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Preface

We always come cross several decision-making problems in our daily life. Such
problems are always conflicting in which many different view points should be
satisfied. In politics, business, industrial systems, management science, networks,
etc. one often encounters such kind of problems. The most important and difficult
part in such problems is the conflict between various objectives and goals. In
these problems, one has to find the minimum (or maximum) for several objective
functions. Such problems are called vector optimization problems (VOP), multi-
criteria optimization problems or multi-objective optimization problems.

This volume deals with several different topics/aspects of vector optimization
theory ranging from the very beginning to the most recent one. It contains fourteen
chapters written by different experts in the field of vector optimization.

Chapter 1 deals with the solution concepts in vector optimization and set
optimization, existence results and applications. The concepts of a pre-order and
a partial order of a set which naturally induce the notion of minimal and maximal
elements for vector and set optimization problems are presented. Some different
optimality notions such as minimal, weakly minimal, strongly minimal and properly
minimal elements in a pre-ordered linear space are presented and the relations
among these notions are discussed. Two different approaches – the vector approach
and the set approach – for defining optimal solutions of set optimization are
presented. Several optimality concepts for set optimization as well as order relations
for sets are discussed. The relevance of vector optimization in practice is illustrated
with an application to a bicriterial problem in field design of a magnetic resonance
system.

Chapter 2 is devoted to the existence of Lagrange multipliers, (strong) duality
results, linear scalarizations of various classes of solutions to vector optimization
problems by using theorems of the alternative. The chapter starts by recalling the
Fan–Glicksberg–Hoffman alternative theorem (1957) for convex functions. Then,
many equivalent formulations to a general Gordan-type alternative theorem valid for
(not necessarily pointed) convex cones with possibly empty interior, are established.
They are expressed in terms of quasi relative interior. Several classes of generalized
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convexity for sets and for vector-valued mappings, are revisited. Applications to
linear characterizations of weakly efficient, (Benson) proper efficient solutions, and
to characterize the Fritz-John type optimality condition in vector optimization, are
discussed. Finally, some recent developments about proper efficiency are presented.

In Chap. 3, the generalized notions of infimum and supremum, called infimal
and supremal sets, are studied. It is shown that a set-valued approach to vector
optimization yields a complete lattice such that the infimum and supremum can
be expressed as certain infimal and supremal sets, respectively. This approach is
applied to establish duality results based on a consequent usage of infimum and
supremum. Exemplary, Lagrange and conjugate duality results, being completely
analogous to their scalar counterparts, are proven.

In Chap. 4, the vector optimization problems with a variable ordering structure
are studied. A cone-valued map which associates to each element of the space a
cone of dominated (or preferred) directions defines thereby the variable ordering
structure. The importance of such vector optimization problems is illustrated
with several applications for instance in medical image registration. The different
optimality notions which are known so far in the literature are given and properties
and relations among them are discussed. The linear and nonlinear scalarization
functionals which allow a characterization of optimal elements are presented and
a basic duality theory is provided. Special attention to variable ordering structures
where the images of the cone-valued map are Bishop-Phelps cones is paid.

In Chap. 5, some interesting results on optimality conditions for vector opti-
mization problems are presented. The VOP both in finite and infinite dimensions is
studied. For example, the study of strong KKT conditions is emphasized and in the
infinite dimensional setting the optimality conditions when the ordering cone has an
empty interior, is focused. A scalar-valued gap function and its regularization is also
studied and an error bound is presented for a strongly convex vector optimization
problem. Some results on second order sufficient optimality conditions for vector
optimization problems are presented.

Chapter 6 deals with the optimality conditions, which are expressed by means
of vector variational inequalities where the operator is the Gâteaux derivative of
the objective function. The image space analysis for VOP with cone constraints
of the form g(x) ∈ D, where D is a closed and convex cone is presented. In
particular, following a vector separation scheme in the image space, generalized
vector Lagrangian functions associated with VOP are introduced, and scalar and
vector saddle points conditions are derived. The Kuhn–Tucker type first order
optimality conditions for Gâteaux differentiable VOP with cone constraints and for
semidifferentiable VOP (in the sense of Giannessi) with inequality constraints are
discussed.

In Chap. 7, some elementary concepts from nonlinear analysis, convex analysis
and invex analysis are reviewed. The directional derivatives, Gâteaux derivative,
Dini (lower and upper) directional derivative, Dini-Hadamard (lower and upper)
directional derivative, Clarke directional derivative and their properties are pre-
sented. By treating these directional derivatives as a bifunction, different kinds of
invexities and invariant monotonicities for such a bifunction are introduced. Several
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properties of these invexities and invariant monotonicities are discussed. The vector
variational-like inequalities for bifunctions are presented in such a way that if we
treat the Dini upper directional derivative of a function as a bifunction, then we get,
so called, the nonsmooth vector variational-like inequalities involving Dini upper
directional derivative. Some existence results for these kinds of vector variational-
like inequalities are presented. The vector optimization problem by using our vector
variational-like inequalities is studied. Several relationships among the weakly
efficient solution and efficient solution of the VOP, and the solutions of our vector
variational-like inequalities are given.

Chapter 8 is concerned with a convex vector optimization problem which is
to minimize a vector objective function consisting of a finite number of real-
valued convex functions with infinitely many convex constraint functions, and an
abstract constraint set (called convex semi-infinite vector problem). For such a
problem, two kinds of approximate efficient solutions, namely, ε-efficient solutions
and weakly ε-efficient solutions are considered. Optimality conditions for these
kinds of approximate solutions are established in terms of Fenchel conjugates
and ε-subdifferentials of the data involved. Optimality conditions for efficient and
weakly efficient solutions of such a problem are derived as a special case of the
general results. These results are established by using a new version of Farkas
lemma for systems of infinitely many convex inequalities and under new regularity
conditions which give rise to new results even for problems with finite constraints.
Several numerical examples are given to illustrate the meaning of the results.

Chapter 9 surveys some existing results on solution stability and connectedness
of the solution sets of linear fractional vector optimization problems and of convex
quadratic vector optimization problems. The main concern is the situation where the
constraint set is unbounded. Some open problems are also mentioned.

In Chap. 10, various types of Levitin–Polyak (LP, in short) well-posedness for
scalar and vector optimization problems with functional constraints are introduced.
Various criteria and characterizations for these types of LP well-posedness are
derived. Relationships among these types of LP well-posedness are presented.
Applications of some types of LP well-posedness to the convergence analysis of
augmented Lagrangian methods and penalty methods for constrained scalar or
vector optimization problems are also given.

In Chap. 11, new minimal point theorems in product spaces and the corre-
sponding vector variational principles for set-valued functions are presented. As
special cases, many of the existing variational principles of Ekeland’s type are
derived. Moreover, a new approach is used to get extensions of Ekeland’s variational
principles (EVPs) of Isac-Tammer’s and Ha’s types, as well as extensions of EVPs
for bi-functions. An important tool for deriving variational principles is a general
nonlinear scalarization technique. Some useful properties of scalarizing functionals
is studied. Several applications, especially necessary conditions for solutions of
VOP are presented.

In Chap. 12, several versions of the Fermat rule and the Lagrange multiplier rule
for various efficient solutions of set-valued optimization problems are presented.
These rules are expressed in terms of coderivatives in the senses of Fréchet, Ioffe,
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Clarke and Mordukhovich and provide illustrating examples. The fuzzy and exact
versions of the Fermat rule and the Lagrange multiplier rule containing necessary
conditions for Pareto efficient solutions are given. The Fermat rule and the Lagrange
multiplier rule containing both necessary and sufficient conditions (the sufficient
conditions require additional convex assumptions) for strongly efficient solutions,
weakly efficient solutions, positive properly efficient solutions, Hurwicz properly
efficient solutions, Henig global properly efficient solutions, Henig properly effi-
cient solutions, super efficient solutions and Benson properly efficient solutions
are obtained in an unified scheme. It is based on the fact that these solutions can
be characterized as solutions to scalar optimization problems with the objective
functions being linear functionals or the Hiriart-Urruty signed distance function or
a Minkowski-type function.

Chapter 13 contains new developments on necessary conditions for minimal
points of sets and their applications to deriving refined necessary optimality
conditions in general models of set-valued optimization with geometric, functional,
and operator constraints in finite and infinite dimensions. The results obtained
address the new notions of extended Pareto optimality with preference relations
generated by ordering sets satisfying the local asymptotic closedness property
instead of that generated by convex and closed cones. In this way, most of the known
notions of efficiency/optimality in multiobjective models are unified and extended.
Some optimality conditions that are new even in standard settings are obtained.
The approach is based on advanced tools of variational analysis and generalized
differentiation.

The last chapter is devoted the theory of cooperative games which is a very
important and interesting topic in applied mathematics. An ordinary cooperative
game is specified by a real-valued characteristic function defined on the set of
coalitions of a finite number of players. These games can be extended to cooperative
games with vector-valued, both in the finite-dimensional real space and in a more
general partially ordered linear space, characteristic functions and also set-valued
characteristic maps. Some solution concepts such as the core and the Shapley value
are investigated. On the other hand, since several interesting and useful games
are derived from optimization problems, there are some results concerning games
derived from vector optimization problems such as linear production programming
problems and minimum cost spanning problems. Thus, a review on some relation-
ships between vector optimization and cooperative games is provided.

We would like to express our profound thanks and gratitude to Prof. Johannes
Jahn, who encouraged us to edit this kind of volume for the Springer series on
Vector Optimization. This volume could not be completed without the support of
all the esteemed authors who have contributed to this volume. We are profoundly
thankful to them for their painstaking efforts. We would like to take this opportunity
to thank our friend Prof. S. Al-Homidan, Dhahran, Saudi Arabia, for his kind
encouragement at different times during the preparation of this volume. Also, we
would like to express our appreciation to Springer for publishing this volume in the
series on Vector Optimization. We hope that this volume would be useful to the
students, researchers, and those who are interested in this emerging field of Applied
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Mathematics. Last, but not the least, we wish to thank our family for their infinite
patience, encouragement and forbearance. This work would not have seen the light
of day without their unflinching support during this project. We remain indebted to
them.

Aligarh, India Qamrul Hasan Ansari
Kaohsiung, Taiwan Jen-Chih Yao
February 2011
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Constantin Zălinescu Faculty of Mathematics, University Al.I.Cuza Iaşi, 700506
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Limsup The sequential Painlevé-Kuratowski upper/outer limit
L (X ,Y ) The space of continuous linear maps from X to Y
mπ The marginal contribution vector



xxiv List of Notations and Symbols

maxA The set of maximal elements of A
minA The set of minimal elements of A
N The set of natural numbers
NA(x) The normal cone to A at x
N(x;Ω) The normal cone to Ω at x
NA(x;Ω) The normal cone to Ω at x in the sense of Ioffe
NF(x;Ω) or N̂(x;Ω) The normal cone to Ω at x in the

sense of Fréchet
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Chapter 1
Vector Optimization Problems
and Their Solution Concepts

Gabriele Eichfelder and Johannes Jahn

1.1 Introduction

In vector optimization one investigates optimal elements of a set in a pre-ordered
space. The problem of determining these optimal elements, if they exist at all, is
called a vector optimization problem. Problems of this type can be found not only
in mathematics but also in engineering and economics. There, these problems are
also called multiobjective (or multi criteria or Pareto) optimization problems or one
speaks of multi criteria decision making. Vector optimization problems arise, for
example, in functional analysis (the Hahn–Banach theorem, the lemma of Bishop–
Phelps, Ekeland’s variational principle), multiobjective programming, multi-criteria
decision making, statistics (Bayes solutions, theory of tests, minimal covariance
matrices), approximation theory (location theory, simultaneous approximation,
solution of boundary value problems) and cooperative game theory (cooperative
n player differential games and, as a special case, optimal control problems). In
the last decades vector optimization has been extended to problems with set-valued
maps. This field, called set optimization, has important applications to variational
inequalities and optimization problems with multivalued data.

In the applied sciences Edgeworth [14] (1881) and Pareto [28] (1906) were
probably the first who introduced an optimality concept for vector optimization
problems. Both have given the standard optimality notion in multiobjective opti-
mization. Therefore, optimal points are called Edgeworth–Pareto optimal points in
the modern special literature.

We give a brief historical sketch of the early works of Edgeworth and Pareto.
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Edgeworth introduces notions in his book [14] on page 20: “Let P, the utility of
X , one party, = F(xy), and Π , the utility of Y , the other party, = Φ(xy).” Then he
writes on page 21: “It is required to find a point (xy) such that, in whatever direction
we take an infinitely small step, P and Π do not increase together, but that, while
one increases, the other decreases.” Hence, Edgeworth presents the definition of a
minimal solution, compare Definition 1.8, for the special case of Y = R2 partially
ordered by the natural ordering, i.e. for two objectives f1 : S → R and f2 : S → R

and with K = R2
+.

In the English translation of Pareto’s book [28] one finds on page 261: “We
will say that the members of a collectivity enjoy maximum ophelimity in a certain
position when it is impossible to find a way of moving from that position very
slightly in such a manner that the ophelimity enjoyed by each of the individuals
of that collectivity increases or decreases. That is to say, any small displacement in
departing from that position necessarily has the effect of increasing the ophelimity
which certain individuals enjoy, and decreasing that which others enjoy, of being
agreeable to some and disagreeable to others.” The concept of “ophelimity” used by
Pareto, is explained on page 111: “In our Cours we proposed to designate economic
utility by the word ophelimity, which some other authors have since adopted,” and
it is written on page 112: “For an individual, the ophelimity of a certain quantity of
a thing, added to another known quantity (it can be equal to zero) which he already
possesses, is the pleasure which this quantity affords him.” In our modern terms
“ophelimity” can be identified with an objective function and so, the definition of a
minimal solution given in Definition 1.8 actually describes what Pareto explained.

These citations show that the works of Edgeworth and Pareto concerning vector
optimization are very close together and, therefore, it makes sense to speak of
Edgeworth–Pareto optimality as proposed by Stadler [34]. It is historically not
correct that optimal points are called Pareto optimal points as it is done in various
papers.

In mathematics this branch of optimization has started with a paper of Kuhn and
Tucker [24]. Since about the end of the 1960s research is intensively made in vector
optimization.

In the following sections we first recall the concepts of a pre-order and a
partial order of a set which naturally induce the notion of minimal and maximal
elements for vector and set optimization problems. In the third section, we present
different optimality notions such as minimal, weakly minimal, strongly minimal and
properly minimal elements in a pre-ordered linear space and discuss the relations
among these notions. In Sect. 1.4, we discuss set optimization problems and
different approaches for defining optimal elements in set optimization. Conditions
guaranteeing the existence of minimal, weakly minimal and properly minimal
elements in linear spaces are given in the fifth section. The chapter is concluded
with an engineering application in magnetic resonance systems.
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1.2 Pre-Orders and Partial Orders

Minimizing a scalar valued function f : X → R on some set X , two objective
function values are compared by saying f (x) is better than f (y) if f (x) ≤ f (y). In
vector optimization problems, i.e. in optimization problems with a vector valued
objective function, and even more general in set optimization problems, i.e. in
optimization problems with a set-valued objective function, we need relations for
comparing several vectors or even sets. For that, let us recall some concepts from
the theory of ordered sets [31].

Definition 1.1. Let Q be an arbitrary nonempty set with a binary relation ≤. Let
A, B, D ∈Q be arbitrarily chosen. The binary relation ≤ is said to be

• Reflexive if A≤ A
• Transitive if A≤ B and B≤ D imply A≤ D
• Symmetric if A≤ B implies B≤ A
• Antisymmetric if A≤ B and B ≤ A imply A = B

Definition 1.2. The binary relation ≤ is said to be

• A pre-order if it is reflexive and transitive.
• A partial order if it is reflexive, transitive and antisymmetric or in other words,

if it is a pre-order that is antisymmetric.
• An equivalence relation if it is reflexive, transitive and symmetric.

When the relation ≤ is a pre-order/ a partial order, we say that Q is a
pre-ordered/partially ordered set.

It is important to note that in a pre-ordered set two arbitrary elements cannot be
compared, in general, in terms of the pre-order.

Throughout this section let Y be an arbitrary real linear space. For Q = Y we
say that the pre-order is compatible with the linear structure of the space if it is
compatible with addition, i.e. for x,y,w,z ∈ Y and x ≤ y, w ≤ z we obtain x + w ≤
y + z, and compatible with multiplication with a nonnegative real number, i.e. for
x,y ∈ Y , α ∈ R+ and x ≤ y we obtain αx ≤ αy. For introducing this definition in a
more general setting we need the power set of Y ,

P(Y ) := {A⊆ Y | A is nonempty}.

Notice that the power set P(Y ) of Y is a conlinear space introduced by Hamel [16].
In a conlinear space addition and multiplication with a nonnegative real number are
defined but in contrast to the properties of a linear space the second distributive law
is not required.

Definition 1.3. Suppose that Q is a subset of the power set P(Y ). We say that the
binary relation ≤ is

• Compatible with the addition if A ≤ B and D ≤ E imply A + D ≤ B + E for all
A,B,D,E ∈Q.
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• Compatible with the multiplication with a nonnegative real number if A ≤ B
implies λA≤ λB for all scalars λ ≥ 0 and all A,B ∈Q.

• Compatible with the conlinear structure of P(Y ) if it is compatible with both
the addition and the multiplication with a nonnegative real number.

By setting Q := {{y} | y ∈Y} ⊂P(Y ), Definition 1.3 includes as a special case
the compatibility of a pre-order with the linear structure of the space Y as discussed
above.

The connection between a pre-order (a partial order) in a linear space and a
(pointed) convex cone is given in the following theorem.

Theorem 1.1. Let Y be a real linear space.

(a) If ≤ is a pre-order which is compatible with the addition and the multiplication
with a nonnegative real number, then the set

K := {y ∈ Y | 0Y ≤ y}

is a convex cone. If, in addition, ≤ is antisymmetric, i.e ≤ is a partial order,
then K is pointed, i.e. K∩ (−K) = {0Y}.

(b) If K is a convex cone, then the binary relation

≤K := {(x,y) ∈ Y ×Y | y− x ∈ K}

is a pre-order on Y which is compatible with the addition and the multiplication
with a nonnegative real number. If, in addition, K is pointed, then≤K is a partial
order.

If the convex cone K introduces some pre-order we speak of an ordering cone.
Let us consider some examples illustrating the above concepts.

Example 1.1. (a) Let Y be the linear space of all n× n real symmetric matrices.
Then the pointed convex cone S n

+ of all positive semidefinite matrices intro-
duces a partial order on Y .

(b) Let K ⊂ Y be an ordering cone. For Q = P(Y ) we define a binary relation by
the following: Let A,B ∈P(Y ) be arbitrarily chosen sets. Then

A �s B :⇐⇒ (∀ a ∈ A ∃ b ∈ B : a≤K b
)

and
(∀ b ∈ B ∃ a ∈ A : a≤K b

)
.

This relation is called set less or KNY order relation �s and has been
independently introduced by Young [40] and Nishnianidze [27]. It has been
presented by Kuroiwa [25] in a slightly modified form. This relation is a pre-
order and compatible with the conlinear structure of the space.

Based on a pre-order we can define minimal and maximal elements of some
set Q.
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Definition 1.4. Let Q be a pre-ordered set. Let A be a nonempty subset of Q,
T ∈Q and A ∈A . We say that:

• A is a minimal element of A if A≤ A for some A ∈A implies A≤ A.
• A is a maximal element of A if A≤ A for some A ∈A implies A≤ A.
• T is a lower bound of A if T ≤ A for all A ∈A .
• T is an upper bound of A if A≤ T for all A ∈A .

When the binary relation ≤ is a partial order, A is a minimal element of A if
A �≤ A for all A ∈ A , A �= A, and A is a maximal element of A if A �≤ A for all
A ∈ A , A �= A. If K ⊂ Y denotes a pointed convex cone that introduces a partial
order in Y we thus have that some element y ∈ A is a minimal element of A⊂ Y if

({y}−K)∩A = {y}. (1.1)

Minimal elements are also known as Edgeworth–Pareto-minimal or efficient ele-
ments and will be discussed more detailed in the following section together with
variations of this definition. Similar, some element y ∈ A is a maximal element of
A⊂ Y if

({y}+ K)∩A = {y}. (1.2)

Moreover, y ∈ Y is a lower bound of A if A ⊂ {y}+ K and an upper bound if
A⊂{y}−K.

Let minA and maxA denote the sets of minimal elements and maximal elements
of A w.r.t. the partial order ≤K , i.e.

minA = {a ∈ A | A∩ (a−K) = {a}},
maxA = {a ∈ A | A∩ (a+ K) = {a}}.

Using these sets we can define new order relations for comparing sets as introduced
in [22].

Example 1.2. Let

M := {A ∈P(Y ) | minA and maxA are nonempty}.

Note that for instance in a topological real linear space Y for every compact set in
P(Y ) minimal and maximal elements exist. For A,B ∈M the minmax less order
relation �m is defined by

A �m B :⇐⇒ minA �s minB and maxA �s maxB

(the subscript m stands for minmax). This relation is a pre-order which is compatible
with the multiplication with nonnegative real numbers. In general, this relation is not
antisymmetric.
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We end this section with the definition of a chain and the famous Zorn’s lemma,
which is the most important result which provides a sufficient condition for the
existence of a minimal element of a set, see Sect. 1.5.

Definition 1.5. Let Q be a pre-ordered set.

• A,B ∈Q are said to be comparable if either A≤ B or B≤ A holds.
• A nonempty subset A of Q is called a chain if any pair A, B∈A is comparable.

Lemma 1.1 (Zorn’s Lemma). Every pre-ordered set, in which every chain has an
upper (lower) bound, contains at least one maximal (minimal) element.

1.3 Optimality Concepts in Linear Spaces

In this section we discuss more detailed optimality notions in vector optimization.
In the following, let Y denote a real linear space that is pre-ordered by some convex
cone K ⊂ Y and let A denote some nonempty subset of Y . In general, one is mainly
interested in minimal and maximal elements of the set A, but in certain situations it
also makes sense to study variants of these concepts. For instance weakly minimal
elements are often of interest in theoretical examinations whereas properly minimal
elements are sometimes more of interest for applications.

First and second part in the definition below coincide with Definition 1.4 (first
and second part) in the case of Q a linear space and a pre-order given by the convex
cone K.

Definition 1.6.

• An element y ∈ A is called a minimal element of the set A, if

({y}−K)∩A⊂ {y}+ K. (1.3)

• An element y ∈ A is called a maximal element of the set A, if

({y}+ K)∩A⊂ {y}−K. (1.4)

• An element y ∈ A is called a strongly minimal element of the set A, if

A⊂ {y}+ K. (1.5)

• Let K have a nonempty algebraic interior, i.e. corK �= /0. An element y ∈ A is
called a weakly minimal element of the set A, if

({y}− corK)∩A = /0. (1.6)
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If the ordering cone K is pointed, then the inclusions (1.3) and (1.4) can be
replaced by (1.1) and (1.2), respectively. Of course, corresponding concepts as
strongly maximal and weakly maximal can be defined analogously. Since every
maximal element of A is also minimal w.r.t the pre-order induced by the convex
cone −K, without loss of generality it is sufficient to study the minimality notion.
In terms of lattice theory a strongly minimal element of a set A is also called zero
element of A. It is a lower bound of the considered set, compare Definition 1.4
(third part). As this notion is very restrictive it is often not applicable in practice.
Notice that the notions “minimal” and “weakly minimal” are closely related. Take an
arbitrary weakly minimal element y ∈ A of the set A, that is ({y}− cor(K))∩A = /0.
The set K̂ := cor(K)∪{0Y} is a convex cone and it induces another pre-order in Y .
Consequently, y is also a minimal element of the set A with respect to the pre-order
induced by K̂. Figures 1.1 and 1.2a illustrate the different optimality notions.

Example 1.3. (a) Let Y be the real linear space of functionals defined on a real
linear space X and pre-ordered by a pointwise order. Moreover, let A denote the
subset of Y which consists of all sublinear functionals on X . Then the algebraic
dual space X ′ is the set of all minimal elements of A. This is proved in [21,
Lemma 3.7] and is a key for the proof of the basic version of the Hahn–Banach
theorem.

(b) Let X and Y be pre-ordered linear spaces with the ordering cones KX and KY ,
and let T : X → Y be a given linear map. We assume that there is a q ∈ Y
so that the set A := {x ∈ KX | T (x) + q ∈ KY} is nonempty. Then an abstract
complementary problem leads to the problem of finding a minimal element of

Fig. 1.1 (a) Minimal
element x and maximal
element y of a set A. (b)
Strongly minimal element y
of a set A

a b

Fig. 1.2 (a) Weakly minimal
element y of a set A. (b)
Properly minimal element y
of a set A

a b
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the set A. For further details we refer to [9,12]. Obviously, if q ∈ KY , then 0X is
a strongly minimal element of the set A.

The next lemma gives relations between the different optimality concepts.

Lemma 1.2. (a) Every strongly minimal element of the set A is also a minimal
element of A.

(b) Let K have a nonempty algebraic interior and K �= Y. Then every minimal
element of the set A is also a weakly minimal element of the set A.

Proof. (a) It holds A⊂ {y}+ K for any strongly minimal element y of A. Thus

({y}−K)∩A⊂ A⊂ {y}+ K.

(b) The assumption K �= Y implies (−cor(K))∩K = /0. Therefore, for an arbitrary
minimal element y of A it follows

/0 = ({y}− cor(K))∩ ({y}+ K)

= ({y}− cor(K))∩ ({y}−K)∩A

= ({y}− cor(K))∩A

which means that y is also a weakly minimal element of A. ��
In general, the converse statement of Lemma 1.2 is not true. This fact is

illustrated by

Example 1.4. Let Y = R2 and let a partial order be induced by the cone K = R2
+.

Consider the set A = [0,1]× [0,1]. The unique minimal element is 0R2 while all
elements of the set {(y1,y2) ∈ A | y1 = 0 ∨ y2 = 0} are weakly minimal elements.
Note that 0R2 is also a strongly minimal element.

The following lemma, compare [35], indicates that the minimal elements of a set
A and the minimal elements of the set A + K where K denotes the ordering cone
are closely related. This result is of interest for further theoretical examinations, for
instance regarding duality results. Especially if the set A+K is convex while the set
A is not convex, the consideration of A + K instead of A is advantageous, e.g. when
necessary linear scalarization results as given in [21, Theorem 5.11, 5.13] should be
applied.

Lemma 1.3. (a) If the ordering cone K is pointed, then every minimal element of
the set A + K is also a minimal element of the set A.

(b) Every minimal element of the set A is also a minimal element of the set A+ K.

Proof. (a) Let y ∈ A + K be an arbitrary minimal element of the set A + K. If we
assume that y /∈ A, then there is an element y �= y with y ∈ A and y ∈ {y}+ K.
Consequently, we get y∈ ({y}−K)∩(A+K) which contradicts the assumption
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that y is a minimal element of the set A + K. Hence, we obtain y ∈ A ⊂ A + K
and, therefore, y is also a minimal element of the set A.

(b) Take an arbitrary minimal element y ∈ A of the set A, and choose any y ∈
({y}−K)∩(A+K). Then there are elements a ∈ A and k ∈K so that y = a+k.
Consequently, we obtain a = y− k ∈ {y}−K, and since y is a minimal element
of the set A, we conclude a ∈ {y}+ K. But then we get also y ∈ {y}+ K. This
completes the proof. ��

If the cone K has a nonempty algebraic interior, the statement of Lemma 1.3 is
also true if we replace minimal by weakly minimal [21, Lemma 4.13].

Another refinement of the minimality notion is helpful from a theoretical point
of view. These optima are called properly minimal. Until now there are various
types of concepts of proper minimality. The notion of proper minimality (or proper
efficiency) was first introduced by Kuhn–Tucker [24] and modified by Geoffrion
[15], and later it was formulated in a more general framework (Benson–Morin [2],
Borwein [6], Vogel [35], Wendell-Lee [36], Wierzbicki [38], Hartley [17], Benson
[1], Borwein [7], Nieuwenhuis [26], Henig [18] and Zhuang [41]). We present here
a definition introduced by Borwein [6] and Vogel [35]. For a collection of other
definitions of proper minimality see for instance [21, p. 113f].

Recall that the contingent cone (or Bouligand tangent cone) T (A,y) to a subset
A of a real normed space (Y,‖ · ‖) in y ∈ cl(A) is the set of all tangents h which
are defined as follows: An element h ∈ Y is called a tangent to A in y, if there
are a sequence (yn)n∈N of elements yn ∈ A and a sequence (λn)n∈N of positive real
numbers λn so that

y = lim
n→∞

yn and h = lim
n→∞

λn(yn− y).

Here, cl(A) denotes the closure of A.

Definition 1.7. Let (Y,‖ · ‖) be a real normed space. An element y ∈ A is called a
properly minimal element of the set A, if y is a minimal element of the set A and
the zero element 0Y is a minimal element of the contingent cone T (A + K,y) (see
Fig. 1.2b).

It is evident that a properly minimal element of a set A is also a minimal element
of A.

Example 1.5. Let Y be the Euclidean space R2 and let a partial order be induced by
the cone K = R2

+. Consider A =
{
(y1,y2) ∈ R2 | y2

1 + y2
2 ≤ 1

}
. Then all elements of

the set
{
(y1,y2) ∈ R2 | y1 ∈ [−1,0], y2 =−

√
1− y2

1

}
are minimal elements of A.

The set of all properly elements of A reads as

{
(y1,y2) ∈ R2 | y1 ∈ (−1,0), y2 =−

√
1− y2

1

}
.
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The optimality concepts for subsets of a real linear space naturally induce
concepts of optimal solutions for vector optimization problems. Let X and Y be
real linear spaces, and let K, as before, be a convex cone in Y . Furthermore, let
S be a nonempty subset of X , and let f : S → Y be a given map. Then the vector
optimization problem

min
x∈S

f (x) (VOP)

is to be interpreted in the following way: Determine a (weakly, strongly, properly)
minimal solution x ∈ S which is defined as the inverse image of a (weakly, strongly,
properly) minimal element f (x) of the image set f (S) = { f (x) ∈ Y | x ∈ S}.

Definition 1.8. An element x ∈ S is called a (weakly, strongly, properly) minimal
solution of problem (VOP) w.r.t. the pre-order induced by K, if f (x) is a (weakly,
strongly, properly) minimal element of the image set f (S) w.r.t. the pre-order
induced by K.

For Y = Rm partially ordered by the natural ordering, i.e. K = Rm
+, we call

(VOP) also a multiobjective optimization problem, as the m objectives fi : S → R,
i = 1, . . . ,m, are minimized simultaneously. A minimal solution, then also called
Edgeworth–Pareto optimal, compare page 2, is thus a point x ∈ S such that there
exists no other x ∈ S with

fi(x)≤ fi(x) for all i = 1, . . . ,m,

and

f j(x) < f j(x) for at least one j ∈ {1, . . . ,m}.

Example 1.6. Let X = R2 and Y be the Euclidean space R2 and let a partial order
be induced by the cone K = R2

+. Consider the constraint set

S :=
{
(x1,x2) ∈ R2 | x2

1− x2 ≤ 0, x1 + 2x2−3≤ 0
}

and the vector function f : S→ R2 with

f (x1,x2) =
( −x1

x1 + x2
2

)
for all (x1,x2) ∈ S.

The point
(

3
2 , 57

16

)
is the only maximal element of T := f (S), and the set of all

minimal elements of T reads

{
(y1,y2) ∈ R2 | y1 ∈

[
−1,

1
2

3
√

2
]

and y2 =−y1 + y4
1

}
.
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Fig. 1.3 Minimal and maximal elements of T = f (S)

The set of all minimal solutions of the vector optimization problem minx∈S f (x) is
given as {

(x1,x2) ∈R2 | x1 ∈
[
−1

2
3
√

2,1
]

and x2 = x2
1

}

(see Fig. 1.3).

1.4 Optimality Concepts in Set Optimization

Now we introduce set optimization problems as special vector optimization prob-
lems. Various optimality concepts are discussed for these problems.

In this section let S be a nonempty set, let Y be a real linear space, let K ⊂ Y
be a convex cone and let F : S ⇒ Y be a set-valued map. Then we consider the set
optimization problem

min
x∈S

F(x). (SOP)

Up to now many authors have used a vector approach for the formulation of
optimality notions for this problem. First, we discuss this approach and then we
present a more suitable set approach.

1.4.1 Vector Approach

In this subsection we give a short overview on some concepts of optimal solutions
of problem (SOP) based on a vector approach. For simplicity we assume in this
subsection that the convex cone K is pointed. Then, similar to minimal solutions of
a vector optimization problem, see Definition 1.8, we can say that a pair (x,y) with
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x ∈ S and y ∈ F(x) is a minimizer of (SOP) if

F(S)∩ ({y}− (K\{0Y})) = /0

for F(S) :=
⋃

x∈S F(x), which means that y ∈minF(S). In general only one element
does not imply that the whole set F(x) is in a certain sense minimal with respect to
a sets F(x) with x ∈ S.

Another optimality notion has been recently introduced in [10, Definition 1.3].
An element x ∈ S is called a feeble (multifunction) minimal point of problem
(SOP) if

∃ y ∈ F(x) : F(S\{x})∩ ({y}− (K\{0Y})) = /0.

The equality means that y is not dominated by any arbitrary point in the set
F(S\{x}). It is not required that the element y is a minimal element of the set F(x).
Obviously, this optimality notion is even weaker than the concept of a minimizer
because the set F(x) is not considered in the definition. The following simple
example illustrates possible difficulties with this notion.

Example 1.7. For S := {1,2,3} consider F(1) = {1}, F(2) = {2}, F(3) = [1,3] and
K := R+. It is evident that x = 3 (with y = 1) is a feeble minimal point of problem
(SOP), although F(1) would be the “better” set because F(2),F(3)⊂ F(1)+ K.

A variation of this feeble notion is given in [10, Definition 1.3] in the following
way: An element x ∈ S is called a (multifunction) minimum point of problem
(SOP) if

F(S\{x})∩ ({y}− (K\{0Y})) = /0 for all y ∈ F(x).

This condition is equivalent to the equality

F(S\{x})∩ (F(x)− (K\{0Y})) = /0 ,

which means that the set F(x) is not dominated by any set F(x) with x ∈ S, x �= x.
The next example shows that this optimality notion is too strong in set optimization.

Example 1.8. For S := {1,2} consider for arbitrary real numbers a,b,c,d with
−∞< a < b <∞ and −∞< c < d <∞ the intervals F(1) = [a,b] and F(2) = [c,d],
and set K := R+. In this case x = 1 is a minimum point of problem (SOP) if and
only if

F(2)∩ (F(1)− (K\{0})) = /0,

which means that [c,d]∩(−∞,b) = /0 or b≤ c. So, this is a very strong requirement.

Variants of the discussed notions have also been mentioned in [39, p. 10], where
the nondomination concept is again used for different optimality notions (but notice
that the utilized solution concept in [39] uses the set less relation of interval analysis,
which is covered by the unified set approach).
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1.4.2 Set Approach

Although the concept of a minimizer is of mathematical interest, it cannot be often
used in practice. In order to avoid this drawback it is necessary to work with
practically relevant order relations for sets. In Example 1.1.(b) the set less order
relation �s and in Example 1.2 the minmax less order relation �m have been already
defined for the comparison of sets. In interval analysis there are even more order
relations in use, like the certainly less �c or the possibly less �p relations (see
[11]), i.e. for arbitrary nonempty sets A,B⊂ Y one defines

A �c B :⇐⇒ (A = B) or (A �= B,∀ a ∈ A ∀ b ∈ B : a≤ b)

and

A �p B :⇐⇒ (∃ a ∈ A ∃ b ∈ B : a≤ b).

Let M be defined as in Example 1.2. Then for arbitrary A,B ∈ M the minmax
certainly less order relation �mc is defined by

A �mc B :⇐⇒ (A = B) or (A �= B,minA �c minB and maxA �c maxB)

and the minmax certainly nondominated order relation �mn is defined by

A �mn B :⇐⇒ (A = B) or (A �= B,maxA �s minB),

see [22]. Figure 1.4 illustrates the order relation �mc.
The set less order relation �s and the order relations �m, �mc and �mn are pre-

orders. If � denotes one of these four order relations, then we can define optimal
solutions w.r.t. the pre-order �.

Definition 1.9. An element x ∈ S is called an optimal solution of problem (SOP)
w.r.t. the pre-order � if

F(x) � F(x) for some x ∈ S⇒ F(x) � F(x).

So, we can use the same minimality concept as in vector optimization for the
definition of optimal solutions in set optimization.

Fig. 1.4 Illustration of two
sets A,B ∈M with A �mc B

B max B

min B

A

min A

max A
K

0Y
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1.5 Existence Results in Vector Optimization

In this section we give assumptions which guarantee that at least one optimal
element of a subset of a pre-ordered linear space exists. These investigations will be
done for the minimality, the properly minimality and the weakly minimality notion.
Strongly minimal elements are not considered because this optimality notion is too
restrictive.

In order to get existence results under weak assumptions on a set we introduce
the following

Definition 1.10. Let A be a nonempty subset of a pre-ordered linear space Y where
the pre-order is introduced by a convex cone K ⊂ Y . If for some y ∈ Y the set
Ay = ({y}−K)∩A is nonempty, Ay is called a section of the set A (see Fig. 1.5).

The assertion of the following lemma is evident.

Lemma 1.4. Let A be a nonempty subset of a pre-ordered linear space Y with an
ordering cone K.

(a) Every minimal element of a section of the set A is also a minimal element of the
set A.

(b) If cor(K) �= /0, then every weakly minimal element of a section of the set A is
also a weakly minimal element of the set A.

It is important to remark that for the notion of proper minimality a similar
statement is not true in general. We begin now with a discussion of existence results
for the notion of minimal elements. The following existence result is a consequence
of Zorn’s lemma (Lemma 1.1). Recall that an ordering cone in a real topological
linear space is called Daniell if every decreasing net (i.e. i≤ j ⇒ y j ≤K yi) which
has a lower bound converges to its infimum. And a real topological linear space
Y with an ordering cone K is called boundedly order complete, if every bounded
decreasing net has an infimum.

Theorem 1.2. Let Y be a topological linear space which is pre-ordered by a closed
ordering cone K. Then we have:

(a) If the set A has a closed section which has a lower bound and the ordering cone
K is Daniell, then there is at least one minimal element of the set A.

Fig. 1.5 Section Ay of a set A
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(b) If the set A has a closed and bounded section and the ordering cone K is Daniell
and boundedly order complete, then there is at least one minimal element of the
set A.

(c) If the set A has a compact section, then there is at least one minimal element of
the set A.

Proof. Let Ay (for some y ∈ Y ) be an appropriate section of the set A. If we show
that every chain in the section Ay has a lower bound, then by Zorn’s lemma (Lemma
1.1) Ay has at least one minimal element which is, by Lemma 1.4.(a), also a minimal
element of the set A.

Let {ai}i∈I be any chain in the section Ay. Let F denote the set of all finite
subsets of I which are pre-ordered with respect to the inclusion relation. Then for
every F ∈F the minimum

yF := min{ai | i ∈ F}

exists and belongs to Ay. Consequently, (yF)F∈F is a decreasing net in Ay. Next, we
consider several cases.

(a) Ay is assumed to have a lower bound so that (yF)F∈F has an infimum. Since Ay

is closed and K is Daniell, (yF)F∈F converges to its infimum which belongs to
Ay. This implies that any chain in Ay has a lower bound.

(b) Since Ay is bounded and K is boundedly order complete, the net (yF)F∈F has
an infimum. The ordering cone K is Daniell and, therefore, (yF)F∈F converges
to its infimum. And since Ay is closed, this infimum belongs to Ay. Hence, any
chain in Ay has a lower bound.

(c) Now, Ay is assumed to be compact. The family of compact subsets Aai (i ∈ I)
has the finite intersection property, i.e., every finite subfamily has a nonempty
intersection. Since Ay is compact, the family of subsets Aai (i ∈ I) has a
nonempty intersection (see Dunford–Schwartz [13, p. 17]), that is, there is an
element

ŷ ∈
⋂
i∈I

Aai =
⋂
i∈I

({ai}−K)∩Ay.

Hence, ŷ is a lower bound of the subset {ai}i∈I and belongs to Ay. Consequently,
any chain in Ay has a lower bound. ��

Notice that the preceding theorem remains valid, if “section” is replaced by the
set itself. Theorem 1.2 as well as the following example is due to Borwein [9], but
Theorem 1.2 (c) was first proved by Vogel [35] and Theorem 1.2 (a) can essentially
be found, without proof, in a survey article of Penot [29].

Example 1.9. We consider again the problem formulated in Example 1.3.(b). Let
X and Y be pre-ordered topological linear spaces with the closed ordering cones
KX and KY where KX is also assumed to be Daniell. Moreover, let T : X → Y be a



16 G. Eichfelder and J. Jahn

continuous linear map and let q ∈ Y be given so that the set A := {x ∈ KX | T (x)+
q∈KY} is nonempty. Clearly the set A is closed and has a lower bound (namely 0X ).
Then by Theorem 1.2 (a) the set A has at least one minimal element.

For the next existence result we need the so-called James theorem [23].

Theorem 1.3 (James Theorem). Let A be a nonempty bounded and weakly closed
subset of a real quasi-complete locally convex space Y . If every continuous linear
functional l ∈ Y ∗ attains its supremum on A, then A is weakly compact.

Using this theorem together with Theorem 1.2 (c) we obtain the following result
due to Borwein [9].

Theorem 1.4. Let A be a nonempty subset of a real locally convex space Y .

(a) If A is weakly compact, then for every closed convex cone K in Y the set A has
at least one minimal element with respect to the pre-order induced by K.

(b) In addition, let Y be quasi-complete (for instance, let Y be a Banach space). If A
is bounded and weakly closed and for every closed convex cone K in Y the set
A has at least one minimal element with respect to the pre-order induced by K,
then A is weakly compact.

Proof. (a) Every closed convex cone K is also weakly closed [21, Lemma 3.24].
Since A is weakly compact, there is a compact section of A. Then, by Theorem
1.2 (c), A has at least one minimal element with respect to the pre-order induced
by K.

(b) It is evident that the functional 0Y∗ attains its supremum on the set A. Therefore,
take an arbitrary continuous linear functional l ∈ Y ∗\{0Y∗} (if it exists) and
define the set K := {y ∈ Y | l(y) ≤ 0} which is a closed convex cone. Let y ∈ A
be a minimal element of the set A with respect to the pre-order induced by K, i.e.

({y}−K)∩A⊂ {y}+ K. (1.7)

Since
{y}−K = {y ∈ Y | l(y)≥ l(y)}

and

{y}+ K = {y ∈ Y | l(y)≤ l(y)},
the inclusion (1.7) is equivalent to the implication

y ∈ A, l(y)≥ l(y) =⇒ l(y) = l(y).

This implication can also be written as

l(y)≥ l(y) for all y ∈ A.

This means that the functional l attains its supremum on A at y. Then by the James
theorem (Theorem 1.3) the set A is weakly compact. ��
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The preceding theorem shows that the weak compactness assumption on a set
plays an important role for the existence of minimal elements.

Next, we study existence theorems which follow from scalarization results,
compare [20]. Recall that a nonempty subset A of a real normed space (Y,‖ · ‖)
is called proximinal, if every y ∈ Y has at least one best approximation from A, that
is, for every y ∈ Y there is an y ∈ A with

‖y− y‖ ≤ ‖y− a‖ for all a ∈ A.

Any nonempty weakly closed subset of a real reflexive Banach space is proximinal
[21, Corollary 3.35]. A functional f : A → R with A a nonempty subset of a linear
space pre-ordered by K is called strongly monotonically increasing on A, if for every
y ∈ A

y ∈ ({y}−K)∩A, y �= y =⇒ f (y) < f (y).

If cor(K) �= /0, then f is called strictly monotonically increasing, if for every y ∈ A

y ∈ ({y}− cor(K))∩A =⇒ f (y) < f (y).

Theorem 1.5. Assume that either assumption (a) or assumption (b) below holds:

(a) Let A be a nonempty subset of a partially ordered normed space (Y,‖ ·‖Y ) with
a pointed ordering cone K, and let Y be the topological dual space of a real
normed space (Z,‖ · ‖Z). Moreover, for some y ∈ Y let a weak*-closed section
Ay be given.

(b) Let A be a nonempty subset of a partially ordered reflexive Banach space
(Y,‖ · ‖Y ) with a pointed ordering cone K. Furthermore, for some y ∈ Y let
a weakly closed section Ay be given.

If, in addition, the section Ay has a lower bound ŷ ∈ Y , i.e. Ay ⊂ {ŷ}+ K, and the
norm ‖ · ‖Y is strongly monotonically increasing on K, then the set A has at least
one minimal element.

Proof. Let the assumptions of (a) be satisfied. Take any z ∈ Z∗ \Ay = Y \Ay and any
a ∈ Ay. Since every closed ball in Z∗ = Y is weak*-compact, the set

Ay∩{w ∈Y | ‖w‖Y ≤ ‖a‖Y}

is weak*-compact as well. Notice that the functional mapping from Y to R given by
w �→ ‖z−w‖Y is weakly* lower semicontinuous. Thus the section Ay is proximinal.
On the other hand, if the assumption (b) is satisfied, then the section Ay is proximinal
as well. Consequently, there is an y ∈ Ay with

‖y− ŷ‖Y ≤ ‖a− ŷ‖Y for all a ∈ Ay. (1.8)
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The norm ‖ · ‖Y is strongly monotonically increasing on K and because of
Ay−{ŷ}⊂K the functional ‖ · −ŷ‖Y is strongly monotonically increasing on Ay,
compare [21, Theorem 5.15(b)].

Next we show that y is a minimal element of Ay. Assume this is not the case. Then
there is an element a ∈ ({y}−K)∩Ay with a �= y. This implies ‖a− ŷ‖Y < ‖y− ŷ‖Y

in contradiction to (1.8).
Finally, an application of Lemma 1.4.(a) completes the proof. ��

Example 1.10. Let A be a nonempty subset of a pre-ordered Hilbert space (Y,〈., .〉)
with an ordering cone KY . Then the norm on Y is strongly monotonically increasing
on KY if and only if KY ⊂K∗

Y with K∗
Y = {y∗ ∈Y ∗ | y∗(y)≥ 0 for all y∈KY} the dual

cone of KY [30, 37]. Thus, if the ordering cone KY has the property KY ⊂ K∗
Y and A

has a weakly closed section bounded from below, then A has at least one minimal
element.

For the minimality notion a scalarization result concerning positive linear
functionals leads to an existence theorem which is contained in Theorem 1.4.(a).
But for the proper minimality notion such a scalarization result is helpful. We recall
the important Krein–Rutman theorem. For a proof see [8, p. 425] or [21, Theorem
3.38].

Theorem 1.6 (Krein–Rutman Theorem). In a real separable normed space
(Y,‖ · ‖) with a closed pointed convex cone K ⊂ Y the quasi-interior

K#
Y ∗ := {y∗ ∈ Y ∗ | y∗(y) > 0 for all y ∈ K \ {0Y}}

of the topological dual cone is nonempty.

Theorem 1.7. Let A be a weakly compact subset of a partially ordered separable
normed space (Y,‖ · ‖) with a closed pointed ordering cone K. Then there exists at
least one properly minimal element y ∈ A.

Proof. According to the Krein–Rutman Theorem 1.6, the quasi-interior of the
topological dual cone is nonempty. Then every continuous linear functional which
belongs to that quasi-interior attains its infimum on the weakly compact set A. So
there exists some y ∈ A and some l ∈ K#

Y ∗ with

l(y)≤ l(y) for all y ∈ A. (1.9)

As l ∈ K#
Y ∗ , l is strongly monotonically increasing on A. First we assume y is not a

minimal element of A. Then there is an element a ∈ ({y}−K)∩A with a �= y. This
implies l(a) < l(y) which is a contradiction to (1.9). Thus y is a minimal element
of A and it remains to show that 0Y is a minimal element of the contingent cone
T (A + K,y).

Take any tangent h ∈ T (A+K,y). Then there are a sequence (yn)n∈N of elements
in A + K and a sequence (λn)n∈N of positive real numbers with y = lim

n→∞
yn and
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h = lim
n→∞

λn(yn − y). The linear functional l is continuous and, therefore, we get

l(y) = lim
n→∞

l(yn). Since the functional l is also strongly monotonically increasing on

Y , the inequality (1.9) implies

l(y)≤ l(y) for all y ∈ A + K.

Then it follows

l(h) = lim
n→∞

l(λn(yn− y)) = lim
n→∞

λn(l(yn)− l(y))≥ 0.

Hence we obtain

l(0Y ) = 0≤ l(h) for all h ∈ T (A + K,y).

With the same arguments as before we conclude that 0Y is a minimal element of
T (A + K,y). This completes the proof. ��

A further existence theorem for properly minimal elements is given by

Theorem 1.8. Assume that either assumption (a) or assumption (b) below holds:

(a) Let A be a nonempty subset of a partially ordered normed space (Y,‖ ·‖Y ) with
a pointed ordering cone K which has a nonempty algebraic interior, and let Y
be the topological dual space of a real normed space (Z,‖ · ‖Z). Moreover, let
the set A be weak*-closed.

(b) Let A be a nonempty subset of a partially ordered reflexive Banach space
(Y,‖ · ‖Y ) with a pointed ordering cone K which has a nonempty algebraic
interior. Furthermore, let the set A be weakly closed.

If, in addition, there is an ŷ ∈ Y with A ⊂ {ŷ}+ cor(K) and the norm ‖ · ‖Y is
strongly monotonically increasing on K, then the set A has at least one properly
minimal element.

Proof. The proof is similar to that of Theorem 1.5. Since the norm ‖ · ‖Y is
strongly monotonically increasing on K and A−{ŷ} ⊂ cor(K) we get with the same
arguments that there is some y ∈ A with

‖y− ŷ‖Y ≤ ‖y− ŷ‖Y for all y ∈ A (1.10)

and that y is a minimal element of A. It remains to show that 0Y is a minimal element
of T (A + K,y).

Since the norm ‖ · ‖Y is assumed to be strongly monotonically increasing on K,
we obtain from (1.10)

‖y− ŷ‖Y ≤ ‖y− ŷ‖Y ≤ ‖y + k− ŷ‖Y for all y ∈ A and all k ∈ K.
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This results in

‖y− ŷ‖Y ≤ ‖y− ŷ‖Y for all y ∈ A + K. (1.11)

It is evident that the functional ‖ · −ŷ‖Y is both convex and continuous in the
topology generated by the norm ‖ · ‖Y . Then, see for instance [21, Theorem 3.48],
the inequality (1.11) implies

‖y− ŷ‖Y ≤ ‖y− ŷ+ h‖Y for all h ∈ T (A + K,y). (1.12)

With T := T (A + K,y)∩ ({ŷ− y}+ K) the inequality (1.12) is also true for all
h ∈ T , i.e.

‖0Y − (ŷ− y)‖Y ≤ ‖h− (ŷ− y)‖Y for all h ∈ T

and ‖ ·−(ŷ− y)‖Y is because of T −{ŷ− y} ⊂ K strongly monotonically increasing
on T . With the same arguments as in Theorem 1.5 0Y is a minimal element of T .

Next we assume that 0Y is not a minimal element of the contingent cone
T (A + K,y). Then there is an y ∈ (−K)∩T (A + K,y) with y �= 0Y . Since A⊂{ŷ}+
cor(K) and y ∈ A, there is a λ > 0 with y + λ y ∈ {ŷ}+ K or λy ∈ {ŷ− y}+ K.
Consequently, we get

λy ∈ (−K)∩T (A + K,y)∩ ({ŷ− y}+ K)

and therefore, we have λy∈ (−K)∩T which contradicts the fact that 0Y is a minimal
element of the set T . Hence, 0Y is a minimal element of the contingent cone T (A +
K,y) and the assertion is obvious. ��
Example 1.11. Let A be a nonempty subset of a partially ordered Hilbert space
(Y,〈., .〉) with an ordering cone KY which has a nonempty algebraic interior and for
which KY ⊂K∗

Y (compare Example 1.10). If A is weakly closed and there is an ŷ∈Y
with A⊂ {ŷ}+ cor(KY ), then the set A has at least one properly minimal element.

Finally, we turn our attention to the weak minimality notion. Using Lemma
1.2.(b) we can easily extend the existence theorems for minimal elements to weakly
minimal elements, if we assume additionally that the ordering cone K ⊂ Y does not
equal Y and that it has a nonempty algebraic interior. This is one possibility in order
to get existence results for the weak minimality notion. In the following theorems
we use directly appropriate scalarization results for this optimality notion.

Theorem 1.9. Let A be a nonempty subset of a pre-ordered locally convex space
Y with a closed ordering cone KY �= Y which has a nonempty algebraic interior.
If A has a weakly compact section, then the set A has at least one weakly minimal
element.

Proof. Applying a separation theorem we get that, since the ordering cone KY is
closed and does not equal Y , there is at least one continuous linear functional
l ∈ K∗

Y \{0Y∗} with K∗
Y = {y∗ ∈Y ∗ | y∗(y)≥ 0 for all y∈KY}. This functional attains
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its infimum on a weakly compact section of A, i.e. there is some y ∈ A and some
y ∈ Y with

l(y)≤ l(a) for all a ∈ Ay. (1.13)

Assume y is not a weakly minimal element of Ay. Then there is some a ∈ ({y}−
cor(K))∩Ay, and as l is strictly monotonically increasing on Ay due to l ∈K∗

Y \{0Y}
we get l(a) < l(y) in contradiction to (1.13). Thus y is a weakly minimal element of
Ay and because of Lemma 1.4.(b) also of A. ��

Notice that Theorem 1.9 could also be proved using Theorem 1.4.(a) and Lemma
1.2.(b).

Theorem 1.10. Assume that either assumption (a) or assumption (b) below
holds:

(a) Let A be a nonempty subset of a pre-ordered normed space (Y,‖ · ‖Y ) with an
ordering cone K which has a nonempty algebraic interior, and let Y be the
topological dual space of a real normed space (Y,‖ · ‖Y ). Moreover, for some
y ∈Y let a weak*-closed section Ay be given.

(b) Let A be a nonempty subset of a pre-ordered reflexive Banach space (Y,‖ · ‖Y )
with an ordering cone K which has a nonempty algebraic interior. Furthermore,
for some y ∈Y let a weakly closed section Ay be given.

If, in addition, the section Ay has a lower bound ŷ ∈ Y , i.e. Ay ⊂ {ŷ}+ K, and the
norm ‖ ·‖Y is strictly monotonically increasing on K, then the set A has at least one
weakly minimal element.

Proof. The proof is similar to that of Theorem 1.5. ��
Example 1.12. Let A be a nonempty subset of L∞(Ω), the linear space of all
(equivalence classes of) essentially bounded functions f : Ω → R ( /0 �= Ω ⊂ Rn)
with the norm ‖ · ‖L∞(Ω) given by

‖ f‖L∞(Ω) := ess supx∈Ω{| f (x)|} for all f ∈ L∞(Ω).

The ordering cone KL∞(Ω) is defined as

KL∞(Ω) := { f ∈ L∞(Ω) | f (x) ≥ 0 almost everywhere on Ω}.

It has a nonempty topological interior and it is weak* Daniell. We show that if the set
A has a weak*-closed section bounded from below, then A has at least one weakly
minimal element:

If we consider the linear space L∞(Ω) as the topological dual space of L1(Ω),
then the assertion follows from Theorem 1.10, if we show that the norm ‖ · ‖L∞(Ω)
is strictly monotonically increasing on the ordering cone KL∞(Ω). It is evident that

int(KL∞(Ω)) = { f ∈L∞(Ω) | there is an α>0 with

f (x) ≥ α almost everywhere on Ω} �= /0.
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As KL∞(Ω) is convex with a nonempty topological interior, int(KL∞(Ω)) equals the
algebraic interior of KL∞(Ω). Take any functions f ,g ∈ KL∞(Ω) with f ∈ {g} −
int(KL∞(Ω)). Then we have g− f ∈ int(KL∞(Ω)) which implies that there is an α > 0
with

g(x)− f (x)≥ α almost everywhere on Ω

and

g(x)≥ α+ f (x) almost everywhere on Ω .

Consequently, we get

ess supx∈Ω {g(x)} ≥ α+ ess supx∈Ω { f (x)}

and
‖g‖L∞(Ω) > ‖ f‖L∞(Ω).

Hence, the norm ‖ · ‖L∞(Ω) is strictly monotonically increasing on KL∞(Ω).

We conclude this section with the Bishop–Phelps lemma [5], which is a special
type of an existence result for maximal elements. First we recall that in a real normed
space (Y,‖ ·‖Y ) for an arbitrary continuous linear functional l ∈ Y ∗ and an arbitrary
γ ∈ (0,1) the cone

C(l,γ) := {y ∈Y | γ‖y‖Y ≤ l(y)}
is called Bishop–Phelps cone. Notice that this cone is convex and pointed and,
therefore, it can be used as an ordering cone in the space Y .

Lemma 1.5 (Bishop–Phelps Lemma). Let A be a nonempty closed subset of a real
Banach space (Y,‖ ·‖Y ), and let a continuous linear functional l ∈Y ∗ be given with
‖l‖Y∗ = 1 and supy∈A l(y) < ∞. Then for every y ∈ A and every γ ∈ (0,1) there is
a maximal element y ∈ {y}+C(l,γ) of the set A with respect to the Bishop–Phelps
ordering cone C(l,γ).

For the proof we refer to [5] as well as to [19, p. 164].

1.6 Application: Field Design of a Magnetic Resonance System

In this section we discuss a vector optimization problem of the type (VOP) which
is of importance in magnetic resonance systems in medical engineering. Magnetic
resonance (MR) systems are significant devices in medical engineering which may
produce images of soft tissue of the human body with high resolution and good
contrast. Among others, it is a useful device for cancer diagnosis. The images are
physically generated by the use of three types of magnetic fields: the main field, the
gradient field and the radio frequency (RF) field, compare [32].
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MR uses the spin of the atomic nuclei in a human body and it is the hydrogen
proton whose magnetic characteristics are used to generate images. One does not
consider only one spin but a collection of spins in a voxel being a small volume
element. Without an external magnetic field the spins in this voxel are randomly
oriented and because of their superposition their effects vanish (see Fig. 1.6a). By
using the main field which is generated by super-conducting magnets, the spin
magnets align in parallel or anti-parallel to the field (see Fig. 1.6b). There is a small
majority of up spins in contrast to down spins and this difference leads to a very
weak magnetization of the voxel. The spin magnet behaves like a magnetic top used
by children; this is called the spin precession (see Fig. 1.7).

With an additional RF pulse the magnetization flips. This stimulation with an
RF pulse leads to magnetic resonances in the body. In order to get the slices that
give us the images, we use a so-called gradient field with the effect that outside the
defined slice the nuclear spins are not affected by the RF pulse. The obtained voxel
information in a slice can then be used for the construction of MR images via a
2-dimensional Fourier transform. A possible MR image of a human head is given in
Fig. 1.8.

There are various optimization problems in the context of the improvement of
the quality of MR images. We restrict ourselves to the description of the following
bicriterial optimization problem, i.e. we consider a vector optimization problem as
presented in (VOP) with Y = R2 the Euclidean space. This problem was already

Fig. 1.6 (a) Arbitrary spins.
(b) Parallel and anti-parallel
aligned spins

Fig. 1.7 Spin precession
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Fig. 1.8 A so-called sagittal
T1 MP-RAGE image taken
up by the 3 T system
MAGNETOM Skyra
produced by Siemens AG.
With kind permission of
Siemens AG Healthcare
Sector

considered by Bijick (Schneider), Diehl and Renz [3, 4]. We assume that in the
images space a partial order is introduced by the cone K =R2

+. For good MR images
it is important to improve the homogeneity of the RF field for specific slices. Here
we assume that the MR system uses n ∈ N antennas. The complex design variables
x1, . . . ,xn ∈ C are the so-called scattering variables. Thus we choose X = Cn. For a
slice with p∈N voxels let Hx

k�, Hy
k� ∈C (for k∈{1, . . . , p} and �∈{1, . . . ,n}) denote

the cartesian components of the RF field of the k-th antenna in the �-th voxel, if we
work with a current of amplitude 1 A and phase 0. Then the objective function f1

which is a standard deviation, reads as follows

f1(x) :=

√
1

p−1

p
∑

k=1

(
H−

k (x)H−
k (x)−

p
∑

k=1
wkH−

k (x)H−
k (x)

)2

p
∑

k=1
wkH−

k (x)H−
k (x)

for all x ∈Cn with

H−
k (x) :=

1
2

n

∑
�=1

x�(Hx
kl − iHy

kl) for all x ∈Cn and k ∈ {1, . . . , p}

(here i denotes the imaginary unit and the overline means the conjugate complex
number). Moreover, we would like to reduce the specific absorption rate (SAR)
which is the RF energy absorbed per time unit and kilogram. Global energy
absorption in the entire body is an important value for establishing safety thresholds.
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Fig. 1.9 Qualitative
illustration of the image
points of minimal solutions
and the image point of the
standard excitation pulse

If m > 0 denotes the mass of the patient and M ∈ R(n,n) denotes the so-called
scattering matrix, then the second objective function f2 is given by

f2(x) :=
1

2m
x�(I−M�M)x for all x ∈ Cn

where I denotes the (n,n) identity matrix. f2 describes the global SAR.
The constraints of this bicriterial problem describing the set S in (VOP) are given

by upper bounds for the warming of the tissue within every voxel. The HUGO
body model which is a typical human body model based on anatomical data of
the Visible Human Project�, has more than 380,000 voxels which means that this
bicriterial optimization problem has more than 380,000 constraints. A discussion of
these constraints cannot be done in detail in this text. Using the so-called modified
Polak method [21, Algorithm 12.1] one obtains an approximation of the image set
of the set of minimal solutions of this large-scale bicriterial problem. The numerical
results qualitatively illustrated in Fig. 1.9 are obtained by Bijick (Schneider, 2010,
University of Erlangen-Nürnberg, Erlangen, Private communication). These results
are better than the realized parameters in an ordinary MR system which uses a
symmetric excitation pulse.

Notice in Fig. 1.9 that the global SAR measured in w
kg is considered per time unit

which may be very short because one considers only short RF pulses.

References

1. Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect
to cones. J. Math. Anal. Appl. 71, 232–241 (1979)

2. Benson, H.P., Morin, T.L.: The vector maximization problem: Proper efficiency and stability.
SIAM J. Appl. Math. 32, 64–72 (1977)

3. Bijick (Schneider), E.: Optimierung der Homogenität von HF-Feldern bei der Magnetreso-
nanzbildgebung. Diplomarbeit, University of Erlangen-Nürnberg, Erlangen (2005)



26 G. Eichfelder and J. Jahn

4. Bijick (Schneider), E., Diehl, D., Renz, W.: Bikriterielle Optimierung des Hochfrequenz-
feldes bei der Magnetresonanzbildgebung. In: Küfer, K.-H., Rommelfanger, H., Tammer, C.,
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Chapter 2
Gordan-Type Alternative Theorems and Vector
Optimization Revisited

Fabián Flores-Bazán, Fernando Flores-Bazán, and Cristián Vera

2.1 Introduction and Formulation of the Problem

Alternative theorems have proved to be important in deriving key results in
optimization theory like the existence of Lagrange multipliers, duality results,
scalarization of vector functions, etc. Since the pioneering result due to Julius
Farkas in 1902 concerning his alternative lemma which is well known in linear
programming, or even the elder alternative result established by Paul Gordan in
1873, many mathematicians have made a lot of effort to generalize both results in
a nonlinear setting. To these author’s knowledge the first Gordan type result for
convex functions is due to Fan et al. [13] and was established in 1957. Such a result
says the following:

Let K ⊆ Rn be convex, and fi : K → R, i = 1, . . . ,m, be convex functions. Then,
exactly one of the following two systems has a solution:

(a) fi(x) < 0, i = 1, . . . ,m, x ∈ K
(b) p ∈ Rm

+ \ {0}, ∑m
i=1 pi fi(x)≥ 0 for all x ∈ K

After that, the problem without the convexity became an interesting challenge in
mathematics.
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Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
e-mail: fflores@ing-mat.udec.cl

F. Flores-Bazán
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To be precise, let us consider a real locally convex topological vector space Y and
a closed convex cone P ⊆ Y such that int P �= /0. We denote by Y ∗ the topological
dual space of Y , and by P∗ the (positive) polar cone of P. Given a nonempty set
A ⊆ Y , a Gordan-type alternative theorem asserts the validity of exactly one of the
following assertions:

∃ a ∈ A such that a ∈−int P; (2.1)

∃ p∗ ∈ P∗, p∗ �= 0, such that 〈p∗,a〉 ≥ 0 ∀ a ∈ A. (2.2)

Here 〈·, ·〉 stands for the duality pairing between Y and Y ∗ and int P denotes the
topological interior of P. We recall that P∗ is defined by

P∗ = {p∗ ∈ Y ∗ : 〈p∗, p〉 ≥ 0 ∀ p ∈ P} .

The closedness and convexity of the cone P is equivalent to P = P∗∗ by the
bipolar theorem. In this case,

p ∈ P ⇐⇒ 〈p∗, p〉 ≥ 0 ∀ p∗ ∈ P∗.

Moreover,
p ∈ int P ⇐⇒ 〈p∗, p〉> 0 ∀ p∗ ∈ P∗ \ {0}. (2.3)

Via the last equation, we see that the inconsistency of assertions (2.1) and (2.2) is
straightforward, whereas the validity of (2.2) by assuming that (2.1) does not hold,
requires a careful analysis due to the lack of convexity of A.

In fact, because of many applications, one of our purposes in this chapter is to
avoid convexity and to allow convex cones possibly with empty topological interior.
The latter happens for instance if (1 < p < +∞)

P = Lp
+

.= {u ∈ Lp(Ω) : u≥ 0 a.e. x ∈Ω},

or if P is of the form P = Q×{0} with int Q �= /0.
A good substitute for the interior is the quasi interior and even the quasi-relative

interior. Borwein and Lewis in [5] introduced the quasi-relative interior of a convex
set A ⊆ Y , although the concept of quasi interior was introduced earlier. We use
both notions in order to deal with convex cones with possibly empty interior. In this
situation, the convex hull arises naturally.

One of the main goals of the present chapter is to characterize those sets A for
which the negation of (2.1) implies (2.2). The negation of (2.1) means

A∩ (−int P) = /0, (2.4)

which is equivalent to

cone(A + P)∩ (−int P) = /0. (2.5)

Therefore, by assuming the convexity of cone(A+P), a standard separation theorem
of convex sets provides the existence of p∗ satisfying (2.2): this fact was proved
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in [42], see also [22, 32, 43] for additional sufficiency conditions of alternative
theorems. In [14, Theorem 4.1] is established that such a convexity assumption is
necessary and sufficient to get the implication (2.4) =⇒ (2.2) provided the space is
two dimensional; whereas it is far to being necessary in dimension greater than
or equal to three [14, Example 3.8]. We shall revise that alternative theorem in
dimension two for convex cones having possibly empty interior, as well as various
equivalences to the above convexity assumption.

This chapter is organized as follows. Section 2.2 gives the necessary basic
definitions together with some elementary results about cones: in particular, when
P is a halfspace, a complete answer to the validity of a Gordan-type alternative
theorem is given, see Corollary 2.2. In Sect. 2.3, we establish several equivalent
formulations to the Gordan-type alternative theorems valid for (not necessarily
pointed or closed) convex cones with possibly empty (topological) interior, see
Theorem 2.1 and Corollary 2.3. This is given in terms of quasi interior and quasi
relative interior. We also compare various of the previously introduced notions of
generalized convexity for sets and vector functions. As a consequence of these
results, we are able to derive and strengthen several of the already known alternative
theorems. Section 2.4 establishes an optimal alternative theorem in 2-dimension for
a cone with possibly empty interior under a regularity assumption, which always
holds if the interior is nonempty, see Theorem 2.4. Section 2.5 is devoted to
applications. One of them is devoted to characterize those mappings F : K → R2

for which a equivalence between
⋃

p∗∈P∗\{0}
argminK〈p∗,F(·)〉 (resp.

⋃
p∗∈int P∗

argminK〈p∗,F(·)〉)

and EW (resp. Epr, the properly efficient set) holds, where EW denotes the set of
weakly efficient solutions to F on K. Such an equivalence is expected to be useful
for developing a well-posedness theory in vector optimization as in [12]. In addition,
as another application, we revise the Fritz–John optimality conditions for a class
of nonconvex vector minimization problems. Finally, we also present some recent
developments about proper efficiency.

2.2 Basic Definitions and Preliminaries

Throughout the chapter, X will be a vector space and Y a real locally convex
topological vector space, where 〈·, ·〉 denotes the duality pairing between Y and its
topological dual space, Y ∗. Given x,y ∈ X we set [x,y] = {tx +(1− t)y : t ∈ [0,1]}.
The segments ]x,y], ]x,y[, etc., are defined analogously.

A set P ⊆ Y is said to be a cone if tP ⊆ P ∀ t ≥ 0; given A ⊆ Y , cone(A) stands
for the smallest cone containing A, that is,

cone(A) =
⋃
t≥0

tA,
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whereas cone(A) denotes the smallest closed cone containing A: obviously
cone(A) = cone(A), where A denotes the closure of A. Furthermore, we set

cone+(A) .=
⋃
t>0

tA.

Evidently, cone(A) = cone+(A)∪{0} and therefore cone(A) = cone+(A). In [32,
33, 42, 43] the notation cone(A) instead of cone+(A) is employed.

Given a convex set A⊆ Y and x ∈ A, NA(x) stands for the normal cone to A at x,
defined by NA(x) = {ξ ∈ Y ∗ : 〈ξ ,a− x〉 ≤ 0, ∀ a ∈ A}.

Definition 2.1. We say that x ∈ A is a (see for instance [7]):

• Quasi interior point of A, denoted by x∈ qi A, if cone(A−x)=Y , or equivalently,
NA(x) = {0};

• Quasi relative interior point of A, denoted by x ∈ qri A, if cone(A− x) is a linear
subspace of Y , or equivalently, NA(x) is a linear subspace of Y ∗.

• [31, 44] core point of A, denoted by x ∈ core A, if cone(A− x) = Y .
• [6,18,44] intrinsic core point of A, denoted by x ∈ icr A, if cone(A−x) is a linear

subspace of Y .
• [31] strong-quasi relative interior point of A, denoted by x∈ sqri A, if cone(A−x)

is a closed linear subspace of Y .

For any convex set A, we have that [7, 25] qi A ⊆ qri A and, int A �= /0 implies
int A = qi A. Similarly, if qi A �= /0, then qi A = qri A. Moreover [5], if Y is a finite
dimensional space, then qi A = int A and qri A = ri A, where ri A means the relative
interior of A, which is the interior of A with respect to the affine hull of A. In addition,

core A ⊆ sqri A⊆ qri A and core A⊆ qi A⊆ qri A.

Let B⊆ Y another convex set. Then

qri A + qri B⊆ qri(A + B); qri A×qri B = qri(A×B); qri(A− x) = qri A− x;

qri(tA) = tqri A ∀ t ∈ R; qri A = A, provided A is affine; qri(qri A) = qri A;

qri A = A; cone(qri A) = cone A, if qri A �= /0.

Thus, all results in this paper involving qi A are also true for int A, provided the
latter set is nonempty. On the other hand, the cone l p

+ has nonempty quasi interior,
but its interior (and even the relative algebraic interior) is empty for all p ∈ [1,+∞[.
Likewise, the core and even the strong quasi relative interior of Lp

+ is empty. Quasi
relative interior points share some properties of the interior points; for instance, if
x ∈ qri A and y ∈ A then [x,y[⊆ qri A. In particular, qri A is convex.

If P is a closed convex cone, then it is easy to check that x ∈ qi P if and only if
〈x∗,x〉> 0 for all x∗ ∈ P∗\{0}, or equivalently if the set B = {x∗ ∈ P∗ : 〈x∗,x〉= 1}
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is a w∗-closed base for P∗ (we recall that a convex set B is called a base for P∗ if 0
is not in the w∗-closure of B and P∗ = cone(B)). If P �= Y , then 0 /∈ qi P. Note also
that qi P = cone+(qi P) and P+ qi P = qi P.

In the rest of the chapter, {0} �= P� Y will be a convex cone.
Some elementary properties of sets and cones are collected in the next

proposition.

Proposition 2.1. Let A,K ⊆ Y be any nonempty sets.

(a) co(A) = co(A), cone(A) = cone(A).
(b) if A is open then cone+(A) is open.
(c) cone(co(A)) = co(cone(A)) cone+(co(A)) = co(cone+(A)).
(d) co(A + K) = co(A)+ K provided K is convex.
(e) cone+(A + K) = cone+(A)+ K provided K is such that tK ⊆ K ∀ t > 0.

(f) A + K = A + K.
(g) K ⊆ cone(A + K) provided K is a cone.
(h) cone(A+K)⊆ cone(A)+K ⊆ cone(A+K) provided K is a cone; if additionally

0 ∈ A, then
cone(A + K) = cone(A)+ K;

In the following, K is a convex cone such that int K �= /0.
(i) A + int K = A + K, intA + K = A + intK = int(A + K).
(j) cone(A + qri P) = cone(A + P), provided P is a convex cone with qri P �= /0.
(k) cone+(A+ int K) is convex⇐⇒ cone(A)+ int K is convex⇐⇒ cone(A+K) is

convex.

Proof. (a), (b), (c), (d), and (e) are straightforward.

(f) Since K ⊆ K, we have A + K ⊆ A + K. On the other hand, it is not difficult to
obtain A + K ⊆ A + K, which completes both inclusions.

(g) For any fix a ∈ A, every x ∈ K can be obtained as the limit of 1
n (a + nx). Hence

K ⊆ cone(A + K).
(h) The first inclusion is obvious. According to (e), cone+(A)+K = cone+(A+K)

⊆ cone(A+K), which along with (g) prove the second inclusion. The remaining
equality is trivial.

(i) The first part follows from (f), and the other is in [8, 36].

(j) cone(A + qri P) = cone(A + qri P) = cone(A + qri P) = cone(A + P) =
cone(A + P).

(k) By (e) and (i),

cone+(A+int K) = cone+(A)+int K = int(cone+(A)+ K)= int(cone+(A)+K)

= int(cone(A)+ K) = int(cone(A)+ K) = cone(A)+ int K.

This proves the first equivalence. We also obtain

int(cone(A+K))= int(cone+(A)+ K) = cone+(A)+ int K = cone+(A+ int K),

proving the equivalence between the first and third sets. ��
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Remark 2.1. Proposition 2.1 (k) does not hold with qi P in the place of int P. Indeed,
let Y = l1 and P = l1

+. Then qi l1
+ =

{
(αi)i∈N : αi > 0

}
while int l1

+ = /0. Set

A = l1\(−qi l1
+
)

=
{
(αi)i∈N : ∃ i ∈ N with αi ≥ 0

}
.

Each (ai)i∈N ∈ l1 can be written as a limit of a sequence of elements each of which
has a finite number of nonzero coordinates. Thus A = l1 and cone(A + l1

+) = l1

is convex. However, one can readily check that cone+(A + qi P) = A + qi P ={
(αi)i∈N : ∃ i ∈ N with αi > 0

}
is not convex.

Proposition 2.2. Let /0 �= A⊆ Y. The following assertions hold:

(a) αA +(1−α)A ⊆ cone(A) ∀ α ∈ ]0,1[ ⇐⇒ cone(A) is convex ⇐⇒ co(A) ⊆
cone(A)

(b) αA +(1−α)A ⊆ cone(A) ∀ α ∈ ]0,1[ ⇐⇒ cone(A) is convex ⇐⇒ co(A) ⊆
cone(A)

(c) αA+(1−α)A⊆ cone+(A) ∀ α ∈ ]0,1[ ⇐⇒ cone+(A) is convex⇐⇒ co(A)⊆
cone+(A)

Proof. (a) Let xi, i = 1,2, such that there are nets {tαi }α∈Λ , {xαi }α∈Λ such that
tαi ≥ 0, xαi ∈ A and tαi xαi → xi, α ∈Λ . We may assume tαi > 0 for all α , i = 1,2.
For any fixed λ ∈ ]0,1[, set tα = λ tα1 +(1−λ )tα2 > 0. Then

λ tα1 xα1 +(1−λ )tα2 xα2 = tn
(
λ tα1
tα

xα1 +
(1−λ )tα2

tα
xα2

)
∈ tαco A⊆ tαcone(A)

= cone(A).

Hence, λx1 + (1− λ )x2 ∈ cone(A). This proves the first implication; the next
one results from the inclusion A ⊆ cone(A), and the remaining implication to
close the circle is a consequence of αA +(1−α)A⊆ co(A).

(b) Let x1,x2 be in cone(A) and λ ∈ ]0,1[. Then xi = tiki for some ti > 0 (if ti = 0 for
some i, there is nothing to prove), ki ∈ A. Hence, setting t = λ t1 +(1−λ )t2 > 0,
we have

λx1 +(1−λ )x2 = λ t1k1 +(1−λ )t2k2 = t

(
λ t1
t

k1 +
(1−λ )t2

t
k2

)
∈ cone(A),

proving the first implication; the second one follows from the inclusion A ⊆
cone(A), whereas the remaining implication is straightforward.

(c) The only implication to close the circle we have to check corresponds to the
first one, and it is a consequence of (b) since cone(A) is convex if and only if
cone+(A) is convex. ��

Corollary 2.1. Let /0 �= A⊆Y , P be a convex cone. The following assertions hold:

(a) αA +(1−α)A ⊆ cone+(A + P) ∀ α ∈ ]0,1[ ⇔ cone+(A + P) is convex ⇔
co(A)⊆ cone+(A + P)
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(b) αA + (1−α)A + P ⊆ cone(A + P) ∀ α ∈ ]0,1[ ⇔ cone(A + P) is convex
⇔ co(A)+ P⊆ cone(A + P)

(c) αA+(1−α)A+ int P⊆ cone+(A+ int P) ∀ α ∈ ]0,1[ ⇔ cone+(A+ int P) is
convex ⇔ co(A)+ int P⊆ cone+(A + int P)

(d) αA+(1−α)A⊆ cone+(A+ int P) ∀ α ∈ ]0,1[ ⇔ cone+(A+ int P) is convex
⇔ co(A)⊆ cone+(A + int P)

(e) αA+(1−α)A⊆ cone(A)+P ∀ α ∈ ]0,1[ ⇔ cone(A)+P is convex⇔ co(A)⊆
cone(A)+ P

(f) αA+(1−α)A⊆ cone(A+P) ∀ α ∈ ]0,1[ ⇔ cone(A+P) is convex⇔ co(A)⊆
cone(A + P)

Proof. (a), (b) follow from (c) and (b), respectively, of the previous proposition
applied to A + P; (c) is a consequence of (c) by taking A + int P.

(d) follows from (c) of the previous proposition. (e) One implication for the second
equivalence results from the inclusions A ⊆ cone(A) ⊆ cone(A)+ P; whereas the
other follows from the following (use Proposition 2.1(c))

co(cone(A)+ P) = co(cone(A))+ P = cone(co(A))+ P

⊆ cone(cone(A)+ P)+ P⊆ cone(A)+ P.

The first equivalence is straightforward.

(f) It comes from (a) of the previous proposition applied to A + P and the fact that
P+ cone(A + P)⊆ cone(A + P). ��

Part (f) already appeared in [32].

Remark 2.2. From Proposition 2.1 (h), we obtain

cone(A + int P) = cone(A)+ P = cone(A + P). (2.6)

The next proposition gives us a way for finding a sufficient condition to get
co(A)∩ (−int P) = /0, say, the convexity of cone(A + P).

Proposition 2.3. Let A ⊆ Y be a nonempty set and P � Y be a convex cone such
that int P �= /0. The following assertions hold:

(a) A∩ (−int P) = /0⇐⇒ cone+(A)∩ (−int P) = /0⇐⇒ A∩ (−int P) = /0
(b) A∩(−int P) = /0⇐⇒ A0∩(−int P) = /0, ∀ A0, A+ int P⊆ A0 ⊆ cone+(A+P)

Proof. It is straightforward. ��
Remark 2.3. On combining (a) and (b), we obtain

A∩ (−int P) = /0⇐⇒ B∩ (−int P) = /0,

for B = A + int P,A + P,cone+(A),cone(A) + P,cone(A + P),cone+(A + int P),
cone(A), cone(A)+ int P, and certainly all of their closures.

The case when P is a halfspace deserves a special formulation.
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Lemma 2.1. Let P � Y be a closed and convex cone satisfying int P �= /0. The
following assertions are equivalent:

(a) P = Y \−int P
(b) P∪ (−P) = Y

(c) ∃ p∗ ∈ P∗ \ {0}, P =
{

p ∈Y : 〈p∗, p〉 ≥ 0
}

Proof. (a) ⇒ (b): Obviously P∪ (−P)⊆ Y . Take any y ∈Y \P, then by assumption
y ∈ −int P⊆−P, as required.

(b) ⇒ (c): Since P �= Y , we take p0 �∈ P. Then, by an usual separation theorem for
convex sets, there exist p∗ ∈Y ∗, p∗ �= 0, α ∈ R, such that

〈p∗, p0〉< α < 〈p∗, p〉 ∀ p ∈ P.

Hence α < 0 and therefore 〈p∗, p〉 ≥ 0 for all p ∈ P, showing that p∗ ∈ P∗ \{0} and

P⊆
{

p ∈ Y : 〈p∗, p〉 ≥ 0
}
. (2.7)

Assume now that there exists p∈Y \P such that 〈p∗, p〉 ≥ 0. Since P is closed, there
exists ε > 0 such that p− ε p0 ∈ Y \P⊆−P. Thus,

0≤ 〈p∗,−p〉+ ε〈p∗, p0〉 ≤ ε〈p∗, p0〉< 0,

reaching a contradiction. This proves the reverse inclusion in (2.7), which completes
the proof of (c).

(c) ⇒ (a): Simply take into account that in this case int P = {p ∈Y : 〈p∗, p〉> 0}.
��

If P is a halfspace we obtain an alternative theorem whatever the set A satisfies
A∩ (−int P) = /0, as the following result shows.

Corollary 2.2. Let A ⊆ Y be any nonempty set, and P � Y be a closed convex
cone satisfying P ∪ (−P) = Y. Then, int P �= /0, P = Y \ −int P, and A + P is
convex and so A + int P is also convex. Consequently, the sets cone(A + P),
cone(A + int P), cone(A) + P, are convex. Furthermore, either cone(A + P) = P,
or cone+(A + int P) = Y and therefore cone(A + P) = Y .
Moreover, the following assertions are equivalent.

(a) A∩ (−int P) = /0
(b) A⊆ P
(c) co(A)⊆ P
(d) co(A)∩ (−int P) = /0
(e) co(A + int P)⊆ int P
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Proof. Obviously Y \P⊆−P, and since P is closed, we conclude that int P �= /0. Let
ai ∈ A, i = 1,2. We may assume a1 ∈ a2 +P. Since a2 +P is convex, we obtain that
[a1,a2]⊆ a2 +P. Thus, [a1,a2]+P⊆ a2 +P+P⊆ a2 +P. This proves the convexity
of A+P, and so int(A+P) = A+ int P is also convex. The convexity of cone(A)+P
is a consequence of Corollary 2.1 (e) since cone+(A + P) is convex.

Let us prove the last part. By (g) of Proposition 2.1, P ⊆ cone(A + P). If
cone(A + P) \ P �= /0, then there exists x ∈ Y \ P = −int P and nets {tα}α∈Λ ,
{aα}α∈Λ , {pα}α∈Λ satisfying tα > 0, aα ∈ A, pα ∈ P such that tα(aα + pα)→ x.
Thus, we may assume tα(aα + pα) ∈ −int P for all α ∈ Λ . This implies that
0 ∈ A + int P. It turns out that cone+(A + int P) = Y .

The equivalences between (a), (b), (c) and (d), follow from the fact P =Y \−int P
(see the previous lemma). Clearly (b) implies (e); let us prove (a) from (e): if x ∈
A∩ (−int P) then

0 = x +(−x) ∈ A + int P⊆ co(A + int P)⊆ int P.

Thus, 0 ∈ int P, which implies that P = Y , a contradiction. ��

2.3 Equivalent Formulations of Gordan-Type Alternative
Theorems

The main goal of this section is to establish equivalent formulations of Gordan-type
alternative theorems valid for (not necessarily pointed or closed) convex cones with
possibly empty interior. This will be carried out via quasi relative and topological
interior.

We recall the definition of pointedness for a cone that is not necessarily convex
(see for instance [30]).

Definition 2.2. A cone K ⊆Y is called pointed if x1 + · · ·+xk = 0 is impossible for
x1,x2, . . . ,xk in K unless x1 = x2 = · · ·= xk = 0.

It is easy to see that a cone K is pointed if, and only if co(K)∩ (−co(K)) = {0} if,
and only if 0 is a extremal point of co(K).

2.3.1 Via Quasi-Relative Interior

We start by noticing that

qri(cone(co(A)+ P))⊆ qri(cone(co(A)+ P)). (2.8)

Next theorem subsumes most alternative theorems existing in the literature.
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Theorem 2.1. Let /0 �= A⊆ Y �= {0} and P be a convex cone such that

qri(cone(co(A)+ P)) �= /0 �= qri [co((A + P)∪{0})] .

Let us consider the following statements:

(a) 0 �∈ qri(cone(co(A)+ P))
(b) 0 �∈ qri [co((A + P)∪{0})]
(c) 0 �∈ qri(cone(co(A)+ P))
(d) ∃ p∗ ∈ P∗ \ {0} such that 〈p∗,a〉 ≥ 0 ∀ a ∈ A, with strict inequality for some

ã ∈ co(A)+ P

In case qi(co(A)+ P) �= /0, consider also

(e) 0 �∈ qri(co(A)+ P)
(f) cone(qri(co(A)+ P)) is pointed

The following hold:

(a)⇐⇒ (b)⇐⇒ (c)⇐⇒ (d) =⇒ (e) =⇒ ( f ) =⇒ (g).

Proof. The first two equivalences are a consequences of the following equalities:

cone[co((A + P)∪{0})] = co[cone((A + P)∪{0})]
= co[cone(A + P)] = cone[co(A + P)]

= cone[cone(co(A)+ P)]

= cone[cone(co(A)+ P)].

(c)⇐⇒ (d): See the proof of Proposition 2.16 in [5].
(c) =⇒ (e): It is obvious.
(e) =⇒ ( f ): Let x, − x ∈ cone(qi(co(A) + P)), x �= 0. Thus, x, − x ∈ cone+
(qri(co(A)+ P). Then

0 =
1
2

x +
1
2
(−x) ∈ cone+(qri(co(A)+ P)).

Hence, 0 ∈ qri(co(A)+ P), proving the desired implication. ��
Remark 2.4. Assume that qi P �= /0. Since co(A)+ qi P⊆ qi(co(A)+ P), then

cone(qi(co(A)+ P)) is pointed =⇒ cone(co(A)+ qi P) is pointed
�

co(A)∩ (−qi P) = /0 ⇐⇒ cone(A + qi P) is pointed

where the last equivalence comes from [14].
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By observing that

qi[co((A + P)∪{0})]⊆ qi(cone(co(A)+ P)), (2.9)

the preceding theorem implies the following result

Corollary 2.3. Let /0 �= A⊆ Y �= {0} and P be a convex cone such that

qi[co((A + P)∪{0})] �= /0.

The following assertions are equivalent:

(a) 0 �∈ qi(cone(co(A)+ P))
(b) 0 �∈ qi[co((A + P)∪{0})]
(c) 0 �∈ qi(cone(co(A)+ P))
(d) ∃ p∗ ∈ P∗ \ {0} such that 〈p∗,a〉 ≥ 0, ∀ a ∈ A

2.3.2 Via Topological Interior

Before establishing a similar result for topological interior, we state the following
properties sharing by convex cones.

Proposition 2.4. Let /0 �= A ⊆ Y . Let P � Y be a convex cone. The following
assertions hold.

(a) cone+(int(A + P))⊆ int(cone+(A + P)); the equality holds provided int P �= /0.
(b) int(co(cone(A + P))) = int(co(cone+(A + P))) = int(co(cone(A + P))) =

= int(cone(co(A)+ P)).

(c) cone(A + P) = cone((A∪{0})+ P);
(d) If cone(A + P) is convex then cone(co(A)+ P) = cone(A + P).

Proof. (a) The inclusion is immediate. For the other, take any x∈ int(cone+(A+P))
and v ∈ int P, we can choose ε > 0 such that x− εv ∈ cone+(A + P). It follows
easily that x ∈ cone+(int(A + P)) = cone+(A + int P) by Proposition 2.1(e),
proving our claim.

(b) It follows from the following chain of inclusions:

int(co(cone(A + P))) ⊆ int(cone(co(A + P))) = int(cone+(co(A + P)))

= int(cone+(co(A + P)))⊆ int(cone(co(A + P)))

= int(co(cone(A + P)))⊆ int(co(cone(A + P))).

(c) This follows from the fact P ⊆ cone(A + P) by Proposition 2.1(d). ��
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A+P

•

A

cone+(int(A+P)) 
is convex

int(cone+(A+P))
is convex

P0
•

Fig. 2.1 Example 2.1(a)

Next example shows an instance where the inclusion in (a) of the previous
proposition may be strict if int P = /0 but int(A+P) �= /0; the second instance shows
we cannot delete the closures in (c).

Example 2.1. Let us consider in R2, the cone P = {(t,0) ∈R2 : t ≥ 0}.

(a) Let A = co({(0,1),(0,0)})∪ {(−1,1)}. It is easy to see that int(A+P) �= /0,
cone+(int(A + P))� int(cone+(A + P)). See Fig. 2.1.

(b) Take A = {(0,1),(0,2)}. Then, we obtain cone(A + P)� cone((A∪{0})+ P).

Next result is the analogue to Theorem 2.1 when topological interior is employed.
Likewise, it allows us to deal with cones having possibly empty interior.

Theorem 2.2. Let /0 �= A⊆ Y �= {0} and P be a convex cone such that

int[co((A + P)∪{0})] �= /0.

The following statements are equivalent:

(a) 0 �∈ int(cone(co(A)+ P))
(b) 0 �∈ int(co(cone(A + P)))
(c) 0 �∈ int(co(cone(A + P)))
(d) 0 �∈ int[co((A + P)∪{0})]
(e) 0 �∈ int(co(cone+(A + P)))
(f) ∃ p∗ ∈ P∗ \ {0} such that 〈p∗,a〉 ≥ 0 ∀ a ∈ A

In case int(co(A)+ P) �= /0, consider also

(g) 0 �∈ int(co(A)+ P)
(h) cone(int(co(A)+ P)) is pointed

In case int P �= /0, (h)⇐⇒ cone(A+ int P) is pointed; (g)⇐⇒ co(A)∩(−int P)= /0.

Proof. The equivalences among (a), (b), (c), (d), (e) and (f) follows from Corollary
2.3 and Theorem 2.1.

(h) ⇒ (g): If 0 ∈ int(co(A)+ P), then it easy to check that Y = cone+(int(co(A)+
P)).
(g) ⇒ (f): It is a consequence of a standard convex separation theorem.
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We now prove the last equivalence in case int P �= /0. Indeed, from (a) and (e) of
Proposition 2.1, it follows that cone(int(co(A)+P)) = co(cone(A+ int P)). Taking
into the account the remark made after Definition 2.2, the result follows ��

The alternative theorems proved in [33, 42, 43], [10, Theorem 1.79] (where A is
the image of a vector-valued function) are consequences of the following result.

Theorem 2.3. Assume that int(cone+(A + P)) �= /0 and

int(co(cone(A + P))) = int(cone+(A + P)). (2.10)

Then, exactly one of the following assertions holds:

(a) 0 ∈ int(cone+(A + P))
(b) ∃ p∗ ∈ P∗ \ {0} such that 〈p∗,a〉 ≥ 0 ∀ a ∈ A

Proof. It is a consequence of the first part of Theorem 2.2. ��
Some results from [16], where int P = /0, are also recovered.
When int P �= /0, the convexity of cone(A + P), or equivalently, of cone+

(A + int P), implies that (2.10) is fulfilled, by virtue of Propositions 2.4(b) and
2.1(k). This yields the following result, which already appears in [33, 42, 43],
[10, Theorem 1.79] (where A is the image of a vector-valued function).

Corollary 2.4. Assume that int P �= /0. If cone(A + P) is convex, then, exactly one
of the following assertions holds:

(a) A∩ (−int P) �= /0
(b) ∃ p∗ ∈ P∗ \ {0} such that 〈p∗,a〉 ≥ 0 ∀ a ∈ A

An example showing the convexity of cone(A + P) is not necessary for the
validity of the previous alternative theorem, is exhibited in [14].

Let us consider in addition to F : C → Y and a closed convex cone P � Y with
int P �= /0, another mapping G : C → Z, with Z being another real locally convex
topological vector space and a closed convex cone Q� Z.

Corollary 2.5 ([33]). Assume that cone((F×G)(C)+ (P×Q)) is convex and

int(cone((F ×G)(C)+ (P×Q))) = int(cone+((F ×G)(C)+ (P×Q))) �= /0.

If the following system is inconsistent:

x ∈C, F(x) ∈ −int P, G(x) ∈ −Q,

then there exists (p∗,q∗) ∈ (P∗ ×Q∗)\ {(0,0)}such that

〈p∗,F(x)〉+ 〈q∗,G(x)〉 ≥ 0 ∀ x ∈C.

The converse assertion is true if p∗ �= 0.
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Proof. If the above system has no solution, then

(0,0) �∈ int(cone+((F ×G)(C)+ (P×Q))).

Then, Theorem 2.2 applies. ��
A standard constraint qualification implying p∗ �= 0 is cone(G(C) + Q) = Z.

When int Q �= /0 the latter is implied by the condition: G(x0) ∈ −int Q for some
x0 ∈C.

In view of previous results, the following notion arise in a natural way. It seems
to be the most general among the relaxed notions of convexity that were used in
alternative theorems.

Definition 2.3. Let P ⊆ Y be a closed convex cone with nonempty interior. A set
A⊆ Y is called nearly subconvexlike if cone(A + P) is convex.

The previous notion was introduced originally in [42] when A is the image of
set-valued mappings, and further developed in [32].

Proposition 2.2(a) provides a characterization of near subconvexlikeness already
appeared in [32]. When int P �= /0, several necessary and sufficient conditions for
having near subconvexlikeness appear in [10, Proposition 1.76] and [14, Proposition
3.5]. In particular, the presubconvexlikeness which is a transcription of an analogous
definition for vector-valued functions given in [45], is nothing else that nearly
subconvexlikeness, see Proposition 2.6 below. We also know that (Proposition
2.1(k))

cone(A + P) is convex⇐⇒ cone+(int(A + P)) is convex.

However, if int P = /0 but int(A + P) �= /0, one can show that there is not any
relationship between the convexity of cone+(int(A + P)) and the convexity of
cone(A + P), see Figs. 2.2 and 2.3.

Another interesting class of mappings arising in deriving alternative theorems is
the following. Given a convex set C ⊆ X , with X being a locally convex topological
vector space, a mapping F : C → Y is called ∗-quasiconvex [22] if 〈x∗,F(·)〉 is
quasiconvex for all x∗ ∈ P∗. It is called naturally-P-quasiconvex [38] if for all x,y ∈
C, F([x,y]) ⊆ [F(x),F(y)]−P. Both classes coincide as shows in [14, Proposition
3.9], [15, Theorem 2.3]. It is still valid if P has empty interior.

A+P

•

•
P0

cone+(int(A+P)) is convex
int(cone+(A+P)) is not convex

cone(A+P) is not convex

A

Fig. 2.2 cone+(int(A+P)) convex �⇒ cone(A+P) convex
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A+P

P0
•

A

cone+ (int (A+P)) is not convex

int (cone+ (A+P)) is convex

cone (A+P) is convex

A+P is not convex

Fig. 2.3 cone(A+P) convex �⇒ cone+(int(A+P)) convex

In [22] it is proven that a Gordan-type alternative theorem holds for A = F(C)
under the ∗-quasiconvexity of F and the assumption

∀p∗ ∈ P∗, the restriction of 〈p∗,F(·)〉 on any
line segment of C is lower semicontinuous.

(2.11)

We will see the naturally P-quasiconvexity of F along with (2.11) imply
the convexity of F(C) + P; in particular, F is nearly subconvexlike, and so the
alternative theorems of [22] and [38] are consequences from Theorem 2.2.

Proposition 2.5 ([14]). Let /0 �= C ⊆ X be any convex set, /0 �= P � Y be a closed
convex cone and F : C → Y be naturally-P-quasiconvex and satisfying (2.11). Then

∀ x,y ∈C, [F(x),F(y)]⊆ F([x,y])+ P. (2.12)

Consequently, F(C)+ P is convex.

Next result supplements [10, Proposition 1.76] and [14, Proposition 3.5].

Proposition 2.6. Let /0 �= A ⊆ Y, P ⊆ Y be a convex with int P �= /0. The following
assertions are equivalent.

(a) A is nearly subconvexlike
(b) cone+(int(A + P)) is convex
(c) cone(A)+ int P is convex
(d) ∃ u ∈ int P, ∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∀ ε > 0, ∃ ρ > 0 such that

εu +αx1 +(1−α)x2 ∈ ρA + P (2.13)

(e) ∃ u ∈ Y, ∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∀ ε > 0, ∃ ρ > 0 such that (2.13) holds
(f) ∀ u ∈ int P, ∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∃ ρ > 0 such that

u +αx1 +(1−α)x2 ∈ ρA + P

(g) ∀ u ∈ int P, ∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∃ ρ > 0 such that

u +αx1 +(1−α)x2 ∈ ρA + int P

(h) ∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∃ u ∈ int P, ∀ ε > 0, ∃ ρ > 0 such that (2.13) holds
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Proof. From Proposition 2.1 we get the equivalences among (a), (b) and (c). The
equivalences (a)⇔ (d)⇔ (e) are proved in [14, Proposition 3.5], whereas (c) ⇔ (g)
is proved in [10, Proposition 1.76]. The remaining implications (g) ⇒ (f) ⇒ (d) ⇒
(h) ⇒ (g) are straightforward. ��
Remark 2.5. Assertion (d) refers to the notion of generalized subconvexlikeness
introduced in [41], see also [43]; whereas (e) corresponds to the notion of presub-
convexlikeness which is a transcription of an analogous definition for vector-valued
functions given in [45].

Proposition 2.5 shows that any naturally-P-quasiconvex function satisfying
(2.11) is nearly-subconvexilke. One can give some examples showing the converse
is not true in general, see [14].

2.4 A Bidimensional Optimal Alternative Theorem
and a Characterization of Two-Dimensionality

The bidimensional setting deserves a special treatment since, as we will see, the
convexity of cone(A + P) is not only sufficient (see Theorem 2.3) but also a
necessary condition to have a Gordan-type alternative theorem. In such a case,
we refer it as an optimal alternative theorem, valid for convex cones with possibly
empty interior under a regularity assumption. This is expressed in the next theorem.

Theorem 2.4. Let P⊆ R
2 be a convex cone, A⊆R2 such that int(cone+(A+P)) �=

/0, and
int(cone(A + P)) = int(cone+(A + P)). (2.14)

The following assertions are equivalent:

(a) 0 �∈ int(cone+(A + P)) and cone(A + P) is convex.
(b) 0 �∈ int(cone+(A + P)) and cone+(A + P) is convex, provided 0 ∈ A + P.
(c) ∃ p∗ ∈ P∗ \ {0} such that 〈p∗,a〉 ≥ 0 ∀ a ∈ A.

Notice that when int P �= /0 condition (2.14) is superfluous.

Proof. (a) ⇒ (c): It follows from Theorem 2.3; (b) =⇒ (a) is evident.

(c) ⇒ (a), (c) ⇒ (b): (We do not need (2.14)) The first part of (a) is a consequence
of Theorem 2.2 (b). For the second part, we re-write the proof of [14, Theorem
4.1] with obvious changes. Certainly, 〈p∗,a〉 ≥ 0 for all a ∈ cone(A + P). Choose
u ∈ P\ {0}. Let y,z ∈ A. Then obviously

cone({y})+ cone({u}) = {λy + μu : λ ,μ ≥ 0}
is a closed convex cone containing y and u and contained in cone(A + P) (if
0 ∈ A + P, it is contained in cone+(A + P)). The same is true for the cone
cone({z}) + cone({u}). The two cones have the line cone({u}) in common
and their union is contained in cone(A + P), thus it is contained in the
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halfspace
{

x ∈R2 : 〈p∗,x〉 ≥ 0
}

. Hence, the set B
.= (cone({y})+ cone({u}))∪

(cone({z})+ cone({u})) is a convex cone. Since y,z ∈ B we deduce that
[y,z] ⊆ B ⊆ cone(A + P). Thus αA + (1−α)A ⊆ cone(A + P) for all α ∈ ]0,1[,
proving the convexity of cone(A + P) by Corollary 2.1( f ). In case 0 ∈ A + P, we
get αA + (1− α)A ⊆ cone+(A + P), proving the convexity of cone+(A + P) by
Corollary 2.1(a). ��

When int P �= /0 a more precise formulation of the previous theorem may be
obtained.

Theorem 2.5. ([14, Theorem 4.1] Let P ⊆ R
2 be a convex closed cone such that

int P �= /0, and A ⊆ R
2 be any nonempty set satisfying A∩ (−int P) = /0. Then the

following assertions are equivalent:

(a) ∃ p∗ ∈ P∗ \ {0} such that 〈p∗,a〉 ≥ 0 ∀ a ∈ A.
(b) cone(A + P) is convex.
(c) cone(A + int P) is convex.
(d) cone(A)+ P is convex.
(e) cone(A + P) is convex.

Next result has its own importance from a functional analysis point of view.
Indeed, such a result characterizes the two-dimensionality of any space where a
Gordan-type alternative theorem holds.

Theorem 2.6. ([14, Theorem 4.2]) Let Y be a locally convex topological vector
space and P ⊆ Y be a closed, convex cone such that int P �= /0 and int P∗ �= /0. The
following assertions are equivalent:

(a) For all sets A⊆ Y one has

[∃ p∗ ∈ P∗ \ {0}, 〈p∗,a〉 ≥ 0 ∀ a ∈ A] =⇒ cone(A + P) is convex;

(b) For all sets A⊆ Y one has

[∃ p∗ ∈ P∗ \ {0}, 〈p∗,a〉 ≥ 0 ∀ a ∈ A] =⇒ cone(A)+ P is convex;

(c) For all sets A⊆ Y one has

[∃ p∗ ∈ P∗ \ {0}, 〈p∗,a〉 ≥ 0 ∀ a ∈ A] =⇒ cone(A + int P) is convex;

(d) Y is at most two-dimensional.

Remark 2.6. The assumption int P∗ �= /0 (which corresponds to pointedness of
P when Y is finite-dimensional) cannot be removed. Indeed, let P =

{
y ∈ Y :

〈p∗,y〉 ≥ 0
}

where p∗ ∈ Y ∗\{0}. Then P∗ = cone({p∗}), int P∗ = /0. For any
nonempty A ⊆ Y , the set A + P is convex by Corollary 2.2. Thus, (a) in Theorem
2.6 holds no matter the dimension of the space Y is.



46 F. Flores-Bazán et al.

2.5 Applications to Vector Optimization

One of the important issues in optimization concerns the characterization of various
notions of solutions to vector optimization problems through linear scalarization.
This will be done for Benson proper efficiency and weak efficiency in case of
bicriteria problems. For an theoretical treatment of these notions and others solution
concepts, we refer the books [20, 26, 34]. The last subsection will be devoted to
characterize the Fritz–John optimality condition.

In what follows, for a real-valued function h, by argminKh we mean the set of
minima of h on K. Let X be a real vector space, /0 �= K ⊆ X , Y be a real normed
vector space. Given a vector function F : K → Y and a convex cone, possibly with
empty interior, P⊆ Y , we immediately obtain the following result.

Theorem 2.7. Let K ⊆ X, F as above, and P a convex cone. Assume that

int(co(F(K))−F(x)+ P) �= /0.

The following assertions are equivalent:

(a)
x ∈

⋃

p∗∈P∗,p∗�=0

argminK〈p∗,F(·)〉

(b) cone(int(co(F(K))−F(x)+ P)) is pointed
(b’) In case int P �= /0, (b) ⇔ cone(F(K)−F(x)+ int P) is pointed, as observed in

Theorem 2.2

Proof. It follows from Theorem 2.2 applied to A = F(K)−F(x). ��

2.5.1 Characterizing Weakly Efficient Solutions Through
Linear Scalarization of Bicriteria Problems

Here, we assume that int P �= /0. We say that x ∈ K is a weakly efficient point of F
on K, shortly x ∈ EW , if

F(x)−F(x) �∈ −int P, ∀ x ∈ K. (2.15)

Clearly
x ∈ EW ⇔ (F(K)−F(x))∩ (−int P) = /0. (2.16)

⇔ cone(F(K)−F(x)+ P)∩ (−int P) = /0.

In case Y = R
2, we get the following theorem whose proof follows from

Theorem 2.5.
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Theorem 2.8. Let /0 �= K ⊆ X and P be a convex cone having nonempty interior
with Y = R2. Then, the following assertions are equivalent:

(a)
x ∈

⋃

p∗∈P∗,p∗ �=0

argminK〈p∗,F(·)〉.

(b) x ∈ EW and cone+(F(K)−F(x)+ int P) is convex.
(c) x ∈ EW and cone+(F(K)−F(x)+ P) is convex.
(d) x ∈ EW and cone(F(K)−F(x)+ P) is convex.
(e) x ∈ EW and cone(F(K)−F(x))+ P is convex.

2.5.1.1 The Pareto Case

We consider P = R
2
+ and denote R2

++
.= int R2

+. Given a vector mapping
F = ( f1, f2) : K → R

2, we consider the problem of finding

x ∈ K : F(x)−F(x) /∈ −R2
++, ∀x ∈ K. (2.17)

Let x ∈ EW and for i = 1,2, set

S−i (x) .= {x ∈ K : fi(x) < fi(x)}; S+
i (x) .= {x ∈ K : fi(x) > fi(x)};

S=
i (x) .= {x ∈ K : fi(x) = fi(x)}.

Taking into account Theorem 2.8, we write F(K)−F(x)+R2
++ = Ω1 ∪Ω2 ∪Ω3.

It follows that

cone+(F(K)−F(x)+R2
++) = cone+(Ω1)∪ cone+(Ω2)∪ cone+(Ω3),

where
Ω1

.=
⋃

x∈S−1 (x)

[( f1(x)− f1(x), f2(x)− f2(x))+R2
++];

Ω2
.=

⋃

x∈S=
1 (x)

[( f1(x)− f1(x), f2(x)− f2(x))+R2
++];

Ω3
.=

⋃

x∈S+
1 (x)

[( f1(x)− f1(x), f2(x)− f2(x))+R2
++].

Whenever S+
1 (x)∩S−2 (x) �= /0 and S−1 (x)∩S+

2 (x) �= /0, we set

α .= inf
x∈S+

1 (x)∩S−2 (x)

f2(x)− f2(x)
f1(x)− f1(x)

, β .= sup
x∈S−1 (x)∩S+

2 (x)

f2(x)− f2(x)
f1(x)− f1(x)

. (2.18)

Clearly, −∞≤ α < 0 and −∞< β ≤ 0.
Figures 2.4–2.6 can be obtained directly
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cone+(Ω1) =
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Fig. 2.4 To visualize Theorem 2.9

cone+(Ω2) =

if S1
=(x̄)∩S2

−(x̄) = ;0/
0 u

v

if S1
=(x̄)∩S2

−(x̄) = .0/
u

v

0

Fig. 2.5 To visualize Theorem 2.9

Notice that

S−1 (x)∩S+
2 (x) = /0⇐⇒ S−1 (x)⊆ S=

2 (x); S+
1 (x)∩S−2 (x) = /0⇐⇒ S−2 (x)⊆ S=

1 (x).

The following theorem is immediate from the expressions of cone+(Ωi),
i = 1,2,3.

Theorem 2.9. Assume that x∈ EW . Then, cone+(F(K)−F(x)+R2
++) is convex if,

and only if any of the following assertions hold:

(a) S−1 (x) = /0
(b) S−1 (x) �= /0, S−1 (x)∩S=

2 (x) = /0, β < 0, S=
1 (x)∩S−2 (x) = /0 and, either

(b1) S+
1 (x) = /0, or

(b2) S+
1 (x) �= /0 and S+

1 (x)∩S−2 (x) = /0, or
(b3) S+

1 (x)∩S−2 (x) �= /0, α >−∞, β ≤ α
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cone+(Ω3) =
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+(x̄) = ;0/

if S1
+(x̄) = dna0/ S1

+(x̄)∩S2
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Fig. 2.6 To visualize Theorem 2.9

(c) S−1 (x) �= /0, S−1 (x)∩S=
2 (x) = /0, β = 0, S=

1 (x)∩S−2 (x) = /0 and, either

(c1) S+
1 (x) = /0, or

(c2) S+
1 (x) �= /0 and S+

1 (x)∩S−2 (x) = /0

(d) S−1 (x)∩S=
2 (x) �= /0, S=

1 (x)∩S−2 (x) = /0 and, either

(d1) S+
1 (x) = /0, or

(d2) S+
1 (x) �= /0 and S+

1 (x)∩S−2 (x) = /0.

Proof. We omit the long but easy proof once we get Figs. 2.4–2.6. ��
We also notice that

[S+
1 (x) = /0 and S=

1 (x)∩S−2 (x) = /0] =⇒ S−2 (x) = /0;

and
[S+

1 (x) �= /0 and S+
1 (x)∩S−2 (x) = /0] =⇒ S−2 (x) = /0.

Both implications assert that (b1) (along with (b)), (b2) (along with (b)), (c) and
(d) of the previous theorem imply S−2 (x) = /0. On the other hand,

S−i (x) = /0⇐⇒ x ∈ argminK fi.
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Thus, next corollary, which follows from (b3) (along with (b)) of Theorem 2.9,
excludes situations the other situations of such a theorem.

Corollary 2.6. Let us consider problem (2.17) and assume that x �∈ argminK fi, i =
1,2. Then,

(a)
x ∈

⋃

(p∗1,p∗2)∈R2
+\{(0,0)}

argminK(p∗1 f1 + p∗2 f2)

if and only if x ∈ EW and (b3) (along with (b)) of Theorem 2.9 is satisfied.
(b) If x ∈ EW and (b3) (along with (b)) holds, then any −α ≤ p∗1 ≤−β satisfies

x ∈ argminK(p∗1 f1 + f2).

2.5.2 Characterizing Properly Efficient Solutions Through
Linear Scalarization of Bicriteria Problems

We say that x ∈ K is (Benson) properly efficient point of F on K ([2]), in short
x ∈ Epr, if

cone(F(K)−F(x)+ P)∩ (−P) = {0}. (2.19)

One can easily check that if Epr is nonempty, then P is pointed.
Setting

P∗i .=
{

p∗ ∈Y ∗, 〈p∗, p〉> 0, ∀ p ∈ P\ {0}
}
,

it can be seen that ⋃

p∗∈P∗i

argminK〈p∗,F(·)〉 ⊆ Epr. (2.20)

Conversely, if x ∈ Epr and cone(F(K)−F(x)+ P) is convex then

x ∈
⋃

p∗∈P∗i

argminK〈p∗,F(·)〉,

provided P is locally compact (use the separation result for convex cones [3,
Proposition 3]).

In case Y =R2, we get the following theorem whose proof follows from Theorem
2.4 and the remarks above.

Theorem 2.10. Let K ⊆ X be a convex set and F as above with P ⊆ R2 being a
pointed, closed, convex cone. Assume that

int(F(K)−F(x)+ P) �= /0.
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Then, the following assertions are equivalent:

(a)
x ∈

⋃
p∗∈int P∗

argminK〈p∗,F(·)〉.

(b) x ∈ Epr and cone(F(K)−F(x)+ P) is convex.
(c) x ∈ Epr and cone(F(K)−F(x)+ P) is convex.

2.5.2.1 The Pareto Case

We now particularize P = R2
+. Given a vector mapping F = ( f1, f2) : K → R2, we

consider the problem of finding

x ∈ K : cone(F(K)−F(x)+R2
+)∩ (−R2

+) = {(0,0)}, (2.21)

Let x ∈ Epr and for i = 1,2, consider the sets S−i (x), S+
i (x) and S=

i (x) as defined in
the previous subsection.

By (k) of Proposition 2.1, the convexity of cone(F(K)−F(x)+R2
+) is equivalent

to the convexity of cone+(F(K)−F(x)+R2
++). Thus, by writing F(K)−F(x)+

R2
++ = Ω1 ∪Ω2 ∪Ω3, we can use the same expressions for cone+(Ωi), i = 1,2,3

computed in the preceding section. The fact that x ∈ Epr allows us to conclude that
α,β (as defined in (2.18)) satisfy −∞< α < 0, −∞< β < 0, and

S−1 (x)⊆ S+
2 (x); S−2 (x)⊆ S+

1 (x).

Thus, the preceding expressions for cone(Ωi), i = 1,2,3, reduces to

Theorem 2.11. Assume that x ∈ Epr. Then, cone(F(C)−F(x)+R2
+) is convex if,

and only if either (a) or (b) holds. Here,

(a) S−1 (x) �= /0 and, either S+
1 (x) = /0 or [S−2 (x) = /0, S+

1 (x) �= /0] or [S−2 (x) �= /0,
β ≤ α]

(b) S−1 (x) = /0

Proof. The proof is easy once we get Figs. 2.7–2.9. ��
Corollary 2.7. Let us consider problem (2.21). Then,

x ∈
⋃

(p∗1,p∗2)∈R2
++

argminK(p∗1 f1 + p∗2 f2)

if and only if either (a) or (b) holds, where

(a) x ∈ Epr, S−1 (x) �= /0 and, either S+
1 (x) = /0 or [S−2 (x) = /0, S+

1 (x) �= /0] or [S−2 (x) �=
/0, β ≤ α]

(b) x ∈ Epr and S−1 (x) = /0
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cone+(Ω1) =
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Corollary 2.8. Let us consider problem (2.21). Then,

(a) If x ∈ Epr,S
−
1 (x) �= /0 and, either S+

1 (x) = /0 or [ S−2 (x) = /0, S+
1 (x) �= /0 ], then

any p∗1 such that 0 < p∗1 ≤−β satisfies

x ∈ argminK(p∗1 f1 + f2).

(b) If x ∈ Epr, S−1 (x) �= /0 and [ S−2 (x) �= /0, β ≤ α ], then any p∗1 such that −α ≤
p∗1 ≤−β satisfies
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x ∈ argminK(p∗1 f1 + f2).

(c) If x ∈ Epr, S−1 (x) = /0 and S−2 (x) �= /0, then any p∗1 such that −α ≤ p∗1 satisfies

x ∈ argminK(p∗1 f1 + f2).

(d) If x ∈ Epr, S−1 (x) = /0 and S−2 (x) = /0, then any (p∗1, p∗2) ∈ R2
++ satisfies

x ∈ argminK(p∗1 f1 + p∗2 f2).

2.5.3 Characterizing the Fritz–John Type Optimality Conditions

For simplicity we now consider X to be a real normed vector space. It is well known
that if x is a local minimum point for the real-valued differentiable function F on K,
then

∇F(x) ∈ (T (K;x))∗. (2.22)

Here, K is a (not necessarily convex) set, T (C;x) denotes the contingent cone of C
at x ∈C, defined as the set of vectors v such that there exist tk ↓ 0, vk ∈ X , vk → v
such that x + tkvk ∈C for all k; recall that C∗ denotes the (positive) polar cone of C.

It is now our purpose to extend the previous optimality condition to the vector
case without smoothness assumptions. More precisely, let K ⊆ X be closed and
consider a mapping F : K → Rm. A vector x ∈ K is a local weakly efficient solution
for F on K, if there exists an open neighborhood V of x such that

(F(K∩V )−F(x))∩ (−int P) = /0. (2.23)

Following [37], we say that a function h : X → R admits a Hadamard directional
derivative at x ∈ X in the direction v if

lim
(t,u)→(0+,v)

h(x+ tu)−h(x)
t

∈ R.

In this case, we denote such a limit by dh(x;v).
If F = ( f1, f2, . . . , fm), we set

F (v) .= ((d f1(x;v), . . . ,d fm(x;v)), F (T (K;x)) .= {F (v) ∈ Rn : v ∈ T (K;x)}.

It is known that if d fi(x; ·), i = 1, . . . ,m, do exist in T (K;x), and x ∈ K is a local
weakly efficient solution for F on K, i.e., x satisfies (2.23), then (see for instance
[37, Lemma 3.2])
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(d f1(x;v), . . . ,d fn(x;v)) ∈ Rn \−int P, ∀ v ∈ T (K;x), (2.24)

or equivalently,
F (T (K;x))∩ (−int P) = /0.

The following theorems provide complete characterizations for the validity of (a)
as a necessary condition for x to be a local weakly efficient solution for F on K.

Theorem 2.12. Let K ⊆ X be a closed set, P ⊆ Rn be a closed convex cone such
that int P �= /0 and P �= Rn. Assume that x ∈ K and d fi(x; ·), i = 1, . . . ,m, do exist in
T (K;x). Then, the following assertions are equivalent:

(a) ∃ (α∗1 , . . . ,α∗m) ∈ P∗ \ {0}, α∗1 d f1(x,v)+ . . .+α∗md fn(x,v)≥ 0 ∀ v ∈ T (K;x).
(b) cone(F (T (K;x))+ int P) is pointed.

Proof. We obtain the desired result from Corollary 2.2. ��
When Y = R2, more precise formulations can be obtained from Theorem 2.5.

Theorem 2.13. Let K ⊆ X be a closed set, P ⊆ R2 be a closed convex cone such
that int P �= /0. Assume that x ∈ K and d fi(x; ·), i = 1,2, do exist in T (K;x). Then,
the following assertions are equivalent:

(a) ∃ (α∗1 ,α∗2 ) ∈ P∗ \ {(0,0)}, α∗1 d f1(x,v)+α∗2 d f2(x,v)≥ 0 ∀ v ∈ T (K;x).
(b) F (T (K;x))∩ (−int P) = /0 and cone(F (T (K;x))+ int P) is convex.

Proof. We apply Corollary 2.5 to obtain the desired result. ��
We can go further when differentiability conditions are imposed.

Proposition 2.7. Assume that P = R
m
+ and fi : Rn → R be differentiable for i =

1, . . . ,m, and x ∈Rn. Then, for any set A⊆ Rn,

F (A)∩ (−int Rm
+) = /0 ⇔ max

1≤i≤m
〈∇ fi(x),v〉 ≥ 0 ∀ v ∈ A,

and the following statements are equivalent:

(a) cone(F (T (K;x))+ int Rn
+) is pointed;

(b) F (co(T (K;x)))∩ (−int Rm
+) = /0.

(c) max
1≤i≤m

〈∇ fi(x),v〉 ≥ 0 ∀ v ∈ co(T (K;x)).

(d) co({∇ fi(x) : i = 1, . . . ,m})∩ (T (K;x))∗ �= /0.

Proof. The first part is a consequence of the linearity of F :

F (v) = (〈∇ f1(x),v〉, . . . ,〈∇ fm(x),v〉).

We already know that

cone(F (T (K;x))+ int Rm
+)) is pointed ⇔ co(F (T (K;x))∩ (−int Rm

+) = /0.
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It is not difficult to prove that co(F (T (K;x))) = F (co(T (K;x))) and

F (co(T (K;x)))∩ (−int Rm
+) = /0 ⇔ F (co(T (K;x)))∩ (−int Rm

+) = /0

⇔ F (co(T (K;x)))∩ (−int Rm
+) = /0.

This and the fact that (a) of Theorem 2.12 amounts to writing

co({∇ fi(x) : i = 1, . . . ,m})∩ (T (K;x))∗ �= /0,

we get all the remaining equivalences. ��
We apply the previous proposition to get the following result.

Theorem 2.14. Let K ⊆ X be a closed set, Assume that x ∈ K and fi : Rn → R2

are differentiable functions for i = 1,2, . . . ,m. Then, the following assertions are
equivalent:

(a) F (T (K;x)∩ (−intR2
+) = /0 and cone(F (T (K;x))+R2

+) is convex.
(b) co({∇ fi(x) : i = 1,2})∩ (T(K;x))∗ �= /0.

Before going on some remarks are in order. Certainly, if T (K;x) is convex, then
(d) is a necessary optimality condition for x to be a local weakly efficient solution
(this fact was point out earlier in [39], see also [9]). Thus, (d) could be considered a
natural extension of (2.22). However, next example shows that (d) is not a necessary
optimality condition if T (K;x) is not convex. The second example shows an instance
where (d) holds without the convexity of T (K;x).

Example 2.2. Take the (modified) example from [1], see also [9, 40]:

K = {(x1,x2) : (x1 + 2x2)(2x1 + x2)≤ 0}, fi(x1,x2) = xi, x = (0,0) ∈ EW .

In this case T (K;x) = K, which is nonconvex, (T (K;x))∗ = {(0,0)}, and therefore
(d) does not hold since co({∇ f1(x),∇ f2(x)}) = co({(1,0),(0,1)}). Since F (v) =
v, the set

cone(F (T (K;x))+R2
+) =

⋃
t≥0

t(T (K;x)+R2
+).

is nonconvex.

Example 2.3. Consider the same mapping F as before and

K = {(x1,x2) ∈ R2
+ : x1x2 = 0}, x = (0,0) ∈ EW .

Then, (d) holds since in this case, T (K;x) = K, (T (K;x))∗ = R2
+. Here, the set

cone(F (T (K;x))+R2
+) =

⋃
t≥0

t(T (K;x)+R2
+)

is convex.
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2.6 More About Proper Efficiency

We now present some recent developments about proper efficiency. As before,
throughout this section we consider a nonempty set A � Y , with Y being a locally
convex topological vector space. In addition, we are given a convex cone P�Y . We
say that a ∈ A is a

• Benson proper efficient point if cone(A− a + P) ∩ (−P) = {0}. This is the
definition given in Benson [2]. and the set is denoted by Epr(A,P).

• Borwein proper efficient point if cone(A − a) ∩ (−P) = {0}. This notion is
introduced in [4] when P is pointed.

Evidently every Benson proper efficient point is also a Borwein efficient.
Proper efficiency is introduced in order to avoid efficient points satisfying some

abnormal properties, in particular, efficient points for which at least one objective
function exists for which the marginal trade-off between it and each of the other
objective functions is infinitely large, [17], or if one prefers efficient points that
allow more satisfactory characterization in terms of linear/sublinear scalarization,
for instance. The starting point was the pioneer work by Kuhn and Tucker in
multiojective programming problems [24].

Benson and Borwein efficiency coincide if P has a compact base, see [11];
whereas in general it is not true, as shows Example 4.3 in [11]. We say that B is
a base for P if B is convex, 0 �∈ B and P = cone(B). Obviously, the existence of a
base for P implies its pointedness; likewise if Epr(A,P) �= /0.

When the corresponding scalar function which is involved in the characterization
of proper efficiency, is a continuous seminorm, we refer to [11]. This result is based
in the following theorem

Theorem 2.15. ([11, Theorem 2.3]) Let P and Q be cones in Y satisfying P∩Q =
{0}, and either (a) P be a weak-closed and Q have a weak-compact base or (b) P
be closed and Q have a compact base. Then, there is a pointed convex cone C such
that Q\ {0}⊆ int C and C∩P = {0}.

Now, we present some results on interior of a polar cone, and afterwards, dual
characterizations and scalarizations for Benson proper efficiency. To that purpose,
we recall that Y ∗ is the topological dual of Y . For any convex cone P⊆Y , the quasi
interior of P∗, is defined as

qi P∗ = P∗i .= {y∗ ∈ Y ∗ : 〈y∗,y〉> 0 ∀ p ∈ P\ {0}}.
A convex cone P with int P �= /0 is said to be a solid cone. Moreover, a convex

cone P has a base if and only if P∗i �= /0. For a base B of P, we define Bst to be the set

Bst .= {y∗ ∈ Y ∗ : inf
b∈B
〈y∗,b〉> 0}.

For any locally convex topological vector space Y , we have various ways of
introducing a locally convex topology on the dual Y ∗. If M is any total saturated
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class of bounded subsets of Y [19, 23, 35], the topology of uniform convergence
on the sets M of M is a locally convex topology on Y ∗. We denote it by τM .
Obviously {M◦ : M ∈M } is a 0-neighborhood base in (Y ∗,τM ). Particularly, we
denote the topologies on Y ∗ of uniform convergence on bounded subsets, weakly
compact (absolutely) convex subsets, and finite subsets of Y by β (Y ∗,Y ), τ(Y ∗,Y ),
and σ(Y ∗,Y ), which are called the strong topology, Mackey topology, and weak
topology, respectively.

Lemma 2.2. ([29, Lemma 2.1]) Let P⊆Y be a convex cone. If there exist a locally
convex topology T on Y ∗ such that intT P∗ �= /0, where intT P∗ denotes the interior
of P∗ in (Y ∗,T ), then intT P∗ ⊆ P∗i.

Theorem 2.16. ([29, Theorem 2.1]) Let P⊆Y be a convex cone. Then, intτM P∗ �=
/0 if and only if P has a base B ∈M . In this case, intτM P∗ = Bst .

Similar expressions hold for τ(Y ∗,Y ) and β (Y ∗,y), for details, see [21, Theorem
3.8.6], [28, Theorem 2.3], and [28, Theorem 2.2].

We now give the following general dual characterization and scalarization for
Benson proper efficiency.

Theorem 2.17. ([29, Theorem 3.1.]) Let P⊆Y be a closed convex cone, a∈A⊆Y .
Then the following statements are equivalent:

(a) a ∈ Epr(co A,P).
(b) (P∗−P∗∩(A−a)∗) is dense in (Y ∗,T ) where T is any locally convex topology

on Y ∗ which is compatible with the dual pair (Y ∗,Y ) (i.e., (Y ∗,T )∗ = Y ).
(c) for any weakly compact convex set K ⊆ P and 0 �∈ K, there exists p∗ ∈ P∗ ∩Kst

such that 〈p∗,a〉 ≥ 〈p∗,a〉 ∀ a ∈ A.
(d) for any p ∈ P \ {0} there exists p∗ ∈ P∗ such that 〈p∗, p〉 > 0 and 〈p∗,a〉 ≥

〈p∗,a〉 ∀ a ∈ A.

Theorem 2.18. ([29, Theorem 3.2]) Let P ⊆ Y be a closed convex cone and a ∈
A ⊆ Y . If there exists a locally convex topology T on Y ∗ such that (Y ∗,T )∗ = Y
and intT P∗ �= /0 then the following statements are equivalent:

(a) a ∈ Epr(co A,P).
(b) There exists p∗ ∈ intT P∗ such that 〈p∗,a〉 ≥ 〈p∗,a〉, ∀ a ∈ A.
(c) There exists p∗ ∈ P∗i such that 〈p∗,a〉 ≥ 〈p∗,a〉, ∀ a ∈ A.

Corollary 2.9. ([29, Corollary 3.1]) Let C ⊆ Y be a closed convex cone with
a weakly compact base B and a ∈ A ⊆ Y . Then the following statements are
equivalent:

(a) a ∈ Epr(co A,P)
(b) there exists p∗ ∈ Bst such that 〈p∗,a〉 ≥ 〈p∗,a〉 ∀ a ∈ A
(c) there exists p∗ ∈C∗i such that 〈p∗,a〉 ≥ 〈p∗,a〉 ∀ a ∈ A

A recent notion of proper efficiency was introduced in [27]. It is equivalent
to strict efficiency, strong efficiency and to super efficiency as shown in [27,
Proposition 2.2], provided P is a convex cone with a (convex) bounded base.
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Chapter 3
Duality in Vector Optimization with Infimum
and Supremum

Andreas Löhne

3.1 Introduction

We consider the vector optimization problem

minimize f : X → Y with respect to ≤ over S ⊂ X . (VOP)

The extended partially ordered vector space
(
Y ,≤)

is regarded to be a subset of
the complete lattice (I ,�) which is defined as follows: The convex and pointed
ordering cone C that induces the partial ordering ≤ on Y is assumed to satisfy /0 �=
intC �= Y . The infimal set of a set A⊂ Y is defined by

InfA := wMincl(A +C),

where some additional considerations with respect to the elements±∞will be added
later. A set A satisfying A = InfA is called self-infimal. The family of all self-infimal
sets is denoted by I . The space I is equipped with a partial ordering defined by

A1 � A2 :⇐⇒ A1 + intC ⊇ A2 + intC

whenever ±∞ do not occur. If a vector y ∈ Y is identified with its infimal set
Inf {y}∈I and if the ordering cone C is supposed to be closed, the partially ordered
set (I ,�) is an extension of the partially ordered set (Y,≤). If Y is supplemented
by ±∞, and I is defined correspondingly, (I ,�) is a complete lattice, that is,
infimum and supremum of every subset exist. We assign to f an I -valued objective
function

f : X →I , f (x) := Inf { f (x)}
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and consider the related problem

minimize f : X →I with respect to � over S⊆ X . (V )

There is a close connection between the values of f and f ; that is, for all x1,x2 ∈ X
we have

f (x1)≤ f (x2) ⇐⇒ f (x1) � f (x2).

Since the objective space I in Problem (V ) is a complete lattice, the latter
correspondence allows us to develop the theory of vector optimization based on
infimum and supremum.

We consider exemplary Lagrange duality and a finite dimensional variant of
conjugate duality in order to demonstrate how the complete lattice (I ,�) can
be used to transfer scalar duality results into a vectorial framework. Finally, we
compare the results with other duality schemes from the literature and point out
some advantages.

We present here a selection of concepts and results from [17] in order to make
the reader familiar with some important ideas of vector optimization with infimum
and supremum. For a comprehensive exposition the reader is referred to [17]. This
book deals additionally with:

• Solution concepts based on the attainment of infimum
• Continuity and semicontinuity notions for I -valued functions
• Existence of solutions
• Saddle point concepts based on infimum and supremum
• An infinite dimensional variant of conjugate duality
• Type II duality and existence of solutions to the dual problem
• Existence of saddle points
• Solution concepts and duality for linear problems
• Algorithms for linear problems

The mentioned concepts and results have been established over the last years, see
e.g. [5–10, 15–18].

There are many other approaches to duality in vector optimization in the literature
[3,11,19,24,25,27,28]. In the recent book by Boţ et al. [3], an overview and a general
classification are given. The authors distinguish between duality via scalarization,
Wolfe and Mond-Weir duality concepts and duality based on vector conjugacy. The
results presented here are related in several aspects to the first and third class of
duality schemes in [3]. The philosophy is, however, a completely different one.
A consequent usage of the complete lattice I leads to concepts and results that
are very similar to their scalar counterparts. Among all other approaches to duality
in vector optimization the one by Tanino [27] seems to be the closest. The paper
by Tanino [27] is partially based on several earlier works [12, 13, 19, 24, 26]. The
conjugate in Definition 3.12 can be seen as a combination of the k-conjugate
introduced in [28] and the conjugate considered in [27], see also Chap. 7 in [3]. One
can sometimes observe similarities between the mentioned results from the literature
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and the results of this chapter. The difference is, however, that the infimality concept
introduced by Nieuwenhuis [19] and used by many authors was not considered to
be an infimum in a complete lattice. Set-valued optimization problems based on
an ordering relation � on the power set have been investigated, for instance, by
Kuroiwa [14], but the properties of the complete lattice were not used.

3.2 A Complete Lattice for Vector Optimization

We start this section with some basic definitions followed by three subsections:
First we introduce infimal sets and provide several fundamental results concerning
infimal sets. Section 3.2.2 deals with the space I of self-infimal sets, which is
shown to be a complete lattice. The third subsection is devoted to scalarization
methods for I -valued problems, which will be used to derive duality results from
their scalar counterparts.

Definition 3.1. Let (Z,≤) be a partially ordered set and let A ⊆ Z. An element
l ∈ Z is called lower bound of A if l ≤ z for all z ∈ A. An upper bound is defined
analogously.

Next we define an infimum and a supremum for a subset A of a partially ordered
set (Z,≤).

Definition 3.2. Let (Z,≤) be a partially ordered set and let A⊆ Z. An element k∈ Z
is called a greatest lower bound or infimum of A ⊆ Z if k is a lower bound of A and
for every other lower bound l of A we have l ≤ k. We use the notation k = infA for
the infimum of A, if it exists.

The least upper bound or supremum is defined analogously and is denoted by
supA. The lower (upper) bound of Z, if it exists, is called least (greatest) element.

Definition 3.3. A partially ordered set (Z,≤) is called a complete lattice, if the
infimum and supremum exist for every subset A⊆ Z.

Note that a one-sided condition is already sufficient to characterize a complete
lattice. The existence of the infimum for all subsets implies the existence the
supremum.

Example 3.1. The extended real numbers R := R∪{±∞} equipped with the usual
ordering≤ provide a complete lattice.

The next example shows that the infimum in a partially ordered vector space, if it
exists, is not related to the usual solution concepts of vector optimization. In typical
problems there is no feasible point where this infimum is attained.

Example 3.2. Let ≤ be the componentwise ordering relation in Rq. If the ordering
relation ≤ is extended to Z := Rq ∪{±∞} by setting −∞ ≤ z ≤ +∞ for all z ∈ Z,
(Z,≤) provides a complete lattice. The infimum of a subset A ⊆ Z is
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infA =

⎧
⎪⎪⎨
⎪⎪⎩

(
inf
z∈A

z1, . . . , inf
z∈A

zq

)�
if ∃b ∈Rq,∀z ∈ A : b≤ z

+∞ if A = /0
−∞ otherwise.

The following example shows that the infimum in a partially ordered vector space
does not need to exist.

Example 3.3. Let Z = R3 and let C be the polyhedral (convex) cone which is
spanned by the vectors (0,0,1)�, (0,1,1)�, (1,0,1)�, (1,1,1)�. Then (Z,≤C)
is not a complete lattice. For instance, there is no supremum of the finite set
{(0,0,0)�,(1,0,0)�}.

Example 3.4. Let X be a nonempty set and let P(X) = 2X be the power set of X .
(P(X),⊇) provides a complete lattice. The infimum and supremum of a nonempty
subset A ⊆P(X) are given as

infA =
⋃

A∈A

A supA =
⋂

A∈A

A.

Note that X ∈P(X) is the least element and /0 ∈P(X) is the greatest element in
(P(X),⊇). If A is empty, we set supA = X and infA = /0.

Example 3.5. Let X be a topological space and let F (X) be the family of all closed
subsets of X . (F (X),⊇) provides a complete lattice. The infimum and supremum
of a nonempty subset A ⊆F (X) are given as

infA = cl
⋃

A∈A

A supA =
⋂

A∈A

A.

If A is empty, we set again supA = X and infA = /0.

Let (Y,≤) be a partially ordered vector space, that is, Y is partially ordered by a
pointed (i.e. C∩ (−C) = {0}) convex cone C:

y1 ≤ y2 :⇐⇒ y2− y1 ∈C.

An extended partially ordered vector space (Y ,≤), where Y :=Y ∪{±∞}, is defined
by the additional rules

∀y ∈ Y : −∞≤ y≤+∞,

0 · (+∞) = 0, 0 · (−∞) = 0,

∀α > 0 : α · (+∞) = +∞,

∀α > 0 : α · (−∞) =−∞,

∀y ∈ Y : y +(+∞) = +∞+ y = +∞,

∀y ∈ Y ∪{−∞} : y +(−∞) =−∞+ y =−∞.
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In particular, we have−∞+(+∞)= +∞. This type of addition is called inf-addition.
It is the preferable choice for minimization problems, see [2, 17, 23] for further
details.

If Y is additionally a topological vector space, we speak about an extended
partially ordered topological vector space (Y ,≤). For our concerns it is sufficient
the consider a topology on Y .

Note that the ordering coneC of a partially ordered vector space is always pointed
and convex. Therefore, we do not mention these properties in the following.

3.2.1 Upper Closed and Infimal Sets

The infimal set of a subset A of an extended partially ordered topological vector
space Y is a generalization of the infimum in R. But it is not an infimum in Y . This
already follows from the fact that an infimum in Y is an element and not a subset of
Y . Nevertheless, infimal sets play a crucial role in the following. They will be used to
construct an appropriate complete lattice that allows us to treat vector optimization
problems based on the notions infimum and supremum. Infimal and supremal sets
are also used to express the infimum and supremum in this complete lattice. Upper
closed sets are helpful to define infimal sets. They are closely related to infimal sets.

Definition 3.4. Let Y be an extended partially ordered topological vector space and
let the ordering cone C of Y satisfy /0 �= intC �= Y . The upper closure of a subset
A⊂ Y (with respect to C) is defined by

Cl+A :=

⎧
⎨
⎩

Y if −∞ ∈ A
/0 if A = {+∞}
{y ∈ Y | {y}+ intC ⊆ A\ {+∞}+ intC} otherwise.

We continue with a characterization of upper closed sets.

Proposition 3.1. Let Y be an extended partially ordered topological vector space
with an ordering cone C such that /0 �= intC �= Y and let A⊆ Y . Then

Cl+A =

⎧
⎨
⎩

Y if −∞ ∈ A
/0 if A = {+∞}
cl
(
A\ {+∞}+C

)
otherwise.

Proof. Without loss of generality we can assume that +∞ �∈ A. It remains to show
that

B1 := {y ∈ Y | {y}+ intC ⊆ A + intC}= cl
(
A +C

)
=: B2.

(i) Let y∈ B1 and let c ∈ intC. We have y+ 1
n c ∈ A+ intC for all n ∈N. Taking the

limit for n→ ∞, we obtain y ∈ B2.
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(ii) Let y ∈ B2. We obtain

{y}+ intC ⊆ cl
(
A +C

)
+ intC = A +C+ intC = A + intC,

and hence y ∈ B1. ��
The concept of weakly minimal vectors is well-known in vector optimization.

We will use it to define infimal sets and to define our complete lattice.

Definition 3.5. Let Y be an extended partially ordered topological vector space
with an ordering cone C such that /0 �= intC �= Y . The set of weakly minimal points
of a subset A⊆ Y (with respect to C) is defined by

wMinA := {y ∈ A| ({y}− intC)∩A = /0} .

The next result will be used to show the existence of weakly minimal points.

Theorem 3.1 ([17]). Let A and B be subsets of a topological vector space Y . Let B
be convex and assume that clA∩B �= /0. Then

clA∩B⊆ intA =⇒ A⊇ B.

Proof. Let a ∈ clA ∩ B and assume there is some b ∈ B \ A. We consider the
expression

λ := inf{λ ≥ 0| λa +(1−λ )b∈ A}.
There exists a sequence (λn)→ λ such that λna+(1−λn)b ∈ A for all n ∈N. As B
is convex and λ ∈ [0,1], we conclude

λa +(1−λ)b ∈ clA∩B⊆ intA.

In particular, we see that λ > 0. On the other hand, there is a sequence (μn) → λ
such that μna +(1− μn)b �∈ A for all n ∈N. This yields

λa +(1−λ)b �∈ intA.

This is a contradiction. ��
The next theorem shows the existence of weakly minimal elements. It is based

on Theorem 3.1.

Theorem 3.2 ([17]). Let Y be an extended partially ordered topological vector
space, where the ordering cone C satisfies /0 �= intC �= Y. Let A⊆ Y be an arbitrary
set and let B⊆ Y be a convex set. Let Cl+A∩B �= /0 and B\Cl+A �= /0. Then

wMin(Cl+A∩B) �= /0.
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Proof. Assuming that wMin (Cl+A∩B) is empty, we get

∀y ∈ Cl+A∩B, ∃z ∈ Cl+A∩B : y ∈ {z}+ intC.

This implies
Cl+A∩B⊆ (Cl+A∩B)+ intC.

It follows

Cl+A∩B ⊆ (Cl+A∩B)+ intC

⊆ (Cl+A + intC)∩ (B + intC)

⊆ Cl+A + intC

⊆ intCl+A.

Theorem 3.1 yields Cl+A⊇ B, which contradicts the assumption B\Cl+A �= /0. ��
We continue with a further theorem concerning weakly minimal elements.

Theorem 3.3 ([17]). Let Y be an extended partially ordered topological vector
space, where the ordering cone C satisfies /0 �= intC �= Y. Let A⊆ Y be an arbitrary
set and let B⊆ Y be an open set. Then

wMin(Cl+A∩B) = (wMinCl+A)∩B.

Proof. In order to prove the inclusion wMin(Cl+A∩B) ⊆ (wMinCl+A)∩B, let
y ∈ wMin(Cl+A∩B). Of course, this implies y ∈ B and y ∈ Cl+A. It remains to
show that ({y}− intC)∩Cl+A = /0. Assuming the contrary, we get some z ∈ Cl+A
such that c := y− z ∈ intC. As B is open, there exists some ε ∈ (0,1) such that w :=
y− εc ∈ B. From z ∈ Cl+A we conclude w ∈ Cl+A + intC ⊆ Cl+A. Thus, we have
w ∈ ({y}− intC)∩ (Cl+A∩B) and hence y �∈ wMin(Cl+A∩B), a contradiction.

The opposite inclusion ⊇ follows immediately from the definition. ��
The following conclusion of Theorem 3.2 will play a crucial role.

Corollary 3.1. Let Y be an extended partially ordered topological vector space,
where the ordering cone C satisfies /0 �= intC �= Y. For every set A⊆Y the following
statements are equivalent:

(a) /0 �= Cl+A �= Y
(b) wMinCl+A �= /0

Proof. (a) ⇒ (b): Follows from Theorem 3.2 for the choice B = Y .

(b) ⇒ (a): Follows from the definition of wMin . ��
We now define a central concept of this exposition, an infimal set for a subset of

the extended space Y .
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Definition 3.6. Let Y be an extended partially ordered topological vector space
with an ordering cone C such that /0 �= intC �= Y . The infimal set of A ⊂ Y (with
respect to C) is defined by

InfA :=

⎧
⎨
⎩

wMinCl+A if /0 �= Cl+A �= Y
{−∞} if Cl+A = Y
{+∞} if Cl+A = /0.

If A is a nonempty subset of Y and cl(A +C) �= Y , then InfA = wMincl(A +C).
By Corollary 3.1, InfA is always a nonempty set. Clearly, if −∞ belongs to A, we
have InfA = {−∞}, in particular, Inf {−∞} = {−∞}. Moreover, we have Inf /0 =
Inf {+∞}= {+∞}. Furthermore, Cl+A = Cl+(A∪{+∞}) holds and hence InfA =
Inf(A∪{+∞}) for all A⊂ Y .

We close this subsection with several useful results concerning the infimal set
and the upper closure. We derive them from Theorem 3.2 (based on Theorem 3.1)
and Theorem 3.3.

Theorem 3.4. Let Y be an extended partially ordered topological vector space with
an ordering cone C such that /0 �= intC �= Y . For A⊂Y with /0 �= Cl+A �= Y , it is true
that

Cl+A + intC ⊆ InfA + intC.

Proof. Let y∈Cl+A+ intC, then
({y}− intC

)∩Cl+A �= /0. We set B := {y}− intC.
As B is convex and open, Theorems 3.2 and Lemma 3.3 imply that

/0 �= wMin(Cl+A∩B) = (wMinCl+A)∩B.

Thus, there exists some z ∈ wMinCl+A = InfA such that y ∈ {z}+ intC, whence
y ∈ InfA + intC. ��
Theorem 3.5. Let Y be an extended partially ordered topological vector space with
an ordering cone C such that /0 �= intC �= Y. For A ⊆ Y with /0 �= Cl+A �= Y , the
following statement holds true:

Cl+A ∪ (InfA− intC) = Y.

Proof. We have Cl+A− intC ⊇ {z}+ intC− intC = Y for every z ∈ Cl+A. Let
y ∈ Y \Cl+A. The set B := {y}+ intC is open and convex. Moreover, we have
Cl+A∩B �= /0, since otherwise we get the contradiction y �∈ Cl+A− intC = Y . We
show that B\Cl+A �= /0. Indeed, assuming the contrary, we obtain B⊆ Cl+A which
implies the contradiction y ∈ clB ⊆ Cl+A. Theorems 3.2 and 3.3 imply

/0 �= wMin(Cl+A∩B) = (wMinCl+A)∩B.

Consequently, there exists some z ∈ wMinCl+A = InfA such that z ∈ B = {y}+
intC. Hence y ∈ InfA− intC. ��



3 Duality in Vector Optimization with Infimum and Supremum 69

The next corollary provides a collection of useful properties with respect to
infimal sets.

Corollary 3.2. Let Y be an extended partially ordered topological vector space
with an ordering cone C such that /0 �= intC �= Y . If A,B⊆Y with /0 �= Cl+A �= Y and
/0 �= Cl+B �= Y , then:

(a) Cl+A + intC = InfA + intC
(b) InfA = {y ∈ Y | {y}+ intC ⊆ Cl+A + intC ∧ y �∈ Cl+A + intC}
(c) intCl+A = Cl+A + intC
(d) InfA = bdCl+A
(e) InfA = Cl+A\ (Cl+A + intC)
(f) Cl+A = Cl+B ⇐⇒ InfA = InfB
(g) Cl+A = Cl+B ⇐⇒ Cl+A + intC = Cl+B + intC
(h) InfA = InfB ⇐⇒ InfA + intC = InfB + intC
(i) Cl+A = InfA∪ (InfA + intC)
(j) InfA, (InfA− intC) and (InfA + intC) are pairwise disjoint
(k) InfA∪ (InfA− intC)∪ (InfA + intC) = Y

Proof. (a) We have InfA = wMinCl+A⊆ Cl+A and hence InfA+ intC ⊆ Cl+A+
intC. The opposite inclusion is just the statement of Theorem 3.4.

(b) Follows from the definitions of upper closure and weakly minimal points.
(c) Let y ∈ intCl+A and let c ∈ intC. There is some t > 0 such that y− tc ∈ Cl+A

and hence y ∈ Cl+A + intC. On the other hand, we have Cl+A + intC ⊆ Cl+A.
The set Cl+A + intC is open, whence Cl+A + intC ⊆ intCl+A.

(d) Follows from (b) and (c).
(e) Follows from (b).
(f) Taking the closure, Cl+A + intC = Cl+B + intC implies Cl+A = Cl+B. By

definition this yields InfA = InfB.
On the other hand, InfA = InfB implies InfA+ intC = InfB+ intC which is

by (a) equivalent to Cl+A + intC = Cl+B + intC.
(g) By Proposition 3.1, we have

cl
(
Cl+A + intC

)
= cl

(
cl (A\ {+∞}+C)+ intC

)

= cl
(
A\ {+∞}+C

)
= Cl+A.

The statement is now obvious.
(h) Follows from (a), (f) and (g).
(i) Let y ∈ Cl+A. In the case where y ∈ Cl+A + intC, (i) implies y ∈ InfA + intC.

Otherwise, if y �∈ Cl+A+ intC, we obtain y ∈wMinCl+A = InfA. On the other
hand, it is obvious that InfA = wMinCl+A⊆ Cl+A and InfA+ intC ⊆Cl+A+
intC ⊆ Cl+A.

(j) Let y ∈ InfA− intC. There exists z ∈ InfA such that y ∈ {z}− intC. We have
({z}− intC)∩Cl +A = /0 and hence y �∈ Cl+A. From (i) we get (InfA− intC)∩
InfA = /0 and (InfA− intC)∩ (InfA+ intC) = /0. By (a) and the definition of an
infimal set, we conclude InfA∩ (InfA + intC) = /0.

(k) Follows from (i) and Theorem 3.5. ��
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Corollary 3.3. Let A⊂ Y . Then

(a) InfInfA = InfA, Cl+Cl+A = Cl+A, InfCl+A = InfA, Cl+InfA = Cl+A
(b) Inf(InfA + InfB) = Inf(A + B)
(c) αInfA = Inf(αA) for α > 0

Proof. This follows from the definitions and results of this section. ��
The set wMaxA of weakly maximal elements of A ⊆ Y , as well as the lower

closure Cl−A and the supremal set SupA of a subset A ⊆ Y are defined likewise.
One has

SupA =−Inf(−A) (3.1)

and analogous results hold true, where the sup-addition has to be used.

3.2.2 The Space of Self-Infimal Sets

This subsection is devoted to properties of the space I of self-infimal sets. We
first give a precise definition including the elements ±∞ ∈ Y . We introduce an
addition, a multiplication by nonnegative real numbers and an ordering relation such
that (I ,�) can regarded to be an extension of (Y ,≤). As the main result of this
subsection, we show that (I ,�) provides a complete lattice, where the infimum
and supremum of every nonempty set B ⊂I can be expressed as

infB = Inf
⋃

B∈B

B, supB = Sup
⋃

B∈B

B.

Expressions of this type are commonly used in vector optimization, see e.g. [27].
This means that all these statements can considered in the framework of a complete
lattice. Concepts from scalar optimization that require an infimum or supremum can
be reformulated in a vectorial framework. Note that in comparison to Example 3.3
no further assumptions are required for the existence of infimum and supremum.

By technical reasons we consider parallel the space of upper closed sets, which
turns out to be isomorphic and isotone to I .

Definition 3.7. Let Y be an extended partially ordered topological vector space
with an ordering cone C such that /0 �= intC �= Y . A set A ⊆ Y is called an upper
closed set if Cl+A = A. A subset B⊆ Y is called self-infimal if InfB = B holds.

Let F := FC(Y ) be the family of all upper closed subsets of Y . In F we
introduce an addition ⊕ : F ×F → F and a multiplication by nonnegative real
numbers" : R+×F →F as

A1⊕A2 : = cl(A1 + A2),

α"A : = Cl+(α ·A).

It is easy to verify that (F ,⊕,") provides a conlinear space [5] which is defined
as follows.
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Definition 3.8. A nonempty set Z equipped with an addition + : Z×Z → Z and a
multiplication · :R+×Z→ Z is said to be a conlinear space with the neutral element
θ ∈ Z if for all z,z1,z2 ∈ Z and all α,β ≥ 0 the following axioms are satisfied:

(C1) z1 +
(
z2 + z

)
=

(
z1 + z2

)
+ z

(C2) z+θ = z
(C3) z1 + z2 = z2 + z1

(C4) α · (β · z) = (αβ ) · z
(C5) 1 · z = z
(C6) 0 · z = θ
(C7) α · (z1 + z2

)
=

(
α · z1

)
+
(
α · z2

)

Conlinear spaces are adequate to deal with convexity and cones because neither
of the definitions require a multiplication by a negative real number or the existence
of inverse elements. For instance, if X is a linear space, a function f : X →F is said
to be convex if for all x1,x2 ∈ X and for all λ ∈ (0,1) one has

f (λx1 +(1−λ )x2) � f (λ " x1)⊕ f ((1−λ )" x2). (3.2)

Note that the power set P(Y ) is supposed to be a conlinear space with respect to
the Minkowski-addition and the usual multiplication by nonnegative numbers. In
particular, we use the rule 0 · /0 = {0}, which implies that 0" /0 = Cl+ {0} = clC.
For more details the reader is referred to [5, 17].

Let I := IC
(
Y
)

be the family of all self-infimal subsets of Y . In I we introduce
an addition ⊕ : I ×I → I , a multiplication by nonnegative real numbers " :
R+×I →I and an order relation � by

B1⊕B2 := Inf(B1 + B2),

α"B := Inf(α ·B),

B1 � B2 : ⇐⇒ Cl+B1 ⊇ Cl+B2.

Note that the definition of the addition ⊕ in I is based on the inf-addition
in Y . As a consequence we obtain {−∞} ⊕ {+∞} = {+∞}. Moreover, we get
0"B = Inf {0}= bdC for all B∈I . Convex functions with values in I are defined
likewise to (3.2).

