
Chapter 11
Vector Variational Principles for Set-Valued
Functions

Christiane Tammer and Constantin Zălinescu

11.1 Introduction

Deriving existence results and necessary conditions for approximate solutions of
nonlinear optimization problems under week assumptions is an interesting and
modern field in optimization theory. It is of interest to show corresponding results
for optimization problems without any convexity and compactness assumptions.
Ekeland’s variational principle is a very deep assertion about the existence of an
exact solution of a slightly perturbed optimization problem in a neighborhood of
an approximate solution of the original problem. The importance of Ekeland’s
variational principle in nonlinear analysis is well known. Especially, this assertion
is very useful for deriving necessary conditions under certain differentiability
assumptions. In optimal control Ekeland’s principle can be used in order to prove
an ε-maximum principle in the sense of Pontryagin and in approximation theory for
deriving ε-Kolmogorov conditions.

Below we recall a versatile variant.

Proposition 11.1 (Ekeland’s Variational Principle [21, 22]). Let (X ,d) be a
complete metric space and f : X → R ∪ {+∞} a proper, lower semicontinuous
function bounded below. Consider ε > 0 and x0 ∈ X such that f (x0) ≤ inf f + ε .
Then for every λ > 0 there exists x ∈ dom f such that

f (x)+ λ−1εd(x,x0) ≤ f (x0), d(x,x0) ≤ λ , (11.1)
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and

f (x) < f (x)+ λ−1εd(x,x) ∀x ∈ X \ {x}. (11.2)

This means that for λ ,ε > 0 and x0 an ε-approximate solution of the minimiza-
tion problem

f (x) → min s.t. x ∈ X , (11.3)

there exists a new point x that is not worse than x0 and belongs to a λ -neighborhood
of x0, and especially, x satisfies the variational inequality (11.2). Relation (11.2)
says, in fact, that x minimizes globally f + λ−1εd(x, ·), which is nothing else than
a Lipschitz perturbation of f (for “smooth” principles, see [11]). Note that λ =

√
ε

gives a useful compromise in Proposition 11.1. For applications see Sect. 11.5 and,
e.g., [24, 25, 58, 61, 62].

There are several statements that are equivalent to Ekeland’s variational principle
(EVP); see, e.g., [1, 2, 5, 12–16, 27, 29–31, 33, 34, 38, 52–54].

Phelps [54] introduced for ε > 0 the following closed convex cone Kε in X ×R,
where X is a Banach space:

Kε := {(x,r) ∈ X ×R | ε||x|| ≤ −r} (11.4)

(see Fig. 11.1). Sometimes the cone Kε is called a Phelps cone. Phelps has shown
the existence of minimal points of a set A ⊆ X ×R with respect to Kε under a
closedness assumption (H) and a boundedness assumption (B) concerning A .

Proposition 11.2 (Phelps Minimal-Point Theorem [53, 54]). Let X be a Banach
space and A (	= /0) ⊆ X ×R. Assume

(H) A is closed
(B) inf{r ∈ R | (x,r) ∈ A } = 0

Suppose ε > 0. Then, for any point (x0,r0) ∈ A there exists a point (x,r) ∈ A such
that:

(a) (x,r) ∈ A ∩ ((x0,r0)+ Kε)
(b) {(x,r)} = A ∩ ((x,r)+ Kε)
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Remark 11.1. The assertion (a) in Proposition 11.2 can be considered as a domina-
tion property and assertion (b) describes a minimal point (x,r) of A with respect
to Kε .

In Phelps [53] and [54] it is shown that Ekeland’s variational principle (Propo-
sition 11.1) is a conclusion of a minimal-point theorem (Proposition 11.2) setting
A = epi f in Proposition 11.2. We will present extensions of Phelps minimal-point
theorem to general product spaces and corresponding variational principles. The
aim of this chapter is to give an overview on existing minimal-point theorems and
variational principles of Ekeland’s type for set-valued and vector-valued objective
functions. In order to show such assertions a main tool is the application of a
certain scalarization technique. In the following section we will discuss scalarizing
functionals and their properties.

11.2 Preliminaries

Let us recall some notions and notation for sets and functions defined on locally
convex spaces. So let (X ,τ) be a locally convex space and A ⊆ X . By clA (or clτ A
or A or A

τ
), intA and bdA we denote the closure (with respect to τ when we want

to emphasize the topology), the interior and the boundary of A; moreover convA is
the convex hull of A and convA := cl(convA). As usual, for A,B ⊆ X , a ∈ X , Γ ⊆ R

and α ∈ R we set

A + B := {a + b | a ∈ A, b ∈ B}, a + B := {a}+ B,

Γ A := {γa | γ ∈ Γ , a ∈ A}, Γ a := Γ {a}, αA := {α}A, −A := (−1)A.

The recession cone of the nonempty set A ⊆ X is the set

A∞ := {u ∈ X | x + tu ∈ A ∀x ∈ A, ∀t ∈ R+}.

It follows easily that A∞ is a convex cone; A∞ is also closed when A is closed. If A
is a closed convex set then A∞ = ∩t∈Pt(A− a), where P := ]0,+∞[ and a ∈ A (A∞
does not depend on a ∈ A). Moreover, the indicator function associated to the set
A ⊆ X is the function ιA : X → R := R∪{−∞,∞} defined by ιA(x) := 0 for x ∈ A
and ιA(x) := ∞ for x ∈ X \A, where ∞ := +∞. A cone K ⊆ X is called pointed if
K ∩ (−K) = {0}.

Let f : X → R; the domain and the epigraph of f are defined by

dom f := {x ∈ X | f (x) < +∞}, epi f := {(x, t) ∈ X ×R | f (x) ≤ t}.

The function f is said to be convex if epi f is a convex set, and f is said to be proper
if dom f 	= /0 and f does not take the value −∞. Of course, f is lower semicontinuous
if epi f is closed. The class of lower semi-continuous (lsc for short) proper convex
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functions on X will be denoted by Γ (X). Let B⊆X ; f : X →R is called B-monotone
if x2 − x1 ∈ B ⇒ ϕ(x1) ≤ ϕ(x2). Furthermore, f is called strictly B-monotone if
x2 − x1 ∈ B\ {0}⇒ ϕ(x1) < ϕ(x2).

We consider a proper closed convex cone K ⊆ Y and k0 ∈ K \ (−K). As usual,
we denote

K+ := {y∗ ∈ Y ∗ | y∗(k) ≥ 0 ∀k ∈ K},
K# := {y∗ ∈ Y ∗ | y∗(k) > 0 ∀k ∈ K \ {0}}

the positive dual cone of the convex cone K ⊆ Y and the quasi interior of K+,
respectively.

In Sect. 11.3 we show several properties of scalarizing functionals. Motivated
by papers on the field of economics, especially production theory (cf. Luenberger
[50]) we assume that the sets A and K verify the free-disposal condition A−K = A
included in assumption (A1) introduced in Sect. 11.3.2; for Lipschitz properties
of ϕA,k0 (see (11.5) for its definition) we need the strong free-disposal condition
A− (K \ {0}) = intA, which is a part of assumption (A2). The main results con-
cerning Lipschitz properties are given in Sect. 11.3.4 under assumption (A1): First,
without convexity assumptions for the closed set A ⊆ Y we prove that ϕA,k0 is
Lipschitz on Y under the (stronger) assumption k0 ∈ intK (Theorem 11.4); then,
assuming that A is a convex set with nonempty interior and k0 /∈ A∞ we show that
ϕA,k0 is locally Lipschitz on int(domϕA) = Rk0 + intA (Proposition 11.5). More-
over, without assuming the convexity of A and without the assumption k0 ∈ intK we
give a characterization of Lipschitz continuity of ϕA,k0 on a neighbourhood of y0 ∈Y
using the notion of epi-Lipschitz set introduced by Rockafellar [55] (Theorem 11.5).
In Sect. 11.3.5 we provide formulas for the conjugate and the subdifferential of ϕA,k0

when A is convex. Using the properties of the scalarizing functionals we present in
Sect. 11.4 minimal-point theorems and corresponding variational principles. As an
application of the Lipschitz properties of ϕA,k0 , we establish necessary conditions
for properly efficient solutions of a vector optimization problem in terms of the
Mordukhovich subdifferential in Sect. 11.5.2. Taking into account the fact that the
conditions in the definition of properly efficient elements are related to the strong
free disposal condition in (A2) we get in Theorem 11.15 useful properties for the
scalarizing functional ϕA,k0 as well as for the Mordukhovich subdifferential of the
scalarized objective function.

11.3 Nonlinear Scalarization Functions

In order to show minimal-point theorems and corresponding variational principles in
Sect. 11.4 we use a scalarization method by means of certain nonlinear functionals.
In this section we discuss useful properties of these functionals (cf. Göpfert et al.
[32] and Tammer and Zălinescu [63]).
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Fig. 11.2 Level sets of the
function ϕA,k0 from (11.5),
where A = −K = −R
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11.3.1 Construction of Scalarizing Functionals

Having a nonempty subset A of a real linear space Y and an element k0 	= 0 of Y ,
Gerstewitz (Tammer) and Iwanow [28] introduced the function (see Fig. 11.2)

ϕA := ϕA,k0 : Y → R, ϕA,k0(y) := inf{t ∈ R | y ∈ tk0 + A}, (11.5)

where, as usual, inf /0 := ∞ (and sup /0 := −∞); we use also the convention (+∞)+
(−∞) := +∞.

This function was used by Chr. Tammer and her collaborators, as well as by D.T.
Luc etc., mainly for scalarization of vector optimization problems. Luenberger [50,
Definition 4.1] considered

σ(g;y) := inf{ξ ∈ R | y− ξ g ∈ Y },

the corresponding function being called the shortage function associated to the
production possibility set Y ⊆ R

m and g ∈ R
m
+ \ {0}. The case when g = (1, . . . ,1)

was introduced earlier by Bonnisseau and Cornet [10]. A similar function is
introduced in [50, Definition 2.1] under the name of benefit function.

More recently such a function was considered in the context of mathematical
finance beginning with Artzner et. al. [3]; see Heyde [42] and Hamel [39] for more
historical facts. Under the name of topical function such functions were studied by
Singer and his collaborators (see [59]). We discuss many important properties of
ϕA,k0 in Sect. 11.3.2. Moreover, we study local continuity properties in Sect. 11.3.4.
Very recently Bonnisseau and Crettez [4] obtained local Lipschitz properties for
ϕA,k0 (called Luenberger shortage function in [4]) in a very special case, more
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general results are given by Tammer and Zălinescu [63]. Of course, ϕA,k0 is a
continuous sublinear functional if A is a proper closed convex cone and k0 ∈ intA
(cf. Corollary 11.2) and so ϕA,k0 is Lipschitz continuous. Such Lipschitz properties
of ϕA,k0 are of interest also in the case when A ⊆ Y is an arbitrary (convex) set and
the interior of the usual ordering cone in Y is empty like in mathematical finance
where the acceptance sets are in function spaces as Lp and the corresponding risk
measures are formulated by means of ϕA,k0 (see e.g. Föllmer and Schied [26]).

11.3.2 Properties of Scalarization Functions

Throughout this section Y is a separated locally convex space and Y ∗ is its
topological dual, K ⊆ Y is a proper closed convex cone, k0 ∈ K \ (−K) and A ⊆ Y
is a nonempty set. The cone K determines the order ≤K on Y defined by y1 ≤K y2 if
y2 − y1 ∈ K.

Furthermore, we assume that A satisfies the following condition (see also [4]):

(A1) A is closed, satisfies the free-disposal assumption A−K = A, and A 	= Y .

We shall use also the (stronger) condition:

(A2) A is closed, satisfies the strong free-disposal assumption A−(K\{0})= intA,
and A 	= Y .

Because A−K = A∪ (A− (K \ {0})), we have that (A2) ⇒ (A1). Moreover, the
condition A− (K \ {0}) = intA is equivalent to A− (K \ {0})⊆ intA.

Remark 11.2. Assume that the nonempty set A satisfies assumption (A2). Then K
is pointed, that is, K ∩ (−K) = {0}, and A−Pk0 ⊆ intA for k0 ∈ K \ {0}.

The last assertion is obvious. For the first one, assume that k ∈ K ∩ (−K) \ {0}.
Take a ∈ bdA (⊆ A); such an a exists because A 	= Y . Then a′ := a− k ∈ intA ⊆ A,
and so a = a′ − (−k) ∈ intA, a contradiction.

Remark 11.3. When A satisfies condition (A1) or (A2) with respect to K and k0 ∈
K \(−K) then A satisfies condition (A1) or (A2), respectively, with respect to R+k0.
In fact in many situations it is sufficient to take K = R+k0 for some k0 ∈Y \{0}. In
such a situation (A1) [respectively (A2)] means that A is a closed proper subset of
Y and A−R+k0 = A [respectively A−Pk0 ⊆ intA].

The free-disposal condition A = A−K shows that K ⊆−A∞. As observed above
A∞ is also closed because A is closed. Hence −A∞ is the largest closed convex cone
K verifying the free-disposal assumption A = A−K.

The aim of this section is to find a suitable functional ϕ : Y → R and conditions
such that two given nonempty subsets A and H of Y can be separated by ϕ .
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To A ⊆ Y satisfying (A1) and k0 ∈ K \ (−K) we associate the function ϕA,k0

defined in (11.5). We consider the set

A′ := {(y,t) ∈ Y ×R | y ∈ tk0 + A}.

The assumption on A shows that A′ is of epigraph type, i.e. if (y, t) ∈ A′ and t ′ ≥ t,
then (y, t ′) ∈ A′. Indeed, if y ∈ tk0 + A and t ′ ≥ t, since

tk0 + A = t ′k0 + A− (t ′ − t)k0 ⊆ t ′k0 + A,

(because of (A1)) we obtain that (y,t ′) ∈ A′. Also observe that A′ = T−1(A), where
T : Y ×R→Y is the continuous linear operator defined by T (y, t) := tk0 +y. So, if A
is closed (convex, cone), then A′ is closed (convex, cone). Obviously, the domain of
ϕA is the set Rk0 + A and A′ ⊆ epiϕA ⊆ clA′ (because A′ is of epigraph type), from
which it follows that A′ = epiϕA if A is closed, and so ϕA is a lower semicontinuous
function.

In the next results we collect several useful properties of ϕA (compare Göpfert
et al. [32]).

Theorem 11.1. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ K \ (−K)
and A ⊆ Y is a nonempty set. Furthermore, suppose

(A1) A is closed, satisfies the free-disposal assumption A−K = A, and A 	= Y.

Then ϕA (defined in (11.5)) is lsc, domϕA = Rk0 + A,

{y ∈ Y | ϕA(y) ≤ λ} = λ k0 + A ∀λ ∈ R, (11.6)

and

ϕA(y + λ k0) = ϕA(y)+ λ ∀y ∈ Y, ∀λ ∈ R. (11.7)

Moreover,

(a) ϕA is convex if and only if A is convex; ϕA(λ y) = λ ϕA(y) for all λ > 0 and y∈Y
if and only if A is a cone.

(b) ϕA is proper if and only if A does not contain lines parallel to k0, i.e.,

∀y ∈ Y, ∃t ∈ R : y + tk0 /∈ A. (11.8)

(c) ϕA is finite-valued if and only if A does not contain lines parallel to k0 and

Rk0 + A = Y. (11.9)

(d) Let B ⊆ Y; ϕA is B-monotone if and only if A−B ⊆ A.
(e) ϕA is subadditive if and only if A + A ⊆ A.
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Proof. We have already observed that domϕA = Rk0 + A and ϕA is lsc when A is
closed. From the definition of ϕA the inclusion ⊇ in (11.6) is obvious, while the
converse inclusion is immediate, taking into account the closedness of A. Formula
(11.7) follows easily from (11.6).

(a) Since the operator T defined above is onto and epiϕA = T−1(A), we have that
epiϕA is convex (cone) if and only if A = T (epiϕA) is so. The conclusion
follows.

(b) We have

ϕA(y) = −∞ ⇔ y ∈ tk0 + A ∀t ∈ R ⇔{y + tk0 | t ∈ R} ⊆ A.

The conclusion follows.
(c) The conclusion follows from (b) and the fact that domϕA = Rk0 + A.
(d) Suppose first that A−B ⊆ A and take y1,y2 ∈ Y with y2 − y1 ∈ B. Let t ∈ R

be such that y2 ∈ tk0 + A. Then y1 ∈ y2 −B ⊆ tk0 +(A−B) ⊆ tk0 + A, and so
ϕA(y1) ≤ t. Hence ϕA(y1) ≤ ϕA(y2). Assume now that ϕA is B-monotone and
take y ∈ A and b∈ B. From (11.6) we have that ϕA(y)≤ 0. Since y−(y−b)∈ B,
we obtain that ϕA(y−b)≤ ϕA(y)≤ 0, and so, using again (11.6), we obtain that
y−b ∈ A.

