


Lecture Notes in Computer Science 6675
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Derong Liu Huaguang Zhang
Marios Polycarpou Cesare Alippi
Haibo He (Eds.)

Advances in
Neural Networks –
ISNN 2011

8th International Symposium
on Neural Networks, ISNN 2011
Guilin, China, May 29 – June 1, 2011
Proceedings, Part I

13



Volume Editors

Derong Liu
Chinese Academy of Sciences, Institute of Automation
Key Laboratory of Complex Systems and Intelligence Science
Beijing 100190, China
E-mail: derong.liu@ia.ac.cn

Huaguang Zhang
Northeastern University, College of Information Science and Engineering
Shenyang, Liaoing 110004, China
E-mail: zhanghuaguang@ise.neu.edu.cn

Marios Polycarpou
University of Cyprus, Dept. of Electrical and Computer Engineering
75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
E-mail: mpolycar@ucy.ac.cy

Cesare Alippi
Politecnico di Milano, Dip. di Elettronica e Informazione
Piazza L. da Vinci 32, 20133 Milano, Italy
E-mail: alippi@elet.polimi.it

Haibo He
University of Rhode Island
Dept. of Electrical, Computer and Biomedical Engineering
Kingston, RI 02881, USA
E-mail: he@ele.uri.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21104-1 e-ISBN 978-3-642-21105-8
DOI 10.1007/978-3-642-21105-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926887

CR Subject Classification (1998): F.1, F.2, D.1, G.2, I.2, C.2, I.4-5, J.1-4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

ISNN 2011 – the 8th International Symposium on Neural Networks – was held
in Guilin, China, as a sequel of ISNN 2004 (Dalian), ISNN 2005 (Chongqing),
ISNN 2006 (Chengdu), ISNN 2007 (Nanjing), ISNN 2008 (Beijing), ISNN 2009
(Wuhan), and ISNN 2010 (Shanghai). ISNN has now become a well-established
conference series on neural networks in the region and around the world, with
growing popularity and increasing quality. Guilin is regarded as the most pic-
turesque city in China. All participants of ISNN 2011 had a technically rewarding
experience as well as memorable experiences in this great city.

ISNN 2011 aimed to provide a high-level international forum for scientists,
engineers, and educators to present the state of the art of neural network research
and applications in diverse fields. The symposium featured plenary lectures given
by worldwide renowned scholars, regular sessions with broad coverage, and some
special sessions focusing on popular topics.

The symposium received a total of 651 submissions from 1,181 authors in
30 countries and regions across all six continents. Based on rigorous reviews
by the Program Committee members and reviewers, 215 high-quality papers
were selected for publication in the symposium proceedings. We would like to
express our sincere gratitude to all reviewers of ISNN 2011 for the time and effort
they generously gave to the symposium. We are very grateful to the National
Natural Science Foundation of China, the Institute of Automation of the Chinese
Academy of Sciences, the Chinese University of Hong Kong, and the University
of Illinois at Chicago for their financial support. We would also like to thank
the publisher, Springer, for cooperation in publishing the proceedings in the
prestigious series of Lecture Notes in Computer Science.

Guilin, May 2011 Derong Liu
Huaguang Zhang

Marios Polycarpou
Cesare Alippi

Haibo He
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Oleksiy Pogrebnyak

Web Recommendation Based on Back Propagation Neural Networks . . . . 397
Jiang Zhong, Shitao Deng, and Yifeng Cheng

A Multi-criteria Target Monitoring Strategy Using MinMax Operator
in Formed Virtual Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Xin Song, Cuirong Wang, and Juan Wang

Data Mining and Knowledge Discovery

Application of a Novel Data Mining Method Based on Wavelet Analysis
and Neural Network Satellite Clock Bias Prediction . . . . . . . . . . . . . . . . . . 416

Chengjun Guo and Yunlong Teng



Table of Contents – Part III XXXIII

Particle Competition and Cooperation for Uncovering Network Overlap
Community Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Fabricio Breve, Liang Zhao, Marcos Quiles, Witold Pedrycz, and
Jiming Liu

Part-Based Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Zhijie Xu and Shiliang Sun

A Parallel Wavelet Algorithm Based on Multi-core System and Its
Application in the Massive Data Compression . . . . . . . . . . . . . . . . . . . . . . . 442

Xiaofan Lu, Zhigang Liu, Zhiwei Han, and Feng Wu

Predicting Carbon Emission in an Environment Management System . . . 450
Manas Pathak and Xiaozhe Wang

Classification of Pulmonary Nodules Using Neural Network Ensemble . . . 460
Hui Chen, Wenfang Wu, Hong Xia, Jing Du, Miao Yang, and
Binrong Ma

Combined Three Feature Selection Mechanisms with LVQ Neural
Network for Colon Cancer Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Tianlei Zang, Dayun Zou, Fei Huang, and Ning Shen

Estimation of Groutability of Permeation Grouting with Microfine
Cement Grouts Using RBFNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Kuo-Wei Liao and Chien-Lin Huang

Improving Text Classification with Concept Index Terms and
Expansion Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

XiangHua Fu, LianDong Liu, TianXue Gong, and Lan Tao

Automated Personal Course Scheduling Adaptive Spreading Activation
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Yukio Hori, Takashi Nakayama, and Yoshiro Imai

Transfer Learning through Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . 505
Huaxiang Zhang

The Design of Evolutionary Multiple Classifier System for the
Classification of Microarray Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

Kun-Hong Liu, Qing-Qiang Wu, and Mei-Hong Wang

Semantic Oriented Clustering of Documents . . . . . . . . . . . . . . . . . . . . . . . . . 523
Alessio Leoncini, Fabio Sangiacomo, Sergio Decherchi,
Paolo Gastaldo, and Rodolfo Zunino

Support Vector Machines versus Back Propagation Algorithm for Oil
Price Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Adnan Khashman and Nnamdi I. Nwulu



XXXIV Table of Contents – Part III

Ultra-Short Term Prediction of Wind Power Based on Multiples Model
Extreme Leaning Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

Ting Huang, Xin Wang, Lixue Li, Lidan Zhou, and Gang Yao

BursT: A Dynamic Term Weighting Scheme for Mining Microblogging
Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

Chung-Hong Lee, Chih-Hong Wu, and Tzan-Feng Chien

Towards an RDF Encoding of ConceptNet . . . . . . . . . . . . . . . . . . . . . . . . . . 558
Marco Grassi and Francesco Piazza

Modeling of Potential Customers Identification Based on Correlation
Analysis and Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Kai Peng and Daoyun Xu

An Innovative Feature Selection Using Fuzzy Entropy . . . . . . . . . . . . . . . . 576
Hamid Parvin, Behrouz Minaei-Bidgoli, and Hossein Ghaffarian

Study on the Law of Short Fatigue Crack Using Genetic Algorithm-BP
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

Zheng Wang, Zihao Zhao, Lu Wang, and Kui Wang

Natural Language Processing

Large Vocabulary Continuous Speech Recognition of Uyghur:
Basic Research of Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

Muhetaer Shadike, Xiao Li, and Buheliqiguli Wasili

Sentic Medoids: Organizing Affective Common Sense Knowledge in a
Multi-dimensional Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

Erik Cambria, Thomas Mazzocco, Amir Hussain, and Chris Eckl

Detecting Emotions in Social Affective Situations Using the EmotiNet
Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
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Abstract. This paper addresses the problem of evaluating embodied 
conversational agents in terms of their communicative performance. We show 
our attempt to evaluate humans' implicit attitudes towards different kinds of 
information presenting by embodied conversational agents using the Implicit 
Association Test (IAT) rather than gathering explicit data using interviewing 
methods. We conducted an experiment in which we use the method of indirect 
measurements with the IAT. The conventional procedure and scoring algorithm 
of the IAT were used in order to discover possible issues and solutions for 
future experiments. We discuss key differences between the conventional usage 
of the IAT and using the IAT in our experiment for evaluating embodied 
conversational agents using unfamiliar information as test data. 

Keywords: Embodied Conversational Agent, Implicit Association Test. 

1   Introduction 

Discovering humans' attitudes has become an important research topic for the past 
several decades. A number of methods based on different psychological theories have 
been proposed and various experiments showing strong and weak points of each 
method have been conducted. Being required by a wide variety of applications, 
methods of discovering humans' attitudes have developed very intensively. 

One of the fields where gathering attitudes is widely used is human-computer 
cooperative work. When humans deal with not only computers, but with 
anthropomorphic artifacts, they tend to treat computers as distinct social actors, using 
the same social norms and rules for computers as they use for humans [1]. This makes 
communication among humans and computers much more important than ever for 
achieving high efficiency in collaborative tasks. 

In our work we assume that although humans can adapt to any kind of interface, 
the most effective is one given to us by nature – natural face-to-face communication 
with an Embodied Conversational Agent [2] which includes a rich set of verbal and 
non-verbal cues. Providing computers with the abilities to communicate with us in a 
natural way, we can dramatically increase the efficiency of human-computer 
collaborative performance. 

Nevertheless we believe that introducing state-of-art technologies in graphics, 
speech processing and dialog management is not the only condition of success in this 
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task. A number of issues related to social and cultural aspects of communications 
among humans and ECAs should be considered. Gathering feedback from humans 
about their attitudes towards agents is used in a number of research projects as a 
measure of team effectiveness. This is supported by the assumption that the more 
natural and pleasant interaction is with an agent, the more effective the performance 
of the collaborative task. In order to discover humans' attitudes a number of methods 
based on the self-report such as surveys and interviews are used. All of these methods 
have unquestionable advantage such as simplicity and low cost, however they all tend 
to rely upon a humans' awareness, honesty, cultural aspects.  

Another method for investigating effects of ECAs is measuring subjects' 
performance in different kinds of collaborative tasks, such as a tutoring-learning task, 
where subjects have to cooperate with artificial social actors in order to achieve a 
goal. Normally a combination of statistically significant surveys with collaborative 
task performance measurement gives high validity, however other metrics are often 
needed in order to verify results. 

The Implicit Association Test [3, 4] is a powerful psychological tool which has 
been already used for more than a decade in psychology. We believe that IAT can 
potentially be a powerful addendum to all other kinds of research tools in the AI field. 

The IAT is a well-known and established tool, however further developments of 
the procedure and scoring algorithms of the IAT are ongoing, aiming to solve a 
number of different issues of the original IAT. One of the best known modifications 
of the test is so-called Go/No-go Association Task [5], which aims to eliminate the 
need to bring a pair of categories into comparison. There are also some other 
modifications of the test, such as a Brief IAT [6] and Single Attribute IAT [7], which 
aim to solve known issues, simplify and improve the original test. 

This goal of our research is to investigate a modification of the IAT which will 
extend the application domain of the conventional test to the possibility of using it 
with unfamiliar information and for indirect attitude measurements.  

In this paper we show our attempt to use the conventional IAT in order to evaluate 
humans' attitudes towards slightly different kinds of presenting information by the 
same social actor. However our application method differs in principle from the 
original test application, we used a conventional test without any modification in 
order to discover it's possible drawbacks and find solutions. 

The paper is organized as follows. Section 2 shows key differences between 
conventional IAT and applying a test to assess different types of presenting 
information. Section 3 contains a description and results of a conducted experiment. 
Known issues and future work directions are discussed in Section 4. The paper is 
concluded in Section 5. 

2   Hypothesis 

The Implicit Association Test is a very powerful psychological tool which can be 
used in order to discover a subjects' implicit preferences towards different categories. 
Particularly, IAT can be used to measure attitudes towards different kinds of objects 
and concepts,  stereotypes, self-esteem and self-identity. The test requires a subject's 
rapid (in fact, as fast as possible) categorization of stimuli which appear on a screen. 
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The problem is that the test will give a reliable result if and only if subjects make a 
reasonable number of mistakes, trying to keep a balance between rapid categorization 
without thinking and spontaneous key pressing. In order to achieve reliable results, 
subject are required to be a fluent English readers (if a test is conducted in English) 
and be aware of the topic of the test.  

Some very well-known tests allows us to measure attitudes towards, for example, 
flowers and insects, different races, and food preferences. If flowers and insects are 
assessed, the stimuli are names or images of particular flowers and insects.  

In our case we want to compare two methods of presenting information. We just 
want to know whether a virtual agent with rich animation can attract subjects more 
than just audio-presentation by the same voice as used in the case of agent. Noticeably, 
in this case we are talking about the same social actor. We do not compare different 
agents. We would like to go deeper and compare interfaces of the same agent. 

In order to achieve this goal we use two slightly different information blocks, one 
of which is presented by a full-featured agent and the second by voice only. This 
causes the principal difference between our application and original usage of the IAT: 
in our case subjects are not familiar with these information blocks. These are not 
things which the subject uses every day. Thus, as opposed to the original IAT, in our 
test subject are expected to make not only misprints, but also mistakes. We believe 
that results given by the conventional test are not reliable because correct answers are 
always shown to subjects during a test and this can cause a learning-while-testing 
side-effect, which can  tamper results.  

Thus, our experiment has two goals. The first one is to discover whether the body 
of an agent really make sense for humans. The second is to find whether the learning-
while-testing effect really exists. 

As a result of this experiment, we expect to see at least a weak preference for one of 
the methods of presenting information from most of subjects. No preference will mean 
that our test is not well designed and it can not “catch” the difference in two presentation 
styles. We also expect to see a learning-while-testing side effect, which is caused by the 
procedure of the conventional test and which should make results of the test less reliable, 
because we obviously should eliminate any learning during the test. Direction of future 
work will be discussed in Section 5 according to the results of the experiment. 

3   Presenter Agent Experiment 

The objective of the experiment is to investigate by using conventional IAT, whether 
the body of the ECA has an effect on subjects' attitudes towards two different methods 
of information mediation: full-featured ECA-based presentation and vocal presentation.  

The experiment consists of two stages. In the first stage subjects were asked to 
learn two different stories from the presenter agent. The key difference between the 
two stories is the presence of the ECA on the screen. One story was presented by the 
female agent with a synthesized female voice and a rich set of non-verbal cues, while 
the other story was presented by the same female voice only. Both stories were 
accompanied with the same number of illustrations which were used later as 
categories and items in the IAT. Both stories are approximately the same size (200 
and 226 words) and difficulty of memorization. The order of stories and method of  
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presenting (which of two stories is presented by ECA and which by voice only) were 
chosen individually for each subject. Before the experiment subjects were told that the 
test will evaluate their attitudes towards interactions with agents. Subjects were not 
told that they should memorize information with will be presented. A screen-shot of 
the full-featured ECA-based presentation is shown in Fig. 1. As opposed to the 
previous method, in vocal presentation the agent does not appear on the screen, but 
the entire environment remains absolutely the same.  

 

Fig. 1. Screen-shot of the full-featured ECA-based presentation 

According to [1] people tend to unconsciously interpret the same voice as the same 
social actor. By choosing the same female voice for both stories we eliminated the 
necessity of comparing distinct social actors. Instead, two methods of information 
mediating from the same social actor were assessed by the IAT.  

In the second stage, subjects' attitudes towards information mediation methods 
were assessed by the IAT. Thus, two key differences between our experiment and the 
conventional IAT are (as we previously mentioned in Section 2):  

a) attempt to utilize indirect method of measurement with IAT (we assess 
methods of information mediation by assessing information blocks which were 
presented to subjects); 

b) attempt to use the IAT on items which subjects are not familiar with 
(information blocks had been learned at most half-an-hour before the IAT). 

3.1   Brief Description of Software 

The Generic Embodied Conversational Agent (GECA) Framework [8] had been used as 
a platform for building the presenter agent. It provides some advantages compared to 
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previously developed architectures. Components developed with different programming 
languages and even running on different operating systems can be easily integrated into 
the framework. Since the components can be distributed over a network those which 
require heavy computation can be sourced out to different computers and thus improve 
the overall system performance. The single-layer component hierarchy shortens the 
paths of decision making and eases the support of an agent’s reactive behaviors. 
Synchronization of the different components is achieved by providing explicit temporal 
information and synchronization specifiers. Loose coupling of components allows for 
on-line switching and upgrading components easily. 

In the experiment, ECA-based presentations were not interactive. GECA Scenario 
Markup Language (GSML) [8] was used to describe agent's behavior and environment. 
During the presentation subjects had no control over the agent, however the framework 
and GSML allows building of more complex dialog-style scenarios. GSML description 
of the agent behavior was played on the screen by the specialized 3D-player based on 
the Visage|SDK [9] platform. 

The IAT was conducted using the Inquisit 3 [10] software. The Inquisit 3 is a general 
purpose psychological measurement software which allows us to administer almost any 
experiment where a high accuracy of stimuli presentation and response collection is 
required. The Inquisit can be used for web-based experiments as well as for laboratory 
tests. Data can be recorded to text files which can be easily imported by Excel or SPSS. 
De Clercq et al. [11] conducted an experiment which confirms the claimed millisecond 
accuracy of stimuli presentation and data accumulation by Inquisit.  

3.2   Results 

In total 10 subjects have participated in the experiment. Eight of them are students and 
two are administrative staff of Kyoto University, eight male and two female, all Asians, 
and all can listen and read in English fluently. Their results are shown in Figure 2. 

 

Fig. 2. Results of the IAT. X axis: number of correct answers in %; Y axis: result of the test (D 
measure) 
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The horizontal axis of this graph represents the number of correct answers and 
the vertical axis represents the D measure. The positive value of the D measure 
shows subject's preference towards full-featured ECA-based style of presentation 
and vice versa, the negative value shows preference towards voice-only 
presentation. All subjects had an error rate of less than 25% during the test. It 
should be noted that in this figure we do not distinguish between mistakes and 
misprints as well as between misprints in testing and reference categories. This 
means that the real number of meaningful mistakes might be less than shown on the 
graph.  

The boundary values of subjects' preferences are as follows: 

more than 0.65 – strong preference for the ECA-based presentation; 
0.35 … 0.65 – moderate preference for the ECA-based presentation; 
0.15 … 0.35 – slight preference for the ECA-based presentation; 
-0.15 … 0.15 – no preference; 
-0.35 … -0.15 – slight preference for the voice-only presentation; 
-0.65 … -0.35 – moderate preference for the voice-only presentation. 

Thus, subjects #8, and #2 do not show any significant preference for any kind of 
presentation. Subjects #3, #9, and #10 show slight preference for ECA-based 
presentations, however subjects #1, and #7 show slight preference for voice-only 
presentations. Subject #5, and #6 have moderate preference for ECA-based and voice-
only presentations respectively. Finally, subject #4 shows a strong preference for the 
ECA-based presentation. Altogether, five subjects show significant preference for 
ECA-based presentations, three subjects show preference for voice-only presentations 
and only two subjects do not show any significant preferences. This conforms to the 
first part of our hypothesis.  

One more fact which should be noted is related to a number of mistakes. As we can 
see from the graph, all subjects who show at least slight preference for the voice-only 
presentation (subject #1, #6, and #7), made less that 10% of mistakes and misprints. 
This is much better than the result of subjects who were attracted by the body of the 
agent. 

An important fact is that the three subjects who show significant preference for one 
of presentation styles, reported that they could memorize correct answers during the 
test. Thus, they confirmed that they experienced the learning-while-testing effect. 
Some other subjects also experienced the same effect, however they did not report 
clearly about it. According to Fig. 3 subjects #2, #5, #6, #9, and #10 gave more 
correct answers in blocks 6 and 7 than in blocks 3 and 4. Please note, that for Fig. 3 
and Fig. 4 we calculated only meaningful mistakes and misprints, eliminating 
misprints in reference categories. The total number of answers is 32. And as we can 
see, none of the subjects made zero mistakes. The best result was given by subject #6 
in the blocks 6 and 7 – 29 correct answers. 
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Fig. 3. Number of mistakes made in compared categories. Blue column – number of correct 
answers in block 3 + block 4; red column – block 6 + block 7. 

Within ten minutes after the experiment subjects were asked to take the test once 
again. D-measures of the second test were not used and do not appear in Fig. 2, 
however we tried to find and analyze changes in the numbers of mistakes. These 
results are shown in Fig. 4. 

 

Fig. 4. Number of mistakes made in compared categories. Blue column – number of correct 
answers in the first test (mean of all pairing blocks); red column – second test (mean of all 
pairing blocks). 

As we can see from the graph, subject #8 made quite a lot of mistakes in the 
second test, but all other subjects gave significantly more correct answers. In our 
opinion this means that subject learned correct answers during the first test and this 
confirms the second part of hypothesis.  
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4   Conclusions and Future Work 

Taking into account the difference between conventional usage of an IAT and using 
an IAT for evaluating ECAs, several key issues can be defined and addressed in 
future work. 

The one of conceptual issues is related to the fact that a conventional IAT deals 
with well known concepts while in the case of evaluating ECAs users deal with just-
learned information, and this can cause mistakes in addition to misprints which are 
normal for the conventional IAT. In the conducted experiment subjects had only one 
chance to memorize information. Before the experiment they were not told that they 
should memorize information presented during the experiment, so they were expected 
to make mistakes. 

On the other hand, during the conventional IAT wrong answers are always shown. 
Bearing in mind that in conventional IAT mistakes are not supposed to happen 
(misprints only, because subject deal with very familiar concepts only) this approach 
is very reasonable. However, for unfamiliar concepts, which we use in the 
experiment, it may cause a learning-while-testing side effect since each item is shown 
several times during the experiment. Thus, the first issue which should be addressed 
in future work is to modify the procedure of the test in order to minimize this effect. 

One of the possible solutions which will be implemented in future experiment 
includes several steps. The first is to not show wrong answers during experiment. 
Essentially, this will minimize the learning-while-testing effect, but at the same time 
can distort final results. We propose to use more items for comparison concepts that 
are needed for measurements and eliminate before final calculations those of them 
which we answered with a high number of mistakes. This will help to administer final 
calculations without any further modifications.  

Another issue which should be concerned in future work is the possibility of 
introducing a hardware response box for laboratory experiments which will be able to 
measure physiological data during the experiment, such as the force of pressing keys 
by subjects, their heart rate, blood oxygenation level, etc. This information will be 
used for validation purposes. Introducing the external hardware response box will also 
allow to measure time much more precisely in contrast to a PC in which accuracy can 
be affected by uncontrollable factors (e.g. operation system's high priority tasks). 

We are also going to conduct a series of experiments in Japanese and Russian in 
order to allow more native speakers to participate. This will exclude at least one 
uncontrollable variable from the experiment which is related to fluent reading and 
understanding. 

5   Summary 

The goal of this work is to evaluate the potential possibility of using the Implicit 
Association Test where subjects' awareness of comparison concepts is less than in the 
case of conventional IAT, and to figure out possible issues related to this specific 
application. This paper presents results of the initial experiment where we used the 
conventional IAT procedure and scoring algorithms without any modifications. The 
data collected during the experiment shows how significant the difference between 
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conventional usage of IAT and the proposed method is and which key issues should 
be addressed in future work. We showed our initial experiment which confirms our 
hypothesis about the effect of agent presence on the screen during presentation and 
procedural drawbacks of the conventional IAT in our particular circumstances. We 
made an analysis of D-measures and numbers of mistakes for each participant and 
outlined the directions of future research.  
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Abstract. The stability of synchronization in E/I networks (networks of 
excitatory and inhibitory neurons) has been explored in many studies. However, 
how the robust synchronization occurs in highly heterogeneous real neural 
circuits has not been studied sufficiently. This paper considers the robustness of 
the synchronization in E/I network, and found that both the frequency and the 
synchrony of the network are highly dependent on the parameter settings. A 
short but indispensable inhibition delay, sufficiently fast decay of inhibitory 
synapses, and strong connections are critical to turn the E/I networks into robust 
gamma frequency oscillators. The networks under these conditions can achieve 
a level of robustness against heterogeneity as high as 30%, which is comparable 
to the level of heterogeneity observed in real neural systems. 

Keywords: correlation coefficient, E/I networks, conductance-based synapse, 
heterogeneity. 

1   Introduction 

Gamma frequency oscillations are thought to provide temporal modulation for 
information processing in brain [1, 2]. They have been presumed to have a key role in 
cognitive functions such as feature binding and memory formations.  Besides, 
disruption of gamma oscillation could underlie some psychiatric disorders [3]. 

Networks of excitatory cells and inhibitory cells (E/I network) are thought to be 
possible structures to sustain some experimentally observed gamma rhythm. The 
stability of correlative spike in E/I network has been verified, yet the robustness of E/I 
network subject to a heterogeneous drive is not well-studied [4]. Since heterogeneity 
in the driving current translates into the variability in the intrinsic spiking frequency, a 
physiologically plausible variance in the driving current (up to 35%) will break down 
the coherent oscillation [5].  

Many studies used current-based synapses to study the synchronization of E/I 
networks [4].  As the conductance-based synapses with shunting effect of GABA 
synaptic inhibition helps to improve the robustness in interneuron networks against 
                                                           
*  Corresponding author. 
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the heterogeneity in tonic excitatory drive to some extend [6, 7], we used the 
conductance-based synapses in this paper. With this synapse model, synaptic current 
is relative to the post-synaptic membrane potentials referred to the excitatory and 
inhibitory reversal potentials [8]. With the conductance-based kinetics, synaptic 
currents have introduced rectification to counterbalance the variance in the 
corresponding frequencies caused by the heterogeneous stimuli. As a result, neurons 
in this model receive complementarily diverse synaptic current, rather than share 
identical synaptic current. The simulation results show that, under this regime, 
gamma-band oscillations can be maintained when the network is exposed to a high-
level heterogeneity. We find, however, several requirements are needed to realize the 
robustness of the oscillation. 

2   Model and Method 

One hundred single-compartment neurons were arranged in all-to-all connectivity. 
The network consists of both E-cells and I-cells (excitatory and inhibitory neurons 
respectively) with a proportion of excitatory neurons versus inhibitory ones 4:1. The 
membrane potential of the neurons satisfies leaky-integrate-and-fire dynamics: 

( ) ( ) ( )m
m leak syn inj

dv
C I t I t I t

dt
= + +  ,  (1) 

where mC is the membrane capacitance, ( )leakI t is the current due to the leak of the 

membrane, ( )synI t is the current describing the response of synaptic inputs to the 

neuron, and ( )injI t is the injected current which is responsible for the excitatory drive 

of the neuron. Since the membrane resistance mR is normalised to 1, mC can be 

replaced by the passive membrane time constant mτ .  

The leaky current is 

1
( ) [ ( ) ]leak m rest

m

I t v t V
R

= − −  , (2) 

where 
restV is the resting potential. Whenever the potential reaches the threshold value 

Vθ , the neuron fires, and the potential resets to the rest potential resetV . 

Other than current-based synapse model, we hereby adapt the conductance-based 
synapse model, the synaptic current is determined by: 

, , ,
1 1

( ) [ ( )] ( ) [ ( )] ( )
E IN N

syn i m E i ik E k m I i ik I k
k k

I t C V v t s g t C V v t s g t
= =

= − + −∑ ∑  , (3) 

where the potentials EV and IV (constants) are the reversal potentials 

( reset I EV V V Vθ< < < ).  The reversal potentials arise from specific neurotransmitters 

that cause the change to the membrane potential of the post-synaptic neurons. Their 
numerical values are identical to the membrane potentials of post-synaptic neurons at 
which neurotransmitters lead to no net ion fluxes. Whenever the pre-synaptic neuron 
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fires, the conductance g (either ,E kg or ,I kg ) is reset to maxg . iks  is the coupling 

weight between neuron k and i .We set 15 mVEV = −  and 55mVIV = −  [9]. At 

intervals between spikes, the dynamics of ( )ig t  is given by a first–order kinetic: 

max( )
( )i

i
syn

dg t g
g t

dt τ
= −  .  (4) 

Each maxg  is scaled accordingly to normalize the integrated conductance over the 

time course of synaptic activity. Numerically, maxg is divided by the area under the 

curve of ( )ig t  thus is dimensionless. 

The excitatory input current to the network neurons consists of following two 
components 

injI I Iμ σ= +  ,  (5) 

where Iμ is the base current, and Iσ  a random variable with normal distribution. As a 

consequence, each neuron is excited by an applied current with mean Iμ and standard 

variance Iσ . This will introduce input heterogeneity into this model. For a population 

of neurons that are non-connected with each other, diverse excitatory drives would 
cause dispersion in the neuronal firing frequencies. This variability in the intrinsic 
spiking frequency would exert a desynchronizing effect to the network. The 
heterogeneity in driving currents is measured by the ratio of variance versus 
mean /I Iσ μ .  

The coherence of the oscillation is estimated by the mean of the pairwise 
correlation of all neurons in the network [10]. The pairwise correlation is defined by : 

( ) ( ) ( )
( ) ( )

/2

/2

T

i jT
ij

i j

y y
T

y y
τ

τ τ

τ τκ
τ τ

=−=∑
∑ ∑

 ,   (6) 

where ( )y τ  indicates the idealized spike traces, which consists of trains of square 

pulses. Each pulse has unit height and width 0.2T= , and is centered at the spike 
peak as in Fig. 1.  

( )y τ

 

Fig. 1. The pairwise correlation demonstrated by the shared area of square pulses 
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3   Result 

We started by making some exploration of the effect of parameter values on the 
robustness of the synchronization in E/I networks in parameter space. Parameters 
including the respective delay time of E-cells and I-cells and time constants of 
inhibitory and excitatory synapses are traversed to generate the corresponding 
coherence.  

 

Fig. 2. Coherence v.s. the delay times of inhibitory and excitatory synapses 

Relationship between the output correlation coefficient and delay times of 
excitatory and inhibitory synaptic currents is visualized in Fig. 2. The figure reveals 
that the latency time of inhibition plays a primary role in the synchronization of the 
network. Typically, an instantaneous inhibition will not produce a synchronized 
oscillation. The coherence soars when the onset of inhibition is delayed by 1-5ms 
(Fig. 3 A). A further increasing of inhibition latency will cause rhythmic bursting 
(Fig. 3 B) with the inter-bursting cycle in Gamma band and intra-bursting rate 
approximately 300Hz (Fig. 3 D). So only when the inhibition delay is not too long can 
the coherent oscillation be tuned to Gamma-band. Each box in the first row of Fig. 3 
consists of two parts, a rastergram (upper) of spike train and a histogram (lower) 
which can imply the coherence via its steepness. The vertical axis is the neuron index, 
where neurons1-20 are inhibitory and neurons 21-100 are excitatory. The trajectory of 
membrane voltage of two representative neurons (an E-cell traced with solid line and 
an I-cell traced with dotted line) is sketched in Fig. 3 C. 

Similarly, we examined the coherence as the function of the time constants of 
inhibitory synapses and excitatory synapses. The landscape of correlation coefficient 
is shown in Fig. 4 A. The decay time of inhibition has a strong effect on both the 
frequency and the synchrony of the resulting oscillation. When endowed with a slow 
decay, inhibition has a long duration but a small magnitude of ISPC. Under this 
situation, IPSP is too weak to suppress the inter-spike firing caused by the 
instantaneous excitatory pulse hence leads to either desynchronizing or ultra-fast 
spiking. The combination of large decay time constants of inhibition and excitation 
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Fig. 3. Different oscillatory patterns with various delay times. Rastergram and histogram of 
spiking train with delay of (A) 3 ms and delay of (B) 6 ms. (C) Trajectory plot of membrane 
potentials of representative neurons in A. (D) Spectrum distribution of Rhythmic bursting in B. 

gives rise to rhythmic bursting. The most undesired pattern occurs when the inhibition 
is slow and excitation is fast, in which neurons fire at ultrafast rates without 
coherence. Instead, synchrony is stubborn when decay time constant of inhibition is 
small, independent of the decaying rate of excitation. This optimized condition is 
consistent with the physiological observation, where the fast GABA-receptor 
mediated inhibitory post-synaptic current (IPSC) has a decay time constant of 
approximately 2 ms  [11]. 

The behavior of the network with conductance-based synapse against the strength 
of connection and heterogeneity is illustrated in Fig. 4 B. In this set of simulation, the 
network is fed with excitatory tonic drive with different levels of heterogeneity 
(measured by the coefficient of variance /I Iσ μ ). The connection weight is also 

varied by the assigning the peak synaptic conductance with various values. Without a 
relatively strong connection, the correlation rate drops sharply along the axis of 
heterogeneity. In contrast, there is a ridge in the landscape of correlation coefficient 
corresponding to the strong-connection area. This implies that as the connection 
strength increases, the network develops a robust increasing tolerance against the 
heterogeneous input. 

Finally, we systematically explored the relationship between the heterogeneity 
coefficients ( /I Iσ μ ) and the coherence (Fig. 4 C).  For each heterogeneity 

coefficient, we carry out the simulation of the network with all parameter values 
optimized according to the discussion in foregoing paragraphs. The mean coherence 
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Fig. 4. The dependence of coherence on parameter values. (A) Coherence against time constants 
of excitatory and inhibitory synapses. (B) Correlation map in heterogeneity, connection strength-
space. (C) Relationship between coherence and heterogeneity coefficient with optimized 
parameter values. 

is estimated from twenty independent trials. The vertical bars centered at the mean 
values indicate corresponding standard deviations. When all requirements discussed 
above are met, coherent oscillations ( 0.4k > ) can be achieved for heterogeneity level 
around 30%. This indicates the level of robustness in this network is comparable to 
that observed in real neural systems.  

4   Conclusion and Discussion 

We examined the robustness of Gamma-oscillation in networks of excitatory and 
inhibitory neurons with conductance-based synapse. Since the conductance-based 
model is more physiologically realistic, the synchronizing effect it exerts in the 
simulation result may be of more biological interest. We also identified several 
conditions essential for the robust synchronizing. (1) A proper delay time of inhibition 
(1~5ms) is critical to maintain the correlation and to tune the oscillation frequency 
within Gamma band. (2) The decay time constant of inhibition is sufficiently short. 
Especially, a slow decaying inhibition is not compatible with fast excitation (with 
time constant approximately 2ms) for a high coherence. (3) Strengthening the overall 
connections can enhance the robustness when the network is subject to highly 
heterogeneous stimuli. 
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Abstract. Minicolumn has been widely accepted not only as the basic structural 
element of the cortex anatomically, but also as the fundamental functional unit 
physiologically. And, it is believed by many theorists that the minicolumn may 
function as a Potts spine, only takes on finite discrete states. But its feasibility is 
unclear. In order to provide a biophysical evidence for the Potts assumption, a 
model is proposed to analyze the dynamics of minicolumn. With simulation, we 
found that Potts states may originate from the temporary high synchronization of 
neuronal subsets. Furthermore, after analyzing the average number of 
synchronous spiking neurons, we propose a novel and important assumption that, 
intrinsically-busting neurons may play a critical role in stabilizing the Potts states.  

Keywords: minicolumn, Potts states, intrinsically-busting neuron. 

1   Introduction 

When analyzing the structure and function of the neocortex, a more macroscopic scale 
may be a better choice though neurons are the fundamental units. Not only for the size 
of neurons, 1011, is computationally exhaustive, but also for the detailed synaptic and 
dendritic structures may be unimportant for the systematic analysis. The minicolumn 
assumption, first proposed by Mountcastle in 1957[1], and the later findings of 
anatomical and physiological evidences bridge the huge gap between the tiny neurons 
and the macro cortex. 

But what is the functional role plays by the minicolumn? Or it is just a mediate 
motif towards the structure of the cortex. Neural theorists, like Treves[2] and 
Lansner[3], have assumed that they may function as Potts spins in statistical physics. 
That is, each minicolumn can only take on several finite discrete states, and it can be  
in only a single state at any time. But the feasibility and availability of the assumption 
is unclear. In order to understand the dynamics of minicolumn and provide a 
biophysical evidence for Potts assumption, a network model, which takes into 
consideration of the spiking characteristics of regular-spiking (RS) neurons, 
intrinsically-bursting (IB) neurons and fast-spiking (FS) inhibitory neurons, is 
constructed to explore the mechanisms underlying Potts assumption. Not only do we 
figure out the origination of Potts states, but also, we propose that IB neurons may be 
important in stabilizing the so-assumed “Potts states”. 
                                                           
*  This work is supported by National Natural Science Foundation of China (61071180). 
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Fig. 1. Schematized graph of several typical neurons in the neocortex. Neurons with long 
dendrites and axons are pyramidal cell, and showed in black. Blue neurons are basket cells, and 
red for spiny stellate neurons. Orange for double bouquet cell and green for chandelier cell. 
Some neurons are redrawn from [7]. 

2   Minicolumn Model 

The neurons in neocortex could be classified into spiny neurons and nonspiny 
nonpyramidal neurons, and the spiny neurons can be subdivided into pyramidal 
neurons and spiny stellate neurons. Almost all kinds of neurons are widespread in 
each layer, though with structural difference in synapses, dendrites, and the size of 
somas, except that spiny stellate cells mainly appears in layer IV. Though nonspiny 
nonpyramidal inhibitory neurons take up 15-30% of the total neuron populations, 
their subtypes are very complex and their roles are essential. According to their 
morphologies and spiking dynamics [4-5], we simply group them into three types, 
basket cells, bitufted cells, bipolar cells and chandelier cells, also see Fig.1. What’s 
more, when the systematic dynamics is considered, we omit chandelier cells and use a 
generalized integrate-and-fire differential equation proposed by Izhikevich [6] to 
model the spiking dynamics of all the other inhibitory neurons. 

According to the anatomical evidences [8] and computation speculations [9-10], we 
believe that 80 is typical for the total number of neurons in a single minicolumn. Also, 
the ratio between non-GABAergic excitatory cells and the GABAergic inhibitory cells 
is approximately 4:1. What’s more, McCormick have reported that 35% of neocortical 
pyramidal cells are of the IB type[11], and the rest are RS neurons.  So in the end, the 
neuronal distribution can be calculated, as showed in table 1. 

In order to faithfully reflect the synaptic connections between neurons in layers, we 
adopted the results recorded from cat and rat by Thomson [12] (also see in Häusler et 
al. [13]). So now, we can construct a comprehensive network model for a 
minicolumn, as shown in Fig.2. See the caption for details. 
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Fig. 2. Synaptic connections and weights in neocortical area, and data are adapted from[12] 
and [14]. Yellow cells stand for excitatory pyramidal neurons and blue for inhibitory 
interneurons. Note that, for convenience, the excitatory spiny stellate neurons in layer IV are 
incorporated into pyramidal cells. Arrows stand for synapses, blue for interneurons to 
pyramidal cells and yellow the reverse, red and deep blue for connections between pyramidal 
neurons and interneurons respectively. Intra-layer connections between the same kind of 
neurons are showed in dashed arcs, red for inter-pyramidal connections and deep blue for 
inter-interneuron connections. Also note the afferents and efferents. Afferents: cortical input 
sent into layer II/III and thalamic input mainly directed to layer IV. Efferents: the axons of 
pyramidal neurons in layer II/III directed into the superficial layers of higher cortical  
areas and the axons of deeper layers directed to lower cortical areas and nonspecific thalamus. 
* stands for Hopfield synapses. 

2.1   Layer VI 

It should be noted that, due to the following reasons, we simply omit layer VI in the 
network model.  

Firstly, as it can be seen from Fig.1, pyramidal cells in layer VI collect information 
from layer IV and send their information to other tissues via their axon tufts. As 
Richardson et al [14] showed that, after external information transmitted to layer IV, 
forward information pathway passes layer II/III and targets layer V. Information in 
layer V either send to other areas directly, or send to thalamus and claustrum by relay 
of layer VI. So their main functions have been embodied in layer V. 

Secondly, according to Callaway et al.[15], the synapses from thalamus to layer 
IV, from layer IV to II/III and then from layer II/III to layer IV of next higher cortex 
areas form the forward pathways. But the projection from pyramidal cells in layer V 
and layer VI to superficial layers have widespread synapse braches, in charge of the 
modal connection of neocortex, also see Fig.3. So the modality function is also 
embodied in layer V. 
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Fig. 3. Layer VI provides local modulatory feedback to superficial layers. The pyramidal cells 
that project to layer IVC_alpha can only receive inputs from layer IVB. Similarly, The cells 
that project to layer IVC_beta can only receive inputs fro layer II/III.  

Table 1. Neuron distribution in a typical minicolumn 

 Non-GABAergic GABAergic  
(FS) 

Layer_Total 
RS IB 

II/III 12 6 5 23 
IV 20 10 7 37 
V 10 6 4 20 

Class_Total 42 22 16 80 

 
Finally, Häusler et al. [13] have ever conducted simulation to compare the basic 

function of data provided by Binzeger et al.[16] and Thomson et al.[12], and their 
results showed that there is no radical differences between the two models, though the 
data provided by [12] lacks layer VI. 

2.2   Afferent and Efferent 

Sensory information from outside world primarily enter layer IV through the thalamus. 
Even though, the dominant afferents of the cortex areas are from the recurrent 
connections themselves. Besides afferents from the thalamus and other areas, 
neocortex also receives neuromodulatory inputs from brainstem, like norepinephrine, 
serotonin, acetylcholine and dopamine [14]. And for convenience, they are all 
considered to be weak external excitatory inputs in later simulations. 

2.3   Dynamical Model 

There are numerous neuron models in neuroscience that can be used to analyse the 
spiking characteristic of neurons and the system dynamics of networks. They are 
systematically classified into two types, with the first the biophysical model like 
Hodgkin-Huxley model and the second the integrate-and-fire model like Izhikevich 
model [6]. Here, the Izhikevich model is adopted for its biological plausibility and 
computational efficiency. 
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Assume ,
j

lV Ξ denotes the membrane potential of the j th neuron in class Ξ of layer l , 

where subscript Ξ  represents the excitatory type, excitatory ( e ) or inhibitory ( i ), the 
ordinary differential equation of membrane potential can be written as 
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Note that ,
j

lU Ξ , the membrane recovery variable, which provides a negative feedback 

to membrane potential ,
j

lV Ξ , is used to account for the activation of +K  and the 

deactivation of +Na ion channel[6]。 ,lI Ξ denotes the magnitude of external constant 

current that controls the global excitability of excitatory and inhibitory ( Ξ ) networks 

of layer l . And ,

,
j k

l mw
Ξ Ξ represents the synaptic strength between neuron j in layer l and 

neuron k in layer m . Parameters a , b , c , d are used to control the spiking behavior of 
different type of neurons, also refer to Fig.4. 

 

V(t) 
I(t) 

V(t) 
I(t) 

V(t) 
I(t) 

 

 
Fig. 4. Top: the spiking models of isolated RS, IB and FS neurons are shown from left to right 
respectively. Model parameters: RS (left): a=0.02, b=0.2, c=-65, d=8; IB (middle): a=0.02, 
b=0.2, c=-55, d=4 [6]; FS (right): a=0.1, b=0.2, c=-65, d=2. Bottom: typical firing style of an 
IB neuron in minicolumn. 

3   Results and Discussions 

The electrode-recorded data from Thomson et al.[12] only roughly reflects the 
connection weights between layers rather than detailed synaptic weights between 
neurons, also see Häusler et al.[13]. In order to introduce Potts states into minicolumn, 
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Fig. 5. The highly temorary synchronization represents the existence of Potts states. Top: the 
spiking of excitatory neurons in layer II/III. Middle shows the spiking activity in two time 
windows. Bottom shows the distance matrix between neuronal spiking series. See text for 
details.  

more information should be stored in the layered minicolumn network. And we simply 
stored finite patterns into layer II/III according to Hopfield rule. 

Treves et al.[17] has ever simply split the complex layered cortex into three layers, 
that is, a granular cell layer (layer IV) “has been inserted” into the original single 
pyramidal layer. It is said to be that the enlargement of memory capacity of layer 
II/III and layer IV lays the foundation for the emergence of human cognition. And 
also as discussed above, the recurrent connections from other areas mainly enter layer 
II/III. So we only store information in layer II/III. 

EEG recordings show that only in Rapid Eye Movement or walking or complete 
action state, that the cortex exhibit rhythmic activity [18], when the thalamic inputs 
are inhibited. And what’s more, only when the systematic dynamics is rhythmic, can 
we analyze the Potts states efficiently. So we set the afferents of layer II/III far 
stronger than that of other layers. By the way, the weak neuromodulatory inputs from 
brainstem are incorporated into the weak afferents. 

3.1   Potts States 

To scrutinize the temporary spiking synchronization of neurons, we compartmentalize 
the spiking series into short time windows, as shown in Fig.5. Then we calculate the 
distance between each pair of neuronal spiking series. Now that the distance is 
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symmetric, only the above triangle of the matrix is shown for convenience. As it can 
be easily seen from Fig.5, only a subset of neurons are spiking synchronously. In the 
first window, neuronal pairs (1, 2), (1, 12) and (7, 9) have very similar firing timing in 
that particular period, with the pair (7, 9) firing in best synchronization. Similarly, 
neuronal pairs (9, 16), (13, 15) are the most synchronous pairs in the second window. 

And several interesting solutions can be drawn directly from these simulations. 
Firstly, it is the highly synchronization of a subset of neurons underlies Potts states. 
When all excitatory neurons in layer II/III are in-phase, there would be only two 
discrete states, on or off, for each minicolumn. If so, the memory capacity of human 
brain would be too restricted for the cognitive behaviors. What’s worse, no latching 
phenomenon [2] would appear. But if all neurons are asynchronous, or phase-locked, 
the dynamics of minicolumn would be chaotic. If so, the semi-rhythmic activity 
appeared in several status would disappear. 

Secondly, all neurons in minicolumn are almost equal-active. That is, their average 
firing activities are stable, which not only excludes the assumption of Potts states by 
the number of total spikes of all neurons in a short period, but also demonstrates firing 
stability of minicolumn. 

Lastly, we can simply estimate the Potts states each minicolumn has. As shown in 
Fig.7, the average number of most synchronous neurons is 3.8143, with standard 
deviation 1.8205. If the number of synchronous spiking neurons is simply taken to be 
4, then there would be 3e+3 Potts states. If the surface area of human cortex area is 
2400cm2, [14] and the diameter of minicolumn is 0.05mm [19], there would be 
1.2e+8 minicolumns in total. And according to [20], if the neurons are fully connected 
(only roughly estimate the upper bound), then the total patterns that could be stored in 
our neocortex would be 1.5e+14, almost infinite. 

3.2   Intrinsically-Bursting Neurons 

As discussed above, besides RS neurons, IB neurons also take up a large part of the 
excitatory neurons. And it is curiously that this obvious phenomenon sometimes even 
has been neglected, like Golomb et al.[21]. 

To probe the probable role for IB neurons, we also run the network when all the 
excitatory neurons are RS neurons. And a comparison between minicolumn networks 
with and without IB neurons is showed in Fig.6 and Fig.7. There is nearly no 
difference between the rhythmic spiking activity between two network models. But in 
Fig.7, we found that not only the average number of most synchronous spiking 
neuron, but also the standard deviations of the network with IB neurons are smaller. 
With the former, the maximum amplitude of rhythmic waves is lower, and with the 
later, the Potts states are more uniform and stable.  

The more uniform synchronous group-spiking shows that the firing activity of 
excitatory neurons are affected by stronger synaptic inputs, and we think the bursting 
behavior of IB neurons (Fig.4, bottom) is an ideal choice. Also, when FS inhibitory 
neurons are excited by stronger presynaptic neurons, they depress the excitability of 
the whole network, lowering the amplitude. So it comes about a probable role that IB 
neuron plays in the neocortex, enhancing the spiking stability of minicolumns. 
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Fig. 6. Minicolumn dynamics with (top) and without (bottom) IB neurons. And there is nearly 
no difference between the rhythmic activity of two models. Note that the afferents from 
thalamus are inhibited, so neurons in layer IV seldom firing. e stantds for excitatory, I for 
inhibitory. 

It should be noted that French et al. [22] have ever proposed that IB neurons are 
primarily in charge of the synchronous spiking of the total network. But as it can be 
seen from Fig.6, even when the IB neurons are excluded from minicolumn, the 
systematic rhythmic synchronization activity also appears.  
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Fig. 7. Comparison of the number of the most synchronous spiking neurons in networks with 
(red) and without (green) IB neurons. The solid line represents the average number, and the 
dashed line shows the standard devidations. The statistics is 3.8143 ± 1.8205 when IB neurons 
are involved, and 4.5551 ± 2.2498 when not.  

Perhaps IB neurons have other particular physiological or other biochemical 
functions, but the conclusion we draw here provides a novel viewpoint for their 
functional roles. 

4   Conclusions 

In this paper, we try to explore the feasibility and availability of so-assumed 
functional role that minicolumn plays in the systematic dynamics of neocortex, Potts 
states. We found that Potts states probably originate from the temporarily high spiking 
synchronization of a subset of neurons. Furthermore, we analyzed the role played by 
the IB neurons and proposed that it may have much to do with the stability of Potts 
states. Future work includes how the most synchronous spiking pairs evolves and how 
the minicolumn functions when thalamus inputs appears and when the proportion of 
IB neurons changes. 
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Abstract. Correlation coefficient is a way to capture the structure of correlation, 
which is widely used for analysis and interpretation of multiple simultaneously 
recorded spike trains. We study the correlation coefficient of a global delayed 
feedback network with a population of excitatory neurons and a population of 
inhibitory neurons and show the contribution of the inhibitory feedback to the 
oscillations and correlation. We find that, with the increase of the strength of the 
inhibitory feedback, the mean firing rate of the excitatory neurons decreases 
monotonically, while the correlation coefficient first goes down, and then goes 
up when the excitatory neurons oscillate and the spectrum shows significant 
resonance. The non-monotonic relationship between the correlation coefficient 
and the strength of inhibitory feedback is thus due to the combined effect of the 
mean firing rate and the power of oscillations. 

Keywords: correlation, oscillation, inhibitory feedback. 

1   Introduction 

Many neurons often share common fluctuations in both field potentials and neural 
firing, which can be induced by both common external stimuli or shared internal 
connections [1-7]. Previous related studies have shown that temporal correlation is 
fundamental tools for encoding and exchanging information for neuronal information 
processing [8-10]. Therefore, it is essential that we gain a thorough understanding of 
correlation in the brain and its impact on population coding. Progress has been made on 
the temporal scales and spatial extent of correlation of spiking activities [8,9,11], 
however, the interpretation of the correlation is still difficult, especially in large 
networks [11].  

Rhythmic spiking activities are often found in networks of excitatory neurons and 
inhibitory neurons [2,5,12], the excitatory neurons synchronize the inhibitory neurons 
and vice versa. The interplay between the two cells groups may lead to Gamma 
oscillations, which have been the subject of intense research effort in many studies 
[4,6,12]. Neurophysiological studies have suggested that synchronous oscillatory 
activities may be evoked by inhibition originating from inhibitory interneurons 
[3,4,13]. Therefore, in a network with excitatory and inhibitory neurons, a delayed 
inhibitory feedback pathway is critical for the stochastic oscillations. 
                                                           
*  Corresponding author. 
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In the present paper we consider a population of identical, uncoupled excitatory 
neurons with the correlated external input, receiving a common inhibitory synaptic 
input from a population of inhibitory neurons. This architecture is widely used in 
discussing the oscillatory, synchronized firings of cortical pyramidal neurons [2,5].  
However, the effect of inhibitory feedback connections on the correlation is rarely 
discussed in theoretical or numerical studies [11].  

In our former studies, the presence of non-monotonic relationship between 
correlation coefficient and the strength of feedback gain could be proved in a network 
which has only one inhibitory neuron in the second layer [14,15]. In the present paper, 
we find that the correlation coefficient of the excitatory neurons could still be 
non-monotonically changed by increasing the strength of feedback gain when we 
replace a single inhibitory neuron by a population of inhibitory neurons. The 
non-monotonic relationship reported here is quantitatively and qualitatively similar as 
the one in our former studies. Furthermore, we find that both the firing rate and the 
oscillations of populations of neurons are important and should be involved to 
understand the correlation of the excitatory neurons.  

2   Network Model 

We use leaky-integrate-and-fire (LIF) model for simulations and numerical analysis. 
The LIF model is an extremely useful description of neuronal activity, which describes 
the dynamics of the membrane potential by Eq.1 and a simple spike-and-reset rule: 
every time the potential reaches a firing threshold νT, the neuron fires and resets to the 
reset potential νR. After firing, the neuron is in an absolute refractory state for time τR.  

( )
( ) ( )

dv t
v t I t

dt
= − +  ,                                              (1) 

where ν(t) and I(t) are the membrane potential and afferent current respectively. Here 
time is measured in units of the membrane time constant and the resistance of the cell 
membrane is normalized to one. The neuronal parameter values are set to: νT=1, νR=0, 
τR=1.  

The output spike train of LIF model is: 

( ) ( )j
j

y t t tδ= −∑  ,                                                        (2) 

where the tj are the successive firing instants. Based on the LIF model, the structure of 
the network contains two layers of NE=4N/5 excitatory and NI=N/5 inhibitory neurons. 
We use these proportions because there are about four times more excitatory than 
inhibitory neurons in the cortex. All excitatory neurons receive correlated external 
input drive Ii. The inhibitory neurons provide a common negative input IIE to all the 
excitatory neurons. The synaptic time constants have two different values tE or tI, 
depending on whether neuron is excitatory or inhibitory.  

( ) 1 ( ) ( )i i c IEI t c t c t Iμ σ ξ ξ⎡ ⎤= + − + +⎣ ⎦  ,                                     (3) 
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where μ denotes the base current. σ[ 1-c ξi(t)+ c ξc(t)] stands for the external noise 
with intensity σ, and consists of two noise processes: ξi(t) are the individual noise 
components, and ξc(t) the shared component. Input correlation coefficient c could 
determine the degree of correlated external input. IIE represents the common negative 
input to the excitatory neurons. G is the total strength of the feedback pathway which 
defines the feedback input by multiplying the convolution of a delayed a function and 
the spike trains of all the inhibitory neurons. Here tD is the transmission delay of the 
feedback loop. The inhibitory neurons are drived by all the excitatory neuron with a 
common input IEI. 
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We will mainly interest in the subthreshold regime. The neurons fire only with the 
presence of external input. The values of all other parameters are: τD=4ms, τE=2ms, 
τI=10ms, μ=0.9, σ=0.3, N=100, c=0.2. Eq. 1 is integrated by a simple Euler scheme 
with a time step of 10-5sec. 