Proposition 3.2. The space (I ,⊕,",�) is a partially ordered conlinear space
with the neutral element Inf {0}= bdC. The spaces (F ,⊕,",⊇) and (I ,⊕,",�)
are isomorphic and isotone. The corresponding bijection is given by

j : F →I , j( ·) = Inf( ·), j−1( ·) = Cl+( ·).

Proof. By Corollary 3.3 (a), j is a bijection between F and I . From Corollary
3.3 (b) we obtain that j

(
A1

)⊕ j
(
A2

)
= j

(
A1⊕A2

)
for all A1,A2 ∈ F . It can
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easily be verified that α " j(A) = j(α " A) for all α ≤ 0 and all A ∈ F . From
the definition of the ordering � in I , we conclude that we have A1 ⊃ A2 if and only
if j

(
A1

)
� j

(
A2

)
. ��

Proposition 3.3. (F ,⊇) and (I ,�) are complete lattices. For nonempty subsets
A ⊆F and B ⊆I the infimum and supremum can be expressed by

infA = cl
⋃

A∈A

A, supA =
⋂

A∈A

A,

infB = Inf
⋃

B∈B

Cl+B, supB = Inf
⋂

B∈B

Cl+B.

Proof. For the space (F ,⊇) the statements are obvious and for (I ,�) they follow
from Proposition 3.2. ��

As usual, if A ⊆F and B⊆I are empty, we define the infimum (supremum) to
be the greatest (least) element in the corresponding complete lattice, i.e., infA = /0,
supA = Y , infB = {+∞} and supB = {−∞}.

For vector optimization, the following characterization of infimum and supre-
mum is important.

Theorem 3.6 ([17, 18]). For nonempty sets B ⊆I , we have

infB = Inf
⋃

B∈B

B, supB = Sup
⋃

B∈B

B.

Proof. (i) The expression for the infimum can be shown as follows:

infB = Inf
⋃

B∈B

Cl+B = InfCl+
⋃

B∈B

Cl+B

= InfCl+
⋃

B∈B

B = Inf
⋃

B∈B

B.

(ii) Let us prove the expression for the supremum. By Proposition 3.3, it remains
to show that Sup

⋃
B∈B B = Inf

⋂
B∈B Cl+B. We distinguish three cases:

(a) If {+∞} ∈B, we have +∞∈⋃
B∈B B and hence Sup

⋃
B∈B B = {+∞}. On

the other hand, since Cl+ {+∞} = /0, we have Inf
⋂

B∈B Cl+B = Inf /0 =
{+∞}.

(b) Let {+∞} �∈ B but {−∞} ∈ B. If {−∞} is the only element in B the
assertion is obvious, otherwise we can omit this element without changing
the expressions.

(c) Let {+∞} �∈ B and {−∞} �∈ B. Then B ⊆ Y and /0 �= Cl+B �= Y for all
B ∈B, i.e., we can use the statements of Corollary 3.2. We define the sets
V :=

⋃
B∈B(B− intC) = (

⋃
B∈B B)− intC and W :=

⋂
B∈B Cl+B.
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We show that V ∩W = /0 and V ∪W = Y . Assume there exists some y ∈ V ∩W .
Then, there is some B∈B such that y∈ (

B− intC
)∩Cl+B = /0, a contradiction. Let

y∈Y \W (we have W �= Y , because otherwise Cl+B = Y holds for all B ∈B). Then
there exists some B ∈ B such that y �∈ Cl+B. By Corollary 3.2 (i), (k) we obtain
y ∈ B− intC ⊂V .

If Cl−V = Y we get V = Cl−V − intC = Y , whence W = /0. It follows
Sup

⋃
B∈B B = SupV = {+∞}= Inf /0 = InfW . Otherwise, we have /0 �= Cl−V �= Y

and /0 �= Cl+W �= Y . By Corollary 3.2, we obtain

Sup
⋃

B∈B

B = {y ∈Y | y �∈V, {y}− intC ⊂V}

= {y ∈Y | y ∈W,({y}− intC)∩W = /0}
= wMinW = wMinCl+W = InfW,

which completes the proof. ��
Even though I is not a linear space we have the following result.

Corollary 3.4. One has A ∈I if and only if −A ∈I .

Proof. Let A ∈ I . Of course, we have sup{A} = A and Theorem 3.6 yields
SupA=A. It follows that −A =−SupA = Inf(−A) and hence −A ∈I . ��

Note that the last statement is not true for A ∈F . Nevertheless, it is sometimes
easier to work with the complete lattice F in the proofs. The corresponding results
for the space I can be obtained using Proposition 3.2.

In the following proposition we use a generalization of the Minkowski sum. For
A ,B ⊆I , we set

A ⊕B := {I ∈I | ∃A ∈A ,∃B ∈B : I = A⊕B} .

Proposition 3.4. Let A ,B ⊆I , then:

(a) infA ⊕B = infA ⊕ infB
(b) supA ⊕B � supA ⊕ supB

Proof. (a) If A = /0, we have infA ⊕B = infA = {+∞} and thus infA ⊕B =
infA ⊕ infB = {+∞}. Otherwise, we get

infA ⊕B = Inf
⋃

A∈A ,B∈B

A⊕B = Inf
⋃

A∈A ,B∈B

A + B

= Inf

(
⋃

A∈A

A +
⋃

B∈B

B

)
= Inf

⋃
A∈A

A⊕ Inf
⋃

B∈B

B

= infA ⊕ infB.

(b) For all A ∈A , B ∈B we have A⊕B � supA ⊕ supB. Taking the supremum,
we obtain the desired statement. ��
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The following example shows that Proposition 3.4 (b) does not hold with
equality.

Example 3.6 ([17]). We consider the space I for Y = R2 and C = R2
+. Let A ={

A1,A2
}

and B = {B}, where we set A1 = Inf
{
(0,1)�

}
, A2 = Inf

{
(1,0)�

}
, B ={

y ∈R2| y1 + y2 = 0
}

. Then, we have

A1⊕B = A2⊕B =
{

y ∈ R2| y1 + y2 = 1
}

,

supA ⊕B = sup
{

A1⊕B,A2⊕B
}

=
{

y ∈R2| y1 + y2 = 1
}

,

supA ⊕ supB = sup
{

A1,A2}⊕B =
{

y ∈ R2| y1 + y2 = 2
}

.

Whence supA ⊕B �= supA ⊕ supB.

If (Z,+, · ) is a conlinear space, we denote by Zco the subset of all z∈Z satisfying
the second distributive law

(C8) α · z+β · z = (α+β ) · z.

(Zco ,+, · ) is again a conlinear space. The additional axiom ensures that every
singleton set of a conlinear space is convex [5, 17].

Let us consider the partially ordered conlinear spaces (Fco ,⊕,",⊇) and
(Ico ,⊕,",�), which are isomorphic and isotone [17]. The next result shows that
convex functions I -valued functions are actually Ico -valued.

Proposition 3.5 ([17]). Let X be a vector space, S ⊆ X a convex subset of X and
f : X →I a convex function. Then:

(a) f : X →Ico

(b) inf
x∈S

f (x) ∈Ico

Proof. Since (a) is a special case (set S = {x}), it remains to show (b). For all λ ∈
[0,1], we have

inf
x∈S

f (x) = inf
y,z∈S

f (λy +(1−λ )z)

� inf
y,z∈S

(λ " f (y)⊕ (1−λ )" f (z))

Pr. 3.4 (a)= λ " inf
x∈S

f (x)⊕ (1−λ )" inf
x∈S

f (x).

Hence infx∈S f (x) ∈Ico .
Of course, for every A ∈ F , we have λ "A⊕ (1−λ )"A ⊇ A. As the spaces

(F ,⊕,",⊇) and (I ,⊕,",�) are isomorphic and isotone, we conclude that
λ "B⊕ (1−λ )"B � B for every B∈I . Consequently, the above statement holds
with equality. This completes the proof. ��
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3.2.3 Scalarization

Let Y be an extended partially ordered locally convex space with an ordering cone
C such that /0 �= intC �= Y , and let Y ∗ be its topological dual. We denote by

C◦ := {y∗ ∈ Y ∗| ∀y ∈C : y∗(y)≤ 0}

the polar cone of C. Moreover, for some c ∈ Y , we set

Bc := {y∗ ∈C◦| y∗(c) =−1} .

Further let F = FC(Y ) and I = IC(Y ). Based on the support function we define
a scalarizing functional depending on a parameter y∗ ∈C◦ \{0}. For A ∈I , we set

ϕA(y∗) := ϕ(y∗|A) :=−σ(y∗|Cl+A). (3.3)

For fixed y∗, we get by (3.3) a functional from I toR. For fixed A∈I , we consider
ϕA to be a function from C◦ \ {0} into R, that is,

ϕA : C◦ \ {0}→ R.

For some γ ∈ R we write ϕA ≡ γ whenever ϕA(y∗) = γ for all y∗ ∈ C◦ \ {0}. The
addition, the multiplication by positive real numbers, the ordering relation, the
infimum and the supremum for the extended real-valued function ϕA are defined
pointwise for all y∗ ∈C◦ \ {0}. We use the inf-addition, i.e., −∞+(+∞) = +∞+
(−∞) = +∞.

Theorem 3.7 ([17]). Let A,B ∈I and α > 0, then:

(a) [A ∈Ico ∧ ϕA ≡−∞] ⇐⇒ A = {−∞}
(b) ϕA ≡+∞ ⇐⇒ [∃y∗ ∈C◦ \ {0} : ϕA(y∗) = +∞

] ⇐⇒ A = {+∞}
(c) A � B =⇒ ϕA ≤ ϕB

(d)
[
A ∈Ico ∧ ϕA ≤ ϕB

]
=⇒ A � B

(e) ϕA⊕B = ϕA +ϕB

(f) α ·ϕA = ϕα"A

Let A ⊆I be nonempty, then

(g) ϕinfA = inf
A∈A

ϕA

(h) ϕsupA ≥ sup
A∈A

ϕA

Proof. The proof is based on the properties of the well-known support function.

(a) As Cl+ {−∞}= Y , we get ϕ{−∞} = −σ(y∗ |Y ) =−∞ for all y∗ ∈C◦ \ {0}. On
the other hand, ϕA ≡−∞ implies that σ(y∗ |Cl+A) = +∞ for all y∗ ∈C◦ \ {0}.
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Moreover, σ(y∗ |C) = +∞ for all y∗ ∈ Y \C◦. We get

+∞= σ(y∗ |Cl+A)+σ(y∗ |C) = σ(y∗ |Cl+A +C) = σ(y∗ |Cl+A)

for all y∗ ∈ Y \ {0}. It follows Cl+A = clcoCl+A = Y and hence A = {−∞}.
(b) We have Cl+ {+∞} = /0 and so A = {+∞} implies ϕA(y∗) = −σ(y∗| /0) = +∞

for all y∗ ∈ C◦ \ {0}. If σ(y∗|Cl+A) = −∞ for some y∗ ∈ C◦ \ {0}, then
Cl+A= /0. Since A ∈I , this implies A = {+∞}.

(c) Let A � B. We get Cl+A⊇ Cl+B and hence

ϕA(y∗) =−σ(y∗|Cl+A)≤−σ(y∗|Cl+B) = ϕB(y∗)

for all y∗ ∈ Rq, in particular, for all y∗ ∈C◦ \ {0}.
(d) Let ϕA ≤ ϕB, i.e., for all y∗ ∈ C◦ \ {0}, −σ(y∗|Cl+A) ≤ −σ(y∗|Cl+B) holds.

By similar arguments as in the proof of (a), the latter inequality is valid for all
y∗ ∈Y . As Cl+A is convex and closed we get Cl +A = clcoCl+A⊇ clcoCl+B⊇
Cl+B and thus A � B.

In order to prove the statements (e) to (h), let y∗ ∈ C◦ \ {0} be arbitrarily
given.

(e) If A or B equals {+∞}, then A⊕ B = {+∞} and the statement follows as
Cl+ {+∞} = /0. If A and B are not {+∞} but one of them or both equal {−∞}
then the result follows from the fact Cl+ {−∞} = Y . Thus we can assume
A,B⊆ Y . In this case we have Cl+A = cl(A +C). It follows

ϕA+B(y∗) = −σ(y∗|cl(A + B +C))

= −σ(y∗|cl(A +C))−σ(y∗|cl(B +C))

= ϕA(y∗)+ϕB(y∗).

(f) If A = {+∞}, then α"A = {+∞} and hence

α ·ϕA(y∗) = ϕα"A(y∗) = +∞.

If A = {−∞}, then α"A = {−∞} and thus

α ·ϕA(y∗) = ϕα"A(y∗) =−∞.

If A ⊆Y , then we have

α ·ϕA(y∗) =−ασ(y∗|cl (A +C)) =−σ(y∗|cl (αA +C)) = ϕα"A(y∗).

(g) It remains to show the statement for the case {+∞} �∈ A , because omitting
{+∞} does not change anything. If {−∞} ∈ A the equality can be easily
shown. Therefore let A⊆ Y for all A ∈A . We obtain
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ϕinfA (y∗) = −σ
(

y∗
∣∣∣∣Cl+

⋃
A∈A

A

)
=−σ

(
y∗
∣∣∣∣cl

⋃
A∈A

(A +C)

)

= inf
A∈A

−σ (y∗|cl(A +C)) = inf
A∈A

ϕA(y∗).

(h) We have supA � A and hence ϕsupA ≥ϕA for all A∈A . Taking the supremum
we obtain the desired statement. ��

Statement (h) in the last theorem does not hold with equality as the following
example shows.

Example 3.7 ([17]). Let C :=R2
+, A := Inf

{
(0,1)�

}
and B := Inf

{
(1,0)�

}
. Then

sup{A,B} = Inf
{
(1,1)�

}
. For y∗ = (−1,−1)�, we get ϕA(y∗) = ϕB(y∗) = 1 but

ϕsup{A,B}(y∗) = 2.

It is well-known that a convex extended real-valued function ξ : X → R is said
to be proper if

∀x ∈ X : ξ (x) �=−∞ ∧ ∃x ∈ X : ξ (x) �= +∞.

Likewise, a concave extended real-valued function η : X →R is called proper if the
convex function−η is proper, that is

∀x ∈ X : η(x) �= +∞ ∧ ∃x ∈ X : η(x) �=−∞.

The domain of a convex extended real-valued function ξ : X → R is the set

domξ := {x ∈ X | ξ (x) �= +∞} ,

whereas the domain of the concave extended real-valued function η : X → R is the
set dom(−η), i.e.,

domη := {x ∈ X | η(x) �=−∞} .

We introduce similar notions for I -valued functions.

Definition 3.9. A convex function f : X →I is said to be proper, if

∀x ∈ X : f (x) �= {−∞} ∧ ∃x ∈ X : f (x) �= {+∞} .

The domain of the convex function f is the set

dom f := {x ∈ X | f (x) �= {+∞}} .

Taking into account that ϕA : C◦ \ {0} → R is a concave function, we get the
following statement.
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Corollary 3.5. Let A ∈Ico . Then

A ∈Ico \ {{−∞} ,{+∞}} ⇐⇒ ϕA is proper.

Proof. This follows from Theorem 3.7 (a), (b). ��
Corollary 3.6. Let f : X → I be a function. The following statements are
equivalent:

(a) f : X →I is convex.
(b) For all y∗ ∈C◦ \ {0}, ϕ f (·)(y∗) : X → R is convex.

Moreover, for all y∗ ∈C◦ \ {0}, we have dom f = domϕ f (·)(y∗).

Proof. This follows from Theorem 3.7 (e), (f) and (a), (b), respectively. ��
Note that in the preceding result, both spaces I and R are equipped with the

inf-addition.

3.3 Duality Theory

We start this section with a general duality scheme for complete-lattice-valued
problems. In order to prove weak and strong duality results we need some more
structure. Section 3.3.2 deals with Lagrange duality and Sect. 3.3.3 is devoted to
conjugate duality. Finally, we compare our approach with classical results.

3.3.1 A General Duality Scheme

Let p : X → Z, where X is an arbitrary nonempty set and (Z,≤) is a complete lattice.
For a nonempty subset S ⊆ X , we consider the optimization problem

minimize p : X → Z with respect to ≤ over S, (P)

which is called the primal problem. Concurrently, we consider a dual optimization
problem. Let d : V → Z, where V is an arbitrary nonempty set and T ⊆ V is a
nonempty subset, called the dual feasible set. We consider the dual problem

maximize d : V → Z with respect to ≤ over T. (D)

Definition 3.10. We say that weak duality holds for the pair of problems (P) and
(D) if we have the implication

(x ∈ S ∧ v ∈ T ) =⇒ d(v)≤ p(x).
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Definition 3.11. We say that strong duality holds for the pair of problems (P) and
(D) if

sup
v∈T

d(v) = inf
x∈S

p(x).

It is clear that weak duality can be characterized equivalently by the inequality

sup
v∈T

d(v)≤ inf
x∈S

p(x).

Hence strong duality implies weak duality.
We now apply the general duality principle to vector optimization problems. Let

X be a nonempty set and Y an extended partially ordered topological vector space.
Assume that the ordering cone C of Y is closed and /0 �= intC �= Y . Let p : X → Y
a given vector-valued objective function and S ⊆ X a given feasible set. The primal
problem is considered to be the vector optimization problem

minimize p : X → Y with respect to ≤C over S. (VOP)

We assign to (VOP) a corresponding I -valued problem, i.e., a problem of type (P),
where the complete lattice (Z,≤) = (I ,�) is used. We obtain a closely related
complete-lattice-valued problem, even if Y is not a complete lattice with respect to
the ordering relation generated by C.

We set pI : X →I , pI (x) := Inf{p(x)} and assign to (VOP) the problem

minimize pI : X →I with respect to � over S. (PI )

Based on the properties of the complete lattice I , we derive dual problems for
special classes of problems so that weak and strong duality can be shown. We
consider a set V and a feasible subset T ⊆V , a dual objective function dI : V →I
and the dual problem

maximize dI : V →I with respect to � over T. (DI )

The optimal values of (PI ) and (DI ) are defined, respectively, by

pI := inf
x∈S

pI (x) and dI := sup
v∈T

dI (v).

3.3.2 Lagrange Duality

In this section, I -valued optimization problems with set-valued constraints are
studied. As shown above, vector optimization problems can be regarded as a
subclass of I -valued problems. Our duality result will be derived from a corre-
sponding scalar result, which is discussed and proved at the beginning. Of course,
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other variants of scalar Lagrange duality could serve as a template. This section
can be understood as a demonstration, how vectorial duality can be derived from
corresponding scalar results.

Throughout this section, let Y be an extended partially ordered locally convex
space with an ordering cone C ⊆ Y such that /0 �= intC �= Y . The topological dual
space of Y is denoted by Y ∗. We set I := IC

(
Y
)
. In order to investigate arbitrary

I -valued problems, the cone C is not required to be closed. In case we start with a
vector optimization problem (VOP) and consider its lattice extension (PI ), C must
be closed in order to ensure that the ordering � in I is an extension of the ordering
≤ in Y .

Let X be a linear space, U a Hausdorff locally convex space with topological dual
space U∗. We denote by 〈·, ·〉 the canonical duality map.

Let f : X →I , let g : X ⇒ U be a set-valued map and let D⊆U be a nonempty
closed convex cone. The primal problem is given as

minimize f : X →I w.r.t. � over S := {x ∈ X | g(x)∩−D �= /0} . (PL)

The optimal value of (PL) is defined by

p := inf
x∈S

f (x).

The set-valued map g is said to be D-convex [11] if

∀x1,x2 ∈ X , ∀λ ∈ [0,1] : g
(
λx1 +(1−λ )x2

)
+ D⊇ λg(x1)+ (1−λ )g(x2).

The set-valued map g can be understood as a function from X into 2U . The power
set 2U equipped with the usual Minkowski operations provides a conlinear space.
The conlinear space is quasi-ordered (i.e., the ordering is reflexive and transitive) by

A≤ B :⇐⇒ A + D⊇ B + D.

Therefore, the notion of D-convexity can be interpreted as convexity of a function
with values in this quasi-ordered conlinear space. For the origin of the mentioned
quasi-ordering the reader is referred to [5].

Initially, a scalar Lagrange duality result with set-valued constraints is provided.
The scalar result is used to prove strong duality for I -valued problems. Let us
consider the scalar case of Problem (PL), i.e., let the objective function be f : X →R.
Note that R is equipped with the inf-addition. Commonly, a scalar optimization
problem is shortly denoted by

p̂ := inf
x∈S

f (x). (3.4)
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The Lagrangian is defined [20] by

L : X ×U∗ → R, L(x,u∗) = f (x)+ inf
u∈g(x)+D

〈u∗,u〉 . (3.5)

The dual objective is defined as

φ : U∗ → R, φ(u∗) := inf
x∈X

L(x,u∗)

and the dual problem is
d̂ := sup

u∗∈U∗
φ(u∗). (3.6)

Of course, weak duality holds, that is, d̂≤ p̂. Under convexity assumptions and some
constraint qualification, we obtain the following strong duality assertion, which we
prove in a common way, compare [2, Proposition 4.3.5].

Theorem 3.8. Let f : X →R be convex, let g : X ⇒ U be D-convex and let

g(dom f )∩−intD �= /0. (3.7)

Then, strong duality between (3.4) and (3.6) holds; that is, d̂ = p̂. If p̂ is finite, then
there exists a solution to the dual problem (3.6).

Proof. The value function is defined by

v : U →R : v(u) := inf{ f (x)| x ∈ X : g(x)∩ ({u}−D) �= /0} .

Since f is convex and g is D-convex, v is convex. Moreover, we have v(0) = p̂. If
p̂ = −∞, we obtain d̂ = p̂ from the weak duality. Therefore, let p̂ > −∞. For the
conjugate v∗ : U∗ → R of v, we have

−v∗(−u∗) = inf{〈u∗,u〉+ v(u)| u ∈U}
= inf{〈u∗,u〉+ f (x)| u ∈U, x ∈ X : g(x)∩ ({u}−D) �= /0}
= inf{〈u∗,u〉+ f (x)| x ∈ X , u ∈ g(x)+ D}
= inf

x∈X
L(x,u∗) = φ(u∗).

It follows v∗∗(0) = d̂. We next show that v is lower semi-continuous at 0 (even
continuous). Indeed, by (3.7) there is some x ∈ dom f and some z ∈ −intD such
that z ∈ g(x). There exists some neighborhood U of 0 such that {z}−U ⊂ −intD.
It follows that f (x) is an upper bound of v on U . This implies that v is continuous at
0 [4, Lemma 2.1].

We have v(0) = (lscv)(0) = (clv)(0) [22, Theorem 4]. By the biconjugation
theorem, see e.g. [4, Proposition 4.1] or [29, Theorem 2.3.4], we have clv = v∗∗.
This yields p̂ = v(0) = v∗∗(0) = d̂.
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If p̂ is finite, there exists u∗ ∈ ∂v(0) [4, Proposition 5.2]. It follows v(0) +
v∗(u∗) = 〈u∗,0〉. Hence d̂ = φ(−u∗). Thus, −u∗ solves the dual problem. ��

It is typical in Lagrange duality to show that the primal problem is re-obtained
from the Lagrangian. To this end we need the additional assumption that g(x)+ D
is closed and convex for every x ∈ X . If g is D-convex, like in the strong duality
theorem, g(x) + D is convex for every x, but in general it is not closed. As D is
assumed to be closed, the sum g(x) + D is closed whenever g(x) is compact. Of
course, the important case of single-valued maps g is also covered.

Proposition 3.6 ([17]). Let f : X →R be a proper function and let the set g(x)+D
be closed and convex for every x ∈ X. Then

sup
u∗∈U∗

L(x,u∗) =
{

f (x) if x ∈ S
+∞ otherwise.

Proof. Note first that x ∈ S is equivalent to 0 ∈ g(x)+ D. If x ∈ S we get

sup
u∗∈U∗

L(x,u∗) = sup
u∗∈U∗

(
f (x)+ inf

u∈g(x)+D
〈u∗,u〉

)

≤ sup
u∗∈U∗

( f (x)+ 〈u∗,0〉) = f (x).

On the other hand
sup

u∗∈U∗
L(x,u∗)≥ L(x,0) = f (x),

i.e., we have equality.
Assuming x �∈ S, we obtain 0 �∈ g(x)+ D. The latter set is closed and convex.

Using a separation theorem, e.g. [1, Theorem 4.54], we obtain some u∗ ∈U∗ such
that infu∈g(x)+D 〈u∗,u〉 > 0. If we consider multiples u∗n := n · u∗ ∈ U∗, the latter
expression tends to +∞ for n → +∞. Since f is assumed to be proper, we have
f (x) �=−∞ for every x. Hence L(x,u∗n)→+∞, which proves the statement. ��

Note that the assumptions in the last proposition are only used for the proof in
the case x �∈ S. They cannot be dropped as the following examples show.

Example 3.8 ([17]). Let f : R2 → R be a proper function such that 0 ∈ dom f , let
U = R2, D = R2

+ and g(x) = {x}+ A, where

A :=
{

a ∈ R2| a1 > 0∧a1a2 ≤−1
}

.

Note that the sets g(x) and D are closed for all x, but the sum g(x)+ D is not. We
have supu∗∈R2 L(0,u∗) = f (0) ∈R, but g(0)∩−D = /0, i.e., 0 �∈ S.

Example 3.9 ([17]). Let f : R→ R be a function such that f (1) = −∞, let U =R,
D = R+ and g(x) = {x}. We have supu∗∈RL(1,u∗) = −∞, but g(1)∩−D = /0,
i.e., 1 �∈ S.
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An I -valued version of Theorem 3.8 is now considered. The Lagrangian of
Problem (PL) (with respect to c ∈ Y ) is defined by

Lc : X ×U∗ →I , Lc(x,u∗) = f (x)⊕ inf
u∈g(x)+D

(〈u∗,u〉{c}+ bdC
)
. (3.8)

Recall that Inf {0} = bdC plays the role of the zero element in the conlinear
space I . It is used in (3.8) to transform the vector 〈u∗,u〉{c} into an element of
I . This ensures that the infimum is well-defined. Note that the vector c and the
zero element bdC are the only structural differences to the Lagrangian (3.5) in the
scalar case. In the special case Y =R, C =R+, c = 1, the Lagrangian coincides with
the Lagrangian (3.5) of the scalar problem (3.4).

The vector c ∈ Y can be arbitrarily chosen for the moment. For the most
assertions, however, we have to assume c ∈ intC. For every choice of c ∈ intC we
may have a different Lagrangian and a different corresponding dual problem, but
the same duality results hold.

We continue with an I -valued variant of Proposition 3.6.

Proposition 3.7 ([17]). For every x ∈ S,

sup
u∗∈U∗

Lc(x,u∗) = f (x).

Proof. Note that x ∈ S is equivalent to 0 ∈ g(x)+ D. It follows

sup
u∗∈U∗

Lc(x,u∗) = sup
u∗∈U∗

(
f (x)⊕ inf

u∈g(x)+D

(〈u∗,u〉{c}+ bdC
))

� sup
u∗∈U∗

( f (x)⊕ (〈u∗,0〉{c}+ bdC)) = f (x).

From
sup

u∗∈U∗
Lc(x,u∗)≥ Lc(x,0) = f (x)

we get equality. ��
We proceed with the case x �∈ S. As in the scalar case in Proposition 3.6, some

additional assumptions are required.

Proposition 3.8 ([17]). Let f : X →I be a proper function, let the set g(x)+D be
closed and convex for every x ∈ X and let c ∈ intC. Then

sup
u∗∈U∗

Lc(x,u∗) =
{

f (x) if x ∈ S
{+∞} otherwise.
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Proof. The first case has already been shown in Proposition 3.7.
Let x �∈ S. For all u∗ ∈U∗, we have

A := sup
u∗∈U∗

Lc(x,u∗) � f (x)⊕ inf
u∈g(x)+D

(〈u∗,u〉{c}+ bdC) .

From Theorem 3.7 (c), (e) and (g) we get

ϕA ≥ ϕ f (x) + inf
u∈g(x)+D

ϕ{〈u∗,u〉{c}+bdC}.

Let y∗ ∈ domϕ f (x)∩Bc. Then

ϕ{〈u∗,u〉{c}+bdC}(y∗) = 〈u∗,u〉 .

As shown in the proof of Proposition 3.6 (using a separation theorem), in case of
x �∈ S there exists a sequence (u∗n) in U∗ such that infu∈g(x)+D 〈u∗n,u〉 tends to +∞. It
follows ϕA(y∗) = +∞. By Theorem 3.7 (b), we conclude A = {+∞}. ��

We next define the dual problem. The dual objective function (with respect to
c ∈ Y ) is defined by

φc : U∗ →I , φc(u∗) := inf
x∈X

Lc(x,u∗).

The dual problem (with respect to c ∈ Y ) associated to (PL) is

maximize φ : U∗ →I with respect to � over T ⊆U∗, (DL)

where T is subset of U∗, such that {u∗ ∈U∗| φ(u∗) �= {−∞}} ⊂ T . The set T is
called the dual feasible set. There are important special cases, where the set T can
be determined explicitly. In the linear case, for instance, a description by inequalities
is possible. In the present framework we do not loose generality by setting T = U∗.
The dual optimal value is denoted by

dc := sup
u∗∈U∗

φc(u∗). (3.9)

We start with a weak duality.

Theorem 3.9 ([17]). Let c ∈ intC. Then (PL) and (DL) satisfy the weak duality
inequality dc � p.

Proof. Since I is a complete lattice, we immediately have

sup
u∗∈U∗

inf
x∈X

Lc(x,u∗) � inf
x∈X

sup
u∗∈U∗

Lc(x,u∗) (3.10)

(even if Lc would be replaced by an arbitrary function from X ×U∗ into I ). By
Proposition 3.7 we know that infx∈X supu∗∈U∗ Lc(x,u∗) � p in case of c ∈ intC. ��

We continue with strong duality.
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Theorem 3.10 ([17]). Suppose that f : X → I is convex and g : X ⇒ U is
D-convex. Let

g(dom f )∩−intD �= /0, (3.11)

and c ∈ intC. Then strong duality between (PL) and (DL) holds; that is, p = dc.

Proof. If p = {−∞}, strong duality follows from weak duality. Note further that
dom f is nonempty, hence p �= {+∞}. Therefore, it remains to prove strong duality
for the case p ∈I \ {{−∞} ,{+∞}}. We use the scalarization functional ϕA : C◦ \
{0}→ R (A ∈I ) as introduced above. As f : X →I is convex and S is a convex
set (as g is D-convex), Proposition 3.5 implies p ∈ Ico . By Corollary 3.5, ϕp is
proper, in particular domϕp �= /0.

For y∗ ∈ Bc (as defined in Sect. 3.2.3) we have

ϕ
(

y∗
∣∣∣∣ inf

u∈g(x)+D

(〈u∗,u〉{c}+ bdC
))

Th. 3.7 (g)= inf
u∈g(x)+D

ϕ
(
y∗
∣∣ 〈u∗,u〉{c}+ bdC

)

= inf
u∈g(x)+D

−σ(y∗
∣∣ 〈u∗,u〉{c}+C

)

= inf
u∈g(x)+D

〈u∗,u〉 .

Let y∗ ∈ domϕp∩Bc. By Theorem 3.8 there exists some u∗ (a solution to the scalar
dual problem) such that

ϕ(y∗|p) = ϕ
(

y∗
∣∣∣∣ inf

g(x)∩−D�= /0
f (x)

)

Th. 3.7 (g)= inf
g(x)∩−D�= /0

ϕ
(
y∗
∣∣ f (x)

)

Th. 3.8= inf
x∈X

(
ϕ
(
y∗
∣∣ f (x)

)
+ inf

u∈g(x)+D
〈u∗,u〉

)

= inf
x∈X

(
ϕ
(
y∗
∣∣ f (x)

)

+ ϕ
(

y∗
∣∣∣∣ inf

u∈g(x)+D
(〈u∗,u〉{c}+ bdC)

))

Th. 3.7 (e), (g)= ϕ
(
y∗
∣∣ φc(u∗)

)
.

Together we have

∀y∗ ∈ domϕp∩Bc, ∃u∗ ∈U∗ : ϕ(y∗|φc(u∗)) = ϕ(y∗| p). (3.12)
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For every A ∈I and α > 0 it is true that ϕ(α · y∗|A) =−αϕ(y∗|A). We conclude
from (3.12) that ϕ(y∗|dc ) ≥ ϕ(y∗| p) for all y∗ ∈ C◦ \ {0}. As p ∈ Ico , Theorem
3.7 (iv) yields dc � p . By the weak duality inequality we obtain dc = p. ��

Note that strong duality implies that (3.10) is satisfied with equality.
We know from the scalar optimization theory that strong duality results usually

consist of two statements. The first one is the equality of the primal and dual optimal
values and the second one is the dual attainment, that is, if the primal optimal value
is finite, then a solution to the dual problem exists, see Theorem 3.8. In the current
framework we cannot answer the question, whether the dual attainment holds or not.

However, a surrogate result can be shown. Usually, the dual optimal value can be
expressed as

dc = sup
u∗∈Rm

φc(u∗) = Sup
⋃

u∗∈Rm

φc(u∗).

It is shown in the following result that the supremal set can be replaced by the set of
weakly maximal elements.

Theorem 3.11 ([17]). Let all the assumptions of Theorem 3.10 be satisfied and let
p �= {−∞}, then

dc = wMax
⋃

u∗∈U∗
φc(u∗).

Proof. We have p �∈ {{−∞} ,{+∞}} and hence /0 �= Cl+p �= Y . Let

y ∈ Sup
⋃

u∗∈U∗
φc(u∗) = dc = p.

By Proposition 3.5 we have p ∈ Ico . We get y �∈ p + intC and the set p + intC is
convex. Using a separation theorem [1, Theorem 4.46], we obtain some y∗ ∈Y ∗ \{0}
such that

y∗(y)≥ sup
y∈p+intC

y∗(y).

Assuming that y∗ �∈C◦, we get a contradiction as the supremum becomes +∞. Thus
we have y∗ ∈C◦ \ {0} and hence

y∗(y)≥ σp+intC(y∗) = σCl+ p(y∗) =−ϕp(y∗).

Without loss of generality we can assume that y∗(c) =−1. By (3.12) there exists
some u∗ ∈U∗ such that

y∗(y)≥−ϕp(y∗) =−ϕφc(u∗)(y
∗).

Assuming that y ∈ φc(u∗)+ intC = φc(u∗)+ intC + intC we obtain

∀y∗ ∈C◦ \ {0} : y∗(y) < σφc(u∗)+intC(y∗) =−ϕφc(u∗)(y
∗),

a contradiction. It follows y �∈ φc(u∗)+ intC.
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On the other hand, {y} + intC ⊆ p + intC ⊆ φc(u∗) + intC. We get y ∈
Infφc(u∗) = φc(u∗)⊆⋃

u∗∈U∗ φc(u∗). Together we have y ∈ wMax
⋃

u∗∈U∗ φc(u∗).
��

In [17] the problem of attainment could be solved by an alternative Lagrange
dual problem, called type II. It can be shown that a solution of the dual problem
(as introduced in [17]) exists under the assumptions of the strong duality theorem.

3.3.3 Conjugate Duality

As a second instance of duality, conjugate duality (also called Fenchel duality)
is studied in this subsection. We restrict ourselves to the finite dimensional case
because this is sufficient to promote the ideas. Infinite dimensional variants can
be found in [17]. The only difference is that the constraint qualification has to be
adapted, but this is also a feature of the scalar theory.

Throughout this section let Y = Rq and C ⊂ Rq is a convex and pointed cone
such that /0 �= intC �= Rq. We set I := IC

(
Y
)
.

Definition 3.12. The conjugate of a function f : Rn → I (with respect to some
fixed c ∈Rq) is defined by

f ∗c : Rn →I , f ∗c (x∗) := sup
x∈Rn

(〈x∗,x〉{c}− f (x)
)
.

We know that if f is an I -valued function, so is − f . This follows from the fact

A ∈I ⇐⇒ −A ∈I ,

which was shown in Corollary 3.4. So the term 〈x∗,x〉{c}− f (x) stands for a shift
of − f (x) ∈I . This means that the minus sign has to be interpreted in the sense of
Minkowski-addition. As a result we have 〈x∗,x〉{c}− f (x) ∈I and the supremum
in the definition of the conjugate is well-defined.

Given two functions f : Rn → I and g : Rm →I and a matrix B ∈ Rm×n, the
primal problem (PI ) is considered for the objective function

p : Rn →I , p(x) := f (x)⊕g(Bx).

For the dual problem (DI ) we specify the objective function as

dc :Rm →I , dc(u∗) :=− f ∗c (BT u∗)⊕−g∗c(−u∗).

Setting, moreover, S = Rn and T = Rm, the problems (PI ) and (DI ) turn into the
following problems; the conjugate (or Fenchel) primal problem

minimize p : Rn →I with respect to � over Rn (PF)
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and the dual problem associated to (PF)

maximize dc : Rm →I with respect to � over Rm. (DF)

The optimal values of (PF) and (DF) are denoted, respectively, by

p := inf
x∈Rn

p(x) ∈I and dc := sup
u∗∈Rm

dc(u∗) ∈I .

If c∈ intC, then Bc (as defined in Sect. 3.2.3) is a base of C◦, that is, each nonzero
element y∗ of C◦ has a unique representation by an element b∗ of the convex set Bc

by y∗ = λb∗ for some λ > 0 [21, p. 25].
We continue with a conjugate duality theorem which is formulated likewise to its

scalar counterpart. This high degree of analogy is one of the essential advantages of
using the supremum and infimum in vector optimization.

Theorem 3.12 ([17, 18]). The problems (PF) and (DF) (with arbitrary c∈Y) satisfy
the weak duality inequality, that is, dc � p. Furthermore, let f and g be proper
convex functions, c∈ intC, and let the following constraint qualification be satisfied:

ridomg∩B(ridom f ) �= /0. (3.13)

Then strong duality holds, that is, dc = p.

Proof. For all u∗ ∈Rm, x ∈ Rn and u ∈ Rm,

− f ∗(BT u∗)⊕−g∗(−u∗) � ( f (x)− 〈
BT u∗,x

〉
)⊕ (g(u)+ 〈u∗,u〉).

Set u := Bx. From
〈
BT u∗,x

〉
= 〈u∗,Bx〉, we get dc(u∗) � p(x) for all u∗ ∈ Rm and

all x ∈ Rn. Taking the supremum over u∗ ∈ Rm and the infimum over x ∈ Rn, we
obtain the weak duality inequality dc � p.

If p = {−∞}, strong duality follows from weak duality. Note further that dom p
is nonempty, hence p �= {+∞}. Therefore, it remains to prove strong duality for the
case p ∈I \{{−∞} ,{+∞}}.

We use the scalarization functional ϕA : C◦ \ {0}→ R (A ∈I ) as introduced in
Sect. 3.2.3. As p : Rn →I is convex, Proposition 3.5 implies that p ∈Ico .

By Corollary 3.5, (the concave function) ϕp is proper, in particular domϕp �= /0.
As c ∈ intC, for every y∗ ∈ C◦ \ {0}, we have y∗(c) < 0. We fix some y∗ ∈
domϕp∩Bc and consider the extended real-valued functions ξ : Rn → R and
η : Rm → R being defined, respectively, by ξ (x) := ϕ

(
y∗| f (x)

)
and η(u) :=

ϕ
(
y∗|g(u)

)
. It follows

ϕ(y∗| p) = inf
x∈Rn

(
ξ (x)+η(Bx)

)
. (3.14)

By Corollary 3.6, ξ and η are convex, dom f = domξ and domg = domη . As
y∗ ∈ domϕp (that is ϕp(y∗) > −∞ as ϕp : C◦ \ {0} → R is concave), ξ and η are
proper. The constraint qualification (3.13) implies a corresponding condition for the
scalar problem, that is

ridomη ∩B(ridomξ ) �= /0.
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A scalar duality result, e.g. [2, Theorem 3.3.5 and Exercise 20 (e) in Sect. 4.1], yields
that

ϕ(y∗| p) = sup
u∗∈Rm

(−ξ ∗(BT u∗)−η∗(−u∗)
)
.

Moreover, we obtain that, if ϕ(y∗| p) is finite, the supremum is attained, that is

∃u∗ ∈Rm : ϕ(y∗| p) =−ξ ∗(BT u∗)−η∗(−u∗). (3.15)

Furthermore, it is true that

∀t ∈R : ϕ
(
y∗|t · {c}) =−y∗(t · c) = t. (3.16)

We have

ϕ (y∗| p) = −ξ ∗(B∗u∗)−η∗(−u∗)

= inf
x∈Rn

(−〈B∗u∗,x〉+ ξ (x)
)
+ inf

u∈Rm

(〈u∗,u〉+η(u)
)

(3.16)= inf
x∈Rn

(
ϕ
(
y∗
∣∣−〈B∗u∗,x〉 · {c})+ϕ

(
y∗
∣∣ f (x)

))

+ inf
u∈Rm

(
ϕ
(
y∗
∣∣〈u∗,u〉 · {c})+ϕ

(
y∗
∣∣g(u)

))

= ϕ
(

y∗
∣∣∣∣ inf

x∈Rn

(−〈B∗u∗,x〉{c}+ f (x)
)

⊕ inf
u∈Rm

(〈u∗,u〉{c}+g(u)
))

= ϕ
(

y∗
∣∣∣∣− sup

x∈Rn

(〈B∗u∗,x〉{c}− f (x)
)

⊕− sup
u∈Rm

(〈−u∗,u〉{c}−g(u)
))

= ϕ
(
y∗
∣∣− f ∗c (B∗u∗)⊕−g∗c(−u∗)

)
= ϕ (y∗|dc(u∗)) .

We deduce that

∀y∗ ∈ domϕp∩Bc, ∃u∗ ∈ Rm : ϕ(y∗|dc(u∗)) = ϕ(y∗| p). (3.17)

For every A∈I and α > 0, we have ϕ(α ·y∗|A) =−αϕ(y∗|A). We conclude from
(3.17) that ϕ(y∗|dc )≥ ϕ(y∗| p) for all y∗ ∈C◦ \ {0}. As p ∈Ico , Theorem 3.7 (d)
yields dc � p . By the weak duality inequality we obtain dc = p. ��

Again we can show that the supremal set can be replaced by the set of weakly
maximal elements.
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Theorem 3.13. Let the assumptions of Theorem 3.12 be satisfied and assume
p �= {−∞}, then

dc = wMax
⋃

u∗∈Rm

dc(u∗).

Proof. The proof is the same as the proof of Theorem 3.13 but using (3.17) instead
of (3.12). ��

In the scalar duality theory, the constraint qualification (3.13) can be further
weakened if the objective function is polyhedral. In this case it suffices to assume

domg∩B(dom f ) �= /0 (3.18)

see e.g. [2, Corollary 5.1.9]. This is important for linear problems. Let us consider
the special case P ∈ Rq×n,

f : Rn →I , f (x) = Inf {Px}

and

g :Rm →I , g(u) :=
{

Inf {0} if u≥ b
{+∞} otherwise.

The constraint qualification (3.13) in Theorem 3.12 can be weakened to (3.18),
which can be expressed as

∃x ∈ Rn : Bx≥ b.

This follows by similar considerations as in the proof of Theorem 3.12, but using an
adapted scalar result.

3.3.4 Connections to Classic Results

In the literature one can find duality results with a vector-valued dual objective
function, see e.g. Chap. 4 in [3]. Following [17], we demonstrate in this subsection,
how results of this type can be obtained from the I -valued duality theory.

Let X be a set and let Y be an extended partially ordered topological vector space,
let the ordering cone C of Y be closed and let /0 �= intC �= Y . Let p : X → Y be the
objective function and S⊆ X be the feasible set of a vector optimization problem

wMin x∈S p(x), (PY )

where we assume that p[S] ⊆ Y . One is interested in finding weakly efficient
solutions to (PY ). A vector x ∈ S is called a weakly efficient solution to (PY ), if
p(x) ∈wMin p[S].
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We consider the lattice extension (PI ) with the objective function pI : X →I ,
pI (x) := Inf {p(x)} as well as the dual problem (DI ) as defined in Sect. 3.3.1. Let
dI : V →I be the objective function and T ⊆V the feasible set of Problem (DI ).
For simplicity we assume that dI [T ]⊆I \ {{−∞} ,{+∞}}. We consider the dual
vector optimization problem

wMax (v,y)∈T d(v,y), (DY )

where we set

d : V ×Y → Y , d(v,y) := y and T := {(v,y) ∈ T ×Y | y ∈ dI (v)} .

A vector (v,y) ∈ T is called a weakly efficient solution to (DY ), if d(v,y) ∈
wMaxd[T ]. Note that we have

dI (T ) =
⋃
v∈T

dI (v) = {y | (y,v) ∈T }= d[T ]. (3.19)

In order to formulate a weak duality assertion, we write y1 <C y2, whenever
y2− y1 ∈ intC.

Theorem 3.14 (Weak Duality). The following statements are equivalent:

(a) Weak duality between (PI ) and (DI ) holds, that is, if x ∈ S and v ∈ T , then
dI (v) � pI (x).

(b) Weak duality between (PY ) and (DY ) holds, that is, there is no x ∈ X and no
(v,y) ∈T such that p(x) <C d(v,y).

Proof. Let (a) be satisfied and let x ∈ S and (v,y) ∈ T be given. We get y ∈
dI (v) and dI (v) � pI (x). By assumption we have dI (v) ∈I \ {{−∞} ,{+∞}}
and p[S] ⊆ Y implies pI (x) ∈ I \ {{−∞} ,{+∞}}. We get /0 �= Cl+pI (x) ⊆
Cl+dI (v) �= Y and hence p(x) ∈ Cl+dI (v). Corollary 3.2 (i) and (j) yield p(x) �∈
dI (v)− intC. Thus we get p(x) �∈ {y}− intC. It follows that p(x) �<C d(v,y), i.e.,
(b) holds.

Let (b) be satisfied and let x ∈ S and v ∈ T be given. By assumption we have
dI (v) ∈ I \ {{−∞} ,{+∞}} hence dI (v) is a nonempty subset of Y . For all y ∈
dI (v) we have p(x) �<C d(v,y) = y. We get p(x) �∈ dI (v)− intC. Corollary 3.2 (i)
and (k) yield p(x) ∈ Cl+dI (v). Hence dI (v) � pI (x). ��

In Theorems 3.13 and 3.11 we have shown that the dual optimal value dI for
both dual problems (DL) and (DF) can be expressed as

dI := sup
v∈T

dI (v) = wMaxdI (T ). (3.20)

As a consequence, strong duality between (PI ) and (DI ) entails a classical scheme
of strong duality [3, 11].
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Theorem 3.15 (Strong Duality). Assume that strong duality holds between (PI )
and (DI ), that is, pI = dI , and let (3.20) be satisfied. Then, strong duality between
(PY ) and (DY ) holds; that is, if x is a weakly efficient solution to (PY ), then there
exists a weakly efficient solution (v,y) to (DY ) such that p(x) = d(v,y).

Proof. Let y = p(x) ∈wMin p[S]. We get

wMin p[S] ⊂ Inf p[S] = Inf
⋃

x∈S Inf {p(x)}= infx∈S pI (x)

= pI = dI
(3.20)= wMaxdI (T ) (3.19)= wMaxd[T ].

It follows y ∈ wMaxd[T ] ⊆ d[T ]. Hence there exists v ∈ T such that (v,y) ∈ T
and p(x) = y = d(v,y). ��

Under the common (but restrictive) assumption that p[S]+C is closed, we get
also the so-called converse duality.

Theorem 3.16 (Converse Strong Duality). Assume that strong duality holds be-
tween (PI ) and (DI ) and let p[S] +C be closed. Then, converse strong duality
between (PY ) and (DY ) holds; that is, if (v,y) is a weakly efficient solution to (DY ),
then y ∈ wMin(p[S]+C).

Proof. Let y = d(v,y) ∈wMaxd[T ]. As p[S]+C is closed, we get

Inf p[S] = wMincl(P[S]+C) = wMin(p[S]+C).

It follows

wMaxd[T ] (3.19)= wMaxdI (T )⊆ SupdI (T ) = dI

= pI = Inf p[S] = wMin(p[S]+C)

which completes the proof. ��
The opposite direction of the statements in the last two theorems can be shown

when p[S]+C is assumed to be closed.

Theorem 3.17. Assume that strong duality and converse strong duality holds
between (PY ) and (DY ). Further let (3.20) be satisfied and let p[S] = cl(p[S]+C).
Then strong duality between (PI ) and (DI ) holds.

Proof. By the assumption p[S] = cl (p[S]+C), we get

wMin p[S] = wMincl(p[S]+C) = Inf p[S] = pI

and (3.20) yields

wMaxd[T ] = wMaxdI (T ) = dI .
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Strong duality between (PY ) and (DY ) yields wMin p[S] ⊆ wMaxd[T ]. Converse
strong duality between (PY ) and (DY ) yields wMaxd[T ]⊆ wMin(p[S]+C).

We have p[S] ⊆ p[S] + C ⊆ cl(p[S] + C) ⊆ p[S] and hence p[S] = p[S] + C.
Together we obtain pI = dI . ��

We observe that duality between (PY ) and (DY ) involves the existence of weakly
minimal elements. In the scalar duality theory (and likewise in the I -valued theory
for suitable solution concepts and so-called type II dual problems, see [17]) we
obtain the existence of a solution to the dual problem as a result. But a solution to
the primal problem does not need to exist in order to get duality assertions.
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18. Löhne, A. and Tammer, C.: A new approach to duality in vector optimization. Optimization 56
(1-2), 221-239 (2007)

19. Nieuwenhuis, J.W.: Supremal points and generalized duality. Math. Operationsforsch. Stat.,
Ser. Optim. 11, 41-59 (1980)

20. Oettli, W.: Optimality conditions for programming problems involving multivalued mappings.
Modern Applied Mathematics, Optimization and Operations Research, Lect. Summer Sch.,
Bonn 1979, 195-226 (1982)

21. Peressini, A.L.: Ordered Topological Vector Spaces. Harper and Row Publishers, New York-
Evanston-London (1967)

22. Rockafellar, T.: Conjugate Duality and Optimization. CBMS-NSF Regional Conference Series
in Applied Mathematics, Vol. 16. Society for Industrial and Applied Mathematics. VI,
Philadelphia, Pa. (1974)

23. Rockafellar, R.T., Wets, R.: Variational Analysis. Grundlehren der Mathematischen Wis-
senschaften, 317. Springer, Berlin (1998)

24. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Mathematics
in Science and Engineering, Vol. 176. Academic Press, Inc. (Harcourt Brace Jovanovich,
Publishers), Orlando etc. (1985)

25. Tammer, C.: Lagrange duality in vector optimization. Wiss. Z. Tech. Hochsch. Ilmenau 37 (3),
71-88 (1991)

26. Tanino, T.: On supremum of a set in a multidimensional space. J. Math. Anal. Appl. 130 (2),
386-397 (1988)

27. Tanino, T.: Conjugate duality in vector optimization. J. Math. Anal. Appl. 167 (1), 84-97 (1992)
28. Tanino, T., Sawaragi, Y.: Conjugate maps and duality in multiobjective optimization. J. Optim.

Theory Appl. 31, 473-499 (1980)
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Chapter 4
Variable Ordering Structures in Vector
Optimization

Gabriele Eichfelder

4.1 Introduction

In vector optimization one assumes in general that a partial ordering is given by
some nontrivial convex cone K in the considered space Y . But already in 1974 in one
of the first publications [37] related to the definition of optimal elements in vector
optimization also the idea of variable ordering structures was given: to each element
of the space a cone of dominated (or preferred) directions is defined and thus the
ordering structure is given by a set-valued map. In [37] a candidate element was
defined to be nondominated if it is not dominated by any other reference element
w.r.t. the corresponding cone of this other element. Later, also another notion of
optimal elements in the case of a variable ordering structure was introduced [7–9]:
a candidate element is called a minimal (or nondominated-like) element if it is not
dominated by any other reference element w.r.t. the cone of the candidate element.

Recently there is an increasing interest in such variable ordering structures
motivated by several applications for instance in medical image registration or in
portfolio optimization. For a study of such vector optimization problems with a
variable ordering structure it is important to differentiate between the two mentioned
optimality concepts as well as to examine the relation between the concepts. In
view of applications it is also important to formulate characterizations of optimal
elements by scalarizations for allowing numerical calculations.
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4.2 Variable Ordering Structure

This section introduces vector optimization problems with a variable ordering
structure. In addition to optimality notions, several applications of these problems
as well as their appearance in the literature are summed up. A special variable
ordering structure given by a cone-valued map with images which are so-called
Bishop–Phelps cones is discussed which appears to be very helpful for formulating
scalarizations for characterizing optimal elements.

4.2.1 Optimality Notions

In vector optimization it is in general assumed that a partial ordering ≥K in a real
linear space Y is given by a nontrivial convex cone K ⊂Y . Then we write x≤K y for
y−x∈K. Recall that a set K is called a cone if λx ∈K for all λ ≥ 0 and x ∈K. And
a cone is convex if K +K ⊂K. A cone satisfying K∩(−K) = {0Y} is called pointed.
According to the classical concepts, an efficient element y∈ A of a nonempty subset
A of Y w.r.t. the pointed convex cone K ⊂ Y is defined by

({y}−K)∩A = {y}, (4.1)

which is equivalent to that there is no y ∈ A with

y ∈ {y}+ K \ {0Y}. (4.2)

In (4.2) the cone K can be interpreted as the set of dominated directions
of the element y, whereas in (4.1) the cone −K represents the set of preferred
directions of the element y. Hence, the search for efficient elements equals the
search for nondominated elements, or, for the most preferred elements of the set A,
respectively. (4.1) and (4.2) are equivalent, but for a variable ordering structure we
have to differentiate between these two points of view: preference and domination.

In the following we assume Y to be a real topological linear space and A to be
a nonempty subset of Y . Let D : Y → 2Y be a set-valued map with D(y) a pointed
convex cone for all y ∈ Y . Let clA, intA, coneA, convA and ∂A denote the closure,
the interior, the conic hull, the convex hull and the boundary of A, respectively. Let
D(A) :=

⋃
y∈A D(y) denote the image of A under D .

Based on the cone-valued map D one can define two different relations: for
y,y ∈Y we define

y≤1 y if y ∈ {y}+D(y) (4.3)

and

y ≤2 y if y ∈ {y}+D(y). (4.4)
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We speak here of a variable ordering (structure), given by the ordering map D ,
despite the binary relations given above are in general not transitive nor compatible
with positive scalar multiplication, to express that the partial ordering given by a
cone in most vector optimization problems in the literature is replaced by a relation
defined by D .

Relation (4.3) implies the concept of nondominated elements defined in [37,38].
We also state the definitions of weakly and strongly nondominated elements which
can be derived from the original definition of nondominated elements.

Definition 4.1.

• An element y ∈ A is a nondominated element of A w.r.t. the ordering map D if
there is no y ∈ A\ {y} such that y ∈ {y}+D(y), i.e., y �≤1 y for all y ∈ A\ {y}.

• An element y ∈ A is a strongly nondominated element of A w.r.t. the ordering
map D if y ∈ {y}−D(y) for all y ∈ A.

• Let int D(y) �= /0 for all y ∈ A. An element y ∈ A is a weakly nondominated
element of A w.r.t. the ordering map D if there is no y ∈ A such that y ∈ {y}+
int D(y).

Example 4.1. Let Y = R2, the cone-valued map D : R2 → 2R
2

be defined by

D(y1,y2) :=
{

cone conv{(y1,y2),(1,0)} if (y1,y2) ∈ R2
+, y2 �= 0

R2
+ otherwise

and

A := {(y1,y2) ∈ R2 | y1 ≥ 0, y2 ≥ 0, y2 ≥ 1− y1}.

Then D(y1,y2)⊂R2
+ for all (y1,y2)∈R2 and one can check that {(y1,y2)∈ A | y1 +

y2 = 1} is the set of all nondominated elements of A w.r.t. D and that all elements
of the set {(y1,y2) ∈ A | y1 + y2 = 1 ∨ y1 = 0 ∨ y2 = 0} are weakly nondominated
elements of A w.r.t. D .

In Definition 4.1 the cone D(y) = {d ∈ Y | y + d is dominated by y}∪{0Y} can
be seen as the set of dominated directions for each element y ∈ Y . Note that when
D(y)≡K, where K is a pointed convex cone, and the space Y is partially ordered by
K, the concepts of nondominated, strongly nondominated and weakly nondominated
elements w.r.t. the ordering map D reduce to the classical concepts of efficient,
strongly efficient and weakly efficient elements w.r.t. the cone K (see, for instance,
[22]). Strongly nondominated is a stronger concept than nondominatedness, as it
is not only demanded that y ∈ {y}+ (Y \ {D(y)}) for all y ∈ A \ {y}, but even
y ∈ {y}−D(y) for all y ∈ A\ {y} for y being strongly nondominated w.r.t. D . This
can be interpreted as the requirement of being far away from being dominated.

The second relation, relation (4.4), leads to the concept of minimal, also called
nondominated-like, elements [7–9].
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Fig. 4.1 The element y ∈ A is
a minimal element of A w.r.t.
the ordering map D whereas
y is not a nondominated
element of A w.r.t. the
ordering map D because of
y ∈ {y′}+D(y′)\{0Y }

Definition 4.2.

• An element y ∈ A is a minimal element of A w.r.t. the ordering map D if there is
no y ∈ A\ {y} such that y ∈ {y}+D(y), i.e., y �≤2 y for all y ∈ A\ {y}.

• An element y ∈ A is a strongly minimal element of A w.r.t. the ordering map D if
A ⊂ {y}+D(y).

• Let int D(y) �= /0 for all y ∈ A. An element y ∈ A is a weakly minimal element of
A w.r.t. the ordering map D if there is no y ∈ A such that y ∈ {y}+ int D(y).

For an illustration of both optimality notions see Fig. 4.1.
The concepts of strongly minimal and strongly nondominated elements w.r.t. an

ordering map D are illustrated in the following example.

Example 4.2. Let Y = R2, the cone-valued map D : R2 → 2R
2

be defined by

D(y1,y2) :=
{
R

2
+ if y2 = 0

cone conv{(|y1|, |y2|),(1,0)} otherwise

and

A := {(y1,y2) ∈ R2 | y1 ≤ y2 ≤ 2y1}.

One can check that (0,0) ∈ A is a strongly minimal and also a strongly nondomi-
nated element of A w.r.t. D .

Regarding the notion of minimal elements, the cone D(y) for some y ∈ Y can
be viewed as the set of preferred directions: D(y) := {d ∈ Y | y− d is preferred
to y}∪{0Y}. Observe that y is a minimal element of some set A ⊂ Y w.r.t. D if and
only if it is an efficient element of the set A with Y partially ordered by K := D(y).

Replacing D by D̃ with D̃(y) := −D(y) for all y ∈ Y in the Definitions 4.1 and
4.2, we obtain corresponding concepts of (weakly, strongly) max-nondominated and
of maximal elements of a set A w.r.t. the ordering map D .

The following example illustrates that the concepts of nondominated and of
minimal elements w.r.t. an ordering map D are not directly related.

Example 4.3. Let Y = R2, the cone-valued map D1 : R2 → 2R
2

be defined by

D1(y1,y2) :=
{

cone conv{(−1,1),(0,1)} if y2 ≥ 0,

R2
+ otherwise,
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and

A := {(y1,y2) ∈ R2 | y2
1 + y2

2 ≤ 1}.
Then (−1,0) is a nondominated but not a minimal element of A w.r.t. D1.

Considering instead the cone-valued map D2 : R2 → 2R
2

defined by

D2(y1,y2) :=
{

cone conv{(1,−1),(1,0)} if y2 ≥ 0,

R2
+ otherwise,

then (0,−1) is a minimal but not a nondominated element of A w.r.t. D2.
Considering instead the cone-valued map D3 : R2 → 2R

2
defined by

D3(y1,y2) :=

⎧
⎨
⎩
R2

+ if y ∈ R2 \ {(0,−1),(−1,0)},
{(z1,z2) ∈ R2 | z1 ≤ 0, z2 ≥ 0} if y = (0,−1),
{(z1,z2) ∈ R2 | z1 ≥ 0, z2 ≤ 0} if y = (−1,0).

Then all elements of the set {(y1,y2)∈R2 | y2
1 +y2

2 = 1, y1 ≤ 0, y2 ≤ 0} are minimal
elements of A w.r.t. D but there is no nondominated element of the set A w.r.t. D .

The two optimality concepts are only related under strong assumptions on D :

Lemma 4.1. (a) If D(y) ⊂ D(y) for all y ∈ A for some minimal element y of A
w.r.t. D , then y is also a nondominated element of A w.r.t. D .

(b) If D(y) ⊂ D(y) for all y ∈ A for some nondominated element y of A w.r.t. D ,
then y is also a minimal element of A w.r.t. D .

Besides considering optimal elements of a set, all concepts apply also for a
vector optimization problem with the image space equipped with a variable ordering
structure. For that assume that X and Y are topological spaces and Y is equipped
with a variable ordering structure defined by a cone-valued map D : Y → 2Y with
D(y) a pointed convex cone. Let F : X → 2Y be a given set-valued map and S ⊂ X
a nonempty set. Denote by F(S) =

⋃
x∈S F(x) the image of S under F . Then we

consider the following vector optimization problem

Minimize F(x) subject to x ∈ S. (VOP)

The various notions of nondominated and minimal elements w.r.t. the ordering map
D for sets naturally induce corresponding notions of solutions to the optimization
problem (VOP) as follows.

Definition 4.3. Let x ∈ S and y ∈ F(x). A pair (x,y) is called a “N” solution of
the problem (VOP) w.r.t. the ordering map D , if y is a “N” element of the image
set F(S) respectively. Here, “N” may be (weakly, strongly, max-) nondominated,
(weakly, strongly) minimal or maximal.

When F is a single-valued map f : X → Y , we set y = f (x) in Definition 4.3.
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4.2.2 Variable Ordering Structures in Applications

The examination of vector optimization problems with a variable ordering structure
is motivated by some recent applications in such different areas as image registration
or portfolio optimization. It turned out that the concept of efficiency in partially
ordered spaces is not a sufficient tool for modeling these decision making problems.
And also in game theory for N-person games variable domination structures were
considered [4].

In decision-making theory the importance of variable ordering structures is
also discussed and conditions are formulated which should be satisfied by such
structures [16]. The cones D(y)⊂Rm shall be closed convex ideal-symmetric cones
with Rm

+ ⊂ D(y) for all y ∈ A ⊂ Rm. This is based on several requirements like
monotonicity, local preferences and ideal symmetry. Here, ideal symmetric means
that the cone D(y) is some kind of symmetric w.r.t. the direction y− z pointing to
the ideal point z ∈Rm defined by zi := inf{yi | y ∈ A} for i = 1, . . . ,m. For the exact
definitions we refer to [16]. These cones D(y) are in fact special Bishop–Phelps
cones in the Euclidean space. Such variable orderings with images being Bishop–
Phelps cones will be discussed in Sect. 4.2.4.

4.2.2.1 Variable Ordering Structures in Medical Image Registration

For modeling preferences of a totally rational decision maker in medical image
registration a variable ordering structure better reflects the problem structure [34].
In medical image registration it is the aim to merge several medical images gained
by different imaging methods as for instance computer tomography, magnetic
resonance tomography, positron emission tomography, or ultrasound. For two data
sets A and B a transformation map t, also called registration, has to be found
(from a set T of allowed maps) such that some similarity measure comparing t(A)
and B is optimized. For some applications it is important that this transformation
map is found automatically without a human decision maker. The quality of a
transformation map, i.e. the similarity of the transformed data set to the target
set, can be measured by a large variety of distance measures fi : (t,A,B) → R,
i = 1, . . . ,m, for some m ∈ N. They all evaluate distinct characteristics like the sum
of square differences, mutual information or cross-correlation. Different measures
may lead to different best transformation maps. Some measures fail on special data
sets and can lead to mathematical correct but useless results. Thus it is important
to combine several measures. Possible approaches are a weighted sum of different
measures. But difficulties appear as badly scaled functions or non-convex functions.

Instead, the problem can be viewed as a multiobjective optimization prob-
lem [34, 35] by arranging the several distance measures in an objective vector
f :=( f1, . . . , fm)�. Then, for given data sets A and B, the vector optimization
problem

min
t∈T

f (t,A,B)
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has to be solved. For incorporating in the preference structure that some of the
measures may fail on the given data sets, depending on the values y ∈ Rm in
the image space a weighting vector w(y) ∈ Rm

+ is generated. This weight can be
interpreted as some kind of voting between the different measures. Also a weight
component equal to zero is allowed which corresponds to the negligence of the
correspondent measure, because it seems for instance to fail on the data set. This
weight may also depend on gradient information, conformity and continuity aspects
and reflects therefore the preferences of a totally rational decision maker who puts
a higher weight on promising measures dependent on the value y = f (t,A,B) .

To such a weight at a point y∈Rm a cone of more or equally preferred directions
is defined by

D(y) :=

{
d ∈ Rm

∣∣∣∣
m

∑
i=1

sgn(di)wi(y)≥ 0

}

where

sgn(di) :=

⎧
⎨
⎩

1 if di > 0,

0 if di = 0,

−1 if di < 0.

Note that for nonnegative weights w ∈ Rm
+ it holds Rm

+ ⊂D(y).

4.2.2.2 Variable Ordering Structures in Intensity Modulated
Radiation Therapy

In medical engineering, to be more concrete in intensity-modulated radiation
therapy (IMRT), recently (Thieke, Private communication (2010)) the incorporation
of variable ordering structures is considered to allow an improved modeling of the
decision making problem. In IMRT one searches for an optimal treatment plan
for the irradiation of a tumor with the target to spare the surrounding tissue, or at
least to reduce the radiation dose delivered to the neighbored healthy organs, while
destroying the tumor.

This problem is modeled as a multiobjective optimization problem with an
objective for each healthy neighbored organ measuring its dose stress. For com-
paring different treatment plans the natural ordering in the image space, i.e. the
componentwise ordering, is locally not satisfying. Instead, the set of dominated
elements in the image space depends on the actual value of the objectives. As long as
the response of the organs on dose variations is relatively small, which corresponds
to flat parts in the dose-response curve, a change in the values for that organ in favor
of an improvement of the values for other organs is more accepted than for values
which correspond to steep parts in the dose-response curve, i.e. if the impact on the
organ is very sensitive to variations of the dose. A dose-response curve describes
thereby the caused effect to a particular volume (organ) of interest according to
increasing dose, as illustrated in Fig. 4.2.
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Fig. 4.2 Dose-response
curve: portion of effect
according to increasing dose
level

0
0

0.2

0.4

0.6

0.8

1

dose (increasing)

ef
fe

ct

4.2.2.3 Variable Ordering Structures and Equitability

Variable ordering structures play also an important role in the context of equitability
in multiobjective optimization. For the concept of equitability it is assumed that the
different criteria f1, . . . , fm (m ∈ N) considered in the multiobjective optimization
problem are uniform in the sense of scale used, that their values are directly com-
parable, and that they are considered to be impartially. This makes the distribution
of outcomes more important than the assignment of several outcomes to the specific
criteria.

This notion is of interest for several applications as the allocation of resources,
in location theory, see [25] and the references therein, or in portfolio optimization:
in portfolio selection having n securities available, x j ∈ R+ expresses the portion
of the capital which is invested in the security j. Considering m equally probable
scenarios, ci j denotes the observed (or forecasted) rate of return of security j under
scenario i. This results in an outcome matrix C = (ci j)i j ∈ Rm×n. In the portfolio
selection problem one has now to consider the linear optimization problem

Maximize Cx subject to
n

∑
j=1

x j = 1, x j ≥ 0, j = 1, . . . ,n.

The objective functions are uniform and it is postulated in [30] that an aggregation
must be equitable to model risk averse preferences.

Equitability is a refinement of the efficiency notion w.r.t. the natural ordering
cone in Rm. One is interested in the distribution of the outcomes of the several
objectives and not in their ordering, i.e. for instance a vector (4,2,0) is considered
to be equally good as a vector (0,4,2). At the same time a principle of transfer
should be satisfied stating that a transfer of any small amount from one outcome
to any other relatively worse outcome is more preferred, for instance (2,2,2) is
considered to be better than (4,2,0).

This is modeled in the following way: for the map Θ : Rm → Rm, Θ(y) =
(Θ1(y), . . . ,Θm(y)) with Θ1(y) ≥ . . . ≥Θm(y) such that there exists a permutation
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τ of {1, . . . ,m} with Θi(y) = yτ(i) for i = 1, . . . ,m for each y ∈ Rm, the cumulative
mapΘ : Rm → Rm is defined byΘ(y) = (Θ 1(y), . . . ,Θm(y)) with

Θ i(y) =
i

∑
j=1

Θ j(y) for i = 1, . . . ,m and for all y ∈Rm.

Then the equitability relation �e is defined by

x �e y ⇔ Θ i(x)≤Θ i(y) for all i = 1, . . . ,m.

For instance Θ(2,4,0) = (4,2,0) and Θ(2,2,2) = (2,2,2) and thus Θ(2,4,0) =
(4,6,6) as well as Θ(2,2,2) = (2,4,6). Then (2,2,2) �e (2,4,0). Based on �e an
equitable efficient element y of some set A ⊂ Rm is defined as an element in A such
that there exists no other element y ∈ A with y �e y. There is also a connection to
the concept of efficient elements in a partially ordered space ordered by Rm

+: y is an
equitable efficient element of the set A if and only if y is efficient of the set Θ(A)
w.r.t. the cone Rm

+.
The problem of finding equitable efficient elements is a vector optimization

problem with a variable ordering structure [3]: to see this the space Y = Rm can
be partitioned in m! sectors which are non-pointed convex cones. For each sector
a cone of preferred and of dominated directions is defined, i.e. {D(y) | y ∈ A} is
here a family of a finite number of pointed convex cones. The ordering concept of
equitability corresponds thus to a variable ordering structure with the images D(y)
depending on the sector in which the element y is located.

4.2.3 Vector Variational Inequalities and Vector Complementarity
Problems with a Variable Ordering Structure

Vector variational inequalities and their relation to vector optimization problems in
partially ordered spaces have been intensively studied in the last decades since their
introduction in 1980. Thus it is a natural consequence that also vector variational
inequalities with variable domination cones are considered. For instance in [7] the
following vector variational inequality (VVI) is studied: Let X , Y be real Banach
spaces, let S ⊂ X be a nonempty closed convex set and let T : S → L (X ,Y ) be a
map with L (X ,Y ) the space of continuous linear maps from X into Y . Additionally
assume a set-valued map C : S→ 2Y to be given with C (x) a closed pointed convex
cone with nonempty interior for all x∈ S. The task is now to find some x∈ S such that

T (x)(x− x) �∈ −int C (x) for all x ∈ S. (4.5)

In [28] the notion of a generalized efficient solution of a vector optimization
problem minx∈S F(x) was defined, similar to the notion given in Definition 4.3, for a
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vector-valued objective function F and assuming a cone-valued map C to be given
as defined above: An element x ∈ S is called a generalized efficient solution if there
is no x∈ S such that F(x) ∈ F(x)− int C (x). This notion was also used in [2] setting
S = X and calling it (global) vector minimum point. Clearly, if F is an injective
single-valued function, we can define the cone-valued map D in the image space by
D(y) := C (x) with x given by the equation y = F(x) for all y ∈ F(S). Then x is a
generalized efficient solution w.r.t. the ordering map C if and only if (x,F(x)) is a
weakly minimal solution w.r.t. the ordering map D .

Several extensions of the above VVI are considered for instance in [6, 40], see
also [18] and the references therein. In this context also a nonlinear scalarization
functional is used to define a so-called gap function [2]. Let r(x) ∈ int C (x) be
given for all x ∈ S, then the functional ξr : S×Y → R is defined by [9, 10]:

ξr(x,y) := inf{t ∈R | y ∈ t · r(x)−C (x)} ∀x ∈ S, y ∈Y.

Based on a similar scalarization functional also (weakly) minimal and (weakly)
nondominated elements w.r.t. a variable ordering map can be characterized, see
Sect. 4.4.2.2.

Variable ordering structures are also presumed in the context of vector comple-
mentarity problems [21]. For instance with T and C as above, setting S := X , and
assuming that K ⊂ Y is a convex cone, the following weak vector complementarity
problem can be considered: Find some x ∈ K such that

T (x)(x) �∈ int C (x) ∧ T (x)(x) �∈ −int C (x) ∀x ∈ K.

Relations to special vector optimization problems can be examined using the notion
of a generalized efficient solution as given above, as well as to special vector
variational inequalities.

Finally, also in vector equilibrium problems variable domination cones are of
interest [27].

4.2.4 Variable Ordering Structures Defined by Bishop–Phelps
Cones

In the vector optimization problems with a variable ordering which we have studied
so far, the ordering structure is defined by a cone-valued map where the images
D(y) are arbitrary (pointed convex) cones. By imposing some weak additional
assumptions on these images D(y), to be more concrete, to assume that they have
a representation as Bishop–Phelps cones (BP cones for short), scalarization func-
tionals can be formulated which completely characterize nondominated elements
w.r.t. the variable ordering. Even sufficient optimality conditions for nondominated
elements can be formulated based on these scalarizations.
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It is a very natural assumption that the images D(y) are BP cones, as any
nontrivial convex cone with a closed and bounded base in a real normed space,
e.g., any closed pointed convex cone in Rn, is representable as a BP cone
[23, Remark 2.16], [26,32]. For instance, the variable ordering which was studied in
[16] for describing the preferences of decision makers is based on ideal-symmetric
cones which are BP cones [16, Remark 8].

The BP cones were introduced in 1962 by Bishop and Phelps [5]. They are
defined as cones in a real normed space (Y,‖ · ‖) with the help of a functional from
the topological dual space Y ∗. The norm ‖ · ‖∗ in Y ∗ is thereby defined by

‖y∗‖∗ := sup
y�=0Y

|y∗(y)|
‖y‖ for all y∗ ∈ Y ∗.

Definition 4.4. For an arbitrary continuous linear functional φ ∈ Y ∗ on the real
normed space (Y,‖ · ‖) the cone

C(φ) := {y ∈ Y | ‖y‖ ≤ φ(y)} (4.6)

is called Bishop–Phelps cone.

A cone is said to be representable as a BP cone if there exists some φ ∈ Y ∗ and
a norm ‖ ·‖ equivalent to the norm of the space such that the cone can be written as
in (4.6). Note that the definition of a BP cone introduced in [5] is slightly different
from the above one which was given e.g. in [23].

Example 4.4. (a) Let Y = Rn and

Cp := {y ∈ Rn | ‖(y1, ...,yn−1)‖p ≤ yn}

for an lp norm ‖.‖p with p ∈ [1,∞]. It has been established that Cp is a BP cone
[23] with Cp =C( p

√
2en) for p∈ [1,∞) and en := (0, . . . ,0,1)�, and C∞ =C(en).

Note that C2 is the Lorentz cone (also called second-order cone or ice cream
cone).

(b) Let Y = R2 and assume that the space is equipped with the Manhattan-norm
‖ · ‖1. Then for instance for (φ1,φ2) = (1,1) we have C(φ1,φ2) = R2

+. Assume
φ1,φ2 ≥ 1, then R2

+ ⊂ C(φ1,φ2), (0,1/φ2) ∈ C(φ1,φ2), (1/φ1,0) ∈ C(φ1,φ2)
and

C(φ1,φ2) = cone conv{yA,yB}
with

yA :=
(

1−φ2

φ1 +φ2
,

1 +φ1

φ1 +φ2

)�
and yB :=

(
1 +φ2

φ1 +φ2
,

1−φ1

φ1 +φ2

)�
, (4.7)

see Fig. 4.3.
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Fig. 4.3 BP cone C(φ1 ,φ2)
of Example 4.4(b) for φ1 = 2
and φ2 = 3/2, as well as the
unit ball w.r.t. the
Manhattan-norm and (in
dashed line) the set
{(y1,y2) ∈ R2 |
(φ1,φ2)�(y1,y2) = 1}

BP cones have a rich mathematical structure and we recall some of their
properties [23]. In the following let (Y,‖ · ‖) be a real normed space.

Proposition 4.1. Let φ ,φ1,φ2 ∈ Y ∗ be given.

(a) C(φ) is closed, pointed and convex.
(b) C(φ) =−C(−φ).
(c) If ‖φ‖∗ > 1 then C(φ) is nontrivial; if ‖φ‖∗ < 1 then C(φ) = {0Y}.
(d) {y ∈ Y | ‖y‖ < φ(y)} ⊂ int(C(φ)). If ‖φ‖∗ > 1 then the interior of C(φ) is

nonempty and

int(C(φ)) = {y ∈ Y | ‖y‖< φ(y)}.
(e) φ ∈ (C(φ))# := {y∗ ∈Y ∗ | y∗(y) > 0 ∀y ∈C(φ)\ {0Y}}.
(f) The set {y ∈C(φ) | φ(y) = 1} is a closed and bounded base for the cone C(φ).

Assuming now that the variable ordering structure on Y is defined by a set-valued
map D : Y → 2Y with D(y) representable as a BP cone for all y ∈ Y (or for all
elements y of a subset A of Y ), then to any y∈Y we associate a norm ‖.‖y equivalent
to but eventually different from the norm of the space and we define a map � from
Y to Y ∗ such that

D(y) = C(�(y)) = {u ∈ Y | ‖u‖y ≤ �(y)(u)} for all y ∈ Y.

Note that already in Rn one might need different equivalent norms to represent
different nontrivial convex closed pointed cones as BP cones and this motivates us
to consider the above BP cones. InR2 it satisfies to choose just one norm but already
in R3 one has to use different norms to model for instance a polyhedral cone and the
Lorentz cone. In an application however there might be a variable ordering structure
with different cones D(y) but presumably they will all be of the same type, for
instance all polyhedral, and can all be modeled with the same norm, compare [16,
Remark 8]. In particular, when the norm ‖·‖y in the definition of the BP cones D(y)
is assumed to equal the norm ‖·‖ of the space Y and is thus equal for all y∈Y , these
cones reduce to the BP cones

D(y) = C(�(y)) = {u ∈ Y | ‖u‖ ≤ �(y)(u)}. (4.8)
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Fig. 4.4 BP cone C(�(y)) of
Example 4.5 for �1 = �1(y)
and �2 = �2(y), as well as the
unit ball w.r.t. the Euclidean
norm and (in dashed line) the
line connecting the points
(1/�1,0) and (0,1/�2)

Below is an example of a variable ordering structure given by such BP cones. Even
if the norm ‖ · ‖ does not depend on y a wide range of different cones is covered by
the images D(y) in (4.8).

Example 4.5. Let Y be the Euclidean space R2, ‖.‖y := ‖.‖2 for all y ∈ R2 and
define � : R2 → R2 by

�(y1,y2) := ( (3 + siny1)/2 , (3 + cosy2)/2 ) ∈ [1,2]× [1,2]. (4.9)

Then R2
+ ⊂C(�(y)) for all y ∈ R2. The cones C(�(y)) can be visualized as follows:

The two extreme rays of the pointed convex cone C(�(y)) are given by two half rays
starting in the origin being defined by the two intersection points of the unit circle
and the line connecting the points (1/�1,0) and (0,1/�2), see Fig. 4.4. For instance
C(�(3π/2,π)) = R2

+.

In Sect. 4.4.2.3 such special variable ordering structures are considered for the
formulation of nonlinear scalarization functionals.

4.3 Basic Properties of Optimal Elements

Many properties of efficient elements in a partially ordered space are still valid
for optimal elements w.r.t. a variable ordering, whereas others, see for instance
Lemma 4.4, hold in general only under additional assumptions. In the following,
let Y be a real topological linear space, A a nonempty subset of Y and D : Y → 2Y

a cone-valued map with D(y) convex and pointed for all y ∈ Y . For both optimality
concepts, for minimal and for nondominated elements w.r.t. an ordering map D ,
and for the related concepts of strongly and weakly optimal elements, we can easily
derive the following properties.

Lemma 4.2. (a) Any strongly nondominated element of A w.r.t. D is also a
nondominated element of A w.r.t. D . Any strongly minimal element of A w.r.t.
the ordering map D is also a minimal element of A w.r.t. D .
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(b) If D(A) is pointed, then there is at most one strongly nondominated element of
A w.r.t. D .

(c) Let int(D(y)) �= /0 for all y ∈ A. Any nondominated element of A w.r.t. D is also
a weakly nondominated element of A w.r.t. D . Any minimal element of A w.r.t.
D is also a weakly minimal element of A w.r.t. D .

(d) If y is a strongly nondominated element of A w.r.t. D , then the set of minimal
elements of A w.r.t. D is empty or equals {y}. If D(A) is pointed, then y is the
unique minimal element of A w.r.t. D .

(e) If y ∈ A is a strongly minimal element of A w.r.t. D and if D(y) ⊂ D(y) for all
y ∈ A, then y is also a strongly nondominated element of A w.r.t. D .

Proof. (a) Let y be a strongly nondominated element of A w.r.t. D . Then y ∈ {y}+
D(y) for some y ∈ A together with y ∈ {y}−D(y) implies that y− y ∈D(y)∩
(−D(y)) and due to the pointedness of D(y) we obtain y = y. The same for a
strongly minimal element of A w.r.t. D .

(b) Let y be a strongly nondominated element of A w.r.t. D . If D(A) is pointed,
then y− y ∈ −D(y) ⊂ −D(A) implies y− y �∈ D(A) for all y ∈ A \ {y}, i.e.
y �∈ {y}−D(y) for all y∈ A\{y} and thus no other element of A can be strongly
nondominated w.r.t. D .

(c) Follows directly from the definitions.
(d) As y is a strongly nondominated element of A w.r.t. D it holds for all y∈ A\{y}

y ∈ {y}−D(y) (4.10)

and hence, y cannot be a minimal element of A w.r.t. D . Next, assume there
exists y ∈ A such that y ∈ {y}−D(y). Together with (4.10) we conclude

y− y ∈D(y)∩ (−D(y))⊂D(A)∩ (−D(A)).

If D(A) is pointed then y = y and thus y is a minimal element of A w.r.t. D .
(e) As y is a strongly minimal element of A w.r.t. D it holds under the assumptions

here that y ∈ {y}−D(y) ⊂ {y}−D(y) for all y ∈ A and hence y is a strongly
nondominated element of A w.r.t. D . ��

A common result is that the efficient elements of a set in a partially ordered space
are a subset of the boundary of that set. The result remains true for variable ordering
structures.

Lemma 4.3. (a) (i) If int D(y) �= /0 for all y ∈ Y and y ∈ A is a weakly minimal
element of the set A w.r.t. the ordering map D , then y ∈ ∂A.

(ii) If y ∈ A is a minimal element of the set A w.r.t. the ordering map D and
D(y) �= {0Y}, then y ∈ ∂A.

(b) (i) If
⋂

y∈A int D(y) �= /0 and y ∈ A is a weakly nondominated element of the set
A w.r.t. the ordering map D , then y ∈ ∂A.

(ii) If
⋂

y∈A D(y) �= {0Y} and y∈ A is a nondominated element of the set A w.r.t.
the ordering map D , then y ∈ ∂A.
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Proof. (a) (i) If y ∈ int A then for any d ∈ int D(y) there exists some λ > 0 with
y−λd ∈ A. Then

y−λd ∈ A∩ ({y}− int D(y))

in contradiction to y a weakly minimal element of A w.r.t. D .
(ii) Similar to (i) but choose d ∈D(y)\ {0Y}.

(b) Similar to (a)(i): if y ∈ int A then choosing d ∈⋂
y∈A int D(y) there exists λ > 0

such that
y−λ d ∈ A∩ ({y}− int D(y−λ d))

in contradiction to y a weakly nondominated element of A w.r.t. D .
(ii) Similar to (b)(i), but choose d ∈ (⋂

y∈A D(y)
)\ {0Y}. ��

The following example demonstrates that we need for instance in (b)(i) in
Lemma 4.3 an assumption like

⋂
y∈A

int D(y) �= /0. (4.11)

Example 4.6. For the set A = [1,3] × [1,3] ⊂ R2 and the ordering map
D : R2 → 2R

2
,

D(y) :=
{
R

2
+ for all y ∈ R2, y1 ≥ 2,

{(z1,z2) ∈ R2 | z1 ≤ 0, z2 ≥ 0} else,

the point y = (2,2) is a weakly nondominated element of A w.r.t. D but y �∈ ∂A.

In view of the duality results in Sect. 4.5 we also study the relation of the optimal
elements of some set A and of the set

M :=
⋃
y∈A

{y}+D(y) (4.12)

w.r.t. the ordering map D . Note that for D(y) = K for all y ∈Y we have M = A+K
and the relations are well-known, compare [22, Lemma 4.7], [37, Lemma 4.1].

Lemma 4.4. Let M be defined as in (4.12).

(a) (i) If y∈ A is a minimal element of the set M w.r.t. D , then it is also a minimal
element of the set A w.r.t. D .

(ii) If y ∈ A is a minimal element of the set A w.r.t. D and if D(y) ⊂D(y) for
all y ∈ A, then y is also a minimal element of the set M w.r.t. D .

(b) (i) If y ∈M is a nondominated element of the set M w.r.t. D , then y ∈ A and y
is also a nondominated element of the set A w.r.t. D .

(ii) If y ∈ A is a nondominated element of the set A w.r.t. D , and if

D(y + d)⊂D(y) for all y ∈ A and for all d ∈D(y), (4.13)

then y is a nondominated element of M w.r.t. D .
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Proof. (a) The first implication (i) follows from A ⊂ M. Next we assume for (ii)
that y is a minimal element of A but not of M w.r.t. D , i.e. there exists some
y ∈ A and dy ∈ D(y) \ {0Y} with y + dy ∈ {y}− (D(y) \ {0Y}). As D(y) is a
pointed convex cone and D(y)⊂D(y) this implies

y ∈ {y}− (D(y)\ {0Y})− (D(y)\ {0Y})
⊂ {y}− (D(y)\ {0Y})− (D(y)\ {0Y})
⊂ {y}− (D(y)\ {0Y}),

in contradiction to y a minimal element of A w.r.t. D .

(b) (i) If y∈M\A then y∈ {y}+(D(y)\{0Y}) for some y∈A⊂M in contradiction
to y a nondominated element of M w.r.t. D . Thus y ∈ A. Due to A⊂M, y is then
also a nondominated element of A w.r.t. D . Next we assume for (ii) that y is a
nondominated element of A w.r.t. D but not of M, i.e. there exists some y ∈ A
and dy ∈ D(y) \ {0Y} with y ∈ {y + dy}+ (D(y + dy) \ {0Y}). As D(y) is a
pointed convex cone and D(y + dy)⊂D(y) this implies

y ∈ {y}+(D(y)\ {0Y})+ (D(y + dy)\ {0Y})
⊂ {y}+(D(y)\ {0Y})+ (D(y)\ {0Y})
⊂ {y}+(D(y)\ {0Y}),

in contradiction to y a nondominated element of A w.r.t. D . ��
The condition (4.13) can also be written as D(y+d)+D(y)⊂D(y) for all y∈Y

and all d ∈D(y) and corresponds to the property of transitivity of a binary relation
[11] as (4.13) implies: If y1 is dominated by y2 (in the sense of (4.3)), i.e. y1 ∈
{y2}+D(y2), and if y2 is dominated by y3, i.e. y2 ∈ {y3}+D(y3), then y1 ∈ {y2}+
D(y2) ⊂ {y3}+D(y3), i.e. y1 is dominated by y3. A variable domination structure
satisfying the condition (4.13) is given in the following example.

Example 4.7. Define the cone-valued map D : R2 → 2R
2

by

D(y1,y2) :=

⎧⎪⎪⎨
⎪⎪⎩

{(r cosϕ ,r sinϕ) | r ≥ 0, ϕ ∈ [0,π/8]} if y1 ≥ π/2,

{(r cosϕ ,r sinϕ) | r ≥ 0, ϕ ∈ [0, π2 + π
8 − y1]} if y1 ∈ (π/8,π/2),

R2
+ if y1 ≤ π/8.

Then D depends only on y1 and for y1 ≥ y1 for some y,y ∈R2 we conclude D(y)⊂
D(y). As for any y ∈R2 and any d ∈D(y) we have d1 ≥ 0 and thus y1 +d1 ≥ y1 we
conclude that (4.13) is satisfied.
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In general only the cones D(y) for y ∈ A are of interest for modeling a decision
making problem. Thus we have the freedom of setting D(y) := {0Y} for all
y ∈ Y \A. This allows us to make the assumption (4.13) dispensable for the result in
Lemma 4.4(b):

Lemma 4.5. Let D : Y → 2Y be given with D(y) = {0Y} for all y ∈Y \A and let M
be defined as in (4.12). Then an element y ∈Y is a nondominated element of the set
A w.r.t. D if and only if it is a nondominated element of the set M w.r.t. D .

Proof. First assume y is a nondominated element of the set A w.r.t. D . If it is not
also nondominated of M w.r.t. D then there exists some y ∈ A and some d ∈ D(y)
such that

y ∈ {y + d}+D(y + d)\{0Y} with y + d �∈ A. (4.14)

Thus y + d ∈ M \A and then D(y + d) = {0Y} in contradiction to (4.14). The other
implications follows from Lemma 4.4(b)(i). ��

4.4 Scalarization

Scalarization, i.e. the replacement of a vector optimization problem by an, in general
parameter dependent, scalar-valued optimization problem, is an important tool for
characterizing optimal elements in vector optimization. Linear functionals are the
easiest way to formulate such scalarization functions, but they completely char-
acterize weakly optimal elements only under additional assumptions as convexity.
Hence, we will also consider nonlinear scalarization functionals. Again, let Y be a
real topological linear space, A a nonempty subset of Y and D : Y → 2Y a set-valued
map with D(y) a pointed convex cone for all y ∈ Y .

4.4.1 Linear Scalarization

A basic scalarization technique is based on continuous linear functionals l from
the topological dual space Y ∗. Then one examines the scalar-valued optimization
problems

min
y∈A

l(y).

In finite dimensions, Y =Rm, this scalarization is also well known as weighted sum
approach, and the components li ∈ R, i = 1, . . . ,m, are then denoted as weights. In
the space Y partially ordered by some convex cone K we use that the elements of
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the dual cone are known to be monotonically increasing. Recall that the dual cone
K∗ ⊂ Y ∗ is given by K∗ := {l ∈ Y ∗ | l(y) ≥ 0 ∀ y ∈ K} and the quasi-interior of
the dual cone K# is defined as K# = {l ∈ Y ∗ | l(y) > 0 ∀ y ∈ K \ {0Y}}. We get
the following sufficient conditions for optimal elements w.r.t. a variable ordering
[14, 16]:

Theorem 4.1. Let y ∈ A.

(a) (i) If for some l ∈ (D(y))∗

l(y) < l(y) for all y ∈ A\ {y},

then y is a minimal element of A w.r.t. the ordering map D .
(ii) If for some l ∈ (D(y))#

l(y)≤ l(y) for all y ∈ A,

then y is a minimal element of A w.r.t. the ordering map D .
(iii) Let int D(y) �= /0 for all y ∈ A. If for some l ∈ (D(y))∗ \ {0Y∗}

l(y)≤ l(y) for all y ∈ A,

then y is a weakly minimal element of A w.r.t. the ordering map D .
(b) (i) If for some l ∈ (D(A))∗

l(y) < l(y) for all y ∈ A\ {y},

then y is a nondominated element of A w.r.t. the ordering map D .
(ii) If for some l ∈ (D(A))#

l(y)≤ l(y) for all y ∈ A,

then y is a nondominated element of A w.r.t. the ordering map D .
(iii) Let int D(y) �= /0 for all y ∈ A and let D(A) be convex. If for some

l∈(D(A))∗ \ {0Y∗}
l(y)≤ l(y) for all y ∈ A,

then y is a weakly nondominated element of A w.r.t. the ordering map D .

Proof. (a) (i) If y is not a minimal element of A w.r.t. D , then y−y∈D(y)\{0Y}
for some y ∈ A and as l ∈ (D(y))∗ this implies l(y)≥ l(y) in contradiction
to the assumption.

(ii) If y− y ∈ D(y) \ {0Y} for any y ∈ A then we get by l ∈ (D(y))# that
l(y) > l(y).

(iii) If y−y∈ int D(y) for any y∈ A then l ∈ (D(y))∗ \{0Y∗} implies, compare
[22, Lemma 3.21], l(y) > l(y).



4 Variable Ordering Structures in Vector Optimization 113

(b) (i) If y is not a nondominated element of A w.r.t. D , then y−y∈D(y)\{0Y}
for some y ∈ A. As l ∈ (D(A))∗ also l ∈ (D(y))∗ and thus l(y) ≥ l(y) in
contradiction to the assumption.

(ii) If y−y∈D(y)\{0Y} for any y∈A then l ∈ (D(A))# and thus l ∈ (D(y))#

implies l(y) > l(y).
(iii) If y− y ∈ int D(y) for any y ∈ A then l ∈ (D(A))∗ \ {0Y∗} and thus

l∈(D(y))∗ \ {0Y∗} implies l(y) > l(y) using again [22, Lemma 3.21].

Because of (D(A))∗ ⊂ (D(y))∗ and (D(A))# ⊂ (D(y))# for any y ∈ A it suffices
in (a) to consider functionals l in (D(A))∗ and in (D(A))#, respectively. A necessary
condition for the quasi interior of a convex cone to be nonempty is the pointedness
of the cone [22, Lemma 1.27]. This shows the limitation of the above results if
the variable ordering structure varies too much, i.e., if D(A) is no longer a pointed
cone. Then the quasi-interior (D(A))# is empty and the above characterizations can
no longer be applied.

Under the additional assumption that A is a convex set also necessary conditions
for weakly optimal elements and hence also for optimal elements w.r.t. a variable
ordering can be formulated with the help of linear functionals.

Theorem 4.2. Let A be convex and let int D(y) �= /0 for all y ∈ A.

(a) For any weakly minimal element y ∈ A of A w.r.t. the ordering map D there
exists some l ∈ (D(y))∗ \ {0Y∗} with

l(y)≤ l(y) for all y ∈ A.

(b) Set

D̂ :=
⋂
y∈A

D(y)

and let int D̂ be nonempty. For any weakly nondominated element y ∈ A of A
w.r.t. the ordering map D there exists some l ∈ D̂∗ \ {0Y∗} with

l(y)≤ l(y) for all y ∈ A.

Proof. (a) Since y is a weakly minimal element of A the intersection of the sets
{y}− int D(y) and A is empty. Applying a separation theorem there exists a
continuous linear functional l ∈ Y ∗ \ {0Y∗} and a real number α with

l(y−d)≤ α ≤ l(y) for all d ∈D(y) and for all y ∈ A.

As D(y) is a cone we conclude l(d)≥ 0 for all d ∈D(y) and thus l ∈ (D(y))∗ \
{0Y∗}, and due to 0Y ∈ D(y) we obtain l(y)≤ l(y) for all y ∈ A.

(b) Since y ∈ A is a weakly nondominated element of A w.r.t. the ordering map D
it holds y �∈ {y}+ int D(y) for all y ∈ A and thus y �∈ {y}+ int D̂ for all y ∈ A.
Then ({y}− int D̂∩A = /0 and again with a separation theorem this results in
l(y)≤ l(y) for all y ∈ A for some l ∈ D̂∗ \ {0Y∗}. ��
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The necessary condition for weakly nondominated elements w.r.t. the ordering
map D is very weak if the cones D(y) for y ∈ A vary too much, because then the
cone D̂ is very small (or even empty) and the dual cone is very large.

Example 4.8. Let Y ∈R2 and let D and A be defined as in Example 4.6. The unique
nondominated element w.r.t. D is (2,1) and all the elements of the set

{(2,t) ∈ R2 | t ∈ [1,3]}∪{(t,1)∈R2 | t ∈ [1,3]}

are weakly nondominated w.r.t. D . Further, D(A) = {(z1,z2)∈R2 | z2 ≥ 0} and thus
(D(A))∗ = {(z1,z2)∈R2 | z1 = 0, z2 ≥ 0}, i.e. (D(A))# = /0. Let l ∈ (D(A))∗ \{0Y∗}
be arbitrarily chosen, i.e. l1 = 0, l2 > 0, and consider the scalar-valued optimization
problem miny∈A l�y. Then all elements of the set {(t,1)∈R2 | t ∈ [1,3]} are minimal
solutions and hence are weakly nondominated elements of A w.r.t. D according to
Theorem 4.1(b)(iii). All the other weakly nondominated elements w.r.t. D cannot
be found by the sufficient condition. Because of int D̂ = /0, the necessary condition
of Theorem 4.2(b) cannot be applied.

Based on the above scalarization results existence results for optimal elements
can easily be derived.

Theorem 4.3. Let the set A be compact and let (D(A))# be nonempty. Then there
exists a minimal element and a nondominated element of the set A w.r.t. the ordering
map D .

Proof. Let l ∈ (D(A))# be arbitrarily chosen. According to the Weierstraß Theorem
there exists a minimal solution of the optimization problem miny∈A l(y). According
to Theorem 4.1 this minimal solution is then a minimal element of the set A w.r.t. D
because of l ∈ (D(y))# and also a nondominated element of A w.r.t. D because of
l ∈ (D(A))#.

In case the variable ordering structure is given by a cone-valued map with
images Bishop–Phelps cones, i.e. D(y) = C(�(y)) for all y ∈ Y , then according to
Proposition 4.1(e) �(y) ∈ (C(�(y)))# = (D(y))# for all y ∈ Y . Thus, in Theorem
4.1(a) we can choose l := �(y).

4.4.2 Nonlinear Scalarizations

As linear scalarizations are in many cases, as for instance if the set A is non-convex,
not an adequate tool for characterizing optimal elements, nonlinear scalarizations
are important. In the following we discuss parameter dependent nonlinear scalar-
ization functionals based on which a characterization of optimal elements w.r.t.
a variable ordering structure is possible. Especially for the case of an ordering
map D with images Bishop–Phelps cones strong results can be achieved which are
discussed in Sect. 4.4.2.3.
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4.4.2.1 Hiriart-Urruty Scalarization

In this subsection we assume additionally that (Y,‖ ·‖) is a normed space. Based on
the distance function dS : Y → R∪{+∞} for some set S ⊂ Y ,

dS(y) := inf{‖y− s‖ | s ∈ S} for all y ∈ Y,

Hiriart-Urruty has defined in [20] the function ΔS : Y → R∪{±∞} by

ΔS(y) := dS(y)−dY\S(y) =
{

dS(y) for y ∈ Y \S,

−dY\S(y) for y ∈ S
(4.15)

with Δ /0(y) = +∞ for all y ∈ Y . This function has several useful properties
[20, 29, 39]:

Proposition 4.2. Let S be a nonempty subset of Y with S �= Y .

(a) ΔS(y) ∈ R for all y ∈ Y and ΔS is Lipschitz continuous with constant 1.
(b) If S is convex, then ΔS is convex, and if ΔS is convex, then clS is convex.
(c) ΔY\S =−ΔS.
(d) ΔS(y) < 0 if and only if y ∈intS; ΔS(y) = 0 if and only if y ∈ ∂S; ΔS(y) > 0 if

and only if y ∈ int(Y \ S) = Y \ cl(S);
(e) If S is a cone, then ΔS is positive homogeneous.
(f) If S is convex with nonempty interior, then ΔS(y) = supy∗∈B∗ infs∈S y∗(y−s) with

B∗ = {y∗ ∈ Y ∗ | ‖y∗‖∗ = 1}.

Note that if S is closed, then ΔS(y) > 0 if and only if y �∈ S. For scalarization
results for efficient elements in a partially ordered space the set S is replaced in
(4.15) by−K with K the closed pointed convex cone defining the partial ordering in
the space Y . We illustrate the function defined in (4.15) in Y =Rm with K =Rm

+ [39]:

Example 4.9. Let Y = Rm and K = Rm
+, i.e. S =−Rm

+.

(a) Assuming the Euclidean norm we obtain d−K(y) = ‖y+‖2 with y+ defined by
y+

i := max{0,yi} for all i = 1, . . . ,m, and

dY\−K(y) =
{

0 if yi > 0 for some i ∈ {1, . . . ,m},
−maxi∈{1,...,m} yi if yi ≤ 0 for all i = 1 . . . ,m.

Thus

Δ−K(y) =
{ ‖y+‖2 if y �∈ −K,

maxi∈{1,...,m} yi if y ∈−K.

(b) Assuming the Maximum norm ‖y‖∞ := maxi∈{1,...,m} |yi| for all y∈Y , we obtain

Δ−K(y) = max
i∈{1,...,m}

yi.
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Efficient elements in a partially ordered space Y , ordered by K as given above,
can be characterized as follows [19, 39]: an element y ∈ A is an efficient element if
and only if y is a unique minimal solution of

min
y∈A

Δ−K(y− y),

i.e. if and only if

Δ−K(y− y) > Δ−K(0Y ) = 0 for all y ∈ A\ {y}.

Also other types of optimal elements in a partially ordered space as weakly efficient
elements can be characterized. By a slight modification we can also characterize
minimal elements of some set A w.r.t. a variable ordering map D , as an element y is
a minimal element of A w.r.t. D if and only if it is an efficient element of A in the
space Y partially ordered by K := D(y). Hence the function ζy : Y → R∪{±∞},

ζy(y) := Δ−D(y)(y− y)

for some element y ∈ A can be used to characterize minimal elements w.r.t. the
ordering map D . Note that according to Proposition 4.2 the function ζy is convex as
D(y) is convex.

By allowing the set S in (4.15) to vary dependently on the actual element y, also
a characterization of nondominated elements w.r.t. the ordering map D is possible.
Thus we consider additionally the function ζ v

y : Y → R∪{±∞},

ζ v
y (y) := Δ−D(y)(y− y) = d−D(y)(y− y)−dY\(−D(y))(y− y) for all y ∈Y

for some given element y ∈ Y . However, the function ζ v
y is in general nonconvex

despite the cones D(y) are assumed to be convex for all y ∈Y . The characterization
results are summed up in the next theorem:

Theorem 4.4. Let D(y) be a closed pointed convex cone for all y ∈ Y .

(a) (i) y ∈ A is a minimal element of A w.r.t. the ordering map D if and only if

ζy(y) > ζy(y) = 0 for all y ∈ A\ {y}.

(ii) Let int D(y) �= /0 for all y ∈ A. y ∈ A is a weakly minimal element of A w.r.t.
the ordering map D if and only if

ζy(y)≥ ζy(y) = 0 for all y ∈ A.

(b) (i) y∈ A is a nondominated element of A w.r.t. the ordering map D if and only
if

ζ v
y (y) > ζ v

y (y) = 0 for all y ∈ A\ {y}.
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(ii) Let int D(y) �= /0 for all y ∈ A. y ∈ A is a weakly nondominated element of
A w.r.t. the ordering map D if and only if

ζ v
y (y)≥ ζ v

y (y) = 0 for all y ∈ A.

Proof. (a) (i) As D(y) is a pointed cone, 0Y ∈ −∂D(y) and by Proposition 4.2
ζy(y) = Δ−D(y)(0Y ) = 0. y is a minimal element of A w.r.t. D if and only if
y− y �∈ −D(y) for all y ∈ A\ {y} and by Proposition 4.2 this is equivalent
to ζy(y) = Δ−D(y)(y− y) > 0 for all y ∈ A\ {y}.

(ii) The proof is analogous to (i) and hence is omitted.
(b) (i) As D(y) is a pointed cone ζ v

y (y) = Δ−D(y)(0Y ) = 0. y is a nondominated
element of A w.r.t. D if and only if y− y �∈ −D(y) for all y ∈ A \ {y} and
by Proposition 4.2 this is equivalent to ζ v

y (y) = Δ−D(y)(y− y) > 0 for all
y ∈ A\ {y}.

(ii) The proof is analogous to (i) and hence is omitted. ��

4.4.2.2 Pascoletti–Serafini Scalarization

Allowing two parameters a∈Y and r∈Y the following nonlinear scalarization func-
tional ψa,r,K : Y → R∪{±∞} is well examined in vector optimization in partially
ordered spaces ordered by some nonempty convex cone K ⊂ Y [12, 13, 17, 31]:

ψa,r,K(y) := inf{t ∈R | a + t r− y ∈ K} for all y ∈ Y.

Setting K := D(y), r := r(y) ∈ D(y) \ {0Y}, and a := 0Y or a := y for some given
y ∈ Y , this functional is studied in the context of a variable ordering structure and
the binary relation defined in (4.4) which corresponds to the notion of minimal
elements w.r.t. a variable ordering map [9, 10, 36]. By allowing also the cone K
to vary dependently on y, i.e. to consider K (y) with K : Y → 2Y a set-valued map
with K (y) a nonempty convex cone for all y ∈Y we get the following scalarization
function χa,r,K : Y → R∪{±∞},

χa,r,K (y) := inf{t ∈ R | a + t r− y ∈K (y)} for all y ∈ Y.

Setting K := D , r ∈ (∩y∈AD(y)) \ {0Y} and a := y also (weakly) nondominated
elements can be characterized. We sum up necessary and sufficient conditions
for minimal and for nondominated elements and sufficient conditions for weakly
minimal and nondominated elements of some set A w.r.t. the ordering map D . In the
following we assume that the infima in the definitions of the above scalarizations
are attained.

Theorem 4.5. (a) (i) If y is a minimal element of A w.r.t. the ordering map D ,
then for any pointed convex cone K ⊂D(y) and r ∈ K \ {0Y}

ψy,r,K(y) > ψy,r,K(y) = 0 for all y ∈ A\ {y}.
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(ii) Let int D(y) �= /0 for all y ∈ A. If for any a ∈Y, r ∈Y and any convex cone
K ⊃D(y) with int K �= /0

ψa,r,K(y)≥ ψa,r,K(y) for all y ∈ A,

then y is a weakly minimal element of A w.r.t. the ordering map D .
(iii) If for any a ∈Y , r ∈ Y and any convex cone K ⊃D(y)

ψa,r,K(y) > ψa,r,K(y) for all y ∈ A\ {y},

then y is a minimal element of A w.r.t. the ordering map D .
(b) (i) If y is a nondominated element of A w.r.t. the ordering map D , then for

any r ∈ (∩y∈AD(y))\ {0Y}

χy,r,D(y) > χy,r,D(y) = 0 for all y ∈ A\ {y}.

(ii) Let int D(y) �= /0 for all y ∈ A. If for any r ∈ (∩y∈AD(y))\ {0Y}

χy,r,D(y)≥ χy,r,D(y) = 0 for all y ∈ A,

then y is a weakly nondominated element of A w.r.t. the ordering map D .
(iii) If for any r ∈ (∩y∈AD(y))\ {0Y}

χy,r,D(y) > χy,r,D(y) = 0 for all y ∈ A\ {y},

then y is a nondominated element of A w.r.t. the ordering map D .

Proof. (a) (i) ψy,r,K(y) = inf{t ∈R | t r ∈ K} and because of r ∈ K \{0Y} and as
K is a pointed convex cone this implies ψy,r,K(y) = 0. If y is not a unique
minimal solution of miny∈Aψy,r,K(y), then there exists some t ∈ R, t ≤ 0,
and some y ∈ A\{y} such that y+ t r− y ∈ K. Because of t r ∈ −K and as
K is a convex cone, this implies y ∈ {y}−K \ {0Y} ⊂ {y}−D(y)\ {0Y}
in contradiction to y a minimal element of A w.r.t. D .

(ii) For t := ψa,r,K(y) it holds a + t r− y ∈ K. If there is some y ∈ A with
y− y ∈ int D(y), then

a + t r− y ∈ K + int D(y)⊂ intK.

Thus there exists some ε > 0 such that also a + (t − ε)r − y ∈ K in
contradiction to t = ψa,r,K(y) > t− ε .

(iii) The proof is similar to (b) and hence is omitted.
(b) (i) As D(y) is a pointed convex cone and because of r ∈D(y)\{0Y} it holds

χy,r,D(y) = 0. If y is not a unique minimal solution then there exists some
t ∈R, t ≤ 0, and some y ∈ A\{y} such that y+ t r− y ∈D(y). Because of
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Fig. 4.5 Illustration of the
Pascoletti–Serafini
scalarization of Example 4.10

t r ∈ −D(y) and as D(y) is a convex cone, this implies y ∈ {y}+D(y) \
{0Y} in contradiction to y a nondominated element of A w.r.t. D .

(ii) If there is some y ∈ A with y ∈ {y}+ int D(y) then this implies for any
r ∈ Y that there exists some t < 0 such that (y− y)+ t r ∈ D(y), i.e. y +
t r− y ∈D(y) and hence χy,r,D(y) < 0 which is a contradiction.

(iii) If there is some y ∈ A \ {y} with y ∈ {y}+D(y) then this implies y + 0 ·
r− y ∈D(y), i.e. χy,r,D(y)≤ 0 which is a contradiction. ��

Example 4.10. Let Y = R2 and D and A be given as in Example 4.2. We use the
sufficient criteria given in Theorem 4.5(b)(iii) to show that y = (0,0) is a non-
dominated element of A w.r.t. D . We choose r = (1,1), compare Fig. 4.5.Of course
χy,r,D(y) = 0. For y = (y1,y2) ∈ A \ {y} we have D(y) ⊂ R2

+ and thus because of
y2 ≥ y1 for all y ∈ A

χy,r,D(y) ≥ inf{t ∈ R | (t,t) ∈ (y1,y2)+R2
+}

= inf{t ∈ R | t ≥ y2}= y2.

On the other hand, for t = y2 we obtain because of (y2 − y1,0) ∈ D(y) for all
y ∈ A also

y + t r− y = y2 · (1,1)− (y1,y2) = (y2− y1,0) ∈D(y),

i.e. χy,r,D(y) = y2 for all y ∈ A, and because of y2 > 0 for all y ∈ A \ {y} we get
χy,r,D(y) = y2 > χy,r,D(y) = 0 for all y ∈ A\ {y}.

Summarizing the previous results we get for minimal and for nondominated
elements of some set A w.r.t. D the following complete characterization:

Corollary 4.1. (a) y is a minimal element of A w.r.t. the ordering map D if and
only if for any r ∈D(y)\ {0Y}

ψy,r,D(y)(y) > ψy,r,D(y)(y) = 0 for all y ∈ A\ {y}.

(b) y is a nondominated element of A w.r.t. the ordering map D if and only if for
any r ∈ (∩y∈AD(y))\ {0Y}

χy,r,D(y) > χy,r,D(y) = 0 for all y ∈ A\ {y}.
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4.4.2.3 Scalarization for Ordering Maps with Images Bishop–Phelps Cones

If the images of the cone-valued map D defining the variable ordering structure
are Bishop–Phelps cones, then this special structure can be used to define nonlinear
scalarization functionals which allow a complete characterization of minimal and of
nondominated elements w.r.t. D without imposing additional assumptions. A main
advantage is that we can give conditions ensuring that the scalarization is convex
which allows the formulation of sufficient optimality conditions of Fermat and
Lagrange type [15].

In this subsection we assume (Y,‖ · ‖) to be a real normed space and the cone-
valued map D : Y → 2Y given by

D(y) := C(�(y)) := {u ∈ Y | ‖u‖y ≤ �(y)(u)} for all y ∈ Y

with � : Y →Y ∗ a given map and with ‖ ·‖y a norm in Y for each y ∈Y equivalent to
‖ ·‖ which depends on y, compare Sect. 4.2.4. Let A be a nonempty subset of Y . For
some given y ∈ Y we define the following scalarization functionals γy, ξ y, γy, ξy :
Y → R by

γy(y) := �(y)(y− y)−‖y− y‖y for all y ∈ Y,

ξ y(y) := �(y)(y− y)+‖y− y‖y for all y ∈ Y,

γy(y) := �(y)(y− y)−‖y− y‖y for all y ∈ Y,

ξy(y) := �(y)(y− y)+‖y− y‖y for all y ∈ Y.

(4.16)

These four functionals allow a complete characterization of minimal and of
nondominated elements w.r.t. a variable ordering structure [15]:

Theorem 4.6. Let y ∈ A.

(a) (i) y is a strongly minimal element of A w.r.t. the ordering map D if and
only if

γy(y)≥ γy(y) = 0 for all y ∈ A.

(ii) y is a minimal element of A w.r.t. the ordering map D if and only if

ξ y(y) > ξ y(y) = 0 for all y ∈ A\ {y}.

(iii) Let ‖�(y)‖∗ > 1 (and hence, int D(y) �= /0) for all y ∈ A. y is a weakly
minimal element of A w.r.t. the ordering map D if and only if

ξ y(y)≥ ξ y(y) = 0 for all y ∈ A.

(b) (i) y is a strongly nondominated element of A w.r.t. the ordering map D if
and only if

γy(y)≥ γy(y) = 0 for all y ∈ A.



4 Variable Ordering Structures in Vector Optimization 121

(ii) y is a nondominated element of A w.r.t. the ordering map D if and only
if

ξy(y) > ξy(y) = 0 for all y ∈ A\ {y}.
(iii) Let ‖�(y)‖y,∗ > 1 (and hence, int D(y) �= /0) for all y∈ A. y is a weakly

nondominated element of A w.r.t. the ordering map D if and only if

ξy(y)≥ ξy(y) = 0 for all y ∈ A.

Here, ‖ · ‖y,∗ denotes the dual norm of ‖ · ‖y.

Proof. (a) The proof is similar to (b) and hence is omitted.
(b) (i) y is strongly nondominated w.r.t. the ordering map D if and only if

y− y ∈D(y) = {z ∈ Y | ‖z‖y ≤ �(y)(z)} for all y ∈ A being equivalent
to �(y)(y−y)−‖y−y‖y ≥ 0 and thus to γy(y)≥ γy(y) = 0 for all y∈ A.

(ii) y is a nondominated element w.r.t. the ordering map D if and only if
y− y /∈ D(y) i.e. �(y)(y− y)−‖y− y‖y < 0 for all y ∈ A \ {y} and
hence if and only if ξy(y) = �(y)(y− y)+‖y− y‖y > 0 = ξy(y) for all
y ∈ A\ {y}.

(iii) Using Proposition 4.1(d), the proof is similar to (ii) and hence is
omitted. ��

Recently, the functional ξy has been used in [24, Theorem 5.8] to characterize
an element y which is a properly efficient element of A in the senses of Henig or
Benson in a partially ordered space. Note that there �(y) := φ ∈Y ∗ for all y ∈ Y .

Example 4.11. Let Y be the Euclidean spaceR2 and the cone-valued map D : R2 →
2R

2
be defined by D(y) :=C(�(y)) with � :R2 →R2 as in (4.9) and with ‖.‖y := ‖.‖2

for all y ∈ R2 and let

A := {(y1,y2) ∈ R2 | y1 ≥ 0, y2 ≥ 0, y2 ≥ π− y1}.

By Theorem 4.6(b), y = (0,π) is a nondominated element of A w.r.t. the ordering
map D because it obviously holds

ξy(y) =
3 + siny1

2
(y1−0)+

3 + cosy2

2
(y2−π)+‖(y1,y2)�−(0,π)�‖2 > 0 = ξy(y)

for all (y1,y2) ∈ A\{(0,π)}with y2 ≥ π . For those y ∈ A\{(0,π)}with y2 < π we
have 0 > y2−π ≥−y1 and we obtain

ξy(y) ≥ 3 + siny1

2
y1 +

3 + cosy2

2
(−y1)+

√
y2

1 +(y2−π)2

>

(
siny1− cosy2

2

)
y1 + y1 ≥ 0.
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However, it is not a strongly nondominated element of A w.r.t. D because

γ y(3π/2,0) = (1,2)(3π/2,−π)�−‖(3π/2,−π)�‖2 < 0 = γ y(y).

y = (0,π) is also a minimal element but not a strongly minimal element of A w.r.t.
the ordering map D because it holds

ξ y(y) = (3/2,1)(y1,y2−π)�+‖(y1,y2)�− (0,π)�‖2 > 0 = ξ y(y)

for all y ∈ A\ {(0,π)}, and

γy(3π/2,0) = (3/2,1)(3π/2,−π)�−‖(3π/2,−π)�‖2 < 0 = γy(y).

It is especially difficult to find scalarization functionals characterizing nondom-
inated elements which are –at least under strong assumptions– convex. Under
appropriate assumptions, the functional ξy is convex and sufficient optimality
conditions for vector optimization problems as Fermat rule and Lagrange multiplier
rule can be formulated even for nondominated elements [15]. Hereby, � is called
monotone if (�(y1)− �(y2))(y1− y2)≥ 0 for all y1,y2 ∈ Y . For instance for Y = Rm

and P ∈ Rm×m a positive semidefinite matrix, the map �(y) := Py for all y ∈ Y is
linear and monotone.

Lemma 4.6. Suppose that � is linear and monotone. Then the functional ξy is
convex.

Proof. Let y1,y2 ∈ Y and λ ∈ [0,1], then

�(λy1 +(1−λ )y2)(λy1 +(1−λ )y2)
= λ �(y1)(λy1 +(1−λ )y2)+ (1−λ )�(y2)(λy1 +(1−λ )y2)
= λ �(y1)(y1)+λ (1−λ )�(y1)(y2− y1)+ (1−λ )�(y2)(y2)

+λ (1−λ )�(y2)(y1− y2)
= λ �(y1)(y1)+ (1−λ )�(y2)(y2)−λ (1−λ )(�(y1)− �(y2))(y1− y2)
≤ λ �(y1)(y1)+ (1−λ )�(y2)(y2).

As also the norm is convex and � is a linear map, we conclude the convexity of the
function ξy. ��

For a detailed examination of necessary and sufficient optimality conditions
for nondominated elements of unconstrained and constrained vector-optimization
problems with set-valued or single-valued objective maps we refer to [15]. The
convexity of the map ξy plays also an important role in the context of duality,
compare Sect. 4.5.
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4.5 Duality

In vector optimization one can, under appropriate assumptions, associate a maxi-
mization problem to a minimization problem. In vector optimization with a variable
ordering structure we get by that a relation between the two optimality concepts,
i.e. between nondominated elements w.r.t. D of one set and the maximal elements
w.r.t. D , i.e. the minimal elements w.r.t. −D , of another set. As before, let Y be
a real linear space, D : Y → 2Y a set-valued map with D(y) a pointed convex cone
for all y ∈ Y and A a nonempty subset of Y . Recall that we have defined the set M
in (4.12) by:

M :=
⋃
y∈A

{y}+D(y).

We define to the primal set A a so called dual set Q by

Q := Y \ M̃ with M̃ :=
⋃
y∈A

{y}+D(y)\ {0Y}. (4.17)

Lemma 4.7. Let Q be defined as in (4.17). If y ∈ A∩Q, then y is a nondominated
element of A w.r.t. the ordering map D and y is a maximal element of Q w.r.t. the
ordering map D .

Proof. y ∈ Q implies y �∈ M̃ and thus y is a nondominated element of A w.r.t. D .
Since Q∩ M̃ = /0 and y ∈ A also

Q∩ ({y}+(D(y)\ {0Y})) = /0

and thus y ∈ Q is a maximal element of the set Q w.r.t. the ordering map D . ��
This leads to the following duality theorem:

Theorem 4.7. (a) If y ∈ A is a nondominated element of A w.r.t. the ordering map
D , then y is also a maximal element of Q w.r.t. the ordering map D .

(b) If Y \M is algebraically open then every maximal element of the set Q w.r.t. the
ordering map D is also a nondominated element of the set A w.r.t. the ordering
map D .

Proof. (a) First assume y �∈ Q. Then y ∈ M̃ which is a contradiction to y a
nondominated element of A w.r.t. D . Thus y ∈ A∩Q and the assertion follows
with Lemma 4.7.

(b) Let y be an arbitrary maximal element of Q w.r.t. D , i.e.

({y}+D(y))∩Q = {y}.

First assume y �∈ M. As Y \M is algebraically open, there exists for every d ∈
D(y)\{0Y} a scalar λ > 0 with y+λ d ∈Y \M⊂Q. As y+λ d ∈ {y}+(D(y)\
{0Y}) this is a contradiction to the maximality of y. Thus y ∈M.
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Due to y �∈ M̃ we get y ∈ A. With Lemma 4.7 we conclude that y is a
nondominated element of A w.r.t. D . ��
Example 4.12. (a) Let Y = R2, A = R2

+ and D : R2 → 2R
2

be given by

D(y) :=
{ {(z1,z2) ∈R2 | z1 ≥ 0, z1 + z2 ≥ 0} if y2 ≥ 0,

R2
+ else.

Then M = {(y1,y2) ∈ R2 | y1 ≥ 0, y1 + y2 ≥ 0} and M̃ = M \ {(0,0)}. The
set Y \M is algebraically open and Q = (R2

+ \M)∪ {(0,0)}. Q has a single
maximal element (0,0) w.r.t. D which is also a nondominated element of A
w.r.t. D . Note, that for instance (1,−1) �∈ Q.

(b) We consider the set A = [1,3]× [1,3] and the ordering map

D(y) :=
{
R2

+ for all y ∈R2 with y1 > 1,

{(z1,z2) ∈R2 | z1 + z2 ≥ 0, z1− z2 ≥ 0} else.

The above sets are in this example

M̃ = {(y1,y2) ∈ R2 | y1 > 1, y2 ≥ 2− y1}

and M = M̃∪{(y1,y2) ∈R2 | y1 = 1, y2 ∈ [1,3]}. Thus

Q = {(y1,y2) ∈ R2 | y1 ≤ 1 ∨ (y1 > 1 ∧ y1 + y2 < 2)}.

The set of nondominated elements of A w.r.t. D is {(y1,y2) ∈R2 | y1 = 1, y2 ∈
[1,3]} and the set of maximal elements of Q w.r.t. D is {(y1,y2) ∈ R2 |
y1 =1, y2 ≥ 1}. Thus Q∩A equals the set of nondominated elements of A w.r.t.
D which is a strict subset of the set of maximal elements of Q w.r.t. D . Thus
not all maximal elements of Q w.r.t. D refer to a nondominated element of A
w.r.t. D . The set Y \M is not algebraically open.

Additional duality results can also be gained by using characterizations gained
by linear [14] or nonlinear scalarizations [15]: For the special case of a cone-valued
map D with images BP cones the scalarization functional ξy allows the formulation
of a dual optimization problem relating weakly nondominated and weakly maximal
elements w.r.t. D . For these results additional assumptions are necessary as the
linearity and monotonicity of the map � : Y → Y ∗ defining the cone-valued map
D by D(y) = C(�(y)) for all y ∈ Y , which imply for instance the convexity of the
map ξy, compare Lemma 4.6 and [15, Proposition 3.17].
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18. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered
Spaces. Springer, New York (2003)

19. Ha, T.X.D.: Optimality conditions for several types of efficient solutions of set-valued
optimization problems. In: Nonlinear Analysis and Variational Problems, Eds. P. Pardalos,
Th.M. Rassias, A.A. Khan. Springer, 305–324 (2009)

20. Hiriart-Urruty, J-B.: New concepts in nondifferentiable programming. Bull. Soc. Math. France
60, 57–85 (1979)

21. Huang, N.J., Yang, X.Q., Chan, W.K.: Vector complementarity problems with a variable
ordering relation. Eur. J. Oper. Res. 176, 15–26 (2007)

22. Jahn, J.: Vector Optimization - Theory, Applications, and Extensions. Springer, Heidelberg
(2004)

23. Jahn, J.: Bishop-Phelps cones in optimization. International J. Optim.: Theory, Meth. Appl. 1,
123–139 (2009)

24. Kasimbeyli, R.: A nonlinear cone separation theorem and scalarization in nonconvex vector
optimization. SIAM J. Optim. 20, 1591–1619 (2010)



126 G. Eichfelder

25. Kostreva, M.M., Ogryczak, W., Wierzbicki, A.: Equitable aggregations in multiple criteria
analysis. Eur. J. Oper. Res. 158, 362–377 (2004)

26. Krasnoselskii, M.A.: Positive solutions of operator equations. Noordhoff, Groningen (1964)
27. Lee, G.M., Kim, D.S., Lee, B.S.: On noncooperative vector equilibrium. Indian J. Pure Appl.

Math. 27, 735–739 (1996)
28. Lee, G.M., Kim, D.S., Kuk, H.: Existence of solutions for vector optimization problems.

J. Math. Anal. Appl. 220, 90–98 (1998)
29. Liu, C.G., Ng, K.F., Yang, W.H.: Merit functions in vector optimization. Math. Prog. Ser. A

119, 215–237 (2009)
30. Ogryczak, W., Sliwinski, T.: On solving linear programs with the ordered weighted averaging

objective. Eur. J. Oper. Res. 148, 80–91 (2003)
31. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl.

42, 499–524 (1984)
32. Petschke, M.: On a theorem of Arrow, Barankin, and Blackwell. SIAM J. Control Optim. 28,

395–401 (1990)
33. Thieke, C.: Private communication (2010)
34. Wacker, M.: Multikriterielle Optimierung bei Registrierung medizinischer Daten. Diplomar-

beit, Univ. Erlangen-Nürnberg, Germany (2008)
35. Wacker, M., Deinzer, F.: Automatic robust medical image registration using a new democratic

vector optimization approach with multiple measures. In: Medical Image Computing and
Computer-Assisted Intervention MICCAI 2009, Eds. G.-Z. Yang et al., 590–597 (2009)

36. Xiao, G., Xiao, H., Liu, S.: Scalarization and pointwise well-posedness in vector optimization
problems. J. Global Optim. 49, 561–574 (2011)

37. Yu, P.L.: Cone convexity, cone extreme points, and nondominated solutions in decision
problems with multiobjectives. J. Optim. Theory Appl. 14, 319–377 (1974)

38. Yu, P.L.: Multiple-criteria Decision Making: Concepts, Techniques and Extensions. Plenum
Press, New York (1985)

39. Zaffaroni, A.: Degreesof efficiency and degreees of minimality. SIAM J. Control Optim. 42,
1071–1086 (2003)

40. Zheng, F.: Vector variational inequalities with semi-monotone Operators. J. Global Optim. 32,
633–642 (2005)



Chapter 5
Strong KKT, Second Order Conditions and
Non-solid Cones in Vector Optimization

Joydeep Dutta

5.1 Introduction

In this chapter we shall concentrate on studying the Karush–Kuhn–Tucker (KKT)
type optimality conditions for both Pareto and weak Pareto minimum of a usual
vector optimization problem, that is, a vector optimization problem with equality
and inequality constraints. It is now a well known fact that the KKT conditions
for scalar optimization problems play a major role in the analysis of algorithms.
It is still not clear whether the KKT conditions for a vector optimization problem
plays such a significant role. However that does not mean that there is really no
use studying them. They do play a fundamental role in understanding the nature
of the solutions of a vector optimization. Further they can always be used as an
optimality certificate through which we can conclusively decide that a point is not
a Pareto minimum or a weak Pareto minimum. Optimality conditions can also lead
to the design of certain merit functions which can lead to robust error bounds for
a convex vector optimization problems with strongly convex objective functions.
Thus it is important for us to develop necessary and sufficient optimality conditions
for a vector optimization problem. In our discussions in this chapter we shall be
largely concentrated on the following vector optimization problem (VOP),

min f (x), subject to x ∈C,

where f : X → Y and C ⊆ X . Here X and Y are either finite dimensional spaces
or infinite dimensional spaces. Further we shall consider two scenarios, namely
where C is not explicitly defined through constraint functions and the case where it
expressed explicitly through constraint functions. We will study the problem (VOP)
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in both the finite dimensional setting and infinite dimensional setting. However for
simplicity of the exposition we will concentrate largely on the finite dimensional
setting and we will study the problem (VOP) in the infinite dimensional setting
in only one section but will focus on contemporary research and mainly address the
question of how to develop optimality conditions in the case when the ordering cone
has an empty interior. We shall provide below the list of sections that will appear in
the sequel.

Section 5.2 : Tools from nonsmooth analysis
Section 5.3 : Geometric optimality conditions
Section 5.4 : Optimality conditions with explicit constraints
Section 5.5 : Second order optimality conditions
Section 5.6 : Excursions in infinite dimensions

The reader will notice that in Sect. 5.2 we describe the main tools and techniques
of nonsmooth analysis that we have used in this chapter. These tools and their
associated results will be given in a finite dimensional setting. The last section deals
with optimality conditions in infinite dimensional spaces namely Banach spaces.
The tools from nonsmooth analysis required in infinite dimensional spaces have
been mentioned in that particular section.

Furthermore it is not possible to do justice to the vast topic of optimality
conditions in vector optimization in just one chapter. Thus there would be many
omissions and as result one might not get all the different view points in this area.
Instead we try our best to collect some recent and interesting results in the area of
optimality conditions for vector optimization.

It is however important on the reader’s part to supplement his reading of this
chapter with various other books and monographs on the subject. See for example
the monographs by Jahn [26], Luc [29], Gopfert et al. [21], and the references
therein.

5.2 Tools from Nonsmooth Analysis

In this section we shall try to briefly describe some important tools of nonsmooth
analysis that we have used here. This will consist in the notions of various tangent
and normal cones as well as the subdifferential for convex functions and the Clarke
subdifferential for locally Lipschitz functions. The material in this section is largely
based on the survey paper on nonsmooth optimization due to Dutta [9].

We begin by the definition of a proper convex function. This means we consider a
convex function which is extended-valued i.e. f : Rn → R, where R= R∪{−∞.+
∞}. A function f : Rn → R is said to be proper if f (x) > −∞ for all x ∈ Rn and
dom f = {x : f (x) < ∞} known as the domain of the function f is non-empty.
The subdifferential of a proper convex function is defined as follows. Give a proper
convex function f :Rn →R and x∈ dom f the subdifferential is a closed convex set
∂ f (x) given as
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∂ f (x) = {ξ ∈ Rn : f (y)− f (x)≥ 〈ξ ,y− x〉, ∀y ∈ Rn}.

When x �∈ dom f we set ∂ f (x) = /0. If x is in the interior of dom f then ∂ f (x)
is a non-empty convex and compact set. Associated with the subdifferential is the
notion of the one-sided directional derivative of a convex function at x ∈ dom f in
the direction d. This is denoted as f ′(x,h) and is given as

f ′(x,h) = sup
ξ∈∂ f (x)

〈ξ ,d〉.

Further when x is the interior of dom f we have that f ′(x,h) is finite. Of course x is
a minimum (global) of f over Rn if and only if 0 ∈ ∂ f (x).

Let us now present some important calculus rules for the subdifferential of a
convex function. Of course the most simplest is that ∂ (λ f )(x) = λ∂ f (x), with
λ ≥ 0. The next is the sum rule which says the following. Let f and g be two
extended-valued proper convex functions defined on Rn. Assume that the following
qualification condition

0 ∈ core(dom g− dom f )

holds. Then

∂ ( f + g)(x) = ∂ f (x)+ ∂g(x), x ∈ Rn.

The qualification condition under which the sum rule holds also follows from the
fact that ri(dom f )∩ ri(dom g) �= /0. Now we will present a very important calculus
rule which tells us how to calculate the subdifferential of a “max” function.

Let f (x) = max{ f1(x), . . . fk(x)} where each f j , j = 1, . . . ,k is a convex function
then one has

∂ f (x) = co

⎧
⎨
⎩

⋃

j∈J(x)

∂ f j(x)

⎫
⎬
⎭ ,

where J(x) = { j : f (x) = f j(x)}.
We will also discuss now some present some important geometrical tools used in

nonsmooth optimization. We will introduce the Bouligand tangent cone or simply
the tangent cone and the normal cone to convex set. The notion of the tangent cone
to an arbitrary closed set is given as follows. A vector v ∈ Rn is a tangent to a set C
at x ∈C, if

xk− x
tk

→ v for some xk → x, xk ∈C and tk ↓ 0.

The set of all tangent vectors form a cone called the Bouligand tangent cone or
simply the tangent cone and is denoted as TC(x). If C is a convex set then we have
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TC(x) = clcone(C− x).

A vector v ∈ Rn is said to be a normal vector to the convex set C at x if

〈v,y− x〉 ≤ 0, ∀y ∈C.

The set of all vector normal vectors v forms a cone called the normal cone to the
convex set C at x and is denoted as NC(x). Further when C is convex the Bouligand
tangent cone and the normal cone are connected through the following polarity
relation,

(TC(x))◦ = NC(x) and (NC(x))◦ = TC(x).

where A◦ = {w ∈Rn : 〈v,w〉 ≤ 0, ∀v ∈ A}.
We shall now discuss the notion of Clarke subdifferential for a locally Lipschitz

function. We begin with the notion of the Clarke generalized derivative which is an
extension of the directional derivative of a convex function. The Clarke generalized
directional derivative of f at x in the direction d is given as

f ◦(x,d) = limsup
y→x,λ↓0

f (y +λd)− f (y)
λ

.

Further note that for each given x the function d �→ f ◦(x,d) is sublinear in d.
The Clarke generalized gradient or the Clarke subdifferential of f at x is denoted

as ∂ ◦ f (x) and is given as

∂ ◦ f (x) = {ξ ∈ Rn : f ◦(x,d)≥ 〈ξ ,d〉, ∀v ∈Rn}.

The set ∂ ◦ f (x) is nonempty, convex and compact for each x ∈ Rn. As a set-
valued map ∂ ◦ f is locally bounded and has a closed graph and hence is upper-
semicontinuous. Further if x0 is a local minimizer of f over Rn then 0 ∈ ∂ ◦ f (x).
Note that the optimality condition is necessary and not sufficient in general. We
also have

f ◦(x,v) = sup
ξ∈∂ ◦ f (x)

〈ξ ,v〉.

Further if f is a finite-valued convex function then it is always locally Lipschitz and
the Clarke generalized derivative of f and the Clarke subdifferential of f coincide
with the directional derivative and the subdifferential of the convex function f . Let
us also mention some important calculus rules that we would need in the sequel.
The first one is the most simplest one which says that ∂ ◦(λ f )(x) = λ∂ ◦ f (x) for all
λ ∈ R. Then we have the sum rule which says that if f and g are locally Lipschitz
function we have
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∂ ◦( f + g)(x)⊆ ∂ ◦ f (x)+ ∂g(x).

The above inclusion can also hold in the strict sense.
It is important to note that when C is convex the Bouligand tangent cone is

convex, whereas in general it is closed and need not be convex. Clarke [6] developed
a notion of the tangent cone which is always a convex set irrespective of the nature
of the underlying set. This notion is now known as the Clarke tangent cone which
we now give below.

T cl
C (x) = {v ∈ Rn : d◦C(x,v) = 0},

where dC denotes the distance function associated with the set C and it is well known
that dC is Lipschitz.

The Clarke normal cone is defined as the polar of the Clarke tangent cone and is
given as

Ncl
C (x) = (T cl

C (x))◦.

5.3 Geometric Optimality Conditions

It is well known that the set of Pareto minimizers are contained in the set of weak
Pareto minimizers. Hence any necessary optimality condition that is satisfied by
weak Pareto minimizers will also hold for Pareto minimizers. Thus in this section
we will concentrate on developing optimality conditions for weak Pareto minimizers
for the problem (VOP) where the set C is just a closed set and need not be
described explicitly through functional constraints. Let us also note that we shall
consider in this chapter the Pareto and weak Pareto minimizers under the natural
ordering cone Rk

+. The reader can easily generalize the results to the case for any
closed, convex and pointed cone with a non-empty interior. In this section we shall
consider the problem (VOP) in the finite dimensional setting and we shall consider
X = Rn and Y = Rr. Thus f can be viewed as a vector function with r real-valued
components. Thus one can write

f (x) = ( f1(x), . . . , fr(x)).

Further we will consider C to be a closed set in Rn. It is important to note that the
results in this section are fundamental and are well known. Thus instead of providing
a reference for each result we shall mention some sources where these results can
be found.

Theorem 5.1. Let us consider the problem (VOP) where f is continuously differ-
entiable (smooth) function and C is a convex set. Let x be a weak Pareto minimizer
of (VOP). Then
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(〈∇ f1(x),v〉, . . . ,〈∇ fk(x),v〉) �∈ −intRk
+ ∀v ∈ TC(x).

Conversely if each f j, j = 1, . . . ,k is convex and C a closed convex set then the above
condition is also sufficient for x to be a weak minimum.

Proof. Let us set W =Rr \−intRr
+. Let 0 �= v ∈ TC(x). Hence there exist sequences

tk ↓ 0 and vk → v such that x+ tkvk ∈C. Since x is a weak Pareto minimum we have

( f1(x + tkvk)− f1(x), . . . , fk(x + tkvk)− fr(x)) ∈W. (5.1)

Note that W is a closed cone though not convex. Thus dividing both sides of (5.1)
by tk and passing to the limit as tk → 0 we reach our desired conclusion.

For the converse observe that since C is convex TC(x) is a convex set and using
standard separation arguments or the convex version of the Gordan’s theorem of the
alternative (see for example Craven [8]) we have that there exists τ j ≥ 0, j = 1, . . .r
and 0 �= τ = (τ1, . . . ,τr) such that

r

∑
j=1

τ j〈∇ f j(x),v〉 ≥ 0, ∀v ∈ TC(x).

This shows that

r

∑
j=1

τ j∇ f j(x) ∈ NC(x),

where NC(x) is the normal cone to the convex set C at x. Hence from basic facts of
convex optimization we see that x is a solution of the problem

r

∑
j=1

τ j f j(x), subject to x ∈C.

We will now leave it to the reader to prove from the above fact that x is a weak
Pareto minimum. ��

The above result can be found for example in Jahn [26]. We already know that
if C is convex then TC(x) = clcone(C− x). This allows us to phrase the optimality
condition in the following form. If x is a Pareto minimum for (VOP) where C is a
closed convex set then

(〈∇ f1(x),x− x〉, . . . ,〈∇ fk(x),x− x〉) �∈ −intRk
+ ∀x ∈C. (5.2)

This is what is known as the weak variational inequality formulation of the
necessary optimality conditions. Of course we can replace the gradients of the
functions by some other vector functions. That will lead us to what is known as the
Stampacchia type weak vector variational inequality. See for example Charitha and
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Dutta [5] for more details. In [5] they considered the more general problem of Stam-
pacchia type weak vector variational inequality rather than a vector optimization
problem itself. They developed a scalar-valued merit function and its regularization
and also developed error bounds for certain classes of vector variational inequalities.
We will adapt their work to the case of a convex vector optimization problem
and present the error bound results for convex vector optimization problems with
strongly convex objective functions. Now consider the problem (VOP) where all the
functions fi are assumed to be convex and C is a convex set. Observe that if we take
0 �= τ ∈ Rr

+ and if x solves the scalar convex optimization problem (SPτ)

min
r

∑
j=1

τ j f j(x), subject to x ∈C,

then x also a weak minimum of the problem (VOP). Further it is well known that

w− sol(VOP) =
⋃

τ∈Rr
+\{0}

sol(SPτ), (5.3)

where w-sol(VOP) denotes the set of weak minimum of the solution and sol(SPτ)
denotes the solution set of the scalar problem (SPτ). Of course the above relation
holds if the problem (VOP) is convex. Based on the approach due to Charitha and
Dutta [5] we associate the following merit function or gap function with the problem
(VOP) where each f j, j = 1, . . . ,r is smooth and need not be convex. The merit
function is given as

θ (x) = min
τ∈Sr

max
y∈C

〈
r

∑
j=1

τ j∇ f j(x),y− x

〉
,

where Sr is the unit simples in Rr. Again adapting [5, Theorem 2.2] in our setting
we have the following result.

Theorem 5.2. For any x ∈ C, θ (x) ≥ 0 and θ (x) = 0, x ∈ C if and only if x ∈
sol(VOP).

Proof. That fact θ (x) ≥ 0 for all x ∈ C is obtained by simply setting y = x in the
expression for θ . Let us now consider x0 ∈C such that θ (x0) = 0. Now let us set

β (x0,τ) = max
y∈C

〈
r

∑
j=1

τ j∇ f j(x),y− x

〉
.

Once we fix x0 it is clear that β (x0, .) is a lower-semicontinuous convex function
of τ . Further as θ (x0) = 0 we see that β (x0, .) is a proper function of τ . This shows
that there exists τ0 ∈ Sr such that β (x0,τ0) = θ (x0) = 0. This shows that for all y∈C
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〈
r

∑
j=1

(τ0) j∇ f j(x0),y− x0

〉
≥ 0.

From this we leave it to the reader to deduce that x0 solves (VOP). We also ask
the reader to try out the converse, that is, if x0 solves (VOP) then θ (x0) = 0. This
completes the proof. ��

The problem with the above merit function θ is that one cannot guarantee that it
will be finite-valued for all x unless there are additional conditions on C, for example
C is compact. This has lead to the regularization of the gap function θ based on the
regularization approach in the scalar case due to Fukushima [15]. The regularized
version of the function θ is denoted as θ̂ which is given as

θ̂α(x) = min
τ∈Sr

max
y∈C

{〈
r

∑
j=1

τ j∇ f j(x),x− y

〉
− α

2
||y− x||2

}
, α > 0.

Let us write

φα (x,τ) = max
y∈C

{〈
r

∑
j=1

τ j∇ f j(x),x− y

〉
− α

2
||y− x||2

}
, α > 0.

This can also be equivalently written as

φα (x,τ) =−min
y∈C

{〈
r

∑
j=1

τ j∇ f j(x),y− x

〉
− α

2
||y− x||2

}
, α > 0.

Now let us consider the following minimization problem

min
y∈C

{〈
r

∑
j=1

τ j∇ f j(x),y− x

〉
− α

2
||y− x||2

}
.

It is important to observe that the objective function in the above problem is strongly
convex in y and hence coercive. Further since C is a closed and convex set there
exists a unique minimum. The unique minimum of this problem is given as

yα(x,τ) = pro jC

(
x− 1

α

r

∑
j=1

τ j∇ f j(x)

)
,

where pro jC denotes the projection of a point on the closed convex set C. Further
using that fact that the projection mapping is Lipschitz we can show that for any
α > the function yα(x,τ) is continuous on Rn×Sr. This fact allows us to show that
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θ̂α is a finite-valued function. We will now turn our attention to develop the error
bound for the problem (VOP).

We will now consider the problem (VOP) where each function f j, j = 1, . . . ,r is a
strongly convex function with μ j > 0, j = 1, . . . ,r as the modulus of strong convexity.
Note that for each j = 1, . . . ,r the gradient vector∇ f j is also strongly monotone with
the modulus of strong monotonicity μ j > 0. Thus for any τ ∈ Sr we have∑r

j=1 τ j∇ f j

to be strongly monotone with modulus of monotonicity μ = min{μ1, . . . ,μr}. Note
that for each τ there is a unique solution to (SP). However as we change the τ the
solution will in general change. This is general the solution set of (VOP) even under
the assumption of strong convexity need not be singleton. With these basic facts we
shall state the following result on error bound.

Theorem 5.3. Let us consider the problem (VOP) where each f j , j = 1, . . . ,r
is strongly convex with the modulus of strong convexity μ j > 0. Let μ =
min{μ1, . . . ,μr} and further α > 0 be so chosen that α < 2μ . As before let
w-sol (VOP) denote the set of weak Pareto minimum of the problem (VOP). Then
for any x ∈C we have

d(x,w− sol(VOP))≤ 1√
μ− α

2

√
θ̂α (x).

Proof. Let us observe that in our notations we have

θ̂α = min
τ∈Sr

φα(x,τ).

Now consider any x ∈ C. Thus there exists τ∗ ∈ Sr depending of course on x,
such that

θ̂α = φα(x,τ∗).

Now as all f j , j = 1, . . . ,r are strongly convex with μ j > 0 as the modulus
of strong convexity it is clear that ∑r

j=1 τ∗j∇ f j is strongly monotone with μ =
min{μ1, . . . ,μr}. Also observe that the problem (SPτ∗) has a unique solution. Let
us denote this solution as x∗. Note that x∗ is also a solution of (VOP). Now we have
for any y ∈C

θ̂α(x) = φα(x,τ∗)≥
〈

r

∑
j=1

τ∗j∇ f j(x),x− y

〉
− α

2
||y− x||2.

Thus in particular for y = x∗ we have

θ̂α(x)≥
〈

r

∑
j=1

τ∗j ∇ f j(x),x− x∗
〉
− α

2
||x− x∗||2.

Now strong monotonicity of ∑r
j=1 τ j∇ f j shows that
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θ̂α(x)≥
〈

r

∑
j=1

τ∗j∇ f j(x∗),x− x∗
〉

+
(
μ− α

2

)
||x− x∗||2.

Since x∗ solves (SPτ∗) and (SPτ∗) is a convex optimization problem it is well known
that

〈
r

∑
j=1

τ∗j ∇ f j(x∗),x− x∗
〉
≥ 0.

Noting that 2μ > α we have

||x− x∗|| ≤ 1√
μ− α

2

√
θ̂α(x).

This shows that

d(x,w− sol(VOP))≤ 1√
μ− α

2

√
θ̂α (x).

Hence the result. ��
Let us now focus on the case when the objective function of (VOP) is convex but

not differentiable. Here is the basic result.

Theorem 5.4. Let us consider the problem (VOP) where each component function
of f is convex but need not be differentiable and C be a closed convex set. If x is
weak Pareto minimum then, the following two conditions hold.

(a) ( f ′1(x,v), . . . f ′k(x,v)) �∈ −intRk
+ for all v ∈ TC(x)

(b) There exists scalars τ j ≥ 0, j = 1, . . . ,k with τ = (τ1, . . .τk)T �= 0 such that
0 ∈ ∑k

j=1 τ j∂ f j(x)+ NC(x)

Conversely if any of the above two conditions hold then x is a weak Pareto minimum.

Proof. Let 0 �= w ∈ TC(x). Hence there exists a sequence {wk} such that wk → w
and a real sequence tk ↓ 0 such that x+ tkwk ∈C. Since x is a weak Pareto minimum
we have

( f1(x + tkvk)− f1(x), . . . , fr(x + tkvk)− fr(x)) ∈W.

The conclusion is now reached by passing to the limit as k → ∞. Now once the
conclusion in i) is reached it is simple to observe that using the Gordan’s Theorem
of the Alternative one can conclude that there exists τ j ≥ 0, j = 1, . . . ,r and all not
zero such that

r

∑
j=1

τ j f ′j(x,v)≥ 0 ∀v ∈ TC(x).

This can be equivalently given as
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r

∑
j=1

τ j f ′j(x,v)+ δTC(x)(v)≥ 0 ∀v ∈ Rn.

Now it is well known in convex analysis (see for example Rockafellar [34]) that

σ(TC(x))◦(v) = δTC(x).

where σ denotes the support function of a convex set. This shows that

r

∑
j=1

τ j f ′j(x,v)+σ(TC(x))◦(v)≥ 0 ∀v ∈ Rn.

Now using the standard rules of support function calculus (see for example [34])
and the sum rule for convex subdifferentials we deduce that

0 ∈
r

∑
j=1

τ j∂ f j(x)+ (TC(x))◦

Knowing that (TC(x))◦ = NC(x) we can now conclude the result. ��
So now we can consider the more general problem where the component

functions of f are locally Lipschitz functions which need not be differentiable
everywhere and C is just a closed set and need not be convex. Let us consider x ∈C
to be a weak minimum of (VOP). Then using the same approach as in the convex
case but using the limit supremum instead of just the limit we have

( f +
1 (x,v), . . . f +

r (x,v)) ∈W ∀v ∈ TC(x),

where f +(x,v) denotes the upper Dini directional derivative (see [7]) at x in the
direction v. Since f ◦j (x,v)≥ f +

j (x,v) for all j = 1, . . . ,r, we have

( f ◦1 (x,v), . . . , f ◦r (x,v)) ∈ ( f +
1 (x,v), . . . , f +

r (x,v))+Rr
+.

Since W +Rr
+ ⊂W we have

( f ◦1 (x,v), . . . , f ◦r (x,v)) ∈W ∀v ∈ TC(x).

Further since T cl
C (x)⊆ TC(x) we have

( f ◦1 (x,v), . . . , f ◦r (x,v)) ∈W ∀v ∈ T cl
C (x),

where T cl
C (x) denotes the Clarke tangent cone to C at x (see Clarke [6]) for details.

We would now request the reader to show from the above discussions and using the
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approach taken for the convex case that if x is a weak Pareto minimum of (VOP) we
have that there exists 0 �= τ ∈Rr

+ such that

0 ∈
r

∑
j=1

τ j∂ ◦ f j(x)+ Ncl
C (x),

where ∂ ◦ f j(x) denote the Clarke subdifferential of f at x and Ncl
C (x) denotes the

Clarke normal cone to C at x. For more detail on these objects see for example
Clarke [6].

5.4 Optimality Conditions with Explicit Constraints

The term “explicit constraints” refer to the case where the feasible set C is
described by functional constraints which is usually given in terms of equalities
are inequalities. Of course there can be more general constraints given in terms
of cones called conic constraints. However for simplicity we shall focus only on
inequality constraints. It is important however to note that there has been a huge
number of studies on optimality conditions for vector optimization problem with
inequality constraints. See for example Jahn [26], Ehrgott [13], and Eichfielder [14]
and the references there in. So we will not list down the details here but rather move
directly to what we believe is an interesting and important issue as per the optimality
conditions of a vector optimization condition is concerned. Let us set

C = {x ∈ Rn : gi(x)≤ 0, i = 1, . . . ,m}

Now consider a point x to be a Pareto minimum of (VOP). Then then by the
Chankong–Haimes scalarization we know that x solves each of the problem (Pj),
j = 1, . . . ,r where (Pj) is given by

min f j(x)

subject to

fk(x)≤ fk(x), k �= r

gi(x)≤ 0, i = 1, . . . ,m

Assume now that the problem data is locally Lipschitz. Now if for some q ∈
{1, . . . ,r} a suitable constraint qualification holds for the problem (Pq) then from
Clarke [6] we have that there exists scalars τ j ≥ 0, j �= q and λi ≥ 0 such that:

(1) 0 ∈ ∂ ◦ fq(x)+∑r
j=1, j �=q τ j∂ ◦ f j(x)+∑m

i=1λi∂ ◦gi(x)
(2) λigi(x) = 0 for all i = 1, . . . ,m
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In the above inclusion if we set τq = 1 then we can conclude that if x is a Pareto
minimum for (VOP) then there exist τ ∈ Rr

+ and λ ∈Rm
+ such that:

(1) 0 ∈ ∑r
j=1 τ j∂ ◦ f j(x)+∑m

i=1λi∂ ◦gi(x)
(2) λigi(x) = 0 for all i = 1, . . . , m
(3) 0 �= τ

The above conditions are usually called the Karush–Kunh–Tucker or KKT condi-
tions for the problem (VOP) or the Lagrange multiplier rule associated with the
problem (VOP). Of course if the problem data is convex then the above necessary
condition holds and we will just have to replace the Clarke subdifferential by the
convex subdifferential. Now consider again the problem (VOP) with convex data.
Now if we have a triplet (x,τ,λ )∈Rn×Rr

+×Rm
+ with x feasible and which satisfies

the KKT conditions then x is a weak Pareto minimum of (VOP) which need not
necessarily be a Pareto minimum. For x to be Pareto minimum we have must have
that (x,τ,λ ) must satisfy the KKT conditions with τ j > 0 for all j = 1, . . . ,r. So
it will be important to see under what condition at least in the convex case the
necessary KKT conditions for the Parto minimum will holds with τ j > 0 for all
j = 1, . . . ,m. This would then allow us to differentiate a Pareto minimum from a
weak Pareto minimum through KKT conditions. When the KKT condition holds
with τ j > 0 for all j = 1, . . . ,r then we say that the strong KKT condition holds.
For the convex case the necessary KKT conditions hold for a special class of Pareto
minimum points called Geoffrion proper efficient points. Let us begin by defining
what one means by a Geoffrion proper efficient point .

We have the following result

Theorem 5.5. Let us consider the problem (VOP) with convex data, i.e. each f j ,
j = 1, . . . ,r is a convex function and each gi, i = 1, . . . ,m is a convex function.
Assume that the Slater constraint qualifications hold. Then x is a Geoffrion proper
efficient point if and only if the strong KKT conditions hold.

