(machine translator) to the translation service. Service users can also invoke other 
combinations of concrete atomic services by changing the service bindings. 

28 Y. Murakami et al. 



In the case of invoking composite services, the request will be sent to the Ser-
vice Workflow Executor in the service grid architecture. After receiving the re-
quest, the Service Workflow Executor invokes the atomic services defined in ser-
vice binding information through the Service Component Executor. If SOAP 
communication is used between the Service Supervisor and Composite Service 
Container in the service grid architecture, we can employ not only a BPEL engine 
but also Web service-based language resource coordination frameworks as the 
Service Workflow Executor, such as Heart of Gold, UIMA, and D-Spin. We have 
bridged Heart of Gold and the Language Grid (Bramantoro et al. 2008) and will 
apply the results to combine UIMA and the Language Grid. 

2.5.2 

Language Grid Service Manager1 is a Web application-based implementation of 
the service management interface in the service grid architecture. This enables 
Language Grid users to access various types of management functions provided 
by the Language Grid. In the current Language Grid, three types of access control 
component are implemented: access right control, access count control, and data 
transfer size control. 

The access control function allows service providers to set access rights for 
each language service. Service providers who find that service users are accessing 
the service excessively can prohibit them from accessing the service. Moreover, 
service providers have two choices in publishing their services: “public mode,” 
which permits every user by default, and “members only mode,” which prohibits 
every user by default. Using the “members only” mode, a service provider who 
sells a language resource can permit a service user who purchased the language 
resource or its license to access the resource. 

The access control function provides access constraint settings as well as access 
right settings. Access constraints include total access count per month, week, and 
day, and data transfer size (KB) per month, week, day, and request. This function 
enables a service provider who sells a language resource to provide limited service 
as a trial to service users who have not purchased it, and provide various types of 
service according to the fees. 

In the Language Grid operated by Department of Social Informatics in Kyoto 
University, service providers who sell their resources realize various ways of pro-
viding their services by effectively employing the language service management 
(Murakami et al. 2010). 

National Institute of Information and Communications Technology (called 
NICT hereafter) for a fee offers a concept dictionary and a bilingual dictionary, 
called EDR, as a whole. That is why NICT has difficulty in allowing language 
service users to freely employ EDR. Therefore, NICT provides a trial service of 
                                                           

1 http://langrid.org/operation/service_manager/ 

29 Service Grid Architecture 

  Language Service Management 

http://langrid.org/operation/service_manager/


EDR to every user by setting maximum access counts per month at 1000 counts 
and maximum data transfer size per request at 15 KB for the concept dictionary, 
and maximum access counts per month at 1000 counts and maximum data transfer 
size per request at 5KB for the bilingual dictionary, respectively. These constraints 
are configured so as to take about one year to extract all the data of the EDR. 
Moreover, NICT has registered the concept dictionary and the bilingual dictionary 
of EDR with no restrictions in the "members only mode". In this way, NICT pro-
vides unlimited EDR services only to users who purchase the EDR license. 

KODENSHA Co., Ltd. (called KODENSHA hereafter) allows us to provide 
translation service based on J-Server, a machine translator, to third parties, if the 
application area of the Language Grid does not conflict with an already existing 
business market. Kyoto University and NICT have now purchased J-Server soft-
ware to provide a translation service to other language service users. If the appli-
cation area of the Language Grid conflicts with the existing market, NICT and 
Kyoto University prohibit the conflicting users from accessing J-Server. Further-
more, KODENSHA has registered the J-Server ASP service operated by 
KODENSHA in the "members only mode". This lets KODENSHA provide the 
latest J-Server service to only those users who purchase a J-Server ASP license. 
KODENSHA has registered Japanese and Simplified Chinese, Japanese and Tradi-
tional Chinese, Japanese and Korean, and Japanese and English translation sepa-
rately in order to increase service variations. This enables users to purchase the 
language pairs that they need to use. 

Kyoto University provides language service users with various language ser-
vices based on machine translation software, translation ASP service, and a text-
to-speech engine that Kyoto University purchased from several companies; 
KODENSHA Co., Ltd., Cross Language Inc., Translution, and HOYA Corpora-
tion. Since Kyoto University concluded an agreement that establishes the provi-
sion of a language resource for only non-profit use with each language resource 
developer, Kyoto University has to monitor for any potential abuse of the lan-
guage resource. In fact, by monitoring access to the language resources, Kyoto 
University detected that a user accessed J-Server excessively from a specific IP 
address. It then obtained a contact address from the user profile and contacted the 
user to confirm whether it was being employed for non-profit use. 