3   Methods and Results 

Since two coupled populations of excitatory and inhibitory neurons can reveal 
oscillatory activity, we first calculate the spike train power spectral density of the 
excitatory neurons to study the rhythmic spiking activities of the network. One 
excitatory neuron is selected to reveal the properties of the oscillations. The power 
spectrum of spike trains of neuron i is calculated by:  

*( ) i iS f y y= 〈 〉% %  ,                                                           (8) 

0

1
( ) ( )

L i t
i iy f e y t dt

L
ω−= ∫%  ,                                         (9) 

where iy%  is the Fourier transform of the spike train, *
iy%  denotes the complex 

conjugate of iy% .  
Fig. 1 shows the result of computer simulations for the spike train power spectral 

density of an excitatory neuron from the network when G=-0.5. With the presence of 
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Fig. 1. Spike train power spectral density of an excitatory neuron 

global delayed feedback and correlated external input to the excitatory neurons, we 
obtain a clear resonance of the spectrum in the gamma frequency band. This result is 
corresponding to the former studies [3-5]. In order to measure the intensity of the 
oscillations of the excitatory neurons and obtain a compared result, the amplitude of the 
resonance can be quantified by introducing the statistics: 

2

1 2
1

, ( )
f

f f f
S f dfΓ = ∫  .                                                   (10) 

Over our data ensemble, we have Γf1,f2 for frequencies Γ40,100, since the resonance 
peak of S(f) in fig. 1 is centralized in this band. Furthermore, we use Γ40,100 to quantify 
the shift in power with inhibitory feedback gain G. As shown in fig. 2, in the 
subthreshold regime, we analysis the relationship between Γ40,100 and G. Over the 
whole range of G, Γ40,100 decreases monotonically with the increasing of G. When G is 
small, in other words, the inhibitory feedback is strong, the value of Γ40,100 keeps high 
and stable, indicating continuing oscillations of the excitatory neurons with strong 
inhibitory feedback. When G is increased, the value of Γ40,100 drops quickly, which 
reveals that the peak value of oscillations in the presence of weaker inhibitory feedback 
is decreased. Finally, the oscillations disappear gradually when G tends to zero, leading 
to relatively small Γ40,100. 

Power spectral density reveals the properties of the spike trains in frequency domain. 
To discuss the firing activities in time domain, we use pairwise spike train correlation 
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Fig. 2. Power Γf1,f2 near the resonance peak (40-100 Hz) as a function of G 

in this paper to estimate the correlation coefficient. Pairwise spike train correlation is a 
widely used method to investigate the correlated firing of neurons. It is calculated by 
the ratio of the area of the cross-correlogram (CCG) and the geometric mean area of the 
auto-correlogram(ACG) with certain range of integral window T. 

The expressions of CCG and ACG are: [9,10,11], 

1 0

( ) ( )
( )

( )

M L
k k
i j

k t
ij

i j

y t y t
CCG

M L

τ
τ

τ λ λ
= =

+
=

−

∑∑
 ,                                        (11) 

1 0

( ) ( )
( )

( )

M L
k k
j j

k t
jj

j j

y t y t
ACG

M L

τ
τ

τ λ λ
= =

+
=

−

∑∑
 ,                                       (12) 

where M is the number of trials, L is the duration of every trial, λi and λj are the firing 
rates of neurons i and j. L-|τ| is used to correct for the degree of overlap of the two spike 

trains [9,10]. Once the geometric mean spike rate λiλj is divided CCG and ACG end 
up with units of coincidences per spike.  
To weaken the influence of slow fluctuations in neuronal response, we correct all CCGs 
and ACGs by subtracting a shift predictor SPT:  
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where k’=k+1(k<M) or k’=1(k=M).Therefore, we can obtain the expression of the 
pairwise spike train correlation Cij based on eq. (11)-(13):  
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When T is large enough, the correlation coefficient of the network (Cor) can be 
calculated by averaging the pairwise spike train correlation over all the excitatory 
neurons. Here M=100, L=10s, T=100ms. 

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
0.05

0.1

0.15

0.2

0.25

0.3

G

Cor

 

Fig. 3. Correlation coefficient Cor as a function of G 

The numerical result for Cor versus G is presented in fig. 3. Non-monotonic 
correlation coefficient function is observed: for moderate values of G the curve shows a 
notch. This non-monotonic relationship between correlation coefficient and inhibitory 
feedback gain is demonstrated before when we use a single inhibitory neuron in the 
second layer [14,15]. Here a set of 20 LIF inhibitory neurons are introduced to 
investigate the interaction between populations of neurons. Since it is difficult to 
determine the nature of states in large neural networks, more attention should be given 
to the simulations in this field. Remarkably, the non-monotonic curve is preserved 
when we expand the scale of networks. Adding more inhibitory neurons does not affect 
the results, as shown in fig. 3.  

In order to compare the results of the power of the oscillations and the correlation 
coefficient and identify the effects of inhibitory feedback, Γ40,100 (gray pluses) and Cor 
(black line) as functions of G are normalized and replotted in fig. 4. We also 
incorporate the mean firing rate (R) of the excitatory neurons with varying values of G 
in fig. 4 (gray crosses). Both the Cor and the R functions reach smaller values with 
weaker inhibitory feedback gain’s (larger G’s). The decreasing of firing rate leads to 
the drop of the correlation coefficient, corresponding to the conclusion of previous 
studies: the correlation is directly proportional to the firing rate [10]. In contrast, we 
also find Cor begins to increase when inhibitory feedback becomes stronger (smaller 
G’s); thus the upward trend of the curve of Cor does not reflect the effect of firing rate 
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Fig. 4. Normalized Cor, Γ40,100 and R as functions of G 

on the correlation. This is because when G decreases, Γ40,100 begins to rise, i.e. the 
excitatory neurons oscillate apparently. The increment in Γ40,100 is much bigger than the 
decrement in R. The correlation coefficient thus increases owing to rhythmic spiking 
activities. Moreover, Cor drops slower than R dose with larger G’s. This is also due to 
the effect of mild oscillations, which are indicated by small values of Γ40,100. 

4   Conclusion and Discussion 

The neural systems are often required to perform complex computations demanding 
strong correlations [8]. Experimental recording of neuronal activity often show large 
oscillatory response, indicating periodic and synchronized spiking occurs across distant 
neurons [1,6,12]. These synchronized oscillations might generate short time scale or 
long time scale correlations [11], which allow patterns of populations’ activity to 
propagate more efficiently to downstream targets. 

In the present paper, we have shown that the relationship between correlation 
coefficient of the network and the strength of the inhibitory feedback gain is 
non-monotonic. The decrease of the firing rate of the excitatory neurons by adding 
inhibitory feedback input lead to the decline of the correlation coefficient at weak 
inhibitory feedback gain. With the increase of the strength of the inhibitory feedback 
gain, the network begins to oscillate in gamma frequency; the periodic components of 
the firing activity of the excitatory neurons give rise to the correlation coefficient of the 
network, regardless of the effect of the firing rate. In conclusion, our results suggest 
that correlations are related to two parameters: the firing rate of the neurons capturing 
the features of the stimuli, which are proportional to the correlations for non-interactive 
neurons; and the inhibitory feedback gain, which describes the strength of the interior 
connections of the network, could enhance the correlations by inducing periodic 
oscillatory activity of neurons.  
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Abstract. The new model presented in the paper is used to simulate the 
development process of the orientation selectivity in primary visual cortex. The 
model combines mechanisms such as receptive field control, lateral connections, 
function columns into a network and then trained with random samples, can be 
regarded as a first stone of other feature maps. The model attempts to verify the 
basic features of the orientation map such as singularities, continuity and 
diversity. Meanwhile the model can be expanded with increasing columns or 
hyper-columns easily in order to process lager scope of stimulus. Another point 
is fault-tolerance, if some column is not successfully trained, the map can still 
perform well. After fast training process, the image of finished orientation map 
displaying with topology function is similar with the biological cortex orientation 
map, and the formed map can be used to extra the orientation information of the 
input quickly for the further visual process. 

Keywords: development, primary visual cortex, orientation selectivity, orientation 
map. 

1   Introduction 

The primary visual cortex, which is also known as V1 or area 17, can be view as a 
topographic map like many other areas of the neo-cortex. Adjacent neurons in it 
respond to near regions of the receptive field. Neurons in primary visual cortex are 
responsive to certain features in the input, such as lines of a certain orientation, 
different colors, and movements of various directions. Orientation selectivity and 
ocular dominance are most thoroughly studied parts of the primary visual cortex, 
scientists from mathematics, neuroscience, biophysical and computer science, over the 
last several decades, have done thousands of experiments to study the neural 
mechanisms[1], trying various methods to dig out the features or producing a model to 
describe the formation of the orientation map. 

In visual cortex, all neurons arranged in a vertical column and respond to stimuli 
oriented at the same angle is called orientation column. They typically have the same 
orientation preference. Neurons in a neighbor column will have a slightly different 
orientation preference, which gradually vary across the surface of the cortex that 
behaves the continuity of the organization of orientation columns [2, 3]. 
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Visual experience plays important role in cortical map, especially orientation map 
while altering the visual environment in an early stage would greatly change the 
organization of orientation column. If an animal is raised with both eyes closed, that is 
to say no stimulus is given to the cortex, the orientation columns do not form. If the 
animal is given only special orientation stimulus, the formed orientation map would 
only respond to the stimulus of this kind. This factor suggests that study efficiency of 
the model will get decrease as time goes on. 

Neurons in orientation column have lateral connections to surrounding neurons. In 
some model, it seems like orientation column connect to neighboring columns laterally. 
Different models with different radius of lateral connections accomplish different task. 

Computational models have been realized in the computer system, most of which are 
based on biological theory or experiments. Our method obey the classical principles 
and theory illustrated above and pay attention to the computational efficiency while not 
bring the model to a computer vision one. 

Our approach has several differences from following computer vision functions: (1) 
though PCA, ICA can simulate orientation specificity, reconstruction, it cannot 
simulate other features of V1, such as continuous distribution mentioned above; (2) 
Theoretically, neurons in the network of PCA are completely connected, not meet that 
real receptive field roughly only has local-connections, and it wastes too many 
resources in training and cutting of connections in global connection matrix; (3) The 
geometric methods use Eigen-vectors as mask has a defect that resolution cannot 
change while some slight difference of image may lead to a great change in parameters; 
(4) functions aim at compression storage, transmission and entire reconstruction other 
than understanding the information in the view; (5) Rule of complex geometry such as 
Gestalt features is not easy to develop; (6) Real-life situation is continuous, which has 
spatial correlation in it. 

2   Material and Method 

Our model aims to simulate the formation of the orientation maps which obeys the 
principles of continuity, diversity, global disorder, singularities and linear zones [4] 
while also have the distinguish advantages such as ease of expansion; fast training for it 
have much less connections than other competitive network; 

Previous models use various kinds of inputs [2] such as: elongated patches, initially 
uncritical, oriented stimulation, uncorrelated noise, natural images, radially uniform 
correlations, negative correlations between ON and OFF inputs. Here our model extra 
binary stimulus, pixels matrix from input after retina and LGN process, which 
distinguishes our model from others.  

We use the ‘columns’ in the present paper, compared with the definition by Hubel 
and Wiesel (1974b), not limit the size of their receptive field, for different animals, cats, 
macaques have different ones. Its size roughly corresponds to the size of the cortical 
point image [2], not too small, not too big. Receptive field of neighboring columns 
overlap a lot, big proportion of the region, which help the formation of singular and 
continuity. 
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Assume that the whole output layer of the model make up a piece of the orientation 
map. The output layer should consist of tens to hundreds of hyper-columns. Besides 
cortical activation is under synchronous mechanism and competitive Hebbian models 
[6, 7], there is feedback system that the connections weaken slower than being 
enhanced.  

Then here we will discuss details about the model we proposed on these basic. 

Model: 

 

Fig. 1. Different neurons have Receptive Fields of different size. There are lots of neurons in 
retina layer whose receptive fields overlap his neighbors’. Through retina connection, each 
neuron in retina layer ‘sees’ the input after simple threshold processing. Through trained column 
weight, one column in hyper column will be selected to represent it. The columns in one region 
(gray region in the Figure.1) have the same receptive field in the view, that is to say, the same size 
and ‘see’ same thing at one time. 
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For each hyper column in map: 
 W r W r αβσ r, r v W r  (1) σ r, r′ exp |r r′|  (2) r t αR (3) β η  1 η v W r /|v W r | (4) 

W is weight of column; t is time or iteration times;  is study efficiency, which will 
decrease with t increases; v is the input vector from samples; σ r, r′  is a function about 
the distance from current neuron to the winner neuron. Neighbor radius will also 
decrease with t increases. 

Another distinguish of the model is that the efficiency will decrease when vW r 0 compared with the forgetting curve. 
The present model not only obeys the principles of continuity and diversity but also 

contains singularities in the orientation preference map [1]. The orientation selectivity 
similarity is enhanced by altering weight vector of columns both in the same group and 
not, if only inside the neighboring radius, which moving them all closer to a presented 
input vector. Competition, implemented as a selection rule in model leads to diversity is 
the output map. 

 

Fig. 2. Columns arranged in hexagon grid composed hyper column. Columns in one hyper 
columns share the same region in receptive field while they have different orientation selectivity 
from 0° to 180°. The angle varies continuously in the hyper column in most cases; Columns in 
neighboring hyper-columns share great proportion of region of receptive field. 

Orientation map in the model does not place columns by the liquid-like properties; it 
is simply arranged in a crystal-like grid of exactly repeating placing hyper-columns. 



A New Model to Simulate the Formation of Orientation Columns Map in Visual Cortex 39 

 
Fig. 3. The orientation map is stored in column level which we can regard as columns map. As 
shown in Figure 3, each hexagon-like column in displaying map (left: Algorithm Structure) has a 
corresponding column in storage map (right: Storage Structure); the whole hyper-column is 
similar to a Tetris of N bricks (N=19 on this occasion).  

As shown in Figure 3, the storage map is easy to expand with such patch-like Tetris 
while it is easy to be stored with the simple data structure ‘array’. So our model has 
feature of easy expansion. It is of great weight when we change the experiment 
environment to a system of distributed architecture. 

Supposed that central coordinate of column (I, J) in Algorithm Structure (Fig.3. left) 
is (X ,Y ); while central coordinate of column (I, J) in Storage Structure (Fig.3. right) is 
(X ,Y ).   X Y sinθ edge (5) Y X 2cosθ edge Y %22 edge (6) 

=π/6, edge is the edge length of the hexagon in Figure.3. left. Edge would better be 
larger than number of receptive field neurons. 

    

Fig. 4. The feature of singularity is the very important one, point-like discontinuities in the 
orientation map, around which orientation preferences increase/decrease clockwise. Figure on 
the left shows why the present model can form pinwheel or to say the model has feature of 
singularity. Hyper columns in near place share a common area, after long period learning, there 
has a chance to be reflected to a stimulus in the area; and then develop into a pinwheel. 



40 H. Wei and Y. Wang 

Result:  

 
 

  

        

Fig. 5. A part of the orientation map produced by our model (bottom left) and the whole output 
(top right, bottom right) show the final result of the training function. Compared with the real 
orientation map with voltage-sensitive dyes ([8], top left), it is somehow similar. In fact the 
output map contains only 19*19 neurons; the difference from the map illustrated above is that we 
choose a topological display function with better performance in the whole view display. We can 
see that columns of different orientation selectivity are arranged averagely in the map. Though 
we cannot tell exact where there is a hexagon like hyper-column, we can easily find nearly 
columns of different orientations in a certain region. The principle of continuity and diversity, 
singularity and linear zone is represented well in the result. 



A New Model to Simulate the Formation of Orientation Columns Map in Visual Cortex 41 

  

Fig. 6. The orientation columns map (on the right) is the result orientation map (on the left) 
represented with four color, color of each column represents orientation selectivity such as 0°, 
45°, 90°, 135°. Though orientation selectivity of some columns is not exactly in these four, the 
model will use the most similar one to replace it. 

We can find linear zones and singularity, pin-wheel like regions in the orientation 
map. And in the whole map the principle of continuity and diversity can also been seen. 

Acknowledgment 

This work was supported by 973 Program (Project No. 2010CB327900) and NSFC 
major project (Project No. 30990263). 

References 

1. Erwin, E., Obermayer, K., Schulten, K.: Models of orientation and ocular dominance 
columns in the visual cortex: a critical comparison. Neural Computation 7, 425–468 (1995) 

2. Swindale, N.V.: The development of topography in the visual cortex: a review of models. 
Network 7(2), 161–247 (1996) 

3. Hubel, D.G., Wiesel, T.N.: Sequence regularity and geometry of orientation columns in the 
monkey striate cortex. J. Comp. Neurol. 158, 267–293 (1974) 

4. Shmuel, A., Grinvald, A.: Coexistence of linear zones and pinwheels within orientation maps 
in cat visual cortex. Proc. Natl. Acad. Sci. USA 97, 5568–5573 (2000) 

5. Stemmler, M., Usher, M., Niebur, E.: Lateral interactions in primary visual cortex: a model 
bridging physiology and psychophysics. Science 269, 1877–1880 (1995) 

6. Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Computational maps in the visual cortex. 
Springer, New York (2005) 

7. Bednar, J.A., Miikkulainen, R.: Pattern-generator driven development in self-organizing 
models. In: Computational Neuroscience: Trends in Research, pp. 317–323. Plenum, New 
York (1998) 

8. Blasdel, G., Salama, G.: Voltage-sensitive dyes reveal a modular organization in monkey 
striate cortex. Nature 321, 579–585 (1986) 



D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 42–51, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Study on the Synchrony Intensity Threshold of Two 
Uncoupled Neurons under Different Currents’ 

Stimulation 

Yueping Peng 

Communication Engineering Department,  
Engineering College of Armed Police Force, 710086, Xi'an, China 

Percy001@163.com 

Abstract. The input current of two uncoupled Hindmarsh-Rose neurons under 
different initial conditions is modulated by the different membrane potential of 
the Hindmarsh-Rose neuron; and the synchrony intensity threshold of two 
uncoupled neurons under different currents’ stimulation by calculating and 
analyzing their maximum absolute phase difference.Under different simulation 
signals, the two uncoupled neurons can realize the phase synchronization or the 
full synchronization, and the stimulation intensity threshold of the two 
uncoupled neurons’ realizing synchronization is different. According to the 
signal’s complexity, the more complex the stimulation signal is, the smaller its 
intensity threshold to realize the two uncoupled neurons’ synchronization is. 
Under the chaos signal’s stimulation, its intensity threshold to realize the two 
uncoupled neurons’ synchronization is smaller than the period signal, and is 
easier than the period signal to realize the two uncoupled neurons’ 
synchronization. So the chaos discharge paterns is more favourable to signals’ 
expression and transmission in neural system. From the calcium ion’s effect, the 
smaller the stimulation neuron’s parameter r is, the smaller the effect of the 
stimulation signal’s calcium ion is, the easier the two uncoupled neurons realize 
synchronization. So the stimulation signal whose calcium ion’s effect is large 
isn’t easy to realize the two uncouple neurons’ synchronization. This 
investigation shows the synchrony intensity threshold’s rule of two uncoupled 
neurons under different currents’ stimulation. These results are helpful to study 
synchronization and encode of many neurons or neural network. 

Keywords: The Hindmarsh-Rose neuron; Synchronization; Threshold. 

1   Introduction 

Since system synchronization was presented by Pecora, et al[1, 2] in 1991, 
synchronization research has been causing researchers’ wide focus in neuroscience 
field. Nervous activities’ synchronization is found not only among coupled neuron 
groups in the same brain region, but also among uncoupled neuron groups in the same 
brain region or among different cortical areas; Moreover it can cross over two 
semispheres of the brain[3]. So in the nervous system, synchronization activities are 
presented not only among the coupled neurons, but also among the uncoupled 
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neurons. Studies on neuron synchronization are mainly focused on two cases: the 
coupled neurons and the uncoupled neurons; And the synchronization of coupled 
neurons is studied more. 

In 2002, A.B.Neiman confirmed that noise can realize the uncoupled sensory 
neurons’ synchronization in the experiment for the first time[4]. Later, some 
researchers also discussed the synchronization problem of the uncoupled neurons[5-
12]. But the synchronization mechanism of the uncoupled neurons isn’t clear yet; For 
example, the synchrony intensity threshold of two uncoupled neurons is often much 
large, which can’t be explained in sound reasons. 

The Hindmarsh-Rose neuron(HR neuron) has several characteristics of the 
excitable cell’s physical model and many time scale discharge action[13-15, 20]; 
There are some literatures of studies on synchronization of HR neurons[3, 5, 11, 16, 
19, 21-23]. Huerta R and Rabinovich M I studied the period rhythm’s change of two 
HR neurons coupled by the circuit and the synapse[16]. Two uncoupled HR neurons 
can be realized synchronization by applying input signals to modulate the neuron 
model’s parameter or by applying the noise and the HR neuron’s membrane potential 
to stimulate these neurons[5, 11, 17]. The phase synchronization of two coupled HR 
neurons was discussed by Jian-Wei Shuai and Durand D M, and they concluded that 
the phase synchronization is the discharge synchronization, the frequency 
synchronization is the cluster synchronization, and the full synchronization is the state 
synchronization[18]. Synchrony of two uncoupled neurons under half wave sine 
current stimulation was discussed, and it was concluded that the two uncoupled HR 
neurons under different initial conditions, whose parameter r is different or the same, 
can realize discharge synchronization(phase synchronization) or the full 
synchronization(state synchronization)[19]. Above researches are not systematical 
and all-round. It is too monadic in the stimulation signals’ choice, and it is not studied 
and analyzed systematically and by contrast in the synchrony intensity threshold 
under different currents’ stimulation. 

In this study, we take two uncoupled HR neurons as the object, and make the HR 
neurons different initial discharge patterns by setting the value of the parameter r, and 
apply the different membrane potentials of the Hindmarsh-Rose neuron to modulate 
the two uncoupled HR neurons’ input current, and discuss the synchrony intensity 
threshold of two uncoupled neurons under different currents’ stimulation by 
calculating and analyzing these two neurons’ membrane potentials and their 
maximum absolute phase difference. 

2   The Discharge Patterns of the HR Neuron Model 

The HR neuron has many time scale dynamics action, and its equation is set of three 
dimension ordinary nondimensional differential equations[13-15], 

Izbxaxyx +−+−= 23
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                                                                       (1) 
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The HR neuron has three time variables: the membrane potential variable x which 
has the quick depolarization ability, the quick recovery variable y and slow adaptation 
current variable z. I is input stimulation current; a, b, c, d, s, r and X are parameters. 
The parameter r is related to the membrane penetration of calcium ion, and reflects 
the changing speed of the slow adaptation current variable z. Other parameters have 
no specific physical meaning. The equations are nondimensional, and at numerical 
calculation, value of parameters is as follows: a=1.0, b=3.0, c=1.0, d=5.0, s=4.0, 
I=3.0, X=-1.56, and you can make the neuron different discharge patterns by 
controlling the parameter r variation.  

The discharge threshold value is -0.25, and if the membrane potential is more than 
-0.25, the neuron will produce one discharge process. Fig.1 is the ISI bifurcation 
figure of the neuron, where parameters except r are set to the above values, and the 
initial state of the neuron is (1.0, 0.2, 0.2). From Fig.1, the discharge pattern of the 
neuron begins from the chaos state(r is about 0.008~0.009), and evolves period 6 
discharge pattern(r is near 0.01), and via the adverse period doubling bifurcation 
passes period 3(r is about 0.0105~0.012) and enters the chaos state(r is about 
0.0125~0.015) again, and at last via the adverse period doubling bifurcation passes 
period 4(r is about 0.016~0.018) and comes into period 2(r is about 0.0185 ~0.022). 
 

 

Fig. 1. Bifurcation figure of the HR neuron under the parameter r changing from 0.008 to 0.022 

3   Study on the Synchrony Intensity Threshold of Two Uncoupled 
Neurons under Different Currents’ Stimulation 

The equation set of two uncoupled HR neurons’ model is: 
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Time variables of these two neurons are respectively (x1, y1, z1) and (x2, y2, z2),, and 
the parameters of these two neurons are respectively (a1, b1, c1, d1, r1, s1, I1, X1) and 
(a2, b2, c2, d2, r2, s2, I2, X2).  

The equations are also nondimensional. At numerical calculation, the values of 
these two neurons’ parameters (except r) are as follows: a1=a2=1.0, b1=b2=3.0, 
c1=c2=1.0, d1=d2=5.0, s1=s2=4.0, X1=X2=-1.56, I1=I2=3.0; And the values of the initial 
states of these two neurons are respectively (1.0, 0.2, 0.2) and (-1.0, 0.8, 0.3); And 
you can set these two neurons at different discharge patterns by controlling values of 
the parameter ri (i=1, 2).  

According to the difference of these two neurons’ parameter r, there are three 
cases: the parameter r is the same, a little different( 0005.021 ≤− rr ), and much 

different( 003.021 ≥− rr ).  

The value of the initial state of the stimulation neuron is (0.2, 1, -0.2). The values 
of the parameters except r of the stimulation neuron are as follows: a=1.0, b=3.0, 
c=1.0, d=5.0, s=4.0, I=3.0, X=-1.56. The stimulation neuron can be made different 
discharge patterns by changing the parameter r according to Figure 1.  

Total stimulation current includes two parts: the bias current(I1 and I2) and the input 
stimulation current IS(t): )()( tkxtI S = . X(t) is the membrane potential of the 

stimulation neuron, and k is the stimulation strength of the membrane potential. The 
stimulation neuron begins to stimulate the system model after the bias current(I1 and I2) 
has been working for 500. The simulation time of the system model is often 0~4000. 

3.1   The HR Neuron’s Phase Function and the Synchronization Judge Rules 

Synchronization state of two neurons can be classified by the phase function[18, 19]. 
The phase function of these two neurons is here defined as: 

 )]1.0)(/()5.0(arctan[)( +−= txtxt iii &&φ  ( i=1, 2)                          (3) 

where x(t) is the membrane potential.  

The absolute phase difference of two neurons( )(tφΔ ) is defined as: 

 )()()( 21 ttt φφφ −=Δ                                                        (4) 

Rules to judge two uncoupled HR Neurons’ synchronization by the absolute phase 

difference of two neurons( )(tφΔ ) are as follows:  

When the maximum absolute phase difference of these two neurons (
max

)(tφΔ ) 

is more than 4π, these two neurons don’t realize synchronization; when the maximum 

absolute phase difference of these two neurons (
max

)(tφΔ ) is no more than 4π for 

some small time intervals and be more than 2π, these two neurons can be viewed as 
an intermittent discharge synchronization; When the maximum absolute phase 

difference of these two neurons (
max

)(tφΔ ) is no more than 2π, these two neurons 
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realize discharge synchronization(phase synchronization); When the maximum 

absolute phase difference of these two neurons (
max

)(tφΔ ) approximates to zero, 

these two neurons maybe realize the full synchronization. 

Fig.2 shows the changing diagram of 
max

)(tφΔ  with the stimulation strength k 

changing. According to above rules to judge two uncoupled HR Neurons’ 
synchronization by the maximum absolute phase difference of these two neurons 

(
max

)(tφΔ ), these following results can be concluded from Fig.2. When the 

stimulation strength k changes from 0 to 12 according to the step 0.02, these two 
neurons’ discharge patterns begin with asynchronization, and gradually realize the 
discharge synchronization via the quick intermittent discharge synchronization 
process. When the stimulation strength k is near 2, and these two neurons in Fig.2.(a) 
go into the intermittent discharge synchronization state, so the synchrony intensity 
threshold of these two neurons is about 2; When the stimulation strength k is near 2.4, 
and these two neurons in Fig.2.(b) go into the intermittent discharge synchronization 
state, so the synchrony intensity threshold of these two neurons is about 2.4; When 
the stimulation strength k is near 3, and these two neurons in Fig.2.(c) go into the 
intermittent discharge synchronization state, so the synchrony intensity threshold of 
these two neurons is about 3. 

 

 

Fig. 2. The changing diagram of the maximum absolute phase difference of these two neurons 
with the stimulation strength k changing, where the parameter r of the stimulation neuron is 
0.02, and the changing step of the stimulation strength k is 0.02. (a) The parameter r of these 
two neurons is the same: r1=r2=0.013. (b) The parameter r of these two neurons is a little 
different: r1=0.009 and r2=0.01. (c) The parameter r of these two neurons is much different: 
r1=0.014 and r2=0.0085. 

3.2   The Synchrony Intensity Threshold of Two Uncoupled Neurons under 
Different Currents’ Stimulation 

Recent researches showed that when two uncoupled neurons realize synchronization 
under different signals’ stimulation, the stimulation intensity must reach a certain 
threshold, and different stimulation signals have different synchrony intensity 
threshold[15, 19-23]. Brain is the chaos state at most time, and the neuron’s research 
about the chaos control has been becoming the hot research field. So in the paper, the 
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issue of the two uncoupled neurons’ synchrony intensity threshold is discussed, and 
these neurons’ initial discharge patterns are all the chaos. 

The values of these two neurons’ parameters (except r) are as above. According 
above the difference criterion of these two neurons’ parameter r, Table 1 shows the 
values of the two neurons’ parameter r, and the discharge patterns of these two 
neurons are correspondingly showed in the Fig.1. From Fig.1, the initial discharge 
patterns of these two neurons are all the chaos. 

Table 1. These two neurons’ parameter r and their initial discharge patterns 

Case The values of r1 and r2 
The initial discharge 
pattern of neuron 1 

The initial discharge 
pattern of neuron 2 

The same 
r1=r2=0.009 
r1=r2=0.013 

Chaos 
Chaos 

Chaos 
Chaos 

A little 
different 

r1=0.0085, r2=0.009 
r1=0.014, r2=0.0141 

Chaos 
Chaos 

Chaos 
Chaos 

Much 
different 

r1=0.014, r2=0.0085 Chaos Chaos 

 
The stimulation signals are the period signal and the chaos signal which is 

produced by the HR neuron by changing the parameter r according to Figure 1. The 
types of the stimulation signals are showed in the Table 2. 

Table 2. The types of the stimulation signals and Its producing methods 

types of the 
stimulation signals 

producing methods 

period 2 produced by the HR neuron whose parameter r is 0.02 

period 4 produced by the HR neuron whose parameter r is 0.017 

chaos  produced by the HR neuron whose parameter r is 0.014 

chaos  produced by the HR neuron whose parameter r is 0.0085 

 
Fig.3~Fig.6 shows the changing diagram of 

max
)(tφΔ of the two uncoupled 

neurons whose parameter r are showed in the Table 1 with the stimulation strength k 
of different stimulation signals changing. In Fig.3~Fig.6, the stimulation signal is 
accordingly the period 2(r is 0.02), the period 4(r is 0.017), the chaos signal(r is 
0.014), and the chaos signal(r is 0.0085), which are showed in Table 2. 

From Fig.3~Fig.6, under the four simulation signals showed in Table 2, these two 
uncoupled neurons can’t realize synchronization when the stimulation strength k is 
very small; With the stimulation strength k’ increasing gradually, these two uncoupled 
neurons realize the discharge synchronization via the quick intermittent discharge 
synchronization process. 
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Fig. 3. The changing diagram of the maximum absolute phase difference of these two neurons 
with the stimulation strength k changing under the period 2 signal’s stimulation(r=0.02). (a) 
r1=r2=0.009. (b) r1=r2=0.013. (c) r1=0.0085, r2=0.009. (d) r1=0.014, r2=0.0141.(e) r1=0.014, 
r2=0.0085. 

 

Fig. 4. The changing diagram of the maximum absolute phase difference of these two neurons 
with the stimulation strength k changing under the period 4 signal’s stimulation(r=0.017). (a) 
r1=r2=0.009. (b) r1=r2=0.013. (c) r1=0.0085, r2=0.009. (d) r1=0.014, r2=0.0141.(e) r1=0.014, 
r2=0.0085. 

 

Fig. 5. The changing diagram of the maximum absolute phase difference of these two neurons 
with the stimulation strength k changing under the chaos signal’s stimulation(r=0.014). (a) 
r1=r2=0.009. (b) r1=r2=0.013. (c) r1=0.0085, r2=0.009. (d) r1=0.014, r2=0.0141.(e) r1=0.014, 
r2=0.0085. 

 

Fig. 6. The changing diagram of the maximum absolute phase difference of these two neurons 
with the stimulation strength k changing under the chaos signal’s stimulation(r=0.0085). (a) 
r1=r2=0.009. (b) r1=r2=0.013. (c) r1=0.0085, r2=0.009. (d) r1=0.014, r2=0.0141.(e) r1=0.014, 
r2=0.0085. 
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From Fig.3~Fig.6, according to the stimulation intensity values of these neurons’ 
going into the intermittent discharge synchronization state, the intensity threshold of 
these two uncoupled neurons realizing synchronization can be decided. Table 3 shows 
the stimulation intensity threshold of these two uncoupled neurons realizing 
synchronization under the four stimulation signals showed in the Table 2. 

Table 3. The current stimulation intensity threshold of two uncoupled HR neurons realizing 
synchronization under the four stimulation signals showed in the Table 2 

types of the 
stimulation 

signals 

the stimulation intensity threshold 

r1=r2=0.009 r1=r2=0.013 
r1=0.0085, 
r2=0.009 

r1=0.014, 
r2=0.0141 

r1=0.014 , 
r2=0.0085 

period 2 
(r=0.02) 

2.6 2.1 2.5 2 2.9 

period 4 
(r=0.017) 

1.9 1.8 2.5 2 2.6 

Chaos 
(r=0.014) 

1.8 1.9 2.3 1.5 2.2 

Chaos 
(r=0.0085) 

1.7 1.3 1.6 1.4 1.8 

 
From Table 3, under the different signals’ stimulation, the stimulation intensity 

threshold of the two uncoupled neurons’ realizing synchronization is different. 
According to the order from small to large, the synchronization stimulation intensity 
threshold is as following: 

period 2(r=0.02) > period 4(r=0.017) > chaos(r=0.014) > chaos(r=0.0085) 
According to the signal’s complexity, the period 2 signal is the simplest and its 

synchronization stimulation intensity threshold is the largest; The chaos signal is 
complex and its synchronization stimulation intensity threshold is smaller. So, in 
general, the more complex the stimulation signal is, the smaller its intensity threshold 
to realize the two uncoupled neurons’ synchronization is. Under the chaos signal’s 
stimulation, its intensity threshold to realize the two uncoupled neurons’ 
synchronization is smaller than the period signal, and is easier than the period signal 
to realize the two uncoupled neurons’ synchronization; In other words, the chaos 
discharge paterns is more favourable to signals’ expression and transmission in neural 
system. 

In Table 2, according to the order from large to small, the value of the stimulation 
signal’s parameter r is as following: 

the period 2(r=0.02) > the period 4(r=0.017) > the chaos(r=0.014) > the 
chaos(r=0.0085) 

The parameter r of the HR neuron is related to the membrane penetration of 
calcium ion, and reflects the changing speed of the slow adaptation current z. The 
larger the parameter r of the HR neuron is, and the faster the intramembranous 
calcium ion accumulates. However, from Table 3, the stimulation intensity threshold 
of two uncoupled HR neurons realizing synchronization is consistent with the value 
of the four stimulation signals’ parameter r according to the order from large to small. 
So, the smaller the stimulation neuron’s parameter r is, the smaller the effect of the 
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stimulation signal’s calcium ion is, the easier the two uncoupled neurons realize 
synchronization. But the stimulation signal whose calcium ion’s effect is large isn’t 
easy to realize the two uncouple neurons’ synchronization. 

4   Conclusion 

Under different simulation signals, the two uncoupled neurons realize the phase 
synchronization or the full synchronization, and the stimulation intensity threshold of 
the two uncoupled neurons’ realizing synchronization is different. According to the 
signal’s complexity, the more complex the stimulation signal is, the smaller its 
intensity threshold to realize the two uncoupled neurons’ synchronization is. Under 
the chaos signal’s stimulation, its intensity threshold to realize the two uncoupled 
neurons’ synchronization is smaller than the period signal, and is easier than the 
period signal to realize the two uncoupled neurons’ synchronization. So the chaos 
discharge paterns is more favourable to signals’ expression and transmission in neural 
system. From the calcium ion’s effect, the smaller the stimulation neuron’s parameter 
r is, the smaller the effect of the stimulation signal’s calcium ion is, easier the two 
uncoupled neurons realize synchronization. So he stimulation signal whose calcium 
ion’s effect is large isn’t easy to realize the two uncouple neurons’ synchronization. 

This investigation shows the synchrony intensity threshold’s rule of two uncoupled 
neurons under different currents’ stimulation. These results are helpful to study 
synchronization and encode of many neurons or neural network. 
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Abstract. Aim to solve the problems of structure design and param-
eters selection about conventional ESN, a small world property ESN
(SWESN) is proposed in this paper. Neuron space growth algorithm is
adopted to generate a physical network with small world topology on
2-D plane firstly, and then the nodes and the connections of the physical
network are mapped into the neurons in reservoir of SWESN, Thus the
dynamic neuron reservoir (DNR) in SWESN has small world character-
istic. In addition, different typical neurons are adopted in the reservoir.
The simulation experiments confirms that the SWESN generated by this
method could create more abundant dynamic behavior than conventional
ESN, and SWESN exceeds conventional ESN both at robustness and at
anti-disturbance ability.

Keywords: echo state network; small world; dynamic neurons reservoir;
robustness.

1 Introduction

Echo state networks (ESN) was firstly proposed in [1]. The ESN model contains
a completely random state reservoir as a hidden layer, which is usually composed
of hundreds or thousands of internal neurons. The internal neurons contain in-
formation about the history of input and output patterns. The outputs of these
internal neurons (echo states) are fed into a memory-less but adaptive readout
network (generally linear) that produces the network output. Differing form pre-
vious techniques tune all synaptic connections, the promising property of ESN
is that only the memory-less readout is trained, whereas the recurrent topology
has fixed connection weights. This reduces the complexity of RNN training while
preserving a recurrent topology. This very promising RNN partially reflects some
features of learning mechanisms in biological brains [2]. ESN has been widely
applied for system identification, chaotic time-series prediction, and modeling of
nonlinear dynamic system [1–4]. Owing to the high accuracy of ESN in many
classical tasks, ESN has been a hot research topic in recently years [3, 4].

However, conventional ESN has still some problems to overcome[5]. The cen-
tral issue about solving this problem focuses on how to select an appropriately
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reservoir (mainly the spectrum radius ρ(W ) and the sparseness of the reservoir)
in view of a specific problem. A lager ρ(W ) is generally supposed to be related
to a reservoir with rich dynamics. However, even though each ESN has the same
sparseness and spectral radius, the performance obtained vary greatly among
different realizations[2]. To obtain a good result, a tedious tests to select the
parameters of W is needed. Many methods have been investigated to tune the
structure of the ESN topology in literatures. Xue [6] thought that the utterly
random links of the inner neurons could be resulted in strong coupling among
them, and this degrade the richness of the internal dynamics. Modular idea was
adopted in [6] to decompose the whole ESN into several local ESNs, and lateral
inhibition was used to link each local ESN. The aim of this method was to gen-
erate several different inner dynamics in each module, and this way succeeded
in solving MSO problem. Ozturk et al.[7] proposed a dynamic reservoir design
method with maximizing the Renyi entropy.

Biological studies have shown that biological brain is a complex network con-
sisted of a large number of neurons linking by great majority nerve fibers, and
it has small world characteristic [8]. The small world property is benefit to or-
ganism to process information rapidly in local and in global, to realize local
function and to integrate global functions [9]. In addition, the structure of the
biological neural network is obviously modular [10]], and each module has its
specific neuron type. Therefore, this paper investigated a small world property
ESN (SWESN) to improve the robustness and to enhance the anti-noise ability
of traditional ESN, .

This paper is organized as follows: In section 2, we analyze the principle of
ESN in brief. A design method of SWESN is described in detail in section 3.
Simulations and some analysis are introduced in section 4, and we draw some
conclusions in section 5.

2 Problem of ESN

The update of the reservoir state is expressed as:

x(k + 1) = f(Winu(k + 1) + Wx(k) + Wby(k)) (1)

where f are activated functions, x are the internal states, u is the current input
vector. and y is the action potential of the output neuron at the current time
step, and Win ∈ RN×K , W ∈RN×N and Wb ∈RN×L are the weight matrices for
input connections, the reservoir, and feedback connections, respectively. Where,
K,N,L are the dimensions of the inputs, , the internal neurons and the outputs,
respectively. The output of the ESN is:

y(k + 1) = Wox(k + 1) (2)

The target of ESN training is to minimize the performance index J .

J =
1
2

Ns∑
k=1

(d(k) − y(k))2 (3)
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With Ns being the number of training samples, d(k), y(k) being the expected out-
put and the real output of ESN at time step k, respectively. Set D = [d1, , dNs ]T ,
then,

Wo = X+D (4)

Where, X is the output sequence matrix of the internal neurons in reservoir,
and X+ is the Moore Penrose inverse of X . X+ = (XTX)−1X . Obviously, if
XTX is singular, then equation (4) would be ill-posed. In traditional ESN, XTX
has some very small singular values, therefore, the solution of the equation (4)
is hardly to be stable, and an effective method to alleviate this problem is to
weaken the correlation of the output sequences of the internal neurons. The
small world characteristic decomposes integrated neurons into several groups
naturally, the links among groups are very sparse. If each group has its own
specific spectrum radius or activated functions, the correlation among output
sequences of the internal neurons would be weaker than that of conventional
ESN. The SWESN would generate richer dynamics than ESN under the same
number of the internal neurons. From function approximation view, it also means
stronger approximation ability if the correlations among output sequences of the
hidden-layer neurons trail off.

3 Design of SWESN

3.1 Generating Small World Networks

A kind of small world network generating method based on spatial increasing
algorithm was proposed in [11]. The cortical systems networks development of
macaque and cat were simulated by this way. And this method is very simple
and effective. Firstly, a random point in 2-D plane is selected as an initial node,
then, the following nodes link the existed nodes according to the probability
calculated by the relation:

P (u, v) = βe−αd(u,v) (5)

Where, P (u, v) is the linking probability between nodes u and v, and d(u, v)
is the distance between both nodes u and v, and α, β are scaling coefficients.
Apparently, the connection probability was dropped exponentially with the dis-
tance between u and v. So the connections among the nodes with small distances
are much more than those with large distances. This method can build a network
with small world property, in case α and β being selected properly [11].

However, this simple method to generate small world network has some dis-
advantages. The first is that the group number of the network can hardly be
controlled. Second, bidirectional connections between nodes u and v can not
be implemented by this method. Finally, this method can not realize the self-
connection of neuron . Therefore, a little small change was adopted to solve these
problems. The realizing approaches are as follows:

Step 1: Restrict the coordinate (x, y) of node in 2-D plane in a certain area(x ∈
(0, 1) and y ∈ (0, 1) in this paper). Place Nc backbone nodes on the axis line
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determined by (0, 1) and (1, 0). The coordinates of the ith backbone node are
xi = i/(Nc +1),yi = 1− i/(Nc +1). The backbone nodes will guide the following
nodes to cluster around them, therefore,Nc groups of neurons will be generated
along this way. The Nc backbone nodes are bidirectionaly full linked each other,
and this network consisted of backbone nodes is the initial network. The number
of nodes and the linking amount of the initial network are Nc and Nc(Nc − 1),
respectively.

Step 2: Based on the initial network, the new added node connects the existed
nodes with the probability obtained by equation (5), at the same time, all the
existed nodes also connect the new added node with the same probability. Thus
the bidirectional connections are created by this method. Noting that the con-
nection between u and v (described as l(u, v)) is different from the connection
between v and u (described as l(v, u)).

Step 3: After the network being created, each node can link itself with the
probability Ps, and Ps is the self-connecting probability.

Further, we construct a matrix Ws, and the elements Ws(i, j) = 1 if there
exists connection between node i and node j, otherwise Ws(i, j) = 0. Obvi-
ously, the nodes information and connections information can be reflected in Ws

matrix. The coordinates of nodes are saved in NI matrix, and the connecting
information among nodes are saved in LI matrix, which concludes the start node
and the end node of each link.

3.2 Mapping the Nodes of Small World Network to the Neurons of
SWESN

The performance of ESN is mainly determined by the structure of DNR. The
connecting information of DNR is reflected in the reservoir matrix W . For ana-
lyzing simply, we rewrite the form of reservoir matrix as follows:

W =

⎡⎣W1 L1

...
L2 WNc

⎤⎦ (6)

Where, Wc(c = 1, , Nc) is the connection matrix of the cth group, and L1, L2 are
connecting matrices among different groups. Owing to the connections among
different groups are extremely sparse, the non-zero elements in L1, L2 are very
few. Though the Ws constructed in previous part is very similarly with W , there
are also two key differences between them. First, the neuron ID in ith group is
apparently continuous, while the serial numbers of the nodes in the same group
in physical network generated in 2-D plane maybe not continuous, because the
serial numbers of nodes in physical network is ordered by the sequence of nodes
emerging, therefore, the serial numbers of nodes in Ws are not the same as that
of neurons in W . Second, the element values in Ws (only 1 or 0) is apparently
not corresponding with that in W . In order to realize the map between Ws and
W , the following steps is adopted.
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Step 1: Selecting the coordinate (0, 1) as the benchmark point, and then
calculate the Euclidean distance di(i = 1, ..., Nmax) between the benchmark
point and the coordinate of the ith node, where Nmax is the top limit of the
neuron number in reservoir.

Step 2: Arrange di by ascending order, and then turn the serial number of node
with the distance di into i. Finally, update the LI and NI matrices according
to new node serial numbers.

After the rearrangement of nodes, the distances among serial numbers of the
nodes are corresponding to the distances among coordinates of the nodes. And
the new serial numbers of nodes can be served as the IDs of neurons in W matrix.

In SWESN, each group may contain different amount of neurons, i.e. the
number of row and column maybe not same among different Wi, so we should
discriminate which group each neuron subjects to. Apparently, the backbone
nodes can be served as the center of the groups, therefore, the group that the
neuron belongs to can be determined by

Ci = arg(c) min(d(NIi, Zc)) (7)

Where, Ci is the ID of group that the ith neuron belong to, Zc is the coordinate of
the cth (c = 1, , Nc) backbone neuron, and d(NIi, Zc) is the Euclidean distance
between the ith neuron and the cth backbone neuron. According to equation
(7), the ith neuron belongs to the group with the nearest distance from the ith
neuron to the group center.

The linking intensity among neurons are reflected by the element values of
W matrix. There are three conditions in neurons connection: the first is the
self-connection of each neuron, the second is the connections in the same group,
and the last is the connections among groups. The three connection situations
are denoted by Sself , Sin, and Sout, respectively.

Obviously, LIk ∈ Sself , if NIi = NIj , LIk ∈ Sself , if NIi �= NIj and Ci =
Cj , LIk ∈ Sout, if NIi �= NIj and Ci �= Cj . Where, NIi, NIj are the coordinates
of the ith neuron and the jth neuron, respectively. Ci and Cj are severally the
groups of the ith neuron and the jth neuron belong to. LIk(i, j) denotes the
kth connection (from the ith neuron to the jth neuron). The linking intensity
among neurons can be determined by

Wij =

⎧⎪⎨⎪⎩
ps− (1 − p)s, if LIk ∈ Sself

pac − (1 − p)ac, if LIk ∈ Sin and Ci = c

pb− (1 − p)b, if LIk ∈ Sout

(8)

Where, a = [a1, ..., aNc ], b, s are the intensity values ready for being selected by
Sin, Sself , and Sout respectively, and ac denotes the intensity values ready for
the Wc, thus different spectrum radius can be generated with different groups.
The dynamics in SWESN would be enhanced through selecting a, b and s values
properly.
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4 Simulations

A quantitative measure of robustness, termed the successful design ratio, is de-
fined in equation (9). Where K is the number of Monte Carlo (MC) simulations,
ei is the generalization/prediction MSE for the ith MC simulation, u(x) is the
unit-step function, that is, u(x) = 1 when x ≤ 0 and u(x) = 0 when x > 0.
In words, R(θ) is an estimation of the probability of obtaining a network with
generalization/prediction MSE equal to or less than the threshold θ.

R(θ) =
∑K

i=1(u(ei − θ)
K

(9)

We select MSO problem as research object. The MSO problem can be described
as y(k) = sin0.2k+sin0.311k. The output y of MSO problem is the combination
of two sine waves with different frequency. We generate 1000 time discrete sample
points. The first 700 sample points are used to train the neural network, and
the other 300 sample points are used to test. The internal states of the ESN and
the SWESN are initialized randomly at the interval [−1, 1]. The number of the
internal neurons is 200, and θ = 0.0034 [6].

In order to investigate the relationships between the spectrum radius and
robustness, in this experiment, we carry out 50 MC simulations at each spectrum
radius, and totally select 20 different spectrum radiuses to test (the total number
of MC simulations is 1000). The robustness of SWESN and ESN under different
spectrum radius is shown in figure 1. In figure 1, the robustness index R(θ)
is increased along with ρ roughly in total trend, either in ESN or in SWESN.
The test MSE of SWESN is a little smaller than that of ESN almost in every
spectrum radius (see figure 2), in addition, test MSE drop with the increase of
spectrum radius to this general trend.
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In fig.1 and fig.2, the subscript i in SWESNi denotes there is total i kinds of
different activated functions are adopted in SWESN.
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The singular value distribution is shown in table 1. There are more than 94%
singular values are under 1.4× 10−4 both to ESN and to SWESN. Remarkably,
the percentage of singular value below 2.5×10−8 drops to 0 in SWESN, however
it keeps a high degree (42.4%) in ESN.

Table 1. Singular value distribution in ESN and SWESN

singular value ESN SWESN

≤ 1.4 × 10−4 94.9% 94.2%
≤ 3.1 × 10−6 51.2% 24.2%
≤ 2.5 × 10−8 42.4% 0

There is always with noise in real data, so we select the real sun spot data set
[12] to carry out the time-series prediction to investigate the anti-noise ability of
the SWESN. There are total 3141 data in this set, the beginning 2000 data are
selected, and the first 1000 sample points are applied to train the network, while
the last 1000 sample points are applied to test. We execute 10-step prediction in
this paper, i.e. for the current time step k, the output of the network is y(k+10).
The prediction circle is shown in figure 3. The relative error and sample point
distribution of sun-spot prediction is shown in table 2. The predictively relative
error less than 10% is about 95.1%, and that less than 5% is about 86.3% with
SWESN, while in traditional ESN, both data are 87.6% and 74.8% respectively.
Considering that we are carrying out 10-step prediction, the performance of
SWESN is relatively better than that of traditional ESN.
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Fig. 3. The sun spot prediction circle of SWESN

Table 2. Relative error and sample point distribution of sun-spot prediction

relative error ≤1% ≤2% ≤5% ≤10%

SWESN 252 538 863 951
Conventional ESN 269 452 748 876
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5 Conclusion

Inspired by the structure of cortical systems networks, this paper investigates a
small world property ESN (SWESN). Compare to the traditional ESN, SWESN
has some advantages. The first is that the connecting method with small world
property degrades the coupling intensity among neurons in dynamic neuron
reservoir, and enriches the dynamics of internal neurons, therefore the parameter
adaptability of SWESN is better than that of traditional ESN. The second is
that SWESN reduces the amount of very small singular value of XTX , both the
robustness and precision of generalization are increased. The last is that SWESN
divides the whole ESN into several parts naturally, and the parameters can be
tuned more flexible.
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Abstract. In order to imitate the course of learning and cognizing things with 
the human brain better, this article introduced the human brain's Memorizing-
forgetting Character to the ART2 Network, then with the Memory Strength as 
the basis of sequence for recognition with existing patterns, thus this network 
model would be improved better. Through Simulation for recognition and 
classification with experimental samples, we prove that the ART2 network with 
Memorizing-forgetting Character could recognize experimental samples with 
less time in recognition than original ART2 network, and improve the 
efficiency of network. 

Keywords: ART2; neural network; memorizing-forgetting mechanism; 
classification. 

1   Introduction 

ART2 is a kind of self-organizing neural network which is based on adaptive 
resonance theory. It carries out the classification by using competitive learning and 
self-steady mechanism, and can learn by itself in dynamic environment with noise and 
without supervision. Its learning process can recognize learned models fast and be 
adapted to new unknown objects rapidly[1-2]. This network is a simulation which is 
the course of cognizing things with the human brain[3]. In the initial perception of 
one thing, according to the empirical knowledge we will compare and judge it with 
the previous knowledge of things to ascertain the recognition of this thing; after 
recognizing the thing, it will be classified with certain rules[4]. 

As the ART2 network compared the new thing with the existed knowledge one by 
one, so when the number of samples is large，  the time it takes will be greatly 
increased, thus affecting the efficiency of the network. In order to improve the 
efficiency of the network and simulate the process of human brain for recognizing 
things better, this article introduced the Memorizing-forgetting Character of human 
brain to the ART2 network, which improved the network model. Through the 
simulation of identification and classification for test samples, it could be proved that 
the ART2 network model which has been introduced the Memorizing-forgetting 
mechanism can extract the sample which appears for many times more quickly. 
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2   The Theory of ART2 Network 

2.1   Ebbinghaus Memorizing-Forgetting Curve and Its Theory 

German psychologist, Hermann Ebbinghaus (1850-1909) found that the forgetting 
is immediately beginning after learning and the forgetting process is uneven. Initially 
the speed of the forgetting was very fast and then it slows down gradually. He held 
that “maintain and forgotten is a function of time”, and drew the curve which  
could describe the process of forgetting according to the experimental results, that is 
the famous Ebbinghaus memorizing-forgetting curve. Vertical axis of the graph 
represents the number of knowledge that is remembered from the learning, the 
horizontal axis represents time (days), the curve show the regularity of the variation 
of memory strength[5-7].  

 

Fig. 1. Ebbinghaus memorizing-forgetting curve 

This curve told that forgetting in the learning is a regular thing and the process of 
forgetting is uneven, not that we forget a few things one day and forget a few things 
another day again, but that in the initial stages of the memory the speed of forgetting 
is fast, then slows down gradually, and almost forget no longer after a fairly long 
time. The theory described above is the development rule of forgotten, that is the 
principle of “fast first slow second”. 

The initial memory strength at the time t0 isM(t0), at the time t1 the memory 
strength attenuates to M(t1)=M(t0)e-λ(t1-t0), after being re-inspired(D), M(t1) changed 
as M’(t1), then starting a new decay process, and 

                    M’(t1) = M(t0)e-λ(t1-t0) + D                                             (1) 

λ is the forgetting constant, the largerλ is, the faster forgetting speed is and the 
shorter memory cycle is. D is the number of memory material. The PNN network 
which is introduced the memorizing-forgetting mechanism calculated the memory 
strength according to the above-mentioned principle[8]. 
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2.2   The Working Principle of ART2 Network Which Is Introduced the 
Memorizing-Forgetting Mechanism and Its Description of the Algorithm 

According to the principle of ART2 network, we know that the traditional ART2 
network makes use of the similarity of the input sample and the existed patterns as the 
winning mechanism that we compare with the model of great similarity. While ART2 
network is introduced the memory strength, we would make use of the memory 
strength of the existed patterns as winning mechanism for sorting. The input sample 
would be always compared with the pattern of strong memory, once identified we 
would not compare it with other things, then save the time of recognition. This 
principle is consistent with that the human brain identifies the common things quickly 
while it spend more time on identifying the rare things or the things that have not seen 
before. For this reason, the ART2 network which is introduced the memorizing-
forgetting mechanism saves the time of network’s recognition and improves the speed 
of recognition. 