Proof. It has been shown in Geoffrion [18] that x is a Geoffrion proper efficient
solution of (VOP) with convex data if and only if there exists scalars τ j > 0,
j = 1, . . . ,r such that x solves the problem

min
r

∑
j=1

τ j f j(x) subject to gi(x)≤ 0, i = 1, . . . ,m.

Now as the Slater constraint qualification condition holds then from it is a well
known fact in scalar convex optimization that there exists scalars λi ≥ 0 such that

0 ∈ ∂
(

r

∑
j=1

τ j f j

)
(x)+

m

∑
i=1

λi∂gi(x).

and

λigi(x) = 0.
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Now using the subdifferential sum rule the first of the above two conditions become

0 ∈
r

∑
j=1

τ j∂ f j(x)+
m

∑
i=1

λi∂gi(x).

This proves that when x is a Geoffrion proper efficient point then the strong KKT
conditions hold. We leave the easy proof of the converse to the reader. ��

Now the interesting question is whether strong KKT holds true even when the
problem is non-convex. It seems yes but even in the differentiable case it holds
under quiet strong assumptions. However it is interesting to know what are these
conditions since the strong KKT conditions allows us to separate a Pareto minimum
point from a weak Pareto minimum which is quiet important from the point of
view of applications. It is interesting that the first idea of strong KKT conditions
in fact come from the seminal 1951 paper of Kuhn and Tucker [28] where the first
optimality conditions about vector optimization are given. In fact they introduce
a class of proper efficient points called points for a smooth vector optimization
problem. In our current setting if we assume that the problem data in (VOP) is
smooth then the notion of a Kuhn–Tucker proper efficient point is as follows.

An efficient point or a Pareto minimum x of (VOP) with inequality constraints is
said to be Kuhn–Tucker proper efficient if the following system

〈∇ f j(x),d〉 ≤ 0, j = 1, . . . ,r,

〈∇ f j(x),d〉< 0, at least one j

〈∇gi(x),d〉 ≤ 0, i ∈ I(x)

has no solution d in Rn. This formulation allows us to use the Tucker’s Theorem
of Alternative to guarantee that the holds. Maeda [30] provided the qualification
conditions under which one can guarantee that a given efficient point is also a Kuhn–
Tucker proper efficient point. We shall briefly discuss the results of Maeda [30] here.
Given the problem (VOP), Maeda constructs the following sets. We shall begin by
defining the sets Qj and Q as follows. For each a given x0 and j = 1, . . . ,r we have

Qj(x0) = {x ∈Rn : g(x)≤ 0, fk(x)≤ fk(x0), j = 1, . . . ,r, j �= k}

and

Q(x0) = {x ∈ Rn : g(x)≤ 0, f (x)≤ f (x0)},

where g(x) = (g1(x), . . . ,gm(x))T and f (x) = ( f1(x), . . . , fr(x))T the vector
inequality is taken component-wise. Maeda [30] then constructs the linearizing
cone at x0 as follows

L(Q,x0) = {d ∈Rn : 〈∇ f j(x0),d〉 ≤ 0, j = 1, . . . ,r 〈∇gi(x0),h〉 ≤ 0, i ∈ I(x0)}
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It is simple to see that L(Q,x0) is a closed convex cone. Maeda [30] proved that for
any feasible solution of (VOP) one has

r⋂
j=1

clcoTQj (x0)⊆ L(Q,x0).

The idea of the proof is based on proving that for all j = 1, . . . ,r we have

TQj (x0)⊆ L(Q j,x0).

where

L(Q j,x0) = {d ∈ Rn : 〈∇ fk(x0),d〉 ≤ 0,k = 1, . . . ,r, k �= j〈∇gi(x0),h〉
≤ 0, i ∈ I(x0)}

For the detailed proof we refer the reader to Maeda [30]. The reverse inclusion need
not hold in general and thus it is reasonable to assume that reverse inclusion can be
considered as a qualification condition, that is,

L(Q,x0)⊆
r⋂

j=1

clcoTQj (x0).

The above inclusion is referred to by Maeda [30] as the Generalized Guignard
Constraint Qualification, (GGCQ) for short. The main result in Maeda [30] can be
presented as follows.

Theorem 5.6. Let x0 be a Pareto minimum point for (VOP) with inequality
constraints and smooth data. Let the GGCQ hold at x0. Then x0 is a Kuhn–Tucker
proper efficient and hence satisfies the strong KKT condition.

Proof. Let us assume that x0 is not a Kuhn–Tucker proper efficient. Hence there
exists a d ∈ Rn such that following system

〈∇ f j(x),d〉 ≤ 0, j = 1, . . . ,r,

〈∇ f j(x),d〉< 0, at least one j

〈∇gi(x),d〉 ≤ 0, i ∈ I(x)

is consistent. Without loss of generality let us assume that

〈∇ f1(x0),d〉 < 0,

〈∇ f j(x0),d〉 ≤ 0, j = 2, . . . ,r.
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It is clear that d ∈ L(Qx0). Now from GGCQ we have that d ∈ coTQj(x0) for all
j = 1,→ r and hence in particular j = 1. Thus there exists a sequence {dm} in
coTQ1(x0) such that d = limm→∞ dm. Now for each dm there exists a number Km ∈N
and scalars λmk ≥ 0 with vector dmk ∈ TQ1(x0), with k = 1, . . . ,Km such that

Km

∑
k=1

λmk = 1

and

Km

∑
k=1

λmkdmk = d

The next steps of the proof is quiet simple. Noting that dmk ∈ TQ1(x0) for each k, we
have that there exists xN

mk → x0 with xn
mk ∈Q1 for all n and tn

mk > 0 such that

tn
mk(x

n
mk − x0)→ dmk.

Since xn
mk is in Q1 we observe that

f j(xn
mk) ≤ f j(x0), j = 2, . . . r

gi(xn
mk) ≤ 0, ∀i ∈ I(x0).

Since x0 is a Pareto minimum point we must have f1(xn
mk)≥ f1(x0). Now using this

facts we leave it to the reader to reach a contradiction to the fact d is the solution of
the system of inequalities given at the beginning of the proof. Thus it shows that x0

is a Kuhn–Tucker efficient point. We have already mentioned before why the Kuhn–
Tucker proper efficient point also satisfies the strong KKT conditions. ��

For an extension of the approach of Maeda to the nonsmooth case see the recent
paper of Giorgi et al. [20] and the references there in.

5.5 Second Order Optimality Conditions

In this section we will discuss second order conditions for a vector optimization
problems. To the baser of our knowledge it seems that the second order conditions
for vector optimization problems have yet to appear in a book on vector optimization
and thus we take this opportunity to introduce some basic results on second order
optimality conditions. We will concentrate only when (VOP) has smooth data and
we will provide references for the interested reader to look for further details as
well as the nonsmooth case. We skip studying the second order conditions since we
believe that this is an evolving area and considerable more research is needed to
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make it a more coherent. For simplicity of the presentation we shall consider the
problem (VOP) with inequality constraints only as we have done in the previous
section. Of course the date of the problem (VOP) is smooth. In the study of second
order conditions we need to understand the notion of lexicographic ordering and the
notion of a second order tangent set. Second order tangent sets defined in different
ways by different authors but they are closely related.

We will only need to consider lexicographic ordering in R2. Let x = (x1,x2) and
y = (y1,y2) be two points in R2. Then x ≤lex y if x1 < y1 or x1 = y1 and x2 ≤ y2.
Further x <lex y if x1 < y1 or x1 = y1 and x2 < y2. To the best of our knowledge one
of the earliest work in this area is due to Wang [36] and Aghezzaf and Hachimi [1]
and for the more recent contributions in this area see for example Maeda [31], Bigi
[3], Aghezzaf and Hacimi [2], Guerraggio and Luc [17], Ginchev et al. [19] and
the references there in. Aghezzaf and Hachimi [1] introduced the following second
order tangent set to a closed set C at x ∈C as the set

T 2
C (x) =

{
(y,z) ∈ Rn×Rn : ∃tn ↓ 0, such that x+ tny +

1
2

t2
n z+ o(t2

n) ∈C

}
.

Also observe that x + tny + 1
2 t2

n z+ o(t2
n) ∈C implies that

x + tny +
1
2

t2
n

(
z+

o(t2
n )

t2
n

)
∈C.

Thus if we set zn = z + o(t2
n )

t2
n

then zn → z and hence we can alternatively and

equivalently write T 2
C (x) as

T 2
C (x) =

{
(y,z) ∈ Rn×Rn : ∃zn → z, tn ↓ 0, such that x + tny +

1
2

t2
n zn ∈C

}
.

A curious fact to observe here is that the set T 2
C (x) is higher dimensional then that

of C while TC(x) is embedded in the same dimensional space as is C. Maeda [31]
defines the notion of a second order tangent set in the following way. The second
order tangent set to the set C at x in the direction y is given as

T 2
C (x,y) =

{
z ∈ Rn : ∃zn → z, tn ↓ 0, such that x + tny +

1
2

t2
n zn ∈C

}
.

We would request the reader to figure out the relation between the two tangent sets
defined above. We would like to mention that the both the sets T 2

C (x) and T 2
C (x,y)

are in fact sets and not cones in general and are convex if the underlying set C is
convex.

We shall now define the work of Aghezzaf and Hachimi [1] in a fair amount of
details. At this stage is quiet natural to define the notion of a second order linearizing
set which is given as follows,

L2(x) = {(y,z) ∈ Rn×Rn : Gi(x,y,z) ≤lex 0, ∀i ∈ I(x)},
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where

Gi(x,y,z) = (〈∇gi(x),y〉,〈∇gi(x),z〉+ 〈y,∇2gi(x)y〉).

The notion of a critical direction plays an important role in the analysis of second
order optimality condition in vector optimization. Let x be a vector which is feasible
to (VOP) consisting only of inequality constraints. A vector d is said to be a critical
direction of (VOP) if

〈∇ f j(x),d〉 ≤ 0, j = 1, . . . ,r

〈∇ f j(x),d〉 = 0, for some j

〈∇gi(x),d〉 ≤ 0, i = 1, . . . ,m.

In a manner similar to that of Gi(x,y,z) we can also define Fj(x,y,z). Our first
result in this section is a geometric one which we present below is a second-order
necessary optimality condition. Also it is important note that result that is presented
below holds for any arbitrary closed set C.

Theorem 5.7 ([1]). Consider the problem (VOP) where the objective function is a
continuous vector function and C a closed set. Let x be a Pareto minimum or a weak
Pareto minimum then,

T 2
f (C)( f (x))∩Ω = /0,

where

Ω = {(y,z) ∈ Rr×Rr : (y j,z j) <lex (0,0)}.

Proof. Since C is a closed set and since f is continuous we have that f (C) is also
a closed set. If z = f (x) is an isolated point of f (C) we see that T 2

f (C)(z) = {(0,0)}
and thus the result is trivially satisfied. If it is not an isolated point then we reason
as follows. Let us assume that

(y,z) ∈ T 2
f (C)(z)∩Ω

Hence by definition of the second order tangent set we see that there exist sequences
zn ∈ f (C) and tn → 0 such that

zn = z+ tny +
1
2

t2
n z+ o(t2

n).

For n sufficiently large we can assume we can assume without loss of generality that
zn �= z. Now for each i = 1, . . . ,r we have

(zn)i = zi + tnyi +
1
2

t2
n zi + o(t2

n)i.

Since (y,z) ∈ Ω it is clear that we have to deal with two cases; namely yi < 0 and
yi = 0 ( in which case zi < 0).
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Let us begin by assuming that yi < 0. Let us now observe that

tn

(
1
2

zi +
o(t2

n)i

t2
n

)
→ 0,

as n→ ∞.
Now we can write

(zn)i = zi + tn

(
yi + tn

(
1
2

zi +
o(t2

n)i

t2
n

))
.

Since yi < 0 it is clear that for n sufficiently large we have

yi + tn

(
1
2

zi +
o(t2

n)i

t2
n

)
< 0.

Hence (zn)i < zi for all n sufficiently large.
Now if yi = 0, then we also have zi = 0 and

(zn)i = zi +
1
2

t2
n

(
zi +

o(t2
n)i

t2
n

)

Since zi < 0 we have that for n sufficiently large n

zi +
o(t2

n)i

t2
n

< 0.

This shows that (zn)i < zi for n sufficiently large. This shows that zn− z ∈ −intRr
+

for n sufficiently large. Since zn ∈ f (C), there exists xn ∈C such that zn = f (xn) and
hence

f (xn)− f (x) ∈ −intRr
+.

This contradicts the fact that x is a Pareto (weak Pareto) minimum for (VOP). ��
Using the above geometric conditions we are now going to provide an algebraic

necessary second order optimality condition for the problem (VOP). We will now
consider the case where the set C is described by inequality constraints.

Theorem 5.8. Let x be a Pareto or weak Pareto minimum for (VOP) with twice
continuously differentiable data. Assume that the second order Abadie constraint
qualification holds at x, i.e.

L2(x) = T 2
C (x).

Then the following system
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Fj(x,y,z) <lex 0, j = 1, . . .r,

Gi(x,y,z) ≤lex 0, i = 1, . . .m

has no solution (y,z) ∈Rn×Rn.

Proof. We will take the help of the previous theorem to prove this result. Let us
consider (y,z) ∈ T 2

C (x). Then there exists sequences tn ↓ 0 such that

xn = x + tny +
1
2

t2
n z+ o(t2

n) ∈C.

Now by Taylor’s expansion for each j = 1, . . . ,r, we have

f j(xn) = f j(x)+ tn〈∇ f j(x),y〉+ 1
2
(〈∇ f j(x),z〉+ 〈y,∇2 f j(x)y〉)+ o(t2

n).

The reader should carefully verify the Taylor’s expansion since a lot of terms gets
pulled into the term o(t2

n). The above analysis shows that the vector

(F1(x,y,z), . . . ,Fr(x,y,z)) ∈ T 2
f (C)( f (x).

Hence from Theorem 5.7 it is clear that

Fj(x,y,z) �<lex (0,0), j = 1, . . . ,r.

Further as L2(x) = T 2
C (x) it is clear that (y,z) also satisfies

Gi(x,y,z) ≤lex (0,0), ∀i ∈ I(x).

This allows us to conclude the result. ��
The above result leads to the more verifiable second order necessary conditions

which we will present below. We do not present the proof here as the proof can be
found in [1]

Theorem 5.9 ([1]). Consider the problem (VOP) with inequality constraints and
twice continuously differentiable data . Let x be a Pareto minimum or weak Pareto
minimum for (VOP). Assume that the second order ACQ holds. Then there exists
0 �= τ ∈Rr

+ and λ ∈ Rm
+ such that for each critical direction y we have

(i) ∑r
j=1 τ j∇ f j(x)+∑m

i=1λi∇gi(x) = 0
(ii) 〈y,(∑r

j=1 τ j∇2 f j(x)+∑m
i=1λi∇2gi(x))y〉 ≥ 0

(iii) τ j = 0 for all j �= B(x,y) = { j : 〈∇ f j(x),y〉= 0}
(iv) λi = 0, for all i �= E(x,y) = {i ∈ I(x) : 〈∇gi(x),y〉}

In the case of scalar optimization it is well known that the second order sufficient
conditions plays a crucial role since it allows us to determine whether a KKT point
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is a strict local minimum or not. Thus from the point of view of multiobjective
optimization it might be interesting to have a second order sufficient condition
to see whether a KKT point is also a Pareto efficient point. In [1] the authors
develop a second order sufficient condition by assuming some generalized convex
assumption on the data. One might observe that why does one need to have a
second order sufficient condition when the problem data satisfies certain generalized
convexity condition. Note that even if the problem data is convex the first order
KKT conditions will only return us a weak Pareto minimum. But if we consider
the second order conditions even with convex data then we will get back a Pareto
minimum. Thus in some sense the second order sufficient condition when (VOP) is
a twice differentiable convex problem is an alternative approach to the strong KKT
conditions which as we have seen in the previous section allows us to differentiate
between a Pareto minimum and a weak Pareto minimum. However we would like to
stress that Pareto minimum is more important from the point of view of practice. We
shall now present a modified version of the result in [1] taking care of some technical
issues. However for the simplicity of the presentation we consider the problem data
to be convex.

Theorem 5.10. Assume that the data of the problem (VOP) is twice continuously
differentiable and convex. Let x be a feasible point of (VOP). Assume that for each
critical direction y �= 0 there exists a vector 0 �= τ ∈Rr

+ and scalars λi ≥ 0, i ∈ I(x)
such that the following holds

(i) 0 = ∑r
j=1 τ j∇ f j(x) + ∑m

i=1λi∇gi(x), where τ j = 0 for all j �= B(x,y) =
{ j : 〈∇ f j(x),y〉= 0} and λi = 0, for all i �= E(x,y) = {i ∈ I(x) : 〈∇gi(x),y〉}

(ii) 〈y,(∑r
j=1 τ j∇2 f j(x)+∑i∈I(x)λi∇2gi(x))y〉> 0

Then x is a Pareto minimum for (VOP)

Proof. Let us assume that x is not a Pareto minimum. Hence the following system

f j(x) ≤ f j(x); j = 1, . . . ,r

f j(x) < f j(x), for some j

gi(x) ≤ 0, i = 1, . . . ,m

has a solution x ∈ Rn. Let us assume that x ∈ Rn is a solution of the above system.
Then by convexity of the problem data we can conclude that

〈∇ f j(x),x− x〉 ≤ 0, j = 1, . . . ,r

〈∇gi(x),x− x〉 ≤ 0.

Now set d = x− x. We now consider two different case. First let us assume that
〈∇ f j(x),d〉< 0 for all j = 1, . . . ,r. Hence d solves the system

〈∇ f j(x),d〉 < 0, j = 1, . . .r
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〈∇gi(x),d〉 ≤ 0, i = 1, . . . ,m.

Now by application of the Motzkin alternative theorem it is simple to show that the
condition (i) in the hypothesis of the theorem is contradicted.

On the other hand assume that there exists q ∈ {1, . . . ,r} such that 〈∇ fq(x),
x− x〉= 0. Hence d = x− x �= 0 is a critical direction of the problem (VOP). From
the convexity of f j we have that for all λ ∈ (0,1) and for all j,

f j(x+λd)− f (x)≤ λ ( f j(x)− f j(x)).

Hence we have f j(x +λd)− f j(x) ≤ 0. Now by using Taylor’s expansion we have
for all j = 1, . . . ,r

〈∇ f j(x),d〉+ λ
2

(〈d,∇2 f j(x)d〉+ o(λ 2)
λ 2 . (5.4)

We also have for all i ∈ I(x),

〈gi(x),d〉+ λ
2

(〈d,∇2gi(x)d〉+ o(λ 2)
λ 2 . (5.5)

Then by adding (5.4) and (5.5) we have that

〈
r

∑
j=1

τ j∇ f j(x)+ ∑
i∈I(x)

λi∇gi(x),d

〉

+
λ
2

(〈
d,

(
r

∑
j=1

τ j∇2 f j(x)+ ∑
i∈I(x)

λi∇2gi(x)

)
d

〉
+

o(λ 2)
λ 2

)
≤ 0.

Using (i) and noting that λ > 0 we have

〈
d,

(
r

∑
j=1

τ j∇2 f j(x)+ ∑
i∈I(x)

λi∇2gi(x)

)
d

〉
+

o(λ 2)
λ 2 ≤ 0.

As λ ↓ 0 we have

〈
d,

(
r

∑
j=1

τ j∇2 f j(x)+ ∑
i∈I(x)

λi∇2gi(x)

)
d

〉
≤ 0.

This is clearly a contradiction to (ii) and hence the result. ��
The next natural question is can we remove the convexity hypothesis from the

above result. Such a result can be found in [36] (see [36, Theorem 3.5]) where
there is no convexity assumption on the data. However the directions y satisfy some
slightly modified condition. Further the approach due to Wang [36] uses a Fritz
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John type first order condition along with a strict second order condition similar to
the one given in the above theorem to reach the conclusion. Further it is important
to observe that Wang [36] also characterizes a Pareto minimum.

5.6 Excursions in Infinite Dimensions

We would like to now take a brief tour of vector optimization in infinite dimensions.
We will however be brief and we will not discuss each and every detail here. Our
discussion in this section is largely based on the work of Durea et al. [11] and Durea
and Dutta [10]. It is important to note the cone that induces the partial order can have
an empty interior or in other words is non-solid. In such scenario there is no way
we can consider weak Pareto minimum which is much for easy to handle from the
mathematical point of view. For details of important space whose natural ordering
cone or the positive cone has an empty interior see for example Jahn [26]. However
it is not that all important spaces have the positive cone with empty interior. Note
for example the space l∞, the space BV of all functions of bounded variation on R
or the space C(Ω) of all continuous real-valued functions on the compact Hausdorff
space Ω have their positive cone or natural ordering cone with non-empty interior.
On other hand many other important spaces like l p,Lp, 1 ≤ p < ∞ have non-solid
positive cones.

The question now is how can we handle Pareto minima with non-solid ordering
cone. We will focus first on the approach due to Durea et al. [11].

Let us first put in the basic framework that we will be using in the infinite
dimensional setting. Let X and Y Banach spaces over the real field R. The symbols
UX and SX denote the closed unit ball and the unit sphere in X , where X is a given
Banach space. For any Banach space X the topological dual of X is denoted by X∗.
For a positive ε and for an element x ∈ X , we denote the open ball of radius ε
centered in x by B(x,ε). As usual, for a set C ⊂ X , we denote by δC the indicator
function of C (δC(x) = 0 if x ∈C and δC(x) = +∞ if x /∈C) and by dC the distance
function with respect to C, dC(x) = d(x,C) := infc∈C ‖x− c‖ for every x ∈ X (by
convention, d(x, /0) = +∞). We will denote by K as the closed convex and pointed
cone that induces the partial order on the space Y and in what follows we will
assume that K has a non-empty interior. We shall also recall the notion of Pareto
minimum with respect to K. For a non-empty set A ⊂ Y , a point a ∈ A is called
Pareto minimum of A with respect to K if (A−a)∩−K = {0}. We denote the set of
Pareto minimum points of A w.r.t. K by Min(A | K). If f : X → Y is a vector-valued
function and S ⊂ X is a non-empty set, a point x ∈ S is said to be Pareto minimizer
of f over S with respect to K if f (x) is a Pareto minimum of f (S) with respect to K.

We shall first see how Durea et al. [11] handles the convex case in the
scenario of non-solid cones. We present here necessary optimality conditions for
the minimization of a function f : X → Y over a closed set S ⊂ X . We derive a
necessary condition for Pareto minimizers when the function f is K-convex and S
is a closed convex subset of X . Let us recall the definition of a K-convex function:
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For any x,y ∈ X and λ ∈ [0,1] it holds

λ f (y)+ (1−λ ) f (x)− f (λy +(1−λ )x)∈ K.

It is important to note that even if f is K-convex and the set S is a closed convex set,
the image set f (S) needs not to be convex. However, the set f (S)+ K is a convex
set under the convexity hypothesis on f and S. On the other hand

min( f (S)|K) = min( f (S)+ K|K). (5.6)

This fact will indeed be a key argument in the following result due to Durea et al.
[11].

Theorem 5.11. Let us consider a K-convex function f : X → Y and let S be a
closed convex subset of X. Assume that f is a continuously Frechet differentiable
function. Further, assume that the set f (S) has a non-empty interior. Let x be a
Pareto minimizer of f over S with respect to the ordering cone K which has an
empty interior. Then there exists v ∈ K∗ \ {0} such that

0 ∈ f ′(x)∗v + N(S,x), (5.7)

where f ′(x) is the Frechet derivative of f at x and f ′(x)∗ is the adjoint of the Frechet
derivative of f at x and N(S,x) denotes the normal cone to the closed convex set S
at the point x.

Proof. Since x is a Pareto minimizer of f over S we have using (5.6)

( f (S)+ K)∩ ( f (x)−K) = { f (x)}.

Since the interior of f (S) is non-empty the interior of f (S)+ K is also non-empty.
Noting the fact that the Pareto minimum point f (x) lies on the boundary of f (S)+K
we get

int( f (S)+ K)∩ ( f (x)−K) = /0

taking into account the above expression.
Thus by applying a standard separation technique from convex analysis we

conclude that there exists v ∈ Y ∗ with v �= 0 such that

v(z)≥ v(w), ∀z ∈ f (S)+ K, and ∀w ∈ ( f (x)−K). (5.8)

Now for any given arbitrary x ∈ S and k ∈ K from (5.8 ) we have

v( f (x)+ k)≥ v( f (x)− k). (5.9)

By setting k = 0 we see that v( f (x)) ≥ v( f (x)) for all x ∈ S. We will now show that
v ∈ K∗. On the contrary assume that there exists k ∈ K such that v(k) < 0. From
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(5.9) we have
v( f (x)) ≥ v( f (x))− v(k), ∀x ∈ S.

However, since K is a cone the right hand side of the above expression can be
made arbitrarily large so as to exceed v( f (x)) for any given x ∈ S . This leads to
a contradiction and thus v ∈ K∗. Thus we have proved that x is a minimum of the
convex function v( f (x)) over S. Thus from the well known optimality condition in
convex optimization we get

0 ∈ (v◦ f )′(x)+ N(S,x).

The result now follows by applying the standard chain rule of differentiation. ��
Remark 5.1. It is important to note that even in the convex case the above
expression is only a necessary condition for the existence of a Pareto minimum
and not a sufficient condition. Further, observe that the loss of interiority condition
of the ordering cone had to be compensated by the interiority assumption on the
image set f (S).

We shall now focus on the nonsmooth case. We shall now introduce some
tools from nonsmooth analysis in infinite dimensions which will be used in the
sequel. We will concentrate on some concrete subdifferentials: The subdifferential
of Mordukhovich (∂M), which satisfies exact calculus rules on Asplund spaces
and furthermore, the proximal subdifferential (∂P), which satisfies fuzzy calculus
rules on Hilbert spaces. Since this is an excursion into vector optimization in
infinite dimension rather than a detailed study we have not explicitly provided the
definitions of the subdifferential here. The details of Mordukhovich subdifferential
is also provided in this volume in the chapter written by Boris Mordukhovich and
[32] and [33]. For the proximal subdifferential in the setting of a Hilbert space
see Clarke et al. [7]. The best calculus rules for the Mordukhovich subdifferential
are in the setting of Asplund spaces which are special classes of Banach spaces
over which convex functions are generically Frechet differentiable. In fact every
reflexive Banach space is also an Asplund space. Now under the assumptions that
X is an Asplund space we shall present here some calculus rules associated with
Mordukhovich subdifferential as given [11]. If f1, f2 : X →R, x ∈Dom f1∩Dom f2

and f1 is Lipschitz around x and f2 is l.s.c. around x, then

∂M( f1 + f2)(x)⊂ ∂M f1(x)+ ∂M f2(x).

A function f : X → Y is strictly Lipschitzian at x if it is locally Lipschitzian around
this point and there exists a neighborhood V of the origin in X s.t. the sequence
(t−1

k ( f (xk + tkv)− f (xk)))k∈N contains a norm convergent subsequence whenever
v ∈V,xk → x, tk ↓ 0. It is clear that this notion reduces to local Lipschitz continuity
if Y is finite dimensional. For more details see [32]. Let us now present the chain rule
associated with the Mordukhovich subdifferential. If X and Y are Asplund spaces,
f : X → Y is strictly Lipschitzian at x and ϕ : Y → R is Lipschitz around f (x), then
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∂M(ϕ ◦ f )(x)⊂
⋃

y∗∈∂Mϕ( f (x))
∂M(y∗ ◦ f )(x).

For the fuzzy sum rules the following notations were used in [11]:

• u
f→ x means that u→ x and f (u)→ f (x); note that if f is continuous, then u

f→ x
is equivalent with u→ x.

• x∗ ∈ ‖·‖∗ − limsup
u→x

∂ f (u) means that for every ε > 0 there exist xε and x∗ε
such that x∗ε ∈ ∂ f (xε ) and ‖xε − x‖ < ε, ‖x∗ε − x∗‖ < ε; the notation x∗ ∈
‖·‖∗ − limsup

u
f→x

∂ f (u) has a similar interpretation and it is equivalent with x∗ ∈

‖·‖∗ − limsup
u→x

∂ f (u) provided that f is continuous.

As we will see that in the setting of a non-solid ordering cone it is indeed quiet
difficult to handle a Pareto minimum since the multipliers in the Lagrange multiplier
rules or KKT conditions turn out to be trivially zero. So the question how can we
modify the notion of Pareto minimum in order to develop necessary optimality
conditions with non-trivial multipliers. This lead Durea et al. [11] to introduce
the notion of (ε,e)-Pareto minimum. Let us consider a fixed element e ∈ K with
‖e‖ = 1. For a positive ε, we say that a ∈ A is an (ε,e)-Pareto minimum of A with
respect to K if (A−a)∩ (−K− εe) = /0. The set of all these minima is denoted by
(ε,e)−Min(A | K). As above, for a vector-valued function f : X → Y and a non-
empty set S⊂ X , a point x ∈ S is said to be (ε,e)-Pareto minimizer of f over S with
respect to K if f (x) is an (ε,e)-Pareto minimum of f (S) with respect to K.

It is important to observe that the notion of (ε,e)-Pareto optima that we have
defined here is a slightly different version that the standard one found in the
literature, i.e., (A− a) ∩ ((−K \ {0})− εe) = /0. For any a ∈ A with (A− a)∩
(−K− εe) = /0 it follows that a is an (ε,e)-Pareto minimum in the standard sense.
The reverse is not true. Notice that if a point a is an (ε,e)-Pareto minimum for A
w.r.t. K in the standard sense, then it is an (ε + δ ,e)-Pareto minimum for A w.r.t. K
in our sense for every positive δ (taking into account that K is pointed).

However, we will use our concept of (ε,e)-Pareto minimizers of f over S with
respect to K defined above in order to get nontrivial multipliers y∗ �= 0 using certain
properties of the subdifferential of the distance function (see (5.10)).

Observe that an interesting part of this definition is the following. Viewing it in a
slightly informal manner it is interesting to observe that one can in fact want to refer
as (ε,e)-Pareto minimum to those points which under very small perturbation will
leave the feasible objective set. Points lying very near to the efficient frontier will
exhibit such behavior under small perturbations and thus from the practical point of
view we are indeed talking about solutions that are very close to the Pareto frontier.
Thus this notion is more practically oriented notion of approximate minimum for a
vector optimization problem. The next proposition from [11] justifies the concept of
(ε,e)-solution.

Proposition 5.1. The following relation holds:
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Min(A | K) =
⋂

e∈K∩SY

⋂
ε>0

(ε,e)−Min(A | K).

Proof. It is clear that for every positive ε and for every e ∈ K∩SY the pointedness
of the cone K implies −K− εe⊂−K \ {0}. We deduce:

Min(A | K)⊂
⋂

e∈K∩SY

⋂
ε>0

(ε,e)−Min(A | K).

For the converse inclusion, let us take y∈
⋂

e∈K∩SY

⋂
ε>0

(ε,e)−Min(A |K) and suppose

that there exists y ∈ A s.t. y− y∈ −K \ {0}. Then for an ε > 0 small enough,

(y− y)− ε ‖y− y‖−1 (y− y) ∈−K \ {0}.

Consequently,
y− y ∈ −K− ε ‖y− y‖−1 (y− y),

whence y /∈ (ε,‖y− y‖−1 (y− y))−Min(A | K). Since we arrived at contradiction,
the proof is complete. ��

Now it is important to know that in this set up can we scalarize the vector
problem, that is, can we find a function which when composed with the vector
function results in a scalar optimization problem. In [11] the oriented distance
function introduced by Hiriart-Urruty [23] is used. In general, for a non-empty
set A ⊂ Y , A �= Y , the oriented distance function ΔA : Y → R is given as ΔA(y) =
dA(y)−dY\A(y). We list below some important properties of the oriented distance.

Proposition 5.2 ([37]).

(a) ΔA is Lipschitzian of rank 1.
(b) If A is convex, then ΔA is convex and if A is a cone, then ΔA is positively

homogeneous.
(c) If A is a closed convex cone and y1,y2 ∈ Y with y1 − y2 ∈ A, then

ΔA(y1)≤ ΔA(y2).

From the above proposition it is clear that the functional Δ−K is a convex,
positively homogeneous and a Lipschitzian function with Lipschitz modulus 1. Note
that, the emptiness of the interior of K implies that the closure of Y \(−K) is Y itself,
so the second distance function in the expression of Δ−K reduces to 0 Hence, in fact
Δ−K = d−K .

Further it is well known that for a convex closed subset A of Y the normal cone
at a point a ∈ A is given as

NA(a) = {y∗ ∈Y ∗ | y∗(a− a)≤ 0, ∀a ∈ A}.
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For the convex continuous function dA, the classical Fenchel subdifferential is given
by the following formula (see, for example, [4]):

∂dA(y) =
{

SX∗ ∩NAy(y), if y /∈ A
UX∗ ∩NA(y), if y ∈ A,

(5.10)

where Ay := A + dA(y)UY .
Furthermore, for the special case of the convex functional Δ−K it holds for every

y ∈ Y, ∂Δ−K(y)⊂ K∗. Indeed, for y∗ ∈ ∂Δ−K(y) it holds

y∗(z− y)≤ Δ−K(z)−Δ−K(y), ∀z ∈ Y. (5.11)

From Proposition 5.2, (iii), it follows Δ−K(u + y)≤ Δ−K(y) for every u ∈ −K and
whence y∗(u)≤ 0 with (5.11). This implies that for every y ∈Y

∂Δ−K(y)⊂ K∗

holds.
From the point of view of deriving the Lagrange multiplier rules it will be

important to see if ∂Δ−K−εe(y) ⊂ K∗. This fact was proved in [11] and we present
their proof through the following remark.

Remark 5.2. In this section we will always consider int K = /0. Further,the interior
of −K− εe is empty too (being a subset of −K), whence Δ−K−εe(y) = d−K−εe(y).
In order to show ∂Δ−K−εe(y) ⊂ K∗ for every y ∈ Y we take y∗ ∈ ∂Δ−K−εe(y) =
∂d−K−εe(y) for a fixed y ∈ Y . Then for every k ∈ K one has

y∗(−k− εe− y) ≤ d−K−εe(−k− εe)−d−K−εe(y)

= −d−K−εe(y)≤ 0.

This yields y∗(k)≥−εy∗(e)−y∗(y). Because y∈Y (the reference point) is the same
for every k ∈ K and y∗ ∈ ∂d−K−εe(y) in this relation we obtain y∗ ∈ K∗ : Indeed, if
there would exist k ∈ K s.t. y∗(k) < 0, then y∗(nk)→−∞ as n → ∞ and we get a
contradiction with above inequality since, obviously, nk ∈ K for every natural n and
−εy∗(e)− y∗(y) is a constant once we have chosen y∗ from ∂d−K−εe(y). So we get
for every y ∈Y

∂Δ−K−εe(y)⊂ K∗.

The basic result linking the concept of (ε,e)-Pareto minima with the scalarizing
functional is the following.

Theorem 5.12 ([11]). Assume ε > 0, e ∈ K, ||e|| = 1. If a point y ∈ A ⊂ Y is an
(ε,e)-Pareto minimum of A with respect to K, then y is an ε-solution of the problem

min
y∈A

Δ−K−εe(y− y).
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Proof. The proof is based on the obvious inequality d−K−εe(0)≤ ε since for every
y ∈ A we have

d−K−εe(0)≤ ε < d−K−εe(y− y)+ ε,

whence y is an ε-solution over A for the scalar problem miny∈AΔ−K−εe(y− y). ��
We shall now state our main optimality contains for (ε,e)-Pareto minimum.

However in order to do so we need to use the well known Ekeland variational
principle which we will state below. We present it in the form given in Guler [22]

Theorem 5.13 (Ekeland’s Variational Principle). Let (X ,d) be a given metric
space with metric d. Let f : X → R be a lower-semicontinuous function which is
bounded below on X. For ε > 0, let x be such that

f (x) ≤ inf f (x)+ ε.

Then for any λ > 0 there exists xε such that

(a) f (xε )≤ f (x)
(b) d(x,xε)≤ λ
(c) f (xε ) < f (z)+ ε

λ d(z,xε ), ∀z ∈M,z �= xε

Theorem 5.14 ([11]). Let X ,Y be Asplund spaces, K be a closed convex pointed
cone in Y with empty interior, S be a closed subset of X and f : X → Y be a strictly
Lipschitzian function on S. Assume ε > 0 and e ∈ K, ||e|| = 1. If x is an (ε,e)-
Pareto minimizer of f over S with respect to K, then there exist x ∈ B(x,

√
ε)∩S and

y∗ ∈ SY∗ ∩K∗ s.t.

0 ∈ ∂M(y∗ ◦ f )(x)+
√
εUX∗ + N∂M

(S,x).

Proof. We consider the function ϕ : X →Y given by ϕ(x) = f (x)− f (x). Following
Theorem 5.12, x is an ε-minimum point over S for the functional z : X → R defined
by z(x) = (Δ−K−εe ◦ϕ)(x). Whence, from Ekeland’s variational principle applied
for z on S (as a complete metric space), we get an element x ∈ B(x,

√
ε)∩ S which

is a minimum point on S for the perturbed function z(·)+
√
ε ‖·− x‖ . Applying the

exact calculus rules of Mordukhovich subdifferential, we have

0 ∈ ∂M
(
z(·)+

√
ε ‖·− x‖+ IS(·)

)
(x)

⊂ ∂M(Δ−K−εe ◦ϕ)(x)+
√
εUX∗ + ∂MIS(x)

⊂
⋃

y∗∈∂MΔ−K−εe( f (x)− f (x))
∂M(y∗ ◦ f )(x)+

√
εUX∗ + N∂M

(S,x).

Therefore, we get that there exists y∗ ∈ ∂MΔ−K−εe( f (x)− f (x)) s.t. 0 ∈ ∂M(y∗ ◦
f )(x) +

√
εUX∗ + N∂M

(S,x0). Since Δ−K−εe = d−K−εe is a convex function (cf.
Proposition 5.2), its subdifferential in the sense of Mordukhovich coincides with
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the subdifferential in the sense of convex analysis. Taking into account the formula
for the subdifferential of the distance function as given above, and the fact that
f (x)− f (x) /∈ −K − εe (from the definition of (ε,e)-minimum) we get together
with Remark 5.2 the assertion y∗ ∈ SY ∗ ∩K∗. ��

The next result will be in the setting of a Hilbert space for the unconstrained case

Theorem 5.15 ([11]). Let X ,Y be Hilbert spaces, K be a closed convex pointed
cone in Y with empty interior and f : X → Y be a locally Lipschitzian function.
Assume ε > 0 and e ∈ K, ||e||= 1. If x ∈ X is a (ε,e)-Pareto minimizer of f over X
with respect to K, then there exist x ∈ B(x, 2

3

√
ε) and y∗ ∈ SY ∗ ∩K∗ s.t.

0 ∈ ∂P(y∗ ◦ f )(x)+
5
3

√
εUX∗ .

Proof. As above, x is an unconstrained ε-minimum point for the functional z :
X → R defined by z(x) = (Δ−K−εe ◦ f )(x). Once again, from Ekeland’s variational
principle we get an element x1 ∈ B(x,

√
ε) which is a minimum point on X for the

perturbed function z(·)+√ε ∥∥·− x1
∥∥ . Whence, applying the fuzzy calculus rules of

the proximal subdifferential, we can find x2 ∈ B(x1,3−1√ε), x3 ∈ B(x1,3−1√ε), s.t.

0 ∈ ∂Pz(x2)+ ∂P
(√

ε
∥∥·− x1

∥∥)(x3)+ 3−1√εUX∗ .

Since z is a composite function we can apply the fuzzy calculus for its
subdifferential to get x4 ∈ B(x2,3−1√ε), and y∗ ∈ ∂PΔ−K−εe( f (x4)− f (x)) with

0 ∈ ∂P(y∗ ◦ f )(x4)+ ∂P
(√

ε
∥∥·− x1

∥∥)(x3)+
2
3

√
εUX∗ .

Since
√
ε || ·−x1|| is a convex function the proximal subdifferential of this function

coincides with the usual subdifferential of a convex function. Further, we also
know that

∂
(√

ε
∥∥·− x1

∥∥)(x3)⊂√
εUX∗ ,

where ∂ denotes the subdifferential of a convex function. Hence we conclude that

0 ∈ ∂P(y∗ ◦ f )(x4)+
5
3

√
εUX∗ .

Of course, taking into account the above estimations and the fact that f (x4)− f (x) /∈
−K− εe one has with (5.10) and Remark 5.2:

∥∥x4− x
∥∥≤ 2

3

√
ε and y∗ ∈ SY∗ ∩K∗.

The proof is complete taking x = x4. ��
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As we have seen above it has been difficult to handle Pareto minimum points in
the non-convex in the scalarization framework we used in the above discussion in
this section. One might wonder why we had to consider the scalarization framework
involving the oriented distance function. Unfortunately in the infinite dimensional
scenario for the non-convex case the more robust scalarization due to Gerth and
Widner [16] which is based on a non-convex separation result but needs the interior
of the ordering cone to be non-empty. However our cone was having an interior and
thus scalarization technique of Gerth and Widner [16] could not be used. Further
the scalarization technique of Gerth and Widner [16] is best suited in dealing with
a weak Pareto minimum. In Durea and Dutta [10] developed an approach through
which Pareto minimum could be treated in the setting of a ordering cone with empty
interior. They develop a notion of the dialating cone which has a non-empty interior
and the pareto minimum point is then viewed as a weak Pareto minimum with
respect to the dialating cone. Then one can apply the scalarization technique of
Gerth and Widner [16] in order to develop optimality conditions.

Let us begin by defining the notion of a weak Pareto minimum in the infinite
dimensional scenario. If intK �= /0, then a point y∈ A is called weak Pareto minimum
point of A with respect to K if (A− y)∩− intK = /0. The set of all weak Pareto
minimum points of A is denoted as WMin(A|K). The approach in [10] is based
on the notion of a proper Pareto minimum in the sense of Henig. The notion of
a Henig proper Pareto minimum is given as follows. A vector y ∈ A is a proper
Pareto minimum point (in the Henig’s sense) or a Henig proper Pareto minimum
of A with respect to K if there exits a closed convex and pointed cone Q ⊂ Y with
non-empty interior such that K \ {0} ⊂ intQ and y ∈ Min(A | Q). The set of Henig
proper efficient points will be denoted by PMin(A|K). In the sequel we will need
the notion of a quasi-interior of the cone K which is denoted as K∗ and is

K� := {y∗ ∈ Y ∗ | y∗(y) > 0,∀y ∈ K \ {0}}′

where Y ∗ is the topological dual of Y. It is clear that if K and Q are two cones with
K \ {0} ⊂ intQ then Q∗ ⊂ K∗ and Q∗ \ {0} ⊂ K�.

The notion of a base of cone plays an important role in the sequel. The optimality
conditions that we will develop will depend on this notion. A convex set B is said to
be a base for the cone K if 0 /∈ clB and K = coneB, where cl denotes the topological
closure and coneB := [0,∞)B is the cone generated by B. A cone which admits a
base is called based. The results that follow will be under the assumption that the
ordering cone admits a base.

We shall now study the notion of dilating cones which will play a central role in
our study. We will show that these cones will have a non-empty interior. Thus these
cones will allow us to view the Pareto minimum as a weak Pareto minimum when
the original cone has an empty interior. We will first present a result which will lay
the theoretical foundation of constructing these cones.
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Lemma 5.1 ([21]). Let K ⊂ Y be a closed convex cone with a base B and take
δ = d(0,B) > 0. For ε ∈ (0,δ ), consider Bε = {y ∈ Y | d(y,B) ≤ ε} and Kε =
[0,∞)Bε , the cone generated by Bε . Then

(a) Kε is a closed convex cone for every ε ∈ (0,δ ).
(b) If 0 < γ < ε < δ , K \ {0} ⊂ Kγ \ {0} ⊂ intKε .
(c) K = ∩ε∈(0,δ )Kε = ∩n∈NKεn where (εn)⊂ (0,δ ) converges to 0.

The cone Kε constructed in the above result is termed as a dilating cone or a
Henig dilating cone. It is important to note that the cone Kε indeed has a non-empty
interior. This is due to the fact that Bε has a non-empty interior. In fact the set
{y ∈ Y : d(y,B) < ε} is nonempty since it contains all sets Bε ′ with 0 < ε ′ < ε .
Further the since y �→ d(y,B) is Lipschitz and hence is continuous, it is simple to
show that the set {y ∈ Y : d(y,B) < ε} is an open set. Moreover since B is convex
we have y �→ d(y,B) is a convex function and hence

intBε = {y ∈Y : d(y,B) < ε}.

As we shall see, the advantage of considering this construction is that we can provide
the exact form of the elements in the dual cone of such a dilating cone w.r.t. the
elements in the dual cone of the original ordering cone.

We will now introduce the notion of asymptotically compact subset of Y
in the general framework when Y is a locally convex space endowed with a
topology τ compatible with the duality system (Y,Y ∗). A subset A of Y is called
τ -asymptotically compact (τ-a.c. for short) if there exists a neighborhoodU of 0 in
(Y,τ) s.t. U∩ [0,1]A is relatively compact. In the case when τ is the strong topology,
then we shall simply use the term “asymptotically compact.” If the topology τ in
question is the weak topology we call it “asymptotically weakly compact.” This
notion was studied in detail by Zălinescu in [35] who proved a powerful non-convex
closedness criterion for the difference of two sets.

Let us now introduce the various notions from nonsmooth analysis that will play
a pivotal role in our analysis. The main tools are approximate subdifferential and
approximate normal cone due to Ioffe [24, 25]. However we will also discuss a
stronger notion of Lipschitz continuity which valid in infinite dimensional spaces.
This is called strongly compactly Lipschitz property which is defined for a vector-
valued map. Though the definition of the approximate subdifferential can be given in
a general setting but we will only define them for the case of locally Lipschitz scalar-
valued functions since this is what our main concern here. We however mention
how the approximate subdifferential can be defined for a lower-semicontinuous
function. Here our presentation of the material follows along the lines of Durea
and Dutta [10].

Let X be a Banach space and f : X → R be a locally Lipschitz function; then its
lower Dini directional derivative at x ∈ X in the direction h ∈ X is

f−(x,h) := liminf
t↓0

f (x + th)− f (x)
t

.
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Then the Dini lower subdifferential of f at x is given as

∂− f (x) := {x∗ ∈ X∗ | f−(x,h)≥ x∗(h),∀h ∈ X}.

Let L be a closed subspace of X . One sets:

∂−L f (x) := {x∗ ∈ X∗ | f−(x,h)≥ x∗(h),∀h ∈L }

If F denotes the collection of finite dimensional subspaces of X , then the
approximate subdifferential ∂a f (x) of f at x is

∂a f (x) :=
⋂

L∈F

limsup
u→x

∂−L f (u).

The normal cone to a closed set S ⊂ X at a point x ∈ S is given as

Na(S,x) :=
⋃
t≥0

t∂adS(x).

If f : X → R is a lower semicontinuous function, then the approximate subdifferen-
tial ∂a f (x) of f at x ∈Dom f is given as

∂a f (x) := {x∗ ∈ X∗ | (x∗,−1) ∈ Na(epi f ,(x, f (x)))}.

One can show that for a closed set S ⊂ X and for x ∈ S, Na(S,x) = ∂aδS(x), where
δS represents the indicator function of S.

Since we would be dealing with set-valued objective and constraint functions it is
important to state the differentiability notion that we would like to use for set-valued
maps. The differentiability notion for set-valued maps that we use in this paper is
the approximate coderivative of Ioffe. This is given as follows. The approximate
coderivative of F at a point (x,y) ∈ GrF is given as the set-valued map D∗

aF(x,y) :
Y ∗ ⇒ X∗

D∗
aF(x,y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ Na(GrF,(x,y))}.

When F is single-valued then we denote the coderivative simply as D∗
aF(x)(y∗).

In order to prove the necessary optimality conditions we need the following
nonsmooth calculus rules.

• Let X be a Banach space. If x is a local minimum for a lower semicontinuous
function f : X → R, then 0 ∈ ∂a f (x).

• Let X be a Banach space and let f : X → R be a locally Lipschitz function,
g : X → R be a proper lower-semicontinuous function. Then for every x ∈Domg
one has ∂a( f + g)(x)⊂ ∂a f (x)+ ∂ag(x) (see [20, Lemma 2.5]).
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Further for the development of necessary optimality conditions for the problem
(V P) one also needs calculus rules for the composition of two functions. Consider
a locally Lipschitz function F : X → Y and let g : Y → R be locally Lipschitz. Then
the function f = g◦F is a locally Lipschitz and using Theorem 7.5 in Ioffe [25], it
was shown in Dutta and Tammer [20, Lemma 2.6] that

∂a f (x) ⊂
⋃

y∗∈∂ga(F(x))

D∗
aF(x)(y∗).

Of course it is important to know whether one can estimate the approximate
subdifferential of the composite function f in terms of the approximate subdiffer-
ential. This is possible when the function F is assumed to be strongly compactly
Lipschitzian. A function F : X → Y is said to be strongly compactly Lipschitzian at
x0 ∈ X , if there exist a multifunction R : X ⇒ Comp(Y ), where Comp(Y ) denotes
the set of all norm compact subsets of Y and a function r : X×X →R+ satisfying

(1) limx→x0,v→0 r(x,v) = 0
(2) There exists α > 0 such that

F(x + tv)−F(x)
t

∈ R(v)+ ||v||r(x,v)BY ,

for all x ∈ x0 +αBX , v ∈ αBX , and t ∈ (0,α), where BX and BY denote the unit
ball in the spaces X and Y respectively

(3) R(0) = {0} and R is upper-semicontinuous as a set-valued map

Under the assumption that F is strongly compactly Lipschitzian at x ∈ X the
approximate subdifferential of the composite function f is given as

∂a f (x) ⊂
⋃

y∗∈∂ga(F(x))

∂a〈y∗,F〉(x).

For a proof of this fact see [27]. The above result is due to that fact that when F is
strongly compactly Lipschitzian at x then it was shown in [27] that

D∗
aF(x)(y∗) = ∂a〈y∗,F〉(x), ∀y∗ ∈ Y ∗. (5.12)

We shall now present few results from [10] which are pivotal in deriving the
necessary optimality conditions for problem (VOP) in the sequel. The first result
shows under what condition a vector which is a Pareto minimum with respect to the
ordering cone K, with empty interior is also a Pareto minimum with respect to the
associated dialating cone. We shall not present the proof which can be found in [10].

Theorem 5.16. Let A⊂Y and y∈Min(A |K). Suppose that cone(A−y) is (weakly)
closed and K admits a (weakly) closed base B. If cone(A− y) or B is (weakly) a.c.
then there exists ε ∈ (0,d(0,B)) s.t. y ∈Min(A | Kε ).
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A set which is τ-compact is automatically τ-a.c. Hence the above result,
Theorem 5.16, implies the following corollary.

Corollary 5.1. Let A⊂Y and y∈Min(A |K). Suppose that cone(A−y) is (weakly)
closed and K admits a (weakly) compact base B. Then there exists ε ∈ (0,d(0,B))
s.t. y ∈Min(A | Kε).

In Durea and Dutta [10] an explicit computation is made of he dual cone of the
dialating cone associated with ordering cone K. This is pivotal for characterizing
the Lagrangian multipliers in the necessary optimality conditions which we present
below.

Lemma 5.2. Let K ⊂ Y be a closed convex cone with a base B. For every ε ∈
(0,d(0,B)),

K∗
ε = {y∗ ∈ Y ∗ | inf

b∈B
y∗(b)≥ ε ‖y∗‖}.

In particular, K∗
ε ⊂ K∗ and K∗

ε \ {0} ⊂ K�.

Proof. Let ε ∈ (0,d(0,B)), b ∈ B and y∗ ∈ K∗
ε . Since D(b,ε) ⊂ Bε , for every

u ∈ D(0,1), y∗(b + εu)≥ 0. Therefore,

y∗(b)+ ε inf
u∈D(0,1)

y∗(u)≥ 0

whence y∗(b) ≥ ε ‖y∗‖ . Since b was arbitrarily chosen in B, we obtain the first
inclusion. For the converse inclusion, let us consider y∗ ∈ Y ∗ s.t. infb∈B y∗(b) ≥
ε ‖y∗‖ and u ∈ Bε . It is enough to prove that y∗(u)≥ 0. For every n ∈N\{0}, there
exists un ∈ B s.t. ‖un−u‖ ≤ ε+ n−1. One has

y∗(u) = y∗(u−un)+ y∗(un)

≥ −‖y∗‖‖u−un‖+ ε ‖y∗‖
≥ −‖y∗‖(ε+ n−1)+ ε ‖y∗‖
= −n−1‖y∗‖

for every n ∈ N\ {0}. We conclude that y∗(u)≥ 0. ��
As we have mentioned earlier that the assumption of the interiority of the

ordering cone allows us to have a powerful scalarization result. We present here
the result as given in [12].

Lemma 5.3. Let Q ⊂ Y be a closed convex cone with nonempty interior. Then for
every e ∈ intQ the functional se : Y → R given by

se(y) = inf{λ ∈R | λe ∈ y + Q} (5.13)

is continuous, sublinear, strictly-intQ-monotone and the following relations hold:

(a) ∂ se(0) = {v∗ ∈ Q∗ | v∗(e) = 1}.
(b) For every u ∈Y, ∂ se(u) �= /0 and ∂ se(u) = {v∗ ∈Q∗ | v∗(e) = 1,v∗(u) = se(u)}.
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In particular, for every u ∈ Y and v∗ ∈ ∂ se(u), ‖e‖−1 ≤ ‖v∗‖ ≤ d(e,bdQ)−1,
where bdQ denotes the topological boundary of Q. Moreover, se is d(e,bd(Q))−1–
Lipschitz.

Using the scalarization result mentioned above we shall now state the necessary
optimality conditions derived in Durea and Dutta [10].

In the sequel Y is a general Banach space and K is a closed convex and pointed
cone unless otherwise stated. First, we present necessary optimality conditions for
a point to be Pareto minimum of a closed set.

Theorem 5.17 ([10]). Let A ⊂ Y be a closed set and y ∈Min(A | K). Suppose that
cone(A−y) is (weakly) closed and K admits a (weakly) closed base B. If cone(A−y)
or B is (weakly) a.c., then there exists ε > 0 such that for every e ∈ K \ {0} there
exists y∗ ∈Y ∗ with y∗(e) = 1, infb∈B y∗(b)≥ ε ‖y∗‖ and −y∗ ∈ Na(A,y).

Proof. In our conditions, there exists a positive ε s.t. y ∈ Min(A | Kε) ⊂ WMin(A |
Kε) (cf. Theorem 5.16). We can apply Lemma 5.3 for the cone Q := Kε and the
element e ∈ K \ {0} ⊂ intKε . Then y is a minimum point over A for the functional
se(·−y) and then, by the infinite penalization method, y is a minimum point without
constraints for se(·− y)+ δA. Therefore,

0 ∈ ∂a(se(·− y)+ δA)(y)

and since the first function is locally Lipschitz and the second one is lower-
semicontinuous, we have

0 ∈ ∂a(se(·− y))(y)+ ∂aδA(y).

Moreover, the functional se(· − y) is sublinear and hence by using (i) in Lemmas
5.3 and 5.2 we obtain

∂a(se(·− y))(y) = ∂ se(0) = {y∗ ∈ K∗
ε | y∗(e) = 1}

= {y∗ ∈ Y ∗ | inf
b∈B

y∗(b)≥ ε ‖y∗‖ ,y∗(e) = 1}.

On the other hand, ∂aδA(y) = Na(A,y) whence the conclusion. ��
For weak Pareto minima, following result is obtained in [10] by applying the

same technique of proof and Lemma 5.3 directly for the cone K (supposed to have
non-empty interior).

Proposition 5.3. Let A ⊂ Y be a closed set, K be with nonempty interior and y ∈
WMin(A | K). Then for every e ∈ intK there exists y∗ ∈ Y ∗ s.t. y∗(e) = 1 s.t. −y∗ ∈
Na(A,y).

It is also important to observe that in the above theorem we use the condition
that the cone cone(A− y), where y ∈ Min(A | K) is closed or weakly closed. This
condition may appear to be a very strong one. So we shall now like to provide an
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example where it holds and an example where it does not hold. For simplicity we
restrict ourselves to finite dimensions while giving these examples. Consider the two
dimensional plane R2. Consider the cone K to be either R2

+ or the cone given as

K = {(x1,x2) ∈ R2
+ | x1 = x2}.

Consider the set A which is given as the square obtained by joining the points

(−1,0),(0,1),(1,0),(0,−1)

This means that A is given as

A = {(x1,x2) ∈ R2 | |x1|+ |x2| ≤ 1}.

The efficient frontier of the set Min(A | K), with respect to any of the two cones
mentioned above is given as the line segment joining the points (−1,0) and (0,−1).
It is not difficult to see that in this case the set cone(A− y) is closed for all y ∈
Min(A | K).

On the other hand consider the set A to be the closed unit ball, that is,

A = {(x1,x2) ∈ R2 | x2
1 + x2

2 ≤ 1}.

If we consider any of the cones mentioned above as the ordering cone then it is
easy to see that the set Min(A | K) is given as the circular arc joining the points
(−1,0) and (0,−1). In this case it is easy to see that for any y ∈Min(A | K) the set
cone(A− y) is not closed.

If one observes the above results then it will be clear that above analysis was done
on the image space or the objective space. However it will be important to have an
optimality condition based on the decision space or the space of decision variables.
Thus we will now present a necessary optimality condition for the problem (VOP).

Theorem 5.18. Consider the problem (VOP) where the function f is locally
Lipschitz and the set C is a closed set in X. Let x be a Pareto minimum for
(VOP) and assume that f is strongly compactly Lipschitzian at x. Suppose that
cone( f (C)− f (x)) is (weakly) closed and K admits a (weakly) closed base B.
Further assume that cone( f (C)− f (x)) or B is (weakly) asymptotically compact.
Then there exists ε > 0 such that for every e ∈ K \ {0} there exists y∗ ∈ Y ∗ with
y∗(e) = 1 and infb∈B y∗(b)≥ ε ‖y∗‖ which satisfies

0 ∈ ∂a〈y∗, f 〉(x)+ Na(C,x).

Proof. Since x is a Pareto minimum of (VOP) and since either B or cone( f (C)−
f (x)) is (weakly) asymptotically compact we can apply Theorem 5.16 to con-
clude that there exists ε > 0 such that f (x) ∈ Min( f (C)|Kε ). Hence f (x) ∈
WMin( f (C)|Kε ). Hence by applying Lemma 5.3 with Q = Kε we conclude that
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for any given e ∈ K \ {0} such that there exists a continuous sublinear functional
se : Y → R such that se( f (x)− f (x) ≥ 0 for all x ∈ C. Hence by setting φ(x) =
f (x)− f (x) we see that x solves the following scalar problem,

minse ◦φ(x) subject to x ∈C.

Hence x is also an unconstrained minimizer of the function se ◦φ + δC. Hence

0 ∈ ∂a(se ◦φ + δC)(x).

Observe that se ◦ φ is locally Lipschitz and δC is lower-semicontinuous. Hence by
applying the sum rule we have

0 ∈ ∂a(se ◦φ)(x)+ Na(C,x).

Now applying the chain rule we have

0 ∈
⋃

y∗∈∂ se(φ(x))

D∗φ(x)(y∗)+ Na(C,x)

Observe that ∂ se(φ(x)) = ∂ se(0). Hence we can conclude using (i) in Lemma 5.3
that there exists y∗ ∈Y ∗ such that y∗(e) = 1 and

0 ∈D∗φ(x)(y∗)+ Na(C,x).

Since it is easy to see that ∂ se(0)⊂K∗
ε \{0}we see using Lemma 5.2 that y∗ satisfies

inf
b∈B

y∗(b)≥ ε ‖y∗‖ .

Further since f is strongly compactly Lipschitzian then so is φ and we can obtain
our result by first applying the scalarization rule

D∗
aφ(x)(y∗) = ∂a〈y∗,φ〉(x)

and then noting that

∂a〈y∗,φ〉(x) = ∂a〈y∗, f 〉(x).
This completes the proof. ��

It is now important to see whether the above necessary optimality conditions
can be applied to some specific problems in vector optimization. We apply the
above results to what is called the vector control-approximation problem (see [21]).
For completeness of our exposition we mention briefly the statement of the vector
control-approximation problem. The vector control-approximation problem consists
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of vector minimizing the function f : X → Y where X and Y are Banach spaces and
the function f is given as

f (x) = f1(x)+
n

∑
i=1

αi|||Ai(x)−ai|||,

where f1 : X →Y is locally Lipschitz and each Ai : X → Z is a linear map and Z is a
Banach space. We also have αi ≥ 0 for all i = 1, . . . ,n. The symbol ||| · ||| denotes a
continuous map from Z to the ordering cone K called the vector norm which satisfies
the following properties:

(1) |||z|||= 0 if and only if z = 0
(2) |||λ z|||= |λ |||z|||, ∀λ ∈ R
(3) |||z1 + z2|||= |||z1|||+ |||z2|||− k, where k ∈ K

In Jahn [26] it has been shown that if K is a nontrivial convex cone and x∗ ∈ K� then
the set

B = {x ∈ K | x∗(x) = 1}
is a base for the cone K. This construction is definitely possible if K� is non-empty.
In [10] an effort was made to find a space whose ordering cone has a base that
can be written in terms of the elements of its quasi-interior. The vector-control
approximation problem can then be viewed in that light.

Now let us consider Y = L2(Ω) where Ω is a non-empty subset of Rn and
L2(Ω) is the well known space of square Lebesgue-integrable functions f :Ω →R.
The space L2(Ω) is a Hilbert space and hence (L2(Ω))∗ = L2(Ω) and the natural
ordering cone in L2(Ω) is given as

L+
2 (Ω) = { f ∈ L2(Ω) | f (x) ≥ 0 almost everywhere on Ω}.

We denote the dual cone of L+
2 (Ω) and (L+

2 (Ω))∗. However it is interesting to note
that (L+

2 (Ω))∗ = L+
2 (Ω), i.e. it is self dual. Further the quasi-interior of its dual

cone which is denotes as L+
2 (Ω)� is non-empty (see for example [26]). Thus by

considering an element x∗ ∈ L+
2 (Ω)� then

B = {x ∈ L+
2 (Ω) | x∗(x) = 1}

is a base for L+
2 (Ω) and it is weakly compact and hence weakly asymptotically

compact and thus we have all the assumptions required to apply Theorem 5.18.
Let us now consider the control-approximation problem with the assumption that

Y = L2(Ω) and K = L+
2 (Ω). Now from the above discussion it is clear that one can

easily construct a base which is weakly closed and weakly compact and thus is
weakly asymptotically compact. Now consider any x∗ ∈ (L2

+(Ω))� of norm 1 and
consider the base B of K given as

B = {x ∈ L+
2 (Ω) | x∗(x) = 1}.

Then x∗ ∈ B and d(0,B) = 1.
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Proposition 5.4. Consider the vector control-approximation problem with
Y = L2(Ω) where Ω is a subset of Rn. Let x be a Pareto minimum for the control-
approximation problem. Suppose that cone( f (X)− f (x)) is weakly closed. Then
for each x∗ ∈ (L+

2 (Ω))� with ||x∗|| = 1 there exists ε ∈ (0,1) such that for any
b ∈ B = {x ∈ L+

2 (Ω) : x∗(x) = 1} there exists y∗ ∈ L2(Ω) such that

(a) 0 ∈ ∂a〈y∗, f1〉(x)+ ∂ 〈y∗,∑n
i=1αi|||Ai(·)−ai|||〉(x).

(b) y∗(b) = 1.
(c) infb′∈B y∗(b′)≥ ε‖y∗‖.

where ∂ f denotes the subdifferential map of a convex function.

Proof. let x be a Pareto minimum for the control-approximation problem with
Y = L2(Ω). Suppose that cone( f (X) − f (x)) is weakly closed. Then using
Theorem 5.16 we conclude that there exists 0 < ε < 1 such that f (x) ∈Min( f (X) |
Kε). Thus by applying Theorem 5.18 we see that for each b ∈ B there exists
y∗ ∈ L2(Ω) such that y∗(b) = 1 and infb′∈By∗(b′)≥ ε||y∗|| such that

0 ∈ ∂a〈y∗, f 〉(x)

Observe that f is locally Lipschitz and it is clear that the function ||| · ||| is a
L+

2 (Ω)-convex function which is continuous and hence y∗(∑n
i=1αi|||Ai(x)− ai|||)

is a continuous convex function and thus using the sum rule we have

0 ∈ ∂a〈y∗, f1〉(x)+ ∂

〈
y∗,

n

∑
i=1

αi|||Ai(·)−ai|||
〉

(x).
��
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Chapter 6
Optimality Conditions and Image Space
Analysis for Vector Optimization Problems

Giandomenico Mastroeni

6.1 Introduction

At the beginning of last century, W. Pareto introduced, in the field of Economics
the idea of considering the simultaneous extremization of more that one objective
function, namely a Vector Optimization Problem (VOP). This new concept has
much influenced the Theory of Economics and the mathematical theory of extrema,
but, in the first half of the century, only a few applications has been developed.
After the second world war, in some fields of Engineering [53] and in the context
of Industrial Systems, Logistics and Management Science, there has been an
increasing request of mathematical models for optimizing situations with concurrent
objectives, and nowadays, besides the above mentioned applications, VOP also
arises in the field of statistics, approximation theory and cooperative game theory
[18, 33].

The aim of this chapter is to present the most important results and the main tools
in the analysis of optimality conditions for VOP.

A preliminary section is concerned with scalarization methods which consist
in replacing the original VOP with a family of suitable optimization problems
having a real valued objective function, which is in general obtained by replacing
the vector objective function f with a linear or nonlinear transformation of f : the
scalarization is said to be linear or nonlinear, accordingly. To deepen the analysis
of linear scalarization, a brief overview of the main generalized convexity concepts
existing in the literature is presented. In the nonlinear case, particular attention will
be given to the Gerstewitz-Luc scalarization function [43]. Section 6.3 is devoted
to Gâteaux differentiable VOP with abstract constraints of the form x ∈ K, where K
is a convex set. Optimality conditions are expressed by means of vector variational
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inequalities, where the operator is the Gâteaux derivative of the objective function.
Section 6.4 presents the image space analysis for VOP with cone constraints of
the form g(x) ∈ D, where D is a closed and convex cone. In particular, following
a vector separation scheme in the image space, generalized vector Lagrangian
functions associated with VOP are introduced, and scalar and vector saddle points
conditions are derived. Section 6.5 is concerned with Kuhn–Tucker type first order
optimality conditions for Gâteaux differentiable VOP with cone constraints and for
semidifferentiable [24] VOP with inequality constraints.

We preliminarily recall some basic definitions and notations that will be used
throughout this chapter.

Let X and Y be locally convex Hausdorff topological vector spaces. A set A ⊆ Y
is said to be convex iff, for any x1,x2 ∈ A, α ∈ [0,1], we have αx1 +(1−α)x2 ∈ A.
The interior, the closure and the frontier of A will be denoted by int A, cl A and frt A,
respectively. 0 will denote the null vector, regardless the space we work in.

A is called a cone iff, for any α≥0, αA⊂A. cone(A) :={y ∈ Y : y=αa,α≥0,
a ∈ A} is the cone generated by the set A. A convex cone A is called pointed iff
A∩ (−A) = {0}. Rn

+ := {x ∈Rn : x ≥ 0}.
If B ⊆ Y , A±B := {y ∈ Y : y = a±b, a ∈ A, b ∈ B}.
Let C ⊂ Y be a nonempty, pointed, closed and convex cone with nonempty

interior. For the sake of simplicity, C0 and
0
C, will denote C \ {0} and the interior

of C, respectively. Then, (Y,C) is a Hausdorff topological vector space with a partial
ordering defined by

y1 ≤C y2 ⇐⇒ y2− y1 ∈C, y1,y2 ∈ Y.

Similarly, we will use the notations:

y1 �≤C0 y2 ⇐⇒ y2− y1 /∈C0; y1 �≤0
C

y2 ⇐⇒ y2− y1 /∈
0
C.

A Vector Optimization Problem (denoted by VOP) is defined by:

minC f (x), s.t. x ∈ K (6.1)

where f : X → Y is a vector-valued function and K ⊆ X is a nonempty subset.

Definition 6.1.

• The point x ∈ K is said to be a vector minimum point (for short, v.m.p.) of VOP,
iff f (x) �≥C0 f (K).

• The point x ∈ K is said to be a weak v.m.p. of VOP, iff f (x) �≥0
C

f (K).

When C = R+ and f : X → R, then Definition 6.1 collapses to the classic
definition of minimum point of the function f on the set K.

The sets of v.m.p. and weak v.m.p. of VOP will be denoted by sol(VOP) and
sol(VOP)w, respectively.
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Definition 6.2. Let A⊂ Y be a nonempty subset.

• A point y ∈ A is called a minimum (maximum) point of A, iff

y �≥C0 y, (y �≥C0 y), ∀y ∈ A.

• A point y ∈ A is called a weak minimum (maximum) point of A, iff

y �≥0
C

y, (y �≥0
C

y), ∀y ∈ A.

The sets of all minimum (maximum) points of A are denoted by MinC0 A
(MaxC0 A) and similarly for weak minimum (maximum) points.

Observe that x is a (weak) v.m.p. of VOP iff y := f (x) is a (weak) minimum point
of the set A := f (K).

By L(X ,Y ), we denote the set of all linear continuous functions from X into Y .
For l ∈ L(X ,Y ), the value of l at x is denoted by 〈l,x〉. Let X∗,Y ∗ be the topological
dual spaces of X and Y . We recall that, for Λ ∈ L(X ,Y ), the adjoint operator Λ∗ :
Y ∗ → X∗ is defined by the equality

〈Λ∗y∗,x〉= 〈y∗,Λx〉, for all y∗ ∈Y ∗and x ∈ X .

We define

C∗ := { f ∈ Y ∗ : 〈 f ,x〉 ≥ 0, ∀x ∈C},
C+ := { f ∈ Y ∗ : 〈 f ,x〉 > 0, ∀x ∈C0}.

C∗ is called the dual cone (or positive polar cone) of C. Next lemma states some
fundamental properties of C∗ (see e.g. [33, 34]).

Lemma 6.1. Let C be a pointed, closed and convex cone of a locally convex

Hausdorff topological vector space Y and let
0
C �= /0. Then:

(a) x ∈C ⇔ 〈 f ,x〉 ≥ 0, ∀ f ∈C∗

(b) x ∈ 0
C ⇔ 〈 f ,x〉 > 0, ∀ f ∈C∗ \ {0}

Definition 6.3. Let f : X → Y be a vector valued function.

• f is said to be directionally differentiable at a point x ⊆ X , iff, for any v ∈ X ,

f ′(x;v) := lim
t→0+

f (x + tv)− f (x)
t

exists and is finite. If f is directionally differentiable at every x ∈ K, then f is
said to be directionally differentiable on K.

• f is said to be Gâteaux differentiable at x ∈ K, iff there exists a linear continuous
operator D f (x) : X → Y , such that, for any v ∈ X :

〈D f (x),v〉= f ′(x;v).
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D f (x) is called the Gâteaux derivative of f at x. If f is Gâteaux differentiable at
every x ∈ K, then f is said to be Gâteaux differentiable on K.

• Let X , Y be Banach spaces. f is said to be Fréchet differentiable at x ∈ K, iff
there exists a linear continuous operator Φ(x) ∈ L(X ,Y ), such that:

lim
x→x

‖ f (x)− f (x)−〈Φ(x),x− x〉‖
‖x− x‖ = 0.

Φ(x) is called the Fréchet derivative of f at x. If f is Fréchet differentiable at
every x ∈ K, then f is said to be Fréchet differentiable on K.

The subdifferential of the function f : X → R at x ∈ X is defined by

∂ f (x) := {x∗ ∈ X∗ : f (x)− f (x)≥ 〈x∗,x− x〉, ∀x ∈ X}.

6.2 Generalized Convex Functions and Scalarization Methods

A scalarization method consists in replacing VOP with a family of optimization
problems having a real valued objective function and in such a way that the set
of optimal solutions of this family coincides with sol(VOP)w, or, at least, with a
suitable subset of it.

We observe that the definitions of v.m.p. and weak v.m.p. of VOP can be
equivalently be expressed in terms of disjunction of suitable subsets of the image
space Y where the objective function f runs. Namely, x ∈ K is a v.m.p. of VOP if
and only if

( f (x)− f (K))∩C0 = /0, (6.2)

and x ∈ K is a weak v.m.p. of VOP if and only if

( f (x)− f (K))∩
0
C = /0. (6.3)

One of the most important tools for proving (6.2) and (6.3) are linear and
nonlinear separation theorems.

We say that the hyperplane of equation 〈γ,x〉 = α , with γ ∈ Y ∗ \ {0}, α ∈ R,
separates the sets A,B⊆ Y , iff

〈γ,x〉 ≥ α, ∀x ∈ A, and 〈γ,x〉 ≤ α, ∀x ∈ B.

We will show that the existence of a separating hyperplane for the sets f (x)− f (K)
and Co turns out to be equivalent to a scalarization of the VOP.

We recall the following separation theorem (see, e.g., [31, 33]) that will be a key
tool in the analysis developed in this chapter.
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Theorem 6.1. Let A and B be convex subsets of a Hausdorff locally convex
topological vector space, and let the interior of one of them, e.g., A, be non empty.
Then there exists a hyperplane that separates A and B if and only if (int A)∩B = /0.

Remark 6.1. We observe that if A and B are two nonempty subsets of Y such that
0 ∈ frt A and 0 ∈ frt B, then the hyperplane of equation 〈γ,x〉 = 0, γ ∈ Y ∗ \ {0},
separates A and B iff it separates the set A−B and 0.

It is simple to see that (6.2) and (6.3) can be reduced to the disjunction of the null
vector 0 ∈ Y and a suitable conical extension of the set f (K)− f (x).

Lemma 6.2. (a) x ∈ K is a v.m.p. of VOP if and only if

0 �∈ f (K)− f (x)+C0, (6.4)

(b) x ∈ K is a weak v.m.p. of VOP if and only if

0 �∈ f (K)− f (x)+
0
C. (6.5)

Proof. It is enough to observe that, for any A,B⊂Y , B∩A = /0 iff 0 �∈ A−B. Setting

B := f (x)− f (K) and A := C0 or A :=
0
C, then, (a) and (b) follow, respectively. ��

From the previous considerations it follows that the analysis of the convexity
properties of the image set f (K) and of its conical extensions is a basic step in order
to apply linear separation theorems. Such properties are equivalently expressed by
means of generalized convexity assumptions on the function f .

6.2.1 Generalized Convex Functions

Definition 6.4. Let X and Y be Hausdorff topological vector spaces and K be a
convex subset of X . f : X → Y is C-convex on K, iff, for any x1,x2 ∈ K,α ∈ [0,1],

f (αx1 +(1−α)x2)≤C α f (x1)+ (1−α) f (x2).

When Y = R and C = R+, the previous definition collapses to the classic
convexity.

C-convexity is the natural generalization of convexity to a vector valued function.
Next result shows a characterization of a C-convex function in terms of the
properties of its C-epigraph, defined by:

epiC f := {(x,y) ∈ X ×Y : y ∈ f (x)+C, x ∈ K}.
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Proposition 6.1 ([43]). f : X →Y is C-convex on the convex set K ⊆ X, if and only
if epiC f is a convex set. Moreover, f is C-convex on K, if and only if φ ◦ f is a convex
function on K, for every φ ∈C∗.

Proposition 6.2 ([10]). Let K be a nonempty convex subset of X. Assume that f
is Gâteaux differentiable on K. Then f is C-convex on K if and only if, for every
x,y ∈ K,

f (y)− f (x)≥C 〈D f (x),y− x〉,
where D f (x) is the Gâteaux derivative of f at x ∈ K.

The concept of convexity has been generalized in several ways. Some of the most
important ones are summarized in the next definition.

Definition 6.5. Let X and Y be real topological vector spaces, K ⊆ X , A ⊆ Y a
convex cone, and f : X → Y .

• f is said to be A -convexlike on K, iff, for any x1, x2 ∈ K and any α ∈]0,1[, there
exists x3 ∈ K, such that:

α f (x1)+ (1−α) f (x2)− f (x3) ∈A .

• f is said to be A -subconvexlike on K, iff there exists an a0 ∈ A , such that for
any x1, x2 ∈ K, for any α ∈]0,1[ and ε > 0, there exists x3 ∈ K such that:

εa0 +α f (x1)+ (1−α) f (x2)− f (x3) ∈A .

• f is said to be closely A -convexlike on K, iff the set cl( f (K)+A ) is convex.
• f is said to be A -preconvexlike on K, iff for any x1, x2 ∈ K and α ∈]0,1[, there

exists x3 ∈ K and ρ > 0, such that:

α f (x1)+ (1−α) f (x2)−ρ f (x3) ∈A .

• Suppose that int A �= /0. f is said to be generalized A -subconvexlike on K, iff
there exists an a0 ∈ int A , such that for any x1, x2 ∈ K, α ∈]0,1[ and ε > 0, there
exists x3 ∈ K and ρ > 0, such that:

εa0 +α f (x1)+ (1−α) f (x2)−ρ f (x3) ∈A .

Convexlike mappings were considered by Fan [19]. A -subconvexlike mappings
were introduced by Jeyakumar [35]. The class of closely A -convexlike mappings
was considered in [9]. The definitions of A -preconvexlike function and generalized
A -subconvexlike function were introduced in [63] and [60], respectively.

Next results state a characterization of A -convexlike and A -subconvexlike
mappings, in terms of the properties of suitable conical extensions of their images.
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Proposition 6.3 ([57]). f : X → Y is A -convexlike on K ⊆ X, if and only if the set
f (K)+ A is convex.

Proof. It is enough to observe that an A -convexlike function on K, can be
equivalently defined as a function f , such that:

(1−α) f (K)+α f (K)⊆ f (K)+A , ∀α ∈]0,1[.

��
Proposition 6.4 ([10]). Suppose that int A �= /0. The following statements hold:

(a) f : X → Y is A -subconvexlike on K ⊆ X if and only if the set f (K)+ int A is
convex.

(b) f : X → Y is generalized A -subconvexlike on K ⊆ X if and only if the set
cone f (K)+ int A is convex.

Remark 6.2. The following relations hold:

f A -convex ⇒ f A -convexlike ⇒ f A -subconvexlike.

Proposition 6.4 shows that, if f is A -subconvexlike then it is also generalized
A -subconvexlike, provided that int A �= /0. The reverse implication does not hold
as shown by the following example.

Example 6.1. Let K :=
{
(x1,x2) ∈ R2

+ : x2
1 + x2

2 > 1
}

, f : R2 → R2 defined by
f (x1,x2) = (x1,x2) and A := R2

+. It is simple to see that:

f (K)+ int A =
{
(x1,x2) ∈ int R2

+ : x2
1 + x2

2 > 1
}

cone f (K)+ int A = int R2
+.

Therefore, f is not A -subconvexlike on K, but it is generalized A -subconvexlike
on K.

Next results are concerned with A -preconvexlike functions. The definition of
preconvexlike function does not require that the set A has nonempty interior, which
allows possible extensions of the applications to a VOP where the ordering cone C
has empty interior (see e.g. [5]). It is easy to see that, if int A �= /0, then:

f A − preconvexlike ⇒ f generalized A − subconvexlike.

Proposition 6.5. ([63]) f : X → Y is A -preconvexlike on K ⊆ X if and only if
the set ⋃

t>0

t f (K)+ A

is convex.
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Proof. Let a ∈A , x1,x2 ∈ K. Since 0 ∈A , then:

f (xi) ∈
⋃
t>0

t f (K)+ A , i = 1,2.

If
⋃

t>0 t f (K)+ A is convex, then:

y := α f (x1)+ (1−α) f (x2) ∈
⋃
t>0

t f (K)+ A , ∀α ∈ [0,1].

Therefore, ∃x3 ∈ K, and t > 0 such that:

y ∈ t f (x3)+A ,

which shows, by setting ρ = t, that f is A -preconvexlike on K.
Vice versa, assume that f is A -preconvexlike on K.
Let

y1,y2 ∈
⋃
t>0

t f (K)+ A , α ∈]0,1[.

Then, there exist x1,x2 ∈ K, γi > 0,xi ∈ K, and si ∈ A , i = 1,2, such that:

yi = γi f (xi)+ si, i = 1,2.

Let α ∈]0,1[ and set

y := αy1 +(1−α)y2 = αγ1 f (x1)+ (1−α)γ2 f (x2)+ s0,

where s0 = αs1 +(1−α)s2 ∈ A .
Set

γ := αγ1 +(1−α)γ2, δ := (αγ1)/γ.

Then γ > 0, δ ∈]0,1[, and y = γ(δ f (x1)+ (1− δ ) f (x2))+ s0.
By definition of A -preconvexlike function, for the above x1,x2 ∈ K, we can find

x3 ∈ K, a ∈A and ρ > 0, satisfying:

δ f (x1)+ (1− δ ) f (x2) = ρ f (x3)+ a.

Therefore,
y := γ(ρ f (x3)+ a)+ s0 ∈

⋃
t>0

t f (K)+A ,

and the proof is complete. ��
Similarly, it is possible to prove the next result.

Proposition 6.6. If f : X → Y is A -preconvexlike on K ⊆ X then the set
cone f (K)+ A is convex.
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Example 6.2. Let K and f be defined as in Example 6.1 and set A := {(x1,x2) ∈
R2

+ : x2 = 0}. Then ⋃
t>0

t f (K)+A = R
2
+ \ {(0,0)},

so that f is A -preconvexlike on K.

Further characterizations of generalized convex functions cab be found in
Chap. 2.

6.2.2 Scalarization

In the field of vector optimization, scalarization consists in replacing VOP with a
family P(c),c ∈ Ξ , of optimization problems, with a real valued objective function:

min sc(x), s.t. x ∈ K, (6.6)

where sc : X →R, c ∈ Ξ , a set of parameters. We require that the set of weak v.m.p.
of VOP, or at least a suitable subset, coincides with the set of optimal solutions of
P(c),c ∈ Ξ .

When sc(x) := 〈c, f (x)〉 is a linear tranformation of the objective function f of
VOP, we obtain a, so called, linear scalarization of VOP and (6.6) becomes:

min
x∈K

〈c∗, f (x)〉, (6.7)

where c∗ ∈C∗ \ {0}. We denote (6.7) by VOP(c∗). It is easy to show that VOP(c∗)

admits an optimal solution x iff the sets ( f (x)− f (K)) and
0
C are linearly separable.

Lemma 6.3. (a) If x∈K is a global minimum point of VOP(c∗), with c∗ ∈C∗ \{0}
then the hyperplane of equation 〈c∗,y〉= 0 separates the sets ( f (x)− f (K)) and
0
C, and x is a weak v.m.p. of VOP.

(b) If the hyperplane of equation 〈c∗,y〉 = 0, c∗ �= 0, separates the sets ( f (x)−
f (K)) and

0
C, with x ∈ K, then c∗ ∈C∗ \ {0}, and x is a global minimum point

of VOP(c∗).

Proof. (a) Suppose that x is an optimal solution of VOP(c∗), c∗ ∈C∗ \ {0}, i.e.

〈c∗, f (x)− f (x)〉 ≤ 0, ∀x ∈ K. (6.8)

Since c∗ ∈ C∗ \ {0}, we have that 〈c∗,y〉 > 0, ∀y ∈
0
C, and (6.3) is fulfilled,

which implies that x is a weak v.m.p. of VOP.
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(b) Suppose that the hyperplane of equation 〈c∗,y〉 = 0, c∗ �= 0, separates the sets

( f (x)− f (K)) and
0
C, i.e. (6.8) holds or, equivalently, x is an optimal solution of

VOP(c∗), and 〈c∗,y〉 ≥ 0, ∀y ∈
0
C.

By continuity, we have that 〈c∗,y〉 ≥ 0, ∀y ∈ C, i.e., c∗ ∈ C∗ \ {0}, which
completes the proof. ��

From Lemma 6.3 it follows that whenever VOP(c∗), c∗ ∈ C∗ \ {0}, has an
optimal solution x, then x ∈ sol(VOP)w. The reverse inclusion holds under suit-
able generalized convexity hypotheses that guarantee the linear separation of the

sets ( f (x)− f (K)) and
0
C, so that sol(VOP)w can be characterized in terms of

sol(VOP(c∗)), c∗ ∈C∗ \ {0}.

Theorem 6.2 ([60]). Assume that f − f (x) is a generalized C-subconvexlike map-
ping on K. Then x ∈ K is a weak v.m.p. of VOP, if and only if there exists c∗ ∈
C∗ \ {0}, such that x is a global minimum point of VOP(c∗).

Proof. Suppose that x ∈ K is a weak v.m.p. of VOP. Then,

( f (x)− f (K))∩ 0
C = /0,

which is equivalent to the condition:

cone( f (x)− f (K))∩
0
C = /0,

and in turn,

0 �∈ cone( f (K)− f (x))+
0
C.

From Proposition 6.4 (b), the set cone( f (K)− f (x))+
0
C is convex, and since it has

nonempty interior, applying the separation theorem for convex set (see Theorem

6.1) and taking into account Remark 6.1, it follows that the sets f (x)− f (K) and
0
C

are linearly separable. By Lemma 6.3 (b), x is a global minimum point of VOP(c∗).
The converse implication follows from Lemma 6.3 (a). ��

Remark 6.3. We observe that most of the generalized convexity assumptions on f
ensure that f − f (x) is a generalized C-subconvexlike mapping. From Definition 6.5,
it is immediate that, if f is A -subconvexlike, then f − f (x) is also A -subconvexlike,
so that f − f (x) is generalized A -subconvexlike, provided that int A �= /0 (see
Proposition 6.4). Therefore, in the previous theorem, the assumption that f − f (x) is
generalized C-subconvexlike on K can be replaced by the one that f is C-convexlike
or C-subconvexlike on K.

We refer to Chaps. 2, 4, 12, [10, 20, 32] and the references therein, for further
interesting developments on linear scalarization.
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Let us consider nonlinear scalarization and define the Gerstewitz-Luc
scalarization function, which is one of the most studied in the field of Vector
Optimization [43].

Definition 6.6. Given a fixed e ∈ 0
C and a ∈ Y , the Gerstewitz-Luc scalarization

function is defined by:

ξea(y) = min{t ∈R : y ∈ a + te−C}, y ∈Y. (6.9)

We recall the main properties of the function ξea.

Proposition 6.7 ([10]). The nonlinear scalarization function ξea is well-defined,
that is, the minimum in (6.9) is attained.

Definition 6.7.

• A function ψ : Y −→R is monotone iff, for any y1,y2 ∈ Y ,

y1 ≥C y2 ⇒ ψ(y1)≥ ψ(y2).

• ψ is strictly monotone iff, for any y1,y2 ∈Y ,

y1 ≥◦
C

y2 ⇒ ψ(y1) > ψ(y2).

• ψ is strongly monotone iff, for any y1,y2 ∈ Y ,

y1 ≥C0 y2 ⇒ ψ(y1) > ψ(y2).

It can be proved that, ξea is a continuous, convex and strictly monotone function
on Y . However, ξea is not strongly monotone [10, 43].

The following result [10] states an equivalent characterization of the function ξea

in the particular case where Y = R�, C = R�
+.

Proposition 6.8. Let Y =R�, C =R�
+ and e = (e1, ...,e�)T ∈ 0

C. Then, for any a∈R�

and y ∈ R�, we have:

ξea(y) = max
1≤i≤�

{
yi−ai

ei

}
.

Next theorem characterizes weak minimum points of a set A (see Definition 6.2)
in terms of global minimum points of the function ξea.

Theorem 6.3. Let e ∈
◦
C and A⊂ Y. Then y is a weak minimum point of A iff, there

exists a ∈ Y such that:

ξea(y) = minξea(y), y ∈ A. (6.10)
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Proof. Let e ∈ ◦
C and assume that for some a ∈ Y , (6.10) is fulfilled. Ab absurdo, if

y is not a weak minimum point of A, then there exists y ∈ A such that y ≤◦
C

y. Since

ξea is strictly monotone on Y , then ξea(y) < ξea(y), which contradicts (6.10).
Conversely, assume that y ∈ A is a weak minimum point of A, i.e.,

y �∈ y−
0
C, ∀y ∈ A. (6.11)

Set a := y, by Definition 6.6, we have ξey(y) = min{t ∈ R : y ∈ y + te−C}. Since,
for every t > 0 and e ∈C, we have −C ⊆ te−C, then :

y ∈ y−C ⊆ y+ te−C, ∀t > 0

which implies

min{t ∈ R : y ∈ y+ te−C}= ξey(y)≤ 0.

We will prove that (6.11) implies

ξey(y)≥ 0, ∀y ∈ A. (6.12)

Ab absurdo, if ξey(y) < 0, for some y ∈ A, then, set t̃ := ξey(y) < 0, we would have:

y ∈ y+ t̃e−C⊂ y− 0
C,

which contradicts (6.11). Since ξey(y)≤ 0, from (6.12) it follows that ξey(y) = 0, so
that (6.10) holds. ��

Let us apply Theorem 6.3 to VOP.

Corollary 6.1. Let e ∈
0
C. Then, x ∈ sol(VOP)w if and only if there exists a ∈ f (K)

such that:
ξea(y) = minξea(y), y ∈ f (K),

where y := f (x).

Proof. It is enough to recall that x is a weak v.m.p. for VOP if and only if y := f (x)
is weak minimum point of the set f (K), taking into account that, by the proof of
Theorem 6.3 it follows that, if x ∈ sol(VOP)w, then y := f (x) is a global minimum
point of problem:

minξey(y), y ∈ f (K).

��
Under the hypotheses of Proposition 6.8, we obtain the following well known

result.
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Corollary 6.2. Let Y =R�, C =R�
+. Then, sol(VOP)w =

⋃
a∈ f (K) sol(P(a)), where

P(a) is the scalar constrained extremum problem defined by:

min
x∈K

max
1≤i≤�

( fi(x)−ai), a ∈ f (K).

Proof. It is enough to apply Corollary 6.1, taking into account Proposition 6.8 where
we have set e := (1, . . . ,1) ∈ int R�

+. ��
Further developments of the analysis on nonlinear scalarization can be found

in Chaps. 4, 11, 12, [21, 32, 43] and, more recently in [37], where it is shown that
y∈ A⊂Y is a proper v.m.p. of A, in the sense of Benson [6], if and only if the scalar
problem

min
y∈A

[〈y∗,y− y〉+α‖y− y‖]

attains its minimum at y, where Y is a normed space and

(y∗,α) ∈Ca := {(y∗,α) ∈ Y ∗ ×R+ : 〈y∗,y〉−α‖y‖> 0,∀y ∈C0}.
Ca can be regarded as an augmented dual cone associated with C.

6.3 Connections with Vector Variational Inequalities

Variational Inequalities (for short, VI) were introduced half a century ago by
Stampacchia [38], inspired by Signorini Problem and the related work of Fichera in
early sixties in the field of Calculus of Variations. In parallel with the development
of VOP, in [22] the Theory of Vector Variational Inequalities (for short, VVI) was
proposed. Since then, VVI have extensively been studied because they have shown
to be a powerful tool in many fields of optimization: from the classic optimality
conditions for constrained extremum problems to the equilibrium conditions for
network flow and economic equilibrium problems [10, 26, 30, 38].

In the present section, we will introduce VVI and consider the main connections
with VOP. When the objective function f of the vector problem is Gâteaux
differentiable and the feasible set is convex, necessary optimality conditions for
a VOP can be formulated in terms of a VVI, where the operator is defined by the
Gâteaux derivative of f . Suitable generalized convexity assumptions ensure that a
weak VVI is a sufficient optimality condition for a weak vector minimum point.
In such a context, the Minty VVI is of particular importance since it provides a
necessary and sufficient optimality condition for a v.m.p. of a finite dimensional
convex VOP.

Definition 6.8. Let T : K → L(X ,Y ) and K ⊆ X be a nonempty subset.

• A VVI consists in finding x ∈ K such that:

〈T (x),x− x〉 �≤C0 0, ∀x ∈ K. (6.13)
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• A weak VVI consists in finding x ∈ K such that:

〈T (x),x− x〉 �≤0
C

0, ∀x ∈ K. (6.14)

When Y = R and C = R+, then both (6.13) and (6.14) shrink to the scalar VI
[4, 38], which consists in finding x ∈ K, such that:

〈T (x),x− x〉 ≥ 0, ∀x ∈ K. (6.15)

A further fundamental VVI that will be analysed in this section, is the, so-called,
Minty VVI.

Definition 6.9.

• The Minty VVI consists in finding x ∈ K such that:

〈T (x),x− x〉 �≥C0 0, ∀x ∈ K. (6.16)

• The weak Minty VVI consists in finding x ∈ K such that

〈T (x),x− x〉 �≥0
C

0, ∀x ∈ K. (6.17)

When Y =R and C =R+, then both (6.16) and (6.17) collapse to the scalar Minty
VI [? ], which consists in finding x ∈ K, such that:

〈T (x),x− x〉 ≤ 0, ∀x ∈ K. (6.18)

We note that, unlike (6.15), (6.18) has not been considered as the mathematical
model of a class of equilibrium problems, but merely as a tool for carrying out
proofs mainly of existence theorems for VI.

We recall that a mapping T : X → L(X ,Y ) is called C-monotone on K ⊆ X iff, for
every x,y ∈ K,

〈T (x)−T (y),x− y〉 ≥C 0.

It is well known that, under the hypothesis of C-monotonicity of the mapping T ,
weak VVI and weak Minty VVI are equivalent [11].

Another important generalization of VVI is obtained by considering a set-valued
mapping T : K ⇒ L(X ,Y ), which leads to the following definition of set-valued
(weak) VVI.

Definition 6.10. Let T : K ⇒ L(X ,Y ). The set-valued weak VVI consists in finding
x ∈ K such that:

∃t ∈ T (x) : 〈t,x− x〉 �≤0
C

0, ∀x ∈ K. (6.19)
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Defining the mapping T as a suitable subdifferential of the objective function f ,
optimality conditions for non differentiable VOP can be expressed in terms of a set-
valued VVI. We refer to Chap. 7 for the extension of analysis to vector variational-
like inequalities.

6.3.1 Optimality Conditions for Differentiable VOP

Under the assumption of Gâteaux differentiability of f on the set K, optimality
conditions for VOP can be expressed by the VVI and weak VVI obtained by defining
T := D f , the Gâteaux derivative of f , and the feasible set K as the one of VOP.

Definition 6.11. Let f be Gâteaux differentiable on the convex set K, with Gâteaux
derivative D f . Consider the following VVI:

• Find x ∈ K such that:

〈D f (x),x− x〉 �≤C0 0, ∀x ∈ K. (6.20)

• Find x ∈ K such that:

〈D f (x),x− x〉 �≤◦
C

0, ∀x ∈ K. (6.21)

Next theorem [10,11] states the relationships between VVI, weak VVI and VOP.

Theorem 6.4. The following statements hold.

(a) If x is a weak v.m.p. of VOP, then x solves (6.21).
(b) If f is C-convex on K and x solves (6.21), then x is a weak v.m.p. of VOP.
(c) If f is C-convex on K and x solves (6.20), then x is a v.m.p. of VOP.

Proof. (a) Assume that x ∈ K is a weak v.m.p. of VOP. Then, for any x ∈ K, we
have that x + t(x− x) ∈ K, ∀t ∈]0,1[. Then,

f (x + t(x− x))− f (x) �≤0
C

0, ∀t ∈]0,1[,

which implies:

f (x + t(x− x))− f (x)
t

�≤0
C

0, ∀t ∈]0,1[.

Taking the limit for t ↓ 0, we obtain (6.21).
(b) Assume that x solves (6.21). Since f is C-convex on K, then, by Proposition 6.2,

it follows that

f (x)− f (x) ∈ −〈D f (x),x− x〉−C, ∀x ∈ K,
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which implies that f (x)− f (x) ∈ (Y \ 0
C)−C. Thus

f (x)− f (x) �≥0
C

0, ∀x ∈ K,

i.e., x is a weak v.m.p. of VOP.
(c) Assume that x is not a v.m.p. of VOP. Then, there exists x ∈ K, such that f (x)−

f (x) ≥C0 0. Since f is C-convex on K, then, for any x ∈ K:

f (x)− f (x)−〈D f (x),x− x〉 ≥C 0.

Therefore, we have:

−〈D f (x),x− x〉 ≥C f (x)− f (x)≥C0 0,

which contradicts (6.20). ��
Next result is a direct consequence of the application of scalarization techniques

to VVI (6.21) (see e.g. [40]).

Theorem 6.5. Let x ∈ K. The following statements hold.

(a) If x is a weak v.m.p. of VOP, then ∃c∗ ∈C∗ \ {0} such that

〈D f (x)∗c∗,x− x〉 ≥ 0, ∀x ∈ K, (6.22)

where D f (x)∗ denotes the adjoint operator of D f (x).
(b) If f is C-convex on K and ∃c∗ ∈C∗ \{0} such that (6.22) holds, then x is a weak

v.m.p. of VOP.
(c) If f is C-convex on K and ∃c∗ ∈C+ such that (6.22) holds, then x is a v.m.p. of

VOP.

Proof. (a) If x ∈ K is a weak v.m.p. of VOP, then by Theorem 6.4 (a), (6.21) is
fulfilled. Defining the set

K := {z ∈ Y : z = 〈D f (x),x− x〉, x ∈ K},

this is equivalent to say that

K ∩ (−
0
C) = /0.

It is easy to see that K is convex and 0 ∈ K . Applying Theorem 6.1, there
exists c∗ ∈ Y ∗ \ {0} such that:

inf
z∈K

〈c∗,z〉 ≥ sup
v∈−C

〈c∗,v〉. (6.23)
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Since 0 ∈K ∩ (−C), from (6.23) it follows that c∗ ∈C \ {0} and that

〈c∗,z〉 ≥ 0, ∀z ∈K ,

or equivalently,
〈c∗,D f (x)(x− x)〉 ≥ 0, ∀x ∈ K,

(where, for simplicity of notation D f (x)(x−x) = 〈D f (x),x−x〉). Recalling the
definition of adjoint operator, (6.22) follows.

(b) Suppose that x ∈ K and ∃c∗ ∈ C∗ \ {0} such that (6.22) holds. Ab absurdo,
assume that x is not a weak v.m.p. of VOP. Therefore, there exists x̂ ∈ K such
that f (x)− f (x̂)≥0

C
0. Then, since f is C-convex on K, we have:

f (x̂)− f (x)≥C 〈D f (x), x̂− x〉,

which implies that
〈D f (x), x̂− x〉 ≤0

C
0.

Since c∗ ∈C∗ \ {0}, by Lemma 6.1 it follows that

〈c∗,D f (x)(x̂− x)〉< 0,

or, equivalently,

〈D f (x)∗c∗, x̂− x〉< 0,

which contradicts (6.22).

(c) The proof of this statement is analogous to the one of (b), where
0
C is replaced

with C0 and taking into account that, if c∗ ∈C+, then 〈c∗,z〉> 0, ∀z ∈C0. ��
Remark 6.4. Note that (6.22) is the classic first order optimality condition for
VOP(c∗). Moreover, we recall that from Theorem 6.2 it follows that, if f is
C-convex on K, then the set of the optimal solutions of the family of VOP(c∗),
with c∗ ∈C∗ \ {0}, coincides with the set of weak v.m.p. of VOP.

When C =R�
+, a vector minimum point of VOP can be completely characterized

by the Minty VVI, defined by (6.16).

Theorem 6.6 ([25]). Assume that X =Rn, Y =R� and C =R�
+. Let f be a Fréchet

differentiableC-convex function on K and let T (x)=∇ f (x) :=(∇ f1(x), . . . ,∇ f�(x)).
Then, x is a v.m.p. of VOP if and only if it is a solution to Minty VVI.

Proof. Suppose that x is a v.m.p. of VOP. Ab absurdo, if x is not a solution to Minty
VVI, then there exists x̂ ∈ K, such that:

〈T (x̂),x− x̂〉 ≥C0 0.
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Since f is C-convex, we have:

f (x)− f (x̂)≥C 〈T (x̂),x− x̂〉 ≥C0 0.

Then
f (x̂)− f (x)≤C0 0, (6.24)

which contradicts that x is a v.m.p. of VOP.
Conversely, let x be a solution to Minty VVI. Ab absurdo, assume that x is not a

v.m.p. of VOP, i.e., there exists x̂ ∈K such that (6.24) is fulfilled. Since K is convex,
then x(α) := αx +(1−α)x̂ ∈ K, ∀α ∈ [0,1]. Since f is C-convex and by (6.24), it
follows that

f (x(α))− f (x)≤C (α−1) f (x)+ (1−α) f (x̂) = (1−α)( f (x̂)− f (x))≤C0 0,

∀α ∈]0,1[.

Because of the Lagrange Mean Value Theorem, there exist α i ∈]0,1[, such that:

fi(x(α))− fi(x) = 〈∇ fi(x(α i)),x(α)− x〉, i = 1, .., �,

so that
(α−1)〈∇ fi(x(α i)),x− x̂〉 ≤ 0, i = 1, .., �,

or,

〈∇ fi(x(α i)),x− x̂〉 ≥ 0, i = 1, .., �, (6.25)

where, for at least one i, the inequality is strictly fulfilled. Recalling that fi is convex
on K if and only if ∇ fi is monotone on K [50], the following inequality holds, for
any αr, α s, r,s = 1, .., �:

〈∇ fi(x(α r))−∇ fi(x(α s)),x(α r)− x(αs)〉 ≥ 0, i = 1, .., �. (6.26)

Since x(α r)− x(αs) = (αr −αs)(x− x̂), then, multiplying (6.26) by (αr−αs), for
αr > αs, we obtain:

〈∇ fi(x(α r)),x− x̂〉 ≥ 〈∇ fi(x(α s)),x− x̂〉 ≥ 0, i = 1, .., �,

which implies, taking into account (6.25), that, for α := max{α1, ..,α�}

〈T (x(α)),x− x̂〉 ≥C0 0.

Multiplying both sides of the previous inequality by 1−α, we obtain:

〈T (x(α)),x− x(α)〉 ≥C0 0,

which contradicts that x is a solution to Minty VVI. ��



6 Optimality Conditions for VOP 187

As we will see in the next subsection, the conclusions of Theorem 6.6 still
hold, if fi is assumed to be pseudoconvex on K, for i = 1, .., �, [61]. This theorem
is further generalized to a weak Minty Vector Variational-like Inequality with a
variable ordering cone in [3].

Relations between Minty VVI and the proper efficiency of a solution [6] are
investigated in [14].

6.3.2 Optimality Conditions for Nondifferentiable VOP

The analysis, developed so far, has been extended to the nondifferentiable case by
several authors (see e.g., [15, 41, 59]). In this section, we will outline only some of
the results existing in the literature, and, for the sake of simplicity, we will consider
a finite dimensional VOP, where X = Rn, Y = R�, C = R�

+ and K ⊆ X is a convex
subset (see Chap. 7).

Let us define the upper Dini directional derivative of φ :Rn → R at x:

φD(x;y) = limsup
t↓0

φ(x + ty)−φ(x)
t

, (6.27)

where y∈Rn. In place of (6.21), consider the generalized VVI that consist in finding
x ∈ K, such that:

f D(x;x− x) := ( f D
1 (x;x− x), . . . , f D

� (x;x− x)) �≤0
C

0, ∀x ∈ K. (6.28)

By means of the upper Dini directional derivative it is possible to introduce the
definition of pseudoconvexity for a nondifferentiable function.

Definition 6.12 ([59]). φ :Rn −→R is said to be D+-pseudoconvex on K ⊆Rn, iff,
∀x,y ∈ K,

φ(x) < φ(y) implies φD(y;x− y) < 0.

Next result is a straightforward extension of Theorem 6.4 (a) and (b) and it is
analogous to [59, Theorem 2.2].

Theorem 6.7 ([59]). Assume that there exist finite the upper Dini derivatives
f D
i (x; ·) of fi at x, i = 1, . . . , �. The following statements hold.

(a) If x is a weak v.m.p. of VOP, then x solves (6.28).
(b) If fi is D+pseudoconvex on K, i = 1, . . . , �, and x solves (6.28), then x is a weak

v.m.p. of VOP.

Proof. (a) Let
0
C := int R�

+ and assume that x ∈ K is a weak v.m.p. of VOP. Since
K is convex, for any x ∈ K, we have that x+ t(x− x) ∈ K, ∀t ∈]0,1[. Then,

f (x + t(x− x))− f (x) �≤0
C

0, ∀t ∈]0,1[,
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which implies:

f (x + t(x− x))− f (x)
t

�≤0
C

0, ∀t ∈]0,1[.

Taking the limit sup for t ↓ 0, we obtain

f D(x;x− x) = limsup
t↓0

f (x + t(x− x))− f (x)
t

�≤0
C

0, ∀x ∈ K,

i.e., x is a solution to (6.28).
(b) Let x be a solution to (6.28). Ab absurdo, suppose that x is not a weak v.m.p. of

VOP. Then ∃x̃ ∈ K such that:

fi(x̃) < fi(x), i = 1, .., �.

Since fi is D+-pseudoconvex on K, i = 1, .., �, then, we have:

f D(x; x̃− x)≤0
C

0,

which contradicts (6.28). ��
In parallel with the classic VVI, for a nondifferentiable VOP, we can consider the

following generalization of the Minty VVI, that consists in finding x ∈ K such that:

f D(x;x− x) := ( f D
1 (x;x− x), . . . , f D

� (x;x− x)) �≥C0 0, ∀x ∈ K. (6.29)

Theorem 6.8 ([2]). Let K ⊆ Rn be a convex set and suppose that the following
assumptions hold.

(i) For each i ∈ {1, .., �}, and for every x ∈ K there exists finite the upper Dini
derivative f D

i (x;x− x) of fi :Rn → R.
(ii) For each i ∈ {1, .., �}, fi is upper semicontinuous and D+pseudoconvex on K.

(iii) For every x ∈ K and every y ∈Rn \ {0}, f D(x;y)≥− f D(x;−y).

Then, x is a v.m.p. of VOP if and only if it is a solution to the generalized Minty VVI
defined by (6.29).

Theorem 6.8 extends to the nondifferentiable case Theorem 6.6 of the previous
subsection. We refer to Chap. 7 for a deeper analysis of the properties of the upper
Dini directional derivative and for an extension of the previous results by means of
nonsmooth vector variational-like inequalities.

In the particular case where f : Rn → R� is a R�
+-convex function on K, or

equivalently, each of its components fi is convex on K, i = 1, .., �, the following
set-valued VVI can be associated with VOP:
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Find x ∈ K s.t. ∃ξi ∈ ∂ fi(x), i = 1, .., � : 〈ξ ,x− x〉 �≤0
C

0, ∀x ∈ K, (6.30)

where
0
C := int R�

+, ξ = (ξ1, ..,ξ�) and ∂ fi(x) denotes the subdifferential at x of the
convex function fi, i = 1, .., �.

From statements (i) and (ii) of Theorem 6.4, it follows that, if f is a differentiable
C-convex function, then the set of weak solutions of VOP coincides with the set
of solutions of the VVI (6.21). Next theorem provides an analogous result in the
nondifferentiable finite dimensional case.

Theorem 6.9 ([41]). Let X = Rn, Y = R�, C = R�
+ and assume that f : X → Y is

C-convex on the convex set K ⊆ Rn. Then x is a weak v.m.p. of VOP, if and only if
x solves (6.30).

Further developments can be found in [41], where, in particular, the scalarization
of (6.30) is analysed. There exists a wide literature on scalarization of set-valued
VVI: in particular, we mention the work of Konnov, Li, Luc and Yang (see [10, 26,
29, 39, 43] and the references therein).

6.4 Image Space Analysis and Saddle Point Optimality
Conditions

The Image Space Analysis [27] is a unifying scheme for studying constrained
extremum problems, variational inequalities, and, more generally, can be applied
to any kind of problem that can be expressed under the form of the impossibility of
a parametric system.

In this approach, the impossibility of such a system is reduced to the disjunction
of two suitable subsets, K and H , of the Image Space (in short, IS) associated
with the given problem. Such a disjunction can be proved by showing that the two
sets lie in two disjoint level sets of a suitable, possibly vector, separation functional.

In the particular case of a VOP, by means of the Image Space Analysis, several
topics can be developed, as Lagrangian-type necessary optimality conditions, saddle
point sufficient conditions, regularity and duality [28]. In the present section, we will
present the Image Space Analysis for VOP and we will derive sufficient optimality
conditions for VOP arising from the existence of a vector separation in the IS
associated with VOP. In particular, we will show that the existence of a vector
separation in the IS is equivalent to a vector saddle point condition for a suitable
vector Lagrangian function associated with VOP. Finally, we analyse the particular
case of a scalar Lagrangian function and we outline some connections with duality
theory for VOP.
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6.4.1 Image of VOP

Let X ,Y,Z , be locally convex Hausdorff topological vector spaces, f : X → Y and
g : X →Z . Consider the VOP defined by:

minC f (x), s.t. x ∈ K := {x ∈ S : g(x)≥D 0}, (6.31)

where S ⊆ X is a convex subset, C ⊂ Y and D ⊂Z are nonempty closed, pointed
and convex cones, and C has nonempty interior.

We observe that x ∈ K is a v.m.p. of VOP if and only if the following system

f (x)− f (x)≥C0 0 , g(x)≥D 0 , x ∈ S , (6.32)

is impossible.
Let us introduce the map Ax : X −→ Y ×Z , defined by

Ax(x) := ( f (x)− f (x),g(x)), (6.33)

and the sets

Kx := {(u,v) ∈ Y ×Z : u = f (x)− f (x), v = g(x), x ∈ S}= Ax(S),

HC0 := {(u,v) ∈Y ×Z : u≥C0 0, v≥D 0}.
Kx is called the image associated with VOP.

Now, observe that system (6.32) is impossible if and only if

Kx∩HC0 = /0 . (6.34)

Hence, x ∈ K is a v.m.p. of VOP if and only if (6.34) holds.
In general, the image set is not convex even when the involved functions are

convex. To overcome this difficulty, we introduce a regularization of the image Kx

with respect to the cone cl HC0 : the set

Ex := Kx− cl HC0 = {(u,v) ∈Y ×Z : u≤C f (x)− f (x), v≤D g(x), x ∈ S}

is called the extended image associated with VOP.
The following statement motivates the introduction of Ex:

Proposition 6.9. Condition (6.34) holds if and only if

Ex∩HC0 = /0. (6.35)

Proof. We observe that HC0 + cl HC0 = HC0 . Since

Ex − HC0 = Kx − (cl HCo + HC0) = Kx − HC0 ,
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we have that
0 ∈ Ex − HC0 iff 0 ∈Kx − HC0 ,

so that (6.35) is equivalent to (6.34). ��
The optimality condition for x can be expressed in terms of the disjunction

between the sets Ex and HC0 .

Proposition 6.10. x ∈ K is a v.m.p. of VOP, if and only if (6.34), or equivalently
(6.35), holds.

Similarly, by defining

H0
C

:= {(u,v) ∈Y ×Z : u≥0
C

0, v ≥D 0},

we obtain the following result:

Proposition 6.11. x ∈ K is a weak v.m.p. of VOP iff

Kx∩H0
C

= /0 , (6.36)

or, equivalently,
Ex∩H0

C
= /0. (6.37)

Observe that, since cl H0
C

= cl HC0 , then Ex = Kx− cl H0
C

, so that the extended

image in (6.37) coincides with Ex.
Suitable generalized convexity assumptions on the functions involved, ensure the

convexity of the extended image Ex.

Proposition 6.12 ([57]). The set Ex is convex, if and only if −Ax is (C × D)-
convexlike on S, where Ax is defined by (6.33).

Proof. From Proposition 6.3, −Ax is (C×D)-convexlike on S, if and only if

−Ax(S)+ (C×D)

is a convex set. This is equivalent to the fact that

Ex := Kx− cl HC0 = Ax(S)− (C×D)

is a convex set, which completes the proof. ��
In particular, we obtain the following result.

Corollary 6.3. If −Ax is (C×D)-convex on S, then Ex is a convex set.

Proof. It is enough to note that if −Ax is (C×D)-convex on S, then −Ax is (C×D)-
convexlike on S, so that the thesis follows from Proposition 6.12. ��
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6.4.2 Vector Separation in the Image Space

Conditions (6.35), or (6.37), can be proved by showing that Ex and HC0 , or H0
C

, lie

in two disjoint level sets of a suitable vector functional.

Definition 6.13. Let Ω be a set of parameters and Q be a pointed, convex cone
in Rk. A function w : Y ×Z −→ Rk, depending on the parameter (Θ ,Λ) ∈ Ω , is a
separation function iff, ∀(Θ ,Λ) ∈Ω ,

w(u,v;Θ ,Λ) ≥Q 0, ∀(u,v) ∈HC0 .

If k > 1, then w is a vector separation function; if k = 1, then Definition 6.13
recovers Definition 1.1 given by Giannessi in [23], with Z = Qc.

In order to introduce a suitable class of vector separation functions, we need to
extend the classic concept of polar of a cone.

Definition 6.14. Let D ⊂Z be a convex cone and Q be a closed, pointed, convex
cone in Rk. The vector polar of D with respect to Q is given by

D∗
Q := {φ ∈ (Z ∗)k : φd ≥Q 0 , ∀d ∈ D},

where

φd =

⎛
⎜⎝
〈φ1,d〉

...
〈φk,d〉

⎞
⎟⎠ , φi ∈Z ∗, i = 1, ..,k.

At k = 1, D∗
Q becomes either the positive or the negative polar cone of D,

according to Q = R+ or Q =R−, respectively.

Now, we can introduce the above mentioned class of vector separation functions
which will allow us to prove (6.34) or (6.36). Let Ω := C∗

Q×D∗
Q and w : Y ×Z ×

Ω → Rk, given by

w = w(u,v;Θ ,Λ) :=Θu +Λv , Θ ∈C∗
Q , Λ ∈D∗

Q . (6.38)

We observe that w is a linear separation function, according to Definition 6.13.
For anyΘ ∈C∗

Q
and Λ ∈ D∗

Q
, set

levQ w(u,v;Θ ,Λ) := {(u,v) ∈ Y ×Z : w(u,v;Θ ,Λ) ≥Q 0}.

The following result is proved in [28].

Proposition 6.13. Let Q0 := Q\ {0} and let w be given by (6.38).
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(a) HC0
⊂

⋂

Θ∈(C0)∗
Q0

,Λ∈D∗
Q

levQ0
w(u,v;Θ ,Λ). (6.39)

(b) H0
C
⊂

⋂

Θ∈(
0
C)∗

0
Q

,Λ∈D∗
Q

lev
0
Q

w(u,v;Θ ,Λ). (6.40)

Proof. (a) (u,v) ∈HC0 ⇔ u ∈C0,v ∈ D. Therefore, ∀Θ ∈ (C0)∗Q0
and ∀Λ ∈ D∗

Q,
we haveΘu+Λv∈Q+Q0 = Q0, since Q is pointed; hence w(u,v;Θ ,Λ)≥Q0 0
and (6.39) holds.

(b) (u,v) ∈ H0
C
⇔ u ∈ 0

C,v ∈ D. Therefore, ∀Θ ∈ (
0
C)∗0

Q
and ∀Λ ∈ D∗

Q, we have

Θu +Λv ∈
0
Q+ Q =

0
Q; hence w(u,v;Θ ,Λ)≥ 0

Q
0 and (6.40) holds. ��

Corollary 6.4. Let x ∈ K.

(a) If there existΘ ∈ (C0)∗Q0
and Λ ∈ D∗

Q such that

w(u,v;Θ ,Λ ) �≥Q0 0, ∀(u,v) ∈Kx, (6.41)

then x is a v.m.p. of VOP.

(b) If there existΘ ∈ (
0
C)∗0

Q
and Λ ∈ D∗

Q, such that:

w(u,v;Θ ,Λ ) �≥ 0
Q

0, ∀(u,v) ∈Kx, (6.42)

then x is a weak v.m.p. of VOP.

Proof. (a) From Proposition 6.13 (a), it follows that (6.41) implies that (6.34) is
fulfilled.

(b) From Proposition 6.13 (b), it follows that (6.42) implies that (6.36) is fulfilled.
��

The existence of a vector separation between Kx and HC0 can be characterized
by means of a vector saddle point condition on a suitable vector Lagrangian function
associated with VOP, L : C∗

Q×D∗
Q×X → Rk, defined by

L (Θ ;Λ ,x) :=Θ f (x)−Λg(x) . (6.43)

Definition 6.15. LetΘ ∈C∗
Q.

• (Λ ,x) ∈ D∗
Q×S is a vector saddle point for L (Θ ;Λ ,x) on D∗

Q×S iff (Θ ,Λ) �=
(0,0), and

L (Θ ;Λ ,x) �≤Q0 L (Θ ;Λ ,x) �≤Q0 L (Θ ;Λ ,x), ∀x ∈ S, ∀Λ ∈ D∗
Q. (6.44)
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• (Λ ,x) ∈ D∗
Q × S is a weak vector saddle point for L (Θ ;Λ ,x) on D∗

Q × S iff

(Θ ,Λ ) �= (0,0), and

L (Θ ;Λ ,x) �≤ 0
Q

L (Θ ;Λ ,x) �≤ 0
Q

L (Θ ;Λ ,x), ∀x ∈ S, ∀Λ ∈ D∗
Q. (6.45)

Concerning the class of separation functions (6.38), we can state the following
result.

Theorem 6.10. The following statements are equivalent.

(a) x ∈ K and there exists (Θ ,Λ ) ∈C∗
Q×D∗

Q such that:

w(u,v;Θ ,Λ ) �≥Q0 0, ∀(u,v) ∈Kx; (6.46)

(b) (Λ ,x)∈D∗
Q×S is a vector saddle point for L (Θ ;Λ ,x) on D∗

Q×S, withΘ ∈C∗
Q.

Proof. (a) ⇒ (b). (a) is equivalent to the condition

Θ( f (x)− f (x))+Λg(x) �≥Q0 0, ∀x ∈ S. (6.47)

By setting x = x in (6.47), we obtain Λg(x) �≥Q0 0. Since Λ ∈ D∗
Q and x ∈ K, we

have that Λg(x)≥Q 0 and therefore

Λg(x) = 0. (6.48)

Taking into account (6.48), condition (6.47) is equivalent to

L (Θ ;Λ ,x) �≥Q0 L (Θ ;Λ ,x), ∀x ∈ S. (Θ ,Λ ) �= (0,0)

In order to show the second inequality in (6.44), observe that for everyΛ ∈ D∗
Q, we

have Λg(x)≥Q 0. Therefore,

−L (Θ ;Λ ,x)+L (Θ ;Λ ,x) =−Λg(x) �≥Q0 0 , ∀Λ ∈ D∗
Q,

taking into account that Q is a pointed cone and (6.48).
(b) ⇒ (a). We preliminarily prove that x ∈ K. From the second inequality in (6.44),
we draw:

(Λ −Λ)g(x) �≥Q0 0, ∀Λ ∈ D∗
Q.

Set A := {y ∈Rk : y = (Λ −Λ)g(x), Λ ∈D∗
Q}. Then A is a convex set such that

A∩Q0 = /0.

Since Q0 is a convex cone, ∃c∗ ∈Q∗ \ {0} such that

〈c∗,(Λ −Λ)g(x)〉 ≤ 0, ∀Λ ∈D∗
Q. (6.49)
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Ab absurdo, assume that x �∈ K. Then ∃λ ∗ ∈ D∗ such that

〈λ ∗,g(x)〉< 0. (6.50)

Actually, if (6.50) is not fulfilled for any λ ∗ ∈ D∗, then, by Lemma 6.1 (a), we have
that g(x)≥D 0. Consider Λα ∈ D∗

Q defined, for every y ∈Z , by the relation

Λαy := α〈λ ∗,y〉e, α > 0,

where e ∈ 0
Q. Substituting Λα in (6.49) we obtain:

α〈c∗,e〉 · 〈λ ∗,g(x)〉 ≥ 〈c∗,Λg(x)〉, ∀α > 0. (6.51)

Since the limit for α → +∞, in the left-hand side of (6.51), is −∞, we achieve a
contradiction, which proves that x ∈ K. From the condition

−L (Θ ;Λ ,x)+L (Θ ;Λ ,x) �≥Q0 0 , ∀Λ ∈D∗
Q,

computed for Λ ≡ 0, we obtain Λg(x) �≥Q0 0 and, since Λ ∈ D∗
Q and x ∈ K,

we have (6.48). Similarly to the proof of the reverse implication, exploiting the
complementarity relation (6.48), we have that the condition

L (Θ ;Λ ,x) �≥Q0 L (Θ ;Λ ,x) , ∀x ∈ S,

is equivalent to (6.47), and (a) is proved. ��
Next theorem shows the relationships between the existence of a weak vector

saddle point and vector separation. In the present case the complementarity relation
(6.48) may not be fulfilled (see [7, Example 4.1]); hence, it must be taken as an
additional assumption.

Theorem 6.11. The following statements are equivalent.

(a) x ∈ K and there exists (Θ ,Λ ) ∈C∗
Q×D∗

Q(Θ ,Λ ) �= (0,0) such that:

w(u,v;Θ ,Λ) �≥ 0
Q

0, ∀(u,v) ∈Kx, and Λg(x) = 0; (6.52)

(b) (Λ ,x) ∈ D∗
Q×S is a weak vector saddle point of L (Θ ,Λ ,x) on D∗

Q×S,

withΘ ∈C∗
Q and Λg(x) = 0.

Proof. It is analogous to that of Theorem 6.10. ��
Exploiting the separation results in the image space, we are now in position to

obtain vector saddle point optimality conditions for VOP defined by (6.31).
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Proposition 6.14. Let Q ⊂ Rk be a convex, pointed cone with nonempty interior
and let x ∈ K.

(a) If there exists (Θ ,Λ) ∈ (C0)∗Q0
×D∗

Q such that

Θ( f (x)− f (x))+Λg(x) �≥Q0 0, ∀x ∈ S, (6.53)

then x is a v.m.p. of VOP.

(b) If there exists (Θ ,Λ) ∈ (
0
C)∗0

Q
×D∗

Q such that

Θ( f (x)− f (x))+Λg(x) �≥ 0
Q

0 , ∀x ∈ S , (6.54)

then x is a weak v.m.p. of VOP.

Proof. It follows from Corollary 6.4, taking into account that (6.41) and (6.42) are
equivalent to (6.53) and (6.54), respectively. ��

Coupling Proposition 6.14 and Theorem 6.10 or Theorem 6.11, vector saddle
point sufficient optimality conditions for VOP can be derived. Consider the vector
Lagrangian function associated with VOP and defined by (6.43).

Theorem 6.12. Let x ∈ S.

(a) If there exists (Θ ,Λ )∈ (C0)∗Q0
×D∗

Q such that (Λ ,x) is a vector saddle point for

L (Θ ;Λ ,x) on D∗
Q×S, then x is a v.m.p. of VOP.

(b) If there exists (Θ ,Λ)∈ (
0
C)∗0

Q
×D∗

Q such that (Λ ,x) is a weak vector saddle point

for L (Θ ;Λ ,x) on D∗
Q×S with Λg(x) = 0, then x is a weak v.m.p. of VOP.

Proof. (a) We preliminarily observe that Θ ∈ (C0)∗Q0
implies that Θ ∈ C∗

Q. From
Theorem 6.10, it follows that (6.41) holds, and by Proposition 6.14 (a), we
obtain that x is a v.m.p. of VOP.

(b) It is similar to the one of (a), replacing Theorem 6.10 with Theorem 6.11 and
Proposition 6.14 (a) with Proposition 6.14 (b). ��

For general results concerning the existence of saddle points of vector valued
functions, see e.g., [54, 55] and references therein.

6.4.3 Scalar Separation in the Image Space

Definition 6.13 introduces a general concept of separation in the IS. The separation
functional can be a nonlinear vector function. In the previous subsection, we have
analysed the particular case of a linear vector separation. In the present one we
address our attention to linear and nonlinear scalar separation.
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Let Ω := (Q×Ξ) be a set of parameters, we introduce the class of functions
w : Y ×Z ×Ω −→ R, given by:

w(u,v;θ ,λ ) := α(u;θ )+ γ(v;λ ), θ ∈Q,λ ∈ Ξ , (6.55)

where α : Y ×Q→ R, γ : Z ×Ξ −→R, fulfil the following conditions:

⋂
θ∈Q

lev≥0α(·;θ )⊇C0,
⋂

λ∈Ξ
lev≥0γ(·;λ )⊇ D, (6.56)

where, for a fixed λ ∈ Ξ ,

lev≥aγ(·;λ ) := {v ∈Z : γ(v;λ )≥ a}, a ∈ R,

denotes the level set of the function γ(·;λ ) and similarly for lev≥aα(·;θ ).
Conditions (6.56) guarantee that (6.55) is a separation function according to

Definition 6.13, where we have set Q := R+. The function α can be taken as a
scalarization function for VOP.

Let us analyse, at first, a scalar linear separation function, i.e., in (6.55), we set:

α(u;θ ) = 〈θ ,u〉, θ ∈ Y ∗, γ(v;λ ) = 〈λ ,v〉, λ ∈Z ∗.

In such a case, (6.46) becomes:

〈θ ∗,u〉+ 〈λ ∗,v〉 ≤ 0, ∀(u,v) ∈Kx, (6.57)

for a suitable (θ ∗,λ ∗) ∈C∗ ×D∗, (θ ∗,λ ∗) �= 0.
If (6.57) holds, then we say that the sets Kx and HC0 admit a linear separation.

Remark 6.5. In the given space X , (6.57) is equivalent to the condition:

〈θ ∗, f (x)− f (x)〉+ 〈λ ∗,g(x)〉 ≤ 0, ∀x ∈ S. (6.58)

Next result shows that a linear functional separates Kx and HC0 iff it separates
Ex and HC0 .

Proposition 6.15. Let (θ ∗,λ ∗) ∈ C∗ ×D∗, (θ ∗,λ ∗) �= 0, Then (6.57) is equiva-
lent to

〈θ ∗,u〉+ 〈λ ∗,v〉 ≤ 0, ∀(u,v) ∈ Ex. (6.59)

Proof. Suppose that (6.57) holds. Let (h1,h2) ∈ cl HC0 = (C × D). Since
〈θ ∗,−h1〉+ 〈λ ∗,−h2〉 ≤ 0, then

〈θ ∗,u−h1〉+ 〈λ ∗,v− h2〉 ≤ 0, ∀(u,v) ∈Kx, ∀(h1,h2) ∈ cl HC0 ,

and (6.59) holds. It is obvious that (6.59) implies (6.57), since Kx ⊆ Ex. ��
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We observe that, since cl H0
C

= cl HC0 , then a continuous linear functional

separates Ex and HC0 iff it separates Ex and H0
C

.

The existence of a linear separation is ensured by suitable generalized convexity
assumptions on the function −Ax, defined by (6.33).

Proposition 6.16. Let x be a weak v.m.p. of VOP and assume that
0
D �= /0. If

−Ax is generalized (C×D)-subconvexlike on S, then Kx and HC0 admit a linear
separation.

Proof. We have to prove that there exist θ ∗ ∈C∗ and λ ∗ ∈ D∗, (θ ,λ ) �= 0 such that
(6.57) holds. Recall that x is a weak v.m.p. iff Kx and H0

C
are disjoint convex sets

(see Proposition 6.11). This implies that

Kx∩ intH0
C

= /0 (6.60)

We observe that int H0
C

=
0
C× 0

D is nonempty. Moreover, (6.60) is equivalent to:

cone (Kx)∩ int H0
C

= /0,

and, recalling that Kx = Ax(S), to the condition:

0 �∈ cone (−Ax(S))+ (
0
C× 0

D). (6.61)

Since −Ax is generalized (C×D)-subconvexlike on S, then, by Proposition 6.4 (b),

the set cone (−Ax(S))+ (
0
C× 0

D) is convex and, moreover it has nonempty interior.
Applying the separation theorem for convex sets (Theorem 6.1), we have that

there exist (θ ∗,λ ∗) ∈ Y ∗ ×Z ∗, (θ ∗,λ ∗) �= 0, such that

〈θ ∗,u〉+ 〈λ ∗,v〉 ≤ 0, ∀(u,v) ∈ cone (Ax(S))− (
0
C× 0

D). (6.62)

Observe that, by continuity, (6.62) holds for any (u,v)∈cl [cone (Ax(S))−(
0
C× 0

D)].
Recalling that for any sets M1 and M2 in a Hausdorff topological vector space,
cl (M1 + M2)⊇ cl M1 + cl M2, we have:

cl [cone (Ax(S))− (
0
C× 0

D)]⊇ cl cone (Ax(S))− (C×D)⊇ Ax(S)− (C×D) = Ex.

From (6.62) we have:

〈θ ∗,u〉+ 〈λ ∗,v〉 ≤ 0, ∀(u,v) ∈ Ex. (6.63)
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To complete the proof, we only need to show that θ ∗ ∈C∗ and λ ∗ ∈D∗. To this aim,
observe that, since x ∈ K, then:

(u,v) := (0,g(x))− (0,g(x)+ d) ∈ Ex, ∀d ∈ D.

From (6.63), it follows that

〈λ ∗,−d〉 ≤ 0, ∀d ∈ D,

i.e., λ ∗ ∈ D∗. Similarly, the point

(u,v) := (0,g(x))− (c,g(x)) ∈ Ex, ∀c ∈C,

and from (6.63),
〈θ ∗,−c〉 ≤ 0, ∀c ∈C,

i.e., θ ∗ ∈C∗. Taking into account Proposition 6.15, we have that (6.57) holds. ��
We observe that the existence of a linear separation, i.e., (6.57) is fulfilled, does

not imply that Kx∩H0
C

= /0. In order to ensure the disjunction between the two sets

(or between Kx and HC0 ), some restrictions on the choice of the multiplier θ ∗ must
be imposed.

Proposition 6.17. Assume that condition (6.57) holds or, equivalently, the sets Kx

and HC0 admit a linear separation.

(a) If θ ∗ ∈ C+ then (6.34) is fulfilled.
(b) If θ ∗ ∈C∗ \ {0} then (6.36) is fulfilled.

Proof. (a) Ab absurdo, suppose that Kx ∩HC0 �= /0. Therefore, ∃z ∈ K such that
f (x)− f (z) ∈C0. Then, taking into account that θ ∗ ∈ C+, we have

0 < 〈θ ∗, f (x)− f (z)〉 ≤ 〈θ ∗, f (x)− f (z)〉+ 〈λ ∗,g(z)〉 ≤ 0, (6.64)

which is impossible.
(b) Ab absurdo, suppose that Kx∩H0

C
�= /0. Following the proof of part (b), ∃z ∈ K

such that f (x)− f (z) ∈ 0
C. Then, taking into account that θ ∗ ∈ C∗ \ {0} and

Lemma 6.1 (b) , we have (6.64), which is impossible. ��
Next result states a sufficient condition that guarantees that the hypothesis of the

Proposition 6.17 (b) is fulfilled.

Theorem 6.13. Assume that
0
D �= /0 and that condition (6.57) holds. If there exists

y ∈ S such that g(y) ∈ 0
D, then we can suppose that θ ∗ �= 0 in (6.57).
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Proof. Ab absurdo, suppose that θ ∗ = 0 in (6.57). Then, λ ∗ �= 0 and, since g(y)∈ 0
D,

by Lemma 6.1 (b), we have:

0 < 〈λ ∗,g(y)〉 ≤ 0,

a contradiction. ��
Setting Q = R

+ in (6.43), we obtain that the (scalar) Lagrangian function
associated with VOP, given by

L(θ ;λ ,x) = 〈θ , f (x)〉− 〈λ , g(x)〉, (θ ,λ ) ∈C∗ ×D∗. (6.65)

Next result is a direct consequence of Theorem 6.10.

Theorem 6.14. Kx and HC0 admit a linear separation with x ∈ K, iff there exist
θ ∗ ∈ C∗ and λ ∗ ∈ D∗ with (θ ∗,λ ∗) �= 0, such that (λ ∗,x) is a saddle point for
L(θ ∗;λ ,x) on D∗ ×S.

In particular, we obtain the following sufficient optimality conditions.

Corollary 6.5. Let x ∈ S.

(a) If there exist θ ∗ ∈ C+ and λ ∗ ∈ D∗ such that (λ ∗,x) is a saddle point for
L(θ ∗;λ ,x) on D∗ ×S, then x is a v.m.p. of VOP.

(b) If there exist θ ∗ ∈C∗ \ {0} and λ ∗ ∈ D∗ such that (λ ∗,x) is a saddle point for
L(θ ∗;λ ,x) on D∗ ×S, then x is a weak v.m.p. of VOP.

Proof. (a) It follows from Theorem 6.12 (a), taking into account that, if Q = R+,
then C+ = (C0)∗Q0

.
(b) We observe that, since θ ∗ ∈ C∗ \ {0}, then by Lemma 6.1 (b), we have that

θ ∗ ∈ (
0
C)∗0

Q
. The thesis follows from Theorem 6.12 (b), taking into account that,

if Q = R+, then (6.44) and (6.45) in Definition 6.15 are equivalent, so that the
complementarity conditionΛg(x) = 〈λ ∗,g(x)〉= 0 is fulfilled. ��

Under generalized convexity and suitable regularity assumptions, the existence of
a saddle point for L(θ ∗;λ ,x) is a necessary and sufficient condition for the existence
of a weak optimal solution to VOP.

Theorem 6.15. Let−Ax be a generalized (C×D)-subconvexlike function on S and

suppose that
0
D �= /0 and there exists x̂∈ S such that g(x̂)∈ 0

D. Then, x is a weak v.m.p.
of VOP, iff there exists θ ∗ ∈C∗ \{0} and λ ∗ ∈D∗ such that (λ ∗,x) is a saddle point
for L(θ ∗;λ ,x) on D∗ ×S.

Proof. Taking into account Corollary 6.5 (b), we only need to prove that, if x is a
weak v.m.p. of VOP, then there exists θ ∗ ∈C∗ \{0} and λ ∗ ∈D∗ such that (λ ∗,x) is
a saddle point for L(θ ∗;λ ,x) on D∗ ×S. By Proposition 6.16, we have that Kx and
HC0 admit a linear separation, i.e., there exist (θ ∗,λ ∗) ∈ (C∗ ×D∗) such that
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〈θ ∗,u〉+ 〈λ ∗,v〉 ≤ 0, ∀(u,v) ∈Kx.

From Theorem 6.13 it follows that θ ∗ �= 0 and by Theorem 6.14, (λ ∗,x) is a saddle
point for L(θ ∗;λ ,x) on D∗ ×S. ��

Let us consider nonlinear scalar separation functions. To this aim, the scalariza-
tion approach (see Sect. 6.2.2) is a useful tool: by making use of (6.9), it is possible
to define a nonlinear scalar separation function w in the image space. Let us set, in
(6.55),

α(u;θ ) := ξθ0(u) = min{t ∈ R : u ∈ tθ −C}, θ ∈ 0
C.

In such a case, (6.55) becomes:

w(u,v;θ ,λ ) := ξθ0(u)+ γ(v;λ ), (θ ,λ ) ∈Ω :=
0
C×Ξ , (6.66)

where γ : Z ×Ξ → R, is such that

⋂

λ∈Ξ
lev≥0γ(·;λ )⊇ D. (6.67)

We prove that the function ξθ0 fulfils the first of (6.56), where Q :=
0
C.

Lemma 6.4. For any θ ∈ 0
C:

ξθ0(u) > 0, ∀u ∈C0.

Proof. Ab absurdo, assume that there exist u ∈C0 and θ ∈ 0
C such that ξθ0(u)≤ 0,

i.e., there exist t ≤ 0 and c ∈C such that

u = tθ − c. (6.68)

Since t ≤ 0 and C is a convex cone, then (6.68) implies that u ∈ −C, which is
impossible, because u ∈C0 and C is pointed. ��

Some possible choices of functions γ(v,λ ) that fulfil (6.67) are the following:

(i) γ(v,λ ) = 〈λ ,v〉, λ ∈ D∗
(ii) γ(v,λ ) =−λ min{‖v− d‖, d ∈ D}, λ ∈R+ \ {0}
(3i) γ(v,λ ) = supz≤v[〈λ ,z〉− c‖z‖2], λ ∈Rm, c ∈ R+ \ {0}, D = Rm

+.

It is immediate to see that when γ is defined as in (i) or (ii), then (6.67) is fulfilled.
As regards case (3i), this is proved in [44]. We refer to [27] for further examples.

As a consequence of Lemma 6.4, we obtain the following sufficient optimality
condition for VOP.
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Proposition 6.18. Assume that x ∈K and that γ : Z ×Ξ →R fulfils (6.67). If there

exist θ ∈ 0
C and λ ∈ Ξ such that

ξθ0( f (x)− f (x))+ γ(g(x);λ)≤ 0, ∀x ∈ S, (6.69)

then x is a v.m.p. of VOP.

Proof. Equation (6.69) is equivalent to:

w(u,v;θ ,λ )≤ 0, ∀(u,v) ∈Kx.

Condition (6.67) implies that for any λ ∈ Ξ :

γ(λ ;v)≥ 0, ∀v ∈ D,

and, recalling that HC0 = C0×D, from Lemma 6.4, we obtain:

w(u,v;θ ,λ ) = ξθ0(u)+ γ(v;λ) > 0, ∀(u,v) ∈HC0 .

This shows that (6.34) is fulfilled, so that x is a v.m.p. of VOP. ��

6.4.4 Connections with Duality

Saddle point sufficient optimality conditions for VOP are closely related to duality
theory for VOP. In the present subsection we will outline the main connections
between the separation scheme in the image space and duality theory for VOP.

If we say to be regular the subclass of separation functions which fulfil (6.39),
duality arises from the problem of finding a regular separation function such that
(6.41) holds.

In order to develop the analysis, we have to extend the concept of vector
minimality (or maximality) to a set-valued function.

Definition 6.16 ([52]). Let Φ : X ⇒Y . x ∈K is called a minimum (maximum) point
of Φ on K ⊆ X iff there exists y ∈Φ(x) such that y is a minimum (maximum) point
of the set ∪x∈KΦ(x). y is called an optimal value of Φ .

Consider the vector Lagrangian function given by (6.43) and define the following
set-valued optimization problem VD(Θ):

MaxQ0
Λ∈D∗Q

minQ0
x∈S

L (Θ ;Λ ,x). (6.70)

For Θ ∈C∗
Q, (6.70) defines a family of vector dual problems associated with VOP.

Next theorem clarifies the properties of VD(Θ).
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Theorem 6.16. Let x ∈ K andΘ ∈C∗
Q. Then, there exists Λ ∈ D∗

Q such that

w(u,v;Θ ,Λ ) �≥Q0 0, ∀(u,v) ∈Kx, (6.71)

iff Λ is an optimal solution of VD(Θ) andΘ f (x) is an optimal value.

Proof. Let Φ(Θ ,Λ) be the set of optimal values of the problem

minQ0
x∈S

L (Θ ;Λ ,x) = minQ0
x∈S

[Θ f (x)−Λg(x)]. (6.72)

Assume that (6.71) holds. Observe that (6.71) is equivalent to the condition

Θ( f (x)− f (x))+Λg(x) �≥Q0 0, ∀x ∈ S. (6.73)

Computing (6.73) for x = x, we have Λg(x) �≥Q0 0. Since x ∈ K, then Λg(x) ≥Q 0,
so that Λg(x) = 0. Therefore, (6.73) can be written as

Θ f (x)−Λg(x)− [Θ f (x)−Λg(x)] �≥Q0 0, ∀x ∈ S,

andΘ f (x) ∈Φ(Θ ,Λ ). We have to prove that

z−Θ f (x) �≥Q0 0, ∀z ∈Φ(Θ ,Λ), ∀Λ ∈ D∗
Q. (6.74)

Fixed Λ ∈ D∗
Q, let z ∈Φ(Θ ,Λ). Since z is an optimal value of (6.72), we have

z− [Θ f (x)−Λg(x)] �≥Q0 0.

As Λg(x)≥Q 0, then z−Θ f (x) �≥Q0 0, which proves (6.74).
Vice versa, assume thatΘ f (x) is an optimal value of VD(Θ), i.e.,

Θ f (x) ∈MaxQ0
Λ∈D∗Q

Φ(Θ ,Λ).

Therefore, there exists Λ ∈D∗
Q such thatΘ f (x) ∈Φ(Θ ,Λ), i.e.,

Θ f (x)− [Θ f (x)−Λg(x)] �≥Q0 0, ∀x ∈ S,

which is equivalent to (6.71). ��
As an application of the previous theorem, let us consider the particular case

where Y =R�, Q =C⊆R� andΘ = I�, the identity map on Y . Then, (6.70) becomes:

MaxQ0
Λ∈D∗Q

minQ0
x∈S

[ f (x)−Λg(x)] VD(I�)



204 G. Mastroeni

VD(I�) and its weak form, where Q0 is replaced by
0
Q, have extensively been studied

in the literature, in particular, weak and strong duality for VD(I�) and saddle point
conditions for the vector Lagrangian function L (I�;Λ ,x) (see e.g., [7, 8, 42, 43, 52,
56, 58]).

Let Δ1 := { f (x) : x is a v.m.p. of VOP} be the set of the optimal values of VOP
and Δ2 the set of optimal values of VD(I�) and define Δ := Δ1 −Δ2. Δ is called
duality gap.

Theorem 6.17. Let Y = R�, Q = C ⊆ R�. There exists a vector saddle point (Λ ,x)
for L (I�;Λ ,x) on D∗

C×S if and only if 0 ∈ Δ .

Proof. Let (Λ ,x) be a vector saddle point for L (I�;Λ ,x). By Theorem 6.12 (a), x is
a v.m.p. of VOP so that f (x) ∈ Δ1. By Theorem 6.10, (6.71) is fulfilled withΘ = I�
and Q0 = C0. Theorem 6.16 implies that f (x) ∈ Δ2 so that 0 ∈ Δ .

Vice versa, assume that 0 ∈ Δ , then there exists x ∈ K such that f (x) ∈ Δ2. By
Theorem 6.16, we have that there exists Λ ∈ D∗

C such that (6.71) is fulfilled with
Θ = I� and Q0 = C0 and by Theorem 6.10, where we have set Q = C and Θ = I�,
we obtain that (Λ ,x) is a vector saddle point for L (I�;Λ ,x) on D∗

C×S. ��
For an extensive analysis on duality for VOP, we refer to Chap. 3, [8] and the

references therein.

6.5 Necessary Optimality Conditions

In this section we consider first order optimality conditions for VOP in the case
where the feasible set K is defined by means of cone constraints. We extend the
analysis of Gâteaux differentiable problems, that we have already considered, in
Sect. 6.3, for VOP with feasible region given by a general convex set. Next, we
analyse finite dimensional G-semidifferentiable VOP, in the sense of Giannessi
[24, 28], in the presence of inequality constraints. As shown in [62], the concept of
G-semiderivative embeds, as special cases, several kinds of generalized derivatives
as, Dini, Dini-Hadamard and Clarke directional derivatives, which allows us to de-
rive necessary optimality conditions in terms of the concepts of Clarke generalized
differentiability, and quasidifferentiability in the sense of Pshenichnyi, Demyanov
and Rubinov [12, 16, 17, 47].

6.5.1 Necessary Optimality Conditions for Differentiable VOP

Consider the VOP defined by (6.31) where we assume that f and g are Gâteaux
differentiable at the point x∈ S, and denote by D f and Dg their Gâteaux derivatives.
Moreover, we suppose that D is a closed convex cone, with nonempty interior. Let
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L f (x,x) := f (x)+ 〈D f (x),x− x〉,
Lg(x,x) := g(x)+ 〈Dg(x),x− x〉,

be the linearizations of f and g at the point x, and consider the linearized image
associated with VOP at the point x ∈ S and defined by

K L
x := {(u,v) ∈ Y ×Z : u =−〈D f (x),x− x〉, v = g(x)+ 〈Dg(x),x− x〉, x ∈ S}

We observe that K L
x = LAx(S), where LAx is the linearization at x of the function

Ax defined by (6.33).
The conical extension of the linearized image is given by

E L
x := K L

x − clHC0 = LAx(S)− (C×D).

Necessary optimality conditions for VOP, at the point x ∈ K, can be expressed in
terms of suitable properties of the set E L

x .
Next definition is analogous to the one given by Robinson for a Fréchet

differentiable VOP [48].

Definition 6.17. We say that the Fritz–John optimality conditions for VOP are
satisfied at the point x ∈ K, iff there exists θ ∗ ∈ C∗ and λ ∗ ∈ D∗, not both zero,
such that:

〈D f (x)∗θ ∗ −Dg(x)∗λ ∗,x− x〉 ≥ 0, ∀x ∈ S, (6.75)

〈λ ∗,g(x)〉= 0, (6.76)

where the asterisk on a linear operator denotes the adjoint.
We say that the Kuhn–Tucker optimality conditions hold at x∈K if the Fritz–John

conditions are satisfied at x, with θ ∗ �= 0.

Observe that, if x ∈ 0
S, then (6.75) collapses into:

D f (x)∗θ ∗ −Dg(x)∗λ ∗ = 0. (6.77)

We need the following preliminary result.

Lemma 6.5 ([9]). Let A ⊆ Y be a nonempty set and P ⊆ Y a convex cone with
int P �= /0. Then

A + int P = int (A + P).

Proof. Let x∈ int (A+P). Therefore, there exists a neighborhoodU of 0Y such that

x−U ⊆ A + P. (6.78)
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Let p0 ∈ int P. For a sufficiently small α > 0, we have that α p0 ∈ U and from
(6.78) it follows that the vector z = x−α p0 ∈ A + P. We observe that x− int P is a
neighborhood of z, since it is an open set containing z. Consequently, we have

(A + P)∩ (x− int P) �= /0.

Then, there exist a ∈ A, p ∈ P such that a + p∈ x− int P. This implies that:

x ∈ a + p + int P⊆ A + P+ int P⊆ A + int P.

This proves that int (A+P)⊆ A+ int P. To prove the opposite inclusion, it is enough
to note that A + intP is an open subset of A + P, which implies that

A + int P⊆ int (A + P),

and the proof is complete. ��
Proposition 6.19. If x ∈ K is a weak v.m.p. of VOP then 0 �∈ int E L

x .

Proof. We observe that, since we assume that
0
D �= /0, then, from Lemma 6.5 it

follows that

int E L
x := int (LAx(S)− (C×D)) = LAx(S)− (

0
C× 0

D). (6.79)

Ab absurdo, suppose that 0 ∈ int E L
x , i.e., set 0 = 0Y×Z , there exist x̃ ∈ S,c ∈

0
C

and d ∈ 0
D such that

0Y =−〈D f (x), x̃− x〉− c, (6.80)

0Z = g(x)+ 〈Dg(x), x̃− x〉−d. (6.81)

Setting x(α) := x +α(x̃− x), α ∈ (0,1), we have α(x̃− x) = x(α)− x, so that,
multiplying (6.80) and (6.81) by α ∈ (0,1), we obtain:

0Y =−〈D f (x),α(x̃− x)〉−αc, 0Z = αg(x)+ 〈Dg(x),α(x̃− x)〉−αd,

and, ∀α ∈ (0,1), we have:

−〈D f (x),x(α)− x〉=−〈D f (x),α(x̃− x)〉= αc ∈ 0
C, (6.82)

〈Dg(x),x(α)− x〉= 〈Dg(x),α(x̃− x)〉= α(d−g(x)) ∈ 0
D−αg(x). (6.83)

Since f and g are Gâteaux differentiable at x, we have:

(
f (x(α))
g(x(α))

)
=

(
L f (x,x(α))+ r f (α, x̃− x)
Lg(x,x(α))+ rg(α, x̃− x)

)
,
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where

lim
α↓0

r f (α, x̃− x)
α

= 0Y , lim
α↓0

rg(α, x̃− x)
α

= 0Z .

Therefore, for 0 < α < α1 sufficiently small, from (6.82), we have:

f (x)−L f (x,x(α))− r f (α, x̃− x) =−〈D f (x),x(α)− x〉− r f (α, x̃− x) ∈ 0
C,

and, in turn,

f (x)− f (x(α)) ∈
0
C, 0 < α < α1. (6.84)

Similarly, for 0 < α < α2 sufficiently small, from (6.83), we obtain:

g(x(α)) = g(x)+ 〈Dg(x),x(α)− x〉+ rg(α, x̃− x) ∈ g(x)+
0
D−αg(x),

which implies

g(x(α)) ∈ (1−α)g(x)+
0
D ⊆ D+

0
D⊆ D, 0 < α < α2. (6.85)

For α < min{α1,α2}, (6.84) and (6.85) contradict that x is a weak v.m.p. of VOP.
��

Theorem 6.18. (a) If x ∈ K is a weak v.m.p. of VOP (6.31), then, the Fritz–John
conditions are satisfied at x.

(b) Assume that there exists x̃ ∈ S such that

g(x)+ 〈Dg(x), x̃− x〉 ∈ 0
D. (6.86)

If x ∈ K is a weak v.m.p. of VOP, then, the Kuhn–Tucker conditions are satisfied
at x.

Proof. (a) If x ∈K is a weak v.m.p. of VOP then, by Proposition 6.19, 0 �∈ int E L
x .

Note that, 0 := 0Y×Z belongs to the set E L
x . Actually, LAx(x) = (0Y ,g(x)), and

(0Y − c,g(x)−d) ∈ E L
x , for c = 0Y , d = g(x) ∈D.

Since
0
C and

0
D are nonempty, then by (6.79), it follows that int E L

x �= /0, so that,
by Theorem 6.1, there exists a closed supporting hyperplane for E L

x at 0, i.e.,
there exist (θ ∗,λ ∗) ∈Y ∗ ×Z∗, not both zero, such that:

〈θ ∗, f (x)−L f (x,x)− c〉+ 〈λ ∗,Lg(x,x)−d〉 ≤ 0, ∀x ∈ S, ∀c ∈C, ∀d ∈ D.
(6.87)

Setting x = x, d = g(x), in (6.87), we obtain:
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〈θ ∗,c〉 ≥ 0, ∀c ∈C, i.e., θ ∗ ∈C∗.

Similarly, setting x = x, c = 0, in (6.87), we have:

〈λ ∗,g(x)〉 ≤ 〈λ ∗,d〉, ∀d ∈ D,

which implies, taking into account that D is a cone, that

〈λ ∗,d〉 ≥ 0, ∀d ∈ D i.e., λ ∗ ∈D∗.

Computing (6.87) for x = x, c = 0, d = 0, we get 〈λ ∗,g(x)〉 ≤ 0, and, since
λ ∗ ∈ D∗ and x ∈ K, we have:

〈λ ∗,g(x)〉= 0.

Thus, (6.76) holds. Finally, setting c = 0, d = 0 in (6.87), we obtain:

〈θ ∗,D f (x)(x− x)〉− 〈λ ∗,Dg(x)(x− x)〉 ≥ 0, ∀x ∈ S, (6.88)

(where, for simplicity of notation, D f (x)(x− x) = 〈D f (x),x− x〉 and similarly
for Dg(x)(x− x)). By recalling the definition of adjoint operator, we obtain that
(6.88) is equivalent to (6.75), which completes the proof of part (a).

(b) We have to show that θ ∗ �= 0 in (6.87). Ab absurdo, assume that θ ∗ = 0. Then,
setting x = x̃ and d = 0, in (6.87), taking into account (6.86) and Lemma 6.1
(b), we obtain:

0 < 〈λ ∗,g(x)+ Dg(x)(x̃− x)〉 ≤ 0,

a contradiction. ��
In the particular case where Y =R�, Z = Rm, Theorem 6.18 leads to the classic

formulation of Fritz–John and Kuhn–Tucker optimality conditions.