(e) Suppose first that A + A ⊆ A and take y1,y2 ∈ Y . Let ti ∈ R be such that yi ∈
tik0 + A for i ∈ {1,2}. Then y1 + y2 ∈ (t1 + t2)k0 + (A + A) ⊆ (t1 + t2)k0 + A,
and so ϕA(y1 + y2) ≤ t1 + t2. It follows that ϕA(y1 + y2) ≤ ϕA(y1) + ϕA(y2).
Assume now that ϕA is subadditive and take y1,y2 ∈ A. From (11.6) we have
that ϕA(y1),ϕA(y2) ≤ 0. Since ϕA is subadditive, we obtain that ϕA(y1 + y2) ≤
ϕA(y1)+ϕA(y2)≤ 0, and so, using again (11.6), we obtain that y1 +y2 ∈ A. ��

Remark 11.4. From Theorem 11.1 we get under assumption (A1) that ϕA is lower
semicontinuous,

A = {y ∈ Y | ϕA(y) ≤ 0}, intA ⊆ {y ∈ Y | ϕA(y) < 0}, (11.10)

and so

bdA = A\ intA ⊇ {y ∈ Y | ϕA(y) = 0}. (11.11)

In general the inclusion in (11.11) is strict.

Example 11.1. Consider K := R
2
+, k0 := (1,0) and

A := (]−∞,0]× ]−∞,0])∪ ([0,∞[× ]−∞,−1]).

Then ϕA(u,v) = −∞ for v ≤ −1, ϕA(u,v) = u for v ∈ (−1,0] and ϕA(u,v) = ∞ for
v > 0. In particular, ϕA(0,−1) = −∞ and (0,−1) ∈ bdA (see Fig. 11.3).

Theorem 11.2. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ K \ (−K)
and A ⊆ Y is a nonempty set. Furthermore, suppose

(A2) A is closed, satisfies the strong free-disposal assumption A−(K \{0})= intA,
and A 	= Y .
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Fig. 11.3 y ∈ bd A with
ϕA(y) = −∞ in Example 11.1

Then (a), (b), (c) from Theorem 11.1 holds, and moreover

(f) ϕA is continuous and

{y ∈ Y | ϕA(y) < λ} = λ k0 + intA, ∀λ ∈ R, (11.12)

{y ∈ Y | ϕA(y) = λ} = λ k0 + bdA, ∀λ ∈ R. (11.13)

(g) If ϕA is proper, then

ϕA is B-monotone ⇔ A−B ⊆ A ⇔ bdA−B ⊆ A.

Moreover, if ϕA is finite-valued, then

ϕA strictly B-monotone⇔ A− (B\ {0})⊆ intA ⇔ bdA− (B\ {0})⊆ intA.

(h) Assume that ϕA is proper; then

ϕA is subadditive ⇔ A + A ⊆ A ⇔ bdA + bdA ⊆ A.

Proof. Suppose now that (A2) holds.

(f) Let λ ∈ R and take y ∈ λ k0 + intA. Since y− λ k0 ∈ intA, there exists ε > 0
such that y−λ k0 + εk0 ∈ A. Therefore ϕA(y) ≤ λ − ε < λ , which shows that
the inclusion ⊇ always holds in (11.12). Let λ ∈ R and y ∈ Y be such that
ϕA(y) < λ . There exists t ∈ R, t < λ , such that y ∈ tk0 +A. It follows with (A2)
that y∈ λ k0 +A−(λ − t)k0 ⊆ λ k0 + intA. Therefore (11.12) holds, and so ϕA is
upper semicontinuous. Because ϕA is also lower semicontinuous, we have that
ϕA is continuous. From (11.6) and (11.12) we obtain immediately that (11.13)
holds.

(g) Let us prove the second part, the first one being similar to that of (and partially
proved in) (d). So, let ϕA be finite-valued.
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Assume that ϕA is strictly B-monotone and take y ∈ A and b ∈ −B \ {0}.
From (11.6) we have that ϕA(y)≤ 0, and so, by hypothesis, ϕA(y−b)< 0. Using
(11.12) we obtain that y−b ∈ intA. Assume now that bdA− (B\ {0})⊆ intA.
Consider y1,y2 ∈ Y with y2 − y1 ∈ B \ {0}. From (11.13) we have that y2 ∈
ϕA(y2)k0 + bdA, and so y1 ∈ ϕA(y2)k0 − (bdA +(B\ {0}))⊆ ϕA(y2)k0 + intA.
From (11.12) we obtain that ϕA(y1) < ϕA(y2). The remaining implication is
obvious.

(h) Let ϕA be proper. One has to prove bdA + bdA ⊆ A ⇒ ϕA is subadditive.
Consider y1,y2 ∈ Y . If {y1,y2} 	⊆ domϕA, there is nothing to prove; hence
let y1,y2 ∈ domϕA. Then, by (11.13), yi ∈ ϕA(yi)k0 + bdA for i ∈ {1,2}, and
so y1 + y2 ∈ (ϕA(y1)+ ϕA(y2))k0 + (bdA + bdA) ⊆ (ϕA(y1)+ ϕA(y2))k0 + A.
Therefore ϕA(y1 + y2) ≤ ϕA(y1)+ ϕA(y2). ��

When k0 ∈ intK we get an additional important property of ϕA (see also
Theorem 11.4).

Corollary 11.1. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ intK and
A ⊆ Y satisfies condition (A1). Then ϕA is finite-valued and continuous.

Proof. Because k0 ∈ intK we have that Rk0 + K = Y . From Theorem 11.1 (c) it
follows that

domϕA = A +Rk0 = A−K +Rk0 = A +Y = Y.

Assuming that ϕA is not proper, from Theorem 11.1 (c) we get y + Rk0 ⊆ A for
some y ∈ Y . Then Y = y + Rk0 −K ⊆ A−K = A, a contradiction. Hence ϕA is
finite-valued.

Moreover, we have that A − Pk0 ⊆ A − intK ⊆ int(A − K) = intA. Applying
Theorem 11.2 (f) for K replaced by R+k0 we obtain that ϕA is continuous. ��

From the preceding results we get the following particular case.

Corollary 11.2. Let K ⊆ Y be a proper closed convex cone and k0 ∈ − intK. Then

ϕK : Y → R, ϕK(y) := inf{t ∈ R | y ∈ tk0 + K}

is a well-defined continuous sublinear function such that for every λ ∈ R,

{y ∈Y | ϕK(y) ≤ λ} = λ k0 + K, {y ∈ Y | ϕK(y) < λ} = λ k0 + intK.

Moreover, ϕK is strictly (− intK)-monotone.

Proof. The assertions follow using Theorem 11.2 and Corollary 11.1 applied for
A := K and K replaced by −K. For the last part note that K + intK = intK. ��

Now all preliminaries are done, and we can prove the following nonconvex
separation theorem.
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Theorem 11.3 (Non-convex Separation Theorem). Let A ⊆ Y be a closed proper
set with nonempty interior, H ⊆Y a nonempty set such that H ∩ intA = /0. Let K ⊆Y
be a proper closed convex cone and k0 ∈ intK. Furthermore, assume

(A2) A is closed, satisfies the strong free-disposal assumption A−(K \{0})= intA,
and A 	= Y .

Then ϕA defined by (11.5) is a finite-valued continuous function such that

ϕA(x) ≥ 0 > ϕA(y) ∀x ∈ H, ∀y ∈ intA; (11.14)

moreover, ϕA(x) > 0 for every x ∈ intH.

Proof. By Corollary 11.1 ϕA is a finite-valued continuous function. By Theorem
11.2 (f) we have that intA = {y ∈ Y | ϕA(y) < 0}, and so (11.14) obviously holds.

Take y ∈ intH; then there exists t > 0 such that y− tk0 ∈ H. From (11.7) and
(11.12) we obtain that 0 ≤ ϕA(y− tk0) = ϕA(y)− t, whence ϕA(y) > 0. ��

Of course, if we impose additional conditions on A, we have additional properties
of the separating functional ϕA (see Theorems 11.1 and 11.2).

11.3.3 Continuity Properties

If A is a proper closed subset of Y (hence /0 	= A 	= Y ) and A−Pk0 ⊆ intA, applying
Theorem 11.2 for K := R+k0 we obtain that ϕA is continuous (on Y ) and (11.13)
holds. In the next result we characterize the continuity of ϕA at a point y0 ∈ Y
(compare Tammer and Zălinescu [63]).

Proposition 11.3. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ K \
(−K) and A ⊆ Y is a nonempty set satisfying condition (A1). Then the function ϕA

is (upper semi-) continuous at y0 ∈ Y if and only if y0 − ]ϕA(y0),∞[ · k0 ⊆ intA.

Proof. If ϕA(y0) = ∞ it is clear that ϕA is upper semicontinuous at y0 and the
inclusion holds. So let ϕA(y0) < ∞.

Assume first that ϕA is upper semicontinuous at y0. Let λ ∈ ]ϕA(y0),∞[. Then
there exists a neighbourhoodV of y0 such that ϕA(y) < λ for every y ∈V . It follows
that for y ∈ V we have y ∈ λ k0 + A, that is, V ⊆ λ k0 + A. Hence y0 ∈ λ k0 + intA,
whence y0 −λ k0 ∈ intA.

Assume now that y0 − ]ϕA(y0),∞[ · k0 ⊆ intA and take ϕA(y) < λ < ∞. Then, by
our hypothesis, V := λ k0 +A is a neighbourhood of y0 and from the definition of ϕA

we have that ϕA(y) ≤ λ for every y ∈V . Hence ϕA is upper semicontinuous at y0.
��

Corollary 11.3. Under the hypotheses of Proposition 11.3 assume that ϕA is
continuous at y0 ∈ bdA. Then ϕA(y0) = 0.
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Proof. Of course, ϕA(y0) ≤ 0. If ϕA(y0) < 0, from the preceding proposition we
obtain the contradiction y0 = y0 −0k0 ∈ intA. ��

11.3.4 Lipschitz Properties

The primary goal of this section is to study local Lipschitz properties of the
functional ϕA,k0 under as weak as possible assumptions concerning the subset A ⊆Y
and k0 ∈ Y (compare Tammer and Zălinescu [63]).

When A is a convex set, as noticed above, ϕA is convex. In such a situation
from the continuity of ϕA at a point in the interior of its domain one obtains the
local Lipschitz continuity of ϕA on the interior of its domain (if the function is
proper). Moreover, when A = −K and k0 ∈ intK then (it is well known that) ϕA is a
continuous sublinear function, and so ϕA is Lipschitz continuous.

Recently in the case Y = R
m and for K = R

m
+ Bonnisseau–Crettez [4] obtained

the Lipschitz continuity of ϕA around a point y ∈ bdA when −k0 is in the interior
of the Clarke tangent cone of A at y. The (global) Lipschitz continuity of ϕA can
be related to a result of Gorokhovik–Gorokhovik [35] established in normed vector
spaces as we shall see in the sequel.

Theorem 11.4. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ K \ (−K)
and A ⊆ Y is a nonempty set satisfying condition (A1).

(a) One has

ϕA(y) ≤ ϕA(y′)+ ϕ−K(y− y′) ∀y,y′ ∈ Y. (11.15)

(b) If k0 ∈ intK then ϕA is finite-valued and Lipschitz on Y .

Proof. (a) By Theorem 11.1 (applied for A and A := −K, respectively) we have
that ϕA and ϕ−K are lower semicontinuous functions, ϕ−K being sublinear and
proper.

Let y,y′ ∈ Y . If ϕA(y′) = +∞ or ϕ−K(y− y′) = +∞ it is nothing to prove. In
the contrary case let t,s ∈ R be such that y−y′ ∈ tk0−K and y′ ∈ sk0 +A. Then,
taking into account assumption (A1)

y ∈ tk0 −K + sk0 + A = (t + s)k0 +(A−K) = (t + s)k0 + A.

It follows that ϕA(y)≤ t +s. Passing to infimum with respect to t and s satisfying
the preceding relations we get (11.15).

(b) Assume that k0 ∈ intK. Let V ⊆Y be a symmetric closed and convex neighbour-
hood of 0 such that k0 +V ⊆ K and let pV : Y →R be the Minkowski functional
associated to V ; then pV is a continuous seminorm and V = {y∈Y | pV (y)≤ 1}.
Let y ∈ Y and t > 0 such that y ∈ tV . Then t−1y ∈ V ⊆ k0 − K, whence
y ∈ tk0 −K. Hence ϕ−K(y) ≤ t. Therefore, ϕ−K(y) ≤ pV (y). This inequality
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confirms that (Rk0 −K =) domϕ−K = Y . Moreover, since ϕ−K is sublinear we
get ϕ−K(y) ≤ ϕ−K(y′)+ pV (y− y′) and so

∣
∣ϕ−K(y)−ϕ−K(y′)

∣
∣≤ pV (y− y′) ∀y,y′ ∈ Y, (11.16)

that is, ϕ−K is Lipschitz.
By Corollary 11.1 we have that ϕA is finite-valued (and continuous). From

(11.15) we have that ϕA(y) − ϕA(y′) ≤ ϕ−K(y − y′) ≤ pV (y − y′), whence
(interchanging y and y′)

∣
∣ϕA(y)−ϕA(y′)

∣
∣≤ pV (y− y′) ∀y,y′ ∈ Y. (11.17)

Hence ϕA is Lipschitz continuous (on Y ). ��
Note that the condition A− (K \ {0})⊆ intA does not imply that ϕA is proper.

Example 11.2. Take A := {(x,y)∈R
2 | y ≥−|x|−1}, with the convention 0−1 := ∞,

and K := R+k0 with k0 := (0,−1). Then A− (K \ {0}) = intA and ϕA(0,1) = −∞.

Note that, with our notation, [4, Proposition 7] asserts that ϕA,k0 is finite and
locally Lipschitz provided Y = R

n, K = R
n
+ and k0 ∈ intK, which is much less than

the conclusion of Theorem 11.4 (ii).
Of course, in the conditions of Theorem 11.4 (ii) we have that −k0 ∈ intA∞

because K ⊆−A∞. In fact we have also a converse of Theorem 11.4 (ii).

Proposition 11.4. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ K \
(−K) and A ⊆ Y is a nonempty set satisfying condition (A1). If ϕA is finite-valued
and Lipschitz then −k0 ∈ intA∞.

Proof. By hypothesis there exists a closed convex and symmetric neighbourhoodV
of 0 such that (11.17) holds. We have that A = {y ∈Y | ϕA(y)≤ 0}. Let y ∈ A, v ∈V
and α ≥ 0. Then

ϕA(y + α(v− k0)) ≤ ϕA(y + αv)−α ≤ ϕA(y)+ α pV (v)−α ≤ 0

because V = {y ∈ Y | pV (y) ≤ 1}. Hence V − k0 ⊆ A∞, which shows that −k0 ∈
intA∞. ��
Corollary 11.4. Under the assumptions of Proposition 11.4, the function ϕA is
finite-valued and Lipschitz if and only if −k0 ∈ intA∞.

Proof. The necessity is given by Proposition 11.4. Assume that−k0 ∈ intA∞. Taking
K := −A∞, using Theorem 11.4 (b) we obtain that ϕA is finite-valued and Lipschitz.

��
If intK 	= /0 and k0 /∈ intK, ϕ−K is not finite-valued, and so it is not Lipschitz.

One may ask if the restriction of ϕ−K at its domain is Lipschitz. The next examples
show that both situations are possible.
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Example 11.3. Take K = R
2
+ and k0 = (1,0). We have that ϕ−K(y1,y2) = y1 for

y2 ≤ 0, ϕ−K(y1,y2) = ∞ for y2 > 0, and so ϕ−K |domϕ−K is Lipschitz.

Example 11.4. Take K :=
{

(u,v,w) ∈ R
3 | v,w ≥ 0, u2 ≤ vw

}

and k0 := (0,0,1);
then

ϕ−K(x,y,z) =

⎧

⎨

⎩

∞ if y > 0 or [y = 0 and x 	= 0],
z if x = y = 0,

z− x2/y if y < 0.

It is clear that the restriction of ϕ−K at its domain is not continuous at (0,0,0) ∈
domϕ−K and the restriction of ϕ−K at the interior of its domain is not Lipschitz.
However, ϕ−K is locally Lipschitz on the interior of its domain.