The input vector is i; ii is the i'th component of the input vector; a,b,c,d,e is 
constant; The six sublayers of the comparison layer are w、x、v、u、p and q layer; N 
is the number of neurons of each sublayer of F1 layer that is the dimensions of input; 
Mi is the limit of neuron patterns of F2 layer; zij is connection weight that is from F2 

layer to p layer; zji is connection weight that is from p layer to F2 layer; i=1,2, 
…,N, j =1,2, …,Mi; ρ is alert threshold. The memory strength of each pattern: 
Memoryj, j   = 1,2,…,Mi; D is the amount of memory material; b is forgetting constant.  

The parameters of ART2 network would be initialized before it is run, and the 
conditions for initializing of each parameter are as follows: 

a, b > 0; 0≤ d ≤1(Generally, d = 0.9) ; cd / (1-d)≤1（ Generally, c = 0.1） ;e << 1;              
 0<θ<1/N1/2; 0<ρ≤1; 
The connection weight that is from F2 layer to p layer: zij ( 0 ) = 0; 
The connection weight that is from p layer to F2 layer: zji( 0 ) ≤ 1 /[(1-d)*N1/2] 
The calculation steps of ART2 network which is introduced the memorizing 

forgetting mechanism are as follows: 

Step 1   Set a counter， and its initial value is 1, and all output of neurons is 0 vector;  
Step 2   Input the i vector to w layer, and the output of w layer is：  

                            wi = ii + aui                                                          (2) 

 and record the current system time at the same time; 
Step 3   Transfer signal to x layer， the output of x layer is: 

                            xi = wi / ||w||                                                           (3) 

Step 4   Transfer signal to v layer, and the output of  v layer is:             

                    vi  = f(xi) + bf(qi)                                                      (4) 

   at this moment q=0， so the second item: bf(qi) = 0; 
Step 5   Transfer signal to u layer, and the output of u layer is:  

                             ui = vi / ||v||                                                                      (5) 
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Step 6   Transfer signal to p layer， and the output of p layer is: 

pi = ui+dziJ                                                                                               (6) 

 J is the winning neuron of F2 layer; if F2 layer is not activated, pi  = ui; if  
the network is at initial state, as ziJ = 0， also pi  = ui ; 

Step 7    Transfer signal to q layer， and the output of q layer is:  

qi = pi / ||p||                                                                    (7) 

Step 8     Calculate the output of r layer:  

                         ri = (ui +c pi) / (||u||+c||p||)                                         (8) 

Step 9    If ||r|| <ρ, send a reset signal to F2 layer, and exclude the neuron of F2  
layer that is activated at this time, and the counter is 1, then back to step 
2; if  ||r|| >ρand the counter is 1, the counter adds 1 and carry out step 10; 
if ||r|| >ρand the counter is more than 1, carry out step 12， at the moment 
the network has arrived resonance yet; 

Step 10   Calculate the output of F2 layer:  

                     Memoryj = Memoryj * e-λ(time-time0)                                       (9) 

 and calculate the max value of Memoryj. The first input sample initializes  
the first category of network that is the first pattern, and the memory 
strength: Memory1=D, and record the memory time of this pattern: 
time0J;  

Step 11   Repeat step 6 to step 9; 
Step 12   Modify the bottom-up weight of winning neuron of F2 layer: 

zJi= ui / (1-d)                                                     (10) 

 and if the input sample is new pattern, Memoryj=D; if it is old pattern,  
modify the memory strength according to the formula: 

             Memoryj = Memoryj * e-λ(time-time0)+D                            (11) 

Step 13  Modify the up-bottom weight of winning neuron of F2 layer:  

                               ziJ= ui / (1-d)                                                  (12) 

Step 14   Remove input vector, and memorize all neurons that are not occupied of 
F2 layer. Back to step 1， and begin to input the new vector. 

In the winning mechanism of step 10, we make use of the memory strength 
formula (11) in stead of the similarity formula in the traditional ART2 network 

                    Tj = p1 * zj1 + p2 * zj2 + …+ pN * zJN                          (13) 

and record memory time of each pattern, make the program the same as the human 
which has a life. 



64 X. Ye, X. Lin, and X. Dai 

3   Simulation of Experiment 

3.1   The Input Samples of the Network 

The samples of experiment are two-dimensional coordinates, such as (1, 1), (2, 1). 
The noise point is the point that is deviated from the original location, such as (1.001, 
1.003), (2.002, 1.006), as Fig.2 shows. 

 

Fig. 2. Sample form of input coordinates 

(1) Experimental samples 1: 
(2,1),(1,2),(1,1),(2.001,1.002),(1,1),(1.007,2.004),(1.008,1.007),(1,1),(1.003,1.001),(1,2),
(1,1),(1,2),(1.007,2.003),(2,1),(1,1), these are 3 patterns of (2,1),(1,2),(1,1), altogether 
15 input samples. 

(2) Experimental samples 2: 
(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(1,5),(5,1),(1,6),(1.001,2.002),(1,2),(1.004,1.003), 
(1,2),(1,1),(2,1),(1,2),(1,6),(5,1),(1,4),(3,1),(1,3),(1,2),(1,1),(1,2),(2,1),(1,3),(1,41),(1,2), 
(2,1),(1,3),(1,2),(3,1),(1,5),(3,1),(1,2),(2,1),(1.002,1.005),(1,2),(2.007,1.001),(1,2),(1,1), 
(1,2),(1,1),(1,2),(2,1),(1,2),(1,1),(1,2),(3,1),(1,2),(1,3),(1,2),(1,3),(1,2),(1,1),(1,6),(1,4), 
(1,2),(1,3),(3,1),(1.006,2.003),(1,1),(2,1),(1,3),(1,2),(1.007,1.008),(2,1),(1,3),(1,5),(1,4), 
(1,2),(1,1),(1,3),(1,1),(1,3),(1,1),(1,1),(1,2),(1,3),(1,2),(1,1),(2,1),(1,2),(1,1),(1,3), 
(1.004,2.001),(1,3),(1,2),(1,1),(1,6),(1,2),(1.005,6.009),(1,3),(1,6),(1.002,1.004),(1,2), 
(1,6),(1.003,4.001),(3,1), these are 10 patterns of (1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(4,1), 
(1,5),(5,1),(1,6), altogether 100 input samples, and repeat these coordinates for 100 
times to form 10,000 input samples. 

Learn and recognize the two experimental samples above with the traditional 
ART2 network and the ART2 network which is introduced the memorizing-forgetting 
mechanism separately. 
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3.2   Results of Experiment and Analysis 

3.2.1   Results of Experimental Samples 1 and Analysis 
(1) Traditional ART2 network 
Parameters: a=10,b=10,c=0.1,d=0.9,e=0,θ=0.1,ρ=0.9997,  

zji = 0.08-0.001j ,j = 0,1,…,Mi. 
Results of experiment: the recognition results are 3 patterns which are (2, 1), (1, 2), 
(1, 1), as Fig.3 shows. 
(2) ART2 network which is introduced the memorizing-forgetting mechanism 
Parameters: a=10,b=10,c=0.1,d=0.9,e=0,θ=0.1,ρ=0.9997,  
forgetting constant: λ=1/60, the amount of memory material: D=1. 
Results of experiment: the recognition results are 3 patterns which are (2, 1), (1, 2), 
(1, 1), similarly as Fig.3 shows. 

 

Fig. 3. Recognition patterns of experimental samples 1 

After the network has recognized the tenth sample that is (1, 2), at the moment the 
network has learned and recognized 3 patterns which are (2, 1), (1, 2), (1, 1), and 
calculate the memory strength of these three patterns which are 1.9992s, 2.9984s, 
4.9948s. According to the descending memory strength we sort the patterns which has 
been recognized, and the result is (1, 1), (1, 2), (2, 1). The pattern whose memory is 
strongest is the sample which appears most in ten samples. For recognizing the 
remaining samples, after the sample is input into the network we compare it with the 
pattern that is (1, 1) whose memory is strongest. If they are the same pattern, it 
belongs to this pattern, and we modify its weight and record the memory strength of 
this pattern at this moment. Then the memory strength of the pattern which matches 
with the input sample would be strengthened while the memory strength of other 
patterns would attenuate over time according to Ebbinghaus memorizing-forgetting 
curve. If they are not the same pattern, the input sample is compared with the pattern 
whose memory strength is the second strong until it is compared with all existed 
pattern, and now if it doesn’t belong to any pattern yet, then we attribute it to a new 
pattern. And we record the memory strength of the new pattern as 1,while the 
memory strength of other patterns would also attenuate over time.  
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Because the number of samples is small, the experimental results only show that 
the ART2 network which is introduced the memorizing-forgetting mechanism can 
also classify correctly, but don’t show the superiority of recognition time. Thus, in the 
experimental samples 2, we take 10,000 samples of 10 patterns as the input of the 
network. 

3.2.2   Results of Experimental Samples 2 and Analysis 
(1) Traditional ART2 network 

Parameters: a=10,b=10,c=0.1,d=0.9,e=0,θ=0.1,ρ=0.9997,  
zji = 0.08-0.001j ,j = 0,1,…,Mi. 

Results of experiment: the recognition time is 13.406s, and the results of 
recognition of 10,000 samples are 10 patterns that is  
(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(1,5),(5,1),(1,6), as the Fig.4 shows. 

(2) ART2 network which is introduced the memorizing-forgetting mechanism 
Parameters: a=10,b=10,c=0.1,d=0.9,e=0,θ=0.1,ρ=0.9997,  
forgetting constant: λ=1/60, the amount of memory material: D=1. 

Results of experiment: the recognition time is 9.968s. The results of recognition of 
10,000 samples are 10 patterns that is 
(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(1,5),(5,1),(1,6), also as the Fig.4 shows. 
After finishing recognition, the program records the memory strength of each 
pattern and sorts them according to the strong or weak memory strength. The 
results of sorting are as follows: (1, 2), (1, 1), (1, 3), (2, 1), (1, 6), (3, 1), (1, 4), (1, 
5), (5, 1), (4,1). (1, 2) is the pattern whose memory strength is strongest that 
appears most in the samples, other patterns follows. 

 

Fig. 4. Recognition patterns of experimental samples 2 

From the two kinds of network’s recognition results for experimental samples 2, 
we could see that both results of classification are right, but in the identification time 
the ART2 network which is introduced the memorizing-forgetting mechanism is 
3.438 seconds faster in recognizing samples than traditional ART2 network. The 
reason is that when traditional ART2 network recognizes samples, it makes use of the 
similarity of the input sample and the existed patterns as the winning mechanism, and 
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recalculates the winning neuron of the existed patterns when comparing with each 
pattern; while the ART2 network which is introduced the memorizing-forgetting 
mechanism makes use of the memory strength of the existed patterns as winning 
mechanism. 

Therefore, when identifying a large number of samples, the ART2 network which is 
introduced the memorizing-forgetting mechanism improves the speed of recognition. 

4   Conclusions 

The results of research show that the ART2 network which is introduced the 
memorizing-forgetting mechanism make use of system time for calculating the 
memory strength of the existed pattern, and the network takes it as the winning 
mechanism of neuron, then it becomes a network with human characteristics which is 
close to the cognitive of human brain in the way of recognition. Thus, when 
recognizing the thing which appears frequently or the number of samples which is 
large, the ART2 network which is introduced the memorizing-forgetting mechanism 
could reduce the calculation amount, save recognition time, and improve the 
recognition speed of ART2 network. 
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Abstract. This paper deled with the Hopkinson bar experimental data by BP 
Neural Networks, including of the influence of the temperature and strain rate to 
the dynamic yield strength of the material. In general, the strain rate effect and 
the temperature effect on the material dynamic properties in the tests are coupled 
with each other. Through handling of the experimental data by the BP Network 
system, these two effects can be uncoupled and in this paper the curves of the 
material dynamic yield strength vs. strain rate with different temperatures and the 
curves of the material dynamic yield strength vs. temperature with different 
strain rates are presented.  

Keywords: artificial neural networks; BP method; material dynamic properties. 

1   Introduction 

Back-propagation method (BP method) is the supervised learning algorithm that is the 
most widely and successfully used in feed forward network nowadays. Many 
researchers developed the BP method from diverse views in the different times. It has 
been suggested by Amari[1] that the stochastic gradient method should be introduced to 
train the neural network that has single hidden unit (1967). Also, the basic idea of 
back-propagation may be traced further back to the book applied optimal control by 
Bryson and Ho (1969)[2]. The back-propagation method is described by Werbos[3] in 
his Ph.D. thesis at Harvard university in August 1974.Werbo’s Ph.D. thesis was the 
first documented description of efficient reverse-mode gradient computation that was 
applied to general network models with neural networks arising as a special case. From 
Braun’s work (1994) it can be seen that Rumelhart, Hinton and Williams[4] gave first 
the derivation of the back-propagation, which resolved scientifically the learning and 
updating of the weight of multiplayer feed-forward neural network, and developed the 
techniques of the artificial neural networks.  
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In this paper, the back-propagation method was used to train the data of Hopkinson 
bar experiments which included of the influence of the temperature and strain rate to 
the dynamic yield strength of the material. Through handling of the experimental data 
by the BP Network system, the curves of the material dynamic yield strength vs. strain 
rate with different temperatures and the curves of the material dynamic yield strength 
vs. temperature with different strain rates are presented.  

2   Samples Learning and Weights Adjustment in Back Propagation 
Method 

Back-propagation method proposed by Rumelhart and McClelland (1986) has often 
been used in artificial neural networks for various actual classification problems. This 
method is briefly described as follow. 

In the application of the back propagation method, there are two distinct passes of 
computations. The first is referred to the forward pass, and the second is referred to the 
backward pass. In the forward pass, the synaptic weights remain unaltered throughout 
the network, and the function signals of the network are computed on a 
neuron-by-neuron basis. In the backward pass the error signals of the outcome layer are 
passed leftward through the network layer by layer. The neural network of the 
back-propagation consists of a number of nonlinear units in which the active function 
should be continuous and differentiable. The active function associated with the 
neurons is logistic function: 
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Where )( juf  is the output of the each layer, and ju is the induced local field of 

neuron j  and expressed by  

∑ −= jijij xwu θ . (2)

Where jiw denotes the synaptic weight connecting the outcome of neuron i to the input 

of neuron j and jθ denotes the threshold value. The basis idea of back-propagation 

method is that the average squared value of the errors between expected responses and 
the function outcomes gets to a minimum by gradient search. In the BP network of three 

layers, let us make the assumption that there are n  neurons in the input layer, 1n  

neurons in the hidden layer and 2n  neurons in the outcome layer. If there are p learning 

samples: Pxxx ，，， …21 corresponding expected responses Pttt ，，， …21 and the 

function outcome of the P1th sample is ),,2,1( mlyl …= , the squared value of the 

error between expected response and the function outcome is: 
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The weight correction is defined by the delta rule:  
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To increase the learning efficiency of the back propagation method and avoid the 
danger of instability, a simple method that can modify the delta rule by adding a 
momentum term is proposed. The expression is:  

)()()1()( nynnwnw jjjiji ηδΔαΔ +−= .  (6)

So the synaptic weights of the network in the layer l are:  
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Because the adjustment of synaptic weights are carried out in terms of the total error 
between expected response and the function outcome after learning all of samples input 
to the network, this modification is called batch mode. This modification may ensure 

TE  decreasing. So the convergence is faster one by one when the learning samples are 

more. 
From the above analysis, we can see that the learning process of the neural network 

includes two steps: the first step is computation of the function outcome of each layer 
neurons from input layer. The second step is to modify the synaptic weights from 
outcome layer in terms of the computational error signals. 

3   Program Performed 

The key of using the BP method is processing of the samples learning and weights 
adjustment. The Program performed is following. 

 Initialization. The synaptic weights and threshold values from a smaller 
uniform distribution are chosen as initial values. 

 Presentations of training samples. The training samples are input into the 
network and the function signal of the each layer neurons is computed. 

 Computation of the errors of the outcome layer. 
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 Computation of the total error. The total error is computed after all of the 
training samples input into the network. If the total error satisfies the need of 
the precision, training stops. If not, the following step is performed. 

 Backward computation. The outcome error of the each layer in the network is 
computed as follow.  

)1()( 1111
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p
l

p
l

p
l

p
l yypt −−=δ . (8)

 Where 2δ is the error of the neuron j in The outcome layer l.  
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T
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E
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Where 1δ is the error of neuron j In the implicit layer l.     
 Re-computations. The synaptic weights and threshold values are adjusted 

and the computations return to the step 3.  

Fig. 1 shows the computational processes. 
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Fig. 1. Flow diagram of the BP networks 
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4   Prediction of Material Dynamic Properties 

Material dynamic properties with strain rate less than 104/s are able to tested by 
Hopkinson bar. Recently we have measured the dynamic properties of a armor steel 
with the apparatus. The dynamic yield strengths of the steel under different temperature 
(T) and with different strain rate ( ε& ) are measured and shown in table 1, 

where s
y

d
y σσ / denotes the ratio of dynamic strength to static strength. In general the 

temperature and strain rate in the Hopkinson bar experiments are not easy to be 
controlled accurately and so it is difficult to get the separate values with various strain 
rates but under the identical temperatures except under the room temperature, and 
especially to get the values under various temperatures but with the identical strain 
rates. Namely, it is difficult to uncouple the temperature effect and the strain rate effect 
on the dynamic yield strength of the steel. 

The dynamic yield strength of the armor steel under different temperatures and with 
different strain rates could be predicted in terms of the known data of the Hopkinson 
bar experiments, and the temperature effect and strain rate effect could be uncouple 
with the BP method network. To compute simply, the temperatures in table 1 are 
normalized by 1800K(the melt temperature of the steel) and the strain rates are 
normalized by 104/s and the dynamic yield strength are normalized by 860Mpa(static 
yield strength). The normalized data are shown in table 2. 

After the data are normalized, they could be input into the BP network. In this paper, 
there are 3 layers in the BP network where the input layer has 2 neurons in which the 
normalized temperatures and strain rates are input and the outcome layer has 1 neuron 
in which the normalized dynamic yield strengths are input. It is noted that the outcome 
values are standard but the final results are converted back into the values with 
dimensions in the program for treatment of the data straight-forwards.  

Table 1. Experimental data of a armor steel 

Test Numbers T/K ε&  /（ 1/S）  s
y

d
y σσ /  

1 223 1000 1.29 
2 243 900 1.24 

3 300 800 1.17 

4 400 1200 1.16 

5 408 940 1.14 

6 600 1100 1.0 

7 609 1080 0.98 

8 300 1050 1.22 

9 300 2000 1.26 

10 300 3200 1.31 

11 800 1100 0.83 

12 900 1100 0.74 
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Table 2. Learning samples (Normalized experimental data) 

 
Sample 

Numbers 

 
Normalized 

Temperatures 

 
Normalized 
Strain rates 

 
Normalized Yield Strengths 

 
Expected outcomes Actual outcomes 

1 0.124 0.100 0.898955 0.876601 
2 0.135 0.090 0.864111 0.862239 
3 0.167 0.080 0.815331 0.836824 
4 0.222 0.120 0.808362 0.812917 
5 0.227 0.094 0.794425 0.800582 
6 0.333 0.110 0.696864 0.704921 
7 0.372 0.108 0.682927 0.661911 
8 0.167 0.105 0.850174 0.847003 
9 0.167 0.20 0.878049 0.891433 

10 0.167 0.320 0.912892 0.914339 
11 0.444 0.110 0.578397 0.582101 
12 0.500 0.110 0.515679 0.518277 

Table 3. Test results of computations with the BP network 

Normalized 
Temperatures 

Normalized 
Strain rates 

Normalized Yield Strengths  
Errors / % 

Predicted Values Experimental 
values 

0.167 0.2008 0.872012 0.881494 1.087 
0.167 0.2565 0.895528 0.898188 0.297 
0.167 0.3925 0.938345 0.929376 0.956 
0.372 0.1080 0.670863 0.661911 1.334 

 
The 12 samples in the table 2 are input into the BP network and the learning error can 

be reach of 0.000888 by iteration of 200001 steps with step length 0.05, and momentum 
term 0.8. 

The 4 samples were taken to test. The computational values and the experimental 
values in the samples are shown in table 3. From the table 3, it can be seen that the max 
error is 1.334% that has reached the required precision. 

The dynamic yield strengths of the armor steel under various temperatures were 
computed with the strain rates 500/s, 2000/s, 3000/s respectively and 3 curves of 
relationship of dynamic yield strength to temperature are plotted in Fig. 2. Fig. 3 shows 
the relationship of the dynamic yield strength vs. the strain rate for the steel under the 
temperatures 223K, 273K, 573K respectively, where the strain rates are taken up with 
the values of logarithm. 
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Fig. 2. Plots of yield strength vs. temperature 
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Fig. 3. Plots of yield strength vs. strain rate 

5   Conclusion 

From the prediction results of the armor steel, it could be seen that the effects of the 
temperature and strain rate on the dynamic yield strength of the armor steel are 
nonlinear. As strain rate unchanging, the dynamic yield strength is decreasing with 
temperature increasing. When the temperature is nearby the melt temperature of the 
steel, its yield strength is approximate to zero. In Fig. 2 this trend is shown. In Fig. 3 the 
strain rate effects are presented. It is obvious that as temperature unchanging, the 
dynamic yield strength is increasing with the strain rate increasing. 
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It could be seen from this work that the nonlinear relationship of some quantities 
could be predicted by the BP method. So the BP network may be a useful tool to resolve 
some complex, fuzzy and stochastic problems.  
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Abstract. There are a lot of types of written language systems all over
the world. The Japanese writing system uses ideographic and phonetic
symbols without spaces between words, where the ability of finding the
boundary between words is expected to have a positive correlation with
the ability of general language comprehension. Is such a correlation to
be found in languages (e.g., English) where words are conventionally
separated by spaces between them? Here we report a study on how spaces
put on the boundary of two adjacent words enhance tacit reading texts.
We conducted a “slash task” where our subjects whose first language
was Japanese were instructed to place a slash between adjacent words
of sentences written continuously without spaces between the words in
typical, short and easy sentences. Our data illuminate the role of “active
segmentation” in language comprehension.

Keywords: Language, word, segmentation, learning, tacit reading.

1 Introduction

Languages are important elements in human cognition, and play an essential
role in the communication among humans. In the process of cognitive develop-
ment of one’s mother tongue, a progress in the ability of the first language is
accompanied by an increasing difficulty in acquiring other languages. Such a cog-
nitive phenomenon occurs because of the characteristics of our brains [1][2][3].
The nature of the first language acquired results in significant differences in
the construction of efficient neural network systems, which in turn affect second
language acquisition [4][5][6].
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Reading words consist of perceiving language symbols visually and assigning
them appropriate meanings. Some of the difficulties encountered in second lan-
guage acquisition are due to the differences in the system of writing between the
languages. Among the various languages in the world, there are two distinctive
systems of writing, i.e., ideographs and phonograms. In both of these writing
systems, sentences are constructed of strings of words. In Japanese writing, the
segmentation between the words is given implicitly, where the letters are written
continuously without placing spaces between the words; both of the Chinese let-
ters [7] which contain ideograms and phonograms and the Thai letters [8] which
contain phonograms do not need spaces as well. In English and other European
languages, spaces are placed between the words. It is interesting to compare the
cognitive process of language segmentation between these two types of writing
systems, i.e., one with spaces and one without spaces between words. Previous
studies indicate that unspaced English texts influenced the speed of oral reading
[8] and eye movement behaviors [9].

In the domain of speech perception, continuous auditory sequences contain
no “spaces” (i.e., pauses). However it is known that (i) 8-months old infants can
recognize the word boundaries [10], (ii) ERP N400 is correlated with word onset
in continuous auditory stream [11] and (iii) the recursive neural network can find
English word boundaries in unspaced texts [12].

Here we report a study on effects of spaces enhancing segmentation in tacit
reading. In order to conduct the experiments, we invented “slash tasks”; when
one finds word boundary in unspaced text, he or she is required to put a slash
down on the boundary. To measure one’s reading competency, several types of
tests have been conducted. Most of them (e.g., [8]) require reading strings of
letters aloud. Therefore, those tests depend not only on reading competence
but also on speaking ability. Our slash tasks, on the other hand, only require
the subjects to mark slashes between words while reading tacitly. Subjects were
university students whose first language was Japanese. The subjects conducted
a “slash task” where they were instructed to place a slash between adjacent
words of typical English sentences written continuously without spaces between
the words.

2 Experiment

Materials and Methods

32 subjects (12 females, mean age 19.6±1.7) whose native language was Japanese
participated. All were undergraduate students, right-handed by self report, with
normal or corrected to normal vision.

Two independent variables were designed in the experiments. (1) Spacing:
spaced or unspaced texts, all written in English; (2) Coherence: coherent or
incoherent texts (Fig. 1). The order of tasks was counterbalanced with coherence.

The subjects were asked to put slashes between words in a coherent/incoherent
text with/without spaces within four minutes. Reading time was recorded by self-
report. After that, all of the subjects took a word recognition test, making an
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Fig. 1. Stimuli (4 types of texts)
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“old” or “new” judgment. Random sampled words were presented in this test
and the subjects were required to judge whether the words had been shown in
the previous slash task text (“old”) or not (“new”). Four sessions were conducted
without intervals. The same subjects were required to take another type of test
in twenty minutes; this contained thirty questions taken from a TOEIC problem
book. TOEIC (Test of English for International Communication) is a widely
used test of English to measure learners’ ability to use English as a language
system (grammar, vocabulary and usages).

The data were examined using ANOVAs with Space and Coherence as fac-
tors. Then, Games-Howell post-hot multiple comparisons were conducted. The
significance level was set at 0.05.

3 Results

We found that the main effects of Coherence (p = 0.031) and Space (p < 0.001)
show significances on the reading time, but their interaction indicates no signif-
icance (p = 0.087). The mean reading time of COH-SPA (the Coherent-Spaced
condition) and INC-SPA (the Incoherent-Spaced condition) were not signifi-
cantly different (p = 0.73). Those two conditions required shorter mean time
than COH-UNS (the Coherent-Unspaced condition) (p < 0.001) and INC-UNS
(the Incoherent-Unspaced condition) (p < 0.001). The mean reading time of
COH-UNS and INC-UNS were rather comparable (p = 0.28) (Fig. 2).

Fig. 2. Average reading time of 4 types of the texts (Mean±SD)

The number of errors in reading was the number of failures to find word bound-
aries. The main effects of Coherence (p = 0.007) and Space (p < 0.001) on the
number of errors and also their interaction (p < 0.001) were found. Accord-
ing to the multiple comparisons, the amounts of the errors indicated significant
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Fig. 3. Errors in reading of 4 types of the texts (Mean±SEM)

differences among all of the combinations of each condition: INC-SPA < COH-
SPA < COH-UNS < INC-UNS (INC-SPA vs. COH-SPA: p = 0.03, COH-SPA
vs. COH-UNS: p < 0.001, COH-UNS vs. INC-UNS: p < 0.001) (Fig. 3).

Fig. 4. “Old” or “new” judgment performances (Mean±SEM)

The correct rate of word recognition was defined as the rate of correct-old
(“hit”) and correct-new (“correct rejection”) responses. Note that the chance
level of word recognition accuracy was 50 percent because of the two-alternative
(“old” or “new”) forced choice. The main effect of Space on the correct rate of
word recognition was significant (p < 0.001), but that of Coherence was not sig-
nificant (p = 0.078). The interaction between them was significant (p = 0.003).
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The multiple comparisons showed that the INC-SPA correct rate of word recog-
nition, the old and new judgment performance was lower than other conditions
(INC-SPA vs. COH-SPA: p = 0.03, INC-SPA vs. COH-UNS: p = 0.001, INC-
SPA vs. INC-UNS: p < 0.001) (Fig. 4).

4 Discussion

Spaced texts and coherent texts were read faster than unspaced texts and inco-
herent texts, respectively. It is suggested that spaces work efficiently as a sort
of punctuation systems. Without spaces, the subjects had to find the blocks of
letters with meanings; it was necessary for the subjects to segment the words
attentively and intentionally.

When doing the tasks without spaces, most of the subjects were observed
leaned toward the texts and putting the tip of the pen closer to the written
letters, as if they were tracing invisible lines drawn under the strings of letters.
These behaviors were not observed when they were doing the tasks with spaces.
Without spaces, the subjects had to be more careful to find the segments of the
letters with meanings; therefore, their postures were different from those of when
doing the tasks with spaces.

For the all subjects, unspaced English sentences are rather unfamiliar even
if they see Japanese (their first language) sentences which have no spaces be-
tween characters and letters; they are sufficiently used to reading Japanese with
its ideographic and phonetic symbols. Their scores of reading “Hiragana” and
“Katakana” (phonetic symbols) and “Kanji” (ideographic symbols) are not sig-
nificantly varied. The relationship between the first language and the second
language word segmentation competence should be clarified in the further re-
searches.

Errors were observed in all of the conditions. No subjects got perfect scores
in all tasks. The least errors were observed when doing “Incoherent and Spaced
(INC-SPA)” task, not “Coherent and Spaced (COH-SPA)” one. This may sug-
gest that the subjects should pay more attention when they are given more
unfamiliar or unusual texts than familiar and usual texts.

The correlation between “the speed and correctness” and “TOEIC scores”
showed no significance in the present study. However, according to preceding
researches (data not shown), it is possible to think that the ability of recogniz-
ing the blocks of words that we call it “active segmentation” should be corre-
lated with certain cognitive and comprehension system when reading written
languages.

The slash task has a possibility of application to language education and clin-
ical assessment of aphasia and dyslexia [13][14] as it is not explicitly influenced
by articulating or speaking ability. It also has the following advantages: (i) Only
a pen and a bundle of paper are needed, and no complicated and expensive de-
vices such as eye movement trackers are necessary. (ii) It requires at most about
120 seconds. (iii) It is possible to conduct classroom experiments with many
participants simultaneously.
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Abstract. The paper describes the application of hybrid probabilistic
neural networks for corpus analysis which consists of intelligent semantic-
based methods of analysis and recognition of word clusters and their
meaning. The task of analyzing a corpus of academic articles was re-
solved with hybrid probabilistic neural networks and developed word
clusters. The created prototypes of word clusters provide the probabilis-
tic neural networks with possibilities of recognizing corpus clusters. The
established corpus comprises 1376 articles, from specialist leading SCI-
indexed journals, and provides representative samples of the language of
science and technology. In this paper, a review of selected issues is car-
ried out with regards to computational approaches to language modelling
as well as semantic patterns of language. The paper features semantic-
based recognition algorithms of word clusters of similar meanings but
different lexico-grammatical patterns from the established corpus using
multilayer neural networks. The paper also presents experimental re-
sults of word cluster semantic-based recognition in the context of phrase
meaning analysis.

Keywords: corpus analysis, artificial intelligence, probabilistic neural
networks, semantic networks, phrase meaning analysis, natural language
processing, applied computational linguistics.

1 Introduction

The hypothesis that modelling a language involves probabilistic representations
of allowable sequences, determines two areas of knowledge that might be applied
to text analysis. One is word clusters: it is often the case that strings of words
are repeated or tend to cluster together for semantic and/or syntactic reasons.
The other is the fact that given a sequence of words one might want to try and
predict the next word based on what restrictions exist on the choice of next word.
Another way of putting this might be that given a sequence of possible words,
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c© Springer-Verlag Berlin Heidelberg 2011
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estimate the probability of that sequence. In a corpus of size N, the assumption
is that any combination of n words is a potential n-gram. Each n-gram in our
model is a parameter used to estimate probability of the next possible word. Low
frequency n-grams are the most frequent. In other words, it is very common to
find strings that have low frequency. In the same way, it is very common to find
words that only occur once in a corpus (hapax legomena).

A corpus is a collection of linguistic data, consisting of a large and struc-
tured set of texts, which can be used for linguistic description or as a means of
verifying hypotheses about a language [7,10,12]. Text corpus is nowadays usu-
ally electronically stored, distributed and processed for statistical analysis and
used for checking occurrences or validating linguistic rules on a specific universe
[16]. We have been doing research into word clusters in a corpus of 1376 aca-
demic articles and we have found that repetition is constant across many word
sequences.

Our corpus comprises 1,376 articles, from specialist leading journals (a to-
tal of 6,104,323 tokens, 71,516 types, and 1.17 type/token ratio). The articles
have all been published in journals cited in the Science Citation Index (SCI).
They have been distributed in 23 knowledge areas, each of which constitutes
per se a sub-corpus. They are representative samples of the language of science
and technology. The corpus has been tagged with meta-textual information and
transferred to an Access database by means of an application in Visual Basic.

Once the corpus had been designed and implemented, we proceeded to anal-
yse the data by creating wordlists of technical and semi-technical terms through
frequency counts and keyword identification. This process involved initially com-
paring a general English wordlist (from the 100 million BNC corpus) with a
wordlist from our corpus. Frequencies were compared and a keyword list was
created from our corpus. Analysis was conducted by processing both the cor-
pus as a whole and each of the subject areas separately. Then, we proceeded to
generate 3 to 8 word clusters (n-grams), which were transferred to a database
specially designed to carry out queries related to the clusters. Furthermore, we
carried out research into collocational structures which are obtained by calculat-
ing the total number of times a word is found in the neighbourhood of the node
word using as the default collocation horizon 5 words to the left and 5 words
to the right of the node word (although it is possible to calculate collocations
using much larger horizons). Both clusters and collocational structures provide
clues to lexico-grammatical patterns. For this paper, we have mainly used the
data from the 3 to 8 word clusters.

The aim of the research is intelligent corpus analysis through meaning recog-
nition of word clusters using artificial intelligence methods. We have developed
a method which allows for development of possible word cluster components
in a corpus for training hybrid probabilistic neural networks. The networks
are capable of recognizing word clusters with similar meaning but different
lexico-grammatical patterns. In other words, we are working with the idea that
there is a strong tendency for sense and syntax to be associated [17]. Corpus
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Linguistics needs computational tools to be able to map the close association be-
tween pattern and meaning and neural networks are ideal for pattern recognition
and, consequently, semantic meaning.

2 The State of the Art

Automated tools are used by researchers for analyzing corpus frequency data.
They have analyzed the differences between various registers of corpora such
as fiction and academic writing and have found that many features of corpora
differ between registers [1,2,3]. The features they discuss range from syntactic,
through lexical, to discourse.

Parsed corpora have made it possible to generate more reliable syntactic fre-
quency information. Much of the work with that data has looked at the frequen-
cies of specific structures occurring with specific verbs [6,10].

Previous work on corpus analysis faced several limitations: the number of
words covered, the number of structures covered, and limits on the amount of
data available for low frequency items imposed by the size of the corpora [5,7,12].
While some work [11,15] has used data from larger corpora, it is an important
goal to develop new reliable and efficient automatic extraction methods. Towards
this goal, various automated tools have been developed during the last few years.
However, most of them use old-fashioned methods, lacking functionalities such
as sophisticated capabilities which could be delivered with use of artificial intel-
ligence methods [8,9,22,23,24,25,26]. This paper proposes an approach to deal
with the above mentioned problem.

3 Description of the Method

The proposed intelligent semantic-based system for corpus analysis shown in
abbreviated form on Fig. 1a, consists of two subsystems: statistical corpus pro-
cessing and intelligent corpus processing [26].

In the corpus processing subsystem, words are isolated from text extracted
from the corpus, which are developed into various combinations of word clusters
based on the statistical models of word sequences. The developed word clusters
representing appropriate N-gram models are processed further for training hy-
brid probabilistic neural networks with learning patterns of words and clusters.

In the intelligent corpus processing subsystem, text is retrieved from the cor-
pus using a parser. In the next step, word clusters are extracted by the parser
using lexical and grammar patterns. The separated words are processed for letter
strings isolated in segments as possible cluster word components. This analysis
has been carried out using Hamming neural networks. The output data of the
analysis consists of processed word segments. Individual word segments treated
here as isolated possible components of the cluster words are inputs (Fig. 1b)
of hybrid probabilistic neural networks for recognizing words. The networks use
learning files containing words and are trained to recognize words as word cluster
components, with words represented by output neurons.
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The intelligent cluster word recognition method allows for recognition of words
with similar meanings but different lexico-grammatical patterns. In the next
stage, the words are transferred to the word cluster syntax analysis module. The
module creates words in segments as word cluster components properly, which
are coded as vectors. Then they are processed by the module for word cluster
segment analysis using hybrid binary neural networks. The analyzed word cluster
segments become inputs of the word cluster recognition module using hybrid
probabilistic neural networks (Fig. 1c). The module uses multilayer probabilistic
neural networks, either to recognize the cluster and find its meaning or else
it fails to recognize it. The neural networks of this module use learning files
containing patterns of possible meaningful word clusters. The intelligent analysis
and processing allow for recognition of any combination of meaningful word
clusters with similar meanings but different lexico-grammatical patterns. The
overall detailed results of the intelligent analysis are subject to processing for
corpus characteristics and its linguistic description including: statistical analysis,
checking occurrences, and validating linguistic rules.

The proposed intelligent semantic-based system for corpus analysis contains
hybrid probabilistic neural networks which are pattern classifiers. They can be-
come effective tools for solving classification problems of lexico-grammatical
structures in corpus linguistics, where the objective is to assign cases of clus-
ters of letters or words to one of a number of discrete cluster classes. Pattern
classifiers place each observed vector of cluster data x in one of the predefined
cluster classes ki, i=1, 2, ..., K where K is the number of possible classes in
which x can belong. The effectiveness of the cluster classifier is limited by the
number of data elements that vector x can have and the number of possible
cluster classes K. The Bayes pattern classifier implements the Bayes conditional
probability rule that the probability P (ki |x ) of x being in class ki is given by (1):

P (ki |x) =
P (x |ki ) P (ki)∑K

j=1 P (x |kj ) P (kj)
(1)

where P (x |ki ) is the conditioned probability density function of x given set ki,
P (kj) is the probability of drawing data from class kj . Vector x is said to belong
to a particular class ki if P (ki |x ) > P (kj |x), ∀j = 1, 2, . . . , K, j �= i. This
classifier assumes that the probability density function of the population from
which the data was drawn is known a priori. This assumption is one of the major
limitations of implementing Bayes classifier.

The probabilistic neural network was first introduced by Specht [18, 19, 20,
21], who was inspired by the work of Parzen [14]. The network is interesting,
because it is possible to implement and develop numerous enhancements, exten-
sions, and generalizations of the original model. It offers a way to interpret the
network’s structure in the form of a probabilistic density function. The proba-
bilistic neural network simplifies the Bayes classification procedure by using a
training set of clusters for which the desired statistical information for imple-
menting Bayes classifier can be drawn. The desired probability density func-
tion of the cluster class is approximated by using the Parzen windows approach
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[4,13,14]. The probabilistic neural network learns to approximate the probabil-
ity density function of the cluster training samples. It should be interpreted as
a function that approximates the probability density of the underlying cluster
samples distribution, rather than fitting the cluster samples directly. It approx-
imates the probability that vector x belongs to a particular class ki as a sum
of weighted Gaussian distributions centred at each cluster training sample. The
output of the model is an estimate of the cluster class membership probabilities.

The architecture of the hybrid probabilistic neural networks in the proposed
system is shown in Fig. 2. The network is composed of many interconnected
processing units or neurons organized in successive layers. The hybrid proba-
bilistic neural network for recognition of clusters of letters or words consists of
five layers: cluster processing, cluster input, cluster pattern, summation and out-
put layers. The cluster processing layer performs input value normalization of
each value in the input vector. The cluster input layer unit does not perform
any computation and simply distributes the input to the neurons in the next
layer. In the pattern layer, there is one pattern neuron for each cluster training
sample. Each pattern neuron forms a product of the weight vector wi

j and the
given cluster sample, where the weights entering a neuron are from a particular
cluster sample. This product is then passed through the exponential activation
function (2):

exp

(
−
(
wi

j − x
)T (

wi
j − x

)
2σ2

)
(2)

It is necessary that both vectors x and w are normalized to unity. On receiving
a pattern x from the cluster input layer, the neuron xi

j of the cluster pattern
layer computes its output (3):

φi
j (x) =

1

(2π)s/2
σs

exp
(
− 1

2σ2

(
x− xi

j

)T (
x− xi

j

))
(3)

where s is the dimension of the cluster input pattern x, σ is a smoothing fac-
tor and xi

j is the j-th training vector for the cluster patterns in class ki. The
superscript T denotes the transpose of the vector, and exp stands for the expo-
nential function. The total number of the cluster pattern layer nodes is given as
a sum of the cluster pattern units for all classes. The summation layer neurons
compute the maximum likelihood of cluster pattern x being classified into ki by
summarizing and averaging the output of all neurons that belong to the same
cluster class (4):

Pi (ki |x ) =
1

(2π)s/2
σs

1
Ni

Ni∑
j=1

exp

(
−
(
x− xi

j

)T (
x− xi

j

)
2σ2

)
(4)

where Ni is the number of cluster training patterns in class ki. Eq. (4) is a
sum of small multivariate Gaussian probability distributions that are centred at
each cluster training sample. This function is used to generalize the classification
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to beyond the given cluster training samples. As the number of cluster training
samples and their Gaussians increases the estimated probability density function
approaches the true function of the cluster training set.

The classification decision for a cluster of letters or words is taken according
to the inequality (5):

Ni∑
j=1

exp
(
− 1

2σ2

(
x− xi

j

)T (
x− xi

j

))
>

Nk∑
j=1

exp
(
− 1

2σ2

(
x− xk

j

)T (
x− xk

j

))
for all i and k

(5)

Before classification, the sums in Eq. (5) are multiplied by their respective
prior probabilities (Pi and Pk) calculated as the relative frequency of the cluster
samples in each cluster class [18]. The decision layer classifies the cluster pattern
x in accordance with the Bayes’s decision rule based on the output of all the
summation layer neurons using (6):

Ĉ(x) = arg max

{
1

(2π)s/2σs

1
Ni

Ni∑
j=1

exp
(

−(x−xi
j)

T (x−xi
j)

2σ2

)}
i = 1, 2, ..., K

(6)

where Ĉ(x) denotes the estimated class of the cluster pattern x and K is the
total number of classes in the cluster training samples [18].

The smoothing factor σ is the only factor that needs to be selected for training.
A σ too small causes a very spiky approximation, which will not generalize
clusters of letters or words well, whereas a σ too large will smooth out details of
cluster structures. An appropriate σ is chosen empirically.

4 Experimental Results

Our corpus comprising 1,376 articles contains clusters of the types from 3 to
8 word clusters. The experimental results show the numbers of clusters in the
corpus, which are presented in (Fig. 3A).

The proposed system allowed for recognition of any combination of meaningful
word clusters with similar meanings but different lexico-grammatical patterns.
The tests measured the performance of the cluster meaning recognition. The
effectiveness of the system was achieved to a satisfactory level. As shown in
Fig. 3B, the ability of the hybrid probabilistic neural network to recognize a
cluster depends on the number of words in that cluster. For best performance,
the neural network requires a minimum number of words of each cluster to be
recognized as its input.

Important factors are both the neural network design (i.e., selection of the
smoothing factor (σ)) and development of representative training patterns of
word clusters by the proposed system.
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Fig. 3. (A) number of clusters of our corpus vs. number of words of the cluster, (B)
sensitivity of word cluster meaning recognition: minimum number of words of the
cluster being recognized vs. number of cluster component words

5 Conclusions and Perspectives

It is assumed that language processing is closely tied to a user’s experience, and
that distributional frequencies of words and structures play an important role
in learning. Therefore the interest in the statistical profile of language usage
plays an important role in research. This paper has developed a method which
allows for extraction of possible word cluster components in a corpus for training
hybrid probabilistic neural networks. The networks are capable of recognizing
word clusters with similar meaning but different lexico-grammatical patterns. It
has long been an ambition of corpus linguistics to investigate fully relationships
between form and meaning, sense and syntax [17]. The patterns of language have
been revealed by corpus linguistics through concordance lines, word clusters,
collocation and colligation but there is no automated way of generating these
word clusters. It might be useful for corpus linguistics to learn from neural
networks how to generate word clusters automatically based on the training of
the aforementioned networks with corpus examples and thereby bridge the gap
between data-driven Hallidayan approaches to language and the more formalized
Chomskyan predictive approach.
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Abstract. Experimental data has revealed that the decision behavior
of Drosophila is almost linear when facing a single cue. However, when
two conflicting cues are presented, the decision behavior of Drosophila
becomes winner-takes-all. We propose a connectionist model to elucidate
the underlying computational mechanism. We consider two neural states,
representing different action choices, compete with each other through
mutual inhibition. They receive inputs from Mushroom Body when con-
flicting information arise. The role of Mushroom Body is to average out
temporal noises in external inputs, so that subtle differences between
two conflicting cues can be identified, leading to higher discrimination
accuracies. Our model successfully describes the experimental findings.

Keywords: decision-making, connectionist model, conflict, feedback,
gating mechanism.

1 Introduction

Decision-making refers to the behavior that a subject makes a choice when facing
multiple alternatives. Decision-making is a fundamental cognitive function of the
brain, which guides our daily activities, for instances, we make choices on food
in a restaurant, on clothes when going to a party, and on routes in traveling.
Understanding the mechanism of decision-making is critical for us to understand
high-level brain functions.

Over the past decades, a large volume of research has been devoted to study
the behavior natures and the neural correlates of decision-making in both hu-
man and animal models, but little progress has been made on the circuit-level
computational mechanism underlying decision-making. A promising model was
proposed by Wang et al., who suggested that two neural groups biased for dif-
ferent choices compete with each other through mutual inhibition to make the
final decision [1]. This model has successfully predicted several aspects of the
decision-making behaviors of rhesus monkeys in a motion perception task.

In a recent experiment study, Zhang et al. explored the decision-making be-
havior of Drosophila and found very interesting phenomena [2]. They trained
flies to make a decision of either following an upper visual bar or a lower one
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depending on the cues. Two visual cues are used, one is the elevation of bars and
the other the color of bars (blue or green). They measured the choice behavior
of a fly by a preference index (PI), which is defined by the difference between
the fractions of time the fly following the upper or the lower bar. They found
that: 1) when a single cue (the elevation of bars) is presented, the choice curve
of the fly is linear, that is, PI increases almost linearly with the cue strength
(the latter is measured by the elevation difference between two bars); and 2)
when two conflicting cues are presented (i.e., the elevation cue favors the upper
bar, whereas, the color cue the lower one), the choice curve of the fly displays a
sigmoid shape, indicating that the fly’s decision is winner-takes-all.

In this work, we propose a network model to elucidate the computational
mechanism underlying the above observed interesting behaviors. In particular,
we aim to answer two questions: 1) why the choice curve of a fly is linear when
facing a single cue; and 2) why the choice behavior becomes winner-takes-all
when two conflicting cues are presented. We hope this study will give us insight
into understanding some general principles of decision-making in the brain.

2 The Model

2.1 The Network Architecture

Based on the known experimental data, we propose the following neural architec-
ture for implementing decision-making in Drosophila (see Fig. 1). The stimulus
information encoding the elevation and/or the color of bars is first extracted in
the visual system of Drosophila. It was found that the short-term memory for
elevation of visual inputs is localized in the fan-shaped body of the central com-
plex [3]. This visual information is propagated to the decision-making layer for
generating motor commands. Two possible motor commands may be generated,
one is to follow the upper bar and the other the lower one. The two choices
are competing with each other depending on the training protocol and the input
cues, and finally a biased decision is reached. Experimental studies have revealed
that Mushroom Body (MB) in Drosophila is actively involved in the decision-
making process [2]. Blocking MB would made the choice curve of Drosophila in
the conflicting-cue task lose its winner-takes-all nature. We therefore assume a
connection between the decision-making layer and MB exists. Furthermore, ex-
perimental data showed that the impact of MB on decision-making is modulated
by dopaminergic neurons. It has been suggested that the dopamine-MB circuit
mediates the winner-takes-all decision behavior in the presence of conflicting
cues [2]. A related evidence has been found recently, that is, the relative salience
of learned odor cues is modulated by gating MB through the MB-MP (dopamin-
ergic) neurons [4]. Therefore, we suggest that dopaminergic neurons may send
tonic inhibitory inputs to MB, suppressing its connection to the decision-making
layer in normal situations, and this suppression is released when conflicting infor-
mation is observed. Similar gating mechanisms implemented by dopamine have
also been widely reported in rat, monkey and human research [5][6][7]. In the
studies with human and monkeys, it has been observed that anterior cingulate
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cortex (ACC) serves to detect conflicting information of external inputs [8][9].
We propose that a similar neural substrate exists in Drosophila, hereafter we call
it conflict monitor. The conflict monitor may achieve its function by inhibiting
the activity of dopaminergic neurons when conflicting cues arise, consequently
the gate for the MB output to the decision-making layer is opened.

Upper bar

Lower bar

Upper bar

Lower bar

Elevation

Color

Visual system Decision–making Mushroom body

Conflict monitor Dopamine

Fig. 1. The possible neural architecture for implementing decision-making in
Drosophila. The elevation and/or the color information is extracted in the visual sys-
tem. This information is subsequently propagated to the decision-making layer for gen-
erating the associated motor commands. The decision-making layer is connected with
MB. However, the opening of this connection is modulated by dopaminergic neurons,
and the latter is further controlled by a conflict monitor.

2.2 The Network Dynamics

Since the fine structure of neural circuits in Drosophila involved in decision-
making is largely unknown, we employ a simple connectionist model to describe
the behaviors of the above network dynamics. A large volume of theoretical study
has demonstrated that connectionist models can successfully elucidate the key
mechanisms underlying many high-level cognitive functions including decision-
making (see, e.g., [10][11][12]).

In particular, we use two variables, z1 and z2, to denote the neural states
in the decision-making layer. They compete with each other through mutual
inhibition. The consequence z1 > z2 means that the network chooses to follow
the upper bar, and z1 < z2 the opposite choice.

We consider no conflicting cues first. No input from MB to the decision-
making layer is available. The dynamics of zi, for i = 1, 2, is governed by a
leakage term, a mutual inhibition term, and a biased input. The dynamics of zi

may be written as

τz
dz1

dt
= −z1 − wzz2 + I0 + Ib + η1, (1)

τz
dz2

dt
= −z2 − wzz1 + I0 + η2, (2)

where τz is the time constant of the decision-making layer. I0 is the non-biased
input to the two neural groups, I0 > 0 implying that a visual bar is a natural
attractive stimulus to Drosophila. Without loss of generality, we consider z1
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receives the biased input Ib, Ib > 0 implies that a fly tends to follow the upper
bar. The variables, ηi, for i = 1, 2, denote gaussian white noise of zero mean
and with variances D(η1) = I0 + Ib and D(η2) = I0 (according to the Poisson
statistics of neural firing). The input noise is the resource for a fly generating
randomness in decision-making. The mutual inhibition term, −wzzi, for i = 1, 2,
represents the competition between two neural states (we may alternatively use a
nonlinear interaction term, −wzf(z) with f(z) a sigmoid function, to implement
the mutual inhibition [11]. However, we find that in our model a linear inhibition
mechanism is already sufficient to justify the experimental behaviors).

In the presence of conflicting cues, the feedback input from MB to the decision-
making layer is activated, and the network dynamics is written as

τz
dz1

dt
= −z1 − wzz2 + I0 + I1

b − kzm2 + η1, (3)

τz
dz2

dt
= −z2 − wzz1 + I0 + I2

b − kzm1 + η2, (4)

τm
dm1

dt
= −m1 − wmm2 + kmz1, (5)

τm
dm2

dt
= −m2 − wmm1 + kmz2, (6)

where τm is the time constant of MB. The terms, kzmi, for i = 1, 2, are the
feedback inputs from MB to the decision-making layer, and kmzi are similarly
defined. Now, the decision-making layer receives two biased inputs, I1

b and I2
b ,

which represent the two competitive choices induced by two conflicting cues. The
competition between z1 and z2 mediated by MB causes the network to make the
winner-takes-all decision.

We consider the condition τm � τz. To see the contribution of MB clearly,
let us consider first wm = 0 and km = 1. Thus, mi is determined by the av-
erage value of zi over a period τd. This largely averages out the fluctuations in
zi. Subsequently, the value of mi feedback to the dynamics of zi, which helps
the network to diminish the disturbance of noises on decision-making. We will
confirm this point by simulation.

3 Results

3.1 The Case of a Single Cue

We first solve the network dynamics in the presence of a single cue. Let us define
z = z1 − z2. Subtracting Eq.(1) by (2), we obtain

τm
dz

dt
= −(1 − wz)z + Ib + η, (7)
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where η is gaussian white noise of zero mean and variance D(η) = 2I0 + Ib

(note η1 and η2 are independent to each other). This is the standard Ornstein-
Uhlenbeck process, whose solution is calculated to be

z(t) = z(0)e−(1−wz)t/τz +
Ib

1 − wz

[
1 − e−(1−wz)t/τz

]
+
√

(2I0 + Ib)/τze
−(1−wz)t/τz

∫ t

0

e−(1−wz)t′/τzdBt′ , (8)

where z(0) is the initial value of z(t) and Bt denotes the standard Brownian
process.

The mean and the variance of z(t) are given by

E[z(t)] = z(0)e−(1−wz)t/τz +
Ib

1 − wz

[
1 − e−(1−wz)t/τz

]
, (9)

D[z(t)] =
2I0 + Ib

2(1 − wz)

[
1 − e−2(1−wz)t/τz

]
. (10)

We consider a fly reaches a decision when t is sufficiently large. Since τz is very
small in practice (in the order of mini-second according to the neural dynamics),
we can effectively take the limit of t → ∞ to compute the distribution of z(t).
In the limit t → ∞, z satisfies a gaussian distribution given by

p(z) =

√
1 − wz

π(2I0 + Ib)
exp

[
− 1 − wz

2I0 + Ib
(z − Ib

1 − wz
)2
]
. (11)

The probability P (z > 0) is the fraction of time for a fly choosing to follow
the upper bar, and P (z < 0) the lower bar. Thus, the performance index PI of
the fly is calculated to be

PI = P (z > 0) − P (z < 0),

= 2
∫ ∞

0

p(z)dz − 1. (12)

From eqs.(11), we see that both the mean and variance of p(z) increases with
Ib. Their joint effects cause PI increases almost linearly with Ib (see Fig. 2b).

We carry out simulation to further confirm the above analysis. Fig. 2(a) shows
the typical performance of the network in a single trial. We see that the network
state may randomly switch between two choices, leading to the stochastic be-
havior in decision-making. The network choice, quantified by PI counted over
a sufficiently long time, increases linearly with the biased input (see Fig. 2(b)).
This agrees well with the experimental finding.

3.2 The Case of Conflicting Cues

We now consider the case of two conflicting cues. Define z = z1 − z2, and m =
m1 −m2. Subtracting Eq.(3) by (4), Eq.(5) by (6), we obtain

τz
dz

dt
= −(1 − wz)z + I1

b − I2
b + kzm + η, (13)
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Fig. 2. (a) The typical behavior of the network dynamics in a single trial when a single
cue is presented. The parameters are τz = 1, wz = 0.8, I0 = 20, Ib = 0.8. (b) The choice
curve: PI vs. Ib. Each PI value is measured in a time window 1000τz after the network
reaching a stationary state. The final result is obtained by averaging over 500 trials
(solid line). The theoretical analysis is shown by dashed line. The same parameters are
used as in (a).