2.5.3 

In the Language Grid operated by Department of Social Informatics in Kyoto 
University, service providers have several provision policies to protect their lan-
guage resources as described in the previous subsection. Therefore, the Language 
Grid prefers security of language resources to performance of language services. 
For this reason, the Language Grid enables service providers to protect their re-
sources on their servers, and must coordinate the resources deployed on the pro-
viders’ servers. To equip the Language Grid with such a function, we construct it 

30 Y. Murakami et al. 

  System Configuration of the Language Grid 



with two different types of server nodes: the service node and core node (Mura-
kami et al. 2006).  

The service node provides only atomic services by deploying service wrappers 
to standardize interfaces of language resources. The service nodes are distributed 
to their service providers. On the other hand, the core node controls access to ser-
vices and composes services. Moreover, it communicates with other core nodes in 
other Language Grids to realize federated operation of the Language Grid. 
 

Service Database

Service Manager
Service Management 

Interface

Service Supervisor

Invocation Processor

Intra-Grid Executor

Web UI

Composite 
Service

Container

Atomic 
Service

Container

Application System

Resources

Web Browser

Access 
Control

Access 
Logging

SOAP API 

HTTP Invoker

U
ser

M
anagem

ent
Service

M
anagem

ent
Resource

M
anagem

ent
N

ode
M

anagem
ent

G
rid

M
anagem

ent
D

om
ain

M
anagem

ent

Domain Definition Profile Repository
Access Log

User Request Handler

HTTP Request Handler

Grid Composer
Inter-Grid Data AccessIntra-Grid Data Access

PostgreSQL Data Access
Other 

Service 
Grid

JXTA Data Access
Inter-Grid Executor

HTTP Invoker

Profile Database
(Flexible)

Definition 
Database

HTTP SOAP
P2P sharing

protocol
Protocol
Buffers

Other
protocols  

Fig. 2.3 System configuration of the Language Grid 

To instantiate the service node and core node, the Language Grid is configured 
as shown in Fig. 2.3. The components surrounded by gray lines in the figure are 
deployed on the same server. The server on which the Service Manager, Service 
Supervisor, Composite Service Container, Grid Composer, and Service Database 
are deployed is called the core node, while that on which the Atomic Service Con-
tainer is deployed is called the service node. This system configuration employs 
an HTTP invoker as the Intra-Grid Executor to distribute the Atomic Service Con-
tainer as service nodes. Furthermore, the core node includes the Inter-Grid Data 
Access to share language services with other Language Grids and the Inter-Grid 
Executor to invoke language services on other Language Grids. 

Unlike the above system configuration, a Language Grid prioritizing perform-
ance of language services is sometimes required. For example, in the case of em-
ploying the Language Grid to multilingualize Wikipedia articles, the performance 
of language services should be given higher priority due to the huge amount of ar-

31 Service Grid Architecture 



ticles and users. Furthermore, the smaller the code size of the platform is, the more 
the Wikipedia operator likes it.  

Fig. 2.4 shows the other system configuration to satisfy the operator preferring 
performance and simplicity. The system configuration does not include the Service 
Manager, Access Control, and Access Logging components because the Language 
Grid handles only language services associated with simple licenses. The Inter-
Grid Data Access and Inter-Grid Executor are also removed because necessary 
language services will be aggregated into a single location. Moreover, the system 
configuration employs Java method invocation for communication between the 
Service Supervisor and Composite/Atomic Service Container to improve the la-
tency of communication. 

 

Service Database

Service Supervisor

Invocation Processor

Intra-Grid Executor

Composite 
Service

Container

Atomic 
Service

Container

Application System

Resources

Profile Repository

Java Method Invoker

User Request Handler

HTTP Request Handler Java Method Handler

Grid Composer
Intra-Grid Data Access

Profile List (Fixed)

File Access

Protocol
Buffers

Java method
invocation

Other
protocols  

Fig. 2.4 System configuration of the Language Grid for Wikimedia 

2.6 Conclusion 

In this chapter, we have proposed a service grid architecture to share and compose 
services while satisfying stakeholders’ needs. The main contributions of the pro-
posed architecture include the following aspects. 

 Protecting intellectual properties of resources: We have developed the Service 
Supervisor, which controls service invocations from service users. It extracts 
the user ID, the purpose, and so on from a service request before invoking the 

32 Y. Murakami et al. 



service, and then checks whether the user can satisfy the provision policy of the 
service. In this way, service providers can provide their services within their 
provision policies. 

 Utilizing necessary services when needed: We have developed the Composite 
Service Container, which binds services with service workflows at run-time. 
Based on service binding information in service requests, the Composite Ser-
vice Container can select a concrete atomic service to invoke as a component 
service.  