The last property mentioned in the previous example is a general one for ϕA when
A is convex.

Proposition 11.5. Let A be a proper closed subset of Y and k0 ∈ Y \ {0} be such
that A−R+k0 = A. If A is convex, has nonempty interior, and does not contain
any line parallel with k0 (or equivalently k0 /∈ A∞), then ϕA is locally Lipschitz on
int(domϕA) = Rk0 + intA.

Proof. Because A does not contain any line parallel with k0, ϕA is proper (see The-
orem 11.1 taking into account assumption (A1)). We know that domϕA = Rk0 + A,
and so int(domϕA) = int(Rk0 + A) = Rk0 + intA (see, e.g., [67, Exercise 1.4]). On
the other hand it is clear that A ⊆ {y ∈Y | ϕA(y) ≤ 0}. Since intA 	= /0, we have that
ϕA is bounded above on a neighbourhood of a point, and so ϕA is locally Lipschitz
on int(domϕA) = Rk0 + intA (see e.g. [67, Corollary 2.2.13]). ��

We have seen in Theorem 11.4 that ϕA is Lipschitz even if A is not convex when
k0 ∈ intK. So, in the sequel we are interested by the case in which A is not convex,
k0 /∈ intK and A does not contain any line parallel with k0.

Note that for A not convex and y ∈ int(domϕA) we can have situations in which
ϕA is not continuous at y or ϕA is continuous but not Lipschitz around y.

Example 11.5. Take K := R
2
+, k0 := (1,0) and

A1 := (]−∞,0]× ]−∞,1])∪ ([0,1]× ]−∞,0])

A2 := {(a,b) | a ∈ ]0,∞[, b ≤−a2}∪ (]−∞,0]× ]−∞,1]).

Then

ϕA1,k0(u,v) =

⎧

⎨

⎩

∞ if v > 1,

u if 0 < v ≤ 1,

u−1 if v ≤ 0,

ϕA2,k0(u,v) =

⎧

⎨

⎩

∞ if v > 1,

u if 0 < v ≤ 1,

u−√−v if v ≤ 0.

It is clear that (0,0) ∈ int(domϕA1) but ϕA1 is not continuous at (0,0), and (0,0) ∈
int(domϕA2), ϕA2 is continuous at (0,0) but ϕA2 is not Lipschitz at (0,0).
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In what concerns the Lipschitz continuity of ϕA around a point y ∈ domϕA in
finite dimensional spaces this can be obtained using the notion of epi-lipschitzianity
of a set as introduced by Rockafellar [55] (see also [56]). We extend this notion
in our context. We say that the set A ⊆ Y is epi-Lipschitz at y ∈ A in the direction
v ∈ Y \ {0} if there exist ε > 0 and a (closed convex symmetric) neighbourhood V0

of 0 in Y such that

∀y ∈ (y +V0)∩A, ∀w ∈ v +V0, ∀λ ∈ [0,ε] : y + λ w ∈ A. (11.18)

Note that (11.18) holds for v = 0 if and only if y ∈ intA. Moreover, if y ∈ intA
then A is epi-Lipschitz at y ∈ A in any direction.

Theorem 11.5. Let A be a proper closed subset of Y and k0 ∈ Y \ {0} be such
that A−R+k0 = A. Assume that y0 ∈ Y is such that ϕA(y0) ∈ R. Then ϕA is finite
and Lipschitz on a neighbourhood of y0 if and only if A is epi-Lipschitz at y :=
y0 −ϕA(y0)k0 in the direction −k0.

Proof. Using (11.7) we get ϕA(y) = 0. Recall also that A = {y ∈Y | ϕA(y) ≤ 0} and
the finite values of ϕA are attained (because A is closed).

Assume that there exist a closed convex symmetric neighbourhood V of 0 in
Y and p : Y → R a continuous seminorm such that ϕA is finite on y0 + V and
|ϕA(y)−ϕA(y′)| ≤ p(y− y′) for all y,y′ ∈ y0 +V . Taking into account (11.7), we
have that ϕA is finite on y+V and

∣
∣ϕA(y)−ϕA(y′)

∣
∣≤ p(y− y′) ∀y,y′ ∈ y+V.

Take V0 := {y ∈ 1
3V | p(y) ≤ 1} and ε ∈ ]0,1] such that εk0 ∈ V0. Let us show that

(11.18) holds with v replaced by −k0. For this take y ∈ (y +V0)∩A, w ∈ −k0 +V0

and λ ∈ [0,ε]. Then y−λ k0−y∈V0 +V0 ⊆V and y+λ w−y = y−λ k0−y+λ (w+
k0) ∈V0 +V0 +V0 ⊆V , and so

ϕA(y + λ w) ≤ ϕA(y−λ k0)+ p(λ (w+ k0)) = ϕA(y)−λ + λ p(w+ k0)

≤ λ (p(w+ k0)−1)≤ 0.

Hence y + λ w ∈ A.
Assume now that (11.18) holds with v replaced by −k0. Let r ∈ ]0,ε] be such

that 2r(1 + p(k0)) < 1, where p := pV0 . Of course, {y | p(y) ≤ λ} = λV0 for every
λ > 0 and if p(y) = 0 then y ∈ λV0 for every λ > 0. Set

M := {y ∈ y + rV0 | |ϕA(y)| ≤ p(y− y)};

of course, y ∈ M. We claim that M = y+ rV0. Consider y ∈ M, w ∈V0 and λ ∈ [0,r].
Setting y′ := y−ϕA(y)k0 ∈ A, we have that ϕA(y′) = 0 and

p(y′ − y) ≤ p(y− y)+ |ϕA(y)| · p(k0) ≤ r
(

1 + p(k0)
)

<
1
2
≤ 1, (11.19)

and so, by (11.18), y′ + λ (w− k0) ∈ A; hence ϕA(y′ + λ w) ≤ λ .
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Take v ∈ rV0. On one hand one has

ϕA(y′ + v) = ϕA

(

y′ + p(v) · 1
p(v)

v

)

≤ p(v)

if p(v) > 0, and ϕA(y′ + v) = ϕA(y′ + λ (λ−1v)) ≤ λ for every λ ∈ ]0,r], whence
ϕA(y′ + v) ≤ 0 = p(v). Therefore, ϕA(y′ + v) ≤ p(v).

On the other hand, assume that ϕA(y′ + v) < −p(v). Because 2r(1 + p(k0)) < 1,
there exists t > 0 such that r + (t + r)p(k0) ≤ 1/2 and ϕA(y′ + v) < −p(v)− t =:
t ′ < 0. It follows that y′ + v− t ′k0 ∈ A. Moreover, taking into account (11.19),

p(y′+v−t ′k0−y)≤ p(y′−y)+ p(v)+(t + p(v))p(k0)≤ 1/2+r+(t +r)p(k0)≤ 1,

and so y′ + v− t ′k0 ∈ (y +V0)∩A. Using (11.18), if p(v) > 0 then

y′ + tk0 = y′ − (t ′ + p(v)
)

k0 = y′ + v− t ′k0 + p(v)
(

−k0 − 1
p(v)

v

)

∈ A,

while if p(v) = 0 then

y′ +(1− γ)tk0 = y′ + v− t ′k0 + γt
(−k0 − (γt)−1v

) ∈ A

for γ := min{ 1
2 ,εt−1}. We get the contradiction 0 = ϕA(y′) ≤ −t < 0 in the first

case and 0 = ϕA(y′) ≤−t(1− γ) < 0 in the second case. Hence ϕA(y′ + v) ∈ R and
|ϕA(y′ + v)−ϕA(y′)| ≤ p(v) for every v ∈ rV0, or equivalently,

ϕA(y + v) ∈ R, |ϕA(y + v)−ϕA(y)| ≤ p(v) ∀v ∈ rV0. (11.20)

When y := y ∈ M, from (11.20) we get y+ rV0 ⊆ M, and so M = y+ rV0 as claimed.
Moreover, if y,y′ ∈ y+ 1

2 rV0, then y ∈ M and y′ = y+v for some v∈ rV0; using again
(11.20) we have that |ϕA(y′)−ϕA(y)| ≤ p(y′ − y). The conclusion follows. ��

The next result is similar to Corollary 11.3.

Corollary 11.5. Let A be a proper closed subset of Y and k0 ∈Y \{0} be such that
A−R+k0 = A. Consider y ∈ bdA. If A is epi-Lipschitz at y in the direction −k0 then
ϕA(y) = 0.

Proof. Consider ε ∈ ]0,1[ and V0 provided by (11.18) with v := −k0. Assume that
ϕA(y) 	= 0. Then there exists t > 0 such that t pV0(k

0) ≤ ε and y := y + tk0 ∈ A.
Taking λ := t in (11.18) we obtain that y+ t(−k0 +V0) = y+ tV0 ⊆ A, contradicting
the fact that y ∈ bdA. ��
Corollary 11.6. Let A be a proper closed subset of Y and k0 ∈Y \{0} be such that
A−R+k0 = A. Assume that dimY < ∞ and y ∈ bdA. Then ϕA is finite and Lipschitz
on a neighbourhood of y if and only if −k0 ∈ intTCl(A,y), where TCl(A,y) is the
Clarke tangent cone of A at y.
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Proof. By [56, Theorem 2I], −k0 ∈ intTCl(A,y) if and only if A is epi-Lipschitz at y
in the direction −k0. The conclusion follows from Corollary 11.3, Theorem 11.5
and Corollary 11.5. ��

The fact that ϕA is Lipschitz on a neighbourhood of y under the condition −k0 ∈
intTCl(A,y) is obtained in [4, Proposition 6] in the case Y = R

m (and K = R
m
+).

Consider y∗ ∈ Y ∗ such that
〈

k0,y∗
〉 	= 0, H := kery∗ and take

ϕ0 : H → R, ϕ0(z) := ϕA(z),

that is, ϕ0 = ϕA|H . Since ϕA is lsc, so is ϕ0. Then any y ∈Y can be written uniquely
as z− tk0 with z ∈ H and t ∈ R. So, by (11.7), ϕA(y) = ϕA(z− tk0) = ϕ0(z)− t.
Using (11.10) we obtain that A = {z− tk0 | (z,t) ∈ epiϕ0}. Conversely, if g : H → R

is a lsc function and A := {z− tk0 | (z,t) ∈ epig}, then A is a closed set with A−
R+k0 = A and ϕ0 = g. Therefore, the closed set A with the property A−R+k0 = A
is uniquely determined by a lsc function ϕ0 : H → R. Moreover, for y = z− tk0

we have that ϕA is finite (resp. continuous) at y if and only if ϕ0 is finite (resp.
continuous) at z. Moreover, because Y = H + Rk0 and the sum is topological (that
is, the projection onto H parallel to Rk0 is continuous), we have that ϕA is finite
and Lipschitz continuous on a neighbourhood of y if and only if ϕ0 is finite and
Lipschitz continuous on a neighbourhood of z. Similarly, ϕA is finite and Lipschitz
continuous if and only if ϕ0 is finite and Lipschitz continuous.

Note that for Y a normed vector space in [35] one says that A is (globally) epi-
Lipschitz in the direction e ∈ Y \ {0} if there exist a closed linear subspace H of
codimension 1 with e 	∈H and a Lipschitz function g : H →R such that A = {y+αe |
y ∈ H, α ∈ R, g(y) ≤ α}; A is epi-Lipschitz if there exists e ∈ Y \ {0} such that
A is epi-Lipschitz in the direction e. The main result of [35] asserts that the proper
closed set A ⊆ Y is epi-Lipschitz in the direction e if and only if e ∈ intA∞, and so
A ⊆ Y is epi-Lipschitz if and only if intA∞ 	= /0.

The discussion above shows that not only the main theorem of [35] can be
obtained from Corollary 11.4, but this one extends the main theorem of [35] to
locally convex spaces.

11.3.5 The Formula for the Conjugate and Subdifferential
of ϕA for A Convex

The results of this section (less the second part of Corollary 11.7) were established
in several papers; we give the proofs for reader’s convenience. The formula for the
conjugate of ϕA is derived by Hamel [40, Theorem 3] and can be related also to
[57, Theorem 3] and [60, Theorem 2.2]. Results concerning the subdifferential of
ϕA are given in [17, Theorem 2.2, Lemma 2.1]. Another proof of these assertions
using the formula for the conjugates is presented in Hamel [40, Corollary 12].
In the statements below we use some usual notation from convex analysis. So,
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having X a separated locally convex space with topological dual X∗ and f :
X → R, the conjugate of f is the function f ∗ : X∗ → R defined by f ∗(x∗) :=
sup{x∗(x)− f (x) | x ∈ X} and its subdifferential at x ∈ X with f (x) ∈ R is the set
∂ f (x) := {x∗ ∈ X∗ | x∗(x′ − x) ≤ f (x′)− f (x) ∀x′ ∈ X}; ∂ f (x) := /0 if f (x) /∈ R.
Having a set A ⊆ X , the indicator of A is the function ιA : X → R defined by
ιA(x) := 0 for x ∈ A and ιA(x) := ∞ for x ∈ X \A, while the support of A is the
function σA := (ιA)∗. When A is nonempty the domain of σA is a convex cone which
is called the barrier cone of A and is denoted by barA. Moreover, the normal cone
of A at a ∈ A is the set N(A,a) := ∂ιA(a).

Proposition 11.6. Let A be a proper closed subset of Y and k0 ∈ Y \ {0} be such
that A−R+k0 = A. Assume that A is convex and k0 /∈ A∞. Then ϕA ∈ Γ (Y ), that is,
ϕA is a proper lsc convex function,

ϕ∗
A(y∗) =

{
σA(y∗) if y∗ ∈ barA, y∗(k0) = 1,

∞ otherwise,
(11.21)

and ∂ϕA(y) ⊆ {y∗ ∈ barA | y∗(k0) = 1} ⊆ {y∗ ∈ K+ | y∗(k0) = 1} for every y ∈ Y.

Proof. From [32, Theorem 2.3.1]) we have that ϕA ∈Γ (Y ). Consider y∗ ∈Y ∗. Then

ϕ∗
A(y∗) = sup{y∗(y)−ϕA(y) | y ∈ Y}

= sup
{

y∗(y)− t | y ∈Y, t ∈ R, y ∈ tk0 + A
}

= sup
{

y∗(tk0 + a)− t | y ∈Y, t ∈ R, a ∈ A
}

= sup{y∗(a) | a ∈ A}+ sup{t(y∗(k0)−1) | t ∈ R}.

Hence (11.21) holds.
Since ∂ f (y) ⊆ dom f ∗ for every proper function f : Y → R and every y ∈ Y ,

the first estimate for ∂ϕA(y) follows. Moreover, because A = A−K we have σA =
σA−K = σA + σ−K = σA + ιK+ , and so barA ⊆ K+. ��

The estimate barA ⊆ K+ becomes more precise when K = −A∞; in fact one has
(A∞)+ =−clw∗(barA). Indeed, from [67, Exercise 2.23] we have that ιA∞ = (ιA)∞ =
σdom ι∗A = σdomσA , whence ι−(A∞)+ = (ιA∞)∗ = ιclw∗ (domσA), and so clw∗(domσA) =
−(A∞)+.

Using Proposition 11.6 one deduces the expression of ∂ϕA (see also [17,
Theorem 2.2] for Y a normed vector space).

Corollary 11.7. Assume that A is convex and k0 /∈ A∞. Then for all y ∈ Y one has

∂ϕA(y) = {y∗ ∈ barA | y∗(k0) = 1, y∗(y)−ϕA(y) ≥ y∗(y) ∀y ∈ A}. (11.22)

Moreover, if (A2) holds then ∂ϕA(y) ⊆ K# for every y ∈ Y .
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Proof. Fix y ∈Y . If y /∈ domϕA then both sets in (11.22) are empty. Let y ∈ domϕA.
Then, of course, y − ϕA(y)k0 ∈ A. If y∗ ∈ ∂ϕA(y) then ϕA(y) + ϕ∗

A(y∗) = y∗(y).
Taking into account (11.21) we obtain that

y∗ ∈ barA, y∗(k0) = 1 and y∗(y)−ϕA(y) ≥ y∗(y) ∀y ∈ A, (11.23)

that is, the inclusion ⊆ holds in (11.22). Conversely, if y∗ ∈ Y ∗ is such that (11.23)
holds, since y − ϕA(y)k0 ∈ A and y∗(k0) = 1, we obtain that y∗

(

y−ϕA(y)k0
)

=
σA(y∗), which shows that ϕA(y)+ ϕ∗

A(y∗) = y∗(y). Hence y∗ ∈ ∂ϕA(y). Therefore,
(11.22) holds.