τm
dm

dt
= −(1 − wm)m + kmz, (14)

where η is gaussian white noise of zero mean and variance D(η) = 2I0 + I1
b + I2

b .
Rewrite the two above equations in the two dimensional Itô form:

dX =
(
dm
dz

)
= A · Xdt + Bdt + CdBt, (15)

where A =
(
−(1 − wm)/τm km/τm

kz/τz −(1 − wz)/τz

)
, X =

(
m
z

)
, B =

(
0

(I1
b − I2

b )/τz

)
,

C =
(

0√
(2I0 + I1

b + I2
b )/τz

)
.

X(t) is calculated to be:

X(t) = exp(At)
[
X(0) +

∫ t

0

exp(−At′) ·Bdt′ +
∫ t

0

exp(−At′) · CdB′
t

]
. (16)

In the below we carry out simulation to describe the network behavior.
Fig. 3(a) shows the typical performance of the network in a single trial when

two conflicting cues are presented. We see that in the initial period, z1 and z2
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are only vaguely separated. The discrepancy between m1 and m2 is gradually
built up in the time order of τm. Since mi is determined by the temporal average
of zi, it has smaller fluctuations than zi. After a sufficiently long time, z1 and z2

become clearly separated due to the feedback contribution of mi. Fig. 3(b) shows
that the choice curve: PI vs. (I1

b − I2
b ) with I2

b fixed. As expected, PI increases
with (I1

b − I2
b ). We further observe that the slope of the choice curve increases

with the feedback strength kz . This is understandable, since the contribution
of MB is to diminish the disturbance of noises. When kz is sufficiently large,
PI increases sharply with (I1

b − I2
b ) but saturates to the maximum value of 1

(or decreases to the minimum value −1). This makes the choice curve exhibit a
sigmoid shape. In behavior, the Drosophila’s decision behaves as if winner-takes-
all. In Fig. 3(c), we further study the impact of τm on decision-making. We see
that the slope of the choice curve increases with τm. This is understandable.
Since mi is to average out fluctuations in zi over a period τm. The larger the
value of τm, the more efficient noise are diminished. Therefore, larger τm leads
to higher accuracy in distinguishing I1

b from I2
b .
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Fig. 3. (a) The typical performance of the network in a single trial when two conflicting
cues are presented. The parameters are τz = 1, τm = 20, wz = wm = 0.8, kz = km =
0.4. (b) The choice curves with different feedback strength kz. (c) The choice curves
with different τm.

4 Conclusions

In the present study, we have built up a network model to elucidate the compu-
tational mechanism underlying the decision-making performance of Drosophila
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when facing two conflicting cues. We consider there exists a neural substrate
monitoring the conflicting information, which activates the Dopamine-MB cir-
cuit in the presence of conflicting choices. The output of MB is then feedback
to the decision-making layer. In computation, the role of MB is to average out
the temporal fluctuations in external inputs, so that the subtle difference be-
tween the two cues is distinguished. In behavior, the contribution of MB causes
Drosophila to make winner-takes-all decision. Our model successfully describes
the experimental findings.
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Abstract. In this paper, a recurrent neural network termed Zhang neu-
ral network (ZNN) with a time-varying design parameter γ(t) is devel-
oped and presented to solve time-varying quadratic programs subject to
time-varying linear equalities. The updated design formula for the ZNN
model possesses more generality because the design parameter consid-
ered is actually (e.g., in hardware implementation) time-varying, i.e.,
γ(t). The state vector of such a ZNN model with time-varying design
parameter γ(t), can also globally exponentially converge to the theoreti-
cal optimal solution pair of the time-varying linear-equality-constrained
quadratic program. To achieve superior convergence of the ZNN model,
nonlinear activation functions are adopted as well, as compared with the
linear-activation-function case. Simulation results substantiate the effi-
ciency of such a ZNN model with a time-varying design parameter γ(t)
aforementioned.

Keywords: Time-varying, Quadratic program, Neural network, Global
convergence.

1 Introduction

The problem of linear-equality-constrained quadratic program is widely encoun-
tered in many important applications [1, 2]. It can be considered as an approxi-
mate avenue for solving the nonlinear optimization problem. Generally speaking,
there are two main types of solution to the problem of the linear-equality-
constrained quadratic program problem. The traditional one can be generalized
as the serial-processing numerical algorithms with the minimal arithmetic opera-
tions proportional to the cube of the coefficient matrix dimension. However, such
serial-processing numerical algorithms may not be efficient enough for large-scale
online (or real-time) applications due to higher computational complexity [3].

Being the other important type of solution to linear-equality-constrained
quadratic programs and relevant optimization problems solving, many paral-
lel processing computational methods, based on artificial analog models, have
� Corresponding author.
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been proposed, analyzed, and implemented on specific architectures, e.g., the
analog and neural-dynamic solvers [4–9]. Such a neural-dynamic approach is
now regarded as a powerful alternative to online computation and optimization,
owing to its potential parallel-processing distributed nature and convenience of
hardware implementation [1, 4, 11].

However, in the most past literature, the linear-equality-constrained quadratic
optimization problem [3] is considered and investigated with static/constant co-
efficients. The conventional computational schemes (e.g., the serial-processing
method and gradient-based neural-dynamic methods) may be efficient for solv-
ing such linear-equality-constrained quadratic optimization problems, but may
be less favorable for the time-varying linear-equality-constrained quadratic pro-
gram problem (where the coefficients of the objective function and linear equality
constraints are time-varying). Recently, a new recurrent neural network termed
Zhang neural network (ZNN) has been proposed and exploited as a powerful
alternative for solving such a time-varying linear-equality-constrained quadratic
program problem [8, 9]. Differing from the conventional gradient-based neu-
ral network (GNN) model, such a ZNN model makes full use of the first-order
time-derivative information of the time-varying coefficients, and forces the un-
bounded/indefinite time-varying matrix-valued error function to decrease to zero
rapidly during its solving process.

The proposed ZNN model in [9] for solving the time-varying linear-equality-
constrained quadratic program problem is with a constant design parameter
γ > 0, which scales the convergence rate during the solution process. Such a
ZNN model can achieve the global exponential convergence to the theoretical so-
lutions of the time-varying linear-equality-constrained quadratic programs. The
design parameter γ, being a set of reciprocals of capacitance-parameters, should
possibly be time-varying [i.e., γ(t)] in practice for potential analog/digital cir-
cuits implementation. Motivated by this point, in the paper, we show that the
global exponential convergence property of the ZNN model equipped with a
time-varying design parameter γ(t) can still be guaranteed for solving online the
time-varying linear-equality-constrained quadratic programs.

2 Problem Formulation and Neural-Network Solvers

In this paper, let us consider the following time-varying strictly-convex quadratic
program subject to time-varying linear-equality constraints:

minimize xT (t)P (t)x(t)/2 + qT (t)x(t),
subject to A(t)x(t) = b(t),

(1)

where matrices P (t) ∈ Rn×n and A(t) ∈ Rm×n are positive definite and of full
rank respectively at any time instant t ∈ [0,+∞), q(t) ∈ Rn and b(t) ∈ Rm

are time-varying vector coefficients, x(t) ∈ Rn is the unknown vector to be
optimized. In addition, the coefficient matrices and vectors, together with their
first-order time-derivatives, are assumed to be known analytically or estimated
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accurately. It is worth noting that the optimal solution x∗(t) ∈ Rn in problem
(1) to be solved is always time-varying, rather than a time-invariant (or to say,
static, constant) optimal solution x∗ ∈ Rn usually considered in static quadratic
optimization problems [3].

2.1 ZNN Model

To monitor the solving process of time-varying quadratic program (1), the fol-
lowing Zhang function is defined (which is a vector-valued indefinite and lower-
unbounded error function, rather than the scalar-valued norm-based nonnegative
energy functions usually used in gradient-based neural network approaches):

e(t) = W (t)y(t) + u(t) ∈ Rn+m,

with

W (t) =
[
P (t) AT (t)
A(t) 0

]
, y(t) =

[
x(t)
λ(t)

]
, u(t) =

[
q(t)
−b(t)

]
∈ Rn+m,

where λ(t) ∈ Rm denotes the Lagrange-multiplier vector. To make each entry
of e(t) ∈ Rn+m converge to zero, the following ZNN design formula has been
exploited [7–9]:

ė(t) = −γF(e(t)), (2)

where design parameter γ > 0, being a set of reciprocals of capacitance
parameters, should be set as large as the hardware would permit, or set ap-
propriately for simulative purposes [11]. F(·) : Rn+m → Rn+m denotes an
activation-function processing-array. In addition, each scalar-valued processing-
unit f(·) of F(·) should be a monotonically-increasing odd activation function.
Since March 2001 [6], we have introduced and investigated five types of activation
functions (i.e., linear activation function, power activation function, power-sum
activation function, sigmoid activation function and power-sigmoid activation
function) [6–8, 10]. Other types of activation functions can then be generalized
by understanding the above five basic types of activation functions.

In this paper, for more practical purposes, we modify the ZNN design formula
(2) into the general form as follows:

ė(t) = −γ(t)F(e(t)). (3)

Differing from design formula (2), new design formula (3) possesses more gen-
erality, since design parameter γ(t) is time-varying, which is more suitable for
real physical implementation environment for the ZNN model (i.e., capacitance
parameters may actually change with time in most analog circuits [11]).

Expanding equation (3), we obtain the following ZNN model depicted in a
nonlinear implicit dynamic equation:

W (t)ẏ(t) = −Ẇ (t)y(t) − γ(t)F(W (t)y(t) + u(t)) − u̇(t). (4)

If the design parameter γ(t) := γ > 0 is constant and independent of time t ∈
[0,+∞), the state vector x(t) ∈ Rn of ZNN model (4) can globally exponentially
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converge to the unique time-varying optimal solution x∗(t) ∈ Rn of time-varying
quadratic program (1) [9]. However, if the design parameter γ(t) is a time-varying
term, such convergence property may not be sure for ZNN (4). In the ensuing
propositions, we show that, as long as the design parameter γ(t) is time-varying
under certain conditions, global exponential convergence can be achieved for
ZNN model (4) as well.

Proposition 1. Consider time-varying strictly-convex quadratic program (1).
If there exists a positive scalar ε > 0 such that γ(t) ≥ ε, state vector x(t) ∈ Rn

of ZNN model (4), starting from any initial state x(0) ∈ Rn, globally converges
to the unique theoretical time-varying optimal solution x∗(t) ∈ Rn of (1).

According to Proposition 1, to make global convergence of ZNN model (4) to
optimal solution of (1), we can choose the following categories of γ(t):

1) positive constant scalar, γ(t) = c > 0;
2) power term, γ(t) = tρ + c where ρ > 0 and c > 0;
3) polynomial term, γ(t) =

∑N
i=0 ait

i where ai > 0;
4) exponential term, γ(t) = exp(ζt) + c where ζ > 0 and c > 0; and,
5) other forms of γ(t) which is larger than or equal to c where c > 0.

Proposition 2. If there exists a positive scalar ε > 0 such that γ(t) ≥ ε, starting
from any initial condition x(0) ∈ Rn, state vector x(t) ∈ Rn of ZNN model (4)
activated by linear functions globally exponentially converges to the theoretical
time-varying optimal solution x∗(t) ∈ Rn of (1).

Proposition 3. If there exists a positive scalar ε > 0 such that γ(t) ≥ ε, starting
from any initial state x(0) ∈ Rn, the state vector x(t) ∈ Rn of ZNN model (4)
activated by power-sigmoid functions

f(v) =

{
vρ, |v| � 1,
1+exp(−ξ)
1−exp(−ξ) ·

1−exp(−ξv)
1+exp(−ξv) , |v| � 1,

with suitable design parameters (e.g., odd integer ρ � 3 and ξ � 2), superiorly
converges to the theoretical time-varying optimal solution x∗(t) ∈ Rn of (1), as
compared with the situation of Proposition 2.

Proposition 4. If there exists a positive scalar ε > 0 such that γ(t) ≥ ε, starting
from any initial state x(0) ∈ Rn, x(t) ∈ Rn of ZNN model (4) activated by power-
sum functions f(v) =

∑N
k=1 v

2k−1 superiorly converges to the theoretical optimal
solution x∗(t) ∈ Rn of (1), as compared with the situation of Proposition 2.

Proposition 5. If there exists a positive scalar ε > 0 such that γ(t) ≥ ε, start-
ing from any initial state x(0) ∈ Rn, the state vector x(t) ∈ Rn of ZNN model(4)
activated by hyperbolic sine functions f(v) = exp(ξv)/2−exp(−ξv)/2 with param-
eter ξ � 1 superiorly converges to the theoretical time-varying optimal solution
x∗(t) ∈ Rn of (1), as compared with the situation of Proposition 2.
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Fig. 1. Trajectories of state of ZNN (4) and theoretical solution of (6)

2.2 GNN Model

For comparison, it is worth pointing out here that we can develop a gradient-
based neural network to solve online the quadratic program. However, similar
to almost all numerical algorithms and neural-dynamic schemes mentioned be-
fore, the gradient neural networks are designed intrinsically for problems with
constant coefficient matrices and/or vectors. Now we show the GNN design pro-
cedure as the following.

1) Firstly, a scalar-valued norm-based nonnegative energy function, such as
‖Wy + u‖2

2/2 with ‖ · ‖2 denoting the two norm of a vector, is constructed such
that its minimum point is the solution of linear system Wy = −u.

2) Secondly, an algorithm is designed to evolve along a descent direction of
this energy function until the minimum point is reached. The typical descent
direction is the negative of the gradient of energy function ‖Wy + u‖2

2/2, i.e.,

−∂‖Wy + u‖2
2/2

∂y
= −WT

(
Wy + u

)
.

3) Thirdly, by using the above negative gradient to construct and apply the
neural network to the time-varying situation, we could have a linear GNN model
solving (1),

ẏ(t) = −γ(t)WT (t)W (t)y(t) − γ(t)WT (t)u(t),

and a generalized nonlinear GNN model,

ẏ(t) = −γ(t)WT (t)F
(
W (t)y(t) + u(t)

)
. (5)
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Fig. 2. Trajectories of state of GNN (5) and theoretical solution of (6)

The main differences and novelties of ZNN (4) from GNN (5) may lie in the
following facts.

1) The design of ZNN model (4) is based on the elimination of every element
of the vector-valued indefinite unbounded error function e(t) = W (t)y(t) + u(t).
In contrast, the design of GNN model (5) is based on the elimination of the
scalar-valued norm-based nonnegative energy function ‖Wy + u‖2

2.
2) ZNN model (4) is depicted in an implicit dynamics, i.e., W (t)ẏ(t) = · · · ,

which coincides well with systems in nature and in practice. In contrast, GNN
model (5) is depicted in an explicit dynamics, i.e., ẏ(t) = · · · .

3) ZNN model (4) systematically and methodologically exploits the time-
derivative information of coefficient matrices and vectors during its real-time
solving process. In contrast, GNN model (5) has not exploited such important
information, thus less effective on time-varying problems solving.

3 Simulation Results

In this section, an illustrative example is given to demonstrate the efficiency
of ZNN model (4) with the time-varying design parameter γ(t) for the online
solution of time-varying quadratic programming (1).

Let us consider the following time-varying quadratic program subject to time-
varying linear equalities:

minimize
1
4
(cos(6t) + 2)x2

1(t) +
1
4
(sin(6t) + 2)x2

2(t) + cos(6t)x1(t)x2(t)

+ sin(8t)x1(t) + cos(8t)x2(t),
(6)



Time-Varying Quadratic Programming by Zhang Neural Network 107

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (s)

(a) ZNN model (4)

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t (s)

(b) GNN model (5)

Fig. 3. Residual error ‖A(t)x(t) − b(t)‖2 of equality-constraint satisfaction by ZNN
model (4) and GNN model (5) when solving time-varying quadratic program (6)

subject to
{

sin(9t)x1(t) − cos(9t)x2(t) = cos(8t),
cos(9t)x1(t) + sin(9t)x2(t) = sin(8t).

For purposes of illustration and comparison, both ZNN model (4) and GNN
model (5) are exploited to solve online such a time-varying quadratic program
(6), which are all equipped with the time-varying design parameter γ(t) = t+0.5
and an array of power-sum activation functions with N = 3.

From Fig. 1, we observe that state vector x(t) ∈ R2 of ZNN model (4) elegantly
converges to the time-varying theoretical solution x∗(t) ∈ R2 of time-varying
quadratic program (6) within around 2s. However, state vector x(t) ∈ R2 of
GNN model (5) could not converge well to x∗(t), instead with a large error lagged
behind the theoretical optimal solution x∗(t) ∈ R2 of (6), which is illustrated in
Fig 2.

As shown in Fig. 3, the residual error ‖A(t)x(t) − b(t)‖2 of the time-varying
linear equality constraint A(t)x(t) − b(t) ∈ R2 synthesized by ZNN model (4)
for solving time-varying quadratic program (6) diminishes to zero within about
2.7s. However, the residual error ‖A(t)x(t) − b(t)‖2 synthesized by GNN model
(5) is rather larger with obvious oscillations. This substantiates the efficacy and
superiority of ZNN model (4) for solution of (6).

4 Conclusions

In this paper, we have extended the design formula of Zhang neural network
(ZNN) to a general one, i.e., the design parameter γ is considered time-varying
rather than constant, and investigated the new ZNN model for solving online
the time-varying quadratic program subject to time-varying linear-equality con-
straints. The global exponential convergence and superior convergence of such
a new ZNN model have been guaranteed theoretically and substantiated via a
computer-simulation example.
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Abstract. Chaotic bursting is a fundamental behavior of neurons. In
this paper, local and global burst synchronization is studied in a noisy
small-world neuronal network composed of nonidentical Hindmarsh-Rose
neurons. It is found that burst synchronization can be obtained easily by
very small coupling strength and local burst synchronized clusters have
already formed before global burst synchronization happens. The effects
of the shortcut-adding probability and noise intensity on local and global
burst synchronization of the network are also studied and it is found that
the introduction of shortcuts facilitates burst synchronization while noise
has little effect.

Keywords: burst synchronization; neuronal network; small-world; noise.

1 Introduction

The human brain is a complex network consisting of more than 1011 neurons, and
each neuron in the cortex connects to more than 10, 000 neurons via synapses
[1]. Although the real structure of the neuronal network of human brain is not
clear yet, small-world properties [2], such as dense clustering and short average
path length, have been found in some neuronal networks [3, 4].

Bursting is a fundamental regime of neuronal behavior. It is believed that
bursting has important functions in learning, cognition, motivation, movement
control, increasing reliability of cortical synapses and provoking neural disorders
[5]. Especially, the synchronous spiking-bursting activity of neurons is thought
to be very important for signal transmission and coding in the brain. A lot of
studies have been carried out on synchronization in coupled bursting neuronal
networks and mainly focused on phase synchronization [6-8] or complete syn-
chronization [9-11]. However, interacting bursting neurons may also show other
forms of synchrony, such as burst synchronization, due to the characteristic of
multiple time scales, but only a few of researchers studied burst synchronization
in neuronal networks.

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 109–116, 2011.
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As chaotic bursting is a characteristic of neurons, we aim to study the influ-
ence of network topology and noise on local and global burst synchronization in
a small-world neuronal network of nonidentical chaotic Hindmarsh-Rose (HR)
neurons. This article is organized as follows. Section 2 introduces a model of
small-world HR neuronal network. Section 3 presents the main results of burst
synchronization. The closing remarks are given in Section 4.

2 Neuronal Network Model

The Hindmarsh-Rose (HR) neuronal model, as a typical example of real neurons,
is expressed by the following equations [12]:

ẋ = y − ax3 + bx2 − z + I,
ẏ = c− dx2 − y,
ż = r[s(x + χ) − z], i = 1, 2, · · · , N

(1)

where x is the membrane potential, y is associated with the fast current of the
Na+ or K+ ions, and z is associated with the slow current of, for example, the
Ca2+ ions. We choose the parameters as a = 1, b = 3, c = 1, d = 5, s = 4, r =
0.006, χ = 1.6. I is the stimulus current which is delivered to the neuron from
its external environment and make neurons be in different states.

Neurons in human brain are coupled by electrical synapses or chemical synapses.
Using the above neuronal model and Newman-Watts small-world strategy [13],
with noise considered, a neuronal network composed of electrically coupled HR
neurons can be set up, which is expressed as follows:

ẋi = yi − ax3
i + bx2

i − zi + Ii + ξi + σ

N∑
j=1

gij(xj − xi) ,

ẏi = c− dx2
i − yi , (2)

żi = r[s(xi + χ) − zi], i = 1, 2, · · · , N,

where N is the overall number of neurons, σ is the coupling strength, G =
{gij}N×N is the coupling matrix and ξi is the Gaussian white noise applied to
neuron i, which satisfies 〈ξi〉 = 0 and 〈ξi(t)ξj(t′)〉 = Dδi,j δ(t − t′), where D
represents the noise intensity. In this model, we set Ii = 3.1 ± 0.2 × rand (i =
1, 2, · · · , N) to make all the neurons be in different chaotic bursting states, where
rand is a random number in the interval [0, 1].

The coupling matrix G is determined by the network structure. Here, the
Newman-Watts small-world strategy is adopted, which is expressed as follows:
we start with a ring of N neurons, each coupled diffusively to its k nearest
neighbors, which means the initial degree of each node of the network is k. Then
we add shortcuts between pairs of nodes with probability p, which actually is
the connection density of the network. If neuron i is connected with neuron j,
then gij = 1, otherwise, gij = 0. As special cases, for p = 0, we have the original
regular network, and for p = 1, we have a globally coupled network. In the
following simulations, we fix the number of neurons N = 100 and the original
node degree k = 4.
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3 Simulation Results

3.1 Local and Global Burst Synchronization

Chaotic bursting is a multiple-time-scale dynamical behavior. Bursting synchro-
nization means groups of spikes, say bursts, occur simultaneously while the spikes
in them occur in different time and amplitudes. Figure 1 shows the state of burst
synchronization of two neurons.
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Fig. 1. Burst synchronization and firing threshold of two HR neurons

To study burst synchronization, we choose a threshold value xth = −1.08 for
firing occurrence in neurons. Whenever the membrane potential xi crosses xth in
an upwards direction, a burst is thought to happen. Assume that the burst phase
φi is increased by 2π for each burst of the ith neuron and the phase increases
linearly between two neighboring bursts. So the burst phase of the ith neuron
can be defined as [7]

φi(t) = 2πk + 2π
t− tk

tk+1 − tk
, tk < t < tk+1 (3)

where tk is the time at which the kth burst starts. We define a group of neurons
(the number of neurons in a group should be larger than 2) with the same burst
phase over time as a cluster of the network, and denote the number of clusters
as ncluster and the total number of neurons involved in all clusters as nsyn.

Fixing shortcut-adding probability p = 0.1 and noise intensity D = 0.05, the
variation of the number of clusters and that of neurons involved in burst syn-
chronization with respect to the coupling strength can be seen in Figure 2. It
can be seen that even for very weak coupling strength, say σ = 0.001, there
are already 10 clusters involving 50 neurons in the network, which indicate the
existence of local burst synchronization to a certain extent. With the increasing
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of the coupling strength, both the number of clusters and the number of syn-
chronized neurons are changing irregularly. However, nsyn increases to 100 and
ncluster becomes 1 at σ = 0.0012 and remain constant since then. That means
the network achieves global burst synchronization and all the neurons in the
network form a whole burst synchronized cluster.
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Fig. 2. The variation of the number of synchronized neurons nsyn and the number of
clusters ncluster with the coupling strength σ

It is believed that the formation of clusters has a great functional significance
in the developing process of neuronal networks in human brain because such
clusters are rather suitable for information exchanging [14]. Each cluster may
have different frequencies and then can be used to transmit information in a
particular bandwidth, which may provide a multi-channel processing of infor-
mation. They also provide a multi-channel communication so that information
can arrive simultaneously in different places of the network. We can also suppose
that all these clusters can be used to carry different information. That may be
why our brain, which is composed of billions of neurons, can accommodate so
much information.

The number of clusters ncluster and the number of synchronized neurons nsyn

both change irregularly with varying coupling strength σ, so both the two pa-
rameters can not describe visually the extent of burst synchronization. Thus, we
introduce the average cluster volume, which is defined as:

〈n〉 =
nsyn

ncluster
(4)

Here, 〈n〉 is an average number of burst synchronized neurons per cluster of the
network. The larger 〈n〉 is, the more burst synchronized the network is. When
〈n〉 = N ( N = 100 in this article), global burst synchronization is achieved.
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We plot the variation of 〈n〉 with the coupling strength σ in Figure 3. It can be
seen that the network becomes more and more synchronous in bursts when the
coupling strength is increased and achieves global burst synchronization finally
for σ � 0.012.

0 0.003 0.006 0.009 0.012 0.0150.015
0

20

40

60

80

100

120120

σ

〈n
〉

Fig. 3. The relationship of the average cluster volume 〈n〉 and the coupling strength σ

3.2 Effect of the Shortcut-Adding Probability

We set the parameters σ = 0.001, D = 0.05 and study the effect of the shortcut-
adding probability p on burst synchronization. The result is shown in Fig-
ure 4. Clearly, global burst synchronization cannot be achieved in the network
at σ = 0.001 no matter how large p is. However, introduction of shortcuts to
the neuronal network facilitates local burst synchronization. Generally, the more
shortcuts the network has, the more synchronous in bursts the network is. That’s
probably because the introduction of shortcuts decreases the average path-length
of the network and make information transmission more smoothly.

We also calculate the critical coupling strength σc for global burst synchro-
nization when varying shortcut-adding probability p, with noise intensity fixed
D = 0.05. The result is shown in Figure 5. It can be seen that the critical
coupling strength for global burst synchronization decreases with increasing p,
which means more shortcuts help improving synchronization of the network. As
mentioned by many literatures, the regular network (p = 0) is very difficult to be
synchronized and it is found here that the critical coupling strength σc for p = 0
is almost up to 9. Generally speaking, the critical coupling strengths for global
burst synchronization are considerably small for a variety of network topologies
so global burst synchronization can be easily obtained in neuronal networks.
The result here is an indication that burst synchronization may have a greater
significance than other forms of synchronization because it can be much more
easily obtained than other synchronization states.
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0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

p

σ
c

Fig. 5. The relationship of the critical coupling strength of global burst synchronization
σc and the adding probability p

3.3 Effect of the Noise

Considering neurons always locate in noisy environment, we add Gaussian white
noise in the neuronal network model. Fixing p = 0.1, the variations of the number
of clusters ncluster, the number of synchronized neurons nsyn and the average
cluster volume 〈n〉 with different noise intensity D are shown in Figure 6.

It is shown in Figure 6 that ncluster, nsyn and 〈n〉 all change irregularly but
not much when noise D intensity increases from 0 to 0.5. That is to say, noise
has little effect on burst synchronization of neuronal networks. In other words,
burst synchronization is robust to noise. This is another indication that burst
synchronization has a greater significance for intercommunication of neurons.
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Fig. 6. The variations of ncluster, nsyn and 〈n〉 and noise intensity D

4 Closing Remarks

In this article, we study burst synchronization of a small-world neuronal net-
work of nonidentical HR neurons, with noise considered. First we study the
onset of local and global burst synchronization. It is found that the burst syn-
chronization is easily obtained and some local clusters can be formed prior the
network achieves the global burst synchronization. Then we investigate the effect
of shortcut-adding probability and noise intensity on burst synchronization of
the network. The results show that the introduction of shortcuts improves burst
synchronization but noise has little effect on it. The above results strongly indi-
cate the great significance of burst synchronization in the information activities
of neuronal networks.
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Abstract. On the basis of Lyapunov stability theory and LMI technique, this 
paper investigates H∞  synchronization control of time-varying synchronization 
state in general complex networks with time-delay and external disturbances. H∞  

synchronization controllers have been designed for nodes of controlled network 
and the H∞  control law for asymptotically(exponentially) synchronization are 
derived via defining an appropriate controlled output. Besides, under the desired 
H∞  performance index, the control criteria which guarantee complex networks 
synchronization with a time-varying state are revealed by LMI. Finally, a 
simulation example is given to demonstrate the effectiveness of the theoretical 
results. 

Keywords: Complex networks; time-delay; H∞  control; Asymptotically 
synchronization; Exponentially synchronization; LMI. 

1   Introduction 

Synchronization is widely regarded as a kind of collective behavior which exists in 
many dynamic systems. Because of its importance in various practical applications, 
more and more researchers are working in this field. Among these endeavors, Wang 
and Chen [1,2] analyzed the synchronization based on simple dynamical network 
model. Then Li and Chen [3] extended the model to the one with coupling delays. Lv 
[4] analyzed the synchronization with periodic orbits of a time-varying dynamical 
network model. However, it is noticed that many complex networks in practice are 
very difficult to synchronize without man-made controller. Thus, synchronization 
control is introduced to tolerate the failures of complex systems synchronization and 
performance. While it is significant to design an appropriate controller that ensures 
the system can reach the desired orbit in synchronization control problem. 

There are also authors having investigated adaptive synchronization control [5] and 
pinning synchronization control [6]. However, most of the research in general 
complex networks assumed the model was in an ideal condition without the external 
disturbance, which is always existent and might cause the complex network to diverge 
or oscillate. So it is imperative to enhance the anti-interference ability of the system. 
However, to my knowledge, fewer works study the H∞

 synchronization control [7,8] 
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in complex networks, whose performance index can precisely reflect the ability of 
anti-interference. So, we will analyze the H∞

 synchronization control problem of 
coupling time-delay [9] nonlinear general complex system and obtain related 
conclusion via designing appropriate controller. 

Recently, synchronization problem in general complex networks with time-delay is 
widely studied by using LMIs technique. We can also transform the H∞

 
synchronization control problem into solving LMI by constructing Lyapunov 
function. In other words, we only need to solve a LMI to obtain appropriate controller 
and control law which could guarantee the synchronism of the complex networks. 

This paper is organized as follows: Section 2 introduces a general complex 
network with time-delay coupling and obtains the error equation under feedback 
control; In Section 3, based on Lyapunov function and LMI, we consider the problem 
of H∞  

synchronization control of nonlinear time-delay complex systems. While the 
robust synchronization H∞  

control criterion for the nonlinear time-delay complex 
system is obtained. Section 4 gives a simple example to show the effectiveness of the 
proposed synchronization control criteria. 

2   Problem Formulation and Preliminaries 

We consider a general complex network consisting of N  dynamical nodes. Each node 
of the network is a n − dimensional autonomous dynamical system with time-delay, 
which is described by: 

( ) ( )
1

( ) ( ) ( ) ( ) 1, ,
N

i i ij j i i
j

x t f x t c a Hx t t u t i Nτ ω
=

= + − + + =∑
i

 (1}

where ( ) ( ) ( )( )1 , ,
T n

i inx t x t x t R= ∈  are state variables of the i th dynamical node; 

the constant 0c > is coupling strength; ( ) N N
ij N N

A a R ×

×
= ∈  is outer-coupling matrix, 

in which ija is defined as follows: if exist connection between the nodes i and ( )j j i≠ , 

then 1ij jia a= = ; otherwise, 0ij jia a= = , and the diagonal elements of matrix A are 

defined by 
1,

, 1, 2, ,
N

ii ij
j j i

a a i N
= ≠

= =∑ , while A  is irreducible. n nH R ×∈  is a constant 

inner-coupling matrix. ( ) : n n n
if x R R R× →  represents the state of every single node, 

which is continuously, differentiable and exists a unique continuous solution for any 
initial condition 0 0( , )it x , where 0ix is an n − dimensional vector.  

Let ( )s t be a solution of the controlled system (1), and we say controller 

iu asymptotically (exponentially) solves the synchronization problem with 

time-varying reference state, if ( ) ( )lim 0 , 1, ,it
x t s t i N

→∞
− = = , where 

( ) ( )( )s t f s t=
i

. So the synchronization state is ( ) ( ) ( )( ), ,
TT TS t s t s t= . To solve this 

problem, we use the following synchronization controller:  
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( ) ( ( ) ( )), 1,2, ,i i iu t k H x t s t i N= − − =  (2)

Define error vectors as: ( ) ( ) ( ), 1,2, .i it x t s t i NΔ = − = . 

According to the controlled system (1), the error system is then described by: 

1

( ) ( ) ( ) ( ( )) ( ( )) ( ) ( ) ( )
N

i i i ij j i i i
j

t x t s t f x t f s t c a H t k H t tτ ω
=

Δ = − = − + Δ − − Δ +∑
i i i  (3)

Where1 i N≤ ≤ . Next, we do linear transformation at the equilibrium point ( ) ns t R∈ :  

1

( ) ( ( )) ( ) ( ) ( ) ( )
N

i i ij j i i i
j

t Df s t t c a H t k H t tτ ω
=

Δ = Δ + Δ − − Δ +∑
i  (4)

where1 i N≤ ≤ , and ( ( ))Df s t is the Jacobean matrix at the point of ( )s t . Let
i

f
J

s

∂=
∂

, so 

(3) can be written in a matrix form: 

( ) ( ) ( ) ( ) ( )t A KH t B t tτ ωΔ = − Δ + Δ − +
i  (5)

Where 
1 11 1 1

1

0 0

, ,

0 0

N n

N N NN N n

J ca H ca H k I

A B K

J ca H ca H k I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

Obviously, the synchronization performance of original system is equivalent to the 
stability of system (5). 

Meanwhile, in order to let synchronization state suppress external disturbances and 
make all subsystem reach agreement, we define the output function of system as 
follow: 

( ) ( ), (0) 0z t U t= Δ Δ =  (6)

Then the dynamic system can be summarized as follow: 

( ) ( ) ( ) ( ) ( )

( ) ( ), (0) 0

t A KH t B t t

z t U t

τ ωΔ = − Δ + Δ − +
= Δ Δ =

i  
(7)

The ability of complex system against external disturbances can be measured by 
the norm of the closed-loop transfer function ( )sT sω which is expressed by: 

[ )2

2

0 ( ) 0,
2

( )
( ) sup

( )s
t l

z t
T s

tω
ω ω∞

≠ ∈ ∞
=  (8)

Here, we can make the closed-loop system with the given H∞  performance index 
0γ >  satisfy: ( )sT sω γ

∞
< , and it can be described by: 

( )2

0
( ) ( ) ( ) ( ) ( ) 0T TJ z t z t t t dtω γ ω ω

∞
= − <∫  (9)

Hence, our goal is to design controller ( )u t , and for any given positive definite 
constant 0γ > , the closed loop system satisfied: (a) The closed loop system is 
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asymptotically (exponentially) synchronization, when ( ) 0tω = ; (b) Under zero-value 

initial condition, ( )2

0
( ) ( ) ( ) ( ) ( ) 0T TJ z t z t t t dtω γ ω ω

∞
= − <∫ . 

3   Main Results 

In this section, we will provide the synchronization control analysis of the nonlinear 
general complex dynamical network with coupling time-delay and external 
disturbances. And the sufficient conditions will be presented by LMI for general 
complex dynamical network. 

Definition: For a given 0γ >  and 0α > , selecting control law, asymptotically 
(exponentially) solves the synchronization problem with time-varying reference state 
under ( )sT sω γ

∞
<  is: (1) The closed loop system (7) is α  asymptotically 

(exponentially) synchronization when ( ) 0tω = ; (2) Under zero-valued initial 
condition, the closed loop system (7) satisfied: ( )2

0
( ) ( ) ( ) ( ) ( ) 0T TJ z t z t t t d tω γ ω ω

∞
= − <∫  for 

all nonzero [ )2( ) 0,t Lω ∈ +∞ [9]. 

3.1   Asymptotically Synchronization 

Theorem 1. Consider a nonlinear general complex dynamical network (1) with 
coupling time-delay τ , for a given index 0γ > , controller (2) asymptotically solves 
the synchronization problem with time-varying reference state under ( )sT sω γ

∞
< , if 

for the closed loop system (7), there exists positive definite symmetric matrices 
, Nn NnP Q R ×∈  and real matrixW , satisfying: 

2

0 0
0

0 0

0 0

T T

T

W W Q PB P U

B P Q

P I

U I

γ

⎡ ⎤+ +
⎢ ⎥−⎢ ⎥Ω = <
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

 

(10)

Where ( )W P A KH= − . 

Proof: (1) Firstly, we need to prove the asymptotically stable under zero-valued initial 

condition, that is ( ) 0tω = . Constructing the Lyapunov function as follows: 

( ) ( ) ( ) ( )
tT T

t
V t P t s Q s ds

τ−
= Δ Δ + Δ Δ∫  

Where , N n N nP Q R ×∈  are positive define symmetric matrices. Along the trajectory of 
system (7), let ( ) ( ) ( )T T Tt t tξ τ⎡ ⎤= Δ Δ −⎣ ⎦ , then we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

T T T T

T
T

T

V t P t t P t t Q t t Q t

A K H P P A K H Q P B
t t

B P Q

τ τ

ξ ξ

= Δ Δ + Δ Δ + Δ Δ − Δ − Δ −

⎡ ⎤− + − +
= ⎢ ⎥−⎣ ⎦

i i i  

Under the given conditions by the Theorem1, 0V ≤
i . According to definition1, the 

original system (1) is asymptotically synchronization; 
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(2)For any nonzero [ )2( ) 0,t Lω ∈ +∞ ， 0t >  and zero-valued initial condition, that 

( )( ) 0, , 0s sΔ = ∈ −∞ , let ( ) ( ) ( ) ( )T T T Tt t t tη τ ω⎡ ⎤= Δ Δ −⎣ ⎦  
we have: 

2

0

2

0

2

0

0
2

( ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( ) ) ( ) (0)

( ( ) ( ) ( ) ( ) )

( ) ( )

( ) 0 ( )

0

T T
z

T T T

T T T

T T

T T

J z t z t t t dt

t U U t t t V dt V t V

t U U t t t V dt

A KH P P A KH Q U U PB P

t B P Q t dt

P I

ω γ ω ω

γ ω ω

γ ω ω

η η
γ

∞

∞

∞

∞

= −

= Δ Δ − + − +

≤ Δ Δ − +

⎡ ⎤− + − + +
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

∫

∫

∫

∫

i

i

 

Let ( )P A KH W− = , while according to 0Ω < , we can conclude that 0zJω ≤ . And 

the control law K can be obtained by calculating LMI (10). 
Therefore, asymptotically synchronization with time-varying reference state under 

( )sT sω γ
∞

<  can be achieved if the matrix inequality (10) holds. 

Remark 1: The robust H∞  asymptotically synchronization controller design problem 

is solved in Theorem 1 for the addressed nonlinear complex network, which was 
seldom discussed in the past literature. We transform the H∞

 synchronization control 

problem into solving LMI, which make it very easy to operate in practical systems. 

3.2   Exponentially Synchronization 

Theorem 2. Consider a nonlinear general complex dynamical network (1) with 
coupling time-delay τ , for a given index 0γ > , controller (2) exponentially solves 
the synchronization problem with time-varying reference state under ( )sT sω γ

∞
< , 

if there exists positive definite symmetric matrices , Nn NnP Q R ×∈  and real matrice W , 

satisfying: 

2
0

T

T

P W P W Q e PB

e B P Q

ατ

ατ

α⎡ ⎤+ + + +
<⎢ ⎥−⎣ ⎦

 (11)

2

0 0

0

T T

T

W W Q U U P B P

B P Q

P Iγ

⎡ ⎤+ + +
⎢ ⎥− <⎢ ⎥
⎢ ⎥−⎣ ⎦

 
(12)

Where ( )W P A KH= − . 

Proof: (1) Firstly, we need to prove the exponentially synchronization under 
zero-valued initial condition, that is ( ) 0tω = . Here we choose an appropriate 
transformation ( ) ( )tt e tαη = Δ , then: 

( ) ( ) ( ) ( ) ( ) ( ) ( )t tt e t e t t A KH t e B tα α ατη α αη η η τ= Δ + Δ = + − + −
i i

 (13)
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It is obvious that the exponentially stable of system (7) is equivalent to the 
asymptotically stable of this system [10]. So we should check the asymptotically 
stable of system (13). Constructing the Lyapunov function as follows: 

( ) ( ) ( ) ( ) ( )
tT T

t
V t t P t s Q s ds

τ
η η η η

−
= + ∫  

Where , Nn NnP Q R ×∈  are positive define symmetric matrices. Along the trajectory 

of system (13), and denote the vector as ( ) ( ) ( )T T Tt t tξ η η τ⎡ ⎤= −⎣ ⎦ , then we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
( ) ( )

T
T T T

T
T

T

V t t P t t P t t Q t t Q t

P W P W Q e P B
t t

e B P Q

α τ

α τ

η η η η η η η τ η τ
αξ ξ

= + + − − −

⎡ ⎤+ + + +
= ⎢ ⎥−⎣ ⎦

i i i  

Hence, ( ) 0V t ≤
i

. The original system (1) is exponentially synchronization. 
(2) For any nonzero [ )2( ) 0,t lω ∈ +∞ . Let ( ) ( ) ( ) ( )T T T Tt t t tη τ ω⎡ ⎤= Δ Δ −⎣ ⎦  we have: 

2

0

2

0

2

0

0
2

( ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( ) ) ( ) (0 )

( ( ) ( ) ( ) ( ) )

( ) ( )

( ) 0 ( )

0

T T
z

T T T

T T T

T T

T T

J z t z t t t d t

t U U t t t V d t V t V

t U U t t t V d t

A K H P P A K H Q U U P B P

t B P Q t d t

P I

ω γ ω ω

γ ω ω

γ ω ω

η η
γ

∞

∞

∞

∞

= −

= Δ Δ − + − +

≤ Δ Δ − +

⎡ ⎤− + − + +
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

∫

∫

∫

∫

i

i

 

Let ( )P A KH W− = , and according to (11), we can conclude that 0zJω ≤ . And the 

control law K  can be obtained by calculating LMI. 
Therefore, exponentially synchronization with time-varying reference state under 
( )sT sω γ

∞
<  can be achieved if the matrix inequality (11) and (12) holds.  

Remark 2: From the conditions of the theorem, it can be seen that the conditions of 
Theorem 1 is delay-independent, while Theorem 2 is delay-dependent and the upper 
bound of the delay can be obtained by using the LMI toolbox in MATLAB. So the 
conditions of Theorem 2 are less conservative than those of Theorem 1. 

3.3   System with Time-Varying Delays 

To further reduce the conservative, we consider the time-varying delay ( )tτ , which 
satisfies the assumption that: 

0 ( ) , ( ) 1;t d t bτ τ≤ ≤ ≤ <
i  (14)

Where d andb are constants. 

Theorem 3. Consider a nonlinear general complex dynamical network (1) with 
coupling time-delay ( )tτ  which satisfies (14), for a given index 0γ > , controller (2)  
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exponentially solves the synchronization problem with time-varying reference state 
under ( )sT sω γ

∞
< , if there exists positive definite symmetric matrices , Nn NnP Q R ×∈  

and real mat rice W , satisfying: 

1

1

2
0

d
T b

d
Tb

P W P W Q e P B

e B P Q

α

α

α −

−

⎡ ⎤
+ + + +⎢ ⎥ <⎢ ⎥

⎢ ⎥−⎣ ⎦

 
(15)

2

0 0

0

T T

T

W W Q U U P B P

B P Q

P Iγ

⎡ ⎤+ + +
⎢ ⎥− <⎢ ⎥
⎢ ⎥−⎣ ⎦

 
(16)

Where ( )W P A KH= − . 

The proof of this theorem is similar to that of theorem 2. So it is omitted here. 

4   Simulation 

In this section, simulation example will be given to verify the validity of the 
theoretical results obtained in the previous section. For simplicity, we consider a 
complex network of 4 nodes, and each node represents one-dimensional subsystem.  

The state equation can be expressed as: 

( ) ( )
1

( ) ( ) ( ) ( ) 1, ,
N

i i ij j i i
j

x t f x t c a H x t t u t i Nτ ω
=

= + − + + =∑
i  

Where 4N = . By transforming, the error corresponding system can be obtained: 

( ) ( ) ( ) ( ) ( )t A KH t B t tτ ωΔ = − Δ + Δ − +
i , where [ ]( ) sin 0.5 cos 2 sin 0.8 cos 2t t t t tω = . 

      

0.2 0 0 0

0 0 .2 0 0

0 0 0 .2 0

0 0 0 0.2

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

      3 1 1 1

1 3 1 1

1 1 3 1

1 1 1 3

B

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

Let the performance index 1γ = , and the output matrix 0.4U I= . 
Applying theorem 1, we can gain the control law 5.2 ( 1, 2, , )ik i N= =

 
and let 

0.3sτ = . The error system with ( )sT sω γ
∞

<  asymptotically converges to ( ) 0s t =
 and 

( ) 5sins t t= . Besides, the performance index 0 . 9 5 2 3γ =  can be obtained, which is 
less than the pervious chosen performance index 1γ = .  

Applying theorem 2, we can gain the control law 1 1 . 2 ( 1 , 2 , , )ik i N= =
 
and 

let 0.3sτ = . The error system with ( )sT sω γ
∞

<  exponentially converges to ( ) 0s t = ; 

and ( ) 5sins t t= . Besides, the performance index 0 .9 46 4γ =  can be obtained, which is 
less than the pervious chosen performance index 1γ = .  

Without controller, the performance index is 1.6178γ = . 

Remark 3: By comparing, we summarize that the complex network with controller 
have stronger anti-interference ability. 
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5   Conclusion 

This paper addresses H∞
 synchronization control with time-varying synchronization 

state in general complex networks subject to external disturbances. By feedback 
controller, the Nonlinear general complex dynamical network achieve asymptotically 
(exponentially) synchronization and satisfied the given performance index, which 
can be solved by LMIs. This is very significant for practical application. Further, on 
basis of this article, we can obtain the optimal H∞

 controller and the sufficient 

conditions in terms of LMIs are given to guarantee the system can reach the 

time-varying synchronization state under ( )sT sω γ
∞

< . In addition, simulation 

example is given to illustrate the effectiveness of the conclusions. 
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Abstract. In this paper, a new Chen hyperchaotic system was introduced and
analyzed. The anti-synchronization between two different hyperchaotic systems
is investigated based on the nonlinear control theory. The sufficient condition is
drawn for the stability of the error dynamics, where the controllers are designed
by using the sum of the relevant variables in hyperchaotic systems. Numerical
simulations are performed to demonstrate the effectiveness of the proposed con-
trol strategy.

Keywords: Anti-synchronization; Feedback control; Lyapunov function; Numer-
ical simulation.

1 Introduction

Motivated by the study of chaos synchronization since the pioneering work by Pecora
and Carrol [1], an increasing interest has been devoted to study synchronization of
neural networks. The aim of synchronization is to use the output of a master system to
control the slave system so that its output of the slave system follows that of the master
system asymptotically. Synchronization of neural networks have many applications in
secure communication and so on. Therefore, the study of neural synchronization is an
important step for both understanding brain science and designing neural networks for
practical use [2-5].

There are different types of synchronization in interacting nodes of chaotic neu-
ral networks, such as complete synchronization, lag synchronization , generalized syn-
chronization, phase synchronization, projective synchronization, generalized projective
synchronization, anti-synchronization and other types of synchronization [6-13].

Hyperchaotic system is usually defined as a chaotic system with more than one
positive Lyapunov exponent. As we know now, there are many hyperchaotic systems
discovered in the high-dimensional social and economical networks. Typical examples
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are four-dimensional (4D) hyperchaotic Rösser system, 4D hyperchaotic Lorenz-Haken
system, 4D hyperchaotic Chua’s circuit, and 4D hyperchaotic Chen’s system [14-18].
Since hyperchaotic system has the characteristics of high capacity, high security and
high efficiency, it has broadly applied potential in secure communications, neural net-
works, and so on.

More recently, anti-synchronization of coupled hyperchaotic dynamical systems has
received a great deal of attention in many fields of science and technology[9-10]. In
which the state vectors of synchronized systems have the same absolute values but
opposite signs. Therefore, the sum of two signals can converge to zero when anti-
synchronization appears.

In this paper, we will develop the state observer method for constructing anti-
synchronized slave system.

The remaining of this paper is organized as follows: In Section 2, we give Lya-
punov stability criteria for globally exponential hyperchaos (lag) synchronization of
n-dimensional chaotic systems. By using the obtained theory, different feedback con-
troller are investigated for globally exponential (lag) synchronization of hyperchaotic
networks. Numerical simulation results are presented to illustrate the analytical predic-
tions in Section 3. Finally, the conclusion is given in Section 4.

2 Preliminaries

Consider the drive chaotic system in the form of[9]

ẋ = Ax + Bf(x) (1)

where x ∈ Rn is the state vector, A ∈ Rn×n, B ∈ Rn×n are metrices and vectors of
system parameters, and f : Rn → Rn is a nonlinear function. Eq. (1) is considered as
a drive system.

By introducing an additive control U ∈ Rn, then the controlled response system is
given by

ẏ = A1y + B1g(y) + U (2)

where y ∈ Rn is the state vector, A1 ∈ Rn×n, B1 ∈ Rn×n are metrices and vectors
of system parameters, and g : Rn → Rn is a nonlinear function. Eq. (2) is considered
as a slave system. The anti-synchronization problem is to design a controller U which
anti-synchronizes the states of both the drive and response systems.

Let e = y + x is the anti-synchronization error vector. Our goal is to design con-
troller u such that the trajectory of the response system (2) with initial condition y0

can asymptotically approaches the drive system (1) with initial condition x0 and finally
implement the anti-synchronization, in the sense that,

limt→∞‖e‖ = limt→∞‖y(t, y0) + x(t, x0)‖ = 0 (3)

where ‖ · ‖ is the Euclidean norm.
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3 Anti-synchronization of Identical Hyperchaotic System

In this section to study the anti-synchronization problem of identical new Chen hy-
perchaotic system with four state variables. However, the initial condition on the drive
system is different from that of the response system. The two hyperchaotic Chen sys-
tems are described, respectively, by the following equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ = a(y − x) + ayz,

ẏ = dx − cxz + y + w,

ż = xy − bz,

ẇ = −ry

(4)

where a = 10, b = 3, c = 28, d = 17.717 and r = 12, the chaotic attractor can been
found. Description of hyperchaotic attractor are displayed in Fig. 1-3.
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Fig. 1. Lyapunov exponents of system with a = 10, b = 3, c = 28, d = 17.717 and r = 12
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We choose a master system as⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋm = a(ym − xm) + aymzm,

ẏm = dxm − cxmzm + ym + wm,

żm = xmym − bzm,

ẇm = −rym

(5)
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and suppose that the slave system related to the master system with feedback controllers
ui(i = 1, 2, 3, 4), which is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋs = a(ys − xs) + ayszs + u1,

ẏs = dxs − cxszs + ys + ws + u2,

żs = xsys − bzs + u3,

ẇs = −rys + u4

(6)

where u1, u2, u3 and u4 are the control inputs. The aim of this section is to determine
the controller U = (u1, u2, u3, u4)T for the chaos synchronization of two Chen hyper-
chaotic dynamical system.

Let the error state be e(t) = (ex(t), ey(t), ez(t), ew(t))T = (xm+xs, ym+ys, zm+
zs, wm + ws, )T . Then, the error system can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

ėx = a(ey − ex) + aymzm + ayszs + u1,

ėy = dex − cxmzm − cxszs + ey + ew + u2,

ėz = xmym + xsys − bez + u3,

ėw = −rey + u4.

(7)

Theorem 1. For the modified hyperchaotic Chen system, if the following feedback con-
trollers ui(i = 1, 2, 3, 4) is chosen for the slave system, then the zero solution of the
error system is globally stable, and thus globally anti-synchronization between the mas-
ter system and the slave system was achieved.⎧⎪⎪⎪⎨⎪⎪⎪⎩

u1 = −aey − aymzm − ayszs,

u2 = −dex + cxmzm + cxszs − ew − pey,

u3 = −xmym − xsys,

u4 = r(ey − ew)

(8)

where p > 1 is a positive constant.
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Fig. 3. The chaotic attractor of new Chen hyperchaotic system in x−z−w subspace and y−z−w
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Proof. Consider the following Lyapunov function

V =
1
2
(e2

x + e2
y + e2

z + e2
w)
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then the time derivative of V along the solution of error dynamical system gives that

V̇ = ėxex + ėyey + ėzez + ėwew

= ex(a(ey − ex) + aymzm + ayszs + u1)
+ ey(dex − cxmzm − cxszs + ey + ew + u2)
+ ez(xmym + xsys − bez + u3)
+ ew(−rey + u4)

= −(ex, ey, ez, ew)Q(ex, ey, ez, ew)T

. (9)

Where Q = diag(a, p−1, b, r). Since V is positive definite and V̇ is negative definite
in the neighborhood of zero solution of error system (7), it follows that limt→∞‖e(t)‖ =
0. Therefore, response system can globally anti-synchronize drive system asymptoti-
cally. This completes the proof.

4 Numerical Simulation Results

In this section, we present numerical results to verify the analytical predictions obtained
in the previous section.

For the new hyperchaotic Chen system, if we choose a = 10, b = 8/3, c = 28, d =
17 and r = 22, anti-synchronization can been found in Fig. 4. and Fig. 5.
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5 Conclusion

In this paper, a new Chen hyperchaotic system was introduced and analyzed. Based on
the Lyapunov stability theory, we propose a nonlinear control method to anti-synchronize
two hyperchaotic systems. It has found that one can use control theory to synchronize
and anti-synchronization hyperchaotic systems, and our proposed method has strong
robustness. Numerical simulations are used to verify the effectiveness of the proposed
control techniques.
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14. Lü, J., Yu, X., Chen, G.: Chaos synchronization of general complex dynamical networks.
Physica A 334, 281–302 (2004)



Anti-synchronization and Control of New Chen’s Hyperchaotic Systems 131

15. Li, Y., Tang, S.K., Chen, G.: Generating hyperchaos via state feedback control. Int. J. Bifur-
cation and Chaos 15, 3367–3375 (2005)

16. Liao, X., Yu, P.: Analysis of the global exponent synchronization of Chuas circuit using
absolute stability theory. Int. J. Birfurcation and Chaos 15, 3687–3881 (2005)

17. Nikolov, S., Clodong, S.: Occurrence of regular, chaotic and hyperchaotic behavior in a fam-
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Hopf Bifurcation Control for a Single Neuron

Model with Delay-Dependent Parameters via
State Feedback
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Abstract. This paper deals with Hopf bifurcation control for a single
neuron model with delay-dependent parameters. It has been shown that
the system without control cannot guarantee a stationary state. As the
range parameter of the system passes a critical value, Hopf bifurcation
occurs early. To control the Hopf bifurcation, a state feedback controller
is proposed to postpone the onset of undesirable Hopf bifurcation. Nu-
merical simulation results confirm that the state feedback is efficient in
controlling Hopf bifurcation.