Corollary 6.6. Let Y = R�, Z = Rm, D = Rm
+, S be a subset of X with nonempty

interior, x ∈
0
S, and assume that fi : S → R, i = 1, .., � and g j : S → R, j = 1, ..,m,

are Gâteaux differentiable at x.

(a) If x ∈ K is a weak v.m.p of VOP (6.31), then there exists (θ ∗,λ ∗) ∈ R�×Rm,
with (θ ∗,λ ∗) �= 0 such that (x,θ ∗,λ ∗) is a solution of the following system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

∑
i=1

θiD fi(x)−
m

∑
j=1

λ jDg j(x) = 0,

〈λ ,g(x)〉= 0,

θ ∈C∗, λ ≥ 0, g(x)≥ 0, x ∈ S.

(6.89)

(b) Moreover, if there exists z ∈ X such that
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〈Dg j(x),z〉> 0, j ∈ J(x) := { j : g j(x) = 0}, (6.90)

then the solution (x,θ ∗,λ ∗) of (6.89) is such that θ ∗ �= 0.

Proof. (a) It follows from Theorem 6.18 (a), taking into account that, since x ∈
0
S,

then (6.75) collapses to (6.77).
(b) We show that (6.90) implies (6.86), so that the thesis follows from Theorem

6.18 (b). To this aim set x(α) = x +αz ∈ S for α ≤ α0 ∈ (0,1) sufficiently
small. Then, for any j = 1, ..,m, there exists α j ∈ (0,1) such that

g j(x)+ 〈Dg j(x),x(α)− x〉= g j(x)+ 〈Dg j(x),αz〉> 0, 0 < α ≤ α j.

Definining x̃ := x(α), α : =min{α j : j=0, ..,m}, we obtain that (6.86) holds.
��

The previous results can be extended to a VOP where the feasible region K
contains both equality and inequality constraints. For a deeper analysis of these
generalizations we refer to [33, 48].

6.5.2 Semidifferentiable Problems

In this subsection, we will consider necessary optimality conditions for nondif-
ferentiable VOP. We will make use of the concept of semidifferentiability of a
function, introduced by Giannessi in [24], for developing in an axiomatic way the
theory of generalized directional derivatives. In the particular case where the (upper)
G-semiderivative coincides with the (upper) Dini directional derivative, necessary
optimality conditions in terms of the concepts of quasidifferentiability introduced
by Pshenichnyi, Demyanov and Rubinov [16,17,47] are obtained. Connections with
Clarke generalized differentiability [12] are also provided.

We will consider the VOP defined by (6.31) in the finite dimensional case, i.e.,
we set X := Rn, Y := R�,S := X and D := Rm

+. f : X → R� and g : X → Rm.
We preliminarily recall the concept of G-semidifferentiability [24]. Denote by G

a given subset of the set, say G , of positively homogeneous functions of degree one
on X , by C ⊆ G the set of convex positively homogeneous functions, and by L the
set of linear functions on X .

Definition 6.18 ([24]).

• A function φ : X → R is said lower G-semidifferentiable at x ∈ X iff there exist
functions DGφ : X ×X → R and εφ : X ×X → R such that:

1. DGφ(x; ·) ∈ G;
2. φ(x)−φ(x) = DGφ(x;x− x)+ εφ (x;x− x) , ∀x ∈ X ;

3. liminf
x→x

εφ (x;x− x)
‖x− x‖ ≥ 0;
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4. For every pair (h,ε) of functions (of the same kind of DGφ and εφ ,
respectively), which satisfy 1–3, we have epih⊇ epiDGφ .

DGφ(x;x− x) is called the lower G-semiderivative of φ at x.
• A function φ : X → R is said upper G-semidifferentiable at x ∈ X iff there exist

functions DGφ : X ×X → R and εφ : X ×X → R such that:

1’. DGφ(x; ·) ∈ G;
2’. φ(x)−φ(x) = DGφ(x;x− x)+ εφ (x;x− x) , ∀x ∈ X ;

3’. limsup
x→x

εφ (x;x− x)
‖x− x‖ ≤ 0;

4’. for every pair (h,ε) of functions (of the same kind of DGφ and εφ ,
respectively), which satisfy 1’–3’, we have epih⊆ epiDGφ .

DGφ(x;x− x) is called the upper G-semiderivative of φ at x.
• When lower and upper G-semiderivatives coincide at x, then φ is said to be

G-differentiable at x.

Remark 6.6. From Definition 6.18, it is immediate that

DGφ =−D (−G)(−φ), (6.91)

so that φ is lower G-semidifferentiable at x if and only if −φ is upper (−G)-
semidifferentiable at x. Moreover, we observe that the set of L -differentiable
functions coincides with the set of Fréchet differentiable functions.

Definition 6.19. Let G ⊆ C . The generalized subdifferential of a lower (or upper)
G-semidifferentiable function φ at x, denoted by ∂Gφ(x), is defined as the subdif-
ferential at x of the convex function DGφ(x;x− x) (or DGφ(x;x− x)), that is,

∂Gφ(x) = ∂DGφ(x,0) (or ∂Gφ(x) = ∂DGφ(x,0)).

Remark 6.7. If G ⊆ (−C ) then the generalized superdifferential of a lower (or
upper) G-semidifferentiable function φ is defined as the superdifferential of its
concave approximation DGφ (or DGφ ).

For G = G , the class of G-differentiable functions at x coincides with the class
of B-differentiable functions at x, in the sense of Robinson [49].

Let us recall the main properties of G-semidifferentiable functions, that will be
used in what follows.

Proposition 6.20 ([46]). Suppose that G satisfies the following conditions:

(i) ψ1,ψ2 ∈G implies ψ1 +ψ2 ∈ G
(ii) ψ ∈G implies αψ ∈ G, ∀α > 0



6 Optimality Conditions for VOP 211

(a) If φ1,φ2 and φ1 +φ2 are upper G-semidifferentiable at x then

DGφ1(x;x− x)+DGφ2(x;x− x)≤DG(φ1 +φ2)(x;x− x), ∀x ∈ X .

(b) If φ is upper (lower) G-semidifferentiable at x then ∀α > 0, αφ is upper (lower)
G-semidifferentiable at x with

αDGφ(x;x− x) (αDGφ(x;x− x))

as upper (lower) G-semiderivative.

The separation approach in the image space is a source for deriving necessary
optimality conditions for VOP: following the line developed in [24] for the scalar
case, necessary optimality conditions can be achieved by separating H0

C
from a

suitable approximation of the image Kx. Here, such an approximation is obtained by
assuming, for every i = 1, . . . , �, and j = 1, . . . ,m, G-semidifferentiability of fi and g j

and by replacing them with their G-semiderivatives. Let us introduce the index sets
I := {1, . . . , �}, J := {1, . . . ,m} and J0(x) := { j ∈ J : g j(x) = 0, εg j (x;x− x) �≡ 0}.
Next lemma is analogous to the classic Linearization Lemma of Abadie [1].

Lemma 6.6. Let the functions fi, i ∈ I, be upper Φ-semidifferentiable and g j, j ∈
J, be lower Γ -semidifferentiable at x, where Φ,Γ ⊆ G . If x ∈ K is a weak v.m.p. of
VOP (6.31), then the system (in the unknown x):

⎧
⎪⎪⎨
⎪⎪⎩

DΦ fi(x;x− x) < 0 , i ∈ I
DΓ g j(x;x− x) > 0 , j ∈ J0(x)
g j(x)+DΓ g j(x;x− x)≥ 0 , j ∈ J \ J0(x)
x ∈ X

(6.92)

is impossible.

Proof. x is a weak v.m.p. of VOP iff the following system is impossible

{
f (x)− f (x) > 0

g(x)≥ 0, x ∈ X .
(6.93)

Taking into account the semidifferentiability of f and g at x, (6.93) can be
rewritten as

⎧
⎪⎪⎨
⎪⎪⎩

−(DΦ fi(x;x− x)+ ε fi(x;x− x)) > 0, i ∈ I

g j(x)+DΓ g j(x;x− x)+ εg j(x;x− x)≥ 0, j ∈ J

x ∈ X .

(6.94)
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Ab absurdo, suppose that (6.92) be possible, and let x̂ be a solution of (6.92). Now,
we prove that x(α) := (1−α)x +α x̂ is a solution of (6.92), ∀α ∈ ]0,1]. Actually,
x(α)− x = α(x̂− x) and substituting it in (6.92), taking into account the positive
homogeneity of the semiderivatives, (6.92) becomes

⎧
⎪⎪⎨
⎪⎪⎩

αDΦ fi(x; x̂− x) < 0, i ∈ I

αDΓ g j(x; x̂− x) > 0, j ∈ J0(x)

g j(x)+αDΓ g j(x; x̂− x)≥ 0, j ∈ J \ J0(x).

(6.95)

In order to prove (6.95) it is enough to show that the inequalities

g j(x)+αDΓ g j(x; x̂− x)≥ 0 (6.96)

are fulfilled for every j ∈ J \J0(x) such that g j(x) > 0: in fact, since (6.96) holds for
α = 1, then it is fulfilled for every α ∈]0,1].
Observe that the remainders satisfy the inequalities:

limsup
x→x

ε fi(x;x− x)
‖x− x‖ ≤ 0, i ∈ I, liminf

x→x

εg j (x;x− x)
‖x− x‖ ≥ 0, j ∈ J.

From the definitions of limsup and liminf, for every fixed δ > 0, ∃αδ > 0 such that
∀α ∈ ]0,αδ ], we have:

ε fi(x;α(x̂− x))
‖α(x̂− x)‖ ≤ δ , i ∈ I, (6.97)

εg j (x;α(x̂− x))
‖α(x̂− x)‖ ≥ −δ , j ∈ J. (6.98)

Suppose that j ∈ J0(x). Because of the positive homogeneity of DΦ fi and DΓ g j,
we get:

DΦ fi(x;α(x̂− x))+ ε fi(x;α(x̂− x))

=
[
DΦ fi(x; x̂− x)

‖x̂− x‖ +
ε fi(x;α(x̂− x))

α‖x̂− x‖
]
·α‖x̂− x‖, i ∈ I,

DΓ g j(x;α(x̂− x))+ εg j(x;α(x̂− x))

=
[
DΓ g j(x; x̂− x)

‖x̂− x‖ +
εg j (x;α(x̂− x))

α‖x̂− x‖
]
·α‖x̂− x‖, j ∈ J0(x).

Taking into account (6.97) and (6.98), from the above equalities we obtain that there
exist δ > 0 and αδ > 0, such that ∀α ∈ ]0,αδ ] the following inequalities hold:

DΦ fi(x;α(x̂− x))+ ε fi(x;α(x̂− x)) < 0, i ∈ I,
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DΓ g j(x;α(x̂− x))+ εg j(x;α(x̂− x)) > 0, j ∈ J0(x).

When j ∈ J \ J0(x), we consider two cases: g j(x) = 0 and εg j ≡ 0; or g j(x) > 0. In
the latter, choosing α small enough, we have

g j(x)+DΓ g j(x;α(x̂− x))+ εg j(x;α(x̂− x))≥ 0; (6.99)

while, in the former, the inequality (6.99) is fulfilled ∀α ≥ 0. Therefore ∃α ∈ ]0,αδ ]
such that x(α) is a solution of (6.94), which contradicts the hypothesis. ��

Following the analysis developed in the previous section, the impossibility of
system (6.92) leads, by standard separation arguments, to obtain Lagrangian type
optimality conditions for VOP. Let us define

DΦ f (x;x− x) := (DΦ f1(x;x− x), ...,DΦ f�(x;x− x)),

DΓ g(x;x− x) = (DΓ g1(x;x− x), ...,DΓ gm(x;x− x)),

and introduce the sets:

K G
x := {(u,v)∈R�×Rm : u =−DΦ f (x;x−x), v = g(x)+DΓ g(x;x−x), x∈ X},

and its conical extension

E G
x := K G

x − clH0
C

= K G
x − (R�

+×Rm
+).

The following result is a direct consequence of Lemma 6.6.

Proposition 6.21. If x ∈ K is a weak v.m.p. of VOP, then 0 �∈ int E G
x .

Proof. From Lemma 6.6 it follows that system (6.92) is impossible. This implies
the impossibility of the system

−DΦ fi(x;x− x) > 0, i ∈ I, g j(x)+DΓ g j(x;x− x) > 0, j ∈ J, x ∈ X ,

or, equivalently,
K G

x ∩ int (cl H0
C
) = /0, (6.100)

Observe that (6.100) holds iff

0 �∈K G
x − int (cl H0

C
) = int (K G

x − cl H0
C
) = int E G

x ,

where the first equality is due to Lemma 6.5, which completes the proof. ��
The following results are obtained in the case where the approximations of fi, i∈ I

and g j, j ∈ J, are given by convex and concave positively homogeneous functions,
respectively.
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Theorem 6.19. Suppose that the following assumptions are fulfilled.

(i) fi, i ∈ I, is upper Φ-semidifferentiable at x, and Φ ⊆ C .
(ii) g j, j ∈ J, is lower Γ -semidifferentiable at x, and Γ ⊆ (−C ).

(a) If x ∈ K is a weak v.m.p. of VOP (6.31), then there exists (θ ∗,λ ∗) ∈ R�
+×Rm

+,
with (θ ∗,λ ∗) �= 0, such that:

〈θ ∗,DΦ f (x;x− x)〉− 〈λ ∗,DΓ g(x;x− x)≥ 0, ∀x ∈ X ;

〈λ ∗,g(x)〉= 0 . (6.101)

(b) Moreover, if there exists z ∈ X such that

DΓ g j(x;z− x) > 0, j ∈ J(x) := { j ∈ J : g j(x) = 0}, (6.102)

then we can suppose θ ∗ �= 0 in (6.101).

Proof. (a) Since the functions DΦ fi(x; ·), i∈ I and−DΓ g j(x, ·), j ∈ J, are convex,
then the set E G

x is convex (see Corollary 6.3). Since x is a weak v.m.p. of
VOP then, by Proposition 6.21, 0 �∈ int E G

x . Note that, 0 belongs to the set E G
x .

Actually, (0,g(x))∈K G
x , since it is the image point related to x := x. Therefore,

(0− c,g(x)−d) ∈ E G
x , for c = 0, d = g(x)≥ 0.

By Theorem 6.1, there exists a supporting hyperplane for E G
x at 0, i.e., there

exists a vector (θ ∗,λ ∗) ∈ R�×Rm, (θ ∗,λ ∗) �= 0 such that:

〈θ ∗,−DΦ f (x;x− x)− c〉+ 〈λ ∗,g(x)+DΓ g(x;x− x)−d〉 ≤ 0,

∀x ∈ X , ∀(c,d) ∈ (R�
+×Rm

+). (6.103)

Setting x = x, d = g(x), in (6.103), we obtain:

〈θ ∗,c〉 ≥ 0, ∀c ∈ R�
+,

so that θ ∗ ∈ R�
+. Similarly, setting x = x, c = 0, in (6.103), we have:

〈λ ∗,g(x)〉 ≤ 〈λ ∗,d〉, ∀d ∈ Rm
+,

which implies that λ ∗ ∈ Rm
+. Computing (6.103) for x = x, c = 0, d = 0 we

obtain:
〈λ ∗,g(x)〉 ≤ 0,

which implies that 〈λ ∗,g(x)〉 = 0, since x is a feasible point. Finally, setting
c = 0, d = 0 in (6.103) we obtain (6.101).

(b) Assume that (6.102) holds and, ab absurdo, that (6.101) is fulfilled with θ ∗ = 0.
Then, λ ∗ �= 0 and, from (6.101) and (6.102) we obtain:



6 Optimality Conditions for VOP 215

0 < 〈λ ∗,DΓ g(x;z− x)〉 ≤ 0,

a contradiction. This completes the proof. ��
Consider the Lagrangian function L(θ ;λ ,x) := 〈θ , f (x)〉− 〈λ ,g(x)〉 associated

with VOP.

Theorem 6.20. Let Φ ⊆ C . Suppose that fi, i ∈ I, and −g j, j ∈ J, are upper Φ-
semidifferentiable functions at x∈K, as well as any of their combination∑i∈I θi fi−
∑ j∈J λ jg j with (θ ,λ ) ∈R�

+×Rm
+.

(a) If x is a weak v.m.p. of VOP (6.31) , then there exists (θ ∗,λ ∗) ∈ R�×Rm, with
(θ ∗,λ ∗) �= 0, such that (x,θ ∗,λ ∗) is a solution of the following system:

⎧⎪⎨
⎪⎩

0 ∈ ∂ΦL(θ ,λ ;x)
〈λ ,g(x)〉= 0

θ ≥ 0, λ ≥ 0, g(x)≥ 0, x ∈ X .

(6.104)

(b) Moreover, if there exists z ∈ X such that

DΦ(−g j)(x;z− x) < 0, j ∈ J(x) := { j ∈ J : g j(x) = 0}, (6.105)

then the solution (x,θ ∗,λ ∗) of (6.104) is such that θ ∗ �= 0.

Proof. (a) Set Γ = −Φ , from Theorem 6.19 it follows that there exists a non zero
vector (θ ∗,λ ∗) ∈ (R�

+×Rm
+) such that:

�

∑
i=1

θ ∗i DΦ fi(x;x− x)−
m

∑
j=1

λ ∗j D (−Φ)g j(x;x− x)≥ 0, ∀x ∈ X ,

and 〈λ ∗,g(x)〉= 0.
From the hypotheses, the function L(θ ∗;λ ∗,x) is upperΦ-semidifferentiable

at x and the following relations hold:

DΦL(θ ∗;λ ∗,x;x− x) ≥
�

∑
i=1

θ ∗i DΦ fi(x;x− x)+∑
j∈J
λ ∗j DΦ (−g j)(x;x− x)

=
�

∑
i=1

θ ∗i DΦ fi(x;x− x)−∑
j∈J
λ ∗j D (−Φ)g j(x;x− x)≥ 0,

∀x ∈ X .

The first inequality follows from Proposition 6.20, while for the equality, it
is enough to recall that −DΦg j = D (−Φ)(−g j), j ∈ J. The previous relations
imply that
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0 ∈ ∂ΦL(θ ∗;λ ∗,x).

(b) The statement again follows from Theorem 6.19, taking into account that for
Γ = −Φ , we have DΓ g j = −DΦ (−g j), for every j ∈ J(x), so that (6.105)
collapses to (6.102), which completes the proof. ��

In order to relate the optimality conditions for G-semidifferentiable VOP,
with existing results, we report some useful characterizations of the upper
G-semiderivative, due to N.D. Yen, under suitable assumptions on the set G [62].

Let Go ⊂ G be the set of continuous and positively homogeneous functions on X .

Theorem 6.21. Assume that G⊂ Go fulfils the property

G+C ⊆ G. (6.106)

If φ : X → R is upper G-semidifferentiable at x, then

DGφ(x;v) = φDH(x;v) := limsup
t↓0,v→v

φ(x + tv)−φ(x)
t

.

φDH is called the upper Dini-Hadamard directional derivative.

Remark 6.8. Observe that, if G = C , G = C −C , the set of differences of two
convex positively homogeneous functions, or G = Go, then (6.106) is fulfilled.

Moreover, in [62] it is shown that, if G fulfils (6.106), then a necessary and
sufficient condition for φ to be upper G-semidifferentiable at x is that φDH(x, ·)∈G.

Let us recall the concepts of quasidifferentiability introduced by Pshenichnyi,
Demyanov and Rubinov [16, 17, 47].

Definition 6.20.

• The function φ : X → R is said to be quasidifferentiable in the sense of
Pshenichnyi at x, if φ is directionally differentiable at x (see Definition 6.3) and
φ ′(x; ·) ∈ C ;

• φ is said to be quasidifferentiable at x, if φ is directionally differentiable at x and
φ ′(x; ·) ∈DC := C −C

• φ is said to be upper Dini quasidifferentiable at x, if φD(x; ·) ∈DC , where φD is
defined by (6.27)

From Theorem 7.43 and Remark 6.8 next result follows [62].

Proposition 6.22. (a) If

φDH(x;v) = φD(x;v), ∀v ∈ X , (6.107)

then φ is upper DC -semidifferentiable at x if and only if it is upper Dini
quasidifferentiable at x. In that case, the function φD(x; ·) is the upper DC -
semiderivative.
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(b) If φ is directionally differentiable at x and (6.107) holds, then φ is upper DC -
semidifferentiable at x if and only if it is quasidifferentiable at x. In that case,
φ ′(x; ·) is the upper DC -semiderivative.

(c) If φ is directionally differentiable at x and (6.107) holds, then φ is upper C -
semidifferentiable at x if and only if it is quasidifferentiable in the sense of
Pshenichnyi at x. In that case, φ ′(x; ·) is the upper C -semiderivative.

We recall that φ : X → R is said to be locally Lipschitz at x ∈ X , if there exists a
scalar L > 0 and a neighbourhood V of x such that:

‖φ(x2)−φ(x1)‖ ≤ L‖x2− x1‖, ∀x1,x2 ∈V.

Assume that φ : X → R is locally Lipschitz at x and let us consider the relations
between the upper G-semiderivative and Clarke generalized directional derivative
at x , defined [12] by

φC(x;v) := limsup
t↓0,x→x

φ(x + tv)−φ(x)
t

, v ∈ X .

Consider the following subset of G :

C o := {γ ∈ G : epi γ ⊆ cl HC ((x,φ(x)),epi φ)},

where HC denotes the hypertangent cone (see e.g. [12,51]). In [24] it is shown that a
locally Lipschitz function at x is upper C o-semidifferentiable at x and the upper C o-
semiderivative collapses to the Clarke generalized directional derivative of φ , i.e.,

DC oφ(x;v) = φC(x;v), ∀v ∈ X .

Furthermore, in [62] it is proved that the upper C -semiderivative of a locally
Lipschitz function φ at x coincides with φo(x; ·) if and only if φC(x; ·) = φD(x; ·).

The literature on optimality conditions for non differentiable VOP is very wide.
Besides the above mentioned results, further important developments of the analysis
on this topic can be found in Chaps. 5, 7, 12, 13 and in [13, 36, 43, 45].
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Chapter 7
Nonsmooth Invexities, Invariant Monotonicities
and Nonsmooth Vector Variational-Like
Inequalities with Applications to Vector
Optimization

Suliman Al-Homidan, Qamrul Hasan Ansari, and Jen-Chih Yao

7.1 Introduction

It is well known that the convexity of functions plays a vital role in mathematical
economics, engineering, management, optimization theory, etc. This concept in
linear spaces relies on the possibility of connecting any two points of the space
by the line segment between them. Since convexity is often not enjoyed the real
problems, several classes of functions have been defined and studied for the purpose
of weakening the limitations of convexity. In 1981, Hanson [33] realized that
the convexity requirement, utilized to prove sufficient optimality conditions for a
differentiable mathematical programming problem, can be further weakened by
substituting the linear term y−x appearing in the definition of differentiable convex,
pseudoconvex and quasiconvex functions with an arbitrary vector-valued function.
In view of this idea, Hanson [33] (see also Craven [12]) introduced the concept
of invexity by replacing the linear term y− x in the definition of convex function
by a vector-valued function η(y,x). After the invention of invex functions, a large
number of papers on this topic has appeared in the literature on different directions
with different applications. Kaul and Kaur [42] introduced and studied the concepts
of strictly pseudoinvexity, pseudoinvexity and quasiinvexity with their applications
in nonlinear programming problem. Ben-Israel and Mond [9] introduced a new
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generalization of convex sets and convex functions, and Craven [13] called them
invex sets and pre-invex functions, respectively. It is showed in [9] that the class
of invex functions is equivalent to the class of functions whose stationary points
are global minima. Such class of pre-invex functions is further studied by Weir and
Mond [71] and Weir and Jeyakumar [70]. The initial results on invexity and pre-
invexity inspired a great deal of subsequent work which has greatly expanded the
role and applications of these classes of functions in nonlinear optimization and
other branches of pure and applied sciences. In 1991, Pini [60] presented the notion
of pre-pseudoinvex and pre-quasiinvex functions and established the relationships
between invexity and generalized invexity. Mohan and Neogy [58] proved that under
certain assumptions, an invex function is pre-invex and a quasiinvex function is
pre-quasiinvex. Recently, certain characterizations and applications of pre-invex
functions, strictly pre-invex functions, pre-quasiinvex functions and semistrictly
pre-quasiinvex functions have been studied in [51, 52, 72, 73, 75]; See also the
references therein.

The concepts of monotone and pseudomonotone operators, closely related to
convexity and pseudoconvexity, were introduced by Karamardian [39, 40] with
further applications in nonlinear complementarity problems and variational inequal-
ities. It is well known that the convexity of a real-valued function is equivalent to
the monotonicity of the corresponding gradient function. Karamardian and Schaible
[41] studied the relationships between seven kinds of monotone operators and
convexities. The monotonicity has played a very important role in the study of
the existence and solution methods of variational inequalities and complementarity
problems. For further details on monotone operators, generalized monotone oper-
ators, convexity of functions and generalized convexities of functions, we refer to
[7, 17, 26, 32, 46, 68] and the references therein. On the other hand, several people
studied invariant monotonicity with its applications to the existence of solutions
of variational-like inequalities. In the recent past, several people have studied the
relationships among different kinds of invariant monotonicities and different kinds
of invexities; See, for example, [36, 59, 65, 66, 76, 78] and the references therein.

The theory of vector variational inequalities (VVIs) was initiated by Giannessi
[21] in 1980. Since then it has been gown up in different directions. One of
such direction is the application of VVIs to vector optimization. In the last two
decades, VVIs and their generalizations have been used as tools to solve vector
optimization problems (VOPs); See, for example, [1, 3, 5, 14–16, 21, 24, 25, 44, 47–
50, 66, 74, 77] and the references therein. The (vector) optimization problem may
have a nonsmooth objective function. Therefore, Crespi et al. [14, 15] introduced
the Minty variational inequality for scalar-valued functions defined by means of
Dini lower directional derivative. More recently, the same authors extended their
formulation to the vector case in [16]. They also have established the relations
between a Minty vector variational inequality (MVVI) and the solutions of vector
minimization problem (both ideal and weakly efficient but not efficient) solutions.
Crespi et al. [16] used the scalarization method to obtain their results. In [3], Ansari
and Lee introduced both the Minty and the Stampacchia type vector variational
inequalities (MVVIs and SVVIs, respectively) defined by means of Dini upper
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directional derivative. By using the MVVI, they provided a necessary and sufficient
condition for an efficient solution of VOP for pseudoconvex functions involving
Dini upper directional derivative. They established the relationship between the
MVVI and the SVVI under upper sign continuity. Some relationships among
efficient solutions, weakly efficient solutions, solutions of the SVVI and solutions
of the MVVI are discussed. They also presented an existence result for the solutions
of weak MVVI and the weak SVVI. Their approach seems to be more direct than
the one adopted in [16]. They extended the results of [24, 77] for pseudoconvex
functions involving Dini upper directional derivative. On the other hand, several
authors studied VOP by using Stampacchia vector variational-like inequalities
(SVVLIs). Recently, Ruiz-Garzón et al. [66] established some relationships between
Stampacchia vector variational-like inequality (SVVLI) and VOP. They studied the
existence of a weakly efficient solution of VOP for differentiable but pseudoinvex
functions by using SVVLI. Mishra and Wang [57] established relationships between
Stampacchia vector variational-like inequality problems and nonsmooth vector op-
timization problems under nonsmooth invexity. Recently, Yang and Yang [74] gave
some relationships between MVVLI and VOP for differentiable but pseudoinvex
vector-valued functions. In particular, they extended the results of Giannessi [24]
and Yang et al. [77] for differentiable but pseudoinvex vector-valued functions. They
provided the necessary and sufficient conditions for a point to be a solution of VOP
for differentiable but pseudoinvex functions, is that, the point be a solution of a
Minty vector variational-like inequality problem. They also considered SVVLI and
proved its equivalence with MVVLI under continuity assumption. Very recently,
in [1], we considered generalized Minty vector variational-like inequality problems,
generalized Stampacchia vector variational-like inequality problem and nonsmooth
vector optimization problem under nonsmooth invexity. We studied the relationship
among these problems under nonsmooth invexity. We also considered the weak
formulations of generalized Minty vector variational-like inequality problem and
generalized Stampacchia vector variational-like inequality problem and gave some
relationships between the solutions of these problems and a weakly efficient solution
of vector optimization problem.

Rest of the chapter is organized as follows. In the next section, we review some
elementary concepts from nonlinear analysis, convex analysis and invex analysis.
In Sect. 7.3, we study directional derivatives, Gâteaux derivative, Dini (lower and
upper) directional derivative, Dini–Hadamard (lower and upper) directional deriva-
tive, Clarke directional derivative and their properties. By treating these directional
derivatives as a bifunction, in Sect. 7.4, we introduce different kinds of invexities for
such a bifunction. We present several properties of these invexities. Section 7.5 is
devoted to the different kinds of invariant monotonicities. Several relations between
different kinds of invexities and different kinds of invariant monotonicities are also
given. In Sect. 7.6, we introduce vector variational-like inequalities for bifunctions
in such a way that if we treat the Dini upper directional derivative of a function as a
bifunction, then we get, so called, the nonsmooth vector variational-like inequalities
involving Dini upper directional derivative. Some existence results for these kinds
of vector variational-like inequalities are presented. At the end, we study vector



224 S. Al-Homidan et al.

optimization problem by using our vector variational-like inequalities. We give
several relationships among the weakly efficient solutions and efficient solutions
of the VOP, and the solutions of our vector variational-like inequalities.

7.2 Preliminaries

Throughout the chapter, 0 will be considered as a zero vector in the corresponding
vector space.

Definition 7.1. Let X be a vector space. A mapping f : X → R∪ {±∞} is said
to be

• Positively homogeneous if for all x ∈ X and all r > 0, f (rx) = r f (x)
• Sublinear if it is positively homogeneous and

f (x + y)≤ f (x)+ f (y), for all x,y ∈ X

• Subodd if for all x ∈ X \ {0}, f (x)≥− f (−x)

The extension of the addition to R∪{±∞} is given by

(+∞)+ r = +∞ for all r ∈ R∪{±∞},
(−∞)+ r = −∞ for all r ∈ R∪{−∞}.

This extension of the addition provides the following equivalence:

r + s≥ 0 if and only if r ≥−s for all r,s ∈ R∪{±∞}. (7.1)

Remark 7.1. (a) By using (7.1), f is subodd if and only if f (x)+ f (−x)≥ 0 for all
x ∈ X .

(b) If f is sublinear and is not constant with value−∞ such that f (0)≥ 0, then f is
subodd.

Definition 7.2 (Hemicontinuous Function). Let K be a nonempty convex subset
of a topological vector space X . A function f : K → R is said to be

• Lower hemicontinuous if the function t �→ f (x+t(y−x)) is lower semicontinuous
on [0,1]

• Upper hemicontinuous if the function t �→ f (x + t(y− x)) is upper semicontinu-
ous on [0,1]

• Hemicontinuous if the function t �→ f (x + t(y− x)) is continuous on [0,1]

Definition 7.3. Let K be a nonempty convex subset of a topological vector space
X . A set-valued map P : K → 2K is said to be a KKM map if for every finite subset
{x1,x2, . . . ,xn} of K,
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co{x1,x2, . . . ,xn} ⊆
n⋃

i=1

P(xi),

where co{x1,x2, . . . ,xn} denotes the convex hull of {x1,x2, . . . ,xn}.

The following Fan-KKM theorem and the Browder type fixed point theorem for
set-valued maps will be the key tools to establish existence results for solutions of
nonsmooth vector variational-like inequalities.

Theorem 7.1 (Fan-KKM Theorem [19]). Let K be a nonempty convex subset of
a Hausdorff topological vector space X and P : K → 2K be a KKM map such that
P(x) is closed for all x ∈ K, and P(x) is compact for at least one x ∈ K. Then⋂

x∈K P(x) �= /0.

Theorem 7.2 ([4]). Let K be a nonempty convex subset of a Hausdorff topological
vector space X, and let P,Q : K → 2K be two set-valued maps. Assume that the
following conditions hold.

(i) For each x ∈ K, coP(x)⊆ Q(x) and P(x) is nonempty.
(ii) For each y ∈ K, P−1(y) = {x ∈ K : y ∈ P(x)} is open in K.

(iii) If K is not compact, assume that there exist a nonempty compact convex subset
B of K and a nonempty compact subset D of K such that for each x ∈ K \D
there exists ỹ ∈ B such that ỹ ∈ P(x).

Then, there exists x ∈ K such that x ∈ Q(x).

7.2.1 Convexity

Definition 7.4. Let K be a nonempty convex subset of a vector space X . A function
f : K → R is said to be

• Convex if for all x,y ∈ K and all t ∈ [0,1],

f (tx +(1− t)y)≤ t f (x)+ (1− t) f (y)

• Strictly convex if for all x,y ∈ K, x �= y and all t ∈ (0,1),

f (tx +(1− t)y) < t f (x)+ (1− t) f (y)

• Quasiconvex if for all x,y ∈ K and all t ∈ [0,1],

f (tx +(1− t)y)≤max{ f (x), f (y)}

• Strictly quasiconvex if for all x,y ∈ K, x �= y and all t ∈ (0,1),

f (tx +(1− t)y) < max{ f (x), f (y)}
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• Semistrictly quasiconvex if for all x,y ∈ K, f (x) �= f (y) and all t ∈ (0,1),

f (tx +(1− t)y) < max{ f (x), f (y)}

Proposition 7.1 ([6, 54]). Let K be a nonempty open convex subset of Rn and f :
K → R be a differentiable function. Then,

(a) f is convex if and only if for all x,y ∈ K,

f (y)− f (x)≥ 〈∇ f (x),y− x〉.

(b) f is strictly convex if and only if for all x,y ∈ K, x �= y,

f (y)− f (x) > 〈∇ f (x),y− x〉.

(c) f is quasiconvex if and only if for all x,y ∈ K,

f (y) ≤ f (x) implies 〈∇ f (x),y− x〉 ≤ 0

Definition 7.5 ([53]). Let K be a nonempty open subset of Rn. A differentiable
function f : K → R is said to be

• Pseudoconvex if for all x,y ∈ K,

〈∇ f (x),y− x〉 ≥ 0 implies f (y) ≥ f (x),

equivalently,
f (y) < f (x) implies 〈∇ f (x),y− x〉< 0

• Strictly pseudoconvex if for all x,y ∈ K, x �= y,

〈∇ f (x),y− x〉 ≥ 0 implies f (y) > f (x),

equivalently,
f (y) ≤ f (x) implies 〈∇ f (x),y− x〉< 0.

Theorem 7.3 ([20, 54]). Let K be a nonempty open convex subset of Rn and f :
K → R be a differentiable function. Then,

(a) f is convex if and only if for all x,y ∈ K,

〈∇ f (x)−∇ f (y),x− y〉 ≥ 0. (7.2)

(b) f is strictly convex if and only if for all x,y∈K, x �= y, the strict inequality holds
in (7.2).

(c) f is pseudoconvex if and only if for all x,y ∈ K, x �= y,

〈∇ f (x),y− x〉 ≥ 0 implies 〈∇ f (y),y− x〉 ≥ 0. (7.3)
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(d) f is quasiconvex if and only if for all x,y ∈ K, x �= y,

〈∇ f (x),y− x〉> 0 implies 〈∇ f (y),y− x〉 ≥ 0. (7.4)

(e) f is semistrictly quasiconvex and quasiconvex if it is pseudoconvex.

For the proof of this result, we refer to [8, Theorems 3.3.4 and 3.5.11] and [26,
Theorems 2.12.1, 2.12.2], respectively. We remark that the part (c) and (d) of above
theorem is due to Karamardian [40] and Karamardian and Schaible [41].

If inequality (7.2) (respectively, implications (7.3) and (7.4)) holds, then ∇ f is
called monotone (respectively, pseudomonotone and quasimonotone).

Several books and monographs on convex analysis are available in the literature.
But here, for further details on convex functions, generalized convex functions and
their properties, we refer to [6–8, 26, 54, 61] and the references therein.

7.2.2 Invexity

Definition 7.6. Let K be a nonempty subset of a vector space X and η : K×K → X
be a map. The set K is said to be invex w.r.t. η if for all x,y ∈ K and all t ∈ [0,1], we
have x + tη(y,x) ∈ K.

Remark 7.2. It can be easily seen that any subset of X is invex w.r.t. η(y,x) = 0 for
all x,y ∈ X , where 0 is the zero vector of the vector space X . Mohan and Neogy [58]
have pointed out that the definition of an invex set essentially says that there is a
path starting from x which is contained in K. It is not required that y should be one
of the end points of the path. However, if we demand that x should be an end point
of the path for every pair x,y, then η(y,x) = y− x, reducing to convexity.

We say that the map η is skew if for all x,y ∈ K,

η(y,x)+η(x,y) = 0.

Condition A. [76] Let X be a vector space, K ⊆ X be an invex set w..r.t. η : K×
K → X and g : K → R be a function. Then,

g(x +η(y,x))≤ g(y), for all x,y ∈ K.

Condition C. [58] Let X be a vector space and K ⊆ X be an invex set w.r.t. η :
K×K → X . Then, for all x,y ∈ K, t ∈ [0,1],

(a) η(x,x + tη(y,x)) =−tη(y,x).
(b) η(y,x + tη(y,x)) = (1− t)η(y,x).

Obviously, the map η(y,x) = y− x satisfies Condition C. The examples of the
map η that satisfies Condition C are given in [75, 76].
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Remark 7.3. It is shown in [78] that the Condition C implies that

η(x + sη(y,x),x) = sη(y,x), for all s ∈ [0,1].

The following example shows that a map η that satisfies the Condition C may
not be affine in the first argument and may not be skew and vice-versa.

Example 7.1 ([78]). Let K⊆R be a nonempty set. Consider the map η : K×K→R

defined by

η(y,x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y− x, if x ≥ 0, y ≥ 0

y− x, if x ≤ 0, y ≤ 0

−2− x, if x ≤ 0, y > 0

2− x, if x > 0, y ≤ 0.

Then, it is easy to see that η satisfies Condition C, but it is not affine in the first
argument and not skew.

Consider the map η : K ×K → R defined by η(y,x) = 3(y− x) for all x,y ∈
K ⊆ R. Then, η is affine in the first argument and skew, but does not satisfies
Condition C.

The following lemma can be easily proved.

Lemma 7.1 ([59]). Let K be a nonempty convex subset of a vector space X and
η : K×K → X be a map. If η is affine in the first argument and skew, then it is also
affine in the second argument.

The following definitions of invex functions, pseudoinvex functions, strictly
pseudoinvex functions and quasiinvex functions were introduced and studied in
[9, 12, 33, 42].

Definition 7.7. Let K be a nonempty open subset of Rn and η : K×K → X be a
map. A differentiable function f : K → R is said to be

• Invex w.r.t. η if for all x,y ∈ K,

f (y)− f (x)≥ 〈∇ f (x),η(y,x)〉

• Pseudoinvex w.r.t. η if for all x,y ∈ K,

〈∇ f (x),η(y,x)〉 ≥ 0 implies f (y)≥ f (x),

equivalently,
f (y) < f (x) implies 〈∇ f (x),η(y,x)〉 < 0

• Strictly pseudoinvex w.r.t. η if for all x,y ∈ K, x �= y,

〈∇ f (x),η(y,x)〉 ≥ 0 implies f (y) > f (x),

equivalently,
f (y)≤ f (x) implies 〈∇ f (x),η(y,x)〉 < 0



7 Nonsmooth Invexities, Invariant Monotonicities 229

• Quasiinvex w.r.t. η if for all x,y ∈ K,

f (y)≤ f (x) implies 〈∇ f (x),η(y,x)〉 ≤ 0

• Semistrictly quasiinvex w.r.t. η if for all x,y ∈ K with f (x) �= f (y),

f (y)≤ f (x) implies 〈∇ f (x),η(y,x)〉 < 0

The name “invex” was given by Craven [13] and stands for “invariant convex.”

Definition 7.8. Let X be a vector space and K be an invex set w.r.t. η : K×K → X .
A function f : K → R is said to be

• Pre-invex w.r.t. η if for all x,y ∈ K and all t ∈ [0,1],

f (x + tη(y,x))≤ t f (y)+ (1− t) f (x)

• Strictly pre-invex w.r.t. η if for all x,y ∈ K, x �= y and all t ∈ (0,1),

f (x + tη(y,x)) < t f (y)+ (1− t) f (x)

• Pre-quasiinvex w.r.t. η if for all x,y ∈ K and all t ∈ [0,1],

f (x + tη(y,x))≤max{ f (x), f (y)}

• Strictly pre-quasiinvex w.r.t. η if for all x,y ∈ K, x �= y and all t ∈ (0,1),

f (x + tη(y,x)) < max{ f (x), f (y)}

• Semistrictly pre-quasiinvex w.r.t. η if for all x,y ∈ K, f (x) �= f (y) and all t ∈
(0,1),

f (x + tη(y,x)) < max{ f (x), f (y)}

Proposition 7.2. ([58, Theorems 2.1 and 2.2]) Let K ⊆ Rn be a nonempty open
invex set w.r.t. η : K×K → Rn and f : K → R be a differentiable function. Suppose
that η satisfies the Condition C.

(a) If f is invex w.r.t. η , then it is pre-invex w.r.t. the same η .
(b) If f is quasiinvex w.r.t. η , then it is pre-quasiinvex w.r.t. the same η .

For further details on pre-invex, pre-quasiinvex and semistrictly pre-quasiinvex
functions, we refer to [51, 52, 58, 65, 72, 73, 75] and the references therein.
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Definition 7.9 (η-Hemicontinuous Function). Let X be a topological vector
space, K ⊆ X be a nonempty invex set w.r.t. η : K×K → X . A function f : K → R

is said to be

• η-lower hemicontinuous if the function t �→ f (x + tη(y,x)) is lower semicontin-
uous on [0,1].

• η-upper hemicontinuous if the function t �→ f (x + tη(y,x)) is upper semicontin-
uous on [0,1].

• η-hemicontinuous if the function t �→ f (x + tη(y,x)) is continuous on [0,1].

It is well known that the theory of monotonicities (in the sense of Karamardian)
plays a vital role in optimization, mathematical economics, nonlinear analysis, vari-
ational inequalities, etc. The concept of monotonicity (in the sense of Karamardian)
has been extended by replacing the linear term y− x involved in the definition of
a monotone map by a vector-valued function η(y,x). Such kind of monotonicity
is called invex or invariant monotonicity. Several authors have done a lot in this
direction. For further detail on this topic, we refer to [59, 65, 76, 78] and the
references therein.

7.3 Directional Derivatives

In this section, we discuss directional derivatives, Gâteaux derivative, Dini direc-
tional derivatives, Dini–Hadamard directional derivatives and Clarke directional
derivative of a function f : Rn → R ∪ {±∞}. Some basic properties of these
derivatives are also presented.

Definition 7.10. Let f :Rn →R∪{±∞} be a function and x∈Rn be a point where
f is finite.

• The right-sided directional derivative of f at x in the direction d ∈ Rn is
defined by

f ′+(x;d) = lim
t→0+

f (x + td)− f (x)
t

(7.5)

if the said limit exist, finite or not.
• The left-sided directional derivative of f at x in the direction d ∈Rn is defined by

f ′−(x;d) = lim
t→0−

f (x + td)− f (x)
t

(7.6)

if the said limit exist, finite or not.

For d = 0 the zero vector in Rn, both f ′+(x;0) and f ′−(x;0) are defined to be zero.
It can be easily seen that

− f ′+(x;−d) = f ′−(x;d).



7 Nonsmooth Invexities, Invariant Monotonicities 231

If f ′+(x;d) exists and f ′+(x;d) = f ′−(x;d), then it is called directional derivative of
f at x in the direction d. Thus, the directional derivative of f at x in the direction
d ∈ Rn is defined by

f ′(x;d) = lim
t→0

f (x + td)− f (x)
t

(7.7)

provided that the said limit exist, finite or not.

Remark 7.4. (a) If f ′(x;d) exists, then f ′(x;−d) =− f ′(x;d).
(b) If d = (0,0, . . . ,0,1,0, . . . ,0,0) = ei, where 1 is on the ith place, then f ′(x;ei) =

∂ f (x)
∂xi

the partial derivative of f with respect to xi.

The following result ensures the existence of f ′+(x;d) when f is a convex
function.

Theorem 7.4. Let f :Rn → R∪{±∞} be an extended convex function and let x be

a point inRn where f is finite. Then, for each direction d ∈Rn, the ratio f (x+td)− f (x)
t

is a nondecreasing function of t > 0, so that f ′+(x;d) exists for every direction d and

f ′+(x;d) = inf
t>0

f (x + td)− f (x)
t

. (7.8)

Moreover, f ′+(x;d) is a convex and positively homogeneous function of d with
f ′−(x;d)≤ f ′+(x;d).

For the proof of Theorem 7.4, we refer to [26, Theorem 2.6.1, pp. 95].

Definition 7.11 (Gâteaux Derivative). A function f : Rn → R is said to be
Gâteaux differentiable at a point x ∈ Rn if the directional derivative f ′(x;d) exists
for all d ∈ Rn, that is, if

f G(x;d) = lim
t→0

f (x + td)− f (x)
t

(7.9)

exists for all d ∈Rn. f G(x;d) is called Gâteaux derivative of f at x in the direction d.

Theorem 7.5. Let K be a nonempty open convex subset of Rn and f : K → R be a
convex function. If f is Gâteaux differentiable at x ∈ K (that is, if f ′(x;d) exists for
all d), then f G(x;d) is linear in d. Conversely, if f ′+(x;d) is linear in d, then f is
Gâteaux differentiable.

For the proof of Theorem 7.5, we refer to [30, Theorem 2, pp. 118] (See also
[61, pp. 113]).
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Remark 7.5. (a) A nonconvex function f : X →Rmay be Gâteaux differentiable at
a point but the Gâteaux derivative may not be linear at that point. For example,
consider the function f : R2 → R defined by

f (x1,x2) =

⎧⎨
⎩

x2
1x2

x2
1 + x2

2

, if x = (x1,x2) �= (0,0)

0, if x = (x1,x2) = (0,0).

For d = (d1,d2) �= (0,0) and t �= 0, we have

f ((0,0)+ t(d1,d2))− f ((0,0))
t

=
d2

1d2

d2
1 + d2

2

.

Then,

f G((0,0);d) = lim
t→0

f ((0,0)+ t(d1,d2))− f ((0,0))
t

=
d2

1d2

d2
1 + d2

2

.

Therefore, f is Gâteaux differentiable at (0,0), but f G((0,0);d) is not linear
in d.

(b) For a real-valued function f on Rn, the partial derivative may exist at a point
but f may not be Gâteaux differentiable at that point. For example, consider the
function f :R2 → R defined by

f (x1,x2) =

{ x1x2
x2

1+x2
2
, if x = (x1,x2) �= (0,0)

0, if x = (x1,x2) = (0,0).

For d = (d1,d2) �= (0,0) and t �= 0, we have

f ((0,0)+ t(d1,d2))− f ((0,0))
t

=
d1d2

t(d2
1 + d2

2)
.

Then,

lim
t→0

f ((0,0)+ t(d1,d2))− f ((0,0))
t

= lim
t→0

d1d2

t(d2
1 + d2

2)

exists only if d = (d1,0) or d = (0,d2). That is, f G(0;0) does not exist but
∂ f (0,0)
∂x1

= 0 =
∂ f (0,0)
∂x2

, where 0 = (0,0) is the zero vector in R2.

(c) The existence, linearity and continuity of f G(x;d) in d do not imply the
continuity of the function f . For example, consider the function f : R2 → R

defined by
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f (x1,x2) =

⎧⎨
⎩

x3
1

x2
, if x = (x1,x2) �= (0,0)

0, if x = (x1,x2) = (0,0).

Then,

f G((0,0);d) = lim
t→0

t3d3
1

t2d2
= 0 for all d = (d1,d2) ∈ R2 with (d1,d2) �= (0,0).

Thus, f G(0;d) exists and it is continuous and linear in d but f is discontinuous
at (0,0). The function f is Gâteaux differentiable but not continuous. Hence a
Gâteaux differentiable function is not necessarily continuous.

(d) The Gâteaux derivative f G(x;d) of a function f is positively homogeneous in
the second argument, that is, f G(x;rd) = r f G(x;d) for all r > 0. But, as we have
seen in part (a), f G(x;d) is not linear in d.

The following theorem whose proof can be found in [30, pp. 120], shows that the
partial derivatives and Gâteaux derivative are same if the function f is convex.

Theorem 7.6. Let K be a nonempty convex subset of Rn and f : K → R be a
convex function. If the partial derivatives of f at x ∈ K exist, then f is Gâteaux
differentiable at x.

For nonconvex functions, we can not expect that in general the limit in the
definitions of directional derivative and Gâteaux derivative exists. Therefore, other
kinds of generalized directional derivatives were developed which could be useful
in the applications for nonconvex case. The simplest way to define such kinds of
generalized directional derivatives is to replace the limit operation by the limit
superior and limit inferior.

Definition 7.12 (Dini Directional Derivative). Let f :Rn → R∪{±∞} be a func-
tion and x ∈ Rn be a point where f is finite.

• The Dini upper directional derivative at the point x ∈ Rn in the direction d ∈ Rn

is defined by

f D(x;d) = limsup
t→0+

f (x + td)− f (x)
t

= inf
s>0

sup
0<t<s

f (x + td)− f (x)
t

• The Dini lower directional derivative at the point x ∈ Rn in the direction d ∈ Rn

is defined by

fD(x;d) = liminf
t→0+

f (x + td)− f (x)
t

= sup
s>0

inf
0<t<s

f (x + td)− f (x)
t
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• Similarly, we can define

f D
− (x;d) = limsup

t→0−

f (x + td)− f (x)
t

and

f−D (x;d) = liminf
t→0−

f (x + td)− f (x)
t

.

Since for each d ∈Rn one has

f D
− (x;d) =− fD(x;−d) and f−D (x;d) =− f D(x;−d),

therefore, it is quite obvious to deal only with the Dini upper directional derivative
and the Dini lower directional derivative.

By using the definition, it can be easily seen that for any x,d ∈ Rn one has

fD(x;d)≤ f D(x;d)

and, of course, when we get the equality in the above inequality, we obtain the
right-sided direction derivative f ′(x;d). Naturally, in general, this equality does not
ensure the convexity of the directional derivative which would be very important
for the application. We further note that if the Dini upper and Dini lower directional
derivatives in a direction d are finite at a given point, then the function is continuous
at that point along the direction d. But the converse need not be true in general.
For example, consider the real-valued function f (x) =

√|x| for all x ∈ R. Then f
is continuous, but its Dini upper and Dini lower directional derivatives at x = 0 in
the direction d = 1 and d = −1 are infinite. One of the most important features of
the Dini upper and Dini lower directional derivatives is that they always exist even
when the function is discontinuous. Although they are not necessarily finite.

We observe that the function f (x) = |x| does not have a derivative at the point
x = 0 but does have one-sided derivative f ′+(0) = 1 and f ′−(0) =−1. The following
example shows that a continuous function may not have even one-sided directional
derivative at a point but it may have Dini derivative at that point. For further detail,
we refer to [69].

Example 7.2. Consider the function

f (x) =
{ |x| ∣∣cos

(
1
x

)∣∣ , if x �= 0
0, if x = 0.

Since
∣∣cos

(
1
x

)∣∣≤ 1 for all x �= 0,

lim
x→0

f (x) = 0 = f (0),
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so f is continuous at x = 0. It is clear that f is also continuous at all other points of
R, so f is a continuous function.

The oscillatory behavior of f is such that the sets

{
x :

∣∣∣∣cos

(
1
x

)∣∣∣∣ = 1

}
and

{
x :

∣∣∣∣cos

(
1
x

)∣∣∣∣ = 0

}

both have zero as two-sided limit point. Thus, each of the sets

{x : f (x) = |x|} and {x : f (x) = 0}

has zero as two-sided limit point. Inspection of the difference quotient reveals that

limsup
x→0+

f (x)− f (0)
x−0

= 1, while liminf
x→0+

f (x)− f (0)
x−0

= 0,

so f ′+(x) does not exist at x = 0. Similarly, f ′+(0) does not exist.
However,

f D(0) = 1, fD(0) = 0, f D
− (0) = 0, f−D (0) =−1,

and , elsewhere f ′(x) exists and all four Dini derivatives have that value.

In the next example, the given function is not continuous.

Example 7.3. Consider the discontinuous function

f (x) =
{

0, if x is rational
1, if x is irrational.

Then, at every rational x,

f D(x) = 0, fD(x) =−∞, f D
− (x) =∞, f−D (x) = 0.

For x irrational, there are similar values for the Dini derivatives.

The following result presents some elementary properties and calculus rules for
Dini upper (lower) directional derivative. For further study, we refer to [18, 26–
29, 32, 37, 55].

Theorem 7.7. Let f ,g : Rn → R be functions. The following assertions hold.

(a) Homogeneity: f D(x;d) is positively homogeneous in d, that is, for all r > 0 we
have f D(x;rd) = r f D(x;d).

(b) Scalar multiple: For r > 0, (r f )D(x;d) = r f D(x;d), and for r < 0, (r f )D(x;d) =
r fD(x;d).
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(c) Sum rule: ( f +g)D(x;d)≤ f D(x;d)+gD(x;d) provided that the sum in the right
hand side exists.

(d) Product rule: ( f g)D(x;d) ≤ [g(x) f ]D(x;d) + [ f (x)g]D(x;d) provided that the
sum in the right hand side exists, the functions f and g are continuous at x, and
that either of the following conditions is satisfied: f (x) �= 0; g(x) �= 0; f D(x;d)
is finite; and gD(x;d) is finite.

(e) Quotient rule:
(

f
g

)D
(x;d)≤ [g(x) f ]D(x;d)+[− f (x)g]D(x;d)

[g(x)]2 provided that the expres-

sion in the right hand side exists and the function g is continuous at x.

If, in addition, the functions f and g are directionally differentiable at x, then the
inequalities in the last three assertions become equalities.

The proof follows immediately from the definition. Properties and calculus rules
for Dini lower directional derivative can be obtained in a similar manner. The next
result shows that Dini upper and Dini lower directional derivatives are convenient
tools for characterizing an extremum of a function.

Theorem 7.8. Let f :Rn →R be a function. Then the following assertions hold.

(a) If f (x) ≤ f (x + td) (respectively, f (x) ≥ f (x + td)) for all t > 0 sufficiently
small, then fD(x;d) ≥ 0 (respectively, f D(x;d) ≤ 0). In particular, if f is
directionally differentiable at x, and f (x) ≤ f (y) (respectively, f (x) ≥ f (y))
for every y in a small neighborhood of x, then its directional derivative at this
point is positive (respectively, negative). Consequently, if f ′(x;d) is linear in d,
it vanishes in all directions.

(b) If f D(x+ td)≥ 0 for all t ∈ (0,1) and if the function t �→ f (x+ td) is continuous
on [0,1], then f (x)≤ f (x + d).

For the proof of this theorem, we refer to [37, Theorem 1.1.4].
We present the following mean-value theorem due to Diewert [18].

Theorem 7.9 (Diewert Mean Value Theorem). ([18, Theorem 1]) Let f :
[a,b]→R be an upper hemicontinuous function of one variable defined over the
closed interval [a,b]. Then, there exists c ∈ [a,b) such that

fD(c)≤ f D(c)≤ f (b)− f (a)
b−a

.

We write f D(c) in place of f D(c;d) if the directional vector d is the scalar 1, that is,

f D(c) = limsup
t→c+

f (t)− f (c)
t− c

and

fD(c) = liminf
t→c+

f (t)− f (c)
t− c

.
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The following form of mean value theorem for a function defined on a nonempty
convex subset of Rn can be easily derived.

Theorem 7.10. Let K be a nonempty convex subset of Rn and f : K → R be upper
hemicontinuous on K. Then, for any pair x,y of distinct points of K, there exists
w ∈ [x,y) such that

f (y)− f (x)≥ f D(w;y− x),

where [x,y) denotes the line segment joining x and y including the endpoint x. In
other words, there exists t ∈ [0,1) such that

f (y)− f (x)≥ f D(w;y− x), where w = x + t(y− x).

For the mean value theorem for Dini lower directional derivative, we refer to [18,
Theorem 1] and [37, Theorem 1.1.5].

Theorem 7.11. ([18, Corollary 4]) Let g be an upper semicontinuous function
of one variable defined over the interval [a,b]. If for all c ∈ [a,b), gD(c) ≥ 0
(respectively, gD(c) ≤ 0), then g is a nondecreasing (respectively, nonincreasing)
function over [a,b].

Definition 7.13. Let K be a nonempty subset of Rn and x ∈ K be a given point. A
function f : K → R is said to be locally Lipschitz around x ∈ K if for some k > 0

| f (y)− f (z)| ≤ k‖y− z‖, for all y,z ∈ N(x), (7.10)

where N(x) is the neighborhood of x.
The function f is said to be Lipschitz on K if the inequality (7.10) holds for all

y,z ∈ K.

The class of Lipschtiz functions is quite large. It is invariant under usual
operations of sum, product, and quotient. Lipschtiz functions are continuous, but not
always directionally differentiable. For example, consider the function f : R→ R

defined by

f (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x ∈ (−∞,0]∪ [1,∞)

−2x + 2
3n , if x ∈

[
2

3n+1 , 1
3n

)

2x− 2
3n+1 , if x ∈

[
1

3n+1 , 2
3n+1

)
,

for n = 0,1,2,3, . . .. Then f is Lipschtiz on R with Lipschtiz constant k = 2.
However, for x = 0 and d = 1 we have f D(x;d) = 1 and fD(x;d) = 0, which
shows that f is not directional differentiable at x. The following result shows that
the Lipschtiz functions can be characterized by their Dini upper and Dini lower
directional derivatives.

Theorem 7.12. Let K be a nonempty open subset of Rn and f : K → R be a
function. Then f is Lipschtiz on K with Lipschtiz constant k > 0 if and only if for all
x ∈ K and all d ∈ Rn,
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max
{

fD(x;d), f D(x;d)
} ≤ k‖d‖.

For the proof of this theorem, we refer [37, Proposition 1.1.6].
The extension of the Dini (upper and lower) directional derivative is the Dini–

Hadamard (upper and lower) directional derivative.

Definition 7.14 (Dini–Hadamard Directional Derivative). Let f : Rn → R ∪
{±∞} be a function and x ∈Rn be a point where f is finite.

• The Dini–Hadamard upper directional derivative of f at x in the direction d ∈Rn

is defined by

f DH(x;d) = limsup
v→d

t→0+

f (x + tv)− f (x)
t

. (7.11)

• The Dini–Hadamard lower directional derivative of f at x in the direction d ∈Rn

is defined by

fDH(x;d) = liminf
v→d

t→0+

f (x + tv)− f (x)
t

. (7.12)

The following example shows that the Dini (upper and lower) directional
derivative and Dini–Hadamard (upper and lower) directional derivative are not
same.

Example 7.4. Let X = R2 and f : X → R be a function defined by

f (x1,x2) =
{

0, if x2 = 0
x1 + x2, if x2 �= 0.

Let x = (0,0) and d = e1 = (1,0). Then we can easily calculate that

f DH(x;d) = 1 and f D(x;d) = 0.

The above example shows that the Dini upper (lower) directional derivative
could not coincide with the Dini–Hadamard upper (lower) directional derivative.
The following result shows that they are same if f is locally Lipschitz around x.

Theorem 7.13. Let f : Rn → R be a locally Lipschitz around x. Then for every
d ∈ Rn,

f DH(x;d) = f D(x;d) and fDH(x;d) = fD(x;d).

For the proof of this theorem, we refer to [27, Theorem 2.3].
From the definitions of Dini upper (lower) directional derivative and Dini–

Hadamard upper (lower) directional derivative, one can easily obtain the following
relations.

[− f ]DH (x;d) = − fDH(x;d), [− f ]DH (x;d) =− f DH(x;d)

fDH(x;d) ≤ fD(x;d)≤ f D(x;d)≤ f DH(x;d).
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Theorem 7.14. ([27, Theorem 2.1]) Let f :Rn → R be a function. Then fDH(x;d)
(respectively, f DH(x;d)) is a lower (respectively, upper) semicontinuous func-
tion in d.

The following result provides an optimality condition for an unconstrained
optimization problem.

Theorem 7.15. ([26, Theorem 4.4.1, pp. 383]) If x ∈Rn is a local minimum point
of the function f : Rn → R, then fDH(x;d)≥ 0 for all d ∈ Rn.

We mention another kind of directional derivative, known as Clarke directional
derivative.

Definition 7.15 (Clarke Directional Derivative). Let f : Rn → R be locally
Lipschitz around a given point x ∈ Rn and d be any other vector in Rn. The
Clarke directional derivative of f at x in the direction d is defined by

fC(x;d) = limsup
y→x

t→0+

f (y + td)− f (y)
t

= inf
ε,δ>0

sup
0<t<δ , 0<‖y−x‖<ε

f (y + td)− f (y)
t

,

where, of course, y is a vector in Rn and t is a positive scalar.

Proposition 7.3. ([11, Proposition 2.1.1]) Let f : Rn → R be locally Lipschitz
around a given point x ∈Rn. Then,

(a) The function d �→ fC(x;d) is finite, positively homogeneous and subadditive on
Rn and satisfies ∣∣ fC(x;d)

∣∣≤ k‖d‖.
(b) fC(x;d) is upper semicontinuous as a function of (x;d) and, as a function of d

alone, satisfies Lipschtiz condition on Rn.
(c) fC(x;−d) = (− f )C (x;d).

Remark 7.6. Since positive homogeneity and subadditivity imply convexity,
fC(x;d) is a convex function of d.

Theorem 7.16. ([11, Proposition 2.2.2]) If f is locally Lipschitz around x and has
a Gâteaux derivative f G(x;d), then f G(x;d)≤ fC(x;d) for all d.

Theorem 7.17 ([10]). If f has a Gâteaux derivative f G(x;d) which is convex in d
and upper semicontinuous in x, then f G(x;d) = fC(x;d).

Remark 7.7. In general, the existence of a Gâteaux derivative does not imply the
existence of a finite Clarke directional derivative. Conversely, the existence of a
Clarke directional derivative does not imply the existence of a Gâteaux derivative.



240 S. Al-Homidan et al.

The following simple example further clarifies the relationship among Dini,
Clarke and Gâteaux directional derivatives.

Example 7.5. Consider the function

f (x) =
{

ax, if x ≥ 0
bx, if x < 0.

Then, we can easily calculate that

f G(0;d) = fD(0;d) = f D(0;d) =
{

ay, if y≥ 0
by, if y < 0

and

f C(0;d) =
{

max{a,b} · y, if y≥ 0
min{a,b} · y, if y < 0.

Several other kinds of derivatives are defined in the literature; See, for example,
[22, 23, 26, 34, 35, 38, 56, 62–64] and the references therein.

7.4 Nonsmooth Invexities

As we have seen above, most of the generalized directional derivatives are positively
homogeneous and subodd in their second argument. Some of these derivatives are
also subadditive in their second argument. Therefore, instead of considering each
generalized directional derivative separately, we consider an abstract two variable
function h : K×Rn → R such that h(x;0) = 0 for all x ∈ K.

Definition 7.16. Let K ⊆ Rn be a nonempty set, η : K×K → Rn be a map and
h : K×Rn → R be a bifunction. A function f : K → R is said to be

• h-invex w.r.t. η if for all x,y ∈ K,

f (y)− f (x)≥ h(x;η(y,x))

• Strictly h-invex w.r.t. η if for all x,y ∈ K with x �= y,

f (y)− f (x) > h(x;η(y,x))

• h-pseudoinvex w.r.t. η if for all x,y ∈ K with x �= y,

f (y) < f (x) implies h(x;η(y,x)) < 0,

equivalently,
h(x;η(y,x)) ≥ 0 implies f (y)≥ f (x)
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• Strictly h-pseudoinvex w.r.t. η if for all x,y ∈ K with x �= y,

f (y) ≤ f (x) implies h(x;η(y,x)) < 0,

equivalently,
h(x;η(y,x)) ≥ 0 implies f (y) > f (x)

• h-quasiinvex w.r.t. η if for all x,y ∈ K,

f (y) ≤ f (x) implies h(x;η(y,x)) ≤ 0,

equivalently,
h(x;η(y,x)) > 0 implies f (y) > f (x)

• Semistrictly h-quasiinvex w.r.t. η if for all x,y ∈ K with f (x) �= f (y),

f (y) ≤ f (x) implies h(x;η(y,x)) < 0,

equivalently,
h(x;η(y,x)) ≥ 0 implies f (y) > f (x)

Remark 7.8. (a) The above definitions can be applied for the extended real-valued
bifunction h : K×Rn → R∪{±∞}.

(b) From the above definition, the following relations can be easily verified.

strict h-invexity ⇒ h-invexity

⇓ ⇓
strict h-pseudoinvexity ⇒ h-pseudoinvexity

⇓
h-quasiinvexity

With the help of the examples one can easily show that neither the reverse
implications nor the following additional ones are true in general:

h-quasiinvexity ⇒ h-pseudoinvexity, h-pseudoinvexity ⇒ h-quasiinvexity.

(c) If the bifunction h(x;η(y,x)) = f ′+(x;η(y,x))

(
respectively, h(x;η(y,x)) = f ′−(x;η(y,x)),

h(x;η(y,x)) = f G(x;η(y,x)), h(x;η(y,x)) = f D(x;η(y,x)),

h(x;η(y,x)) = fD(x;η(y,x)), h(x;η(y,x)) = f DH(x;η(y,x)),

h(x;η(y,x) = fDH(x;η(y,x)), h(x;η(y,x)) = fC(x;η(y,x)))
)
,
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then in the above definition, we replace h by UD (respectively, LD, G, D+,
D−, DH+, DH−, C). That is, if h(x;η(y,x)) = f ′+(x;η(y,x)) (respectively,
h(x;η(y,x)) = f ′−(x;η(y,x)),

h(x;η(y,x)) = f G(x;η(y,x)), h(x;η(y,x)) = f D(x;η(y,x)),

h(x;η(y,x)) = fD(x;η(y,x)), h(x;η(y,x)) = f DH(x;η(y,x)),

h(x;η(y,x)) = fDH(x;η(y,x)), h(x;η(y,x)) = fC(x;η(y,x))),

then h-invexity is called UD-invexity (respectively, LD-invexity, G-invexity,
D+-invexity, D−-invexity, DH+-invexity, DH−-invexity, C-invexity). Other
kinds of invexities can be defined in a similar manner.

The following result is a simple consequence of the above definitions.

Theorem 7.18. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → Rn. Let f :
K →R be a function and h,g : K×Rn →R be bifunctions such that g(x;d)≤ h(x;d)
for all x∈K and all d ∈Rn. If f is h-invex (respectively, h-quasiinvex, h-pseudoinvex
and strictly h-pseudoinvex) w.r.t. η , then it is g-invex (respectively, g-quasiinvex, g-
pseudoinvex and strictly g-pseudoinvex) w.r.t. the same η .

The following theorem is the extension of [58, Theorem 2.1] to h-invexity.

Theorem 7.19. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → Rn such
that the Condition C holds. Let h : K×Rn → R be a bifunction that is sublinear in
the second argument and for all x ∈ K, h(x;0) = 0. If f : K → R is (strictly) h-invex
w.r.t. η , then it is (strictly) pre-invex w.r.t. the same η;

Proof. Suppose that x,y ∈ K and t ∈ (0,1). Since K is invex, we have x̂ = y +
tη(x,y) ∈ K. By h-invexity of f , we have

f (x)− f (x̂)≥ h(x̂;η(x, x̂)). (7.13)

Similarly, the condition of h-invexity applied to the pair y, x̂ yields

f (y)− f (x̂)≥ h(x̂;η(y, x̂)). (7.14)

Multiplying inequality (7.13) by t and inequality (7.14) by (1− t) and then adding
the resultants, we obtain

t f (x)+ (1− t) f (y)− f (x̂)≥ th(x̂;η(x, x̂))+ (1− t)h(x̂;η(y, x̂)). (7.15)

By Condition C, we have

tη(x, x̂)+ (1− t)η(y, x̂) = t(1− t)η(x,y)− t(1− t)η(x,y)= 0.



7 Nonsmooth Invexities, Invariant Monotonicities 243

Since h is sublinear in the second argument, we obtain

th(x̂;η(x, x̂))+ (1− t)h(x̂;η(y, x̂))≥ h(x̂;tη(x, x̂)+ (1− t)η(y, x̂)) = 0.

Inequality (7.15) yields the conclusion. ��
The following theorem provides the converse of Theorem 7.19.

Theorem 7.20. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K ×K → Rn. Let
h : K×Rn → R be a bifunction such that for all x ∈ K, h(x; ·) ≤ f D(x; ·). If f is
(strictly) pre-invex w.r.t. η , then it is (strictly) h-invex w.r.t. the same η .

Proof. Let f be pre-invex w.r.t. η . Then, we have

f (x + tη(y,x))≤ f (x)+ t( f (y)− f (x)), for all t ∈ [0,1].

Therefore,

f (x + tη(y,x))− f (x)
t

≤ f (y)− f (x), for all t ∈ [0,1].

Taking limsup as t → 0+, we obtain

f D(x;η(y,x)) = limsup
t→0+

f (x + tη(y,x))− f (x)
t

≤ f (y)− f (x).

Since h(x; ·) ≤ f D(x; ·), we have h(x;η(y,x)) ≤ f (y)− f (x). Hence, f is h-invex
w.r.t. η . ��
Theorem 7.21. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K ×K → R

n. Let
h : K×Rn → R be a bifunction such that for all x ∈ K, h(x; ·)≤ f D(x; ·). If f is pre-
quasiinvex (respectively, semistrictly pre-quasiinvex) w.r.t. η , then it is h-quasiinvex
(respectively, semistrictly h-quasiinvex) w.r.t. the same η .

Proof. Let f (y)≤ f (x) for all x,y ∈ K. Then, by the pre-quasiinvexity of f w.r.t. η ,
we obtain f (x + tη(y,x))≤ f (x) for all t ∈ [0,1]. Therefore,

f (x + tη(y,x))− f (x)
t

≤ 0 for all t ∈ [0,1].

Taking limsup as t → 0+, we obtain

f D(x;η(y,x)) = limsup
t→0+

f (x + tη(y,x))− f (x)
t

.

Since h(x; ·)≤ f D(x; ·), we have h(x;η(y,x))≤ 0. Hence, f is h-quasiinvex w.r.t. η .
��

Following the technique of [58, Theorem 2.2], we derive the following result
which is the converse of the above theorem.
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Theorem 7.22. Let K ⊆Rn be a nonempty invex set w.r.t. η : K×K →Rn such that
the Condition C holds. Let h : K×Rn → R be positively homogeneous and subodd
in the second argument such that for all x ∈ K, h(x; ·)≤ f D(x; ·). If f is continuous
and h-quasiinvex w.r.t. η , then it is pre-quasiinvex w.r.t. the same η .

Proof. Let x,y ∈ K and f (y) ≤ f (x). Consider the set

Ω = {z ∈ K : z = x + tη(y,x), f (z) > f (x), 0≤ t ≤ 1} .

In order to show that f is pre-quasiinvex w.r.t. η , we have to show that Ω = /0. If
Ω �= /0, then by continuity of f , the set

Ω̃ = {z ∈ K : z = x + tη(y,x), f (z) > f (x), 0 < t < 1}

is also nonempty. Therefore, it is sufficient to show that Ω̃ = /0.
Suppose that z ∈ Ω̃ . Then z = x + t̃η(y,x) for some t̃ ∈ (0,1) and f (z) > f (x) ≥

f (y). Applying the definition of h-quasiinvexity to the pair z and y, we obtain

h(z;η(y,z)) ≤ 0. (7.16)

Similarly, by applying h-quasiinvexity to the pair z and x, we get

h(z;η(x,z)) ≤ 0. (7.17)

By Condition C and, the suboddness and positive homogeneity of h in the second
argument, inequalities (7.16) and (7.17) can be written as

0≥ h(z;η(y,z)) = (1− t̃)h(z;η(y,x))

and
0≥ h(z;η(x,z)) = h(z;−t̃η(y,x)) ≥−t̃h(z;η(y,x)).

Since t̃ ∈ (0,1), we have
h(z;η(y,x)) = 0. (7.18)

Note that (7.18) holds for all z ∈ Ω̃ . Now suppose that Ω̃ �= /0 and let z ∈ Ω̃ and
z = x+ t̃η(y,x). By the continuity of f , we can find 0≤ t1 ≤ t̃ < t2 < 1 such that for
all t ∈ (t1,t2), we have

f (x + tη(y,x)) > f (x) and f (x + t1η(y,x)) = f (x).

Let g(t) = f (x + tη(y,x)). Then we have g(t1) = f (x). By applying Diewert Mean
Value Theorem 7.9 to the function g : [t1,t2]→ R, there exists t̂ ∈ (t1,t2) such that
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gD(t̂)≤ g(t2)−g(t1)
t2− t1

,

that is,

f D(x + t̂η(y,x);η(y,x)) ≤ f (x + t2η(y,x))− f (x)
t2− t1

.

The right-hand side is positive by our hypothesis, but the left-hand side is zero by
(7.18) as x + t̂η(y,x) ∈ Ω̃ , by construction. Therefore, we have a contradiction and
the proof follows. The proof is similar when f (x)≤ f (y). ��
Theorem 7.23. Let K ⊆Rn be a nonempty invex set w.r.t. η : K×K →Rn such that
the Condition C holds. Let h : K×Rn →R be positively homogeneous and subodd in
the second argument. If f : K →R is h-pseudoinvex w.r.t. η , then it is pre-quasiinvex
w.r.t. the same η .

Proof. It is sufficient to show that if there exist x,y,z ∈ K such that z = x + tη(y,x)
for t ∈ [0,1] and f (z) > f (x), f (z) > f (y) one is led to a contradiction. The h-
pseudoinvexity of f w.r.t. η ensures that

h(z;η(x,z)) < 0 and h(z;η(y,z)) < 0.

From Condition C, η(x,z) = −tη(y,x) and η(y,z) = (1− t)η(y,x). By positive
homogeneity and suboddness of h in the second argument, we have

h(z;η(y,x)) > 0 and h(z;η(y,x)) < 0,

a desired contradiction. ��
Proposition 7.4. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → Rn such
that the Condition C holds. Let h : K ×Rn → R be positively homogeneous and
subodd in the second argument, and let f : K → R be h-pseudoinvex w.r.t. η and
upper semicontinuous. If

f D(x;η(y,x)) > 0 implies g(t) = f (x + tη(y,x)) (7.19)

is a decreasing function on [0,1], then f is semistrictly pre-quasiinvex w.r.t. η .

Proof. Without loss of generality, we may assume that f (y) > f (x). Suppose that
there exists t∗ ∈ (0,1) such that

f (x + t∗η(y,x)) ≥ f (y). (7.20)

By Theorem 7.23, f is pre-quasiinvex w.r.t. η , and hence, the strict inequality in
(7.20) cannot hold. So, we must have

f (x + t∗η(y,x)) = f (y) > f (x) for t∗ ∈ (0,1). (7.21)
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Taking t̂ ∈ [0,1], and define g(t) = f (x + tη(y,x)) for t ∈ [0, t̂]. Then, inequality
(7.21) becomes

g(t∗) > g(0). (7.22)

Suppose gD(t) ≤ 0 for t ∈ [0,t∗). Then, by Theorem 7.11, g is a nonincreasing
function over [0,t∗], that is,

g(0)≥ g(t∗),

which contradicts (7.22). Thus, our supposition that gD(t)≤ 0 for t ∈ [0,t∗) is false.
Hence, we must have t0 ∈ [0,t∗) such that

gD(t0) > 0. (7.23)

But (7.23) and (7.19) imply that g(t) is a decreasing function for t ∈ [t0,t∗] which
contradicts (7.22). Hence, our supposition that there exists t∗ ∈ (0,1) such that f (x+
t∗η(y,x)) ≥ f (y) is false. Therefore, f is semistrictly quasiinvex w.r.t. η . ��
Theorem 7.24. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → Rn such
that the Condition C holds. Let h : K ×Rn → R be positively homogeneous and
subodd in the second argument. If f : K → R is h-pseudoinvex w.r.t. η and upper
semicontinuous, then it is semistrictly pre-quasiinvex w.r.t. the same η .

Proof. Let x,y ∈ K. Then, x + tη(y,x) ∈ K since K is invex. Let f D(x;η(y,x)) > 0.
Then by Proposition 7.4, we need only to show that the function g(t) = f (x +
tη(y,x)) is decreasing over [0,1]. Moreover, since f D(x;η(y,x)) = gD(0) > 0, we
must have

g(t) > g(0) for all t ∈ [0,1]. (7.24)

Suppose that g is not decreasing over [0,1]. Then since it is nonincreasing, g must be
a constant function over a subinterval of [0,1], say over [t1,t2], where 0 < t1 < t2 ≤ 1.
But then gD(t2) = 0, and since g is pseudoinvex w.r.t. η , g(0)≥ g(t2) contradicting
(7.24). Hence our supposition is false, and g is a decreasing function over [0,1]. ��
Theorem 7.25. ([74, Theorem 2.2]) Let K ⊆ Rn be a nonempty invex set w.r.t.
η : K×K → Rn such that the Condition C holds. If f : K → R is semistrictly pre-
quasiinvex w.r.t. η , then it is pre-quasiinvex w.r.t. the same η .

Proposition 7.5. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → Rn. Let
h : K×Rn → R be a bifunction and f : K → R be h-invex w.r.t. η . If

h(x;y− x)≤ h(x;η(y,x)) (7.25)

for all x,y ∈ K such that f (y) < f (x), then f is h-pseudoconvex, that is, for all
x,y ∈ K, f (y) < f (x) implies that h(x;y− x) < 0. Moreover, if the strict inequality
holds in (7.25), then f is strictly h-pseudoconvex, that is, for all x,y ∈ K, x �= y,
f (y)≤ f (x) implies that h(x;y− x) < 0.
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Proof. Let x,y ∈ K and f (y) < f (x). Then by the condition of h-invexity and
inequality (7.25), we have

h(x;y− x) = h(x;y− x)−h(x;η(y,x))+ h(x;η(y,x))

≤ h(x;y− x)−h(x;η(y,x))+ f (y)− f (x)

< h(x;y− x)−h(x;η(y,x))≤ 0. ��

Proposition 7.6. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → Rn. Let
h : K×Rn → R be a bifunction and f : K → R be h-invex w.r.t. η such that

h(x;y− x) > 0 implies h(x;η(y,x)) ≥ h(x;y− x) (7.26)

for all x,y ∈ K. Then f is h-quasiinvex w.r.t. the same η .

Proof. Let h(x;y− x) > 0. Then by the condition of h-invexity of f , we have

f (y)− f (x) ≥ h(x;η(y,x))

= h(x;η(y,x))−h(x;y− x)+ h(x;y− x)

> h(x;η(y,x))−h(x;y− x)≥ 0. ��

Remark 7.9. Propositions 7.6 and 7.5 extend and generalize [60, Proposition 2.5]
and [60, Proposition 2.7], respectively, for nondifferentiable and h-invex functions.

7.5 Invariant Monotonicities

Definition 7.17. Let K ⊆ Rn be a nonempty set and η : K×K → Rn be a map. A
bifunction h : K×Rn → R is said to be

• Invariant monotone w.r.t. η if for every pair of points x,y ∈ K, we have

h(x;η(y,x))+ h(y;η(x,y))≤ 0

• Strictly invariant monotone w.r.t. η if for every pair of distinct points x,y ∈ K,
we have

h(x;η(y,x))+ h(y;η(x,y)) < 0

• Invariant pseudomonotone w.r.t. η if for every pair of distinct points x,y ∈K, we
have

h(x;η(y,x)) ≥ 0 implies h(y;η(x,y))≤ 0, (7.27)
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equivalently,

h(y;η(x,y)) > 0 implies h(x;η(y,x)) < 0

• Strictly invariant pseudomonotone w.r.t. η if for every pair of distinct points
x,y ∈ K, we have

h(x;η(y,x)) ≥ 0 implies h(y;η(x,y)) < 0,

equivalently
h(y;η(x,y))≥ 0 implies h(x;η(y,x)) < 0

• Invariant quasimonotone w.r.t. η if for every pair of distinct points x,y ∈ K,
we have

h(x;η(y,x)) > 0 implies h(y;η(x,y))≤ 0,

equivalently,

h(y;η(x,y)) > 0 implies h(x;η(y,x)) ≤ 0

Remark 7.10. If the bifunction h is replaced by f ′+ (respectively, f ′−, f G, f D,
fD, f DH , fDH , fC), then invariant monotonicity is called UD-invariant mono-
tonicity (respectively, LD-invariant monotonicity, G-invariant monotonicity, D+-
invariant monotonicity, D−-invariant monotonicity, DH+-invariant monotonicity,
DH−-invariant monotonicity, C-invariant monotonicity). Similarly, we can define
other kinds of invariant monotonicities.

We have the following relations among these kinds of monotonicities.

strictly invariant monotonicity ⇒ invariant monotonicity

⇓ ⇓
strictly invariant pseudomonotonicity ⇒ invariant pseudomonotonicity

⇓
invarinat quasimonotonicity

Lemma 7.2. Let K ⊆ Rn be a nonempty set. A bifunction h : K ×Rn → R is
invariant pseudomonotone if and only if for every pair of distinct points x,y ∈ K,
we have

h(x;η(y,x)) > 0 implies h(y;η(x,y)) < 0. (7.28)

Proof. The implication (7.28) is equivalent to the following implication:

h(y;η(x,y)) ≥ 0 implies h(x;η(y,x)) ≤ 0.

Interchanging x and y, we get (7.27). ��
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The following result, which generalizes [43, Proposition 2.1], is a direct conse-
quence of the definition of invariant quasimonotonicity.

Lemma 7.3. Let K ⊆ Rn be a nonempty set and η : K×K → Rn be a map. The
bifunction h : K ×Rn → R is invariant quasimonotone w.r.t. η if and only if for
every pair of distinct points x,y ∈ K, we have

min{h(x;η(y,x)), h(y;η(x,y))} ≤ 0.

The following lemma directly follows from the definition.

Lemma 7.4. Let K ⊆ Rn be a nonempty set and η : K ×K → X be a map. Let
h,g : K ×Rn → R be bifunctions such that g(x;d) ≤ h(x;d) for all x ∈ K and
all d ∈ Rn. If h(x;d) is invariant monotone (respectively, strictly invariant mono-
tone, invariant pseudomonotone, invariant strictly pseudomonotone and invariant
quasimonotone) w.r.t. η , then g(x;d) is invariant monotone (respectively, strictly
invariant monotone, invariant pseudomonotone, strictly invariant pseudomonotone
and invariant quasimonotone) w.r.t. the same η .

Proof. We only consider the case of invariant quasimonotone w.r.t. η . Suppose that
for all x,y ∈ K, x �= y,

g(x;η(y,x)) > 0.

Since g(x;d) ≤ h(x;d), we have h(x;η(y,x)) > 0. By invariant quasimonotonicity
of h, we obtain h(y;η(x,y)) ≤ 0. Again, applying g(x;d) ≤ h(x;d), we get
g(y;η(x,y))≤ 0, and hence, g is invariant quasimonotone. ��
Theorem 7.26. Let K ⊆ Rn be a nonempty set, η : K ×K → Rn be a map and
h : K×Rn → R be a bifunction.

(a) If f : K →R is h-invex (respectively, strictly h-invex) w.r.t. η , then h is invariant
monotone (respectively, strictly invariant monotone) w.r.t. the same η .

(b) If f : K → R is strictly h-pseudoinvex w.r.t. η , then h is strictly invariant
pseudomonotone w.r.t. the same η .

(c) If f : K → R is h-quasiinvex w.r.t. η , then h is invariant quasimonotone w.r.t.
the same η .

Proof. (a) Let f be h-invex w.r.t. η . Then for all x,y ∈ K,

f (y)− f (x)≥ h(x;η(y,x)). (7.29)

By interchanging x and y, we obtain

f (x)− f (y) ≥ h(y;η(x,y)). (7.30)

Adding inequalities (7.29) and (7.30), we get

h(x;η(y,x))+ h(y;η(x,y))≤ 0,
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and hence, h is invariant monotone w.r.t. η .
(b) Let f be strictly h-pseudoinvex w.r.t. η . Then for all x,y ∈ K, x �= y,

h(x;η(y,x)) ≥ 0 implies f (y) > f (x).

Suppose that for all x,y ∈ K, x �= y,

h(x;η(y,x)) ≥ 0 but h(y;η(x,y))≥ 0.

By using the second inequality and strict h-pseudoinvexity of f , we have f (y) <
f (x), which is a contradiction.

(c) Suppose that f is h-quasiinvex w.r.t. η . Then for all x,y ∈ K with x �= y,

f (y)≤ f (x) implies h(x;η(y,x)) ≤ 0.

Let x,y∈K be such that h(x;η(y,x)) > 0. Then f (y) > f (x). By h-quasiinvexity
of f , we have h(y;η(x,y))≤ 0. Hence h is invariant quasimonotone w.r.t. η . ��

Corollary 7.1. Let K ⊆ Rn be a nonempty set, η : K ×K → R
n be a map and

h : K×Rn → R be a bifunction. If f : K → R is h-invex w.r.t. η , then h is invariant
pseudomonotone w.r.t. the same η .

Proof. From Theorem 7.26 (a), h-invexity of f implies invariant monotonicity of h.
Since invariant monotonicity implies invariant pseudomonotonicity, we obtain the
desired result. ��
Theorem 7.27. Let K ⊆Rn be a nonempty invex set w.r.t. η : K×K →Rn such that
the Condition C holds. Let the bifunction h : K×Rn → R be subodd and positively
homogeneous in the second argument such that for all x ∈ K, h(x; ·) ≤ f D(x; ·).
If f : K → R is h-pseudoinvex w.r.t. η , then h is invariant pseudomonotone w.r.t.
the same η . In addition, if η is skew, f is η-upper hemicontinuous on K and for
all x,y ∈ K, x �= y, f (y) < f (x) implies f (x +η(y,x)) < f (x), and h is invariant
pseudomonotone w.r.t. η , then f is h-pseudoinvex w.r.t. the same η .

Proof. Assume that f is h-pseudoinvex w.r.t. η . Let x,y ∈ K be such that
h(x;η(y,x)) > 0. Since h(x;d)≤ f D(x;d), we have f D(x;η(y,x)) > 0. Then

limsup
t→0+

f (x + tη(y,x))− f (x)
t

> 0.

Therefore, for some t ∈ (0,1), we have f (x + tη(y,x)) > f (x). Since by Theorem
7.23, f is pre-quasiinvex w.r.t. η , so we get

f (y) ≥ f (x + tη(y,x)) > f (x).

Applying the definition of h-pseudoinvexity to the pair x and y, we obtain
h(y;η(x,y)) < 0. The results follows from Lemma 7.2.
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Assume that h is invariant pseudomontone w.r.t. η . Let x,y ∈ K, x �= y, such that
f (y) < f (x). Then by hypothesis f (x +η(y,x)) < f (x). We claim that

h(x;η(y,x)) < 0. (7.31)
Let g : [0,1]→ R be a function defined as

g(t) = f (x + tη(y,x)).

Then by Diewert Mean Value Theorem 7.9, there exists t ∈ [0,1) such that gD(t)≤
g(1)−g(0) = f (x +η(y,x))− f (x), that is,

h(z;η(y,x)) ≤ f D(z;η(y,x)) ≤ f (x +η(y,x))− f (x) < 0,

where z = x + tη(y,x) for t ∈ [0,1). When t = 0, then the inequality (7.31) holds.
When t > 0, then by Condition C, Remark 7.3 and positive homogeneity of h is the
second argument, we successively obtain

h(z;η(z,x)) = h(z;η(x + tη(y,x),x)) = h(z;tη(y,x)) = th(z;η(y,x)) < 0.

By skewness of η and suboddness of h in the second argument, we have
h(z;η(x,z)) > 0. The invariant pseudomonotonicity of h w.r.t. η implies that
h(x;η(z,x)) < 0. The Condition C, Remark 7.3 and positive homogeneity of h in
the second argument yield (7.31). ��
Remark 7.11. Theorem 7.27 extends and generalizes [67, Theorem 5.2] for h-
pseudoinvex functions w.r.t. η .

Theorem 7.28. Let K ⊆Rn be a nonempty invex set w.r.t. η : K×K →Rn such that
the Condition C holds. Let h : K×Rn → R be invariant pseudomonotone w.r.t. η
and, positively homogeneous and subodd in the second argument. Let f : K →R be
a function such that for all x,y ∈ K, x �= y

f (y) < f (x) implies h(x + tη(y,x);η(y,x)) < 0 for some t ∈ (0,1). (7.32)

Then, f is h-pseudoinvex w.r.t. the same η .

Proof. Let x,y ∈ K be such that x �= y and

h(x;η(y,x)) ≥ 0. (7.33)

We claim that f (x) ≤ f (y). Assume to the contrary that f (x) > f (y). Then by
implication (7.32), we have

h(x + tη(y,x);η(y,x)) < 0 for some t ∈ (0,1). (7.34)
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From Condition C, we have η(x,x + sη(y,x)) = −sη(y,x) for all s ∈ [0,1]. By
using positive homogeneity and suboddness of h in the second argument, the above
inequality (7.34) can be written as

h(x + tη(y,x);η(x,x + tη(y,x))) > 0 for some t ∈ (0,1). (7.35)

Since h is invariant pseudomonotone w.r.t. η , inequality (7.35) implies that

h(x;η(x + tη(y,x),x)) < 0 for some t ∈ (0,1). (7.36)

By using Remark 7.3 and the fact that t ∈ (0,1), inequality (7.36) becomes h(x;η
(y,x)) < 0 which is a contradiction of inequality (7.33). Thus, f is h-pseudoinvex
w.r.t. η . ��

The following theorem is the converse of Theorem 7.26 (b).

Theorem 7.29. Let K ⊆Rn be a nonempty invex set w.r.t. η : K×K →Rn such that
the Condition C holds. Let h : K×Rn → R be strictly invariant pseudomonotone
w.r.t. η and f : K → R be a function such that for all x,y ∈ K, x �= y

f (y)≤ f (x) implies h(x + tη(y,x);η(y,x))≤ 0 for some t ∈ (0,1). (7.37)

Then, f is strictly h-pseudoinvex w.r.t. η .

Proof. From Condition C, we have

η(x + sη(y,x),x) = sη(y,x) for all s ∈ [0,1],

and following the same argument as in the proof of Theorem 7.28, we get the
conclusion. ��
Remark 7.12. Theorems 7.28 and 7.29 extend and generalize [78, Theorem 2.1] for
nondifferentiable functions.

The following theorem is the converse of Theorem 7.26 (c).

Theorem 7.30. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → Rn such
that the Condition C holds. Let h : K×Rn → R be invariant quasimonotone w.r.t. η
and, subodd and positively homogeneous in the second argument. Let f : K →R be
a function such that for all x,y ∈ K, x �= y

f (x)≥ f (y) implies h(x + tη(y,x);η(y,x)) < 0 for some t ∈ (0,1). (7.38)

Then, f is h-quasiinvex w.r.t. the same η .

Proof. Assume to the contrary that f is not h-quasiinvex w.r.t. η . Then there exist
x,y ∈ K such that

f (y) ≤ f (x), (7.39)
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but
h(x;η(y,x)) > 0. (7.40)

Then by the inequalities (7.38) and (7.39), we have

h(x + tη(y,x);η(y,x)) < 0 for some t ∈ (0,1).

By Condition C (a), we have η(x,x + tη(y,x)) = −tη(y,x). Therefore, by positive
homogeneity and suboddness of h in the second argument, we obtain

h(x + tη(y,x);η(x,x + tη(y,x))) > 0 for some t ∈ (0,1). (7.41)

Since h is invariant quasimonotone w.r.t. η , the inequality (7.41) implies that

h(x;η(x + tη(y,x),x))≤ 0 for some t ∈ (0,1). (7.42)

From Condition C, Remark 7.3 and the fact that t ∈ (0,1), the inequality (7.42)
becomes h(x;η(y,x)) ≤ 0 which is a contradiction of the inequality (7.40). Thus, f
is h-quasiinvex w.r.t. η . ��
Remark 7.13. Theorem 7.30 extends and generalizes [78, Theorem 3.1].

Now we present some necessary conditions of (strict) invariant pseudomono-
tonicity and invariant quasimonotonicity of h with the condition that the under lying
set K is convex and η is affine in the first argument and skew instead of invexity of
K and Condition C, respectively.

Theorem 7.31. Let K be a nonempty convex subset of Rn and η : K × K →
Rn be skew and affine in the first argument. Let h : K ×Rn → R be invariant
pseudomonotone w.r.t. η and positively homogeneous in the second argument. If
f : K → R is a function such that for all x,y ∈ K, x �= y

f (x) > f (y) implies h(z;η(x,z)) > 0 (7.43)

for some z which lies on the line segment joining x and y, then f is h-pseudoinvex
w.r.t. η .

Proof. Let x,y ∈ K be such that

h(x;η(y,x)) ≥ 0. (7.44)

We claim that f (y) ≥ f (x). Assume to the contrary that f (y) < f (x). Then by the
inequality (7.43), we have

h(z;η(x,z)) > 0, (7.45)

where z = tx + (1− t)y for some t ∈ (0,1). Since h is invariant pseudomonotone
w.r.t. η , by Lemma 7.2, the inequality (7.45) becomes h(x;η(z,x)) < 0. By the
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skewness of η , we have η(x,x) = 0. Since η is affine in the first argument, by
positive homogeneity of h is the second argument, we have

0 > h(x;η(z,x)) = h(x;tη(x,x)+ (1− t)η(y,x))

= h(x;(1− t)η(y,x))

= (1− t)h(x;η(y,x)).

Therefore, h(x;η(y,x)) < 0 which is a contradiction of the inequality (7.44). Hence,
f is h-pseudoinvex w.r.t. η . ��
Theorem 7.32. Let K be a nonempty convex subset of Rn and η : K ×K → Rn

be skew and affine in the first argument. Let h : K×Rn → R be strictly invariant
pseudomonotone w.r.t. η and positively homogeneous in the second argument. If
f : K → R is a function such that for all x,y ∈ K, x �= y

f (x)≥ f (y) implies h(z;η(x,z)) ≥ 0 (7.46)

for some z which lies on the line segment joining x and y, then f is strictly h-
pseudoinvex w.r.t. η .

Proof. Let x,y ∈ K be such that x �= y and

h(x;η(y,x)) ≥ 0. (7.47)

We claim that f (y) > f (x). Assume to the contrary that f (y) ≤ f (x). Then by the
implication (7.46), we have

h(z;η(x,z)) ≥ 0, (7.48)

where z = tx+(1− t)y for some t ∈ (0,1). Since h is strictly invariant pseudomono-
tone w.r.t. η , the inequality (7.48) implies that

h(x;η(x,z)) > 0. (7.49)

Rest of the proof follows on the lines of the proof of Theorem 7.31. ��

Theorem 7.33. Let K be a nonempty convex subset of Rn and η : K×K → R
n be

skew and affine in the first argument. Let h : K×Rn →R be invariant quasimonotone
w.r.t. η and positively homogeneous in the second argument. If f : K → R is a
function such that for all x,y ∈ K, x �= y

f (y)≤ f (x) implies h(z;η(x,z)) > 0 (7.50)

for some z which lies on the line segment joining x and y, then f is h-quasiinvex
w.r.t. η .

Proof. Assume to the contrary that f is not h-quasiinvex w.r.t. η . Then there exist
x,y ∈ K such that
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f (y) ≤ f (x), (7.51)

but
h(x;η(y,x)) > 0 (7.52)

Then by the implication (7.50) and inequality (7.51), we have

h(z;η(x,z)) > 0, (7.53)

where z = tx+(1− t)y for some t ∈ (0,1). Since h is invariant quasimonotone w.r.t.
η , the inequality (7.53) implies that

h(y;η(z,y))≤ 0. (7.54)

Rest of the proof follows on the lines of the proof of Theorem 7.31. ��
Remark 7.14. Theorems 7.31, 7.32 and 7.33 extend and generalize [59, Theorems
2.2, 2.1 and 2.3].

7.6 Nonsmooth Vector Variational-Like Inequalities

In the sequel, we adopt the following ordering relations. We consider the cones

C = R�
+, C0 := R�

+ \ {0} and
◦
C := int R�

+, where R�
+ is the nonnegative orthant of

R� and 0 is the origin of R�; let D be a subset of R�. Then for all x,y ∈ D,

x ≥C y ⇔ x− y ∈C; x �≥C y ⇔ x− y /∈C;

x ≤C y ⇔ y− x ∈C; x �≤C y ⇔ y− x /∈C;

x ≥C0 y ⇔ x− y ∈C0; x �≥C0 y ⇔ x− y /∈C0;

x ≤C0 y ⇔ y− x ∈C0; x �≤C0 y ⇔ y− x /∈C0;

x ≥◦
C

y ⇔ x− y ∈ ◦
C; x �≥◦

C
y ⇔ x− y /∈ ◦

C;

x ≤◦
C

y ⇔ y− x ∈
◦
C; x �≤◦

C
y ⇔ y− x /∈

◦
C.

Let K be a nonempty subset of Rn and η : K×K → Rn be a given map. Let h =
(h1, . . . ,h�) : K×Rn → R� be a vector-valued function. We consider the following
nonsmooth vector variational-like inequality problems, namely, Stampacchia type
vector variational-like inequality problems and Minty type vector variational-like
inequality problems.
Stampacchia vector variational-like inequality problem (SVVLIP): Find x ∈K such
that

h(x;η(y,x)) =
(
h1(x;η(y,x)), . . . ,h�(x;η(y,x))

) �≤C0 0, for all y ∈ K. (7.55)
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Minty vector variational-like inequality problem (MVVLIP): Find x ∈ K such that

h(y;η(x,y)) =
(
h1(y;η(x,y)), . . . ,h�(y;η(x,y))

) �≥C0 0, for all y ∈ K. (7.56)

If we replace the order relation �≤C0 by �≤◦
C

in (7.55) and �≥C0 by �≥◦
C

in (7.56),

then we get the following weak formulations of (SVVLIP) and (MVVLIP):
Weak Stampacchia vector variational-like inequality problem (WSVVLIP): Find
x ∈ K such that

h(x;η(y,x)) =
(
h1(x;η(y,x)), . . . ,h�(x;η(y,x))

) �≤◦
C

0, for all y ∈ K. (7.57)

Weak Minty vector variational-like inequality problem (WMVVLIP): Find x ∈ K
such that

h(y;η(x,y)) =
(
h1(y;η(x,y)), . . . ,h�(y;η(x,y))

) �≥◦
C

0, for all y ∈ K. (7.58)

Let f = ( f1, . . . , f�) : Rn → R� be a vector-valued function and f D(x;d) =(
f D
1 (x;d), . . . , f D

� (x;d)
)
. When h(x; ·) = f D(x; ·), the (SVVLIP) and (MVVLIP)

become the following nonsmooth vector variational-like inequality problems:
(NSVVLIP): Find x ∈ K such that

f D(x;η(y,x)) =
(

f D
1 (x;η(y,x)), . . . , f D

� (x;η(y,x))
) �≤C0 0, for all y ∈ K. (7.59)

(NMVVLIP): Find x ∈ K such that

f D(y;η(x,y)) =
(

f D
1 (y;η(x,y)), . . . , f D

� (y;η(x,y))
) �≥C0 0, for all y ∈ K. (7.60)

As above, if we replace the order relation �≤C0 by �≤◦
C

in (7.59) and �≥C0 by

�≥◦
C

in (7.60), then we get the following weak formulations of (NSVVLIP) and

(NMVVLIP):
(NWSVVLIP): Find x ∈ K such that

f D(x;η(y,x)) =
(

f D
1 (x;η(y,x)), . . . , f D

� (x;η(y,x))
) �≤◦

C
0, for all y ∈ K. (7.61)

(NWMVVLIP): Find x ∈ K such that

f D(y;η(x,y)) =
(

f D
1 (y;η(x,y)), . . . , f D

� (y;η(x,y))
) �≥◦

C
0, for all y ∈ K. (7.62)

If we consider the Dini derivative (upper or lower) as a bifunction h(x;d), with x
referring to a point in Rn and d referring to a direction from Rn, then (7.55), (7.56),
(7.57) and (7.58) are equivalent to (7.59), (7.60), (7.61) and (7.62), respectively.
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Definition 7.18. Let K ⊆ Rn be a nonempty set and η : K ×K → Rn be a map.
A vector-valued bifunction h = (h1, . . . ,h�) : K×Rn → R� is said to be:

• C-pseudomonotone w.r.t. η if for all x,y ∈ K,

h(x;η(y,x)) �≤C0 0 implies h(y;η(x,y)) �≥C0 0;

• Weakly C-pseudomonotone w.r.t. η if for all x,y ∈ K,

h(x;η(y,x)) �≤◦
C

0 implies h(y;η(x,y)) �≥◦
C

0;

• C-properly subodd if

h(x;d1)+ h(x;d2)+ · · ·+ h(x;dm)≥C 0,

for every di ∈ Rn with ∑m
i=1 di = 0 and x ∈ K.

The definition of proper suboddness is considered in [47]. Of course, if m = 2,
the definition of proper suboddness reduces to the definition of suboddness.

The definition of positive homogeneity of a vector-valued function g : Rn → R�

can be derived in a natural way, that is, g is positively homogeneous if for all x ∈Rn

and all r > 0, g(rx) = rg(x).
We introduce the notion of η-upper sign continuity for the bifunction h, which

extends the concept of upper sign continuity introduced in [31] and further studied
in [2].

Definition 7.19. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K ×K → Rn. A
vector-valued bifunction h = (h1, . . . ,h�) : K×Rn → R� is said to be η-upper sign
continuous (respectively, weakly η-upper sign continuous) if for all x,y ∈ K and
t ∈ (0,1),

h(x + tη(y,x);η(y,x)) �≤C0 0 implies h(x;η(y,x)) �≤C0 0
(

respectively, h(x + tη(y,x);η(y,x)) �≤◦
C

0 implies h(x;η(y,x)) �≤◦
C

0
)
.

Remark 7.15. If η is skew and h is η-upper hemicontinuous in the first argument,
then it is η-upper sign continuous. But the converse is not true in general.

The following result provides the relations between (SVVLIP) and (MVVLIP)
in the setting of invex sets.

Proposition 7.7. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → Rn such
that the Condition C (a) holds. Let the vector-valued bifunction h : K×Rn →R� be
C-properly subodd, C-pseudomonotone w.r.t. η and η-upper sign continuous such
that for each fixed x∈K, h(x; ·) is positively homogeneous. Then, x∈K is a solution
of the (SVVLIP) if and only if it is a solution of the (MVVLIP).
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Proof. The C-pseudomonotonicity of h w.r.t. η implies that every solution of the
(SVVLIP) is a solution of the (MVVLIP).

Conversely, let x ∈ K be a solution of the (MVVLIP). Then,

h(y;η(x,y)) �≥C0 0, for all y ∈ K. (7.63)

Since K is invex, we have yt = x+tη(y,x)∈K for all t ∈ (0,1), and therefore, (7.63)
becomes

h(yt ;η(x,yt)) �≥C0 0.

By Condition C (a), η(x,yt) =−tη(y,x), and thus,

h(yt ;−tη(y,x)) �≥C0 0.

By positive homogeneity and C-proper suboddness of h, we have

h(yt ;η(y,x)) �≤C0 0.

Thus, the η-upper sign continuity of h yields x ∈ K is a solution of (SVVLIP). ��
The following result gives the equivalence between (SVVLIP) and (MVVLIP) in

the setting of convex sets.

Proposition 7.8. Let K⊆Rn be a nonempty convex set and η : K×K→R
n be skew

and affine in the first argument. Let the vector-valued bifunction h : K×Rn →R
� be

C-properly subodd, C-pseudomonotone w.r.t. η and η-upper sign continuous such
that for each fixed x∈K, h(x; ·) is positively homogeneous. Then, x∈K is a solution
of the (SVVLIP) if and only if it is a solution of the (MVVLIP).

Proof. The C-pseudomonotonicity of h w.r.t. η implies that every solution of the
(SVVLIP) is a solution of the (MVVLIP).

Conversely, let x ∈ K be a solution of the (MVVLIP). Then,

h(y;η(x,y)) �≥C0 0, for all y ∈ K. (7.64)

Since K is convex, we have yt = x + t(y− x) ∈ K for all t ∈ (0,1), and therefore,
(7.64) becomes

h(yt ;η(x,yt)) �≥C0 0.

Since η is affine in the first argument and skew, by Lemma 7.1, η is also affine in
the second argument. Since η(x,x) = 0 by skewness of η , we obtain

h(yt ;η(x,yt)) = h(yt ;tη(x,y)+ (1− t)η(x,x)) = h(yt ;tη(x,y)) �≥C0 0.

By positive homogeneity of h in the second argument, we have

h(yt ;η(x,y)) �≥C0 0.
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Since η(y,x) + η(x,y) = 0 by skewness of η , the C-proper suboddness of h
implies that

h(yt ;η(y,x)) �≤C0 0.

The η-upper sign continuity of h yields x ∈ K is a solution of (SVVLIP). ��
Similarly, we can prove the following results which provide the equivalence

between (WSVVLIP) and (WMVVLIP) in the setting of invex sets or convex sets.

Proposition 7.9. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → R
n such

that the Condition C (a) holds. Let the vector-valued bifunction h : K×Rn → R
�

be C-properly subodd, weakly C-pseudomonotone w.r.t. η and weakly η-upper sign
continuous such that for each fixed x ∈ K, h(x; ·) is positively homogeneous. Then,
x∈K is a solution of the (WSVVLIP) if and only if it is a solution of the (WMVVLIP).

Proposition 7.10. Let K ⊆ Rn be a nonempty convex set and η : K×K → Rn be
skew and affine in the first argument. Let the vector-valued bifunction h : K×Rn →
R� be C-properly subodd, weakly C-pseudomonotone w.r.t. η and weakly η-upper
sign continuous such that for each fixed x ∈ K, h(x; ·) is positively homogeneous.
Then, x ∈ K is a solution of the (WSVVLIP) if and only if it is a solution of the
(WMVVLIP).

Corollary 7.2. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K ×K → Rn such
that the Condition C (a) holds. Let the vector-valued bifunction h : K×Rn →R� be
C-properly subodd, weakly C-pseudomonotone w.r.t. η and continuous in the first
argument such that for each fixed x ∈ K, h(x; ·) is positively homogeneous. Then,
x∈K is a solution of the (WSVVLIP) if and only if it is a solution of the (WMVVLIP).

Corollary 7.3. Let K ⊆Rn be a nonempty convex set and η : K×K → Rn be skew
and affine in the first argument. Let the vector-valued bifunction h : K×Rn → R�

be C-properly subodd and weakly C-pseudomonotone w.r.t. η and continuous in
the first argument such that for each fixed x ∈ K, h(x; ·) is positively homogeneous.
Then, x ∈ K is a solution of the (WSVVLIP) if and only if it is a solution of the
(WMVVLIP).

We consider the ε-perturbed Stampacchia vector variational-like inequality
problem (ε-PSVVLIP) of finding x ∈ K for which there exists ε ∈ (0,1) such that

h(x+ εη(y,x);η(y,x)) �≤C0 0, for all y ∈ K and all ε ∈ (0,ε). (7.65)

Proposition 7.11. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → Rn such
that the Condition C (a) holds. Let the vector-valued bifunction h = (h1, . . . ,h�) :
K×Rn → R� be C-properly subodd such that it is positively homogeneous in the
second argument. Then, x ∈ K is a solution of the (ε-PSVVLIP) if it is a solution of
the (MVVLIP). Furthermore, if h is C-pseudomonotone w.r.t. η and, η is skew and
satisfies the Condition C (b), then every solution of (ε-PSVVLIP) is a solution of the
(MVVLIP).
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Proof. Let x be a solution of the (MVVLIP). Then

h(y;η(x,y)) �≥C0 0, for all y ∈ K. (7.66)

Since K is invex, we have xε := x + εη(z,x) ∈ K for all z ∈ K and all ε ∈ [0,1].
Taking y = xε with ε = 1 and ε ∈ (0,ε) in (7.66), we have

h(xε ;η(x,xε)) �≥C0 0.

As in the proof of Proposition 7.7, by Condition C (a), and positive homogeneity
and C-proper suboddness of h, we obtain

h(xε ;η(z,x)) �≤C0 0, for all z ∈ K and all ε ∈ (0,ε).

Thus, x ∈ K is a solution of the (ε-PSVVLIP).
Conversely, suppose that x ∈ K is a solution of the (ε-PSVVLIP), but not a

solution of the (MVVLIP). Then, there exists z ∈ K such that

h(z;η(x,z))≥C0 0.

Since K is invex, we have xε := x+εη(z,x) ∈K for all ε ∈ [0,1]. By skewness of η
and Condition C (b), we have η(xε ,z) = (1− ε)η(x,z). The positive homogeneity
of h(x; ·) in the second argument implies that

h(z;η(x,z)) =
1

1− ε
h(z;η(xε ,z)) ≥C0 0, for all ε ∈ (0,1);

thus,
h(z;η(xε ,z))≥C0 0, for all ε ∈ (0,1).

By the C-pseudomonotonicity of h w.r.t. η , we obtain

h(xε ;η(z,xε ))≤C0 0, for all ε ∈ (0,1).

Since η(z,xε ) = (1− ε)η(z,x) by Condition C (b), and since h(x; ·) is positively
homogeneous, we have

h(xε ;η(z,x))≤C0 0, for all ε ∈ (0,1),

which contradicts our supposition that x is a solution of the (ε-PSVVLIP). ��
Remark 7.16. Proposition 7.9 extends and generalizes [3, Propostion 3.1], and
therefore, [24, Proposition 2] and [77, Theorem 3.2] for nondifferentaible and
noconvex functions.
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We present some existence results for the solutions of (SVVLIP), (MVVLIP),
(WSVVLIP) and (WMVVLIP) with our without boundedness assumption on the
underlying set K.

Theorem 7.34. Let K ⊆ Rn be a nonempty, convex and bounded set and η : K×
K → Rn be skew and, affine and lower semicontinuous in the first argument. Let
h = (h1, . . . ,h�) : K×Rn → R� be C-properly subodd, positively homogeneous in
the second argument and C-pseudomonotone w.r.t. η such that for each i ∈ I =
{1,2, . . . , �} and for every fixed x ∈ K, hi(x; ·) is lower semicontinuous. Then, there
exists a solution x ∈ K of the (MVVLIP).

Furthermore, if h is η-upper sign continuous, then x ∈ K is a solution of the
(SVVLIP).

Proof. For all y ∈ K, we define two set-valued maps P,Q : K → 2K by

P(y) =
{

x ∈ K : h(x;η(y,x)) �≤C0 0
}

and
Q(y) =

{
x ∈ K : h(y;η(x,y)) �≥C0 0

}
.

Then, P is a KKM map. Indeed, let {y1,y2, . . . ,ym} be a finite subset of K and let x̂∈
co{y1,y2, . . . ,ym}. Then x̂ = ∑m

i=1 tiyi with ti ≥ 0 and ∑m
i=1 ti = 1. If x̂ /∈ ⋃m

i=1 P(yi),
then h(x̂;η(yi, x̂))≤C0 0 for all i = 1,2, . . . ,m. Since C0 is a convex cone and ti ≥ 0
with ∑m

i=1 ti = 1, we have

m

∑
i=1

tih(x̂;η(yi, x̂))≤C0 0. (7.67)

Since η is skew, we have η(x,x) = 0. By affineness of η in the first argument, we
have

m

∑
i=1

tiη(yi, x̂) = η

(
m

∑
i=1

tiyi, x̂

)
= η(x̂, x̂) = 0.

By C-proper suboddness of h, we have

m

∑
i=1

h(x̂;tiη(yi, x̂))≥C 0.

The positive homogeneity of h yields

m

∑
i=1

tih(x̂;η(yi, x̂))≥C 0,

a contradiction of (7.67). Hence P is a KKM map. The C-pseudomonotonicity of h
w.r.t. η implies that P(y)⊆ Q(y) for all y ∈ K; hence, Q is a KKM map.

We claim that Q(y), for all y ∈ K, is a closed set in K. Indeed, let {xn} be a
sequence in Q(y) which converges to x ∈ K. Then,

h(y;η(xn,y)) �≥C0 0.
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Since η is lower semicontinuous in the first argument and each hi is lower
semicontinuous in the second argument, we have

hi(y;η(x,y)) ≤ liminf
n→∞

hi(y;η(xn,y))≤ 0, for all i ∈I ,

with strict inequality holds for some i. Therefore,

h(y;η(x,y)) �≥C0 0,

and hence, x ∈ Q(y). Thus, Q(y) is closed in K.
Since K is bounded, it follows that Q(y) is compact for all y ∈ K. By Fan-KKM

Theorem 7.1, ⋂
y∈K

Q(y) �= /0,

that is, there exists x ∈ K such that

h(y;η(x,y)) �≥C0 0, for all y ∈ K.

Thus, x ∈ K is a solution of the (MVVLIP).
By Proposition 7.8, x ∈ K is a solution of the (SVVLIP). ��
By using the similar argument as in the proof of above theorem and applying

Proposition 7.10, we can easily derive the following existence result for solutions of
(WSVVLIP) and (WMVVLIP).

Theorem 7.35. Let K ⊆ Rn be a nonempty, convex and bounded set and η : K×
K → Rn be skew and, affine and lower semicontinuous in the first argument. Let
h = (h1, . . . ,h�) : K×Rn →R� be C-properly subodd, positively homogeneous in the
second argument and weakly C-pseudomonotone w.r.t. η such that for all i ∈I and
for each fixed x ∈ K, hi(x; ·) is lower semicontinuous. Then, there exists a solution
x ∈ K of the (WMVVLIP).

Furthermore, if h is weakly η-upper sign continuous, then x ∈ K is a solution of
the (WSVVLIP).

Remark 7.17. (a) Theorem 7.34 (respectively, Theorem 7.35) also holds if we
replace the boundedness assumption on the set K by the following coercivity
condition:
There exist a nonempty compact convex subset D of K and ỹ ∈ D such that for
all x ∈ K \D, h(ỹ,η(x, ỹ))≥C0 0 (respectively, h(ỹ,η(x, ỹ))≥◦

C
0).

Indeed, by above coercivity condition, Q(y) is a closed subset of the compact
set D, and hence, compact.

(b) Theorems 7.34 and 7.35 extend and generalize [3, Theorem 5.1] and [47,
Theorem 2.2].

Definition 7.20. Let K ⊆ Rn be a nonempty convex set. A vector-valued function
g : K → R

� is said to be C-convex if for all x,y ∈ K and all t ∈ [0,1],



7 Nonsmooth Invexities, Invariant Monotonicities 263

g(tx +(1− t)y)≤C tg(x)+ (1− t)g(y).

When K is not necessarily bounded, then we also have the following existence
results for solutions of (SVVLIP), (MVVLIP), (WSVVLIP) and (WMVVLIP).

Theorem 7.36. Let K ⊆ Rn be a nonempty convex set and η : K ×K → R be
skew and lower semicontinuous in the first argument. Let h : K×Rn → R

� be C-
pseudomonotone w.r.t. η such that for each i ∈I and for all x ∈ K, hi(x; ·) is lower
semicontinuous, and the set D = {y∈K : h(x,η(y,x))≤C0 0} is convex for all x∈K.
Assume that there exist a nonempty compact convex subset B of K and a nonempty
compact subset D of K such that for all x ∈ K \D, there exists ỹ ∈ B such that
h(ỹ,η(x, ỹ))≥C0 0. Then, there exists a solution x ∈ K of (MVVLIP).

Furthermore, if h is η-upper sign continuous and for each fixed x ∈ K, h(x; ·) is
positively homogeneous, then x ∈ K is a solution of the (SVVLIP).

Proof. For each x ∈ K, define set-valued maps P,Q : K → 2K by

P(x) = {y ∈ K : h(y,η(x,y))≥C0 0}

and

Q(x) = {y ∈ K : h(x,η(y,x)) ≤C0 0}.
By hypothesis, for each x ∈ K, Q(x) is convex. By C-pseudomonotonicity of h,
P(x)⊆Q(x) for all x ∈ K. Thus, coP(x)⊆ Q(x) for all x ∈ K.

For each y ∈ K, the complement of P−1(y) in K is

[P−1(y)]c = {x ∈ K : h(y,η(x,y)) �≥C0 0}.

As we have seen in Theorem 7.34 that [P−1(y)]c is closed in K, and hence, P−1(y)
is open in K.

Assume that for all x ∈ K, P(x) is nonempty. Then all the conditions of Theorem
7.2 are satisfied, and therefore, there exists x̂ ∈ K such that x̂ ∈ Q(x̂). It follows that

0 = h(x̂,η(x̂, x̂))≤C0 0,

a contradiction because η(x̂, x̂) = 0. Hence, our assumption P(x) is nonempty for
all x ∈ K is false. Therefore, there exists x ∈ K such that P(x) = /0. This implies that
for all y ∈ K,

h(y,η(x,y)) �≥C0 0.

Thus, x ∈ K is a solution of the (MVVLIP).
By Proposition 7.8, x ∈ K is a solution of the (SVVLIP). ��

Theorem 7.37. Let K ⊆ Rn be a nonempty convex set and η : K×K → R be skew
and lower semicontinuous in the first argument. Let h : K ×Rn → R� be weakly
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C-pseudomonotone w.r.t. η such that for each i ∈ I and for all x ∈ K, hi(x; ·) is
lower semicontinuous, and the set D̃ = {y ∈ K : h(x,η(y,x)) ≤◦

C
0} is convex for

all x ∈ K. Assume that there exist a nonempty compact convex subset B of K and a
nonempty compact subset D of K such that for all x ∈ K \D, there exists ỹ ∈ B such
that h(ỹ,η(x, ỹ))≥◦

C
0. Then, there exists a solution x ∈ K of (MVVLIP).

Furthermore, if h is η-upper sign continuous and for each fixed x ∈ K, h(x; ·) is
positively homogeneous, then x ∈ K is a solution of the (SVVLIP).

Remark 7.18. For all x ∈ K, the set D = {y ∈ K : h(x,η(y,x)) ≤C0 0} is convex, if
η is affine in the first argument and h is C-convex in the second argument.

Indeed, let y1,y2 ∈ D. Since C0 is a convex cone, for all t ∈ (0,1), we have

th(x;η(y1,x))≤C0 0 and (1− t)h(x;η(y2,x))≤C0 0.

By adding these relations, we get

th(x;η(y1,x))+ (1− t)h(x;η(y2,x))≤C0 0. (7.68)

Since h is C-convex in the second argument, we have

h(x;tη(y1,x)+ (1− t)η(y2,x))≤C th(x;η(y1,x))+ (1− t)h(x;η(y2,x)) . (7.69)

Combining relations (7.68) and (7.69), we obtain

h(x;tη(y1,x)+ (1− t)η(y2,x))≤C0 0.

Since η is affine in the first argument, we get

h(x;η(ty1 +(1− t)y2,x))≤C0 0,

and hence, ty1 +(1− t)y2 ∈ D. Thus, for all x ∈ K, D is a convex set.
Similarly, we can prove that D̃ is convex for all x ∈ K.

7.7 Nonsmooth Vector Optimization

Let f = ( f1, . . . , f�) :Rn → R� be a vector-valued function. The vector optimization
problem (VOP) is defined as follows:

min f (x) subject to x ∈ K, (7.70)

where f (x) = ( f1(x), . . . , f�(x)).
A point x ∈ K is said to be an efficient solution (respectively, weakly efficient

solution) of (VOP) if and only if

f (x) �≥C0 f (y), for all y ∈ K, (7.71)

(
respectively, f (x) �≥◦

C
f (y), for all y ∈ K

)
.
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It is clear that every efficient solution is a weakly efficient solution.

Definition 7.21. Let h = (h1, . . . ,h�) : K×Rn → R� be a vector-valued bifunction
and η : K ×K → Rn be a map. A vector-valued function f = ( f1, . . . , f�) : K →
R� is said to be h-invex (respectively, strictly h-invex, h-pseudoinvex and strictly h-
pseudoinvex) w.r.t. η if for each i ∈I , fi is hi-invex (respectively, strictly hi-invex,
hi-pseudoinvex and strictly hi-pseudoinvex) w.r.t. η .

Remark 7.19. If h(x;η(y,x)) = D+ f (x;η(y,x)), then h-invexity (respectively,
strictly h-invexity, h-pseudoinvexity and strictly h-pseudoinvexity) w.r.t. η is called
D+-invexity (respectively, strictly D+-invexity, D+-pseudoinvexity and strictly
D+-pseudoinvexity) w.r.t. η .

The following result provides the relationship among the efficient solution
and weakly efficient solution of the (VOP) and the solutions of (NSVVLIP),
(NWSVVLIP) and (WSVVLIP).

Theorem 7.38. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K ×K → Rn and
f : K → R� be a vector-valued function. Then, every (respectively, weakly) efficient
solution of the (VOP) is a solution of (NSVVLIP) (respectively, (NWSVVLIP)).

Proof. Let x be an efficient solution of the (VOP). Then,

f (x) �≥C0 f (y), for all y ∈ K.

Since K is invex, we have x + tη(y,x) ∈ K for all t ∈ [0,1]; thus,

f (x + tη(y,x))− f (x)
t

�≤C0 0, for all t ∈ (0,1).

Taking the limsup as t → 0+, we obtain

f D(x;η(y,x)) = limsup
t→0+

f (x + tη(y,x))− f (x)
t

�≤C0 0, for all y ∈ K.

Hence, x is a solution of the (NSVVLIP).
Similarly, we can prove that every weakly efficient solution of the (VOP) is a

solution of (NWSVVLIP). ��
Theorem 7.39. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K ×K → R

n and
f : K → R

� be a vector-valued function. If f is h-pseudoinvex w.r.t. η , then every
solution of (WSVVLIP) is a weakly efficient solution of the (VOP).

Proof. Assume that x ∈ K is a solution of (WSVVLIP), but not a weakly efficient
solution of the (VOP). Then, there exists y ∈ K such that

f (x)≥◦
C

f (y). (7.72)
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That is, fi(x) > fi(y) for all i = 1,2, . . . , �. By hi pseudoinvexity of fi, we obtain

hi(x;η(y,x)) < 0, for all i = 1,2, . . . , �,

that is,
h(x;η(y,x))≤◦

C
0.

Thus, x is not a solution of (WSVVLIP), a contradiction of our assumption. Hence,
x ∈ K is a weakly efficient solution of the (VOP). ��
Corollary 7.4. Let K ⊆ Rn be a nonempty set and f : K → R� be a h-invex vector-
valued function. Then, every solution of the (WSVVLIP) is a weakly efficient solution
of the (VOP).

Proof. Since every h-invex function is h-pseudoinvex, we obtain the desired result
from Theorem 7.39. ��
Theorem 7.40. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → R

n such
that the Condition C holds. Let h : K×Rn → R

� be positively homogeneous and
subodd in the second argument such that for each fixed x ∈ K, h(x; ·) ≤ f D(x; ·). If
f : K → R

� is strictly h-pseudoinvex w.r.t. η and upper semicontinuous then, every
solution of the (WSVVLIP) is an efficient solution of the (VOP).

Proof. Assume that x ∈ K is a solution of (WSVVLIP), but not an efficient solution
of the (VOP). Then, there exists y ∈ K such that

f (x)≥C0 f (y). (7.73)

Clearly, strictly h-pseudoinvex w.r.t. η implies h-pseudoinvexity w.r.t. the same
η . From Theorems 7.23 and 7.24, each fi is semistrictly pre-quasiinvex and pre-
quasiinvex. Then by Theorem 7.21, we have

h(x;η(y,x))≤C0 0. (7.74)

If there exists some i ∈ I such that hi(x;η(y,x)) = 0, then by the strict h-
pseudoinvexity of f , we have fi(y) > fi(x), which contradicts (7.73). Thus, (7.74)
implies that h(x;η(y,x)) ≤◦

C
0 contradicting our assumption that x is a solution of

(SWVVLIP). ��
Theorem 7.41. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K ×K → R

n, h :
K×Rn → R

� be a vector-valued function and f : K → R
� be strictly h-pseudoinvex

w.r.t. η . Then, every weakly efficient solution of the (VOP) is a solution of the
(MVVLIP).

Proof. Assume that x ∈ K is a weakly efficient solution of the (VOP), but not a
solution on the (MVVLIP). Then, there exists y ∈ K such that

h(y;η(x,y)) =
(
h1(y;η(x,y)), . . . ,h�(y;η(x,y))

)≥C0 0.
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The strict h-pseudoinvexity of f w.r.t. η implies

f (x)− f (y)≥◦
C

0,

a contradiction of our assumption that x is a weakly efficient solution of (VOP). ��
Theorem 7.42. Let K ⊆Rn be a nonempty invex set w.r.t. η : K×K →Rn such that
the Condition C holds. Let h : K×Rn → R� be positively homogeneous and subodd
in the second argument such that for each i ∈ I and all x ∈ K, hi(x; ·) ≤ f D

i (x; ·),
and let f : K → R� be h-pseudoinvex w.r.t. η . Then, every solution of the (SVVLIP)
is an efficient solution of the (VOP).

Proof. Suppose that x∈K is a solution of the (SVVLIP), but not an efficient solution
of the (VOP). Then, there exists y ∈ K such that f (x) ≥C0 f (y). Since each fi is
hi-pseudoinvex w.r.t. η , by Theorem 7.23, each fi is pre-quasiinvex w.r.t. η . By The-
orem 7.21, each fi is hi-quasiinvex w.r.t. η . Thus, by using the h-pseudoinvexity and
h-quasiinvexity of f w.r.t. η , we get h(x;η(y,x)) ≤C0 0, which contradicts the fact
that x is a solution of (SVVLIP). Hence x is an efficient solution of the (VOP). ��
Theorem 7.43. Let K ⊆ Rn be a nonempty set and f : K → R

� be a vector-valued
function such that− f is h-invex w.r.t. η , that is, f (y)− f (x)≤C0 h(x;η(y,x)) for all
x,y ∈ K. Then, every efficient solution of the (VOP) is a solution of the (SVVLIP).

Proof. Assume that x is an efficient of the (VOP), but not a solution of the
(SVVLIP). Then, there exists y ∈ K such that

h(x;η(y,x))≤C0 0. (7.75)

Since − f is h-invex w.r.t. η , we have

f (y)− f (x)≤C0 h(x;η(y,x)). (7.76)

Combining (7.75) and (7.76), we obtain

f (x)≥C0 f (y),

a contradiction of our assumption that x is an efficient solution of the (VOP). Hence,
x is a solution of the (SVVLIP). ��

Similarly, we can prove the following result.

Theorem 7.44. Let K ⊆ Rn be a nonempty set and f : K → R� be a vector-valued
function such that− f is strictly h-invex w.r.t. η , that is, f (y)− f (x)≤◦

C
h(x;η(y,x))

for all x,y ∈ K. Then, every weakly efficient solution of the (VOP) is a solution of
the (SVVLIP).

Theorem 7.45. Let K ⊆ Rn be a nonempty invex set w.r.t. η : K×K → Rn. If f :
K → R� is a strictly D+-invex function w.r.t. η , then every weakly efficient solution
of the (VOP) is an efficient of the (VOP).
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Proof. Assume that x is a weakly efficient solution of the (VOP), but not an efficient
solution of the (VOP). Then, there exists y ∈ K such that

f (x)≥C0 f (y). (7.77)

Since f is strictly D+-invex w.r.t. η , we have

f (y)− f (x)≥◦
C

f D(x;η(y,x)). (7.78)

Combining relations (7.77) and (7.78), we obtain

f D(x;η(y,x))≤◦
C

0.

Thus, x is not a solution of the (NWSVVLIP). By using Theorem 7.38 (a), we see
that x is not a weakly efficient solution of the (VOP), contradicting our assumption.

��
Theorem 7.46. Let K ⊆ Rn be an invex set w.r.t. η : K ×K → Rn such that the
Condition C holds and η is skew. For each i ∈ I = {1, . . . , �}, let fi : K → R be
upper semicontinuous and, for all x ∈ K, let hi(x; ·) be positively homogeneous and
subodd such that hi(x; ·)≤ f D

i (x; ·). For each i ∈I , let fi be D+-pseudoinvex w.r.t.
η . Then, x ∈ K is a solution of the (MVVLIP) if and only if it is an efficient solution
of the (VOP).

Proof. Let x ∈ K be a solution of the (MVVLIP), but not an efficient solution of the
(VOP). Then, there exists z ∈ K such that

f (x)≥C0 f (z). (7.79)

Set z(t) := x + tη(z,x) for all t ∈ [0,1]. Since K is invex, z(t) ∈ K for all t ∈
[0,1]. Also since each fi is D+-pseudoinvex w.r.t. η , it follows from Theorems
7.23 and 7.24 that fi is pre-quasiinvex and semistrictly pre-quasiinvex w.r.t. the
same η . By using pre-quasiinvexity, semistrictly pre-quasiinvexity and the relation
(7.79), we get

fi(x)≥C0 fi(z(t)), for all t ∈ (0,1).

That is,
fi(x)≥ fi(z(t)), for all t ∈ (0,1) and all i = 1, . . . , �, (7.80)

with strict inequality holds in inequality (7.80) for some k such that 1 ≤ k ≤ �. For
each i ∈I , let gi : [0,1]→ R be a function defined by

gi(t) = fi(x + tη(z,x)).

Then, by Diewert Mean-Value Theorem 7.9, there exists ti ∈ [0,t), for all t ∈ (0,1),
such that
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1
t
( fi(z(t))− fi(x))≥ f D

i (z(ti);η(z,x)) , for all i = 1, . . . , �. (7.81)

Combining inequalities (7.80) and (7.81), we obtain

f D
i (z(ti);η(z,x))≤ 0, for all i = 1, . . . , �,

with strict inequality holds for some k such that 1 ≤ k ≤ �. Since, for each fixed
x ∈ K, hi(x; ·) ≤ f D

i (x; ·), we have

hi (z(ti);η(z,x))≤ 0, for all i = 1, . . . , �, (7.82)

with strict inequality holds for some k such that 1 ≤ k ≤ �. From Condition C and
Remark 7.3, we have η(z(ti),x) = η(x + tiη(z,x),x) = tiη(z,x) for all i = 1, . . . , �.
By positive homogeneity of each hi in the second argument, we have

hi(z(ti);η(z(ti),x))≤ 0, for all i = 1, . . . , �, (7.83)

with strict inequality holds for some k such that 1≤ k ≤ �.
Suppose that t1,t2, . . . ,t� are all equal. Then, by inequality (7.83) and suboddness

of each hi, we obtain

(
h1 (z(t1);η(x,z(t1))) , . . . ,h� (z(t�);η(x,z(t�)))

)≥C0 0,

which contradicts our assumption that x is a solution of the (MVVLIP).
Consider the case when t1,t2, . . . ,t� are not equal. By Condition C, we have

η (z(t1),z(t2)) =
t1− t2

t1
η (z(t1),x) =

t1− t2
t2

η (z(t2),x) (7.84)

and

η (z(t2),z(t1)) =
t2− t1

t1
η (z(t1),x) =

t2− t1
t2

η (z(t2),x) . (7.85)

Case 7.1. If t1 > t2, then from inequality (7.83), relation (7.84) and positive
homogeneity of each hi, we have

0≥ h1

(
z(t1);

t1− t2
t1

η(z(t1),x)
)

= h1
(
z(t1);η(z(t1),z(t2))

)
.

By suboddness of each hi in the second argument, we obtain

h1
(
z(t1);η(z(t2),z(t1))

)≥ 0,

with strict inequality holds for k = 1.
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Since each fi is D+-pseudoinvex w.r.t. η and hi(x; ·)≤ f D
i (x; ·), by Lemma 7.4, fi

is hi-pseudoinvex w.r.t. η ; further, by Theorem 7.27, hi is invariant pseudomonotone
w.r.t. η . Therefore, we have

h1
(
z(t2);η(z(t1),z(t2))

)≤ 0,

with strict inequality holds for k = 1. The relation (7.84) and positive homogeneity
of hi(x; ·) imply that

h1
(
z(t2);η(z(t2),x)

)≤ 0,

with strict inequality holds for k = 1.

Case 7.2. If t1 < t2, then from inequality (7.83), relation (7.85) and positive
homogeneity of each hi, we have

0≥ h2

(
z(t2);

t2− t1
t2

η(z(t2),x)
)

= h2
(
z(t2);η(z(t2),z(t1))

)
.

By suboddness of each hi in the second argument, we obtain

h2
(
z(t2);η(z(t1),z(t2))

)≥ 0,

with strict inequality holds for k = 2. As above, each hi is pseudomonotone;
therefore,

h2
(
z(t1);η(z(t2),z(t1))

)≤ 0,

with strict inequality holds for k = 2. Again as above, by using the relation (7.85)
and positive homogeneity of hi(x; ·), we get

h2
(
z(t1);η(z(t1),x))

)≤ 0,

with strict inequality holds for k = 2.
For the case t1 �= t2, let t̂ = min{t1,t2}. Then, we have

hi
(
z(t̂);η(z(t̂),x)

)≤ 0, for all i = 1,2.

By continuing this process, we can find t∗ ∈ (0,1) such that

hi
(
z(t∗);η(z(t∗),x)

)≤ 0, for all i = 1,2, . . . , �,

with strict inequality holds for some k such that 1 ≤ k ≤ �. This contradicts our
supposition that x is a solution of (MVVLIP).

Conversely, suppose that x ∈ K is an efficient of the (VOP), but not a solution of
the (MVVLIP). Then, there exists z ∈ K such that
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h(z;η(x,z)) ≥C0 0,

that is,
hi (z;η(x,z)) ≥ 0, for all i ∈I ,

with strict inequality holds for some i. Since hi(z; ·)≤ f D
i (z; ·) for all i ∈I ,

f D
i (z;η(x,z)) ≥ 0, for all i ∈I ,

with strict inequality holds for some i. Since each fi is D+-pseudoinvex w.r.t. η ,

fi(x)≥ fi(z), for all i ∈I .

Let j ∈I be such that f D
j (z;η(x,z)) > 0. It follows from Theorems 7.21 and 7.23

that f j is h-quasiinvex w.r.t. η , and hence, f j(x) > f j(z). Thus, f (z)≤C0 f (x); hence,
x is not an efficient solution of the (VOP). This is a contradiction.

Remark 7.20. Theorem 7.40 extends and generalizes [3, Theorem 3.1], and there-
fore, also generalizes the necessary part of [24, Proposition 1] and [77, Theorem
3.1] for nondifferentiable and nonconvex functions.
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56. Michel, P., Penot, J.P.: Calcul sous-différentiel pour des fonctions Lipschitziennes et non

Lipschitziennes. C. R. Math. Acad. Sci. Paris. 298, 269–272 (1984)
57. Mishra, S.K., Wang, S.Y.: Vector variational-like inequalities and non-smooth vector optimiza-

tion problems. Nonlinear Anal. 64, 1939–1945 (2006)
58. Mohan, S.R., Neogy, S.K.: On invex sets and preinvex functions. J. Math. Anal. Appl. 189,

901–908 (1995)
59. Peng, J.-W.: Criteria for generalized invex monotonicities without Condition C. Europ. J. Oper.

Res. 170, 667–671 (2006)
60. Pini, R.: Invexity and generalized convexity. Optimization 4, 513–525 (1991)



274 S. Al-Homidan et al.

61. Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York, London (1973)
62. Rockafellar, R.T.: Directionally Lipschtizian functions and subdifferential calculus. Proc.

London Math. Soc. 39, 331–355 (1979)
63. R.T. Rockafellar, R.T.: Generalized directional derivatives and subgradients of nonconvex

functions. Canadian J. Math. 32, 257–280 (1980)
64. Rockafellar, R.T.: The Theory of Subgradients and its Applications to Problems of Optimiza-

tion: Convex and Nonconvex Functions. Heldermann-Verlag, Berlin (1981)
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Chapter 8
Optimality Conditions for Approximate
Solutions of Convex Semi-Infinite Vector
Optimization Problems

Gue Myung Lee, Gwi Soo Kim, and Nguyen Dinh

8.1 Introduction

Efficient solutions for vector optimization problems are well recognized to be
important and have attracted many mathematicians since the solutions have crucial
meanings when decision makers determine one solution with conflicting objective
functions. On the other hands, from computational point of view, algorithms which
have been used in the literature to solve nonlinear optimization problems often
give rise to approximate solutions (ε-approximate solution) for the problems.
This explains why approximate solutions to optimization problems in general and
especially to vector optimizations have attracted much attention from many authors
(see, e.g., [13, 14, 17–20, 23, 26, 27, 29, 30] and the references therein). These
works mainly devoted to the study of the existence of ε-approximate solutions,
ε-optimality conditions, and ε-duality results for several kinds of optimization
problems. Recently, efforts were devoted to the study of properties of ε-approximate
solutions (for scalar problems), ε-Pareto optimality conditions and ε-duality theo-
rems for vector optimization problems with finite constraints (see [11,12,21,22,24,
27, 28, 31]) while approximate solutions for scalar convex and nonconvex problems
with infinitely many constraints were examined recently in [26] (such class of
problems was studied also in [2, 3]).
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In this chapter, we consider a convex semi-infinite vector optimization problem
which consists of a finite number of convex objective functions with infinitely many
convex constraints and an abstract constraint set in locally convex Hausdorff spaces
setting. Such a problem is called convex semi-infinite vector problem (CSIVP).

For ε = (ε1,ε2, · · · ,εp) ∈ Rp
+, we introduce the notions of ε-efficient solutions

and weakly ε-efficient solutions for (CSIVP) which collapse to efficient solution
and weakly efficient solutions when ε = 0 ∈Rp.

We concern the efficient, weakly efficient solutions, and also ε-efficient solutions
and weakly ε-efficient solutions for (CSIVP). One of the methods to deal with
vector optimization problems is that of scalarzing them (see, e.g., [9, 25, 31]).
However, by this procedure, the resulting scalarized problems may not satisfy
the Slater or any interior-type constraint qualification conditions. The main aim
of the chapter is to introduce an alternative constraint qualification conditions
(called closedness conditions) for scalarized problem associated to (CSIVP) under
which, optimality conditions for ε-efficient and weakly ε-efficient solutions are
established. Optimality conditions for efficient and weakly efficient solutions of
(CSIVP) are then obtained as special cases. The results were obtained by using
a version of Farkas lemma for systems of infinitely many convex constraints and
under a regularity condition (so-called closedness condition) expressed in terms of
epigraphs of conjugate functions.

The rest of the chapter is organized as follows: In Sect. 8.2, we give a preliminary
results which will be useful in the sequel and obtain, as a consequence of the
early works, a generalized Farkas lemma associated to the constraint systems of
the problem (CSIVP) in consideration. In Sect. 8.3, we introduce the definitions of
ε-efficient solutions and weakly ε-solutions for (CSIVP) and then the closedness
conditions which will be used to establish optimality conditions in the next
sections. The optimality conditions for ε-efficient solutions and efficient solutions
for (CSIVP) were established in Sect. 8.4. In the last section, we establish optimality
conditions for weakly ε-efficient solutions to (CSIVP). Numerical examples are
given to illustrate the meaning of the results.

8.2 Preliminaries

Throughout this chapter, X denotes a locally convex Hausdorff topological vector
space with its topological dual, X∗, endowed with weak∗-topology, and C ⊂ X is a
closed convex subset.

Let T be an arbitrary (possibly infinite) index set and RT the product space
with product topology. Let R(T ) denote the generalized finite sequence space which
consists of all sequences λ = (λt)t∈T such that λt ∈ R for each t ∈ T and suppλ :=
{t ∈ T | λt �= 0} is a finite subset of T . For (λt)t∈T ∈ R(T ) and (xt)t∈T ∈ RT , we
understand that

∑
t∈T

λtxt = ∑
t∈suppλ

λtxt , ∀x ∈RT , ∀λ ∈ R(T).
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Denote

R
(T )
+ :=

{
λ = (λt) ∈ R(T ) | λt ≥ 0,t ∈ T,λt = 0 for all but a finite number of t ∈ T

}
.

It is clear that R(T )
+ is a convex cone in R(T), see, for example, [10, p. 48].

We now recall some notations and basic results which will be used in the sequel.
Since we always deal with weak∗-topology in dual spaces, for a subset D ⊂ X∗,
the closure of D in the weak∗-topology, will be denoted by clD; the convex cone
generated by D∪{0} by cone D. Let I be an arbitrary index, {Xi, i ∈ I} be a family
of subsets of X , let ℑ be the collection of all nonempty finite subsets of I, then

cone(
⋃

i∈I
Xi) =

⋃
J∈ℑ cone(

⋃
j∈J Xj)

=
⋃

J∈ℑ(∑ j∈J coneXj). (8.1)

Let f : X → R∪ {+∞} be a proper lower semi-continuous convex function. The
conjugate function of f , f ∗, is defined as

f ∗ : X∗ → R∪{+∞}

f ∗(v) := sup{v(x)− f (x) | x ∈ dom f},
where dom f := {x ∈ X | f (x) < +∞} is the effective domain of f . The epigraph of
f is defined by

epi f := {(x,r) ∈ X ×R | x ∈ dom f , f (x) ≤ r}.

The set (possibly empty)

∂ f (a) := {v ∈ X∗ | f (x)− f (a)≥ v(x−a),∀x ∈ dom f}

is the subdifferential of the convex function f at a ∈ dom f .
For a nonempty closed convex set C ∈ X and a point a ∈C, the normal cone to C

at a is defined as

NC(x) := ∂δC(a) = {x∗ ∈ X∗ | x∗(x− x)≤ 0,∀x ∈C}.

For ε ≥ 0, the ε-subdifferential of f at a ∈ dom f is defined as the set (possibly
empty)

∂ε f (a) = {v ∈ X∗ | f (x)− f (a)≥ v(x−a)− ε,∀x ∈ dom f}.

If ε > 0, then ∂ε f (a) is nonempty and is a weak∗-closed subset of X∗. When ε = 0,
∂0 f (a) collapses to ∂ f (a) [32]. If a ∈ dom f , then epi f ∗ has a representation as
follows (see [15]):

epi f ∗ =
⋃
ε≥0

{(v,v(a)+ ε− f (a)) | v ∈ ∂ε f (a)}. (8.2)
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Note that, for ε1,ε2 ≥ 0 and z ∈ dom f ∩domg,

∂ε1 f (z)+ ∂ε2g(z)⊂ ∂ε1+ε2( f + g)(z),

and for μ > 0,ε ≥ 0,z ∈ dom f , we have (see [45, p. 83])

μ∂ε f (z) = ∂με(μ f )(z).

If g is sublinear (i.e., convex and positively homogeneous of degree one), then
∂εg(0) = ∂g(0) for all ε ≥ 0. If g̃(x) = g(x)−k, x ∈ X , k ∈ R, then epig̃∗ = epig∗+
(0,k). It is worth noting that if g is sublinear, then epig∗ = ∂g(0)×R+. Moreover,
if g is sublinear and if g̃(x) = g(x)− k, x ∈ X , k ∈R, then

epig̃∗ = ∂g(0)× [k,∞).

Now, let g,h : X → R∪{∞} be proper l.s.c. convex functions. Then

epi (g + h)∗ = cl(epig∗+ epih∗).

If at least one of them is continuous at some point of domg∩domh then the closure
in the right hand side of the previous equality can be dropped. More concretely, one
has (see, e.g., [1, 3]):

Lemma 8.1. Let g,h : X → R ∪ {∞} be proper lower semicontinuous convex
functions. The following statements are equivalent:

(a) epig∗+ epih∗ is weak∗- closed.
(b) epi(g + h)∗ = epig∗+ epih∗.
(c) (g + h)∗(x∗) = minu∈X∗{g∗(u)+ h∗(x∗ −u)}, ∀x∗ ∈ X∗.

Now we give a version of generalized Farkas lemma for convex infinite system
which can comes easily from the results in recently works [2, 3].

Lemma 8.2. Let h : X → R be a continuous convex function and gt : X → R∪
{+∞}, t ∈ T, proper lower semi-continuous convex functions. Let further, α ∈ R
and C be a closed convex subset of X. Assume that F := {x∈C | gt(x)≤ 0 for all t ∈
T} �= /0. Then the following statements are equivalent:

(a) x ∈ F =⇒ h(x)≥ α .

(b) (0,−α) ∈ epih∗+ cl
[
cone(

⋃
t∈T epigt)

∗+ epiδ ∗C
]
.

Proof. Let h̃(x) := h(x)− α . It is easy to see that (i) is equivalent to (h̃ + δF)∗
(0)≤ 0 or,

0 ∈ epi (h̃+ δF)∗. (8.3)

Note that
epi (h̃+ δF)∗ = cl

(
epih̃∗+ epiδ ∗F

)
.
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Since h̃ is continuous (and hence, epih̃∗+ epiδ ∗F is closed), it follows from Lemma
8.1 that (8.3) is equivalent to

0 ∈ epih̃∗+ epiδ ∗F .

On the other hand, by [2, Theorem 4.1],

epiδ ∗F = cl cone

(
⋃
t∈T

epig∗t ∪ epiδ ∗C

)
.

Thus (a) holds if and only if

0 ∈ epih̃∗+ cl cone

(
⋃
t∈T

epig∗t ∪ epiδ ∗C

)
,

which is equivalent to (b) since epih̃∗ = epih∗+(0,α) and

cone

(
⋃
t∈T

epig∗t ∪ epiδ ∗C

)
= cone

(
⋃
t∈T

epigt

)∗
+ epiδ ∗C .

The proof is complete. ��

8.3 Approximate Solutions and Constraint Qualification
Conditions

We consider the following convex semi-infinite vector optimization problem
(CSIVP):

(CSIVP) Minimize ( f1(x), · · · , fp(x))
subject to gt(x)≤ 0, t ∈ T,

x ∈C,

where fi : X → R, i = 1,2, · · · , p are continuous convex functions and gt : X →
R∪{+∞}, t ∈ T , are proper lower semicontinuous (l.s.c.) convex functions, and
T is an arbitrary (possibly infinite) set. Let ε = (ε1, · · · ,εp) ∈ Rp

+ and let F be the
feasible set of (CSIVP), i.e., F := {x ∈C | gt(x)≤ 0,∀t ∈ T}. Assume that F �= /0.

The definitions of ε-efficient solutions and weakly ε-efficient solutions for vector
optimization problems were given in [24]. The modification of these notions for
(CSIVP) are as follows.
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Definition 8.1 (ε-efficient Solution). A point x ∈ F is said to be an ε-efficient
solution of (CSIVP) if there does not exist x ∈ F such that

fi(x)≤ fi(x)− εi for all i = 1, · · · p,

f j(x) < f j(x)− ε j for some j.

Definition 8.2 (Weakly ε-Efficient Solution). A point x ∈ F is said to be a weakly
ε-efficient solution of (CSIVP) if there does not exist x ∈ F such that

fi(x) < fi(x)− εi for all i = 1, · · · p.

When ε = 0, then Definitions 8.1 and 8.2 collapse to the definition of effi-
cient solution and weakly efficient solution of (CSIVP), respectively [25]. When
p = 1, then (CSIVP) becomes an scalar (ordinary) convex infinite optimization and
Definition 8.1 becomes the definition of ε-solution given in [27].

We introduce Geoffrion’s definition of solution for (CSIVP) with bounded trade-
offs, called properly efficient solution [9].

Definition 8.3 (Properly Efficient Solution [9]). A point x ∈ F is said to be a
properly efficient solution of (CSIVP) if x ∈ F is an efficient solution of (CSIVP)
and there exists M > 0 such that for each i ∈ {1, · · · , p}, we have

fi(x)− fi(x)
f j(x)− f j(x)

≤M

for some j such that f j(x) > f j(x) whenever x ∈ F and fi(x) < fi(x).

Here, we denote the set of all properly efficient solutions of (CSIVP), the set
of all efficient solutions of (CSIVP), the set of all weakly efficient solutions of
(CSIVP), the set of all ε-efficient solutions of (CSIVP), and the set of all weakly
ε-efficient solutions of (CSIVP) by PrEff(CSIVP), Eff(CSIVP), WEff(CSIVP),
ε-Eff(CSIVP) and ε-WEff(CSIVP), respectively. When ε is a positive vector, it is
clear from defnitions that

PrEff(CSIVP)⊂ Eff(CSIVP)⊂WEff(CSIVP)

⊂ ε−Eff(CSIVP)⊂ ε−WEff(CSIVP).

Let x ∈ F and ε = (ε1, · · · ,εp) ∈ Rp
+. Let f̃i(x) := fi(x)− fi(x) + εi, f̂i(x) :=

fi(x)− fi(x), i = 1, · · · , p.
We introduce three closedness conditions. They serve as regularity conditions for

the Problem (CSIVP) in consideration.

• The pair ((gt)t∈T ,C) is said to satisfy the closedness condition (CC) if

(CC) cone

( ⋃
t∈T

epigt

)∗
+ epiδ ∗C is weak∗-closed.
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• The triple (( fi),(gt)t∈T ,C) is said to satisfy the closedness condition (CCx) at
x if

(CCx) cone

( ⋃
t∈T

epig∗t ∪
p⋃

i=1
epi f̂ ∗i

)
+ epiδ ∗C is weak∗-closed.

• The triple (( fi),(gt)t∈T ,C) is said to satisfy the closedness condition (CC1x) at
x if

(CC1x) cone

( ⋃
t∈T

epig∗t ∪
p⋃

i=1
epi f̃ ∗i

)
+ epiδ ∗C is weak∗-closed.

Constraints qualification conditions of this type have been successfully used in
[2, 3, 10, 16] to establish optimality conditions, duality, stability for convex/DC
infinite (single objective) problems, problems with parameters [5], and for equi-
librium problems with DC cost functions [8]. Several new versions of generalized
Farkas lemmas for systems involving DC functions are also established under these
conditions as well [3, 6, 7]. It is shown that this type of conditions are weaker than
many other ones known in the literature (see e.g., [3,4,16]). In particular, for (single
objective) convex problems with infinitely many constraints, it is shown in [4] that
it is weaker than the Slater one.

8.4 Optimality Conditions for ε-Efficient/Efficient
Solutions of (CSIVP)

In this section we will give optimality conditions for ε-efficient solutions of
(CSIVP), using conjugate theory in convex analysis and generalized version
of Farkas lemma for systems of infinitely many inequalities (see Lemma 8.2.
Optimality for efficient solutions of (CSIVP) are also obtained as a special case
by letting ε = 0.

For z ∈ F , denote

F(z) = {x ∈ X | fi(x)≤ fi(z)− εi, ∀ i = 1, · · · p}.

Notice that even though x ∈ F is an ε-efficient solution of (CSIVP), F ∩F(x)
may be empty. However, if ε = 0, that is, x ∈ F is an efficient solution of (CSIVP),
then it holds F ∩F(x) �= /0.

The following simple example shows that F ∩F(z) may be empty for (CSIVP)
even for the case where the index set T is finite.

Example 8.1. Consider the following convex vector optimization problem:

(CVP1) Minimize (x1,x2)

subject to (x1,x2) ∈ F :=
{
(x1,x2) ∈ R2 | x2

1 + x2
2 ≤ 1

}
.
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Let ε = (ε1,ε2) = (1,2) and f (x1,x2) = ( f1(x1,x2), f2(x1,x2)) = (x1,x2).
Then (0,0) is an ε-efficient solution of (CVP1), f1(0,0) − ε1 = −1, and
f2(0,0)− ε2 =−2. However, we have

F ∩F(0,0)

= F ∩{
(x1,x2) ∈R2 | f1(x1,x2)≤ f1(0,0)− ε1, f2(x1,x2)≤ f2(0,0)− ε2

}

= F ∩{
(x1,x2) ∈R2 | x1 ≤−1, x2 ≤−2

}

= /0.