Assume now that (A2) holds, that is, A−(K \{0})⊆ intA, and take y∗ ∈ ∂ϕA(y).
Hence y ∈ domϕA. Consider k ∈ K \ {0}. Since (y− k)− y = −k ∈ −(K \ {0}), by
Theorem 11.4 (iv), we have that y∗(−k)≤ ϕA(y−k)−ϕA(y) < 0, that is, y∗(k) > 0.
Therefore, y∗ ∈ K#. ��

11.4 Minimal-Point Theorems and Corresponding
Variational Principles

11.4.1 Introduction

The celebrated Ekeland variational principle [21] (see Proposition 11.1) has many
equivalent formulations and generalizations.

The aim of this section is to show general minimal-point theorems and corre-
sponding variational principles. In Proposition 11.2 an existence result for minimal
points of a set A with respect to the cone Kε defined by (11.4) is presented. Taking
into account (11.4) we get

(x1 − x2,r1 − r2) ∈ Kε ⇐⇒ ε||x1 − x2|| ≤ −(r1 − r2).

This means
r2 ≥ r1 + ε||x1 − x2||. (11.24)

Quite rapidly after the publication of the Ekeland variational principle (EVP) in
1974 there were formulated extensions to functions f : (X ,d) → Y , where Y is a
real (topological) vector space. A systematization of such results was done in [34]
(see also [32]), where instead of a function f it was considered a subset of X ×Y ;
said differently, it was considered a multifunction from X to Y . In [32] we have
shown minimal-point theorems in product spaces X ×Y with respect to a relation

(x1,y1) �k0 (x2,y2) ⇐⇒ y2 ∈ y1 + d(x1,x2)k0 + K, (11.25)
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where K is the convex ordering cone in Y and k0 ∈ K \ {0}. This is an extension
of the binary relation defined by (11.24) to product spaces X ×Y . Very recently
the term d(x1,x2)k0 in (11.25) was replaced by d(x,x′)H with H a bounded convex
subset of K (see [8]) or by F(x,x′) ⊆ K, F being a so called K-metric (see [36]); in
both papers one deals with functions f : X → Y .

In order to formulate general minimal-point theorems in this section we replace
d(x1,x2)k0 in (11.25) by a set-valued map F with certain properties (compare
Tammer and Zălinescu [64]).

It is worth mentioning that a weaker result than a full (= authentic) minimal-point
theorem gives an EVP, as shown in this section. Such a weaker result is called not
authentic minimal-point theorem.

In this section we present new results with proofs very similar to the correspond-
ing ones in [34], which have as particular cases most part of the existing EVPs, or
they are very close to them. Moreover, we use the same approach to get extensions of
EVPs of Isac–Tammer and Ha types, as well as extensions of EVPs for bi-functions.

In the sequel (X ,d) is a complete metric space, Y is a real topological vector
space, Y ∗ is its topological dual, and K ⊆ Y is a proper convex cone.

If Y is just a real linear space we endow it with the finest locally convex topology,
that is, the topology defined by all the seminorms on Y.

As in [6] and [7], we say that E ⊆Y is quasi bounded (from below) if there exists
a bounded set B ⊆ Y such that E ⊆ B + K; as in [36], we say that E is K-bounded
(by scalarization) if y∗(E) is bounded from below for every y∗ ∈ K+. It is clear that
any quasi bounded set is K-bounded.

Let F : X ×X ⇒ K satisfy the conditions:

(F1) 0 ∈ F(x,x) for all x ∈ X
(F2) F(x1,x2)+ F(x2,x3) ⊆ F(x1,x3)+ K for all x1,x2,x3 ∈ X

Using F we introduce a preorder on X ×Y , denoted by �F , in the following
manner:

(x1,y1) �F (x2,y2) ⇐⇒ y2 ∈ y1 + F(x1,x2)+ K. (11.26)

Indeed, �F is reflexive by (F1). If (x1,y1) �F (x2,y2) and (x2,y2) �F (x3,y3), then

y2 = y1 + v1 + k1, y3 = y2 + v2 + k2 (11.27)

with v1 ∈ F(x1,x2), v2 ∈ F(x2,x3) and k1,k2 ∈ K. By (F2) we have that v1 + v2 =
v3 + k3 for some v3 ∈ F(x1,x3) and k3 ∈ K, and so

y3 = y1 + v1 + k1 + v2 + k2 = y1 + v3 + k1 + k2 + k3 ∈ y1 + F(x1,x3)+ K;

hence (x1,y1) �F (x3,y3), and so �F is transitive. Of course,

(x1,y1) �F (x2,y2) ⇒ y1 ≤K y2; (11.28)
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moreover, by (F1), we have that

(x,y1) �F (x,y2) ⇐⇒ y2 ∈ y1 + K ⇐⇒ y1 ≤K y2. (11.29)

Besides conditions (F1) and (F2) we shall assume to be true the condition

(F3) There exists z∗ ∈ K+ such that

η(δ ) := inf
{

z∗(v) | v ∈ ∪d(x,x′)≥δ F(x,x′)
}

> 0 ∀δ > 0. (11.30)

Clearly, by (F3) we have that 0 /∈ cl convF(x,x′) for x 	= x′.
A sufficient condition for (11.30) is

inf
z∈F(x,x′)

z∗(z) ≥ d(x,x′) ∀x,x′ ∈ X . (11.31)

If (11.31) holds then

(x1,y1) �F (x2,y2) ⇒ d(x1,x2) ≤ z∗(y2)− z∗(y1). (11.32)

Indeed, since F(x1,x2) ⊆ K, from (11.28) we get first that y1 ≤K y2; then from
(11.27)

z∗(y2) = z∗(y1)+ z∗(v1)+ z∗(k1) ≥ z∗(y1)+ inf
v∈F(x1,x2)

z∗(v) ≥ z∗(y1)+ d(x1,x2),

and so (11.32) holds.
Using (11.32) we obtain that

[(x1,y1) �F (x2,y2), (x2,y2) �F (x1,y1)] ⇒ [x1 = x2, z∗(y1) = z∗(y2)] ; (11.33)

moreover, if z∗ ∈ K# then �F is anti-symmetric, and so �F is a partial order.
For F satisfying conditions (F1)–(F3), z∗ being that from (F3), we introduce the

order relation �F,z∗ on X ×Y by

(x1,y1) �F,z∗ (x2,y2) ⇐⇒
{

(x1,y1) = (x2,y2) or
(x1,y1) �F (x2,y2) and z∗(y1) < z∗(y2).

(11.34)

It is easy to verify that �F,z∗ is reflexive, transitive, and antisymmetric.

11.4.2 Minimal Points in Product Spaces

We take X ,Y,K,F as above, that is, F satisfies conditions (F1)–(F3), z∗ being that
from (F3).
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Consider a nonempty set A ⊆ X ×Y . In the sequel we shall use the condition
(H1) on A , where N is the set of nonnegative integers; moreover, we set N

∗ :=
N\ {0}.

The next theorem is the main result of this section.

Theorem 11.6 (Minimal-Point Theorem with Respect to �F,z∗). Assume that
(X ,d) is a complete metric space, Y is a real topological vector space and K ⊆ Y
is a proper convex cone. Let F : X × X ⇒ K satisfy conditions (F1)–(F3) and
A ⊆ X ×K satisfy the condition

(H1) For every �F -decreasing sequence ((xn,yn)) ⊆ A with xn → x ∈ X there
exists y ∈ Y such that (x,y) ∈ A and (x,y) �F (xn,yn) for every n ∈ N.

Furthermore, suppose that

(B1) z∗ (from (F3)) is bounded from below on PrY (A ).

Then for every (x0,y0) ∈ A there exists an element (x,y) of A such that:

(a) (x,y) �F,z∗ (x0,y0)
(b) (x,y) is a minimal element of A with respect to �F,z∗

Proof. Let

α := inf{z∗(y) | ∃x ∈ X : (x,y) ∈ A , (x,y) �F,z∗ (x0,y0)} ∈ R.

Let us denote by A (x,y) the set of those (x′,y′) ∈ A with (x′,y′) �F,z∗ (x,y). We
construct a sequence ((xn,yn))n≥0 ⊆ A as follows: Having (xn,yn) ∈ A , we take
(xn+1,yn+1) ∈ A (xn,yn) such that

z∗(yn+1) ≤ inf{z∗(y) | (x,y) ∈ A (xn,yn)}+ 1/(n + 1).

Of course, ((xn,yn)) is �F,z∗-decreasing. It follows that (yn)n≥0 is ≤K-decreasing,
and so the sequence (z∗(yn))n≥0 is nonincreasing and bounded from below; hence
γ := limz∗(yn) ∈ R.

If A (xn0 ,yn0) is a singleton (that is, {(xn0 ,yn0)}) for some n0 ∈ N, then clearly
(x,y) := (xn0 ,yn0) is the desired element. In the contrary case the sequence (z∗(yn))
is (strictly) decreasing; moreover, γ < z∗(yn) for every n ∈ N.

Assume that (xn) is not a Cauchy sequence. Then there exist δ > 0 and the
sequences (nk), (pk) from N

∗ such that nk → ∞ and d(xnk ,xnk+pk) ≥ δ for every
k. Since (xnk+pk ,ynk+pk) �F,z∗ (xnk ,ynk) we obtain that

z∗(ynk)− z∗(ynk+pk) ≥ inf
{

z∗(v) | v ∈ F(xnk+pk ,xnk)
}≥ η(δ ) ∀k ∈ N.

Since η(δ ) > 0 and (z∗(yn)) is convergent, this is a contradiction. Therefore, (xn)
is a Cauchy sequence in the complete metric space (X ,d), and so (xn) converges
to some x ∈ X . Since ((xn,yn)) is �F -decreasing, by (H1) there exists some y ∈ Y
such that (x,y) ∈ A and (x,y) �F (xn,yn) for every n ∈ N. It follows that z∗(y) ≤
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limz∗(yn), and so z∗(y) < z∗(yn) for every n ∈ N. Therefore (x,y) �F,z∗ (xn,yn) for
every n ∈ N. Let (x′,y′) ∈ A be such that (x′,y′) �F,z∗ (x,y). Since (x,y) �F,z∗
(xn,yn), we have that (x′,y′) �F,z∗ (xn,yn) for every n ∈ N. It follows that

0 ≤ z∗(y)− z∗(y′) ≤ z∗(yn)− z∗(y′) ≤ 1/n ∀n ≥ 1,

whence z∗(y′) = z∗(y). By the definition of �F,z∗ we obtain that (x′,y′) = (x,y). ��
As seen from the proof, for a fixed (x0,y0) ∈A it is sufficient that z∗ be bounded

from below on the set {y ∈ Y | ∃x ∈ X : (x,y) ∈ A , (x,y) �F,z∗ (x0,y0)} instead of
being bounded from below on PrY (A ).

Remark 11.5. When k0 ∈ K and F(x,x′) := {d(x,x′)k0} we have that F satisfies
conditions (F1) and (F2); moreover, if Y is a separated locally convex space and
−k0 /∈ clK, then there exists z∗ ∈ K+ with z∗(k0) = 1, and so (F3) is also satisfied
(even (11.31) is satisfied). In this case condition (H1) becomes condition (H1) in
[32, p. 199]. So Theorem 11.6 extends [32, Theorem 3.10.7] to this framework,
using practically the same proof.

In [36] one considers for a proper pointed convex cone D ⊆ Y a so called set-
valued D-metric, that is, a multifunction F : X ×X ⇒ D satisfying the following
conditions:

(i) F(x,y) 	= /0 and F(x,x) = {0} ∀x,y ∈ X , and 0 /∈ F(x,y) ∀x 	= y
(ii) F(x,y) = F(y,x) ∀x,y ∈ X

(iii) F(x,y)+ F(y,z) ⊆ F(x,z)+ D ∀x,y,z ∈ X

The basic supplementary assumptions on D and F are:

(S1) D is w-normal and DF is based.
(S2) 0 /∈ clw

(∪d(x,y)≥δ F(x,y)
) ∀δ > 0.

Here KF := cone(conv(∪{F(x,y) | x,y ∈ X})) and DF := (KF \ {0}+ D)∪{0}.
As observed in [36], D is w-normal iff D+−D+ = Y ∗, and DF is based iff D+∩

K#
F 	= /0.

Comparing with our assumptions on F , we see that (F1) is weaker than (i)
because we ask just 0 ∈ F(x,x) for every x ∈ X , and we don’t ask the symmetry
condition (ii). From (F3) we obtain that (S2) is verified and that z∗ ∈ K#

F and so
(KF \ {0}+ K)∪{0} is based, but we don’t need either K be w-normal or even K
be pointed.

Another possible choice for F , considered also in [36], is F(x,x′) := d(x,x′)H
with H ⊆ K \ {0} a nonempty set such that H + K is convex. Clearly (F1), (i), and
(ii) are satisfied (for D = K). From the convexity of H + K we obtain easily that
(F2) (and (iii)) holds. When Y is a separated locally convex space condition (F3) is
equivalent to 0 /∈ cl(H + K). In order to have that (S1) holds one needs K+ −K+ =
Y ∗ and the existence of z∗ ∈ K+ with z∗(v) > 0 for every v ∈ H, while for (S2)
one needs 0 /∈ clw H (see [36, Lemma 5.9 (d)]); of course, if H = H + K, the last
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condition is equivalent to 0 /∈ cl(H +K). So it seems that our condition (F3) is more
convenient than (S1) and (S2).

For H as above, that is, H ⊆ K is a nonempty set such that H + K is convex and
0 /∈ cl(H + K), we consider FH(x,x′) := d(x,x′)H for x,x′ ∈ X , and we set

�H :=�FH ;

moreover, if z∗ ∈ K+ is such that infz∗(H) > 0 we set

�H,z∗ :=�FH ,z∗ .

An immediate consequence of the preceding theorem is the next result.

Corollary 11.8 (Minimal-Point Theorem with Respect to �H,z∗ ). Assume that
(X ,d) is a complete metric space, Y is a real topological vector space, K ⊆ Y is a
proper convex cone and A ⊆ X ×Y satisfies:

(H1) For every �H-decreasing sequence ((xn,yn)) ⊆ A with xn → x ∈ X there
exists y ∈ Y such that (x,y) ∈ A and (x,y) �H (xn,yn) for every n ∈ N.

Suppose that there exists z∗ ∈ K+ such that infz∗(H) > 0 and

(B1) infz∗ (PrY (A )) > −∞.

Then for every (x0,y0) ∈ A there exists (x,y) ∈ A such that:

(a) (x,y) �H,z∗ (x0,y0).
(b) (x,y) is a minimal element of A with respect to �H,z∗ .

A condition related to (H1) is the next one.

(H2) For every sequence ((xn,yn)) ⊆ A with xn → x ∈ X and (yn) ≤K-decreasing
there exists y ∈ Y such that (x,y) ∈ A and y ≤K yn for every n ∈ N.

Remark 11.6. Note that (H2) holds if A is closed with PrY (A ) ⊆ y0 + K for some
y0 ∈Y and every≤K-decreasing sequence in K is convergent (i.e., K is a sequentially
Daniell cone). In fact, instead of asking that A is closed we may assume that

∀((xn,yn))n≥1 ⊆ A : [xn → x, yn → y, (yn) is ≤K -decreasing ⇒ (x,y) ∈ A ] .

Remark 11.7. Note that (H1) is verified whenever A satisfies (H2) and

∀u ∈ X , ∀X ⊇ (xn) → x ∈ X :
⋂

n∈N

(F(xn,u)+ K)⊆ F(x,u)+ K.

Indeed, let ((xn,yn)) ⊆ A be �F -decreasing with xn → x. It is obvious that (yn)
is ≤K-decreasing. By (H2), there exists y ∈ Y such that (x,y) ∈ A and y ≤K yn for
every n ∈ N. It follows that

yn ∈ yn+p + F(xn+p,xn)+ K ⊆ y + F(xn+p,xn)+ K ∀n, p ∈ N.
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Fix n; then yn − y ∈ F(xn+p,xn)+ K for every p ∈ N, and so, by our hypothesis,
yn − y ∈ F(x,xn)+ K because lim

p→∞
xn+p = x. Therefore, (x,y) �F (xn,yn).

Remark 11.8. In the case F = FH , (H1) is verified whenever A satisfies (H2) and
H + K is closed.