Keywords: Hopf bifurcation control, Delay-dependent parameters, State
feedback.

1 Introduction

Gopalsamy and Leung [1] proposed the following model of differential equation
for single neuron dynamics:

ẋ(t) = −x(t) + a tanh[x(t)] − ab tanh[x(t− τ)]. (1)

Here, x(t) denotes the neuron response, and a and b are the range of the contin-
uous variable x(t) and measure of the inhibitory influence from the past history,
respectively. However, memory performance of the biological neuron usually de-
pends on time history, and its memory intensity is usually lower and lower as
time is gradually far away from the current time. It is natural to conceive that
these neural networks may involve some delay-dependent parameters. There-
fore, Xu et al. [2,3] considered (1) with parameter b depending on time delay τ
described by

ẋ(t) = −μx(t) + a tanh[x(t)] − ab(τ) tanh[x(t − τ)], (2)

where μ > 0, a > 0, τ ≥ 0 is the time delay and b(τ) > 0, which is called memory
function, is a strictly decreasing function of τ . Compared with the intensive
studies on the neural networks with delay-independent parameters, little progress
has been achieved for the systems that have delay-dependent parameters. A

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 132–138, 2011.
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detailed analysis on the stability switches, Hopf bifurcation and chaos of (2)
with delay-dependent parameters was given in [2,3]. Unlike in [2,3], where the
delay τ was chosen as the bifurcation parameter, Xiao and Cao [4] used the
range parameter a as bifurcation parameter. Critical values of Hopf bifurcation
were assessed, and sufficient conditions for the bifurcated periodic solution were
derived.

In recent years, we have witnessed rapidly growing interest in bifurcation
control. Various methods have been used to control bifurcation [5]-[7]. The main
contribution of this paper is design a general state feedback scheme to control
Hopf bifurcation for (2). This state feedback controller keeps the equilibria of
a system unchanged and also preserves the dimension of the system. Thus, the
controlled system has the same structure as the original system. The results
obtained are of general importance for optimizing the control technique of Hopf
bifurcation and stimulate the search for further modifications aiming at the
improvement of the control performance.

The organization of this paper is as follows. Sec. 2 is devoted to design a
state feedback controller to control Hopf bifurcation for (2). In Sec. 3, numerical
results are presented to verify the analytical predictions. Finally, conclusions are
drawn in Sec. 4.

2 Hopf Bifurcation and Hopf Bifurcation Control

The results of Hopf bifurcation for the single neuron model with delay-dependent
parameters, obtained in [4], are summarized here for comparison, completeness
and convenience.

Theorem 1. ([4]) For (2), a Hopf bifurcation occurs from its trivial equilibrium,
x∗ = 0, when the range parameter, a, passes through the critical value, a∗.

Here

a∗ =
ω∗

b(τ) sin(ω∗τ)
, (3)

and

ω∗ ∈ (0,
π

τ
), (4)

is the root of

ω cot(ωτ) + μ =
ω

b(τ) sin(ωτ)
. (5)

We now turn to design a state feedback controller in order to control the Hopf
bifurcation arising from (2). Following the general idea of polynomial function
controller [7], we propose a state feedback controller as follows for (2):

u(x) = −α1(x(t) − x∗) − α2(x(t) − x∗)2 − α3(x(t) − x∗)3. (6)
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α1, α2, and α3 are feedback gain parameters, which can be manipulated to con-
trol the Hopf bifurcation to achieve desirable behaviors, such as delaying the
onset of a Hopf bifurcation, changing the direction, stability and period of a
Hopf bifurcation.

Remark 1. This nonlinear state feedback controller (6) preserves the equilibrium
point x∗ of (2). Thus, bifurcation control can be realized without destroying the
properties of original system (2).

With the state feedback (6), the controlled model (2) becomes

ẋ(t) = −μx(t) + a tanh[x(t)] − ab(τ) tanh[x(t− τ)]
−α1(x(t) − x∗) − α2(x(t) − x∗)2 − α3(x(t) − x∗)3. (7)

Using Taylor expansion, we can expand the right-hand side of (7) around x∗,
resulting in the following linearized equation:

ẋ(t) = (−μ + a− α1)x(t) − ab(τ)x(t − τ), (8)

which has the characteristic equation:

λ = −μ + a− α1 − ab(τ)e−λτ . (9)

Lemma 1. If α1 > 0, then there exists a minimum positive number a∗c such that

(i) (9) has a pair of purely imaginary roots ±iω∗
c when a = a∗c .

(ii) a∗c > a∗, where a∗ is defined by (3)-(5).

Here

a∗c =
ω∗

c

b(τ) sin(ω∗
c τ)

, (10)

and

ω∗
c ∈ (0,

π

τ
), (11)

is the root of

ω cot(ωτ) + μ + α1 =
ω

b(τ) sin(ωτ)
. (12)

Proof. (i) If (9) has a pair of purely imaginary roots ±iω(ω > 0), it is straight-
forward to obtain that

ab(τ) cos(ωτ) = a− μ− α1, ab(τ) sin(ωτ) = ω, (13)

which yields (12). Solutions of (12) are the horizontal coordinates of the inter-
secting points between the curves y = ω cot(ωτ) + μ + α1 and y = ω

b(τ) sin(ωτ) .
There are infinite number of intersecting points for these two curves that are
graphically illustrated in Figure 1.
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Fig. 1. Illustration for intersecting points between curves y = ω/[b(τ ) sin(ωτ )] and
y = ω cot(ωτ ) + μ or y = ω cot(ωτ ) + μ + α1

Let ω∗
c satisfy (11) and be the root of (12), and define a∗c as in (10). Then

(a∗c , ω
∗
c ) is a solution of (13). Thus ±iω∗

c is a pair of purely imaginary roots of
(9) when a = a∗c . It is easily seen form Figure 1 that ω∗

c is the minimum positive
value among all horizontal coordinates of the intersecting points. So, a∗c is the
first value of a > 0 such that (9) has root appearing on the imaginary axis. The
conclusion (i) follows.

(ii) It is clear from Figure 1 that ω∗ is the horizontal coordinate of the inter-
secting point between the curves y = ω cot(ωτ) + μ and y = ω

b(τ) sin(ωτ) , while
ω∗

c is the horizontal coordinate of the intersecting point between the curves
y = ω cot(ωτ) + μ + α1 and y = ω

b(τ) sin(ωτ) .
If α1 > 0 holds, we have ω cot(ωτ) + μ + α1 > ω cot(ωτ) + μ. Therefore,

ω∗
c > ω∗. From the definitions of a∗ and a∗c in (3) and (10) respectively, we can

obtain that a∗c is larger than a∗. The conclusion (ii) follows. Then the proof is
completed.

Theorem 2. For the controlled system (7), there exists a Hopf bifurcation emerg-
ing from its equilibrium x∗ = 0, when the range parameter, a, passes through the
critical value, a∗c , where the equilibrium point x∗ is kept unchanged, and a∗c > a∗

is defined by (10)-(12).

3 Numerical Simulations

In this section, we present numerical results to verify the analytical predictions
obtained in the previous section, using the state feedback controller to con-
trol the Hopf bifurcation of the single neuron model (2) with delay-dependent
parameters. The numerical approach is based on a fourth-order Runge-Kutta
integration scheme.
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Fig. 2. Phase portrait of uncontrolled model (2) with a = 0.68
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Fig. 3. Phase portrait of uncontrolled model (2) with a = 0.77

For a consistent comparison, the same model (2), used in [4], is discussed,
with b(τ) = be−ατ (b > 0, α > 0), μ = 2, τ = 2, b = 3 and α = 0.12. It follows
from Theorem 1 that

a∗ = 0.7351.

The dynamical behavior of this uncontrolled model (2) is illustrated in Figures
2-4. From Theorems 1, it is shown that when a < a∗, trajectories converge to
the equilibrium point x∗ (see Figure 2), while as a is increased to pass a∗, x∗

loses its stability and a Hopf bifurcation occurs (see Figures 3 and 4).
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Fig. 4. Phase portrait of uncontrolled model (2) with a = 0.95
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Fig. 5. Phase portrait of controlled model (7) with a = 0.95 and α1 = 1, α2 = α3 = 0

Now we choose appropriate values of α1, α2 and α3 to control the Hopf bifur-
cation. It is easy to see from Theorem 2 that for linear state feedback control
with a appropriate value of α1, we can delay the onset of the Hopf bifurcation.
For example, by choosing

α1 = 1, α2 = 0, α3 = 0,

we can apply Lemma 1 to obtain

a∗c = 0.9618.
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Note that the controlled model (7) has the same equilibrium point as that of
the original model (2), but the critical value a∗ increases from 0.7351 to 0.9618,
implying that the onset of the Hopf bifurcation is delayed.

Under the linear state feedback control with α1 = 1, α2 = α3 = 0, we choose
a = 0.95 < a∗c , which is the same value as that used in Figure 4. According to
Theorem 2, we conclude that instead of having a Hopf bifurcation, the controlled
model (7) converges to the equilibrium point x∗ as shown in Figure 5.

4 Concluding Remarks

We have discussed the effects of state feedback control upon the Hopf bifurcation
for a single neuron model with delay-dependent parameters. By choosing appro-
priate control parameters α1, it has been shown that the state feedback controller
can effectively control Hopf bifurcation for the single neuron model with delay-
dependent parameters. This state feedback controller is valid for any dynamical
system close to the bifurcation point. We believe that theses results are of gen-
eral importance for optimizing the control technique of Hopf bifurcation and will
stimulate the search for further modifications aiming at the improvement of the
control performance.
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Abstract. Electroencephalogram (EEG) waveforms reflect the summed slow 
potentials generated by cortical neurons and can therefore be used to infer 
functional processes. In many species, individuals in the reproductive stage are 
more active and sensitive to species-typical stimuli than those in the non-
reproductive stage. In the present study, changes in EEG power spectra were 
examined with respect to reproductive status in the music frog, Babina 
daunchina. The results indicated that in the reproductive stage, (1) power 
spectra of all EEG oscillations except for theta were significantly higher than in 
the non-reproductive stage; (2) for delta, significant increase of the power 
spectrum only appeared in the right hemisphere; and (3) the brain exhibited left-
dominance of EEG spectra in the telencephalon and right-dominance of EEG 
spectra in the mesencephalon, providing evidence of lateralization of function. 
It is likely that sex hormone differences in the reproductive stage mediate these 
phenomena, through expression of their receptors, transcriptional regulatory 
elements, in specific regions of the forebrain and midbrain. 

Keywords: EEG, power spectrum, reproductive stage, lateralization of function. 

1   Introduction 

In a physiological sense, electroencephalogram (EEG) power indicates the dynamics 
of electrical activity in populations of neurons and thus is assumed to reflect the 
capacity or performance of cortical information processing [1]. The power spectrum 
is strongly affected by a variety of specific factors such as age, arousal and the type of 
cognitive demands during task performance. For instance, within the alpha frequency 
range, EEG power is positively related to cognitive performance and brain maturity, 
whereas the opposite holds true for the theta frequency range [2]. Some hormones 
including the growth hormone, cortisol and its releasing factors, affect nocturnal sleep 
EEGs and have been studied thoroughly in both human and animal subjects [3],[4]. It 
is unclear to date how the hormones change the electrical characters and dynamics of 
neurons that finally result in alterations in EEG. 

Reproductive status in vertebrates is mediated largely by environmental factors such 
as light-period and/or ambient temperature that initiate a hormone-produced cascade, 
i.e. activate the hypothalamic-pituitary-gonadal axis [5],[6]. The hypo-thalamus secretes 
and transports gonadotropin-releasing hormone (GnRH) to the pituitary which, in turn, 
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secretes follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The latter 
two hormones are delivered to whole body. Thereafter, sex hormones including 
estrogen, androgen and progesterone, are produced by gonadal cells after FSH and/or 
LH stimulation and delivered to all tissues including the brain. Sex hormones pass 
through the blood-brain barrier and bind to their receptors in the neuronal cytoplasm. 
The receptors move into the cellular nucleus after binding with their ligands, sex 
hormones, and act as transcriptional regulatory elements to reshape and/or rebuild 
neuronal structures, functions and behaviors partially or completely [7],[8],[9]. 

Animals including human beings behave differently in reproductive states when 
compared to non-reproductive states. They generally exhibit increased aggression, 
and are more sensitive to species-typical stimuli [10],[11]. This implies that the brain, 
at least some regions, experience anatomical and/or functional changes when animals 
become reproductive. We predicted that the changes in brain properties would be 
reflected by the EEG power spectra. In the present study, a species of frog, Babina 
daunchina, with complex acoustical behavior [12] was used to investigate changes in 
EEG power spectra in reproductive state induced by intraperitoneal injection of 
GnRH, and compared with those in non-reproductive state. 

2   Materials and Methods 

2.1   Animals 

Ten adult music frogs (Babina daunchina), half males and half females, were 
captured from the Emei mountain area of Sichuan, China in July 2010. All subjects 
were housed by sex in two opaque plastic tanks (45×35 cm and 30 cm deep) 
containing mud and water. The tanks were placed in a room under controlled 
temperature conditions (23 ± 1°C) and maintained on a 12:12 light-dark cycle (lights 
on at 08:00 h). The animals were fed fresh live crickets every three days. Mean 
weights were 10.2 ± 2.4 g (mean ± SD), and frogs were 4.6 ± 0.3 cm in length at the 
time of surgery. All procedures used were approved by the Animal Care Committee 
of Chengdu Institute of Biology, Chinese Academy of Sciences. 

2.2   Surgery 

All experiments were conducted after the end of September 2010 when the 
reproductive season ended in music frogs [12]. The animals were deeply anesthetized 
by intraperitoneal injection of pentobarbital sodium (3 mg/100g) and the degree of 
anesthesia was evaluated through the toe pinch response. 

Four bipolar cortical EEG electrodes, composed of miniature stainless steel screws 
(φ 0.8 mm), were implanted on the frog skull: the cerebellum (P), the left and right of 
telencephalon and mesencephalon (R1, R2, R3 and R4, the corresponding bipolar 
electrodes are abbreviated as PR1, PR2, PR3 and PR4, respectively) (Fig. 1). Twenty 
seconds of typical EEG waves were presented along with the corresponding bipolar 
electrodes (Fig. 1). R1 and R2 were implanted bilaterally 2.2 mm anterior to the 
lambda and 1.5 mm lateral to the midline, respectively, while R3 and R4 were 
implanted bilaterally 2.3 mm posterior to the lambda and 1.5 mm lateral to the 
midline. P was implanted 3.9 mm posterior to the lambda at the midline (Fig. 1). 
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Fig. 1. Electrode placements and 20 s typical EEG tracings for different bipolar electrodes. The 
intersection of the three dashed lines in bold in the frog head denotes the position of the 
lambda. 

All electrode leads, Formvar-insulated nichrome wires, were fixed on the skull of 
the frog with dental acrylic, and then welded to a light connector about 1 cm above 
the head of the animal. Each frog was housed singly for 2 days for recovery before the 
following experiments were performed. After the end of the experiments, all frogs 
were euthanized by overdose of intraperitoneal pentobarbital sodium and localizations 
of electrodes were confirmed.  

2.3   Data Acquisition 

The experiments were performed in a soundproof chamber in which the background 
noise was 23.0 ± 1.7 dB (mean ± SD) with an opaque plastic tank (80×60 cm and 55 
cm deep) containing mud and water. Lights and temperature in the chamber were 
maintained as in the home-cages. A video camera with infrared light source was 
appended centrally above the tank for monitoring the behavior of the subject from 
outside of the chamber. Since the infrared light source was centrally positioned and 
the walls of the tank were symmetric, no optical cues were available for the subject’s 
orientation. In order to eliminate effects of the state of alimentation on results, the 
subject was not fed during the experimental period. 

The procedure for data collection consisted of electrophysiological and behavioral 
recordings in four sequential days: at the first day the subject was placed in the 
experiment tank and connected to the signal acquisition system (Chengyi, 
RM6280C; Sichuan, China) for habituation; neurophysiological data were collected 
on the subject in non-reproductive stage at the second day; the animal was 
administered with GnRH-6A (Sichuan, China, i.p. 1.25µg per frog at 21:30 h) at the 
third day [13],[14] and neurophysiological and behavioral data were acquired on the 
frog in reproductive stage with or without conspecific call playbacks at the fourth 
day. In the second and fourth day, the reproductive status of the subject was 
determined behaviorally by playback experiments, e.g. male calls and female 
phonotaxis in response to conspecific call playbacks. 
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Since subjects are nocturnal [12], especially in crepuscular hours, the signal 
acquisition system was set to record continuously from evening at 20:00 to next 
morning at 8:00. Bandpass filters, set to 0.16-100 Hz, were used for EEG signals with 
the notch filter of the amplifiers to eliminate possible interferences of 50 Hz. The 
sample frequency was set at 1000 Hz. 

2.4   Data Processing 

Before power spectrum analysis, for each frog and each bipolar electrode, representative 
waves (120 s) were selected randomly from the electrophysiological data acquired in the 
second day. The same time windows were adopted in selecting data for all four 
channels. These waves were divided into epochs of 5 s and standard deviation was 
calculated for each epoch and each channel. 

Electrophysiological recordings of the first hour (20:00-21:00) during pre- and 
post- administration of GnRH-6A were used in the present study. After being band-
pass filtered (0.5-45 Hz) and downsampled at 512 Hz, these waves were divided into 
epochs of 5 s and detrended for each epoch and each channel. Those epochs with their 
standard deviations were 3 times as large as the maximum of standard deviations of 
representative waves were discarded as artifacts. For artifact-free epochs, the power 
spectra of delta (0.5-5.5 Hz), theta (5.5-8.5 Hz), alpha (8.5-17 Hz) and beta (17-45 
Hz) were computed by Welch’s method with the Hamming window. The resolution of 
the power spectrum was set at 0.5 Hz and the boundaries of the EEG frequency bands 
were determined on the result of factor analysis of EEG in frogs (data not shown). 
Then the power spectra of each EEG band were averaged over the entire data length 
(1 h) for each channel, each frog and each day. Finally, these averaged data were 
further analyzed statistically. Because of many artifacts presented in PR3 and PR4 of 
one frog, data of nine frogs were included in statistical tests. 

2.5   Statistical Analyses 

Two factors, i.e. “electrode placement” and “reproductive status” were tested for each 
EEG band using 2-way within-subject ANOVA (i.e. 2-way repeated-measures 
ANOVA). Both main effects and interactions between factors were considered in the 
present study. Simple effects analysis would be applied when the interaction was 
significant, using the paired-samples t-test or the one-way repeated-measures ANOVA 
to the factor “electrode placement”. For those showing significant differences by 
ANOVAs, the data were further analyzed for multiple comparisons using Least-
significant difference (LSD) test. In both one-way and two-way ANOVAs, the values 
of epsilon (ε) of Greenhouse-Geisser were denoted when Greenhouse-Geisser 
correction was adopted. SPSS software (release 13.0) was utilized for the statistical 
analysis and a significance level of p < 0.05 was used in all comparisons. 

3   Results 

This paper presents exclusively electrophysiological data recorded from inactive or 
resting frogs before acoustic playbacks, and shows changes in the functional baseline 
of brain between non-reproductive and reproductive states. 
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For delta, the outputs of ANOVA revealed that main effects were statistically 
significant for the factors “electrode placement” (F (3,24) = 55.624; p < 0.001) and 
“reproductive status” (F (1,8) = 7.141, ε = 1.000; p < 0.05), respectively, and the 
interaction between factors was also statistically significant (F (3,24) = 5.132; p < 
0.05). Because of the significant interaction between factors, simple effect analysis 
was further applied. When fixing the factor “electrode placement”, the EEG power 
of delta band in reproductive stage was significant higher than those in non-
reproductive stage for PR2 and PR4, the right hemisphere sites (paired samples t-
test, p < 0.05; Fig. 2 A). No such significant difference of EEG power was found 
for PR1 and PR3, the left hemisphere sites (paired samples t-test, p > 0.05) between 
two reproductive stages. When fixing the factor “reproductive status”, the EEG 
power of the telencephalon (PR1 and PR2) were significant higher than those of the 
mesencephalon (PR3 and PR4) either for the non-reproductive stage (F (3,24) = 
54.116; p < 0.001; LSD, p < 0.05) or for the reproductive stage (F (3,24) = 34.642; 
p < 0.001; LSD, p < 0.05). Furthermore, in the reproductive stage, the EEG power 
of the left side of the telencephalon (PR1) was significantly higher than that of its 
right counterpart (PR2), while the EEG power of the right side of the 
mesencephalon (PR4) was significant higher than that of its left counterpart (PR3) 
(LSD, p < 0.05). 

For theta, no significant difference of EEG power was found between the two 
reproductive stages (F (1,8) = 7.141, ε = 1.000; p > 0.05), and the main effect was 
statistically significant for the factor “electrode placement” (F (3,24) = 80.688; p < 
0.001). Multiple comparisons indicated that the EEG power of the telencephalon 
(PR1 and PR2) was significant higher than that of the mesencephalon (PR3 and 
PR4) and, furthermore, the EEG power of the right side of the mesencephalon 
(PR4) was significant higher than that of the left counterpart (PR3) (LSD, p < 0.05; 
Fig. 2 B). 

For alpha, the EEG power in the reproductive stage was significant higher than that 
in the non-reproductive state (F (1,8) = 14.024, ε = 1.000; p < 0.05); the main effect 
was significant for the factor “electrode placement” (F (3,24) = 58.575, ε = 0.510; p < 
0.001). Multiple comparisons revealed that the EEG power of the telencephalon (PR1 
and PR2) was significant higher than that of the mesencephalon (PR3 and PR4). The 
EEG power of the left side of the telencephalon (PR1) was significant higher than that 
of the right counterpart (PR2) while the EEG power of the right side of the 
mesencephalon (PR4) was significant higher than that of the left counterpart (PR3) 
(LSD, p < 0.05; Fig. 2 C). 

For beta, the EEG power in the reproductive state was significant higher than that 
in the non-reproductive state (F (1,8) = 14.024, ε = 1.000; p < 0.05); the main effect 
was significant for the factor “electrode placement” (F (3,24) = 80.688, ε = 0.520; p < 
0.001). Multiple comparisons showed that the EEG power of the telencephalon (PR1 
and PR2) was significant higher than that of the mesencephalon (PR3 and PR4), while 
the EEG power of the left side of the telencephalon (PR1) was significantly higher 
than that of its right counterpart (PR2) (LSD, p < 0.05; Fig. 2 D). 
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Fig. 2. The means and standard deviations of EEG power spectra for the two different 
reproductive stages, the four electrode locations and the four EEG bands (A, B, C and D for 
delta, theta, alpha and beta respectively). The symbols ‘*’ and ‘**’ denote that there are 
significant differences between the means of the EEG power on the both sides of ‘*’ or ‘**’. * 
p < 0.05, ** p < 0.001. Abbreviations: Non, non-reproductive stage; Rep, reproductive stage; 
PR1, PR2, PR3 and PR4, the four bipolar electrodes. 
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4   Discussion 

Vertebrates’ behaviors differ dramatically between reproductive and non-reproductive 
states. While many mammals compete for mates by direct combat, almost all male 
frogs and toads as well as song birds contend through indirect ways, e.g. 
advertisement calls and visual displays. Female frogs and toads evaluate potential 
mates by listening to the advertisement calls [12],[15]. These behaviors, i.e. male calls 
and female responses to the calls, are often confined to the reproductive season, when 
sex hormone levels in the serum reach their peak [16],[17],[18]. Nevertheless, the sex 
hormone levels can be up- and down- regulated by gonadectomy and injection of 
upstream hormones, such as HCG or GnRH [13],[14]. Of our subjects, all male music 
frogs were mute before injecting GnRH and started to call about 12 hours after the 
injection. To the playback of conspecific calls, all females were unresponsive before 
injection and became responsive around 18 hours after the administration, frequently 
approaching the speaker broadcasting the calls (unpublished observations).  

Behavioral changes along with the reproductive status imply neural modifications. 
Hormone receptors have been shown to mediate these changes [19],[20]. Thus, 
expressions of hormone receptors in the neurons of some nuclei and/or pathways 
relating to specific reproductive behaviors, should be an early event in the subsequent 
downstream cascade of neural modification [9],[21],[22]. Sex hormone receptors 
belong to the superfamily of transcriptional regulatory elements, and mediate hundred 
thousands of genes expressed [23],[24]. Changes in EEG power spectra might be one 
results of the neural changes associated with hormone receptor activation. Specifically 
for our data, increases in power of some EEG components might be related to males 
calling and females responding to the playbacks.  

Anatomical and functional asymmetries in brains have been observed in many 
species including humans studied to date [25],[26]. Dramatic antero-posterior and 
left-right asymmetries of EEG power have been found for each EEG band in frogs 
(Fig. 2). These asymmetries are consistent with the previous observation of clear EEG 
differences between the two hemispheres and among different regions in both humans 
[27] and rodents [28],[29]. For all EEG bands of the frog brain, left-right asymmetries 
were mainly found in the left-dominance in the telencephalon and right-dominance in 
the mesencephalon (Fig. 2). These dominances may be bound up with the functions of 
the different brain regions. Hemispheric differences in overall modes of analysis of 
perceptual information, holding across different sensory modalities, have been 
suggested for humans, rats, pigeons and chickens [25]. Furthermore, mice, rats, 
primates, passerine birds and humans show a dominance of the left hemisphere in the 
production and/or perception of their species-specific vocalizations [25],[26]. Since 
acoustic communication is the most important form between individuals in frogs, the 
left-dominance of EEG power in the telencephalon might be resulted from the 
lateralization of function of the left hemisphere. 

The right-dominance of EEG power in the mesencephalon of frogs is similar to 
other vertebrates [25], showing evolutionary conservation of brain functions. In 
addition, compared with those in non-reproductive stage, left-right asymmetries of 
EEG power were more extensive in reproductive stage for delta (Fig. 2 A). This 
extension implies that the brain may readily perceive and process the information 
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correlated with reproduction. Considering the aforementioned left-right asymmetries, 
the possibility of lateralized expressions of the hormone receptors in different brain 
regions of frogs deserves attention. 
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Abstract. A universal stability analysis method on the basis of linear
matrix inequality is proposed to solve the stability problem of recurrent
neural networks with different kinds of multiple delays. Firstly, a univer-
sal neural networks model is analyzed to present a general framework for
the stability study, in which a sufficient condition is derived. Secondly,
by considering several special case of the universal model, a series of sta-
bility criteria are established, which have the same or similar structure
and expression. All the obtained stability criteria present a general mode
to study the stability of delayed dynamical systems.

Keywords: Recurrent neural networks, asymptotic stability, multiple
delays, distributed delays, Lebesgue-Stiejies measures.

1 Introduction

Different kinds of recurrent neural networks with delays have been proposed
and studied extensively in the literature [1-24]. Generally speaking, most of the
studied delays in the neural networks can be resorted into two classes, concen-
trated/discrete delays and distributed. For the discrete or concentrated delays,
they include constant delays and time varying delays. For example, constant de-
lays τ , τj , τij and their time varying counterparts. Distributed delays also include
two classes, i.e., finitely distributed delays

∫ t

t−τ
gj(xj(s))ds,

∫ t

t−τj
gj(xj(s))ds,

and their time varying counterparts, and infinitely distributed delays
∫ t

−∞ kij

(t−s)gj(xj(s))ds and
∫ t

−∞ kj (t−s)gj(xj(s))ds, where gj(·) are the neuron acti-
vation functions, kij(s) and kj(s) are some Kernel functions. Different stability
results for recurrent neural networks with above delays have been established,
for example, in the form of M-matrix, algebraic inequality, spectral norm and
linear matrix inequality (LMI) [1]-[10],[22].

Recently, a more general distributed delay model, i.e.,
∫∞
0 gj(xj(t−s))dKij(s),

which is the Lebesgue-Stieljies integral, has been studied in the literature, see
[11]-[20]. As pointed out in [10, 13], can we propose an effective approach to in-
vestigate them in a universal framework? An affirmative answer has been given in

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 148–157, 2011.
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[10, 13] to integrate the different delays based on M-matrix framework. It is well
known that linear matrix inequality is a very powerful tool to deal with stability
problems associated with different delays. Meanwhile, as a parallel mathematical
method to M-matrix in analyzing the stability problem, it is necessary to ask
whether LMI-based method can also solve the problem proposed in [10, 13]. In
our previous papers [23], we have established some LMI-based stability results
for recurrent neural networks with different multiple delays. The main contribu-
tion is to decompose the connection matrix into several parts while keeping the
nonlinear terms invariant. The advantage of that method is easy to combine sev-
eral LMI-based stability results for the delayed neural networks in the existing
literature. In contrast, we will decompose the nonlinear terms associated with
its connection and keeping the original connection invariant in this paper, and
establish some new stability criteria. The advantage of the proposed method is
easy to unify many stability results into one framework, which will also give an
affirmative answer to the problem proposed in [10, 13].

2 Problem Description and Preliminaries

The following recurrent neural networks with a general continuously distributed
delays will be discussed,

u̇i(t) = − aiui(t) +
n∑

j=1

wij

∫ ∞

0

f̄j(uj(t− s))dJij(s)

+
n∑

j=1

w1
ij

∫ ∞

0

f̄j(uj(t− τij − s))dKij(s) + Ui, (1)

where u(t) = (u1(t), · · · , un(t))T , A = diag(a1, · · · , an), ai > 0, W = (wij)n×n

and W1 = (w1
ij)n×n are real constant matrices, f̄(u(t)) = (f̄1(u1(t)), · · · , f̄n(un

(t)))T , f̄i(ui(t)) are the activation functions, τij is the constant delay with τij ≤
τM , Ui is the external constant input, dJij(s) and dKij(s) are Lebesgue-Stieljies
measures, i, j = 1, · · · , n.

Assumption 1: The activation function f̄i(xi) is bounded and continuous,
which satisfies |f̄i(xi)| ≤ F b

i , 0 ≤ (f̄i(η) − f̄i(v))/(η − v) ≤ δf
i , for any η �=

v, η, v ∈ , and δf
i > 0, i = 1, · · · , n.

Assumption 2: The Lebesgue-Stieljies measures dJij(s) and dKij(s) satisfy∫ ∞

0

dJij(s) = m̄ij > 0,
∫ ∞

0

dKij(s) = mij > 0, (2)

for some positive constants m̄ij > 0 and mij > 0, i, j = 1, · · · , n. Let Δ =
diag(δf

1 , · · · , δf
n).
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By the method shown in [18, 21, 20], there exists at least an equilibrium
point for system (1). Let u∗ = [u∗

1, . . . , u
∗
n]T be an equilibrium point of (1), and

xi(t) = ui(t) − u∗
i , then model (1) is transformed into the following form,

ẋi(t) = −aiui(t) +
n∑

j=1

wij

∫ ∞

0

fj(xj(t− s))dJij(s)

+
n∑

j=1

w1
ij

∫ ∞

0

fj(xj(t− τij − s))dKij(s), (3)

where fj(xj(t)) = f̄j(xj(t) + u∗
j ) − f̄j(u∗

j ), i, j = 1, · · · , n.
Inspired by the matrix-decomposition-method proposed in [1–3, 22], we de-

compose the general distributed delayed terms
∑n

j=1

∫∞
0

gj(xj(t−s))dJij(s) and∑n
j=1

∫∞
0

fj(xj(t− τij − s))dKij(s) in (3) and yields

ẋ(t) = −Ax +
n∑

k=1

D̂kβk(t) +
n∑

k=1

Êkθk(t), (4)

where D̂k is an n × n matrix, whose k-th row is composed by the k-th row
of matrix W , and the other rows are all zeros. Êk is an n × n matrix, whose
k-th row is composed by the k-th row of matrix W1, and the other rows are

all zeros, βk(t) =
( ∫∞

0 f1(x1(t − s))dJk1(s), · · · ,
∫∞
0 fn(xn(t − s))dJkn(s)

)T

,

θk(t) =
( ∫∞

0 f1(x1(t− τk1 − s))dKk1(s), · · · ,
∫∞
0 fn(xn(t− τkn − s))dKkn(s)

)T

,
k = 1, · · · , n.

Remark 1. When wij = w1
ij = 1, system (1) was studied in [11, 15, 16, 10, 12,

14, 13, 17–19, 21, 20] via M-matrix method and algebraic inequality methods,
respectively. However, no any LMI-based results for system (1) or its special
cases have been published yet.

Remark 2. When the second term in system (3) is
∑n

j=1 wijfj(xj(t)), some LMI-
based stability results have been proposed in [23], in which the interconnection
coefficients are decomposed and keep the nonlinear terms invariant. Obviously,
the model studied in this paper is mote complex and the decomposition method
is different form that in [23], which can been seen in the sequel.

3 Main Results

Theorem 1. Suppose that Assumptions 1 and 2 hold. If there exist positive
diagonal matrices P,Di, Hi such that the following LMI holds,

Ψ =

⎡⎣Ψ11 Ψβ Ψθ

∗ Ψ22 0
∗ ∗ Ψ33

⎤⎦ < 0, (5)
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then the equilibrium point of system (4) is globally asymptotically stable, where
∗ denotes the symmetric part in a matrix, Ψ11 = −2PAΔ−1 +

∑n
i=1 D̂iM̄i +∑n

i=1 HiMi, Ψ22 = −diag(D1M̄
−1
1 , · · · , DnM̄

−1
n ), Ψβ = [PD̂1, · · · , P D̂n], Ψθ =

[PÊ1, P Ê2, · · · , P Ên], Ψ33 = −diag(H1M
−1
1 , H2M

−1
2 , · · · , HnM

−1
n ).

Proof. Let us consider the Lyapunov functional V (t) = V1(t) + V2(t), where

V1(t) =
n∑

i=1

2pi

∫ xi(t)

0

fi(s)ds +
n∑

i=1

n∑
j=1

dij

∫ ∞

0

dJij(s)
∫ t

t−s

f2
j (xj(z))dz, (6)

V2(t) =
n∑

i=1

n∑
j=1

hij

∫ ∞

0

dKij(s)
∫ t

t−τij−s

f2
j (xj(z))dz, (7)

where P = diag(p1, · · · , pn), Di = diag(di1, · · · , din) and Hi = diag(hi1, · · · , hin)
are positive diagonal matrix, i = 1, · · · , n.

The derivatives of V1(t) and V2(t) are as follows,

V̇1(t) ≤2fT (x(t))P ẋ(t) +
n∑

i=1

fT (x(t))DiM̄if(x(t)) −
n∑

i=1

βT
i (t)DiM̄

−1
i βi(t),

(8)

V̇2(t) ≤
n∑

i=1

fT (x(t))HiMif(x(t)) −
n∑

i=1

θT
i (t)HiM

−1
i θi(t), (9)

where M̄i = diag(m̄i1, m̄i2, · · · , m̄in), Mi = diag(mi1,mi2, · · · ,min) are positive
diagonal matrices, i = 1, · · · , n.

By Assumption 1, the following condition holds,

−2fT (x(t))PAx(t) ≤ −2fT (x(t))PAΔ−1f(x(t)). (10)

Combining (8), (9) and (10), we have

V̇ (t) ≤ ζTΨζ < 0, (11)

for any ζ = (fT (x(t)), β1(t), · · · , βn(t), θ1(t), · · · , θn(t))T �= 0. Therefore, accord-
ing to Lyapunov stability theory, the equilibrium point of system (4) is globally
asymptotically stable if condition (5) holds.

Remark 3. From the proof of Theorem 1 we can see that the stability condition
(2) is dependent on the information of Lebesgue-Stieljies measures dJij(s) and
dKij(s). However, this stability criterion is independent of the magnitude of time
delays τij , i, j = 1, · · · , n.

4 Stability of Recurrent Neural Networks with Various
Kinds of Multiple Delays

In this subsection, we will discuss four types of recurrent neural networks with
various delays, which are all special cases of system (4).
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1) In the case dJij(s) = δ(s)w̄ijds, dKij(s) = δ(s)w̄1
ijds, where δ(s) is the

Dirac-delta function, w̄ij and w̄1
ij are some constants, model (4) is reduced to

the system with different multiple time varying delays,

ẋi(t) = −aixi(t) +
n∑

j=1

wijw̄ijfj(xj(t)) +
n∑

j=1

w1
ijw̄

1
ijfj(xj(t− τij)), (12)

which can be rewritten in the following form,

ẋ(t) = −Ax(t) +
n∑

i=1

D̂iF̂i(x(t)) +
n∑

i=1

ÊiF̄ (x(t − τ̄i)), (13)

where F̂i(x) = (w̄i1f1(x1(t)), · · · , w̄infn(xn(t)))T , F̄ (x(t − τ̄i)) = (w̄1
i1f1(x1(t −

τi1)), · · · , w̄1
infn(xn(t − τin)))T , f(x(t)) = (f1(x1(t)), · · · , fn(xn(t)))T , and the

others are the same defined in (4).

Corollary 1. Suppose that Assumptions 1 and 2 hold. If there exist positive
diagonal matrices P,Di, Hi such that the following LMI holds,

Ψ
′
a =

⎡⎣Ψa
11 Ψβ Ψθ

∗ Ψa
22 0

∗ ∗ Ψa
33

⎤⎦ < 0, (14)

then the equilibrium point of system (13) is globally asymptotically stable, where
Ψa

11 = −2PAΔ−1
f +

∑n
i=1 DiW̄wi +

∑n
i=1 HiW̄

1
wi, W̄ 1

wi = diag(w̄1
i1, · · · , w̄1

in),
W̄wi = diag(w̄i1, · · · , w̄in), Ψa

44 = −diag(D1W̄
−1
w1 , D2W̄

−1
w2 , · · · , DnW̄

−1
wn ), Ψa

55 =
−diag

(
H1(W̄ 1

w1)
−1, D2(W̄ 1

w2)
−1, · · · , Dn(W̄ 1

wn)−1
)
, W̄ 1

wi = diag(w̄1
i1, · · · , w̄1

in),

W̄wi = diag(w̄i1, w̄i2, · · · , w̄in), i = 1, · · · , n, and the others are the same as
those defined in Theorem 1.

Proof. Consider the following Lyapunov functional Vs(t) = Vs1(t)+Vs2(t), where

Vs1(t) =
n∑

i=1

2pi

∫ xi(t)

0

fi(s)ds, (15)

Vs2(t) =
n∑

i=1

n∑
j=1

hij

∫ t

t−τij

w̄1
ijf

2
j (xj(s))ds, (16)

where Pi = diag(pi1, · · · , pin), Hi = diag(hi1, · · · , hin), i = 1, · · · , n.
The derivatives of Vs1(t) and Vs2(t) are as follows, respectively,

V̇s1(t) ≤− 2fT (x(t))PAΔ−1f(x(t))

+ 2fT (x(t))P
[ n∑

i=1

D̂iF̂i(x(t)) +
n∑

i=1

ÊiF̄ (x(t − τ̄i))
]
, (17)

V̇s2(t) =
n∑

i=1

fT (x(t))HiW̄
1
wif(x(t)) −

n∑
i=1

F̄T (x(t− τ̄i))Hi(W̄ 1
wi)

−1F (x(t− τ̄i)).

(18)
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Note that F̂i(x(t)) = W̄wif(x(t)), then the following condition holds,

n∑
i=1

[
fT (x(t))DiW̄wif(x(t)) − F̂T

i (x(t))DiW̄
−1
wi F̂i(x(t))

]
= 0, (19)

for any positive diagonal matrix Di, i = 1, · · · , n.
Combining (17), (18) and (19), we have

V̇s(t) ≤ ϑT
1 (t)Ψ

′
aϑ1(t) < 0, (20)

for any ϑ1(t) �= 0, ϑ1(t) =
(
fT (x(t)), F̂T

1 (x(t)), · · · , F̂T
n (x(t)), F̄T (x(t− τ̄1)), · · · ,

F̄T (x(t− τ̄n))
)T

. According to Lyapunov stability theory, the concerned system
(13) is globally asymptotically stable.

2) In the case dJij(s) = δ(s)w̄ijds, dKij(s) = kij(s)w̄1
ijds and τij = 0, model

(4) is reduced to the system with infinitely continuously distributed delays,

ẋi(t) = −aixi(t) +
n∑

j=1

wijw̄ijfj(xj(t)) +
n∑

j=1

w1
ijw̄

1
ij

∫ ∞

0

kij(s)fj(xj(t− s))ds.

(21)

By the matrix decomposition method, system (21) can be rewritten as,

ẋ(t) = −Ax(t) +
n∑

j=1

D̂iF̂i(x(t)) +
n∑

j=1

ÊiF̃i(t), (22)

where F̃i(t) =
(
w̄1

i1

∫∞
0 ki1(s)f1(x1(t−s))ds, · · · , w̄1

in

∫∞
0 kin(s)fn(xn(t−s))ds

)T

,

i = 1, · · · , n, and the others are the same as those defined in (13).
If the kernel function kij(s) also satisfies∫ ∞

0

kij(s)ds = mij > 0, (23)

then we have the following result for system (22).

Corollary 2. Suppose that Assumptions 1 and 2 hold. If there exist positive
diagonal matrices P,Di, Hi such that the following LMI holds,

Ψ
′
b =

⎡⎣Ψ b
11 Ψβ Ψθ

∗ Ψ b
22 0

∗ ∗ Ψ b
33

⎤⎦ < 0, (24)

then system (22) is globally asymptotically stable, where Ψ b
11 = −2PAΔ−1

f +∑n
i=1 DiW̄wi +

∑n
i=1 HiW̄

1
wiMi, Ψ b

22 = −diag(D1W̄
−1
w1 , · · · , DnW̄

−1
wn ), Ψ b

33 =

−diag
(
H1(W̄ 1

w1)
−1M−1

1 , · · · , Dn(W̄ 1
wn)−1M−1

n

)
, and the others are the same

as those defined in Corollary 1.
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Proof. Consider the following Lyapunov functional Vv(t) = Vs1(t)+Vv2(t), where
Vs1(t) is defined in (15), and

Vv2(t) =
n∑

i=1

n∑
j=1

hijw̄
1
ij

∫ ∞

0

kij(s)
∫ t

t−s

f2
j (xj(θ))dθds, (25)

where Hi = diag(hi1, · · · , hin), i = 1, · · · , n.
The derivatives of Vs1(t) and Vv2(t) are as follows,

V̇s1(t) ≤ − 2fT (x(t))PAΔ−1f(x(t))

+ 2fT (x(t))P
[ n∑

j=1

D̂iF̂i(x(t)) +
n∑

j=1

ÊiF̃i(t)
]
, (26)

V̇v2(t) ≤
n∑

i=1

fT (x(t))HiW̄
1
wiMif(x(t)) −

n∑
i=1

F̃T
i (t)HiM

−1
i (W̄ 1

wi)
−1F̃i(t). (27)

Combining (19), (26) and (27), we have V̇v(t) ≤ ϑT
2 Ψ

′
bϑ2 < 0 for ϑ2 �= 0, where

ϑ2 =
(
fT (x(t)), F̂T

1 (x(t)), F̂T
2 (x(t)), · · · , F̂T

n (x(t)), F̃T
1 (t), F̃T

2 (t), · · · , F̃T
n (t)

)T

.
According to Lyapunov stability theory, the system (22) is globally asymptoti-
cally stable.

3) In the case of 2), if the delay kernel function kij(s) is of the form kij(s) =
Lij(s) if s ∈ [0, rij ], otherwise, kij(s) = 0, then the duration intervals for time
delays are finite and

∫ rij

0
Lij(s)ds = mij > 0, rij > 0. Thus, model (4) is reduced

to the following neural networks with finitely distributed delays,

ẋi(t) = −aixi(t) +
n∑

j=1

wijw̄ijfj(xj(t)) +
n∑

j=1

w1
ijw̄

1
ij

∫ t

t−rij

Lij(t− s)fj(xj(s))ds.

(28)

If we further take a special form of the delay kernel function as Lij(s) = mij/rij ,
then model (28) can be reduced to the following form,

ẋi(t) = −aixi(t) +
n∑

j=1

wijw̄ijfj(xj(t)) +
n∑

j=1

w1
ijw̄

1
ijmij

rij

∫ t

t−rij

fj(xj(s))ds,

(29)

which can be rewritten in the following vector-matrix form,

ẋ(t) = −Ax(t) +
n∑

i=1

D̂iF̂i(x(t)) +
n∑

i=1

ÊiF̌i(t), (30)

where F̌i(t) =
( w̄1

i1mi1
ri1

∫ t

t−ri1
f1(x1(s))ds, · · · , w̄1

inmin

rin

∫ t

t−rin
fn(xn(s))ds,

)T , and
the others are the same defined in (13).
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Corollary 3. If the condition in Corollary 2 holds, then the equilibrium point
of system (30) is globally asymptotically stable.

Proof. Let us consider the Lyapunov functional Vvc(t) = Vs1(t) + Vvc2(t), where
Vs1(t) is defined in (15), and

Vvc2(t) =
n∑

i=1

n∑
j=1

hijw̄
1
ij

rij

∫ 0

−rij

∫ t

t+s

f2
j (xj(θ))dθds, (31)

where Hi = diag(hi1, · · · , hin), i = 1, · · · , n.
The derivatives of Vs1(t) and Vv2(t) are as follows,

V̇s1(t) ≤− 2fT (x(t))PAΔ−1f(x(t))

+ 2fT (x(t))P
[ n∑

i=1

D̂iF̂i(x(t)) +
n∑

i=1

ÊiF̌i(t)
]
, (32)

V̇vc2(t) ≤
n∑

i=1

fT (x(t))HiW̄
1
wiMif(x(t)) −

n∑
i=1

F̌T
i (t)HiM

−1
i (W̄ 1

wi)
−1F̌i(t), (33)

where we have used the Jensen inequality
∫ t

t−rij
fj(xj(s))ds

∫ t

t−rij
fj(xj(s))ds ≤

rij

∫ t

t−rij
f2

j (xj(s))ds, i, j = 1, · · · , n.

Combining (19), (32) and (33), we have V̇vc(t) ≤ ϑT
3 Ψ

′
bϑ3 < 0 for ϑ3 �= 0, where

ϑ3 =
(
fT (x(t)), F̂T

1 (x(t)), · · · , F̂T
n (x(t)), F̌T

1 (t), F̌T
2 (t), · · · , F̌T

n (t)
)T

. According
to Lyapunov theory, system (30) is globally asymptotically stable.

4) We generalize the model in the case of 3) to the following form,

ẋi(t) = −aixi(t) +
n∑

j=1

wijw̄ijfj(xj(t)) +
n∑

j=1

w1
ijw̄

1
ij

∫ t

t−rij

fj(xj(s))ds, (34)

where the parameters are the same as those defined in (4).

Corollary 4. Suppose that Assumptions 1 and 2 hold. If there exist positive
diagonal matrices P,Di, Hi such that the following LMI holds,

Ψ
′
d =

⎡⎣Ψd
11 Ψβ Ψθ

∗ Ψ b
22 0

∗ ∗ Ψd
33

⎤⎦ < 0, (35)

then the equilibrium point of system (34) is globally asymptotically stable, where
Ψd

11 = −2PAΔ−1
f +

∑n
i=1 DiW̄wi+

∑n
i=1 HiW̄

1
wiRi, Ψ b

22 = −diag(D1W̄
−1
w1 , D2W̄

−1
w2 ,

· · · , DnW̄
−1
wn ), Ψd

33 = −diag
(
H1(W̄ 1

w1)
−1R−1

1 , · · · , Dn(W̄ 1
wn)−1R−1

n

)
, and the

others are the same as those defined in Corollary 1.

Proof. In a similar manner to the proof of Corollary 3, we can derive the results.
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Remark 4. In short, the discrete delays τij(t), distributed delays
∫∞
0

kij(t −
s)fj(xj(s))ds and

∫ t

t−rij
fj(xj(s))ds can be included in the model (4) by choos-

ing suitable kernel functions. For system (4) or its special cases, we can see that
Corollaries 1- 4 have the similar structure of the stability criteria. Therefore,
we provide a unified analysis method for system (4) and its special cases in the
aspects of various delays.

5 Conclusions

Based on our previous studies on the recurrent neural networks with differ-
ent multiple delays, we have proposed several LMI-based stability results for a
class of recurrent neural network with different kinds of distributed delays. The
proposed stability results are different from the existing ones and provide a uni-
versal analysis approach to the stability and stabilization of nonlinear systems
with distributed delays.
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Abstract. In this paper, a class of new generalized AOR (GAOR)method
with four parameters for augmented systems is established. This new
method includes the SOR-Like method as a special case. The conver-
gence of the new GAOR method for augmented systems is also studied.
Numerical result is used to illustrate the efficiency of this new GAOR
method.

Keywords: Saddle-point problem, AOR iteration method Augmented
systems, Convergence.

1 Introduction

Consider the saddle point problem(
A B
BT 0

)(
x
c

)
=
(
b
q

)
. (1.1)

where A ∈ Rm×m is a symmetric positive definite matrix, and B ∈ Rm×n is a
matrix of full column rank. This systems like (1.1) appears in many different
applications of scientific computing. A large variety of methods for solving lin-
ear systems of the form (1.1) can be found in the literature [6,16,2,9,17], such
as Uzawa-type schemes, SOR-Like method, GSOR method, HSS method, pre-
condtioned Krylov subspace method and so on.

In this paper, we present a class of new generalized AOR (GAOR) method
with four parameters for the augmented linear systems. The convergence of the
GAOR method. Numerical result shows that the GAOR method may be more
effective than the SOR-like method for solving the augmented linear system.
And this GAOR method is further generalized for SOR-Like method.

This paper is organized as follows. In section 2, we establish the generalized
AOR method for augmented system (1.1). In section 3, we study the conver-
gence of the GAOR method. In section 4, some numerical examples are used to
illustrate the efficiency of the new GAOR method.
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2 The Generalized AOR Method

For the coefficient matrix of the augmented system (1.1), we consider the fol-
lowing splitting

A =
(

A B
BT 0

)
= D − L− U (2.1)

where

D =
(
A 0
0 Q

)
, L =

(
0 0

−BT αQ

)
, U =

(
0 −B
0 βQ

)
and Q ∈ Rn×n is a nonsingular and symmetric matrix, α + β = 1 and α, β are
two nonzero real numbers. Let

Ω =
(
ω1Im 0

0 ω2In

)
, Γ =

(
γ1Im 0

0 γ2In

)
,

where ω1, ω2 and γ1, γ2 are four nonzero positive real numbers, Im ∈ Rm×m

and In ∈ Rn×n are the m-by-m and the n-by-n identity matrices, respectively.
Denote z(n) =

(
x(n) y(n)

)T
be the nth approximation of solution (1.1). Then

our GAOR iteration scheme for solving the augmented linear system (1.1) is
defined as follows:

z(n+1) = �Ωz(n) + (D − ΓL)−1Ωc, (2.2)

where
z(n) = �Ω(D − ΓL)−1[(I −Ω)D + (Ω − Γ )L + ΩU ] (2.3)

=

(
(1 − ω1)Im −ω1A

−1B

γ2ω1−ω2
1−αγ2

Q−1BT In + γ2ω1
1−αγ2

Q−1BTA−1B

)
is the iteration matrix of the GAOR method and

c =
(
b
q

)
.

More precisely, the GAOR method is descripted as follows:
Given initial vector x(0)∈Rm and y(0)∈Rn and four relaxation parameters ω1,

ω2 and γ1, γ2. For k = 0, 1, 2, ... until the iteration sequence {((x(k))T , (y(k))T )T }
is convergent, where⎧⎪⎪⎨⎪⎪⎩

y(k+1) = y(k) + γ2ω1−ω2
1−αγ2

Q−1BTx(k) + γ2ω1
1−αγ2

Q−1BTA−1By(k) + ω2
1−αγ2

Q−1q

− γ2ω1
1−αγ2

Q−1BTA−1b,

x(k+1) = (1 − ω1)x(k) − ω1A
−1By(k) + A−1b,

and Q is an approximate (preconditioning) matrix of the Schur complement
matrix BTA−1B.
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Note that

(D − ΓL) =
(
A 0
0 Q

)
− Γ

(
0 0

−γ2B
T αγ2Q

)
=
(

A 0
γ2B

T 1 − αγ2Q

)
. (2.4)

and matrix A is a symmetric positive definite matrix and Q is a nonsingular ma-
trix, we obtain det(D−ΓL) = det(A)det(1 − αγ2Q) = (1−αγ2)ndet(A)det(Q) �=
0, if and only if 1 − αγ2 �= 0, that is αγ2 �= 1.

Obviously, when ω1 = ω2 = γ1 = γ2, the GAOR method reduces to the
SOR-Like method; When ω1 = γ1, ω2 = γ2, the GAOR method becomes into
the GSOR method; When ω1 = ω2, γ1 = γ2, the GAOR method reduces to the
AOR method.

3 The Convergence of GAOR Method for Augmented
Systems (1.1)

In this section, we study the convergence of the GAOR method for solving
augmented system (1.1).

Throughout this paper, we always assume that ω1, ω2 �= 0. Let λ be the
eigenvalue of �Ω, and vector

(
x y

)T be the corresponding eigenvalue of λ, then
we have

�Ωz = λz.

That is to say, it holds that(
(1 − ω1)Im −ω1A

−1B

γ2ω1−ω2
1−αγ2

Q−1BT In + γ2ω1
1−αγ2

Q−1BTA−1B

)(
x
y

)
= λ

(
x
y

)
. (3.1)

which is equivalent to{
(1 − ω1 − λ)x = ω1A

−1By,

γ2ω1−ω2
1−αγ2

Q−1BTx + γ2ω1
1−αγ2

Q−1BTA−1By + y = λy.
(3.2)

Lemma 3.1. If λ is an eigenvalue of the matrix �Ω, then λ �= 1.

Proof. If λ = 1 and
(
x y

)T are the eigenvalue and the eigenvector of the ma-
trix �Ω, respectively. It follows from equation (3.2) and ω1 �= 0, that −ω1x =
ω1A

−1By, −ω2
1−αγ2

Q−1BTx = 0. We have −Q−1BTA−1By = 0. Since the matrix
−Q−1BTA−1B is nonsingular , we have y = 0. From equality −ω1x = ω1A

−1By,
we have x = 0, which is a contradiction with the eigenvector of λ = 1, hence
λ �= 1.

Lemma 3.2. i) If γ2ω1 = ω2, then λ = 1 − ω1 is least an m multiple eigenvalue
of the matrix �Ω.
ii) If γ2ω1 �= ω2 and m > n, then λ = 1 − ω1 is least an (m − n) multiple
eigenvalue of the matrix �Ω.
iii) If γ2ω1 �= ω2 and m = n, then λ= 1 − ω1 is not the eigenvalue of the matrix
�Ω.