The next result gives a simple characterization of ε-efficient solution of (CSIVP)
which is similar to the one appeared in [24] and plays an important role in the study
of this kind of solutions.

Proposition 8.1. Let x ∈ F. Then x is an ε-efficient solution of (CSIVP) if and only
if either F ∩F(x) = /0 or,

p

∑
i=1

fi(x) =
p

∑
i=1

fi(x)−
p

∑
i=1

εi, for any x ∈ F ∩F(x).

Proof. (⇒) Let x be an ε-efficient solution of (CSIVP). Then F ∩ F(x) = /0 or
F ∩ F(x) �= /0. Suppose that F ∩ F(x) �= /0. Then for any x ∈ F ∩ F(x) and all
i = 1, · · · p, fi(x)≤ fi(x)− εi. Hence the ε-efficiency of x yields

fi(x) = fi(x)− εi,

for any x ∈ F ∩F(x) and all i = 1, · · · p. Thus we have, for all x ∈ F ∩F(x),

p

∑
i=1

fi(x) =
p

∑
i=1

fi(x)−
p

∑
i=1

εi.

(⇐) Suppose that F ∩F(x) = /0. Then there does not exist x ∈ F such that x ∈ F(x),
that is, there does not exist x ∈ F such that fi(x) ≤ fi(x)− εi for all i = 1, · · · , p.
Hence there does not exist x ∈ F such that

fi(x)≤ fi(x)− εi, for all i = 1, · · · p,

f j(x) < f j(x)− ε j, for some j.

Therefore x is an ε-efficient solution of (CSIVP).
Assume that F ∩F(x) �= /0 and

p

∑
i=1

fi(x) =
p

∑
i=1

fi(x)−
p

∑
i=1

εi for all x ∈ F ∩F(x). (8.4)
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Suppose to the contrary that x is not an ε-efficient solution of (CSIVP). Then there
exist x̂ ∈ F and an index j such that

fi(x̂)≤ fi(x)− εi i = 1, · · · p,

f j(x̂) < f j(x)− ε j for some j.

Therefore, x̂ ∈ F ∩F(x) and ∑p
i=1 fi(x̂) <∑p

i=1 fi(x)−∑p
i=1 εi, which contradicts the

inequality (8.4). The proof is complete. ��
The following result is a direct consequence of Proposition 8.1.

Corollary 8.1. Let x ∈ F. Assume that F ∩ F(x) �= /0. Then x is an ε-efficient
solution of (CSIVP) if and only if x is a ∑p

i=1 εi-solution of the scalar convex infinite
problem :

Minimize ∑p
i=1 fi(x)

subject to gt(x)≤ 0, t ∈ T,

fi(x)− fi(x)+ εi ≤ 0, i = 1, · · · , p,

x ∈C.

As a consequence, when ε = (ε1, · · · ,εp) = 0, we get:

Corollary 8.2. Let x ∈ F. Then x is an efficient solution of (CSIVP) if and only if
x is a solution of the scalar convex infinite problem:

Minimize ∑p
i=1 fi(x)

subject to gt(x)≤ 0, t ∈ T,

fi(x)− fi(x)≤ 0, i = 1, · · · , p,

x ∈C.

(8.5)

It is worth observing that for the scalar convex infinite problem in Corollary
8.1 (and also, the scalar convex infinite problem in Corollary 8.2), constraint
qualification conditions of interior-type, such as Slater one, fail to hold. However,
optimality condition for (CSIVP) can be established under our constraint qualifica-
tion conditions (CCx) and (CC1x).

We are now in a position to establish a necessary and sufficient optimality
condition for ε-efficient solutions of (CSIVP) using the characterization given
in Proposition 8.1. Recall that f̃i(x) = fi(x)− fi(x) + εi, f̂i(x) = fi(x)− fi(x),
i = 1, · · · , p. It is worth noticing that epi f̃ ∗i = epi f ∗i + (0, fi(x)− εi), epi f̂ ∗i =
epi f ∗i +(0, fi(x)).

Theorem 8.1 ( Optimality Conditions for ε-Efficient Solutions for (CSIVP)).
Let x ∈ F. Assume that F ∩F(x) �= /0 and that (CCx) holds. Then the following are
equivalent.

(a) x is an ε-efficient solution of (CSIVP)
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(b) It holds
(

0,
p
∑

i=1
[εi− fi(x)]

)
∈

p
∑

i=1
epi f ∗i

+ cone

[ ⋃
t∈T

epig∗t ∪
p⋃

i=1
epi f̃ ∗i

]

+ epiδ ∗C ;

(c) There exist αi ≥ 0, i = 1, · · · , p, (λt) ∈ R(T)
+ , βt ≥ 0, t ∈ T, γ j ≥ 0, μ j ≥ 0,

j = 1, · · · , p, δ ≥ 0 such that

0 ∈
p

∑
i=1

∂αi fi(x)+
p

∑
j=1

μk∂γ j f j(x)+∑
t∈T

λt∂βt gt(x)+ ∂δδC(x),

0 =
p

∑
i=1

[
αi + μiγi− (1 + μi)εi

]
+ δ +∑

t∈T
λt

[
βt −gt(x)

]
.

Proof. (a) ⇔ (b): Since F ∩F(x) �= /0, by Proposition 8.1, (a) is equivalent to

p

∑
i=1

fi(x)≥
p

∑
i=1

fi(x)−
p

∑
i=1

εi, ∀x ∈ F ∩S(x),

which is equivalent to
(

0,
p
∑

i=1
[εi− fi(x)]

)
∈ epi

(
∑p

i=1 fi
)∗

+cl cone

[ ⋃
t∈T

epig∗t ∪
p⋃

i=1
epi f̃ ∗i

]

+epiδ ∗C ,

thanks to Farkas lemma (Lemma 8.2) and the continuity of fi, i = 1, · · · , p.
The equivalence of (a) and (b) follows from the closedness condition (CCx) and

the fact that

epi

(
p

∑
i=1

fi

)∗
=

p

∑
i=1

epi f ∗i ,

which is a direct consequence of the continuity of fi and Lemma 8.1.
(b) ⇔ (b): Applying the representation (8.2) in Sect. 8.2 to epi f ∗i , epig∗t and epiδ ∗C
(taking also (8.1) in Sect. 8.2 into account), (b) is equivalent to the fact that there

exist αi ≥ 0, ui ∈ ∂αi fi(x), i = 1, · · · , p, (λt) ∈ R(T )
+ , βt ≥ 0,t ∈ T, vt ∈ ∂βt gt(x),

γ j ≥ 0, μ j ≥ 0, ω j ∈ ∂γ j f j(x), j = 1, · · · , p, δ ≥ 0, ν ≥ 0, w ∈ ∂δ δC(x) such that

0 =
p

∑
i=1

(ui + μiωi)+∑
t∈T

λt vt + w
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and

0 =
p

∑
i=1

[
αi + μiγi− (1 + μi)εi

]
+ δ +∑

t∈T
λt

[
βt −gt(x)

]
.

Thus, (b) is equivalent to (c). ��
It is worth mentioning that the conclusion of Theorem 8.1 holds regardless of the

fact that x belongs to F ∩F(x) or not.
We give an example to illustrate the use of Proposition 8.1 and Theorem 8.1.

Example 8.2. Consider the following convex semi-infinite vector optimization
problem:

(CSIVP1) Minimize (x1,x2)

subject to max{−x1,0}− tx2 ≤ 0 ∀t ∈ (1,2].

Let f1(x1,x2) = x1, f2(x1,x2) = x2, gt(x1,x2) = max{−x1,0}− tx2, ∀t ∈ (1,2], and
C = R2. Then (CSIVP1) becomes:

Minimize ( f1(x1,x2), f2(x1,x2))

subject to gt(x1,x2)≤ 0 ∀t ∈ (1,2],

(x1,x2) ∈C.

Let F be the set of all feasible solutions of the above problem (CSIVP1) and let ε =
(ε1,ε2) =

( 1
8 , 1

8

)
. In fact, we can easily check that the set of all ε-efficient solutions

of (CSIVP1) is {(x1,x2) ∈R2 | x1 + x2 ≥ 0, x1 + x2 ≤ 1
4 , x1− x2 ≤ 0}∪{(x1,x2) ∈

R
2 | x1 ≥ 0, x2 < 1

8 , x1− x2 > 0}.
Let, for any (z1,z2) ∈ F , F(z1,z2) =

{
(x1,x2) ∈ R2 | fi(x1,x2)≤ fi(z1,z2)− εi,

i = 1,2}. Then {(x1,x2)∈R2 | F∩F(x1,x2) = /0}= {(x1,x2)∈R2 | max{−x1,0}≤
x2 < max{−x1 + 1

4 , 1
8}}. Hence, from Proposition 8.1, this set is a subset of the

set of all ε-efficient solution of (CSIVP1). Let (x1,x2) =
(

1
8 , 1

8

)
and f̃i(x1,x2) =

fi(x1,x2)− fi(x1,x2)+ εi, i = 1,2. Then we can easily to see that

epig∗t = [−1,0]×{−t}×R+,

epi f ∗1 = epi f̃ ∗1 = {(1,0)}×R+,

epi f ∗2 = epi f̃ ∗2 = {(0,1)}×R+,

epiδ ∗C = {(0,0)}×R+,

(0,0,∑2
i=1(εi− f̃i(x1,x2)) = (0,0,0).

Hence,
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2

∑
i=1

epi f ∗i + cone

(
⋃
t∈T

epig∗t ∪ epi f̃ ∗1 ∪ epi f̃ ∗2

)
+ epiδ ∗C

= cone

(
⋃
t∈T

epig∗t ∪ epi f̃ ∗1 ∪ epi f̃ ∗2

)
+ epiδ ∗C

= R×R×R+,

and so, the closedness condition (CCx) holds. By Theorem 8.1, (x1,x2) is an
ε-efficient solution of (CSIVP1).

Letting εi = 0, i = 1, · · · , p we get necessary and sufficient conditions for efficient
solutions to (CSIVP).

Theorem 8.2 (Optimality Conditions for Efficient Solutions for (CSIVP)). Let
x ∈ F. Assume that (CCx) holds. Then the following statements are equivalent:

(a) x is an efficient solution of (CSIVP).

(b)
p
∑

i=1
(0,− fi(x)) ∈

p
∑

i=1
epi f ∗i + cone

[ ⋃
t∈T

epig∗t ∪
p⋃

i=1
epi f̂ ∗i

]
+ epiδ ∗C.

(c) there exist μi > 0, i = 1, · · · , p,
p

∑
i=1

μi = 1 and (λt) ∈ R(T )
+ such that

0 ∈
p

∑
i=1

μi∂ fi(x)+∑
t∈T

λt∂gt(x)+ NC(x)

and
λt gt(x) = 0, t ∈ T.

(d) x is a properly efficient solution of (CSIVP).

Proof. Take εi = 0 for all i = 1, · · · , p. It follows from Theorem 8.1 that (a), (b),
(c) are equivalent. Also, it is clear from the definitions of efficient and properly
solutions that (d) implies (a). So, it is sufficient to prove that (c) implies (d).

Suppose that (c) holds. Then there exist ui ∈ ∂ fi(x), i = 1, · · · , p, vt ∈ ∂gt(x),
t ∈ T and ω ∈ NC(x) such that

0 =
p

∑
i=1

μiui +∑
t∈T

λtvt +ω .

Let x ∈ F be any fixed. Then since ω ∈ NC(x), ω(x− x) ≤ 0. Moreover, since
λtgt(x)≤ 0, λt gt(x) = 0, t ∈ T and vt ∈ ∂gt(x), t ∈ T , we have

0≥ λt gt(x)−λtgt(x)≥ λtvt(x− x), t ∈ T.

So, we have,
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∑
t∈T

λt vt(x− x)+ω(x− x)≤ 0

and hence,
p

∑
i=1

μiui(x− x)≥ 0.

Thus we have,
p

∑
i=1

μi fi(x)≥
p

∑
i=1

μi fi(x).

It now follows from [9, Theorem 1] that x is a properly efficient solution of (CSIVP).
��

Theorem 8.2 gives a sufficient criteria for the properness of efficient solutions
of (CSIVP). In fact, if x is an efficient solution of (CSIVP) and if the closedness
condition (CCx) holds then x is a properly efficient solution of (CSIVP). The
following example illustrates this special feature.

Example 8.3. Consider the following convex infinite vector optimization problem:

(CSIVP2) Minimize f (x) := (x,x2)

subject to x ∈ F := {x ∈ R | gt(x) := x− t ≤ 0, t ∈ (0,1)} .

Then we can easily check that the set of all efficient solutions of (CSIVP2) is
{x ∈ R : x ≤ 0}. Let f1(x) = x, f2(x) = x2, gt(x) = x− t, t ∈ (0,1) and C =

R. Let Ax = cone
[ ⋃

t∈T
epig∗t ∪

p⋃
i=1

(epi f ∗i +(0, fi(x))
]
+ epiδ ∗C . When x = 0 then

Ax = {(x,y) : x ≥ 0, y ≥ 0}∪{
(x,y) ∈ R2 : x < 0, y > 0

}
, and it is not a closed set.

However, if x < 0, Ax =
{
(x,y) ∈ R2 : y≥ xx

}
then Ax is closed, and so by Theorem

8.2, x is a properly efficient solution of (CSIVP2). In fact, x with x < 0 is a properly
efficient solution of (CSIVP2), but x = 0 is an efficient solution of (CSIVP2) which
is not proper.

We now pay attention to the case where the index set T is finite, say, T =
{1,2, · · · ,m}. The problem (CSIVP) collapses to the usual convex vector optimiza-
tion problem (CVP):

(CVP) Minimize ( f1(x), · · · , fp(x))
subject to g j(x)≤ 0, j = 1,2, · · · ,m,

x ∈C.

Proposition 8.1 and Corollaries 8.1, 8.2 hold for (CVP). In the following results,
for the simplicity of representation, by the conditions (CCx), (CC1x) for (CVP) we
mean the same formulas as in previous sections, just replace T by {1,2, · · · ,m}. As
consequences of Theorems 8.1, 8.2, we get the following corollary.
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Corollary 8.3 (Optimality Conditions for ε-Efficient Solutions of (CVP)).
For the Problem (CVP), let x ∈ F. Assume that T = {1,2, · · · ,m}, F ∩F(x) �= /0 and
that (CC1x) holds. Then the following conditions are equivalent.

(a) x is an ε-efficient solution of (CVP).
(b) It holds

(
0,

p
∑

i=1
[εi− fi(x)]

)
∈

p
∑

i=1
epi f ∗i

+cone

[
m⋃

j=1
epig∗j ∪

p⋃
i=1

epi f̃ ∗i

]

+epiδ ∗C ;

(c) There exist αi ≥ 0, γi ≥ 0, μi ≥ 0, i = 1, · · · , p, (λ j)∈Rm
+, β j ≥ 0, j = 1, · · · ,m,

δ ≥ 0 such that

0 ∈
p

∑
i=1

∂αi fi(x)+
p

∑
i=1

μi∂γ j fi(x)+
m

∑
j=1

λ j∂β j
g j(x)+ ∂δδC(x),

0 =
p

∑
i=1

[
αi + μiγi− (1 + μi)εi

]
+ δ +

m

∑
j=1

λ j

[
β j−g j(x)

]
.

Corollary 8.4 (Optimality Conditions for Efficient Solutions of (CVP)). For the
Problem (CVP), let x ∈ F. Assume that (CCx) holds. Then the following statements
are equivalent:

(a) x is an efficient solution of (CVP).

(b)

(
0,−

p
∑

i=1
fi(x)

)
∈

p
∑

i=1
epi f ∗i + cone

[
m⋃

j=1
epig∗j ∪

p⋃
i=1

(
epi f̂ ∗i

)
]

+ epiδ ∗C.

(c) There exist μi > 0, i = 1, · · · , p and (λ j) ∈ Rm
+ such that

0 ∈
p

∑
i=1

μi∂ fi(x)+
m

∑
j=1

λ j∂g j(x)+ NC(x)

and
λ jg j(x) = 0, j = 1, · · · ,m.

(d) x is a properly efficient solution of (CVP).

8.5 Optimality Conditions for Weakly ε-Efficient
Solutions of (CSIVP)

In this section, we will establish optimality conditions for weakly ε-efficient
solutions of (CSIVP). We first need the following theorem which can be easily
obtained using separation theorem.
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Proposition 8.2. Let x∈ F. Then x is a weakly ε-efficient solution of (CSIVP) if and

only if there exist μi ≥ 0 i = 1, · · · , p,
p

∑
i=1

μi = 1 such that

p

∑
i=1

μi fi(x)≥
p

∑
i=1

μi fi(x)−
p

∑
i=1

μiεi for any x ∈ F.

We now in a position to establish a necessary and sufficient optimality condition
for weakly ε-efficient solutions of (CSIVP).

Theorem 8.3 (Optimality Conditions for Weakly ε-Efficient Solutions for

(CSIVP)). Let x ∈ F and assume that cone

( ⋃
t∈T

epig∗t

)
+ epiδ ∗C is weak∗-closed.

Then the following statements are equivalent.

(a) x is a weakly ε-efficient solution of (CSIVP).

(b) There exist μi ≥ 0, i = 1, · · · p,
p

∑
i=1

μi = 1, such that

p

∑
i=1

μi(0,εi− fi(x)) ∈
p

∑
i=1

epi(μi fi)∗+ cone
⋃
t∈T

epig∗t + epiδ ∗C .

(c) There exist μi ≥ 0, i = 1, · · · p,
p
∑

i=1
μi = 1, αi ≥ 0, i = 1, · · · , p, (λt) ∈ R(T )

+ ,

βt ≥ 0,t ∈ T, γ ≥ 0, ν ≥ 0 such that

0 ∈
p

∑
i=1

μi∂αi fi(x)+∑
t∈T

λt∂βt gt(x)+ν∂γδC(x)

and

0 =
p

∑
i=1

μi(αi− εi)+νδ +∑
t∈T

λt

[
βt −gt(x)

]
.

Proof. It follows from Lemma 8.2 and Proposition 8.2 that (a) is equivalent to (b).
Using (8.1) in Sect. 8.2 and applying representation (8.2) in Sect. 8.2 to epi f ∗i , epig∗t
and epiδ ∗C , it is seen that (b) is equivalent to the fact that there exist μi ≥ 0, i =

1, · · · p,
p
∑

i=1
μi = 1, αi ≥ 0, ui ∈ ∂αi fi(x), i = 1, · · · , p, (λt) ∈ R(T)

+ , βt ≥ 0, t ∈
T, vt ∈ ∂βt gt(x), γ ≥ 0, ν ≥ 0, ω ∈ ∂γδC(x) such that

0 =
p

∑
i=1

μiui +∑
t∈T

λtvt +νω ,

and
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0 =
p

∑
i=1

μi(αi− εi)+νδ +∑
t∈T

λt

[
βt −gt(x)

]
.

Thus (b) is equivalent to (c). ��
The following examples give an illustration of Theorem 8.3.

Example 8.4. Let B1 =
{
(x1,x2) ∈R2 | x2

1 + x2
2 ≤ 1

}
and T1 =

{
(x1,x2) ∈ R2 | x2

1 +
x2

2 = 1
}

. Let f1(x1,x2) = x1, f2(x1,x2) = x2, g(t1,t2)(x1,x2) = t1x1 + t2x2 − 1 for
any (t1,t2) ∈ T1 and C = R

2. Consider the following linear semi-infinite vector
optimization problem:

(LSIVP) Minimize (x1,x2)

subject to g(t1,t2)(x1,x2)≤ 0 ∀(t1,t2) ∈ T1,

(x1,x2) ∈C.

Let x = (x1,x2) =
(
− 1√

2
+ 1

8 ,− 1√
2
+ 1

8

)
, ε = (ε1,ε2) =

( 1
8 , 1

8

)
and μ = (μ1,μ2) =( 1

2 , 1
2

)
. We can check that

cone

(
⋃

(t1,t2)∈T1

epig∗(t1,t2)

)
+ epiδ ∗C =

{
(x1,x2,α) ∈ R3 |

√
x2

1 + x2
2 ≤ α

}
,

epi(μ1 f1)∗ = {( 1
2 ,0)}×R+,

epi(μ2 f2)∗ = {(0, 1
2)}×R+,

∑2
i=1μi(0,0,εi− fi(x)) =

(
0,0, 1√

2

)
,

epi(μ1 f1)∗+ epi(μ2 f2)∗+ cone

(
⋃

(t1,t2)∈T1

epig∗(t1,t2)

)
+ epiδ ∗C

=
{

(x1,x2,α) ∈ R3 |
√(

x1− 1
2

)2 +
(
x2− 1

2

)2 ≤ α
}

.

The set cone

(
⋃

(t1,t2)∈F1

epig∗(t1,t2)

)
+ epiδ ∗C is closed, and

2

∑
i=1

μi(0,0,εi− fi(x))∈ epi(μi fi)∗+epi(μ2 f2)∗+cone

⎛
⎝ ⋃

(t1,t2)∈F1

epig∗(t1,t2)

⎞
⎠+epiδ ∗C .

By Theorem 8.3, (x1,x2) is a weakly ε-efficient solution of (LSIVP).

In fact, the set of all ε-efficient solutions of (LSIVP) coincides with the set of
weakly ε-efficient solution of (LSIVP), which is the following one:
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{
(x1,x2) ∈R2 | x2 ≤ x1 + 1, x2 ≥ x1−1, x1

1

+x2
2 ≤ 1,

(
x1− 1

8

)2

+
(

x2− 1
8

)2

≥ 1

}
.

Example 8.5. Let B1 =
{
(x1,x2) ∈ R2 | x2

1 + x2
2 ≤ 1

}
and T1 =

{
(x1,x2) ∈ R2 | x2

1+
x2

2 = 1
}

. Let f1(x1,x2) = x1, f2(x1,x2) = x2, g(t1,t2)(x1,x2) = t1x1 + t2x2−1 for any
(t1,t2)∈ T1 and C =R2. Slightly modifying Example 8.4, we consider the following
convex semi-infinite vector optimization problem:

(CSIVP3) Minimize (x1,x
2
2)

subject to g(t1,t2)(x1,x2)≤ 0 ∀(t1,t2) ∈ T1,

(x1,x2) ∈C.

Let x = (x1,x2) =
(

0, 1√
8

)
, ε = (ε1,ε2) =

(
1
8 , 1

8

)
and μ = (μ1,μ2) = (0,1). It is

easy to verify that

cone

(
⋃

(t1,t2)∈T1

epig∗(t1,t2)

)
+ epiδ ∗C =

{
(x1,x2,α) ∈ R3 |

√
x2

1 + x2
2 ≤ α

}
,

epi(μ1 f1)∗ = {(0,0)}×R+,

epi(μ2 f2)∗ = {(0,x2,
1
4 x2

2 +α) | x2 ∈R, α ≥ 0},
∑2

i=1 μi(0,0,εi− fi(x)) = (0,0,0).

Therefore, the set cone

(
⋃

(t1,t2)∈T1

epig∗(t1,t2)

)
+ epiδ ∗C is closed and

2

∑
i=1

μi(0,0,εi− fi(x))∈ epi(μi fi)∗+epi(μ2 f2)∗+cone

⎛
⎝ ⋃

(t1,t2)∈T1

epig∗(t1,t2)

⎞
⎠+ epiδ ∗C .

Due to Theorem 8.3, (x1,x2) is a weakly ε-efficient solution of (LSIVP).

In fact, for this problem, the set of all weakly ε-efficient solutions is {(x1,x2) ∈
B1 : |x2| ≤ 1√

8
} and the set of all ε-efficient solutions is

{
(x1,x2) ∈ B1 : |x2| ≤ 1√

8

}
\
[{

(x1,
1√
8
) ∈ B1 : x1 >−7

8

}
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∪
{

(x1,− 1√
8
) ∈ B1 : x1 >−7

8

}]
.

Remark 8.1. In Example 8.2 of the previous section, the set

{
(x1,x2) ∈ R2 : max{−x1,0} ≤ x2 ≤max{−x1 +

1
4
,

1
8
}
}

is the set of all weakly ε-efficient solution of (CSIVP1). However, the set of all
its ε-efficient solution is

{
(x1,x2) ∈ R2 : x1 + x2 ≥ 0, x1 + x2 ≤ 1

4 , x1− x2 ≤ 0
}∪{

(x1,x2) ∈ R2 : x1 ≥ 0, x2 < 1
8 , x1− x2 > 0

}
. It is also worth observing that (x1,

x2) =
(
1, 1

8

)
is a weakly ε-efficient solution of (CSIVP1), but cone

( ⋃
t∈T

epig∗t

)
+

epiδ ∗C is not closed. However, when we reformulate the problem (CSIVP1) to an
equivalent one with a finitely many constraints, Theorem 8.3 can be applied to the
resulting problem as shown in the next example.

Example 8.6. Consider the following vector optimization problem which is equiv-
alent to (CSIVP2) in Example 8.2.

(VP) Minimize (x1,x2)

subject to max{−x1,0}− x2 ≤ 0.

Let f1(x1,x2) = x1, f2(x1,x2)= x2, g(x1,x2) = max{−x1,0}−x2, and C =R2. Then
(VP) becomes

(VP) Minimize ( f1(x1,x2), f2(x1,x2))

subject to g(x1,x2)≤ 0,

(x1,x2) ∈C.

Then cone(epig∗) + epiδ ∗C = cone([−1,0] × {−1} × R+) + {(0,0)} × R+ =
{(x1,x2) ∈ R2 | x1 ≤ 0,x2 ≤ 0,x1 ≥ x2} × R+ and hence cone(epig∗) + epiδ ∗C
is closed. Let ε = (ε1,ε2) =

(
1
8 , 1

8

)
, (x1,x2) =

(
1, 1

8

)
and (μ1,μ2) = (0,1). Then we

have,

2

∑
i=1

μi(0,εi− fi(x)) ∈
2

∑
i=1

epi(μi fi)∗+ cone(epig∗)+ epiδ ∗C

=
{
(x1,x2) ∈R2 | x2 ≤ x1 + 1, x1 ≤ 0

}
.

Hence, by Theorem 8.3, (x1,x2) is a weakly ε-efficient solution of (VP).

We give an example of a simple problem where the Slater regularity condition
does not holds, but our regularity condition does.



8 Optimality Conditions for Approximate Solutions 293

Example 8.7. Consider the following convex vector optimization problem:

(CVP2) Minimize (x,x2)

subject to x ∈ F := {x ∈R | g(x)≤ 0},

where

g(x) =
{

0 if x ≤ 0
x if x > 0

Let f1(x) = x, f2(x) = x2, ε = (ε1,ε2) =
( 1

8 , 1
8

)
, μ = (0,1) and x = 0. Then it is

obvious the Slater condition does not hold. However,

∑2
i=1μi(0,εi− fi(x)) =

(
0, 1

8

)
,

∑2
i=1 epi(μi fi)∗ =

{
(x1,x2) ∈R2 | x2 ≥ 1

4 x2
1

}
,

epig∗ = ∂g(0)×R+ = [0,1]×R+,

epiδ ∗C = {(0,0)}×R+,

and cone(epig∗) + epiδ ∗C = R2
+ is closed, and hence, the regularity condition in

Theorem 8.3 holds. On the other hands, since

2

∑
i=1

epi(μi fi)
∗+ cone(epig∗)+ epiδ ∗C =

{
(x1,x2) ∈ R2 | x2 ≥ 1

4
x2

1, x1 ≤ 0

}
∪R2

+,

it holds

(0,
2

∑
i=1

μi(εi− fi(x)) ∈
2

∑
i=1

epi(μi fi)
∗+ cone(epig∗)+ epiδ ∗C .

Consequently, by Theorem 8.3, x is a weakly ε-efficient solution of (CVP2).

Taking εi = 0, i = 1, · · · , p in Theorem 8.3 we get the following result for weakly
efficient solutions of (CSIVP).

Theorem 8.4 Optimality Conditions for Weakly Efficient Solutions for

(CSIVP). Let x ∈ F and assume that cone

( ⋃
t∈T

epig∗t

)
+ epiδ ∗C is weak∗-closed.

Then the following statements are equivalent.

(a) x is a weakly efficient solution of (CSIVP).

(b) There exist μi ≥ 0, i = 1, · · · p,
p
∑

i=1
μi = 1, such that

p

∑
i=1

(0,− fi(x)) ∈
p

∑
i=1

epi(μi fi)∗+ cone
⋃
t∈T

epig∗t + epiδ ∗C .
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(c) There exist μi ≥ 0, i = 1, · · · p,
p
∑

i=1
μi = 1, and (λt) ∈ R(T )

+ such that

0 ∈
p

∑
i=1

μi∂ fi(x)+∑
t∈T

λt∂gt(x)+ NC(x)

and
λt gt(x) = 0, t ∈ T.
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Chapter 9
Linear Fractional and Convex Quadratic Vector
Optimization Problems

Nguyen Dong Yen

9.1 Introduction

Let K ⊆ Rn be a nonempty closed convex set, ϕ = (ϕ1, . . . ,ϕm) : Ω → R
m a

continuously differentiable function defined on an open set Ω ⊆ Rn which contains
K as a subset. The standard vector optimization problem given by the constraint set
K and the vector objective function ϕ is written formally as follows:

(VP) Minimize ϕ(x) subject to x ∈ K.

As usual, we denote by Rm
+ the nonnegative orthant in Rm and by intRm

+ the interior
of that orthant. A point x ∈ K is said to be a Pareto solution (or an efficient solution)
of (VP) if (ϕ(K)−ϕ(x)) ∩ (−Rm

+ \ {0}) = /0. If x ∈ K satisfies the condition
(ϕ(K)−ϕ(x))∩(−intRm

+
)

= /0, then one says that x is a weak Pareto solution (or a
weakly efficient solution) of (VP).

The following first-order necessary and sufficient optimality conditions are well
known. A proof can be found, for instance, in [16, Theorem 3.1].

Theorem 9.1. Let x ∈ K. The following assertions hold:

(a) If x is a weak Pareto solution of (VP), then there exists ξ = (ξ1, . . . ,ξm) ∈Rm
+ \

{0} such that

〈
m

∑
i=1

ξi∇ϕi(x),x− x

〉
≥ 0 f or every x ∈ K. (9.1)
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(b) If the restriction of each component of ϕ on K is a convex function and if there
exists ξ ∈ Rm

+ \ {0} such that (9.1) is valid, then x is a weak Pareto solution
of (VP).

(c) If the restriction of each component of ϕ on K is a convex function and if
there exists ξ ∈ intRm

+ \ {0} such that (9.1) is valid, then x is a Pareto solution
of (VP).

Let us denote the Pareto solution set and the weak Pareto solution set of
(VP) respectively by Sol(VP) and Solw(VP). Of course, Sol(VP) ⊆ Solw(VP).
Concerning the vector optimization problem (VP), the next questions are of
importance:

1. When the set Sol(VP)
(
resp., Solw(VP)

)
is nonempty? [Solution existence.]

2. Under which circumstances, the set Sol(VP)
(
resp., Solw(VP)

)
is bounded/con-

nected/path-connected/contractible? [Properties of the solution sets.]
3. Is the set Sol(VP)

(
resp., Solw(VP)

)
stable, in a sense to be made precise, when

the problem data K and ϕ undergo small perturbations? [Solution stability.]
4. How to find at least one element of Sol(VP)

(
resp., Solw(VP)

)
? How to find the

whole set Sol(VP) (resp., Solw(VP))? [Solution methods.]

Answers to some questions from those listed above can be given in broad
settings. For example, from the solution existence theorems in [21] it follows that:
If there exists an element u∈K such that the set Kϕ(u) := {x∈ K : ϕ(x)≤ ϕ(u)} is
bounded, then Sol(VP) is nonempty. (Since Kϕ (u) is a level set of the restriction
of ϕ on K and Kϕ (u) is closed by our assumptions, we may term the last fact
“Solution existence under the level sets compactness condition”.) But, it is worthy
to stress that specific properties of the solution sets, solution stability, and effective
solution methods are available just for special classes of problems. Being unable
to address adequately the vast related literature, we confine ourselves to a few
remarks as follows: (a) Basic results on linear vector optimization problems can
be found in [21]; (b) Interesting results on linear fractional vector optimization
problems were obtained in [4, 5, 28]; (c) Solution properties of strictly quasiconvex
vector minimization problems have been studied intensively in the last three
decades [1,2,6,10,14,27,29]; (d) Detailed investigations on strongly convex vector
optimization problems were done in [16,31]; (e) Several results on piecewise linear
vector optimization problems have been established recently in [30, 34].

This chapter surveys some existing results on solution stability and connected-
ness of the solution sets of linear fractional vector optimization problems and of
convex quadratic vector optimization problems. Our main concern is the situation
where the constraint set is unbounded. Note that linear fractional vector optimization
problems and convex quadratic vector optimization problems are two important
classes of vector optimization problems. Although both the classes contain linear
vector optimization problems as an important subclass, they have different features.
For instance, the first class contains many nonconvex vector optimization problems,
while the second one is composed entirely by convex vector optimization problems.
Despite to this, one can treat linear fractional vector optimization problems and
convex quadratic vector optimization problems by a single tool: monotone affine
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vector variational inequality. In other words, the concept of vector variational
inequality, which is rooted in Giannessi’s well-known paper [7] (see also the book
[8]), provides us with an unified approach to studying (VP) when K is a polyhedral
convex set, i.e., K is the intersection of finitely many closed half-spaces of Rn, and
ϕ has one of the following forms:

(i) [Linear fractional vector functions] ϕ = (ϕ1, . . . ,ϕm) where

ϕi(x) =
a�i x +αi

b�i x +βi
(i = 1, . . . ,m),

for some ai ∈ Rn,bi ∈ Rn,αi ∈ R, and βi ∈ R, provided that b�i x +βi > 0 for
all i ∈ {1, · · · ,m} and x ∈ K. (Here and in the sequel, the superscript � denotes
the matrix transposition.)

(ii) [Convex quadratic vector functions] ϕ = (ϕ1, . . . ,ϕm) where

ϕi(x) =
1
2

x�Mix + q�i x (i = 1, . . . ,m),

with M1, . . . ,Mm being symmetric positive semidefinite n × n matrices,
q1, . . . ,qm ∈ Rn.

If ϕ is of type (i), then putting

Ω = {x ∈Rn : b�i x +βi > 0, ∀i = 1, . . . ,m}

we see that ϕ is a continuously differentiable function defined on Ω . The corre-
sponding problem (VP) is denoted by (VP1). In the special case where bi = 0 and
βi = 1 for all i = 1, . . . ,m, (VP1) is a linear vector optimization problem.

If ϕ is of type (ii), then the corresponding problem (VP) is denoted by (VP2).
In the special case where Mi = [0] for all i = 1, . . . ,m, (VP2) is a linear vector
optimization problem.

A topological space X is said to be connected if one cannot represent X = U ∪V
where U,V are nonempty open sets of X with U∩V = /0. If for any pair x,y∈X there
is a continuous map γ : [0,1]→ X with γ(0) = x and γ(1) = y, then X is said to be
path-connected. One says that X is contractible if there exist x∗ ∈X and a continuous
map H : [0,1]×X → X such that H(0,x) = x and H(1,x) = x∗ for all x∈X . Clearly,
contractibility implies path-connectedness, which yields connectedness.

A nonempty subset A ⊆ X of a topological space X is said to be a connected
component (or a component) of X if A (equipped with the induced topology)
is connected and it is not a proper subset of any connected subset of X . Every
connected component of X is a closed subset. The (cardinal) number of connected
components of X is denoted by χ(X).

A multifunction G : X ⇒ Y between two topological spaces is said to be upper
semicontinuous (usc for brevity) at u ∈ X if for any open set V ⊆ Y with G(u) ⊆V
there exists a neighborhood U of u such that G(u′) ⊆ V for all u′ ∈U . If G(u) �= /0
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and for any open set V ⊆ Y with G(u)∩V �= /0 there exists a neighborhood U of u
such that G(u′)∩V �= /0 for all u′ ∈U , then G is said to be lower semicontinuous
(lsc for brevity) at u ∈ X .

The rest of this chapter has four sections. The next one presents several results
on solution stability and connectedness of the solution sets of monotone affine
variational inequalities. The subsequent two sections show how these results can
be used for studying solution stability and connectedness of the solution sets of
(VP1) and of (VP2). The final section states some open problems which are worthy
further investigations.

9.2 Monotone Affine Variational Inequalities

Introduced by Giannessi [7] in 1980, the concept of vector variational inequality
(VVI for brevity) has generated a strong stream of related research works; see
e.g. [8]. VVI is one of the most important types of vector equilibrium problems
and it can serve as an adequate tool for studying vector optimization problems (see
for instance [16, 31, 32]).

We denote the inner product and the norm of an Euclidean space respectively by
〈·, ·〉 and ‖ · ‖. It is customary to represent vectors in an Euclidean space as rows
of real numbers but interpret them as column vectors when the vectors participate
in a matrix computation. The norm of a matrix M ∈ Rn×r is given by the formula
‖M‖= max{‖Mx‖ : x ∈Rn,‖x‖ ≤ 1}. Given a nonempty closed convex set K ⊆Rn

and vector-valued functions Fi : K →Rn (i = 1, . . . ,m), we put F = (F1, . . . ,Fm) and

F(x)(u) = (〈F1(x),u〉, . . . ,〈Fm(x),u〉) , ∀x ∈ K, ∀u ∈ Rn.

Let Σ = {ξ = (ξ1, . . . ,ξm) ∈ Rm
+ : ∑m

i=1 ξi = 1}. The relative interior of Σ is
described by the formula

riΣ = Σ ∩ (intRn
+) = {ξ ∈ Σ : ξi > 0 for all i = 1, . . . ,m}.

The vector variational inequality [7, p. 167] defined by F , K and the cone Rm
+ is

the problem:

(VVI) Find x ∈ K such that F(x)(y− x)�Rm
+\{0} 0, ∀y ∈ K,

where the inequality means that F(x)(x− y) /∈ Rm
+ \ {0}. As in [3], to this problem

we associate the following one:

(VVI)w Find x ∈ K such that F(x)(y− x)�intRm
+

0, ∀y ∈ K.
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with the inequality indicating that F(x)(x− y) /∈ intRm
+. The solution sets of (VVI)

and (VVI)w are denoted respectively by Sol(VVI) and Solw(VVI). The elements of
the first set (resp., second set) are said to be the Pareto solutions (resp., the weak
Pareto solutions) of (VVI).

For m = 1, it holds F = F1 : K → Rn, hence (VVI) and (VVI)w coincide with the
classical variational inequality problem [15, p. 13]:

(VI) Find x ∈ K such that 〈F(x),y− x〉 ≥ 0, ∀y ∈ K.

Denote the solution set of the latter by Sol(VI). If 〈F(y)−F(x),y− x〉 ≥ 0 for any
pair (x,y) ∈ K×K, then (VI) is said to be a monotone variational inequality. For
each ξ ∈ Σ , consider the variational inequality

(VI)ξ Find x ∈ K such that

〈
m

∑
i=1

ξiFi(x),y− x

〉
≥ 0, ∀y ∈ K,

and denote its solution set by Sol(VI)ξ . Taking the union of Sol(VI)ξ on ξ ∈ riΣ
(resp., on ξ ∈ Σ ) we can find a part of Sol(VVI) (resp., the whole set Solw(VVI)).

Theorem 9.2 ([16, 19]). It holds

⋃

ξ∈riΣ
Sol(VI)ξ ⊆ Sol(VVI)⊆ Solw(VVI) =

⋃

ξ∈Σ
Sol(VI)ξ . (9.2)

If K is a polyhedral convex set, then the first inclusion in (9.2) holds as equality.

Definition 9.1.

• Problem (VI) is said to be an affine variational inequality (or AVI) if K is a
polyhedral convex set and F(x) = Mx + q for all x ∈ K, where M ∈ Rn×n is
a square matrix and q ∈ Rn. The problem and its solution set are denoted by
AVI(M,q,K) and Sol(AVI(M,q,K)), respectively.

• For problem (VI), if 〈F(y)−F(x),y− x〉 ≥ 0 for all x,y ∈ K, then one says that
F is monotone on K and (VI) is a monotone variational inequality.

The reader is referred to [17] for a detailed information about AVIs, to
[18, 20, 24, 25] and the references therein for stability results on AVIs with
perturbed constraint sets and other related models. Note that if M ∈ Rn×n is a
positive semidefinite matrix, i.e. 〈Mv,v〉 ≥ 0 for all v ∈ Rn, then the affine operator
F(x) = Mx + q (with q ∈ Rn being fixed) is monotone on K. The converse is true if
intK �= /0. Note that the solution set of a monotone AVI is closed and convex.

Definition 9.2.

• Problem (VVI) is said to be an affine vector variational inequality (or AVVI)
if K is a polyhedral convex set and there exist matrices Mi ∈ Rn×n and
vectors qi ∈ Rn (i = 1, . . . ,m) such that Fi(x) = Mix + qi for all i = 1, . . . ,m
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and x ∈ K. The problem and its solution set are denoted respectively by
AVVI(ω ,K), Sol(AVVI(ω ,K)) and Solw(AVVI(ω ,K)), where the data set ω :=
(M1, . . . ,Mm,q1, . . . ,qm) ∈R(n×n)×m×Rn×m is interpreted as a parameter.

• One says that (VVI) is a monotone vector variational inequality if the problems
VI(Fi,K) (i = 1, . . . ,m) are monotone.

The next solution stability theorem for monotone AVIs is a fundamental result.

Theorem 9.3. ([23, Theorem 2]) Let K ⊆Rn be a nonempty polyhedral convex set,
M ∈ Rn×n a positive semidefinite matrix, and q ∈ Rn. The following two properties
are equivalent:

(a) The solution set Sol(AVI(M,q,K)) is nonempty and bounded.
(b) There exists ε > 0 such that for each M̃ ∈Rn×n and each q̃ ∈ Rn with

max{‖M̃−M‖, ‖q̃− q‖}< ε, (9.3)

the set Sol(AVI(M̃, q̃,K)) is nonempty.

When (a) is valid, there exist constants ε > 0, ρ > 0 and � > 0 such that if
(M̃, q̃) ∈ Rn×n ×Rn, M̃ is positive semidefinite, and (9.3) is valid, then the set
Sol(AVI(M̃, q̃,K)) is nonempty,

Sol(AVI(M̃, q̃,K))⊆ B(0,ρ),

and

Sol(AVI(M̃, q̃,K))⊆ Sol(AVI(M,q,K))+ �(‖M̃−M‖+‖q̃−q‖)B(0,1).

Here B(u,δ ) denotes the closed ball centered at u with radius δ .

A new proof of Theorem 9.3 can be found in [17, Chap. 7]. The following result,
which is an analogue (in a relaxed form) of Theorem 9.3 for the weak Pareto solution
sets of monotone AVVIs, has been obtained recently [33]. For the convenience of
the reader, the proof of [33] is recalled herein.

Theorem 9.4. ([33, Theorem 3.1]) Suppose that K ⊆Rn is a nonempty polyhedral
convex set, M1, . . . ,Mm ∈ Rn×n are positive semidefinite matrices, and q1, . . . ,
qm ∈ Rn. Let

ω := (M1, . . . ,Mm,q1, . . . ,qm) ∈ R(n×n)×m×Rn×m.

Consider the properties:

(a) The solution set Solw(AVVI(ω ,K)) is nonempty and bounded.
(b) There exists ε > 0 such that for all M̃1, . . . ,M̃m ∈Rn×n and q̃1, . . . , q̃m ∈Rn with

max
i∈{1,...,m}

max{‖M̃i−Mi‖, ‖q̃i−qi‖}< ε, (9.4)
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the set Solw(AVVI(ω̃ ,K)), where ω̃ := (M̃1, . . . ,M̃m, q̃1, . . . , q̃m), is nonempty.

One has (a)⇒ (b). The reverse implication is true if either K is compact or m = 1
but, in general, it does not hold if K is noncompact and m≥ 2.

When (a) is valid, given any α > 0 there exist constants ε > 0, ρ > 0 such that
if (M̃i, q̃i) ∈ Rn×n×Rn, M̃i is positive semidefinite for all i = 1, . . . ,m, and (9.4) is
valid, then the set Solw(AVVI(ω̃ ,K)) is nonempty,

Solw(AVVI(ω̃ ,K))⊆ B(0,ρ), (9.5)

and
Solw(AVVI(ω̃ ,K))⊆ Solw(AVVI(ω ,K))+αB(0,1), (9.6)

with B(0,1) denoting the open unit ball in Rn. In particular, the solution map
Solw(AVVI(·,K)) is upper semicontinuous at ω .

The proof of Theorem 9.4 is based on Theorem 9.3 and the forthcoming lemma.

Lemma 9.1. ([33, Lemma 3.2]) Under the assumptions of Theorem 9.4, if (a) holds
then {

ξ ∈ Σ : Sol(VI)ξ �= /0
}

= Σ , (9.7)

where in the formulation of the problem (VI)ξ one puts

m

∑
i=1

ξiFi(x) =
m

∑
i=1

ξi(Mix + qi).

Proof. By (9.2),
Solw(AVVI(ω ,K)) =

⋃

ξ∈Σ
Sol(VI)ξ . (9.8)

For every ξ ∈ Σ , we set

M(ξ ) =
m

∑
i=1

ξiMi and q(ξ ) =
m

∑
i=1

ξiqi, (9.9)

and observe that M(ξ ) ∈ Rn×n is positive semidefinite by our assumptions. Since

Sol(AVI(M(ξ ),q(ξ ),K)) = Sol(VI)ξ ,

the set on the left-hand side is bounded by (9.8) and the assumptions of the lemma.
When the set is nonempty, by applying the first assertion of Theorem 9.3 to the triple
{M(ξ ),q(ξ ),K} we find a constant ε(ξ ) > 0 such that if

max{‖M̃−M(ξ )‖, ‖q̃−q(ξ )‖}< ε(ξ ) (9.10)
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then Sol(AVI(M̃, q̃,K)) �= /0.
Denote the left-hand side of (9.7) by Ω . Property (a), which guarantees that

Solw(AVVI(ω ,K)) �= /0, and (9.8) imply that Ω �= /0. If we can show that Ω is
both open and closed in the induced topology of Σ , then (9.7) follows from the
connectedness of Σ .

To obtain the openness, fix any ξ ∈Ω and choose δ > 0 as small as

δ
√

m

(
max

i∈{1,...,m}
‖Mi‖

)
< ε(ξ ) and δ

√
m

(
max

i∈{1,...,m}
‖qi‖

)
< ε(ξ ). (9.11)

Then, for every ξ ′ ∈ B(ξ ,δ )∩Σ , where B(ξ ,δ ) denotes the open ball centered at ξ
with radius δ , we have

‖M(ξ ′)−M(ξ )‖ = ‖
m

∑
i=1

(ξ ′i − ξi)Mi)‖

≤
m

∑
i=1

|ξ ′i − ξi|‖Mi‖

≤ √
m‖ξ ′ − ξ‖

(
max

i∈{1,...,m}
‖Mi‖

)

≤ δ
√

m

(
max

i∈{1,...,m}
‖Mi‖

)
< ε(ξ ).

Similarly, ‖q(ξ ′)− q(ξ )‖ < ε(ξ ). Thus the pair (M̃, q̃) := (M(ξ ′),q(ξ ′)) satisfies
(9.10). Hence

Sol(AVI(M(ξ ′),q(ξ ′),K)) �= /0.

We have shown that B(ξ ,δ )∩Σ ⊆Ω .
Now, in order to get the desired closedness of Ω , we take any sequence

{ξ ( j)}⊆Ω with lim
j→∞

ξ ( j) = ξ ∈ Σ . Our aim is to prove that ξ ∈Ω . For each j ∈ N,

select a solution x( j) ∈ Sol(VI)ξ ( j) . As Sol(VI)ξ ( j) ⊆ Solw(AVVI(ω ,K)) for all j

and the set on the right-hand side is bounded, we may assume that lim
j→∞

x( j) = x ∈K.

By our choice of x( j),

〈
M(ξ ( j))x( j) + q(ξ ( j)),y− x( j)

〉
≥ 0, ∀y ∈ K, ∀ j ∈N.

Passing the last inequality to the limit as j → ∞, we get

〈M(ξ )x + q(ξ),y− x〉 ≥ 0, ∀y ∈ K.

It follows that x ∈ Sol(VI)ξ ; hence ξ ∈Ω . ��
Proof (Proof of Theorem 9.4). Suppose that (a) holds. For every ξ ∈ Σ , we
define M(ξ ) and q(ξ ) by (9.9). Since M(ξ ) is positive semidefinite, the set
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Sol(AVI(M(ξ ),q(ξ ),K)) = Sol(VI)ξ is nonempty by (9.7) and bounded by (9.8).
The first claim of Theorem 9.3 yields a constant ε(ξ ) > 0 such that if (9.10)
is fulfilled then Sol(AVI(M̃, q̃,K)) �= /0. Take any ε ∈ (0,ε(ξ )). For every
M̃1, . . . ,M̃m ∈ Rn×n and q̃1, . . . , q̃m ∈ Rn satisfying (9.4), we put

M̃(ξ ) =
m

∑
i=1

ξiM̃i and q̃(ξ ) =
m

∑
i=1

ξiq̃i (∀ξ ∈ Σ). (9.12)

It is clear that

‖M̃(ξ )−M(ξ )‖ = ‖
m

∑
i=1

ξi(M̃i−Mi)‖

≤
m

∑
i=1

ξi‖M̃i−Mi‖

≤ ε
m

∑
i=1

ξi = ε < ε(ξ ).

Similarly, ‖q̃(ξ ) − q(ξ )‖ < ε(ξ ). Therefore, (M̃, q̃) :=
(

M̃(ξ ), q̃(ξ )
)

satisfies

(9.10). It follows that
Sol(AVI(M̃(ξ ), q̃(ξ ),K)) �= /0.

Hence, according to Theorem 9.2, the solution set Solw(AVVI(ω̃ ,K)) is nonempty.
If K is compact and (b) is valid, by choosing M̃i = Mi and q̃i = qi for all

i = 1, . . . ,m we can assert that Solw(AVVI(ω ,K)) is nonempty and bounded, i.e.,
(a) holds. If m = 1, the implication (b) ⇒ (a) follows from Theorem 9.3. Now,
suppose that K is noncompact and m ≥ 2. Let M1 ∈ Rn×n be any positive definite
matrix (that is, 〈M1v,v〉> 0 for any v �= 0), q1 ∈Rn be arbitrarily chosen. Let Mi = [0]
and qi = 0 for i = 2, . . . ,m. Setting ξ (1) = (1,0, . . . ,0)∈Σ we observe that (VI)ξ (1) is
a strongly monotone variational inequality, hence the problem has a unique solution
(see e.g. [15]). It follows from this fact and Theorems 9.2, 9.3, that (b) is valid.
To see that the boundedness stated in (a) is not available here, it suffices to take
ξ (2) = (0,1, . . . ,0) ∈ Σ and observe that Sol(VI)ξ (2) = K.

To prove the last assertion of the theorem, assume that (a) is satisfied. For each
ξ ∈ Σ , let M(ξ ) and q(ξ ) be defined as in (9.9). Since Sol(AVI(M(ξ ),q(ξ ),K)) is
nonempty and bounded by our assumption and Lemma 9.1, applying Theorem 9.3
we find ε(ξ ) > 0, ρ(ξ ) > 0 and �(ξ ) > 0 such that if (M̃, q̃) ∈ Rn×n ×Rn, M̃ is
positive semidefinite, (9.10) is fulfilled, then Sol(AVI(M̃, q̃,K)) �= /0,

Sol(AVI(M̃, q̃,K))⊆ B(0,ρ(ξ )), (9.13)

and

Sol(AVI(M̃, q̃,K)) ⊆ Sol(AVI(M(ξ ),q(ξ ),K))
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+�(ξ )(‖M̃−M(ξ )‖+‖q̃−q(ξ )‖)B(0,1). (9.14)

By reducing ε(ξ ) > 0, if necessary, we can assume that 2ε(ξ )�(ξ ) < α . Choose
γ(ξ ) > 0 as small as

2γ(ξ )
√

m

(
max

i∈{1,...,m}
‖Mi‖

)
< ε(ξ ) and 2γ(ξ )

√
m

(
max

i∈{1,...,m}
‖qi‖

)
< ε(ξ ).

(9.15)
As Σ is compact, there exist ξ 1, . . . ,ξ k ∈ Σ such that

Σ ⊆ B
(
ξ 1,γ(ξ 1)

)∪·· ·∪B
(
ξ k,γ(ξ k)

)
.

Set
ε = 2−1 min

j∈{1,...,k}
ε(ξ j), ρ = max

j∈{1,...,k}
ρ(ξ j).

Given any positive semidefinite matrices M̃1, . . . ,M̃m ∈ R
n×n and vectors

q̃1, . . . , q̃m ∈ Rn satisfying (9.4), we want to check (9.5) and (9.6). According to
Theorem 9.2,

Solw(AVVI(ω̃ ,K)) =
⋃

ξ∈Σ
Sol(AVI(M̃(ξ ), q̃(ξ ),K)), (9.16)

where M̃(ξ ) and q̃(ξ ) are defined by (9.12). For every ξ ∈ Σ , there exists an index
j ∈ {1, . . . ,k} such that ξ ∈ B

(
ξ j,γ(ξ j)

)
. Taking account of (9.15), we have

‖M̃(ξ )−M(ξ j)‖ = ‖
m

∑
i=1

ξi(M̃i−Mi)+
m

∑
i=1

(ξi− ξ j
i )Mi‖

≤
m

∑
i=1

ξi‖M̃i−Mi‖+
m

∑
i=1
|ξi− ξ j

i |‖Mi‖

≤ ε
m

∑
i=1

ξi +‖ξ − ξ j‖√m

(
max

i∈{1,...,m}
‖Mi‖

)

≤ ε+ γ(ξ j)
√

m

(
max

i∈{1,...,m}
‖Mi‖

)

< ε+ 2−1ε(ξ j)≤ ε(ξ j)

and, similarly, ‖q̃(ξ )−q(ξ j)‖< ε(ξ j). Hence Sol(AVI(M̃(ξ ), q̃(ξ ),K)) �= /0,

Sol(AVI(M̃(ξ ), q̃(ξ ),K))⊆ B(0,ρ(ξ j))⊆ B(0,ρ),

and
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Sol(AVI(M̃(ξ ), q̃(ξ ),K)) ⊆ Sol(AVI(M(ξ j),q(ξ j),K))
+�(ξ j)(‖M̃(ξ )−M(ξ j)‖+‖q̃(ξ )−q(ξ j)‖)B(0,1)

⊆ Solw(AVVI(ω ,K))+ 2�(ξ j)ε(ξ j)B(0,1).
⊆ Solw(AVVI(ω ,K))+αB(0,1).

The last estimates are valid for each ξ ∈ Σ . Combining this with (9.16), we obtain
(9.5) and (9.6). By the compactness of Solw(AVVI(ω ,K)), for any open set V ⊆Rn

containing Solw(AVVI(ω ,K)), there is α > 0 such that

Solw(AVVI(ω ,K))+αB(0,1)⊆V.

Hence, applying the result obtained just now, we find a neighborhood U of ω in
Rn×(n×m)×Rn×m such that for any ω̃ = (M̃1, . . . ,M̃m, q̃1, . . . , q̃m) ∈U with M̃i being
positive semidefinite for i = 1, . . . ,m, the inclusion Solw(AVVI(ω̃,K)) ⊆ V holds.
This establishes the desired usc property and completes the proof. ��

The solution map Sol(AVVI(·,K)) is “less stable” than Solw(AVVI(·,K)).
Namely, we have the following result.

Theorem 9.5. ([33, Theorem 3.3]) Let K, Mi, qi and ω be as in Theorem 9.4.
Consider the properties:

(a’) The solution set Sol(AVVI(ω ,K)) is nonempty and bounded.
(b’) There exists ε > 0 such that for all M̃1, . . . ,M̃m ∈ Rn×n and q̃1, . . . , q̃m ∈ Rn

satisfying (9.4) the set Sol(AVVI(ω̃ ,K)), where ω̃ := (M̃1, . . . ,M̃m, q̃1, . . . , q̃m),
is nonempty.

One has (a’) ⇒ (b’). The reverse implication is true if either K is compact or
m = 1 but, in general, it does not hold if K is noncompact and m≥ 2.

If the weak Pareto solution set Solw(AVVI(ω ,K)) is nonempty and bounded,
then for any α > 0 there exist constants ε > 0, ρ > 0 such that if (M̃i, q̃i) ∈
Rn×n ×Rn, M̃i is positive semidefinite for all i = 1, . . . ,m, and (9.4) is valid, the
set Sol(AVVI(ω̃ ,K)) is nonempty,

Sol(AVVI(ω̃ ,K))⊆ B(0,ρ),

and
Sol(AVVI(ω̃ ,K))⊆ Solw(AVVI(ω ,K))+αB(0,1).

The next analogue of Lemma 9.1 is useful for the proof of Theorem 9.5. The
reader is referred to [33] for more details.

Lemma 9.2. ([33, Lemma 3.4]) Under the assumptions of Theorem 9.5, if (a’)
holds then {

ξ ∈ riΣ : Sol(VI)ξ �= /0
}

= riΣ ,

where in the formulation of the problem (VI)ξ one puts
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m

∑
i=1

ξiFi(x) =
m

∑
i=1

ξi(Mix + qi).

Besides, the equality (9.7) is also valid.

Connectedness of the weak Pareto solution set of a monotone AVVI is discussed
in the forthcoming theorem. For the convenience of the reader, the proof of [33] is
reproduced below.

Theorem 9.6. ([33, Theorem 4.1]) Suppose that K ⊆Rn is a nonempty polyhedral
convex set, M1, . . . ,Mm ∈ Rn×n are positive semidefinite matrices, and q1, . . . ,
qm ∈ Rn. Let

ω = (M1, . . . ,Mm,q1, . . . ,qm).

The following assertions are valid:

(a) If Solw(AVVI(ω ,K)) is bounded, then it is connected.
(b) If Solw(AVVI(ω ,K)) is disconnected, then each connected component of the

solution set is unbounded.

Proof. Clearly, the second assertion implies the first one. To prove (b), suppose on
the contrary that Solw(AVVI(ω ,K)) is disconnected, but it has a bounded connected
component A. Since A �= Solw(AVVI(ω ,K)), by (9.2) one has

{ξ ∈ Σ : Sol(VI)ξ �= /0, Sol(VI)ξ ⊆ A} �= Σ .

Denote the left-hand side of the last inequality by Σ0. As Sol(VI)ξ is a convex set
and A is a connected component of Solw(AVVI(ω ,K)), Sol(VI)ξ ⊆ A whenever
Sol(VI)ξ ∩A �= /0. Thus

Σ0 = {ξ ∈ Σ : Sol(VI)ξ ∩A �= /0}.
It follows that Σ0 �= /0. If we could show that Σ0 is both open and closed in the
induced topology of Σ then, due to the connectedness of the latter set, Σ0 = Σ . This
would contradict the inequality Σ0 �= Σ and complete the proof.

To show that Σ0 is open in the induced topology of Σ , we fix a point ξ ∈ Σ0.
Let M(ξ ) and q(ξ ) be as in (9.9). Using Theorem 9.3 for the triple {M(ξ ),q(ξ ),K}
we find constants ε(ξ ) > 0, ρ(ξ ) > 0 and �(ξ ) > 0 such that if (M̃, q̃) ∈ Rn×n×
Rn, M̃ is positive semidefinite, (9.10) is fulfilled, then Sol(AVI(M̃, q̃,K)) �= /0 and
the inclusions (9.13), (9.14) hold. Choose δ > 0 satisfying (9.11). As in the proof
of Lemma 9.2, for every ξ ′ ∈ B(ξ ,δ )∩ Σ , (M̃, q̃) := (M(ξ ′),q(ξ ′)) satisfies the
condition (9.10). Hence

Sol(AVI(M(ξ ′),q(ξ ′),K)) �= /0.

Moreover, by (9.13) and (9.14) we have

Sol(AVI(M(ξ ′),q(ξ ′),K))⊆ B(0,ρ(ξ )),
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and

Sol(AVI(M(ξ ′),q(ξ ′),K)) ⊆ Sol(AVI(M(ξ ),q(ξ ),K))
+�(ξ )(‖M(ξ ′)−M(ξ )‖+‖q(ξ ′)−q(ξ )‖)B(0,1).

This means that the multifunction

Sol(AVI(M(·),q(·),K)) : B(ξ ,δ )∩Σ ⇒ R
n

is uniformly bounded on B(ξ ,δ )∩Σ and upper-Lipschitz at ξ . In particular, the
multifunction is usc at ξ . It is not difficult to show that Sol(AVI(M(·),q(·),K)) is
usc at every point of B(ξ ,δ )∩Σ . Since Sol(AVI(M(ξ ′),q(ξ ′),K)) is a nonempty
convex set for each ξ ′ ∈ B(ξ ,δ )∩Σ , the usc property of Sol(AVI(M(·),q(·),K))
implies (see [29]) that the image set

W :=
⋃{

Sol(AVI(M(ξ ′),q(ξ ′),K)) : ξ ′ ∈ B(ξ ,δ )∩Σ
}

is connected. As Sol(VI)ξ = Sol(AVI(M(ξ ),q(ξ ),K)) has a nonempty intersection
with A by the choice of ξ , and A is a connected component of Solw(AVVI(ω ,K)),
we can assert that W ⊆ A. Hence B(ξ ,δ )∩Σ ⊆ Σ0.

It remains to prove that Σ0 is closed in the induced topology of Σ . Take any
sequence {ξ ( j)} ⊆ Σ0 with lim

j→∞
ξ ( j) = ξ ∈ Σ . We are going to show that ξ ∈ Σ0. For

each j ∈N, select a solution x( j) ∈ Sol(VI)ξ ( j) ⊆ A. There is no loss of generality in

assuming that lim
j→∞

x( j) = x ∈ K. Since

〈
M(ξ ( j))x( j) + q(ξ ( j)),y− x( j)

〉
≥ 0, ∀y ∈ K, ∀ j ∈ N,

we get

〈M(ξ )x + q(ξ),y− x〉 ≥ 0, ∀y ∈ K.

It follows that x ∈ Sol(VI)ξ ⊆ Solw(AVVI(ω ,K)). Because x( j) ∈ A for all j ∈ N
and A is a closed subset of Solw(AVVI(ω ,K)), we have x ∈ A; hence ξ ∈ Σ0. ��

The Pareto solution sets of monotone AVVIs enjoy some connectedness proper-
ties similar to those just obtained for the weak Pareto solution sets.

Theorem 9.7. ([33, Theorem 4.2]) Under the assumptions of Theorem 9.6, the
following assertions hold:

(a’) If Sol(AVVI(ω ,K)) is bounded, then it is connected.
(b’) If Sol(AVVI(ω ,K)) is disconnected, then each connected component of the

solution set is unbounded.
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Proof. One can proceed similarly as in proving Theorem 9.6. The only change is
that instead of ξ ∈ Σ one considers ξ ∈ riΣ . ��

9.3 Linear Fractional Vector Optimization Problems

We now present some basic information about the linear fractional vector optimiza-
tion problem (or LFVOP). More details can be found in [28, 32] and [17, Chap. 8].

Let ϕi :Rn → R (i = 1, . . . ,m) be m linear fractional functions, that is

ϕi(x) =
a�i x +αi

b�i x +βi

for some ai ∈ Rn,bi ∈ Rn,αi ∈ R, and βi ∈ R. Suppose that b�i x + βi > 0 for all
i ∈ {1, . . . ,m} and x ∈ K. Put ϕ(x) = (ϕ1(x), . . . ,ϕm(x)) and consider the vector
optimization problem

(VP1) Minimize ϕ(x) subject to x∈ K.

As observed in the first section, forΩ := {x∈Rn : b�i x+βi > 0, ∀i = 1, . . . ,m},
ϕ is continuously differentiable on Ω . Thus (VP1) is a special case of (VP).
Since following necessary and sufficient optimality conditions for (VP1) cannot be
obtained as corollaries of Theorem 9.1 stating optimality conditions for the general
problem (VP), a detailed proof is provided here for the clarity of our presentation.

Theorem 9.8 ([4, 22]). Let x ∈ K. The following assertions hold:

(a) x ∈ Sol(VP1) if and only if there exists ξ = (ξ1, . . . ,ξm) ∈ riΣ such that

〈
m

∑
i=1

ξi

[(
b�i x +βi

)
ai−

(
a�i x +αi

)
bi

]
,y− x

〉
≥ 0, ∀y ∈ K. (9.17)

(b) x ∈ Solw(VP1) if and only if there exists ξ = (ξ1, . . . ,ξm) ∈ Σ such that (9.17)
holds.

(c) If K = {x ∈ Rn : Cx ≤ d} with C being an r× n matrix, d an r−dimensional
column vector, then condition (9.17) is satisfied if and only if there exists
μ = (μ1, . . . ,μr), μ j ≥ 0 for all j = 1, . . . ,r, such that

m

∑
i=1

ξi

[(
b�i x +βi

)
ai−

(
a�i x +αi

)
bi

]
+ ∑

j∈J(x)
μ jC

�
j = 0, (9.18)

where Cj denotes the j-th row of the matrix C and J(x) = { j : Cjx = d j} denotes
the active index set of x.
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Lemma 9.3. [22] Let ψ(x) = (a�x+α)/(b�x+β ) be a linear fractional function.
Suppose that b�x +β �= 0 for every x ∈ K. Then for any x,y ∈ K, it holds

ψ(y)−ψ(x) =
b�x +β
b�y +β

〈∇ψ(x),y− x〉, (9.19)

where ∇ψ(x) denotes the gradient of ψ at x.

Proof. By the definition of gradient,

〈∇ψ(x),y− x〉
= lim

t↓0

1
t

[ψ(x + t(y− x))−ψ(x)]

= lim
t↓0

1
t

[
a�(x + t(y− x))+α
b�(x + t(y− x))+β

− a�x +α
b�x +β

]

=
a�(y− x)(b�x +β )−b�(y− x)(a�x +α)

(b�x +β )2 .

Hence we obtain

b�x +β
b�y +β

〈∇ψ(x),y− x〉

=
a�(y− x)(b�x +β )−b�(y− x)(a�x +α)

(b�y +β )(b�x +β )

=
(b�x +β )(a�y +α)− (a�x +α)(b�y +β )

(b�y +β )(b�x +β )
= ψ(y)−ψ(x),

which completes the proof. ��
Proof (Proof of Theorem 9.8). (a) We claim that x ∈ Sol(VP1) if and only if

Qx(K− x)∩ (−Rm
+
)

= {0}, (9.20)

where

Qx =

⎛
⎜⎝

(b�1 x +β1)a�1 − (a�1 x +α1)b�1
...

(b�mx +βm)a�m − (a�mx +αm)b�m

⎞
⎟⎠

is an m×n matrix and Qx(K− x) = {Qx(y− x) : y ∈ K}. Indeed, x /∈ Sol(VP1)
if and only if there exist y ∈ K and i0 such that

ϕi(y)≤ ϕi(x) ∀i ∈ {1, . . . ,m}, ϕi0(y) < ϕi0(x).
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By Lemma 9.3, the last system of inequalities is equivalent to the following one:

〈∇ϕi(x),y− x〉 ≤ 0 ∀i ∈ {1, . . . ,m}, 〈
∇ϕi0(x),y− x

〉
< 0. (9.21)

Since

〈∇ϕi(x),y− x〉=
a�i (y− x)(b�i x +βi)−b�i (y− x)(a�i x +αi)

(b�i x +βi)2
,

we can rewrite (9.21) as follows

⎧
⎨
⎩

[
(b�i x +βi)a�i − (a�i x +αi)b�i

]
(y− x)≤ 0 ∀i ∈ {1, . . . ,m},[

(b�i0 x +βi0)a
�
i0
− (a�i0x +αi0)b

�
i0

]
(y− x) < 0.

Therefore, x /∈ Sol(VP1) if and only if there exists y ∈ K such that

Qx(y− x) ∈ −Rm
+ and Qx(y− x) �= 0.

Our claim has been proved.
It is clear that D := Qx(K − x) is a polyhedral convex set. Hence, by

[27, Corollary 19.7.1], P := coneD is a polyhedral convex cone. In particular,
P is a closed convex cone. It is easily seen that (9.20) is equivalent to the
property P∩ (−Rm

+
)

= {0}. Setting

P+ = {z ∈Rm : 〈z,v〉 ≥ 0 ∀v ∈ P},

we have P+∩ intRk
+ �= /0. Indeed, on the contrary, suppose that P+∩ intRk

+ = /0.
Then, by the separation theorem, there exists ξ ∈ Rm \ {0} such that

〈ξ ,u〉 ≤ 0≤ 〈ξ ,z〉 ∀u ∈ intRm
+, ∀z ∈ P+.

This implies that ξ ∈ −Rm
+ and ξ ∈ (P+)+ = P. So we get ξ ∈ P∩ (−Rm

+) =
{0}, a contradiction.

Fix any ξ̃ ∈ P+∩ intRm
+. For ξ := ξ̃/(ξ̃1 + · · ·+ ξ̃m), we have ξ ∈ P+∩ riΣ .

Since 〈ξ ,v〉 ≥ 0 for every v ∈ P, we deduce that

〈Q�
x ξ ,y− x〉= 〈ξ ,Qx(y− x)〉 ≥ 0

for every x ∈ K. Hence (9.17) is valid.
(b) It is easily seen that x ∈ Solw(VP) if and only if

Qx(K− x)∩ (−intRm
+
)

= /0.
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Using the separation theorem we find a multiplier ξ = (ξ1, . . . ,ξm) ∈ Σ
satisfying (9.17).

(c) It suffices to apply the well-known Farkas Lemma [27, p. 200]. ��
Condition (9.17) can be rewritten in the form of a parametric affine variational

inequality

(VI)′ξ 〈M(ξ )x + q(ξ ),y− x〉 ≥ 0, ∀y ∈ K,

with

M(ξ ) :=
n

∑
i=1

ξiMi, q(ξ ) :=
n

∑
i=1

ξiqi,

where
Mi = aib

�
i −bia

T
i , qi = βiai−αibi (i = 1, . . . ,m). (9.22)

Observe that, for each i ∈ {1, . . . ,m}, the pair (Mi,qi) is defined solely by the
coefficients of the linear fractional functionϕi. Since M�

i =−Mi, we have 〈Miv,v〉=
0 for every v ∈ Rn. Thus Mi is a positive semidefinite matrix for i = 1, . . . ,m, and
(VI)′ξ is a monotone AVI for every ξ ∈ Σ . Denote by Φ(ξ ) the solution set of the

problem (VI)′ξ and consider the multifunction Φ : Σ ⇒ R
n, ξ �→ Φ(ξ ). By virtue

of the above-mentioned optimality conditions for (VP1),

Sol(VP1) =
⋃

ξ∈riΣ
Φ(ξ ) =Φ(riΣ), (9.23)

and
Solw(VP1) =

⋃

ξ∈Σ
Φ(ξ ) =Φ(Σ). (9.24)

By formulae (9.23), (9.24), and Theorem 9.2, the efficient solution set (resp., the
weakly efficient solution set) of the vector optimization problem (VP1) coincides
with the Pareto solution set (resp., the weak Pareto solution set) of the monotone
AVVI defined by K and the affine functions

Fi(x) = Mix + qi (i = 1, . . . ,m).

In other words, the first-order necessary and sufficient optimality condition (9.17) of
a LFVOP can be treated as a special monotone affine VVI. This valuable observation
of [32], which has been used also in [12], will allow us to derive several results on
(VP1) from the corresponding results on monotone AVVIs.

Consider the linear fractional vector optimization problem (VP1). Let Mi and qi

be given by (9.22), ω = (M1, . . . ,Mm,q1, . . . ,qm). It is convenient for us to denote
the solution sets of (VP1) corresponding to the data set ω by Solw(ω ,VP1) and
Sol(ω ,VP1). It follows from (9.23), (9.24) and Theorem 9.2 that

Solw(ω ,VP1) = Solw(AVVI(ω ,K)), Sol(ω ,VP1) = Sol(AVVI(ω ,K)).
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Suppose that (VP1) undergoes a small perturbation: The original data set ω is
replaced by a new one

ω̃ = (M̃1, . . . ,M̃m, q̃1, . . . , q̃m)

where, similarly as in (9.22),

M̃i = ãib̃
�
i − b̃iã

�
i , q̃i = β̃iãi− α̃ib̃i (i = 1, . . . ,m).

The new solution sets are denoted by Solw(ω̃ ,VP1) and Sol(ω̃ ,VP1).
As in [33], specializing the results discussed in the previous section to the case

of the monotone AVVI associated with (VP1), we get the next statements.

Theorem 9.9 ([32]). If Solw(ω ,VP1) is nonempty and bounded, then for anyα > 0
there exist constants ε > 0, ρ > 0 such that if (9.4) is fulfilled, then the set
Solw(ω̃ ,VP1) is nonempty,

Solw(ω̃ ,VP1)⊆ B(0,ρ),

and

Solw(ω̃ ,VP1)⊆ Solw(ω ,VP1)+αB(0,1).

In particular, the solution map Solw(·,VP1) is upper semicontinuous at ω .

Theorem 9.10. If Solw(ω ,VP1) is nonempty and bounded, then for any α > 0 there
exist constants ε > 0, ρ > 0 such that if (9.4) is fulfilled, then the set Sol(ω̃ ,VP1)
is nonempty,

Sol(ω̃ ,VP1)⊆ B(0,ρ),

and
Sol(ω̃ ,VP1)⊆ Solw(ω ,VP1)+αB(0,1).

Theorem 9.11 ([10]). The following assertions are valid:

(a) If Solw(ω ,VP1) is bounded, then it is connected.
(b) If Solw(ω ,VP1) is disconnected, then each connected component of the solution

set is unbounded.

Theorem 9.12 ([10]). The following assertions hold:

(a’) (Phu 1998, private communication) If Sol(ω ,VP1) is bounded, then it is
connected.

(b’) If Sol(ω ,VP1) is disconnected, then each connected component of the solution
set is unbounded.

Remark 9.1. In the previous section, the method of [32] for proving the result in
Theorem 9.9 has been developed furthermore to obtain Theorem 9.4.
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Remark 9.2. It is likely that the assumption of Theorem 9.10 is not enough for
getting the usc property of the multifunction Sol(·,VP1) at ω .

Remark 9.3. The result in Theorem 9.11, which is due to [10], has been proved by
another method.

Remark 9.4. The second assertion of Theorem 9.12 improves a claim in [10,
Theorem 3.2], which requires additionally that Sol(ω ,VP1) is closed and the
number of connected components of Sol(ω ,VP1) is finite. Note also that the method
of proving [10, Theorem 3.2] is quite different from that of the proof of Theorem 9.7.

The next question arises in a natural way.

Question 9.1. At most, how many connected components the solution set Sol(VP1)
(resp., Solw(VP1)) may have?

A long time ago, Choo and Atkins [5] have constructed an example of a two-
dimensional bicriteria LFVOP where the Pareto solution set coincides with the weak
Pareto solution set and has two connected components.

No examples of LFVOPs with three or more connected components in the Pareto
solution set (or in the weak Pareto solution set) had been known until the year 2005
when Hoa et al. [11] obtained the next result.

Theorem 9.13. For any integer m ≥ 2, there exists a linear fractional vector
optimization problem whose Pareto solution set coincides with the weak Pareto
solution set and has exactly m connected components.

To prove Theorem 9.13, we will use the construction and the arguments of [11].
Consider problem (VP1) where n = m, m≥ 2,

K =

{
x ∈ Rm : x1 ≥ 0,x2 ≥ 0, . . . ,xm ≥ 0,

m

∑
k=1

xk ≥ 1

}
,

and

ϕi(x) =
−xi + 1

2

∑m
k=1 xk− 3

4

(i = 1, . . . ,m).

For simplicity, let us denote this LFVOP by (P1). Here we have

a1 = (−1,0,0, . . . ,0)�, a2 = (0,−1,0, . . . ,0)�, . . . ,

am = (0,0,0, . . . ,−1)�, α1 = α2 = · · ·= αm = 1
2 ,

and

b1 = b2 = · · ·= bm = (1,1,1, . . . ,1)�, β1 = β2 = · · ·= βm =−3
4
.
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Setting

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0
...

...
...

...
0 0 0 . . . −1

−1 −1 −1 . . . −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...

0
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we see that K = {x ∈ Rn : Cx ≤ d}. We are going to compute the sets Sol(P1) and
Solw(P1).

According to Theorem 9.8, for any x ∈ K, x ∈ Sol(P1) if and only if there exist
ξ1 > 0, . . . ,ξm > 0 and μ1 ≥ 0, . . . ,μm+1 ≥ 0 such that

m

∑
i=1

ξi

[(
b�i x +βi

)
ai−

(
a�i x +αi

)
bi

]
+ ∑

j∈J(x)
μ jC

�
j = 0, (9.25)

where J(x) := { j ∈ {1, . . . ,m + 1} : Cjx = d j}, Cj is the j−th row of C, and d j is
the j−th component of d. Also, for any x∈K, x∈ Solw(P1) if and only if there exist
ξ1 ≥ 0, . . . ,ξm ≥ 0, not all zeroes, and μ1 ≥ 0, . . . ,μr ≥ 0 such that (9.25) holds.

Lemma 9.4. For m≥ 2, it holds

Sol(P1) = Solw(P1) = {(x1,0, . . . ,0)� : x1 ≥ 1}
∪{(0,x2, . . . ,0)� : x2 ≥ 1}
. . . . . . . . .

∪{(0, . . . ,0,xm)� : xm ≥ 1}.

Let m≥2. Consider problem (P1) and fix any x∈K. It is easy to see that
|J(x)|≤m, where |J(x)| denotes the number of elements in J(x). In order to obtain
Lemma 9.4, we need to prove a several claims.

Claim. If |J(x)|= 0, then x /∈ Solw(P1) (so x /∈ Sol(P1)).

Proof. Since x ∈ K and since J(x) = /0, we have x1 > 0, . . . ,xm > 0 and ∑m
i=1 xi > 1.

Suppose the claim were false. Then we could find ξ1 ≥ 0, . . . ,ξm ≥ 0, not all zeroes,
such that

m

∑
i=1

ξi

[(
b�i x +βi

)
ai−

(
a�i x +αi

)
bi

]
= 0. (9.26)

To shorten notation, we set

Qi(x,ξ ) =−ξi

(
m

∑
k=1

xk− 3
4

)
+ ξ1

(
x1− 1

2

)
+ · · ·+ ξm

(
xm− 1

2

)
(9.27)
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for i = 1, . . . ,m. It is easy to verify that (9.26) is equivalent to the following system:

Qi(x,ξ ) = 0 (i = 1, . . . ,m). (9.28)

Comparing the first and the i-th equalities of (9.28) we deduce that ξi = ξ1.
Therefore ξm = · · ·= ξ1. Substituting this into the first equality of (9.28) yields

ξ1

(
3
4
− m

2

)
= 0;

hence ξ1 = 0. This implies ξm = · · ·= ξ1 = 0, a contradiction. ��
Claim. If 1≤ |J(x)| ≤ m− 2, then x /∈ Solw(P1) (so x /∈ Sol(P1)).

Proof. For m = 2, the claim is obvious. So we will assume that m ≥ 3. Due to
the symmetry of the expressions defining K and ϕi (i = 1, . . . ,m) with respect to
the variables x1, . . . ,xm, it suffices to consider the following two cases: (i) Case 1:
J(x) = {1, . . . , j}, 1≤ j≤m−2; (ii) Case 2: J(x) = {1, . . . , j,m+1}, 1≤ j≤m−3.

We first consider Case 1. Suppose the claim were false. Then we could find ξ1 ≥
0, . . . ,ξm ≥ 0, not all zero, and μ1 ≥ 0, . . . ,μm+1 ≥ 0 such that (9.25) holds. Since
J(x) = {1, . . . , j}, 1≤ j ≤ m− 2, (9.25) is equivalent to the system

Qi(x,ξ ) = μi (i = 1, . . . , j), Qi(x,ξ ) = 0 (i = j + 1, . . . ,m), (9.29)

where Qi(x,ξ ) (i = 1, . . . ,m) are defined by (9.27). From the last m− j equalities of
(9.29) we obtain ξ j+1 = · · ·= ξm. Substituting x1 = · · ·= x j = 0 and ξ j+1 = · · ·= ξm

into the ( j + 1)-th equality of (9.29) we get

ξ j+1

(
3
4
− m− j

2

)
− 1

2

j

∑
k=1

ξi = 0

or, equivalently,

ξ j+1

(
3
2
−m+ j

)
=

j

∑
k=1

ξi. (9.30)

The condition j ≤ m− 2 implies 3
2 −m + j < 0. Hence from (9.30) it follows that

ξ j+1 = ξ1 = · · ·= ξ j = 0. Then we have ξ1 = · · ·= ξm = 0, which is impossible.
We now consider Case 2. Suppose, contrary to our claim, that x∈ Solw(P1). Then

we could find ξ1 ≥ 0, . . . ,ξm ≥ 0, not all zero, and μ1 ≥ 0, . . . ,μm+1 ≥ 0 such that
(9.25) holds. Since J(x) = {1, . . . , j,m + 1}, 1 ≤ j ≤ m− 3, (9.25) is equivalent to
the following system:

Qi(x,ξ ) = μi + μm+1 (i = 1, . . . , j), Qi(x,ξ ) = μm+1 (i = j + 1, . . . ,m). (9.31)
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It is easily seen that the last m− j equalities in (9.31) imply ξ j+1 = · · · = ξm.
Substituting x1 = · · · = x j = 0 and ξm = · · · = ξ j+1 into the ( j + 1)-th equality of
(9.29) we get

ξ j+1

(
3
4
− m− j

2

)
− 1

2

j

∑
k=1

ξi = μm+1

or, equivalently,

ξ j+1

(
3
2
−m+ j

)
=

j

∑
k=1

ξi + 2μm+1. (9.32)

Since j ≤ m− 3 = 0, 3
2 −m + j < 0. Hence (9.32) yields ξ j+1 = 0 and ξ1 = · · · =

ξ j = 0. Then we have ξ1 = · · ·= ξm = 0, which is impossible. ��
Claim. If |J(x)| = m− 1, then x ∈ Sol(P1) if and only if m + 1 /∈ J(x). Similarly,
x ∈ Solw(P1) if and only if m+ 1 /∈ J(x).

Proof. Suppose that x ∈ K, |J(x)|= m−1 and m+ 1 ∈ J(x). By symmetry, we can
assume that J(x) = {1, . . . , j,m+1}, where j = m−2. Arguing similarly as in Case 2
in the proof of Claim 9.3, we can conclude that x /∈ Solw(P1) (hence x /∈ Sol(P1).

We now consider the case x ∈ K, |J(x)| = m− 1 and m + 1 /∈ J(x). Due to the
symmetry of the expressions defining K and ϕ1, . . . ,ϕm w.r.t. x1,x2, . . . ,xm, there
is no loss of generality in assuming that J(x) = {1, . . . ,m− 1}. In order to prove
that x ∈ Sol(P1), it suffices to show that there exist ξ1 > 0, . . . ,ξm > 0 and μ1 ≥
0, . . . ,μm+1 ≥ 0 satisfying (9.25). In the case under consideration, it is clear that
(9.25) is equivalent to the following system:

Qi(x,ξ ) = μi (i = 1, . . . ,m− 1), Qm(x,ξ ) = 0. (9.33)

Substituting x1 = · · ·= xm−1 = 0 into the last equality of (9.33) yields

ξm = 2(ξ1 + · · ·+ ξm−1) .

Choosing ξ1 = · · · = ξm−1 = 1 and ξm = 2(m− 1), we see that the last equality of
(9.33) is valid. Subtracting this equality from the i-th equality (i = 1, . . . ,m− 1) of
that system, we get

(ξm− ξi)
(

xm− 3
4

)
= μi.

Therefore, choosing μi = (2m− 3)
(
xm− 3

4

)
> 0 (recall that m ≥ 2 and xm > 1)

for i = 1, . . . ,m− 1, we see that the first m− 1 equalities of (9.33) are valid. We
have proved that x = (0, . . . ,0,xm)� ∈ Sol(P1) provided xm > 1. By symmetry, x =
(0, . . . ,0,x j,0, . . . ,0� ∈ Sol(P1) for any j ∈ {1, . . . ,m−1}, provided that x j > 1. ��
Claim. If |J(x)| = m, then x ∈ Sol(P1) if and only if m + 1 ∈ J(x). Similarly,
x ∈ Solw(P1) if and only if m+ 1 ∈ J(x).
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Proof. Suppose that x ∈ K and |J(x)|= m.
If m+ 1 /∈ J(x), then we have x1 = · · ·= xm = 0. This is impossible, because the

constraint x1 + · · ·+ xm ≥ 1 is not satisfied.
We now consider the case x ∈ K, |J(x)| = m, and m + 1 ∈ J(x). If J(x) =

{1, . . . ,m− 1,m + 1} then x = (0, . . . ,0,1�. Clearly, (9.25) is equivalent to the
following system:

Qi(x,ξ ) = μi + μm+1 (i = 1, . . . ,m− 1), Qm(x,ξ ) = μm+1. (9.34)

Choosing μm+1 = 0, ξ1 = · · ·= ξm−1 = 1, and ξm = 2(m−1),

μi = (2m−3)
(

xm− 3
4

)
> 0

for i = 1, . . . ,m − 1, we see that system (9.34) is satisfied. Therefore x =
(0, . . . ,0,1)� ∈ Sol(P1) provided xm > 1. Similarly, the vectors x = (1,0, . . . ,0�, . . . ,
x = (0, . . . ,0,1,0)� also belong to Sol(P1). ��

Summarizing the results stated in Claims 9.3–9.3 we obtain the assertion of
Lemma 9.4 which implies the result stated in Theorem 9.13.

Since (VP1) is a very simple nonlinear vector optimization problem, one may
think that the connected components of their solution sets must have very simple
topologies. To our surprise, it is not so! Namely, following Huy and Yen [13]
we now have deal with a LFVOP whose Pareto solution set is connected by line
segments (hence it is path-connected), but not contractible. This means that the
unique connected component in the Pareto solution set is enough complicated in
respect to its topological structure.

Consider problem (VP1), where

K = {x = (x1,x2,x3) ∈ R3 : x1 + x2 + x3 ≥ 2, x1 + x2−2x3 ≤ 2,

x1−2x2 + x3 ≤ 2, −2x1 + x2 + x3 ≤ 2},

ϕi(x) =
−xi

x1 + x2 + x3−1
(i = 1,2,3).

Denote this particular problem by (P2). It is easily seen that if x = (x1,x2,x3) ∈ K
then x1 ≥ 0, x2 ≥ 0 and x3 ≥ 0.

We shall show that Sol(P2) and Solw(P2) are path-connected, but not con-
tractible.

Let x ∈ K. Then according to Theorem 9.8, x ∈ Sol(P2) if and only if there exist
ξ1 > 0, ξ2 > 0, ξ3 > 0 and μ1 ≥ 0, μ2 ≥ 0, μ3 ≥ 0, μ4 ≥ 0 such that
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ξ1

⎡
⎣(x1 + x2 + x3−1)

⎛
⎝

1
0
0

⎞
⎠− x1

⎛
⎝

1
1
1

⎞
⎠
⎤
⎦

+ ξ2

⎡
⎣(x1 + x2 + x3−1)

⎛
⎝

0
1
0

⎞
⎠− x2

⎛
⎝

1
1
1

⎞
⎠
⎤
⎦

+ ξ3

⎡
⎣(x1 + x2 + x3−1)

⎛
⎝

0
0
1

⎞
⎠− x3

⎛
⎝

1
1
1

⎞
⎠
⎤
⎦+ ∑

j∈J(x)
μ jC

�
j = 0,

(9.35)

where J(x) = { j ∈ {1,2,3,4} : Cjx = d j}, Cj and d j are the j-th row and the j-th
component of

C =

⎛
⎜⎜⎝

−1 −1 −1
1 1 −2
1 −2 1

−2 1 1

⎞
⎟⎟⎠ and d =

⎛
⎜⎜⎝

−2
2
2
2

⎞
⎟⎟⎠ ,

respectively. Similarly, x∈ Solw(P2) if and only if there exist ξ1 ≥ 0, ξ2 ≥ 0, ξ3 ≥ 0,
not all zeroes, and μ1 ≥ 0, μ2 ≥ 0, μ3 ≥ 0, μ4 ≥ 0 satisfying (9.35).

Let x ∈K and let |J(x)| stand for the number of elements of J(x). We will use the
following abbreviations:

Q1(x,ξ ) = ξ1(x1 + x2 + x3−1)− ξ1x1− ξ2x2− ξ3x3,

Q2(x,ξ ) = ξ2(x1 + x2 + x3−1)− ξ1x1− ξ2x2− ξ3x3,

Q3(x,ξ ) = ξ3(x1 + x2 + x3−1)− ξ1x1− ξ2x2− ξ3x3.

We consider the following four cases.

Case 1: |J(x)|= 0. If x ∈ Sol(P2) then there exist ξ1 > 0, ξ2 > 0, ξ3 > 0 satisfying
(9.35). Since J(x) = /0, (9.35) equivalent to the system

Q1(x,ξ ) = 0, Q2(x,ξ ) = 0, Q3(x,ξ ) = 0. (9.36)

Subtracting the second equality of (9.36) from the first one, we obtain (ξ1−ξ2)(x1 +
x2 + x3−1) = 0. Since x1 + x2 + x3 ≥ 2, it follows that ξ1 = ξ2. Similarly, from the
first and the third equalities of (9.36) we can deduce that ξ1 = ξ3. Substituting ξ3 =
ξ3 = ξ1 into the first equality of (9.36) gives −ξ1 = 0. Therefore ξ1 = ξ2 = ξ3 = 0.
We have thus shown that x /∈ Sol(P2). The same arguments show that x /∈ Solw(P2).

Case 2: |J(x)|= 1. We have three subcases:

Subcase 2.1: J(x) = {1}. Suppose that x ∈ Sol(P2). Then, by the optimality
condition (9.35), there exist ξ1 > 0, ξ2 > 0, ξ3 > 0 and μ1 ≥ 0 such that

Q1(x,ξ )− μ1 = 0, Q2(x,ξ )− μ1 = 0, Q3(x,ξ )− μ1 = 0. (9.37)
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Arguing similarly as in Case 1 from (9.37) we get ξ1 = ξ2 = ξ3. Substituting
ξ3 = ξ2 = ξ1 into the first equality of (9.37) gives −ξ1 = μ1. This implies ξ1 =
ξ2 = ξ3 = 0, a contradiction. Therefore x /∈ Sol(P2). Similarly, x /∈ Solw(P2).

Subcase 2.2: J(x) = {2}. By (9.35), x ∈ Sol(P2) if and only if there exist
ξ1 > 0,ξ2 > 0, ξ3 > 0 and μ2 ≥ 0 such that

Q1(x,ξ )+ μ2 = 0, Q2(x,ξ )+ μ2 = 0, Q3(x,ξ )−2μ2 = 0. (9.38)

From the first two equalities of (9.38) we obtain ξ1 = ξ2. The first and the third
equalities of (9.38) imply

(ξ1− ξ3)(x1 + x2 + x3−1)+ 3μ2 = 0.

Hence

μ2 =
1
3
(ξ3− ξ1)(x1 + x2 + x3−1). (9.39)

If we choose ξ1 = ξ2 = 1, then the first equalities of (9.38) becomes

x3−1− ξ3x3 +
1
3
(ξ3−1)(x1 + x2 + x3−1) = 0,

or (ξ3− 1)(x1 + x2− 2x3− 1) = 3. Since x1 + x2− 2x3 = 2, it follows that ξ3 = 4.
By (9.39), μ2 = 3x3 + 1 > 0. Therefore, if we choose ξ1 = ξ2 = 1, ξ3 = 4 and
μ2 = 3x3 + 1, then (9.38) is fulfilled. We have shown that x ∈ Sol(P2). This implies
that x ∈ Solw(P2).

Subcase 2.3: J(x) = {3} or J(x) = {4}. Analysis similar to that in Subcase 2.2
shows that x ∈ Sol(P2)⊆ Solw(P2).

Case 3: |J(x)|= 2. This case also has three subcases:

Subcase 3.1: J(x) = {1, 2}. Since x1 + x2 + x3 = 2 and x1 + x2−2x3 = 2, we have
x3 = 0. By (9.35), x∈ Sol(P2) if and only if there exist ξ1 > 0, ξ2 > 0, ξ3 > 0, μ1 ≥ 0
and μ2 ≥ 0 such that

Q1(x,ξ )− μ1 + μ2 = 0, Q2(x,ξ )− μ1 + μ2 = 0,

Q3(x,ξ )− μ1−2μ2 = 0.
(9.40)

For ξ1 = ξ2 = 1, ξ3 = 4, and μ1 = 0, μ2 = 1, we see that (9.40) is satisfied. Hence
x ∈ Sol(P2)⊆ Solw(P2).

Subcase 3.2: J(x)= {1, 3} or J(x) = {1, 4}. Analysis similar to that in the Subcase
3.1 shows that x ∈ Sol(P2)⊆ Solw(P2).

Subcase 3.3: J(x) = {2, 3}. Since x1 +x2−2x3 = 2 and x1−2x2 +x3 = 2, we have
x2 = x3. By (9.35), x∈ Sol(P2) if and only if there exist ξ1 >0,ξ2 >0,ξ3 > 0, μ2 ≥ 0
and μ3 ≥ 0 such that

Q1(x,ξ )+ μ2 + μ3 = 0, Q2(x,ξ )+ μ2−2μ3 = 0, Q3(x,ξ )−2μ2 + μ3 = 0.
(9.41)



322 N.D. Yen

It is easy to verify that for ξ1 = ξ2 = 1, ξ3 = 4, μ2 = 2x3 + 1, and μ3 = 0, (9.41) is
fulfilled. Thus x ∈ Sol(P2)⊆ Solw(P2).

Subcase 3.4: J(x) = {2, 4} or J(x) = {3, 4}. Similarly as in Subcase 3.3, we have
x ∈ Sol(P2)⊆ Solw(P2).

Case 4: |J(x)|= 3.

Subcase 4.1: J(x) = {1, 2, 3}. In this subcase, x∈ Sol(P2) if and only if there exist
ξ1 > 0, ξ2 > 0, ξ3 > 0, μ1 ≥ 0, μ2 ≥ 0 and μ3 ≥ 0 such that

Q1(x,ξ )− μ1 + μ2 + μ3 = 0, Q2(x,ξ )− μ1 + μ2−2μ3 = 0,

Q3(x,ξ )− μ1−2μ2 + μ3 = 0.
(9.42)

Since (9.42) is satisfied with ξ1 = ξ2 = 1, ξ3 = 4, μ1 = μ3 = 0 and μ2 = 1, we have
x ∈ Sol(P2)⊆ Solw(P2).

Subcase 4.2: J(x) = {1, 2, 4}, or J(x) = {1, 3, 4}. Arguing as in Subcase 4.1 we
have x ∈ Sol(P2)⊆ Solw(P2).

From what has already been said, it follows that both the sets Solw(P2) and
Sol(P2) coincide with the surrounding surface of the parallelepiped K; that is

Solw(P2) = Sol(P2) = F1∪F2∪F3,

where
F1 = {x : x1 = 2− x2 + 2x3, x3 ≥ 0, x3 ≤ x2 ≤ 2 + x3}
F2 = {x : x2 = 2− x3 + 2x1, x1 ≥ 0, x1 ≤ x3 ≤ 2 + x1}
F3 = {x : x3 = 2− x1 + 2x2, x2 ≥ 0, x2 ≤ x1 ≤ 2 + x2}.

So Solw(P2) and Sol(P2) are not contractible. Since any two points belonging to the
surrounding surface of the parallelepiped K can be joined by a curve composed of
(not more than two) line segments which are contained in the surrounding surface,
the just mentioned solution sets are connected by line segments (hence they are path-
connected).

9.4 Convex Quadratic Vector Optimization Problems

Necessary and sufficient optimality conditions for a convex quadratic vector
optimization problem (or convex QVOP) can be rewritten as a monotone AVVI.
To see this, we consider the problem

(VP2) Minimize f (x) subject to x ∈ K,

where K ⊆ Rn is a polyhedral convex set, f (x) = ( f1(x), . . . , fm(x)),

fi(x) =
1
2

x�Mix + q�i x (i = 1, . . . ,m),
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with M1, . . . ,Mm being symmetric positive semidefinite n × n matrices,
q1, . . . ,qm ∈ Rn. The efficient solution set and the weakly efficient solution
set of (VP2) are abbreviated respectively to Sol(VP2) and Solw(VP2). Since
∇ fi(x) = Mix + qi, putting Fi(x) = Mix + qi we get the next statement, which
expresses well-known necessary and sufficient optimality conditions for convex
QVOPs, as a direct corollary of Theorem 9.1.

Theorem 9.14. Let x ∈ K. The following assertions are valid:

(a) x ∈ Solw(VP2) if and only if there exists ξ ∈ Σ such that x ∈ Sol(VI)ξ .
(b) If there exists ξ ∈ riΣ such that x ∈ Sol(VI)ξ , then x ∈ Sol(VP2).

It is important to stress that the sufficient optimality stated in assertion (b) of
Theorem 9.14 is not a necessary one. The forthcoming very useful counterexample
was proposed by one of the two referees of [33].

Example 9.1. Let n = 1, m = 2, and K = R, f (x) = (x2,(x− 1)2) for every x ∈ R.
It is easy to show that Sol(VP2) = [0,1]. Given any ξ = (ξ1,ξ2) ∈ riΣ , we see that

ξ1F1(x)+ ξ2F2(x) = 2ξ1x + 2ξ2(x−1) = 2(x− ξ2),

hence (VI)ξ has the unique solution x = ξ2. Consequently,

Sol(VP2) = [0,1] �= Sol(AVVI(ω ,K)) =
⋃

ξ∈riΣ
Sol(VI)ξ = (0,1).

Now, it is convenient for us to denote the solution sets of (VP2) corresponding
to the data set ω by Solw(ω ,VP2) and Sol(ω ,VP2). Combining Theorem 9.14 with
Theorem 9.2 yields

Sol(ω ,VP2)⊇ Sol(AVVI(ω ,K)) and Solw(ω ,VP2) = Solw(AVVI(ω ,K)), (9.43)

where ω = (M1, . . . ,Mm,q1, . . . ,qm).
Suppose that (VP2) undergoes a small perturbation: The original data set ω is

replaced by a new one

ω̃ = (M̃1, . . . ,M̃m, q̃1, . . . , q̃m)

where the matrices M̃i (i = 1, . . . ,m) are symmetric. The new solution sets are
denoted by Solw(ω̃ ,VP2) and Sol(ω̃ ,VP2).

Applying Theorems 9.4 and 9.6 to the monotone AVVI associated with (VP2) we
get the following two statements.

Theorem 9.15. If Solw(ω ,VP2) is nonempty and bounded, then for any α > 0 there
exist constants ε > 0, ρ > 0 such that if (9.4) is fulfilled, then the set Solw(ω̃ ,VP2)
is nonempty,

Solw(ω̃ ,VP2)⊆ B(0,ρ),
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and
Solw(ω̃ ,VP2)⊆ Solw(ω ,VP2)+αB(0,1).

In particular, the solution map Solw(·,VP2) is upper semicontinuous at ω .

Theorem 9.16. The following assertions are valid:

(a) If Solw(ω ,VP2) is bounded, then it is connected.
(b) If Solw(ω ,VP2) is disconnected, then each connected component of the solution

set is unbounded.

As shown by Example 9.1, the inclusion in (9.43) may be strict. Hence Theorem
9.5 do not implies the forthcoming statement. To make the presentation as complete
as possible, we will give a detailed proof.

Theorem 9.17. If Solw(ω ,VP2) is nonempty and bounded, then for any α > 0 there
exist constants ε > 0, ρ > 0 such that if (9.4) is fulfilled, then the set Sol(ω̃ ,VP1)
is nonempty,

Sol(ω̃ ,VP2)⊆ B(0,ρ), (9.44)

and
Sol(ω̃ ,VP2)⊆ Solw(ω ,VP2)+αB(0,1). (9.45)

Proof. Suppose that Solw(ω ,VP2) is nonempty and bounded. Since Solw(ω ,VP2)=
Solw(AVVI(ω ,K)) by virtue of (9.43), the set Solw(AVVI(ω ,K)) is also nonempty
and bounded. Therefore, given any α > 0, by Theorems 9.4 and 9.5 we can
find constants ε > 0, ρ > 0 such that if (9.4) is fulfilled, with M̃i (i = 1, . . . ,m)
being symmetric positive semidefinite matrices, then the set Sol(AVVI(ω̃ ,K)) is
nonempty and the inclusions (9.5) and (9.6) are valid. Recalling that Sol(ω̃ ,VP2)⊆
Solw(ω̃ ,VP2), we can easily combine these properties with the inclusion

Sol(ω̃ ,VP2)⊇ Sol(AVVI(ω̃ ,K))

and the equality
Solw(ω̃ ,VP2) = Solw(AVVI(ω̃,K)),

which are just the realizations of the inclusion and the equality in (9.43) when ω̃
plays the role of ω , to obtain the nonemptyness of Sol(ω̃ ,VP2) and the estimates
(9.44), (9.45), as desired. ��

There are some difficulties in studying connectedness of the Pareto solution
set Sol(ω ,VP2) via the monotone AVVI model and the scalarization method.
The reason is that we know that Sol(VI)ξ ⊆ Sol(ω ,VP2) for all ξ ∈ riΣ , but
for ξ ∈ Σ \ (riΣ) with Sol(VI)ξ ∩ Sol(ω ,VP2) �= /0 we cannot say definitely that
the whole convex set Sol(VI)ξ lies in Sol(ω ,VP2), or not. It is well known that
connectedness is a global property of a topological space; and eliminating a subset,
even just one point, from the space, may destroy its connectedness.

Hirschberger [9, Corollary 6.2] has proved that the image of the Pareto solution
set (called also the efficient frontier) of a quasiconvex quadratic vector optimization
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problem defined on convex polyhedral convex set, is connected, if one of the
component of the vector objective function is strongly quasiconvex. We refer to [9]
for the related notions and results. To our knowledge, apart from the next theorem,
not much has been known about the connectedness of Sol(ω ,VP2).

Theorem 9.18. (Benoist [1, Theorem 5.1]) If K is compact, then Sol(ω ,VP2) is
nonempty and connected.

Theorem 9.18 is a very special corollary of Benoist’s theorem [1, Theorem 5.1]
which can be stated as follows “The Pareto solution set of a continuous strictly
quasiconvex vector minimization problem on a nonempty compact convex set in Rn

is nonempty and connected.” By definition, a function ψ : D → R, with D ⊆ Rn

being a convex set, is said to be strictly quasiconvex on D if for any x,u∈D and any
t ∈ (0,1) it holds

ψ((1− t)x + tu)≤max{ψ(x),ψ(u)},
and the inequality is strict when ψ(x) �= ψ(u).

From the above definition it follows that if ψ : D → R is convex on D, then ψ is
strictly quasiconvex on D. Besides, Lemma 9.3 implies that if ψ : D→R is a linear
fractional function (i.e., there are vectors a,b∈Rn and constants α,β ∈R such that
bT x +β �= 0 and ψ(x) = (aT x +α)/(bT x +β ) for every x ∈ D), then ψ is strictly
quasiconvex on D. Hence LFVOPs and convex QVOPs are examples of continuous
strictly quasiconvex vector minimization problems.

9.5 Open Problems

This final section presents some open problems related to monotone AVVIs,
LFVOPs, convex QVOPs, and strictly convex vector minimization problems
(strictly convex VOPs, for brevity). Solutions to these problems can give us deeper
insights to the classes of problems in question.

9.5.1 Monotone AVVIs

Question 9.2. Regarding Theorem 9.5, is the solution map Sol(AVVI(·,K)) is usc
at ω if the set Solw(AVVI(ω ,K)) is nonempty and bounded? Is the final assertion of
Theorem 9.5 valid under the weaker assumption that Sol(AVVI(ω ,K)) is nonempty
and bounded? How to use the scalarization method to obtain sufficient conditions
for the lsc property of the solution maps Sol(AVVI(·,K)) and Solw(AVVI(·,K))?

Question 9.3. The number of connected components of the set Solw(AVVI(ω ,K))
(resp., of Sol(AVVI(ω ,K))) is finite? If the just mentioned number is finite, can one
find an explicit upper bound for it?
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(The studies of [11, 12] for the special case of monotone AVVIs related to LFVOPs
suggest that m – the number of affine functions in the formulation of the AVVI
problem – might be such an upper bound.)

Question 9.4. The solution set Solw(AVVI(ω ,K)) (resp., Sol(AVVI(ω ,K))) is
contractible whenever it is nonempty and bounded?

9.5.2 LFVOPs

Question 9.5. Regarding Theorem 9.10, is the solution map Sol(·,VP1) is
nonempty, is usc at ω if Solw(ω ,VP1) is nonempty and bounded? Is the final
assertion of Theorem 9.10 valid under the weaker assumption that Sol(ω ,VP1) is
nonempty and bounded? How to use the scalarization method to obtain sufficient
conditions for the lsc property of the solution maps Sol(·,VP1) and Solw(·,VP1)?

Question 9.6. Is it true that the following estimates hold: χ(Sol(VP1)) ≤ m,
χ(Solw(VP1))≤m, χ(Sol(VP1))≤ n, and χ(Solw(VP1))≤ n?

9.5.3 Convex QVOPs

Question 9.7. Regarding Theorem 9.17, is the solution map Sol(·,VP2) is
nonempty, is usc at ω if Solw(ω ,VP2) is nonempty and bounded? Is the final
assertion of Theorem 9.17 valid under the weaker assumption that Sol(ω ,VP2) is
nonempty and bounded?

Question 9.8. There exist convex QVOPs in the form (VP2) whose weak Pareto
solution set Solw(ω ,VP2) (resp., whose Pareto solution set Sol(ω ,VP2)) is discon-
nected?

Question 9.9. If Solw(ω ,VP2) is bounded, then it is connected? If Solw(ω ,VP2) is
disconnected, then each connected component of the solution set is unbounded?

Question 9.10. There exist convex QVOPs in the form (VP2) whose weak Pareto
solution set Solw(ω ,VP2) (resp., whose Pareto solution set Sol(ω ,VP2)) is path-
connected, but not contractible?

(The construction of [13], which has been recalled in the third section of this chapter,
may be useful for studying this question.)
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9.5.4 Strictly Quasiconvex VOPs

Question 9.11. For a continuous strictly quasiconvex m-criteria minimization prob-
lem on a nonempty closed convex set in Rn, denoted by (P), is it true that
χ(Sol(P)) ≤ m, χ(Solw(P))≤ m, χ(Sol(P))≤ n, and χ(Solw(P)) ≤ n?
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Chapter 10
Levitin–Polyak Type Well-Posedness
in Constrained Optimization

Xue-Xiang Huang

10.1 Introduction

Well-posedness of unconstrained and constrained scalar optimization problems
was first introduced and studied in Tykhonov [30] and Levitin and Polyak [21],
respectively. Since then, various notions of well-posednesses have been defined and
extensively studied (see, e.g., [5,8,25,28,32–34]). Recent studies on well-posedness
of optimization problems have been extended to vector optimization problems
(see, e.g., [3, 7, 12, 13, 22, 24]). The study of LP well-posedness for convex scalar
optimization problems with functional constraints originates from [19]. In Sect. 10.2
of this chapter, we will introduce three types of (generalized) LP well-posedness for
convex scalar optimization problems with functional constraints. Characterizations
and criteria for the three types of (generalized) LP well-posedness will be derived.
Relations among these three types of (generalized) LP well-posednesses will be
established. We will also present convergence results for a class of penalty methods
and a class of augmented Lagrangian methods under the assumption of one of the
three types of LP well-posedness. In Sect. 10.3, we will introduce several types of
(generalized) LP well-posedness for vector optimization problems with functional
constraints. Criteria and characterizations for these types of well-posednesses will
be given. Relations among these types of well-posedness will be presented. We
will also carry out convergence analysis for a class of penalty methods under the
assumption of a type of generalized LP well-posedness.
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10.2 Generalized Levitin–Polyak Well-Posedness
in Constrained Optimization

In this section, we introduce three types of (generalized) LP well-posedness for
nonconvex scalar optimization problems with functional constraints. Characteri-
zations and criteria for the three types of (generalized) LP well-posedness are
derived. Relations among these three types of (generalized) LP well-posednesses
are established. We also present convergence results for a class of penalty methods
and a class of augmented Lagrangian methods.

10.2.1 Preliminaries

Let (X ,d1) and (Y,d2) be two metric spaces, X1 ⊆ X , K ⊆ Y be two nonempty and
closed sets. Consider the following constrained optimization problem:

(P) min f (x)

s.t. x ∈ X1, g(x) ∈ K,

where f : X → R1 is a lower semicontinuous function and g : X →Y is a continuous
function. Denote by X0 the set of feasible solutions of (P), i.e.,

X0 = {x ∈ X1 : g(x) ∈ K}.

Denote by X and v the optimal solution set and the optimal value of (P), respectively.
Throughout this section, we always assume that X0 �= /0 and v >−∞.

Let (Z,d) be a metric space and Z1 ⊆ Z. We denote by dZ1(z) = inf{d(z,z′) : z′ ∈
Z1} the distance from the point z to the set Z1.

Levitin–Polyak (LP in short) well-posedness of (P) in the usual sense (when
the optimal set of (P) is not necessarily a singleton) says that, for any sequence
{xn} ⊆ X1 satisfying (i) dX0(xn)→ 0 and (ii) f (xn)→ v, there exist a subsequence
{xnk} of {xn} and some x ∈ X such that xnk → x.

It should be noted that many optimization algorithms, such as penalty type
methods, e.g., penalty function methods and augmented Lagrangian methods,
terminate when the constraint is approximately satisfied, i.e., dK(g(x))≤ ε for some
ε > 0 sufficiently small, and x is taken as an approximate solution of problem(P).
These methods may generate a sequence {xn}⊆ X1 that satisfies dK(g(xn))→ 0, not
necessarily dX0(xn)→ 0, as shown in the following simple example.

Example 10.1. Let α > 0. Let X = R, X1 = R+, K = R− and

f (x) =

{
−xα , if x ∈ [0,1];

−1/xα , if x≥ 1,
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g(x) =

{
x, if x ∈ [0,1]

1/x2, if x ≥ 1.

Consider the following penalty problems:

(PPα(n)) min
x∈X1

f (x)+ n [max{0,g(x)}]α , n ∈ N.

It is easily verified that xn = 21/αn1/α is the unique global solution to the penalized
problem (PPα(n)) for each n ∈ N. Note that X0 = {0}. It follows that we have
dK(g(xn)) = 1/(22/αn2/α)→ 0 while dX0(xn) = 21/αn1/α →+∞.

Thus, it is useful to consider sequences that satisfy dK(g(xn)) → 0 instead of
dX0(xn)→ 0 as n→ ∞ in order to study convergence of penalty type methods.

The sequence {xn} satisfying (i) and (ii) above is called an LP minimizing
sequence. In what follows, we introduce another two types of generalized LP well-
posedness.

Definition 10.1. (P) is called LP well-posedness in the generalized sense if, for any
sequence {xn} ⊆ X1 satisfying (i) dK(g(xn)) → 0 and (ii) f (xn)→ v, there exist a
subsequence {xnk} of {xn} and some x ∈ X such that xnk → x. The sequence {xn} is
called a generalized LP minimizing sequence.

Definition 10.2. (P) is called LP well-posedness in the strongly generalized sense
if, for any sequence {xn} ⊆ X1 satisfying (i) dK(g(xn))→ 0; and(ii) limsup

n→+∞
f (xn)≤

v, there exist a subsequence {xnk} of {xn} and some x ∈ X such that xnk → x. The
sequence {xn} is called a weakly generalized LP minimizing sequence.

Remark 10.1. (a) The study of well-posedness for optimization problems with
explicit constraints dates back to [19] when the abstract set X1 does not appear.
In [19], it was assumed that X is a Banach space, Y is a Banach space ordered
by a closed and convex cone with some special properties, see [19] for details.
What is worth emphasizing is that [19] only studied the case when (P) is a
convex program. However, it is well-known that penalty-type methods such as
penalization methods, augmented Lagrangian methods are mostly developed for
constrained nonconvex optimization problems. This is the main motivation of
this section.

(b) The LP well-posedness in the strongly generalized sense defined above was
called well-posedness in the strongly generalized sense in [19], while a
weakly generalized LP minimizing sequence in the above definition is called
a generalized minimizing sequence in [19].

(c) It is obvious that LP well-posedness in the strongly generalized sense implies
LP well-posedness in the generalized sense because a generalized LP minimiz-
ing sequence is a weakly generalized LP minimizing one.

(d) If there exists some δ0 > 0 such that g is uniformly continuous on the set

{x ∈ X1 : dX0(x)≤ δ0},
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then, it is not difficult to see that LP well-posedness in the generalized sense
implies LP well-posedness.

(e) Any one type of (generalized) LP well-posedness defined above implies that the
optimal set X of (P) is nonempty and compact.

10.2.2 Necessary and Sufficient Conditions for (Generalized)
LP Well-Posedness

In this subsection, we present some criteria and characterizations for the three types
of (generalized) LP well-posedness defined in Definitions 10.1, 10.2.

Consider the following statement:

[
X �= /0 and, for any LP minimizing sequence (resp. generalized

LP minimizing sequence, weakly generalized LP minimizing sequence)

{xn},we have dX(xn)→ 0.
]

(10.1)

The proof of the following proposition is elementary and thus omitted.

Proposition 10.1. If (P) is LP well-posed (resp. LP well-posed in the generalized
sense, and LP well-posed in the strongly generalized sense), then (10.1) holds.
Conversely, if (10.1) holds and X is compact, then (P) is LP well-posed (resp. LP
well-posed in the generalized sense, and LP well-posed in the strongly generalized
sense).

Consider a real-valued function c = c(t,s) defined for t,s≥ 0 sufficiently small,
such that

c(t,s)≥ 0, ∀t,s, c(0,0) = 0, (10.2)

sk → 0,tk ≥ 0,c(tk,sk)→ 0 imply tk → 0. (10.3)

Theorem 10.1. If (P) is LP well-posed, then there exists a function c satisfying
(10.2) and (10.3) such that

| f (x)− v| ≥ c(dX(x),dX0(x)), ∀x ∈ X1. (10.4)

Conversely, suppose that X is nonempty and compact, and (10.4) holds for some c
satisfying (10.2) and (10.3). Then (P) is LP well-posed.

Proof. Define

c(t,s) = inf{| f (x)− v| : x ∈ X1,dX(x) = t,dX0(x) = s}.
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It is obvious that c(0,0) = 0. Moreover, if sn → 0, tn ≥ 0 and c(tn,sn) → 0, then,
there exists a sequence {xn} ⊆ X1 with

dX(xn) = tn, (10.5)

dX0(xn) = sn (10.6)

such that
| f (xn)− v| → 0. (10.7)

Note that sn → 0. (10.6) and (10.7) jointly imply that {xn} is an LP minimizing
sequence. By Proposition 10.1, we have tn → 0. This completes the proof of the first
half of the theorem. Conversely, let {xn} be an LP minimizing sequence. Then, by
(10.4), we have

| f (xn)− v| ≥ c(dX(xn),dX0(xn)), ∀x ∈ X1. (10.8)

Let
tn = dX(xn), sn = dX0(xn).

Then, sn → 0. In addition, | f (xn)− v| → 0. These facts together with (10.8) as well
as the properties of the function c imply that tn → 0. By Proposition 10.1, we see
that (P) is LP well-posed. ��
Theorem 10.2. If (P) is LP well-posed in the generalized sense, then there exists a
function c satisfying (10.2) and (10.3) such that

| f (x)− v| ≥ c(dX(x),dK(g(x))), ∀x ∈ X1. (10.9)

Conversely, suppose that X is nonempty and compact, and (10.9) holds for some c
satisfying (10.2) and (10.3). Then (P) is LP well-posed in the generalized sense.

Proof. The proof is almost the same as that of Theorem 10.1. The only difference
lies in the proof of the first part of Theorem 10.1. Here we define

c(t,s) = inf{| f (x)− v| : x ∈ X1,dX (x) = t,dK(g(x)) = s}.

��
Next we give a necessary and sufficient condition in the form of Furi–Vignoli

[10] to characterize the LP well-posedness in the strongly generalized sense.
Let

Ω(ε) = {x ∈ X1 : f (x) ≤ v+ ε,dK(g(x))≤ ε}.
Let (X ,d1) be a complete metric space. Recall that the Kuratowski measure of

noncompactness for a subset A of X is defined as

α(A) = inf
{
ε > 0 : A⊆ ∪

1≤i≤n
Ci, for some Ci,diam(Ci)≤ ε

}
,
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where diam(Ci) is diameter of Ci defined by

diam(Ci) = sup{d1(x1,x2) : x1,x2 ∈Ci}.

The next theorem can be proved analogously to [19, Theorem 5.5].

Theorem 10.3. Let (X ,d1) be a complete metric space and f be bounded below on
X0. Then, (P) is LP well-posed in the strongly generalized sense if and only if

α(Ω(ε))→ 0, as ε→ 0.

Definition 10.3. Let Z be a topological space and Z1 ⊆ Z be nonempty. Suppose
that h : Z → R∪ {+∞} is an extended real-valued function. h is said to be level-
compact on Z1 if, for any s ∈ R, the subset {z ∈ Z1 : h(z)≤ s} is compact.

For any δ ≥ 0, define

X1(δ ) = {x ∈ X1 : dK(g(x))≤ δ}. (10.10)

The following proposition gives sufficient conditions that guarantee LP well-
posedness in the strongly generalized sense.

Proposition 10.2. Let one of the following conditions hold.

(i) There exists δ0 > 0 such that X1(δ0) is compact.
(ii) f is level-compact on X1.

(iii) X is a finite dimensional normed space and

lim
x∈X1,‖x‖→+∞

max{ f (x),dK(g(x))}= +∞; (10.11)

(iv) There exists δ0 > 0 such that f is level-compact on X1(δ0).

Then, (P) is LP well-posed in the strongly generalized sense.

Proof. Let {xn} ⊆ X1 be a weakly generalized LP minimizing sequence. Then,

limsup
n→+∞

f (xn)≤ v, (10.12)

dK(g(xn))→ 0. (10.13)

(i) Elementary. It is obvious that condition (ii) implies (iv). Now we show that (iii)
implies (iv). Indeed, we need only to show that for any s ∈ R and any δ > 0, the set

A = {x ∈ X1(δ ) : f (x)≤ s}
is bounded since X is a finite dimensional space. Suppose to the contrary that there
exist δ > 0, s > 0 and {x′n} ⊆ X1(δ ) such that

‖x′n‖→+∞ and f (x′n)≤ s.
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By {x′n} ⊆ X1(δ ), we have {x′n} ⊆ X1 and

dK(g(x′n))≤ δ .

As a result,

max{ f (x′n),dK(g(x′n))} ≤max{s,δ},
contradicting (10.11).

Thus, we need only to prove that if (iv) holds, then (P) is LP well-posed in the
strongly generalized sense. By (10.13), it is apparent that we can assume without
loss of generality that {xn} ⊆ X1(δ0). By (10.12), we can assume without loss of
generality that

{xn} ⊆ {x ∈ X1 : f (x) ≤ v+ 1}.
By the level-compactness of f on X1(δ0), we deduce that there exist a subsequence
{xnk} of {xn} and x ∈ X1 such that xnk → x. It is obvious from (10.13) that x ∈ X0.
Furthermore, from (10.12), we deduce that f (x)≤ v. So we have f (x) = v. That is,
x ∈ X . Hence, (P) is LP well-posed in the strongly generalized sense. ��

Now we consider the case when Y is a normed space, K is a closed and convex
cone with nonempty interior int K. Arbitrarily fix an e∈ int K. Let t ≥ 0 and consider
the following perturbed problem of (P):

(Pt) min f (x)

s.t. x ∈ X1, g(x) ∈ K− te. (10.14)

Let
X2(t) = {x ∈ X1 : g(x) ∈ K− te}. (10.15)

Proposition 10.3. Let one of the following conditions hold.

(i) There exists t0 > 0 such that X2(t0) is compact.
(ii) f is level-compact on X1.

(iii) X is a finite dimensional normed space and

lim
x∈X1,‖x‖→+∞

max{ f (x),dK(g(x))}= +∞;

(iv) There exists t0 > 0 such that f is level-compact on X2(t0).

Then, (P) is LP well-posed in the strongly generalized sense.

Proof. Similar to that of Proposition 10.2. ��
Now we make the following assumption.

Assumption 10.1 X is a finite dimensional normed space, Y is a normed space,
X1 ⊆ X is a nonempty, closed and convex set, K ⊆ Y is a closed and convex cone
with nonempty interior intK and e ∈ intK, f and g are continuous on X1, f is a
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convex function on X1 and g is K-concave on X1 (namely, for any x1,x2 ∈ X1 and
any θ ∈ (0,1), there holds that g(θx1 +(1−θ )x2)−θg(x1)− (1−θ )g(x2) ∈ K).

It is obvious that under Assumption 10.1, (P) is a convex program.
The next lemma can be proved similarly to that of ([17], Proposition 2.4).

Lemma 10.1. Let Assumption 10.1 hold. Then the following two statements are
equivalent.

(a) The optimal set X of (P) is nonempty and compact.
(b) For any t ≥ 0, f is level-compact on the set X2(t).

Theorem 10.4. Let Assumption 10.1 hold. Then, (P) is LP well-posed in the
strongly generalized sense if and only if the optimal set X of (P) is nonempty and
compact.

Proof. The sufficiency part follows directly from Lemma 10.1 and Proposition 10.3
while the necessity part is obvious by Remark 10.1. ��

The next two lemmas will be used to derive the following theorem.

Lemma 10.2 ([1]). Let (Z,d) be a complete metric space and h : Z →R∪{+∞} be
lower semicontinuous and bounded below. Let ε > 0. Suppose that z0 ∈ Z satisfies
h(z0)≤ inf{h(z) : z ∈ Z}+ ε. Then, there exists zε ∈ Z such that

(a) h(zε)≤ h(z0)
(b) d(zε ,z0)≤

√
ε

(c) h(zε) < h(z)+
√
εd(z,zε ),∀z ∈ Z\{zε}.

Lemma 10.3. Let Y be a normed space and K ⊆ Y be a closed and convex cone
with int K �= /0 and e ∈ int K. Suppose that {yn} ⊆ Y . Then, dK(yn)→ 0 if and only
if there exists a sequence {tn} ⊆ R+ with tn → 0 such that yn ∈ K− tne.

Proof. Necessity. From dK(yn) → 0, we have {un} ⊆ K such that ‖yn− un‖ → 0.
Let y′n = yn− un. Then ‖y′n‖ → 0. Let tn =

√‖y′n‖. Then, {tn} ⊆ R+, tn → 0 and
y′n/tn → 0. Since e ∈ int K, it follows that e+ y′n/tn ∈ K when n is sufficiently large.
Consequently, y′n ∈ K− tne. Hence, yn = un + y′n ∈ K− tne.
Sufficiency. As yn ∈ K− tne, we have yn + tne ∈ K. Thus,

dK(yn)≤ ‖yn− (yn + tne)‖= tn‖e‖.
Hence, dK(yn)→ 0. ��
Suppose that K is a cone. We denote by K∗ the positive polar cone of K, i.e.,

K∗ = {μ ∈Y ∗ : μ(u)≥ 0,∀u ∈ K}.

Theorem 10.5. Assume that X is a Banach space, Y is a normed space, X1 ⊆ X is
nonempty, closed and convex. K ⊆ Y is a closed and convex cone with int K �= /0
and e ∈ int K. Suppose that f : X → R is convex and continuously differentiable
on X1, g : X → Y is K-concave and continuously differentiable on X1. Let Slater
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constraint qualification for (P) hold: there exists x0 ∈ X1 such that g(x0) ∈ int K.
Assume that the optimal set X of (P) is nonempty. Further assume that, for any
sequences {xn} ⊆ X1 and {μn} ⊆ K∗ satisfying

(i) lim
n→+∞

dK(g(xn)) = 0

(ii) There exists a subsequence {μnk} such that μnk = 0,∀k or lim
n→+∞

μn(g(xn))/

|μn‖= 0
(iii) lim

n→+∞
d(−NX1

(xn))(	 f (xn)−μn(	g(xn)) = 0, where NX1(xn) is the normal cone

of X1 at xn,

there exists a convergent subsequence of {xn}. Then, (P) is LP well-posed in the
strongly generalized sense.

Proof. Suppose that x ∈ X . Since Slater constraint qualification holds, we have
μ ∈ K∗ such that

f (x)≤ f (x)− μ(g(x)), ∀x ∈ X1 (10.16)

and
μ(g(x)) = 0. (10.17)

Let {xn} ⊆ X1 be a weakly generalized LP minimizing sequence for (P). Then, by
Lemma 10.3,

limsup
n→+∞

f (xn)≤ v (10.18)

and
g(xn) ∈ K− tne (10.19)

for some {tn} ⊆ R+ with tn → 0. From (10.16), we have

f (x)≤ f (x)− μ(g(x)), ∀x ∈ X2(tn).

Note that
−μ(g(x))≤ tnμ(e), ∀x ∈ X2(tn).

Thus,
f (x)≤ f (x)+ tnμ(e), ∀x ∈ X2(tn). (10.20)

Hence,
inf

x∈X2(tn)
f (x) >−∞. (10.21)

The combination of (10.19) and (10.20) gives us

f (x)≤ f (xn)+ tnμ(e).

Consequently,
f (x)≤ liminf

n→+∞
f (xn).
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This together with (10.18) yields

lim
n→+∞

f (xn) = f (x). (10.22)

This combined with (10.20) implies that there exists εn → 0+ such that

f (xn)≤ f (x)+ εn, ∀x ∈ X2(tn).

Note that X2(tn)⊆X is nonempty and closed. (X2(tn),‖·‖) can be seen as a complete
(metric) subspace of X . Applying Lemma 10.2, we obtain

x′n ∈ X2(tn) (10.23)

such that
‖xn− x′n‖ ≤

√
εn (10.24)

and
f (x′n)≤ f (x)+

√
εn‖x− x′n‖, ∀x ∈ X2(tn). (10.25)

Note that Slater constraint qualification also holds for the following constrained
optimization problem:

(Pn) min f (x)+
√
εn‖x− x′n‖

s.t. x ∈ X1, g(x) ∈ K− tne,

and by (10.25), x′n is an optimal solution of (Pn). Hence, there exists μn ∈ K∗ such
that

0 ∈	 f (x′n)− μn(	g(x′n))+
√
εnB∗+ NX1(x

′
n) (10.26)

and

μn(g(x′n)+ tne) = μn(g(x′n))+ tnμn(e) = 0, (10.27)

where B∗ is the closed unit ball of X . Equation (10.26) implies that

lim
n→+∞

d(−NX1
(x′n))(	 f (x′n)− μn(	g(x′n))) = 0. (10.28)

From (10.27), we see that if there does not exist a subsequence {μnk} such that
μnk = 0,∀k, then

lim
n→+∞

μn(g(xn))/‖μn‖= 0. (10.29)

The combination of (10.24), (10.28) and (10.29) implies that {x′n} and {μn} satisfy
conditions (i)–(iii) of the theorem. Thus, {x′n} has a subsequence {x′nk

} which
converges to some x′ ∈ X0. From (10.24), we deduce that xnk → x′ ∈ X0. This
combined with (10.22) implies x′ ∈ X . Hence, (P) is LP well-posed in the strongly
generalized sense. ��
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Remark 10.2. Conditions (i)–(iii) can be seen as the well-known Palais–Smale
condition (C) [1] in the case of constrained optimization.

10.2.3 Relations Among Three Types of (Generalized) LP
Well-Posedness

Simple relationships among the three types of LP well-posedness were mentioned
in Remark 10.1. Now we investigate further relationships among them.

The proof of next theorem is elementary and is omitted.

Theorem 10.6. Suppose that there exist δ > 0, α > 0 and c > 0 such that

dX0(x)≤ cdαK (g(x)), ∀x ∈ X1(δ ), (10.30)

where X1(δ ) is defined by (10.10). If (P) is LP well-posed, then (P) is LP well-posed
in the generalized sense.

Remark 10.3. Equation (10.30) is an error bound condition for the set X0 in terms
of the residual function

r(x) = dK(g(x)), ∀x ∈ X1.

When X =R, Y =Rm, X1 = X and X0 �= /0, by [27, Theorem 5], (10.30) holds if and
only if , for any y ∈ Rm with ‖y‖ ≤ δ ,

Ψ(y)⊆Ψ(0)+ c‖y‖αB,

where
Ψ (y) = {x ∈ R : g(x) ∈ K + y}, y ∈ Rm

and B is the closed unit ball of Y . Sufficient conditions guaranteeing (10.30) were
given in numerous papers on error bounds for systems of inequalities and metric
regularity of set-valued maps (when (10.30) holds locally with α = 1) in finite and
infinite dimensional spaces (see, e.g., [6, 9, 21] and the references therein).

Definition 10.4 ([4]). Let W be a topological space and F : W → 2X be a set-valued
map. F is said to be upper Hausdorff semicontinuous (u.H.c. in short) at w ∈W if,
for any ε > 0, there exists a neighbourhood U of w such that F(U) ⊆ B(F(w),ε),
where, for Z ⊆ X and r > 0,

B(Z,r) = {x ∈ X : dZ(x)≤ r}.

Definition 10.5 ([1]). Let W be a topological space and F : W → 2X be a set-valued
map. F is said to be upper semicontinuous in the Berge’s sense (u.s.c. in short) at
w ∈W if, for any neighbourhood Ω of F(w), there exists a neighbourhood U of w
such that F(U)⊆Ω .

It is obvious that the notion of u.s.c. (in Berge’s sense) is stronger than u.H.c.



340 X.-X. Huang

Clearly, X1(δ ) given by (10.10) can be seen as a set-valued map from R+ to
X . The next two theorems use conditions similar to those for the general stability
results presented in Sect. 3 of [4], where the uniform continuity of the objective
function around the feasible set and the u.H.c. of the perturbation set-valued map
were considered.

Theorem 10.7. Assume that the set-valued map X1(δ ) defined by (10.10) is u.H.c.
at 0 ∈ Rl

+. If (P) is LP well-posed, then (P) is LP well-posed in the generalized
sense.

Proof. Let {xn} ⊆ X1 be a generalized LP minimizing sequence. That is,

f (xn)→ v, (10.31)

dK(g(xn))→ 0. (10.32)

(10.32), together with the u.H.c. of X1(δ ) at 0, implies that dX0(xn)→ 0. This fact
combined with (10.31) implies that {xn} is an LP minimizing sequence. Thus, there
exist a subsequence {xnk} of {xn} and some x ∈ X such that xnk → x. Hence, (P) is
LP well-posed in the generalized sense. ��
Theorem 10.8. Assume that there exists ε0 > 0 such that f is uniformly continuous
on B(X0,ε0) and the set-valued map X1(δ ) is u.H.c. at 0. If (P) is LP well-posed,
then it is LP well-posed in the strongly generalized sense.

Proof. Let {xn} be a weakly generalized LP minimizing sequence. That is,

limsup
n→+∞

f (xn)≤ v, (10.33)

dK(g(xn))→ 0. (10.34)

Note that X1(δ ) is u.H.c. at 0. This fact together with (10.34) implies that dX0(xn)→
0. Note that f is uniformly continuous on B(X0,ε0). It follows that

liminf
n→+∞

f (xn)≥ v. (10.35)

The combination of (10.33) and (10.35) yields that

f (xn)→ v.

Hence, {xn} is an LP minimizing sequence. Thus, there exist a subsequence {xnk}
of {xn} and some x ∈ X such that xnk → x. So, (P) is LP well-posed in the strongly
generalized sense. ��

Let δ ≥ 0. Consider the perturbed problem of (P):

(Pδ ) min f (x)

s.t. x ∈ X1, dK(g(x))≤ δ .

Denote by v1(δ ) the optimal value of (Pδ ). Clearly, v1(0) = v.
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Theorem 10.9. Consider problems (P) and (Pδ ). Suppose that (P) is LP well-posed
in the generalized sense and

liminf
δ→0+

v1(δ ) = v. (10.36)

Then, (P) is LP well-posed in the strongly generalized sense.

Proof. Let {xn} ⊆ X1 be a weakly generalized LP minimizing sequence. Then,

limsup
n→+∞

f (xn)≤ v (10.37)

and
lim

n→+∞
dK(g(xn)) = 0.

Let δn = dK(g(xn)). Then, xn is feasible for (Pδn). Thus,

v1(δn)≤ f (xn).

Passing to the lower limit, we get

liminf
n→+∞

v1(δn)≤ liminf
n→+∞

f (xn).

This together with (10.37) and (10.36) yields

lim
n→+∞

f (xn) = v.

It follows that {xn} is a generalized LP minimizing sequence. Thus, there exist a
subsequence {xnk} of {xn} and some x ∈ X such that xnk → x. So, (P) is LP well-
posed in the strongly generalized sense. ��
Remark 10.4. If the set-valued map X1(δ ) defined by (10.10) is u.s.c. at 0 ∈ R1

+,
by [2, Theorem 4.2.3 (1)], (10.36) holds. In this case, the generalized LP well-
posedness of (P) implies the strongly generalized LP well-posedness of (P).

Now let Y be a normed space and y ∈ Y . Consider the following perturbed
problem of (P):

(Py) min f (x)

s.t. x ∈ X1, g(x) ∈ K + y.

Denote by
X3(y) = {x ∈ X1 : g(x) ∈ K + y} (10.38)

the feasible set of (Py) and v3(y) the optimal value of (Py). Here we note that if
X3(y) = /0, we set v3(y) = +∞. It is obvious that X3(y) can be seen as a set-valued
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map from Y to X . Corresponding to Theorems 10.7–10.9 respectively, we have the
following theorems.

Theorem 10.10. Assume that Y is a normed space and that the set-valued map
X3(y) is u.H.c. at 0 ∈ Y. If (P) is LP well-posed, then (P) is LP well-posed in the
generalized sense.

Theorem 10.11. Assume that Y is a normed space and that there exists ε0 > 0 such
that f is uniformly continuous on B(X0,ε0) and the set-valued map X3(y) is u.H.c.
at 0 ∈Y. If (P) is LP well-posed, then it is LP well-posed in the strongly generalized
sense.

Theorem 10.12. Assume that Y is a normed space. Consider problems (P) and
(Py). Suppose that (P) is LP well-posed in the generalized sense and

liminf
y→0

v3(y) = v. (10.39)

Then, (P) is LP well-posed in the strongly generalized sense.

Similar to Remark 10.4, when the set-valued map X3 is u.s.c. at 0 ∈ Y , then
(10.39) holds. Thus, the generalized LP well-posedness of (P) implies its strongly
generalized LP well-posedness.

In the special case when K is a closed and convex cone with nonempty interior
int K. Arbitrarily fix an e ∈ int K. It is obvious that X2(t) defined by (10.15) can be
seen as a set-valued map from R1

+ to X . Denote by v2(t) the optimal value of (Pt).

Theorem 10.13. Assume that K is a closed and convex cone with nonempty interior
intK and that the set-valued map X2(t) is u.H.c. at 0 ∈ Rl . If (P) is LP well-posed,
then (P) is LP well-posed in the generalized sense.

Theorem 10.14. Assume that K is a closed and convex cone with nonempty interior
int K and that there exists ε0 > 0 such that f is uniformly continuous on B(X0,ε0)
and the set-valued map X2(t) is u.H.c. at 0 ∈ Rl . If (P) is LP well-posed, then it is
LP well-posed in the strongly generalized sense.

Theorem 10.15. Assume that K is a closed and convex cone with nonempty interior
int K. Consider problems (P) and (Pt). Suppose that (P) is LP well-posed in the
generalized sense and

liminf
t→0+

v2(t) = v. (10.40)

Then, (P) is LP well-posed in the strongly generalized sense.

Again, as noted in Remark 10.4, when the set-valued map X2 is u.s.c. at
0 ∈ R+, then (10.39) holds. Thus, the generalized LP well-posedness of (P) implies
its strongly generalized LP well-posedness.
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10.2.4 Applications to Penalty-Type Methods

In this subsection, we consider the convergence of a class of penalty methods
and a class of augmented Lagrangian methods under the assumption of strongly
generalized LP well-posedness of (P).

10.2.4.1 Penalty Methods

Let α > 0. Consider the following penalty problem:

(PPα(r)) min
x∈X1

f (x)+ rdαK (g(x)), r > 0.

Denote by v4(r) the optimal value of (PPα(r)). It is clear that

v4(r)≤ v, ∀r > 0. (10.41)

Remark 10.5. When α ∈ (0,1), X = R, Y = Rm, K = Rm1− ×{0m−m1}, where m ≥
m1 and 0m−m1 is the origin of the space Rm−m1 , this class of penalty functions was
applied to the study of mathematical programs with equilibrium constraints [26].
Necessary and sufficient conditions for the exact penalization of this class of penalty
functions were derived in [15]. This class of penalty methods was also applied
to mathematical programs with complementarity constraints [31] and nonlinear
semidefinite programs [18]. An important advantage of this class of penalty methods
is that it requires weaker conditions to guarantee its exact penalization property than
the usual l1 penalty function method (see [26]).

Theorem 10.16. Let 0 < rn →+∞. Consider problems (P) and (PPα(rn)). Assume
that there exist r > 0 and m0 ∈R1 such that

f (x)+ rdαK (g(x))≥ m0, ∀x ∈ X1. (10.42)

Let 0 < εn → 0. Suppose that each xn ∈ X1 satisfies

f (xn)+ rndαK (g(xn))≤ v4(rn)+ εn. (10.43)

Further assume that (P) is LP well-posed in the strongly generalized sense. Then,
there exist a subsequence {xnk} of {xn} and some x ∈ X such that xnk → x.

Proof. From (10.41) and (10.43), we have

f (xn)≤ v+ εn.

Thus,
limsup
n→+∞

f (xn)≤ v. (10.44)
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Moreover, from (10.41) to (10.43), we deduce that

f (xn)+ rdαK (g(xn))+ (rn− r)dαK (g(xn))≤ v + εn.

Thus,
m0 +(rn− r)dαK (g(xn))≤ v+ εn,

implying

dK(g(xn))≤
[

v+ εn−m0

rn− r

]1/α
.

Passing to the limit, we get

lim
n→+∞

dK(g(xn)) = 0. (10.45)

It follows from (10.44) and (10.45) that {xn} is a weakly generalized LP minimizing
sequence. Hence, there exist a subsequence {xnk} of {xn} and some x ∈ X such that
xnk → x. ��

10.2.4.2 Augmented Lagrangian Methods

Let (X ,d1) be a metric space, Y =Rm and K ⊆Y be a nonempty, closed and convex
set. Let σ : Rm → R ∪ {+∞} be an augmenting function, namely, it is a lower
semicontinuous, convex function satisfying

min
y∈Rm

σ(y) = 0 and σ attains its unique minimum at y = 0.

Following [29, Example 11.46], we define the dualizing parametrization function
by setting X = X1 and θ = δK :

f (x,u) = f (x)+ δX1(x)+ δK(g(x)+ u),

where δA is the indicator function of a subset A of a space Z, i.e.,

δA(a) =

{
0, if a ∈ A,

+∞, if a ∈ Z\A.

Constructing the augmented Lagrangian as in [29, Definition 11.55], we obtain the
augmented Lagrangian:

l(x,y,r) = inf
u∈Rm

{
f (x,u)+ rσ(u)−〈y,u〉} ,x ∈ X ,y ∈ Rm,r > 0.

The augmented Lagrangian problem is

(ALP(y,r)) min
x∈X

l(x,y,r), y ∈Rm,r > 0.
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Denote by v5(y,r) the optimal value of (ALP(y,r)).
We have the following result.

Theorem 10.17. Let {yn} ⊆ Rm be bounded and 0 < rn → +∞. Consider (P) and
(ALP(yn,rn)). Assume that there exist (y,r) ∈ Rm× (0,+∞) and m0 ∈ R1 such that

l(x,y,r)≥ m0, ∀x ∈ X . (10.46)

Let 0 < εn → 0. Suppose that each xn satisfies

l(xn,yn,rn)≤ v5(yn,rn)+ εn, (10.47)

v5(yn,rn) > −∞,∀n, and (P) is LP well-posed in the strongly generalized sense.
Then, there exist a subsequence {xnk} of {xn} and some x ∈ X such that xnk → x.

Proof. By the definition of l(x,y,r), it is easy to see that

l(x,y,r) = f (x), ∀x ∈ X0.

It follows that
v5(y,r) ≤ v, ∀y ∈ Rm,r > 0.

Thus,
v5(yn,rn)≤ v, ∀n. (10.48)

By the definition of l(xn,yn,rn) and (10.47), {xn} ⊆ X1 and there exists {un} ⊆ Rm

satisfying
g(xn)+ un ∈ K,∀n (10.49)

such that
f (xn)+ rnσ(un)−〈yn,un〉 ≤ v5(yn,rn)+ 2εn. (10.50)

This combined with (10.46) and (10.48) implies that

(rn− r)σ(un)−〈yn− y,un〉 ≤ v+ 2εn−m0. (10.51)

We assert that {un} is bounded. Otherwise, we assume without loss of generality
that ‖un‖ → +∞. Since the lower semicontinuous and convex function σ has
a unique minimum, by [11, Proposition 3.2.5 in IV] and [29, Corollary 3.27],
liminf
n→+∞

σ(un)/‖un‖> 0. As {yn} is bounded, (10.51) cannot hold. So, {un} should be

bounded. Assume without loss of generality that un → u0. We deduce from (10.51)
that

σ(u0)≤ liminf
n→+∞

σ(un) = 0.

It follows that u0 = 0. We deduce from (10.48) and (10.50) that

f (xn)−〈yn,un〉 ≤ v + 2εn.
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Passing to the limit, we get
limsup
n→+∞

f (xn)≤ v.

From (10.49) and the fact that un → 0, we obtain

lim
n→+∞

dK(g(xn)) = 0.

Thus, {xn} is a weakly generalized LP minimizing sequence. Hence, there exist a
subsequence {xnk} of {xn} and some x ∈ X such that xnk → x. ��

10.3 Levitin–Polyak Well-Posedness of Constrained Vector
Optimization Problems

In this section, we consider LP type well-posedness for a general constrained
vector optimization problem. We introduce several types of (generalized) LP well-
posedness. Criteria and characterizations for these types of well-posednesses are
given. Relations among these types of well-posedness are investigated. Finally, we
consider convergence of a class of penalty methods under the assumption of a type
of generalized Levitin–Polyak well-posedness.

10.3.1 Preliminaries

Let (X ,d1) and (Z,d2) be two metric spaces. Let Y be a normed space ordered by a
closed and convex cone C with nonempty interior int C, i.e., ∀y1,y2 ∈Y , y1 ≤C y2 if
and only if y2− y1 ∈C. Arbitrarily fix an e ∈ int C. Let X1 ⊆ X and K ⊆ Z be two
nonempty and closed sets. Consider the following constrained vector optimization
problem:

(VP) inf f (x)

s.t. x ∈ X1, g(x) ∈ K,

where f : X → Y and g : X → Z are continuous functions.
Denote by X0 the set of feasible solutions of (VP), i.e.,

X0 = {x ∈ X1 : g(x) ∈ K}.
Throughout the paper, we always assume that X0 �= /0.

Denote by X the set of weakly efficient solutions of (VP), namely, for any
x ∈ X ,

(i) x ∈ X0.
(ii) For any x ∈ X0, f (x)− f (x) /∈ −int C.
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We denote by V the set of infimal points of (VP). That is, v ∈V if and only if

(i) There exists no x ∈ X0 such that f (x)− v ∈ int C
(ii) There exists a sequence {xk} ⊆ X0 such that f (xk)→ v

Throughout the paper, we always assume that V �= /0. Let (P,d) be a metric space
and P1 ⊆ P. We denote by dP1(p) = inf{d(p, p′) : p′ ∈ P1} the distance from the
point p to the set P1.

Define
ξ (y) = min{t : y≤C te}, ∀y ∈ Y.

It is known from [23] that ξ is continuous, homogenous, (strictly) monotone (i.e.,
ξ (y1)≤ ξ (y2) if y2− y1 ∈C and ξ (y1) < ξ (y2) if y2− y1 ∈ int C) and convex.

Many optimization methods for (VP) may generate a sequence {xk} ⊆ X1 such
that dX0(xk)→ 0.

Penalty type methods for (VP) (and its special cases, e.g., Y =R, C =Rl
+), such

as penalty function methods (see, e.g., [17]) and augmented Lagrangian methods
(see, e.g., [14]) may generate a sequence {xk} ⊆ X1 such that dK(g(xk)) → 0, but
dX0(xk) �→ 0.

In this section, we will study such sequences under additional conditions. This
study should be useful to the study of convergence of some optimization methods
for (VP) as will be seen in Sect. 10.3.4.

In what follows, we will introduce several notions of Levitin–Polyak well-
posedness and generalized Levitin–Polyak well-posedness for (VP).

Definition 10.6.

• (VP) is said to be type I Levitin–Polyak (LP in short) well-posed if X �= /0 and,
for any {xk} satisfying

dX0(xk)→ 0 (10.52)

and
dV ( f (xk))→ 0, (10.53)

there exist a subsequence {xkj} and an x∗ ∈ X such that

lim
j→+∞

xkj = x∗.

• (VP) is said to be type I LP well-posed in the generalized sense if X �= /0 and, for
any {xk} satisfying

dK(g(xk))→ 0 (10.54)

and (10.53),
there exist a subsequence {xkj} and an x∗ ∈ X such that

lim
j→+∞

xkj = x∗.
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The sequence satisfying (10.52) and (10.53) is called a type I LP minimizing one
while the sequence satisfying (10.54) and (10.53) is called a type I generalized LP
minimizing one.

Definition 10.7.

• (VP) is said to be type II LP well-posed if X �= /0 and, for any {xk} satisfying
(10.52) and

f (xk)≤C vk + εke for some {vk} ⊆V and some 0 < εk → 0, (10.55)

there exist a subsequence {xkj} and an x∗ ∈ X such that

lim
j→+∞

xkj = x∗.

• (VP) is said to be type II LP well-posed in the generalized sense if X �= /0 and, for
any {xk} meeting (10.54) and (10.55), then there exist a subsequence {xkj} and
an x∗ ∈ X such that

lim
j→+∞

xkj = x∗.

The sequence satisfying (10.52) and (10.55) is called a type II LP minimizing one
while the sequence satisfying (10.54) and (10.55) is called a type II generalized LP
minimizing one.

Definition 10.8.

• (VP) is said to be type III LP well-posed if X �= /0 and, for any {xk} satisfying
(10.52) and

liminf
k→+∞

{
inf
v∈V

ξ (v− f (xk))
}
≥ 0, (10.56)

there exist a subsequence {xkj} and an x∗ ∈ X such that

lim
j→+∞

xkj = x∗.

• (VP) is said to be type III LP well-posed in the generalized sense if X �= /0 and
for any {xk} meeting (10.54) and (10.56), then there exist a subsequence {xkj}
and an x∗ ∈ X such that

lim
j→+∞

xkj = x∗.

The sequence satisfying (10.52) and (10.56) is called a type III LP minimizing
one while the sequence satisfying (10.54) and (10.56) is called a generalized LP
minimizing one.
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Remark 10.6. (a) The definitions of type I (condition (10.53)), type II (condition
(10.55)) and type III (condition (10.56)) (generalized) LP minimizing sequence
were motivated by Definitions 2.3–2.5 of [12].

(b) It is easy to see that a type I (generalized) LP minimizing sequence is a type
II generalized LP minimizing sequence and that a type II (generalized) LP
minimizing sequence is a type III (generalized) LP minimizing sequence. Thus,
the type III (generalized) LP well-posedness implies the type II (generalized)
LP well-posedness and the type II (generalized) LP well-posedness implies the
type I (generalized) LP well-posedness.

(c) Any type of (generalized) well-posedness implies that the set X of weakly
efficient solutions of (VP) is nonempty and compact.

(d) When Y = R1, C = R1
+, type I (generalized) LP well-posedness coincides with

type II (generalized) LP well-posedness, type I (II) LP well-posedness is just
the LP well-posedness in [16] while type I (II) generalized LP well-posedness
is the generalized LP well-posedness defined in [16], and type III generalized
LP well-posedness is just the strongly generalized LP well-posedness in [16].

10.3.2 Criteria and Characterizations for (Generalized)
LP Well-Posedness

In this subsection, we give necessary and sufficient conditions for the various types
of (generalized) LP well-posedness defined in Definitions 10.6–10.8.

Consider the following statement:

[
X �= /0 and, for any type I (resp. type II, type III,

generalized type I, generalized type II, generalized type III )

LP minimizing sequence {xk}, we have dX(xk)→ 0.
]

(10.57)

First we have the following result, whose proof is elementary and thus omitted.

Proposition 10.4. If (VP) is type I (resp. type II, type III, generalized type I,
generalized type II, generalized type III) LP well-posed, then (10.57) holds.
Conversely, if (10.57) holds and X is compact, then (VP) is type I (resp. type II,
type III, generalized type I, generalized type II, generalized type III) LP well-posed.

Now consider a real-valued function c = c(t,s) defined for t,s ≥ 0 sufficiently
small, such that

c(t,s)≥ 0, ∀t,s, c(0,0) = 0, (10.58)

sk → 0,tk ≥ 0,c(tk,sk)→ 0 imply tk → 0. (10.59)
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Theorem 10.18. If (VP) is type I LP well-posed, then there exists a function c
satisfying (10.58) and (10.59) such that

dV ( f (x)) ≥ c(dX (x),dX0(x)), ∀x ∈ X1. (10.60)

Conversely, suppose that X is nonempty and compact, and (10.60) holds for some c
satisfying (10.58) and (10.59). Then (VP) is type I LP well-posed.

Proof. Define

c(t,s) = inf{dV ( f (x)) : x ∈ X1,dX(x) = t,dX0(x) = s}.

It is obvious that c(t,s) ≥ 0,∀s,t and c(0,0) = 0. Moreover, if sk → 0, tk ≥ 0 and
c(tk,sk)→ 0, then, there exists a sequence {xk} ⊆ X1 with

dX(xk) = tk, (10.61)

dX0(xk) = sk (10.62)

such that
dV ( f (xk))→ 0. (10.63)

Note that sk → 0. This fact together with (10.62) and (10.63) implies that {xk}
is a type I LP minimizing sequence. By Proposition 10.4, we have tk → 0. This
completes the proof of the first part of the theorem. Conversely, let {xk} be a type I
LP minimizing sequence. Then, by (10.60), we have

dV ( f (xk))≥ c(dX(xk),dX0(xk)),∀k. (10.64)

Let
tk = dX(xk), sk = dX0(xk).

Then, sk → 0. In addition, dV ( f (xk))→ 0. These facts together with (10.64) as well
as the properties of the function c imply that tk → 0. By Proposition 10.4, we see
that (VP) is type I LP well-posed. ��
Theorem 10.19. If (VP) is type I LP well-posed in the generalized sense, then there
exists a function c satisfying (10.58) and (10.59) such that

dV ( f (x)) ≥ c(dX(x),dK(g(x))), ∀x ∈ X1. (10.65)

Conversely, suppose that X is nonempty and compact, and (10.65) holds for some c
satisfying (10.58) and (10.59). Then (VP) is type I LP well-posed in the generalized
sense.