Indeed, let ((xn,yn))⊆A be a �H -decreasing sequence with xn → x. It is obvious
that (yn) is ≤K-decreasing. By (H2), there exists y ∈ Y such that (x,y) ∈ A and
y ≤K yn for every n ∈ N.

Fix n. If xn = x then clearly (x,y) = (xn,y) �H (xn,yn). Else, because
d(xn+p,xn) → d(x,xn) > 0 for p → ∞, we get d(xn+p,xn) > 0 for sufficiently
large p, and so

yn ∈ yn+p + d(xn+p,xn)H + K ⊆ y + d(xn+p,xn)H + K = y + d(xn+p,xn)(H + K)

for sufficiently large p. Since H + K is closed we obtain that

yn ∈ y + d(xn,x)(H + K) = y + d(xn,x)H + K,

that is, (x,y) �H (xn,yn).

Another condition to be added to (H2) in order to have (H1) is suggested by
the hypotheses of [8, Theorem 4.1]. Recall that a set C ⊆ Y is cs-complete (see
[67, p. 9]) if for all sequences (λn)n≥1 ⊆ [0,∞) and (yn)n≥1 ⊆C such that ∑n≥1 λn =
1 and the sequence (∑n

m=1 λmym)n≥1 is Cauchy, the series ∑n≥1 λnyn is convergent
and its sum belongs to C. One says that C ⊆ Y is cs-closed if the sum of the series
∑n≥1 λnyn belongs to C whenever ∑n≥1 λnyn is convergent and (yn) ⊆C, (λn)n≥1 ⊆
[0,∞) and ∑n≥1 λn = 1. Of course, any cs-complete set is cs-closed; if Y is complete
then the converse is true. Moreover, notice that any cs-closed set is convex.

Note that the sequence (∑n
m=1 λmym)n≥1 is Cauchy whenever (λn)n≥1 ⊆ [0,∞) is

such that the series ∑n≥1 λn is convergent and (yn)n≥1 ⊆ Y is such that conv{yn |
n ≥ 1} is bounded; of course, if Y is a locally convex space then B ⊆ Y is
bounded iff convB is bounded. Indeed, let (λn)n≥1 ⊆ [0,∞) with ∑n≥1 λn convergent
and (yn)n≥1 ⊆ Y with B := conv{yn | n ≥ 1} bounded. Fix V ⊆ Y a balanced
neighborhood of 0. Because B is bounded, there exists α > 0 such that B ⊆ αV .
Since the series ∑n≥1 λn is convergent there exists n0 ≥ 1 such that ∑n+p

k=n λk ≤ α−1

for all n, p ∈ N with n ≥ n0. Then for such n, p and some bn,p ∈ B we have

n+p

∑
k=n

λkyk =

(
n+p

∑
k=n

λk

)

bn,p ∈ [0,α−1]B ⊆ [0,α−1]αV = V.

Proposition 11.7. Assume that (X ,d) is a complete metric space, Y is a real
topological vector space and K ⊆ Y is a proper closed convex cone. Furthermore,
suppose that H ⊆ K is a nonempty cs-complete bounded set with 0 /∈ cl(H + K).
If A satisfies (H2) then A satisfies (H1), too.
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Proof. Let ((xn,yn))n≥1 ⊆ A be a �H -decreasing sequence with xn → x. It follows
that (yn) is ≤K-decreasing. By (H2), there exists y ∈ Y such that (x,y) ∈ A and
y ≤K yn for every n ∈ N.

Because ((xn,yn))n≥1 is �H-decreasing we have that

yn = yn+1 + d(xn,xn+1)hn + kn (11.35)

with hn ∈ H and kn ∈ K for n ≥ 1. If xn = xn for n ≥ n ≥ 1 we take x := xn; then
(x,y)�H (xn,yn) for every n∈N. Indeed, for n≤ n we have that (xn,yn)�H (xn,yn);
because y ≤K yn, by (11.29) we get (x,y) �H (x,yn) = (xn,yn), and so (x,y) �
(xn,yn). If n > n, using again (11.29), we have (x,y) = (xn,y) �H (xn,yn).

Assume that (xn) is not constant for large n. Fix n ≥ 1. From (11.35), for p ≥ 0,
we have

yn = yn+p+1 +
n+p

∑
l=n

d(xl ,xl+1)hl +
n+p

∑
l=n

kl = yn+p+1 +

(
n+p

∑
l=n

d(xl,xl+1)

)

hn,p +
n+p

∑
l=n

kl

= y + k′n,p +

(
n+p

∑
l=n

d(xl,xl+1)

)

hn,p (11.36)

for some hn,p ∈ H and k′n,p ∈ K. Assuming that ∑l≥n d(xl,xl+1) = ∞, from

(
n+p

∑
l=n

d(xl ,xl+1)

)−1

(yn − y) = hn,p +

(
n+p

∑
l=n

d(xl ,xl+1)

)−1

k′n,p ∈ H + K,

we get the contradiction 0 ∈ cl(H +K) taking the limit for p → ∞. Hence 0 < μ :=
∑l≥n d(xl,xl+1) < ∞. Set λl := μ−1d(xl,xl+1) for l ≥ n. Since H is cs-complete and
conv{hl | l ≥ n} (⊆ H) is bounded we obtain that the series ∑l≥n λlhl is convergent
and its sum hn belongs to H. It follows that ∑l≥n d(xl ,xl+1)hl = μhn, and so

kn := lim
p→∞

k′p = yn − y− μhn ∈ K

because K is closed. Since d(xn,xn+p) ≤ ∑n+p−1
l=n d(xl,xl+1), we obtain that

d(xn,x) ≤ μ , and so

yn = y + d(xn,x)hn + kn +(μ −d(xn,x))hn ∈ y + d(xn,x)H + K.

Hence (x,y) �H (xn,yn) for every n ∈ N. ��
The most part of vector EVP type results are established for Y a separated locally

convex space. However, there are topological vector spaces Y whose topological
dual reduce to {0}. In such a case it is not possible to find z∗ satisfying the conditions
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of Corollary 11.8. In [6, Theorem 1], in the case H is a singleton, the authors
consider such a situation.

Theorem 11.7 (Not Authentic Minimal-Point Theorem with Respect to �H).
Assume that (X ,d) is a complete metric space, Y is a real topological vector space.
Let K ⊆ Y be a proper closed convex cone and H ⊆ K be a nonempty cs-complete
bounded set with 0 /∈ cl(H + K). Suppose that A ⊆ X ×Y satisfies

(H2) For every sequence ((xn,yn)) ⊆ A with xn → x ∈ X and (yn) ≤K-decreasing
there exists y ∈ Y such that (x,y) ∈ A and y ≤K yn for every n ∈ N

and

(B2) PrY (A ) is quasi bounded.

Then for every (x0,y0) ∈ A there exists (x,y) ∈ A such that:

(a) (x,y) �H (x0,y0)
(b) (x,y) ∈ A , (x,y) �H (x,y) imply x = x

Proof. First observe that A satisfies condition (H1) by Proposition 11.7. Moreover,
because PrY (A ) is quasi bounded, there exists a bounded set B ⊆ Y such that
PrY (A ) ⊆ B + K.

Note that for (x,y) ∈ A the set PrX(A (x,y)) is bounded, where A (x,y) :=
{(x′,y′) ∈ A | (x′,y′) �H (x,y)}. In the contrary case there exists a sequence
((xn,yn))n≥1 ⊆ A (x,y) with d(xn,x) → ∞. Hence y = yn + d(xn,x)hn + kn = bn +
d(xn,x)hn + k′n with hn ∈ H, bn ∈ B, kn,k′n ∈ K. It follows that d(xn,x)−1(y−bn) ∈
H + K, whence the contradiction 0 ∈ cl(H + K).

Let us construct a sequence ((xn,yn))n≥0 ⊆ A in the following way: Having
(xn,yn) ∈ A , where n ∈ N, because Dn := PrX (A (xn,yn)) is bounded, there exists
(xn+1,yn+1) ∈ A (xn,yn) such that

d(xn+1,xn) ≥ 1
2

sup{d(x,xn) | x ∈ Dn} ≥ 1
4 diamDn.

We obtain in this way the sequence ((xn,yn))n≥0 ⊆ A , which is �H-decreasing.
Since A (xn+1,yn+1) ⊆ A (xn,yn), we have that Dn+1 ⊆ Dn for every n ∈ N. Of
course, xn ∈ Dn. Let us show that diamDn → 0. In the contrary case there exists
δ > 0 such that diamDn ≥ 4δ , and so d(xn+1,xn) ≥ δ for every n ∈ N. As in the
proof of Proposition 11.7, for every p ∈ N, we obtain that

y0 = yp+1 +

(
p

∑
l=0

d(xl ,xl+1)

)

hp +
p

∑
l=0

kl = bp +

(
p

∑
l=0

d(xl,xl+1)

)

hp + k′p

= bp +(p + 1)δhp + k′′p,

where hp ∈ H, bp ∈ B, kl,k′p,k′′p ∈ K. It follows that [(p + 1)δ ]−1(y0 −bp) ∈ H + K
for every p ∈ N. Since (bp) is bounded we obtain the contradiction 0 ∈ cl(H + K).
Thus we have that the sequence (clDn) is a decreasing sequence of nonempty closed
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subsets of the complete metric space (X ,d), whose diameters tend to 0. By Cantor’s
theorem,

⋂

n∈N clDn = {x} for some x ∈ X . Of course, xn → x. Since ((xn,yn))⊆ A
is a �H-decreasing sequence, from (H1) we get an y ∈Y such that (x,y) �H (xn,yn)
for every n ∈N; (x,y) is the desired element. Indeed, (x,y)�H (x0,y0). Let (x′,y′)∈
A (x,y). It follows that (x′,y′) ∈A (xn,yn), and so x′ ∈ Dn ⊆ clDn for every n. Thus
x′ = x. ��

If Y is a separated locally convex space, the preceding result follows immediately
from Corollary 11.8.

Of course, the set A ⊆ X ×Y can be viewed as the graph of a multifunction
Γ : X ⇒ Y ; then PrX (A ) = domΓ and PrY (A ) = ImΓ . In [6] one assumes that Γ
is level-closed, that is,

L(b) := {x ∈ X | ∃y ∈ Γ (x) : y ≤K b} = {x ∈ X | b ∈ Γ (x)+ K}
= {x ∈ X | Γ (x)∩ (b−K) 	= /0}

is closed for every b ∈ Y.
For the nonempty set E ⊆ Y let us set

BMMinE := {y ∈ E | E ∩ (y−K) = {y}}

(see [7, (1.2)]); note that this set is different of the usual set

MinE := {y ∈ E | E ∩ (y−K) ⊆ y+ K},

but they coincide if K is pointed. As in [7, Definition 3.2], we say that Γ : X ⇒ Y
satisfies the limiting monotonicity condition at x ∈ domΓ if for every sequence
((xn,yn))n≥1 ⊆ gphΓ with (xn) converging to x and (yn) being ≤K-decreasing,
there exists y ∈ BMMinΓ (x) such that y ≤ yn for every n ≥ 1. As observed in
[7], if Γ satisfies the limiting monotonicity condition at x ∈ domΓ then Γ (x) ⊆
BMMinΓ (x)+ K, that is, Γ (x) satisfies the domination property.

In [7, Proposition 3.3], in the case Y a Banach space, there are mentioned
sufficient conditions in order that Γ satisfy the limiting monotonicity condition at
x ∈ domΓ .

When X and Y are Banach spaces and H is a singleton the next result is
practically [7, Theorem 3.5].

Corollary 11.9 (Not Authentic Minimal-Point Theorem with Respect to �H).
Assume that (X ,d) is a complete metric space, Y is a real topological vector space.
Let K ⊆ Y be a proper closed convex cone and H ⊆ K be a nonempty cs-complete
bounded set with 0 /∈ cl(H + K). Suppose that:

(H3) Γ : X ⇒ Y is level-closed, satisfies the limiting monotonicity condition on
domΓ

(B3) ImΓ is quasi-bounded
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Then for every (x0,y0) ∈ gphΓ there exist x ∈ domΓ and y ∈ BMMinΓ (x) such
that:

(a) (x,y) �H (x0,y0)
(b) (x,y) ∈ gphΓ (x,y) �H (x,y) imply x = x.

Proof. In order to apply Theorem 11.7 for A := gphΓ we have only to show that
A verifies condition (H2). For this consider the sequence ((xn,yn))n≥1 ⊆ A such
that (yn) is ≤K-decreasing and xn → x. Clearly, xn ∈ L(y1) for every n; since Γ
is level-closed, we have that x ∈ L(y1) ⊆ domΓ . Since Γ satisfies the limiting
monotonicity condition at x, we find y ∈ BMMinΓ (x) ⊆ Γ (x) such that y ≤ yn

for every n. Hence (H2) holds. By Theorem 11.7 there exists (x,y) ∈ A such that
(x,y) �H (x0,y0) and (x′,y′) ∈ gphΓ , (x′,y′) �H (x,y) imply x′ = x. Set x := x and
take y ∈ BMMinΓ (x) such that y ≤K y. By (11.29) we have that (x,y) �H (x0,y0).
Let now (x′,y′) ∈ gphΓ = A with (x′,y′) �H (x,y). Since (x,y) = (x,y) �H (x,y),
we have that (x′,y′) �H (x,y), and so x′ = x = x. The proof is complete. ��

In the case when H is a singleton the next result is practically [6, Theorem 1]
under the supplementary hypothesis that MinΓ (x) is compact for every x ∈ X ; it
seems that this condition has to be added in order that [6, Theorem 1] be true.

Corollary 11.10 (Not Authentic Minimal-Point Theorem with Respect to �H).
Assume that (X ,d) is a complete metric space, Y is a real topological vector space.
Let K ⊆ Y be a proper closed convex cone and H ⊆ K be a nonempty cs-complete
bounded set with 0 /∈ cl(H + K). Suppose that:

(H4) Γ : X ⇒ Y is level-closed, MinΓ (x) is compact and Γ (x) ⊆ K +MinΓ (x) for
every x ∈ domΓ

(B3) ImΓ is quasi-bounded

Then for every (x0,y0)∈ gphΓ there exist x ∈ domΓ and y ∈ MinΓ (x) such that:

(a) (x,y) �H (x0,y0)
(b) (x,y) ∈ gphΓ , (x,y) �H (x,y) imply x = x

Proof. In order to apply Theorem 11.7 for A := gphΓ we have only to show that
A verifies condition (H2). For this consider the sequence ((xn,yn))n≥1 ⊆ A such
that (yn) is ≤K-decreasing and xn → x. As in the proof of the preceding corollary,
x ∈ L(yn) for every n ∈ N. Because Γ (x) ⊆ K + MinΓ (x), for every n ∈ N there
exists y′n ∈ MinΓ (x) such that y′n ≤ yn. Because MinΓ (x) is compact, (y′n) has a
subnet (y′ψ(i))i∈I converging to some y ∈ MinΓ (x); here ψ : (I,�) → N is such that

for every n there exists in ∈ I with ψ(i) ≥ n for i � in. Hence y′ψ(i) ≤ yψ(i) ≤ yn

for i � in, whence y ≤ yn because K is closed. Therefore, (H2) holds. By Theorem
11.7, for (x0,y0) ∈ gphΓ , there exists (x,y) ∈ A such that (x,y) �H (x0,y0) and
(x′,y′) ∈ gphΓ , (x′,y′) �H (x,y) imply x′ = x. Set x := x and take y ∈ MinΓ (x)
such that y ≤K y. As in the proof of Corollary 11.9 we find that (x,y) is the desired
element. The proof is complete. ��
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11.4.3 Minimal-Point Theorems of Isac–Tammer’s Type

Besides F : X ×X ⇒ K considered in the preceding section we consider also F ′ :
Y ×Y ⇒ K satisfying conditions (F1) and F(2), that is, 0 ∈ F ′(y,y) for all y ∈Y and
F ′(y1,y2) + F ′(y2,y3) ⊆ F ′(y1,y3)+ K for all y1,y2,y3 ∈ Y . Then Φ : Z ×Z ⇒ K
with Z := X ×Y , defined by Φ((x1,y1),(x2,y2)) := F(x1,x2)+ F ′(y1,y2), satisfies
conditions (F1) and (F2), too. As in Sect. 11.4.1 we obtain that the relation �F,F ′
defined by

(x1,y1) �F,F ′ (x2,y2) ⇐⇒ y2 ∈ y1 + F(x1,x2)+ F ′(y1,y2)+ K

is reflexive and transitive. Moreover, for x,x1,x2 ∈ X and y1,y2 ∈ Y we have

(x1,y1) �F,F ′ (x2,y2) =⇒ (x1,y1) �F (x2,y2) =⇒ y1 ≤K y2,

(x,y1) �F,F′ (x,y2) ⇐⇒ y1 ≤K y2.