A Class of New Generalized AOR Method for Augmented Systems 161

Proof. From (2.3), if γ2ω1 = ω2, then iterative matrix �Ω has least m eigenvalues
λ = 1−ω1. This completes the proof of case one. For the last two cases, we always
suppose that γ2ω1 �= ω2. If λ = 1 − ω1 is the eigenvalue of the matrix �Ω, then
there exists a nonzero vector

(
x y

)T , such that it satisfies (3.1). From (3.2) and
ω1 �= 0, we have A−1By = 0 and (γ2ω1−ω2)Q−1BTx = −ω1(1−αγ2)y. Because
the matrix B is column full rank, above equations are equivalent to y = 0 and
Q−1BTx = 0. With Rank(B) = n, if m > n, then Q−1BTx = 0 has m−n(> 0)
independent nonzero solutions. If m = n, then Q−1BTx = 0 has no solution.
This completes the proof of case 2 and case 3.

Theorem 3.3. i) If m > n, then λ = 1 − ω1 is the eigenvalue of the matrix �Ω.
ii) Denote by J = −Q−1BTA−1B. If μ is an eigenvalue of the matrix J , then
the λ determined by the equation (3.3)

(1 − ω1 − λ)(λ − 1)(1 − αγ2) = ω1(λγ2 + ω2 − γ2)μ, (3.3)

is an eigenvalue of the matrix �Ω. On the other hand, if λ is an eigenvalue of
the matrix �Ω such that λ �= 1 and λ �= 1 − ω1, and μ satisfies (3.3), then μ is a
nonzero eigenvalue of the matrix J .

Proof. From Lemma 3.2, we know that the first conclusion is obvious. Now we
prove the second conclusion. Suppose that λ is an eigenvalue of the matrix �Ω ,
then the equation

�Ωz = λz,

implies (
(1 − ω1)Im −ω1A

−1B

γ2ω1−ω2
1−αγ2

Q−1BT In + γ2ω1
1−αγ2

Q−1BTA−1B

)(
x
y

)
= λ

(
x
y

)
.

or equivalently,{
(1 − ω1 − λ)x = ω1A

−1By,
γ2ω1−ω2
1−αγ2

Q−1BTx + γ2ω1
1−αγ2

Q−1BTA−1By + y = λy.
(3.4)

From the first equality in (3.4), we get

x =
ω1

1 − ω1 − λ
A−1By,

and

[
(γ2ω1 − ω2)ω1

(1 − αγ2)(1 − ω1 − λ)
+

γ2ω1

1 − αγ2
]Q−1BTA−1By = (λ− 1)y.

Suppose that μ is an eigenvalue of the matrix J , then we have

−[(γ2ω1 − ω2)ω1 + γ2ω1(1 − ω1 − λ)]μ = (1 − ω1 − λ)(λ − 1)(1 − αγ2).

Hence it follows that

(1 − ω1 − λ)(λ − 1)(1 − αγ2) = ω1(λγ2 + ω2 − γ2)μ.
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We can prove the second assertion by reversing the process.

Corollary 3.1. If ρ(�Ω) is the spectral radius of the matrix �Ω and m > n, then
ρ(�Ω) ≥ |1 − ω1|.

Remark: From the Corollary 3.1, it can be seen that if the GAOR method is
convergent with m > n, then 0 < ω1 < 2.

Lemma 3.3. (Young [11]) If b and c are real, then both roots of the quadratic
equation x2 − bx + c = 0 are less than one in modulus if and only if |c| < 1 and
|b| < 1 + c.

Theorem 3.4. Let A ∈ Rm×m and Q ∈ Rn×n be symmetric positive definite
and B ∈ Rm×n be of full column rank. Assume that all eigenvalues μ of the
matrix J are real. Then if μ > 0, the GAOR method is convergent when ω1

satisfies 0 < ω1 < 2 and ω1, ω2, γ1, γ2 satisfy the following conditions:

1 − αγ2 > 0,
γ2 − ω2

1 − αγ2
> − 1

μmax
and

2γ2 − ω2

1 − αγ2
<

4 − 2ω1

ω1μmax
,

where μmax is the largest eigenvalue of the matrix J .
Proof. From Theorem 3.1, we obtain that

λ2 − (2 − ω1 −
ω1γ2

1 − αγ2
μ)λ + 1 − ω1 +

(ω2 − γ2)ω1

1 − αγ2
μ = 0.

By Lemma 3.1, we know that |λ| < 1 if and only if

|1 − ω1 +
(ω2 − γ2)ω1

1 − αγ2
μ| < 1, (3.5)

and
|2 − ω1 −

ω1γ2

1 − αγ2
μ| < 2 − ω1 +

(ω2 − γ2)ω1

1 − αγ2
μ. (3.6)

After some simple calculations, the above inequalities are transformed into the
equivalent ones below:

ω1 −
(ω2 − γ2)ω1

1 − αγ2
μ > 0, (3.7a)

2 − ω1 +
(ω2 − γ2)ω1

1 − αγ2
μ > 0, (3.7b)

ω1γ2

1 − αγ2
μ >

(γ2 − ω2)ω1

1 − αγ2
μ, (3.7c)

2 − ω1 −
ω1γ2

1 − αγ2
μ + 2 − ω1 +

(ω2 − γ2)ω1

1 − αγ2
μ > 0. (3.7d)
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If 0 < ω1 < 2, 1 − αγ2 > 0, then (3.7c) holds stably. The relation (3.7a) is
transformed into the following inequality:

γ2 − ω2

1 − αγ2
> − 1

μ
, (3.8)

and the relation (3.7b) and (3.7d) are transformed into the equivalent ones below:

2γ2 − ω2

1 − αγ2
<

4 − 2ω1

ω1μ
, (3.9)

and
− 1
μ

< − 1
μmax

,
4 − 2ω1

ω1μ
>

4 − 2ω1

ω1μmax
.

This completes the proof of Theorem 3.2.

Corollary. Suppose that μ is an eigenvalue of the matrix −Q−1BTA−1B. If λ
satisfies

(1 − ω − λ)(λ − 1)(1 − αγ) = ω(λγ + ω − γ)μ. (3.10)

then λ is an eigenvalue of the matrix �Ω with ω1 = ω2, γ1 = γ2. Conversely, if λ
is an eigenvalue of the matrix �ω such that λ �= 1 and λ �= 1 − ω, and μ satisfies
(3.10), then μ is a nonzero eigenvalue of the matrix −Q−1BTA−1B.

4 Numerical Examples

In this section, we use a numerical example to further examine the effective-
ness and show the advantages of the GAOR method over the SOR-like method.
We compare the results of GAOR method with the results of the SOR-Like
method [9]. These results show the effectiveness of the GAOR. We report the
corresponding the number of iterations (denoted by IT) and the spectral radius
(denoted by ρ) by choosing Q = −BTB, with {((x(k))T , (y(k))T )T } being the
finial approximate solution, end computation is ||rk||2

||r0||2 < 10−6, where

rk =
(
b
q

)
−
(

A B
BT 0

)(
xk

yk

)
.

Example. [11] Consider the following example(
A B
BT 0

)(
x
y

)
=
(
b
q

)
. (4.1)

where

A = (aij)m×m =

⎧⎨⎩ i + 1, i = j,
1, |i− j| = 1,
0, else.
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B = (bij)m×n =
{
j, i = j + m− n,
0, else.

We choose the right-hand-side vector (bT , qT )T ∈Rm+n =(1.6, ..., 1.6, 1, 1, ..., 1)T .
In the following table, we list numerical results with respect to IT , ρ for the

testing methods with respect to varying m and n.

Table 1. IT and spectral radius

Methods m n α β ω1 ω2 γ1 γ2 IT ρ

SOR − Like 50 40 0 1 1.8201 1.8201 1.8201 1.8201 292 0.9654
200 150 0 1 1.9533 1.9533 1.9533 1.9533 1032 0.9903
400 300 0 1 1.9759 1.9759 1.9759 1.9759 2066 0.9951

GAOR 50 40 0.32 0.68 1.6 5 1.67 1.6 46 0.7872
200 150 0.5 0.5 1.6 8.5 1.67 1.6 41 0.7638
400 300 0.6 0.4 1.6 4 1.67 1.6 34 0.7331

GAOR 50 40 0.32 0.68 1.6 1.9 1.67 1.6 134 0.9260
200 150 0.5 0.5 1.6 1.9 1.67 1.6 208 0.9534
400 300 0.6 0.4 1.6 1.9 1.67 1.6 81 0.8849

From above table, we can see that for augmented systems of linear equations,
the iteration number in the GAOR method is less than that in the SOR-Like
method. From the final two rows, we know that we can decrease the number of
iterations by choosing suitable ω2. The determination of optimum values of the
parameters needs further studies, but we can infer that ω2 > 2.
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Detecting the Topology of a Neural Network

from Partially Obtained Data Using Piecewise
Granger Causality
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Abstract. The dynamics and function of a network are influenced by
the topology of the network. A great need exists for the development of
effective methods of inferring network structure. In the past few years,
topology identification of complex networks has received intensive inter-
est and quite a few works have been published in literature. However,
in most of the publications, each state of a multidimensional node in
the network has to be observable, and usually the nodal dynamics is as-
sumed known. In this paper, a new method of recovering the underlying
directed connections of a network from the observation of only one state
of each node is proposed. The validity of the proposed approach is il-
lustrated with a coupled FitzHugh-Nagumo neurobiological network by
only observing the membrane potential of each neuron and found to out-
perform the traditional Granger causality method. The network coupling
strength and noise intensity which might also affect the effectiveness of
our method are further analyzed.

Keywords: Complex networks, stochastic process, topology identifica-
tion, Granger causality.

1 Introduction

Neural networks have attracted extensive attention in the past years. Often, these
networks consist of a large number of neurons interacting with each other by
synapses. The synaptic connections, representing a neural network’s topological
structure, is closely related to the intrinsic dynamics and functions of neurons.
Therefore, understanding the interaction processes is of fundamental importance.

Complex networks of predefined topological structures have been broadly in-
vestigated, such as globally coupled networks, small-world networks, and scale-
free networks. However, a network’s topology is usually unknown or uncertain.
In the past few years, topology identification of networks with coupled deter-
ministic systems has received intensive research attention. In 2006, Yu et al.
proposed a method for detecting the topology of complex networks based on
chaotic synchronization[1]. In 2007, Tang et al. modified Yu’s method and ap-
plied it to the topology identification of neural networks[2]. Later, Zhou and

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 166–175, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Lu[3] proposed a method to identify the topology of a general weighted com-
plex network consisting of identical and different nodes. In 2008, Wu extended
Zhou’s work to a weighted network with coupling delay [4]; In 2010, Liu et al. put
forward an approach for simultaneously identifying the topology and unknown
parameters of uncertain general complex networks with time delay [5]. Shortly
after, Zhou et al. presented a criterion to identify the topology of a coupled
FitzHugh-Nagumo network by receiving the membrane potentials[6]. Recently,
Zhao et al. proposed an adaptive topology identification rule using persistent ex-
citing condition instead of previous linear independence condition on the orbit
of synchronization manifold[7].

Nevertheless, most of the above-mentioned publications are based on a pre-
requisite, that is, all the states of each multi-dimensional node in a network have
to be measurable[1]-[5], [7]. Particularly, the dynamical equation of each node in
a network has to be known prior to successful identification[1]-[7]. However, re-
garding real-world applications, we can hardly know all the nodal dynamics and
usually we can only observe or monitor one or two states of each node. Further-
more, system noise widely exists. Despite the tremendous efforts in revealing the
topological effect on a variety of dynamics, how to infer the interaction pattern
from dynamical data is still challenging as an inverse problem, especially in the
absence of the knowledge of nodal dynamics and in the presence of noise.

From the viewpoint of signal processing, there are some techniques such as
measuring the cross correlation or partial correlation among obtained time series
to recover the interaction patterns among recorded signals. For example, Ren et
al. presented a method based on measuring the dynamical correlation to predict
the network topology [8]. However, these techniques only work for undirected
network, which in many situations are not very satisfactory. To examine the
directed connections in a network, one choice is to consider the causal influence
one neural time series can exert on another. The basic idea can be traced back
to Wiener[9] who conceived the notion that, if the prediction of one time series
could be improved by incorporating the knowledge of a second one ,then the
second series is said to have a causal influence on the first. Granger later for-
malized the prediction idea in the context of linear regression models[10]. The
roles of the two time series can be reversed to address the question of causal
influence in the opposite direction. Thus the interaction discovered in this way
may be reciprocal or unidirectional. In the past few years, Granger causality has
been widely employed in neuroscience and economics. Later on, some extensions
have been proposed, such as the conditional Granger causality, partial Granger
causality, blockwise Granger causality and so on[11]-[17].

Since Granger causality was originally formulated for linear models, its direct
application to nonlinear systems may or may not be appropriate, depending on
the specific problem. Some nonlinear methods based on Granger’s idea have been
proposed, such as the extended Granger causality theory by incorporating the
embedding reconstruction technique for multivariate time series[14] and the ker-
nel Granger causality[15]-[16]. However, the amount of data required for reliable
analysis can be large and the algorithms and calculations are rather complicated.
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In this paper, we aim to establish a simple and feasible approach to recover
the interactions among simultaneously obtained nonlinear data from a neural
network contaminated with noise, with only one sub-variable of each neuron is
observed. Enlightened by the method of piecewise linear approximation, we par-
tition obtained data into consecutive parts of identical length and apply Granger
causality to each part. Next, we take the average of the lower bound of the 3σ
confidence interval calculated from each part of data as the index for predic-
tion. We compare the proposed method with traditional Granger causality using
a synaptically coupled FigzHugh-Nagumo neural network model and demon-
strate its validity and superiority. We further study the influence of the coupling
strength and noise intensity on the proposed method and find it works well pro-
vided that the coupling strength is not so small and the noise is not so high as
to obscure the effects.

2 Theory

2.1 Granger Causality

The method of detecting causal relations between two linear time series is based
on linear prediction theory. For two stochastic processes Xt and Yt that are
jointly stationary, consider the following autoregressive prediction of the current
value of X(t) based on its past measurements:

Xt =
∞∑

j=1

a1jXt−j + ε1t, var(ε1t) = Σ1, (1)

where ε1t is the prediction error whose magnitude can be evaluated by its vari-
ance Σ1. Then consider the following prediction of the current value of X(t)
based on its own past values as well as the past values of Y (t) :

Xt =
∞∑

j=1

a2jXt−j +
∞∑

j=1

b2jYt−j + ε2t, var(ε2t) = Σ2, (2)

where Σ2 represents the prediction accuracy of Xt using the previous values of
both Xt and Yt.

According to Wiener[9] and Granger[10], if the prediction of X(t) improves by
incorporating the past values of Y (t), that is, Σ2 < Σ1 in some suitable sense,
then we say that Y (t) has a causal influence on X(t). We quantify this causal
influence by

FY →X = ln
Σ1

Σ2
. (3)

It is clear that FY →X = 0 when there is no causal influence from Y to X and
FY →X > 0 when there is. Similarly, we may consider

Yt =
∞∑

j=1

c1jYt−j + η1t, var(η1t) = Γ1, (4)
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Yt =
∞∑

j=1

c2jYt−j +
∞∑

j=1

d2jXt−j + η2t, var(η2t) = Γ2, (5)

and say that X(t) has a causal influence on Y (t) if Γ2 < Γ1. Note that Eqs.(2) and
(5) form the autoregressive model for vector time series, where similar techniques
can be derived to detect the vectors’ causal relations.

2.2 Conditional Granger Causality

The above analysis for two time series can be extended to more than two time
series by analyzing them pairwise. However, pairwise analysis of more than two
time series cannot detect indirect causal influences. For example, consider three
time series Xt, Yt and Zt. Two possible causal interactions among them are
shown in Fig. 1. In Fig. 1(a), the causal interaction from Yt to Xt is indirect and
mediated by Zt. In Fig. 1(b), both direct and indirect causal interactions exist.
Pairwise analysis would show an arrow from Yt to Xt and thus cannot separate
these two cases. Another possible causal connection is shown in Fig. 2, where

Fig. 1. Two patterns of causal relations: (a)Y drives X by way of Z; (b) There is a
direct pathway from Y to Z

Fig. 2. The interaction from Y to X deduced by pairwise Granger Causality might be
caused by the common drive Z
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Xt and Yt are simultaneously driven by Zt. If the driving signal Zt is powerful
enough, Xt and Zt might get into approximate synchronization and it is very
likely that we get some causal connection between Xt and Yt, such as the dash
line from Yt to Xt.

To examine whether the connection from Yt to Xt is direct or mediated entirely
by Zt, we can use the following linear regression model:⎧⎪⎪⎨⎪⎪⎩

Xt =
∞∑

j=1

a3jXt−j +
∞∑

j=1

c3jZt−j + ε1t, var(ε1t) = Δ1,

Xt =
∞∑

j=1

a4jXt−j +
∞∑

j=1

b4jYt−j +
∞∑

j=1

c4jZt−j + ε2t, var(ε2t) = Δ2.
(6)

Define the conditional Granger causality index: FY →X|Z = lnΔ1
Δ2

. Thus, when
the causal connection from Yt to Xt is entirely mediated by Zt, as in Fig. 1 or
Fig. 2, {b4j} is uniformly zero and Δ1 = Δ2. Thus, we have FY →X|Z = 0, which
means that no further improvement in the prediction of Xt can be expected by
including the past measurements of Yt. On the other hand, when there is still
a direct component from Yt to Xt, the inclusion of past measurements of Yt in
addition to that of Xt and Zt results in a better prediction of Xt, leading to
Δ2 < Δ1 and FY →X|Z > 0.

2.3 Piecewise Granger Causality

In real situations, especially for neural systems, all obtained time series should
be nonlinear and a linear relationship as described above is only an approxi-
mation. Furthermore, usually only some sub-variable of a node is observable.
In order to recover the underlying topology from obtained noise contaminated
nonlinear time series, we propose the following approach to evaluate the directed
connections:

1. For all the observed time series, partition them into K consecutive parts
of identical length N0.

2. Fit a linear regression model to the i−th partition of data (i = 1, 2, ...,K)
of two time series Xt and Yt, as shown in (1) to (2) and calculate FY →X .
Using large sample method, we can calculate the 3σ− confidence interval,
whose lower bound is denoted as αi(i = 1, 2, ...,K). According to the 3σ
principle for normal distributions, FY →X will fall within the 3σ− interval
with probability 99.73%. Consequently, if αi(i = 1, 2, ...,K) is greater than
zero, we can conclude a directed connection Y → X from the i−th partition
of data. Compute the Piecewise Granger causality index (PGCI) defined as
< αi >, where < · > stands for averaging over the K partitions. If PGCI> 0,
we have Y → X .

3. Perform Step 2 for all the time series pairwise, hence we obtain an initial
topological structure of the network. Nevertheless, there might be some false
connections.
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4. From the initial network structure, if there is a causal interaction as shown
in Fig. 1(b) or Fig. 2, apply (6) to the K parts of data and similarly calculate
the PGCI as defined in step (2), then we can eliminate those false causal
connections which are indirect or mediated by a third time series.

Basically, N0 cannot be too small, otherwise there is not enough information
from each partition of data. Furthermore, large N0 will make the partition use-
less. Thus for time series with fixed length, N0 can be neither too small nor too
large. K is thus determined according to the data length and N0.

3 Numerical Simulations

In this section, a FigzHugh-Nagumo(FHN) network is used for illustration. The
FitzHugh-Nagumo model{

V̇ = V − 1
3V

3 −W + Iex,

Ẇ = 0.08(V + 0.7 − 0.8W )
(7)

is a two-dimensional simplification of the Hodgkin-Huxley model of spike gen-
eration in squid giant axons. Here, V is the membrane potential and W is the
recovery variable, Iex is the external stimulus current. The system was suggested
by FitzHugh[18], who called it “Bonhoeffer-van der Pol model”, and the equiv-
alent circuit by Nagumo et al.[19].

Fig. 3. The topology of the network

The network used in this paper is a dynamical network consisting of 5 synap-
tically coupled FHN neurons described as follows.⎧⎨⎩ V̇i = Vi − 1

3V
3
i −Wi + 0.1icos t

50 + c
5∑

j=1

aij(Vj − Vi) + ηi,

Ẇi = 0.08(Vi + 0.7 − 0.8Wi), i = 1, 2, ..., 5.
(8)

Here ηi is the independent Gaussian white noise with zero mean and intensity
σ that represents the noisy background. If there is a synaptic connection from
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Fig. 4. Left: The results derived from the 20 parts of data for the 20 causal connections,
where a blue rectangle on the i−th row representing αi > 0 for the possible connection
on its corresponding x−label, and white otherwise. Right: Piecewise Granger causality
index for the 20 causal connections. Here, the coupling strength c = 8, and the noise
intensity σ = 0.4.
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Fig. 5. Piecewise Granger causality index obtained from time series of different lengths,
where the coupling strength is 8 and the noise intensity is 0.4. Left: The data length
is 2000; Right: The data length is 6000.

the j-th neuron to the i-th neuron, aij = 1, otherwise aij = 0. c represents
the synaptic connection weight. Generally, only the membrane potential Vi is
observable. The underlying network topology used in our simulations is displayed
in Fig. 3. Data used in the following simulations are generated from network(8)
employing the Euler-Maruyama method with an equal time step 0.02. Unless
otherwise stated, the time series generated are of length 6000 and partitioned
into 20 consecutive parts of equivalent length, that is N0 = 300 and K = 20.

The left figure in Fig. 4 displays the results derived from the K parts of data
for the 20 possible connections labeled on the x−axis. The blue rectangles at
the i−th(i = 1, 2, ...,K) row represent that αi > 0 for the respective x−label
connections, and white otherwise. The right figure illustrates the PGCI which is
averaged over the K parts of data, as defined previously. It is clearly seen that
the underlying topology in this network is correctly recovered.

To illustrate the validity of our proposed piecewise Granger causality, we
apply the approach to data of different lengths and various partitions, as shown
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Fig. 6. Piecewise Granger causality index versus the coupling strength c, where the
noise intensity σ is 0.4

0.5 1 1.5 2 2.5 3 3.5 4
−0.008

0

0.023

 Noise intensity

 P
G

C
I

 

 

2→1
3→1
4→1
5→1
1→2

0.5 1 1.5 2 2.5 3 3.5 4
−0.007

0

0.024

 Noise intensity

 P
G

C
I

 

 

3→2
4→2
5→2
1→3
2→3

0.5 1 1.5 2 2.5 3 3.5 4
−0.007

0

0.039

 Noise intensity

 P
G

C
I

 

 

4→3
5→3
1→4
2→4
3→4

0.5 1 1.5 2 2.5 3 3.5 4
−0.007

0

0.039

 Noise intensity

 P
G

C
I

 

 

5→4
1→5
2→5
3→5
4→5

−0.006

0

0.042

 P
G

C
I

 

 

2→
1 

3→
1 

4→
1 

5→
1 

1→
2 

3→
2 

4→
2 

5→
2 

1→
3 

2→
3 

4→
3 

5→
3 

1→
4 

2→
4 

3→
4 

5→
4 

1→
5 

2→
5 

3→
5 

4→
5 

c=8,σ=0.4
c=8, σ=20

Fig. 7. Piecewise Granger causality index versus noise intensity σ, where the coupling
strength is 8

in Fig. 5, where the blue curves represent correct topology detection and the red
for false detection. The left figure presents the PGCI for time series of length 2000
with three different partitions. We can see that when N0 = 50,K = 40, all the
connections in the network are correctly recovered except the edge 3 → 2. The
reason is that the data of each partition is so short that some connections may be
missed. When N0 is 200, our approach correctly recover the true topology. When
there is no partition(N0 = 2000,K = 1), the approach goes back to a traditional
one. However, some false causalities are given, such as the interactions 4 → 1
, 4 → 2 and so on. The right figure shows the PGCI for time series of length
6000. When the data length of each partition is 300 or 600, our approach reveal
the correct network structure, whereas the traditional Granger causality (N0 =
6000,K = 1) tells many false positive connections. Hence we conclude that
our proposed approach is valid for detecting network structure from partially
obtained nonlinear time series provided that the data length for each partition
is not too small, whereas the traditional Granger causality fail to do so.

To see the influence of network coupling strength c on the results, Fig. 6 shows
the PGCI as a function of coupling strength c. From the left figure, we can obtain
that as the coupling strength increases, our piecewise Granger causality method
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can correctly recovers the pattern of connectivity in our nonlinear model. When
the coupling strength c is too small(c ≤ 1), some interactions may be missed, as
shown in both figures. This is due to the reason that weak coupling makes the
underlying topology obscured by noise and thus difficult to detect.

The result is also affected by the system noise intensity σ. Fig. 7 shows the
PGCI varying with σ. From the tendency of the curves, we can predict that if σ
gets too big, some false causal connections will appear. For example, when the
noise intensity σ = 20, as shown by the red curve in the right figure, the causal
interactions 4 → 1 and 4 → 5 are incorrectly given by our technique. This is
because that too high noise have now obscured the underlying network topology.

4 Conclusions

In this paper, in order to recover the interactions among simultaneously ob-
tained nonlinear data from a neural network contaminated with noise, a simple
and feasible approach named Piecewise Granger Causality has been put for-
ward. The validity and superiority of our technique has been demonstrated with
a FigzHugh-Nagumo neural network with only the membrane potential of neu-
rons is observable. The synaptic coupling strength and noise intensity have also
been analyzed as two factors affecting the effectiveness of the piecewise Granger
causality.
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Abstract. Understanding how neural activities are propagated through different 
brain regions is a critical and fundamental problem in neuroscience. A simple 
model for this type of signal propagation is the feedforward neuronal network, in 
which each neuron in a given layer only receives synaptic signals from neurons 
in its previous layer. This paper introduces and reviews the basic modeling 
framework about the signal propagation, two neural activities propagation 
modes, and several recent important results about signal propagation in the 
feedforward neuronal networks. Furthermore, a more generalized modeling 
framework based on unreliable synapses is also proposed and discussed.  

Keywords: Signal propagation; synfire mode; firing rate mode; feedforward 
neuronal network; unreliable synapse. 

1   Introduction 

Human brain consists of tens of billion neurons and each neuron is connected to other 
neurons through more than 10000 synapses [1], [2]. It is known that the human brain 
might be the most complex matter in the universe. Such extreme complexity prohibits 
us to even think of a unified framework completely covering the human brain. 
However, over the past hundred years, biological research has accumulated an 
enormous amount of detailed knowledge about the structure and function of the brain. 
This provides us the possibility to build some specific models for fitting the existing 
neural data or explaining the observed experimental phenomena. 

Signal propagation in the brain is a fundamental question that we face in the fields 
of experimental, theoretical, and computational neuroscience. Intensive biological 
experimental observations have revealed that many cognitive processing involves the 
propagation of neural activities through different brain regions [3]. One of the most 
used models to investigate this issue is the feedforward neuronal network, because it 
is not only easy to realize but also can be used to explain many neural activities 
propagation observed in experiments. In recent years, signal propagation in 
feedforward neuronal networks has been widely studied and several important neural 
activities propagation modes, such as the synfire mode [4]-[13] and firing rate mode 
[11]-[14], have been proposed. In this short review, we first introduce the basic 
modeling framework about the signal propagation. Then, we mainly review the 
synfire propagation and firing rate propagation, as well as several relevant results. 
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1p =
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Fig. 1. Structure of the feedforward neuronal network (a), and examples of the deterministic 
synaptic transmission (b) and unreliable synaptic transmission (c) 

Finally, we propose a more generalized modeling framework based on unreliable 
synapses and discuss several our recent numerical results. 

2   Basic Modeling Framework 

Information processing in the brain needs neural activities to be carried from one 
cortical area to the next. A simple model for this type of processing is a feedforward 
neuronal network [4], [12]. Consider the structure of a 5-layers feedforward neuronal 
network as shown in Fig. 1(a), in which each neuron in one layer feeds all synaptic 
connections to neurons in the next layer, and each neuron in the receiving layer is 
excited by all neuron in the previous layer. There is no feedback synaptic connection 
from neurons in downstream layers to neurons in upstream layers, and there is also no 
synaptic connection among neurons within the same layer. It should be emphasized 
that a typical feedforward neuronal network used in studying the signal propagation in 
the brain contains about 10 to 20 layers and each layer consists of at least 100 
neurons. Due to computational complexity, the integrate-and-fire (IF) spiking neuron 
model is the most commonly used model to mimic the action potential firing 
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dynamics of biological neurons. The subthreshold dynamics of the membrane 
potential of a single IF neuron can be expressed as follows [1], [2]:  

rest ( )m

dV
V V RI t

dt
τ = − +  . (1)

where V denotes the membrane potential and I(t) represents the total input current. 
Each IF neuron is characterized by a membrane time constant mτ , a resting 

membrane potential restV , and a membrane resistance R. The typical values for these 

parameters are: 20mτ =  ms, rest 60V = −  mV and R = 20 MΩ . In general, neurons can 

be divided into excitatory and inhibitory neurons. Excitatory neurons encourage the 
activity of neurons on which they act, while inhibitory neurons act in an opposite 
manner. Both excitatory and inhibitory neurons are considered to study the signal 
propagation in feedforward neuronal networks. Whenever the membrane potential of 
the IF neuron reaches a threshold thV , the neuron fires a spike, and then the 

membrane potential is reset according to the resting potential, where it remains 
clamped for a 5 ms refractory period. The emitted spike is transmitted to the neurons 
in the adjacent downstream layer through synapses. The deterministic synaptic 
interaction model based on the pulse or α-function is considered in most relevant 
computational studies [5], [6], [8], [11], [12]. In this type of synaptic interaction 
scheme, the communication between neurons is assumed to be reliable, that is, a 
neuron transmits spikes to its postsynaptic neurons with successful transmission 
probability 1. 

3   Signal Propagation in Feedforward Neuronal Networks 

Two different modes of signal propagation have been proposed in recent years. The 
first is the synfire propagation mode, and the other is the firing rate propagation 
mode. In this section, we will review several important results about these two signal 
propagation modes. 

3.1   Synfire Propagation 

Synchronous of neuronal ensembles as well as rhythmic activities are widely found in 
various parts of the brain. An important view is that temporally precise neural 
information can be carried by a synchronous spike packet. If a group of synchronous 
spikes can be stably transmitted by subsequent groups of cortical neurons, it can 
provide a useful mode for propagating precise neural information [4]-[12]. This idea 
is the basis of neural activity propagation along a neuronal network with feedforward 
structure. Through numerical simulations, Diesmann et al. demonstrated that under  
certain conditions a synchronous firing state is indeed stable in a homogeneous 
feedforward neuronal network [5]-[9]. Once a number of synchronous spikes occur in 
one layer, neurons in their following layer might generate enough synchronous spikes 
again, and then such synchronous behavior is progressively propagated in deeper 
layers of the networks. This mode of neural activity transmission is called the synfire 
propagation. An elegant biological experiment based on the iteratively constructed 
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Fig. 2. Examples of synfire propagation. (a) Successful synfire propagation, (b) failed synfire 
propagation, and (c) synfire instability propagation. All subfigures are adapted from previously 
published papers [6], [9], [13]. 

feedforward network in vitro provides the direct evidence for the existence of the 
synfire propagation in cortical circuits [15]. 

There are several important factors determining whether the synchronous spike 
packet can be successfully and stably transmitted in the feedforward neuronal 
network. First, the survival rate of the synfire greatly depends on the intensity of the 
initial synfire packet [6], [8], [9]. For strong initial spike packet (large α and small σ, 
where α and σ are the number of spikes and temporal dispersion of the initial spike 
packet, respectively), the synfire activity is well built up after several initial layers and 
then this activity can be successfully transmitted along the entire network with high 
survival rate. By contrast, weak initial spike packet has the tendency to lead to the 
propagation of the neural activities becoming weaker and weaker with the increasing 
of layer number, and finally the neural activities are stopped before they reach the 
final layer of the network. To elucidate this phenomenon theoretically, the state space 
method was introduced to analysis the synchronous spiking in the feedforward 
neuronal network [6]-[9]. A stable attractor governing the synchronization dynamics 
was found to exist in the (α, σ) space. Within the basin of attraction, the survival 
probability of the synfire propagation is close to 1; otherwise, it drops to 0 rapidly. 
Noise also plays a key role in the synfire propagation [3], [8]. Although the temporal 
spread increases with noise, under certain conditions at an intermediate level of noise 
the basin of attraction achieves a maximum extent, which in fact is a phenomenon of 
stochastic resonance [8]. On the other hand, during the process of synfire propagation, 
a pronounced refractory behavior is required in order to prohibit each neuron firing 
more than once within one spike packet. If not so, the number of spikes per packet 
and the width might grow as the layer number grows. However, it should be noted 
that, with sufficiently strong synapses, a synchronous spike packet in one layer can 
still evoke a train of two or more synchronous spike packets in the next layer, even  
though the refractory period of neuron is considered. This will lead to the eruption of 
synfire propagation (we term this “synfire instability propagation” and see Refs. [3] 
and [13]) that should be avoided in the brain. 
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Fig. 3. A typical example of the firing rate propagation. The figure is adapted from previously 
published papers [14] and [16]. 

3.2   Firing Rate Propagation 

One conventional view of neural coding is that the features of the input signal can be 
encoded in the population firing rate of neurons. Some researches have postulated 
that the feedforward neuronal network might also be a simple model of transmitting 
the asynchronous firing rates. Such mode of signal transmission is the so-called 
firing rate propagation [11]-[14]. It has been found that the input-rate to output-rate 
of the feedforward neuronal network may be linearized if neurons in the first layer 
are driven by a same external input signal and each neuron in the network is injected 
a suitable independent background noise (an example of firing rate propagation, see 
Ref. [17]). Noise is necessary for the firing rate propagation, which is used to 
prevent the occurrence of synchronization even within the groups of neurons 
carrying the signal [14]-[16]. Too weak noise will result in neurons in the same layer 
fire synchronous; while too strong noise will lead to the background firing 
overwhelm the external input signal. At an appropriate noise level, all neurons 
desynchronize and their membrane potentials are close to threshold. In this case, 
both the strong and weak components of the external input signal can be transmitted 
and the waveform of the signal is well encoded by the population firing rate, thus 
resulting in better propagation performance. Furthermore, the firing rate propagation 
requires not only appropriate background current but also well tuned synapses. If the 
network only consists of excitatory neurons, the excitatory synaptic strength will 
determine the gain of the propagation. When the synaptic strength is too weak, the 
response in subsequent layers decays and fails to propagate, whereas when the 
synaptic strength is too strong, the excessive propagation of firing rate occurs due to 
the burst firings. An optimal excitatory synaptic strength is found to best support the 
firing rate propagation. On the other hand, if both the excitatory and inhibitory 
neurons are considered in the feedforward neuronal network, the relative strength 
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between inhibitory and excitatory synapses also plays a critical role in firing rate 
propagation. Better tuning of this factor can help feedforward neuronal network 
maintain better propagation performance [4]. 

3.3   Applications and Computations 

Although the synfire propagation mode and the firing rate mode are quite different, 
the previous results demonstrated that a single network with different system 
parameters can support stable and robust signal propagation in both of the two modes, 
for example, they can be bridged by the background noise and synaptic strength [14], 
[18], [19]. Both the synfire mode and the firing rate mode can be used for applications 
and computations. Here we only give several typical examples but do not discuss their 
principle in detail. The synfire mode was widely used to recognize the translation-
invariant pattern in a picture and parse the auditory scene [20]. Another important 
application for the synfire mode was proposed by Bienenstock, who used the synfire 
model for implementing the compositionality of cognitive functions [21]. The 
properties of the firing rate mode are also developed for computation. Van Rossum et 
al. implemented a local motion detector based on the firing rate mode and 
demonstrated that fast computations are feasible using rate-based models combined 
with population coding [14].  

4   Signal Propagation in Feedforward Neuronal Networks with 
Unreliable Synapses 

Neuron transmits spikes to postsynaptic neurons through synapses. Therefore, 
synapses can be regarded as the communication bridges between different neurons. It 
is known that the information processing in the brain is highly reliable. However, some 
biological experiments have demonstrated that the microscopic mechanism of synaptic 
transmission displays the unreliable property [1], [22]-[24]. Such unreliability is 
attributed to the probabilistic neurotransmitter release of the synaptic vesicles [25], 
[26]. For real biological neural systems, the successful spike transmission rates 
between 0.1 and 0.9 are widely reported in the literature [1], [27], [28]. Since the 
communication between real biological neurons indeed displays the unreliable 
property, a naturally arising question is how the unreliable synapses influence the 
signal propagation in feedforward neuronal networks. Here we first propose a more 
generalized modeling framework based on a heuristic unreliable synaptic model, then 
review and discuss several new computational results in our recent work. 

Now we start to introduce the generalized modeling framework used to study the 
signal propagation in feedforward neuronal networks. In fact, our proposed generalized 
modeling framework is similar to the basic modeling framework. Here we also 
consider a feedforward neuronal coupled in an all-to-all fashion, and use the IF neuron 
model to mimics the action potential firing dynamics of biological neurons. The only 
difference between these two modeling frameworks lies in the synaptic interaction. In 
the generalized modeling framework, a stochastic on-off process is introduced to 
mimic the probabilistic transmitter release of the real biological synapses. When a 
presynaptic neuron fires a spike, we let the corresponding postsynaptic neurons receive 
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it with a successful transmission probability p (p<1). The above stochastic on-off 
process is used to describe whether the neurotransmitter is successfully released or not 
(for detail, please see Ref. [13]). 

In a very recent work, we have studied both the synfire propagation and firing rate 
propagation in the feedforward neuronal networks with unreliable synapses [13]. We 
found that the parameters of the unreliable synapses have significant effects on the 
performance of signal propagation. In the study of synfire mode, three types of synfire 
propagation can be observed depending on whether the synchronous spike packet can 
be successfully and stably transmitted to the final layer of the feedforward neuronal 
network. Stable synfire propagation only occurs for suitable combination of the 
successful transmission probability as well as the excitatory synaptic strength. Once 
parameters fall into the stable synfire propagation regime, a high synaptic reliability 
or a strong excitatory synaptic strength is able to support the synfire propagation in 
feedforward neuronal networks with better performance and faster transmission 
speed. In the study of firing rate propagation, our main finding is that there exists a 
suitable intermediate successful transmission probability to support the optimal firing 
rate propagation. In order to clarify the differences between the synaptic unreliability 
and network randomness, we make comparisons on the propagation performance 
between the feedforward neuronal network with unreliable synapses (unreliable 
model) and the corresponding feedforward neuronal network with random synaptic 
connections (random model). For the synfire mode, it is found that, compared to the 
random model, the unreliable model is able to suppress the occurrence of synfire 
instability propagation to a certain degree. While for the firing rate mode, the random 
model can better support the firing rate propagation in small successful transmission 
regime for strong excitatory synaptic strength. These results suggest that it is better 
not to simply use the random connections to replace the unreliable synapses in 
modeling research. 

5   Conclusions and Discussions 

Neuronal networks with feedforward structure provide us an effective way to examine 
the neural activity propagation through multiple brain regions. The study of signal 
propagation in multilayered feedforward neuronal networks can help us better 
understand the fundamental information transmission mechanism in the brain. So far, 
there have been many research results proposed, but few surveys in this filed. This 
paper introduced the basic modeling framework about the signal propagation in 
feedforwrd neuronal network, and two important propagation modes and their 
relevant results. Moreover, a more generalized modeling framework based on 
unreliable synapses was proposed and the effects of unreliable synapses were 
discussed. We believe that the results obtained based on our proposed unreliable 
synaptic models might be more realistic than those obtained based on the traditional 
reliable synaptic models. This is because the communication between biological 
neurons indeed displays the unreliable properties. We surmise that, in biological 
neural systems, neurons may make full use of the characteristics of unreliable 
synapses to transmit neural information in an adaptive way, that is, switching between 
different signal propagation modes freely as required [13]. We hope that this work 
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will be useful and valuable for further research in this field. Due to the limitation of 
the page space, this paper only deals with signal propagation in isolated feedforward 
neuronal network. The case of signal propagation in embedded feedforward neuronal 
networks should be summarized in the further work. 
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Abstract. This paper mainly concerns stochastically asymptotical
stability analysis problems for a class of stochastic Cohen-Grossberg neu-
ral networks with mixed time delays and Markovian parameters
(SDCGNNswM). Based on an Lyapunov-Krasovskii functional and the
stochastic stability analysis theory, a linear matrix inequality (LMI)
approach is developed to derive the sufficient conditions guaranteeing
the stochastically asymptotical stability of the equilibrium point. All
the obtained results are presented in term of linear matrix inequalities.
The efficiency of the proposed results is demonstrated via a numerical
example.

Keywords: Cohen-Grossberg neural networks; Lyapunov function;
Stochastic stability; Brownian motion.

1 Introduction

Since the Cohen-Grossberg neural networks was introduced by Cohen and Gross-
berg [1], this model has been widely studied due to their extensive applications
in classification of patterns, associative memories, image processing, quadratic
optimization, and other areas [2,3]. However, in electronic implementation of
neural networks, there are inevitably some uncertainties due to the existence
of modeling error, external disturbance and parameter fluctuation, which would
lead to complex dynamical behaviors. Thus a good neural network should have
certain stability against such uncertainties.

To the best our knowledge, a real system is usually affected by external pertur-
bations which in many cases are of great uncertainty and hence may be treated
as random, as pointed out by [4] that in real nervous systems synaptic trans-
mission is a noisy process brought on by random fluctuations from the release of
neurotransmitters, and other probability causes. Therefore, it is significant and
of prime importance to consider stochastic effects to the stability property of
neural networks (see [5,10]). In [5], Zidong Wang have investigated the asymp-
totical stability for stochastic Cohen-Grossberg neural networks with mixed time
delays.
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Markovian jump systems introduced by [11], are the hybrid systems with two
components in the state. The jump systems have the advantage of modeling the
dynamic systems subject to abrupt variation in their structures, such as compo-
nent failures or repairs, sudden environmental disturbance, changing subsystem
interconnections, operating in different point of a nonlinear plant. The problem
of stochastic robust stability for uncertain delayed neural networks with Marko-
vian jumping parameters is investigated via linear matrix inequality technique
in [12]. To the best our knowledge, only few works have been done on the sta-
bility analysis for Cohen-Grossberg neural networks with Markovian jumping
parameters.

In this paper, we deal with the stochastic stability analysis problem for a class
of SDCGNNswM. By utilizing a Lyapunov- Krasovskii function and conducting
the stochastic analysis as well as LMIs, the criterion on stochastic stability and
exponential stability are established. Note that LMIs can be easily solved by
using the Matlab LMI toolbox. A numerical example is provided to show the
usefulness of the proposed stability condition.

2 Problem Formulation

In this paper, the Cohen-Grossberg neural networks with mixed time delays
and Markovian jumping parameters can be described by the following delay
differential equations:

dui(t) = −ai(ui(t))[bi(ui(t)) −
n∑

j=1

aij(ηt)f1j(uj(t))

−
n∑

j=1

bij(ηt)f2j(uj(t− h)) −
n∑

j=1

cij(ηt)
∫ t

t−τ
f3j(uj(s))ds + Ii(t)]

+ψ(t, ui(t), ui(t− h))dωi(t), i = 1, 2, . . . , n,

(1)

where ui(t) is the state of the ith unit at time t, ai(ui(t)) is the amplifica-
tion function, bi(ui(t)) denotes the behave function, and fkj(ui(t))(k = 1, 2, 3)
are the activation functions. aij(ηt), bij(ηt), cij(ηt) are the connection weight,
the discretely delayed connection weight, the distributively delayed connection
weight, respectively. Ii(t) is external input at time t. The scalar h > 0 de-
notes the discrete time delay, whereas τ > 0 denotes the distributed time delay.
let σ = max{h, τ}. Moreover, ω(t) = (ω1(t), ω2(t), . . . , ωn(t)) is n-dimensional
Brownian motion defined on a complete probability space (Ω,F ,P) with a nat-
ural filtration {Ft}t≥0 generated by {ω(s) : 0 ≤ s ≤ t}, where we associate Ω
with the canonical space generated by ω(t), and denote by F the associated σ-
algebra generated by ω(t) with the probability measure P . Let the random form
process ηt, t ∈ [0,+∞) be a homogeneous, finite-state Markovian process with
right continuous trajectories with generator � = (πij) and transition probability
from mode i at time t to mode j at time t + δ, i, j ∈ S, (S = 1, 2, . . . , N):

pij = P (ηt+δ = j|ηt = i) =
{
πijδ + o(δ), if i �= j,
1 + πijδ + o(δ), if i = j,

(2)
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with transition probability rates πij ≥ 0 for i, j ∈ S, i �= j and πii = −
N∑

j=1,j �=i

πij ,

where δ > 0 and lim
δ→0

o(δ)/δ = 0. Note that the set S comprises the various

operational modes of the system under study.
In this paper, the following assumptions are made on the amplification func-

tion, the behave function, the neuron activation function and Markovian process.

Assumption 1. For each i ∈ 1, 2, . . . , n, the amplification function ai(·) is
positive, bounded, and satisfies

0 < αi ≤ ai(·) ≤ ᾱi, (3)

where αi and ᾱi are known positive constants.

Assumption 2. The behave function bi(x) : R → R is continuous and differen-
tiable, and

b′i(x) ≥ γi > 0 ∀x ∈ R, i = 1, 2, . . . , n. (4)

Assumption 3. The neuron activation function is bounded, and the following
condition is satisfied:

|fkj(x) − fkj(y)| ≤ lfkj |x− y|, ∀x, y ∈ Rn, k = 1, 2, 3. (5)

where lfkj is a constant.

Assumption 4. The mode ηt is available at time t.
Let u(t, φ) denote the state trajectory of the system (1)from the initial data

u(θ) = φ(θ) on −σ ≤ θ ≤ 0 in L2
F′([−τ, 0];Rn). Suppose that system (1) has an

equilibrium point u∗ = [u∗
1, u

∗
2, . . . , u

∗
n]T . For notation convenience, we shift the

equilibrium point u∗ to the origin by translating x(t) = u(t) − u∗ and write the
system (1) into vector form, which yields the following system:

dx(t) = −α(x(t))[β(x(t)) −A(ηt)g1(x(t)) −B(ηt)g2(x(t − h))
−C(ηt)

∫ t

t−τ g3(x(s))ds] + σ(t, x(t), x(t − h))dω(t),
(6)

where
x(t) = (x1(t), x2(t), . . . , xn(t))T , ω(t) = (ω1(t), ω2(t), . . . , ωn(t))T

α(x(t)) = diag(α1(x1(t)), α2(x2(t)), . . . , αn(x2(t))),
β(t) = (β1(x1(t)), β2(x2(t)), . . . , βn(xn(t)))
A(ηt) = (aij(ηt))n×n, B(ηt) = (bij(ηt))n×n, C(ηt) = (cij(ηt))n×n,
gk(x(t)) = (gk1(x1(t)), gk2(x2(t)), . . . , gkn(xn(t)))T , k = 1, 2, 3,
αi(xi(t)) = ai(xi(t) + u∗

i ), βi(xi(t)) = bi(xi(t) + u∗
i ) − bi(u∗

i ),
gkj(xj(t)) = fkj(xj(t) + u∗

j ) − fkj(u∗
j ),

σ(t, xi(t), xi(t− h)) = ψ(t, xi(t) + u∗
i , xi(t− h) + u∗

i ) − ψ(t, u∗
i , u

∗
i ).

(7)

Assumption 5. The mapping σ : R+ × Rn × Rn → Rn is globally Lipschitz
continuous and satisfies the linear growth condition. Moreover,

trace[σT (x(t), y(t), ηt)σ(x(t), y(t), ηt)] ≤ x(t)TΣT
1 Σ1x(t) + y(t)TΣT

2 Σ2y(t),
σ(t, 0) = 0.

(8)
where Σi, (i = 1, 2) are known constant matrix with n dimension.



188 J. Lu, S. Wang, and C. Zhang

It follows, respectively, from Assumption 1, Assumption 2, Assumption 3 that

0 < αi ≤ αi(·) ≤ ᾱi,
xi(t)βi(xi(t)) ≥ γ2

i x
2
i (t) > 0,

|gj(x)| ≤ lfj |x|, i = 1, 2, . . . , n.
(9)

In order to obtain our results, we need establishing the following definitions
and lemmas:

Definition 1.(See [8]) The trivial solution of the SDCGNNswM is said to be
stochastic asymptotically stable if for all initial state φ(0) and mode η0 such
that

lim
t→∞E||x(t, φ(0), η0)|| = 0. (10)

Lemma 2. (See [6]) Given any real matrices R1, R2 of appropriate dimensions
such that 0 < R3 = RT

3 . Then, the following inequality holds:

2RT
1 R2 ≤ RT

1 R3R1 + RT
2 R

−1
3 R2. (11)

Lemma 3. (Schur complement) Let Q(x) = QT (x), R(x) = RT (x), S(x)
depend only on x and R(x) is nonsingular, the following LMI[

Q(x) S(x)
ST (x) R(x)

]
> 0 (12)

is equivalent to R(x) > 0, Q(x) − S(x)R−1(x)S(x)T > 0.
For simplicity, while ηt = i, the matrices A(ηt), B(ηt), C(ηt) are presented by

Ai, Bi, Ci.
Hence, we extract from (6), for ηt = i ∈ S, the following system

dx(t) = −α(x(t))[β(x(t)) −Aig1(x(t)) −Big2(x(t− h))
−Ci

∫ t

t−τ g3(x(s))ds] + σ(t, x(t), x(t − h))dω(t),
(13)

3 Main Results

In this section, we present a sufficient condition for stochastically asymptotic
stability of the origin solution for the SDCGNNswM (13).

Theorem 1. Let the assumptions 1,2,3,4 and 5 be satisfied. Suppose that there
exists symmetric and positive definite matrix Pi, Q1i, Q2i, Si, Ri, Ji such that the
following LMI holds:

Ω1 =

⎡⎢⎢⎣
(1, 1) PiᾱAi PiᾱBi PiᾱCi

AT
i ᾱPi −Ri 0 0

BT
i ᾱPi 0 −Si 0

CT
i ᾱPi 0 0 −Ji

⎤⎥⎥⎦ < 0 (14)
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where

(1, 1) = −αPiΓ − ΓαPi + LfRiL
f + ΣT

1 PiΣ1 + Q1i + τQ2i +
N∑

j=1

πijPj ,

Γ = diag(γ1, γ2, . . . , γn), Q1i = LfSiLf + ΣT
2 PiΣ2, Q2i = τLfJiLf

Lf = ( max
k=1,2,3

{lfk1}, max
k=1,2,3

{lfk2}, · · · , max
k=1,2,3

{lfkn})T .

(15)
Then the origin of system (13) is stochastically asymptotic stability.

Proof. Consider the following lyapunov functional:

V (t, x(t), i) = xT (t)Pix(t) +
∫ t

t−h

xT (s)Q1ix(s)ds +
∫ 0

−τ

∫ t

t+s

xT (v)Q2ix(v)dvds.

(16)
In this case, the infinitesimal generator of the Markov process (t, x(t), i) be-

comes:

LV (t, x(t), i) = −2xT (t)Piα(x(t))[β(x(t)) −Aig1(x(t)) −Big2(x(t − h))
−Ci

∫ t

t−τ g3(x(s))ds] + trace[σT (t, x)Piσ(t, x)]

+xT (t)
N∑

j=1

πijPjx(t) + xT (t)Q1ix(t) − xT (t− h)Q1ix(t − h)

+τxT (t)Q2ix(t) −
∫ t

t−τ x
T (s)Q2ix(s)ds

(17)
Noticing that

−2xT (t)Piα(x(t))β(x(t)) ≤ −2αxT (t)Piβ(x(t))

= −2α
n∑

j=1

xj(t)Pijβj(xj(t) = −2α
n∑

j=1

Pijxj(t)βj(xj(t)

≤ −2α
n∑

j=1

Pijγjx
2
j (t) = −2αxT (t)PiΓx(t)

(18)

where Γ = diag(γ1, γ2, . . . , γn).

2xT (t)Piα(x(t))Aig1(x(t))
≤ xT (t)Piα(x(t))AiR

−1
i AT

i α(x(t))Pix(t) + gT
1 (x(t))Rig1(x(t))

≤ xT (t)PiᾱAiR
−1
i AT

i ᾱAiPix(t) + xT (t)LfRiL
fx(t),

(19)

2xT (t)Piα(x(t))Big2(x(t − h))
≤ xT (t)Piα(x(t))BiS

−1
i BT

i α(x(t))Pix(t) + gT
2 (x(t − h))Sig2(x(t− h))

≤ xT (t)PiᾱBiS
−1
i BT

i ᾱBiPix(t) + xT (t− h)LfSiL
fx(t− h),

(20)
2xT (t)Piα(x(t))Ci

∫ t

t−τ
g3(x(s))ds

≤ xT (t)Piα(x(t))CiJ
−1
i CT

i α(x(t))Pix(t)
+ (

∫ t

t−τ
g3(x(s))ds)T Ji

∫ t

t−τ
g3(x(s))ds

≤ xT (t)PiᾱCiJ
−1
i CT

i ᾱCiPix(t) + τ
∫ t

t−τ g
T
3 (x(s))dsxT (t)Jig3(x(s))ds,

≤ xT (t)PiᾱCiJ
−1
i CT

i ᾱCiPix(t) + τ
∫ t

t−τ x
T (s)LfJiL

f(x(s))ds,
(21)
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Let Q2i = τLfJiLf , Q1i = LfSiLf + ΣT
2 PiΣ2 and substituting (18-21) into

(17), we have that

LV (t, x(t), i) ≤ −2ᾱxT (t)Piᾱx(t) + xT (t)PiᾱAiR
−1
i AT

i ᾱAiPix(t)
+xT (t)LfRiL

fx(t) + xT (t)PiᾱBiS
−1
i BT

i ᾱBiPix(t)
+xT (t− h)LfSiL

fx(t− h) + xT (t)PiᾱCiJ
−1
i CT

i ᾱCiPix(t)
+τ

∫ t

t−τ x
T (s)LfJiL

f (x(s))ds + xT (t)Q1ix(t)
−xT (t− h)Q1ix(t− h) + τxT (t)Q2ix(t)
+xT (t)ΣT

1 PiΣ1x(t) + xT (t− h)ΣT
2 PiΣ2x(t− h)

+xT (t)
N∑

j=1

πijPjx(t) −
∫ t

t−τ
xT (s)Q2ix(s)ds

= xT (t)[−αPiΓ − ΓαPi + LfRiL
f + ΣT

1 PiΣ1 + Q1i + τQ2i

+
N∑

j=1

πijPj + PiᾱAiR
−1
i AT

i ᾱAiPi + PiᾱBiS
−1
i BT

i ᾱBiPi

+PiᾱCiJ
−1
i CT

i ᾱCiPi]x(t)
(22)

From (14), we conclude that, for each mode i, Ω1 < 0. Therefore, if this
inequality holds, it follows that LV (t, x(t), i) < 0. Thus the origin of system
(13) is globally stochastically asymptotic stability. This completes the proof of
Theorem 1.

In what follows, we will show that our results can be specialized to several
cases including those have been studied extensively in the literature. All the
corollaries given below are easy consequences of Theorem 1, hence the proofs
are omitted.