Proof. The proof is almost the same as that of Theorem 10.18. The only difference
lies in the proof of the first part of Theorem 10.18. Here we define

c(t,s) = inf{dV ( f (x)) : x ∈ X1,dX (x) = t,dK(g(x)) = s}. ��
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Recall that Furi–Vignoli [10] characterized well-posedness of optimization
problems (defined in a complete metric space (X ,d1)) by making use of the
Kuratowski measure of noncompactness of a subset A of X defined by

α(A) = inf

{
ε > 0 : A⊆ ∪

1≤i≤n
Ci, for some Ci,diam(Ci)≤ ε

}
,

where diam(Ci) is the diameter of Ci defined by

diam(Ci) = sup{d1(x1,x2) : x1,x2 ∈Ci}.

Given two nonempty subsets A and B of X , define the excess of set A to set B by

e(A,B) = sup{dB(a) : a ∈ A}.

The Hausdorff distance between A and B is defined as

haus(A,B) = max{e(A,B),e(B,A)}.

Next we give Furi–Vignoli type characterizations for the various (generalized)
LP well-posednesses.

Let, for each ε > 0,

T 1
1 (ε) = {x ∈ X1 : dV ( f (x)) ≤ ε,dX0(x)≤ ε}.

Theorem 10.20. Let (X ,d1) be a complete metric space and V �= /0. Then, (VP) is
type I LP well-posed if and only if

lim
ε→0

α(T 1
1 (ε)) = 0. (10.66)

Proof. First, we show that for each ε > 0, T 1
1 (ε) is nonempty and closed. The

nonemptiness of T 1
1 (ε) follows from the fact that V �= /0. Let {xk} ⊆ T 1

1 (ε) and
xk → x. Then

dV ( f (xk))≤ ε (10.67)

and
dX0(xk)≤ ε. (10.68)

From (10.68), we have
dX0(x)≤ ε. (10.69)

By the continuity of f and (10.67), we obtain

dV ( f (x))≤ ε. (10.70)

The combination of (10.69) and (10.70) shows that x∈ T 1
1 (ε). Thus, T 1

1 (ε) is closed.
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Second, we show that
X =

⋂
ε>0

T 1
1 (ε). (10.71)

It is obvious that X ⊆
⋂
ε>0

T 1
1 (ε). Now suppose that εk → 0 and x∈

∞⋂
k=1

T 1
1 (εk). Then,

dV ( f (x))≤ εk,∀k (10.72)

and
dX0(x)≤ εk,∀k. (10.73)

By (10.72), we have f (x) ∈V. By (10.73), we have x ∈ X0. Hence, x ∈ X .
Now we assume that (10.66) holds. Clearly, T 1

1 (·) is increasing with ε > 0. By
the Kuratowski theorem [20, p. 318], we have

haus(T 1
1 (ε),T 1

1 )→ 0 as ε → 0, (10.74)

where
T 1

1 =
⋂
ε>0

T 1
1 (ε)

is nonempty and compact.
Let {xk} be a type I LP minimizing sequence. Then, by taking a subsequence,

we can find a decreasing sequence εk → 0 such that dV ( f (xk)) ≤ εk and dX0(xk) ≤
εk. Thus, xk ∈ T 1

1 (εk). It follows from (10.71) and (10.74) that dX(xk) → 0. By
Proposition 10.4, (VP) is type I LP well-posed.

Conversely, let (VP) be type I LP well-posed. Consider the excess

q(ε) = e(T 1
1 (ε),X),ε > 0.

We show that q(ε)→ 0 as ε→ 0. If not, there exist δ > 0, εk → 0, xk ∈ T 1
1 (εk) such

that
dX(xk)≥ δ ,∀k,

contradicting the type I LP well-posedness of (VP). Thus, q(ε)→ 0 as ε→ 0. Note
that

T 1
1 (ε)⊆ {x ∈ X1 : dX(x)≤ q(ε)}.

It follows that

α(T 1
1 (ε)) ≤ 2q(ε)

since α(X) = 0. Consequently, (10.66) holds. The proof is complete. ��
Consider

T 2
1 (ε) = {x ∈ X1 : dV ( f (x)) ≤ ε,dK(g(x))≤ ε}.
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The following theorem can be proved analogously to Theorem 10.20.

Theorem 10.21. Let (X ,d1) be a complete metric space and V �= /0. Then, (VP) is
type I LP well-posed in the generalized sense if and only if

lim
ε→0

α(T 2
1 (ε)) = 0. (10.75)

Define

T 1
2 (ε) = {x ∈ X1 : dX0(x)≤ ε, f (x) ≤C v + εe for some v ∈V}.

Theorem 10.22. Let (X ,d1) be a complete metric space and V �= /0. Then, (VP) is
type II LP well-posed if and only if

lim
ε→0

α(T 1
2 (ε)) = 0. (10.76)

Proof. It is obvious from V �= /0 that T 1
2 (ε) �= /0,∀ε > 0. Thus, cl T 1

2 (ε) is nonempty
and closed. Of course, cl T 1

2 (·) is increasing with ε . Now we show that

X =
⋂
ε>0

clT 1
2 (ε). (10.77)

Obviously, X ⊆ ∩ε>0cl T 1
2 (ε). Let x ∈ ⋂

ε>0 cl T 1
2 (ε) and εk ↓ 0. By x ∈⋂∞

k=1 cl T 1
2 (εk), for each k, there exist xk, j ∈ X1 and vk, j ∈V such that

f (xk, j)≤C vk, j + εke, (10.78)

xk, j → x (10.79)

and
dX0(xk, j)≤ εk ⇒ dX0(x)≤ εk. (10.80)

From (10.78) and (10.79) and the continuity of f , we have that for each k, there
exists j(k) such that

f (x)≤C vk, j(k) + 2εke. (10.81)

Suppose to the contrary that x /∈ X . Then there exist x0 ∈ X0 and δ > 0 such that

f (x0)≤C f (x)− δe. (10.82)

From (10.81) and (10.82), we have

f (x0) ≤C vk, j(k) + 2εke− δe

= vk, j(k)− (δ −2εk)e. (10.83)
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Since εk ↓ 0, δ − 2εk ≥ δ/2 when k is sufficiently large. Thus, (10.83) contradicts
the fact that vk,k( j) ∈V when k is sufficiently large. Hence, there holds x ∈ X . Thus,
(10.77) is proved.

Now assume that (10.75) holds. Then

α(cl T 1
2 (ε)) = α(T 1

2 (ε))→ 0 as ε → 0.

By the Kuratowski theorem, it follows that

haus(cl T 1
2 (ε),T 1

2 )→ 0 as ε → 0, (10.84)

where
T 1

2 =
⋂
ε>0

clT 1
2 (ε)

is nonempty and compact. Let {xk} be a type II LP minimizing sequence. Then, by
taking a subsequence, we can find a decreasing sequence εk → 0 and a sequence
{vk} ⊆V such that

f (xk)≤C vk + εke, (10.85)

dX0(xk)≤ εk. (10.86)

From (10.85) and (10.86), we see that xk ∈ T 1
2 (εk). It follows from (10.77) and

(10.84) that dX(xk)→ 0. By Proposition 10.4 and the compactness of X , we deduce
that (VP) is type II LP well-posed. The proof of the second part of the theorem is
similar to that of the second part of Theorem 10.20. ��

Let

T 2
2 (ε) = {x ∈ X1 : dK(g(x))≤ ε, f (x) ≤C v + εe for some v ∈V}.

The next theorem can be proved analogously to Theorem 10.22.

Theorem 10.23. Let (X ,d1) be a complete metric space and V �= /0. Then, (VP) is
type II LP well-posed in the generalized sense if and only if

lim
ε→0

α(T 2
2 (ε)) = 0.

Definition 10.9. (VP) is said to be inf-externally stable if for each x0 ∈ X0, there
exists v0 ∈V such that v0 ≤C f (x0).

Define

T 1
3 (ε) =

{
x ∈ X1 : inf

v∈V
ξ (v− f (x))≥−ε,dX0(x)≤ ε

}
.

Theorem 10.24. Let (X ,d1) be a complete metric space and V �= /0. Suppose that
(VP) is inf-externally stable. Then, (VP) is type III LP well-posed if and only if



10 Levitin–Polyak Type Well-Posedness in Constrained Optimization 355

lim
ε→0

α(T 1
3 (ε)) = 0.

Proof. First, we show that T 1
3 (ε) is nonempty and closed for any ε > 0. The

nonemptiness of T 1
3 (ε) follows from the fact that V �= /0. Now let {xk} ⊆ T 1

3 (ε)
and xk → x. Then,

inf
v∈V

ξ (v− f (xk))≥−ε, (10.87)

dX0(xk)≤ ε. (10.88)

Note that the continuity of f implies that the function infv∈V ξ (v− f (·)) is upper
semicontinuous. Taking the upper limit in (10.87), we have

inf
v∈V

ξ (v− f (x))≥−ε. (10.89)

Taking the limit in (10.88), we obtain

dX0(x)≤ ε. (10.90)

The combination of (10.89) and (10.90) yields x ∈ T 1
3 (ε). Hence, T 1

3 (ε) is closed.
Second, we show that

X =
⋂
ε>0

T 1
3 (ε). (10.91)

Obviously, X ⊆ ∩ε>0T 1
3 (ε). Now let x ∈ ∩ε>0T 1

3 (ε) and εk ↓ 0. Then

inf
v∈V

ξ (v− f (x))≥−εk, (10.92)

dX0(x)≤ εk. (10.93)

From (10.93), we have x ∈ X0. From (10.92), we have

ξ (v− f (x))≥ 0,∀v ∈V. (10.94)

Suppose to the contrary that there exist x0 ∈ X0 and δ > 0 such that

f (x0)− f (x)≤C −δe. (10.95)

By the inf-external stability of (VP), there exists v0 ∈V such that v0 ≤C f (x0). This
together with (10.95) implies that

ξ (v0− f (x))≤−δ ,

contradicting (10.94). Thus, (10.91) is proved. Clearly, T 1
3 (·) is increasing with

ε > 0. By the Kuratowski theorem, we have
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haus(T 1
3 (ε),T 1

3 )→ 0 as ε → 0, (10.96)

where
T 1

3 =
⋂
ε>0

T 1
3 (ε)

is nonempty and compact.
Let {xk} be a type III LP minimizing sequence. Then, by taking a subsequence,

we can find a decreasing sequence εk → 0 such that

inf
v∈V

ξ (v− f (xk))≥−εk,

dX0(xk)≤ εk.

Thus, xk ∈ T 1
3 (εk). By (10.91) and (10.96), we see that dX(xk)→ 0. By Proposition

10.4, (VP) is type III LP well-posed. The second part of the theorem can be proved
similarly to that of Theorem 10.20. The proof is complete. ��

Define

T 2
3 (ε) = {x ∈ X1 : inf

v∈V
ξ (v− f (x))≥−ε,dK(g(x))≤ ε}.

The following theorem can be proved analogously to Theorem 10.24.

Theorem 10.25. Let (X ,d1) be a complete metric space and V �= /0. Suppose that
(VP) is inf-externally stable. Then, (VP) is type III LP well-posed in the generalized
sense if and only if

lim
ε→0

α(T 2
3 (ε)) = 0.

Next proposition gives sufficient conditions for the type III (generalized) LP well-
posedness.

Proposition 10.5. (i) Assume that there exists δ > 0 such that

X1(δ ) = {x ∈ X1 : dX0(x)≤ δ} (10.97)

is compact. Then, (VP) is type III LP well-posed.
(ii) Assume that there exists δ > 0 such that

X2(δ ) = {x ∈ X1 : dK(g(x))≤ δ} (10.98)

is compact.
Then, (VP) is type III LP well-posed in the generalized sense.

Proof. We prove only (i) and (ii) can be similarly proved.
Let {xk} be a type III LP minimizing sequence. Then

liminf
k→+∞

{ inf
v∈V

ξ (v− f (xk))} ≥ 0, (10.99)
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dX0(xk)→ 0. (10.100)

(10.100) implies that xk ∈ X1(δ ) when k ≥ k0 for some k0 > 0. By the compactness
of X1(δ ), there exists a subsequence {xkj} and x ∈ X1(δ ) such that xkj → x. This
together with (10.100) implies that x ∈ X0. Moreover, from (10.99), we have

ξ (v− f (x))≥ 0, ∀v ∈V. (10.101)

Suppose to the contrary that x /∈ X . Then, there exists x0 ∈ X0 such that

f (x0)− f (x) ∈ −int C. (10.102)

Note that X0 ⊆ X1(δ ) is nonempty and compact and f is continuous. Consequently,
there exist v0 ∈V such that

v0 ≤C f (x0). (10.103)

The combination of (10.101)–(10.103) leads to a contradiction. Hence, x ∈ X and
the proof is complete. ��

Now we consider the special case when X is a finite dimensional normed space,
Y = Rl , C = Rl

+, e = (1, · · · ,1) ∈ Rl , ξ (y) = max{yi : i = 1, · · · , l},∀y ∈ Y.

Definition 10.10. Let X be a finite dimensional normed space, X2 ⊆X be nonempty
and f0 : X2 → R. f0 is said to be level-bounded on X2 if, for each t ∈ R, the set
{x ∈ X2 : f0(x)≤ t} is bounded.

Proposition 10.6. Assume that X is a finite dimensional space, Y = R, C = R+.
Further assume that one of the following conditions holds:

(i) For each i ∈ {1, · · · , l}, fi is level-bounded on X1

(ii) There exists δ > 0 such that for each i ∈ {1, · · · , l}, fi is level-bounded on
X1(δ ), where X1(δ ) is defined by (10.97)

(iii) For each i ∈ {1, · · · , l},

lim
x∈X1,‖x‖→+∞

max{ fi(x),dX0(x)}= +∞. (10.104)

Then, (VP) is type III LP well-posed.

Proof. Clearly, (i)⇒(iii)⇒(ii). So we need only to prove that if (ii) holds, then (VP)
is type III LP well-posed. Let {xk} be a type III LP minimizing sequence. Then
(10.99) and (10.100) hold. (10.100) implies that xk ∈X1(δ ),∀k≥ k0 for some k0 > 0.
(10.99) implies that there exists 0 < εk → 0 such that

ξ (v− f (xk))≥−εk,∀v ∈V. (10.105)

We assert that {xk} is bounded. Otherwise, assume without loss of generality that
‖xk‖→+∞. Then, by the level-boundedness of each fi on X1(δ ), we have

lim
k→+∞

fi(xk) = +∞.
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It follows that (10.105) cannot hold. Thus, there exists a subsequence {xkj} of {xk}
and x ∈ X1 such that xkj → x. This together with (10.100) implies that x ∈ X0. Now
we show that x ∈ X . Otherwise, there exist x0 ∈ X0 and δ0 > 0 such that

fi(x0)≤ fi(x), i = 1, · · · , l. (10.106)

It is obvious that the set

A = {x ∈ X0 : fi(x)≤ fi(x0), i = 1, · · · , l}
is nonempty and compact. Note that x0 ∈ A. It follows that there exists x ∈ A such
that f (x)− f (x) /∈ −C\{0},∀x ∈ A. It is easily verified that x ∈ X . Moreover, by
x ∈ A, we have

f (x)≤C f (x0).
This together with (10.106) implies that

f (x)≤C f (x)− δ0e.

From xkj → x and the continuity of f on X1, we have

f (x)≤C f (xkj )− δ/2e

when j is large enough, contradicting (10.105). The proof is complete. ��
Similarly, we can prove the next result.

Proposition 10.7. Assume that X is a finite dimensional space, Y = R, C = R+.
Further assume that one of the following conditions holds:

(i) For each i ∈ {1, · · · , l}, fi is level-bounded on X1

(ii) There exists δ > 0 such that for each i ∈ {1, · · · , l}, fi is level-bounded on
X2(δ ), where X2(δ ) is defined by (10.98)

(iii) For each i ∈ {1, · · · , l},

lim
x∈X1,‖x‖→+∞

max{ fi(x),dK(g(x))} = +∞. (10.107)

Then, (VP) is type III LP well-posed in the generalized sense.

Now we consider the case when Z is a normed space and K is a closed and convex
cone with nonempty interior int K and let e′ ∈ int K. Let t ≥ 0 and denote

X3(t) = {x ∈ X1 : g(x) ∈ K− te′}. (10.108)

Proposition 10.8. Let Z be a normed space and K a closed and convex cone with
nonempty interior int K and let e′ ∈ int K. If there exists t0 > 0 such that X3(t0) is
compact, then (VP) is type III LP well-posed in the generalized sense.
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Proof. According to (ii) of Proposition 10.5, we need only to show that there exists
δ0 > 0 such that X2(δ0) is compact. To this purpose, we need only to show that
there exists δ0 > 0 such that X2(δ0) ⊆ X3(t0). Suppose to the contrary that there
exists 0 < δk → 0 and xk ∈ X2(δk) such that xk /∈ X3(t0). That is,

dK(g(xk))≤ δk, (10.109)

g(xk) /∈ K− t0e′. (10.110)

Define
η(z) = min{t ∈R1 : z ∈ −K + te′},∀z ∈ Z.

It is obvious that the function η has the same properties as the function ξ . From
(10.110), we get

η(−g(xk))≥ t0,∀k. (10.111)

From (10.109), we deduce that there exists wk ∈ K such that ‖g(xk)−wk‖→ 0. Let
zk = wk − g(xk)→ 0. Then, −g(xk) = zk −wk, implying η(−g(xk)) ≤ η(zk)→ 0,
contradicting (10.111). The proof is complete. ��
Proposition 10.9. Assume that X is a finite dimensional space, Y = Rl , C = Rl

+,
e = (1, · · · ,1) ∈ Rl . Let Z be a normed space and K a closed and convex cone with
nonempty interior int K and let e′ ∈ int K. Further assume that one of the following
conditions holds:

(i) For each i ∈ {1, · · · , l}, fi is level-bounded on X1

(ii) There exists t0 > 0 such that for each i ∈ {1, · · · , l}, fi is level-bounded on
X3(t0)

(iii) for each i ∈ {1, · · · , l}, (10.107) holds

Then, (VP) is type III LP well-posed in the generalized sense.

Proof. It is easy to show that (i)⇒(iii)⇒(ii). Similar to the proof of Proposition
10.8, we can show that (ii) implies that there exists δ0 > 0 such that for each i ∈
{1, · · · , l}, fi is level-bounded on X2(δ0). By (ii) of Proposition 10.7, (VP) is type
III LP well-posed in the generalized sense. ��

Now we make the following assumption.

Assumption 10.2 X is a finite dimensional normed space, X1 ⊆ X is a nonempty,
closed and convex set, Y = Rl , C = Rl

+, e = (1, · · · ,1) ∈ Rl , Z is a normed space
K ⊆ Z is a closed and convex cone with nonempty interior int K and e′ ∈ int K, each
fi (i = 1, · · · , l) is convex on X1 and g is K-concave on X1 (namely, for any x1,x2 ∈X1

and any θ ∈ (0,1), there holds that g(θx1+(1−θ )x2)−θg(x1)−(1−θ )g(x2)∈K).

It is obvious that under Assumption 10.2, (VP) is a convex vector program.
The next result was obtained in [17, Theorem 2.1].

Lemma 10.4. Let Assumption 10.2 hold. Then the following statements are
equivalent:
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(a) The optimal set X of (VP) is nonempty and compact
(b) For each i∈ {1, · · · , l}, for any t ≥ 0, fi is level-bounded on the set X3(t) defined

by (10.108).

Theorem 10.26. Let Assumption 10.2 hold. Then, (VP) is type III LP well-posed
in the generalized sense if and only if the optimal set X of (VP) is nonempty and
compact.

Proof. The sufficiency part follows directly from Lemma 10.4 and Proposition 10.9,
while the necessity part is obvious by (ii) of Remark 10.6. ��
Lemma 10.5. Let Assumption 10.2 hold. Then the following statements are
equivalent:

(a) The optimal set X of (VP) is nonempty and compact
(b) For each i ∈ {1, · · · , l}, for any δ ≥ 0, fi is level-bounded on the set X1(δ )

defined by (10.97).

Proof. It is clear that problem (VP) is equivalent to the following vector optimiza-
tion problem

(VP’) inf f (x)

s.t. dX0(x)≤ 0.

By Assumption 10.2, X0 is nonempty and convex. It follows that dX0(·) is a contin-
uous and convex function. Applying Lemma 10.4 by setting g(x) = dX0(x),∀x ∈ X1,
Z = R1 and K = R1

+, we see that X is nonempty and compact if and only if each
fi is level-bounded on X1(δ ),∀δ ≥ 0, i ∈ {1, · · · , l}. ��

The following theorem follows immediately from (ii) of Proposition 10.6 and
Lemma 10.5.

Theorem 10.27. Let Assumption 10.2 hold. Then, (VP) is type III LP well-posed if
and only if the optimal set X of (VP) is nonempty and compact.

Remark 10.7. By Theorems 10.26 and 10.27 as well as (i) of Remark 10.6, if
Assumption 10.2 holds, then any type of (generalized) LP well-posednesses is
equivalent to the fact that the set X is nonempty and compact.

10.3.3 Relations Among Various Types of (Generalized) LP
Well-Posedness

Simple relationships among the (generalized) LP well-posednesses were mentioned
in (ii) of Remark 10.6. Under Assumption 10.2, the equivalence of all the six types
of (generalized) LP well-posednesses was noted in Remark 10.7. In this section, we
investigate further relationships among them.
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Theorem 10.28. Suppose that there exist δ > 0, α > 0 and c > 0 such that

dX0(x)≤ cdαK (g(x)), ∀x ∈ X2(δ ),

where X2(δ ) is defined by (10.98). If (VP) is type I (resp. type II, type III) LP well-
posed, then (VP) is type I (resp. type II, type III) LP well-posed in the generalized
sense.

Proof. The proof is elementary. ��
It is clear that X2(δ ) given by (10.98) can be seen as a set-valued map from

R1
+ to X . Thus, we have the following theorem.

Theorem 10.29. Assume that the set-valued map X2(δ ) defined by (10.98) is u.H.c.
at 0 ∈Rl

+. If (VP) is type I (resp. type II, type III) LP well-posed, then (VP) is type I
(resp. type II, type III) LP well-posed in the generalized sense.

Proof. We prove only the type I case, the other two cases can be similarly proved.
Let {xk} ⊆ X1 be a type I generalized LP minimizing sequence. That is,

dV ( f (xk))→ 0, (10.112)

dK(g(xk))→ 0. (10.113)

(10.113), together with the u.H.c. of X2(δ ) at 0, implies that dX0(xk)→ 0. This fact
combined with (10.112) implies that {xk} is a type I LP minimizing sequence. Thus,
there exist a subsequence {xkj} of {xk} and some x ∈ X such that xkj → x. Hence,
(VP) is type I LP well-posed in the generalized sense. ��

Now we consider the case when Z is a normed space.

Remark 10.8. Let Z be a normed space and {xk} ⊆ X1. Then, dK(g(xk))→ 0 if and
only if there exists {zk} ⊆ Z with zk → 0 such that g(xk) ∈ K + zk,∀k.

Proof. Necessity. From dK(g(xk))→ 0, we deduce that there exists {uk} ⊆ K such
that

‖g(xk)−uk‖→ 0.

Let zk = g(xk)−uk. Then, zk → 0 and g(xk) ∈ K + zk.
Sufficiency. Since g(xk)− zk ∈ K,

dK(g(xk))≤ ‖g(xk)− (g(xk)− zk)‖= ‖zk‖→ 0. ��
Let

X4(z) = {x ∈ X1 : g(x) ∈ K + z},∀z ∈ Z. (10.114)

Clearly, X4(z) can seen as a set-valued map from Z to X .
Corresponding to Theorem 10.29, we have the following result.

Theorem 10.30. Assume that the set-valued map X4(z) defined by (10.114) is u.H.c.
at 0 ∈ Z. If (VP) is type I (resp. type II, type III) LP well-posed, then (VP) is type I
(resp. type II, type III) LP well-posed in the generalized sense.
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In the special case when K is a closed and convex cone with nonempty interior
int K and e′ ∈ int K. We consider X3(t) defined by (10.108) as a set-valued map
from Rl

+ to X . We have the next result.

Theorem 10.31. Assume that the set-valued map X3(t) defined by (10.108) is u.H.c.
at 0 ∈ Rl

+. If (VP) is type I (resp. type II, type III) LP well-posed, then (VP) is type
I (resp. type II, type III) LP well-posed in the generalized sense.

Theorem 10.32. Assume that there exists δ0 > 0 such that g is uniformly continu-
ous on the set X1(δ0) defined by (10.97). If (VP) is type I (resp. type II, type III) LP
well-posed in the generalized sense, then (VP) is type I (resp. type II, type III) LP
well-posed.

Proof. We prove only the type I case. Suppose that {xk} ⊆ X1 is a type I LP
minimizing sequence. That is,

dV ( f (xk))→ 0, (10.115)

dX0(xk)→ 0. (10.116)

By (10.116), we have dX0(xk) ≤ δ0 when k ≥ k0 for some k0 > 0. By the uniform
continuity of g on X1(δ0), dK(g(xk)) → 0. This together with (10.115) implies
that {xk} is a type I generalized LP minimizing sequence. Thus, there exist a
subsequence {xkj} of {xk} and some x ∈ X such that xkj → x. Hence, (VP) is type I
LP well-posed. ��

10.3.4 Application to a Class of Penalty Methods

In this subsection, we consider the convergence of a class of penalty methods under
the assumption of type III generalized LP well-posedness of (VP).

Let α > 0 and e ∈ int C. Consider the following penalty problem for (VP):

(V PPα(r)) inf
x∈X1

f (x)+ rdαK (g(x))e, r > 0.

Remark 10.9. This class of penalty methods was studied in, e.g., [17].

Theorem 10.33. Let 0 < rn → +∞. Consider problems (VP) and (VPPα(rk)).
Assume that there exist r > 0 and m0 ∈ R1 such that

f (x)+ rdαK (g(x))e≥C m0e, ∀x ∈ X1. (10.117)

Let 0 < εk → 0. Suppose that each xk ∈ X1 satisfies

f (x)+ rkdαK (g(x))e− f (xk)− rkdαK (g(xk))e + εke /∈ −int C, ∀x ∈ X1. (10.118)
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Further assume that (VP) is type III LP well-posed in the generalized sense. Then,
there exist a subsequence {xkj} of {xk} and some x∈ X such that xk j → x. Moreover,
each limit point of {xk} belongs to X.

Proof. Let x0 ∈ X0. From (10.118), we deduce that

f (x0)− f (xk)− rkdαK (g(xk))e + εke /∈ −int C. (10.119)

The combination of (10.117) and (10.119) yields

f (x0)−m0e− (rk− r)dαK (g(xk))e + εke /∈ −int C,

implying

ξ ( f (x0))−m0− (rk− r)dαK (g(xk))+ εk ≥ 0,

namely,

dK(g(xk))≤
[
ξ ( f (x0))+ εk−m0

rk− r

]1/α
.

Hence,

lim
k→+∞

dK(g(xk)) = 0. (10.120)

Moreover, from (10.119), we have

f (x0)− f (xk)+ εke /∈−int C.

By the arbitrariness of x0 ∈ X0, this further implies that

v− f (xk)+ εke /∈ −int C,∀v ∈V.

Therefore,

ξ (v− f (xk))+ εk ≥ 0,∀v ∈V.

Hence,

liminf
k→+∞

{ inf
v∈V

ξ (v− f (xk))} ≥ 0. (10.121)

By (10.120) and (10.121), {xk} is a type III generalized LP minimizing sequence.
Since (VP) is type III LP well-posed in the generalized sense, there exist a
subsequence {xkj} of {xk} and some x ∈ X such that xkj → x. Finally, suppose that
x is a limit point of {xk}. Then, there exists a subsequence {xkj} such that xkj → x.
It is obvious that {xkj} is also a type III generalized LP minimizing sequence. By
the type III generalized LP well-posedness of (VP), there exist a subsequence {xkjl

}
and some x′ ∈ X such that xkjl

→ x′. On the other hand, we have xkjl
→ x. It follows

that x = x′. Hence, x ∈ X . The proof is complete. ��
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Chapter 11
Vector Variational Principles for Set-Valued
Functions

Christiane Tammer and Constantin Zălinescu

11.1 Introduction

Deriving existence results and necessary conditions for approximate solutions of
nonlinear optimization problems under week assumptions is an interesting and
modern field in optimization theory. It is of interest to show corresponding results
for optimization problems without any convexity and compactness assumptions.
Ekeland’s variational principle is a very deep assertion about the existence of an
exact solution of a slightly perturbed optimization problem in a neighborhood of
an approximate solution of the original problem. The importance of Ekeland’s
variational principle in nonlinear analysis is well known. Especially, this assertion
is very useful for deriving necessary conditions under certain differentiability
assumptions. In optimal control Ekeland’s principle can be used in order to prove
an ε-maximum principle in the sense of Pontryagin and in approximation theory for
deriving ε-Kolmogorov conditions.

Below we recall a versatile variant.

Proposition 11.1 (Ekeland’s Variational Principle [21, 22]). Let (X ,d) be a
complete metric space and f : X → R ∪ {+∞} a proper, lower semicontinuous
function bounded below. Consider ε > 0 and x0 ∈ X such that f (x0) ≤ inf f + ε .
Then for every λ > 0 there exists x ∈ dom f such that

f (x)+λ−1εd(x,x0)≤ f (x0), d(x,x0)≤ λ , (11.1)
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Fig. 11.1 Minimal point
(x,y) of a set A with respect
to Kε

(x0 ,y0)

(x̄, ȳ)+Kε

(x0 ,y0)+Kε

(x̄ , ȳ)

A

and

f (x) < f (x)+λ−1εd(x,x) ∀x ∈ X \ {x}. (11.2)

This means that for λ ,ε > 0 and x0 an ε-approximate solution of the minimiza-
tion problem

f (x)→min s.t. x ∈ X , (11.3)

there exists a new point x that is not worse than x0 and belongs to a λ -neighborhood
of x0, and especially, x satisfies the variational inequality (11.2). Relation (11.2)
says, in fact, that x minimizes globally f +λ−1εd(x, ·), which is nothing else than
a Lipschitz perturbation of f (for “smooth” principles, see [11]). Note that λ =

√
ε

gives a useful compromise in Proposition 11.1. For applications see Sect. 11.5 and,
e.g., [24, 25, 58, 61, 62].

There are several statements that are equivalent to Ekeland’s variational principle
(EVP); see, e.g., [1, 2, 5, 12–16, 27, 29–31, 33, 34, 38, 52–54].

Phelps [54] introduced for ε > 0 the following closed convex cone Kε in X ×R,
where X is a Banach space:

Kε := {(x,r) ∈ X ×R | ε||x|| ≤ −r} (11.4)

(see Fig. 11.1). Sometimes the cone Kε is called a Phelps cone. Phelps has shown
the existence of minimal points of a set A ⊆ X ×R with respect to Kε under a
closedness assumption (H) and a boundedness assumption (B) concerning A .

Proposition 11.2 (Phelps Minimal-Point Theorem [53, 54]). Let X be a Banach
space and A (�= /0)⊆ X ×R. Assume

(H) A is closed
(B) inf{r ∈ R | (x,r) ∈A }= 0

Suppose ε > 0. Then, for any point (x0,r0) ∈A there exists a point (x,r) ∈A such
that:

(a) (x,r) ∈A ∩ ((x0,r0)+ Kε)
(b) {(x,r)}= A ∩ ((x,r)+ Kε)
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Remark 11.1. The assertion (a) in Proposition 11.2 can be considered as a domina-
tion property and assertion (b) describes a minimal point (x,r) of A with respect
to Kε .

In Phelps [53] and [54] it is shown that Ekeland’s variational principle (Propo-
sition 11.1) is a conclusion of a minimal-point theorem (Proposition 11.2) setting
A = epi f in Proposition 11.2. We will present extensions of Phelps minimal-point
theorem to general product spaces and corresponding variational principles. The
aim of this chapter is to give an overview on existing minimal-point theorems and
variational principles of Ekeland’s type for set-valued and vector-valued objective
functions. In order to show such assertions a main tool is the application of a
certain scalarization technique. In the following section we will discuss scalarizing
functionals and their properties.

11.2 Preliminaries

Let us recall some notions and notation for sets and functions defined on locally
convex spaces. So let (X ,τ) be a locally convex space and A ⊆ X . By clA (or clτ A
or A or A

τ
), intA and bdA we denote the closure (with respect to τ when we want

to emphasize the topology), the interior and the boundary of A; moreover convA is
the convex hull of A and convA := cl(convA). As usual, for A,B⊆ X , a ∈ X , Γ ⊆R
and α ∈ R we set

A + B := {a + b | a ∈ A, b ∈ B}, a + B := {a}+ B,

ΓA := {γa | γ ∈ Γ , a ∈ A}, Γ a := Γ {a}, αA := {α}A, −A := (−1)A.

The recession cone of the nonempty set A⊆ X is the set

A∞ := {u ∈ X | x + tu∈ A ∀x ∈ A, ∀t ∈ R+}.

It follows easily that A∞ is a convex cone; A∞ is also closed when A is closed. If A
is a closed convex set then A∞ = ∩t∈Pt(A− a), where P := ]0,+∞[ and a ∈ A (A∞
does not depend on a ∈ A). Moreover, the indicator function associated to the set
A ⊆ X is the function ιA : X → R := R∪{−∞,∞} defined by ιA(x) := 0 for x ∈ A
and ιA(x) := ∞ for x ∈ X \A, where ∞ := +∞. A cone K ⊆ X is called pointed if
K∩ (−K) = {0}.

Let f : X → R; the domain and the epigraph of f are defined by

dom f := {x ∈ X | f (x) < +∞}, epi f := {(x,t) ∈ X ×R | f (x) ≤ t}.

The function f is said to be convex if epi f is a convex set, and f is said to be proper
if dom f �= /0 and f does not take the value−∞. Of course, f is lower semicontinuous
if epi f is closed. The class of lower semi-continuous (lsc for short) proper convex
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functions on X will be denoted by Γ (X). Let B⊆X ; f : X →R is called B-monotone
if x2 − x1 ∈ B ⇒ ϕ(x1) ≤ ϕ(x2). Furthermore, f is called strictly B-monotone if
x2− x1 ∈ B\ {0}⇒ ϕ(x1) < ϕ(x2).

We consider a proper closed convex cone K ⊆ Y and k0 ∈ K \ (−K). As usual,
we denote

K+ := {y∗ ∈ Y ∗ | y∗(k)≥ 0 ∀k ∈ K},
K# := {y∗ ∈ Y ∗ | y∗(k) > 0 ∀k ∈ K \ {0}}

the positive dual cone of the convex cone K ⊆ Y and the quasi interior of K+,
respectively.

In Sect. 11.3 we show several properties of scalarizing functionals. Motivated
by papers on the field of economics, especially production theory (cf. Luenberger
[50]) we assume that the sets A and K verify the free-disposal condition A−K = A
included in assumption (A1) introduced in Sect. 11.3.2; for Lipschitz properties
of ϕA,k0 (see (11.5) for its definition) we need the strong free-disposal condition
A− (K \ {0}) = intA, which is a part of assumption (A2). The main results con-
cerning Lipschitz properties are given in Sect. 11.3.4 under assumption (A1): First,
without convexity assumptions for the closed set A ⊆ Y we prove that ϕA,k0 is
Lipschitz on Y under the (stronger) assumption k0 ∈ intK (Theorem 11.4); then,
assuming that A is a convex set with nonempty interior and k0 /∈ A∞ we show that
ϕA,k0 is locally Lipschitz on int(domϕA) = Rk0 + intA (Proposition 11.5). More-
over, without assuming the convexity of A and without the assumption k0 ∈ intK we
give a characterization of Lipschitz continuity of ϕA,k0 on a neighbourhood of y0 ∈Y
using the notion of epi-Lipschitz set introduced by Rockafellar [55] (Theorem 11.5).
In Sect. 11.3.5 we provide formulas for the conjugate and the subdifferential of ϕA,k0

when A is convex. Using the properties of the scalarizing functionals we present in
Sect. 11.4 minimal-point theorems and corresponding variational principles. As an
application of the Lipschitz properties of ϕA,k0 , we establish necessary conditions
for properly efficient solutions of a vector optimization problem in terms of the
Mordukhovich subdifferential in Sect. 11.5.2. Taking into account the fact that the
conditions in the definition of properly efficient elements are related to the strong
free disposal condition in (A2) we get in Theorem 11.15 useful properties for the
scalarizing functional ϕA,k0 as well as for the Mordukhovich subdifferential of the
scalarized objective function.

11.3 Nonlinear Scalarization Functions

In order to show minimal-point theorems and corresponding variational principles in
Sect. 11.4 we use a scalarization method by means of certain nonlinear functionals.
In this section we discuss useful properties of these functionals (cf. Göpfert et al.
[32] and Tammer and Zălinescu [63]).



11 Vector Variational Principles for Set-Valued Functions 371

Fig. 11.2 Level sets of the
function ϕA,k0 from (11.5),
where A =−K =−R2

+ and
k0 ∈ int K holds
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11.3.1 Construction of Scalarizing Functionals

Having a nonempty subset A of a real linear space Y and an element k0 �= 0 of Y ,
Gerstewitz (Tammer) and Iwanow [28] introduced the function (see Fig. 11.2)

ϕA := ϕA,k0 : Y → R, ϕA,k0(y) := inf{t ∈ R | y ∈ tk0 + A}, (11.5)

where, as usual, inf /0 := ∞ (and sup /0 := −∞); we use also the convention (+∞)+
(−∞) := +∞.

This function was used by Chr. Tammer and her collaborators, as well as by D.T.
Luc etc., mainly for scalarization of vector optimization problems. Luenberger [50,
Definition 4.1] considered

σ(g;y) := inf{ξ ∈ R | y− ξg∈ Y },

the corresponding function being called the shortage function associated to the
production possibility set Y ⊆ Rm and g ∈ Rm

+ \ {0}. The case when g = (1, . . . ,1)
was introduced earlier by Bonnisseau and Cornet [10]. A similar function is
introduced in [50, Definition 2.1] under the name of benefit function.

More recently such a function was considered in the context of mathematical
finance beginning with Artzner et. al. [3]; see Heyde [42] and Hamel [39] for more
historical facts. Under the name of topical function such functions were studied by
Singer and his collaborators (see [59]). We discuss many important properties of
ϕA,k0 in Sect. 11.3.2. Moreover, we study local continuity properties in Sect. 11.3.4.
Very recently Bonnisseau and Crettez [4] obtained local Lipschitz properties for
ϕA,k0 (called Luenberger shortage function in [4]) in a very special case, more
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general results are given by Tammer and Zălinescu [63]. Of course, ϕA,k0 is a
continuous sublinear functional if A is a proper closed convex cone and k0 ∈ intA
(cf. Corollary 11.2) and so ϕA,k0 is Lipschitz continuous. Such Lipschitz properties
of ϕA,k0 are of interest also in the case when A ⊆ Y is an arbitrary (convex) set and
the interior of the usual ordering cone in Y is empty like in mathematical finance
where the acceptance sets are in function spaces as Lp and the corresponding risk
measures are formulated by means of ϕA,k0 (see e.g. Föllmer and Schied [26]).

11.3.2 Properties of Scalarization Functions

Throughout this section Y is a separated locally convex space and Y ∗ is its
topological dual, K ⊆ Y is a proper closed convex cone, k0 ∈ K \ (−K) and A ⊆ Y
is a nonempty set. The cone K determines the order≤K on Y defined by y1 ≤K y2 if
y2− y1 ∈ K.

Furthermore, we assume that A satisfies the following condition (see also [4]):

(A1) A is closed, satisfies the free-disposal assumption A−K = A, and A �= Y .

We shall use also the (stronger) condition:

(A2) A is closed, satisfies the strong free-disposal assumption A−(K\{0})= intA,
and A �= Y .

Because A−K = A∪ (A− (K \ {0})), we have that (A2)⇒ (A1). Moreover, the
condition A− (K \ {0}) = intA is equivalent to A− (K \ {0})⊆ intA.

Remark 11.2. Assume that the nonempty set A satisfies assumption (A2). Then K
is pointed, that is, K∩ (−K) = {0}, and A−Pk0 ⊆ intA for k0 ∈ K \ {0}.

The last assertion is obvious. For the first one, assume that k ∈ K∩ (−K) \ {0}.
Take a ∈ bdA (⊆ A); such an a exists because A �= Y . Then a′ := a− k ∈ intA ⊆ A,
and so a = a′ − (−k) ∈ intA, a contradiction.

Remark 11.3. When A satisfies condition (A1) or (A2) with respect to K and k0 ∈
K \(−K) then A satisfies condition (A1) or (A2), respectively, with respect to R+k0.
In fact in many situations it is sufficient to take K =R+k0 for some k0 ∈Y \{0}. In
such a situation (A1) [respectively (A2)] means that A is a closed proper subset of
Y and A−R+k0 = A [respectively A−Pk0 ⊆ intA].

The free-disposal condition A = A−K shows that K ⊆−A∞. As observed above
A∞ is also closed because A is closed. Hence −A∞ is the largest closed convex cone
K verifying the free-disposal assumption A = A−K.

The aim of this section is to find a suitable functional ϕ : Y → R and conditions
such that two given nonempty subsets A and H of Y can be separated by ϕ .
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To A ⊆ Y satisfying (A1) and k0 ∈ K \ (−K) we associate the function ϕA,k0

defined in (11.5). We consider the set

A′ := {(y,t) ∈ Y ×R | y ∈ tk0 + A}.

The assumption on A shows that A′ is of epigraph type, i.e. if (y,t) ∈ A′ and t ′ ≥ t,
then (y,t ′) ∈ A′. Indeed, if y ∈ tk0 + A and t ′ ≥ t, since

tk0 + A = t ′k0 + A− (t ′ − t)k0 ⊆ t ′k0 + A,

(because of (A1)) we obtain that (y,t ′) ∈ A′. Also observe that A′ = T−1(A), where
T : Y×R→Y is the continuous linear operator defined by T (y,t) := tk0 +y. So, if A
is closed (convex, cone), then A′ is closed (convex, cone). Obviously, the domain of
ϕA is the set Rk0 + A and A′ ⊆ epiϕA ⊆ clA′ (because A′ is of epigraph type), from
which it follows that A′ = epiϕA if A is closed, and so ϕA is a lower semicontinuous
function.

In the next results we collect several useful properties of ϕA (compare Göpfert
et al. [32]).

Theorem 11.1. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ K \ (−K)
and A⊆ Y is a nonempty set. Furthermore, suppose

(A1) A is closed, satisfies the free-disposal assumption A−K = A, and A �= Y.

Then ϕA (defined in (11.5)) is lsc, domϕA =Rk0 + A,

{y ∈ Y | ϕA(y)≤ λ}= λk0 + A ∀λ ∈ R, (11.6)

and

ϕA(y +λk0) = ϕA(y)+λ ∀y ∈ Y, ∀λ ∈ R. (11.7)

Moreover,

(a) ϕA is convex if and only if A is convex; ϕA(λy) = λϕA(y) for all λ > 0 and y∈Y
if and only if A is a cone.

(b) ϕA is proper if and only if A does not contain lines parallel to k0, i.e.,

∀y ∈ Y, ∃t ∈ R : y + tk0 /∈ A. (11.8)

(c) ϕA is finite-valued if and only if A does not contain lines parallel to k0 and

Rk0 + A = Y. (11.9)

(d) Let B ⊆ Y; ϕA is B-monotone if and only if A−B⊆ A.
(e) ϕA is subadditive if and only if A + A⊆ A.
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Proof. We have already observed that domϕA = Rk0 + A and ϕA is lsc when A is
closed. From the definition of ϕA the inclusion ⊇ in (11.6) is obvious, while the
converse inclusion is immediate, taking into account the closedness of A. Formula
(11.7) follows easily from (11.6).

(a) Since the operator T defined above is onto and epiϕA = T−1(A), we have that
epiϕA is convex (cone) if and only if A = T (epiϕA) is so. The conclusion
follows.

(b) We have

ϕA(y) =−∞⇔ y ∈ tk0 + A ∀t ∈ R⇔{y + tk0 | t ∈ R} ⊆ A.

The conclusion follows.
(c) The conclusion follows from (b) and the fact that domϕA = Rk0 + A.
(d) Suppose first that A−B ⊆ A and take y1,y2 ∈ Y with y2 − y1 ∈ B. Let t ∈ R

be such that y2 ∈ tk0 + A. Then y1 ∈ y2−B ⊆ tk0 +(A−B) ⊆ tk0 + A, and so
ϕA(y1) ≤ t. Hence ϕA(y1) ≤ ϕA(y2). Assume now that ϕA is B-monotone and
take y∈ A and b∈ B. From (11.6) we have that ϕA(y)≤ 0. Since y−(y−b)∈ B,
we obtain that ϕA(y−b)≤ ϕA(y)≤ 0, and so, using again (11.6), we obtain that
y−b∈ A.

(e) Suppose first that A + A ⊆ A and take y1,y2 ∈ Y . Let ti ∈ R be such that yi ∈
tik0 + A for i ∈ {1,2}. Then y1 + y2 ∈ (t1 + t2)k0 + (A + A) ⊆ (t1 + t2)k0 + A,
and so ϕA(y1 + y2) ≤ t1 + t2. It follows that ϕA(y1 + y2) ≤ ϕA(y1) + ϕA(y2).
Assume now that ϕA is subadditive and take y1,y2 ∈ A. From (11.6) we have
that ϕA(y1),ϕA(y2) ≤ 0. Since ϕA is subadditive, we obtain that ϕA(y1 + y2) ≤
ϕA(y1)+ϕA(y2)≤ 0, and so, using again (11.6), we obtain that y1 +y2 ∈ A. ��

Remark 11.4. From Theorem 11.1 we get under assumption (A1) that ϕA is lower
semicontinuous,

A = {y ∈ Y | ϕA(y)≤ 0}, intA⊆ {y ∈ Y | ϕA(y) < 0}, (11.10)

and so

bdA = A\ intA⊇ {y ∈ Y | ϕA(y) = 0}. (11.11)

In general the inclusion in (11.11) is strict.

Example 11.1. Consider K := R2
+, k0 := (1,0) and

A := (]−∞,0]× ]−∞,0])∪ ([0,∞[× ]−∞,−1]).

Then ϕA(u,v) = −∞ for v ≤ −1, ϕA(u,v) = u for v ∈ (−1,0] and ϕA(u,v) = ∞ for
v > 0. In particular, ϕA(0,−1) =−∞ and (0,−1) ∈ bdA (see Fig. 11.3).

Theorem 11.2. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ K \ (−K)
and A⊆ Y is a nonempty set. Furthermore, suppose

(A2) A is closed, satisfies the strong free-disposal assumption A−(K \{0})= intA,
and A �= Y .
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Fig. 11.3 y ∈ bd A with
ϕA(y) =−∞ in Example 11.1

Then (a), (b), (c) from Theorem 11.1 holds, and moreover

(f) ϕA is continuous and

{y ∈ Y | ϕA(y) < λ} = λk0 + intA, ∀λ ∈ R, (11.12)

{y ∈ Y | ϕA(y) = λ} = λk0 + bdA, ∀λ ∈R. (11.13)

(g) If ϕA is proper, then

ϕA is B-monotone⇔ A−B⊆ A⇔ bdA−B⊆ A.

Moreover, if ϕA is finite-valued, then

ϕA strictly B-monotone⇔ A− (B\ {0})⊆ intA⇔ bdA− (B\ {0})⊆ intA.

(h) Assume that ϕA is proper; then

ϕA is subadditive⇔ A + A⊆ A⇔ bdA + bdA ⊆ A.

Proof. Suppose now that (A2) holds.

(f) Let λ ∈ R and take y ∈ λk0 + intA. Since y− λk0 ∈ intA, there exists ε > 0
such that y−λk0 + εk0 ∈ A. Therefore ϕA(y) ≤ λ − ε < λ , which shows that
the inclusion ⊇ always holds in (11.12). Let λ ∈ R and y ∈ Y be such that
ϕA(y) < λ . There exists t ∈R, t < λ , such that y ∈ tk0 +A. It follows with (A2)
that y∈ λk0 +A−(λ− t)k0 ⊆ λk0 + intA. Therefore (11.12) holds, and so ϕA is
upper semicontinuous. Because ϕA is also lower semicontinuous, we have that
ϕA is continuous. From (11.6) and (11.12) we obtain immediately that (11.13)
holds.

(g) Let us prove the second part, the first one being similar to that of (and partially
proved in) (d). So, let ϕA be finite-valued.
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Assume that ϕA is strictly B-monotone and take y ∈ A and b ∈ −B \ {0}.
From (11.6) we have that ϕA(y)≤ 0, and so, by hypothesis,ϕA(y−b)< 0. Using
(11.12) we obtain that y− b ∈ intA. Assume now that bdA− (B\ {0})⊆ intA.
Consider y1,y2 ∈ Y with y2 − y1 ∈ B \ {0}. From (11.13) we have that y2 ∈
ϕA(y2)k0 + bdA, and so y1 ∈ ϕA(y2)k0− (bdA +(B\ {0}))⊆ ϕA(y2)k0 + intA.
From (11.12) we obtain that ϕA(y1) < ϕA(y2). The remaining implication is
obvious.

(h) Let ϕA be proper. One has to prove bdA + bdA ⊆ A ⇒ ϕA is subadditive.
Consider y1,y2 ∈ Y . If {y1,y2} �⊆ domϕA, there is nothing to prove; hence
let y1,y2 ∈ domϕA. Then, by (11.13), yi ∈ ϕA(yi)k0 + bdA for i ∈ {1,2}, and
so y1 + y2 ∈ (ϕA(y1)+ϕA(y2))k0 + (bdA + bdA) ⊆ (ϕA(y1)+ϕA(y2))k0 + A.
Therefore ϕA(y1 + y2)≤ ϕA(y1)+ϕA(y2). ��

When k0 ∈ intK we get an additional important property of ϕA (see also
Theorem 11.4).

Corollary 11.1. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ intK and
A⊆ Y satisfies condition (A1). Then ϕA is finite-valued and continuous.

Proof. Because k0 ∈ intK we have that Rk0 + K = Y . From Theorem 11.1 (c) it
follows that

domϕA = A +Rk0 = A−K +Rk0 = A +Y = Y.

Assuming that ϕA is not proper, from Theorem 11.1 (c) we get y +Rk0 ⊆ A for
some y ∈ Y . Then Y = y +Rk0 −K ⊆ A−K = A, a contradiction. Hence ϕA is
finite-valued.

Moreover, we have that A− Pk0 ⊆ A− intK ⊆ int(A−K) = intA. Applying
Theorem 11.2 (f) for K replaced by R+k0 we obtain that ϕA is continuous. ��

From the preceding results we get the following particular case.

Corollary 11.2. Let K ⊆ Y be a proper closed convex cone and k0 ∈ − intK. Then

ϕK : Y → R, ϕK(y) := inf{t ∈ R | y ∈ tk0 + K}

is a well-defined continuous sublinear function such that for every λ ∈ R,

{y ∈Y | ϕK(y)≤ λ}= λk0 + K, {y ∈ Y | ϕK(y) < λ}= λk0 + intK.

Moreover, ϕK is strictly (− intK)-monotone.

Proof. The assertions follow using Theorem 11.2 and Corollary 11.1 applied for
A := K and K replaced by −K. For the last part note that K + intK = intK. ��

Now all preliminaries are done, and we can prove the following nonconvex
separation theorem.
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Theorem 11.3 (Non-convex Separation Theorem). Let A⊆ Y be a closed proper
set with nonempty interior, H ⊆Y a nonempty set such that H∩ intA = /0. Let K ⊆Y
be a proper closed convex cone and k0 ∈ intK. Furthermore, assume

(A2) A is closed, satisfies the strong free-disposal assumption A−(K \{0})= intA,
and A �= Y .

Then ϕA defined by (11.5) is a finite-valued continuous function such that

ϕA(x)≥ 0 > ϕA(y) ∀x ∈ H, ∀y ∈ intA; (11.14)

moreover, ϕA(x) > 0 for every x ∈ intH.

Proof. By Corollary 11.1 ϕA is a finite-valued continuous function. By Theorem
11.2 (f) we have that intA = {y ∈ Y | ϕA(y) < 0}, and so (11.14) obviously holds.

Take y ∈ intH; then there exists t > 0 such that y− tk0 ∈ H. From (11.7) and
(11.12) we obtain that 0≤ ϕA(y− tk0) = ϕA(y)− t, whence ϕA(y) > 0. ��

Of course, if we impose additional conditions on A, we have additional properties
of the separating functional ϕA (see Theorems 11.1 and 11.2).

11.3.3 Continuity Properties

If A is a proper closed subset of Y (hence /0 �= A �= Y ) and A−Pk0 ⊆ intA, applying
Theorem 11.2 for K := R+k0 we obtain that ϕA is continuous (on Y ) and (11.13)
holds. In the next result we characterize the continuity of ϕA at a point y0 ∈ Y
(compare Tammer and Zălinescu [63]).

Proposition 11.3. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ K \
(−K) and A ⊆ Y is a nonempty set satisfying condition (A1). Then the function ϕA

is (upper semi-) continuous at y0 ∈ Y if and only if y0− ]ϕA(y0),∞[ · k0 ⊆ intA.

Proof. If ϕA(y0) = ∞ it is clear that ϕA is upper semicontinuous at y0 and the
inclusion holds. So let ϕA(y0) < ∞.

Assume first that ϕA is upper semicontinuous at y0. Let λ ∈ ]ϕA(y0),∞[. Then
there exists a neighbourhood V of y0 such that ϕA(y) < λ for every y ∈V . It follows
that for y ∈ V we have y ∈ λk0 + A, that is, V ⊆ λk0 + A. Hence y0 ∈ λk0 + intA,
whence y0−λk0 ∈ intA.

Assume now that y0− ]ϕA(y0),∞[ · k0 ⊆ intA and take ϕA(y) < λ < ∞. Then, by
our hypothesis, V := λk0 +A is a neighbourhood of y0 and from the definition of ϕA

we have that ϕA(y)≤ λ for every y ∈V . Hence ϕA is upper semicontinuous at y0.
��

Corollary 11.3. Under the hypotheses of Proposition 11.3 assume that ϕA is
continuous at y0 ∈ bdA. Then ϕA(y0) = 0.
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Proof. Of course, ϕA(y0) ≤ 0. If ϕA(y0) < 0, from the preceding proposition we
obtain the contradiction y0 = y0−0k0 ∈ intA. ��

11.3.4 Lipschitz Properties

The primary goal of this section is to study local Lipschitz properties of the
functionalϕA,k0 under as weak as possible assumptions concerning the subset A⊆Y
and k0 ∈ Y (compare Tammer and Zălinescu [63]).

When A is a convex set, as noticed above, ϕA is convex. In such a situation
from the continuity of ϕA at a point in the interior of its domain one obtains the
local Lipschitz continuity of ϕA on the interior of its domain (if the function is
proper). Moreover, when A =−K and k0 ∈ intK then (it is well known that) ϕA is a
continuous sublinear function, and so ϕA is Lipschitz continuous.

Recently in the case Y = Rm and for K = Rm
+ Bonnisseau–Crettez [4] obtained

the Lipschitz continuity of ϕA around a point y ∈ bdA when −k0 is in the interior
of the Clarke tangent cone of A at y. The (global) Lipschitz continuity of ϕA can
be related to a result of Gorokhovik–Gorokhovik [35] established in normed vector
spaces as we shall see in the sequel.

Theorem 11.4. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ K \ (−K)
and A⊆ Y is a nonempty set satisfying condition (A1).

(a) One has

ϕA(y)≤ ϕA(y′)+ϕ−K(y− y′) ∀y,y′ ∈ Y. (11.15)

(b) If k0 ∈ intK then ϕA is finite-valued and Lipschitz on Y .

Proof. (a) By Theorem 11.1 (applied for A and A := −K, respectively) we have
that ϕA and ϕ−K are lower semicontinuous functions, ϕ−K being sublinear and
proper.

Let y,y′ ∈ Y . If ϕA(y′) = +∞ or ϕ−K(y− y′) = +∞ it is nothing to prove. In
the contrary case let t,s∈R be such that y−y′ ∈ tk0−K and y′ ∈ sk0 +A. Then,
taking into account assumption (A1)

y ∈ tk0−K + sk0 + A = (t + s)k0 +(A−K) = (t + s)k0 + A.

It follows thatϕA(y)≤ t +s. Passing to infimum with respect to t and s satisfying
the preceding relations we get (11.15).

(b) Assume that k0 ∈ intK. Let V ⊆Y be a symmetric closed and convex neighbour-
hood of 0 such that k0 +V ⊆K and let pV : Y →R be the Minkowski functional
associated to V ; then pV is a continuous seminorm and V = {y∈Y | pV (y)≤ 1}.
Let y ∈ Y and t > 0 such that y ∈ tV . Then t−1y ∈ V ⊆ k0 − K, whence
y ∈ tk0 −K. Hence ϕ−K(y) ≤ t. Therefore, ϕ−K(y) ≤ pV (y). This inequality
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confirms that (Rk0−K =) domϕ−K = Y . Moreover, since ϕ−K is sublinear we
get ϕ−K(y)≤ ϕ−K(y′)+ pV (y− y′) and so

∣∣ϕ−K(y)−ϕ−K(y′)
∣∣≤ pV (y− y′) ∀y,y′ ∈ Y, (11.16)

that is, ϕ−K is Lipschitz.
By Corollary 11.1 we have that ϕA is finite-valued (and continuous). From

(11.15) we have that ϕA(y)− ϕA(y′) ≤ ϕ−K(y − y′) ≤ pV (y − y′), whence
(interchanging y and y′)

∣∣ϕA(y)−ϕA(y′)
∣∣≤ pV (y− y′) ∀y,y′ ∈ Y. (11.17)

Hence ϕA is Lipschitz continuous (on Y ). ��
Note that the condition A− (K \ {0})⊆ intA does not imply that ϕA is proper.

Example 11.2. Take A := {(x,y)∈R2 | y≥−|x|−1}, with the convention 0−1 :=∞,
and K := R+k0 with k0 := (0,−1). Then A− (K \ {0}) = intA and ϕA(0,1) =−∞.

Note that, with our notation, [4, Proposition 7] asserts that ϕA,k0 is finite and
locally Lipschitz provided Y =Rn, K =Rn

+ and k0 ∈ intK, which is much less than
the conclusion of Theorem 11.4 (ii).

Of course, in the conditions of Theorem 11.4 (ii) we have that −k0 ∈ intA∞
because K ⊆−A∞. In fact we have also a converse of Theorem 11.4 (ii).

Proposition 11.4. Assume that K ⊆ Y is a proper closed convex cone, k0 ∈ K \
(−K) and A ⊆ Y is a nonempty set satisfying condition (A1). If ϕA is finite-valued
and Lipschitz then −k0 ∈ intA∞.

Proof. By hypothesis there exists a closed convex and symmetric neighbourhoodV
of 0 such that (11.17) holds. We have that A = {y ∈Y | ϕA(y)≤ 0}. Let y ∈ A, v ∈V
and α ≥ 0. Then

ϕA(y +α(v− k0))≤ ϕA(y +αv)−α ≤ ϕA(y)+α pV (v)−α ≤ 0

because V = {y ∈ Y | pV (y) ≤ 1}. Hence V − k0 ⊆ A∞, which shows that −k0 ∈
intA∞. ��
Corollary 11.4. Under the assumptions of Proposition 11.4, the function ϕA is
finite-valued and Lipschitz if and only if −k0 ∈ intA∞.

Proof. The necessity is given by Proposition 11.4. Assume that−k0 ∈ intA∞. Taking
K :=−A∞, using Theorem 11.4 (b) we obtain that ϕA is finite-valued and Lipschitz.

��
If intK �= /0 and k0 /∈ intK, ϕ−K is not finite-valued, and so it is not Lipschitz.

One may ask if the restriction of ϕ−K at its domain is Lipschitz. The next examples
show that both situations are possible.
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Example 11.3. Take K = R2
+ and k0 = (1,0). We have that ϕ−K(y1,y2) = y1 for

y2 ≤ 0, ϕ−K(y1,y2) = ∞ for y2 > 0, and so ϕ−K |domϕ−K is Lipschitz.

Example 11.4. Take K :=
{
(u,v,w) ∈ R3 | v,w≥ 0, u2 ≤ vw

}
and k0 := (0,0,1);

then

ϕ−K(x,y,z) =

⎧
⎨
⎩
∞ if y > 0 or [y = 0 and x �= 0],
z if x = y = 0,

z− x2/y if y < 0.

It is clear that the restriction of ϕ−K at its domain is not continuous at (0,0,0) ∈
domϕ−K and the restriction of ϕ−K at the interior of its domain is not Lipschitz.
However, ϕ−K is locally Lipschitz on the interior of its domain.

The last property mentioned in the previous example is a general one for ϕA when
A is convex.

Proposition 11.5. Let A be a proper closed subset of Y and k0 ∈ Y \ {0} be such
that A−R+k0 = A. If A is convex, has nonempty interior, and does not contain
any line parallel with k0 (or equivalently k0 /∈ A∞), then ϕA is locally Lipschitz on
int(domϕA) = Rk0 + intA.

Proof. Because A does not contain any line parallel with k0, ϕA is proper (see The-
orem 11.1 taking into account assumption (A1)). We know that domϕA = Rk0 + A,
and so int(domϕA) = int(Rk0 + A) = Rk0 + intA (see, e.g., [67, Exercise 1.4]). On
the other hand it is clear that A⊆ {y ∈Y | ϕA(y)≤ 0}. Since intA �= /0, we have that
ϕA is bounded above on a neighbourhood of a point, and so ϕA is locally Lipschitz
on int(domϕA) = Rk0 + intA (see e.g. [67, Corollary 2.2.13]). ��

We have seen in Theorem 11.4 that ϕA is Lipschitz even if A is not convex when
k0 ∈ intK. So, in the sequel we are interested by the case in which A is not convex,
k0 /∈ intK and A does not contain any line parallel with k0.

Note that for A not convex and y ∈ int(domϕA) we can have situations in which
ϕA is not continuous at y or ϕA is continuous but not Lipschitz around y.

Example 11.5. Take K := R2
+, k0 := (1,0) and

A1 := (]−∞,0]× ]−∞,1])∪ ([0,1]× ]−∞,0])

A2 := {(a,b) | a ∈ ]0,∞[, b≤−a2}∪ (]−∞,0]× ]−∞,1]).

Then

ϕA1,k0(u,v) =

⎧⎨
⎩
∞ if v > 1,

u if 0 < v≤ 1,

u−1 if v≤ 0,

ϕA2,k0(u,v) =

⎧⎨
⎩
∞ if v > 1,

u if 0 < v≤ 1,

u−√−v if v ≤ 0.

It is clear that (0,0) ∈ int(domϕA1) but ϕA1 is not continuous at (0,0), and (0,0) ∈
int(domϕA2), ϕA2 is continuous at (0,0) but ϕA2 is not Lipschitz at (0,0).
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In what concerns the Lipschitz continuity of ϕA around a point y ∈ domϕA in
finite dimensional spaces this can be obtained using the notion of epi-lipschitzianity
of a set as introduced by Rockafellar [55] (see also [56]). We extend this notion
in our context. We say that the set A ⊆ Y is epi-Lipschitz at y ∈ A in the direction
v ∈ Y \ {0} if there exist ε > 0 and a (closed convex symmetric) neighbourhood V0

of 0 in Y such that

∀y ∈ (y +V0)∩A, ∀w ∈ v +V0, ∀λ ∈ [0,ε] : y +λw∈ A. (11.18)

Note that (11.18) holds for v = 0 if and only if y ∈ intA. Moreover, if y ∈ intA
then A is epi-Lipschitz at y ∈ A in any direction.

Theorem 11.5. Let A be a proper closed subset of Y and k0 ∈ Y \ {0} be such
that A−R+k0 = A. Assume that y0 ∈ Y is such that ϕA(y0) ∈ R. Then ϕA is finite
and Lipschitz on a neighbourhood of y0 if and only if A is epi-Lipschitz at y :=
y0−ϕA(y0)k0 in the direction −k0.

Proof. Using (11.7) we get ϕA(y) = 0. Recall also that A = {y∈Y | ϕA(y)≤ 0} and
the finite values of ϕA are attained (because A is closed).

Assume that there exist a closed convex symmetric neighbourhood V of 0 in
Y and p : Y → R a continuous seminorm such that ϕA is finite on y0 + V and
|ϕA(y)−ϕA(y′)| ≤ p(y− y′) for all y,y′ ∈ y0 +V . Taking into account (11.7), we
have that ϕA is finite on y+V and

∣∣ϕA(y)−ϕA(y′)
∣∣≤ p(y− y′) ∀y,y′ ∈ y+V.

Take V0 := {y ∈ 1
3V | p(y) ≤ 1} and ε ∈ ]0,1] such that εk0 ∈ V0. Let us show that

(11.18) holds with v replaced by −k0. For this take y ∈ (y +V0)∩A, w ∈ −k0 +V0

and λ ∈ [0,ε]. Then y−λk0−y∈V0 +V0 ⊆V and y+λw−y = y−λk0−y+λ (w+
k0) ∈V0 +V0 +V0 ⊆V , and so

ϕA(y +λw) ≤ ϕA(y−λk0)+ p(λ (w+ k0)) = ϕA(y)−λ +λ p(w+ k0)

≤ λ (p(w+ k0)−1)≤ 0.

Hence y +λw∈ A.
Assume now that (11.18) holds with v replaced by −k0. Let r ∈ ]0,ε] be such

that 2r(1 + p(k0)) < 1, where p := pV0 . Of course, {y | p(y)≤ λ} = λV0 for every
λ > 0 and if p(y) = 0 then y ∈ λV0 for every λ > 0. Set

M := {y ∈ y + rV0 | |ϕA(y)| ≤ p(y− y)};

of course, y ∈M. We claim that M = y+ rV0. Consider y ∈M, w∈V0 and λ ∈ [0,r].
Setting y′ := y−ϕA(y)k0 ∈ A, we have that ϕA(y′) = 0 and

p(y′ − y)≤ p(y− y)+ |ϕA(y)| · p(k0)≤ r
(
1 + p(k0)

)
<

1
2
≤ 1, (11.19)

and so, by (11.18), y′+λ (w− k0) ∈ A; hence ϕA(y′+λw)≤ λ .
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Take v ∈ rV0. On one hand one has

ϕA(y′+ v) = ϕA

(
y′+ p(v) · 1

p(v)
v

)
≤ p(v)

if p(v) > 0, and ϕA(y′ + v) = ϕA(y′ + λ (λ−1v)) ≤ λ for every λ ∈ ]0,r], whence
ϕA(y′+ v)≤ 0 = p(v). Therefore, ϕA(y′+ v)≤ p(v).

On the other hand, assume that ϕA(y′+ v) < −p(v). Because 2r(1 + p(k0)) < 1,
there exists t > 0 such that r + (t + r)p(k0) ≤ 1/2 and ϕA(y′+ v) < −p(v)− t =:
t ′ < 0. It follows that y′+ v− t ′k0 ∈ A. Moreover, taking into account (11.19),

p(y′+v−t ′k0−y)≤ p(y′−y)+ p(v)+(t + p(v))p(k0)≤ 1/2+r+(t +r)p(k0)≤ 1,

and so y′+ v− t ′k0 ∈ (y +V0)∩A. Using (11.18), if p(v) > 0 then

y′+ tk0 = y′ − (
t ′+ p(v)

)
k0 = y′+ v− t ′k0 + p(v)

(
−k0− 1

p(v)
v

)
∈ A,

while if p(v) = 0 then

y′+(1− γ)tk0 = y′+ v− t ′k0 + γt
(−k0− (γt)−1v

) ∈ A

for γ := min{ 1
2 ,εt−1}. We get the contradiction 0 = ϕA(y′) ≤ −t < 0 in the first

case and 0 = ϕA(y′)≤−t(1− γ) < 0 in the second case. Hence ϕA(y′+ v) ∈ R and
|ϕA(y′+ v)−ϕA(y′)| ≤ p(v) for every v ∈ rV0, or equivalently,

ϕA(y + v) ∈R, |ϕA(y + v)−ϕA(y)| ≤ p(v) ∀v ∈ rV0. (11.20)

When y := y ∈M, from (11.20) we get y+ rV0 ⊆M, and so M = y+ rV0 as claimed.
Moreover, if y,y′ ∈ y+ 1

2 rV0, then y∈M and y′ = y+v for some v∈ rV0; using again
(11.20) we have that |ϕA(y′)−ϕA(y)| ≤ p(y′ − y). The conclusion follows. ��

The next result is similar to Corollary 11.3.

Corollary 11.5. Let A be a proper closed subset of Y and k0 ∈Y \{0} be such that
A−R+k0 = A. Consider y ∈ bdA. If A is epi-Lipschitz at y in the direction−k0 then
ϕA(y) = 0.

Proof. Consider ε ∈ ]0,1[ and V0 provided by (11.18) with v := −k0. Assume that
ϕA(y) �= 0. Then there exists t > 0 such that t pV0(k

0) ≤ ε and y := y + tk0 ∈ A.
Taking λ := t in (11.18) we obtain that y+ t(−k0 +V0) = y+ tV0 ⊆ A, contradicting
the fact that y ∈ bdA. ��
Corollary 11.6. Let A be a proper closed subset of Y and k0 ∈Y \{0} be such that
A−R+k0 = A. Assume that dimY < ∞ and y ∈ bdA. Then ϕA is finite and Lipschitz
on a neighbourhood of y if and only if −k0 ∈ intTCl(A,y), where TCl(A,y) is the
Clarke tangent cone of A at y.
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Proof. By [56, Theorem 2I],−k0 ∈ intTCl(A,y) if and only if A is epi-Lipschitz at y
in the direction −k0. The conclusion follows from Corollary 11.3, Theorem 11.5
and Corollary 11.5. ��

The fact that ϕA is Lipschitz on a neighbourhood of y under the condition−k0 ∈
intTCl(A,y) is obtained in [4, Proposition 6] in the case Y = Rm (and K = Rm

+).
Consider y∗ ∈ Y ∗ such that

〈
k0,y∗

〉 �= 0, H := kery∗ and take

ϕ0 : H → R, ϕ0(z) := ϕA(z),

that is, ϕ0 = ϕA|H . Since ϕA is lsc, so is ϕ0. Then any y ∈Y can be written uniquely
as z− tk0 with z ∈ H and t ∈ R. So, by (11.7), ϕA(y) = ϕA(z− tk0) = ϕ0(z)− t.
Using (11.10) we obtain that A = {z− tk0 | (z,t) ∈ epiϕ0}. Conversely, if g : H →R

is a lsc function and A := {z− tk0 | (z,t) ∈ epig}, then A is a closed set with A−
R+k0 = A and ϕ0 = g. Therefore, the closed set A with the property A−R+k0 = A
is uniquely determined by a lsc function ϕ0 : H → R. Moreover, for y = z− tk0

we have that ϕA is finite (resp. continuous) at y if and only if ϕ0 is finite (resp.
continuous) at z. Moreover, because Y = H +Rk0 and the sum is topological (that
is, the projection onto H parallel to Rk0 is continuous), we have that ϕA is finite
and Lipschitz continuous on a neighbourhood of y if and only if ϕ0 is finite and
Lipschitz continuous on a neighbourhood of z. Similarly, ϕA is finite and Lipschitz
continuous if and only if ϕ0 is finite and Lipschitz continuous.

Note that for Y a normed vector space in [35] one says that A is (globally) epi-
Lipschitz in the direction e ∈ Y \ {0} if there exist a closed linear subspace H of
codimension 1 with e �∈H and a Lipschitz function g : H →R such that A = {y+αe |
y ∈ H, α ∈ R, g(y) ≤ α}; A is epi-Lipschitz if there exists e ∈ Y \ {0} such that
A is epi-Lipschitz in the direction e. The main result of [35] asserts that the proper
closed set A ⊆ Y is epi-Lipschitz in the direction e if and only if e ∈ intA∞, and so
A⊆ Y is epi-Lipschitz if and only if intA∞ �= /0.

The discussion above shows that not only the main theorem of [35] can be
obtained from Corollary 11.4, but this one extends the main theorem of [35] to
locally convex spaces.

11.3.5 The Formula for the Conjugate and Subdifferential
of ϕA for A Convex

The results of this section (less the second part of Corollary 11.7) were established
in several papers; we give the proofs for reader’s convenience. The formula for the
conjugate of ϕA is derived by Hamel [40, Theorem 3] and can be related also to
[57, Theorem 3] and [60, Theorem 2.2]. Results concerning the subdifferential of
ϕA are given in [17, Theorem 2.2, Lemma 2.1]. Another proof of these assertions
using the formula for the conjugates is presented in Hamel [40, Corollary 12].
In the statements below we use some usual notation from convex analysis. So,
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having X a separated locally convex space with topological dual X∗ and f :
X → R, the conjugate of f is the function f ∗ : X∗ → R defined by f ∗(x∗) :=
sup{x∗(x)− f (x) | x ∈ X} and its subdifferential at x ∈ X with f (x) ∈ R is the set
∂ f (x) := {x∗ ∈ X∗ | x∗(x′ − x) ≤ f (x′)− f (x) ∀x′ ∈ X}; ∂ f (x) := /0 if f (x) /∈ R.
Having a set A ⊆ X , the indicator of A is the function ιA : X → R defined by
ιA(x) := 0 for x ∈ A and ιA(x) := ∞ for x ∈ X \A, while the support of A is the
function σA := (ιA)∗. When A is nonempty the domain of σA is a convex cone which
is called the barrier cone of A and is denoted by barA. Moreover, the normal cone
of A at a ∈ A is the set N(A,a) := ∂ιA(a).

Proposition 11.6. Let A be a proper closed subset of Y and k0 ∈ Y \ {0} be such
that A−R+k0 = A. Assume that A is convex and k0 /∈ A∞. Then ϕA ∈ Γ (Y ), that is,
ϕA is a proper lsc convex function,

ϕ∗A(y∗) =
{
σA(y∗) if y∗ ∈ barA, y∗(k0) = 1,

∞ otherwise,
(11.21)

and ∂ϕA(y)⊆ {y∗ ∈ barA | y∗(k0) = 1} ⊆ {y∗ ∈ K+ | y∗(k0) = 1} for every y ∈ Y.

Proof. From [32, Theorem 2.3.1]) we have that ϕA ∈Γ (Y ). Consider y∗ ∈Y ∗. Then

ϕ∗A(y∗) = sup{y∗(y)−ϕA(y) | y ∈ Y}
= sup

{
y∗(y)− t | y ∈Y, t ∈ R, y ∈ tk0 + A

}

= sup
{

y∗(tk0 + a)− t | y ∈Y, t ∈ R, a ∈ A
}

= sup{y∗(a) | a ∈ A}+ sup{t(y∗(k0)−1) | t ∈ R}.

Hence (11.21) holds.
Since ∂ f (y) ⊆ dom f ∗ for every proper function f : Y → R and every y ∈ Y ,

the first estimate for ∂ϕA(y) follows. Moreover, because A = A−K we have σA =
σA−K = σA +σ−K = σA + ιK+ , and so barA⊆ K+. ��

The estimate barA ⊆ K+ becomes more precise when K =−A∞; in fact one has
(A∞)+ =−clw∗(barA). Indeed, from [67, Exercise 2.23] we have that ιA∞ = (ιA)∞ =
σdom ι∗A = σdomσA , whence ι−(A∞)+ = (ιA∞)∗ = ιclw∗ (domσA), and so clw∗(domσA) =
−(A∞)+.

Using Proposition 11.6 one deduces the expression of ∂ϕA (see also [17,
Theorem 2.2] for Y a normed vector space).

Corollary 11.7. Assume that A is convex and k0 /∈ A∞. Then for all y ∈ Y one has

∂ϕA(y) = {y∗ ∈ barA | y∗(k0) = 1, y∗(y)−ϕA(y)≥ y∗(y) ∀y ∈ A}. (11.22)

Moreover, if (A2) holds then ∂ϕA(y)⊆ K# for every y ∈ Y .
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Proof. Fix y∈Y . If y /∈ domϕA then both sets in (11.22) are empty. Let y∈ domϕA.
Then, of course, y− ϕA(y)k0 ∈ A. If y∗ ∈ ∂ϕA(y) then ϕA(y) + ϕ∗A(y∗) = y∗(y).
Taking into account (11.21) we obtain that

y∗ ∈ barA, y∗(k0) = 1 and y∗(y)−ϕA(y)≥ y∗(y) ∀y ∈ A, (11.23)

that is, the inclusion ⊆ holds in (11.22). Conversely, if y∗ ∈ Y ∗ is such that (11.23)
holds, since y− ϕA(y)k0 ∈ A and y∗(k0) = 1, we obtain that y∗

(
y−ϕA(y)k0

)
=

σA(y∗), which shows that ϕA(y)+ϕ∗A(y∗) = y∗(y). Hence y∗ ∈ ∂ϕA(y). Therefore,
(11.22) holds.

Assume now that (A2) holds, that is, A−(K \{0})⊆ intA, and take y∗ ∈ ∂ϕA(y).
Hence y ∈ domϕA. Consider k ∈ K \ {0}. Since (y− k)− y = −k ∈ −(K \ {0}), by
Theorem 11.4 (iv), we have that y∗(−k)≤ ϕA(y−k)−ϕA(y) < 0, that is, y∗(k) > 0.
Therefore, y∗ ∈ K#. ��

11.4 Minimal-Point Theorems and Corresponding
Variational Principles

11.4.1 Introduction

The celebrated Ekeland variational principle [21] (see Proposition 11.1) has many
equivalent formulations and generalizations.

The aim of this section is to show general minimal-point theorems and corre-
sponding variational principles. In Proposition 11.2 an existence result for minimal
points of a set A with respect to the cone Kε defined by (11.4) is presented. Taking
into account (11.4) we get

(x1− x2,r1− r2) ∈ Kε ⇐⇒ ε||x1− x2|| ≤ −(r1− r2).

This means
r2 ≥ r1 + ε||x1− x2||. (11.24)

Quite rapidly after the publication of the Ekeland variational principle (EVP) in
1974 there were formulated extensions to functions f : (X ,d) → Y , where Y is a
real (topological) vector space. A systematization of such results was done in [34]
(see also [32]), where instead of a function f it was considered a subset of X ×Y ;
said differently, it was considered a multifunction from X to Y . In [32] we have
shown minimal-point theorems in product spaces X ×Y with respect to a relation

(x1,y1)&k0 (x2,y2) ⇐⇒ y2 ∈ y1 + d(x1,x2)k0 + K, (11.25)
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where K is the convex ordering cone in Y and k0 ∈ K \ {0}. This is an extension
of the binary relation defined by (11.24) to product spaces X ×Y . Very recently
the term d(x1,x2)k0 in (11.25) was replaced by d(x,x′)H with H a bounded convex
subset of K (see [8]) or by F(x,x′)⊆ K, F being a so called K-metric (see [36]); in
both papers one deals with functions f : X → Y .

In order to formulate general minimal-point theorems in this section we replace
d(x1,x2)k0 in (11.25) by a set-valued map F with certain properties (compare
Tammer and Zălinescu [64]).

It is worth mentioning that a weaker result than a full (= authentic) minimal-point
theorem gives an EVP, as shown in this section. Such a weaker result is called not
authentic minimal-point theorem.

In this section we present new results with proofs very similar to the correspond-
ing ones in [34], which have as particular cases most part of the existing EVPs, or
they are very close to them. Moreover, we use the same approach to get extensions of
EVPs of Isac–Tammer and Ha types, as well as extensions of EVPs for bi-functions.

In the sequel (X ,d) is a complete metric space, Y is a real topological vector
space, Y ∗ is its topological dual, and K ⊆ Y is a proper convex cone.

If Y is just a real linear space we endow it with the finest locally convex topology,
that is, the topology defined by all the seminorms on Y.

As in [6] and [7], we say that E ⊆Y is quasi bounded (from below) if there exists
a bounded set B ⊆ Y such that E ⊆ B + K; as in [36], we say that E is K-bounded
(by scalarization) if y∗(E) is bounded from below for every y∗ ∈ K+. It is clear that
any quasi bounded set is K-bounded.

Let F : X ×X ⇒ K satisfy the conditions:

(F1) 0 ∈ F(x,x) for all x ∈ X
(F2) F(x1,x2)+ F(x2,x3)⊆ F(x1,x3)+ K for all x1,x2,x3 ∈ X

Using F we introduce a preorder on X ×Y , denoted by &F , in the following
manner:

(x1,y1)&F (x2,y2) ⇐⇒ y2 ∈ y1 + F(x1,x2)+ K. (11.26)

Indeed,&F is reflexive by (F1). If (x1,y1)&F (x2,y2) and (x2,y2)&F (x3,y3), then

y2 = y1 + v1 + k1, y3 = y2 + v2 + k2 (11.27)

with v1 ∈ F(x1,x2), v2 ∈ F(x2,x3) and k1,k2 ∈ K. By (F2) we have that v1 + v2 =
v3 + k3 for some v3 ∈ F(x1,x3) and k3 ∈ K, and so

y3 = y1 + v1 + k1 + v2 + k2 = y1 + v3 + k1 + k2 + k3 ∈ y1 + F(x1,x3)+ K;

hence (x1,y1)&F (x3,y3), and so &F is transitive. Of course,

(x1,y1)&F (x2,y2)⇒ y1 ≤K y2; (11.28)
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moreover, by (F1), we have that

(x,y1)&F (x,y2) ⇐⇒ y2 ∈ y1 + K ⇐⇒ y1 ≤K y2. (11.29)

Besides conditions (F1) and (F2) we shall assume to be true the condition

(F3) There exists z∗ ∈ K+ such that

η(δ ) := inf
{

z∗(v) | v ∈ ∪d(x,x′)≥δF(x,x′)
}

> 0 ∀δ > 0. (11.30)

Clearly, by (F3) we have that 0 /∈ cl convF(x,x′) for x �= x′.
A sufficient condition for (11.30) is

inf
z∈F(x,x′)

z∗(z)≥ d(x,x′) ∀x,x′ ∈ X . (11.31)

If (11.31) holds then

(x1,y1)&F (x2,y2)⇒ d(x1,x2)≤ z∗(y2)− z∗(y1). (11.32)

Indeed, since F(x1,x2) ⊆ K, from (11.28) we get first that y1 ≤K y2; then from
(11.27)

z∗(y2) = z∗(y1)+ z∗(v1)+ z∗(k1)≥ z∗(y1)+ inf
v∈F(x1,x2)

z∗(v)≥ z∗(y1)+ d(x1,x2),

and so (11.32) holds.
Using (11.32) we obtain that

[(x1,y1)&F (x2,y2), (x2,y2)&F (x1,y1)]⇒ [x1 = x2, z∗(y1) = z∗(y2)] ; (11.33)

moreover, if z∗ ∈ K# then &F is anti-symmetric, and so &F is a partial order.
For F satisfying conditions (F1)–(F3), z∗ being that from (F3), we introduce the

order relation &F,z∗ on X ×Y by

(x1,y1)&F,z∗ (x2,y2) ⇐⇒
{

(x1,y1) = (x2,y2) or
(x1,y1)&F (x2,y2) and z∗(y1) < z∗(y2).

(11.34)

It is easy to verify that &F,z∗ is reflexive, transitive, and antisymmetric.

11.4.2 Minimal Points in Product Spaces

We take X ,Y,K,F as above, that is, F satisfies conditions (F1)–(F3), z∗ being that
from (F3).
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Consider a nonempty set A ⊆ X ×Y . In the sequel we shall use the condition
(H1) on A , where N is the set of nonnegative integers; moreover, we set N∗ :=
N\ {0}.

The next theorem is the main result of this section.

Theorem 11.6 (Minimal-Point Theorem with Respect to &F,z∗). Assume that
(X ,d) is a complete metric space, Y is a real topological vector space and K ⊆ Y
is a proper convex cone. Let F : X × X ⇒ K satisfy conditions (F1)–(F3) and
A ⊆ X ×K satisfy the condition

(H1) For every &F -decreasing sequence ((xn,yn)) ⊆ A with xn → x ∈ X there
exists y ∈ Y such that (x,y) ∈A and (x,y)&F (xn,yn) for every n ∈ N.

Furthermore, suppose that

(B1) z∗ (from (F3)) is bounded from below on PrY (A ).

Then for every (x0,y0) ∈A there exists an element (x,y) of A such that:

(a) (x,y)&F,z∗ (x0,y0)
(b) (x,y) is a minimal element of A with respect to &F,z∗

Proof. Let

α := inf{z∗(y) | ∃x ∈ X : (x,y) ∈A , (x,y)&F,z∗ (x0,y0)} ∈ R.

Let us denote by A (x,y) the set of those (x′,y′) ∈ A with (x′,y′) &F,z∗ (x,y). We
construct a sequence ((xn,yn))n≥0 ⊆ A as follows: Having (xn,yn) ∈ A , we take
(xn+1,yn+1) ∈A (xn,yn) such that

z∗(yn+1)≤ inf{z∗(y) | (x,y) ∈A (xn,yn)}+ 1/(n + 1).

Of course, ((xn,yn)) is &F,z∗-decreasing. It follows that (yn)n≥0 is ≤K-decreasing,
and so the sequence (z∗(yn))n≥0 is nonincreasing and bounded from below; hence
γ := limz∗(yn) ∈ R.

If A (xn0 ,yn0) is a singleton (that is, {(xn0 ,yn0)}) for some n0 ∈ N, then clearly
(x,y) := (xn0 ,yn0) is the desired element. In the contrary case the sequence (z∗(yn))
is (strictly) decreasing; moreover, γ < z∗(yn) for every n ∈ N.

Assume that (xn) is not a Cauchy sequence. Then there exist δ > 0 and the
sequences (nk), (pk) from N∗ such that nk → ∞ and d(xnk ,xnk+pk) ≥ δ for every
k. Since (xnk+pk ,ynk+pk)&F,z∗ (xnk ,ynk) we obtain that

z∗(ynk)− z∗(ynk+pk)≥ inf
{

z∗(v) | v ∈ F(xnk+pk ,xnk)
}≥ η(δ ) ∀k ∈ N.

Since η(δ ) > 0 and (z∗(yn)) is convergent, this is a contradiction. Therefore, (xn)
is a Cauchy sequence in the complete metric space (X ,d), and so (xn) converges
to some x ∈ X . Since ((xn,yn)) is &F -decreasing, by (H1) there exists some y ∈ Y
such that (x,y) ∈ A and (x,y) &F (xn,yn) for every n ∈ N. It follows that z∗(y) ≤
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limz∗(yn), and so z∗(y) < z∗(yn) for every n ∈ N. Therefore (x,y) &F,z∗ (xn,yn) for
every n ∈ N. Let (x′,y′) ∈ A be such that (x′,y′) &F,z∗ (x,y). Since (x,y) &F,z∗
(xn,yn), we have that (x′,y′)&F,z∗ (xn,yn) for every n ∈N. It follows that

0≤ z∗(y)− z∗(y′)≤ z∗(yn)− z∗(y′)≤ 1/n ∀n≥ 1,

whence z∗(y′) = z∗(y). By the definition of &F,z∗ we obtain that (x′,y′) = (x,y). ��
As seen from the proof, for a fixed (x0,y0) ∈A it is sufficient that z∗ be bounded

from below on the set {y ∈ Y | ∃x ∈ X : (x,y) ∈A , (x,y) &F,z∗ (x0,y0)} instead of
being bounded from below on PrY (A ).

Remark 11.5. When k0 ∈ K and F(x,x′) := {d(x,x′)k0} we have that F satisfies
conditions (F1) and (F2); moreover, if Y is a separated locally convex space and
−k0 /∈ clK, then there exists z∗ ∈ K+ with z∗(k0) = 1, and so (F3) is also satisfied
(even (11.31) is satisfied). In this case condition (H1) becomes condition (H1) in
[32, p. 199]. So Theorem 11.6 extends [32, Theorem 3.10.7] to this framework,
using practically the same proof.

In [36] one considers for a proper pointed convex cone D ⊆ Y a so called set-
valued D-metric, that is, a multifunction F : X ×X ⇒ D satisfying the following
conditions:

(i) F(x,y) �= /0 and F(x,x) = {0} ∀x,y ∈ X , and 0 /∈ F(x,y) ∀x �= y
(ii) F(x,y) = F(y,x) ∀x,y ∈ X

(iii) F(x,y)+ F(y,z)⊆ F(x,z)+ D ∀x,y,z ∈ X

The basic supplementary assumptions on D and F are:

(S1) D is w-normal and DF is based.
(S2) 0 /∈ clw

(∪d(x,y)≥δF(x,y)
) ∀δ > 0.

Here KF := cone(conv(∪{F(x,y) | x,y ∈ X})) and DF := (KF \ {0}+ D)∪{0}.
As observed in [36], D is w-normal iff D+−D+ = Y ∗, and DF is based iff D+∩

K#
F �= /0.

Comparing with our assumptions on F , we see that (F1) is weaker than (i)
because we ask just 0 ∈ F(x,x) for every x ∈ X , and we don’t ask the symmetry
condition (ii). From (F3) we obtain that (S2) is verified and that z∗ ∈ K#

F and so
(KF \ {0}+ K)∪{0} is based, but we don’t need either K be w-normal or even K
be pointed.

Another possible choice for F , considered also in [36], is F(x,x′) := d(x,x′)H
with H ⊆ K \ {0} a nonempty set such that H + K is convex. Clearly (F1), (i), and
(ii) are satisfied (for D = K). From the convexity of H + K we obtain easily that
(F2) (and (iii)) holds. When Y is a separated locally convex space condition (F3) is
equivalent to 0 /∈ cl(H + K). In order to have that (S1) holds one needs K+−K+ =
Y ∗ and the existence of z∗ ∈ K+ with z∗(v) > 0 for every v ∈ H, while for (S2)
one needs 0 /∈ clw H (see [36, Lemma 5.9 (d)]); of course, if H = H + K, the last
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condition is equivalent to 0 /∈ cl(H +K). So it seems that our condition (F3) is more
convenient than (S1) and (S2).

For H as above, that is, H ⊆ K is a nonempty set such that H + K is convex and
0 /∈ cl(H + K), we consider FH(x,x′) := d(x,x′)H for x,x′ ∈ X , and we set

&H :=&FH ;

moreover, if z∗ ∈ K+ is such that infz∗(H) > 0 we set

&H,z∗ :=&FH ,z∗ .

An immediate consequence of the preceding theorem is the next result.

Corollary 11.8 (Minimal-Point Theorem with Respect to &H,z∗ ). Assume that
(X ,d) is a complete metric space, Y is a real topological vector space, K ⊆ Y is a
proper convex cone and A ⊆ X ×Y satisfies:

(H1) For every &H-decreasing sequence ((xn,yn)) ⊆ A with xn → x ∈ X there
exists y ∈ Y such that (x,y) ∈A and (x,y)&H (xn,yn) for every n ∈ N.

Suppose that there exists z∗ ∈ K+ such that infz∗(H) > 0 and

(B1) infz∗ (PrY (A )) >−∞.

Then for every (x0,y0) ∈A there exists (x,y) ∈A such that:

(a) (x,y)&H,z∗ (x0,y0).
(b) (x,y) is a minimal element of A with respect to &H,z∗ .

A condition related to (H1) is the next one.

(H2) For every sequence ((xn,yn)) ⊆A with xn → x ∈ X and (yn) ≤K-decreasing
there exists y ∈ Y such that (x,y) ∈A and y≤K yn for every n ∈N.

Remark 11.6. Note that (H2) holds if A is closed with PrY (A )⊆ y0 + K for some
y0 ∈Y and every≤K-decreasing sequence in K is convergent (i.e., K is a sequentially
Daniell cone). In fact, instead of asking that A is closed we may assume that

∀((xn,yn))n≥1 ⊆A : [xn → x, yn → y, (yn) is ≤K -decreasing ⇒ (x,y) ∈A ] .

Remark 11.7. Note that (H1) is verified whenever A satisfies (H2) and

∀u ∈ X , ∀X ⊇ (xn)→ x ∈ X :
⋂

n∈N
(F(xn,u)+ K)⊆ F(x,u)+ K.

Indeed, let ((xn,yn)) ⊆A be &F -decreasing with xn → x. It is obvious that (yn)
is ≤K-decreasing. By (H2), there exists y ∈ Y such that (x,y) ∈A and y ≤K yn for
every n ∈N. It follows that

yn ∈ yn+p + F(xn+p,xn)+ K ⊆ y + F(xn+p,xn)+ K ∀n, p ∈ N.
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Fix n; then yn− y ∈ F(xn+p,xn)+ K for every p ∈ N, and so, by our hypothesis,
yn− y ∈ F(x,xn)+ K because lim

p→∞
xn+p = x. Therefore, (x,y)&F (xn,yn).

Remark 11.8. In the case F = FH , (H1) is verified whenever A satisfies (H2) and
H + K is closed.

Indeed, let ((xn,yn))⊆A be a&H -decreasing sequence with xn → x. It is obvious
that (yn) is ≤K-decreasing. By (H2), there exists y ∈ Y such that (x,y) ∈ A and
y≤K yn for every n ∈ N.

Fix n. If xn = x then clearly (x,y) = (xn,y) &H (xn,yn). Else, because
d(xn+p,xn) → d(x,xn) > 0 for p → ∞, we get d(xn+p,xn) > 0 for sufficiently
large p, and so

yn ∈ yn+p + d(xn+p,xn)H + K ⊆ y + d(xn+p,xn)H + K = y + d(xn+p,xn)(H + K)

for sufficiently large p. Since H + K is closed we obtain that

yn ∈ y + d(xn,x)(H + K) = y + d(xn,x)H + K,

that is, (x,y)&H (xn,yn).

Another condition to be added to (H2) in order to have (H1) is suggested by
the hypotheses of [8, Theorem 4.1]. Recall that a set C ⊆ Y is cs-complete (see
[67, p. 9]) if for all sequences (λn)n≥1 ⊆ [0,∞) and (yn)n≥1 ⊆C such that ∑n≥1λn =
1 and the sequence (∑n

m=1λmym)n≥1 is Cauchy, the series ∑n≥1λnyn is convergent
and its sum belongs to C. One says that C ⊆ Y is cs-closed if the sum of the series
∑n≥1λnyn belongs to C whenever ∑n≥1λnyn is convergent and (yn)⊆C, (λn)n≥1 ⊆
[0,∞) and ∑n≥1λn = 1. Of course, any cs-complete set is cs-closed; if Y is complete
then the converse is true. Moreover, notice that any cs-closed set is convex.

Note that the sequence (∑n
m=1 λmym)n≥1 is Cauchy whenever (λn)n≥1 ⊆ [0,∞) is

such that the series ∑n≥1λn is convergent and (yn)n≥1 ⊆ Y is such that conv{yn |
n ≥ 1} is bounded; of course, if Y is a locally convex space then B ⊆ Y is
bounded iff convB is bounded. Indeed, let (λn)n≥1 ⊆ [0,∞) with∑n≥1λn convergent
and (yn)n≥1 ⊆ Y with B := conv{yn | n ≥ 1} bounded. Fix V ⊆ Y a balanced
neighborhood of 0. Because B is bounded, there exists α > 0 such that B ⊆ αV .
Since the series ∑n≥1λn is convergent there exists n0 ≥ 1 such that ∑n+p

k=n λk ≤ α−1

for all n, p ∈ N with n≥ n0. Then for such n, p and some bn,p ∈ B we have

n+p

∑
k=n

λkyk =

(
n+p

∑
k=n

λk

)
bn,p ∈ [0,α−1]B⊆ [0,α−1]αV = V.

Proposition 11.7. Assume that (X ,d) is a complete metric space, Y is a real
topological vector space and K ⊆ Y is a proper closed convex cone. Furthermore,
suppose that H ⊆ K is a nonempty cs-complete bounded set with 0 /∈ cl(H + K).
If A satisfies (H2) then A satisfies (H1), too.
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Proof. Let ((xn,yn))n≥1 ⊆A be a &H -decreasing sequence with xn → x. It follows
that (yn) is ≤K-decreasing. By (H2), there exists y ∈ Y such that (x,y) ∈ A and
y≤K yn for every n ∈ N.

Because ((xn,yn))n≥1 is &H-decreasing we have that

yn = yn+1 + d(xn,xn+1)hn + kn (11.35)

with hn ∈ H and kn ∈ K for n ≥ 1. If xn = xn for n ≥ n ≥ 1 we take x := xn; then
(x,y)&H (xn,yn) for every n∈N. Indeed, for n≤ n we have that (xn,yn)&H (xn,yn);
because y ≤K yn, by (11.29) we get (x,y) &H (x,yn) = (xn,yn), and so (x,y) &
(xn,yn). If n > n, using again (11.29), we have (x,y) = (xn,y)&H (xn,yn).

Assume that (xn) is not constant for large n. Fix n ≥ 1. From (11.35), for p ≥ 0,
we have

yn = yn+p+1 +
n+p

∑
l=n

d(xl ,xl+1)hl +
n+p

∑
l=n

kl = yn+p+1 +

(
n+p

∑
l=n

d(xl,xl+1)

)
hn,p +

n+p

∑
l=n

kl

= y + k′n,p +

(
n+p

∑
l=n

d(xl,xl+1)

)
hn,p (11.36)

for some hn,p ∈H and k′n,p ∈ K. Assuming that ∑l≥n d(xl,xl+1) = ∞, from

(
n+p

∑
l=n

d(xl ,xl+1)

)−1

(yn− y) = hn,p +

(
n+p

∑
l=n

d(xl ,xl+1)

)−1

k′n,p ∈H + K,

we get the contradiction 0 ∈ cl(H +K) taking the limit for p→ ∞. Hence 0 < μ :=
∑l≥n d(xl,xl+1) <∞. Set λl := μ−1d(xl,xl+1) for l ≥ n. Since H is cs-complete and
conv{hl | l ≥ n} (⊆ H) is bounded we obtain that the series ∑l≥nλlhl is convergent
and its sum hn belongs to H. It follows that ∑l≥n d(xl ,xl+1)hl = μhn, and so

kn := lim
p→∞

k′p = yn− y− μhn ∈ K

because K is closed. Since d(xn,xn+p) ≤ ∑n+p−1
l=n d(xl,xl+1), we obtain that

d(xn,x)≤ μ , and so

yn = y + d(xn,x)hn + kn +(μ−d(xn,x))hn ∈ y + d(xn,x)H + K.

Hence (x,y)&H (xn,yn) for every n ∈N. ��
The most part of vector EVP type results are established for Y a separated locally

convex space. However, there are topological vector spaces Y whose topological
dual reduce to {0}. In such a case it is not possible to find z∗ satisfying the conditions
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of Corollary 11.8. In [6, Theorem 1], in the case H is a singleton, the authors
consider such a situation.

Theorem 11.7 (Not Authentic Minimal-Point Theorem with Respect to &H).
Assume that (X ,d) is a complete metric space, Y is a real topological vector space.
Let K ⊆ Y be a proper closed convex cone and H ⊆ K be a nonempty cs-complete
bounded set with 0 /∈ cl(H + K). Suppose that A ⊆ X ×Y satisfies

(H2) For every sequence ((xn,yn)) ⊆A with xn → x ∈ X and (yn) ≤K-decreasing
there exists y ∈ Y such that (x,y) ∈A and y≤K yn for every n ∈N

and

(B2) PrY (A ) is quasi bounded.

Then for every (x0,y0) ∈A there exists (x,y) ∈A such that:

(a) (x,y)&H (x0,y0)
(b) (x,y) ∈A , (x,y)&H (x,y) imply x = x

Proof. First observe that A satisfies condition (H1) by Proposition 11.7. Moreover,
because PrY (A ) is quasi bounded, there exists a bounded set B ⊆ Y such that
PrY (A )⊆ B + K.

Note that for (x,y) ∈ A the set PrX(A (x,y)) is bounded, where A (x,y) :=
{(x′,y′) ∈ A | (x′,y′) &H (x,y)}. In the contrary case there exists a sequence
((xn,yn))n≥1 ⊆ A (x,y) with d(xn,x) → ∞. Hence y = yn + d(xn,x)hn + kn = bn +
d(xn,x)hn + k′n with hn ∈ H, bn ∈ B, kn,k′n ∈ K. It follows that d(xn,x)−1(y−bn) ∈
H + K, whence the contradiction 0 ∈ cl(H + K).

Let us construct a sequence ((xn,yn))n≥0 ⊆ A in the following way: Having
(xn,yn) ∈A , where n ∈ N, because Dn := PrX (A (xn,yn)) is bounded, there exists
(xn+1,yn+1) ∈A (xn,yn) such that

d(xn+1,xn)≥ 1
2

sup{d(x,xn) | x ∈Dn} ≥ 1
4 diamDn.

We obtain in this way the sequence ((xn,yn))n≥0 ⊆ A , which is &H-decreasing.
Since A (xn+1,yn+1) ⊆ A (xn,yn), we have that Dn+1 ⊆ Dn for every n ∈ N. Of
course, xn ∈ Dn. Let us show that diamDn → 0. In the contrary case there exists
δ > 0 such that diamDn ≥ 4δ , and so d(xn+1,xn) ≥ δ for every n ∈ N. As in the
proof of Proposition 11.7, for every p ∈ N, we obtain that

y0 = yp+1 +

(
p

∑
l=0

d(xl ,xl+1)

)
hp +

p

∑
l=0

kl = bp +

(
p

∑
l=0

d(xl,xl+1)

)
hp + k′p

= bp +(p + 1)δhp + k′′p,

where hp ∈ H, bp ∈ B, kl,k′p,k′′p ∈ K. It follows that [(p + 1)δ ]−1(y0−bp) ∈ H + K
for every p ∈ N. Since (bp) is bounded we obtain the contradiction 0 ∈ cl(H + K).
Thus we have that the sequence (clDn) is a decreasing sequence of nonempty closed
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subsets of the complete metric space (X ,d), whose diameters tend to 0. By Cantor’s
theorem,

⋂
n∈N clDn = {x} for some x ∈ X . Of course, xn → x. Since ((xn,yn))⊆A

is a &H-decreasing sequence, from (H1) we get an y ∈Y such that (x,y)&H (xn,yn)
for every n∈N; (x,y) is the desired element. Indeed, (x,y)&H (x0,y0). Let (x′,y′)∈
A (x,y). It follows that (x′,y′) ∈A (xn,yn), and so x′ ∈Dn ⊆ clDn for every n. Thus
x′ = x. ��

If Y is a separated locally convex space, the preceding result follows immediately
from Corollary 11.8.

Of course, the set A ⊆ X ×Y can be viewed as the graph of a multifunction
Γ : X ⇒ Y ; then PrX (A ) = domΓ and PrY (A ) = ImΓ . In [6] one assumes that Γ
is level-closed, that is,

L(b) := {x ∈ X | ∃y ∈ Γ (x) : y≤K b}= {x ∈ X | b ∈ Γ (x)+ K}
= {x ∈ X | Γ (x)∩ (b−K) �= /0}

is closed for every b ∈ Y.
For the nonempty set E ⊆ Y let us set

BMMinE := {y ∈ E | E ∩ (y−K) = {y}}

(see [7, (1.2)]); note that this set is different of the usual set

MinE := {y ∈ E | E ∩ (y−K)⊆ y+ K},

but they coincide if K is pointed. As in [7, Definition 3.2], we say that Γ : X ⇒ Y
satisfies the limiting monotonicity condition at x ∈ domΓ if for every sequence
((xn,yn))n≥1 ⊆ gphΓ with (xn) converging to x and (yn) being ≤K-decreasing,
there exists y ∈ BMMinΓ (x) such that y ≤ yn for every n ≥ 1. As observed in
[7], if Γ satisfies the limiting monotonicity condition at x ∈ domΓ then Γ (x) ⊆
BMMinΓ (x)+ K, that is, Γ (x) satisfies the domination property.

In [7, Proposition 3.3], in the case Y a Banach space, there are mentioned
sufficient conditions in order that Γ satisfy the limiting monotonicity condition at
x ∈ domΓ .

When X and Y are Banach spaces and H is a singleton the next result is
practically [7, Theorem 3.5].

Corollary 11.9 (Not Authentic Minimal-Point Theorem with Respect to &H).
Assume that (X ,d) is a complete metric space, Y is a real topological vector space.
Let K ⊆ Y be a proper closed convex cone and H ⊆ K be a nonempty cs-complete
bounded set with 0 /∈ cl(H + K). Suppose that:

(H3) Γ : X ⇒ Y is level-closed, satisfies the limiting monotonicity condition on
domΓ

(B3) ImΓ is quasi-bounded
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Then for every (x0,y0) ∈ gphΓ there exist x ∈ domΓ and y ∈ BMMinΓ (x) such
that:

(a) (x,y)&H (x0,y0)
(b) (x,y) ∈ gphΓ (x,y)&H (x,y) imply x = x.

Proof. In order to apply Theorem 11.7 for A := gphΓ we have only to show that
A verifies condition (H2). For this consider the sequence ((xn,yn))n≥1 ⊆ A such
that (yn) is ≤K-decreasing and xn → x. Clearly, xn ∈ L(y1) for every n; since Γ
is level-closed, we have that x ∈ L(y1) ⊆ domΓ . Since Γ satisfies the limiting
monotonicity condition at x, we find y ∈ BMMinΓ (x) ⊆ Γ (x) such that y ≤ yn

for every n. Hence (H2) holds. By Theorem 11.7 there exists (x,y) ∈ A such that
(x,y) &H (x0,y0) and (x′,y′) ∈ gphΓ , (x′,y′) &H (x,y) imply x′ = x. Set x := x and
take y ∈ BMMinΓ (x) such that y ≤K y. By (11.29) we have that (x,y) &H (x0,y0).
Let now (x′,y′) ∈ gphΓ = A with (x′,y′) &H (x,y). Since (x,y) = (x,y)&H (x,y),
we have that (x′,y′)&H (x,y), and so x′ = x = x. The proof is complete. ��

In the case when H is a singleton the next result is practically [6, Theorem 1]
under the supplementary hypothesis that MinΓ (x) is compact for every x ∈ X ; it
seems that this condition has to be added in order that [6, Theorem 1] be true.

Corollary 11.10 (Not Authentic Minimal-Point Theorem with Respect to &H).
Assume that (X ,d) is a complete metric space, Y is a real topological vector space.
Let K ⊆ Y be a proper closed convex cone and H ⊆ K be a nonempty cs-complete
bounded set with 0 /∈ cl(H + K). Suppose that:

(H4) Γ : X ⇒ Y is level-closed, MinΓ (x) is compact and Γ (x)⊆K +MinΓ (x) for
every x ∈ domΓ

(B3) ImΓ is quasi-bounded

Then for every (x0,y0)∈ gphΓ there exist x∈ domΓ and y∈MinΓ (x) such that:

(a) (x,y)&H (x0,y0)
(b) (x,y) ∈ gphΓ , (x,y)&H (x,y) imply x = x

Proof. In order to apply Theorem 11.7 for A := gphΓ we have only to show that
A verifies condition (H2). For this consider the sequence ((xn,yn))n≥1 ⊆ A such
that (yn) is ≤K-decreasing and xn → x. As in the proof of the preceding corollary,
x ∈ L(yn) for every n ∈ N. Because Γ (x) ⊆ K + MinΓ (x), for every n ∈ N there
exists y′n ∈ MinΓ (x) such that y′n ≤ yn. Because MinΓ (x) is compact, (y′n) has a
subnet (y′ψ(i))i∈I converging to some y ∈MinΓ (x); here ψ : (I,')→ N is such that

for every n there exists in ∈ I with ψ(i) ≥ n for i ' in. Hence y′ψ(i) ≤ yψ(i) ≤ yn

for i ' in, whence y ≤ yn because K is closed. Therefore, (H2) holds. By Theorem
11.7, for (x0,y0) ∈ gphΓ , there exists (x,y) ∈ A such that (x,y) &H (x0,y0) and
(x′,y′) ∈ gphΓ , (x′,y′) &H (x,y) imply x′ = x. Set x := x and take y ∈ MinΓ (x)
such that y ≤K y. As in the proof of Corollary 11.9 we find that (x,y) is the desired
element. The proof is complete. ��
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11.4.3 Minimal-Point Theorems of Isac–Tammer’s Type

Besides F : X ×X ⇒ K considered in the preceding section we consider also F ′ :
Y ×Y ⇒ K satisfying conditions (F1) and F(2), that is, 0 ∈ F ′(y,y) for all y ∈Y and
F ′(y1,y2) + F ′(y2,y3) ⊆ F ′(y1,y3)+ K for all y1,y2,y3 ∈ Y . Then Φ : Z×Z ⇒ K
with Z := X ×Y , defined by Φ((x1,y1),(x2,y2)) := F(x1,x2)+ F ′(y1,y2), satisfies
conditions (F1) and (F2), too. As in Sect. 11.4.1 we obtain that the relation �F,F ′
defined by

(x1,y1) �F,F ′ (x2,y2)⇐⇒ y2 ∈ y1 + F(x1,x2)+ F ′(y1,y2)+ K

is reflexive and transitive. Moreover, for x,x1,x2 ∈ X and y1,y2 ∈ Y we have

(x1,y1) �F,F ′ (x2,y2) =⇒ (x1,y1) �F (x2,y2) =⇒ y1 ≤K y2,

(x,y1) �F,F′ (x,y2)⇐⇒ y1 ≤K y2.

As in the preceding section, for F satisfying (F1)–(F3), F ′ satisfying (F1), (F2) and
z∗ from (F3) we define the partial order &F,F′,z∗ by

(x1,y1)&F,F′,z∗ (x2,y2) ⇐⇒
{

(x1,y1) = (x2,y2) or
(x1,y1)&F,F ′ (x2,y2) and z∗(y1) < z∗(y2).

Theorem 11.8 (Minimal-Point Theorem with Respect to &F,F′,z∗). Assume that
(X ,d) is a complete metric space, Y is a real topological vector space and K ⊆ Y
is a proper convex cone. Let F : X × X ⇒ K satisfy conditions (F1)–(F3), let
F ′ : Y ×Y ⇒ K satisfy (F1) and (F2), and let A ⊆ X ×Y satisfy the condition

(H1b) For every �F,F ′ -decreasing sequence ((xn,yn)) ⊆A with xn → x ∈ X there
exists y ∈Y such that (x,y) ∈A and (x,y) �F,F ′ (xn,yn) for every n ∈N.

Suppose that

(B1) z∗ (from (F3)) is bounded from below on PrY (A ).

Then for every (x0,y0) ∈A there exists an element (x,y) ∈A such that:

(a) (x,y)&F,F ′,z∗ (x0,y0).
(b) (x,y) is a minimal element of A with respect to &F,F ′,z∗ .

Proof. It is easy to verify that &F,F ′,z∗ is reflexive, transitive and antisymmetric. To
get the conclusion one follows the lines of the proof of Theorem 11.6. ��

Clearly, taking F ′ = 0 in Theorem 11.8 we get Theorem 11.6. As mentioned after
the proof of Theorem 11.6, this extends significantly [32, Theorem 3.10.7], keeping
practically the same proof. We ask ourselves if [32, Theorem 3.10.15] could be
extended to this framework, taking into account that the boundedness condition on
A in [32, Theorem 3.10.15] is much less restrictive. In [32, Theorem 3.10.15] we
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used a functional ϕA (defined by (11.5) and in (11.38) below) in order to prove the
minimal-point theorem. Because an element k0 does not impose itself naturally, and
we need a stronger condition on the functional ϕA even if k0 ∈ K \ {0} ⊆ intC, we
consider an abstract K-monotone functional ϕ to which we impose some conditions
ϕA has already.

Theorem 11.9 (Not Authentic Minimal-Point Theorem with Respect to &F,F′ ).
Assume that (X ,d) is a complete metric space, Y is a real topological vector space
and K ⊆Y is a proper convex cone. Let F : X×X ⇒ K satisfy conditions (F1)–(F3),
let F ′ : Y ×Y ⇒ K satisfy (F1) and (F2), and let A ⊆ X×Y satisfy the condition

(H1b) For every �F,F ′ -decreasing sequence ((xn,yn)) ⊆A with xn → x ∈ X there
exists y ∈Y such that (x,y) ∈A and (x,y) �F,F ′ (xn,yn) for every n ∈N.

Assume that there exists a functional ϕ : Y → R such that

(F4) (x1,y1)&F,F′ (x2,y2) =⇒ ϕ(y1)+ d(x1,x2)≤ ϕ(y2).

Furthermore, suppose

(B4) ϕ is bounded below on PrY (A ).

Then for every point (x0,y0) ∈ A with ϕ(y0) ∈ R, there exists (x,y) ∈ A such
that:

(a) (x,y)&F,F ′ (x0,y0)
(b) (x′,y′) ∈A , (x′,y′) &F,F ′ (x,y) imply x′ = x (not authentic minimal point with

respect to &F,F ′ )

Moreover, if ϕ is strictly K-monotone on PrY (A ), that is, y1,y2 ∈ PrY (A ), y2−y1 ∈
K \ {0}=⇒ ϕ(y1) < ϕ(y2), then

(b’) (x,y) is a minimal point of A with respect to&F,F ′ (minimal point with respect
to &F,F ′ ).

Proof. First note that from (F4) we have that ϕ is K-monotone. Let us construct a
sequence ((xn,yn))n≥0 ⊆A as follows: Having (xn,yn)∈A , we take (xn+1,yn+1)∈
A , (xn+1,yn+1)&F,F ′ (xn,yn), such that

ϕ(yn+1)≤ inf{ϕ(y) | (x,y) ∈A , (x,y)&F,F′ (xn,yn)}+ 1/(n + 1). (11.37)

Of course, the sequence ((xn,yn)) is &F,F′ -decreasing, and so (yn) (⊆ PrY (A )) is
K-decreasing. It follows that the sequence (ϕ(yn)) is non-increasing and bounded
from below, hence convergent in R. Because

(xn+p,yn+p)&F,F′ (xn,yn)&F,F ′ (xn−1,yn−1),

using (F4) and (11.37) we get

d(xn+p,xn)≤ ϕ(yn)−ϕ(yn+p)≤ 1/n ∀n, p ∈N∗.
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It follows that (xn) is a Cauchy sequence in the complete metric space (X ,d), and
so (xn) is convergent to some x ∈ X .

By (H1b) there exists y∈Y such that (x,y)∈A and (x,y)&F,F ′ (xn,yn) for every
n ∈ N. Let us show that (x,y) is the desired element. Indeed, (x,y) &F,F′ (x0,y0).
Suppose that (x′,y′) ∈ A is such that (x′,y′) &F,F ′ (x,y) (&F,F′ (xn,yn) for every
n ∈ N). Thus ϕ(y′)+ d(x′,x)≤ ϕ(y) by (F4), whence

d(x′,x)≤ ϕ(y)−ϕ(y′)≤ ϕ(yn)−ϕ(y′)≤ 1/n ∀n≥ 1.

It follows that d(x′,x) = ϕ(y)−ϕ(y′) = 0. Hence x′ = x.
Assuming that ϕ is strictly K-monotone, because y′ ≤K y and ϕ(y)−ϕ(y′) = 0,

we have necessarily y′ = y. Hence (x,y) is a minimal point with respect to&F,F ′ . ��
Note that if C⊆Y is a proper closed convex cone such that C− (K \{0}) = intC

and k0 ∈ K \ {0} (see assumption (A2)), the functional ϕC : Y → R defined by (see
(11.5))

ϕC(y) := inf
{

t ∈ R | y ∈ tk0 +C
}

(11.38)

is a strictly K-monotone continuous sublinear functional (see Theorem 11.2).
Moreover, if the condition

(B’) PrY (A )∩ (ỹ− intC) = /0 for some ỹ ∈ Y

holds, then ϕ := ϕC is bounded from below on PrY (A ), i.e., (B4) holds. Indeed, by
Theorem 11.2, we have that ϕ(y)+ϕ(−ỹ)≥ ϕ(y− ỹ)≥ 0 for y ∈ PrY (A ), whence
ϕ(y)≥−ϕ(−ỹ) for y ∈ PrY (A ).

Another example for a function ϕ is that defined by

ϕ(y) := ϕK,k0(y− ŷ), (11.39)

where K is a proper convex cone, k0 ∈ K \ {0}, and ŷ ∈ Y is such that

(B”) y0− ŷ ∈ Rk0−K, PrY (A )∩ (ŷ−K) = /0.

Then ϕ is K-monotone, ϕ(y0) < ∞ and ϕ(y) ≥ 0 for every y ∈ PrY (A ), i.e., (B4)
holds.

For both of these functions in (11.38) and (11.39) we have to impose condition
(F4) in order to be used in Theorem 11.9.

Remark 11.9. Using the function ϕ = ϕK,k0(·− ŷ) (defined by (11.39)) in Theorem
11.9 we can derive [41, Theorem 4.2] taking F(x1,x2) := {d(x1,x2)k0} and
F ′(y1,y2) := {ε ‖y1− y2‖k0} when Y is a Banach space; note that, at its turn,
[41, Theorem 4.2] extends [46, Theorem 8].
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11.4.4 Ekeland’s Variational Principles of Ha’s Type

The previous EVP type results correspond to Pareto optimality. Ha [37] established
an EVP type result which corresponds to Kuroiwa optimality. The next result is
an extension of this type of result. For its proof we use [65, Theorem 3.1] or [41,
Theorem 2.2].

Theorem 11.10 (Variational Principle). Assume that (X ,d) is a complete metric
space, Y is a real topological vector space and K ⊆ Y is a proper convex cone. Let
F : X ×X ⇒ K satisfy conditions (F1)–(F3) and Γ : X ⇒ Y be such that

(H5) {x ∈ X | Γ (u)⊆ Γ (x)+ F(x,u)+ K} is closed for every u ∈ X.

Moreover, if

(B5) z∗ (from (F3)) is bounded below on Γ (X),

then for every x0 ∈ domΓ there exists x ∈ X such that:

(a) Γ (x0)⊆ Γ (x)+ F(x,x0)+ K
(b) Γ (x)⊆ Γ (x)+ F(x,x)+ K implies x = x

Proof. Let us consider the relation � on X defined by x′ � x if Γ (x) ⊆ Γ (x′) +
F(x′,x)+ K. By our hypotheses we have that S(x) := {x′ ∈ X | x′ � x} is closed for
every x∈ X . Note that for x∈ X \domΓ we have that S(x) = X , while for x∈ domΓ
we have that S(x)⊆ domΓ . The relation � is reflexive and transitive. The reflexivity
of � is obvious. Let x′ � x and x′′ � x′. Then Γ (x) ⊆ Γ (x′) + F(x′,x) + K and
Γ (x′)⊆ Γ (x′′)+ F(x′′,x′)+ K. Using (F2) we get

Γ (x)⊆ Γ (x′′)+ F(x′′,x′)+ K + F(x′,x)+ K ⊆ Γ (x′′)+ F(x′′,x)+ K,

that is, x′′ � x. Consider

ϕ : X → R, ϕ(x) := infz∗ (Γ (x)) ,

with the usual convention inf /0 := +∞. Clearly, ϕ(x) ≥ m := infz∗(Γ (X)) > −∞.
Moreover, if x′ � x ∈ domΓ then z∗(Γ (x)) ⊆ z∗(Γ (x′)) + z∗(F(x′,x)) + z∗(K),
whence ϕ(x)≥ ϕ(x′)+ infz∗(F(x′,x))≥ ϕ(x′).

Fix x0 ∈ domΓ . The conclusion of the theorem asserts that there exists x ∈ X
such that x ∈ S(x0) and S(x) = {x}. To get this conclusion we apply [41, Theorem
2.2] or [65, Theorem 3.1]. Because (X ,d) is complete and S(x) is closed for every
x ∈ X , we may (and we do) assume that domΓ = X (otherwise we replace X by
S(x0)). In order to apply [41, Theorem 2.2] we have to show that d(xn,xn+1) → 0
provided (xn)n≥1 ⊆ X is �-decreasing. In the contrary case there exist δ > 0 and
(np)p≥1 ⊆ N∗ an increasing sequence such that d(xnp ,xnp+1) ≥ δ for every p ≥ 1.
Then, as seen above, ϕ(xn)≥ ϕ(xn+1)+ infz∗ (F(xn+1,xn)), and so

ϕ(xn1)≥ ϕ
(
xnp+1

)
+

np

∑
l=n1

infz∗ (F(xl+1,xl))≥ m+ p ·η(δ )
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with η(δ ) > 0 from (F3). Letting p → ∞ we get a contradiction. Hence
d(xn,xn+1)→ 0. The conclusion follows. ��

Note that instead of assuming S(u) to be closed for every u ∈ X it is sufficient to
have that S(u) is �-lower closed, that is, for every �-decreasing sequence (xn) ⊆
S(u) with xn → x we have that x ∈ S(u). Moreover, instead of using [41, Theorem
2.2] it is possible to give a slightly longer direct proof similar to that of Theorem
11.6 (and using ϕ instead of z∗ in the construction of (xn)).

Remark 11.10. Taking Y to be a separated locally convex space, K ⊆ Y a pointed
closed convex cone and F(x,x′) := {d(x,x′)k0} with k0 ∈ K \ {0}, we can deduce
[37, Theorem 3.1]. For this assume that Γ (X) is quasi bounded, Γ (x)+ K is closed
for every x ∈ X and Γ is level-closed (or K-lsc with the terminology from [37]).
Since clearly z∗ is bounded from below on ImΓ , in order to apply the preceding
theorem we need to have that S(u) is closed for every u ∈ X ; this is done in [37,
Lemmma 3.2]. Below we provide another proof for the closedness of S(u).

First, if x /∈ L(b) then there exists δ > 0 such that B(x,δ ) ∩ L(b + δk0) = /0.
Indeed, because x /∈ L(b) we have that b /∈ Γ (x)+ K, and so b + δ ′k0 /∈ Γ (x)+ K,
that is, x /∈ L(b + δ ′k0), for some δ ′ > 0 (since Γ (x)+ K is closed). Because L(b +
δ ′k0) is closed, there exists δ ∈ (0,δ ′] such that B(x,δ )∩L(b + δ ′k0) = /0, and so
B(x,δ )∩L(b + δk0) = /0.

Fix u ∈ X and take x ∈ X \S(u), that is, Γ (u) �⊆ Γ (x)+d(x,u)k0 +K. Then there
exists y ∈ Γ (u) with b := y− d(x,u)k0 /∈ Γ (x)+ K. By the argument above there
exists δ ′ > 0 such that B(x,δ ′)∩ L(b + δ ′k0) = /0, that is, y− d(x,u)k0 + δ ′k0 /∈
Γ (x′)+ K for every x′ ∈ B(x,δ ′). Taking δ ∈ (0,δ ′] sufficiently small we have that
d(x′,u) ≥ d(x,u)− δ ′ for x′ ∈ B(x,δ ), and so y /∈ Γ (x′)+ d(x′,u)k0 + K for every
x′ ∈ B(x,δ ), that is, B(x,δ )∩S(u) = /0.

If we assume that Γ (x0) �⊆ Γ (x) + k0 + K for every x ∈ X , then x provided by
the preceding theorem satisfies d(x,x0) < 1. Indeed, in the contrary case, because
Γ (x0)⊆Γ (x)+d(x,x0)k0 +K and d(x,x0)k0 +K⊆ k0 +K, we get the contradiction
Γ (x0) ⊆ Γ (x)+ k0 + K. Replacing k0 by εk0 and d by λ−1d for some ε,λ > 0 we
obtain exactly the statement of [37, Theorem 3.1].

In the case in which Y is just a topological vector space we have the following
version of the preceding theorem under conditions similar to those in Theorem 11.7.

Theorem 11.11 (Variational Principle). Assume that (X ,d) is a complete metric
space, Y is a real topological vector space and K ⊆ Y is a proper closed convex
cone. Let H ⊆ K be a nonempty cs-complete bounded set with 0 /∈ cl(H + K), and
Γ : X ⇒ Y. If

(H6) {x ∈ X | Γ (u)⊆ Γ (x)+ d(x,u)H + K} is closed for every u ∈ X.
(B6) Γ (X) is quasi bounded.

then for every x0 ∈ domΓ there exists x ∈ X such that:

(a) Γ (x0)⊆ Γ (x)+ d(x,x0)H + K
(b) Γ (x)⊆ Γ (x)+ d(x,x)H + K implies x = x
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Proof. Let B⊆ Y be a bounded set such that Γ (X)⊆ B + K.
Consider F(x,x′) := d(x,x′)H for x,x′ ∈ X . As seen before, F satisfies conditions

(F1) and (F2), and so the relation � defined in the proof of Theorem 11.10 is
reflexive and transitive; moreover, by our hypotheses, S(x) := {x′ ∈ X | x′ � x} is
closed for every x ∈ X . As in the proof of Theorem 11.10 we may (and do) assume
that X = domΓ and it is sufficient to show that d(xn,xn+1)→ 0 provided (xn)n≥1 ⊆
X is �-decreasing. In the contrary case there exist δ > 0 and (np)p≥1 ⊆ N∗ an
increasing sequence such that d(xnp ,xnp+1)≥ δ for every p≥ 1.

Fixing y1 ∈ Γ (x1), inductively we find the sequences (yn)n≥0 ⊆ Y , (hn)n≥0 ⊆ H
and (kn)n≥0 ⊆ K such that yn = yn+1 + d(xn,xn+1)hn + kn for every n ≥ 1. Using
the convexity of H, and the facts that H ⊆ K and Γ (X)⊆ B + K, for p ∈ N we get
h′p ∈ H, bp ∈ B and k′p,k′′p ∈ K such that

y1 = ynp+1 +
np

∑
l=1

d(xl,xl+1)hl +
np

∑
l=1

kl = bp+δ (hn1 + . . .+hnp)+k′p = bp+ pδh′p+k′′p.

It follows that (pδ )−1(y1−bp) ∈ H + K for every p ≥ 1. Since (bp) is bounded we
obtain the contradiction 0 ∈ cl(H + K). The conclusion follows. ��

Again, instead of assuming that S(u) is closed for every u ∈ X , it is sufficient to
assume that S(u) is �-lower closed for u∈ X . A slightly longer direct proof, similar
to that of Theorem 11.7, is possible. Also Theorem 11.11 covers [37, Theorem 3.1].

11.4.5 Ekeland’s Variational Principle for Bi-Multifunctions

In [9] Bianchi, Kassay and Pini obtained an EVP type result for vector functions
of two variables; previously such results were obtained by Isac [45] and Li et al.
[49]. The next result extends [9, Theorem 1] in two directions: d is replaced by
F satisfying (F1)–(F3) and instead of a single-valued function f : X × X → Y
we take a multi-valued one. For its proof we use again [65, Theorem 3.1] or
[41, Theorem 2.2].

Theorem 11.12. Assume that (X ,d) is a complete metric space, Y is a real
topological vector space and K ⊆ Y is a proper convex cone. Let F : X ×X ⇒ K
satisfy conditions (F1)–(F3). Assume that G : X ×X ⇒ Y has the properties:

(i) 0 ∈ G(x,x) for every x ∈ X
(ii) G(x1,x2)+ G(x2,x3)⊆ G(x1,x3)+ K for all x1,x2,x3 ∈ X

If

(H7) {x′ ∈ X | [G(x,x′)+ F(x,x′)]∩ (−K) �= /0} is closed for every x ∈ X
(B7) z∗ (from (F3)) is bounded below on the set ImG(x, ·) for every x ∈ X
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then for every x0 ∈ X there exists x ∈ X such that:

(a) [G(x0,x)+ F(x0,x)]∩ (−K) �= /0
(b) [G(x,x)+ F(x,x)]∩ (−K) �= /0 implies x = x

Proof. Let us consider the relation � on X defined by

x � x′ ⇐⇒ [
G(x′,x)+ F(x′,x)

]∩ (−K) �= /0.

Then � is reflexive and transitive. The reflexivity is immediate from (i) and (F1).
Assume that x � x′ and x′ � x′′. Then−k ∈G(x′,x)+F(x′,x) and−k′ ∈G(x′′,x′)+
F(x′′,x′) with k,k′ ∈ K. Hence, by (ii) and (F2),

−k− k′ ∈ G(x′,x)+ F(x′,x)+ G(x′′,x′)+ F(x′′,x′)⊆ G(x′′,x)+ K + F(x′′,x)+ K,

whence [G(x′′,x)+ F(x′′,x)]∩ (−K) �= /0, that is, x � x′′.
Setting S(x) := {x′ ∈ X | x′ � x}, by (H7) we have that S(x) is closed for every

x ∈ X . We have to show that for (xn)n≥1 ⊆ X a �-decreasing sequence one has
d(xn,xn+1)→ 0. In the contrary case there exist an increasing sequence (nl)l≥1 ⊆N
and δ > 0 such that d(xnl ,xnl+1)≥ δ for every l ≥ 1. Because (xn) is �-decreasing,
we have that−kn ∈G(xn,xn+1)+F(xn,xn+1) for some kn ∈K and every n≥ 1. Then

−k1− . . .− kn ∈G(x1,xn+1)+ F(x1,x2)+ . . .+ F(xn,xn+1)+ K,

and so

infz∗ (ImG(x1, ·))+ infz∗ (F(x1,x2))+ . . .+ infz∗ (F(xn,xn+1))≤ 0 ∀n≥ 1.

Since infz∗ (F(xn,xn+1)) ≥ 0 for every n ≥ 1 and infz∗
(
F(xnl ,xnl+1)

) ≥ η(δ ) > 0
for every l ≥ 1, taking n := np with p ≥ 1, we obtain that

pη(δ )≤− infz∗ (ImG(x1, ·)) for every p≥ 1.

This yields the contradiction η(δ ) ≤ 0. Hence d(xn,xn+1) → 0. Applying [41,
Theorem 2.2] we get some x ∈ S(x0) with S(x) = {x}, that is, our conclusion holds.

��
Remark 11.11. If we need the conclusion only for a fixed (given) point x0 ∈ X , we
may replace condition (B7) by the fact that z∗ (from (F3)) is bounded below on the
set ImG(x0, ·).

Indeed, X0 := S(x0) is closed by (H7), and so (X0,d) is complete. If x ∈ X0 then
−k ∈ G(x0,x) + F(x0,x) ⊆ G(x0,x) + K for some k ∈ K, and so −k′ ∈ G(x0,x)
for some k′ ∈ K. It follows that −k′+ G(x,u) ⊆ G(x0,x)+ G(x,u) ⊆ G(x0,u)+ K,
whence G(x,u)⊆ G(x0,u)+K for every u ∈ X . Hence condition (B7) is verified on
X0, and so the conclusion of the theorem holds for x0.
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Remark 11.12. For F(x,x′) := {d(x,x′)k0} with k0 ∈ K \ {0} and G single-valued,
using Theorem 11.12 and the preceding remark one obtains [45, Theorem 8] and
[49, Theorem 3]; in [45] K is normal and closed, while in [49] k0 ∈ intK.

Note that condition (H7) in the preceding theorem holds when G is compact-
valued, G(u, ·) is level-closed, K is closed and F(x,x′) := {d(x,x′)k0} for some
k0 ∈ K. Indeed, assume that −kn ∈ G(u,xn) + d(xn,u)k0 for every n ≥ 1, where
kn ∈ K. Take ε > 0. Then there exists nε ≥ 1 such that d(xn,u) ≥ d(x,u)− ε =: γε
for every n≥ nε . Then for such n we have that G(u,xn)∩

(−γεk0−K
) �= /0, whence

G(u,x)∩(−γεk0−K
) �= /0. Hence there exists yε ∈G(u,x) such that yε+γεk0 ∈−K.

Since G(u,x) is compact, (yε )ε>0 has a subnet converging to y ∈ G(x,u). Since
limε→0 γε = d(x,u) and K is closed, we obtain that y + d(x,u)k0 ∈ −K.

If Y is a separated locally convex space then we may assume that G is weakly
compact-valued instead of being compact-valued.

When G is single-valued and F(x,x′) := {d(x,x′)k0} with k0 ∈ K, where K is
closed and z∗(k0) = 1, the preceding theorem reduces to [9, Theorem 1].

11.4.6 EVP Type Results

The framework is the same as in the previous sections. We want to apply the
preceding results to obtain vectorial EVPs. To envisage functions defined on subsets
of X we add to Y an element ∞ not belonging to the space Y , obtaining thus the
space Y • := Y ∪ {∞}. We consider that y ≤K ∞ for all y ∈ Y . Consider now the
function f : X → Y •. As usual, the domain of f is dom f = {x ∈ X | f (x) �= ∞};
the epigraph of f is epi f = {(x,y) ∈ X × Y | f (x) ≤K y}; the graph of f is
gph f = {(x, f (x)) | x ∈ epi f}. Of course, f is proper if dom f �= /0. For y∗ ∈ K+

we set (y∗ ◦ f )(x) := +∞ for x ∈ X \ dom f .

Theorem 11.13. Assume that (X ,d) is a complete metric space, Y is a real
topological vector space and K ⊆ Y is a proper convex cone. Let F : X ×X ⇒ K
satisfy the conditions (F1)–(F3) and let f : X → Y • be proper. Assume that

(H8) For every sequence (xn) ⊆ dom f with xn → x ∈ X and f (xn) ∈ f (xn+1) +
F(xn+1,xn)+K for every n ∈N one has f (xn) ∈ f (x)+F(x,xn)+K for every
n ∈ N

(B8) z∗ ◦ f (with z∗ from (F3)) is bounded from below

Then for every x0 ∈ dom f there exists x ∈ dom f such that:

(a) f (x0) ∈ f (x)+ F(x,x0)+ K
(b) ∀x ∈ dom f : f (x) ∈ f (x)+ F(x,x)+ K ⇒ x = x

Proof. Consider A := gph f := {(x, f (x)) | x ∈ dom f}. Condition (H8) says
nothing than (H1) is verified. Applying Theorem 11.6 we get the conclusion. ��
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As for Theorem 11.6, in the above theorem we may assume that z∗ is bounded
from below on the set

B0 := { f (x) | x ∈ dom f , f (x0) ∈ f (x)+ F(x,x0)+ K}.

The preceding theorem is very close to [36, Theorem 3.8] for γ = 1, which is
stated for F and K satisfying conditions (i), (ii), (iii), (S1), (S2) and f : S→ Y (with
S⊆ X a nonempty closed set) satisfying the conditions

(S3) Let us denote AγF
x := {z ∈ X | ( f (z)+ γF(z,x))∩ ( f (x)−K) �= /0} for x ∈ S.

For each x ∈ S and (zn) ⊆ AγF
x ,zn → z such that f (zn) ≤ f (zm) for n > m, it

follows that z ∈ AγF
x .

(S4) The set ( f (S)− f (x0))∩ (−DF) is K-bounded.

Because S is closed one may assume that S = X and dom f = X . Observe that
(S4) implies that y∗(B0) is bounded from below for every y∗ ∈ K+, and so z∗(B0)
is bounded from below. Let us prove that (S3) implies (H8) (for γ = 1). Consider
(xn)⊆ X = dom f with xn → x ∈ X and f (xn) ∈ f (xn+1)+F(xn+1,xn)+K for every
n ∈N. Clearly, for a fixed n ∈ N we have that (xn)n≥n ⊆ A1F

xn
and f (xn)≤ f (xm) for

n≥m≥ n. By (S3) we have that x∈ A1F
xn

, that is, f (xn)∈ f (x)+F(x,xn)+K. Hence
(H8) holds.

In the case in which F(x,x′) = d(x,x′)H for some H ⊆ K the condition (H8)
becomes

(H9) For every sequence (xn) ⊆ dom f with xn → x ∈ X and f (xn) ∈ f (xn+1) +
d(xn+1,xn)H + K for every n ∈ N one has f (xn) ∈ f (x)+ d(x,xn)H + K for
every n ∈ N.

In the case H := {k0} condition (H9) is nothing else than condition (E1) in [41].
Using Theorem 11.13 and Proposition 11.7 we have the following variant of the

preceding result.

Theorem 11.14. Assume that (X ,d) is a complete metric space, Y is a real
topological vector space and K ⊆Y is a proper closed convex cone. Let f : X → Y •
be a proper function and H ⊆ K be a nonempty cs-complete bounded set with
0 /∈ cl(H + K). If

(H10) For every sequence (xn) ⊆ dom f such that xn → x ∈ X and ( f (xn)) is ≤K-
decreasing one has f (x) ≤K f (xn) for every n ∈N.

(B10) f (dom f ) is quasi bounded.

hold, then for every x0 ∈ dom f there exists x ∈ dom f such that:

(a) ( f (x0)−K)∩ ( f (x)+ d(x,x0)H) �= /0
(b) ( f (x)−K)∩ ( f (x)+ d(x,x)H) = /0 ∀x ∈ dom f \ {x}
Proof. Since condition (H10) is exactly condition (H1) for A := gph f and F = FH ,
in order to have the conclusion of the theorem it is sufficient to show that (H2) is
verified for this situation; then just use Proposition 11.7 and Theorem 11.13.
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Let ((xn,yn))⊆ gph f be such that xn → x ∈ X and (yn) is ≤K-decreasing. Hence
yn = f (xn) for every n. By (H10) we have that y := f (x) ≤K f (xn) = yn for every
n ∈ N and, of course, (x, f (x)) ∈ gph f . The proof is complete. ��
Remark 11.13. Taking H to be complete, convex and bounded, then H is cs-
complete. In this case we obtain the main result in [8], that is, [8, Theorem 4.1].

Note that the closed convex subsets as well as the open convex subsets of a
separated locally convex space are cs-closed; moreover, all the convex subsets of
finite dimensional normed spaces are cs-closed (hence cs-complete).

Remark 11.14. Taking H := {k0} in the preceding theorem one obtains practically
[32, Corollary 3.10.6]; there K is assumed to be closed in the direction k0, the present
condition (H10) being condition (H4) in [32, Corollary 3.10.6].

Remark 11.15. Similar results can be stated using Theorems 11.8 and 11.9. When
specializing to F(x1,x2) =

{
d(x1,x2)k0

}
and F ′(y1,y2) =

{
ε ‖y1− y2‖k0

}
one

recovers [41, Corollary 3.1] and [41, Theorem 4.2].

11.5 Applications in Vector Optimization

11.5.1 Solution Concepts

Consider the vector minimization problem (VP) given as

V −min f (x), s.t. x ∈ S,

where X and Y are separated locally convex spaces, {0} �= K ⊆Y is a closed convex
cone (which induces the partial order ≤K on Y ), f : X → Y and S ⊆ X . As in the
preceding sections k0 ∈ K \ (−K) is fixed. The solution concepts for the vector
optimization problem (VP) are described in the next definition.

Definition 11.1.

• The element y0 ∈ F ⊆ Y is said to be a minimal point of F with respect to K
if F ∩ (y0 −K) ⊆ y0 + K. The set of minimal points of F with respect to K is
denoted by Eff(F,K). An element x0 ∈ S is called an efficient solution of (VP) if
f (x0) ∈ Eff( f (S),K).

• The element y0 ∈ F is said to be a properly minimal point of F w.r.t. K if there
is a closed convex set A ⊆ Y with 0 ∈ bdA and A− (K \ {0}) ⊆ intA such that
F ∩ (y0 + intA) = /0. An element x0 ∈ S is called a properly efficient solution for
(VP) if f (x0) is a properly minimal point of f (S).

• The element y0 ∈ F is said to be a weakly minimal point of F if intK �= /0 and F∩
(y0− intK) = /0. The set of weakly minimal points of F is denoted by wEff(F,K).
An element x0 ∈ S is a weakly efficient solution of (VP) if f (x0)∈wEff( f (S),K).
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Note first that from the very definition of weakly minimal points of F one has

wEff(F,K) = F \ (F + intK); (11.40)

then observe that the set A appearing in the definition of a properly minimal
point verifies Assumption (A2). Moreover, note that what is called here a properly
minimal point of F w.r.t. K is said to be an E-minimal element of F in [66] and was
introduced by Iwanow and Nehse in [47] for K = Rn

+ and Gerstewitz and Iwanow
[28] for the general case.

Lemma 11.1. Let x0 ∈ S.

(a) If x0 is a properly efficient solution of (VP) and A ⊆ Y is the set provided by
Definition 11.1 then x0 is a solution of the scalar minimization problem

min ϕA,k0( f (x)− f (x0)) s.t. x ∈ S, (11.41)

where k0 ∈ K \ {0}.
(b) If x0 is a weakly efficient solution of (VP) and k0 ∈ intK, then x0 is a solution of

problem (11.41) with A :=−K.

Proof. In both cases we have that f (S)∩( f (x0)+ intA) = /0. Moreover, because 0∈
bdA, we have that ϕA(0) = 0. Assuming that ϕA,k0( f (x)− f (x0)) < ϕA,k0( f (x0)−
f (x0)) = 0, we get the contradiction f (x)− f (x0) ∈ intA. ��

11.5.2 Necessary Optimality Conditions in Vector Optimization

We consider vector optimization problems on Asplund spaces without convexity
assumptions. Recall that a Banach space X is said to be an Asplund space (cf. Phelps
[53, Definition 1.22]) if every continuous convex function defined on a nonempty
open convex subset D of X is Fréchet differentiable at each point of some Gδ subset
of D. It is known that the Banach spaces with separable dual and the reflexive
Banach spaces are Asplund spaces. So c0 and �p, Lp[0,1] for 1 < p <∞ are Asplund
spaces, but �1 is not an Asplund space.

Under the assumption that the objective function is locally Lipschitz we derive
Lagrangian necessary conditions on the basis of Mordukhovich subdifferential
using the Lipschitz continuity properties of ϕA discussed in Sect. 11.3.4. In the
following we provide necessary conditions for properly efficient solutions of a
vector optimization problem that are related to the strong free-disposal assumption
in (A2).

In order to present our results concerning the existence of Lagrange multipliers,
we work with the Mordukhovich subdifferential ∂M and normal cone NM (denoted
∂ and N in [51]). One says ([51, Definition 3.25]) that a function f : X → Y is
strictly Lipschitz at x if f is Lipschitz on a neighbourhood of x and there exists
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a neighbourhood U of the origin in X such that the sequence (t−1
k ( f (xk + tku)−

f (xk)))k∈N contains a (norm) convergent subsequence whenever u ∈U , xk → x and
tk ↓ 0. It is clear that this notion reduces to local Lipschitz continuity if Y is finite
dimensional.

Remark 11.16. The function f is strictly Lipschitz at x if and only if the sequence
(‖un‖−1[ f (xn +un)− f (xn)]) has a norm converging subsequence whenever (xn)⊆
X converges to x, (un) ⊆ X \ {0} converges to 0 and the sequence (‖un‖−1un)
converges in X .

For more details regarding the class of strictly Lipschitz mappings (with values
in infinite dimensional spaces) see [51, Sect. 3.1.3].

We need the following calculus rules from [51] (see [51, Theorem 3.36] and [51,
Corollary 3.43]) for proving one of our main results.

Lemma 11.2. Assume that X and Y are Asplund spaces.

(a) If f1, f2 : X → R are proper functions and there exists a neighbourhood U of
x ∈ dom f1∩dom f2 such that f1 is Lipschitz on U and f2 is lsc on U, then

∂M( f1 + f2)(x)⊆ ∂M f1(x)+ ∂M f2(x).

(b) If f : X → Y is strictly Lipschitz at x and ϕ : Y → R is finite and Lipschitz on a
neighbourhood of f (x), then

∂M(ϕ ◦ f )(x)⊆
⋃
{∂M(y∗ ◦ f )(x) | y∗ ∈ ∂Mϕ( f (x))} .

In the next result we provide necessary optimality conditions for properly
efficient solutions of problem (VP).

Theorem 11.15. Assume that X and Y are Asplund spaces, f : X → Y is strictly
Lipschitz, S is a closed subset of X and x0 ∈ S. If x0 is a properly efficient solution
of (VP) then there exists v∗ ∈ K# such that

0 ∈ ∂M(v∗ ◦ f )(x0)+ NM(S,x0). (11.42)

Moreover, if f is strictly differentiable at x0 then

( f ′(x0))∗v∗ ∈ −NM(S,x0). (11.43)

Proof. Assume that x0 is a properly efficient solution for (VP). By Lemma 11.1, x0

is a solution of the problem (11.41), or equivalently x0 is a minimum point of

h : X → R, h(x) := ϕA( f (x)− f (x0))+ ιS(x),

where A ⊆ Y is a closed convex set such that 0 ∈ bdA and A − (K \ {0}) ⊆
intA. As seen in Remark 11.2 (ii), domϕA is open because k0 ∈ K \ {0} and
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ϕA(0) = 0 because 0 ∈ bdA. Note that k0 /∈ A∞; otherwise we get the contradiction
0 = (0 + k0)− k0 ∈ A−Pk0 ⊆ intA. Since 0 ∈ A⊆ domϕA, by Proposition 11.5 we
have that ϕA is convex and Lipschitz on a neighbourhood of 0. It follows that
0 ∈ ∂Mh(x0) (see [51, Proposition 1.114]). Since f is strictly Lipschitz and ϕA is
Lipschitz on a neighbourhood of 0, the function x �→ ϕA( f (x)− f (x0)) is Lipschitz
on a neighbourhood of x0. Moreover, since S is a closed subset of X we have that
ιS is a proper lower-semicontinuous function. Using both parts of Lemma 11.2 we
have that

0 ∈ ∂M(v∗ ◦ f )(x0)+ NM(S,x0)

for some v∗ ∈ ∂MϕA(0) = ∂ϕA(0), ϕA being convex and finite and Lipschitz on a
neighbourhood of 0. From Corollary 11.7 we have that v∗ ∈ K# and

〈
k0,v∗

〉
= 1,

and so v∗ �= 0. If f is strictly differentiable at x0 then ∂M f (x0) = { f ′(x0)}, and so
the last conclusion follows. ��

For weakly efficient solutions of (VP) we have the following result.

Theorem 11.16. Assume that X and Y are Asplund spaces, f : X → Y is strictly
Lipschitz, S is a closed subset of X and x0 ∈ S. If x0 is a weakly efficient solution
of (VP) then there exists v∗ ∈ K+ \ {0} such that (11.42) holds. Moreover, if f is
strictly differentiable at x0 then (11.43) holds.

Proof. If intK �= /0 and x0 is a weakly efficient solution for (VP), by Lemma 11.1
we have that x0 is a minimum point of h for A := −K and k0 ∈ intK. This time ϕA

is Lipschitz and sublinear. The rest of the proof is similar. ��

Remark 11.17. If X is an Asplund space and g : X →R is finite and Lipschitz on a
neighbourhood of x0 ∈ S ⊆ X with S closed, the following well-known relations

∂Clg(x0) = convw∗∂Mg(x0) and NCl(S,x0) = convw∗NM(S,x0)

hold (see [51, Theorem 3.57]), where ∂Clg(x0) and NCl(S,x0) represent the Clarke’s
subdifferential of g at x0 and the Clarke’s normal cone of S at x0, respectively. In
the hypotheses of Theorem 11.15 from (11.42) we get the necessary optimality
condition

∃v∗ ∈ K+ \ {0} : 0 ∈ ∂Cl(v∗ ◦ f )(x0)+ NCl(S,x0) (11.44)

in terms of the Clarke’s subdifferential and normal cone. However, the optimality
condition given by (11.42) is sharper than the condition given by (11.44).

Remark 11.18. Note that Theorems 11.15 and 11.16 remain valid when the
Mordukhovich subdifferential ∂M is replaced by any subdifferential ∂ which verifies
conditions (H1)–(H4) in [17]. In such a situation Theorem 11.16 corresponds to
Lagrangian necessary condition for weakly efficient solutions in [17, Theorem
3.1] (compare also [20, Theorem 3.2] for the case dimY < ∞). In Theorem 11.15
we have established the result for properly efficient solutions without assuming
intK �= /0.
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Another application envisage fuzzy necessary optimality conditions for approx-
imate minimizers of a Lipschitz vectorial function (compare Durea and Tammer
[17]). First, we need a definition.

Definition 11.2. If α > 0 and k0 ∈ intK, a point x0 ∈ S is said to be (α,k0)-efficient
solution of (VP) if ( f (S)− f (x0))∩ (−αk0−K) = /0.

Of course, every weakly efficient solution of (VP) is a (α,k0)-efficient solution
for every α > 0 and k0 ∈ intK, but the converse is false, in general.

We introduce now the concept of abstract subdifferential (see, e.g. [43]; see also
[19] for a theory of subdifferentials for vector-valued functions). Let X be a class
of Banach spaces which contains the class of finite dimensional normed vector
spaces. By an abstract subdifferential ∂ we mean a map which associates to every lsc
function h : X ∈X → R and to every x ∈ X a (possible empty) subset ∂h(x)⊆ X∗;
∂h(x) = /0 if f (x) /∈ R. Let X ,Y ∈X and denote by F (X ,Y ) a class of functions
acting between X and Y having the property that by composition at left with a lsc
function from Y to R the resulting function is still lsc. In the sequel we shall work in
every specific case with some of the next properties of the abstract subdifferential ∂ .

(C1) If h : X → R is a proper lsc convex function then ∂h(x) coincides with the
Fenchel subdifferential.

(C2) If x ∈ X is a local minimum point for the lsc function h and h(x) ∈ R then
0 ∈ ∂h(x).

Note that (C1) and (C2) are very natural requirements for any
subdifferential.

The counterparts of “exact calculus rules” are the far more general “fuzzy
calculus rules”.

(C3) If X ∈X , ϕ : X → R is a locally Lipschitz functions and x ∈ domh, then

∂ (h +ϕ)(x)⊆ ‖·‖∗ − limsup
y→hx,z→x

(∂h(y)+ ∂ϕ(z)),

(C4) If ϕ : Y → R is locally Lipschitz and ψ ∈F (X ,Y ), then for every x,

∂ (ϕ ◦ψ)(x)⊆ ‖·‖∗ − limsup
u→ψx,v→ψ(x)

⋃
u∗∈∂ϕ(v)∂ (u∗ ◦ψ)(u).

where the following notations are used:

1. u→hx means that u→ x and h(u)→ h(x); note that if h is continuous, then u→hx
is equivalent with u→ x.

2. x∗ ∈ ‖·‖∗ − limsupu→x∂h(u) means that for every ε > 0 there exist xε and x∗ε
such that x∗ε ∈ ∂h(xε) and ‖xε − x‖< ε , ‖x∗ε − x∗‖ < ε; the notation x∗ ∈ ‖·‖∗ −
limsupu→hx∂h(u) has a similar interpretation and is equivalent with x∗ ∈ ‖·‖∗ −
limsupu→x∂h(u) provided that h is continuous.

The property (C3) is called fuzzy sum rule and a space X on which such a
property holds is called trustworthiness space for the subdifferential ∂ . For example,
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for the Fréchet subdifferential the trustworthiness spaces are the Asplund spaces
(see [23]). This rule is also satisfied (see [48, pp. 41], [18, 44] and the references
therein) by:

• The proximal subdifferential when X is the class of Hilbert spaces.
• The Fréchet subdifferential of viscosity when X is the class of Banach spaces

which admit a C1 Lipschitz bump function.
• The β -subdifferential of viscosity when X is the class of Banach spaces which

admit a β -differentiable bump function.

The next result goes back to Durea and Tammer [17].

Theorem 11.17. Let X ,Y ∈X , let f ∈F (X ,Y ) be locally Lipschitz and let S be a
closed subset of X. Let x0 ∈ S be a weakly efficient solution of (VP). Then for every
k0 ∈ intK and ε > 0 there exist u ∈ B(x0,ε), z ∈ B(x0,ε/2)∩ S and u∗ ∈ K+ with
u∗(k0) = 1 such that

0 ∈ ∂ (u∗ ◦ f )(u)+ N∂ (S,z)+ B(0,ε),

provided that ∂ satisfies conditions (C1), (C2), (C3), (C4). Moreover, for some x ∈
B(x0,ε/2) and v ∈ B( f (x)− f (x0),ε/2) we have that u∗(v) = ϕ(v).

Proof. Let us consider ε > 0 and the functional ϕ given by (11.5) corresponding to
a fixed k0 ∈ intK. We have that

f (x0) ∈ wEff( f (S),K)

which means that

0 ∈ wEff( f (S)− f (x0),K).