As in the preceding section, for F satisfying (F1)–(F3), F ′ satisfying (F1), (F2) and
z∗ from (F3) we define the partial order �F,F′,z∗ by

(x1,y1) �F,F′,z∗ (x2,y2) ⇐⇒
{

(x1,y1) = (x2,y2) or
(x1,y1) �F,F ′ (x2,y2) and z∗(y1) < z∗(y2).

Theorem 11.8 (Minimal-Point Theorem with Respect to �F,F′,z∗). Assume that
(X ,d) is a complete metric space, Y is a real topological vector space and K ⊆ Y
is a proper convex cone. Let F : X × X ⇒ K satisfy conditions (F1)–(F3), let
F ′ : Y ×Y ⇒ K satisfy (F1) and (F2), and let A ⊆ X ×Y satisfy the condition

(H1b) For every �F,F ′ -decreasing sequence ((xn,yn)) ⊆ A with xn → x ∈ X there
exists y ∈Y such that (x,y) ∈ A and (x,y) �F,F ′ (xn,yn) for every n ∈ N.

Suppose that

(B1) z∗ (from (F3)) is bounded from below on PrY (A ).

Then for every (x0,y0) ∈ A there exists an element (x,y) ∈ A such that:

(a) (x,y) �F,F ′,z∗ (x0,y0).
(b) (x,y) is a minimal element of A with respect to �F,F ′,z∗ .

Proof. It is easy to verify that �F,F ′,z∗ is reflexive, transitive and antisymmetric. To
get the conclusion one follows the lines of the proof of Theorem 11.6. ��

Clearly, taking F ′ = 0 in Theorem 11.8 we get Theorem 11.6. As mentioned after
the proof of Theorem 11.6, this extends significantly [32, Theorem 3.10.7], keeping
practically the same proof. We ask ourselves if [32, Theorem 3.10.15] could be
extended to this framework, taking into account that the boundedness condition on
A in [32, Theorem 3.10.15] is much less restrictive. In [32, Theorem 3.10.15] we
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used a functional ϕA (defined by (11.5) and in (11.38) below) in order to prove the
minimal-point theorem. Because an element k0 does not impose itself naturally, and
we need a stronger condition on the functional ϕA even if k0 ∈ K \ {0} ⊆ intC, we
consider an abstract K-monotone functional ϕ to which we impose some conditions
ϕA has already.

Theorem 11.9 (Not Authentic Minimal-Point Theorem with Respect to �F,F′ ).
Assume that (X ,d) is a complete metric space, Y is a real topological vector space
and K ⊆Y is a proper convex cone. Let F : X ×X ⇒ K satisfy conditions (F1)–(F3),
let F ′ : Y ×Y ⇒ K satisfy (F1) and (F2), and let A ⊆ X ×Y satisfy the condition

(H1b) For every �F,F ′ -decreasing sequence ((xn,yn)) ⊆ A with xn → x ∈ X there
exists y ∈Y such that (x,y) ∈ A and (x,y) �F,F ′ (xn,yn) for every n ∈ N.

Assume that there exists a functional ϕ : Y → R such that

(F4) (x1,y1) �F,F′ (x2,y2) =⇒ ϕ(y1)+ d(x1,x2) ≤ ϕ(y2).

Furthermore, suppose

(B4) ϕ is bounded below on PrY (A ).

Then for every point (x0,y0) ∈ A with ϕ(y0) ∈ R, there exists (x,y) ∈ A such
that:

(a) (x,y) �F,F ′ (x0,y0)
(b) (x′,y′) ∈ A , (x′,y′) �F,F ′ (x,y) imply x′ = x (not authentic minimal point with

respect to �F,F ′ )

Moreover, if ϕ is strictly K-monotone on PrY (A ), that is, y1,y2 ∈ PrY (A ), y2−y1 ∈
K \ {0}=⇒ ϕ(y1) < ϕ(y2), then

(b’) (x,y) is a minimal point of A with respect to �F,F ′ (minimal point with respect
to �F,F ′ ).

Proof. First note that from (F4) we have that ϕ is K-monotone. Let us construct a
sequence ((xn,yn))n≥0 ⊆A as follows: Having (xn,yn)∈A , we take (xn+1,yn+1)∈
A , (xn+1,yn+1) �F,F ′ (xn,yn), such that

ϕ(yn+1) ≤ inf{ϕ(y) | (x,y) ∈ A , (x,y) �F,F′ (xn,yn)}+ 1/(n + 1). (11.37)

Of course, the sequence ((xn,yn)) is �F,F′ -decreasing, and so (yn) (⊆ PrY (A )) is
K-decreasing. It follows that the sequence (ϕ(yn)) is non-increasing and bounded
from below, hence convergent in R. Because

(xn+p,yn+p) �F,F′ (xn,yn) �F,F ′ (xn−1,yn−1),

using (F4) and (11.37) we get

d(xn+p,xn) ≤ ϕ(yn)−ϕ(yn+p) ≤ 1/n ∀n, p ∈ N
∗.
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It follows that (xn) is a Cauchy sequence in the complete metric space (X ,d), and
so (xn) is convergent to some x ∈ X .

By (H1b) there exists y ∈Y such that (x,y)∈A and (x,y)�F,F ′ (xn,yn) for every
n ∈ N. Let us show that (x,y) is the desired element. Indeed, (x,y) �F,F′ (x0,y0).
Suppose that (x′,y′) ∈ A is such that (x′,y′) �F,F ′ (x,y) (�F,F′ (xn,yn) for every
n ∈ N). Thus ϕ(y′)+ d(x′,x) ≤ ϕ(y) by (F4), whence

d(x′,x) ≤ ϕ(y)−ϕ(y′) ≤ ϕ(yn)−ϕ(y′) ≤ 1/n ∀n ≥ 1.

It follows that d(x′,x) = ϕ(y)−ϕ(y′) = 0. Hence x′ = x.
Assuming that ϕ is strictly K-monotone, because y′ ≤K y and ϕ(y)−ϕ(y′) = 0,

we have necessarily y′ = y. Hence (x,y) is a minimal point with respect to �F,F ′ . ��
Note that if C ⊆Y is a proper closed convex cone such that C− (K \{0}) = intC

and k0 ∈ K \ {0} (see assumption (A2)), the functional ϕC : Y → R defined by (see
(11.5))

ϕC(y) := inf
{

t ∈ R | y ∈ tk0 +C
}

(11.38)

is a strictly K-monotone continuous sublinear functional (see Theorem 11.2).
Moreover, if the condition

(B’) PrY (A )∩ (ỹ− intC) = /0 for some ỹ ∈ Y

holds, then ϕ := ϕC is bounded from below on PrY (A ), i.e., (B4) holds. Indeed, by
Theorem 11.2, we have that ϕ(y)+ϕ(−ỹ) ≥ ϕ(y− ỹ) ≥ 0 for y ∈ PrY (A ), whence
ϕ(y) ≥−ϕ(−ỹ) for y ∈ PrY (A ).

Another example for a function ϕ is that defined by

ϕ(y) := ϕK,k0(y− ŷ), (11.39)

where K is a proper convex cone, k0 ∈ K \ {0}, and ŷ ∈ Y is such that

(B”) y0 − ŷ ∈ Rk0 −K, PrY (A )∩ (ŷ−K) = /0.

Then ϕ is K-monotone, ϕ(y0) < ∞ and ϕ(y) ≥ 0 for every y ∈ PrY (A ), i.e., (B4)
holds.

For both of these functions in (11.38) and (11.39) we have to impose condition
(F4) in order to be used in Theorem 11.9.

Remark 11.9. Using the function ϕ = ϕK,k0(·− ŷ) (defined by (11.39)) in Theorem
11.9 we can derive [41, Theorem 4.2] taking F(x1,x2) := {d(x1,x2)k0} and
F ′(y1,y2) := {ε ‖y1 − y2‖k0} when Y is a Banach space; note that, at its turn,
[41, Theorem 4.2] extends [46, Theorem 8].
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11.4.4 Ekeland’s Variational Principles of Ha’s Type

The previous EVP type results correspond to Pareto optimality. Ha [37] established
an EVP type result which corresponds to Kuroiwa optimality. The next result is
an extension of this type of result. For its proof we use [65, Theorem 3.1] or [41,
Theorem 2.2].

Theorem 11.10 (Variational Principle). Assume that (X ,d) is a complete metric
space, Y is a real topological vector space and K ⊆ Y is a proper convex cone. Let
F : X ×X ⇒ K satisfy conditions (F1)–(F3) and Γ : X ⇒ Y be such that

(H5) {x ∈ X | Γ (u) ⊆ Γ (x)+ F(x,u)+ K} is closed for every u ∈ X.

Moreover, if

(B5) z∗ (from (F3)) is bounded below on Γ (X),

then for every x0 ∈ domΓ there exists x ∈ X such that:

(a) Γ (x0) ⊆ Γ (x)+ F(x,x0)+ K
(b) Γ (x) ⊆ Γ (x)+ F(x,x)+ K implies x = x

Proof. Let us consider the relation � on X defined by x′ � x if Γ (x) ⊆ Γ (x′) +
F(x′,x)+ K. By our hypotheses we have that S(x) := {x′ ∈ X | x′ � x} is closed for
every x ∈ X . Note that for x ∈ X \domΓ we have that S(x) = X , while for x ∈ domΓ
we have that S(x)⊆ domΓ . The relation � is reflexive and transitive. The reflexivity
of � is obvious. Let x′ � x and x′′ � x′. Then Γ (x) ⊆ Γ (x′) + F(x′,x) + K and
Γ (x′) ⊆ Γ (x′′)+ F(x′′,x′)+ K. Using (F2) we get

Γ (x) ⊆ Γ (x′′)+ F(x′′,x′)+ K + F(x′,x)+ K ⊆ Γ (x′′)+ F(x′′,x)+ K,

that is, x′′ � x. Consider

ϕ : X → R, ϕ(x) := infz∗ (Γ (x)) ,

with the usual convention inf /0 := +∞. Clearly, ϕ(x) ≥ m := infz∗(Γ (X)) > −∞.
Moreover, if x′ � x ∈ domΓ then z∗(Γ (x)) ⊆ z∗(Γ (x′)) + z∗(F(x′,x)) + z∗(K),
whence ϕ(x) ≥ ϕ(x′)+ infz∗(F(x′,x)) ≥ ϕ(x′).

Fix x0 ∈ domΓ . The conclusion of the theorem asserts that there exists x ∈ X
such that x ∈ S(x0) and S(x) = {x}. To get this conclusion we apply [41, Theorem
2.2] or [65, Theorem 3.1]. Because (X ,d) is complete and S(x) is closed for every
x ∈ X , we may (and we do) assume that domΓ = X (otherwise we replace X by
S(x0)). In order to apply [41, Theorem 2.2] we have to show that d(xn,xn+1) → 0
provided (xn)n≥1 ⊆ X is �-decreasing. In the contrary case there exist δ > 0 and
(np)p≥1 ⊆ N

∗ an increasing sequence such that d(xnp ,xnp+1) ≥ δ for every p ≥ 1.
Then, as seen above, ϕ(xn) ≥ ϕ(xn+1)+ infz∗ (F(xn+1,xn)), and so

ϕ(xn1) ≥ ϕ
(

xnp+1
)

+
np

∑
l=n1

infz∗ (F(xl+1,xl)) ≥ m+ p ·η(δ )
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with η(δ ) > 0 from (F3). Letting p → ∞ we get a contradiction. Hence
d(xn,xn+1) → 0. The conclusion follows. ��

Note that instead of assuming S(u) to be closed for every u ∈ X it is sufficient to
have that S(u) is �-lower closed, that is, for every �-decreasing sequence (xn) ⊆
S(u) with xn → x we have that x ∈ S(u). Moreover, instead of using [41, Theorem
2.2] it is possible to give a slightly longer direct proof similar to that of Theorem
11.6 (and using ϕ instead of z∗ in the construction of (xn)).

Remark 11.10. Taking Y to be a separated locally convex space, K ⊆ Y a pointed
closed convex cone and F(x,x′) := {d(x,x′)k0} with k0 ∈ K \ {0}, we can deduce
[37, Theorem 3.1]. For this assume that Γ (X) is quasi bounded, Γ (x)+ K is closed
for every x ∈ X and Γ is level-closed (or K-lsc with the terminology from [37]).
Since clearly z∗ is bounded from below on ImΓ , in order to apply the preceding
theorem we need to have that S(u) is closed for every u ∈ X ; this is done in [37,
Lemmma 3.2]. Below we provide another proof for the closedness of S(u).

First, if x /∈ L(b) then there exists δ > 0 such that B(x,δ ) ∩ L(b + δk0) = /0.
Indeed, because x /∈ L(b) we have that b /∈ Γ (x)+ K, and so b + δ ′k0 /∈ Γ (x)+ K,
that is, x /∈ L(b + δ ′k0), for some δ ′ > 0 (since Γ (x)+ K is closed). Because L(b +
δ ′k0) is closed, there exists δ ∈ (0,δ ′] such that B(x,δ )∩L(b + δ ′k0) = /0, and so
B(x,δ )∩L(b + δk0) = /0.

Fix u ∈ X and take x ∈ X \S(u), that is, Γ (u) 	⊆ Γ (x)+d(x,u)k0 +K. Then there
exists y ∈ Γ (u) with b := y− d(x,u)k0 /∈ Γ (x)+ K. By the argument above there
exists δ ′ > 0 such that B(x,δ ′)∩ L(b + δ ′k0) = /0, that is, y− d(x,u)k0 + δ ′k0 /∈
Γ (x′)+ K for every x′ ∈ B(x,δ ′). Taking δ ∈ (0,δ ′] sufficiently small we have that
d(x′,u) ≥ d(x,u)− δ ′ for x′ ∈ B(x,δ ), and so y /∈ Γ (x′)+ d(x′,u)k0 + K for every
x′ ∈ B(x,δ ), that is, B(x,δ )∩S(u) = /0.

If we assume that Γ (x0) 	⊆ Γ (x) + k0 + K for every x ∈ X , then x provided by
the preceding theorem satisfies d(x,x0) < 1. Indeed, in the contrary case, because
Γ (x0)⊆Γ (x)+d(x,x0)k0 +K and d(x,x0)k0 +K ⊆ k0 +K, we get the contradiction
Γ (x0) ⊆ Γ (x)+ k0 + K. Replacing k0 by εk0 and d by λ−1d for some ε,λ > 0 we
obtain exactly the statement of [37, Theorem 3.1].

In the case in which Y is just a topological vector space we have the following
version of the preceding theorem under conditions similar to those in Theorem 11.7.

Theorem 11.11 (Variational Principle). Assume that (X ,d) is a complete metric
space, Y is a real topological vector space and K ⊆ Y is a proper closed convex
cone. Let H ⊆ K be a nonempty cs-complete bounded set with 0 /∈ cl(H + K), and
Γ : X ⇒ Y. If

(H6) {x ∈ X | Γ (u) ⊆ Γ (x)+ d(x,u)H + K} is closed for every u ∈ X.
(B6) Γ (X) is quasi bounded.

then for every x0 ∈ domΓ there exists x ∈ X such that:

(a) Γ (x0) ⊆ Γ (x)+ d(x,x0)H + K
(b) Γ (x) ⊆ Γ (x)+ d(x,x)H + K implies x = x
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Proof. Let B ⊆ Y be a bounded set such that Γ (X) ⊆ B + K.
Consider F(x,x′) := d(x,x′)H for x,x′ ∈ X . As seen before, F satisfies conditions

(F1) and (F2), and so the relation � defined in the proof of Theorem 11.10 is
reflexive and transitive; moreover, by our hypotheses, S(x) := {x′ ∈ X | x′ � x} is
closed for every x ∈ X . As in the proof of Theorem 11.10 we may (and do) assume
that X = domΓ and it is sufficient to show that d(xn,xn+1) → 0 provided (xn)n≥1 ⊆
X is �-decreasing. In the contrary case there exist δ > 0 and (np)p≥1 ⊆ N

∗ an
increasing sequence such that d(xnp ,xnp+1) ≥ δ for every p ≥ 1.