We first consider the following Cohen-Grossberg neural network without
stochastic perturbation:

dx(t) = −α(x(t))[β(x(t)) −Aig1(x(t)) −Big2(x(t− h))
−Ci

∫ t

t−τ g3(x(s))ds],
(23)

Corollary 2. Let the assumptions 1,2,3 be satisfied. Suppose that there ex-
ists symmetric and positive definite matrix Pi, Q1i, Q2i, Si, Ri, Ji such that the
following LMI holds:

Ω3 =

⎡⎢⎢⎣
(1, 1) PiᾱAi PiᾱBi PiᾱCi

AT
i ᾱPi −Ri 0 0

BT
i ᾱPi 0 −Si 0

CT
i ᾱPi 0 0 −Ji

⎤⎥⎥⎦ < 0 (24)

where

(1, 1) = −αPiΓ − ΓαPi + LfRiL
f + Q1i + τQ2i +

N∑
j=1

πijPj ,

Γ = diag(γ1, γ2, . . . , γn), Q1i = LfSiLf , Q2i = τLfJiLf .

(25)

Then the origin of system (23) is asymptotic stability.

Remark 3. Although there have been some papers published on the stability
analysis problems for Cohen-Grossberg neural network with mixed time delays
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[13], to the best of the authors knowledge, there are few results concerning
the simultaneous presence of discrete or distributed time delays and Markovian
parameters. Hence, the results in Corollary 2 are still new.

If we are only interested in stochastic perturbation, the Cohen-Grossberg
neural network (15) can be further reduced to

dx(t) = −α(x(t))[β(x(t)) −Ag1(x(t)) −Bg2(x(t − h))
−C

∫ t

t−τ
g3(x(s))ds] + σ(t, x(t), x(t − h))dω(t),

(26)

Corollary 4. Let the assumptions 1,2,3,5 be satisfied. Suppose that there exists
symmetric and positive definite matrix P,Q1, Q2, S,R, J such that the following
LMI holds:

Ω5 =

⎡⎢⎢⎣
(1, 1) PᾱA PᾱB PᾱC
AT ᾱP −R 0 0
BT ᾱP 0 −S 0
CT ᾱP 0 0 −J

⎤⎥⎥⎦ < 0 (27)

where

(1, 1) = −αPΓ − ΓαP + LfRLf + ΣT
1 PΣ1 + Q1 + τQ2,

Γ = diag(γ1, γ2, . . . , γn), Q1 = LfSLf + ΣT
2 PΣ2, Q2 = τLfJLf .

(28)

Then the origin of system (26) is stochastically asymptotic stability.

Remark 5. The Cohen-Grossberg neural network with mixed time delays (26)
has been well investigated in [5]. The results in Corollary 4 alternative criteria
based on LMIs approach.

If there appears only discrete time delay, the Cohen-Grossberg neural network
(13) can be simplified to

dx(t) = −α(x(t))[β(x(t))−Aig1(x(t))−Big2(x(t−h))]+σ(t, x(t), x(t−h))dω(t),
(29)

Corollary 6. Let the assumptions 1,2,3,4 be satisfied. Suppose that there exists
symmetric and positive definite matrix Pi, Q1i, Si, Ri, Ji such that the following
LMI holds:

Ω7 =

⎡⎣ (1, 1) PiᾱAi PiᾱBi

AT
i ᾱPi −Ri 0

BT
i ᾱPi 0 −Si

⎤⎦ < 0 (30)

where

(1, 1) = −αPiΓ − ΓαPi + LfRiL
f + ΣT

1 PiΣ1 + Q1i +
N∑

j=1

πijPj ,

Γ = diag(γ1, γ2, . . . , γn), Q1i = LfSiLf + ΣT
2 PiΣ2,

(31)

Then the origin of system (29) is stochastically asymptotic stability.

Remark 7. Although in [13,14], the stability criteria of Cohen-Grossberg neural
network with discrete time have been established in terms of LMIs, there are few
results concerning stochastic perturbation and Markovian parameters. Hence,
the results in Corollary 6 are still new.
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4 An Example

In this section, we present a numerical example to illustrate our results.

Example. We consider the SDNNswM (1) with n = 2. Let the Markovian
process governing the mode switching has generator

Λ =
[
−0.4 0.4
0.3 −0.3

]
. (32)

For the two operating modes, the associated data are:

A1 =
[

0.3 −1.8
−1.1 1.6

]
, B1 =

[
0.8 0.2
0.2 0.6

]
, C1 =

[
0.5 0.2
0.3 0.7

]
, (33)

A2 =
[

0.4 −1.6
−0.9 1.8

]
, B2 =

[
0.6 0.7
1.1 −1.2

]
, C2 =

[
0.7 −0.3
−1.1 0.5

]
(34)

and

Lf = 0.2I, ᾱ = 0.8, α = 0.7, Σ1 = Σ2 = 0.08I, τ = 0.5, h = 0.12, (35)

where I is identity matrix.
Then using the MATLAB LMI toolbox, we can obtain the following feasible

solution for LMIs (14):

P1 =

[
0.6579 0.2209

0.2209 0.7027

]
, Q11 =

[
0.8280 0.2505

0.2505 0.7767

]
, Q21 =

[
0.1854 0.0474

0.0474 0.1969

]
,

R1 =

[
1.3342 −0.5533

−0.5533 2.2818

]
, S1 =

[
0.9462 0.2532

0.2532 0.8400

]
, J1 =

[
0.9269 0.2370

0.2370 0.9845

]
,

P2 =

[
0.7910 0.1993

0.1993 0.4233

]
, Q21 =

[
0.9712 0.2122

0.2122 0.5487

]
, Q22 =

[
0.2117 0.0291

0.0291 0.1483

]
,

R2 =

[
1.1107 −0.3879

−0.3879 2.1193

]
, S2 =

[
1.2328 0.0617

0.0617 0.7858

]
, J2 =

[
1.0538 0.1453

0.1453 0.7413

]
,

(36)

Then the conditions of Theorem 1 are satisfied. Therefore, the origin solution
of SDNNswM (1) is stochastically asymptotical stability.

Acknowledgments. This work was supported by by Shanxi Province Science
Foundation for Youths,China( No. 2010JQ1016), the Science Research Founda-
tion of Shaanxi Province Department of Education, China( No. 2010JK560).
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Abstract. This paper investigates the exponential stability of stochastic
neural networks with unbounded discrete delays and infinitely distributed
delays. By using Lyapunov functions, the semi-martingale convergence
theorem and some inequality techniques, the exponential stability in mean
square and almost sure exponential stability are obtained. To overcome
the difficulties from unbounded delays, some new techniques are intro-
duced. Some earlier results are improved and generalized. An example is
given to illustrate the results.
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1 Introduction

In recent years, there have been an increasing research interest in the study of
stochastic neural networks, see, for example, [3,6,7,11] and the references therein.
Raska et al. [12] introduced a cellular neural network with discrete delays to
deal with motion-related signal processing problems. In real neural networks,
there usually have a spatial extent due to the presence of an amount of paral-
lel pathways with a variety of axon sizes and lengths [2]. Therefore, there will
be a distribution of conduction velocities along these pathways. Tank and Hop-
field [14] proposed a neural circuit with distributed delays described by intergo-
differential equations for solving a general problem of recognizing patterns in a
time-dependent signal. To date, many researchers studied the stochastic neural
networks with discrete delays and distributed delays (c.f. [1,5,8,9,15]).

However, the discrete time delays they discussed are bounded in the papers
mentioned above. In delayed neural networks, in most situations, delays are
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variable, and in fact unbounded [16]. In this paper, we study a generalized
stochastic neural networks as follows:

dx(t) =
[
−Bx(t)+AG(t, y(t))+

∫ 0

−∞
Dx(t+θ)dμ(θ)

]
dt+σ(t, x(t), y(t), xt)dw(t),

(1)
where x(t) ∈ Rn, y(t) = (y1(t), . . . , yn(t))T, yi(t) = xi(t − δi(t)), δi(t) is delay
function which may be unbounded. xt = {x(t + θ) : −∞ < θ ≤ 0} is regarded
as a Cb((−∞, 0],Rn)-valued stochastic process. B = diag(bi) with bi > 0. A =
(aij) ∈ R

n×n, D = (dij) ∈ R
n×n. Both functions G(t, y) : R+ × R

n → R
n×n

and σ(t, x, y, ϕ) : R+ ×Rn ×Rn ×Cb → Rn×m are Borel measurable and locally
Lipschitz continuous.

If 0 ≤ δi(t) ≤ τ < ∞ (1 ≤ i ≤ n), Eq.(1) covers the system which studied in
[1] as a special case. If 0 ≤ δi(t) ≤ τ < ∞ and remove the distributed delays,
Eq.(1) becomes

dx(t) = [−Bx(t) + AG(t, y(t))]dt + σ(t, x(t), y(t))dw(t), (2)

which is studied by Huang et al. in [4,13].
Stability is a basic knowledge for dynamical systems and is useful in applica-

tion to the real life system. The main aim of this paper is to study the exponential
stability in mean square and almost sure exponential stability. The main results
are provided in Section 3. We also give an example to illustrate the results.

2 Preliminaries

Notations. Denote by Cb = Cb((−∞, 0],Rn) the family of all bounded continuous
functions ϕ from (−∞, 0] to Rn with the norm ‖ϕ‖ = sup−∞<θ≤0 |ϕ(θ)|, which
forms a Banach space. Let λM (H) denote the biggest eigenvalue of matrix H . Let
w(t) be an m-dimensional Brownian motion defined on a complete probability
space (Ω,F ,P) with a nature filtration {Ft}t≥0. In this paper, const always
represents some positive constant whose precise value is not important.

For any V (x) ∈ C2(Rn; R+) and t ≥ 0, x, y ∈ Rn, ϕ ∈ Cb, define

LV (t, x, y, ϕ) = Vx(x)
[
−Bx + AG(t, y) +

∫ 0

−∞ Dϕ(θ)dμ(θ)
]

+
1
2
trace[σT(t, x, y, ϕ)Vxx(x)σ(t, x, y, ϕ)]. (3)

If x(t) is a solution of Eq.(1), applying the Itô formula to V (x(t)) yields

dV (x(t)) = LV (x(t))dt + Vx(x(t))σ(t, x(t), y(t), xt)dw(t),

where LV (x(t)) = LV (t, x(t), y(t), xt).
Let Δi(t) = t− δi(t), δi(t) ∈ C1(R+; R+) and assume

ηi := inf
t≥0

Δ′
i(t) > 0, (1 ≤ i ≤ n) (4)
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which clearly shows that Δi(t) is a strictly increasing function on [0,∞) and has
the inverse function Δ−1

i (s) defined on [−δi(0),∞) with the following property

[Δ−1
i (s)]′ =

1
Δ′

i(t)
≤ η−1

i . (s = Δi(t)) (5)

It is easy to obtain the following lemma.

Lemma 1. Let ηi be defined by (4), then ηi ≤ 1.

For any α, β ≥ 0 and ϕ ∈ Cb, define Tαβ(ϕ) =
∫ 0

−∞ eαθ|ϕ(θ)|βdθ and C(α, β) =
{ϕ ∈ Cb : Tαβ(ϕ) < ∞}. Denote by M0 the family of all probability measures
on (−∞, 0]. For any μ ∈ M0 and ε ≥ 0, define{

με :=
∫ 0

−∞ e−αθdμ(θ);
Mε = {μ ∈ M0 : με < ∞}. (6)

This paper often uses the following function Φε:

Φε := Φε(t, x, y, ϕ)=
n∑

i=1

Ki

(∫ 0

−∞
ϕ2

i (θ)dμ(θ)−μεx
2
i

)
+

n∑
i=1

Li

(
e−εδi(t)y2

i −η−1
i x2

i

)
,

(7)
for any t ≥ 0, x, y ∈ Rn and ϕ ∈ Cb, where με is defined by (6), ε > 0 and Ki,
Li (1 ≤ i ≤ n) are nonnegative constants.

Lemma 2. Let Φε be defined by (7) and 0 ≤ q ≤ ε. If x(t) = x(t, ξ)(−∞ < t <
σ) is a solution to Eq.(1) with initial data ξ ∈ C(q, 2), then∫ t

0

eqsΦε(s, x(s), y(s), xs)ds ≤ const. (0 ≤ t < σ).

Proof. By the Fubini theorem and a substitution technique, the result can be
easily derived. �

3 Stability Results

This section aims to establish the stability results for Eq.(1).

Theorem 1. Assume that there exist positive constants ε and mi (1 ≤ i ≤ n)
such that the function V (x) = |x|2 satisfies

LV (t, x, y, ϕ) ≤ Φε −
n∑

i=1

mix
2
i (8)

for any t ≥ 0, x, y ∈ Rn and ϕ ∈ Cb, where Φε is defined by (7). Then there
exists q ∈ (0, ε], for any given ξ ∈ C(q, 2), Eq.(1) admits a unique global solution
x(t, ξ) which satisfies

lim sup
t→∞

t−1 ln(E|x(t, ξ)|2) ≤ −q, (9)

lim sup
t→∞

t−1 ln |x(t, ξ)| ≤ −q/2, a.s.. (10)
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Proof. The proof will be divided into two steps.
Step 1. Existence of the global solution Fix ξ ∈ C(q, 2), there exists a unique

maximal local solution x(t) = x(t, ξ) for −∞ < t < σ to Eq.(1), where σ is the
explosion time. Let k0 be a sufficiently large positive number such that ‖ξ‖ ≤ k0.
For each integer k ≥ k0, define the stopping time

σk = inf{0 ≤ t < σ : V (x(t)) ≥ k}.

Clearly, σk is increasing and so σk → σ∞ ≤ σ as k → ∞. If we can show
σ∞ = ∞, a.s., then σ = ∞ a.s., which implies the desired result. This is also
equivalent to proving that, for any t > 0, P(σk ≤ t) → 0 as k → ∞. Letting
tk = t ∧ σk, by condition (8), applying the Itô formula and Lemma 2 yields

kP(σk ≤ t) = E[I{σk≤t}V (x(tk))] ≤ EV (x(tk)) ≤ const + E

∫ tk

0

LV (x(s))ds

≤ const + E

∫ tk

0

[
Φε(s, x(s), y(s), xs) −

n∑
i=1

mi|xi(s)|2
]
ds

≤ const−
n∑

i=1

miE

∫ tk

0

|xi(s)|2ds

≤ const.

This implies P(σk ≤ t) → 0 as k → ∞, as required.
Step 2. Stability Choose q > 0 and q is sufficiently small. Fix ξ ∈ C(q, 2).

Let h(t) = eqtV (x(t)). Applying the Itô formula, we have

h(t) = h(0) + I + M(t),

where M(t) =
∫ t

0 eqsVx(x(s))σ(s, x(s), y(s), xs)dw(s) is a continuous local mar-
tingale with M(0) = 0, and

I =
∫ t

0

eqs[LV (x(s)) + qV (x(s))]ds

≤
∫ t

0

eqs

[
Φε(s, x(s), y(s), xs) −

n∑
i=1

mi|xi(s)|2 + qV (x(s))
]
ds

≤ const.

Applying the semi-martingale convergence theorem (see [10], P.44, Theorem 7.4)
gives

lim sup
t→∞

EeqtV (x(t)) < ∞, lim sup
t→∞

eqtV (x(t)) < ∞. a.s..

This directly implies assertions (9) and (10), as required. �

Next, we will apply Theorem 1 to get some more applicable criteria. Before
giving the main results, some conditions and notations will be presented firstly.
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For any t ≥ 0, x, y ∈ Rn and ϕ ∈ Cb, assume that Gi(t, y) and σ(t, x, y, ϕ)
satisfy

|Gi(t, y)| ≤ βi|yi|e−εδi(t), (11)

|σ(t, x, y, ϕ)|2 ≤
n∑

i=1

[
λix

2
i + λ̃i

∫ 0

−∞
ϕ2

i (θ)dμ(θ) + λ̄iy
2
i e

−εδi(t) + μiG
2
i (t, y)

]
(12)

where μ ∈ Mε. βi, λi, λ̃i, λ̄i and μi (1 ≤ i ≤ n) are nonnegative constants.
For the sake of simplicity, we introduce the following notations:

Ã = (ãij)n×n, ãij = |aij |βj , qi = q̃i + q̄iη
−1
i , si = μiβ

2
i η

−1
i (13)

λ̂i = λi + λ̃i + λ̄iη
−1
i , ρ̂i = ρi + ρ̃i + ρ̄iη

−1
i (14)

Theorem 2. Under conditions (11) and (12), if there exist constants q̃i, q̄i, ρi,
ρ̄i, ρ̃i (1 ≤ i ≤ n) such that the following conditions are satisfied:

ρ̃i ≤ q̃i, q̄i ≥ ρ̄i, (15)

λ̂i + si < ρ̂i, (16)

(
xT zT yT

)
H

⎛⎝x
z
y

⎞⎠ ≤ −
n∑

i=1

(ρix
2
i + ρ̃iz

2
i + ρ̄iy

2
i ), (17)

where

H =

⎛⎝diag(qi − 2bi) D Ã
DT −diag(q̃i) 0
ÃT 0 −diag(q̄i)

⎞⎠ , (18)

then there exists q > 0, for any given initial data ξ ∈ C(q, 2), Eq.(1) admits a
unique global solution x(t, ξ) which satisfies (9) and (10).

Proof. For t ≥ 0, x, y ∈ Rn and ϕ ∈ Cb, let V (x) = |x|2 and z =
∫ 0

−∞ ϕ(θ)dμ(θ),
applying the Itô formula to V (x) and using conditions (11) (12) and (15)-(17)
give

LV (t, x, y, ϕ)
= 2xT(−Bx + AG(t, y) + Dz) + |σ(t, x, y, ϕ)|2

=
(
xT zT yT

)
H

⎛⎝x
z
y

⎞⎠+
n∑

i=1

(q̃iz
2
i − qix

2
i + q̄iy

2
i ) + 2xTAG(t, y)

−2xTÃy + |σ(t, x, y, ϕ)|2

≤ −
n∑

i=1

(ρix
2
i + ρ̃iz

2
i + ρ̄iy

2
i ) +

n∑
i=1

(q̃iz
2
i − qix

2
i + q̄iy

2
i )

+
n∑

i=1

[
λix

2
i + λ̃i

∫ 0

−∞
ϕ2

i (θ)dμ(θ) + λ̄iy
2
i e

−εδi(t) + μiG
2
i (t, y)

]
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≤
n∑

i=1

(λi − ρi − qi)x2
i +

n∑
i=1

(λ̃i − ρ̃i + q̃i)
∫ 0

−∞
ϕ2

i (θ)dμ(θ)

+
n∑

i=1

(λ̄i − ρ̄i + q̄i + μiβ
2
i )y2

i e
−εδi(t)

:= Φε −
n∑

i=1

mix
2
i ,

where

Φε =
n∑

i=1

(λ̃i − ρ̃i + q̃i)
[ ∫ 0

−∞
ϕ2

i (θ)dμ(θ) − μεx
2
i

]
+

n∑
i=1

(λ̄i − ρ̄i + q̄i + μiβ
2
i )
[
y2

i e
−εδi(t) − η−1

i x2
i

]
is a function in the form of (7), and

mi|ε=0 = ρi + qi − λi − λ̃i + ρ̃i − q̃i − (λ̄i − ρ̄i + q̄i + μiβ
2
i )η−1

i

≥ ρ̂i − λ̂i − si > 0.

This shows condition (8) is satisfied. Applying Theorem 1 gives the desired
results. �

Choose ρi = ρ̄i = ρ̃i ≡ ρ, we can derive the following result.

Corollary 1. Under conditions (11) and (12), if there exist constants q̃i, q̄i

(1 ≤ i ≤ n) and ρ such that λM (H) ≤ −ρ, and moreover,

ρ ≤ q̃i ∧ q̄i, (19)

λ̂i + si < ρ(2 + η−1
i ), (1 ≤ i ≤ n), (20)

where H is defined by (18), then the conclusions of Theorem 2 hold.

Corollary 2. Under conditions (11) and (12), if

2bi >

n∑
j=1

|dij | +
n∑

j=1

|ãij | +
n∑

j=1

|dji| +
n∑

j=1

|ãji|η−1
i + si + λ̂i, (21)

then the conclusions of Theorem 2 hold.

Proof. Choosing q̃i = q̄i = 0 and using (21) we can testify condition (15)-(17)
in Theorem 2. Applying Theorem 2 gets the desired results. Here we omit its
process. �
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Remark 1. The application of Theorem 1 and Corollary 1 need choosing some
parameters such as q̃i, q̄i, etc.. Corollary 2 is described only in terms of the
system parameters hence it can be verified easily.

In the following, we consider a simple case. Simplify condition (12) and assume
that

|σ(t, x, y, ϕ)|2 ≤
n∑

i=1

μiG
2
i (t, y). (22)

Corollary 3. Under conditions (11) and (22), if there exist constants q̃i, q̄i (1 ≤
i ≤ n) and ρ such that λM (H) ≤ −ρ and condition (19) is satisfied, and moreover,

si < ρ(2 + η−1
i ), (1 ≤ i ≤ n), (23)

where H is defined by (18), then the conclusions of Theorem 2 hold.

Corollary 4. Under conditions (11) and (22), if

2bi >

n∑
j=1

|dij | +
n∑

j=1

|ãij | +
n∑

j=1

|dji| +
n∑

j=1

|ãji|η−1
i + si, (24)

then the conclusions of Theorem 2 hold.

Remark 2. In [1,2,5], it is all assumed that the discrete delays are bounded, here,
by introducing the decay factor e−εδi(t), our results can be used in the case of
unbounded delays.

4 A Two-Dimensional Example

Consider the following two-neuron stochastic neural networks:

dx(t) =
[
−Bx(t)+AG(t, y(t))+

∫ 0

−∞

Dx(t + θ)
(1 − θ)2

dθ
]
dt+EG(t, y(t))dw(t), (25)

where y(t) = x(t− δ(t)), δ(t) ∈ C1(R+; R+) is variable delay, and

B =
[

6 0
0 8

]
, A =

[
1 −1
1 1

]
, D =

[
0 1
0 0

]
, E =

[
a 0
0 0.2

]
,

where a is a positive constant. Let dμ(θ) = (1 − θ)−2dθ, then μ(θ) ∈ Mε (0 <
ε < 1). For simplicity, let ηi = 1/2, βi = 1(i = 1, 2). From (13) we have s1 = 2a2,
s2 = 0.08.

(i) Application of Corollary 3. Choose q̄1 = q̃1 = 3, q̄2 = q̃2 = 4. By (18) we
can compute

H =

⎛⎜⎜⎜⎜⎜⎜⎝
−3 0 0 1 1 1
0 −4 0 0 1 1
0 0 −3 0 0 0
1 0 0 −4 0 0
1 1 0 0 −3 0
1 1 0 0 0 −4

⎞⎟⎟⎟⎟⎟⎟⎠ .
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This can derive λM (H) = −1.2375, which implies ρ = 1.2375. Substituting
the parameters into (23) gives 2a2 ∨ 0.08 < 4ρ, which shows 0 < a < 1.5732.
Applying Corollary 3 we have, when 0 < a < 1.5732, there exists q > 0, for any
given initial data ξ ∈ C(q, 2), Eq.(25) admits a unique global solution x(t, ξ)
which satisfies (9) and (10).

(ii) Application of Corollary 4. Substituting the parameters into (24) gives
0 < a < 1.5811. Applying Corollary 4 we have, when 0 < a < 1.5811, there
exists q > 0, for any given initial data ξ ∈ C(q, 2), Eq.(25) admits a unique
global solution x(t, ξ) which satisfies (9) and (10). Obviously, Corollary 4 is
more convenient in application.

Choose the initial data ξ(s) = 1, s ∈ (−∞, 0], ε = 0.5 and G(t, x) =
x(0.5t)e−0.5×0.5t, Fig.1 shows the trivial solution of Eq. (25) is exponentially
stable in mean square.
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Fig. 1. Numerical simulation of (25)
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Time-Varying Delays on Time Scale
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Abstract. In this paper, the stability of neural networks with both impulses and
time-varying delays on time scale is investigated, the existence of Delta derivative
of time-varying delays is not assumed. By employing time scale calculous the-
ory, free weighting matrix method and linear matrix inequality (LMI) technique,
a delay-dependent sufficient condition is obtained to ensure the stability of equi-
librium point for neural networks with both impulses and time-varying delays on
time scale. An example with simulations is given to show the effectiveness of the
theory.

Keywords: Stability, Neural networks, Time-varying delays, Impulses, Time
scale.

1 Introduction

The theory of time scale, which was first introduced and studied by S.Hilger [1], has
a tremendous potential for applications in some mathematical models of real processes
and phenomena studied in automatic control [2], population dynamics [3], economics
[4] and so on. This novel and fascinating type of mathematics is more general and
versatile than the traditional theory of differential and difference equations as it can
mathematically describe continuous and discrete dynamical equations under the same
framework [5]. As it is well known, both continuous and discrete systems are very
important in applications, but it is troublesome to study the stability for continuous and
discrete systems, respectively. Therefore, it is significant to study the systems on time
scale where the continuous and discrete situations are unified [6].

Besides delay effect, impulsive effect is also likely to exist in neural networks. For
instance, in implementation of electronic networks, the state of the networks is subject
to instantaneous perturbations and experiences abrupt change at certain instants, which
may be caused by switching phenomenon, frequency change or other sudden noise, that
is, it exhibits impulsive effects [7]. Therefore, it is necessary to consider both impulsive
effect and delay effect on dynamical behaviors of neural networks. Some results of
impulsive effect on dynamics of delayed neural networks have been gained, see [7-9]
and the references therein.

Recently, some delayed neural networks on time scale were considered, the dynam-
ics of neural networks with constant delays on time scale were analyzed [10-15]. In

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 203–212, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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[10], authors investigated the stability of equilibrium point for neural networks with
constant delays on time scale, and give a sufficient condition for checking the stabil-
ity of equilibrium point. In [11-13], the problem on existence and exponential stability
of periodic solution was considered, several criteria for checking the existence and ex-
ponential stability of periodic solution were obtained. In [14,15], the impulsive effect
on dynamics of delayed neural networks on time scale were analyzed. It is worth to
pointing out that, the stability results in [15] are delay-independent. It means that any
information on the size of delays is included in criteria. It is known that delay-dependent
stability conditions, which employ the information on the size of delays, are generally
less conservative than delay-independent ones especially when the size of the delay is
small [16]. So, it is important to give delay-dependent stability conditions for delayed
neural networks on time scale

Motivated by the above discussions, the object of this paper is to study the stabil-
ity for neural networks with both time-varying delays and impulses on time scale. The
time-varying delays are assumed to be bounded but not necessarily differentiable. The
proposed stability condition in this paper is expressed in terms of LMI, which is easy
to be checked by recently developed algorithms solving LMIs. Furthermore, A simula-
tion example is given to show the effectiveness and less conservatism of the obtained
conditions.

Notations: The notations are quite standard. The subscript T denotes the matrix trans-
position. The notation X ≥ Y (respectively, X > Y) means that X − Y is positive semi-
definite (respectively, positive definite). ρmax(A) and ρmin(A) is defined as the maxi-
mum and minimum eigenvalue of matrix A, respectively. Set [−τ, b]� is defined as:
[−τ, b]� := {t ∈ �,−τ ≤ t ≤ b}. And we also have that, the time scale � has a bounded
graininess μ(t) ≤ μ < ∞. Sometimes, the arguments of a function or a matrix will be
omitted in the analysis when no confusion can arise.

2 Problem Formulation and Preliminaries

In this paper, we consider the following neural network model on time scale �. � is an
arbitrary nonempty closed subset of �.

{
xΔ(t) = −Cx(t) + D f ∗(x(t)) + E f ∗(x(t − τ(t))) + J t > 0, t � tk,
Δx(tk) = I(x(tk)) k ∈ �+, (1)

for t ∈ �, where xΔ(t) is the Delta derivative of function x(t), which means that

xΔ(t) =

⎧⎪⎨⎪⎩ lims→t
x(t)−x(s)

t−s , σ(t) = t,
x(σ(t))−x(t)
σ(t)−t , σ(t) > t,

with σ(t) := inf{s ∈ � : s > t}.
The initial conditions of system (1) are of the forms

xi(s) = φi(s), s ∈ [−τ, 0]�,

with φi(s) is bounded and continuous on [−τ, 0]�.
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In system (1), x(t) = (x1(t), x2(t), · · · , xn(t))T , xi(t) is the state of ith neuron at time
t. f ∗(x(t − τ(t))) = ( f ∗1 (x1(t − τ1(t))), f ∗2 (x2(t − τ2(t))), · · · , f ∗n (xn(t − τn(t))))T , f ∗i (xi(tk))
is the activation function of ith neuron. I(x(tk)) = (I1(x1(tk)), I2(x2(tk))T , · · · , In(xn(tk))),
Ii(·) is the impulsive operator with Ii(xi(tk)) = xi(t+k )− xi(t−k ). J = (J1, J2, · · · , Jn)T is the
constant input vector. τ(t) responds to the discrete delay of neural networks which satis-
fies if t ∈ �, then t−τ(t) ∈ � and 0 ≤ τ(t) ≤ τ (τ is a constant). C = diag(c1, c2, · · · , cn),
d = (di j)n×n and E = (ei j)n×n stand for the interconnection matrices representing the
weight coefficients of the neurons. Δx(tk) = I(x(tk)) = x(t+k )− x(t−k ) is the impulse at the
moment tk, tk is a strictly increasing sequence such that limk→+∞ tk = +∞.

In the following, we will give several useful definitions.

Definition 1. ([10]) Let � be a time scale, we define the graininess μ: �→ �+, by

μ(t) = σ(t) − t.

Definition 2. System (1) is globally stable on time scale �, if there exits a positive
constant M(τ) such that the solution x(t) = (x1(t), · · · , xn(t)) of system (1) satisfies

‖ x(t) ‖≤ M(τ) max{‖ φ(s) ‖�, ‖ φΔ(s) ‖�},
with ‖ φ(s) ‖�= sups∈[−τ,0]� ‖ φ(s) ‖ and ‖ φΔ(s) ‖�= sups∈[−τ,0]� ‖ φΔ(s) ‖.
Definition 3. ([10]) Function f is continuous, if FΔ(t) = f (t), we define the Delta
integral by ∫ t

a
f (s)Δs = F(t) − F(a),

To prove our results, the following lemmas are necessary.

Lemma 1. ([9]) If f and g are two differentiable functions on time scale �, then the
following formula holds

( f g)Δ(t) = f Δ(t)g(t) + f (σ(t))gΔ(t) = gΔ(t) f (t) + g(σ(t)) f Δ(t).

Lemma 2. (Schur complement). Given constant matrices P, Q and R, there PT = P,
QT = Q, then [

P R
RT −Q

]
< 0,

is equivalent to the following conditions Q > 0 and P + RQ−1RT < 0.

Throughout this paper, we make the following assumptions.
(H1) For any i ∈ {1, 2, · · · , n}, the activation function fi(·) is bounded on �.
(H2) For any i ∈ {1, 2, · · · , n} and α1 � α2, the activation function fi(·) satisfies

F−i ≤
f ∗i (α1) − f ∗i (α2)

α1 − α2
≤ F+i ,

where F−i and F+i are some constants.
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(H3) At the points of discontinuity tk, x(tk) = x(tk − 0) and xΔ(tk) = xΔ(tk − 0).
(H4) If x∗ is the equilibrium point of system (1), then the impulsive operator satisfies

I(x(tk)) = −γk(x(tk) − x∗), 0 < γk < 2.

3 Main Results

For presentation convenience, we denote

F1 = diag(F−1 F+1 , · · · , F−n F+n ), F2 = diag(
F−1 + F+1

2
, · · · , F

−
n + F+n

2
).

Theorem 1. If Assumption (H1)-(H4) hold, system (1) is globally stable at equilibrium
point on time scale �, if there exist four symmetric positive definite matrices P, Q, Q1,
Q2, two positive diagonal matrices R = diag(r1, r2, . . . , rn) and H = diag(h1, h2, . . . , hn),
twelve any appropriately dimensioned matrices Ni, Mi (i = 1, 2, . . . , 6), such that the
following LMI holds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ω + Π + ΠT √τN √τM

∗ −Q2 0
∗ ∗ −Q2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ < 0, (2)

where
N = [NT

1 ,N
T
2 ,N

T
3 ,N

T
4 ,N

T
5 ,N

T
6 ]T , M = [MT

1 ,M
T
2 ,M

T
3 ,M

T
4 ,M

T
5 ,M

T
6 ]T ,

Π = [N, 0, 0,M − N, 0,−M],

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 Ω13 0 0 0
∗ Ω22 Ω23 0 0 0
∗ ∗ Ω33 0 0 0
∗ ∗ ∗ Ω44 Ω45 0
∗ ∗ ∗ ∗ Ω55 0
∗ ∗ ∗ ∗ ∗ Ω66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with
Ω11 = μCT PC + τCT Q2C + Q1 − PC −CT P − F1R,
Ω12 = −μCT PD − τCT Q2D + 1

2 (PD + DT P) + F2R,
Ω13 = −μCT PE − τCT Q2E + 1

2 (PE + ET P),
Ω22 = μDT PD + Q + τDT Q2D − R, Ω23 = μDT PE + τDT Q2E,
Ω33 = μET PE + τET Q2E − H, Ω34 = F2H, Ω44 = −F1H, Ω55 = −Q, Ω66 = −Q1.

Proof. Due to the boundedness of activation function, system (1) has a unique equilib-
rium point x∗ = (x∗1, x

∗
2, . . . , x

∗
n) [7].

First, we consider t > 0, t � tk for all k = 1, 2, · · · .
Let w(t) = xi(t) − x∗i and fi(wi(t)) = f ∗i (wi(t) + x∗i ) − f ∗i (x∗i )(i = 1, 2, . . . , n), system

(1) without impulses can be rewritten into

wΔ(t) = −Cw(t) + D f (w(t)) + E f (w(t − τ(t))), (3)

where f (w(t)) = [ f1(w1(t)), f2(w2(t)), . . . , fn(wn(t))]T .
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By Assumption (H2), it is easy to see that

F−j ≤
f j(wj(t))

wj(t)
≤ F+j ,

for all wj(t) � 0.
From Assumption (H2), the following inequality holds,

[
w(t)

f (w(t))

]T ⎡⎢⎢⎢⎢⎢⎣ F−i F+i eieT
i − F−i +F+i

2 eieT
i

− F−i +F+i
2 eieT

i eieT
i

⎤⎥⎥⎥⎥⎥⎦
[

w(t)
f (w(t))

]
≤ 0, i = 1, 2, · · · , n,

where er denotes the unit column vector having 1 element on its rth row and zeros
elsewhere.

Let R = diag(r1, r2, · · · , rn),, H = diag(h1, h2, · · · , hn), we have

α1(t) =

[
w(t)

f (w(t))

]T [
F1R −F2R
−F2R R

] [
w(t)

f (w(t))

]
≤ 0.

Similarly, we have

α2(t) =

[
w(t − τ(t))

f (w(t − τ(t)))
]T [

F1H −F2H
−F2H H

] [
w(t − τ(t))

f (w(t − τ(t)))
]
≤ 0.

Let N = [NT
1 ,N

T
2 ,N

T
3 ,N

T
4 ,N

T
5 ,N

T
6 ]T and M = [MT

1 ,M
T
2 ,M

T
3 ,M

T
4 ,M

T
5 ,M

T
6 ]T . From

Newton-Leibniz formula, we obtain

α3(t) = 2γT (t)M[w(t − τ(t)) − w(t − τ) −
∫ t−τ(t)

t−τ
wΔ(s)Δs],

α4(t) = 2γT (t)N[w(t) − w(t − τ(t)) −
∫ t

t−τ(t)
wΔ(s)Δs],

where γ(t) = [wT (t), f T (w(t)), f T (w(t − τ(t)),w(t − τ(t)), f T (w(t − τ)),w(t − τ)].
Consider the following Lyapunov-Krasovskii functional candidate

V(t) = wT (t)Pw(t) +
∫ t

t−τ
f T (w(s))Q f (w(s))Δs +

∫ t

t−τ
wT (s)Q1w(s)Δs (4)

+

∫ t

t−τ

∫ t

θ

(wΔ(s))T Q2wΔ(s)ΔsΔθ.
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Calculate the Delta derivative of V(t) along the trajectories of system (1), we obtain

VΔ(t) ≤ wT (t)(μCT PC + τCT Q2C + Q1 − PC −CT P)w(t)

+wT (t)(−μCT PD − τCT Q2D +
1
2

(PD + DT P)) f (w(t))

+wT (t)(−μCT PE − τCT Q2E +
1
2

(PE + ET P)) f (w(t − τ(t)))
+ f T (w(t))(μDT PD + Q + τDT Q2D) f (w(t))

+ f T (w(t))(μDT PE + τDT Q2E) f (w(t − τ(t)))
+ f T (w(t − τ(t)))(μET PE + τET Q2E) f (w(t − τ(t)))
− f T (t − τ)Q f (w(t − τ)) − wT (t − τ)Q1w(t − τ) − α(1) − α(2) + α(3) + α(4).

≤ γT (t)[Ω + Π + ΠT + τNQ−1
2 NT + τMQ−1

2 MT ]γ(t)

−[
∫ t

t−τ(t)
(NTγ(t) + Q2wΔ(s))T Q−1

2 (NTγ(t) + Q2wΔ(s))Δs]

−[
∫ t−τ(t)

t−τ
(MTγ(t) + Q2wΔ(s))T Q−1

2 (MTγ(t) + Q2wΔ(s))Δs]

≤ γT (t)[Ω + Π + ΠT + τNQ−1
2 NT + τMQ−1

2 MT ]γ(t).

Let Θ = Ω + Π + ΠT + τNQ−1
2 NT + τMQ−1

2 MT . If Θ < 0, by Lemma 2, Θ < 0 is
equivalent to the following linear matrix inequality

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ω + Π + ΠT √τN √τM

∗ −Q2 0
∗ ∗ −Q2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ < 0,

It is easy to see that Θ < 0 is implied by LMI condition (2), in other words, LMI
condition (2) implies the following inequality holds

VΔ(t) ≤ 0, t ∈ �. (5)

Then, from Definition 3, formula (5) is equivalent to

V(t) ≤ V(0). (6)

On the other hand, if t = tk for all k = 1, 2, · · · , we can deduce that

V(tk + 0) − V(tk) = wT (tk + 0)Pw(tk + 0) +
∫ tk+0

tk+0−τ
f T (w(s))Q f (w(s))Δs

+

∫ tk+0

tk+0−τ
wT (s)Q1w(s)Δs +

∫ tk+0

tk+0−τ

∫ tk+0

θ

(wΔ(s))T Q2wΔ(s)ΔsΔθ

−(wT (tk)Pw(tk) +
∫ tk

tk−τ
f T (w(s))Q f (w(s))Δs +

∫ tk

tk−τ
wT (s)Q1w(s)Δs

+

∫ tk

t−τ

∫ tk

θ

(wΔ(s))T Q2wΔ(s)ΔsΔθ)

= γk(γk − 2)wT (tk)Pw(tk). (7)
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Since 0 < γk < 2, we know that V(tk + 0) ≤ V(tk). It follows that V(t) < V(0) for t > 0.
Now, we denote

W = diag(L1, L2, · · · , Ln),

with Li = max{|F+i |, |F−i |}.
From (4) and (6), we obtain

V(0) ≤ wT (0)Pw(0) +
∫ 0

−τ
f T (w(s))Q f (w(s))Δs +

∫ 0

−τ
wT (s)Q1w(s)Δs

+

∫ 0

−τ

∫ 0

−τ
(wΔ(s))T Q2wΔ(s)ΔsΔθ

≤ ρmax(P) ‖ φ(s) ‖� +ρmax(WT QW) ‖ φ(s) ‖� +τρmax(Q1) ‖ φ(s) ‖�
+τ2ρmax(Q2) ‖ φΔ(s) ‖� . (8)

Let N1(τ) = max{ρmax(P), ρmax(WT QW), τρmax(Q2)}, N2(τ) = τ2ρmax(Q2), we can get

V(0) ≤ N1(ε) ‖ φ(s) ‖� +N2(ε) ‖ φΔ(s) ‖� .
It is obvious that V(t) ≥ ρmin(P) ‖ w(s) ‖, we obtain

‖ w(s) ‖≤ N1(τ)
ρmin(P)

‖ φ(s) ‖� + N2(τ)
ρmin(P)

‖ φΔ(s) ‖� .

Let M(ε) = max{ N1(τ)
ρmin(P) ,

N2(τ)
ρmin(P) }. We can finally get

‖ w(t) ‖≤ M(τ) max{‖ φ(s) ‖�, ‖ φΔ(s) ‖�}.
Therefore, from Definition 2, system (3) is globally stable at origin on time scale �,

which guarantees the global stability of system (1) at equilibrium point on time scale
�. The proof is completed.

4 Example

The following example is given to show the effectiveness of the delay-dependent global
stability result in Theorem 1.

Example 1. Consider a time-varying delayed neural network model with impulses on a
special time scale � =

⋃+∞
k=0[2k, 2k + 1] with the following parameters

C =

[
0.7 0
0 0.8

]
, D =

[−0.2 −0.2
−0.1 −0.1

]
, E =

[−0.15 0.2
−0.1 0.15

]
,

J = [0.88, 0.64]T , f1(x) =
1

20
(|x + 1| − |x − 1|), f2(x) =

1
10

(|x + 1| − |x − 1|),
τ(t) = 0.1| sin(t)|.

The impulse operator is chosen as I(x1(tk)) = − (1 + sin(tk))(x1(tk) − 1.1972) and
I(x2(tk)) = − (1 + cos(tk))(x2(tk) − 0.7826), respectively.
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It is easy to check that the graininess μ(t) of� satisfies 0 ≤ μ(t) ≤ 1; the time-varying
delays τ(t) are continuous with upper bound τ = 0.1. However τ(t) is not differentiable
at t = kπ(k = 0,±1,±2, . . .).

It can be verified that Assumption (H1) is satisfied with F−1 = −0.1, F+1 = 0.1,
F−2 = −0.2, F+2 = 0.2. Thus

F1 =

[−0.01 0
0 −0.04

]
, F2 =

[
0 0
0 0

]
.

By employing Matlab LMI Toolbox, we can get the solution of LMI condition (2) as
follows, which guarantees the stability for system (1) at equilibrium point.

P =

[
28.3335 −15.0795
−15.0795 50.9139

]
, Q =

[
7.1186 −0.6671
−0.6671 6.8731

]
,

Q1 =

[
18.3513 −7.0831
−7.0831 29.5969

]
, Q2 =

[
26.5456 −0.1513
−0.1513 26.6786

]
,

M1 =

[−2.8279 0.1344
0.1344 −3.1357

]
, M2 =

[−5.6673 0.3653
−0.0483 −5.7382

]
, M3 =

[
0.1598 −0.8102
0.7231 −0.1779

]
,

M4 =

[−0.6916 2.8220
2.8220 −5.3000

]
, M5 =

[−2.3969 −0.0814
−0.0814 −2.4268

]
, M6 =

[
3.5850 3.2385
3.2385 −1.5651

]

N1 =

[−9.7959 −3.2385
−3.2385 −4.8423

]
,N2 =

[−11.9014 0.7672
−0.1014 −12.0503

]
.N3 =

[
0.3356 −1.7015
1.5185 −0.3735

]
,

N4 =

[
12.3514 2.8220
2.8220 8.1556

]
,N5 =

[
2.3969 0.0814
0.0814 2.4268

]
, N6 =

[
3.3831 0.1344
0.1344 3.2717

]

R =

[
20.2026 0

0 19.7715

]
,H =

[
27.5439 0

0 28.2730

]
,

The time responses of system (1) with or without impulses on � are given, please
see Fig 1 and Fig 2, respectively. The initial states of system (1) are φ1(s) = sin(s) and
φ2(s) = cos(s), s ∈ [−0.1, 0]�.

5 Conclusions

This paper has proposed an LMI formed condition to ensure the stability of neural net-
works with impulses on time scale by employing time scale calculus, linear matrix tech-
nique and free weight matrix method. The differentiability on the time-varying delays
were not required. The developed stability conditions are in terms of LMIs, which can
be checked easily by recently developed algorithms solving LMIs. Simulation example
is employed to illustrate the theories.
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Networks with Time-Varying Delays
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Abstract. In this paper, the problem on synchronization of two non-
identical chaotic neural networks with time-varying delays is investi-
gated. By constructing a proper sliding surface, and employing a com-
bination of the free-weighting matrix method, inequality technique and
Lyapunov theory, a sliding mode controller is designed to achieve the
asymptotical synchronization of two nonidentical chaotic neural networks
with time-varying delays. The provided condition is expressed in terms
of linear matrix inequalities (LMIs), and is dependent on the time delay.
A simulation example is given to show the effectiveness.

Keywords: Synchronization, Chaotic neural networks, Time-varying
delays, Integral sliding mode control.

1 Introduction

Since the drive-response concept for considering synchronization of two chaotic
systems was proposed in 1990 [1], the synchronization of chaotic systems has
attracted considerable attention due to its benefits of having chaos synchroniza-
tion in some engineering applications such as secure communication, chemical
reactions, information processing and harmonic oscillation generation [2, 3]. It
has been shown that neural networks can exhibit complicated dynamics and even
chaotic behavior if the parameters and time delays are appropriately chosen for
the neural networks [4,5]. Therefore, some chaotic neural networks with delays
could be as models when we study the synchronization [6].

Recently, some works dealing with synchronization phenomena in delayed neu-
ral networks have also appeared, for example, see [6]-[12] and references therein.
In [6]-[9], the coupled connected neural networks with delays were considered,
several sufficient conditions for synchronization of such neural networks were ob-
tained by Lyapunov stability theory and the linear matrix inequality technique. In
[10]-[12], authors investigated the synchronization problem of some chaotic neu-
ral networks with delays. Using the drive-response concept, the control laws were
derived to achieve the synchronization of two identical chaotic neural networks.

It is worth pointing out that, the reported works in [6]-[12] focused on synchro-
nizing of two identical chaotic neural networks with different initial conditions.
In practice, the chaotic systems are inevitably subject to some environmental

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 213–221, 2011.
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changes, which may render their parameters to be variant. Furthermore, from
the point of view of engineering, it is very difficult to keep the two chaotic
systems to be identical all the time. Therefore, it is important to study the syn-
chronization problem of nonidentical chaotic neural networks. Obviously, when
the considered drive and response neural network are distinct and with time de-
lay, it becomes more complex and challenging. On the study for synchronization
problem of two nonidentical chaotic systems, one usually adopt adaptive con-
trol approach to establish synchronization conditions, for example, see [13] and
references therein. Recently, the integral sliding mode control approach is also
employed to investigate synchronization of nonidentical chaotic delayed neural
networks [14,15]. In [14], an integral sliding mode control approach is proposed
to address synchronization for two nonidentical chaotic neural networks with
constant delay. Based on the drive-response concept and Lyapunov stability
theory, both delay-independent and delay-dependent conditions in LMIs are de-
rived under which the resulting error system is globally asymptotically stable in
the specified switching surface, and a sliding mode controller is synthesized to
guarantee the reachability of the specified sliding surface. In [15], the projective
synchronization for two nonidentical chaotic neural networks with constant delay
was investigated, a delay-dependent sufficient condition was derived by sliding
mode control approach, LMI technique and Lyapunov stability theory.

However, when the considered neural networks are with time-varying delays
which are not differentiable, it may be difficult to use the approaches in [14,15]
to investigate synchronization of two nonidentical chaotic neural networks with
time-varying delays. In addition, these results in [14,15] have conservatism to
some extent due to technicality of structuring Lyapunov function, which exist
room for further improvement.

Motivated by the above discussions, the objective of this paper is to presents
a systematic design procedure for synchronization of two nonidentical chaotic
neural networks with time-varying delays.

2 Problem Formulation and Preliminaries

In this paper, we consider the following neural network model

ẏ(t) = −C1y(t) + A1f(y(t)) + B1f(y(t− τ(t))) + J1(t), t ≥ 0, (1)

where y(t) = (y1(t), y2(t), · · · , yn(t))T ∈ Rn is the state vector of the network at
time t, n corresponds to the number of neurons; C1 ∈ R

n×n is a positive diagonal
matrix, A1, B1 ∈ Rn×n are, respectively, the connection weight matrix, the de-
layed connection weight matrix; f(y(t)) = (f1(y1(t)), f2(y2(t)), · · · , fn(yn(t)))T ∈
Rn denotes the neuron activation at time t; J1(t) ∈ Rn is an external input vec-
tor; τ(t) denotes the time-varying delay. It is assumed that the measured output
of system (1) is dependent on the state and the delayed states with the following
form:

w(t) = Dy(t) + Ey(t− τ(t)), (2)

where w(t) ∈ R
m, D,E ∈ R

m×n are known constant matrices.
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The initial condition associated with model (1) is given by

y(s) = φ(s), s ∈ [−τ, 0],

where φ(s) is bounded and continuously differential on [−τ, 0].
We consider the system (1) as the drive system. The response system is as

follows

ż(t) = −C2z(t) + A2g(z(t)) + B2g(z(t− τ(t))) + J2(t) + u(t), t ≥ 0, (3)

with initial condition z(s) = ϕ(s), s ∈ [−τ, 0], where ϕ(s) is bounded and
continuously differential on [−τ, 0]; C2 ∈ R

n×n is a positive diagonal matrix,
A2, B2 ∈ Rn×n are, respectively, the connection weight matrix, the delayed con-
nection weight matrix; g(z(t)) = (g1(z1(t)), g2(z2(t)), · · · , gn(zn(t)))T ∈ Rn de-
notes the neuron activation at time t; J2(t) ∈ Rn is an external input vector;
u(t) is the appropriate control input that will be designed in order to obtain a
certain control objective.

Let x(t) = y(t)−z(t) be the error state, then the error system can be obtained
from (1) and (3) as follows

ẋ(t) = −C1x(t) + A1h(x(t)) + B1h(x(t − τ(t)))
+(C2 − C1)z(t) −A2g(z(t)) −B2g(z(t− τ(t)))
+A1f(z(t)) + B1f(z(t− τ(t))) − u(t) + J1(t) − J2(t), (4)

where h(x(t−τ(t))) = f(y(t−τ(t)))−f(z(t−τ(t))), and x(s) = φ(s)−ϕ(s), s ∈
[−τ, 0].

Definition 1. The drive system (1) and the response system (3) are said to be
globally asymptotically synchronized, if system (4) is globally asymptotically stable.

The aim of the paper is to design a controller u(t) to let the response system (3)
synchronizes with the drive system (1).

Since dynamic behavior of error system (4) relies on both error state z(t)
and chaotic state z(t) of response system (3), complete synchronization between
two nonidentical chaotic neural networks (1) and (3) cannot be achieved only
by utilizing output feedback control. To overcome the difficulty, an integral slid-
ing mode control approach will be proposed to investigate the synchronization
problem of two nonidentical chaotic neural networks (1) and (3). That is, an in-
tegral sliding mode controller is designed such that the sliding motion is globally
asymptotically stable, and the state trajectory of the error system (4) is globally
driven onto the specified sliding surface and maintained there for all subsequent
time.

To utilize the information of the measured output w(t), a suitable sliding
surface is constructed as

S(t) = x(t) +
∫ t

0

[
C1x(ξ) −A1h(x(ξ)) −B1h(x(ξ − τ(ξ)))

+K
(
w(ξ) −Dz(ξ) − Ez(ξ − τ(ξ))

)]
dξ, (5)

where K ∈ R
n×m is a gain matrix to be determined.
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It follows from (2), (4) and (5) that

S(t) = x(0) +
∫ t

0

[
(C2 − C1)z(ξ) −A2g(z(ξ)) −B2g(z(ξ − τ(ξ)))

+A1f(z(ξ)) + B1f(z(ξ − τ(ξ))) − u(ξ) + J1(ξ) − J2(ξ)

+KDx(ξ) + KEx(ξ − τ(ξ))
)]

dξ. (6)

According to the sliding mode control theory [16], it is true that S(t) = 0 and
Ṡ(t) = 0 as the state trajectories of the error system (4) enter into the sliding
mode. It thus follows from (6) and Ṡ(t) = 0 that an equivalent control law can
be designed as

u(t) = (C2 − C1)z(t) −A2g(z(t)) −B2g(z(t− τ(t))) + A1f(z(t))
+B1f(z(t− τ(t))) + J1(t) − J2(t) + KDx(t) + KEx(t− τ(t)). (7)

Substituting (7) into (4), the sliding mode dynamics can be obtained and de-
scribed by

ẋ(t) = −(C1 + KD)x(t) −KEx(t− τ(t)) + A1h(x(t)) + B1h(x(t − τ(t))).(8)

Throughout this paper, we make the following assumptions:
(H1). There exists constant τ > 0 such that

0 ≤ τ(t) ≤ τ.

(H2). For any j ∈ {1, 2, · · · , n}, there exist constants F−
j and F+

j such that

F−
j ≤ fj(α1) − fj(α2)

α1 − α2
≤ F+

j

for all α1 �= α2.

3 Main Result

For presentation convenience, in the following, we denote

F1 = diag(F−
1 F+

1 , · · · , F−
n F+

n ), F2 = diag(
F−

1 + F+
1

2
, · · · , F

−
n + F+

n

2
).

F− = diag(F−
1 , F−

2 , · · · , F−
n ), F+ = diag(F+

1 , F+
2 , · · · , F+

n ).

Theorem 1. Assume that the conditions (H1) and (H2) hold and the measured
output of drive neural network (1) is condition (2). If there exist a symmetric
positive definite matrix P , an inverse matrix Q, four positive diagonal matrices
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R, L, W and S, and seven matrices Y , Xij (i, j = 1, 2, 3, i ≤ j) such that the
following two LMIs hold:

X =

⎡⎣X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤⎦ > 0, (9)

Ω =

⎡⎢⎢⎢⎢⎣
Ω11 Ω12 Ω13 F2W 0
∗ Ω22 −Y E Ω24 QB1

∗ ∗ Ω33 0 F2S
∗ ∗ ∗ −W 0
∗ ∗ ∗ ∗ −S

⎤⎥⎥⎥⎥⎦ < 0, (10)

where Ω11 = τX11+X13+XT
13−F1W , Ω12 = P−RF−+LF+−C1Q

T −DTY T ,
Ω13 = τX12 − X13 + XT

23, Ω22 = −Q − QT + τX33, Ω24 = R − L + QA1,
Ω33 = τX22 − X23 − XT

23 − F1S, then the response neural network (3) can
globally asymptotically synchronize the drive neural network (1), and the gain
matrix K can be designed as

K = Q−1Y. (11)

Proof. Consider the following Lyapunov-Krasovskii functional as

V (t) = xT (t)Px(t) +
∫ 0

−τ

∫ t

t+ξ

ẋT (s)X33ẋ(s)dsdξ

+2
n∑

i=1

ri

∫ xi(t)

0

(hi(s) − F−
i s)ds + 2

n∑
i=1

li

∫ xi(t)

0

(F+
i s− hi(s))ds

+
∫ t

0

∫ ξ

ξ−τ(ξ)

νT (ξ, s)Xν(ξ, s)dsdξ, (12)

where ν(ξ, s) = (xT (ξ), xT (ξ − τ(ξ)), ẋT (s))T , R = diag{r1, r2, · · · , rn}, L =
diag{l1, l2, · · · , ln}.