 Configuring platform according to operation models: We have developed the 
Grid Composer, which communicates with other service grids. It enables ser-
vice providers to share their services with service users of other service grids, 
and service users to invoke services across service grids. Moreover, the service 
grid architecture allows the service grid operator to select any implementation 
of each main component for his/her system configuration because the main 
components of the service grid architecture are modularized. 

We have already applied the proposed architecture to the Language Grid oper-
ated by Kyoto University. To encourage service users and providers to share and 
compose language services on the Internet, we need not only the proposed service 
grid architecture but also institutional design considering incentives among stake-
holders (Ishida et al. 2008). This institutional design will be introduced in the 
Chapter 18. 

Acknowledgments   We are grateful to Nicoletta Calzolari Zamorani, Riccardo Del Gratta, Luca 
Dini, Alessio Bosca, Nancy Ide, and Erik Moeller for giving advice and encouragement to us. We 
acknowledge the considerable support of National Institute of Information and Communications 
Technology, and Department of Social Informatics, Kyoto University. A part of this work was 
supported by Strategic Information and Communications R&D Promotion Programme from 
Ministry of Internal Affairs. 

References 

Boehlke V (2009) A prototype infrastructure for D-spin-services based on a flexible multilayer 
architecture. 2009 Text Mining Services Conference (TMS’09) 

Bramantoro A, Tanaka M, Murakami Y, Schäfer U, Ishida T (2008) A hybrid integrated architec-
ture for language service composition. The Sixth International Conference on Web Services 
(ICWS’08): 345-352 

Callmeier U, Eisele A, Schäfer U, Siegel M (2004) The Deep Thought core architecture frame-
work. The Fourth International Conference on Language Resources and Evaluation 
(LREC’04): 1205-1208 

Choukri K (2004) European Language Resources Association history and recent developments. 
SCALLA Working Conference KC 14/20 

Cunningham H, Maynard D, Bontecheva K, Tablan V (2002) GATE: an architecture for devel-
opment of robust HLT applications. The Fortieth Annual Meeting of the Association for 
Computational Linguistics (ACL’02): 168-175 

33 Service Grid Architecture 



Fellbaum C, Vossen P (2007) Connecting the universal to the specific: towards the global grid. 
Intercultural Collaboration, LNCS 4568, Springer-Verlag 

Ferrucci D, Lally A (2004) UIMA: an architectural approach to unstructured information proc-
essing in the corporate research environment. Journal of Natural Language Engineering 10: 
327-348 

Ishida T (2006) Language Grid: an infrastructure for intercultural collaboration. The IEEE/IPSJ 
Symposium on Applications and the Internet (SAINT’06): 96-100 

Ishida T, Nadamoto A, Murakami Y, Inaba R, Shigenobu T, Matsubara S, Hattori H, Kubota Y, 
Nakaguchi T, Tsunokawa E (2008) A non-profit operation model for the language grid. The 
First International Conference on Global Interoperability for Language Resources (ICGL’08): 
114-121 

Khalaf R, Mukhi N, Weerawarana S (2003) Service-oriented composition in BPEL4WS. The 
World Wide Web Conference (WWW’03) 

Murakami Y, Ishida T, Nakaguchi T (2006) Infrastructure for language service composition. The 
Second International Conference on Semantics, Knowledge, and Grid (SKG’06) 

Murakami Y, Lin D, Tanaka M, Nakaguchi T, Ishida T (2010) Language service management 
with the language grid. The International Conference on Language Resources and Evaluation 
(LREC’10): 3526-3531 

Varadi T, Krauwer S,Wittenburg P, Wynne M, Koskenniemi K (2008) CLARIN: common lan-
guage resources and technology infrastructure. The Sixth International Conference on Lan-
guage Resources and Evaluation (LREC’08): 1244-1248 

Vossen P (2004) EuroWordNet: a multilingual database of autonomous and language-specific 
wordnets connected via an inter-lingual index. International Journal of Lexicography 17(2): 
161-173 

 

34 Y. Murakami et al. 


	Chapter 2 Service Grid Architecture
	2.1 Introduction
	2.2 Design Concept
	2.3 System Architecture
	2.3.1 Overview
	2.3.2 Service Manager
	2.3.3 Service Supervisor
	2.3.4 Grid Composer
	2.3.5 Service Container

	2.4 Open Source Customization
	2.5 Realization of the Language Grid
	2.5.1 Language Service Composition
	2.5.2 Language Service Management
	2.5.3 System Configuration of the Language Grid

	2.6 Conclusion
	References