Fixing y1 ∈ Γ (x1), inductively we find the sequences (yn)n≥0 ⊆ Y , (hn)n≥0 ⊆ H
and (kn)n≥0 ⊆ K such that yn = yn+1 + d(xn,xn+1)hn + kn for every n ≥ 1. Using
the convexity of H, and the facts that H ⊆ K and Γ (X) ⊆ B + K, for p ∈ N we get
h′p ∈ H, bp ∈ B and k′p,k′′p ∈ K such that

y1 = ynp+1 +
np

∑
l=1

d(xl,xl+1)hl +
np

∑
l=1

kl = bp+δ (hn1 + . . .+hnp)+k′p = bp+ pδh′p+k′′p.

It follows that (pδ )−1(y1 −bp) ∈ H + K for every p ≥ 1. Since (bp) is bounded we
obtain the contradiction 0 ∈ cl(H + K). The conclusion follows. ��

Again, instead of assuming that S(u) is closed for every u ∈ X , it is sufficient to
assume that S(u) is �-lower closed for u ∈ X . A slightly longer direct proof, similar
to that of Theorem 11.7, is possible. Also Theorem 11.11 covers [37, Theorem 3.1].

11.4.5 Ekeland’s Variational Principle for Bi-Multifunctions

In [9] Bianchi, Kassay and Pini obtained an EVP type result for vector functions
of two variables; previously such results were obtained by Isac [45] and Li et al.
[49]. The next result extends [9, Theorem 1] in two directions: d is replaced by
F satisfying (F1)–(F3) and instead of a single-valued function f : X × X → Y
we take a multi-valued one. For its proof we use again [65, Theorem 3.1] or
[41, Theorem 2.2].

Theorem 11.12. Assume that (X ,d) is a complete metric space, Y is a real
topological vector space and K ⊆ Y is a proper convex cone. Let F : X ×X ⇒ K
satisfy conditions (F1)–(F3). Assume that G : X ×X ⇒ Y has the properties:

(i) 0 ∈ G(x,x) for every x ∈ X
(ii) G(x1,x2)+ G(x2,x3) ⊆ G(x1,x3)+ K for all x1,x2,x3 ∈ X

If

(H7) {x′ ∈ X | [G(x,x′)+ F(x,x′)]∩ (−K) 	= /0} is closed for every x ∈ X
(B7) z∗ (from (F3)) is bounded below on the set ImG(x, ·) for every x ∈ X
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then for every x0 ∈ X there exists x ∈ X such that:

(a) [G(x0,x)+ F(x0,x)]∩ (−K) 	= /0
(b) [G(x,x)+ F(x,x)]∩ (−K) 	= /0 implies x = x

Proof. Let us consider the relation � on X defined by

x � x′ ⇐⇒ [

G(x′,x)+ F(x′,x)
]∩ (−K) 	= /0.

Then � is reflexive and transitive. The reflexivity is immediate from (i) and (F1).
Assume that x � x′ and x′ � x′′. Then −k ∈ G(x′,x)+F(x′,x) and −k′ ∈ G(x′′,x′)+
F(x′′,x′) with k,k′ ∈ K. Hence, by (ii) and (F2),

−k− k′ ∈ G(x′,x)+ F(x′,x)+ G(x′′,x′)+ F(x′′,x′) ⊆ G(x′′,x)+ K + F(x′′,x)+ K,

whence [G(x′′,x)+ F(x′′,x)]∩ (−K) 	= /0, that is, x � x′′.
Setting S(x) := {x′ ∈ X | x′ � x}, by (H7) we have that S(x) is closed for every

x ∈ X . We have to show that for (xn)n≥1 ⊆ X a �-decreasing sequence one has
d(xn,xn+1)→ 0. In the contrary case there exist an increasing sequence (nl)l≥1 ⊆ N

and δ > 0 such that d(xnl ,xnl+1) ≥ δ for every l ≥ 1. Because (xn) is �-decreasing,
we have that −kn ∈G(xn,xn+1)+F(xn,xn+1) for some kn ∈ K and every n≥ 1. Then

−k1 − . . .− kn ∈ G(x1,xn+1)+ F(x1,x2)+ . . .+ F(xn,xn+1)+ K,

and so

infz∗ (ImG(x1, ·))+ infz∗ (F(x1,x2))+ . . .+ infz∗ (F(xn,xn+1)) ≤ 0 ∀n ≥ 1.

Since infz∗ (F(xn,xn+1)) ≥ 0 for every n ≥ 1 and infz∗
(

F(xnl ,xnl+1)
) ≥ η(δ ) > 0

for every l ≥ 1, taking n := np with p ≥ 1, we obtain that

pη(δ ) ≤− infz∗ (ImG(x1, ·)) for every p ≥ 1.

This yields the contradiction η(δ ) ≤ 0. Hence d(xn,xn+1) → 0. Applying [41,
Theorem 2.2] we get some x ∈ S(x0) with S(x) = {x}, that is, our conclusion holds.

��
Remark 11.11. If we need the conclusion only for a fixed (given) point x0 ∈ X , we
may replace condition (B7) by the fact that z∗ (from (F3)) is bounded below on the
set ImG(x0, ·).

Indeed, X0 := S(x0) is closed by (H7), and so (X0,d) is complete. If x ∈ X0 then
−k ∈ G(x0,x) + F(x0,x) ⊆ G(x0,x) + K for some k ∈ K, and so −k′ ∈ G(x0,x)
for some k′ ∈ K. It follows that −k′ + G(x,u) ⊆ G(x0,x)+ G(x,u) ⊆ G(x0,u)+ K,
whence G(x,u) ⊆ G(x0,u)+K for every u ∈ X . Hence condition (B7) is verified on
X0, and so the conclusion of the theorem holds for x0.
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Remark 11.12. For F(x,x′) := {d(x,x′)k0} with k0 ∈ K \ {0} and G single-valued,
using Theorem 11.12 and the preceding remark one obtains [45, Theorem 8] and
[49, Theorem 3]; in [45] K is normal and closed, while in [49] k0 ∈ intK.

Note that condition (H7) in the preceding theorem holds when G is compact-
valued, G(u, ·) is level-closed, K is closed and F(x,x′) := {d(x,x′)k0} for some
k0 ∈ K. Indeed, assume that −kn ∈ G(u,xn) + d(xn,u)k0 for every n ≥ 1, where
kn ∈ K. Take ε > 0. Then there exists nε ≥ 1 such that d(xn,u) ≥ d(x,u)− ε =: γε
for every n ≥ nε . Then for such n we have that G(u,xn)∩

(−γε k0 −K
) 	= /0, whence

G(u,x)∩(−γε k0 −K
) 	= /0. Hence there exists yε ∈G(u,x) such that yε +γε k0 ∈−K.

Since G(u,x) is compact, (yε )ε>0 has a subnet converging to y ∈ G(x,u). Since
limε→0 γε = d(x,u) and K is closed, we obtain that y + d(x,u)k0 ∈ −K.

If Y is a separated locally convex space then we may assume that G is weakly
compact-valued instead of being compact-valued.

When G is single-valued and F(x,x′) := {d(x,x′)k0} with k0 ∈ K, where K is
closed and z∗(k0) = 1, the preceding theorem reduces to [9, Theorem 1].

11.4.6 EVP Type Results

The framework is the same as in the previous sections. We want to apply the
preceding results to obtain vectorial EVPs. To envisage functions defined on subsets
of X we add to Y an element ∞ not belonging to the space Y , obtaining thus the
space Y • := Y ∪ {∞}. We consider that y ≤K ∞ for all y ∈ Y . Consider now the
function f : X → Y •. As usual, the domain of f is dom f = {x ∈ X | f (x) 	= ∞};
the epigraph of f is epi f = {(x,y) ∈ X × Y | f (x) ≤K y}; the graph of f is
gph f = {(x, f (x)) | x ∈ epi f}. Of course, f is proper if dom f 	= /0. For y∗ ∈ K+

we set (y∗ ◦ f )(x) := +∞ for x ∈ X \ dom f .

Theorem 11.13. Assume that (X ,d) is a complete metric space, Y is a real
topological vector space and K ⊆ Y is a proper convex cone. Let F : X ×X ⇒ K
satisfy the conditions (F1)–(F3) and let f : X → Y • be proper. Assume that

(H8) For every sequence (xn) ⊆ dom f with xn → x ∈ X and f (xn) ∈ f (xn+1) +
F(xn+1,xn)+K for every n ∈ N one has f (xn) ∈ f (x)+F(x,xn)+K for every
n ∈ N

(B8) z∗ ◦ f (with z∗ from (F3)) is bounded from below

Then for every x0 ∈ dom f there exists x ∈ dom f such that:

(a) f (x0) ∈ f (x)+ F(x,x0)+ K
(b) ∀x ∈ dom f : f (x) ∈ f (x)+ F(x,x)+ K ⇒ x = x

Proof. Consider A := gph f := {(x, f (x)) | x ∈ dom f}. Condition (H8) says
nothing than (H1) is verified. Applying Theorem 11.6 we get the conclusion. ��
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As for Theorem 11.6, in the above theorem we may assume that z∗ is bounded
from below on the set

B0 := { f (x) | x ∈ dom f , f (x0) ∈ f (x)+ F(x,x0)+ K}.

The preceding theorem is very close to [36, Theorem 3.8] for γ = 1, which is
stated for F and K satisfying conditions (i), (ii), (iii), (S1), (S2) and f : S → Y (with
S ⊆ X a nonempty closed set) satisfying the conditions

(S3) Let us denote AγF
x := {z ∈ X | ( f (z)+ γF(z,x))∩ ( f (x)−K) 	= /0} for x ∈ S.

For each x ∈ S and (zn) ⊆ AγF
x ,zn → z such that f (zn) ≤ f (zm) for n > m, it

follows that z ∈ AγF
x .

(S4) The set ( f (S)− f (x0))∩ (−DF) is K-bounded.

Because S is closed one may assume that S = X and dom f = X . Observe that
(S4) implies that y∗(B0) is bounded from below for every y∗ ∈ K+, and so z∗(B0)
is bounded from below. Let us prove that (S3) implies (H8) (for γ = 1). Consider
(xn)⊆ X = dom f with xn → x ∈ X and f (xn) ∈ f (xn+1)+F(xn+1,xn)+K for every
n ∈ N. Clearly, for a fixed n ∈ N we have that (xn)n≥n ⊆ A1F

xn
and f (xn) ≤ f (xm) for

n≥m ≥ n. By (S3) we have that x ∈ A1F
xn

, that is, f (xn)∈ f (x)+F(x,xn)+K. Hence
(H8) holds.

In the case in which F(x,x′) = d(x,x′)H for some H ⊆ K the condition (H8)
becomes

(H9) For every sequence (xn) ⊆ dom f with xn → x ∈ X and f (xn) ∈ f (xn+1) +
d(xn+1,xn)H + K for every n ∈ N one has f (xn) ∈ f (x)+ d(x,xn)H + K for
every n ∈ N.

In the case H := {k0} condition (H9) is nothing else than condition (E1) in [41].
Using Theorem 11.13 and Proposition 11.7 we have the following variant of the

preceding result.

Theorem 11.14. Assume that (X ,d) is a complete metric space, Y is a real
topological vector space and K ⊆Y is a proper closed convex cone. Let f : X → Y •
be a proper function and H ⊆ K be a nonempty cs-complete bounded set with
0 /∈ cl(H + K). If

(H10) For every sequence (xn) ⊆ dom f such that xn → x ∈ X and ( f (xn)) is ≤K-
decreasing one has f (x) ≤K f (xn) for every n ∈ N.

(B10) f (dom f ) is quasi bounded.

hold, then for every x0 ∈ dom f there exists x ∈ dom f such that:

(a) ( f (x0)−K)∩ ( f (x)+ d(x,x0)H) 	= /0
(b) ( f (x)−K)∩ ( f (x)+ d(x,x)H) = /0 ∀x ∈ dom f \ {x}
Proof. Since condition (H10) is exactly condition (H1) for A := gph f and F = FH ,
in order to have the conclusion of the theorem it is sufficient to show that (H2) is
verified for this situation; then just use Proposition 11.7 and Theorem 11.13.
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Let ((xn,yn)) ⊆ gph f be such that xn → x ∈ X and (yn) is ≤K-decreasing. Hence
yn = f (xn) for every n. By (H10) we have that y := f (x) ≤K f (xn) = yn for every
n ∈ N and, of course, (x, f (x)) ∈ gph f . The proof is complete. ��
Remark 11.13. Taking H to be complete, convex and bounded, then H is cs-
complete. In this case we obtain the main result in [8], that is, [8, Theorem 4.1].

Note that the closed convex subsets as well as the open convex subsets of a
separated locally convex space are cs-closed; moreover, all the convex subsets of
finite dimensional normed spaces are cs-closed (hence cs-complete).

Remark 11.14. Taking H := {k0} in the preceding theorem one obtains practically
[32, Corollary 3.10.6]; there K is assumed to be closed in the direction k0, the present
condition (H10) being condition (H4) in [32, Corollary 3.10.6].

Remark 11.15. Similar results can be stated using Theorems 11.8 and 11.9. When
specializing to F(x1,x2) =

{

d(x1,x2)k0
}

and F ′(y1,y2) =
{

ε ‖y1 − y2‖k0
}

one
recovers [41, Corollary 3.1] and [41, Theorem 4.2].

11.5 Applications in Vector Optimization

11.5.1 Solution Concepts

Consider the vector minimization problem (VP) given as

V −min f (x), s.t. x ∈ S,

where X and Y are separated locally convex spaces, {0} 	= K ⊆Y is a closed convex
cone (which induces the partial order ≤K on Y ), f : X → Y and S ⊆ X . As in the
preceding sections k0 ∈ K \ (−K) is fixed. The solution concepts for the vector
optimization problem (VP) are described in the next definition.

Definition 11.1.

• The element y0 ∈ F ⊆ Y is said to be a minimal point of F with respect to K
if F ∩ (y0 −K) ⊆ y0 + K. The set of minimal points of F with respect to K is
denoted by Eff(F,K). An element x0 ∈ S is called an efficient solution of (VP) if
f (x0) ∈ Eff( f (S),K).

• The element y0 ∈ F is said to be a properly minimal point of F w.r.t. K if there
is a closed convex set A ⊆ Y with 0 ∈ bdA and A− (K \ {0}) ⊆ intA such that
F ∩ (y0 + intA) = /0. An element x0 ∈ S is called a properly efficient solution for
(VP) if f (x0) is a properly minimal point of f (S).

• The element y0 ∈ F is said to be a weakly minimal point of F if intK 	= /0 and F ∩
(y0− intK) = /0. The set of weakly minimal points of F is denoted by wEff(F,K).
An element x0 ∈ S is a weakly efficient solution of (VP) if f (x0)∈ wEff( f (S),K).
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Note first that from the very definition of weakly minimal points of F one has

wEff(F,K) = F \ (F + intK); (11.40)

then observe that the set A appearing in the definition of a properly minimal
point verifies Assumption (A2). Moreover, note that what is called here a properly
minimal point of F w.r.t. K is said to be an E-minimal element of F in [66] and was
introduced by Iwanow and Nehse in [47] for K = R

n
+ and Gerstewitz and Iwanow

[28] for the general case.

Lemma 11.1. Let x0 ∈ S.

(a) If x0 is a properly efficient solution of (VP) and A ⊆ Y is the set provided by
Definition 11.1 then x0 is a solution of the scalar minimization problem

min ϕA,k0( f (x)− f (x0)) s.t. x ∈ S, (11.41)

where k0 ∈ K \ {0}.
(b) If x0 is a weakly efficient solution of (VP) and k0 ∈ intK, then x0 is a solution of

problem (11.41) with A := −K.

Proof. In both cases we have that f (S)∩( f (x0)+ intA) = /0. Moreover, because 0∈
bdA, we have that ϕA(0) = 0. Assuming that ϕA,k0( f (x)− f (x0)) < ϕA,k0( f (x0)−
f (x0)) = 0, we get the contradiction f (x)− f (x0) ∈ intA. ��

11.5.2 Necessary Optimality Conditions in Vector Optimization

We consider vector optimization problems on Asplund spaces without convexity
assumptions. Recall that a Banach space X is said to be an Asplund space (cf. Phelps
[53, Definition 1.22]) if every continuous convex function defined on a nonempty
open convex subset D of X is Fréchet differentiable at each point of some Gδ subset
of D. It is known that the Banach spaces with separable dual and the reflexive
Banach spaces are Asplund spaces. So c0 and �p, Lp[0,1] for 1 < p < ∞ are Asplund
spaces, but �1 is not an Asplund space.