Thus, ϕ(0) = 0 and ϕ( f (S)− f (x0)) ≥ 0, whence x0 is a minimum point for
(ϕ ◦g)+ ιS, where g is defined by g(x) = f (x)− f (x0). From (C2) we get

0 ∈ ∂ (ϕ ◦ g + ιS)(x0)

and from (C3) (ϕ is Lipschitz, g is locally Lipschitz and ιS is lsc because S is closed),
there exist x ∈ B(x0,ε/2), z ∈ B(x0,ε/2)∩ S, p∗ ∈ ∂ (ϕ ◦ g)(x), and q∗ ∈ N∂ (S,z)
such that

‖p∗+ q∗‖< ε/2.

Since p∗ ∈ ∂ (ϕ ◦ g)(x), by (C4) there exist u1 ∈ B(x,ε/3) ⊆ B(x0,5ε/6), v ∈
B(g(x),ε/2), u∗ ∈ ∂ϕ(v) and v∗1 ∈ ∂ (u∗ ◦ g)(u1) such that

‖v∗1− p∗‖< ε/2.

It follows that

‖v∗1 + q∗‖= ‖v∗1− p∗+ p∗+ q∗‖< 5ε/6.
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This means that

0 ∈ ∂ (u∗ ◦ g)(u1)+ N∂ (S,z)+ B(0,5ε/6).

But
∂ (u∗ ◦g)(u1) = ∂ (u∗ ◦ ( f (·)− f (x0)))(u1) = ∂ (u∗ ◦ f )(u1)

because the function u �→ −u∗( f (x0)) is constant (in particular convex). Applying
(C3) we find u ∈ B(u1,ε/6)⊆ B(x0,ε) and v∗ ∈ ∂ (u∗ ◦ f )(u) such that

‖v∗1− v∗‖< ε/6.

We deduce that

0 ∈ ∂ (u∗ ◦ f )(u)+ N∂ (S,z)+ B(0,ε).

The assertions concerning u∗ follow from Corollary 11.7 and this completes the
proof. ��

Concerning (α,k0)-efficient solutions of (VP) we have the following result
(compare Durea and Tammer [17]).

Theorem 11.18. Assume that S is a closed subset of X and f is a λ -Lipschitz
function. Let x0 ∈ S be an (α,k0)-efficient solution of (VP). Then for every e ∈ intK
and ε > 0, there exist u ∈ B(x0,

√
α + ε), z ∈ B(x0,

√
α + ε/2)∩ S, u∗ ∈ K+ with

u∗(e) = 1 and x∗ ∈ X∗ with ‖x∗‖ ≤ 1 such that

0 ∈ ∂ (u∗ ◦ f )(u)+
√
αu∗(k0)x∗+ N∂ (S,z)+ B(0,ε),

provided that ∂ satisfies conditions (C1), (C2), (C3), (C4). Moreover, for some x ∈
B(x0,

√
α+ ε/2) and v ∈ B( f (x)− f (x0),λ

√
α+ ε) one has u∗(v) = ϕ(v).

Proof. Since the function f is Lipschitz, it is continuous as well, and since S is a
closed set in the Banach space X , S is a complete metric space with respect to the
metric given by the norm. Thus, it is easy to see that we are in the conditions of
the vectorial variant of Ekeland principle given in Theorem 11.13. Applying this
result we get an element x ∈ S such that ‖x− x0‖ <

√
α and having the property

that it is minimal element (whence weak minimal as well) over S for the function h
defined by

h(x) := f (x)+
√
α ‖x− x‖k0.

Let ε > 0. One can apply now Theorem 11.17 for ε replaced δ ∈ ]0,ε/2[ with
δ (1 +

√
α
∥∥k0

∥∥δ ) < 2ε . Accordingly, we can find u ∈ B(x,δ ) ⊆ B(x0,
√
α + δ ),

x ∈ B(x,δ/2) ⊆ B(x0,
√
α + δ/2), v ∈ B(h(x)− h(x),δ/2), z ∈ B(x,δ/2)∩ S ⊆

B(x0,
√
α+ δ/2)∩S and u∗ ∈ ∂ϕ(v) such that

0 ∈ ∂ (u∗ ◦ h)(u)+ N∂ (S,z)+ B(0,δ ). (11.45)
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Let us take the element x∗ ∈ ∂ (u∗ ◦ h)(u) involved in (11.45). Since

∂ (u∗ ◦ h)(u) = ∂ (u∗ ◦ ( f (·)+
√
α ‖·− x‖k0))(u),

by use of (C3) and (C1), there exist u ∈ B(u,δ ) ⊆ B(x0,
√
α+ 2δ ) and u′ ∈ B(u,δ )

such that

x∗ ∈ ∂ (u∗ ◦ f )(u)+
√
αu∗(k0)∂ (‖·− x‖)(u′)+ B(0,δ ). (11.46)

By the calculation rule for the subdifferential of the norm and combining relations
(11.45) and (11.46) it follows that there exists x∗ ∈ X∗ with ‖x∗‖ ≤ 1 such that

0 ∈ ∂ (u∗ ◦ f )(u)+
√
αu∗(k0)x∗+ N∂ (S,z)+ B(0,2δ ).

Since 2δ < ε , it remains only to prove the estimation about the ball containing v.
We can write

‖v− ( f (x)− f (x0))‖ ≤ ‖v− (h(x)−h(x))‖+‖(h(x)−h(x))− ( f (x)− f (x0))‖
≤ δ/2 +

∥∥√αk0 ‖x− x‖− f (x)+ f (x0))
∥∥

≤ δ/2 +
√
α
∥∥k0

∥∥δ/2 +λ
√
α

< λ
√
α+ ε,

where for the last inequality we used the assumptions made on δ . The proof is
complete. ��
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48. Jules, F.: Sur la somme de sous-différentiels de fonctions semi-continues inférieurement.
Dissertationes Math. 423 (2003)

49. Li, S.J., Yang, X.Q., Chen, G.Y.: Vector Ekeland variational principle. In: Vector varational
inequalities and vector equilibria. Nonconvex optimization and its applications. Giannessi F.
(ed.) Vol. 38, pp. 321–333. Kluwer, Dordrecht, (2000)

50. Luenberger, D.G.: New optimality principles for economic efficiency and equilibrium.
J. Optim. Theory Appl. 75, 221–264 (1992)

51. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. I: Basic
Theory, Vol. II: Applications. Springer, Berlin (2006)

52. Penot, J.-P.: The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlinear
Anal. 10, 813–822 (1986)

53. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes
Math. 1364 Springer, Berlin (1989)

54. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability (2nd ed.). Lecture
Notes Math. 1364. Springer, Berlin (1993)

55. Rockafellar, R.T.: Clarke’s tangent cones and the boundaries of closed sets in Rn. Nonlinear
Anal.: Theory, Meth. Appl. 3, 145–154 (1979)

56. Rockafellar, R.T.: The Theory of Subgradients and its Applications to Problems of Optimiza-
tion. Convex and Nonconvex Functions. Heldermann, Berlin (1981)

57. Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Deviation measures in risk analysis and
optimization. Finance Stochastics 10, 51–74 (2006)

58. Rolewicz, S.: On drop property. Studia Math. 85, 27–35 (1987)
59. Rubinov, A.M., Singer, I.: Topical and sub-topical functions. Downward sets and abstract

convexity. Optimization 50, 307–351 (2001)
60. Ruszczynski, A., Shapiro, A.: Optimization of convex risk measures. Math. Oper. Res. 31,

433–452 (2006)



11 Vector Variational Principles for Set-Valued Functions 415

61. Tammer, Chr.: A generalization of Ekeland’s variational principle. Optimization 25, 129–141
(1992)

62. Tammer, Chr.: A variational principle and a fixed point problem. In: Henry, J., Yvon, J.-P. (eds)
System Modelling and Optimization. Lecture Notes in Control and Inform. Sci., 197, Springer,
London, pp. 248–257 (1994)
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64. Tammer, Chr., Zălinescu, C.: Vector variational principles for set-valued functions. Report
Institut fr Mathematik, Report No. 17, 2009. Accepted: Optimization.

65. Turinici, M.: Maximal elements in a class of order complete metric spaces. Math. Japonica 25,
511–517 (1980)
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Chapter 12
The Fermat Rule and Lagrange Multiplier Rule
for Various Efficient Solutions of Set-Valued
Optimization Problems Expressed in Terms
of Coderivatives

Truong Xuan Duc Ha

12.1 Introduction

Recently, the interest toward set-valued optimization problems, i.e., optimization
problems with set-valued objective and/or constrain maps, has grown up. Exploiting
advanced tools of variational analysis and set-valued analysis, the authors obtained
a number of (necessary and/or sufficient) optimality conditions expressed in terms
of generalized derivatives such as contingent derivative [2, 13, 62, 66], first-order
derivative [14, 15], second-order derivative [28, 40], epiderivative and generalized
epiderivative [10, 22, 24, 39, 43, 44], subgradient/subdifferential [4, 5, 39, 67] and
coderivatives [2, 4, 5, 18, 27–29, 33, 39, 72, 73].

In this chapter, we summarize several versions of the Fermat rule and the
Lagrange multiplier rule for various efficient solutions of set-valued optimization
problems, which are expressed in terms of coderivatives in the senses of Fréchet,
Ioffe, Clarke and Mordukhovich and provide illustrating examples.

First, we recall fuzzy and exact versions containing necessary conditions for
Pareto efficient solutions established by Zheng and Ng [72, 73], and Bao and
Mordukhovich [5] with the help of the extremal principle of variational analysis and
its modifications. We provide an example showing that these necessary conditions
do not become sufficient even under convexity additional assumptions and in finite-
dimensional setting.

Second, we obtain in a unified scheme the Fermat rule and the Lagrange
multiplier rule containing both necessary and sufficient conditions (the sufficient
conditions require additional convexity assumptions) for strongly efficient solutions,

T.X.D. Ha (�)
Institute of Mathematics, Hanoi, Vietnam
e-mail: txdha@math.ac.vn

Q.H. Ansari and J.-C. Yao (eds.), Recent Developments in Vector Optimization,
Vector Optimization 1, DOI 10.1007/978-3-642-21114-0 12,

417

© Springer-Verlag Berlin Heidelberg 2012

txdha@math.ac.vn


418 T.X.D. Ha

weakly efficient solutions, positive properly efficient solutions, Hurwicz properly
efficient solutions, Henig global properly efficient solutions, Henig properly effi-
cient solutions, super efficient solutions and Benson properly efficient solutions.
Our new unified scalarization approach to the study of these solutions develops the
one proposed in the author’s recent works [27–29] and is based on the fact that the
mentioned solutions can be characterized as solutions to appropriately chosen scalar
optimization problems with the objective functions being linear functionals or the
Hiriart-Urruty signed distance function or a Minkowski-type function.

This chapter is organized as follows. In Sect. 12.2, we recall some tools from
variational analysis such as the concepts of normal cone, subdifferential, coderiva-
tive, metric regularity, pseudo-Lipschizity and the extremal principle. In Sect. 12.3,
we recall the concepts of efficient points of sets and efficient solutions of set-valued
optimization problems and we discuss the mentioned above unified scalarization
approach. Section 12.4 is devoted to the Fermat rule and Sect. 12.5 is devoted to the
Lagrange multiplier rule.

12.2 Some Tools from Variational Analysis

For the convenience of the reader we repeat the relevant material from [1, 7, 8,
12, 18, 35–38, 47, 50–59, 63, 64, 68] without proofs, thus making our exposition
self-contained. Namely, we recall the concepts of normal cone, subdifferential and
coderivative in the senses of Fréchet, Ioffe, Clarke and Mordukhovich, sequential
normal compactness, pseudo-Lipschitzity, metric regularity, the Clarke penalization
and the extremal principle.

Throughout the chapter, unless otherwise stated, X , Y and Z are Banach spaces
with their dual X∗, Y ∗ and Z∗, respectively. We denote by 〈·, ·〉 the dual pairing
between a space and its dual and use the same notation ‖.‖ for the norms in all these
spaces. The closed unit ball and the open unit ball in any space, say X , are denoted by
IBX and I̊BX ; we omit the subscript X when no confusion occurs. For a nonempty set
A⊂ X , intA and clA stand for the interior and closure of A, cl∗ stands for weak-star
(weak*) closure of A and coneA := {ta : t ∈R+,a∈ A}, whereR+ = [0,∞[. Further,
d(x;A) is the distance from x to A and χA(x) is the indicator function associated to
A, i.e., χA(x) = 0 if x ∈ A and χA(x) = ∞ otherwise. Recall that a Banach space is
Asplund if each of its separable subspace has a separable dual. This class of spaces
has been comprehensively investigated in geometric theory of Banach spaces and
has been largely employed in variational analysis; see, e.g. [54, 55]. Examples of
Asplund spaces are the Banach spaces Rn, Lp

[0,1] and l p (1 < p < ∞).

Assume that g : X �→ R∪{∞} is a function and F : X �→ 2Y is a set-valued map
(for the sake of convenience we assume that F(x) is nonempty for all x ∈ X ).
The domain, epigraph of g and the graph of F are the sets domg = {x ∈ X |
g is finite at x}, epig = {(x,t) ∈ X ×R | g(x) ≤ t} and grF = {(x,y) ∈ X ×Y |
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y ∈ F(x)}, respectively. In what follows, we say that g is Lipschitz (of rank L) on
some set A⊆ X if

|g(x)− g(x′)| ≤ L‖x− x′‖
for all x,x′ in A and g is Lipschitz near x ∈ X (or locally Lipschitz) if it is Lipschitz
on some closed ball centered at x.

12.2.1 Normal Cone, Subdifferential and Coderivative
in the Senses of Fréchet, Ioffe, Clarke and Mordukhovich

In this subsection, we recall the construction for defining normal cones, subdifferen-
tials and coderivatives in the senses of Fréchet, Ioffe, Clarke and Mordukhovich and
then we list some main facts about these concepts. Note that the subdifferentials
in the senses of Clarke and Ioffe have been defined firstly for a locally Lipschitz
function, then the corresponding normal cones have been defined through the
subdifferentials of the distance function and finally, these subdifferentials have been
extended to a lower semicontinuous (l.s.c.) function through the normal cones to
its epigraph, see [12, 37]. Meanwhile, the normal cones in the senses of Fréchet
and Mordukhovich have been defined first and the corresponding concepts of
subdifferential for a l.s.c. function have been defined later through the normal cones
to its epigraph.

Recall that given a locally Lipschitz function g and x ∈domg, the Ioffe approxi-
mate subdifferential of g at x [35–37] is the set

∂Ag(x) =
⋂

L∈F

limsup
(ε,y)→(0+,x)

∂−ε gy+L(y),

where F is the collection of all finite dimensional subspaces of X , gy+L(u) = g(u)
if u ∈ y + L and gy+L(u) = +∞ otherwise, for ε ≥ 0

∂−ε gy+L(y) = {x∗ ∈ X∗ | x∗(v)≤ ε‖v‖+
+ liminft→0+ t−1[gy+L(y + tv)−gy+L(y)],∀v ∈ X}

and the Clarke generalized subdifferential of g at x [12] is the set

∂Cg(x) = {x∗ ∈ X∗ | x∗(v)≤ g0(x;v), ∀v ∈ X},

where g0(x;v) is the generalized directional derivative of g at x in the direction v

g0(x;v) = limsup
y→x, t→0+

g(y + tv)−g(y)
t

.
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Let Ω be a nonempty subset of X different from X and x ∈ clΩ . The Ioffe
approximate normal cone to Ω at x [35–37] is given by

NA(x;Ω) =
⋃

λ>0

λ∂Ad(x;Ω)

and the Clarke normal cone to Ω at x [12] is given by

NC(x;Ω) = cl∗
(

⋃

λ>0

λ∂Cd(x;Ω)

)
.

To define the Mordukhovich normal cone, recall that given a scalar ε > 0, the set of
ε-normals to Ω at x is given by

N̂ε(x;Ω) =

{
x∗ ∈ X∗

∣∣∣∣ limsup
x′ Ω→x

x∗(x′ − x)
‖x′ − x‖ ≤ ε

}
. (12.1)

When ε = 0, the elements of (12.1) are called Fréchet normals and their collection,
denoted by NF(x;Ω), is the Fréchet normal cone to Ω at x; in other words,

NF(x;Ω) =

{
x∗ ∈ X∗

∣∣∣∣ limsup
x′ Ω→x

x∗(x′ − x)
‖x′ − x‖ ≤ 0

}
. (12.2)

The Mordukhovich normal cone to Ω at x [50–52, 54, 55] is defined by

NM(x;Ω) = limsup
x′ Ω→x, ε→0+

N̂ε (x′;Ω), (12.3)

where the limit in the right-hand side means the sequential Kuratowski–Painlevé
upper limit with respect to the norm topology in X and the weak-star ω∗ topology

in X∗, x′ Ω→ x refers to all sequences converging to x which remain in Ω . When X is
Asplund, (12.3) takes the following simple form

NM(x;Ω) = limsup
x′ Ω→x

NF(x′;Ω). (12.4)

Now assume that the function g is lower semicontinuous and the set-valued
map F is closed (i.e., its graph is a closed set). Denote the subdifferentials of
g in the senses of Fréchet, Ioffe, Clarke and Mordukhovich respectively by ∂F ,
∂A, ∂C, ∂M and the coderivatives of F in the senses of Fréchet, Ioffe, Clarke and
Mordukhovich respectively by D∗

F ,D∗
A, D∗

C, D∗
M . For the sake of convenience, we

make the convention that, unless otherwise specified, the same notations N, ∂g and
D∗F are used for the normal cones, the subdifferentials and the coderivatives in
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the above senses or in the sense of convex analysis (in the convex case) and that
while concerning with the Mordukhovich normal cone and related to it concepts,
we restrict ourselves to the Asplund space setting, where they enjoy full calculus,
see [50–58]. The subdifferential of g and the coderivative of F are defined through
the corresponding normal cone as follows

∂g(x) = {x∗ ∈ X∗ | (x∗,−1) ∈ N((x,g(x));epig)}

for any x ∈domg and

D∗F(x,y)(y∗) = {x∗ ∈ X∗ | (x∗,−y∗) ∈ N((x,y);grF)}

for any (x,y) ∈ grF and y∗ ∈Y ∗. When F is single-valued, we write D∗F(x) instead
of D∗F(x,y).

Remark 12.1. (a) Note that in [50] Mordukhovich introduced the notion of
coderivatives of a set-valued map regardless of the normal cone used. After he
suggested this approach to differentiability of maps, we may consider different
specific coderivatives for set-valued maps generated by different normal cones
to their graphs. The Mordukhovich coderivative and the Mordukhovich normal
cone are also called limiting Fréchet coderivative and limiting Fréchet normal
cone. The Mordukhovich coderivative related to a normal cone in a finite
dimensional space was introduced in [50] and was extended to Banach spaces
in [47]. The Mordukhovich coderivative has been further developed to its full
and comprehensive calculus and has been used in the study of optimal control,
differential inclusions, scalar and vector optimization, economics..., see [54,55].
Coderivative for single- or set-valued maps has been proven to be the right tool
for formulation of optimality conditions, see [2–5,16,18,27–29,54,55,59,72,73]
and the references therein.

(b) As noted in [54, p. 143], Fréchet had nothing to do with the Fréchet normals,
normal cone, subdifferential and coderivative, and we keep these names to em-
phasize parallels with the classical differentiation, where the Fréchet derivative
is the basic tool of nonlinear analysis.

(c) The coderivative in the sense of convex analysis, i.e. coderivative for a set-
valued map with a convex graph was considered in [2].

(d) The approximate normal cone and the approximate subdifferential for a l.s.c.
function presented above is termed as the G-nucleus of the G-normal cone
and the G-nucleus of the G-subdifferential in [36]. For the calculus of the
approximate coderivative see [37, 38].

(e) We mention that Clarke never introduced nor used any coderivative concept for
either set-valued or single-valued maps, but the coderivative generated by the
Clarke normal cone in the scheme of [51] as above has been used under the
name “Clarke’s coderivative” in [52].
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Next, we recall some results that will be used in the sequel, see [12, 35–37, 50–
52,54]. We begin with main properties and relations of the normal cones from which
one can easily derive corresponding results for coderivatives.

Proposition 12.1. Assume that Ω is a nonempty closed subset of X and x ∈ Ω .
Then

(a) NF(x;Ω) ⊆ NM(x;Ω)⊆ NA(x;Ω) ⊆ NC(x;Ω).
(b) NM(x;Ω) = NA(x;Ω) in finite-dimensional spaces.
(c) N(x;Ω) = R+∂d(x;Ω) when the normal cone and the subdifferential are

understood in the sense of Fréchet, Ioffe or Mordukhovich and N(x;Ω) =
cl∗R+∂d(x;Ω) when the normal cone and the subdifferential are understood
in the sense of Clarke.

(d) The normal cones in the senses of Fréchet and Clarke are convex; ifΩ is convex,
then all the considered normal cones reduce to the normal cone of convex
analysis, i.e. to the set

{x∗ ∈ X∗ | x∗(x′ − x)≤ 0, ∀ x′ ∈Ω}.

Some useful properties of the subdifferentials are collected in the following
proposition.

Proposition 12.2. Assume that g : X �→ R∪{∞} is a l.s.c. function. Then

(a) If g is strictly differentiable near x then ∂g(x) = {g′(x)}.
(b) If g is Lipschitz near x, then for any scalar t, one has ∂C(tg)(x) = t∂Cg(x).
(c) If g is convex and Lipschitz near x, then the above subdifferentials reduce to the

subdifferential of convex analysis, i.e.,

∂g(x) = {x∗ ∈ X∗ | x∗(x′ − x)≤ g(x′)−g(x), ∀ x′ ∈ domg}.

(d) If g(x′)≥ g(x) for all x′ in a neighborhood of x ∈ domg, then 0 ∈ ∂g(x).
(e) (sum rule) Assume that h : X �→ R∪{+∞} is Lipschitz near x ∈ domg∩domh,

then

∂ (g + h)(x)⊆ ∂g(x)+ ∂h(x)

and the equality holds if at least one function is strictly differentiable near x.

Let us illustrate the above concepts by some examples.

Example 12.1. (a) Let X = R2. For Ω := {(x1,x2) ∈R2 | x2 ≥−|x1|} we have

NC((0,0);Ω) = {(x1,x2) | x2 ≤−|x1|}
NM((0,0);Ω) = {(x1,x2) | x2 =−|x1|}
NA((0,0);Ω) = NM((0,0);Ω)
NF((0,0);Ω) = {(0,0)}.



12 The Fermat Rule and Lagrange Multiplier Rule for Various Efficient Solutions 423

(b) Let X = R2. For Ω := {(x1,x2) ∈R2 | x2 = |x1|} we have

NC((0,0);Ω) = R2

NM((0,0);Ω) = {(x1,x2) | x2 ≤−|x1|}∪{(x1,x2) | x2 = |x1|}
NA((0,0);Ω) = NM((0,0);Ω)
NF((0,0);Ω) = {(x1,x2) | x2 ≤−|x1|}.

(c) Let X = R and g :R �→ R with g(x) =−|x|. Then it follows from (a) that

∂Cg(0) = [−1,1]
∂Mg(0) = {−1,1}
∂Ag(0) = ∂Mg(0)
∂F g(0) = /0.

(d) Let X = R, Y = R and F :R �→ 2R is defined by

F(x) =
{ |x| if |x| ≤ 1
{x,x} otherwise.

Then it follows from (b) that

D∗
CF(0,0)(y) = R ∀y ∈ R

D∗
MF(0,0)(y) =

{
[−y,y] if y > 0
{−y,y} if y ≤ 0

D∗
AF(0,0)(y) = D∗

MF(0,0)(y) ∀y ∈ R
D∗

F F(0,0)(y) =
{

[−y,y] if y ≥ 0
/0 otherwise.

(e) Let X be an arbitrary Banach space and g,h : X �→ R are defined by g(x) = ‖x‖
and h(x) =−‖x‖. Observe that the function g is convex. We have

∂g(0) = IBX∗

and
∂Ch(0) = IBX∗

∂Mh(0) = {x∗ ∈ X∗ | ‖x∗‖= 1}
∂Ah(0) = ∂Mh(0)
∂F h(0) = {0}.

Our arguments for obtaining necessary optimality conditions for set-valued
optimization problems are based on the following results on necessary optimality
conditions of a scalar constrained optimization problem involving either the Clarke
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subdifferential/normal cone in the Banach space setting or the Fréchet subdifferen-
tial/normal cone in the Asplund space setting. For Proposition 12.4, also see [8, 56]
for the details.

Proposition 12.3 ([12, p.52, Corollary]). Let X be a Banach space, g : X �→ R be
a locally Lipschitz function and Ω be a closed subset of X. Suppose that g attains
its minimum over Ω at x ∈Ω . Then

0 ∈ ∂Cg(x)+ NC(x;Ω).

Proposition 12.4 ([19]). Let X be an Asplund space, g : X �→ R be a locally
Lipschitz function andΩ be a closed subset of X. Suppose that g attains its minimum
overΩ at x∈Ω . Then for any ε > 0 there exist xε ∈ x+εIBX and uε ∈Ω∩(x+εIBX)
such that

0 ∈ ∂F g(xε)+ NF(uε ;Ω)+ εIBX∗ .

We conclude the subsection with the Clarke penalization.

Proposition 12.5 ([12, Proposition 2.4.3]). Let X be a Banach space, Ω be a
subset of X and f :Ω �→R be a Lipschitz function of rank L on Ω . Let x belong to a
set U ⊆Ω and suppose that f attains a minimum over U at x. Then for any L′ ≥ L,
the function f (x) := f (x)+ L′d(x;U) attains a minimum over U at x. If L′ > L and
U is closed, then any other point minimizing f over Ω must also lie in U.

12.2.2 Sequential Normal Compactness, Pseudo-Lipschitzity
and Metric Regularity

Optimality conditions with Lagrange–Kuhn–Tucker multipliers for set-valued opti-
mization problems, similar to optimization problems with single-valued objectives,
require qualification assumptions, which are often expressed in terms of sequential
normal compactness, pseudo-Lipschitzity and metric regularity. This subsection is
devoted to these concepts. We refer the reader to the monographs [54,55] for details
on these concepts as well as for their history. Throughout this subsection, let X and
Y be Banach spaces (unless otherwise stated), Ω ⊆ X be a nonempty set, F be a
set-valued map from X to Y and (x,y) ∈grF .

To deal with the case of Pareto efficient solutions, Bao and Mordukhovich [5]
and Zheng and Ng [72, 73] exploited certain normal compactness properties of
sets and maps, which are automatic in finite dimensions while are unavoidably
needed in infinite-dimensional spaces due to the natural lack of compactness therein.
These local properties of sets in Banach spaces and in Asplund spaces ensure the
equivalence between the weak* and norm convergence to zero of the ε-normals
(12.1) and the Fréchet normals (12.2), respectively, in dual spaces. Recall [54] that
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Ω is said to be sequentially normally compact (SNC) at x ∈ Ω if for any sequence
{(εi,xi,x∗i )}:

[εi → 0+, xi
Ω→ x, x∗i ∈ N̂εi(xi;Ω) and x∗i

w∗→ 0] implies [‖x∗i ‖→ 0]

and when X is Asplund, Ω is sequentially normally compact (SNC) at x ∈Ω if for
any sequence {(xi,x∗i )}:

[xi
Ω→ x, x∗i ∈ NF(xi;Ω) and x∗i

w∗→ 0] implies [‖x∗i ‖→ 0].

Note that the concepts of sequential normal compactness for sets was introduced
by Mordukhovich and Shao in [58]. It is easy to see that every nonempty set in
a finite-dimensional space is SNC at each of its points. To consider the infinite-
dimensional case, we need some notions. Recall that the affine hull of Ω , denoted
by aff Ω , is the smallest affine set containing Ω . The codimension of cl affΩ is
defined as the dimension of the quotien space X/(cl affΩ − x) for any x ∈ Ω (this
dimension does not depend upon the choice of x ∈Ω ). The relative interior of Ω is
the interior ofΩ w.r.t. cl affΩ . It has been established [54] that any SNC set must be
finite-codimensional i.e. the SNC property in infinite-dimensional spaces may hold
only for sufficiently “large” sets, and this condition is a characterization of the SNC
property for convex sets with nonempty relative interior. We refer the reader to [54]
for details and sufficient conditions ensuring the fulfillment of the SNC property of
sets which are related to a kind of Lipschizian behavior of Ω around the point
in question such as epi-Lipschitzian and compactly epi-Lipschitzian properties.
Recall that a closed set Ω in X is said to be epi-Lipschitz at x [7] if there exist a
neighborhood V of x, a nonempty open set U and λ > 0 such that

Ω ∩V +(0,λ )U ⊆Ω

(any non-zero vector in U is said to be hypertangent to Ω at x) and it is said to be
epi-Lipschitz-like at x [7] if there exist λ > 0, a neighborhood V of x and a convex
set U with its polar U0 being weak*-locally compact such that

Ω ∩V +(0,λ )U ⊆Ω .

As mentioned in [54, p.30–31], the epi-Lipschitzian property of the closed set Ω
means that Ω is locally homeomorphic to the epigraph of a Lipschitz continuous
function; hence the terminology. Moreover, it has been established that if Ω is
convex, then it is epi-Lipschitz at x iff intΩ �= /0 [54, Proposition 1.25] and that
if Ω is epi-Lipschitz at x then it is SNC at this point [54, Proposition 1.26].

The concepts of sequential normal compactness of a set naturally induces the cor-
responding property for the set-valued map F; namely, F is said to be sequentially
normally compact (SNC) at (x,y) if its graph is SNC at this point [57,58]. However,
the case of maps allows us to consider also a weaker (less restrictive) property,
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introduced in [54, 55] under the name “partial sequential normal compactness”
(PSNC), that exploits different convergences in domain and range spaces. Note
that in contrast to Mordukhovich–Shao’s definition of the PSNC property for the
map F which involves either the set of ε-normals N̂ε (in Banach space setting)
or the Fréchet normal cone NF (in Asplund space setting), its modified version
introduced by Zheng and Ng in [72] involves the Clarke coderivative D∗

C and
is in fact a counterpart of Mordukhovich–Shao’s PSNC of the map F−1. For
the reader’s convenience, we reformulate different concepts of PSNC property
considered by Zheng and Ng in [72, 73] so that they fit into a unified frame
with Mordukhovich–Shao’s PSNC property; moreover, we specify additionally
the normal cones involved. Namely, the set-valued map F is said to be partially
sequentially normally compact (PSNC) w.r.t. the normal cone N at (x,y) if for any
sequence {(xi,yi,x∗i ,y∗i )}:

[(xi,yi)
grF→ (x,y), (x∗i ,y∗i ) ∈ N((xi,yi);grF), y∗i → 0 and x∗i

w∗→ 0]
implies [‖x∗i ‖→ 0],

(12.5)

where N is either of the Fréchet normal cone or the Clarke normal cone and
X , Y are either Banach spaces or Asplund spaces depending on the case under
consideration. As mentioned in [5], the PSNC property is automatically implied
by robust Lipschitzian behavior of set-valued and single-valued maps; in particular,
when F is pseudo-Lipschitz around (x,y). Zheng and Ng noted that by using similar
arguments as in [53,56,57], one can show that the implication (12.5) holds if grF is
epi-Lipschitz-like at (x,y). Recall that F is pseudo-Lipschitz [1] around (x,y) with
some modulus γ > 0 if there are neighborhoods U of x and V of y such that

F(x)∩V ⊆ F(x′)+ γ‖x− x′‖IBY , ∀x,x′ ∈U. (12.6)

Mordukhovich proposed the term “Lipschitz-like” or “Aubin property” for this
property, see [54]. Pseudo-Lipschitzity property is fundamental in Nonlinear Anal-
ysis and Variational Analysis; it is in fact equivalent to the two other underlying
properties for the inverse map F−1 known as linear openness/covering and metric
regularity around (x,y). Thibault established [68] that if F is pseudo-Lipschitz, then

d(y;F(x))≤ (γ+ 1)d((x,y);grG) (12.7)

for (x,y) near (x,y). Rockafellar proved [64] that F is pseudo-Lipschitz around (x,y)
with the modulus γ iff there exists r > 0 such that for all x,x′ ∈ x + rIBX and y,y′ ∈
y+ rIBY

|d(y;F(x))−d(y′;F(x′))| ≤ γ‖x− x′‖+‖y− y′‖. (12.8)

The following property of a pseudo-Lipschitz set-valued map plays an important
role in the forthcoming study of necessary conditions.
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Proposition 12.6 ([18, Proposition 2.6]). Suppose that a set-valued map G1 : X �→
2Y is γ-Lipschitz at (x,y) ∈ grG1. Then for any set-valued map G2 : X �→ 2Z with
z ∈G2(x) and for

Λ := {(x,y,z) ∈ X ×Y ×Z | y ∈G1(x), z ∈G2(x)}

one has for (x,y,z) near (x,y,z)

d((x,y,z);Λ) ≤ (1 + γ)[d((x,y);grG1)+ d((x,z);grG2)].

Proof. Fix r > 0 given by (12.6)–(12.8) applied to the map G1, let

V := (x,y,z)+
r
3

IBX×Y×Z

and (x,y,z) ∈ V . Then for any (a,b) ∈ ((x,z)+ rIBX×Z)∩ grG2 and any c ∈ G1(a),
we have

d((x,y,z);Λ) ≤ ‖x−a‖+‖y− c‖+‖z−b‖
and hence,

d((x,y,z);Λ) ≤ ‖x−a‖+‖z− b‖+d(y;G1(a)).

So (12.8) ensures that

d((x,y,z);Λ) ≤ (1 + γ)‖x−a‖+ ‖z−b‖+d(y;G1(x))

and hence by (12.7)

d((x,y,z);Λ) ≤ (1 + γ)d(x,z);grG2∩ ((x,z)+ rIBX×Z))
+(1 + γ)d((x,y);grG1)

≤ (1 + γ)[d((x,y);grG1)+ d((x,z);grG2)].
��

Further, it is stated in [12, Corollary, p.58] that if Ω possesses hypertangents at
x∈Ω (in particular, whenΩ is epi-Lipschitz at x), then the set-valued map NC(·;Ω)
is closed at x in the following sense: for any sequence {(xi,x∗i )}:

[xi → x,x∗i ∈ NC(xi,Ω),x∗i
w∗→ x∗] implies [x∗i ∈ NC(xi;Ω)]. (12.9)

Motivated by this fact, Zheng and Ng [72] say that a set Ω is normally closed at
x∈Ω if (12.9) holds and a closed set-valued map F is normally closed at (x,y)∈grF
if its graph is normally closed at (x,y). As noted in [72,73], Ω is normally closed at
x ∈ Ω if either Ω is convex or x is a smooth boundary point of Ω in the sense that
there exist a neighborhood V of x and a continuously Fréchet differentiable function
g such that g′(x) �= 0 and V ∩Ω = V ∩{x′ ∈ X | g(x′)≤ 0}.
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El Abdouni and Thibault [18] proposed to express the qualification assumptions
in the form of the metric regularity of a set-valued map with respect to another
one. Namely, given two set-valued maps G1 and G2 from X into Z and (x,z) ∈
grG1∩grG2, we say that G1 is metric regular around (x,z) relatively to G2 if there
exist γ ≥ 0 and r > 0 such that

d((x,z);grG1∩grG2)≤ γd(x;G1(x)) (12.10)

for all (x,z) ∈ (x + rIBX )× (z + rIBZ)∩ grG2. Now, let G : X �→ 2Z be a set-valued
map, and S and D be two subsets of X and Z. Considering the particular case G1 = G
and grG2 = S×D, we say that G is metrically regular relative to S×D around (x,z)
[18] if there exist γ ≥ 0 and r > 0 such that

d((x,z);S×D∩grG)≤ γd(z;G(x)) (12.11)

for all (x,z) ∈ ((x + rIBX )× (z+ rIBZ))∩ (S×D).

12.2.3 Extremal Principle

Let us recall an important principle in Variational Analysis, called extremal principle
[54], which can be viewed as a variational counterpart of the convex separation prin-
ciple in nonconvex setting. The extremal principle provides necessary conditions for
local extremal points of set systems in terms of generalized normals to nonconvex
sets with no use of tangential approximations and convex separation.

Let Ω1 and Ω2 be nonempty sets in a Banach space X . Recall that a point x ∈
Ω1∩Ω2 is locally extremal for the set system {Ω1,Ω2} if there is a neighborhood
U of x such that for any ε > 0 one can find a ∈ εIBX with

Ω1∩ (Ω2 + a)∩V = /0. (12.12)

The Extremal Principle [54] Let Ω1 and Ω2 be nonempty sets in an Asplund space
X. Let x be a local extremal point of the set system {Ω1,Ω2}, where Ω1 and Ω2 are
locally closed around x. Then for every ε > 0 there are

xi ∈Ωi∩ (x + εIBX) and x∗i ∈ NM(xi;Ωi), i = 1,2,

satisfying the relations

1− ε ≤ ‖x∗1‖+‖x∗2‖ ≤ 1 + ε, ‖x∗1 + x∗2‖ ≤ ε.

Zheng and Ng established several modifications of the extremal principle, see
[72, Lemmas 2.2 and 2.2’] and [73, Lemma 2.1]. They noted that [72, Lemma 2.2’]
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in general implies the extremal principle and Lemma 2.1 recaptures the extended
extremal principle due to Mordukhovich et al. [59]. Below we recall the first two
lemmas.

Lemma 12.1 ([72, Lemmas 2.2 and 2.2’]). Let A and B be closed subsets of a
Banach space Y with A∩B = /0. Let a ∈ A, b ∈ B and ε > 0 be such that ‖a−b‖ ≤
d(A,B)+ ε2, where d(A,B) := inf{‖v1− v2‖ | v1 ∈ A, and v2 ∈ B}.

(a) There exists aε ∈ A, bε ∈ B, a∗ε ∈ NC(aε ;A)+ εIBY ∗ and b∗ε ∈ NC(bε ;B)+ εIBY∗
with ‖a∗ε‖= ‖b∗ε‖= 1 such that

a∗ε + b∗ε = 0 and ‖aε −a‖+‖bε−b‖ ≤ ε.

(b) Assume that Y is Asplund. Then there exists aε ∈ A, bε ∈ B, a∗ε ∈ NF(aε ;A)+
2εIBY ∗ and b∗ε ∈ NF(bε ;B)+ 2εIBY ∗ with ‖a∗ε‖= ‖b∗ε‖= 1 such that

a∗ε + b∗ε = 0 and ‖aε −a‖+ ‖bε−b‖< 2ε.

Proof. (a) Define f : Y ×Y �→ R∪{∞} by

f (u,v) := δA×B(u,v)+‖u− v‖,∀(u,v)∈ Y ×Y.

Then inf{ f (u,v) | (u,v) ∈ Y ×Y}= d(A,B) and so, by assumption

f (a,b)≤ inf{ f (u,v) | (u,v) ∈ Y ×Y}+ ε2.

Equipping Y×Y with the norm ‖(u,v)‖= ‖u‖+‖v‖, by the Ekeland variational
principle there exist aε ∈ A, bε ∈ B such that

‖aε −a‖+‖bε−b‖ ≤ ε (12.13)

and

f (aε ,bε)≤ f (u,v)+ ε(‖u−aε‖+‖v−bε‖), ∀(u,v) ∈Y ×Y.

Letting

g(u,v) := ‖u− v‖++ε(‖u−aε‖+‖v−bε‖), ∀(u,v) ∈ Y ×Y,

this implies that g(u,v) attains its minimum over A×B at (aε ,bε). It follows
from Proposition 12.3 that

(0,0) ∈ ∂Cg(aε ,bε)+ NC((aε ,bε);A×B). (12.14)

Let h(u,v) := ‖u− v‖ and T (u,v) = u− v for any (u,v) ∈ Y ×Y . It follows
from [12, Theorem 2.3.10] that ∂Ch(aε ,bε) = T ∗[∂C(‖ · ‖)(aε−bε)], where T ∗
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is the conjugate operator of the bounded linear operator T . Noting that T ∗(y∗) =
(y∗,−y∗) for any y∗ ∈Y ∗, aε−bε �= 0 (since A∩B = /0 and (aε ,bε)∈ A×B) and

∂C(‖ · ‖)(aε−bε) = {y∗ ∈Y ∗ | ‖y∗‖= 1 and 〈y∗,aε −bε〉= ‖aε −bε‖}

the subdifferential of the convex function h(u,v) at (aε ,bε) is equal to the set

U := {(y∗,−y∗) ∈Y ∗ ×Y ∗ | ‖y∗‖= 1 and 〈y∗,aε −bε〉= ‖aε −bε‖}.

Hence

∂Cg(aε ,bε)⊆U + εIBY ∗ × εIBY ∗ .

Since NC((aε ,bε);A×B) = NC(aε ;A)×NC(bε ;B), it follows from (12.14) that
there is y∗ ∈ Y ∗ with ‖y∗‖= 1 such that

(0,0) ∈ (y∗,−y∗)+ ε(IBY ∗ × IBY ∗)+ NC(aε ;A)×NC(bε ;B).

Note then that

−y∗ ∈ εIBY ∗ + NC(aε ;A) and y∗ ∈ εIBY ∗ + NC(bε ;B).

Together with (12.13), the lemma is established by letting a∗ε =−y∗ and b∗ε = y∗.

(b) By the same argument as in the proof of (a) but applying Proposition 12.4 in
place of Proposition 12.3. ��

12.3 Efficient Points of a Set and Efficient Solutions
of Set-Valued Optimization Problems

This section is devoted to various concepts of efficient points of a set and
efficient solutions of set-valued optimization problems. We recall these concepts
and present a unified scalarization approach to the study of several kinds of efficient
points/solutions.

12.3.1 Definitions of Efficient Points of a Set

In the pioneering papers [17, 60] Edgeworth and Pareto presented the concept
of an efficient point for a set just began a new branch in optimization – vector
optimization. As some efficient points exhibit certain abnormal properties, various
concepts of properly efficient points have been introduced in order to eliminate
these points. The original concept was introduced by Kuhn and Tucker and modified
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by Geoffrion and later it was formulated in a more general framework by Benson,
Borwein, Borwein, Zhuang, Hartley, Henig, Hurwicz, et al.

Throughout the chapter, let K ⊂ Y be a nonempty closed pointed convex cone
with apex at zero (pointedness means K ∩ (−K) = {0}). A convex set Θ ⊂ Y is
called a base for K if 0 /∈ clΘ and K = {tθ : t ∈ R+,θ ∈Θ}. When Θ is bounded,
we say that K has a bounded base. Denote

K+ = {y∗ ∈ Y ∗ | y∗(k)≥ 0, ∀k ∈ K}
and

K+i = {y∗ ∈Y ∗ | y∗(k) > 0, ∀k ∈ K \ {0}}.

It is known that K has a base iff K+i �= /0 and K has a bounded base iff intK+ �= /0
[46]. Below we provide examples of cones in some classical Banach spaces.

Example 12.2. Let K be the nonnegative orthant in one of the classical Banach
spaces Rn, C[0,1], Lp

[0,1] and l p (1≤ p <∞). It is known that the nonnegative orthants

in the Banach spacesRn, C[0,1], Lp
[0,1] and l p (1≤ p <∞) have bases, the nonnegative

orthants inRn, L1
[0,1], l1 have bounded bases and only the nonnegative orthants in the

Banach spaces Rn and C[0,1] have nonempty interior, see [46]. For instance, the set

Θ :=
{
ϕ ∈ Lp

[0,1] |
∫ 1

0
ϕ(t)dt = 1,ϕ(t)≥ 0 a.e. on [0,1]

}

is a base for K being the nonnegative orthant in Lp
[0,1] (1≤ p <∞) and the functional

y∗ ∈Y ∗ given by y∗(ϕ) :=
∫ 1

0 ϕ(t)dt belongs to K+i. Moreover, this base is bounded
and y∗ ∈ intK+ for p = 1.

Throughout this section, let A be a nonempty subset of Y and a∈ A. In this paper,
we consider the following concepts of efficiency in vector optimization.

Definition 12.1.

• a is said to be a Pareto efficient point of A if

(A−a)∩ (−K \ {0}) = /0.

• Supposing that int K �= /0, a is said to be a weakly efficient point of A if

(A−a)∩ (−intK) = /0.

• a is said to be a strongly (or ideal) efficient point of A if

A−a⊆ K.
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• Supposing that K+i �= /0, a is said to be a positive properly efficient point of A if
there exists ϕ ∈ K+i such that

ϕ(a)≥ ϕ(a), ∀ a ∈ A.

• a is said to be a Hurwicz properly efficient point of A if

clconvcone[(A−a)∪K]∩ (−K) = {0};

• a is said to be a Henig global properly efficient point of A if there exists a convex
cone C with apex at zero with K \ {0} ⊆ intC such that

(A− a)∩ (−intC) = /0.

• Supposing that K has a baseΘ , a is said to be a Henig properly efficient point of
A if there is a scalar ε > 0 such that

clcone(A−a)∩ (−clcone(Θ + εIB)) = {0}.

• a is said to be a super efficient point of A if there is a scalar ρ > 0 such that

clcone(A−a)∩ (IB−K)⊆ ρIB.

• a is said to be a Benson properly efficient point of A if

clcone[(A−a)+ K]∩ (−K) = {0}.

The sets of efficient points in Definition 12.1 are denoted by Min(A), W Min(A),
SMin(A), Pos(A), Hu(A), GHe(A), He(A), SE(A) and Be(A), respectively.

We refer the reader to [41, 42, 48] for the concepts of Pareto efficiency, weak
efficiency and strong efficiency. Note that positive proper efficiency and Hurwicz
proper efficiency have been introduced in [34], Benson proper efficiency has been
presented in [6], Henig proper efficiency and Henig global proper efficiency have
been presented in [30] and super efficiency has been introduced in [9]. The above
definition of Henig properly efficient points can be found in [9,74], see also [70,71].
One uses also the notation He(A,K) which is taken from [70, 71] while a slightly
notation He(A,Θ) emphasizing the baseΘ is used in other references.

Remark 12.2. One visible disadvantage of weakly efficient points is that they can be
considered only when the ordering cone has nonempty interior and we know that the
nonnegative orthants in most classical Banach spaces do not satisfy this condition,
see Example 12.2. Motivated by this fact, Bao and Mordukhovich [5] introduced
and studied enhanced notions of relative Pareto points/minimizers that are defined
via several kinds of relative interiors of ordering cones and occupy intermediate
positions between the classical notions of Pareto efficiency and weak efficiency.
Due to the lack of space, we do not discuss these interesting notions here.
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Let us recall an equivalent definition of a Henig properly efficient point. Let Θ
be as before a base of K. Setting

δ := inf{‖θ‖ | θ ∈Θ}> 0,

for each 0 < η < δ , we can associate to K with another convex, pointed and open
cone Vη , defined by

Vη = cone(Θ +η ˚IBY )\ {0}.
Then a is a Henig properly efficient point of A w.r.t.Θ iff there is a scalar η ∈]0,δ [
such that

(A− a)∩ (−Vη) = /0.

We refer the reader to [49] for another equivalent definition of a Henig properly
efficient point by means of a functional from K+i and to [25] for a survey and
materials on proper efficiency.

In the sequel, when speaking of weakly efficient points (respectively, positive
properly efficient points) we mean that intK (respectively, K+i) is nonempty, when
speaking of Henig properly efficient points or of K+i we mean that K has a
base Θ , when speaking that K has a bounded base we mean that Θ is bounded
and by“properly efficient” we mean any of “positive properly efficient”, “Hurwicz
properly efficient” “Henig properly efficient”, “Henig global properly efficient”,
“super efficient” and “Benson properly efficient.”

We recall known relations among the above efficient points in the proposition
below.

Proposition 12.7. (a) SMin(A)⊆Min(A)⊆W Min(A).
(b) If SMin(A) �= /0, then SMin(A) = Min(A) = a singleton.
(c) Pos(A)⊆ Hu(A); if Y is separable, then Hu(A)⊆ Pos(A).
(d) Pos(A)⊆ GHe(A).
(e) SE(A)⊆ Be(A)⊆Min(A).
(f) SE(A) ⊆ He(A) ⊆ GHe(A) ⊆ Min(A) and if K has a bounded base then

SE(A) = He(A).
(g) Suppose that Y is a separable Banach space, or Y is a reflexive Banach space

and K has a base and that A− a is nearly K-subconvexlike for some a ∈ A.
If a is a Benson properly efficient point of A then it is a positive properly efficient
point of A.

Remark 12.3. (a) For the assertions (a)–(f), see [25, 41, 48] and for the assertion
(g), see [61, Corollaries 4.2, 4.5].

(b) Recently, Benson proper efficiency has received more attention. In particular,
optimality conditions for Benson properly efficient solutions were obtained
under assumptions on generalized convexity of set-valued data such as con-
vexlikeness, subconvexlikeness, near convexlikeness and near subconvexlike-
ness (see [61, 65, 75] for references). Near subconvexlikeness is the weakest
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convexity among the above four kinds of generalized convexity. Recall [75]
that a nonempty set A⊆Y is nearly K-subconvexlike if the set clcone(A+K) is
convex.

We illustrate some of the above relations in the example below.

Example 12.3. Let Y = R2 and K = R2
+.

(a) Let A be a set in R2 given by

A := {(x,y) | max{|x|, |y|} ≤ 1}.

Then we have

SMin(A) = Min(A) = {(−1,−1)}
W Min(A) = {(x,y) | |x| ≤ 1,y =−1}.

(b) Let A be a set in R2 given by

A := {x,y) | (x + 1)2 + y2 ≤ 1 or x2 +(y + 1)2 ≤ 1}
∪{(x,y) | 0≤ x≤ 1,−2≤ y ≤ 0}.

Then we have

Min(A) = {(x,y) | (x + 1)2 + y2 = 1,−2≤ x ≤−1,

−1≤ y≤ 0}∪{(x,y) | x2 +(y + 1)2 = 1,

−1≤ x≤ 0,−2≤ y ≤−1},
WMin(A) = Min(A)∪{(x,y) | 0≤ x ≤ 1,y =−2},

Pos(A) = {(x,y) | (x + 1)2 + y2 = 1,−2≤ x ≤−1−√2/2,

−1≤ y≤ 0}∪{(x,y) | x2 +(y + 1)2 = 1,

−1≤ x≤ 0,−2≤ y ≤−1−√2/2},
Hu(A) = Pos(A),

GHe(A) = Min(A)\ {(−1,−1),(−2,0),(0,−2)}
He(A) = SE(A) = Be(A) = GHe(A).

One can check that the set A− a is nearly K-subconvexlike for a = (−2,0) and
it is not nearly K-subconvexlike for a = (−1,−1).

12.3.2 Concepts of Efficient Solutions of Set-Valued
Optimization Problems

In this chapter, we consider the unconstrained set-valued optimization problem (P)

Minimize F(x) subject to x ∈ X
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and the set-valued optimization problem with constraint (CP)

Minimize F(x) subject to x ∈Ω and G(x)∩C �= /0,

where F and G are set-valued maps from a Banach space X respectively into Banach
spaces Y and Z, Ω ⊆ X and C ⊆ Z are nonempty sets. In what follows, by (SP) we
mean one of these problems and by A we mean the corresponding sets of admissible
solutions, i.e., A = X in the case of (P) and A = {x ∈ Ω | G(x)∩C �= /0} in the
case (CP). Denote

F(A ) := ∪x∈A F(x).

Various concepts of efficient points of a set in Definition 12.1 naturally induces
corresponding concepts of efficient solutions of (SP). Let x ∈A and (x,y) ∈ grG.

Definition 12.2. We say that (x,y) is a local “N” efficient solution of (SP) if there
exists a neighborhoodU of x such that y is an “N” efficient point of F(A ∩U), where
“N” may be Pareto, weakly, strongly, positive properly, Benson properly, Hurwicz
properly, Henig global properly, Henig properly or super.

Putting U = X in Definition 12.2, we get corresponding global concepts of
efficient solutions of (SP).

12.3.3 A Unified Scalarization Approach to Several
Kinds of Efficient Points

It is of interest to know whether some concepts of efficiencies in vector optimization
have any common feature so that they can be studied in a unified scheme or not.
The answer is affirmative and in this subsection, we present a unified scalarization
approach to the study of all efficient points except Pareto efficient points in
Definition 12.1.

Let us begin with recalling a unified geometric approach introduced recently in
[28]. As mentioned by Zaffaroni [69], although the definitions of proper efficiency
emphasize different aspects but they can be seen as an extension of the primitive
idea that they can be geometrically described in terms of separations between the
ordering cone and the considered set by means of an open convex cone or an open
convex sets. A brief inquiry into the matter reveals that not only various properly
efficient points in Definition 12.1 but also weakly or strongly efficient points can
be described through disjointness between some set and some nonempty open (not
necessarily convex) cone Q. Inspired by this fact, we presented in [28] the notion
of Q-minimal point, where Q ⊂ Y is an arbitrary nonempty open cone with apex at
zero and different from Y.

Definition 12.3. We say that a is a Q-minimal point of A and write a ∈ Qmin(A) if

A∩ (a−Q) = /0
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or, equivalently,
(A−a)∩ (−Q) = /0.

Remark 12.4. Makarov and Rachkovski [49] introduced the notion of D-efficiency,
i.e., efficiency w.r.t. a family D of dilating cones : a ∈ A is said to be a D-minimal
point of A if there exists C ∈ D such that

(A− a)∩ (−C) = /0.

Recall that an open cone in Y is said to be a dilating cone (or a dilation) of K, or
dilating K if it contains K \ {0}. In contrast with D-efficiency, our concept includes
not only some concepts of proper efficiency among which are these ones considered
in [49] but also the concepts of strong efficiency and weak efficiency.

It turns out that all efficient points of Definition 12.1 but Pareto efficient points
are in fact Q-minimal points with Q being appropriately chosen cones.

Theorem 12.1 ([28, Theorem 21.7]).

(a) a ∈ SMin(A) iff a ∈Qmin(A) with Q = Y \ (−K).
(b) a ∈WMin(A) iff a ∈Qmin(A) with Q = intK.
(c) a ∈ Pos(A) iff a ∈ Qmin(A) with Q = {y ∈ Y | ϕ(y) > 0} and ϕ is some

functional in K+i.
(d) a ∈ Hu(A) iff a ∈Qmin(A), with Q = Y \−cl conv cone[(A−a)∪K].
(e) a ∈ GHe(A) iff a ∈ Qmin(A), with Q being some open pointed convex cone

dilating K.
(f) a ∈ He(A) iff a ∈ Qmin(A) with Q = Vη and η is some scalar satisfying 0 <

η < δ .
(g) Supposing that K has a bounded base, a ∈ SE(A) iff a ∈ Qmin(A) with Q = Vη

and η is some scalar satisfying 0 < η < δ .

Proof. Using Definitions 12.1 and 12.3 one can easily prove the assertions (a)–(e).
We prove now the assertion (f), namely, we show that a ∈He(A) iff there is a scalar
η with 0 < η < δ such that

(A− a)∩ (−Vη) = /0. (12.15)

Recall that by the definition, a ∈He(A) iff

cl cone(A− a)∩ (−cl cone(Θ + εIB)) = {0}. (12.16)

It is also known [71] that a ∈ He(A) iff

(A− a)∩ (−Sn) = {0} (12.17)

for some integer n ∈ N , where Sn = cl cone(Θ + δ/(2n)IBY ). Now, suppose that
a ∈ He(A). Then (12.16) holds. Without lost of generality we can assume that 0 <
ε < δ . We show that (12.15) holds with η = ε . Suppose to the contrary that there
is a′ ∈A−a such that a′ ∈−Vε . Clearly, a′ ∈ cl cone(A−a)∩(−cl cone(Θ+εIBY )).



12 The Fermat Rule and Lagrange Multiplier Rule for Various Efficient Solutions 437

On the other hand, as 0 < η = ε < δ and by the definition of δ , 0 /∈Vε . Hence a′ �= 0.
This is a contradiction to (12.16). Next, suppose that (12.15) holds for some η . Let
n be an integer satisfying n−1 > δ/(2η) or δ/(2n−2) < η . By (12.15) we have

(A−a)∩ (−Vδ/(2n−2))⊆ (A−a)∩ (−Vη) = /0.

Then (A− a) ∩ (−Vδ/(2n−2) ∪ {0}) = {0}. On the other hand, [71, Lemma 2.1]
states that if (A−a)∩(−Vδ/(2n−2)∪{0}) = {0}, then (A−a)∩(−Sn) = {0}. Thus,
(12.17) holds and therefore, a∈He(A), as it was to be shown. To complete the proof
note that the assertion (g) follows from the just proved one and the assertion (f) in
Proposition 12.7. ��
Remark 12.5. (a) The assertion (f) in Theorem 12.1 is inspired by the definition of

Henig properly efficient point for sets in locally convex spaces given by Gong
in [21].

(b) One can easily see from (12.15) that any Henig properly efficient point is Henig
global properly efficient point.

Based on Theorem 12.1, a unified geometric approach has been presented in [28]:
one first studies Q-minimal points/solutions and then derives from results obtained
for Q-minimal points/solutions similar ones for strongly/weakly/properly efficient
points/solutions. In particular, there have been established scalar characterization by
the Hiriart-Urruty signed distance function and optimality conditions in the forms of
the Lagrange claim (involving first- and second-order radial derivatives), the Fermat
rule and the Lagrange multiplier rule (involving coderivatives) for these solutions.

Now, let us proceed to our unified scalarization approach. In vector optimization,
scalarization mean to transform a vector optimization problem into a single-
objective optimization problem. The important role of scalarization is well-known
as it allows to exploit widely developed techniques of scalar optimization. Various
scalarizing functions have been used to characterize different kinds of efficient
points and it turns out that all the strongly/weakly/properly efficient points we are
considering can be characterized by some functions with nice properties. Motivated
by this fact, we present the following concepts.

Definition 12.4. We say that a is an s-efficient point of A if there exist a function
s : Y �→ R (called a scalarizing function) such that a is a minimizer of the function
s(.− a) over A; in other words, one has

s(a− a)≥ s(0), ∀a ∈ A. (12.18)

Observe that the concept of Q-minimal point may not be applicable for instance
to a strongly efficient point when the ordering cone K is not closed but even then a
strongly efficient point is s-efficient, see Proposition 12.8. Similarly, we can define
the concept of s-efficient solutions as follows.
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Definition 12.5. We say that (x,y) is a local s-efficient solution of (SP) if there
exist a functional s : Y �→R, a neighborhood U of x such that y is a minimizer of the
function s(.− y) over F(A ∩U); in other words, one has

s(y− y)≥ s(0), ∀y ∈ F(A ∩U). (12.19)

Putting U = X in Definition 12.5, we get the corresponding concept of global
s-efficient solutions of (SP).

Remark 12.6. A concept similar to the one in Definition 12.5 but with a linear
functional s ∈ K∗ \ {0} was introduced in [22].

The are various scalarizing functions but in this paper, we will be mainly
concerned with the ones of the following types:

(a) A linear function from K+ or K+i.
(b) The Hiriart-Urruty signed distance function.
(c) A Minkowski-type functional.

and we refer the reader to [4,33] for scalarization for super efficiency, to [45] for an
overview on recent results on scalarization and to [41, 42, 48] for other results and
references on this theme.

a. Scalarization by linear functionals from K+ or K+i

The simplest s-efficient points are listed in the following.

Proposition 12.8. (a) The point a is a positive properly efficient point of A iff it is
an s-efficient point of A with s = ϕ for some ϕ ∈ K+i.

(b) The point a is a strongly efficient point of A iff it is an s-efficient point of A with
s = ϕ for all ϕ ∈ K+.

Proof. (a) It is immediate from the definition.

(b) “Only if” part: By the definition, a−a ∈ K for all a ∈ A. Hence, for every fixed
ϕ ∈K+ we have ϕ(a−a)≥ 0 = ϕ(0) for all a∈ A, which means that (12.18) holds.

“If” part: Suppose to the contrary that a is an s-efficient point of A with s = ϕ for
all ϕ ∈∈ K+, i.e. (12.18) holds for all ϕ ∈ K+ but a /∈ SMin(A). Then one can find
â ∈ A such that â− a /∈ K. By a separation theorem, there exist a functional ϕ ∈ Y ∗
and a scalar α ∈ R such that

ϕ(â− a) < α ≤ ϕ(k), ∀ k ∈ K.

Since 0 ∈ K, we have α ≤ 0 and therefore ϕ(â− a) < 0, a contradiction to the
assumption that (12.18) holds for s = ϕ for all ϕ ∈ K+. ��
Remark 12.7. The assertion (b) of Proposition 12.8 is motivated by [29, Lemma
4.8 (ii)].
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Corollary 12.1. Suppose that Y is a separable Banach space, or Y is a reflexive
Banach space and K has a base and that A− a is nearly K-subconvexlike for some
a ∈ A. If a is a Benson proper efficient point of A, then it is an s-efficient point of A
with s = ϕ for some ϕ ∈ K+i.

Proof. An immediate consequence of Proposition 12.7 (g) and Proposition 12.8 (a).
��

Proposition 12.8 together with the following result will be used for establishing
that necessary conditions in the Fermat rule and Lagrange multiplier rule for weakly
efficient points become sufficient under additional convexity assumptions.

Proposition 12.9. Supposing that intK �= /0, if a is an s-efficient point of A for some
s = ϕ ∈ K+ \ {0}, then a is a weakly efficient point of A.

Proof. Suppose to the contrary that (12.18) holds with such some s = ϕ ∈ K+ \{0}
but a /∈WMin(A). Then there exists â ∈ A such that â−a ∈−intK. As ϕ �= 0, there
exists v ∈ Y such that ϕ(v) < 0. Since â− a ∈ −intK, there exists a scalar ρ > 0
such that −â+a+ρv ∈ K. As ϕ ∈ K+ \{0}, we have ϕ(−â+a+ρv)≥ 0. Hence,
we obtain ϕ(â− a)≤ ρϕ(v) < 0, a contradiction to (12.18). ��
Remark 12.8. Proposition 12.9 is motivated by [29, Lemma 4.8(i)].

b. Scalarization by the Hiriart-Urruty signed distance function

In [31], Hiriart-Urruty introduced a so called signed distance function ΔU

associated to a nonempty set U in Y as follows:

ΔU(y) := d(y;U)−d(y;Y \U).

This function possesses nice properties, especially when U has nonempty interior,
and has been used for scalarization in vector optimization in several works [11, 23,
26, 27, 29].

The following result shows that a Q-minimal point can be characterized by the
Hiriart-Urruty signed distance function and, therefore, is s-efficient.

Proposition 12.10 ([28, Proposition 21.10]). a is a Q-minimal point of A iff it is
an s-efficient point of A with s = Δ−Q.

Proof. Note that, in this case, (12.18) takes the form

Δ−Q(a− a)≥ Δ−Q(0) = 0, ∀a ∈ A. (12.20)

Observe first that the origin belongs to the boundary of the set −Q and Δ−Q(0) = 0.
Now, let a ∈ Qmin(A). By the definition, (A − a) ⊆ Y \ (−Q). Consequently,
Δ−Q(a− a) ≥ 0 for all a ∈ A, i.e. (12.20) holds. Next, suppose that (12.20) holds.
If a /∈ Qmin(A) then there is a′ ∈ A such that a′ − a ∈ −Q. As the set −Q is open,
d(a′ −a;Y \ (−Q)) > 0 and therefore, Δ−Q(a′ −a) < 0, a contradiction to (12.20).
Thus, a ∈ Qmin(A). ��
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We derive now two scalar characterizations of some efficient points/solutions in
Definitions 12.1 and 12.5 as s-efficient points/solutions with s being the Hiriart-
Urruty signed distance function. Such characterizations play an important role in
establishing the Fermat rule and the Lagrange multiplier rule. The first result on
scalar characterization for efficient points reads as follows.

Theorem 12.2. (a) a is a weakly efficient point of A iff it is an s-efficient point of
A with s = Δ−Q and Q = intK.

(b) a is a Hurwicz properly efficient point of A iff it is an s-efficient point of A with
s = Δ−Q and Q = Y \−cl conv cone[(A−a)∪K].

(c) a is a Henig global properly efficient point of A iff it is an s-efficient point of A
with s = Δ−Q and Q = C, C being an open pointed convex cone dilating K.

(d) a is a Henig properly efficient point of A iff it is an s-efficient point of A with
s = Δ−Q and Q = Vη for some scalar η ∈]0,δ [.

(e) supposing that K has a bounded base, a is a super efficient point of A iff it is an
s-efficient point of A with s = Δ−Q and Q = Vη for some scalar η ∈]0,δ [.

Proof. A consequence of Theorem 12.1 and Proposition 12.10. ��
Remark 12.9. We refer the reader to the recent work [45] for a new scalar
characterization for Benson properly efficient points by functionals from the so
called augmented dual cone.

The second result on scalar characterization for efficient solutions reads as
follows. Note that the assertions in Theorem 12.3 hold true for both the global and
local concepts of solutions.

Theorem 12.3. (a) (x,y) is a positive properly efficient solution of (SP) iff then it
is an s-efficient solution of (SP) with s = ϕ for some ϕ ∈ K+i.

(b) (x,y) is a weakly efficient solution of (SP) iff it is an s-efficient solution of (SP)
with s = Δ−intK.

(c) (x,y) is a strongly efficient solution of (SP) iff it is an s-efficient solution of (SP)
with s = ϕ for all ϕ ∈ K+.

(d) r (x,y) is a Henig global properly efficient solution of (SP) iff it is an s-efficient
solution of (SP) with s = Δ−C with C being a dilating pointed convex cone C
of K.

(e) (x,y) is a Henig properly efficient solution of (SP) iff it is an s-efficient solution
of (SP) with s = Δ−Vη with 0 < η < δ .

(f) supposing that K has a bounded base, (x,y) is a super efficient solution of (SP)
iff it is an s-efficient solution of (SP) with s = Δ−Vη with 0 < η < δ .

Proof. A consequence of Definitions 12.2 and 12.5, Proposition 12.8 and
Theorem 12.2. ��

Based on Theorem 12.2, we propose the following unified scheme for obtaining
the Fermat rule and the Lagrange multiplier rule for strongly/weakly/properly
efficient solutions in Definition 12.1: one first obtains these rules for s-efficient
solutions and then derives similar results for other efficient points.
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We collect some known properties of the function ΔU that will be used in the
sequel in the proposition below.

Proposition 12.11 ([31]). (a) ΔU is Lipschitz of rank 1 on Y .
(b) ΔY\U =−ΔU .
(c) ΔU is convex if U is convex and ΔU is concave if U is reverse convex, i.e.

U = Y \V with V being convex.
(d) ΔU(y) < 0 iff y ∈int U, ΔU(y) = 0 iff y ∈ bd U and ΔU(y) > 0 iff y ∈ Y\int U.
(e) Suppose that U is convex and has a nonempty interior, and 0 ∈bdU. Then

∂ΔU (0)⊆ N(0;U)\ {0}.

The following properties of the subdifferential of ΔU(0) play an important role
in formulating optimality conditions.

Proposition 12.12 ([28, Proposition 21.11]). (a) ∂Δ−intK(0)⊆ K+ \ {0}.
(b) assuming that A has a nonempty interior, we have

∂ΔY\cl conv cone[(A−a)∪K](0)⊆ K+ \ {0}.

(c) Let C be an open convex cone dilating K. Then

∂Δ−C(0)⊆ K+i.

(d) For η ∈]0,δ [, we have

∂Δ−Vη (0)⊆ {y∗ ∈ K+i | y∗(θ )≥ η , ∀ θ ∈Θ}.

(e) supposing thatΘ is bounded, we have ∂Δ−Kη (0)⊆ intK+.

Proof. (a) Apply Proposition 12.11 (e) to U = −intK and take account of
N(0;−intK) = K+.

(b) As the Fréchet normal cone, the Ioffe approximate normal cone and the
Mordukhovich normal cone are contained in the Clarke normal cone (see Propo-
sition 12.1(a)), the Ioffe approximate subdifferential and the Mordukhovich
subdifferential are contained in the Clarke subdifferential. Therefore, it suffices
to show that

∂CΔY\cl conv cone[(A−a)∪K](0)⊆ K+ \ {0}.
For the simplicity, we denote Q =Y \−V , where V = cl conv cone[(A−a)∪K].
Note that V is a closed convex cone with a nonempty interior and K ⊆ V . We
have to show that

∂CΔ−Q(0)⊆ K+ \ {0}.



442 T.X.D. Ha

By Proposition 12.11 (b), we have Δ−Q(0) = −ΔY\−V (0) = −ΔV (0). The
properties of the Clarke subdifferential and the subdifferential of convex
analysis (see Proposition 12.2 (b), (c)) yield

∂C(−ΔV )(0) =−∂CΔV (0) =−∂ΔV (0),

where ∂ΔV (0) means the subdifferential in the sense of convex analysis of the
convex set V . Applying Proposition 12.11 (e) to the closed convex cone V which
has a nonempty interior gives

−∂ΔV (0)⊆−N(0;V )\ {0}.

Further, since K ⊆V we get −N(0,V )⊆ K+. Therefore, we get

−∂ΔV (0)⊆ K+ \ {0},

which yields ∂CΔ−Q(0)⊆ K+ \ {0}.

(c) Apply Proposition 12.11 (e) to C we get

∂Δ−C(0)⊆ N(0;−C)\ {0}.

Now take y∗ ∈ ∂Δ−C(0) and k ∈ K \ {0} ⊆C. We have to show that y∗(k) > 0.
As y∗ �= 0, there is y∈Y such that y∗(y) > 0. On the other hand, as C is open, and
k ∈C, there exist a scalar t > 0 such that−k+ ty∈−C. Hence, y∗(−k+ ty)≤ 0
and y∗(k)≥ ty∗(y) > 0. Thus, y∗ ∈ K+i.

(d) Let y∗ ∈ ∂Δ−Kη (0). For any θ ∈Θ , we have −(θ +ηB)⊆−Kη . Hence,

dY\(−Kη )(−θ )≥ η .

The definition of the convex subdifferential yields

y∗(−θ ) ≤ Δ−Kη (−θ )−Δ−Kη (0) = d−Kη (−θ )−dY\(−Kη )(−θ )
=−dY\(−Kη )(−θ )≤−η .

It follows then that

y∗(θ )≥ η for all θ ∈Θ . (12.21)

Now, let k ∈ K \ {0}. AsΘ is a base of K, there exist a scalar t > 0 and θ ∈Θ
such that k = tθ . Then (12.21) yields y∗(k) = y∗(tθ ) = ty∗(θ ) > 0. Therefore,
y∗ ∈ K+i.

(e) Suppose thatΘ is bounded and denote

δ = sup{‖θ‖ | θ ∈Θ}< ∞.
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Let y∗ ∈ ∂Δ−Vη (0). It is known that y∗ ∈ intK+ iff y∗ is uniformly positive on
K in the sense that there exists a scalar α > 0 such that y∗(k) ≥ α‖k‖ for all
k ∈ K \ {0}. Let k ∈ K \ {0} be an arbitrary vector. As Θ is a base of K, there
exist a scalar t > 0 and θ ∈ Θ such that k = tθ . Since −θ + ηB ⊆ −Vη , it
follows that

−k + tηB= t(−θ +ηB)⊆−Vη ,

i.e. the open ball centered at −k with the radius tη is contained in −Vη .
Therefore,

d(−k;Y \ (−Vη))≥ tη .

On the other hand, tη = (‖k‖/‖θ‖)η ≥ (η/δ )‖k‖. Hence,

d(−k;Y \ (−Vη))≥ η
δ
‖k‖.

Clearly, Δ−Vη (0) = 0. As y∗ ∈ ∂Δ−Vη (0), the definition of the subdifferential of
convex analysis yields

〈y∗,−k〉 ≤ Δ−Vη (−k)−Δ−Vη (0) = d(−k;−Vη)−d(−k;Y \ (−Vη))
=−d(−k;Y \ (−Vη))≤−η

δ
‖k‖

or 〈y∗,k〉 ≥ (η/δ )‖k‖. This means that y∗ is uniformly positive on K, or
y∗ ∈intK+.

��

c. Scalarization by a Minkowski-type function

In [41, 42] Jahn showed that if a is a weakly efficient point of the set A, then for
every element â∈ a− intK, a is a minimizer over A of the functional ‖.− â‖â, where
‖.‖â is the seminorm defined in Y through the Minkowski functional

‖y‖â := inf{λ > 0 | λ−1y ∈ (â− a+ K)∩ (a− â−K)} for all y ∈Y ;

more precisely, one has

1 = ‖a− â‖â ≤ ‖a− â‖â for all a ∈ A.

Thus, a weakly efficient point of A is s-efficient with s = ‖.− â‖â for every â ∈
a− intK. Inspired by this result, El Abdouni and Thibault used this seminorm in
[18] for characterizing weakly efficient points in the case when K is just assumed
to be a convex set rather than a cone. Gerth(Tammer) and Weidner considered such
a general case earlier in [20] exploiting another scalarizing functional ξa := ξa,k :
Y → R∪{−∞} given by

ξa(y) := inf{λ ∈ R | y ∈ λk + a−K},
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where a ∈ Y is an arbitrary vector and k ∈ intK is a fixed vector. Note that the
mentioned above Minkowski-type functions as well as their modifications possess
nice properties such as monotonicity, Lipschizity and they have been proven to be
useful tools in scalarization for vector optimization problems.

12.4 The Fermat Rule

This section is devoted to the Fermat rule for the following unconstrained set-valued
optimization problem (P)

Minimize F(x) subject to x ∈ X

12.4.1 The Fermat Rule for Pareto Efficient Solutions

In the case of Pareto efficient solutions, we have both fuzzy and exact versions of
the Fermat rule.

Zheng and Ng obtained the following fuzzy version of the Fermat rule for
Pareto efficient solutions of (P) in Banach space setting and in term of the Clarke
coderivative.

Theorem 12.4 ([72, Theorem 3.1]). Let X and Y be Banach spaces. Assume that
F has a closed graph. If (x,y) is a local Pareto efficient solution of (P), then for
any ε > 0 there exist xε ∈ x + εIBX , yε ∈ F(xε)∩ (y + εIBY ) such that the following
inclusion holds

0 ∈ D∗
CF(xε ,yε)(y∗+ εIBY ∗)+ εIBX∗ (12.22)

with some y∗ ∈ K+ and ‖y∗‖= 1.

Proof. We will prove the following equivalent form of the result: there exist a
sequence {(xi,yi)} in grF and a sequence {y∗i } in K+ with ‖y∗i ‖ = 1 for all i such
that (xi,yi)→ (x,y) and

d((0,−y∗i );NC((xn,yn);grF))→ 0. (12.23)

By assumption there exists τ > 0 such that y ∈Min(F(x + τIBX)). Let

A := {(x,y) ∈ grF | x ∈ x + τIBX}

and take k0 ∈ K with ‖k0‖= 1. For simplicity, let Bi := y− (1/i2)k0−K. We claim
that for all natural numbers i large enough,

A∩ (X×Bi) = /0. (12.24)
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Indeed if it is not the case, then there exists y′ ∈ F(x + τIBX) such that y− (1/i2)
k0 − y′ ∈ K, contradicting y ∈ Min(F(x + τIBX )). Hence (12.24) holds. By
Lemma 12.1, applied to a = (x,y) and b = (x,y− (1/i2)k0), there exist

(xi,yi) ∈ A,(ui,vi) ∈ X ×Bi,

(x∗i ,y
∗
i ) ∈ NC((xi,yi);A)+

1
i
(IBX∗ × IBY∗) (12.25)

and

(u∗i ,v
∗
i ) ∈ NC((ui,vi);X ×Bi)+

1
i
(IBX∗ × IBY ∗)

with ‖(x∗i ,y∗i )‖= ‖(u∗i ,v∗i )‖= 1 such that (x∗i ,y∗i )+ (u∗i ,v∗i ) = 0

‖(xi,yi)− (x,y)‖ ≤ 1
i

and ‖(ui,vi)− (x,y− 1
i2

k0)‖ ≤ 1
i
.

Then by the well known relation on normal cones

NC((ui,vi);X ×Bi)) = {0}×NC(vi;Bi)⊆ {0}×K+,

there exist ri ∈ [1−1/i,1 + 1/i] and y∗i ∈ K+ with ‖y∗i ‖= 1 such that

(u∗i ,v
∗
i ) ∈ ri(0,y∗i )+

1
i
(IBX∗ × IBY ∗),

namely

−(x∗i ,y
∗
i ) ∈ ri(0,y∗i )+

1
i
(IBX∗ × IBY ∗).

This and (12.25) imply that

(0,−y∗i ) ∈
1
ri

((x∗i ,y
∗
i )+

1
iri

(IBX∗ × IBY ∗)

⊆ NC((xi,yi);A)+
2
iri

(IBX∗ × IBY ∗)

= NC((xi,yi);grF)+
2
iri

(IBX∗ × IBY ∗)

where the last equality holds because A = grF∩((x+τIBX)×Y ) and (x+τIBX)×Y
is a neighborhood of (xi,yi) for i large enough. Thus (12.23) holds. ��

In Asplund space setting, Theorem 12.4 can be strengthened to the following
theorem in which the Clarke coderivateve is replaced by the Fréchet coderivative .
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Theorem 12.5 ([72, Theorem 4.1]). Let X and Y be Asplund spaces. Assume that
F has a closed graph. If (x,y) is a local Pareto efficient solution of (P), then for
any ε > 0 there exist xε ∈ x + εIBX , yε ∈ F(xε)∩ (y + εIBY ) such that the following
inclusion holds

0 ∈ D∗
F F(xε ,yε)(y∗+ εIBY ∗)+ εIBX∗ (12.26)

with some y∗ ∈ K+ and ‖y∗‖= 1.

Proof. By the same argument as in the proof of Theorem 12.4 with Proposition 12.4
used in place of Proposition 12.3. ��
Remark 12.10. ([72, Remark on p. 83]) From the proof of Theorem 12.4, one can
see that if (x,y) is a local Pareto efficient solution of (P), then it is a local extremal
point of the system {grF,y−K} (see [18]). Thus one can also prove Theorem 12.5
by using the extremal principle instead of Lemma 12.1.

The following example shows that ε > 0 in Theorem 12.4 cannot be replaced by
ε = 0.

Example 12.4 ([72, Example 3.1]). Let X be an infinite dimensional separable
space and {xi} be a countable dense subset of X with each xi �= 0. Let

U =
{ −xi

i‖xi‖ , i ∈ IN

}
and A = cl conv(U ∩−U).

Then A is a compact subset of X and A =−A. Moreover, it is easy to verify that

X = cl(span(A)) and span(A) = ∪∞i=1iA, (12.27)

where span(A) denotes the linear subspace of X generated by A. By Baire Category
Theorem, it follows that X �=span(A). Let F : X �→ 2X be defined by F(x) = {x}
if x ∈ A and F(x) = /0 otherwise. Then the graph of F is a compact convex subset
of X ×X . Take e ∈ X \ span(A) and consider the ordering cone K defined by K :=
{te | t ≥ 0}. By the choice of e, it is easy to check that (0,0) is a global Pareto
efficient solution of (P). We claim that

0 /∈ D∗
CF(0,0)(y∗), ∀y∗ ∈ X∗ \ {0}. (12.28)

Indeed let y∗ ∈ X∗ satisfy 0 ∈ D∗
CF(0,0)(y∗). By definition and convexity of F , one

has 〈y∗,y〉 ≤ 0 for all y ∈ A. It follows from (12.27) that 〈y∗,x〉 ≤ 0 for all x ∈ X and
hence y∗ = 0. This shows that (12.28) holds.

Let us proceed to exact versions of the Fermat rule for Pareto efficient solutions.
We need the following kind of compactness on the dual of the ordering cone.
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Definition 12.6. [72, Definition 3.1] A closed convex cone K of Y is said to be
dually compact if there exists a compact subset C of Y such that

K+ ⊆W (C) := {y∗ ∈Y ∗ | ‖y∗‖ ≤ sup{〈y∗,y〉 | y ∈C}}. (12.29)

Examples of dually compact cones are provided in the following.

Proposition 12.13 ([72]). K is dually compact if one of the following conditions
holds:

(i) Y finite dimensional.
(ii) intK �= /0.

Proof. In the case (i) it suffices to take C = IBY . In the case (ii) let k ∈ intK. Then
k + τIBY ⊆ K for some τ > 0; thus, for any k∗ ∈ K+.

0≤ inf{〈k∗,y〉 | y ∈ k + τIBY}= 〈k∗,k〉− τ‖k∗‖

and so ‖k∗‖ ≤ 〈k∗,k/τ〉. Therefore,

k ∈ intK ⇒ K+ ⊆W ({rk}) for some r > 0. ��
The following example shows that the dual compactness is weaker than the

condition intK �= /0.

Example 12.5 ([72]). Let Y = R2, K = {0} ×R+. As Y is finite dimensional,
Proposition 12.13 implies that K is dually compact. It is clear that intK = /0.

It turns out that a dually compact cone enjoys a useful property, which is in some
sense similar to the partial normal compactness.

Proposition 12.14. If K is dually compact then for any sequence {y∗i }:

[y∗i ∈ K+, y∗i
w∗→ 0] implies [‖y∗i ‖→ 0]. (12.30)

Proof. Firstly, we recall a result established in the proof of [72, Proposition 3.1].
Namely, let C be a subset of Y such that (12.29) holds. By compactness of C there
exist c1, · · · ,cm ∈C such that C ⊆ ∪m

j=1(c j + 1/2IBY ). Therefore, for any y∗ ∈ K+,
(12.29) implies that

‖y∗‖ ≤max{〈y∗,y〉 | y ∈ ∪m
j=1(c j + 1

2 IBY )}
= max{〈y∗,c j〉 | j = 1, · · · ,m}+ 1

2‖y∗‖.
Hence, we get

‖y∗‖ ≤ 2max{〈y∗,c j〉 | j = 1, · · · ,m} for all y∗ ∈ K+. (12.31)

It is easy to see that (12.30) follows immediately from (12.31). ��
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Note that the relations (12.31) and (12.30) are in fact the relations (3.8) and (3.9)
in [72].

We are ready now to formulate exact version of the Fermat rule for Pareto
efficient solutions of (P) established by Zheng and Ng in [72].

Theorem 12.6. ([72, Theorem 3.3]) Let X and Y be Banach spaces. Assume that F
has a closed graph, that NC(·;grF) is closed at (x,y) (this condition is automatically
satisfied if F is assumed to be a closed convex set-valued map) and that one of the
following two conditions holds.

(i) The cone K is dually compact.
(ii) The inverse map F−1 is PSNC at (y,x) w.r.t. the Clarke normal cone

If (x,y) is a local Pareto efficient solution of (P), then the following inclusion holds

0 ∈ D∗
CF(x,y)(y∗) (12.32)

with some y∗ ∈ K+ and ‖y∗‖= 1.

Proof. By Theorem 12.4 there exist a sequence {(xi,yi,x∗i ,y
∗
i ,k

∗
i )} with each

(xi,yi) ∈ grF , k∗i ∈ K+, ‖k∗i ‖= 1 and x∗i ∈ D∗
CF(xi,yi)(y∗i ) such that

(xi,yi)→ (x,y),x∗i → 0 and ‖y∗i − k∗i ‖→ 0.

Since the unit ball in Y ∗ is weak* compact, without loss of generality we can assume

that k∗i
w∗→ k∗0 ∈C+ (and hence y∗i

w∗→ k∗0). Since NC(·;grF) is closed at (x,y),

0 ∈D∗
CF(x,y)(k∗0). (12.33)

Thus it remains to prove that k∗0 �= 0. If (i) holds, then we must also have k∗0 �= 0, in
view of the relation (12.30) in Proposition 12.14. Further, suppose to the contrary

that (ii) holds but k∗0 = 0. Then we would have k∗i
w∗→ k∗0 = 0 and hence, y∗i

w∗→ 0. As
(x∗i ,−y∗i ) ∈ NC((xi,yi);grF), we get (−y∗i ,x∗i ) ∈ NC((yi,xi);grF−1) and the PSNC
property of F−1 then implies that ‖y∗i ‖→ 0, a contradiction to ‖y∗i ‖→ 1. ��

The following corollary is a consequence of Theorem 12.6 ((ii) is automatically
satisfied thanks to the epi-Lipschitzity assumption).

Corollary 12.2 ([72, Corollary 3.1]). Let X and Y be Banach spaces. Assume that
F has a closed graph, which is epi-Lipschitz at (x,y). If (x,y) is a local Pareto
efficient solution of (P), then the following inclusion holds

0 ∈ D∗
CF(x,y)(y∗)

with some y∗ ∈ K+ and ‖y∗‖= 1.
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In Asplund space setting, Bao and Mordukhovich used the extremal principle
to obtain the following strengthened exact version of the Fermat rule for Pareto
efficient solutions of (P)

Theorem 12.7 ([5, Theorem 5.1]). Let X and Y be Asplund spaces. Assume that F
has a closed graph and that one of the following conditions holds.

(i) The cone K is SNC at the origin.
(ii) The inverse map F−1 is PSNC at (y,x) w.r.t. the Fréchet normal cone.

If (x,y) is a local Pareto efficient solution of (P), then the following inclusion holds

0 ∈D∗
MF(x,y)(y∗) (12.34)

with some y∗ ∈ K+ and ‖y∗‖= 1.

Proof. We show that the point (x,y) is a local extremal point of some system of sets
in the produce space X ×Y . Namely, let

Ω1 := grF, Ω2 := X × (y−K). (12.35)

These sets are closed and (x,y) ∈ Ω1∩Ω2. To verify the local extremality of (x,y)
for {Ω1,Ω2}, let us show that there is a sequence {vi} ⊆ Y with vi → 0 as i → ∞
such that

Ω1∩ (Ω2 +(0,vi))∩ (U ×Y ) = /0, i ∈ IN, (12.36)

where U is a neighborhood of x from its local minimality. This gives the required
extremality relation (12.12) with ai := (0,vi) ∈ X×Y . Let c∈−K \{0} be arbitrary
vector. We construct an appropriate sequence {vi} in (12.36) by putting vi = c/i as
i ∈ IN. Arguing by contradiction, suppose that (12.36) does not hold, i.e.,

there is (x,y) ∈U ×Y with (x,y) ∈Ω1∩ (Ω2 +(0,vi)). (12.37)

Then, by the construction of sets (12.35), we find some (x,y,k) ∈ X ×Y ×Y such
that

x ∈U,y ∈ F(x)+ k with k ∈ K and y ∈ y−K + vi, i ∈ IN.

This implies, by the convexity of the cone K, that

y− k ∈ F(U) and y− k ∈ y− k−K + vi ⊆ y−K + vi, i ∈ IN. (12.38)

By the choice of vi, we have

y−K + vi = y−K +
c
i
⊆ y−K− (K \ {0})⊆ y− (K \ {0}), i ∈ IN. (12.39)
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Combining the relations in (12.37)–(12.39) we have

y− k ∈ (y− (K \ {0}))∩F(U).

This is a contradiction to the fact that (x,y) is a local efficient solution of F and thus
justifies the local extremality of (x,y) for {Ω1,Ω2}.

Equip now the space X×Y with sum norm ‖(x,y)‖= ‖x‖+‖y‖ and observe that
it is Asplund as a product of Asplund spaces. Then applying extremal principle to
the set system (Ω1,Ω2) in (12.35) and taking into account they particular structures
and the maximum form of the dual norm in X∗ ×Y ∗, for any sequences εi → 0+ as
i→∞ we find {(x ji,y ji)} ⊆ X∗×Y ∗ as j = 1,2 satisfying for all i ∈ IN the following
relations:

(x1i,y1i) ∈ grF,(x2i,y2i) ∈ X × (y−K),‖(x ji,y ji)− (x,y)‖ ≤ ε, (12.40)

(x∗1i,−y∗1i) ∈ NF((x1i,y1i);grF),0 = x∗2i ∈ NF(x2i;X),y∗2i ∈ NF (y− y2i;K), (12.41)

max{‖x∗1i‖,‖y∗1i + y∗2i‖} ≤ εi (12.42)

and

1− εi ≤max{‖x∗1i‖,‖y∗1i‖}+‖y∗2i‖ ≤ 1 + εi. (12.43)

By (12.43), the sequence {(x∗ji,y∗ji)} are bounded in X∗×Y ∗ for j = 1,2, and hence
– by the Asplund property of X ×Y - they contain weak* converging subsequences;
see, e.g., [32, 54]. Using (12.43), we get without lost of generality that

‖x∗1i‖→ 0, y∗2i
w∗→ −y∗ as i→ ∞, (12.44)

where the weak* limit y∗ ∈ Y ∗ satisfies the inclusions

(0,−y∗) ∈ NM((x,y);grF) and − y∗ ∈ NM(0;K) (12.45)

obtained by passing to the limit in (12.40)–(12.41) as i → ∞ due to construction
(12.4) of the Mordukhovich normal cone via the sequential outer limit (12.2) of
Fréchet normals.

Next we show that y∗ �= 0 in (12.45) if either K is SNC at the origin or F−1 is
PSNC at (x,y). Assume by the contrary that y∗ = 0 having then from (12.44) that

y∗1k
w∗→ 0, y∗2k

w∗→ 0 as i→ ∞. (12.46)

If K is SNC at the origin, then the second expression in (12.46) immediately yields
that ‖y∗2k‖ → 0 and therefore ‖y∗1k‖ → 0 as i → ∞ by (12.42). Combining the latter
with (12.44), we thus contradict the nontriviality (12.43). Using the first inclusion
in (12.41) and the convergence ‖x∗1i‖→ 0 in (12.44), we conclude from the imposed
PSNC property that ‖y∗1i‖ → 0 as i → ∞. This gives ‖x∗2i‖ → 0 as i → ∞ and
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also contradicts the relation (12.43). Therefore, y∗ �= 0 in (12.45), which yields
the coderivative condition (12.34) by normalization and by the definition of the
coderivative. ��
Remark 12.11. In [5], Bao and Mordukhovich established in a unified scheme the
Fermat rule not only for Pareto efficient solutions but also for quasi relative efficient
solutions, intrinsic relative efficient solutions, primary relative efficient solutions.
Due to the lack of space, we do not discuss these results here. We would like
to mention that Bao–Mordukhovich’s results gave significant improvements over
recent results concerning Pareto efficient/ weak efficient solutions. We would like
to note that the two assumptions (i) and (ii) in Theorem 12.7 hold automatically in
finite-dimensional setting.

As mentioned in [5], the “dual compactness” of the cone K surely implies the
SNC property of K and as the PSNC property w.r.t. the Clarke normal cone or w.r.t.
the Mordukhovich normal cone surely implies the PSNC property w.r.t. the Fréchet
normal cone, Theorem 12.7 is a generalization of Theorem 12.6 in Asplund space
setting and of the following result.

Corollary 12.3 ([72, Theorem 4.2]). Let X and Y be Asplund spaces. Assume that
F has a closed graph and that one of the following conditions holds.

(i) The cone K is dually compact.
(ii) intK �= /0 or Y is finite dimensional.
(ii) The inverse map F−1 is PSNC at (y,x) w.r.t. the Mordukhovich normal cone.

If (x,y) is a local Pareto efficient solution of (P), then the following inclusion holds

0 ∈D∗
MF(x,y)(y∗)

with some y∗ ∈ K+ and ‖y∗‖= 1.

We illustrate the above results by an example.

Example 12.6. Let X = R, Y = R2 and K = R2
+. Let F : R �→ 2R

2
be defined by

F(x) =
{{(u,v) | u2 + v2 ≤ 1− x2} if |x| ≤ 1
{(u,v) | u2 + v2 ≤ 1− x−2} if |x|> 1.

(a) Let x = 0, y = (−1,0). One can check that

N(0,(−1,0));grF) = {(0,(−t,0)) | t ≥ 0},

that (0,(−1,0)) is a local Pareto efficient solution of (P) and (12.34) holds

0 ∈ D∗F(0,(−1,0))((1,0)),
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with y∗ = (1,0) ∈ K+ = R2
+, where the normal cone and coderivative are in the

sense of convex analysis as the graph of F is locally convex around (0,(−1,0)).
(b) Let x = 0, y = (1,0). One can check that

N((0,(1,0));grF) = {(0,(t,0)) | t ≥ 0}.

Therefore, 0 /∈D∗F(0,(1,0))((r1,r2)) for all y∗ = (r1,r2)∈R2
+\{0}, where the

normal cone and coderivative are in the sense of convex analysis as the graph
of F is locally convex around (0,(1,0)). Thus, (12.34) does not holds for any
y∗ ∈ K+ and (0,(1,0)) is not a local Pareto efficient solution of (P).

The following example shows that the necessary conditions for Pareto efficient
solutions in Theorems 12.4, 12.5, 12.6 and 12.7 do not become sufficient even under
additional convexity assumptions in finite-dimensional setting.

Example 12.7. Let X = R, Y = R2 and K = R2
+. Let F : R �→ 2R

2
be defined by

F(x) := {(u,v) | |u| ≤ 1 , |v| ≤ 1}

all x ∈ R. Let x = 0, y = (0,−1). One can check that

N(0,(0,−1));grF) = {(0,(0,−t)) | t ≥ 0}

and (12.34) holds

0 ∈D∗F((0,(0,−1))((0,1)),

with y∗ = (0,1) ∈ K+ = R2
+, where the normal cone and the coderivative are in the

sense of convex analysis as the graph of F is convex. However, it is easy to see that
(0,(0,−1)) is not a local Pareto efficient solution of (P) (moreover, one has that
(x,(−1,−1)) is a strongly efficient solution of (P) for any x ∈ R).

12.4.2 The Fermat Rule for Strongly, Weakly and Properly
Efficient Solutions of (P)

In this subsection, we discuss exact versions of the Fermat rule obtained in a unified
scalarizing scheme for strongly/ weakly/properly efficient solutions of (P), see [28].
Our techniques are motivated by the ones developed in [18] for weakly efficient
solutions and is based on the concept of s-efficiency and the Clarke penalization.
In this subsection, D∗ stands for the coderivatives in the senses of Ioffe, Clarke and
Mordukhovich and X and Y are assumed to be Asplund when the coderivative is
understood in the sense of Mordukhovich.

Firstly, we prove the Fermat rule for s-efficient solution of (P).
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Theorem 12.8. Assume that X and Y are Banach spaces, F has a closed graph
and (x,y) is a local s-efficient solution of (P) for some functional s : Y �→R. Assume
further that s is Lipschitz on F(U), where U is the neighborhood of x as in Definition
12.5. Then the following inclusion holds

0 ∈ D∗F(x,y)(y∗) (12.47)

with some y∗ ∈ ∂ s(0).

Proof. By the definition, the functional s(.− y) attains its minimum over F(U) at
y. We get that (x,y) is a minimizer of the functional (x,y) �→ s(y− y) on (U ×Y )∩
grF . Applying the Clarke penalization, see Proposition 12.5, we have that (x,y) is a
minimizer of the functional (x,y) �→ s(y− y)+ Ld((x,y),(U ×Y )∩grF) on X ×Y ,
where L is the Lipschitz constant of s on F(U). Therefore, Proposition 12.2 implies

(0,0) ∈ ∂ [s(·− y)+ Ld(·,(U ×Y)∩grF)](x,y)
⊆ {0}× ∂ s(0)+ L∂d(·,(U×Y )∩grF)](x,y)
= {0}× ∂ s(0)+ N((x,y);(U ×Y)∩grF)
= {0}× ∂ s(0)+ N((x,y);grF)

(recall that N((x,y);(U×Y )∩grF) = N((x,y);grF)). Hence, there exists y∗ ∈ ∂ s(0)
with (0,−y∗) ∈ N((x,y);grF). This implies 0 ∈ D∗F(x,y)(y∗). ��

We derive now the Fermat rule for (local/global) strongly/ weakly/properly
efficient solutions of (P).

Theorem 12.9. Assume that X and Y are Banach spaces and F has a closed
graph.

(a) If (x,y) is a strongly efficient solution of (P), then (12.47) holds for all y∗ ∈K+.
(b) If (x,y) is a weakly efficient solution of (P) or (x,y) is a Hurwicz properly

efficient solution of (P) and the image F(X) has a nonempty interior, then
(12.47) holds for some y∗ ∈ K+ \ {0}.

(c) If (x,y) is a Henig global properly efficient solution (in particular, if (x,y) is a
positively properly efficient solution) of (P), then (12.47) holds for some y∗ ∈
K+i.

(d) If (x,y) is a Henig properly efficient solution (in particular, if (x,y) is a super
efficient solution) of (P), then (12.47) holds for some y∗ ∈ K+i satisfying
infθ∈Θ y∗(θ ) > 0 .

(e) If (x,y) is a super efficient solution of (P) and K has a bounded base, then
(12.47) holds for some y∗ ∈ intK+.

Proof. (a) By Proposition 12.8(ii), (x,y) is an s-efficient solution of (P) with s = ϕ
for all ϕ ∈ K+. The assertion then follows from Theorem 12.8 and the fact that
∂ s(0) = {ϕ}.
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(b) By Theorem 12.2(a), (b), (x,y) is an s-efficient solution of (P) with s = Δ−Q,
where Q = intK when (x,y) is a weakly efficient solution of (P) and Q =
Y \ −cl conv cone[(A− a) ∪ K] when (x,y) is a Hurwicz properly efficient
solution of (P). The assertion then follows from Theorem 12.8 and the fact that
in these cases, Proposition 12.12 (a), (b) give ∂ s(0) = ∂Δ−Q(0)⊆ K+ \ {0}.

(c) If (x,y) is a Henig global properly efficient solution then by Theorem 12.2 (c),
it is s-efficient solution of (P) with s = Δ−Q and Q =C, C being an open pointed
convex cone dilating K. The assertion (c) then follows from Theorem 12.8 and
the fact that in this case, Proposition 12.12 (c) gives ∂ s(0) = ∂Δ−Q(0)⊆ K+i.
If (x,y) is a positively properly efficient solution of (P), then by Proposition
12.7(e), it is a global Henig properly efficient solution and the assertion follows.

(d) Use the same argument as in (c) and take account of Propositions 12.12(d) and
12.7(f).

(e) Use the same argument as in (c) and take account of Proposition 12.12 (e). ��
We can derive now the Fermat rule for Benson properly efficient solutions.

Corollary 12.4. Assume that Y is a separable Banach space, or that Y is a reflexive
Banach space and K has a base. Assume further that F has a closed graph and F−y
is nearly K-subconvexlike on X, i.e., cl cone (F(X)− y+ K) is convex. If(x,y) is a
Benson properly efficient solution of (P), then (12.47) holds for some y∗ ∈ K+i.

Proof. The assertions follow from Proposition 12.7(g) and Theorem 12.9(c). ��
Remark 12.12. Note that the Fermat rule has been formulated firstly in terms of
coderivative of convex analysis for strongly efficient solutions under the additional
assumption that F is convex in [2]. The case with weakly efficient solutions was
considered in [5,18], and the case with Henig properly efficient solutions and super
efficient solutions in [4,33] while the case with Hurwicz properly efficient solutions,
Henig global properly efficient solutions, positive properly efficient solutions and
Benson properly efficient solutions was studied in [28] with the help of the unified
approach based on the concept of Q-minimal points.

When K is not assumed to have a bounded base, Huang obtain the following
version of the Fermat rule for super efficient solutions in terms of the Clarke
coderivative.

Theorem 12.10 ([33, Corollary 3.1]). Assume that F has a closed graph and (x,y)
is a local super efficient solution of (P). Then for any u∗ ∈ IBY ∗ , there exists k∗ ∈K+

with ‖k∗‖ ≤M such that
0 ∈D∗

CF(x,y)(k∗ −u∗),

where M > 0 is a constant independent of u∗ ∈ IBY ∗ .

We refer the interested reader to [33] for the details on Theorem 12.10. We would
like to mention that the proof of this theorem is based on a scalar characterization
of super efficient solutions which is derived from the definition of the latter.

Let us illustrate Theorem 12.9 by an example.
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Example 12.8. Let X , Y , K and F be as in Example 12.6.

(a) Let x = 0, y = (−√2/2,−√2/2). One can check that

N

(
0,

(
−
√

2
2

,−
√

2
2

))
;grF) = {(0,(−t,−t)) | t ≥ 0}

that (0,(−√2/2,−√2/2)) is a local Henig properly efficient solution of (P)
and (12.47) holds

0 ∈D∗F

(
0,

(
−
√

2
2

,−
√

2
2

))
((1,1)),

with y∗ = (1,1) ∈ K+i = {(r1,r2) | r1 > 0,r2 > 0}, where the normal cone and
the coderivative are in the sense of convex analysis as the graph of F is locally
convex around (0,(−√2/2,−√2/2)).

(b) Let x = 0, y = (−1,0) as in the case (a) in Example 12.6. As

N(0,(−1,0));grF) = {(0,(−t,0)) | t ≥ 0},

one has that 0 /∈D∗F(0,(−1,0))((r1,r2)) for all y∗ = (r1,r2)∈K+i, i.e. (12.47)
does not hold. Thus, (0,(−1,0)) is a local Pareto efficient solution of (P) but it
is not a local Henig properly efficient solution of (P).

Remark 12.13. When F has a convex graph, some necessary conditions in Theo-
rems 12.8 and 12.9 become also sufficient. Since the proof of this fact is similar to
that used for the Lagrange multiplier rule, we do not present it here.

12.5 The Lagrange Multiplier Rule

This section is devoted to the Lagrange multiplier rule for the following set-valued
optimization problem with constraints (CP)

Minimize F(x) subject to x ∈Ω and G(x)∩C �= /0,

where X , Y and Z are Banach spaces unless otherwise stated, F and G are set-valued
maps from X respectively into Y and Z, Ω ⊆ X and C ⊆ Z are nonempty closed sets.
We refer the interested readers to [5,29,33] for the set-valued optimization problem
which contains only geometric constrain x ∈ Ω . In this section, we always assume
that x ∈Ω , (x,y) ∈ grF , (x,z) ∈ grG and z ∈ C , i.e., (x,z) ∈ grG∩ (Ω ×C ).
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12.5.1 The Lagrange Multiplier Rule for Pareto
Efficient Solutions of (CP)

The following fuzzy and exact versions of the Lagrange multiplier rule are adap-
tation from the ones formulated in [73] for a constrained set-valued optimization
problem with several constraint maps, to our problem (CP) which contains only one
constraint map G. We refer the reader to [73] for the proofs which are based on
Lemma 12.1. In this subsection, C is assumed to be a closed convex cone in Z and
C + denotes the positive dual of C , i.e. C + = {c∗ ∈ Z∗ | 〈c,c∗〉 ≥ o}.

The fuzzy version of the Lagrange multiplier rule for Pareto efficient solutions
of (CP) reads as follows.

Theorem 12.11 ([73, Theorems 3.1 and 3.2]). Let X, Y and Z be Banach spaces.
Assume that F and G have closed graphs. If (x,y) is a local Pareto efficient solution
of (CP), then one of the following assertions holds.

(a) For any ε > 0 there exist x1,x2 ∈ x+εIBX , w ∈Ω ∩(x+εIBX), y ∈ F(x1)∩(y+
εIBY ), z ∈G(x2)∩ (z+ εIBZ), and k∗ ∈ K+, c∗ ∈ C + such that

‖k∗‖+‖c∗‖= 1

and

0 ∈D∗
CF(x1,y)(k∗)+ D∗

CG(x2,z)(c∗)∩mIBX∗ + NC(w;Ω)∩mIBX∗ + εIBX∗ ,

where m > 0 is a constant independent of ε .
(b) For any ε > 0 there exist x1,x2 ∈ x+εIBX , w ∈Ω ∩(x+εIBX), y ∈ F(x1)∩(y+

εIBY ), z∈G(x2)∩(z+εIBZ), x∗1 ∈D∗
CF(x,y)(εIBY ∗), x∗2 ∈D∗

CG(x,z)(εIBZ∗) and
w∗ ∈ NC(w;Ω)+ εIBY ∗ such that

‖w∗‖+‖x∗1‖+‖x∗2‖= 1 and w∗+ x∗1 + x∗2 = 0.

(c) Suppose that X, Y and Z are Asplund spaces. Then we can replace the Clarke
normal cone and the Clarke coderivative in the assertions (a) and (b) by the
Fréchet normal cone and the Fréchet coderivative. If in additions F and G
are pseudo-Lipschitz at (x,y) and (x,z), respectively, then the assertion (a)
expressed in terms of the Fréchet normal cone and the Fréchet coderivative
holds.

We refer the reader to [73] for the proof of Theorem 12.11, which is based on [73,
Lemma 2.1]. Note that [73, Lemma 2.1] recaptures the extended extremal principle
due to Mordukhovich et al. [59] and contains Lemma 12.1 as a special case.

Remark 12.14. In the special case when G(x) = {0} for all x ∈ X and Ω = X ,
Theorem 12.11 recaptures Theorems 12.4 and 12.5.
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Imposing additionally the dual compactness on the considered cones and the
partial sequential normal compactness w.r.t. the Fréchet normal cone (i.e. PSNC in
the sense of Mordukhovich and Shao) or w.r.t. the Clarke normal cone, or pseudo-
Lipschizity on the considered maps, Zheng and Ng obtained the following exact
versions of the Lagrange multiplier rule involving the coderivatives and normal
cones in the senses of Mordukhovich or Clarke.

Theorem 12.12 ([73, Theorems 4.1 and 4.2]). Let X, Y and Z be Asplund spaces.
Assume that F and G have closed graphs and that the following conditions hold.

(i) The cones K and C are dually compact.
(ii) The maps F and G are PSNC w.r.t. the Fréchet normal cone at (x,y) and (x,z),

respectively.

If (x,y) is a local Pareto efficient solution of (CP), then one of the following
assertions holds.

(a) There exist k∗ ∈ K+, c∗ ∈ C + such that

‖k∗‖+‖c∗‖= 1

and

0 ∈ D∗
MF(x,y)(k∗)+ D∗

MG(x,z)(c∗)+ NM(x;Ω). (12.48)

(b) There exist x∗1 ∈D∗
MF(x,y)(0), x∗2 ∈D∗

MG(x,z)(0) and w∗ ∈NM(x;Ω) such that

‖w∗‖+‖x∗1‖+‖x∗2‖= 1 and w∗+ x∗1 + x∗2 = 0.

If, in addition, F and G are pseudo-Lipschitz at (x,y) and (x,z), respectively, then
the assertion (a) holds.

Theorem 12.13 ([73, Theorem 4.3]). Let X, Y and Z be Banach spaces. Assume
that the following conditions hold.

(i) The cones K and C are dually compact.
(ii) The maps F and G are PSNC w.r.t. the Clarke normal cone at (x,y) and (x,z),

respectively.
(iii) The set Ω and the maps F, G are normally closed at x, (x,y) and (x,z),

respectively.

If (x,y) is a local Pareto efficient solution of (CP), then one of the following
assertions holds.

(a) There exist k∗ ∈ K+, c∗ ∈ C + such that

‖k∗‖+‖c∗‖= 1
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and

0 ∈D∗
CF(x,y)(k∗)+ D∗

CG(x,z)(c∗)+ NC(x;Ω).

(b) There exist x∗1 ∈ D∗
CF(x,y)(0), x∗2 ∈D∗

CG(x,z)(0) and w∗ ∈ NC(x;Ω) such that

‖w∗‖+‖x∗1‖+‖x∗2‖= 1 and w∗+ x∗1 + x∗2 = 0.

We refer the reader to [73] for the proofs of Theorems 12.12–12.13, which is
based on Theorem 12.11.

Let us illustrate Theorems 12.11–12.13 by an example.

Example 12.9. Let X , Y , K and F : R �→ 2R
2

be as in Example 12.6. Let Ω =
[−1,1], Z = R2, C = R2− and G : R �→ R2 be defined as G(x) = (x,x).

(a) Let x = 0, y = (−1,0), z = (0,0). One can check that (0,(−1,0)) is a local
Pareto efficient solution of (CP). Further, it is easy to see that

N(0,(−1,0));grF) = {(0,(−t,0)) | t ≥ 0},

N(0; [−1,1]) = {0}, N(0;C ) = R2
+ and

N(0,(0,0));grG) = {(u,(r1,r2)) | u + r1 + r2 = 0},

(the coderivative and the normal cone are in the sense of convex analysis). Then
(with k∗ = (1,0), w = 0, z∗ = (r1,r2) = (0,0), c∗ = (0,0)) we have

0 ∈ D∗F(0,(−1,0))((1,0))+ D∗G(0,(0,0))((0,0))+ N(0; [−1,1]),

i.e. (12.48) holds.
(b) Let x = 0, y = (1,0), z = (0,0). Then (0,(1,0)) is not a local Pareto efficient

solution of (CP). Indeed, for any z∗ = (r1,r2) ∈ N(0;C ) = R2
+ one has

D∗G(0,(0,0))((r1,r2)) = r1 +r2. Since N(0,(1,0));grF) = {(0,(t,0)) | t ≥ 0},
there are no k∗ ∈ K+ and c∗ ∈ N(0;C ) with ‖k∗‖+‖c∗‖= 1 such that

0 ∈D∗F(0,(1,0))(k∗)+ D∗G(0,(0,0))(c∗)+ N(0; [−1,1]),

i.e. (12.48) does not hold.

Remark 12.15. Example 12.7 (Ω=X , Z=IR2, C ={(0,0)} and G(x)={(0,0)},
∀x ∈ X ) shows that the necessary conditions for Pareto efficient solutions in
Theorems 12.11–12.13 do not become sufficient even under additional convexity
assumptions in finite-dimensional setting while the sufficient conditions stated in
[73, Proposition 4.1] are stronger than the necessary ones stated in the same paper
(Theorems 12.11–12.13 here) and are in fact sufficient conditions for positive
properly efficient solutions.
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12.5.2 The Lagrange Multiplier Rule for Weakly, Strongly,
Properly Efficient Solutions of (CP)

In this subsection, we obtain in a unified scheme versions of the Lagrange
multiplier rule for weakly, strongly, properly efficient solutions of (CP). Firstly,
we apply the techniques of [18] to establish the Lagrange multiplier rule for s-
efficient solutions of (CP) and then derive similar versions for strongly, weakly,
properly efficient solutions of (CP). We also show that several obtained necessary
conditions are sufficient. In this subsection, N and D∗ stand for the normal cones
and the coderivatives in the senses of Ioffe, Clarke and Mordukhovich, and the
spaces are Asplund when the normal cone and the coderivative is in the sense of
Mordukhovich.

We will need the following assumption.

Assumption (A):

(1) The sets Ω and C are closed.
(2) F and G are closed and pseudo-Lipschitz around (x,y) and (x,z) respectively.
(3) G is metrically regular around (x,z) relatively to Ω ×C .

The Lagrange multiplier rule for s-efficient solutions of (CP) reads as follows.

Theorem 12.14. Let Assumption (A) be satisfied and (x,y) be a local s-efficient
solution of (CP) for some functional s : Y �→ R. Assume further that s is Lipschitz
on F(A ∩Ux), where Ux is the neighborhood of x as in Definition 12.5. Then there
exists y∗ ∈ ∂ s(0) such that

0 ∈ D∗F(x,y)(y∗)+ D∗G(x,z)(z∗)+ N(x;Ω) for some z∗ ∈ N(z;C ). (12.49)

Proof. The proof is similar to that of [18, Theorem 3.7 ]. Without loss of generality,
we can assume that the same constant γ ≥ 0 is figured in the definitions of
the pseudo-Lipschitzity property of F and of G around (x,y) and around (x,z),
respectively, and of the metric regularity of G around (x,z) relatively to Ω ×C .
By the definition, y is a s-efficient point of F(S∩Ux) for some neighborhood Ux of
x. Define q : X ×Y ×Z → R by q(x,y,z) := s(y− y) and

Λ := {(x,y,z) ∈ X ×Y ×Z | (x,y) ∈ (Ux×Y)∩gr F, (x,z) ∈ (Ω ×C )∩gr G}.

One can easily check that Λ ⊆ Ux ×Y × Z and (x,y,z) is a minimizer of the
functional q on Λ . Suppose that s is Lipschitz of rank L on F(Ux), then q is
Lipschitz of rank L on Ux×Y ×Z. Then by the Clarke penalization, see Proposition
12.5, (x,y,z) is a minimizer (and hence, a local minimizer) of the functional
q(·)+ Ld(·;Λ) on Ux×Y ×Z. Therefore, we can assume that

0 = s(0)+ Ld((x,y,z);Λ)≤ s(y− y)+ Ld((x,y,z);Λ) (12.50)
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for (x,y,z) near (x,y,z). By Proposition 12.6, we have

d((x,y,z);Λ) ≤ (1 + γ)[d((x,y);(Ux×Y )∩gr F)+ d((x,z);(Ω ×C )∩gr G)]
(12.51)

for (x,y,z) near (x,y,z). Further, the metric regularity of G around (x,z) relatively
to Ω ×C yields that

d((x,z);(X ×C )∩gr G)≤ γd(z;G(x)) (12.52)

for (x,z) ∈ Ω ×C near (x,z) and the pseudo-Lipschitz property of G around (x,z)
(see (12.7)) yields

d(z;G(x)) ≤ (1 + γ)d((x,z);gr G) (12.53)

for (x,z) ∈Ω ×C near (x,z). Combining (12.50)–(12.53) gives

0 ≤ s(y− y)+ Ld((x,y,z);Λ)
≤ s(y− y)+ L(1 + γ)[d((x,y);(Ux×Y)∩gr F)+ d((x,z);(Ω ×C )∩gr G)]
≤ s(y− y)+ L(1 + γ)[d((x,y);(Ux×Y )∩gr F)+ γ(1 + γ)d((x,z);gr G)]

for (x,y,z) ∈Ω ×Y ×C near (x,y,z), which means that (x,y,z) is a local minimizer
of the functional q̃ over Ω ×Y ×C that is defined by q̃ : X ×Y ×Z → R,

q̃(x,y,z) := s(y−y)+(1+γ)Ld((x,y);(Ux×Y )∩gr F)+γ (1+γ)2 Ld((x,z);gr G).

Applying the Clarke penalization again, we see that for some integer l > 0 large
enough, (x,y,z) is an unconstrained local minimizer of

(x,y,z) �→ s(y− y)+ ld((x,y);grF)+ ld((x,z);grG)+ ld((x,z);Ω ×C ).

By Proposition 12.2, 0 is in the sum of the subdifferentials, that is there exist y∗1 ∈
∂ s(0),

(x∗2,y
∗
2) ∈ l∂d((x,y);grF)⊆ N((x,y);grF),

(x∗3,z
∗
3) ∈ l∂d((x,z);grG)⊆ N((x,z);grG)

and
(x∗4,−z∗4) ∈ l∂d((x,z);Ω ×C )⊆ N((x,z);Ω ×C )

such that

0 = x∗2 + x∗3 + x∗4,0 = y∗1 + y∗2 and 0 = z∗3 + z∗4.

Putting y∗ = y∗1 =−y∗2 and z∗ = z∗4 =−z∗3, we obtain

0 ∈D∗F(x,y)(y∗)+ D∗G(x,z)(z∗)+ N(x;Ω)

and (12.49) holds. ��
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The following Lagrange multiplier rule for several types of efficient solutions of
(CP) reads as follows.

Theorem 12.15. Let Assumption (A) be satisfied and let the notations be as in
Theorem 12.14.

(a) If (x,y) is a strongly efficient solution of (CP), then (12.49) holds for all y∗ ∈
K+ \ {0}.

(b) If (x,y) is a weakly efficient solution of (CP) or (x,y) is a Hurwicz properly
efficient solution of (CP) and the image F(A ) has a nonempty interior, then
(12.49) holds for some y∗ ∈ K+ \ {0}.

(c) If (x,y) is a Henig global properly efficient solution (in particular, a positive
properly efficient solution) of (CP), then (12.49) holds for some y∗ ∈ K+i.

(d If (x,y) is a Henig properly efficient solution (in particular, a super efficient
solution) of (CP), then (12.49) holds for some y∗ ∈ K+i satisfying infθ∈Θ
y∗(θ ) > 0.

(e) If (x,y) is a super efficient solution of (CP) and K has a bounded base, then
(12.49) holds for some y∗ ∈ intK+.

Proof. This theorem can be proved in the same way as for Theorem 12.9
(by applying Theorem 12.14 in place of Theorem 12.8). ��
Remark 12.16. (a) The above version of Lagrange multiplier rule are known for

weakly efficient solutions in [18], for strongly efficient solutions or positive
properly efficient solutions in [27] and for Hurwicz properly efficient solution,
Henig global properly efficient solution, Henig properly efficient solution and
super efficient solutions in [28].

(b) One can use the techniques of [18] further to obtain other optimality conditions
for (CP) for instance in terms of coderivatives of the map (F,G), where
F,G)(x) = F(x)×G(x).

(c) The case when the constraints set of (SP) contains only the geometric constraint
x ∈ Ω was recently considered in [4, 29, 33]. Namely, the Lagrange multiplier
rule involving coderivatives has been established for super efficient solutions in
Asplund space settings by Bao and Mordukhovich in [4] and in Banach space
settings by Huang in [33]. In [29], we applied results on the Lagrange multiplier
rule for weakly, strongly, properly efficient solutions of set-valued optimization
problems to the study of optimality conditions for weakly, strongly, properly
efficient solutions of set-valued equilibrium problems.

We can derive now the Lagrange multiplier rule for Benson properly efficient
solutions.

Corollary 12.5. Let Assumption (A) be satisfied and let the notations be as in
Theorem 12.14. Assume that Y is a separable Banach space, or that Y is a reflexive
Banach space and K has a base. Assume further that F−y is nearly K-subconvexlike
on A , i.e., cl cone (F(A )− y+ K) is convex. If (x,y) is a Benson efficient solution
of (CP), then (12.49) holds for some y∗ ∈ K+i.
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Proof. The assertions follow from Proposition 12.7 (g), Theorem 12.15(c). ��
Let us illustrate Theorem 12.15 by an example.

Example 12.10. Let X , Y , Z, K, C , Ω , F and G be as in Example 12.9.

(a) Let x = 0, y = (−√2/2, −√2/2), z = (0,0). One can check that
(0,(−√2/2,−√2/2)) is a local Henig properly efficient solution of (CP)
and (12.49) holds

0∈D∗F

(
0,

(
−
√

2
2

,−
√

2
2

))
((1,1))+D∗G(0,(0,0))((0,0))+N(0; [−1,1]).

(b) Let x = 0, y = (−1,0), z = (0,0). By an argument similar to that for the case (b)
in Example 12.8 one can check that (0,(−1,0)) is not a local Henig properly
efficient solution of (CP) because (12.49) does not hold.

Below we show that under convexity assumptions on the sets Ω and C as well
on the graphs of the maps F and G, some necessary conditions in Theorem 12.15
become sufficient.

Theorem 12.16. Suppose that

(i) The sets Ω and C ares closed and convex.
(ii) F and G are closed and convex, i.e. their graphs are closed and convex.

Then

(a) If (12.49) holds for some y∗ ∈ K+i, then (x,y) is a positive properly efficient
solution of (CP).

(b) If (12.49) holds for all y∗ ∈ K+ \ {0}, then (x,y) is a strongly efficient solution
of (CP).

(c) If (12.49) holds for some y∗ ∈ K+ \ {0} and intK �= /0, then (x,y) is a weakly
efficient solution of (CP).

Proof. Observe first that since the graphs of F , G and the sets Ω , C are convex,
the coderivatives and normal cones figured in (12.49) are understood in the sense of
convex analysis. Suppose now that (12.49) holds for some y∗ ∈ K+ \{0}. Then one
can find elements x∗1,x

∗
2 ∈ X∗, and x∗3 ∈N(x;Ω) such that (x∗1,−y∗)∈N((x,y);gr F),

(x∗2,−z∗) ∈ N((x,z);gr G) and

x∗1 + x∗2 + x∗3 = 0. (12.54)

According to the definition of the normal cone of convex analysis, see Proposi-
tion 12.1, we have

〈(x∗1,−y∗),(x,y)− (x,y)〉 ≤ 0 for all (x,y) ∈ gr F (12.55)

〈(x∗2,−z∗),(x,z)− (x,z)〉 ≤ 0 for all (x,z) ∈ gr G, (12.56)

〈x∗3,x− x〉 ≤ 0 for all x ∈Ω (12.57)



12 The Fermat Rule and Lagrange Multiplier Rule for Various Efficient Solutions 463

and

〈z∗,z− z〉 ≤ 0 for all z ∈ C . (12.58)

Summarizing (12.55)–(12.58) and taking account of (12.54) we obtain

〈y∗,y− y〉 ≥ 0 for all y ∈ F(A ). (12.59)

Therefore, if (12.49) holds for some y∗ ∈ K+i ⊆ K+ \ {0}, then (12.59) and
Proposition 12.8 (a) implies that (x,y) is a positive properly efficient solution
of (CP). Next, if (12.49) holds for all y∗ ∈ K+ \ {0}, then (12.59) holds for all
y∗ ∈ K+ \ {0} and Proposition 12.8 (b) implies that (x,y) is a strongly efficient
solution of (CP). Finally, if (12.49) holds for some y∗ ∈ K+ \ {0} and intK �= /0,
then (12.59) holds for some y∗ ∈ K+ \ {0} and Proposition 12.9 implies that (x,y)
is a weakly efficient solution of (CP). ��
Remark 12.17. (a) The above sufficient conditions in the form of the Lagrange

multiplier rule have been obtained for weakly efficient solutions of (CP) in [18]
and for strongly efficient solutions and positive properly efficient solutions of
(CP) in the first time here.

(b) In [29], we established that the necessary conditions in the form of the Lagrange
multiplier rule for Henig global properly efficient solutions, Henig properly
efficient solutions and super efficient solutions become sufficient under the
convexity assumptions when the constraint set contains only the geometric
condition x ∈ Ω . This result can be extended to these solutions of (CP) by
applying the techniques of [29].
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Chapter 13
Extended Pareto Optimality in Multiobjective
Problems

Truong Q. Bao and Boris S. Mordukhovich

13.1 Introduction

This chapter largely discusses some major notions of optimal/efficient solutions in
multiobjective optimization and studies general necessary conditions for minimal
points of sets and for minimizers of constrained set-valued optimization problems
with respect to extended Pareto preference relations.

Let us first recall the definitions of preferences from [42, Definition 1.4]; cf.
also the classical mathematical economics books [29, 41], the recent books [16, 22,
27, 35] on vector optimization, and the references therein.

Definition 13.1 (Preference, Strict Preference, and Indifference). Let Q ⊆ Z ×
Z be an arbitrary subset of a product space Z× Z, and let R be a binary relation
on Q describing by xRy if and only if (x,y) ∈ Q for all x,y ∈ Z.

• The relation ≺ defined by [x≺ y iff xRy and ¬yRx] is called a strict preference
on Q.

• The relation∼ defined by [x∼ y iff xRy and yRx] is called an indifference on Q.
• The disjoint union R :=≺ ∪∼ denoted by & is called a preference on Q.
• A preference is a partial order if and only if it is reflexive, anti-symmetric, and

transitive.
• A strict preference is a strict partial order if and only if it is nonreflexive, anti-

symmetric, and transitive.
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Note that in what follows the term “preference” stands for either reflexive or
nonreflexive preference depending on the context and the notation ≺ or &.

Associate a preference ≺ (respectively, &) with a preference-set/level-set multi-
function P≺ (respectively, P& : Z ⇒ Z) given by

P≺(z) := {y ∈ Z | y≺ z}, (respectively, P&(z) := {y ∈ Z | y & z},)

which describes the set of points being better than (respectively, better than or equal
to) the point in question. It is worth to emphasizing that the adjective “better” means
bigger in the economics models while it stands for smaller in vector optimization.

Definition 13.2 (Preference Points). Let Ξ ⊆ Z be a subset of the space Z, and let
z ∈ Ξ . We say that:

• z is a weak preference point with respect to ≺ if there is no z ∈ Ξ such that it is
preferred to z with respect to the preference≺, i.e.,

Ξ ∩P≺(z) = /0.

• z is a preference point with respect to & if there is no z ∈ Ξ \{z} such that z& z,
i.e.,

Ξ ∩P&(z) = {z}.
Given a strict preference ≺, define an indifference relation ∼ by [x ∼ y iff x =

y]. Then one cannot distinguish between weak preference points with respect to ≺
and preference points with respect to its induced preference & := ≺ ∪ ∼. Observe
that the preference relation & obtained by P&(z) := clP≺(z) from the preference
≺ generally distinguishes two kinds of preference points given in Definition 13.2.
In particular, such an operation was used in some recent publications as an attempt
to weaken the transitivity property of ordering relations. For simplicity, we use the
notation P(z) and clP(z) instead of P≺(z) and P&(z), respectively.

Next we recall the concept of Pareto efficiency, which surely has its root in
economic equilibrium and welfare theory. Given a set of alternative allocations of
goods or income for a set of individuals, a change from one allocation to another
that can make at least one individual better off without making any other individual
worse off is called a Pareto improvement. An allocation is Pareto efficient/optimal
when no further Pareto improvement can be made. It is important to emphasize
that both Francis Edgeworth (1845–1926) and Vilfredo Pareto (1848–1923) are
credited for originally introducing the concept of noninferiority (known as Pareto
minimality) in economics, and thus it should be Edgeworth–Pareto efficiency. The
reader is referred to [43] for a biographical survey of history and developments in
multiobjective optimization with more details, commentaries, and proofs.

We illustrate this concept via a simple exchange economy E with n customers.
Let E be a commodity space, let Ci ⊆ E be a consumption set of customer i, and let

wi be an initial endowment of customer i for i = 1, . . . ,n. The quantity w =
n
Σ

i=1
wi is
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the total endowment of the economy E . The bundle z = (z1, . . . ,zn) ∈C1×·· ·×Cn

is an admissible allocation of E . It is said to be feasible provided that the exchange

condition
n
Σ

i=1
zi = w is satisfied. Denote the collection of all the feasible allocations

to E by Ξ . Assume that each customer i has his/her own preference, denoted by
≺i, reflecting his/her “feeling” or “taste” and corresponding to the preference-set

multifunction Pi :
n
Π

i=1
Ci ⇒ Ci with Pi(z) := {y ∈ Ci | y ≺i zi} for all i = 1, . . . ,n.

We also have the derived preferences &i with the preference sets cl(Pi(z)). Recall
that:

• A feasible allocation z ∈ Ξ is a weak Pareto optimal allocation of E if there is
no feasible allocation z ∈ Ξ such that zi ≺ zi for all i = 1, . . . ,n, i.e.,

Ξ ∩
(

n
Π
i=1

Pi(z)
)

= /0 (13.1)

• A feasible allocation z ∈ Ξ is a Pareto optimal allocation of E if there is no other
feasible allocations z ∈ Ξ \ {z} such that zi & zi for all i = 1, . . . ,n, i.e.,

Ξ ∩
(

n
Π

i=1
clPi(z)

)
= {z} (13.2)

Observe that by defining two product preferences ≺ :=
n
Π

i=1
≺i and & :=

n
Π

i=1
&i

by, respectively,

P(z) :=
n
Π
i=1

Pi(z) and clP(z) :=
n
Π
i=1

clPi(z), (13.3)

we can see that the point z is a weak Pareto/Pareto optimal allocation of E if and
only if it is a weak preference/preference point to Ξ with respect to ≺ and &. The
reader is referred to [22, Example 4.6] for a cooperative n player game in which
the preference of each player is induced by a convex cone. Proceeding in this way
is by far different from the utility approach widely used in the early development
of mathematical economics; see, e.g., the basic economics books [29, 41]. The
latter approach heavily relies on the utility description of preferences. A function
u : Z → R is a utility function for the preference ≺ (respectively, &) if it is order-
preserving, i.e., for every y,z ∈ Z we have the implication

[y ≺ z =⇒ u(y) < u(z)] , (respectively, [y & z =⇒ u(y)≤ u(z)]) .

Assume that for each i ∈ {1, . . . ,n}, ui is a utility function of ≺i. It is easy to check
that z is a weak Pareto optimal allocation of E if there is no z ∈ Ξ such that ui(z) <
ui(z) for all i = 1, . . . ,n, i.e.,

u(Ξ)∩ (u− intRn
+) = /0,
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and that z is a Pareto optimal allocation of E if there is no z ∈ Ξ \ {z} such that
ui(z) ≤ ui(z) for all i ∈ {1, . . . ,n} while there is some i0 ∈ {1, . . . ,n} such that
ui0(z) < ui0(z), i.e.,

u(Ξ)∩ (u−Rn
+) = {u},

where u : Z → R
n is defined by u(z) := (u1(z), . . . ,un(z)), u(Ξ) := {u(z) | z ∈ Ξ}

is the image set to Ξ , and u := (u1(z), . . . ,un(z)). In the other words, z is a weak
Pareto/Pareto optimal allocation to E if and only if it is a weak Pareto/Pareto
minimal point to the image set u(Ξ) with respect to the weak Pareto/Pareto
preference generated by the positive cone of Rn.

Vector optimization studies certain “optimal/efficient” elements of a nonempty
subset Ξ in a partially ordered linear space Z, where the ordering relation is
generated by a closed, convex, and pointed coneΘ ⊆ Z. Denoting the weak Pareto
ordering relation by

z1 <Θ z2 if and only if z2− z1 ∈ intΘ (13.4)

and the Pareto one by

z1 ≤Θ z2 if and only if z2− z1 ∈Θ , (13.5)

respectively. These partial orders are known as the weak Pareto preference≺Θ with
preference sets given by

P≺(z) := z− intΘ , (13.6)

and the Pareto preference &Θ with

P&(z) := z−Θ . (13.7)

We say that z ∈ Ξ is a weak Pareto / Pareto minimal point to Ξ if and only if it is
a weak preference / preference point to Ξ with respect to the preference <Θ /≤Θ if
and only if the optimality condition holds:

Ξ ∩ (z− intΘ) = /0, (respectively, Ξ ∩ (z−Θ) = {z}).

It is known that the Pareto preference ≤Θ is a partial order if and only if Θ is a
closed, convex, and pointed cone. However, it is no longer assumed to be pointed in
several recent papers, for example, [5,6], and thus the preference≤Θ is not a partial
order since it does not have the transitivity property.

It is important to emphasize that the most common tool used in establishing
necessary optimality conditions for minimal points to sets in vector optimization
is the separation theorem for convex sets. It has various extensions to nonconvex
settings. One of them was proposed by Tammer and Weidner in [44].
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Theorem 13.1 ([16, Theorems 2.3.1]). Let C ⊆ Z be a closed proper set in a
topological vector space and k◦ ∈ intC such that

C +R+ · k◦ ⊆C.

Then the function ϕ : Z → R defined by

ϕC,k◦(z) := inf{t ∈ R | z ∈ tk◦ −C}
is lower semicontinuous and ϕC,k◦(z+ tk◦) = ϕC,k◦(z)+ t for all z ∈ Z and t ∈ R. It
is continuous provided that C +R+ · k◦ ⊆ intC. Assume further that C is a convex
cone. If z is a Pareto minimal point to Ξ with respect to C, then it is a minimum
of the function ϕC,k◦ over Ξ .

Proof. See the aforementioned references. ��
Note that we still need the convexity of the ordering cone C to convert a vector

optimization problem to a scalar one; in the other words, it has not been applied
to a full nonconvex optimization problem yet. See, for example, [12–15, 18]. Note
further that the nonempty interiority condition intC �= /0 is unavoidable in numerous
separation results in both convex and nonconvex settings to ensure the continuity
property of separation/utility functions. However, it is a troublesome in infinite-
dimensional spaces, since the natural ordering cone of each Lebesgue space l p and
Lp for 1 ≤ p < ∞ has an empty relative interior, and thus an empty interior. In the
convex setting it might be weakened to the nonempty quasi-interiority condition;
see, e.g., [9,10,19]; the latter is automatics in separable Banach spaces for nonempty
convex sets by [9, Theorem 2.8].

In contrast to the utility function approach known as scalarization, the vari-
ational approach does not require such a condition. The latter approach relies
on the extremal principle, which can be seen as a variational counterpart of the
separation theorem for nonconvex sets and goes back to the original publication by
Mordukhovich [30, 31] and by Kruger and Mordukhovich [20], where necessary
conditions were established for problems of scalar optimization as well as for some
vector problems with respect to the classical Pareto utility notion. It was extended to
more involved vector-valued and set-valued optimization in [1,3–5,8,35,37,46,47]
and the references therein. In this chapter, we adopt this approach to study neces-
sary conditions for broad classes of multiobjective optimization problems mainly
focusing on eliminating or weakening the convexity and nonempty interiority
requirements imposed on ordering cones.

It is pointed out in [43, page 22] that “much of the mathematical theory is based
on maximality with respect to partial orders or partially preorders, at best. More
general concepts of optimality based on preferences satisfying conditions other than
merely those of reflexivity and transitivity” should be considered. It is known that a
preference & on a finite-dimensional space Z is determined by a continuous utility
function if and only if both lower-level and upper-level sets at every z ∈ Z

{y ∈ Z | y& z} and {y ∈ Z | z& y}
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are closed in Z, and that the lexicographic preference is a classical example of
rational preferences that are not representable by a utility function. Recall that
in economics the lexicographic preference (the lexicographical order based on
the order of amount of each good) describes comparative preferences, where an
economic agent infinitely prefers one good X to another Y . Thus if offered several
bundles of goods, the agent will choose the bundle that offers the most X , no matter
how much Y there is. Only when there is a tie of Xs between bundles will the
agent start comparing Y s. On Rn the lexicographical preference ≺lex is defined
as follow. We say that y ≺lex z if there is an integer j ∈ {0, . . . ,m− 1} such that
yi = zi for i = 1, . . . , j and y j+1 < z j+1 for the corresponding components of the
vectors y,z ∈ Rn. It is easy to check that the induced preference &lex is a complete
generalized Pareto preference induced by the convex and pointed ordering cone

Θlex := {z ∈ Rn | 0≺lex z}∪{0}. (13.8)

Obviously this cone is not locally closed around the origin.
In more recent publications [10, 35, 37, 48] some necessary conditions are for

optimization problems with a broader class of preferences containing those with or
without a utility description and generalized Pareto preferences generated by closed,
convex and pointed cones whose interior might be empty. Recall that a preference
is said to be closed if it meets the following requirements:

• Nonreflexivity: z �∈ P(z) ∀ z ∈ Z
• Local satiation: z ∈ clP(z) ∀ z ∈U , where U is a neighborhood of z
• Almost transitivity: ∀ u ∈ P(z), ∀v ∈ clP(u),v ∈ P(z)

Note that the almost transitivity is quite natural for classical orders in optimization.
Indeed, if we define& via the closure of preference sets of≺, i.e., P&(z) := clP≺(z),
then the almost transitivity reduces to

[v& u and u≺ z] =⇒ u≺ z,

which is automatic for the strict order (<) and the usual order (≤) on real numbers,
since a≤ b and b < c imply that a < c, and for the weak Pareto order and the Pareto
order due to the fact that Θ + intΘ ⊆ intΘ for every convex cone Θ . However,
we would mention that this requirement seems to be rather restrictive even for the
class of generalized Pareto preferences defined in (13.5) with respect to a closed
cone Θ ⊆ Z, since it forces Θ to be convex and pointed by [35, Proposition 5.56],
and thus this class of closed preferences excludes, in particular, the lexicographical
preference.

The primary goal of this chapter is to introduce and study a refined optimality
notion unifying, in particular, those known in the literature. It is named the extended
Pareto order, since it extends the generalized Pareto order defined via the ordering
relation (13.5) by replacing the closed and convex ordering cone with an ordering
set containing the origin and satisfying a rather mild requirement. Then we establish
refined necessary conditions for minimal points of sets with respect to the extended
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Pareto order and derive from them several types of first-order necessary conditions
for various kinds of optimal solutions to set-valued optimization problems with
geometric constraints and/or operator constraints.

The rest of the chapter is organized as follows. Sect. 13.2 provides some of the
basic concepts and tools from variational analysis and generalized differentiation
broadly used in the sequel. In Sect. 13.3 we introduce and discuss the extended
Pareto optimality concept. As mentioned, the essence of such an extension is the
possibility to unify known optimality notions in set and multiobjective optimization.
As a direct consequence of this, what we can establish for the new notion auto-
matically holds for the others. We obtain in this section new necessary optimality
conditions for minimal points of nonempty sets by employing a variational approach
based on the extremal principle. Note that we do not assume the convexity for both
the set in question and the ordering set. To compensate this, we need a new property
of sets called the local asymptotic closedness condition. It holds under the standard
assumptions imposed on ordering cones, while there are also nonconvex sets
enjoying this property. Some characterizations of the local asymptotic closedness
property are illustrated by providing several conditions ensuring the validity of it as
well as various examples.

In Sects. 13.4 and 13.5 we apply the necessary conditions for minimal points of
sets developed in Sect. 13.3 to graphs of set-valued mappings. In this way we derive
extended necessary conditions for optimal solutions of constrained multiobjective
problems. Furthermore, we observe that the necessary conditions hold for particular
types of optimal solutions including known kinds of minimizers in set-valued
optimization problems with geometric, operator, and functional constraints. The
results obtained are new in both finite-dimensional and infinite-dimensional spaces.

Throughout the chapter we employ the standard notation of variational analysis;
cf. [34, 40]. For a Banach space X , denote its norm by ‖ · ‖ and consider the dual
space X∗ equipped with the weak∗ topology w∗, where 〈·, ·〉 stands for the canonical
pairing between X and X∗. Given a set-valued mapping F : X ⇒ X∗, recall that

Limsup
x→x

F(x) :=
{

x∗ ∈ X∗
∣∣∣∃ sequences xk → x and x∗k

w∗−→ x∗

with x∗k ∈ F(xk) for all k ∈N
}

(13.9)

signifies the sequential Painlevé-Kuratowski upper/outer limit with respect to the
norm topology of X and the weak∗ topology of X∗, where N := {1,2, . . .}. For a
nonempty subset Ω ⊆ X the symbols clΩ , coneΩ , and coΩ stand for the closure,

conic hull, and convex hull of Ω , respectively, while the expression x
Ω→ x means

that x → x and x ∈Ω . Given a set-valued mapping F : X ⇒ Z with the graph

gphF :=
{
(x,z) ∈ X ×Z

∣∣ z ∈ F(x)
}

,

the closure mapping clF : X ⇒ Z of F is defined by

clF(x) :=
{

z ∈ Z
∣∣ (x,z) ∈ cl(gphF)

}
with gph(clF) = cl (gphF).
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13.2 Basic Tools of Variational Analysis

The key tool in this chapter is the extremal principle in variational analysis. Since it
unconditionally holds in Asplund spaces and provides in fact a characterization of
the class of Asplund spaces, throughout the chapter all Banach spaces are assumed
to be Asplund unless otherwise stated. Recall that a Banach space X is Asplund
if each of its separable subspaces has a separable dual. There are many other
equivalent descriptions of the original Asplund property, which can be found, e.g., in
[34, Chap. 2]. Observe, in particular, that every reflexive Banach space is Asplund.

Let us begin with reviewing constructions of generalized differentiation enjoying
comprehensive calculus properties (“full calculus”) in Asplund spaces. The reader
is referred to [34] for their useful modifications in general Banach spaces.

Let Ω ⊆ X be a subset of an Asplund space, and let x ∈ Ω . The (basic, limiting,
Mordukhovich) normal cone to Ω at x is defined by

N(x;Ω) := Limsup
x→x

N̂(x;Ω) (13.10)

via the sequential Painlevé–Kuratowski outer limit (13.9) of the prenormal cones
(known also as the Fréchet or regular normal cones) to Ω at x constructed by

N̂(x;Ω) :=

⎧
⎨
⎩x∗ ∈ X∗

∣∣∣∣∣ limsup
u
Ω−→x

〈x∗,u− x〉
‖u− x‖ ≤ 0

⎫
⎬
⎭ . (13.11)

Note that, in contrast to (13.11), the basic normal cone (13.10) is often nonconvex
enjoying nevertheless full calculus, which is mainly based on the extremal principle.
If X = Rn and if Ω is locally closed around x, the normal cone (13.10) can be
equivalently described as

N(x;Ω) = Limsup
x→x

[cone(x−Π(x;Ω))]

via the Euclidean projector Π(·;Ω) for the set Ω ; this in fact was the original
definition of the normal cone in [30].

Consider now a set-valued mapping F : X ⇒ Z between Asplund spaces and
let (x,z) ∈ gphF . Recall the following two coderivative constructions used in the
paper:

• The normal coderivative D∗
NF(x,z) : Z∗ ⇒ X∗ of F at (x,z) in direction z∗ is

defined via the normal cone (12.9) to the graph of F at (x,z) by

D∗
NF(x,z)(z∗) :=

{
x∗ ∈ X∗∣∣ (x∗,−z∗) ∈ N ((x,z);gphF)

}

=
{

x∗ ∈ X∗
∣∣∣ ∃ sequences (xk,zk)

gphF−→ (x,z) and

(x∗k ,z
∗
k)

w∗−→ (x∗,z∗) with (x∗k ,−z∗k) ∈ N̂ ((xk,zk) ;gphF)
}

.

(13.12)
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• The mixed coderivative D∗
MF(x,z) : Z∗ ⇒ X∗ is defined by replacing the weak∗

convergence z∗k
w∗−→ z∗ in (13.12) with the norm convergence z∗k

‖·‖−→ z∗, i.e.,

D∗
MF(x,z)(z∗) :=

{
x∗ ∈ X∗

∣∣∣∃ sequences (xk,zk)
gphF−→ (x,z),

x∗k
w∗−→ x∗, z∗k

‖·‖−→ z∗ with (x∗k ,−z∗k) ∈ N̂ ((xk,zk);gphF)
}
.

(13.13)

Note that z = f (x) is always omitted in the coderivative notation if F = f : X → Z
is single-valued. Obviously, we have the relationship

D∗
MF(x,z)(z∗)⊆ D∗

NF(x,z)(z∗) for all z∗ ∈ Z∗, (13.14)

where the equality holds if Z is finite-dimensional. The equality holds in (13.14)
in broad classes of mappings with infinite-dimensional image spaces; the latter
property is postulated in [34] as strong coderivative normality of the mapping F
at the point (x,z). In particular, if f : X → Y is strictly differentiable at x (which is
automatic when it is C1 around this point), then the equality in (13.14) holds:

D∗
N f (x)(z∗) = D∗

M f (x)(z∗) = {∇ f (x)∗z∗} for all z∗ ∈ Z∗.

One of the most important ingredients of variational analysis in infinite
dimensions, in contrast to the case of finite-dimensional spaces, is the necessity
to impose some “normal compactness” properties, which allow us to perform
limiting procedures of deriving nontrivial calculus rules and optimality conditions
and which are automatic in finite dimensions. Let us recall some of these properties
in Asplund spaces; see [34] for the corresponding ones in general Banach space
settings.

Let Ω ⊆ X ×Z, and let (x,z) ∈Ω . We say that:

• Ω is sequentially normally compact (SNC) at (x,z) ∈Ω if for any sequences

(xk,zk)
Ω→ (x,z), and (x∗k ,z

∗
k) ∈ N̂((xk,zk);Ω), k ∈ N, (13.15)

we have the implication (x∗k ,z
∗
k)

w∗→ 0 =⇒‖(x∗k ,z∗k)‖→ 0 as k→∞. Observed that
the product structure of the space in question plays no role in this property in
contrast to its following partial modification.

• Ω is partially sequentially normally compact (PSNC) with respect to X at (x,z)∈
Ω if for any sequences (xk,zk,x∗k ,z

∗
k) satisfying (13.15) we have the implication

[x∗k
w∗→ 0, ‖z∗k‖→ 0] =⇒‖x∗k‖→ 0 as k → ∞.

Employing these SNC/PSNC properties to graphs of set-valued mappings F :
X ⇒ Z at (x,z) ∈ gphF , we say that:

• F is SNC at (x,z) if gphF is SNC at (x,z).
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• F is PSNC at (x,z) if gphF is PSNC at (x,z) with respect to X .

Note that the PSNC property of mappings holds automatically for a broad class
of mappings exhibiting certain Lipschitzian behavior. Recall that a set-valued
mapping F : X ⇒ Z is Lipschitz-like around (x,z) with modulus � ≥ 0 if there are
neighborhoods U of x and V of z such that

F(x)∩V ⊆ F(u)+ �‖x− u‖IB for all x,u ∈U,

where IB stands for the closed unit ball of Z. This property, which is also known
as the Aubin or pseudo-Lipschitzian property (cf. the discussions in [34,40]) agrees
with the classical local Lipschitzian behavior in the case of single-valued functions
and reduces to the standard (Hausdorff) local Lipschitzian property of set-valued
mappings when V = Z. Furthermore, it is equivalent to both metric regularity and
linear openness properties of the inverse mapping F−1.

We have by [34, Theorem 1.44] that

D∗
MF(x,z)(0) = {0} (13.16)

for any set-valued mapping F : X ⇒ Z between Banach spaces, which is Lipschitz-
like around (x,z ∈ gph F). Furthermore, the coderivative condition (13.16) is not
only necessary for the Lipschitz-like property of F around (x,z) but also sufficient
for this property of closed-graph mappings between Asplund spaces under the
PSNC property of F; see [34, Theorem 4.10] for the full account of this coderivative
characterization (known as the Mordukhovich criterion) and [32, Theorem 5.7], [40,
Theorem 7.40] for the case of mappings between finite-dimensional spaces.

We now present the aforementioned extremal principle for two sets used in this
paper; see [34, Chap. 2] for a full version. Recall that z ∈ Ξ1∩Ξ2 is a local extremal
point of the set system {Ξ1,Ξ2} in Z if there is a neighborhoodV of z and a sequence
{ak} ⊆ Z with ‖ak‖→ 0 such that

Ξ1∩ (Ξ2 + ak)∩V = /0 for all k ∈ N. (13.17)

Let z be a local extremal point to the set system {Ξ1,Ξ2} in an Asplund
space Z, where both sets Ξ1 and Ξ2 are locally closed around z. We get from
[34, Theorem 2.20] that the extremal system {Ξ1,Ξ2,z} satisfies the approximate
extremal principle: for every ε > 0 there are (z1,z2,z∗1,z

∗
2) ∈ Z × Z × Z∗ × Z∗

such that
⎧⎪⎪⎨
⎪⎪⎩

z1 ∈ Ξ1∩ (z+ εIB), z2 ∈ Ξ2∩ (z+ εIB),

z∗1 ∈ N̂(z1;Ξ1)+ εIB∗, z∗2 ∈ N̂(z2;Ξ2)+ εIB∗,

z∗1 + z∗2 = 0, ‖z∗1‖+‖z∗2‖= 1.

(13.18)

Assuming further that either Ξ1 or Ξ2 is SNC at z, we have the exact extremal
principle from [34, Theorem 2.22]: there is z∗ ∈ X∗ with ‖z∗‖= 1 such that
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z∗ ∈ N (z;Ξ1)∩ (−N(z;Ξ2)) . (13.19)

The extremal principle, which is the main single tool in establishing calculus
rules for normal cones to sets and coderivatives of mappings, can be viewed as
a local variational counterpart of the classical convex separation in nonconvex
settings. In fact, it plays a fundamental role in variational analysis similar to that
played by convex separation and equivalent results in convex analysis as well
as in its outgrowths and applications; see the books [34, 35] and the references
therein. In this chapter we develop new applications of the extremal principle to
necessary conditions for minimal points to sets and for minimizers in multiobjective
optimization problems.

13.3 Necessary Optimality Conditions for Extended
Pareto Minimal Points of Sets

In this section we first introduce an extension of Pareto optimality that unifies all
the optimality notions known in the literature, including Pareto-type optimality and
preference optimality. Then we discuss a local asymptotic closedness property of
sets and establish new necessary conditions for minimal points of sets with respect
to an extended Pareto order under asymptotic closedness assumptions.

Definition 13.3 (Extended Pareto Minimal orΘ -Minimal Points). Let Z be a
Banach space with an ordering subset Θ ⊆ Z containing the origin, let /0 �= Ξ ⊆ Z,
and let z ∈ Ξ . We say that:

• z is a local extended Pareto minimal point of Ξ with respect toΘ , or it is a local
Θ -minimal point of Ξ for short, if there exists a neighborhood V of z such that

Ξ ∩ (z−Θ)∩V = {z}. (13.20)

• z is a globalΘ -minimal point to Ξ if we can choose V = Z in (13.20).

Remark 13.1 (On Optimality Notions). (a) The adjective “extended” is used in
Definition 13.3 to distinguish this type of minimal points with generalized
Pareto minimal points known in the literature.

(b) We do not assume that the ordering set is locally closed around the origin to
cover important preference relations; in particular, the lexicographical ordering
cone (13.8) is neither closed nor open. Furthermore, in practical applications
we often use the product preferences (13.3), where a part of the component
preferences are Pareto while the rest are weak Pareto. To this end, consider the
product space R2 := R×R and two order relations on real numbers < and ≤.
The mixed product preferences ≤ × < and < × ≤ on R2 can be seen as an
extended Pareto preference generated by a convex and pointed cone being not
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locally closed around the origin. To the best of our knowledge, these kinds of
preference have not been considered in multiobjective optimization.

(c) The Θ -minimality condition (13.20) is a bit different from the conventional
Pareto minimality notion for non-pointed ordering cones given by

(z−C)∩Ξ ⊆ (z+C), (13.21)

where C is a convex ordering cone. However, it does not restrict the domain of
applications due to the fact that z is a Pareto minimal point of Ξ with respect to
C in the sense of (13.21) if and only if it is a Θ̃ -minimal point to Ξ with

Θ̃ := C∩ (Z\(−C))∪{0}.

Obviously, Θ̃ is pointed, but it is not locally closed around the origin.
(d) The introduced notion of Θ -minimality unifies all known kinds of Pareto-type

optimality. Let Ξ ⊆ Z be a subset of a Banach space Z ordered by a closed and
convex cone C ⊆ Z satisfying C \ (−C) �= /0, and let z ∈ Ξ .

• z is a Pareto minimal point to Ξ (with respect to C) if

Ξ ∩ (z−C) = {z} or Ξ ∩ (z−C \ {0}) = /0. (13.22)

• z is a weak Pareto minimal point to Ξ if

Ξ ∩ (z− intC) = /0 provided that intC �= /0. (13.23)

• z is an ideal Pareto minimal point to Ξ if

Ξ ⊆ z+C or Ξ ∩ (x− (Z \ (−C))) = /0. (13.24)

• z is a (primary) relative minimal point to Ξ if

Ξ ∩ (z− riC) = /0 provided that riC �= /0, (13.25)

where riC is the collection of interior points of C with respect to the closed
affine hull of C.

• z is a quasi relative minimal point to Ξ if

Ξ ∩ (z−qriC) = /0 provided that qriC �= /0, (13.26)

where qriC is the collections of those points z ∈ C for which the set
cl(cone(C− z)) is a linear subspace of Z.

Obviously, a Pareto, weak Pareto, ideal, primary relative, and quasi relative
minimal point in (13.22)–(13.26) can be unified by a Θ -minimal point, where
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Θ is, for each kind of minimal points, defined by

• Pareto Θ := C,

• Weak Pareto Θ := intC∪{0},
• Ideal Pareto Θ := (Z \ (−C))∪{0},
• Relative Pareto Θ := riC∪{0},
• Quasi relative Pareto Θ := qriC∪{0}.

(13.27)

The first notion in (13.22) is well recognized under the pointedness assumption
of ordering cones which can be weakened to the non-subspace property,
i.e., C \ (−C) �= /0; see [5, 6]. However, the vast majority of publications
on multiobjective optimization, even in the simplest frameworks, concerns
the weak notion in (13.23), which are much more convenient to deal with
in the vein of the conventional scalarization techniques under the nonempty
interiority of the ordering cone. Such a condition is essential and unavoidable
whenever we would like to inherit necessary results in scalar optimization, but
it is a serious restriction in both finite-dimensional and infinite-dimensional
settings. To improve the situation, the relative notions in (13.25) and (13.26)
become certain alternatives in finite-dimensional and reflexive Banach spaces,
respectively, since the corresponding relative interiors are nonempty for convex
ordering cones. Observe to this end that each weak minimal point is a primary
relative minimal point, since the condition intC �= /0 yields riC = intC. Further,
each primary relative minimal point is a quasi relative minimal point, since the
condition riC �= /0 yields qriC = riC. The reader can find more discussions on
primary and quasi relative interiors of convex sets in Banach spaces in [5,9,10].

(e) The notion of Θ -minimality can be equivalently described via an appropriate
preference. Indeed, everyΘ -minimal point of a set Ξ is a preference point for
this set with respect to the preference defined via the ordering relation (13.7)
with the given ordering set Θ . Conversely, each preference point z of Ξ with
respect to a certain preference& is aΘ -minimal point of Ξ , where the ordering
setΘ is defined by

Θ := z−{z | z& z}= z−P&(z).

In this paper it is more convenient for us to deal with the Θ -optimality
description to emphasize the point-based assumptions imposed on sets at the
point in question in comparison with the neighborhood-based ones required for
the class of closed preferences.

(f) The Θ -minimality notion is related to while different from the generalized
optimality order introduced by Mordukhovich in [35, Definition 5.53] via the
local extremality of sets. Given a mapping f : X → Z between Banach spaces
and an ordering set Λ ⊆ Z containing the origin, we says that x is a locally
( f ,Λ)-optimal solution if z = f (x) is a (global) extremal point to the set system
{ f (X ∩U), f (x) +Λ}, i.e., there are a neighborhood U of x and a sequence
{zk} ⊆ Z with ‖zk‖→ 0 as k → ∞ such that
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f (X ∩U)∩ ( f (x)+Λ − zk) = /0 for all k ∈ N. (13.28)

Note that if Λ = −C is a convex subcone of Z with riC �= /0, then the above
optimality concept covers the conventional concept of optimality (called some-
times Slater optimality) requiring that there is no x ∈U with f (x)− f (x) ∈ riC.
This extends the notion of weak Pareto optimality/ efficiency corresponding
to f (x) ∈ f (x)− intC in the above relations. To reduce it to the notion in
Definition 5.53, we take zk := z/k for k ∈ N in (13.28) with some z ∈ riC. The
standard notion of Pareto optimality can be formulated in these terms as the
absence of x ∈U for which f (x) ∈ f (x)−C and f (x) �= f (x).

To establish necessary optimality conditions for Θ -minimal points of sets, we
adopt the variational approach based on reducing a local Θ -minimal point to a
local extremal point of an appropriate set system and then on applying the extremal
principle. Note that the validity of the process of deriving the extremality of an
appropriate set system at a minimal point from the corresponding optimality notion
is justified provided that the space Z is ordered by a closed and convex cone, which
is not a subspace of Z; see [1–3, 5] for more details. In this paper we show that the
process is valid forΘ -minimal points of sets satisfying the following property.

Definition 13.4 (Local Asymptotic Closedness). Let Ξ ⊆ Z be a subset of a
Banach space Z, and let z ∈ clΞ . We say that Ξ has the local asymptotic closedness
(LAC) property at z if there are a neighborhoodV of z and a sequence {ck}⊆ Z with
‖ck‖→ 0 satisfying

(clΞ + ck)∩V ⊆ Ξ\{z}. (13.29)

We obviously have that the closure clΞ is LAC at z ∈ clΞ if Ξ enjoys this
property. However, the converse implication does not hold. It is easy to verify this
for the set Ξ ⊆ R2 given by

Ξ :=
{

z ∈Q2
∣∣ z1 ≥ 0

}
and z = (0,0) ∈R2,

whereQ is the collection of all rational numbers.

Note that the LAC property is independent of the local closedness property for
sets. Indeed, the open set Ξ := (−∞,0)⊆ R is LAC at 0, but the closed set Ξ := R
is not LAC at this point. Observe also that if Ξ is LAC at z, then we get from (13.29)
that z−ck �∈ clΞ for all k, i.e., z is a boundary point of Ξ . However, a closed set may
not be LAC at its boundary point as, e.g., in the case of Ξ =R2

+∪R2− and z = (0,0).

Next we show that the Θ -minimality (13.20) implies the extremality property
(13.17) under LAC assumptions.

Theorem 13.2 (Extremality atΘ -Minimal Points). Let z ∈ Ξ be a local
Θ -minimal point to Ξ . The following assertions hold:
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(a) z is a local extremal point of the set system {Ξ ,(z− clΘ)} provided that Θ is
LAC at 0.

(b) z is a local extremal point of the set system {clΞ ,(z−Θ)} provided that Ξ is
LAC at z.

(c) z is a local extremal point of the set system {clΞ ,(z− clΘ)} provided that both
Ξ andΘ are LAC at z and 0, respectively.

Proof. It is not difficult to check that the validity of the extremality condition
(13.17) for the system {clΞ ,z− clΘ} follows from the LAC property (13.29) and
the minimality condition (13.20). For brevity, we provide the proof of assertion (c)
only.

Let z be a localΘ -minimal point of Ξ . Then we have from Definition 13.3 that

Ξ ∩ (z−Θ \ {0})∩U = /0

for a neighborhood U of z. Since both sets Ξ and z−Θ are LAC at z, there exist a
neighborhoodV of z (without loss of generality put V = U) and two sequences {ak}
and {ck} converging to zero as k → ∞ such that

(clΞ + ak)∩U ⊆ Ξ \ {z}, and (z− clΘ + ck)∩U ⊆ (z−Θ)\ {z}
for all k ∈ N. The latter implies the relationships

(clΞ + ak)∩ (z− clΘ + ck)∩U

= ((clΞ + ak)∩U)∩ (cl (z−Θ)+ ck)∩U)∩U

⊆ (Ξ \ {z})∩ ((z−Θ)\ {z})∩U = /0,

which surely yield the extremality condition (13.17) and thus the local extremality
of the set system {clΞ ,(z− clΘ)} at z. This justifies assertion (c). The proofs for
(a) and (b) are similar with either {ak} ≡ 0 or {ck} ≡ 0, respectively. ��

Note that the LAC assumptions in Theorem 13.2 (c) cannot be generally dropped.
To illustrate this, consider two closed sets in R2 given by

Ξ := {(x,−x) ∈ R2 | x ∈R} and Θ := R2
+∪R2

−.

It is easy to check that neither Ξ norΘ are LAC at 0, that 0 is aΘ -minimal point to
Ξ , but that it is not a local extremal point to the set system {Ξ ;Θ}.

Note also that the LAC condition is only sufficient while not necessary to ensure
the extremality property of the set system {Ξ ;(z−Θ)} at a point z satisfying (13.20).
Indeed, there are two closed sets in R2 described by

Ξ =Θ := bdR2
+ = {(x,y) ∈ R2

+ | x · y = 0}

such that none of them is LAC at 0 and that the set system {Ξ ;−Θ} is local extremal
at the origin, which is the uniqueΘ -minimal point of Ξ .
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As follows from the proof of Theorem 13.2, the LAC assumptions imposed on the
sets therein naturally appears to ensure the extremality of the set system {clΞ ,z−
clΘ} in the lack of the convexity. It is important to mention that we do not require
any convexity of not only the given set Ξ but also the ordering setΘ .

Remark 13.2 (LAC Property in Welfare Economics). One of the most fundamental
results of general equilibrium theory, the so-called Second Welfare Theorem for
convex economies, tells us that any Pareto optimal allocation can be decentralized
at price equilibria, i.e., it can be sustained by a nonzero price vector at which
each consumer minimizes his/her expenditures and each firm maximizes its profit.
Extensions of this fundamental result to nonconvex economies requires certain net
demand qualification (NDQ) conditions [33, 35]; see also [21, 23–26] for related
developments. We refer the reader to the recent papers [6,7] for various interconnec-
tions between such conditions and the LAC property and new relationships between
welfare economics and set-valued optimization.

Now we establish new necessary optimality conditions for Θ -minimal points of
general sets under LAC assumptions.

Theorem 13.3 (Necessary Conditions forΘ -Minimal Points). Let Ξ ⊆ Z be a
subset in an Asplund space Z, let Θ ⊆ Z be an ordering set containing the origin,
and let z ∈ Ξ be a local Θ -minimal point to Ξ . Assume that one of the following
LAC conditions is satisfied:

(i) Ξ is locally closed around z andΘ is LAC at 0.
(ii) Ξ is LAC at z andΘ is locally closed around 0.

(iii) Ξ andΘ are LAC at z and 0, respectively.

Then there is a nonzero dual element z∗ ∈ Z∗ such that

z∗ ∈ N(z;clΞ)∩N(0;clΘ) (13.30)

provided that either clΞ is SNC at z or clΘ is SNC at the origin.

Proof. Since z is a local Θ -minimal point of Ξ , it is a local extremal point of the
set system {clΞ ;z− clΘ} by Theorem 13.2 under each of the LAC assumptions
(i)–(iii) imposed on Ξ andΘ . Employing the exact extremal principle (13.19) to the
local extremal point z under the SNC assumptions made, we have

0 �= z∗ ∈ N(z;clΞ)∩ (−N(z;(z− clΘ))) = N(z;clΞ)∩N(0;clΘ),

which justifies the validity of the necessary optimality condition (13.30) and thus
completes the proof of the theorem. ��

The following is a useful consequence of the theorem for the case of closed sets.

Corollary 13.1. (Necessary Conditions for Θ -Minimal Points Under Closed-
ness Assumptions). Let Ξ ,Θ , and z be as in Theorem 13.3. Assume that the sets Ξ
and Θ are locally closed around z and 0, respectively, that either Ξ is SNC at z or
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Θ is SNC at 0, and that either Ξ is LAC at z or Θ is LAC at 0. Then the optimality
condition (13.30), which reduces to

0 �= z∗ ∈ N(z;Ξ)∩N(0;Θ),

in this case, is necessary for the localΘ -minimality of the point z ∈ Ξ .

Proof. It directly follows from Theorem 13.3. ��
In the rest of this section we derive from Theorem 13.3 necessary conditions

for Pareto-type minimal points of sets and for those given by preference relations.
Prior to this, we obtain sufficient conditions for the LAC property, which are either
completely new or extend those established in [7].

First let us show that convexity implies LAC due to the following facts obtained
in [9, Lemma 3.1] and [9, Corollary 3.2]. Namely, for a convex subset C ⊆ Z of a
Banach space Z we have the relationships:

• If z ∈C and z ∈ qriC, then tz+(1− t)z∈ qriC for every t ∈ [0,1).
• The set qriC is convex and dense in C when it is nonempty.
• Assume C is a convex cone but not a subspace, i.e., C \ (−C) �= /0. If z ∈ qriC,

then z �∈ bd(clC). Hence qriC = qri(clC).

To verify the last statement, we argue by contradiction and assume that z ∈ bd(clC).
Since clC is closed, convex and it is not a subspace, there is a closed half space H
containing the set clC− z; thus cl(cone(clC− z)) ⊆ H. This implies that the set
cl(cone(C− z)) ⊆ cl(cone(clC− z)) is not a subspace of Z, which yields in turn
that z does not belong to the quasi relative interior of C.

Proposition 13.1 (LAC Property for Convex Cones). Let C⊆ Z be a convex sub-
cone of a Banach space Z such that C \ (−C) �= /0. Then the following hold:

(a) qriC is LAC at 0 provided that qriC �= /0, which is automatic for any convex set
in a reflexive Banach space.

(b) C is LAC at 0 provided that C is a closed set.

Proof. First we prove (a). Assume that qriC �= /0 and note that the assumption C \
(−C) �= /0 implies that 0 �∈ qriC. Pick an arbitrary nonzero element c ∈ qriC and
define the sequence {ck} by

ck := k−1 c for all k ∈ N. (13.31)

Obviously, {ck} converges to zero as k →∞ with ck ∈ qriC for for all k ∈N. Taking
into account the properties of quasi relative interiors listed above, we get

clC + ck ⊆ clC + qri(clC)⊆ qri(clC) = qriC = qriC\{0}

for all k ∈ N, which surely verifies the validity of the LAC condition (13.29), and
thus the LAC property of qriC at the origin.
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Let us next prove (b) for a closed and convex cone (whose quasi relative interior
might be empty). Pick an arbitrary element 0 �= c ∈C \ (−C), which exists by the
assumption C \ (−C) �= /0. Since C is a closed and convex cone, we have

clC + ck = C + ck ⊆C +C = C (13.32)

for every k ∈ N. Defining ck as in (13.31) gives us that ck = k−1c ∈C \ (−C) with
ck �∈ −C, i.e., 0 �∈C + ck. Combining this and (13.32), we arrive at

clC + ck ⊆C \ {0},

which verifies the LAC property of C at the origin. ��
Thanks to the fact that the closure of a LAC set is LAC, we derive from

Proposition 13.1 that the Pareto, weak Pareto, ideal Pareto, primary relative, and
quasi relative ordering cones in (13.27) all are LAC at the origin under the standard
assumptions for these ordering cones.

Corollary 13.2 (LAC Property for Conventional Ordering Cones). Let C ⊆ Z
be a convex cone of a Banach space such that C \ (−C) �= /0. The we have:

(a) The Pareto ordering coneΘp := C is LAC at the origin provided that either C is
closed or qriC �= /0.

(b) The weak Pareto ordering coneΘw := intC∪{0} is LAC at the origin provided
that intC �= /0.

(c) The relative Pareto ordering coneΘri := riC∪{0} is LAC at the origin provided
that riC �= /0; this assumption is automatic in finite dimensions.

(d) The quasi relative Pareto ordering cone Θq := qriC∪{0} is LAC at the origin
provided that qriC �= /0; this assumption is automatic in reflexive spaces.

(e) The ideal Pareto ordering coneΘi := (Z \(−C))∪{0} is LAC at 0 provided that
intC �= /0.

(f) The lexicographical ordering coneΘlex is LAC at 0.

Proof. Note that assertions (a) and (d) follow directly from Proposition 13.1 and
that assertion (f) is a specification of (a). It is known from [9, Theorem 2.12] that
riC = qriC provided that riC �= /0, and that intC = qriC provided that intC �= /0.
Further, it is also known from [9, Theorem 2.8] that every nonempty convex subset
C of a separable Banach space Z has nonempty quasi relative interior. It is a classical
result that every nonempty convex subset C of a finite-dimensional space Z has
nonempty relative interior. Thus we get assertions (b) and (c) from assertion (d).

To verify finally the LAC property ofΘi in (e), it is sufficient to show that

clΘ + ck = Z\(−intC)+ ck ⊆ Z\(−C) =Θ \ {0} (13.33)

for all k ∈N, where the sequence {ck} is defined by (13.31) with c ∈ intC. Arguing
by contradiction, assume that the inclusion does not hold, i.e., there is z ∈ Z
satisfying the relationships

z ∈ Z \ (−intC)+ ck and z �∈ Z \ (−C). (13.34)
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The second relationship in (13.34) implies that z ∈ −C, which in turn yields that
z− ck ∈ −intΘ , i.e., z− ck �∈ Z \ (−intΘ). This contradicts the first inclusion in
(13.34) and thus justifies the validity of (13.33), that is, verifies the LAC property
of the ideal Pareto ordering coneΘi at the origin. ��

Note that the nonempty interiority condition intC �= /0 in Corollary 13.2 (v) is
essential. Indeed, consider a closed and convex cone in R2 defined by C := {(x,0)∈
R2 | x≥ 0} ⊆ R2. Since the closure of the ideal Pareto ordering coneΘi induced by
this cone is the whole space,Θi is not LAC at any point z ∈ R2.

The next result provides verifiable conditions ensuring the LAC property of
generalized epigraphical sets.

Proposition 13.2 (LAC Property for Epigraphical Sets). Let C ⊆ Z be a closed
and convex cone in a Banach space Z with C \ (−C) �= /0, and let Ξ ⊆ Z be a
nonempty subset of Z. Denote the epigraphical set associated with C by

EΞ := Ξ +C (13.35)

and the collection of C-minimal points to Ξ by Min(Ξ ;C). Then we have:

(a) EΞ is LAC at z ∈Min(Ξ ;C) provided that it is locally closed around this point.
(b) EΞ is LAC at z ∈WMin (Ξ ;C) := Min(Ξ ;(intC∪{0})) provided that intC �= /0.

Proof. First we prove (a). Without loss of generality, suppose that EΞ is a closed set;
otherwise, we consider the restriction EΞ ∩(z+εIB) for some ε > 0. By Proposition
13.1 (b) the set C is LAC at 0 with V = Z. Indeed, there is a sequence {ck} in (13.31)
with c ∈C \ (−C) such that

C + ck ⊆C\{0} for all k ∈ N. (13.36)

Using this and the closedness property of EΞ , we have clEΞ = EΞ = Ξ +C and

clEΞ + ck = Ξ +C + ck ⊆ Ξ +C\ {0} ⊆ (Ξ +C)\ {z}= EΞ \ {z}, (13.37)

where the first inclusion is due to the choice of ck and the second one holds by the
minimality of z ∈Min(Ξ ;C). To check the latter, suppose that it does not hold, i.e.,
z ∈ Ξ +C\ {0}. Then z can be represented in the form of

z = z+ c for some z ∈ Ξ and c ∈C \ {0}, (13.38)

which implies that z = z−c∈Ξ∩(z−C\{0}) and thus contradicts the C-minimality
of x for Ξ . This contradiction justifies the validity of (13.37) and hence of the LAC
property of EΞ at each Pareto minimal point of Ξ with respect to C.

Next we prove (b) under the nonempty interiority condition intC �= /0. It follows
from Proposition 13.1 (a) that

C + ck ⊆ intC for all k ∈ N, (13.39)
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where the sequence {ck} ⊆ intC is defined by (13.31) with c ∈ intC. Fix k and take
arbitrarily z ∈ clEΞ . The latter ensures the existence of a sequence {zn} ⊆ EΞ such
that zn → z as n → ∞. Without loss of generality we may assume that z− zn + ck ∈
intC for all n ∈ N, since ck ∈ intC. This gives

z+ck = zn +(z− zn +ck) ∈ (Ξ +C)+ intC⊆ Ξ + intC⊆ (Ξ +C)\{z}= EΞ \{z},

where the second inclusion holds for each WMin (Ξ ;C). Since the point z was
chosen arbitrarily in clEΞ , we get

clEΞ + ck ⊆ EΞ \ {z},

which implies the LAC property of EΞ at each weak Pareto minimal point of Ξ with
respect to C and thus completes the proof of the proposition. ��

Observe that there is a subset Ξ in R2 equipped with the usual Pareto order C =
R2

+, which does not have the LAC property at 0 while its epigraphical set (13.35)
associated with C does; see, e.g.,

Ξ :=
{(

x−1,
1
x
−1

)∣∣∣ x > 0

}
.

Conversely, there is a subset Ξ of R2 such that it is LAC at 0, but its epigraphical
set (13.35) associated with the above cone C is not; see

Ξ :=
{
(x,y) ∈R2

∣∣ y≤ x
}

.

The next result provides useful consequences of Proposition 13.2 for epigraphs
of set-valued mappings between arbitrary Banach spaces.

Corollary 13.3 (LAC Property for Epigraphs of Set-Valued Mappings). Con-
sider a set-valued mapping F : X ⇒ Z between Banach spaces, where the image
space Z is partially ordered by a closed and convex cone C ⊆ Z satisfying C \
(−C) �= /0. Denote the (generalized) epigraph of F (with respect to C) by

epiF :=
{
(x,z) ∈ X ×Z

∣∣ z ∈ F(x)+C
}

.

Then the following assertions hold.

(a) The epigraph of F is LAC at (x,z) provided that z ∈Min(F(x);C) and that the
set epiF is locally closed around (x,z).

(b) The epigraph of a single-valued mapping f : X → Z is LAC at (x, f (x)) provided
that f is continuous around x.

(c) The epigraph of an extended-real-valued function ϕ : X → R∪{∞} is LAC at
(x,ϕ(x)) provided that ϕ is lower semicontinuous around x.
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Proof. Assertion (a) easily follows from Proposition 13.2 (a) with Ξ = gphF and
Θ = {0}×C in the product space X ×Z by taking into account that

epiF = gphF +Θ and [z ∈Min(F(x);C)⇒ (x,z) ∈Min(gphF ;Θ)] .

Assertions (b) and (c) are two specifications of assertion (a) for single-valued
mappings and extended-real-valued functions. ��

Note that Corollary 13.3 is useful to check the LAC property for nonconvex sets.
For example, the nonconvex cone R2\(−intR2) is LAC at the origin, since it is
homeomorphic to the epigraph of the function ϕ(x) =−|x |.
Remark 13.3 (On the LAC Property of Sets). Observe the following:

(a) To establish a separation theorem for nonconvex sets in [44], Tammer and
Weidner assumed that the ordering set D in a Banach space Z contains the ray
generated by k0 ∈ Z \ {0}, i.e.,

D+ k0·[0,∞)⊆ D.

In other words, moving −D along this ray allows us to obtain an epigraph-type
set

ED := {(z,t) ∈ Z×R | z ∈ tk0−D}.

The latter set is LAC at (z,ϕ(z)), since it is identical to the epigraph of the
real-valued function defined by

ϕ(z) := inf{t ∈ R | z ∈ tk0−D}.

(b) The epi-Lipschitzian property implies the LAC property. Recall that Ξ ⊆ Z is
epi-Lipschitzian around z ∈ clΞ if there are neighborhoods U and V of z and
the origin, a vector c ∈ Z, and a number γ > 0 such that

Ω ∩U + tV ⊆Ω + tc for all t ∈ (0,γ).

If Ξ is epi-Lipschitzian at z with c �= 0, then by [39] it is locally homeomorphic
to the epigraph of a real-valued and Lipschitz continuous function. Thus it is
asymptotically closed at this point.

(c) Consider the classical sequence space l2 and take its unit orthonormal vectors
ek := (0, . . . ,0,1,0, . . .), where the kth component is 1 while all the others are
zeros. Define the set

Ξ := cl

[
∞
Π

i=1

(
1
i
N

)]
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and check easily the relationships

∞
Π

i=1

(
1
iN

)
+ 1

k ek ⊆
∞
Π

i=1

(
1
iN

)
,

[
∞
Π

i=1

( 1
iN

)
+ 1

k ek

]
∩ 1

2k IB = /0.

Hence we have clΞ + 1
k ek ⊆ Ξ \ {0} for all k ∈ N, which implies in turn that

the set Ξ is LAC at the origin.

Now we are ready to derive various consequences of Theorem 13.2 for minimal
points of particular types.

Corollary 13.4 (Necessary Conditions for Pareto-Type Minimal Points). Let Ξ
be a subset in an Asplund space Z ordered by a convex cone C⊆ Z with C \ (−C) �=
/0, and let z ∈ Ξ . Assume that Ξ is either locally closed around z or LAC at this
point. Then the condition (13.30) is necessary for z to be a local minimal point of Ξ
in each of the following senses:

(a) z is a local Pareto minimal point of Ξ provided that C is locally closed around
the origin and either Ξ is SNC at z or C is SNC at 0.

(b) z is a local quasi minimal point of Ξ provided that either Ξ is SNC at z or C is
SNC at 0.

(c) z is a local relative minimal point to Ξ provided that either Ξ is SNC at z or the
affine closure of C is finite-codimensional in Z.

(d) z is a local weak minimal point of Ξ .

Proof. Observe first that z is a local Θ -minimal point of Ξ , where Θ is defined
in (13.27) for each type of minimal points under consideration. Recall from [35,
Theorem 1.21] that if Θ is a convex set and riΘ �= /0, the SNC of Θ at the origin
is equivalent to the finite-codimension of the closure of its affine hull. Recall also
from [34, Proposition 1.25] and [34, Theorem 1.26] that the nonempty interiority
condition for a convex cone C implies the SNC property of C at the origin.
Therefore, all the assertions (a)–(d) can be unified to that z is a local Θ -minimal
point to Ξ provided that either Ξ is SNC at z or Θ is SNC at the origin. This
allows us to complete the proof of this corollary by employing Theorem 13.3 to
theΘ -minimal point z of Ξ under the assumptions made. ��

The next result presents refined necessary optimality conditions for weak Pareto
minimal points of sets.

Corollary 13.5 (Refined Necessary Conditions for Weak Pareto Minimal
Points). Let Ξ be a subset in an Asplund space Z ordered by a convex cone
C ⊆ Z with C \ (−C) �= /0, and let z ∈ Ξ be a local weak Pareto minimal point to Ξ .
Then the necessary condition (13.30) holds.

Proof. By Proposition 13.2 the weak ordering coneΘw = intC∪{0} is LAC at the
origin. It follows from the extremality ofΘ -minimal points in Theorem 13.2 (a) that
theΘ -minimal point z of Ξ is a local minimal point of the set system {Ξ ,z− clC}.
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Thus there is a neighborhood V of z and a sequence {ck} ⊆ intC defined by (13.31)
with ck → 0 as k → ∞ such that

Ξ ∩ (z− clC− ck)∩V = /0 for all k ∈N,

which implies in turn that

clΞ ∩ (z− intC− ck)∩V = /0 for all k ∈ N.

Taking into account the choice of ck in (13.31) with ck ∈ intC and the fact that
clC + 1

2 ck ⊆ intC for any convex cone C, we get

clΞ ∩ (z− clC− ck)∩V = clΞ ∩
[

z−
(

clC +
1
2

ck

)
− 1

2
ck

]
∩V

⊆ clΞ ∩
(

z− intC− 1
2

ck

)
∩V = /0.

This verifies the extremality of z for the set system {clΞ ,z − clC} and thus
completes the proof of the corollary by employing the exact extremal principle from
Sect. 13.2 to this system due to the unconditional fulfillment of SNC property for
convex conesΘ with nonempty interiors; see [35, Proposition 1.25]. ��

Observe that the necessary conditions in Corollary 13.5 are identical to those
in [5, Theorem 5.3] for constant set-valued mappings F(x) ≡ Ξ associated with a
closed set being new for non-closed (indeed, locally asymptotically closed) sets.

Note also that in what follows we will not explicitly state results involving
relative minimal points and weak minimal points, since they are consequences of
quasi minimality results due to the fact that every weak minimal point is a relative
minimal point, which in turn is a quasi minimal point, and due to the known
sufficient conditions for the SNC condition of a convex cone under the nonempty
relative interiority condition in (c) and under the nonempty interiority one in (d) in
Corollary 13.4.

Next we present new results for ideal minimal points of sets.

Corollary 13.6 (Necessary Conditions for Ideal Points). Let z ∈ Ξ be a local
ideal minimal point of Ξ in an Asplund Z partially ordered by an ordering cone
C ⊆ Z. The following assertions hold:

(a) Assume that C is convex. Then for any z∗ ∈ N(0;C) we have

z∗ ∈ N(0;clΞ). (13.40)

(b) Assume that Ξ is locally closed around z that the ideal ordering cone Θi :=
(Z \ (−C))∪{0} is asymptotically closed and SNC at 0; the latter is automatic
when C is a convex cone with intC �= /0. Then there is a nonzero dual element
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z∗ ∈ Z∗ \ {0} satisfying

z∗ ∈ N(0;clΞ)∩N (0;Z \ (−intC)) . (13.41)

Proof. The proof of (a) can be found in standard vector optimization texts; see,
in particular, [22, Theorem 5.6]. The proof of (b) follows from Theorem 13.3 by
employing it to theΘi-minimal point z of Ξ . ��

Now we deduce from Theorem 13.3 necessary conditions for general preference
points including those with respect to the lexicographical preference.

Corollary 13.7 (Necessary Conditions for Preference Points). Let & be a pref-
erence on an Asplund space Z, and let z ∈ Ξ be a local preference point for a set
Ξ ⊆ Z. Assume that Ξ is either locally closed around z or LAC at this point and
that the preference set P(z) is LAC at z. Suppose also that either Ξ or clP(z) is
SNC at z. Then there is a dual element z∗ ∈ Z∗ \ {0} satisfying the inclusion

z∗ ∈ N(z;clΞ)∩ (−N(z;clP(z))) , (13.42)

which reduces to (−1,0, . . . ,0) ∈ N(z;clΞ) for the lexicographical preference
on Rn.

Proof. The necessary condition (13.42) follows directly from Theorem 13.3, since
every preference point z of Ξ with respect to& is a localΘ -minimal point of Ξ with
respect toΘ := z−P(z) by Remark 13.1 (e) and also since

N(0;clΘ) = N(0;z− clP(z)) =−N(z;clP(z)).

In the case of the lexicographical preference in finite dimensions the set clΘlex is
automatically SNC. Employing the necessary condition (13.42) to clΘlex and taking
into account that N(0;clΘlex) = R+ · (1,0, . . . ,0), we arrive at the desired inclusion
and complete the proof of the corollary. ��

Observe that the driving force for the validity of the necessary condition (13.42)
for preferences is the exact extremal principle for sets formulated in Sect. 13.2 while
not its counterpart for multifunctions from [35, Chap. 5] and its special cases used in
[37, 48]. The latter results for multifunctions have some major drawbacks, namely:
(1) preferences are assumed to have the almost transitivity property, and (2) the
necessary conditions are formulated therein in terms of the limiting normals to
moving sets that are in general larger than the basic one in (13.10).

Let us provide, e.g., two preferences having the LAC property while not
satisfying the almost transitivity property. The first one is a generalized Pareto
preference&Θ in (13.7) induced by a convex coneΘ ⊆ R2 defined by

Θ := (R×R+)\ (R>×{0}) with R+ := [0,∞) and R> := (0,∞),

which is not closed around the origin. SinceΘ is convex with intΘ = R×R>, it is
LAC at 0 by Proposition 13.1. On the other hand, we can easily check by
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(0,2) ∈ P(0,0) =−Θ , (0,−4) ∈ clP(0,2) = R×R−, and (0,−4) �∈ P(0,0)

that this set does not have the almost transitivity property and thus the preference is
not closed.

Let us define the second preference on R2 via the preference-set mapping

P(z) := z+ epiϕz with ϕz(x) :=
|z1 |+ |z2 |+ 2
|z1 |+ |z2 |+ 1

· |x |.

It is obviously not a generalized Pareto preference. For any z ∈ R2 the preference
set P(z) is LAC at this point by Proposition 13.3, since it is homeomorphic to the
epigraph of a function. Moreover, we have

P(0,0) = epi(2| · |), P(0,1) = (0,1)+ epi

(
3
2
| · |

)
, (0,1) ∈ P(0,0),

(4,7) = (0,1)+
(

3,
3
2
· |3 |+ 3

2

)
∈P(0,1), but (4,7) = (4,2 · |4 |−1) �∈P(0,0),

which exclude the almost transitivity property of this preference at the origin. Thus
it is not a closed preference in the sense of [35, Definition 5.55].

However, it is important to mention that there exist preferences, which are closed
and induced by utility functions while not enjoying the LAC property. For example,
consider the preference≺ on R2 defined in [8] by

(v,t)≺ (x,y) if and only if u(v,t)≤ u(x,y) and (v,t) �= (x,y),

where the utility function u : R2 → R is given by u(x,y) := |x|− |y|. It is a closed
preference with the following preference set at 0:

P(0) :=
{
(x,y) ∈ R2

∣∣ |x|− |y| ≤ 0
}

=
{
(x,y) ∈ R2

∣∣ |x| ≤ |y|} .

Thus the set P(0) is not LAC at the origin.
To deal with preferences whose preference/ordering sets are not LAC, we need

to make some LAC decomposition of these sets. GivenΘ ∈ Z with 0 ∈Θ , let us say
that a subset Θ̃ ofΘ containing the origin is a maximal LAC ordering set ofΘ when
the following conditions hold:

• Θ̃ is LAC at 0.
• If Θ̂ with Θ̃ ⊆ Θ̂ is LAC at 0, then Θ̃ = Θ̂ .

Denote the collection of all the maximal LAC ordering sets of Θ by MLAC(Θ)
and get the next consequence of Theorem 13.3 providing refined necessary optimal-
ity conditions forΘ -minimal points of sets.
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Corollary 13.8 (Refined Necessary Conditions forΘ -Minimal Points). Let z ∈
Ξ be a local Θ -minimal point of Ξ in an Asplund space Z, where Ξ is either
locally closed around z or LAC at this point, and where Θ ⊆ Z is an ordering set
containing the origin. Then for any set Θ̃ ∈MLAC(Θ) there is z∗ ∈Z∗ \{0} such that

z∗ ∈ N(z;clΞ)∩N(0;clΘ̃) (13.43)

provided that either clΞ is SNC at z or clΘ̃ is SNC at the origin.

Proof. It is obviously follows from Definition 13.3 that z is a local Θ̃ -minimal point
of Ξ . Applying now Theorem 13.3 to the local Θ̃ -minimal point z of Ξ , we get from
(13.30) the necessary condition (13.43) and thus complete the proof. ��

If the ordering set Θ is LAC at the origin, then MLAC(Θ) is singleton {Θ},
and thus Corollary 13.8 reduces to Theorem 13.3. To illustrate the improvement
provided by this corollary, consider two sets in R2 given by

Ξ := R · (1,−1) and Θ := R2
+∪R2

−.

We obviously have that the origin is aΘ -minimal point ofΞ and that neitherΞ norΘ
is LAC at 0. Hence Theorem 13.3 can not be applied to this minimal point. However,
we have MLAC(Θ) = {R2

+,R2−}, and thus Corollary 13.8 gives us z∗ = (−1,−1)
and y∗ = (1,1) satisfying the necessary condition (13.43) due to

N(0;Ξ) ∈ R · (1,1), N(0;R2
+) = R2

−, and N(0;R2
−) = R2

+.

13.4 Applications to Set-Valued Optimization

In this section we first establish relationships between various notions of optimality
for problems of multiobjective optimization and Θ -minimal points of sets. These
relationships combining with the results obtained in the previous section and with
generalized differential calculus of variational analysis allow us to derive enhanced
necessary optimality conditions in constrained problems of set-valued optimization.

The basic object of our consideration in this section is the following problem of
set-valued optimization with geometric constraints:

Θ -minimize F(x) subject to x ∈Ω , (13.44)

where F : X ⇒ Z is a set-valued mapping between Banach spaces, Ω ⊆ X is a
nonempty set, and “Θ -minimization” is defined below.

Note that a (global) Pareto optimal solution x to a vector-valued mapping
f : X → Z is defined via the minimality of the image point z := f (x) of the image
set Ξ := f (X). Since z is uniquely defined, this point is never mentioned in
optimality notions for minimizers of single-valued mappings. When considering its
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local versions, the localized role of z seems to be abandoned; in fact, it is indeed
not necessary under the continuity/differentiation assumptions imposed on cost
mappings, while this restricts its applications in the case of discontinuous single-
valued mappings. In the case of set-valued optimization the given image point
z ∈ F(x) surely plays a very important role in local aspects of optimality.

Let z be a local, but not global minimal point of some set Ξ in a Banach space Z
partially ordered by a closed, convex, and pointed coneΘ ⊆ Z. Associate with Ξ a
set-valued mapping F : R⇒ Z defined by

F(x) := Ξ for all x ∈R.

Then for any x ∈ R and for any neighborhood U of it, the point z ∈ F(x) is not
a global minimal point of the image set F(U) = Ξ , and thus it is not a local
minimizer for F in the usual sense. In this paper we develop the image localization
of minimizers and study the following kinds of optimal solutions to problem (13.44).

Definition 13.5 (Fully Localized Minimizers for Constrained Multiobjective
Problems). Let (x,z) ∈ gphF with x ∈Ω . Then we say that:

• (x,z) is a fully localized minimizer for the multiobjective problem (13.44) if there
exist neighborhoods U of x and V of z such that z is a local Θ -minimal point of
the image set F(Ω ∩U), i.e.,

F(Ω ∩U)∩ (z−Θ)∩V = {z}, (13.45)

where the image set F(Ω ∩U) is defined as usual by

F(Ω ∩U) :=
⋃{

F(x)
∣∣ x ∈Ω ∩U

}
.

• (x,z) is a fully localized strong minimizer for (13.44) if there exist neighborhoods
U of x and V of z such that there is no (x,z) ∈ clgphF ∩ (U ×V ) with (x,z) �=
(x,z) satisfying x ∈ clΩ and z ∈ z− clΘ , i.e.,

clgphF ∩ (clΩ × (z− clΘ))∩ (U ×V) = {(x,z)} . (13.46)

• We replace the adjective “fully” by “partially” in (13.45) and (13.46) if V = Z
above.

• We omit the adjective “fully localized” or replace it by “global” in (13.45) and
(13.46) if U = X and V = Z above.

It is easy to check the implications global =⇒ partially localized =⇒ fully localized
for the minimizers defined above and that strong minimizer =⇒ minimizer for
the same categories in Definition 13.5. If Ω = X therein, we speak about the
corresponding minimizers for the mapping F .

The notion of partially localized minimizers is conventional and known as local
minimizers in literature, while the fully localized notions in (13.45) and (13.46)
are new even in single-valued discontinuous objectives F = f : X → Z. In the case
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of real-valued functions these notions reduce to standard minimizers and isolated
minimizers, respectively.

The next proposition shows that there is no difference between fully localized
and partially localized minimizers for single-valued and continuous mappings.

Proposition 13.3 (Conventional Local Minimizers of Single-Valued Continuous
Mappings). Let f : X → Z be a single-valued between Banach spaces that is con-
tinuous around a given Θ -minimizer x ∈ Ξ . Then each fully localized minimizer is
a partially localized minimizer in Definition 13.5, and thus there is no difference
between partially and fully localized minimizers in this case.

Proof. Assume that x is a fully localized minimizer for problem (13.44). Then there
are neighborhoods U of x and V of z such that

f (Ω ∩U)∩ (z−Θ)∩V = {z}. (13.47)

Since f is continuous, the preimage set of f for the neighborhood V given by

f−1(V ) :=
{

x ∈ X
∣∣ f (x) ∈V

}

is an open set. Consider a new neighborhood Ũ := U ∩ f−1(V ) and check that

f (Ω ∩Ũ)∩ (z−Θ) = {z}. (13.48)

Arguing by contradiction, suppose (13.48) does not hold, i.e., there is some z �= z
belonging to the intersection on the left-hand side of (13.48). Thus we have

z ∈ f (Ω ∩Ũ) and z ∈ z−Θ .

By the choice of Ũ , find x ∈Ω ∩U with x ∈ f−1(V ), i.e., z = f (x) ∈V . This yields

z ∈ f (Ω ∩U)∩ (z−Θ)∩V,

which contradicts (13.47) and thus verifies (13.48) and the partially localized
minimality of x in the vector optimization problem (13.44). ��

Note that the conclusion of Proposition 13.3 is no longer valid for discontinuous
mappings, even in scalar optimization. To illustrate this, consider an upper semicon-
tinuous function ϕ :R→ R given by

ϕ(x) :=

{
ln(| x |) if x �= 0,

0 if x = 0.

We obviously have that (0,0) is a fully localized minimizer for ϕ with U = V =
(−0.5,0.5), but it is not a partially localized minimizer for this function.
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To the best of our knowledge, the notion of (global and local) strong minimizers
from Definition 13.5 has not been considered earlier in the literature on multiob-
jective optimization; it is inspired here by Khan’s notion of strong Pareto optimal
allocations for models of welfare economics. The reader is referred to [25, 26, 35]
for motivations of this concept and to our recent paper [6] for some related notions
and their applications to welfare economies.

Note to this end that a fully localized strong minimizer may not be a partially
localized minimizer (i.e., with V = Z) in (13.45). Indeed, the point (0,1) is a fully
localized strong minimizer for the function ϕ : R→ R defined by

ϕ(x) :=

{
−x if x < 0,

x + 1 if x≥ 0,

but it is not a partially localized minimizer for this function.
The next result comparesΘ -minimizers from Definition 13.5 with the so-called

( f ,Θ)-minimizers to (13.44) from [35, Definition 5.53].

Proposition 13.4 (Θ -Minimizers and ( f ,Θ)-Minimizers). Let f : X → Z be a
single-valued mapping between Banach spaces, let Θ ⊆ Z be an ordering subset
of Z containing the origin, and let x be partially localizedΘ -minimizer for f . Then
x is a local ( f ,−clΘ)-optimal solution to (13.44) provided that the setΘ is globally
asymptotically closed at the origin, i.e.,Θ is LAC at 0 with V = Z.

Proof. Since x be a partially localizedΘ -minimizer for f , we have

f (U)∩ (z−Θ) = {z},

where z := f (x) and U is a neighborhood of x. In addition, the global asymptotic
closedness assumption of Θ at the origin ensures the existence of a sequence {ck}
with ck → 0 as k → ∞ such that

clΘ + ck ⊆Θ \ {0} for all k ∈ N.

Combining the last two inclusions, we arrive at

f (U)∩ (z− clΘ + ck) = /0 for all k ∈ N,

which surely implies that x is locally ( f ,−clΘ)-optimal solution to (13.44) and thus
completes the proof of this proposition. ��

Note that the conclusion of Proposition 13.4 may not hold without the LAC
assumption. To illustrate this, define a mapping f : R→ R2 and an ordering set
Θ ⊆ R2 by

f (x) := (−x,x) and Θ := R2
+∪R2

−.

It is easy to check that 0 is a localΘ -minimizer for f , but it is not a locally ( f ,−Θ)-
optimal solution to this problem.
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Observe also that the implication reverse to the one in Proposition 13.4 does not
hold in general. Indeed, define f : R→ R2 by f (x) = (x,0) and consider the usual
Pareto orderΘ = R2

+ on R2. We can see the origin of R2 is a local (in fact, global)
( f ,−Θ)-optimal solution to this problems by taking {zk} with zk = (k−1,k−1) for
k ∈N. On the other hand, it is not a localΘ -minimizer of f , since

f (εIB)∩ (−Θ) = (−ε,+ε)×{0} �= {(0,0)} for each ε > 0.

The next proposition presents relationships between Θ -minimal points for the
graph of F in the sense of Definition 13.3. This will allow us to derive necessary
conditions for multiobjective optimization problems from the corresponding neces-
sary conditions obtained in Sect. 13.3 for minimal points of sets.

Proposition 13.5 (Θ -Minimizers viaΘ -Minimal Points). The following hold:

(a) The pair (x,z) is a fully localized minimizer for (13.44) if and only if it is a local
Θm-minimal point for the graph of F withΘm given by

Θm := ((x−Ω)× (Θ \ {0}))∪{(0,0)} . (13.49)

(b) The pair (x,z) is a fully localized strong minimizer for (13.44) if and only if it
is a localΘsg-minimal point for the closure of gphF withΘsg given by

Θsg := (x− clΩ)× clΘ . (13.50)

Proof. It follows directly from Definitions 13.5 and 13.3. ��
To obtain necessary conditions for Θ -minimizers by employing Theorem 13.2

for sets with respect to the ordering sets Θm in (13.49) andΘsg in (13.50), we need
to verify the validity of the LAC property of the setsΘm andΘsg. It can be done by
using [6, Proposition 3.3]. For the reader’s convenience we recall this result.

Proposition 13.6 (LAC Property for Cartesian Products of Sets). Let z ∈ cl
n
Π

i=1

Ξi ⊆
n
Π

i=1
Zi in the Banach space setting, let I ⊆ {1, . . . ,n} be a nonempty index set,

and let J := {1, . . . ,n}\I. Assume that the sets Ξi are LAC at zi ∈ clΞi for i ∈ I while
the other sets Ξ j are locally closed around z j for j ∈ J. Then the product set

Ξ :=
n
Π
i=1

Ξi (13.51)

enjoys the LAC property at z.

Proof. Without loss of generality, assume that I = {1, . . . ,m} with some 0 < m≤ n.
Since for each i ∈ I the set Ξi is LAC at zi, there are a neighborhood Ui of zi and a
sequence {cki} with ‖cki‖→ 0 as k → ∞ such that for any k ∈ N we have

(clΞi + cki)∩Ui ⊆ Ξi\{zi}, i ∈ I.
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On the other hand, by the assumed local closedness of Ξ j around z j, for each j ∈ J
we find a neighborhood Uj of z j such that

clΞ j ∩Uj ⊆ Ξ j, j ∈ J.

It is obvious that the set U := Π
i∈I

Ui× Π
j∈J

Uj is a neighborhood of z in the product

of Banach spaces Z :=
n
Π

i=1
Zi equipped with the maximum norm. Furthermore, the

sequence {ck} ⊆ Z defined by

ck := (ck1, . . . ,ckm,0, . . . ,0)

converges to zero as k → ∞ and satisfies the conditions

(clΞ + ck)∩U =
(
Π
i∈I

(clΞi + cki)∩Ui

)
×
(
Π
j∈J

(clΞ j ∩Uj)
)

⊆
(
Π
i∈I

(Ξi\{zi})
)
×
(
Π
j∈J

Ξ j

)
⊆

(
n
Π
i=1

Ξi

)
\{z}= Ξ\{z},

where the last inclusion holds due to I �= /0. This gives (13.29) and thus justifies the
LAC property of the product set Ξ at z. ��

Now we are ready to establish the main results of this section containing several
versions of necessary optimality conditions for fully localized minimizers of the
multiobjective optimization problem (13.44).

Theorem 13.4 (Necessary Conditions for Fully Localized Minimizers in Set-
Valued Optimization). Let (x,z) be a fully localized minimizer to problem (13.44).
Assume that either one of the conditions (i)–(vii) below is fulfilled:

(i) The sets gphF and Ω are locally closed around (x,z) and x, respectively, and
the setΘ is LAC at 0.

(ii) gphF is locally closed around (x,z), Ω is LAC at x, and Θ is locally closed
around 0.

(iii) gphF is locally closed around (x,z), Ω is LAC at x, andΘ is LAC at 0.
(iv) gphF is LAC at (x,z), Ω is locally closed around x and Θ is locally closed

around 0.
(v) gphF is LAC at (x,z), Ω is locally closed around x, andΘ is LAC at 0.

(vi) gphF is LAC at (x,z), Ω is LAC at x, andΘ is locally closed around 0.
(vii) gphF, Ω , andΘ are LAC at (x,z), x, and 0, respectively.

Then the following versions of optimality conditions for (x,z) are satisfied:

A. FUZZY VERSION. For every ε > 0, there are points

(x1,z1) ∈ gphclF ∩ ((x,z)+ εIB) , x2 ∈ clΩ ∩ (x + εIB), and z2 ∈ clΘ ∩ εIB
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and dual elements (x∗, z∗) ∈ X∗ ×Z∗ with ‖(x∗,z∗)‖= 1 such that

{
(x∗,−z∗) ∈ N̂ ((x1,z1);gphclF)+ εIB∗,

−x∗ ∈ N̂(x2;clΩ)+ εB∗, and z∗ ∈ −N̂(z2;clΘ)+ εIB∗.
(13.52)

B. FRITZ JOHN VERSION. Assume further that either one of the following SNC
conditions (I)–(IV) is satisfied:

(I) Both clΩ and clΘ are SNC at x and the origin, respectively.
(II) clΘ is SNC at the origin and clF is PSNC at (x,z).

(III) clΩ is SNC at x and clF−1 is PSNC at (z,x).
(IV) clF is SNC at (x,z).

Then there is (x∗,z∗) ∈ X∗ ×Z∗ with ‖(x∗,z∗)‖= 1 such that

x∗ ∈D∗
NclF(x,z)(z∗), −x∗ ∈ N(x;clΩ), and z∗ ∈ −N(0;clΘ). (13.53)

C. LAGRANGE VERSION. Assume now that either one of the SNC conditions (I),
(II) holds. Suppose also that the mixed qualification condition

D∗
MclF(x,z)(0)∩ (−N(x;clΩ)) = {0} (13.54)

is satisfied, which is automatic when F is Lipschitz-like around (x,z). Then there is
z∗ ∈ −N(0;clΘ) with ‖z∗‖= 1 such that

0 ∈D∗
NclF(x,z)(z∗)+ N(x;clΩ). (13.55)

D. INVERSE VERSION. Assume that either one of the SNC conditions (I), (III)
holds. Suppose also that the inverse qualification condition

D∗
MclF−1(z,x)(0)∩N(0;clΘ) = {0} (13.56)

is satisfied, which is automatic when clF−1 is Lipschitz-like at (z,x). Then there is
x∗ ∈ N(x;clΩ) with ‖x∗‖= 1 such that

0 ∈ D∗
NclF−1(z,x)(x∗)+ N(0;clΘ). (13.57)

Proof. If follows from Proposition 13.5 that the fully localized minimizer (x,z) for
problem (13.44) is a localΘm-minimal point of gphF , whereΘm is given in (13.49).
Proposition 13.6 ensures that each LAC condition in (i)–(vii) implies one of the three
LAC conditions (i), (ii), and (iii) in Theorem 13.3. Precisely we have the following:

• Either conditions (i), (ii), and (iii) implies that gphF is locally closed around
(x,z) andΘm is LAC at 0.
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• Condition (iv) implies that gphF is LAC at (x,z) and that Θm is locally closed
around 0.

• Either conditions (v), (vi), and (vii) implies that both sets gphF andΘm are LAC
at (x,z) and 0, respectively.

Applying now Theorem 13.2 to the Θm-minimal point (x,z) of gphF , we have that
(x,z) is a local extremal point of the set system

{clgphF,(x,z)− clΘm} ≡ {gphclF,clΩ × (z− clΘ)} . (13.58)

First observe that the fuzzy version (I) of the theorem follows directly from the
application of the approximate extremal principle (13.18) to the extremal system
(13.35) at its local extremal point (x,z).

To derive now the Fritz John version (II) of the theorem take ε = k−1 for k ∈ N
and find by (13.52) sequences of {(x1k,z1k,x2k,z2k)} and {(x∗1k,z

∗
1k,x

∗
2k,z

∗
2k)} with

⎧
⎪⎪⎨
⎪⎪⎩

(x1k,z1k) ∈ gphclF, x2k ∈ clΩ , z2k ∈ z− clΘ ,

(x∗1k,z
∗
1k) ∈ N̂ ((x1k,z1k) ;gphclF) ,

x∗2k ∈ N̂(x2k;clΩ), z∗2k ∈ N̂(z2k;z− clΘ),

(13.59)

satisfying the relationships

⎧
⎪⎪⎨
⎪⎪⎩

‖(x1k,z1k)− (x,z)‖ ≤ k−1, ‖x2k− x‖ ≤ k−1, ‖z2k− z‖ ≤ k−1,

‖(x∗1k,z
∗
1k)+ (x∗2k,z

∗
2k)‖ ≤ 2k−1,

1− k−1 ≤ ‖(x∗1k,z
∗
1k)‖+‖(x∗2k,z

∗
2k)‖ ≤ 1 + k−1.

(13.60)

It is obvious from the last line of (13.60) that the sequences {(x∗1k,z
∗
1k)} and

{(x∗2k,z
∗
2k)} are bounded. Invoking the weak∗ sequential compactness of bounded

sets in duals to Asplund spaces gives us x∗1,x
∗
2 ∈ X∗ and z∗1,z

∗
2 ∈ Z∗ such that

(x∗1k,z
∗
1k,x

∗
1k,z

∗
2k)

w∗−→ (x∗1,z
∗
1,x

∗
2,z

∗
2) as k → ∞ (13.61)

Taking further into account the second line of (13.60), we have x∗ := x∗1 =−x∗2 and
z∗ := −z∗1 = z∗2. It follows from definitions of the limiting normal cone (13.10) and
the normal coderivative (13.12) that

{
(x∗,−z∗) ∈ N ((x,z);gphclF) ⇐⇒ x∗ ∈ D∗

NclF(x,z)(z∗),

−x∗ ∈ N(x;clΩ), and z∗ ∈ N(0;−clΘ) =−N(0;clΘ)
(13.62)

by passing to the limit in (13.59). This justifies the Fritz John necessary condition
(13.53) in (B) except the required nontriviality condition ‖(x∗,z∗)‖ = 1, which is
clearly equivalent to (x∗,z∗) �= 0. To proceed with proving the latter, assume the



500 T.Q. Bao and B.S. Mordukhovich

contrary that (x∗,z∗) = 0 and then get from the weak convergence (13.61) of the
sequences in (13.59) and each of the imposed SNC conditions (I)–(IV) that:

• The SNC properties ofΘ and Ω in (I) imply that ‖x∗2k‖→ 0 and that ‖z∗2k‖ → 0,
and thus ‖x∗1k‖→ 0 and ‖z∗1k‖→ 0 due to the second condition of (13.60).

• The SNC property of Θ in (II) implies that ‖z∗2k‖ → 0 and thus ‖z∗1k‖ → 0 due
to the second condition of (13.60). Furthermore, the PSNC property of F in (II)
implies that ‖x∗1k‖→ 0 and thus ‖x∗2k‖→ 0 due to the second condition of (13.60).

• The SNC property of Ω in (III) implies that ‖x∗2k‖ → 0 and thus ‖x∗1k‖ → 0 due
to the second condition of (13.60). Furthermore, the PSNC property of F−1 in
(III) implies that ‖z∗1k‖ → 0 and thus ‖z∗2k‖ → 0 due to the second condition of
(13.60).

• The SNC property of F in (IV) implies that ‖(x∗1k,z
∗
1k)‖ → 0 and thus ‖x∗2k‖ → 0

and ‖z∗2k‖→ 0 due to the second condition of (13.60).

Hence under each of the above SNC conditions we get that ‖(x∗1k,z
∗
1k,x

∗
2k,z

∗
2k)‖→ 0

as k → ∞, which contradicts the third relationship in (13.60). This contradiction
verifies the required nontriviality condition (x∗,z∗) �= 0 and thus completes the proof
of the Fritz John version (B) of the theorem.

Next we justify the Lagrange version (C) of the theorem by further elaborating
the relationships in (13.59), (13.60), and (13.61) under the additional mixed
qualification condition (13.54). Arguing by contradiction, suppose that z∗ = 0. Since
clΘ is SNC at 0 in both conditions (I) and (II), it follows from (13.60) and (13.62)
that ‖z∗2k‖ → 0 and thus ‖z∗1k‖ → 0 due to ‖z∗1k + z∗2k‖ → 0 in (13.61). This implies
that

(x∗1k,z
∗
1k) ∈ N̂ ((x1k,z1k);clgphF) , x∗1k

w∗→ x∗, and ‖z∗1k‖→ 0

as k → ∞, which yields in turn that

x∗ ∈ D∗
MclF(x,z)(0) and therefore x∗ ∈D∗

MclF(x,z)(0)∩ (−N(x;clΩ)) .

Employing now the mixed qualification condition (13.54), we get x∗ = 0 and hence
(x∗,z∗) = 0. This contradicts the nontriviality condition in (13.53) and thus complete
the proof of the Lagrange version (C) in the theorem.

Finally, let us justify the inverse version (D) of the necessary optimality
conditions in the theorem. It is easy to observe that if (x,z) is a local Θm-minimal
point of the set gphF , then (z,x) is a local Θ̃ -minimal point to the set gphF−1 with

Θ̃ := ((Θ \ {0})× (x−Ω))∪{0},

i.e., (z,x) is an optimal solution to the following “inverse” problem:

(x−Ω)-minimize F−1(z) subject to z ∈ (z−Θ). (13.63)
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Applying the Lagrangian necessary condition (13.55) in (C) to the inverse problem
(13.63) under the inverse qualification condition (13.56) , we arrive at the necessary
condition (13.57) in (D) and thus complete the proof of the theorem. ��

Let us discuss some specific features and modifications of the major results
obtained in Theorem 13.4.

Remark 13.4 (Lagrangian Necessary Conditions under other SNC Properties).
Suppose that either the SNC assumptions in (III) or those in (IV) of Theorem
13.4 are satisfied. Then the Lagrange multiplier rule (13.55) is still valid provided
that the mixed qualification condition in Theorem 13.53 is replaced by the following
normal qualification condition:

D∗
NclF(x,z)(0)∩ (−N(x;clΩ)) = {0}. (13.64)

Indeed, we get from the Fritz John necessary condition (13.53) that

x∗ ∈ D∗
NclF(x,z)(z∗), −x∗ ∈ N(x;clΩ), and z∗ ∈ −N(0;clΘ).

If z∗ = 0, then x∗ ∈ D∗
NclF(x,z)(0) and −x∗ ∈ N(x;clΩ), which surely yield

that x∗ = 0 under the normal qualification condition (13.64). This contradicts
the nontriviality condition (x∗,z∗) �= 0. It is worth emphasizing that the SNC
assumptions in (II) as well as the mixed qualification condition (13.54) are fulfilled
provided that F is Lipschitz-like around (x,z) while the validity of the normal
qualification condition (13.64) requires in addition that F is strongly coderivative
normal at (x,z), i.e.,

D∗
NclF(x,z)(z∗) = D∗

MclF(x,z)(z∗).

Although the latter qualification condition is much more restrictive than the former,
it can be applied to problem (13.44), where the ordering set is not SNC at 0. The
reader can find the description of some important classes of strongly coderivatively
normal mappings in [34, Proposition 4.9].

Remark 13.5 (Θ -Minimal Points to Sets viaΘ -Minimizers to Constant Mappings).
Let Ξ ⊆ Z be a subset of Z, and letΘ be an ordering set in Z containing the origin.
Consider the constant set-valued mapping CΞ : R ⇒ Z with Ξ generated by Ξ as
follows:

CΞ (x) := Ξ for all x ∈ R.

Observe that if z ∈ Ξ is a local Θ -minimal point of Ξ , then for any x ∈ X the pair
(x,z) is a fully localized minimizer for the mapping CΞ . Note that the mapping CΞ is
strongly coderivative normal at (x,z), since D∗

MCΞ (x,z)(0) = D∗
NCΞ (x,z)(0) = {0}.

There is no difference between the mixed qualification condition (13.54) and the
normal qualification condition (13.64), which both are unconditionally satisfied.
Thus the Lagrange multiplier rule in Theorem 13.53 (C) holds under each of all
the four SNC assumptions (I)–(IV). This allows us to deduce Theorem 13.3 from
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Theorem 13.53 (C), since the fulfillment of the LAC and SNC assumptions in
Theorem 13.3 ensures the validity of corresponding assumptions in Theorem 13.4,
namely:

• LAC condition (i) in Theorem 13.3 implies that of (i) in Theorem 13.4
• LAC condition (ii) in Theorem 13.3 implies that of (iv) in Theorem 13.4
• LAC condition (iii) in Theorem 13.3 implies that of (vi) in Theorem 13.4
• SNC condition in clΘ in Theorem 13.3 implies that of (I) in Theorem 13.4
• SNC condition of clΞ in Theorem 13.3 implies that of (IV) in Theorem 13.4

Applying now Theorem 13.4 (C) to the constant mapping CΞ , we find an element
z∗ �= 0 satisfying the inclusions

z∗ ∈ −N(0;clΘ) and 0 ∈ D∗
NclCΞ (x,z)(z∗).

The latter inclusion yields that (0,−z∗) ∈ N((x,z);R × clΞ) and thus −z∗ ∈
N(z;clΞ), which gives the necessary condition (13.30) in Theorem 13.3.

Next we formulate two corollaries of Theorem 13.4. The first one is a generalized
Fermat rule for set-valued mappings and the other is a specification of Theorem 13.4
for problem (13.44) with Lipschitzian data.

Corollary 13.9 (Generalized Fermat Rules for Pareto-Type Minimizers of Set-
Valued Mappings). Let F : X ⇒ Z be a set-valued mapping between Asplund
spaces such that its graph is locally closed around the reference point while the
image space Z is partially ordered by a convex cone C ⊆ Z with C \ (−C) �= /0.
Assume that either C is SNC at the origin or F−1 is PSNC at the point in question.
Then the condition

0 ∈ D∗
NF(x,z)(z∗) for some − z∗ ∈ N(0;C) with ‖z∗‖= 1 (13.65)

is necessary for the local optimality of (x,z) ∈ gphF to the mapping F in each of
the following senses:

(a) (x,z) is a fully localized Pareto minimizer for the mapping F provided that C is
a closed cone.

(b) (x,z) is a fully localized quasi Pareto minimizer for the mapping F provided
that qriC �= /0.

Proof. It follows from the Fritz John multiplier rule in Theorem 13.4, Part (B) by
the arguments used in the proof of the necessary conditions for Pareto-type minimal
points in Corollary 13.4. ��

In the case of a lower semicontinuous extended-real-value function ϕ : X → R,
the generalized Fermat rule in Corollary 13.9 applied to the epigraphical mapping

F(x) :=
{
μ ∈ R∣∣ μ ≥ ϕ(x)

}
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reduces to the well-known result of [34, Proposition 1.114] stating that

0 ∈D∗ϕ(x,ϕ(x))(1) = ∂ϕ(x),

where ∂ϕ(x) stands for the basic/limiting subdifferential by Mordukhovich. It is
easy to see that the latter stationary condition could be replaced by its counterpart
via the Fréchet subdifferential.

It is important to observe that, in contrast to scalar optimization, the basic
coderivative necessary optimality condition (13.65) is “essential ” and can not be
replaced by its Fréchet counterpart. This can be illustrated via the following constant
set-valued mapping F : R⇒ R2 defined by

F(x)≡ Ξ with Ξ :=
{
(z1,z2) ∈ R2

∣∣ 2z1 + z2 ≥ 0 or z1 + 2z2 ≥ 0
}

.

The pair (0,0) ∈ R×R2 is obviously a Pareto minimizer of F , and the basic

coderivative optimality condition (13.65) is fulfilled for either z∗ =
(

2/
√

5,1/
√

5
)

or z∗ =
(

1/
√

5,2/
√

5
)

since

N((0,0);gph F) = {0}× cone {(−2,−1),(−1,−2)}.

We can check that

N̂((0,0);R×Ξ) = N̂(0;R)× N̂(0;Ξ) = {0}× /0 = /0,

which implies that D̂∗F(0,0)(z∗) = /0, and thus the Fréchet coderivative counterpart
of (13.65) does not hold.

Now we proceed with necessary optimality conditions for set-valued optimiza-
tion problems with Lipschitzian objectives.

Corollary 13.10 (Necessary Conditions for Pareto-Type Minimizers Under
Lipschitzian Assumptions). Let F : X ⇒ Z be a set-valued mapping between
Asplund spaces with the image space Z partially ordered by a convex cone C ⊆ Z
with C \ (−C) �= /0. Suppose that the constraint set Ω ⊆ X is locally closed around
x and that the ordering cone C is SNC at the origin. Assume also that F is
Lipschitz-like around (x,z), which is equivalent to the simultaneous fulfillment
of the PSNC property of F at (x,z) and the mixed coderivative condition

D∗
MF(x,z)(0) = {0}.

Then there exists −z∗ ∈ N(0;C) with ‖z∗‖= 1 such that

0 ∈ D∗
NF(x,z)(z∗)+ N(x;Ω) (13.66)
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in each of the following cases of local minimizers:

(a) (x,z) is a FULLY LOCALIZED PARETO MINIMIZER for problem (13.44)
provided that C is a closed cone.

(b) (x,z) is a FULLY LOCALIZED QUASI PARETO MINIMIZER for problem (13.44)
provided that qriC �= /0.

Proof. It follow from the Lagrange multiplier rule in Theorem 13.4, Part (C) and
the arguments used in the proof of the necessary conditions for Pareto-type minimal
points in Corollary 13.4. The coderivative criterion for the Lipschitz-like property
is taken from [34, Theorem 4.10]. ��

Let us compare the results obtained in Theorem 13.4 and its corollaries with
those previously known in the literature.

Remark 13.6 (Comparisons with known Necessary Conditions). All the necessary
conditions in Theorem 13.4 are new at least in two regards: (1) the refined LAC
assumptions are used in order to avoid the closedness and convexity properties
of ordering sets/cones, and (2) the fully localized minimizers are used instead of
the partially localized (known as local) minimizers. Besides these, they have other
improvements discussed below.

(a) If Ω := X and if Θ is a proper, closed, and convex cone, the fuzzy necessary
condition (13.52) in Part (A) reduces to [13, Theorem 3.7], where the mapping
clF is considered to drop the closedness assumption of gphF at the point under
consideration provided that intΘ �= /0. Since the latter condition implies the
SNC property ofΘ at 0, the alternative SNC conditions were not studied in [13].

(b) IfΘ is a closed and convex cone withΘ \ (−Θ) �= /0, the Lagrangian necessary
condition (13.55) in Part (C) reduces to [5, Theorem 5.3] in which the SNC
requirements were imposed on the restriction FΩ of F over Ω .

(c) IfΘ enjoys some dual compactness property implying the SNC condition ofΘ
at the origin and if F has the Lipschitz-like property around (x,z), which ensures
by [35, Theorem 4.10] that F is PSNC at this point and that D∗

MF(x,z)(0) = {0},
then the Lagrangian necessary condition (13.55) in Part (C) reduces to [47,
Theorem 4.2], and [46, Theorem 4.2] with Ω = X . Note also that the fuzzy
counterpart of [46, Theorem 4.2] can be deduced from the fuzzy necessary
condition (13.52) in Part (A) in this setting.

(d) The fuzzy necessary conditions in [14, Theorem 4.1] and the exact ones in [14,
Theorem 3.1] are specifications of Theorem 13.4, Parts (A) and (C), when the
cost mapping F = f : X → Z is single-valued and locally Lipschitzian and when
the image space is partially ordered by a closed and convex cone Θ ⊆ Z with
intΘ �= /0. Note that the authors of [14] employed a scalarization approach,
which is based on the separation theorem [44] for nonconvex sets stated in
Sect. 13.1, and thus the nonempty interiority condition plays a vital role to
implement their approach. Observe also that the necessary conditions obtained
in [14] are for weak Pareto minimizers.

(e) The Lagrange multiplier rules for vector-valued and set-valued optimization
problems established in [11, Theorem 4.2] and [11, Theorem 4.3] can be
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deduced from the Lagrangian necessary condition (13.55) in Part (C) in the
Asplund space setting. Note that paper [11] imposes the assumption that the
ordering coneΘ is asymptotically compact, i.e., there is a closed neighborhood
U of 0 such thatΘ ∩U is a compact set. This assumption is independent of our
SNC requirement onΘ at the origin. Indeed, in a Hilbert space with a complete
orthonormal basis {e2,e3, . . .} the closed cone Θ := R+ · e1 is asymptotically
compact but not SNC. On the other hand, the subspace Θ := span {e1,e2, . . .}
is SNC at the origin while not asymptotically compact. Observe also that
the asymptotic compactness conditions and others assumptions imposed in
[11] seem to be rather restrictive; in particular, they imply that every Pareto
minimizer is a proper Pareto one. Roughly speaking, the necessary optimality
conditions in [11] are established for proper Pareto minimizers.

(f) The Lagrangian necessary condition (13.55) in (C) agrees with [35, Theorem
5.73 (ii)], which employs only the two SNC properties (I) and (IV). However,
their alternatives (II) and (III) seem to be more efficient, since they are
automatic under the Lipschitz-like property of F and F−1, respectively. Note
also that the necessary condition in [35, Theorem 5.73 (ii)] is established for
single-valued continuous cost mappings and for closed preferences in terms of
the limiting normals to moving sets N+(z;clPz(z)) defined by

N+ (z;clP(z)) := Limsup
(z,u)−→(z,z)
(z,u)∈gph(clP)

N̂ (u;clP(z)) .

Since N(z;clP(z)) ⊆ N+(z;clP(z)) is strict in general, our result is more
efficient. To this end we would like to mention a fuzzy counterpart of [35,
Theorem 5.73 (ii)] developed in [37, Proposition 5.1], which can be derived
from the fuzzy necessary condition obtained in Part (A).

(g) The Fritz John necessary condition from [8, Theorem 4.1] can be seen as a coun-
terpart of [35, Theorem 5.73 (ii)] in the case of arbitrary Banach spaces in terms
of the so-called approximate normal cone and the corresponding derivative-like
constructions developed by Ioffe. The approximate normal cone reduces to our
basic one (12.9) in the case of weakly compactly generated Asplund spaces
but may be larger than the latter in the general Asplund space setting; see [34,
Sect. 3.2.3] and [36, Sect. 9] with the references therein. Observe also that more
restrictive epi-Lipschitzian and strongly Lipschitzian properties were imposed
on sets and mappings in [8]. Thus Theorem 13.4, Part (B) is a far-going exten-
sion of the corresponding results of [8] in the case of general Asplund spaces.

(h) If F = f : X → Z is a single-valued and continuous mapping, x is a partially
localized Θ -minimal point to f over Ω , and Θ is LAC at the origin, then x
is a locally ( f ,−clΘ)-optimal solution relative to Ω . Hence the optimality
notion used in [35, Theorem 5.59] is more general than theΘ -optimality notion
considered above in Theorem 13.4. However, [35, Theorem 5.59] requires that:
(1) the ordering set Θ ⊆ Z containing the origin is locally closed around the
origin, (2) either Θ is SNC at 0, or f−1

Ω is PSNC at (z,x), (3) f is Lipschitz
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continuous around x relative to Ω , and (4) the restriction fΩ of f to Ω is
strongly coderivative normal at x. These assumptions are significantly more
demanding than those imposed in Theorem 13.4.

The next result is a counterpart of Theorem 13.4 for the case of strong
minimizers.

Theorem 13.5 (Necessary Conditions for Fully Localized Strong Minimizers).
Let (x,z) be a fully localized strong minimizer for problem (13.44). Assume that
one of the sets gphF, Ω , and Θ is LAC at (x,z), x, and 0, respectively. Then the
necessary conditions of Theorem 13.4, Parts (A)–(D) are satisfied.

Proof. Note that if either gphF , Ω , orΘ is LAC at (x,z), x, and 0, respectively, then
either gphclF is LAC at (x,z), or the ordering setΘsg = (x−clΩ)×clΘ defined in
(13.50) is LAC at the origin. We can obtain therefore the fuzzy, Fritz John, Lagrange,
and reverse necessary optimality conditions given in Theorem 13.4, Parts (A–D) by
using similar arguments with just one change: replaceΘm byΘsg therein. ��

Let us conclude this section with the following two remarks.

Remark 13.7 (Applications to Welfare Economics). The obtained necessary condi-
tions for fully localized minimizers in set-valued optimization problems allow
us to derive enhanced versions of the second welfare theorem for nonconvex
economies by showing that marginal prices at Pareto-type optimal allocations
of nonsmooth and nonconvex economies is nothing but common multipliers in
appropriate constrained optimization problems; see [6, 7] for more details.

Remark 13.8 (New Necessary Conditions for Pareto-Type Minimizers). As conseq-
uences of Theorems 13.4 and 13.5 we can derive new necessary optimality
conditions for fully localized Pareto-type minimizers extending the corresponding
results of [5, Theorem 5.3] obtained for their partially localized counterparts. To
proceed, takeΘ = C in Theorem 13.4 and use Corollary 13.4.

13.5 Multiobjective Optimization with Operator Constraints

In the last section of the chapter we derive necessary conditions for Θ -minimal
solutions of multiobjective optimization problems with general operators con-
straints. The results obtained below are largely based on those in the preceding
section and on well-developed calculus rules for limiting normals and coderivatives.

Consider the following multiobjective optimization problems containing the
so-called operator constraints together with geometric ones:

Θ -minimize F(x)

subject to G(x)∩ (−Λ) �= /0,

x ∈Ω ,

(13.67)
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where F : X ⇒ Z and G : X ⇒ W are set-valued mappings between Banach spaces,
Θ is an ordering set of Z with 0 ∈ Θ , Ω and Λ are subsets of the spaces X and
W , respectively, and where the solution to (13.67) is understood in the above sense
of Θ -minimality. Note that the operator constraints G(x) ∩ (−Λ) �= /0 in (13.67)
reduce to the generalized inequality constraints when Λ := K is a closed, convex,
and pointed cone of W and to the functional inequality constraints

gi(x)≤ 0, i = 1, . . . ,n, (13.68)

when Z = R
n, K = Rn

+, and G(x) = (g1, . . . ,gn) : X → Rn is a single-valued
mapping. Observe also that model (13.67) covers many special classes of con-
strained optimization problems including, in particular, mathematical programs with
equilibrium constraints; cf. [28, 35, 38]. On the other hand, it can be treated as a
special case of the so-called extended equilibrium constraints studied in [2, 3].

We say that (x,z) is a fully localized Θ -minimizer of problem (13.67) if it is a
fully localizedΘ -minimizer of problem (13.44) with the set constraint

Ω̃ :=
{

x ∈ X
∣∣ G(x)∩ (−Λ) �= /0 and x ∈Ω}

.

In order to establish new necessary conditions in the general multiobjective
optimization problem (13.67), we follow the reduction technique initially suggested
by Guerraggio and Luc [17] for a particular case of (13.67), where Θ = C and
Λ = K are closed, convex, and pointed cones and where F = f : X → Z is a single-
valued cost mapping. It is observed in [17] that a local Pareto minimizer for such
a constrained vector optimization problem is also a minimizer for the following
optimization problem with the only geometric constraint:

minimize F̃(x) subject to x ∈Ω ,

where the new cost mapping F̃ : X ⇒ Z×W between Banach spaces is defined by

F̃(x) := ( f (x),G(x))+C×K,

and where “minimization” is understood in the sense of Pareto partial ordering
generated by the cone C×K in the product space W := Z×Y . Developing this idea,
we relate the original problem (13.67) to the “product” multiobjective problem:

Θ̃ -minimize F̃(x) subject to x ∈Ω , (13.69)

where the set-valued cost mapping F̃ : X ⇒ Y := Z×W and the ordering set Θ̃ in
the space Y are defined by

F̃(x) := F(x)×G(x) and Θ̃ :=Θ × (Λ + w) (13.70)

for the given element w ∈ G(x)∩ (−Λ). Then we can reduce (13.67)–(13.69).
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Proposition 13.7 (Reduction of Operator Constraints). In the general Banach
space setting we have the following relationships:

(a) If (x,z) is a fully localized Θ -minimizer of (13.67), then for each w ∈ G(x)∩
(−Λ) the triple (x,z,w) ∈ gph F̃ is a fully localized Θ̃ -minimizer of (13.69).

(b) If (x,z,w) ∈ gph F̃ is a partially localized Θ̃ -minimizer of (13.69), then (x,z) is
a partially localizedΘ -minimizer of (13.67).

Proof. First we prove (a). Let (x,z) be a fully localized Θ -minimizer of problem
(13.67). Then there are neighborhoods U of x, and V of z such that

F(x)∩ (z−Θ) = {z} for all x ∈Ω ∩G−1(−Λ)∩U. (13.71)

Taking any w∈G(x), we claim that (x,z,w)∈ gph F̃ is a fully localized Θ̃ -minimizer
of problem (13.69) with the neighborhood U ×V ×W of (x,z,w), i.e.,

F̃(x)∩
(
(z,w)−Θ̃

)
∩ (U ×V ×W ) = {(z,w)} .

Arguing by contradiction, suppose that it does not hold and then find (x,z,w) ∈
U ×V ×W with (z,w) �= (z,w) satisfying

(z,w) ∈ (z,w)−Θ × (Λ + w), ∀ (z,w) ∈ F(x)×G(x) and x ∈Ω

due to the structures of F̃ and Θ̃ in (13.70); this clearly contradicts (13.71).
The contradiction obtained verifies the claim and thus completes the proof of
assertion (a).

Next we justify (b). Let (x,z,w) ∈ gph F̃ be a partially localized Θ̃ -minimizer of
problem (13.69), i.e., there is a neighborhood U of x such that

F̃(Ω ∩U)∩
(
(z,w)−Θ̃

)
= {(z,w)} . (13.72)

We show that the relation in (13.71) holds with V = Z. Arguing by contradiction,
suppose that it does not hold and then find x ∈ Ω ∩U , w ∈ G(x)∩ (−Λ) �= /0, and
z ∈ F(x) satisfying

z �= z and z ∈ (z−Θ),

which surely implies that

(z,w) ∈ (F(x)×G(x))∩ (z−Θ)× (−Λ) = F̃(x)∩
(
(z,w)−Θ̃

)

and thus clearly contradicts (13.72) due to z �= z. This contradiction verifies the
partially localized optimality of (x,z) in (13.44) and thus completes the proof of (b).

��
For simplicity we assume in what follows that all the sets under consideration are

locally closed around the points in question; see Theorem 13.53 for the alternative
LAC assumptions. The next theorem is the main result of this section.
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Theorem 13.6 (Necessary Optimality Conditions for Multiobjective Problems
with Operator Constraints). Let (x,z) be a fully localized Θ -minimizer of
problem (13.67) in Asplund spaces, and let w ∈ Ω ∩G−1(−Λ). Suppose that the
sets Ω ,Θ , Λ , gphF, and gphG are locally closed around x, 0, w, (x,z), and (x,w),
respectively, and that one of these sets is asymptotically closed at the corresponding
point. Assume also that the two qualification conditions

(D∗
MF(x,z)(0)+ D∗

MG(x,z)(0))∩ (−N(x;Ω)) = {0}, (13.73)

D∗
MF(x,z)(0)∩ (−D∗

MG(x,z)(0)) = {0} (13.74)

are satisfied, which is automatic provided that both mappings F and G are Lipschitz-
like around (x,z) and (x,w), respectively. Assume finally that either F is PSNC at
(x,z) or G is PSNC at (x,z) and that one of the following SNC properties holds:

(I) Ω ,Θ , and Λ are SNC at x, 0, and −w, respectively.
(II) Θ is SNC at 0, Λ is SNC at w, and both mappings F and G are PSNC at (x,z)

and (x,w), respectively.

Then there are z∗ ∈ −N(0;Θ) and w∗ ∈ −N(−w;Λ) with (x∗,w∗) �= 0 satisfying

0 ∈ D∗
NF(x,z)(z∗)+ D∗

NG(x,w)(w∗)+ N(x;Ω). (13.75)

Proof. Taking (x,z) and w∈Ω ∩G−1(−Λ) from the formulation of the theorem, we
get from Proposition 13.7 that (x,z,w) is a fully localized Θ̃ -minimizer for problem
(13.69) with Θ̃ from (13.70). To apply the Lagrangian optimality condition (13.55)
from Theorem 13.4 (C) to problem (13.69), we need to check all the assumptions
imposed therein on the cost mapping F̃ , the ordering set Θ̃ , and the constraint set Ω .

First compute the coderivative of F̃ . Observe that F̃ can be expressed as a sum
of two mappings F̃(x) = H1(x)+ H2(x), where H1,H2 : X ⇒ Z×W are defined by

H1(x) := F(x)×{0} and H2(x) := {0}×G(x). (13.76)

Observe further that H1(x) = (ϕ ◦F)(x) is a composition of the inner mapping F
from the cost of (13.67) and the differentiable outer mappingϕ : Z→ Z×W given by
ϕ(z) := (z,0). Applying now the chain rules for the normal and mixed coderivatives
from [34, Theorem 3.13] to this composition gives us the inclusions

{
D∗

NH1(x,z,0)(z∗,w∗)⊆ D∗
NF(x,z)(z∗),

D∗
MH1(x,z,0)(0)⊆ D∗

MF(x,z)(0).
(13.77)

Representing similarly H2(x) = (ψ ◦G)(x) with ψ : W → Z×W given by ψ(w) :=
(0,w) and applying the coderivative chain rules mentioned above, we get
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{
D∗

NH2(x,0,w)(z∗,w∗)⊆ D∗
NG(x,w)(w∗),

D∗
MH2(x,0,w)(0)⊆ D∗

MG(x,w)(0).
(13.78)

To apply further the coderivative sum rules from [34, Theorem 3.10] to H1 and H2,
we need to check the following assumptions:

(i) The mapping S : X ×Z×W ⇒ (Z×W)2 defined by

S(x,z,w) :=
{
(z1,w1,z2,w2)

∣∣ (z1,w1) ∈ H1(x),

(z2,w2) ∈ H2(x), (z,w) = (z1,w1)+ (z2,w2)}

= {(z,0,0,w)}

is inner semicontinuous at (x,z,w).
(ii) Either H1 or H2 is PSNC at (x,z,0) or (x,0,w), respectively.

(iii) The pair {H1,H2} satisfies the qualification condition

D∗
MH1(x,z,0)(0)∩ (−D∗

MH2(x,0,w)(0)) = {0}.

It is easy to check that condition (i) holds trivially, that condition (ii) reduces to
that either F or G is PSNC at (x,z) or (x,w), respectively, and that the qualification
condition (13.74) assumed in the theorem implies the one in (iii) since

D∗
MH1(x,z,0)(0)∩ (−D∗

MH2(x,0,w)(0))⊆ D∗
MF(x,z)(0)∩ (−D∗

MG(x,w)(0))

due to the coderivative estimates obtained in (13.77) and (13.78). Thus we get from
the coderivative sum rules that

{
D∗

NF̃(x,z,w)(z∗,w∗)⊆ D∗
NF(x,z)(z∗)+ D∗

NG(x,w)(w∗),

D∗
MF̃(x,z,w)(0)⊆ D∗

MF(x,z)(0)+ D∗
MG(x,w)(0).

(13.79)

Next we show that F̃ is PSNC at (x,z,w) provided that both F and G are PSNC
at (x,z) and (x,w), respectively. Observe that the set gph F̃ can be written as an
intersection of two sets Ω1,Ω2 ⊆ X ×Z×W defined by

{
Ω1 :=

{
(x,z,w) ∈ X ×Z×W

∣∣ (x,z) ∈ gphF
}

,

Ω2 :=
{
(x,z,w) ∈ X ×Z×W

∣∣ (x,w) ∈ gphG
} (13.80)

and that all the assumptions of [34, Theorem 3.79] (PSNC property of set intersec-
tions) are fulfilled, that is, we have the following:
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• Ω1 is PSNC with respect to X ×W and Ω2 is PSNC with respect to X ×Z, since
both F and G are PSNC at (x,z) and (x,w), respectively.

• Ω1 is strongly PSNC with respect to W and Ω2 is strongly PSNC with respect to
Z due to the structures of sets Ω1 and Ω2 in (13.80).

• The set system {Ω1,Ω2} satisfies the mixed qualification condition at (x,z,w)
with respect to Z×W , i.e., for every sequences

{(x1k,z1k,w1k,x2k,z2k,w2k,x
∗
1k,z

∗
1k,w

∗
1k,x

∗
2k,z

∗
2k,w

∗
2k)}

satisfying the limiting relationships

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(x1k,z1k,w1k)
Ω1−→ (x,z,w), (x2k,z2k,w2k)

Ω2−→ (x,z,w),

(x∗1k,z
∗
1k,w

∗
1k)

w∗−→ (x∗1,z
∗
1,w

∗
1), (x∗2k,z

∗
2k,w

∗
2k)

w∗−→ (x∗2,z
∗
2,w

∗
2),

(x∗1k,z
∗
1k,w

∗
1k) ∈ N̂ ((x1k,z1k,w1k);Ω1) ,

(x∗2k,z
∗
2k,w

∗
2k) ∈ N̂ ((x2k,z2k,w2k);Ω2) ,

we have the implication

[
x∗1k + x∗1k

w∗−→ 0, ‖z∗1k + z∗2k‖→ 0, ‖w∗1k + w∗1k‖→ 0
]

=⇒ (x∗1,z
∗
1,w

∗
1) = (x∗2,z

∗
2,w

∗
2) = (0,0,0).

Indeed, it follows from the structures of the setsΩ1 andΩ2 in (13.80) that w∗1k ≡ 0
and z∗2k ≡ 0 for all k ∈ N, and thus the mixed qualification condition for the set
system {Ω1,Ω2} is equivalent to the assumed qualification condition (13.74).

Hence we get from [34, Theorem 3.79] applied to the intersection set

gph F̃ =Ω1∩Ω2

that gph F̃ is PSNC at (x,z,w) with respect to X , which means that the mapping F̃
from (13.70) is PSNC at this point.

The above arguments check the fulfillment of the assumptions (I) and (II) in
Theorem 13.4 (B) for problem (13.69). Observe also that under the LAC property
imposed in the theorem we get by Proposition 13.6 that either one from the LAC
assumptions (i) and (ii) in Theorem 13.4 is satisfied for problem (13.69). Observe
finally that the qualification condition (13.73) implies the qualification condition
(13.54) in Theorem 13.4 for problem (13.69), since

D∗
MF̃(x,z,z)(0)∩ (−N(x;Ω))

⊆ (D∗
MF(x,z)(0)+ D∗

MG(x,z)(0))∩ (−N(x;Ω)) = {0}

due to the mixed coderivative estimate for F̃ in (13.79).
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Thus we ensure the validity of all the assumptions of Theorem 13.4 for problem
(13.69) with the cost mapping F̃ , the ordering set Θ̃ , and the constraint set Ω .
Applying now Theorem 13.4 to the latter problem, we find dual elements (z∗,w∗) ∈
Z∗ ×W∗ with (z∗,w∗) �= 0 satisfying

0 ∈D∗
NF̃(x,z,w)(z∗,w∗)+ N(x;Ω),

which surely verifies the necessary optimality condition (13.75) by using the normal
coderivative estimate (13.79) for F̃ . This completes the proof of the theorem. ��

Let us discuss some particular features of the results obtained in Theorem 13.6
and their relationships with those known in the literature.

Remark 13.9 (Specific Features and Comparisons with known Results). As every-
where in this paper, the necessary optimality conditions for multiobjective problems
are established in Theorem 13.6 for general ordering sets, which may not be either
closed or convex cones. Let us mention some other improvements over known
results for problems with operator constraints and the like:

(a) Theorem 13.6 is an extension of [35, Theorem 5.11] (iv) from scalar cost
functions to set-valued mappings. Note that the latter theorem requires an
addition that the auxiliary set-valued mapping S(·) := F(·)∩Λ is either inner
semicontinuous at (x,w) or inner semicompact at every point w ∈ S(x). Recall
that [34, Definition 1.63] S : X ⇒ W S is (1) inner semicompact at x with
S(x) �= /0 if for every sequence xk → x as k → ∞ there is a sequence wk ∈ S(xk)
that contains a convergent subsequence, and (2) it is inner semicontinuous at
(x,w) ∈ gphS if for every sequence xk → x there is a sequence wk ∈ S(xk)
converging to w. We do not impose these assumptions in Theorem 13.6.

(b) Observe that the operator constraints in (13.67) can be seen as a specification
of the so-called extended equilibrium constraints

0 ∈ G(x)+ Q(x), (13.81)

studied in [1,3], where both G,Q : X ⇒W are set-valued mappings; this reduces
to the operator constraints in (13.67) when Q(x) ≡ Λ is a constraint mapping.
In this way we obtain from [1, Theorem 3.3] and [3, Theorem 3.4] necessary
optimality conditions for (13.67) that are different from those in Theorem 13.6
by constraint qualifications: instead of (13.73) and (13.74) above we use

{[
x∗+ x∗G + x∗Ω = 0

]
=⇒ x∗ = x∗G = x∗Ω = 0, whenever

x∗ ∈ D∗
M f (x)(0), x∗G ∈D∗

NG(x,w)(0), x∗Ω ∈ N(x;Ω)
(13.82)

in [1,3]. It is easy to check that the qualification condition (13.82) implies both
qualification conditions (13.73) and (13.74). Due to the presence of the normal
coderivative D∗

NG(x,w)(0) in (13.82) the latter may not hold when both F and
G are Lipschitz-like around (x,z) and (x,w), respectively.



13 Extended Pareto Optimality in Multiobjective Problems 513

We conclude this paper with deriving from Theorem 13.67 necessary optimality
conditions for multiobjective problems generalized inequality constraints, i.e., for a
specification of (13.67) to the case when bothΘ and Λ closed, convex, and pointed
cones in the spaces Z and W , respectively; this case obviously contains standard
inequality constraints given in (13.68).

Corollary 13.11 (Necessary Optimality Conditions for Multiobjective Prob-
lems with Generalized Inequality Constraints). Let (x,z) be a fully localized
Pareto minimizer to problem (13.67) with Θ := C and Λ := K, and let w ∈
G(x) ∩ (−K). Suppose that C ⊆ Z and K ⊆ W are closed, convex, and pointed
cones and that the sets Ω , gphF, and gphG are locally closed around x, (x,z),
and (x,w), respectively. Assume further that both mappings F and G are Lipschitz-
like around (x,z) and (x,w), respectively, and that both sets C and K are SNC at the
origin; the latter SNC conditions are fulfilled if either the corresponding spaces are
finite-dimensional or the corresponding ordering cones have nonempty interiors.
Then there are dual elements z∗ ∈ −N(0;C) and w∗ ∈ −N(0;K) with (z∗,w∗) �= 0
satisfying

0 ∈ D∗
NF(x,z)(z∗)+ D∗

NG(x,w)(w∗)+ N(x;Ω).

Proof. It follows from Theorem 13.6 by taking into account that:

• If F and G are Lipschitz-like around (x,z) and (x,w), respectively, then they are
PSNC at these points satisfying D∗

MF(x,z)(0) = {0} and D∗
MG(x,z)(0) = {0}.

Thus both qualification conditions (13.73) and (13.74) are satisfied.
• Since K is a convex cone, we have N(−w;K)⊆ N(0;K) for any w ∈−K.

This completes the proof of the corollary. ��
Remark 13.10 (Other Necessary Conditions in Vector Optimization with Gener-
alized Inequality Constraints). Corollary 13.11 provides a refined coderivative
version of multiplier rules for vector optimization problems with generalized
inequality constraints obtained in [17, Theorem 5.1] under convexity assumptions
and in [45, Theorem 5.1] under some extended convexity.
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Chapter 14
Vector Optimization and Cooperative Games

Tetsuzo Tanino

14.1 Introduction

Theory of cooperative games is quite useful in analyzing decision making situations
along with multiple decision makers who can form coalitions. An ordinary cooper-
ative game is specified by a real-valued characteristic function defined on the set of
coalitions of a finite number of players. A huge number of interesting results have
been obtained in this field.

On the other hand, as is explained in the other chapters of this monograph, vector
optimization (multiobjective optimization) is both theoretically and practically
interesting and useful. Therefore it is quite natural to consider games in which
several criteria are be considered simultaneously. Several authors have developed
multiobjective noncooperative games. Therefore it is worth reviewing some results
connecting cooperative games and vector optimization (multiobjective optimiza-
tion) in this chapter.

The most simple way of extending ordinary cooperative games to the multi-
objective case is to introduce multidimensional vectors of worth in characteristic
functions. This leads to the class of vector-valued games proposed in Fernández
et al. [6]. If we consider more general worth in partially ordered spaces, partially
ordered cooperative games are defined as in Puerto et al. [17]. Moreover, if we
consider games derived from multiobjective optimization problems, the sets of
Pareto optimal values are not single points but sets in the multi-dimensional space.
Therefore it might be more natural to deal with cooperative games with set-valued
characteristic functions (Tanino et al. [20], Nishizaki and Sakawa [14], Fernández
et al. [9]). The main solution concept in those vector-valued and set-valued
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cooperative games is the core. Some definitions of the core and several sufficient
conditions which guarantee the non-emptiness of the core have been investigated.

In this chapter we explain several results concerning vector-valued and set-valued
cooperative games obtained in the recent years. We also refer to mutliobjective
linear production games and multiobjective minimum cost spanning tree games.

The contents in this chapter are organized as follows. First we briefly review
some fundamental results on the theory of cooperative games. The next section
deals with the most basic vector-valued cooperative games and the core is defined
in terms of scalarization of vectors. This section is based on Fernández et al. [6]
and the objective space is Rn. On the contrary, in the fourth section, more general
partially ordered cooperative games are dealt with. Two solution concepts, the
core and the extended Shapley value are explained based on the work by Puerto
et al. [17]. Vector-valued games are extend to set-valued games in a straight forward
manner and two types of core, the dominance core and the preference core of a
set-valued game are defined and explained in the fifth section based on Fernández
et al. [9]. In the sixth section, we discuss multiobjective games (set-valued games)
with restrictions on coalitions developed by Tanino [21]. Moreover two interesting
kinds of multiobjective games, linear production games and minimum cost spanning
tree games, are dealt with in the following two sections respectively. The results
concerning multiobjective linear production games are due to Nishizaki and Sakawa
[13, 14]. Multiobjective minimum cost spanning tree games were studied by
Fernández et al. [8]. In order to make this survey rather simple, we omit all the
proofs of the results. They can be found in the original articles. A reader who is
interested in a certain section in this chapter is requested to read the corresponding
original article.

14.2 Fundamentals of Cooperative Games

14.2.1 Cooperative Games

In this section we briefly review some fundamental results concerning cooperative
games, e.g., Owen [16]. A cooperative game (transferable utility game, TU-game
for short) is a pair (N,v), where N = {1,2, . . . ,n} is a finite set of players and v is a
real valued function defined on the power set of N, i.e., v : 2N →R satisfying v( /0) =
0. Each subset S of N is called a coalition and the value v(S) is called the worth
of S. Since we fix the player set N throughout this chapter, we regard a function v,
called a characteristic function, as a game and denote by GN the set of all games
on N. Throughout this chapter we use abbreviated notations such as v({i}) = v(i),
S∪{i}= S∪ i, and so on. We also discriminate two set inclusive relations S⊆ T and
S⊆ T , where the latter is proper inclusion.
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Definition 14.1. A game v ∈ GN is said to be

• Monotonic if
v(S)≤ v(T ), ∀S,T ⊆ N : S ⊆ T, (14.1)

• Additive if
v(S∪T ) = v(S)+ v(T), ∀S,T ⊆ N : S∩T = /0 (14.2)

• Superadditive if

v(S∪T )≥ v(S)+ v(T), ∀S,T ⊆ N : S∩T = /0 (14.3)

• Convex if
v(S∪T )+ v(S∩T )≥ v(S)+ v(T), ∀S,T ⊆ N (14.4)

Given two games v,w ∈ GN , the sum v + w∈ GN of v and w is defined by

(v + w)(S) = v(S)+ w(S), ∀S ⊆ N. (14.5)

Analogously, given a game v ∈ GN and a scalar α ∈ R, the scalar multiplication αv
of v by α is defined by

(αv)(S) = αv(S), ∀S ⊆ N. (14.6)

Thus the set GN forms a linear space over R. It is clear the dimension of this space
is 2n−1. Usually we consider the following unanimity games as a basis of GN .

Definition 14.2. The game uT defined by

uT (S) =
{

1 if S⊇ T
0 otherwise

(14.7)

for each T ⊆ N, T �= /0, is called the unanimity game.

The set of all unanimity games {uT |T ⊆ N, T �= /0} is a basis of GN and each
v ∈ GN can be represented by a linear combination of uT as

v = ∑
T⊆N,T �= /0

ΔT (v)uT (14.8)

The coefficients ΔT (v) are called Harsanyi dividends of v and given by the Möbius
formula

ΔT (v) = ∑
S⊆T

(−1)|T |−|S|v(S), (14.9)

where |T | denotes the cardinal number of T , i.e., the number of the elements in T .
If we put Δ /0(v) = 0 for convenience, the dividends can be obtained by the following
recursive formula

ΔT (v) =

⎧⎨
⎩

0 if T = /0
v(T )− ∑

S⊆T

ΔS(v) if T �= /0 (14.10)
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14.2.2 Solutions of Cooperative Games

In the cooperative game theory the most important topic is to find an appropriate
rule for allocating the worth of the grand coalition among the players. Such a rule
is usually called a solution of the cooperative game. The allocated profit vector is
denoted by x = (x1,x2, . . . ,xn)�, where xi is the profit of the ith player. It is quite
natural that this vector satisfies the efficiency

∑
i∈N

xi = v(N). (14.11)

The set of these vectors are often referred to as the preimputation set

I∗(v) =

{
x ∈ Rn | ∑

i∈N
xi = v(N)

}
, (14.12)

and, clearly, we have I∗(v) �= /0.
Roughly speaking, two types of approach have been taken in developing

solutions of TU-games. One of them is based on the “objections” of the coalitions,
and the other is based on the “contributions” of the players. Typical example of the
former type is the core, while that of the latter is the Shapley value.

First a payoff vector which satisfies both efficiency and individually rationality
defined by

xi ≥ v(i) for all i ∈ N (14.13)

is called an imputation, and the set of all imputations of the game v ∈ GN is
denoted by

I(v) =

{
x ∈Rn | ∑

i∈N
xi = v(N), xi ≥ v(i) ∀i ∈ N

}
. (14.14)

Definition 14.3. The core of the game is a set-valued solution, which is defined by

C(v) =

{
x ∈ Rn | ∑

i∈N
xi = v(N), ∑

i∈S

xi ≥ v(S), ∀S ⊆ N

}
(14.15)

for a game v ∈ GN .

If we define the excess of the coalition S with respect to x by

e(S;x) = v(S)−∑
i∈S

xi, (14.16)

the core can be rewritten as follows:

C(v) = {x ∈ Rn | e(N;x) = 0, e(S;x)≤ 0 ∀S ⊆ N}. (14.17)
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It is clear that the core is a convex polyhedron, since it is represented by a linear
equation and 2n−2 linear inequalities. In general, unfortunately, the core of a game
may be empty. Hence some extended solution concepts such as the ε-core and the
least core were proposed. Moreover, the lexicographic minimization of the excesses
leads to the solution concept “nucleolus.”

Definition 14.4. A game which has a nonempty core is called balanced.

Actually balancedness is specified by introducing an optimization problem for
checking the emptiness of the core and its dual problem.

Another interpretation of the core is given by dominance of imputations. Let
v ∈ GN , x,y ∈ I(v) and S ⊆ N. We say that x dominates y through coalition S, and
denote it by x domS y if

1. xi > yi for all i ∈ S.
2. ∑

i∈S

xi ≤ v(S).

Moreover, we say that x dominates y, and denote it by x dom y if there exists S⊆ N
such that x domS y.

Definition 14.5. For a game v ∈ GN , its dominance core is defined by

DC(v) = {x ∈ I(v) | � ∃y ∈ I(v) : y dom x}. (14.18)

Proposition 14.1. For a game v ∈ GN, the following relationship holds:

C(v)⊆ DC(v). (14.19)

Moreover, if the game v is superadditive, the equality holds in the above relationship.

The most famous solution in the latter type is the Shapley value, which is a point-
valued solution. Let π be a permutation of the player set N, where all the players
are arranged in a line and Player i has the π(i)th position. Denote by Π(N) the set
of all permutation on N. Now let

P(π , i) = { j ∈ N | π( j) < π( j)}, (14.20)

Then the marginal contribution of i in the order π is defined by

mπ
i (v) = v(P(π , i)∪ i)− v(P(π , i)). (14.21)

The marginal vector is mπ(v) = (mπ
1 (v),mπ

2 (v), . . . ,mπ
n (v))� ∈Rn. Thus the Shapley

value is defined as follows:

Definition 14.6. The Shapley value φ(v) ∈ Rn for a game v ∈ GN is defined by

φ(v) =
1
n! ∑

π∈Π(N)
mπ(v). (14.22)
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Another equivalent definition of the Shapley value is

φi(v) = ∑
T⊆N,T*i

(|T |−1)!(n−|T|)!
n!

(v(T )− v(T \ i)). (14.23)

If we use the Harsanyi dividends, the Shapley value can be represented as

φ(v) = ∑
T⊆N,T �= /0

ΔT (v)
|T | . (14.24)

The Shapley value is not generally contained in the core. It is known well that in
convex games this is the case.

14.3 Core Solutions in Vector-Valued Games

14.3.1 Vector-Valued Cooperative Games

In this section we deal with vector-valued cooperative games which are straight-
forward extensions of ordinary cooperative games. In these games, the worth of a
coalition is given by a (finite dimensional) vector rather than by a scalar. Fernández
et al. [6] defined them and analyzed core solution concepts. Thus the results in this
section are based on their article, though some notations are different.

As in Sect. 11.2, let N = {1,2, . . . ,n} be a set of players. Now a characteristic
function v takes values in Rm not in R. Here we assume that v( /0) = 0 ∈ Rm. Since
we fix N in this paper, we regard v as a game and denote by vGN the family of all
the vector-valued cooperative games.

If a vector-valued game is played under the grand coalition N, the grand worth
v(N) ∈ Rm will be allocated among all the players. The payoff allocated to Player i
is also a vector in Rm, which is denoted by

xi = (xi
1,x

i
2, . . . ,x

i
m)�. (14.25)

Since each payoff xi is a vector in Rm, the allocation in a vector-valued game is
represented by an m× n matrix

X = (x1 x2 · · · xn) =

⎛
⎜⎜⎜⎝

x1
1 x2

1 · · · xn
1

x1
2 x2

2 · · · xn
2

...
...

. . .
...

x1
m x2

m · · · xn
m

⎞
⎟⎟⎟⎠ . (14.26)

For X ∈Rm×n, let
xS =∑

i∈S

xi ∈Rm.

This sum is the overall payoff obtained by coalition S.
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Let Rm be the m dimensional real space and Rm
+ the nonnegative orthant

in Rm, i.e.,

R
m
+ = {x = (x1, . . . ,xp)� ∈ Rm | xi ≥ 0, i = 1, . . . , p}.

For two vectors x = (x1,x2, . . . ,xm)� and y = (y1,y2, . . . ,ym)� in Rm we define
the following inequalities

x ≤ y ⇐⇒ xi ≤ yi, ∀i = 1,2, . . . ,m
x & y ⇐⇒ x ≤ y and x �= y
x < y ⇐⇒ xi < yi, ∀i = 1,2, . . . ,m

(14.27)

Now we consider scalarization by a weight vector in dealing with vector-valued
games. Let

W ⊆
{

w ∈ Rm
+ |

m

∑
i=1

wi = 1

}
(14.28)

be a set of weight vectors, which is assumed to be a closed polyhedron with a
nonempty interior. For two vectors x,y ∈ Rm, we say that:

• x is at least as preferred as y according to the information set W :

x ≥W y ⇐⇒ w�x ≥ w�y, ∀w ∈W

• x is not worse than y according to the information set W :

x'W y ⇐⇒ ∃w ∈W : w�x ≥ w�y.

Definition 14.7. Let v ∈ vGN and w ∈W . The w-weighted game is the scalar game
vw ∈GN whose characteristic function is given by vw(S)= w�v(S) for each coalition
S⊆ N.

Let

I∗(v) =

{
X = (x1 x2 · · · xn) ∈ Rm×n | xN = ∑

i∈N
xi = v(N)

}
(14.29)

be the set of efficient allocations.

14.3.2 Solution Concepts with Weak Ordering

In this subsection we introduce the core based on the weak ordering 'W . An
allocation is considered not to be acceptable if it does not satisfy the following
individual rationality.
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Definition 14.8. An allocation X ∈ I∗(v) of the game v ∈ vGN is a generalized
imputation or simply an imputation if

xi 'W v(i), ∀i ∈ N. (14.30)

The set of all imputations of v is denoted by I(v;'W ).

The collective rationality is represented by the following dominance concept.

Definition 14.9. Let X ,Y ∈ Rm×n and let S ⊆ N be a coalition. Y dominates X
through S, according to &W , if

yS ≥W xS and yS &W v(S). (14.31)

This relation is denoted by Y dom'W ,S X .

Definition 14.10. An imputation X ∈ I(v;'W ) of the vector-valued game v ∈ vGN

is said to be nondominated if for any coalition S ⊆ N, there does not exist
an imputation Y ∈ I(v;'W ) such that Y dom'W ,S X . The set of nondominated
imputations is denoted by

NDI(v;'W ) = {X ∈ I(v;'W ) | � ∃S⊆ N,Y ∈ I(v;'W ) : Y dom'W ,SX}. (14.32)

A refinement of nondominated imputations is given as follows.

Definition 14.11. An imputation X ∈ I(v;'W ) of the vector-valued game v ∈ vGN

is said to be nondominated by allocations if for any coalition S ⊆ N, there does
not exist an imputation Y ∈ I∗(v) such that Y dom'W ,S X . The set of nondominated
imputations is denoted by

NDIA(v;'W ) = {X ∈ I(v;'W ) | � ∃S ⊆ N,Y ∈ I∗(v) : Y dom'W ,SX}. (14.33)

Since I(v;'W )⊆ I∗(v), it is clear that

NDIA(v;'W )⊆ NDI(v;'W ). (14.34)

Although these two sets are different in general, they may coincide under mild
conditions.

Now we provide the definition of the core.

Definition 14.12. The core of the vector-valued game v ∈ vGN is defined as the
set of allocations such that xS is not dominated by v(S) for every coalition S and is
denoted by

C(v;'W ) = {X ∈ I∗(v) | xS 'W v(S), ∀S ⊆ N}. (14.35)

The core can be characterized alternatively by the dominance concept as in the
following theorem.
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Theorem 14.1. For the vector-valued game v ∈ vGN, the following equality holds:

C(v;'W ) = {X ∈ I(v;'W ) | � ∃S ⊆ N,Y ∈ I∗(v) : v(S)≥W yS 'W xS}. (14.36)

Corollary 14.1. For the vector-valued game v ∈ vGN, the following equality holds:

NDIA(v;'W )⊆C(v;'W ). (14.37)

A sufficient condition for the core to be nonempty is given as follows:

Theorem 14.2. If the w-weighted game vw for a vector-valued game v ∈ vGN is
balanced for some w ∈ int W, then C(v;'W ) �= /0.

14.3.3 Solution Concepts with Strong Ordering

In this subsection we explain the case where the ordering is the stronger one.

Definition 14.13. An allocation X ∈ I∗(v) of the game v ∈ vGN is a preference
imputation if

xi ≥W v(i), ∀i ∈ N. (14.38)

The set of all preference imputations in v will be denoted by I(v;≥W ).

It is worth noting that
I(v;≥W )⊆ I(v;'W ). (14.39)

Definition 14.14. Let X ,Y ∈ Rm×n and let S ⊆ N be a coalition. Y dominates X
individually through S, according to ≥W , if

yi ≥W xi ∀i ∈ S and yS &W v(S). (14.40)

This relation is denoted by Y domi≥W ,S X . Y dominates X through S according to
≥W if

yS ≥W xS and yS ≤W v(S). (14.41)

This relation is denoted by Y dom≥W ,S X .

Theorem 14.3. Let X be an allocation of the game v ∈ vGN. The following
statements are equivalent:

(a) ∃Y ∈ I∗(v) such that Y domi≥W ,S X.
(b) ∃Y ∈ I∗(v) such that Y dom≥W ,S X.
(c) xS ≤W v(S).

Definition 14.15. A preference imputation X ∈ I(v;≥W ) of the vector-valued game
v ∈ vGN is said to be nondominated if no coalition S ⊆ N can find another
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imputation Y ∈ I(v;≥W ) such that Y dom≥W ,S X . The set of preference imputations
is denoted by

NDI(v;≥W ) = {X ∈ I(v;≥W ) | � ∃S⊆ N,Y ∈ I(v;≥W ) : Y dom≥W ,SX}. (14.42)

Let WE be the m× p matrix whose columns are the extreme points w1,w2, . . . ,wp

of W . The wj-weighted game vw j ∈GN is called the W -component game of v∈ vGN .

Theorem 14.4. If the rows of W�
E X ∈ Rp×n are nondominated imputations of the

scalar W-component games of v ∈ vGN, then X ∈ NDI(v;≥W ).

A refinement of nondominated preference imputations is given as follows.

Definition 14.16. A preference imputation X ∈ I(v;≥W ) of the vector-valued game
v ∈ vGN is said to be nondominated by allocations if no coalition S ⊆ N can find
another allocation Y ∈ I∗(v) such that Y dom≥W ,S X . The set of nondominated
preference imputations is denoted by

NDIA(v;≥W ) = {X ∈ I(v;≥W ) | � ∃S ⊆ N,Y ∈ I∗(v) : Y dom≥W ,SX}. (14.43)

Notice that
NDIA(v;≥W )⊆ NDI(v;≥W ). (14.44)

Definition 14.17. The preference core of a vector-valued game v ∈ vGN is the set
of allocations X ∈ I∗(v) such that

xS ≥S v(S), ∀S ⊆ N. (14.45)

We will denote this set as C(v;≥W ).

Theorem 14.5. The following equality holds:

C(v;≥W ) = {X ∈ I(v;'W ) | � ∃S ⊆ N,Y ∈ I∗(v) : v(S)'W yS ≥W xS}. (14.46)

A necessary and sufficient condition for the non-emptiness of the preference core
is given as follows.

Theorem 14.6. Let v be a vector-valued game. A necessary and sufficient condition
for C(v;≥W ) being nonempty is that the p scalar weighted game vw j , j = 1,2, . . . , p
are balanced.

Finally we provide relationships between two cores and the set of preference
imputations nondominated by allocations.

Theorem 14.7. The following relationship holds:

C(v;≥W )⊆ NDIA(v;≥W ). (14.47)
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Theorem 14.8. The following relationship holds:

NDIA(v;≥W ) = C(v;'W )∩ I(v;≥W ). (14.48)

14.4 Partially Ordered Cooperative Games

14.4.1 Partially Ordered Cooperative Games

In the former section we explained cooperative games whose characteristic function
takes values in Rm. In this section we deal with more general games whose
characteristic function takes values in partially ordered linear space. The results in
this section are based on Puerto et al. [17].

Let Q be a linear space over the real field R. We assume that there exists a partial
order≥which satisfies reflexivity and transitivity, but not necessarily antisymmetry,
defined on Q. We represent by > the corresponding strict partial order and by ∼ the
indifference relation. We require to this partial order a denseness condition:

y �≥ x =⇒ ∃z ∈ Q,x �≤ z > y, ∀x �= y ∈ Q. (14.49)

A partially ordered cooperative game (N,v) is a pair of a set N = {1,2, . . . ,n} of
players and a map v : 2N → Q such that v( /0) = 0, where 0 is the null vector in Q.
Since N is fixed in this chapter, this game is simply denoted by v in this section
and the set of all those games is denoted by pGN . It is worth noting that ordinary
cooperative games, vector-valued cooperative games (Fernández et al. [6], also the
previous section) and stochastic cooperative games (Fernández et al. [7] and Suijs
et al. [19]) are particular cases of this formulation, just considering Q = R with the
standard ordering ≥, Q = Rm with the component-wise order, and Q = L1(R) with
the stochastic dominance order, respectively.

Each allocation for partially ordered games is represented as

X = (x1,x2, . . . ,xn) ∈ Qn, (14.50)

where xi ∈Q (i = 1,2, . . . ,n) stands for the payoff of Player i. The set of allocations
which satisfy the efficiency principle is denoted by

I∗(v) =

{
X ∈ Qn | xN = ∑

i∈N
xi ∼ v(N)

}
. (14.51)
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14.4.2 Core Solutions

The set of all allocations that fulfils the property that xi is not worse than the worth
v(i) is called imputation set of the game v ∈ pGN and is denoted by I(v), i.e.,

I(v) = {X ∈ I∗(v) | xi �≤ v(i), ∀i ∈ N} (14.52)

Imposing the collective rationality to imputations leads to the following defini-
tion of the core.

Definition 14.18. The core of the partially ordered game v ∈ pGN is defined as the
set of allocations such that xS = ∑i∈S xi is at least as preferred as v(S) for every
coalition S and is denoted by

C(v;≥) = {X ∈ I∗(v) | xS ≥ v(S), ∀S ⊆ N}. (14.53)

In order to characterize the core we introduce the coalition dominance.

Definition 14.19. Let v ∈ pGN , X ,Y ∈ I∗(v) and S ⊆ N. Y dominates X through S
according to �≤ and we will denote Y dom �≤,SX if yS > xS and v(S) �≤ yS.

Definition 14.20. An imputation X ∈ I(v) of the game v ∈ pGN is nondominated
by allocations if for any coalition S ⊆ N it does not exist an allocation Y ∈ I∗(v)
such that Y dom �≤,SX . This set is given by

NDIA(v; �≤) = {X ∈ I(v) | � ∃S ⊆ N,Y ∈ I∗(v),Y �∼ X : Y dom�≤,S X}. (14.54)

Theorem 14.9. The following relationship holds:

NDIA(v; �≤) = C(v;≥). (14.55)

Now we consider a sufficient condition for non-emptiness of the core. Let u be a
function u : Q→ R satisfying

x≥ y =⇒ u(x)≥ u(y), ∀x,y ∈ Q. (14.56)

Let
C(vu) = {X ∈ I∗(v) | u(v(S))≤ u(xS), ∀S ⊆ N}. (14.57)

Theorem 14.10. The following relationship holds:

C(v, �≤)⊆C(vu). (14.58)

Moreover, if we assume that the partial order≥ is defined by a family U of functions
in the sense that

x≥ y ⇐⇒ u(x)≥ u(y), ∀u ∈U, (14.59)
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then
C(v; �≤) =

⋂
u∈U

C(vu). (14.60)

This result is a generalization of that in vector-valued games.
Analogous to the concept for ordinary cooperative games, convexity of the

partially ordered game v∈ pGN can be defined in terms of the marginal contribution
di of Player i, which is defined as

di(S) =
{

v(S∪ i)− v(S) if i ∈ S,

v(S)− v(S \ i) otherwise.
(14.61)

Definition 14.21. A partially ordered game v ∈ pGN is said to be ≥-convex if, for
any S ⊆ T ⊆ N,

di(T )≥ di(S), ∀i ∈ N. (14.62)

Theorem 14.11. If a partially ordered game v ∈ pGN is ≥-convex, then
C(v;≥) �= /0.

14.4.3 The Extended Shapley Value

Now in this subsection we consider the extended Shapley value for partially ordered
games.

Definition 14.22. The extended Shapley value of a partially ordered game v∈ pGN

is defined as

φi(v)∼ ∑
T⊆N,T*i

(|T |−1)!(n−|T|)!
n!

(v(T )− v(T \ i)), i = 1,2, . . . ,n. (14.63)

Puerto et al. [17] characterized the extended Shapley value in terms of the
extended potential. They also gave the axiomatic characterization of the extended
Shapley value.

Axioms. Let ϕ be a value. A1. Dummy player.

∑
i∈S

ϕi(v)∼ v(S) (14.64)

for any S such that v(S) = v(S∩T ) for all T ⊆ N.

A2. Symmetry. For any permutation π ∈Π(N) and i ∈ N,

ϕπ(v)(πv)∼ ϕi(v), (14.65)

where the game πv means the game defined by πv({π(i1), . . . ,π(is)}) =
v({i1, . . . , is}).
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A3. Linear-Continuity. Let (uk)k∈N be a sequence of partially ordered cooperative
games. Then

ϕi

(
∑
k∈N

uk

)
= ∑

k∈N
ϕi(uk). (14.66)

Theorem 14.12. The extended Shapley value φ is the unique value defined on all
the partially ordered cooperative games satisfying Axioms A1, A2 and A3.

14.5 Core Solutions in Set-Valued Games

14.5.1 Set-Valued Games and Core Concepts

More general forms of vector-values games have been investigated by several
researchers. In those games the worth of each coalition is given by a set, not by
a vector, in Rm. In this section, we explain some results obtained by Fernández
et al. [9] concerning the core concepts in set-valued games. A set-valued game is
a pair (N,V ) or simply V , where N = {1,2, . . . ,n} is the set of players and V is
a set-valued map which assigns to each coalition S ⊆ N a subset V (S) ⊆ Rm, the
characteristic set of coalitions S, such that V ( /0) = {0}. If every V (S) is a singleton,
the set-valued game reduces to a vector-valued game and hence it is a generalization
of a vector-valued game. The set of set-valued games on N is denoted by sGN . Some
examples of set-valued games are given in Fernández et al. [9] and we deal with
multiobjective linear production games and multiobjective minimum cost spanning
tree games later. Another approach by Tanino et al. [20] will be introduced in the
next section, together with additional studies on restrictions on coalitions.

As before, for two vectors x = (x1,x2, . . . ,xm)� and y = (y1,y2, . . . ,ym)� in Rm

we define the following inequalities

x ≤ y ⇐⇒ xi ≤ yi, ∀i = 1,2, . . . ,m
x & y ⇐⇒ x ≤ y and x �= y
x < y ⇐⇒ xi < yi, ∀i = 1,2, . . . ,m

(14.67)

For D⊆ Rm and the nonnegative orthant Rm
+, let

D− = D−Rm
−, D+ = D+Rm

+. (14.68)

Given a set-valued game V ∈ sGN and an m× n payoff matrix X (the meaning
is the same as that in a vector-valued game), to simplify the presentation in the
following, xS �&V (S) means xS �& y, ∀y ∈V (S), that is there does not exist y ∈V (S)
such that xS & y. Analogously xS ≥V (S) means xS ≥ y, ∀y ∈V (S).

Now a profit matrix X is said to be an allocation of the set-valued game V ∈ sGN

if xN = ∑i∈N xi ∈ V (N). The set of the allocations of V is denoted by I∗(V ). Two
types of cores can be defined as follows.
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Definition 14.23. The dominance core of a set-valued game V ∈ sGN is the set

C(V ; �&) = {X ∈ I∗(V ) | xS �&V (S), ∀S ⊆ N}. (14.69)

Definition 14.24. The preference core of a set-valued game V ∈ sGN is the set

C(V ;≥) = {X ∈ I∗(V ) | xS ≥V (S), ∀S ⊆ N}. (14.70)

It is obvious from the definitions that

C(V ;≥)⊆C(V ; �&). (14.71)

Definition 14.25. Let us consider two payoff matrices X ,Y ∈ Rm×n and a coali-
tion S⊆ N.

• Y dominates X through S according to �&, and we will denote Y domS,�& X , if

yS �& xS, yS �= xS, yS ∈ [V (S)]−. (14.72)

• Y dominates X through S according to ≥, and we will denote Y domS,' X , if

yS ≥ xS, yS �= xS, yS ∈ [V (S)]−. (14.73)

Definition 14.26. Two types of the set of non-dominated imputations are defined
as follows:

• NDA(V ; �&) = {X ∈ I∗(V ) | � ∃S ⊆ N,Y ∈ I∗(V ) : Y domS,�&X}.
• NDA(V ;≥) = {X ∈ I∗(V ) | � ∃S ⊆ N,Y ∈ I∗(V ) : Y domS,'X}.

The following theorem shows that both cores are the sets of nondominated
allocations.

Theorem 14.13. The core sets hold the following properties:

(a) C(V ;≥) = NDA(V ; �&)
(b) C(V ; �&) = NDA(V ;≥)

14.5.2 Existence Theorems

Now we give conditions that ensure non-emptiness of two types of cores. Let

W =

{
w ∈ Rm | wj > 0, j = 1, . . . ,m,

m

∑
j=1

wk = 1

}
. (14.74)
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For a set-valued game V ∈ cGN , we define the scalar game vw ∈ GN as

vw( /0) = 0, vw(S) = max
y∈[V (S)]−

w�y. (14.75)

The following theorem provides a sufficient condition for the non-emptiness of
the dominance core.

Theorem 14.14. The core C(V ; �&) of the set-valued game V ∈ sGN is nonempty if
and only if there exists w ∈W such that the scalar game vw ∈GN is balanced and it
satisfies vw(N) �= 0.

Associated with a coalition S in the set-valued game V ∈ sGN , we consider m
different scalar optimization problems:

(PS( j))
maximize y j

subject to y ∈ [V (S)]−.
(14.76)

Let us denote by z∗(S, j) the optimal value of the above problem and by z∗(S)
the m-dimensional vector z∗(S) = (z∗(S,1),z∗(S,2), . . . ,z∗(S,m))�. Notice that for
a fixed coalition S if an allocation X of the set-valued game V ∈ sGN satisfies
xS ≥V (S) then xS ≥ z∗(S) and conversely.

For each z = (z1,z2, . . . ,zm)� ∈V (N), we introduce the scalar j-component game
vz

j defined as follows:

vz
j( /0) = 0, vz

j(S) = z∗(S, j),∀S ⊆ N, vz
j(N) = z j. (14.77)

A necessary and sufficient condition for the non-emptiness of the preference core
is given in the next theorem.

Theorem 14.15. The preference core C(V ;≥) of the set-valued game V ∈ sGN is
nonempty if and only if there exists at least one z ∈ V (N) such that all the scalar
j-component games vz

j are balanced.

14.6 Multiobjective Games with Restrictions on Coalitions

In this section, we consider a multiobjective cooperative game with restrictions
on coalitions. We define the restricted game of the original game and discuss its
properties, namely inheritance of superadditivity and convexity. We also study the
core of the restricted game. The results in this section are based on Tanino [21].
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14.6.1 Maximum and Minimum of a Set in Rm

Let Rm be the m dimensional real space and Rm
+ the nonnegative orthant in Rm, i.e.,

R
m
+ = {x = (x1, . . . ,xp) ∈Rm | xi ≥ 0, i = 1, . . . , p}.

We define the sets Y+,Y++,Y−, and Y−− for a set Y ⊆ Rm as follows:

Y+ = Y +Rm
+, Y++ = Y +(Rm

+ \ {0})
Y− = Y −Rm

+, Y−− = Y − (Rm
+ \ {0}),

where (0, . . . ,0)� ∈ Rm is also denoted by 0. In terms of these notations, we can
define the minimum and maximum of a set in Rm as follows.

Definition 14.27. For a set Y ⊆ R
m, the minimum and maximum of Y are

defined by

Min Y = {y ∈Y | (Y − y)∩ (−Rm
+) = {0}}= Y \Y++

Max Y = {y ∈Y | (Y − y)∩Rm
+ = {0}}= Y \Y−−,

respectively.

A particular type of sets in Rm satisfies the condition that the minimum or the
maximum of a set coincides with the set itself.

Definition 14.28. A set Y ⊆Rm is said to be thin (with respect to Rm
+) if one of the

following equivalent conditions is satisfied:

1) Y = Min Y
2) Y = Max Y
3) Y+ \Y = Y++

4) Y− \Y = Y−−

Remark 14.1. For any Y ⊆ Rm, the sets Min Y and Max Y are obviously thin with
respect to Rm

+.

14.6.2 Multiobjective Cooperative Games

A multiobjective cooperative game is specified by a subset of Rm [9, 14, 20] and
therefore it is a set-valued game. Thus a multiobjective cooperative game (MO-
game for short) is a pair (N,V ), where V is a set-valued mapping from 2N to Rm, i.e.
V (S)⊆ Rm for any S ⊆ N. We assume that V ( /0) = {0} and that V (S) is nonempty,
compact and thin for any S ⊆ N throughout this section. Thus a multiobjective
cooperative game is the same as a set-valued game except these assumptions.



534 T. Tanino

The second condition implies that the multidimensional worth V (S) of S is Pareto
efficient in the MO-game. Namely there is no Pareto ordering between two points
in V (S). If y is contained in V (S)−, then it should not be contained in V (S).

In practical situations a number of important cooperative games arise from
optimization problems (See Curiel [4] and Borm [3] for example). Those optimiza-
tion problems are linear production programming problems, assignment problems,
minimum cost spanning tree problems, and so on. They can be extended to multi-
objective problems and therefore we can obtain multiobjective cooperative games
arising from them. For example, Nishizaki and Sakawa discussed multiobjective
linear production programming games in detail [13]. Since solving a multiobjective
optimization problem leads to the Pareto efficient set in the objective space, which
is regarded as the worth in a multiobjective cooperative game, it is quite natural that
this set is thin.

Definition 14.29. An MO-game (N,V ) is said to be superadditive if

V (S)+V(T )⊆V (S∪T )−, for all S,T ⊆ N, S∩T = /0.

Remark 14.2. From the above definition, if an MO-game (N,V ) is superadditive,
then for any Sk ⊆ N (k ∈ K) such that Sk ∩ Sk′ = /0 for k �= k′, ∑k∈K V (Sk) ⊆
V (

⋃
k∈K Sk)−.

Definition 14.30. An MO-game (N,V ) is said to be convex if

V (S)+V(T )⊆ [V (S∪T )+V(S∩T )]−, for all S,T ⊆ N.

It is obvious that convexity is a stronger requirement than superadditiveity.

14.6.3 Restricted Multiobjective Cooperative Games by Partition
Systems

In fundamental cooperative games and also in MO-games, it is assumed that an
arbitrary subset S of N can form a coalition, i.e., every S is feasible or admissible.
In practical situations, however, this assumption is not necessarily valid. Some
coalitions may not be feasible because of physical or ideological reasons. Those
situations are dealt with by introducing the concept of feasible coalition system [1].
A set system is a pair (N,F ), with F ⊆ 2N . The sets belonging to F are
called feasible coalitions. For any S ⊆ N, maximal feasible subsets of S are called
components of S. In many cases we impose appropriate combinatorial structures
on (N,F ).

Definition 14.31 ([1]). A partition system is a set system satisfying

(i) /0 ∈F , and {i} ∈F for every i ∈ N
(ii) for all S ⊆ N, the components of S, denoted by ΠF (S) = {T1, . . .Tl} form a

partition of S
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Proposition 14.2 ([1]). A set system (N,F ) which satisfies the first condition of
the above definition is a partition system if and only if S,T ∈F and S∩T �= /0 imply
S∪T ∈F .

A typical example of a partition system is the communication structure by
Myerson [12] or Slikker and van den Nouweland [18].

Definition 14.32. Let (N,V ) be an MO-game and let (N,F ) be a partition system.
The F -restricted game (N,V F ), is defined by

V F (S) = Max ∑
T∈ΠF (S)

V (T ),

where ΠF (S) is the collection of the components of S⊆ N.

Remark 14.3. Since V (T ) is compact for any T ⊆ N, V F (S) is also compact and
thin. If S ∈F , then ΠF (S) = {S} and hence V F (S) = V (S).

Lemma 14.1. Let (N,F ) be a partition system, S,T ⊆ N with S∩T = /0,

ΠF (S) = {Sk}k∈K , ΠF (T ) = {Tl}l∈L, andΠF (S∪T ) = {Um}m∈M.

Then {Sk}k∈K ∪{Tl}l∈L is a subpartition of {Um}m∈M.

Due to this lemma we can prove the following theorem which shows the
inheritance of superadditivity of the original game to the F -restricted game.

Theorem 14.16. Let (N,V ) be a superadditive MO-game and (N,F ) be a partition
system. Then the F -restricted game (N,V F ) is also superadditive.

14.6.4 Inheritance of Convexity

In this section we consider a more special type of feasible coalition systems called
intersecting systems, and prove the inheritance of convexity to the restricted games
by intersecting systems.

Definition 14.33. A partition system (N,F ) is called an intersecting system if for
all S,T ∈F with S∩T �= /0 we have S∩T ∈F .

Remark 14.4. In Bilbao [1], a set system (N,F ) is called an intersecting family if
for all S,T ∈F with S∩T �= /0 we have S∩T ∈F and S∪T ∈F . Therefore an
intersecting system is an intersecting family satisfying the first condition, /0 ∈ F
and {i} ∈F , of the partition system.

Theorem 14.17. Let (N,V ) be a convex MO-game and (N,F ) be an intersecting
system. Then the restricted game (N,V F ) is also convex.
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14.6.5 The Core of Restricted Games

In a cooperative game, an allocation scheme of the profit among the players is
regarded as a solution of the game. For an MO-game, this allocation is described
by an m×n matrix X = (x1 . . . xn), where each xi (i = 1, . . . ,n) is an m dimensional
vector representing a payoff vector received by player i.

The core is a fundamental solution concept not only in cooperative games, but
also in MO-games [9,13,20]. It is characterized by two types of requirements: group
rationality and coalition rationality.

Definition 14.34. The core of an MO-game (N,V ) is defined by

C(V ) =

{
x ∈Rm×n | ∑

i∈N
xi ∈V (N), ∑

i∈S

xi ∈V (S)+ for all S ⊆ N

}
. (14.78)

Then we can obtain the following characterization of the core of the F -restricted
game for a partition system (N,F ).

Theorem 14.18. Let (N,V ) be an MO-game and let (N,F ) be a partition system
such that V (N) = V F (N), which is true when N ∈F . Then

C(V F )⊆
{

x ∈ Rnm | ∑
i∈N

xi ∈V (N),∑
i∈S

xi ∈V (S)+ for all S ∈F

}

Moreover, if ∑T∈ΠF (S)V (T ) is thin for any S ⊆ N, then the equality holds in the
above relation, and therefore C(V )⊆C(V F ).

14.7 Multiobjective Linear Production Games

14.7.1 Linear Production Games

This section is devoted to linear production (programming) games studied by
Nishizaki and Sakawa [13, 14].

A linear production programming problem is a typical example of linear
programming problems. A factory produces p types of products using r kinds of
resources (materials). In order to produce one unit of the ith product, a ji units of
the jth resource is required. The total amount of the available jth resource is b j

( j = 1,2, . . . ,r). Each unit of the ith product brings the profit ci. Now the factory
plans to produce xi units of the ith product so that the total profit is maximized
under the constraints of the available resources. This problem can be formulated as
a linear programming problem
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maximize c�x
subject to Ax≤ b

x≥ 0
(14.79)

where x = (x1,x2, . . . ,xp)� is the production vector, c = (c1,c2, . . . ,cp)� is the profit
coefficient vector, and b = (b1,b2, . . . ,br)� is the resource amount vector. The r× p
matrix A = (ai j) is the resource-product matrix.

A cooperative game can be derived from this problem (Owen [15]). Now suppose
that there are n factories and the resource-product matrix is common to all the
players. Each factory k has the amount b(k) of the resource. Therefore, if some
set of the factories S ⊆ N = {1,2, . . . ,n} cooperates, then the total amount of the
resource is

b(S) = ∑
k∈S

b(k) (14.80)

and this coalition get the profit

maximize c�x
subject to Ax≤ b(S)

x ≥ 0.

(14.81)

Thus we can define a cooperative game by regarding the optimal value of the above
problem as the worth v(S) of S. This game is called the linear production game. It
has a nice property as in the following proposition.

Proposition 14.3. A linear production game is totally balanced.

14.7.2 Multiobjective Linear Production Games

Nishizaki and Sakawa extended linear production games to multiobjective linear
production (programming) games [13] (See also Fernándes et al. [5]). In this
case the profit is measured by m criteria c�1 x, c�2 x, . . . ,c�mx. Thus we define a
multiobjective linear production programming problem

maximize Cx
subject to Ax≤ b(S)

x≥ 0
(14.82)

with the m× p matrix

C =

⎛
⎜⎜⎜⎝

c11 c12 . . . c1p

c21 c22 . . . c2p
...

...
. . .

...
cm1 cm2 . . . cmp

⎞
⎟⎟⎟⎠ . (14.83)
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Let
T (S) = {Cx | Ax ≤ b(S), x ≥ 0} (14.84)

and
V (S) = (Max T (S)−Rm

+)∩Rm
+. (14.85)

Nishizaki and Sakawa called it a multiobjective linear production (programming)
game V .

They defined the set of payoff vectors satisfying the individual rationality as

IR(V) = {X ∈Rm×n | xi �∈V (i)\Max V (i), ∀i ∈ N} (14.86)

and the set of payoff vectors satisfying the collective rationality as

GR(V ) = {X ∈ Rm×n | xN ∈Max V (N)}, (14.87)

where xN = ∑i∈N xi. The set of all imputations, which is a set of payoff vectors
satisfying both the individual rationality and the collective rationality, is defined as

I(V ) = {X ∈ Rm×n
+ | X ∈ IR(V )∩GR(V )} (14.88)

For S⊆ N and X ,Y ∈ I(V ), we say that X dominates Y through S if xi > yi for all
i∈ S and xS ∈V (S). Let X domS Y denote that X dominates Y through S. We say that
X dominates Y if there is any coalition S ⊆ N such that X domS Y. The dominance
core of V is defined by

DC(V ) = {X ∈ I(V ) | � ∃S ⊆ N,Y ∈ I(V ) : Y domSX}. (14.89)

The stable set is defined by

SO(V) = {X ∈ GR(V ) | xS �∈V (S)\Max V (S), ∀S ⊆ N} (14.90)

Now some properties of the multiobjective linear production game will be
explained according to Nishizaki and Sakawa [13, 14].

Theorem 14.19. The multiobjective linear production game V has superadditivity
property

V (S)+V(T )⊆V (S∪T ) for S,T ⊆ N,S∩T = /0. (14.91)

It follows from this theorem that DC(V ) = SO(V ) in the multiobjective linear
production game.

The concept of balancedness was defined by van den Nouweland et al. in multi-
commodity games. We apply this concept to the linear production game. A game is
said to be balanced if, for each balanced map λ : 2N → R+ such that

∑
S⊆N,S*i

λ (S) = 1, ∀i ∈ N, (14.92)
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we have

∑
S⊆N

λ (S)V(S)⊆V (N). (14.93)

Theorem 14.20. The multiobjective linear production game V is balanced.

14.7.3 Solutions of the Multiobjective Linear Production Games

In ordinary single-objective cooperative games, an excess function e(S;x) plays a
vital role in defining solution concepts such as the core, the least core and the
nucleolus. It can be extended to multiobjective games. It is proper for the excess
function E(S;X) to satisfy the following conditions:

(1) If X ,Y ∈Rm×n satisfy∑i∈S xi
k =∑i∈S yi

k for every k = 1,2, . . . ,m, then E(S,X)=
E(S;Y ).

(2) If X ,Y ∈Rm×n satisfy∑i∈S xi
k <∑i∈S yi

k for every k = 1,2, . . . ,m, then E(S,X)>
E(S;Y ).

(3) E(S;X) is jointly continuous with respect to X and V (S).

In Nishizaki and Sakawa [13, 14] four kinds of excess function were proposed.

1. Distance between a payoff vector xS = ∑i∈S xi and the set Max V (S)

E1(S;X) =

⎧⎨
⎩

min
y∈V (S)

max
k=1,...,m

(yk− xS
k) if xS �∈V (S)

max
y∈V (S)

min
k=1,...,m

(xS
k − vk) if xS ∈V (S)

= min
y∈V (S)

max
k=1,...,m

(yk− xS
k)

(14.94)
and equivalently

E1(S;X) = max{ε ∈ R | xS + εe ∈V (S)}, (14.95)

where e is m-dimensional vector every component of which is a unit
2. Distance between a payoff vector xS and an ideal point ŷS = ( max

y∈V (S)
y1, . . . ,

max
y∈V (S)

ym)� of V (S)

E2(S;X) = min
k=1,...,m

(ŷS
k − xS

k) (14.96)

3. Distance between a payoff vector xS and a hyperplane hS(z, ŷS) = 0, which is
constructed by assessing a reference point ŷS in Max V (S)

E3(S;X) = max{ε ∈ R | xS + εe ∈V
S}, (14.97)
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where V
S = {z ∈ Rm

+ | ∑k=1,...,m ŷS
kzk ≤ ∑k=1,...,m(ŷS

k)
2}. Equivalently, it can be

represented by

E3(S;X) =

m

∑
k=1

(ŷS
k)

2−
m

∑
k=1

xS
k ŷS

k

m

∑
k=1

ŷS
k

(14.98)

4. Distance based on the augmented Tchebyshev metric between a payoff vector xS

and a reference point ŷS in Max V (S)

E4(S;X) = min
k=1,...,m

(ŷk− xS
k)+α ∑

k=1,...,m

(ŷk− xS
k) (14.99)

Let E(S;X) be an excess function of S with respect to X . The core can be defined
by using the excess function as follows:

C(V ) = {X ∈GR(V ) | E(S;X)≤ 0, ∀S ⊆ N}. (14.100)

Furthermore, for a given set of payoff matrices X , we define the ε-core and the
least core over the set X in a general way:

Cε(V ) = {X ∈X | E(S;X)≤ ε, ∀S ⊆ N} (14.101)

LC(V ) = {X ∈X | maxS⊆N E(S;X)≤maxS⊆N E(S;Y ), ∀Y ∈X } . (14.102)

Nishizaki and Sakawa [13, 14] also defined the nucleolus as a set of payoff
matrices minimizing the excess function in lexicographic order in a manner similar
to the definition of the nucleolus in an ordinary cooperative game. For a given
payoff matrix X , we define the 2n-dimensional vector θ (X) as the vector whose
components are the excess E(S;X) of 2n subset S ⊆ N arranged in decreasing
order. Then, for a given set of payoff matrices X such as X = IR(V )∩GR(V )
or X = GR(V ), the nucleolus of multiobjective linear production game over the set
X can be defined as

N(V,X ) = {X ∈X | θ (X)≤L θ (Y ), ∀Y ∈X }, (14.103)

where ≤L means “smaller than or equal to” in lexicographic order. It can be proved
that N(V,X ) is not empty if E(S;X) is continuous jointly in X and V , and if X is
compact.

In Nishizaki and Sakawa [13, 14], these solution concepts are studied more in
detail for each excess function Ei(S;X) (i = 1,2,3,4).
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14.8 Multiobjective Minimum Cost Spanning Tree Games

14.8.1 Minimum Cost Spanning Tree Games

In this section we focus on minimum cost spanning tree games developed by
Fernández et al. [8].

Minimum cost spanning tree problems are fundamental optimization problems.
A minimum cost spanning tree situation (mcsts) is specified by (N0,C). Here N =
{1,2, . . . ,n} is a set of agents who are willing to connected as cheap as possible to
a source (supplier of a service) denoted by 0 and N0 = {0}∪N. On the other hand,
C = (ci j)i, j∈N0 is an (n + 1)× (n + 1) cost matrix, in which each element ci j ≥ 0,
cii = 0 is the cost of direct link between i and j for i, j ∈ N0. We should note that
each subset S ⊆ N induces the mcsts (S0,C).

A network T over N0 is a subset of {(i, j) | i, j ∈ N0, i �= j}. The elements of T
are called arcs. Each arc (i, j) is undirected, i.e., (i, j) = ( j, i) and ci j = c ji. The
network induced by T over S is given by TS = {(i, j) | i, j ∈ S}.

A spanning tree is a network such that there is a unique path from i to 0 for all
i ∈ N. A tree is represented as T = {(i0, i)}, where i0 is the first agent (or source) in
the unique path in T from i to 0.

The cost of a network T is given by c(N0,C,T ) =∑(i, j)∈T ci j = c(T ). A minimum
cost spanning tree (mt) for (N0,C) is a tree T such that

c(T ) = min{c(T ′) | T ′ is a spanning tree}. (14.104)

The cost associated with any mt T in (N0,C) is denoted by m(N0,C). The minimum
cost of an induced mcstp (S0,C) is denoted by m(S0,C). This is the minimal cost
of connecting all agents from S to the source 0, using only connections between
elements of S∪0. Bird [2] introduced the TU-game (N,vC) for each mcsts (N0,C) by

vC(S) = m(S0,C), S ⊆ N. (14.105)

On the other hand, as a milder version of the above case, the minimal cost ṽC(S)
is defined as the minimal cost of connecting all agents from S to the source 0 using a
tree that may include some nodes inhabited by the agents outside S. It is obvious that

ṽC(S)≤ vC(S). (14.106)

14.8.2 Multiobjective Minimum Cost Spanning Tree Games

Fernández et al. [8] dealt with a multiobjective minimum cost spanning tree game
(mmcst-game, for short) in which the set of agents is N = {1,2, . . . ,n} and the source
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is 0. The cost of each edge (i, j) is not a scalar, but a vector ci j = (c1
i j,c

2
i j, . . . ,c

m
i j)
�.

Thus we can define the set-valued game V as follows:

1. V ( /0) = {0}
2. For each nonempty coalition S ⊆ N,

V (S) = Min

{
∑

(i, j)∈T

ci j | T is a spanning tree for S0

}
(14.107)

where the spanning tree for S0 must contain S0 but it may also contain some
additional nodes. We should note that this game is not a ordinary profit game, but a
cost game.

In this section we explain the results by Fernández et al. [8]. As before, an
allocation consists of a matrix X = (x1,x2, . . . ,xn) ∈ Rm×n whose ith column
represents the payoffs of player i for each criteria. The sum xS =∑i∈S xi is the overall
cost allocated to the coalition S. The matrix X is an allocation of the game V if

xN = ∑
i∈N

xi ∈V (N). (14.108)

The set of all allocations of the game V is denoted by I∗(V ).

14.8.3 Core Concepts in Multiobjective Minimum Cost Spanning
Tree Games

It is reasonable to think that coalitions only accept allocations if they pay less than
any of the worths given by the characteristic set. We again denote by xS ≤V (S) that
xS ≤ y for all y ∈V (S). Since the game is a cost game we should rewritten the core
concepts.

Definition 14.35. The preference core of an mmcst-game V is the set

C(V ;≤) = {X ∈ I∗(V ) | xS ≤V (S), ∀S ⊆ N}. (14.109)

We also define the following m scalar games.

Definition 14.36. The scalar l-component minimum cost spanning tree game ( j =
1,2, . . . ,m) associated to z ∈ Rm is a game vz

j ∈ GN defined by

1. vz
l ( /0) = 0.

2. For each nonempty coalition S ⊆ N,

vz
l (S) = min{ ∑

(i, j)∈T

cl
i j | T is a spanning tree for S0}. (14.110)

3. vz
l (N) = zl .
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For each nonempty coalition S⊆N, vz(S) can be obtained by solving the problem

minimize yl

subject to y ∈V (S).
(14.111)

Notice that for a fixed coalition S, if an allocation X of the mmcst-game verifies
xS ≤ V (S) then xS ≤ z∗(S), where z∗(S) = (xz

1(S),vz
2(S), . . . ,vz

m(S))� denote the m-
dimensional vector whose components are, respectively, are the solutions of the
above problems. Conversely, if xS ≤ z∗(S) then xS ≤V (S).

A necessary and sufficient condition for the non-emptiness of the preference core
is given in the next theorem.

Theorem 14.21. The preference core of the mmcst-game is nonempty if and only
there exists at least one z ∈V (N) such that all the scalar l-component games vz

l are
balanced.

In scalar mcst-game there exists a simple rule called Bird rule (Bird [2]) to
allocate costs among the players. This rule can be extended to the mmcst-game by
allocating to each player the cost vector of the edge incident upon it on the unique
path between 0 and the player’s node, in the corresponding Pareto-minimum cost
spanning tree. Unfortunately, however, extended Bird’s cost allocation scheme is
not, in general, a way to obtain allocations in the preference core.

Now suppose that each coalition S will not accept to pay a total cost greater than
any of the guaranteed costs in V (S). This will be denoted by xS �' V (S) and means
that there does not exist y ∈V (S) such that xS ≥ y and xS �= y.

Definition 14.37. The dominance core of the mmcst-game V is the set

C(V ; �') = {X ∈ I∗(V ) | xS �'V (S), ∀S ⊆ N}. (14.112)

Bird’s cost allocation scheme always leads to an element in the scalar core. In
the following result shows that any vectorial Bird’s cost allocation belongs to the
dominance core.

Theorem 14.22. Let T be a Pareto-minimum cost spanning tree in the multiobjec-
tive minimum cost spanning tree problem. Then the corresponding vectorial Bird’s
cost allocation is in the dominance core.

Apart from Bird’s cost allocations, there are many other allocations in the
dominance core. In order to find a condition that permits to divide among the
players a total cost y ∈ V (N) accordingly with a given strictly increasing linear
utility function u, we will define the following scalar game vu ∈ GN

vu( /0) = 0, vu(S) = min
y∈V (S)

u(y), ∀S ⊆ N,S �= /0. (14.113)

Using Bird’s rule in the scalar game vu, we can construct dominance core allocations
for some y ∈V (N).
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let b = (b1,b2, . . . ,bn)� be the Bird’s allocation of the game vu. This vector
allows us to give a proportional allocation of y ∈V (N) in the dominance core.

Theorem 14.23. If vu(N) = u(y) for y ∈ V (N), then the proportional allocation
X = (x1 x2 . . . xn) defined by

xi =
bi

u(y)
, ∀i ∈ N (14.114)

belongs to the dominance core C(V ; �') of the mmcst-game V .

14.9 Conclusion

In this chapter we have surveyed several aspects of relationships between vector
optimization and cooperative games, mainly focusing on vector-valued or set-
valued cooperative games. In those games, the core is a main solution concept
and several studied have been made. We have also discussed two important classes
of multiobjective cooperative games, multiobjective linear production games and
multiobjective minimum cost spanning tree games.

Since multiobjective cooperative games are not so easy to deal with, there remain
several important problems which should be solved. As was explained in Sect. 14.2,
the Shapley value is also a very important solution concept in cooperative games.
However, this concept has not been fully studied in multiobjective cooperative
games (even in vector-valued games). In multi-criteria simple games, the Shapley–
Shubik index has been studied recently, for example, Monroy and Fernández
[10, 11], and therefore some new development concerning the Shapley value will
be expected in a few years. The concepts of the unanimity games and the dividends
have not been discussed either. Thus we should expect more and more effort in the
future in this field.
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strictly, 370, 375
convex, 369
lower semicontinuous, 369
proper, 369

Fuzzy sum rules, 152

Gâteaux differentiable function, 172,
231

Gâteaux derivative, 231
Game

w-weighted, 523
additive, 519
balanced, 521
convex, 519
monotonic, 519
nondominated vector-valued, 524
superadditive, 519
unanimity, 519

Generalized A -subconvexlike function, 174
Generalized efficient solution, 103
Geoffrion proper efficient points, 139
Greatest element, 63

Hadamard directional derivative, 53
Hemicontinuous function, 224

lower, 224
upper, 224

Hiriart-Urruty function, 115
Hypertangent cone, 217

Ideal Pareto minimal point, 478
Image of the Pareto solution set, 324
Image registration, 100
Indifference, 467
Infimal point, 347
Infimal set, 61, 68
Infimum, 63
Inner semicompact, 512
Inner semicontinuous, 512
Intensity-modulated radiation therapy (IMRT),

101
Intrinsic core point, 32
Invariant monotone, 247
Invariant pseudomonotone, 247
Invariant quasimonotone, 248
Invex function, 228
Invex set, 227
Ioffe approximate normal cone, 420
Ioffe approximate subdifferential, 419
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James theorem, 16

KKM map, 224
KKT conditions, 139
Krein-Rutman theorem, 18
Kuhn-Tucker proper efficient, 140
Kuratowski measure of noncompactness

for a set, 333

Least element, 63
Level-boundedness of a function, 357
Level-compactness of a function, 334
Lexicographical preference, 472
Limiting normals to moving sets, 490, 505
Linear openness, 476
Linear production games, 536
Lipschitz function, 237
Lipschitz-like, 476
LocalΘ -minimal point, 477
Local asymptotic closedness, 480
Local extremal point, 476
Local satiation, 472
Locally Lipschitz function, 217, 237
Lorentz cone, 105
Lower bound, 63
Lower G–semidifferentiable function, 209, 210
LP minimizing sequence, 331
LP well-posedness, 331

Magnetic resonance system, 22
Max-nondominated element, 98

strongly, 98
weakly, 98

Maximal element, 5, 6, 98
strongly, 98
weakly, 98

Merit function, 133
Metric regular, 428
Metric regularity, 476
Metrically regular relative, 428
Minimal element, 5, 6, 95, 98

Edgeworth-Pareto-, 5
properly, 9
strongly, 6, 98
weakly, 6, 98

Minimal point, 405
Minimal solution, 10, 99
Minimizer, 12
Minimum cost spanning tree games, 541
Minimum point, 12

feeble, 12
multifunction, 12

Minty variational inequality, 182
Minty vector variational inequality, 182
Minty vector variational-like inequality

problem, 256
Mixed coderivative, 475
Monotone, 122
Mordukhovich normal cone, 420
Multifunction

lower semicontinuous, 300
upper semicontinuous, 299

Multiobjective cooperative games, 533
Multiobjective linear production games, 536,

537
Multiobjective linear production programming

problem, 537
Multiobjective optimization, 1, 10

Naturally-P-quasiconvex, 42
Nearly subconvexlike, 42
Neutral element, 71
Nondominated element, 95, 97

strongly, 97
weakly, 97

Nondominated solution, 99
Nondominated-like element, 95
Nonlinear scalarization function, 179
Nonsmooth vector variational-like inequality

problems, 256
Normal coderivative, 474
Normal cone, 32, 130, 474
Normally closed, 427
Number of connected components, 299

Objective function, 297
Order relation

certainly less, 13
KNY, 4
minmax certainly less, 13
minmax certainly nondominated, 13
minmax less, 5
possibly less, 13
set less, 4

Ordering cone, 4
Oriented distance function, 153

Pareto minimal point, 478
Pareto minimum, 127, 149
Pareto optimal allocation, 469
Pareto preference, 470
Pareto solution, 297, 301
Partial order, 3, 467
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Partial ordering, 96
Partially ordered cooperative game, 527
Partially sequentially normally compact, 426,

475, 476
Penalty methods, 343
Pointed cone, 37
Positively homogeneous function, 224
Positively homogeneous vector-valued

function, 257
Power set, 3
Pre-invex function, 229
Pre-order, 3
Pre-quasiinvex function, 229
Preference, 467
Preference point, 468
Preimputation set, 520
Prenormal cones, 474
Primal set, 123
Principle

Ekeland’s variational, 367
variational, 385

Proper function, 77
Properly efficient point, 50
Properly efficient solution, 280
Properly minimal point, 405
Proximinal, 17
Pseudo-Lipschitz, 426
Pseudoconvex function, 226
Pseudoinvex function, 228

Quasi bounded, 386
Quasi interior point, 32
Quasi relative interior point, 32
Quasi relative minimal point, 478
Quasiconvex function, 225
Quasidifferentiable function, 216
Quasiinvex function, 229

Regularization, 134
Relation, 3

antisymmetric, 3
reflexive, 3
symmetric, 3
transitive, 3

Relative minimal point, 478
Residual function, 339

Scalarization, 111
Hiriart-Urruty, 115
linear, 111
nonlinear, 104, 114
Pascoletti-Serafini, 117

Second order conditions, 142
Section, 14
Self-infimal set, 61, 70
Semistrictly h-quasiinvex function, 241
Semistrictly pre-quasiinvex function, 229
Semistrictly quasiconvex function, 226
Semistrictly quasiinvex function, 229
Separation

of nonconvex sets, 376
Separation function, 192
Separation theorem, 470
Sequential Painlevé-Kuratowski upper/outer

limit, 473
Sequentially normally compact, 425, 475
Set

epigraph type, 373
Set optimization problem, 11
Set-valued games, 530
Set-valued weak vector variational inequality,

182
Shapley value for a game, 521
Slater constraint qualification, 338
Solid cone, 56
Stampacchia vector variational-like inequality

problem, 255
Strict partial order, 467
Strict preference, 467
Strictly h-invex function, 240
Strictly h-pseudoinvex function, 241
Strictly convex function, 225
Strictly invariant monotone, 247
Strictly invariant pseudomonotone, 248
Strictly monotonically increasing, 17
Strictly pre-invex function, 229
Strictly pseudoconvex function, 226
Strictly pseudoinvex function, 228
Strong coderivative normality, 475, 501
Strong KKT condition, 140
Strong-quasi relative interior point, 32
Strongly compactly Lipschitzian, 160
Strongly monotonically increasing, 17
Subdifferential, 128, 277
Sublinear function, 224
Subodd function, 224
Supremal set, 70
Supremum, 63

Theorem
minimal-point, 385
non-convex separation, 376
Phelps minimal-point, 368

Topological space
connected, 299
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contractible, 299
path-connected, 299

Upper closed set, 70
Upper closure, 65
Upper Dini quasidifferentiable function, 216
Upper Hausdorff semicontinuity of a set-valued

map, 339
Upper semicontinuity of a set-valued map, 339
Utility function, 469

Variable ordering structure, 97
Variational inequality, 182, 301

monotone, 301
Vector complementarity problem, 104
Vector dual, 202
Vector optimization problem, 10

standard, 297
Vector polar, 192
Vector saddle point, 193
Vector variational inequality, 103, 133, 181,

300
monotone, 301, 302

Vector-control approximation, 165
Vector-valued cooperative game, 522

Weak Minty vector variational inequality, 182
Weak Minty vector variational-like inequality

problem, 256
Weak Pareto minimal point, 478
Weak Pareto minimum, 127
Weak Pareto optimal allocation, 469
Weak Pareto preference, 470
Weak Pareto solution, 297, 301
Weak preference point, 468
Weak Stampacchia vector variational-like

inequality problem, 256
Weak vector saddle point, 194
Weak vector variational inequality, 182
Weakly C-pseudomonotone vector-valued

function, 257
Weakly efficient point, 46
Weakly efficient solution, 264, 297, 346
Weakly maximal elements, 70
Weakly minimal, 66
Weakly minimal point, 405
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