Under the assumption that the objective function is locally Lipschitz we derive
Lagrangian necessary conditions on the basis of Mordukhovich subdifferential
using the Lipschitz continuity properties of ϕA discussed in Sect. 11.3.4. In the
following we provide necessary conditions for properly efficient solutions of a
vector optimization problem that are related to the strong free-disposal assumption
in (A2).

In order to present our results concerning the existence of Lagrange multipliers,
we work with the Mordukhovich subdifferential ∂M and normal cone NM (denoted
∂ and N in [51]). One says ([51, Definition 3.25]) that a function f : X → Y is
strictly Lipschitz at x if f is Lipschitz on a neighbourhood of x and there exists
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a neighbourhood U of the origin in X such that the sequence (t−1
k ( f (xk + tku)−

f (xk)))k∈N contains a (norm) convergent subsequence whenever u ∈U , xk → x and
tk ↓ 0. It is clear that this notion reduces to local Lipschitz continuity if Y is finite
dimensional.

Remark 11.16. The function f is strictly Lipschitz at x if and only if the sequence
(‖un‖−1[ f (xn +un)− f (xn)]) has a norm converging subsequence whenever (xn) ⊆
X converges to x, (un) ⊆ X \ {0} converges to 0 and the sequence (‖un‖−1un)
converges in X .

For more details regarding the class of strictly Lipschitz mappings (with values
in infinite dimensional spaces) see [51, Sect. 3.1.3].

We need the following calculus rules from [51] (see [51, Theorem 3.36] and [51,
Corollary 3.43]) for proving one of our main results.

Lemma 11.2. Assume that X and Y are Asplund spaces.

(a) If f1, f2 : X → R are proper functions and there exists a neighbourhood U of
x ∈ dom f1 ∩dom f2 such that f1 is Lipschitz on U and f2 is lsc on U, then

∂M( f1 + f2)(x) ⊆ ∂M f1(x)+ ∂M f2(x).

(b) If f : X → Y is strictly Lipschitz at x and ϕ : Y → R is finite and Lipschitz on a
neighbourhood of f (x), then

∂M(ϕ ◦ f )(x) ⊆
⋃

{∂M(y∗ ◦ f )(x) | y∗ ∈ ∂Mϕ( f (x))} .

In the next result we provide necessary optimality conditions for properly
efficient solutions of problem (VP).

Theorem 11.15. Assume that X and Y are Asplund spaces, f : X → Y is strictly
Lipschitz, S is a closed subset of X and x0 ∈ S. If x0 is a properly efficient solution
of (VP) then there exists v∗ ∈ K# such that

0 ∈ ∂M(v∗ ◦ f )(x0)+ NM(S,x0). (11.42)

Moreover, if f is strictly differentiable at x0 then

( f ′(x0))∗v∗ ∈ −NM(S,x0). (11.43)

Proof. Assume that x0 is a properly efficient solution for (VP). By Lemma 11.1, x0

is a solution of the problem (11.41), or equivalently x0 is a minimum point of

h : X → R, h(x) := ϕA( f (x)− f (x0))+ ιS(x),

where A ⊆ Y is a closed convex set such that 0 ∈ bdA and A − (K \ {0}) ⊆
intA. As seen in Remark 11.2 (ii), domϕA is open because k0 ∈ K \ {0} and
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ϕA(0) = 0 because 0 ∈ bdA. Note that k0 /∈ A∞; otherwise we get the contradiction
0 = (0 + k0)− k0 ∈ A−Pk0 ⊆ intA. Since 0 ∈ A ⊆ domϕA, by Proposition 11.5 we
have that ϕA is convex and Lipschitz on a neighbourhood of 0. It follows that
0 ∈ ∂Mh(x0) (see [51, Proposition 1.114]). Since f is strictly Lipschitz and ϕA is
Lipschitz on a neighbourhood of 0, the function x �→ ϕA( f (x)− f (x0)) is Lipschitz
on a neighbourhood of x0. Moreover, since S is a closed subset of X we have that
ιS is a proper lower-semicontinuous function. Using both parts of Lemma 11.2 we
have that

0 ∈ ∂M(v∗ ◦ f )(x0)+ NM(S,x0)

for some v∗ ∈ ∂MϕA(0) = ∂ϕA(0), ϕA being convex and finite and Lipschitz on a
neighbourhood of 0. From Corollary 11.7 we have that v∗ ∈ K# and

〈

k0,v∗
〉

= 1,
and so v∗ 	= 0. If f is strictly differentiable at x0 then ∂M f (x0) = { f ′(x0)}, and so
the last conclusion follows. ��

For weakly efficient solutions of (VP) we have the following result.

Theorem 11.16. Assume that X and Y are Asplund spaces, f : X → Y is strictly
Lipschitz, S is a closed subset of X and x0 ∈ S. If x0 is a weakly efficient solution
of (VP) then there exists v∗ ∈ K+ \ {0} such that (11.42) holds. Moreover, if f is
strictly differentiable at x0 then (11.43) holds.

Proof. If intK 	= /0 and x0 is a weakly efficient solution for (VP), by Lemma 11.1
we have that x0 is a minimum point of h for A := −K and k0 ∈ intK. This time ϕA

is Lipschitz and sublinear. The rest of the proof is similar. ��

Remark 11.17. If X is an Asplund space and g : X → R is finite and Lipschitz on a
neighbourhood of x0 ∈ S ⊆ X with S closed, the following well-known relations

∂Clg(x0) = convw∗
∂Mg(x0) and NCl(S,x0) = convw∗

NM(S,x0)

hold (see [51, Theorem 3.57]), where ∂Clg(x0) and NCl(S,x0) represent the Clarke’s
subdifferential of g at x0 and the Clarke’s normal cone of S at x0, respectively. In
the hypotheses of Theorem 11.15 from (11.42) we get the necessary optimality
condition

∃v∗ ∈ K+ \ {0} : 0 ∈ ∂Cl(v∗ ◦ f )(x0)+ NCl(S,x0) (11.44)

in terms of the Clarke’s subdifferential and normal cone. However, the optimality
condition given by (11.42) is sharper than the condition given by (11.44).

Remark 11.18. Note that Theorems 11.15 and 11.16 remain valid when the
Mordukhovich subdifferential ∂M is replaced by any subdifferential ∂ which verifies
conditions (H1)–(H4) in [17]. In such a situation Theorem 11.16 corresponds to
Lagrangian necessary condition for weakly efficient solutions in [17, Theorem
3.1] (compare also [20, Theorem 3.2] for the case dimY < ∞). In Theorem 11.15
we have established the result for properly efficient solutions without assuming
intK 	= /0.
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Another application envisage fuzzy necessary optimality conditions for approx-
imate minimizers of a Lipschitz vectorial function (compare Durea and Tammer
[17]). First, we need a definition.

Definition 11.2. If α > 0 and k0 ∈ intK, a point x0 ∈ S is said to be (α,k0)-efficient
solution of (VP) if ( f (S)− f (x0))∩ (−αk0 −K) = /0.

Of course, every weakly efficient solution of (VP) is a (α,k0)-efficient solution
for every α > 0 and k0 ∈ intK, but the converse is false, in general.

We introduce now the concept of abstract subdifferential (see, e.g. [43]; see also
[19] for a theory of subdifferentials for vector-valued functions). Let X be a class
of Banach spaces which contains the class of finite dimensional normed vector
spaces. By an abstract subdifferential ∂ we mean a map which associates to every lsc
function h : X ∈ X → R and to every x ∈ X a (possible empty) subset ∂h(x) ⊆ X∗;
∂h(x) = /0 if f (x) /∈ R. Let X ,Y ∈ X and denote by F (X ,Y ) a class of functions
acting between X and Y having the property that by composition at left with a lsc
function from Y to R the resulting function is still lsc. In the sequel we shall work in
every specific case with some of the next properties of the abstract subdifferential ∂ .

(C1) If h : X → R is a proper lsc convex function then ∂h(x) coincides with the
Fenchel subdifferential.

(C2) If x ∈ X is a local minimum point for the lsc function h and h(x) ∈ R then
0 ∈ ∂h(x).

Note that (C1) and (C2) are very natural requirements for any
subdifferential.

The counterparts of “exact calculus rules” are the far more general “fuzzy
calculus rules”.

(C3) If X ∈ X , ϕ : X → R is a locally Lipschitz functions and x ∈ domh, then

∂ (h + ϕ)(x) ⊆ ‖·‖∗ − limsup
y→hx,z→x

(∂h(y)+ ∂ϕ(z)),

(C4) If ϕ : Y → R is locally Lipschitz and ψ ∈ F (X ,Y ), then for every x,

∂ (ϕ ◦ψ)(x) ⊆ ‖·‖∗ − limsup
u→ψ x,v→ψ(x)

⋃

u∗∈∂ϕ(v)∂ (u∗ ◦ψ)(u).

where the following notations are used:

1. u→hx means that u → x and h(u)→ h(x); note that if h is continuous, then u→hx
is equivalent with u → x.

2. x∗ ∈ ‖·‖∗ − limsupu→x∂h(u) means that for every ε > 0 there exist xε and x∗ε
such that x∗ε ∈ ∂h(xε) and ‖xε − x‖ < ε , ‖x∗ε − x∗‖ < ε; the notation x∗ ∈ ‖·‖∗ −
limsupu→hx∂h(u) has a similar interpretation and is equivalent with x∗ ∈ ‖·‖∗ −
limsupu→x∂h(u) provided that h is continuous.

The property (C3) is called fuzzy sum rule and a space X on which such a
property holds is called trustworthiness space for the subdifferential ∂ . For example,
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for the Fréchet subdifferential the trustworthiness spaces are the Asplund spaces
(see [23]). This rule is also satisfied (see [48, pp. 41], [18, 44] and the references
therein) by:

• The proximal subdifferential when X is the class of Hilbert spaces.
• The Fréchet subdifferential of viscosity when X is the class of Banach spaces

which admit a C1 Lipschitz bump function.
• The β -subdifferential of viscosity when X is the class of Banach spaces which

admit a β -differentiable bump function.

The next result goes back to Durea and Tammer [17].

Theorem 11.17. Let X ,Y ∈ X , let f ∈ F (X ,Y ) be locally Lipschitz and let S be a
closed subset of X. Let x0 ∈ S be a weakly efficient solution of (VP). Then for every
k0 ∈ intK and ε > 0 there exist u ∈ B(x0,ε), z ∈ B(x0,ε/2)∩ S and u∗ ∈ K+ with
u∗(k0) = 1 such that

0 ∈ ∂ (u∗ ◦ f )(u)+ N∂ (S,z)+ B(0,ε),

provided that ∂ satisfies conditions (C1), (C2), (C3), (C4). Moreover, for some x ∈
B(x0,ε/2) and v ∈ B( f (x)− f (x0),ε/2) we have that u∗(v) = ϕ(v).

Proof. Let us consider ε > 0 and the functional ϕ given by (11.5) corresponding to
a fixed k0 ∈ intK. We have that

f (x0) ∈ wEff( f (S),K)

which means that

0 ∈ wEff( f (S)− f (x0),K).

Thus, ϕ(0) = 0 and ϕ( f (S) − f (x0)) ≥ 0, whence x0 is a minimum point for
(ϕ ◦ g)+ ιS, where g is defined by g(x) = f (x)− f (x0). From (C2) we get

0 ∈ ∂ (ϕ ◦ g + ιS)(x0)

and from (C3) (ϕ is Lipschitz, g is locally Lipschitz and ιS is lsc because S is closed),
there exist x ∈ B(x0,ε/2), z ∈ B(x0,ε/2)∩ S, p∗ ∈ ∂ (ϕ ◦ g)(x), and q∗ ∈ N∂ (S,z)
such that

‖p∗ + q∗‖ < ε/2.

Since p∗ ∈ ∂ (ϕ ◦ g)(x), by (C4) there exist u1 ∈ B(x,ε/3) ⊆ B(x0,5ε/6), v ∈
B(g(x),ε/2), u∗ ∈ ∂ϕ(v) and v∗1 ∈ ∂ (u∗ ◦ g)(u1) such that

‖v∗1 − p∗‖ < ε/2.

It follows that

‖v∗1 + q∗‖ = ‖v∗1 − p∗+ p∗+ q∗‖ < 5ε/6.
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This means that

0 ∈ ∂ (u∗ ◦ g)(u1)+ N∂ (S,z)+ B(0,5ε/6).

But
∂ (u∗ ◦ g)(u1) = ∂ (u∗ ◦ ( f (·)− f (x0)))(u1) = ∂ (u∗ ◦ f )(u1)

because the function u �→ −u∗( f (x0)) is constant (in particular convex). Applying
(C3) we find u ∈ B(u1,ε/6) ⊆ B(x0,ε) and v∗ ∈ ∂ (u∗ ◦ f )(u) such that

‖v∗1 − v∗‖ < ε/6.

We deduce that

0 ∈ ∂ (u∗ ◦ f )(u)+ N∂ (S,z)+ B(0,ε).

The assertions concerning u∗ follow from Corollary 11.7 and this completes the
proof. ��

Concerning (α,k0)-efficient solutions of (VP) we have the following result
(compare Durea and Tammer [17]).

Theorem 11.18. Assume that S is a closed subset of X and f is a λ -Lipschitz
function. Let x0 ∈ S be an (α,k0)-efficient solution of (VP). Then for every e ∈ intK
and ε > 0, there exist u ∈ B(x0,

√
α + ε), z ∈ B(x0,

√
α + ε/2)∩ S, u∗ ∈ K+ with

u∗(e) = 1 and x∗ ∈ X∗ with ‖x∗‖ ≤ 1 such that

0 ∈ ∂ (u∗ ◦ f )(u)+
√

αu∗(k0)x∗ + N∂ (S,z)+ B(0,ε),

provided that ∂ satisfies conditions (C1), (C2), (C3), (C4). Moreover, for some x ∈
B(x0,

√
α + ε/2) and v ∈ B( f (x)− f (x0),λ

√
α + ε) one has u∗(v) = ϕ(v).

Proof. Since the function f is Lipschitz, it is continuous as well, and since S is a
closed set in the Banach space X , S is a complete metric space with respect to the
metric given by the norm. Thus, it is easy to see that we are in the conditions of
the vectorial variant of Ekeland principle given in Theorem 11.13. Applying this
result we get an element x ∈ S such that ‖x− x0‖ <

√
α and having the property

that it is minimal element (whence weak minimal as well) over S for the function h
defined by

h(x) := f (x)+
√

α ‖x− x‖k0.

Let ε > 0. One can apply now Theorem 11.17 for ε replaced δ ∈ ]0,ε/2[ with
δ (1 +

√
α
∥
∥k0
∥
∥δ ) < 2ε . Accordingly, we can find u ∈ B(x,δ ) ⊆ B(x0,

√
α + δ ),

x ∈ B(x,δ/2) ⊆ B(x0,
√

α + δ/2), v ∈ B(h(x)− h(x),δ/2), z ∈ B(x,δ/2)∩ S ⊆
B(x0,

√
α + δ/2)∩S and u∗ ∈ ∂ϕ(v) such that

0 ∈ ∂ (u∗ ◦ h)(u)+ N∂ (S,z)+ B(0,δ ). (11.45)
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Let us take the element x∗ ∈ ∂ (u∗ ◦ h)(u) involved in (11.45). Since

∂ (u∗ ◦ h)(u) = ∂ (u∗ ◦ ( f (·)+
√

α ‖·− x‖k0))(u),

by use of (C3) and (C1), there exist u ∈ B(u,δ ) ⊆ B(x0,
√

α + 2δ ) and u′ ∈ B(u,δ )
such that

x∗ ∈ ∂ (u∗ ◦ f )(u)+
√

αu∗(k0)∂ (‖·− x‖)(u′)+ B(0,δ ). (11.46)

By the calculation rule for the subdifferential of the norm and combining relations
(11.45) and (11.46) it follows that there exists x∗ ∈ X∗ with ‖x∗‖ ≤ 1 such that

0 ∈ ∂ (u∗ ◦ f )(u)+
√

αu∗(k0)x∗ + N∂ (S,z)+ B(0,2δ ).

Since 2δ < ε , it remains only to prove the estimation about the ball containing v.
We can write

‖v− ( f (x)− f (x0))‖ ≤ ‖v− (h(x)−h(x))‖+‖(h(x)−h(x))− ( f (x)− f (x0))‖
≤ δ/2 +

∥
∥
√

αk0 ‖x− x‖− f (x)+ f (x0))
∥
∥

≤ δ/2 +
√

α
∥
∥k0
∥
∥δ/2 + λ

√
α

< λ
√

α + ε,

where for the last inequality we used the assumptions made on δ . The proof is
complete. ��
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