Calculating the time derivative of V (t), we obtain

dV (t)
dt

= 2xT (t)P ẋ(t) + τẋT (t)X33ẋ(t) −
∫ t

t−τ

ẋT (s)X33ẋ(s)ds

+2ẋT (t)R
(
h(x(t)) − F−x(t)

)
+ 2ẋT (t)L

(
F+x(t) − h(x(t))

)
+τ(t)

(
x(t)

x(t− τ(t))

)T (
X11 X12

XT
12 X22

)(
x(t)

x(t− τ(t))

)
+ 2xT (t)X13x(t)

−2xT (t)X13x(t− τ(t)) + 2xT (t− τ(t))X23x(t)

−2xT (t− τ(t))X23x(t− τ(t)) +
∫ t

t−τ(t)

ẋT (s)X33ẋ(s)ds. (13)
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From the trajectories of model (8), we have

0 = 2ẋT (t)Q
[
− ẋ− (C1 + KD)x(t) −KEx(t− τ(t))

+A1h(x(t)) + B1h(x(t− τ(t)))
]
. (14)

For two positive diagonal matrices W and S, we can get from assumption
(H2) that [17] [

x(t)
h(x(t))

]T [
F1W −F2W
−F2W W

] [
x(t)

h(x(t))

]
≤ 0. (15)

[
x(t− τ(t))

h(x(t − τ(t)))

]T [
F1S −F2S
−F2S S

] [
x(t − τ(t))

h(x(t − τ(t)))

]
≤ 0. (16)

It follows from inequalities (13)-(16) and assumption (H1) that

dV (t)
dt

≤ xT (t)(τX11 + 2X13 − F1W )x(t)

+2xT (t)(P1 −RF− + LF+ − C1Q
T −DTKTQT )ẋ(t)

+2xT (t)(τX12 −X13 + XT
23)x(t− τ(t)) + 2xT (t)F2Wh(x(t))

+ẋT (t)(−2Q + τX33)ẋ(t) − 2ẋT (t)QKEx(t− τ(t))
+2ẋT (t)(R − L + QA1)h(x(t)) + 2ẋT (t)QB1h(x(t− τ(t)))
+xT (t− τ(t))(τX22 − 2X23 − F1S)x(t− τ(t))
+2xT (t− τ(t))F2Sh(x(t− τ(t))) − hT (x(t))Wh(x(t))
−hT (x(t− τ(t)))Sh(x(t − τ(t)))

= αT (t)Ωα(t). (17)

From (10) and (17), we know that the error dynamical system (8) is glob-
ally asymptotically stable by the Lyapunov stability theory. Accordingly, the
response neural network (3) can globally asymptotically synchronize the drive
neural network (1). The proof is completed.

4 An Example

In the drive neural network (1), we set

C1 =
[
1.1 0
0 1

]
, A1 =

[
2.5 −0.1
−5.2 3.2

]
, B1 =

[
−1.6 −0.2
−0.3 −2.5

]
, J1 =

[
−0.8 cos(2t)
3 sin(0.1t)

]
,

f1(y) = f2(y) = tanh(y), τ(t) = 1 + 0.1| sin t|.
Then the dynamical behavior of neural network (1) with initial condition y1(s) =
−0.03, y2(s) = −0.1, s ∈ [−1.1, 0] exhibits a chaotic behavior as shown Fig. 1.

The parameters of the measured output (2) are given as

D =
[

0.5 0
0.1 −0.1

]
, E =

[
0.9 0
0.1 0

]
.
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Fig. 1. Chaotic behavior of system (1)

The response neural network (3) is considered as

C2 =
[

1 0
0 1.2

]
, A2 =

[
1 + π

4 20
0.1 1 + π

4

]
, B2 =

[
−1.3

√
2π 0.1

0.1 −1.3
√

2π

]
,

J2 =
[

0.1 sin(2t)
−0.023 cos(4t)

]
, g1(z) = g2(z) =

1
2
(|z + 1| − |z − 1|).

Then the dynamical behavior of neural network (3) with initial condition z1(s) =
0.02, z2(s) = 0.03, s ∈ [−1.1, 0] exhibits a chaotic behavior as shown Fig. 2.
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Fig. 2. Chaotic behavior of system (3) without the controller u(t)

It can be verified that assumptions (H1) and (H2) are satisfied, and F1 = 0,
F2 = diag{0.5, 0.5}, F− = 0, F+ = diag{1, 1}.

By the Matlab LMI Control Toolbox, we find a solution to the LMIs in (8)
and (9), and obtain the gain matrix K as

K = 107

[
−0.0010 0.0086
−0.1672 1.5048

]
.
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By Theorem 1, we know that the response neural network (3) can globally asymp-
totically synchronize the drive neural network (1).

5 Conclusions

In this paper, the synchronization of two nonidentical chaotic neural networks
with time-varying delays has been investigated. By use of the sliding mode con-
trol theory, and employing a combination of the free-weighting matrix method,
inequality technique and Lyapunov theory, a sliding mode controller has been
designed to achieve the asymptotical synchronization of two nonidentical chaotic
neural networks with time-varying delays. The provided condition is expressed
in terms of linear matrix inequalities (LMIs), and is dependent on the time de-
lay. A simulation example has been also given to show the effectiveness of the
obtained result.
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Abstract. In this paper, we consider the following equation

∂h(u)

∂t
= Δu + a(x, t)f(u), Ω × (0, T ),

with initial condition and third boundary condition. By constructing
an auxiliary function and using maximum principles, we established a
sufficient conditions for the blow-up of solutions. The blow-up rate and
the blow-up set were also considered under appropriate assumption. This
result generalizes and improves earlier results in literatures.

Keywords: Blow up, Blow-up rate, Blow-up set.

1 Introduction

In this work, we study the following equation

∂h(u)
∂t

= Δu + a(x, t)f(u), in Ω × (0, T ) (1)

∂u

∂n
+ b(x, t)g(u) = 0, on ∂Ω × (0, T ) (2)

u(x, 0) = u0(x), in Ω, (3)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω; ∂/∂n repre-
sents the outward normal derivative on ∂Ω; a(x, t) and b(x, t) are nonnegative
functions. For s > 0, h(s), f(s), g(s) are positive and increasing functions.

The problem of blow-up solution for nonlinear parabolic equations with dif-
ferent boundary conditions has been investigated extensively by many authors
(see[1-14]). For example, Imai and Mochizuki [8] studied the following problem:⎧⎨⎩

(h′(u))t = Δu + f(u), in Ω × (0, T )
∂u
∂n = 0, on ∂Ω × (0, T )
u(x, 0) = u0(x) > 0, in Ω,

(4)

where Ω is a bounded domain of RN with smooth boundary. Ding and Gao [2]
studied the problem⎧⎨⎩

(h(u))t = ∇ · (a(u, t)b(x)∇u) + g(t)f(u), in Ω × (0, T )
∂u
∂n = 0, on ∂Ω × (0, T )
u(x, 0) = u0(x) > 0, in Ω,

(5)
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where Ω is a bounded domain of RN with smooth boundary. The sufficient
conditions were obtained there for the global solution and blow-up solution.
Meanwhile, the upper estimate of ”blow-up rate” were also given.

In this paper, we main consider the blow-up results to problem (1)-(3). In
the last decades, some special cases of the problem had been considered, and
the reader is referred to [4, 7] and the references therein. By constructing an
auxiliary function and using maximum principles, we established a sufficient
conditions for the blow-up of solutions. The blow-up rate and the blow-up set
were also considered under appropriate assumption. Our main results are as
follows.

Theorem 1. Let at(x, t) ≥ 0, bt(x, t) ≤ 0, a(x, t) ≥ a0 > 0. Δu0(x) + a(x, 0)
f(u0(x)) > 0. Suppose that there exist a function F (s) and a positive constant
A such that

F (s) ≥ 0, F ′(s) ≥ 0, F ′′(s) ≥ 0 for s > 0 (6)

f ′(s)F (s) − F ′(s)f(s) − h′′(s)F 2(s) ≥ 0 for s > 0 (7)

F ′(s)g(s) − F (s)g′(s) ≥ 0 for s ≥ A and
∫ ∞

1

ds

F (s)
< ∞, (8)

Then the solution of (1)-(3) blows up in a finite time and there exists a positive
constant δ such that

sup
x∈Ω̄

u(x, t) ≤ H(δ(T − t)), (9)

where H(s) is the inverse function of G(s) =
∫∞

s
dy

F (y) .

Theorem 2. If the above conditions in Theorem 1 are satisfied, and additional
suppose that 0 < a0 ≤ a(x, t) ≤ a1 < ∞, and G0(s) =

∫∞
1

h′(y)dy
f(y) < +∞. We

deduce that
sup
x∈Ω̄

u(x, t) ≥ H0(a1(T − t)).

where H0 is the inverse function of G0(s) =
∫∞

s
h′(y)dy

f(y) .

We give special case of problem (1)-(3) where h(u) = um, f(u) = up, g(u) = uq,
and the other conditions in Theorem 1and Theorem 2 are satisfied. Then we
have the following corollary.

Corollary 1. If u is the solution of the following problem

∂um

∂t
= Δu + a(x, t)up, in Ω × (0, T )

∂u

∂n
+ b(x, t)uq = 0, on ∂Ω × (0, T )

u(x, 0) = u0(x), in Ω,



224 L.N. Zhao

where m, p, q > 0, p > m + 1 and p > m + q − 1, then u(x, t) must blows up in
finite time T , and there is a constant c0 and c1 such that

C0

(T − t)1/1(p−m)
≤ u(x, t) ≤ C0

(T − t)1/(p−m)
.

Friedam et al. in [5] discussed the blow-up set for a special case of problem (1)-
(3). By using their method, we also obtain the same result to the general problem
(1)-(3). For this, We consider the case when the initial value is radially symmetric
and radially decreasing in a spherical domain Ω = B(R) = {|x| ≤ R} ⊂ Rn.
And we also suppose a(x, t) = a(t), b(x, t) = b(t) with at ≥ 0, bt ≤ 0, and
the initial value u0(x) is a radially symmetric function, and u′(0) = u′(R) +
b(0)g(u0(R)) = 0. By the uniqueness, we see that the solution is also radially
symmetric and can be written as u(r, t). For the nonlinear term f we assume
in addition the following condition (F1): There ia a function F = F (u) such
that

(i) F (s) ≥ 0, F ′(s) ≥ 0 and F ′′(s) ≥ 0 for s > 0
(ii)

∫∞
1

ds
F (s) < +∞

(iii) for each (large) U > 0, there is a constant c = c(U) > 0 such that

f ′(s)F (s) − f(s)F ′(s) ≥ cF (s)F ′(s), for s ≥ U.

Theorem 3. Assume that

h(s) ≥ 0, h′(s) ≥ 0, h′′(s) ≤ 0, for s > 0 (10)

and

u0(r) > 0, u′
0(r) ≤ 0, u′

0(r) �= 0, for r ∈ (0, R) (11)
Δu0 + a(x, 0)f(u0) > 0. (12)

Let the solution blows up in a finite time, then its blow up set is consist of single
point x = 0.

Remark 1. It from (12) and the maximum principle that ut ≥ 0, in (0, t) ×Ω.

Remark 2. If the condition F1 is satisfied, then for each M > 0, there is a con-
stant C = C(M) > 0, such that

f ′(s)F (s) − f(s)F ′(s) ≥ MF (s), s > C. (13)

By (i) and (ii) of F1, we have F ′(s) → ∞ as s → ∞. Thus, for fixed U > 0
and c > 0 satisfying (iii), we can get cF ′(s) ≥ M , s ≥ C for a sufficiently large
constant C = C(M) ≥ c(U), which yields (13).

The rest of this paper is organized as follows. In section 2, we proof Theorem
1and Theorem 2. The proof of Theorem 3 is presented in Section 3.
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2 Blow-Up Conditions

Proof. It follows from u0(x) > 0 in Ω and the maximum principle that u(x, t) ≥
0, in Ω×(0, T ). Let w = ut, since w(x, 0) = 1/(h′(u0))(Δu0(x)+a(x, 0)f(u0(x)))
> 0, at(x, t) ≥ 0, bt(x, t) ≤ 0, we have that⎧⎨⎩

(h′(u)w)t −Δw ≥ a(x, t)f ′(u)w, in Ω × (0, T )
∂w
∂n + b(x, t)g′(u)w ≥ 0, on ∂Ω × (0, T )
w(x, 0) > 0, in Ω

(14)

Then by the maximum principle, there exists a constants C and ε0 > 0 such
that

w(x, t) = ut(x, t) ≥ C, in Ω × (ε0, T )

Next we introduce the following function

J(x, t) = ut − δF (u) (15)

where δ will be determined later. At first, we assume δ < inf{a0, C/F (A)}. After
computation we have that

(h′(u)J)t −ΔJ

= ((h(u))t −Δu)t − δF ′((h(u)t) −Δu) + δ′′|∇u|2 − δh′′(u)F (u)ut

= [a(x, t)f ′(u) − δh′′(u)F (u)]J + a(x, t)δ[f ′(u)F (u) − F ′(u)f(u)]

+ δF ′′(u)|∇u|2 − δ2h′′(u)F 2(u)

≥ δ[f ′(u) − h′′(u)F (u)]J + δ2[f ′(u)F (u) − F ′(u)f(u) − h′′(u)F 2(u)]

+ δF ′′(u)|∇u|2

≥ δ[f(u) − h′′(u)F (u)]J (16)

Thus
(h′(u)J)t −ΔJ − δ[f(u) − h′′(u)F (u)]J ≥ 0 (17)

We next take δ so small such that

J(x, ε0) > 0, in Ω (18)

We now want to show that

J(x, ε0) > 0, in Ω̄ × (ε0, T ) (19)

Suppose that J admits a negative minimum at a point (x0, t0) ∈ Ω̄× (ε0, T ). By
the maximum principle (x0, t0) ∈ ∂Ω × (ε0, T ). At first, suppose u(x0, t0) ≤ A,
since that F is an increasing function, we have

J(x0, t0) ≥ C − δF (A) (20)

Since δ < C/F (A), we get J(x0, t0) > 0, which is a contradiction. Now suppose
that u(x0, t0) > A, the maximum principle implies that

∂J

∂n
+ b(x, t)g′(u)J < 0, at (x0, t0) (21)
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Therefor we have

∂ut

∂n
+ b(x, t)g′(u)ut − δ

[
∂F (u)
∂n

+ b(x, t)g′(u)F (u)
]
< 0, at (x0, t0) (22)

By (2) and (22) we have that

∂F (u)
∂n

+ b(x, t)g′(u)F (u) > 0

And the same time we also have ∂F (u)
∂n = F ′(u) ∂u

∂n = −F ′(u)b(x, t)g(u) Thus we
have g′(u)F (u) − F ′(u)g(u) > 0, which contradicts to (8). Therefor we deduce
that

ut > δF (u), in Ω × (ε0, T ) (23)

That is to say
−(G(u))t =

ut

F (u)
≥ δ (24)

Integrating (24) over (ε0, T ), we have

G(u(x, ε0)) ≥ G(u(x, ε0)) −G(u(x, T )) ≥ δ(T − ε0) (25)

Therefor T is finite and u blows up in a finite time. Integrating again (25) over
(t, T ) we see that

G(u(x, t)) ≥ δ(T − t) (26)

By (8) we obtain that
u(x, t) ≤ H [δ(T − t)].

Proof. In the additional condition, 0 < a0 ≤ δ0 ≤ a1 < ∞ and G0(s) =∫∞
1

h′(s)ds
f(s) < +∞, we will prove the lower bound of the blow-up rate. Put

U(t) = supx∈Ḡ u(x, t), since Ω̄ is compact, there exist xi ∈ Ω̄(i = 1, 2) such
that u(ti) = u(xi, ti) for ti ≥ 0.

h(U(t2)) − h(U(t1)) ≤ h(u(x2, t2)) − h(u(x2, t1))
= (t2 − t1)(h(U(x2, t2)))t + o(t2 − t1) (27)

therefor we have

h(U(t2)) − h(U(t1))
t2 − t1

≤ (h(u(x2, t2)))t + o(1) (28)

We also have that

(h(u(x2, t2)))t ≤ a(x2, t2)f(u(x2, t2)) = a(x2, t2)f(U(t2)) ≤ a1f(U(t2)) (29)

Because Δu(x2, t2) ≤ 0, a(x2, t2) ≤ δ1. Since

lim
t2→t1

h(U(t2)) − h(U(t1))
t2 − t1

= (h(U(t1)))t (30)
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it follows from (28) and (30) that (h(U(t1)))t ≤ a1f(U(t1)). Consequently, we
deduce that

sup
x∈Ω̄

u(x, t) ≥ H0(a1(T − t)),

where H0 is the inverse function of G0(s) =
∫∞

s
h′(y)dy

f(y) . The proof of Theorem
2 is complete.

3 Blow-Up Set

Lemma 1. Suppose that

u0(r) > 0, u′
0(r) ≤ 0, u′

0(r) �= 0 for r ∈ (0, R),

Then we have that

u(r, t) > 0, for (r, t) ∈ (0, t) × [0, R] (31)

and
ur(r, t) < 0, for (r, t) ∈ (0, t) × (0, R). (32)

Proof. The assertion (31) is obtained by the maximum principle and the strong
maximum principle. And the assertion (32) can be shown in a similar way with
the principles applied to the function v = ur, a solution of⎧⎨⎩ (h′(u)v)t = vrr + n−1

r vr − n−1
r2 v + a(t)f ′(u)v, (t, r) ∈ (0, T )× (0, R)

v(0, t) = vr(R, t) + b(t)g′(u(R, t))v(R, t) = 0, t ∈ (0, T )
v(r, 0) = u′

0(r), r ∈ [0, R].
(33)

We have only to show that there is no blow-up point in Ω \ 0, if the assertion is
false, there would be a blow-up point x0 in Ω such that x0 �= 0, r0 = |x0| ∈ (0, R].
In virtue of Lemma (1) we have

lim
t→T

u(t, r) = +∞, for all r ∈ [0, r0)

Let y and z be fixed number such that 0 < y < z < r0/
√
N .

Consider the auxiliary function

J(x, t) = ux1(x, t) + c(x)F (u(t, x)) (34)

with

c(x) = ε
N∏

j=1

sin(μ(xj − y)) (35)

where ε > 0 is to be chosen later, and μ = π/(z − y). Putting G = {x ∈ Ω; y <
xj < z, j = 1, · · ·, N}. We show that there is a time τ ∈ (0, t) sufficiently close
to T and a sufficiently small constant ε > 0, such that

−ux1 ≥ c(x)F (u), for (t, x) ∈ (τ, T ) ×G (36)
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Using Lemma 1, we see that J = J(t, x) satisfies

ux1 < 0, for (t, x) ∈ (τ, T ) × ∂G (37)

Since ux1 = |∇u| cos(e1,−r) < 0, where e1 and r are unit vectors of the positive
x1 direction, and the radial direction, respectively.

On the other hand, we have

(h′(u)J)t = h′′(u)ux1ut + ch′′(u)F (u)ut + h′(u)utx1 + c(x)h′(u)F ′(u)ut, (38)

�J = �ux1 + F (y)�c + 2F ′(∇c · ∇u) + cF ′′|∇u|2 + cF ′�u (39)

Thus we have that

(h′(u)J)t −�J

= ((h(u))t −�u)x1 + cF ′((h(u))t −�u) + cFh′′(u)ut − F�c

− 2F ′(∇c · ∇u) − cF ′′|∇u|2

= a(t)f ′(u)(J − cF ) + cF ′a(t)f(u) + cFh′′ut − 2F ′A(t, x)(J − cF )

+ nμ2cF − cF ′′|∇u|2 (40)

where A(t, x) = 2(∇c·∇u)
ux1

is a bounded function subject to A(t, x) ≤ εc1, in
(0, T )× Ḡ for some constant c1 > 0. This can be obtained by |∇c| ≤ εμ, |∇u| =
|ux1 |/| cos(e1,−r)| = r|ux1 |

x1
and 0 < r/x1 < z/y,for (x, t) ∈ (0, T ) × Ḡ. Thus we

get that

(h′(u)J)t −�J

= (a(t)f ′(u) − 2F ′A)J − a(t)cf ′F + a(t)cF ′f + cFh′′ut + 2F ′AcF

+ nμ2cF − cF ′′|∇u|2 (41)

Then

(h′(u)J)t −Δu− bJ ≤ −a(t)f ′cF + a(t)cF ′f + 2F ′AcF + nμ2F

≤ −c[a(t)f ′F − a(t)F ′f + 2F ′AF + nμ2F ] (42)

where b = b(t, x) = a(t)f ′ + 2F ′A, and b is continuous and locally bounded in
(0, t) × Ḡ. By Remark (2) there exists a constant c = c(2nμ2) > 0, such that

a(t)f ′F − a(t)F ′f ≥ 2nμ2F (43)

for μ > c = c(2nμ2) > 0, By remark (1), there is a time τ ∈ (0, T ), such that

u(x, τ) ≥ c(2nμ2), in G (44)

It follows from (43) that

u(x, t) ≥ c = c(2nμ2), in G× (0, T ) (45)
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Then we deuce that
a(t)f ′F − a(t)F ′f ≥ 2nμ2F (46)

On the other hand, if ε1 > 0 is so small that, c(u(τ, z′)) > 2εc̄ in (iii) of (F1)
where Z ′ = (z, ..., z). Then 0 < ε < ε1 implies

a(t)f ′F − a(t)F ′f ≥ 2εc̃F ′(u)F (u), for (t, x) ∈ (τ, T ) ×G

Since u(t, x) ≥ u(t, z′) for (t, x) ∈ [τ, T ) × Ḡ
By (41) and (46), we see

(h′(u)J)t −Δu− bJ ≤ 0, in (τ, T ) ×G (47)

when t = τ , it can be seen that

J(x, τ) ≤ max
x∈Ḡ

ux1(τ, x) + εF (max
x∈Ḡ

u(r, x)) < 0, for x ∈ Ḡ

provide 0 < ε < ε2 for ε2 so small. By the maximum principle we deduce that
J(x, t) < 0, (t, x) ∈ (τ, T ) ×G. Thus

− ux1

F (u)
≥ c(x)

Then putting I(v) =
∫∞

v
ds

f(s) for v > 0. By (ii) of (F1), we see that 0 < I(v) < ∞
and

lim
v→∞ I(v) → 0

Take a = (a1, ..., aN ) ∈ ∂∂G, b = (b1, ..., bN ) ∈ ∂G, such that a1 = y, b1 = z,
and ai = bi ∈ (y, z) for i = 2, ..., N , by integration of ux1/F (u) ≥ c(x) on the
line segment connecting a and b, we see that

I(u(t, a)) > I(u(t, a)) − I(u(t, b)) ≥ ε

∫ z

y

c(x1, a2, ..., aN )dx1 > 0

where the right-hand side is independent of t. However, t → T leads to u(t, a) →
+∞, and thus I(u(t, a)) → 0, a contradiction witch complete the proof of
Theorem 3.
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Abstract. This paper investigates cluster synchronization in discrete-
time complex networks with both discrete and distributed time-varying
delays. By utilizing a special coupling matrix and the Kronecker product,
it is shown that the addressed discrete-time complex networks is achieved
cluster synchronization if certain linear matrix inequality (LMI) is feasi-
ble. Finally, an example is given to demonstrate the effectiveness of the
proposed criterion.

Keywords: Cluster synchronization, Complex networks, Discrete-time,
Discrete delays, Distributed delays.

1 Introduction

Since the seminal works of Pecora and Carroll [1], chaos synchronization has re-
ceived a great deal of interest from various fields. Synchronization phenomena in
coupled chaotic systems have been extensively studied in electronic circuits, laser
systems, pairs of neurons, and biological systems [2]. Cluster synchronization,
as a particular synchronization phenomenon, was firstly considered for coupled
chaotic oscillators, which is observed that synchronization occurs in each group,
but there is no synchronization among the different groups [3]. Recently, cluster
synchronization has become one of the hottest topics of discussion because it
is considered to be more momentous than other synchronization types in brain
science and engineering, social science, and distributed computation. The cluster
synchronization criteria were proposed in [4] for coupled Josephson equations by
constructing different coupling schemes. In [5], a coupling scheme with coopera-
tive and competitive weight-couplings was used to realize cluster synchronization
for connected chaotic networks. In [6], cluster synchronization of linearly cou-
pled complex networks has been investigated under a adaptive strategy, whereas
the similar topic has been addressed in [7] by employing a pinning controller.
In [8], the authors dealt with cluster synchronization analysis problem in an ar-
ray of hybrid coupled neural networks with constant delays. For more studies
concerning cluster synchronization, please see [9] and the references therein.
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c© Springer-Verlag Berlin Heidelberg 2011
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In 1998, Watts and Strogatz presented a simple model of network structure,
which is known as small-world networks, during one decade we have witnessed
the evolution of the field of complex networks [10]. It should be pointed out that
most literatures on the dynamical behaviors of complex networks are concerned
with continuous-time case. However, the discretization process of a continuous-
time network cannot preserve the dynamics of the continuous-time part even
for small sampling periods [11]. In addition, a discrete-time network is in a bet-
ter position to model digitally transmitted signals in a dynamical way than its
continuous-time analog. Very recently, the synchronization problem for discrete-
time networks has received some initial research interests. For example, an array
of coupled discrete-time neural networks in [12], as a special case of coupled com-
plex networks, was concerned with the robust synchronization analysis. In [13],
the problem of stochastic synchronization analysis is investigated for a new array
of coupled discrete-time stochastic complex networks with randomly occurred
nonlinearities and time delays. In [14], synchronization and state estimation is
studied for an array of coupled complex discrete-time networks with the simul-
taneous presence of both the discrete and distributed time delays. So far, to
the best of the authors’ knowledge, few authors have considered the problem
on cluster synchronization for discrete-time complex networks with mixed de-
lays. Therefore, the study on cluster synchronization of discrete-time complex
networks with mixed delays is not only important but also necessary.

Motivated by the above discussions, the objective of this paper is to concern
with the cluster synchronization problem for discrete-time complex networks
with both discrete and distributed delays. By utilizing a special coupling ma-
trix and the Kronecker product, a new criterion is developed to achieve cluster
synchronization for concerned model. Finally, a simulation example is used to
demonstrate the usefulness of the proposed design methods.

2 Model Description and Preliminaries

In this paper, we consider the following discrete-time delayed neural networks
consisting N coupled nodes of the form:

xi(k + 1) = f(xi(k)) + g(xi(k − d(k)))

+
+∞∑
m=1

μmh(xi(k −m)) +
N∑

j=1

GijΓxj(k), i = 1, 2, · · · , N (1)

where xi(k) = (xi1(k), xi2(k), · · · , xin(k))T is the state vector of the ith node;
f(·), g(·) and h(·) are nonlinear vector-valued functions satisfying certain con-
ditions given later; The positive integer d(k) denotes the discrete time-varying
delay satisfying 0 ≤ dm ≤ d(k) ≤ dM , k ∈ N, dm and dM are known positive
integers; The constants μm ≥ 0(m = 1, 2, · · · ) satisfy the following convergent
conditions:

+∞∑
m=1

μm < +∞,

+∞∑
m=1

mμm < +∞. (2)
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Γ = diag{γ1, γ2, · · · , γn} ≥ 0 is a matrix linking the jth state variable if γj �= 0.
G = Gij ∈ RN×N is the coupled configuration matrix of the network with
Gij ≥ 0(i �= j), but not all zero. Here, the coupling configuration matrix may
not identical and satisfies:

Gii =
N∑

j=1,j �=i

Gij , Gij ≥ 0 (i �= j), i, j = 1, 2, · · · , N. (3)

Throughout this paper, we make the following assumptions:

Assumption H1. The nonlinear vector-valued functions f(·), g(·) and h(·) are
continuous and satisfy

[f(α) − f(β) − U1(α− β)]T [f(α) − f(β) − U2(α− β)] ≤ 0, ∀α, β ∈ R

[g(α) − g(β) − V1(α− β)]T [g(α) − g(β) − V2(α− β)] ≤ 0, ∀α, β ∈ R

[h(α) − h(β) −W1(α− β)]T [h(α) − h(β) −W2(α− β)] ≤ 0, ∀α, β ∈ R

where U1, U2, V1, V2, W1 and W2 are constant matrices.

Assumption H2. The coupling matrix

G =

⎡⎢⎢⎢⎣
N11 N12 · · · N1t

N21 N22 · · · N2t

...
...

. . .
...

Nt1 Nt2 · · · Ntt

⎤⎥⎥⎥⎦
where Nii ∈ Rmi×mi , Nij ∈ Rmi×mj , i, j = 1, 2, · · · , t, and assume that all rows
in Nij are the same, i.e., Nij = (u, u, · · · , u)T , u = (u1, u2, · · · , umj )T is a vector.

Definition 1. [5] The set S = {x = (x1(s), x2(s), · · · , xN (s)): xi(s) ∈ C(N[−dM ,
0],Rn), [x1(s) = x2(s) = · · · = xm1(s)], [xm1+1(s) = xm1+2 = · · · = xm1+m2(s)],
· · · , [xm1+m2+···+mt−1+1(s) = xm1+m2+···+mt−1+2(s) = · · · = xm1+m2+···+mt−1+

mt(s)], m1 +m2 + · · ·+mt = N} is called the cluster synchronization manifold.

Definition 2. [5] A network with N nodes is said to realize cluster synchroniza-
tion, if the N nodes split into several clusters, such as, {(1, 2, · · · ,m1), (m1 +
1,m1 +2, · · · ,m1 +m2), · · · , (m1 +m2 + · · ·+mt−1 +1,m1 +m2 + · · ·+mt−1 +
2, · · · ,m1 +m2 + · · ·+mt−1 +mt),m1 +m2 + · · ·+mt = N} such that the nodes
in the same cluster synchronize with one another, i.e., for the states xi(k) and
xj(k) of arbitrary nodes i and j in the same cluster, limk→+∞ ‖xi(k)−xj(k)‖ = 0
holds.

Definition 3. [2] Let R denote a ring, and define T (R,K) = {the set of matrices
with entries R such that the sum of the entries in each row is equal to K for
some K ∈ R}.
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Lemma 1. [2] Let G be an N ×N matrix in the set T (R,K). When the (N −
1) × (N − 1) matrix H satisfies MG = HM , where H = MGJ , with

M =

⎡⎢⎢⎢⎣
1 −1

1 −1
. . .

1 −1

⎤⎥⎥⎥⎦
(N−1)×N

, J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
0 1 1 · · · 1
...

...
. . . . . .

...
0 · · · 0 1 1
0 · · · 0 0 1
0 · · · 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
N×(N−1)

in which 1 is the multiplicative identity of R. The matrix H can be rewritten
explicitly as follows: H(i,j) =

∑j
k=1 G(i,k) −G(i+1,k), for i, j ∈ 1, 2, · · · , N − 1.

Lemma 2. [8] Under Assumption H2, the (N − t)× (N − t) matrix H̃ satisfies
M̃G = H̃M̃ , where

Ñ =

⎡⎢⎢⎢⎣
N11

N22

. . .
Ntt

⎤⎥⎥⎥⎦
N×N

, M̃ =

⎡⎢⎢⎢⎣
M1

M2

. . .
Mt

⎤⎥⎥⎥⎦
(N−t)×N

,

J̃ =

⎡⎢⎢⎢⎣
J1

J2

. . .
Jt

⎤⎥⎥⎥⎦
N×(N−t)

and H̃ = M̃Ñ J̃ , Nii ∈ Rmi×mi , Mi ∈ R(mi−1)×mi , Ji ∈ Rmi×(mi−1).

Lemma 3. [14] Let M ∈ R
n×n be a positive semidefinite matrix, xi ∈ R

n, and
scalar constant ai ≥ 0(i = 1, 2, · · · ). If the series concerned is convergent, then
the following inequality holds:(+∞∑

i=1

aixi

)T

M
( +∞∑

i=1

aixi

)
≤
( +∞∑

i=1

ai

) +∞∑
i=1

aix
T
i Mxi.

Lemma 4. [12] Let ⊗ denote the notation of Kronecker product. Then, the
following properties are satisfied in appropriate dimensions.
(i) (αA) ⊗B = A⊗ (αB)
(ii) (A + B) ⊗ C = A⊗ C + B ⊗ C
(iii) (A⊗B)(C ⊗D) = (AC) ⊗ (BD).

Let x = (x1, x2, · · · , xN )T , where xi ∈ R
n, i = 1, 2, · · · , N . Denote M = M̃⊗En,

where M̃ is defined in Lemma 2. We define d(x) as follows:

d(x) = ‖Mx‖2 = xT MTMx. (4)

Lemma 5. [8] x ∈ S if and only if ‖Mx‖ = 0.
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3 Synchronization Criterion

In this section, we shall establish our main criterion based on the LMI approach.
For presentation convenience, in the following, we denote

xi(k) = (xi1(k), xi2(k), · · · , xin(k))T ∈ R
n, i = 1, 2, · · · , N.

x(k) = (xT
1 (k), xT

2 (k), · · · , xT
N (k))T ,

f(x(k)) = (fT (x1(k)), fT (x2(k)), · · · , fT (xN (k)))T ,

g(x(k)) = (gT (x1(k)), gT (x2(k)), · · · , gT (xN (k)))T ,

h(x(k)) = (hT (x1(k)), hT (x2(k)), · · · , hT (xN (k)))T ,

Σ̃1 = (UT
1 U2 + UT

2 U1)/2, Σ̃2 = (UT
1 + UT

2 )/2, Σ̃3 = (V T
1 V2 + V T

2 V1)/2,

Σ̃4 = (V T
1 + V T

2 )/2, Σ̃5 = (WT
1 W2 + WT

2 W1)/2, Σ̃6 = (WT
1 + WT

2 )/2,

G = G⊗ Γ, H̃ = M̃Ñ J̃ , H = H̃ ⊗ Γ, Σl = EN−t ⊗ Σ̃l, l = 1, 2, 3, 4, 5, 6.

Using the Kronecker product, we can rewrite system (1) into a more compact
form as

x(k + 1) = f(x(k)) + g(x(k − d(k))) +
+∞∑
m=1

μmh(x(k −m)) + Gx(k). (5)

Theorem 1. Under Assumption H1 and H2, the cluster synchronization man-
ifold S of the discrete-time system (5) is globally attractive if there exist three
positive definite matrices {Pl}3

l=1 ∈ R(N−t)n×(N−t)n and three positive scalars
{δl}3

l=1, such that the following LMI holds:

Π =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 δ1Σ2 δ2Σ4 0 δ3Σ6 0 HTP1

∗ −δ1En 0 0 0 0 P1

∗ ∗ Π33 0 0 0 0
∗ ∗ ∗ −P2 0 0 P1

∗ ∗ ∗ ∗ −δ3En + μ̃P3 0 0
∗ ∗ ∗ ∗ ∗ − 1

μ̃P3 P1

∗ ∗ ∗ ∗ ∗ ∗ −P1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (6)

where Π11 = −P1 − δ1Σ1 − δ2Σ3 − δ3Σ5, Π33 = −δ2En + (dM − dm + 1)P2, and
μ̃ =

∑+∞
k=1 μk.

Proof. We can get from Assumption H1 that [13, 14][
Mx(k)

Mf(x(k))

]T [ Σ1 −Σ2

−Σ2 En

] [
Mx(k)

Mf(x(k))

]
≤ 0, (7)

[
Mx(k)

Mg(x(k))

]T [ Σ3 −Σ4

−Σ4 En

] [
Mx(k)

Mg(x(k))

]
≤ 0, (8)
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and [
Mx(k)

Mh(x(k))

]T [ Σ5 −Σ6

−Σ6 En

] [
Mx(k)

Mh(x(k))

]
≤ 0. (9)

Now, we consider the following Lyapunov-Krasovskii functional candidate for
system (5):

V (k) =
3∑

i=1

Vi(k), (10)

where
V1(k) = [Mx(k)]TP1[Mx(k)],

V2(k) =
−dm+1∑

i=−dM+1

k−1∑
j=k−1+i

[Mg(x(j))]TP2[Mg(x(j))],

V3(k) =
+∞∑
i=1

μi

k−1∑
j=k−i

[Mh(x(j))]TP3[Mh(x(j))].

Calculating the difference of V1(k) along the solutions of (5), we have

ΔV1(k) =
[
Mf(x(k)) + Mg(x(k − d(k))) +

+∞∑
m=1

μmMh(x(k −m))

+MGx(k)
]T

P1

[
Mf(x(k)) + Mg(x(k − d(k)))

+
+∞∑
m=1

μmMh(x(k −m)) + MGx(k)
]

−[Mx(k)]TP1[Mx(k)]. (11)

By the structure of M, the following equalities are easy to verify:

MG = (M̃ ⊗ En)(G⊗ Γ ) = M̃G⊗ Γ = H̃M̃ ⊗ Γ = (H̃ ⊗ Γ )(M̃ ⊗ En) = HM.

So, we get

ΔV1(k) =
[
Mf(x(k)) + Mg(x(k − d(k))) +

+∞∑
m=1

μmMh(x(k −m))

+HMx(k)
]T

P1

[
Mf(x(k)) + Mg(x(k − d(k)))

+
+∞∑
m=1

μmMh(x(k −m)) + HMx(k)
]

−[Mx(k)]TP1[Mx(k)]. (12)
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Calculating the difference of V2(k) and V3(k) along the solutions of (5), re-
spectively, one has

ΔV2(k) = (dM − dm + 1)[Mg(x(k))]TP2[Mg(x(k))]
−[Mg(x(k − d(k)))]TP2[Mg(x(k − d(k)))]. (13)

ΔV3(k) =
+∞∑
i=1

μi

k∑
j=k+1−i

[Mh(x(j))]TP3[Mh(x(j))]

−
+∞∑
i=1

μi

k−1∑
j=k−i

[Mh(x(j))]TP3[Mh(x(j))]

=
+∞∑
i=1

μi

(
[Mh(x(k))]TP3[Mh(x(k))]

−[Mh(x(k − i))]TP3[Mh(x(k − i))]
)

=
+∞∑
i=1

μi[Mh(x(k))]TP3[Mh(x(k))]

−
+∞∑
i=1

μi[Mh(x(k − i))]TP3[Mh(x(k − i))]

≤ μ̃[Mh(x(k))]TP3[Mh(x(k))]

− 1
μ̃

[ +∞∑
m=1

μmMh(x(k −m))
]T

P3

[ +∞∑
m=1

μmMh(x(k −m))
]
. (14)

In deriving of ΔV3(k), we have made use of Lemma 4.
Therefore, for three positive scalars {δl}3

l=1, it follows from (12)-(14) along
with (7)-(9), we obtain

ΔV (k) ≤ ζT (k)Πζ(k) (15)

where ζ(k) = ([Mx(k)]T , [Mf(x(k))]T , [Mg(x(k))]T , [Mg(x(k−d(k)))]T , [Mh(x
(k))]T , [

∑+∞
m=1 μmMh(x(k −m))]T )T .

Noticing from (6) and (15) that ΔV (k) ≤ 0 and ΔV (k) = 0 if and only if
ζ(k) ≡ 0, which implies that V (k) ≤ V (0), in other words, V (k) is a bounded
function. Thus, ‖Mx‖ → 0, and the proof is completed. �

4 Numerical Example

In this section, an example will be illustrated the potential benefits and effec-
tiveness of the developed designs on the cluster synchronization problems for
discrete-time complex networks.

For simplicity, let us consider the system (1) of four nodes. Suppose that

n = 2, d(k) = 3 + (1 + (−1)k)/2, μm = 2−(m+3),
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Fig. 1. Time responses of the state variables xi1(k) and xi2(k) (1 ≤ i ≤ 4) in complex
networks from initial point {(40,−80), (20, 140), (−30, 40), (−20, 10)}

Γ =
[
0.5 0
0 0.5

]
, G =

⎡⎢⎢⎣
−0.5 0.498 0.001 0.001
0.498 −0.5 0.001 0.001
0.002 0.002 −0.4 0.396
0.002 0.002 0.396 −0.4

⎤⎥⎥⎦ .

Let the nonlinear vector-valued functions be given by

f(xi(k))=(−0.4xi1(k)+tanh(0.5xi1(k))+0.2xi2(k), 0.8xi2(k)−tanh(0.6xi2(k)))T ,

g(xi(k)) = h(xi(k)) = (0.2xi1(k)−tanh(0.1xi1(k)), 0.3xi2(k)−tanh(0.2xi2(k)))T .

Then, it can be verified that dm = 3, dM = 4, μ̃ = 1/8, and

Σ̃1 =
[
−0.4 0.2

0 0.8

]
, Σ̃2 =

[
0.1 0.2
0 0.2

]
, Σ̃3 =Σ̃5 =

[
0.2 0
0 0.3

]
, Σ̃4 =Σ̃6 =

[
0.1 0
0 0.1

]
.

By using the Matlab LMI Toolbox, (6) can be solved with the feasible solutions
as follows:

P1 =

⎡⎢⎢⎣
0.2505 0.0005 0 0
0.0005 0.2192 0 0

0 0 0.2561 −0.0002
0 0 −0.0002 0.2206

⎤⎥⎥⎦ , P2 =

⎡⎢⎢⎣
0.7881 0.0002 0 0
0.0002 0.7886 0 0

0 0 0.7888 0.0001
0 0 0.0001 0.7888

⎤⎥⎥⎦ ,

P3 =

⎡⎢⎢⎣
0.1650 −0.0003 0 0
−0.0003 0.1588 0 0

0 0 0.1656 −0.0003
0 0 −0.0003 0.1590

⎤⎥⎥⎦ ,

δ1 = 0.7896, δ2 = 2.3741 and δ3 = 0.9457. Then, it follows from Theorem 1 that
the system (1) with given parameters achieves cluster synchronization, which is
further verified by the simulation result shown in Figs. 1, 2 and 3. Fig. 1 shows the
cluster synchronization state, and the synchronization errors between the first
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Fig. 2. Synchronous errors of the first two networks and synchronous errors of the last
two networks
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Fig. 3. Synchronous errors of the complex networks

two networks, the synchronization errors between the last two networks and the
synchronization errors of the whole complex networks are illustrated by Fig. 2
and Fig. 3, respectively. The simulation results demonstrate the effectiveness of
the developed approach for discrete-time complex networks.

5 Conclusion

The problem of cluster synchronization for discrete-time complex networks with
mixed delays is investigate in this paper. The delay-interval-dependent crite-
rion is established through utilizing a special coupling matrix and the Kronecker
product. The obtained result is efficient which has been demonstrated by a nu-
merical simulation example.
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Abstract. In this paper, the global exponential stability of fourth-order
Chua,s circuit is investigated. Some sufficient conditions ensuring the ex-
istence and the global exponential stability of the equilibrium point are
derived by selecting properly the system parameters and using eigen-
value, eigenvector and solution matrix property. Finally two illustrative
examples are given to show the effectiveness of our results.

Keywords: Chua’circuit, stability, equilibrium point, eigenvector, solu-
tion matric.

1 Introduction

As a matter of fact, nonlinear electronic circuits play an important role in study-
ing nonlinear phenomena such as chaotic dynamics and synchronization which
have effective applications in secure communications. And Chua,s circuit is con-
sidered to be the simplest autonomous nonlinear circuit generating chaotic sig-
nals and its characteristic diode is described by a continuous piecewise-linear
function with three segments and two non differentiable break points. Thus,
Chua,s circuit has been widely used as the experimental vehicle to research on
nonlinear science, and been studied in many applications such as chaos con-
trol and synchronization .However, the characteristics of nonlinear devices in
practical circuit are always smooth and the implementation of piecewise-linear
function requires a larger amount of circuitry compared with smooth cubic func-
tion. Therefore, it is significant to investigate Chua,s circuit with a smooth cu-
bic nonlinearity. Hartley proposed a smooth cubic nonlinearity to replace the
piecewise-linear nonlinearity in Chua,s circuit(see Ref.[1]). Since then, a lot of
literatures and publications about Chua,s circuit with a smooth cubic nonlin-
earity have appeared(see Refs.[2],[3],[4],[5],[6],[7],[8],[9]). Recently, the gallery of
attractors and bifurcation diagrams of Chua,s circuit with the piecewise-linear
nonlinearity and with a smooth cubic nonlinearity were also presented in [10]. For
the modified fourth-order Chua,s circuit, it consists of two active elements, one
linear negative conductance and one nonlinear resistor with an odd-symmetric
piecewise-linear v-i characteristic. It was verified by experiment that hyper chaos
� Corresponding author.

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 241–250, 2011.
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phenomenon was exhibited (see Ref.[11]). Hyper chaos means the attractor of
a dynamic system has more than one positive Lyapunov exponents, that is, its
dynamics expands not only as a segment (one dimensional expansion) but also
as a small area element (two-dimensional expansion), which increases the com-
plexity, randomness and higher unpredictability. These properties make hyper
chaotic systems have potential applications to secure communication. Lately the
dynamics of fourth-order Chua,s circuit containing one group of hyper chaotic
attractor and one group of chaotic attractor, corresponding bifurcation diagrams
and Lyapunov exponent spectra were presented by using practical experiments
and simulations (see Ref.[12]). A new method of chaos control for the modified
fourth-order Chua,s circuit was given by using some results of dichotomous in
nonlinear systems (see Ref.[13]).

In this paper, we will investigate the existence and the global exponential
stability of the equilibrium point for fourth-order Chua,s circuit by using eigen-
value, eigenvector and solution matrix property of coefficient matrix.

Consider the following Chua,s circuit system(see Ref.[15])⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx(t)

dt = α[y(t) − x(t) − g(x(t))],
dy(t)

dt = x(t) − y(t) + z(t),
dz(t)

dt = −β[y(t) − w(t)],
dw(t)

dt = −γ2[z(t) + γ1w(t)],

(1)

where g(x) = m1x + 1
2 (m0 −m1)(|x + b1| − |x − b1|), α, β, γ1, γ2,m0,m1, b1 are

constants.
We give the initial values of system (1)⎧⎪⎪⎨⎪⎪⎩

x(t) = p(t),
y(t) = q(t),−∞ < t ≤ 0,
z(t) = r(t),
w(t) = s(t),

(2)

where p(t), q(t), r(t) and s(t) are bounded and continuous functions on (−∞, 0].
Let X(t) = (x(t), y(t), z(t), w(t))T , F (X(t)) = (−α(m0−m1)f(x(t)), 0, 0, 0)T ,

φ(t) = (p(t), q(t), r(t), s(t))T , A =

⎡⎢⎢⎣
−αb α 0 0

1 −1 1 0
0 −β 0 β
0 0 −γ2 −γ1γ2

⎤⎥⎥⎦ ,

where b = m1 + 1, f(x) = 1
2 (|x + b1| − |x− b1|).

Rewrite the system (1) and (2) as

X ′(t) = AX(t) + F (X(t)). (3)

X(t) = φ(t), −∞ < t ≤ 0. (4)

The paper is arranged as follows: In section 2, we will give some preliminaries.
In section 3, the main results are presented. Finally, in section 4, we give two
examples to illustrate our theory.
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2 Definitions and Lemmas

In the following discussion, we always assume α > 0, β > 0, γ1 > 0, γ2 > 0 and
b > 0.

Definition 2.1. For vector function V (t) = (v1(t), v2(t), · · · , vn(t))T and n× n
order matrix G = (gij)n×n, we define norm as following, respectively

‖V (t)‖ = (
n∑

i=1

|vi(t)|2)
1
2 , ‖G‖ = (

n∑
i,j=1

|gij |2)
1
2 .

Definition 2.2. Let X∗ = (x∗, y∗, z∗, w∗)T ∈ R4. The point X∗ is called an
equilibrium point of system (1), if it satisfies the following equation

AX∗ + F (X∗) = 0. (5)

Definition 2.3. Let X∗ = (x∗, y∗, z∗, w∗)T is an equilibrium point of system
(1), X(t) is a solution of system (1) with initial value (3). The equilibrium point
X∗ of system (1) is said to be global exponentially stable, if there exist constants
λ> 0 and μ > 0, such that

‖X(t) −X∗‖ ≤ μ‖φ−X∗‖e−λt, t > 0,
where ‖φ−X∗‖ = sup

−∞<t≤0
{[(p(t)−x∗)2+(q(t)−x∗)2+(r(t)−x∗)2+(s(t)−x∗)2]

1
2 }.

Lemma 2.1. For function f(x) = 1
2 (|x + b1| − |x− b1|), we have

|f(x1) − f(x2)| ≤ |x1 − x2|, ∀x1, x2 ∈ R.

Lemma 2.2. For the system (1), if α2b
βγ2

= α
γ1γ2−αb = γ1γ2−1, then the eigenvalue

and corresponding eigenvector of matrix A, respectively
λ1 = −αb, λ2 = −γ1γ2, λ3 = − 1

2 (1 −
√

1 − 4(β + βγ2 − α)), λ4 = − 1
2 (1 +√

1 − 4(β + βγ2 − α)),
V1 = (1, 0,−1, αb

β )T , V2 = (1 − γ1γ2, 1, 0, 1)T ,

V3 = (α, λ3 + αb, αb(1 + λ3) − β(1 + γ2), αb
β (α− βγ2) − γ2λ3)T ,

V4 = (α, λ4 + αb, αb(1 + λ4) − β(1 + γ2), αb
β (α− βγ2) − γ2λ4)T .

Proof. By calculation, we have
|λE−A| = (λ+αb)(λ+γ1γ2)(λ2+λ+β+βγ2−α)+(λ+αb)[βγ2(1−γ1γ2)+α2b]

−αb(α2b− αγ1γ2) − αβγ2.

If α2b
βγ2

= α
γ1γ2−αb = γ1γ2 − 1, then characteristic equation of A is

|λE −A| = (λ + αb)(λ + γ1γ2)(λ2 + λ + β + βγ2 − α) = 0. (6)

We can obtain the eigenvalue of A,
λ1 = −αb, λ2 = −γ1γ2, λ3 = − 1

2 (1 −
√

1 − 4(β + βγ2 − α)), λ4 = − 1
2 (1 +√

1 − 4(β + βγ2 − α)).
For the eigenvalue λ1 = −αb, From

(λ1E −A)U =

⎡⎢⎢⎣
0 −α 0 0
−1 1 − αb −1 0
0 β −αb −β
0 0 γ2 γ1γ2 − αb

⎤⎥⎥⎦
⎡⎢⎢⎣
u1

u2

u3

u4

⎤⎥⎥⎦ = 0. (7)
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We can obtain corresponding eigenvector V1 = (1, 0,−1, αb
β )T .

Similarly, we can obtain the eigenvalue λ2, λ3, λ4 corresponding the eigenvec-
tor are V2, V3, V4, respectively. �

Lemma 2.3. For the system (1), if α2b
βγ2

= α
γ1γ2−αb = γ1γ2 − 1, 0 < 4(β + βγ2 −

α) ≤ 1, then ‖exp(At)‖ ≤ Me−σt, t ≥ 0.
where σ = min{αb, γ1γ2,

1
2 (1 −

√
1 − 4(β + βγ2 − α))},M = {‖V1‖2 + ‖V2‖2 +

‖V3‖2 + ‖V4‖2}1/2 ·‖[V1, V2, V3, V4]−1‖.(V1, V2, V3, V4 are given by Lemma 2.2).

Proof. For linear differential equations

X ′(t) = AX(t). (8)

From Lemma 2.2, we can obtain the eigenvalue and eigenvector of A λ1, λ2, λ3, λ4

and V1, V2, V3, V4, respectively.
If 0 < 4(β+βγ2−α) ≤ 1, then λ3, λ4 are real roots and λ3 < 0, λ4 < 0, we can

obtain its fundamental solution matrix of equation φ(t) = [eλ1tV1, e
λ2tV2, e

λ3tV3,
eλ4tV4].

Since exp(At) = φ(t)φ−1(0), we can obtain

‖exp(At)‖ = ‖φ(t)φ−1(0)‖ ≤ ‖φ(t)‖ · ‖φ−1(0)‖ ≤ Me−σt.

where σ = min{αb, γ1γ2,
1
2 (1 −

√
1 − 4(β + βγ2 − α))},

M = {‖V1‖2 + ‖V2‖2 + ‖V3‖2 + ‖V4‖2}1/2 · ‖[V1, V2, V3, V4]−1‖. �

With the same proof methods of Lemmas 2.2 and Lemmas 2.3,we can obtain
the following Lemmas.Here we omit the proofs.

Lemma 2.3∗. For the system (1), if α2b
βγ2

= α
γ1γ2−αb = γ1γ2 − 1, 1− 4(β + βγ2 −

α) < 0, then ‖exp(At)‖ ≤ M∗e−σ∗t, t ≥ 0,
where σ∗ = min{αb, γ1γ2,

1
2},v = 1

2

√
4(β + βγ2 − α) − 1,

M∗ = {‖V1‖2 + ‖V2‖2 + ‖V ∗
3 ‖2 + ‖V ∗

4 ‖2}1/2 · ‖[V1, V2, V
∗
3 , V ∗

4 ]−1‖,
V ∗

3 = (αcos(vt), (αb− 1
2 )cos(vt)−vsin(vt), 1

2 (αb−β−βγ2)cos(vt)−vαbsin(vt), 1
2β

(2αb(α− βγ2) + βγ2)cos(vt) + vγ2sin(vt))T ,
−→
V

∗
4 = (αsin(vt), (αb− 1

2 )sin(vt)+vcos(vt), 1
2 (αb−β−βγ2)sin(vt)+vαbcos(vt), 1

2β

(2αb(α− βγ2) + βγ2)sin(vt) − vγ2cos(vt))T ,
(V1, V2,are given by Lemma 2.2).

Lemma 2.4. For the system (1), if βγ2
bα = α+βγ1γ2−β

α = γ1γ2 − bα, 0 <
4(β + βγ2 − α) ≤ (γ1γ2)2, then
1) the eigenvalue and corresponding eigenvector of A, respectively
λ1 = −αb, λ2 = −1, λ3 = − 1

2 (γ1γ2 −
√

(γ1γ2)2 − 4(β + βγ2 − α)),
λ4 = − 1

2 (γ1γ2 +
√

(γ1γ2)2 − 4(β + βγ2 − α)),
V1 = (1, 0,−1, αb

β )T , V2 = (α, bα− 1,−α, α
β + bα− 1)T ,

V3 = (α, λ3 + αb, αb(1 + λ3) − β(1 + γ2), αb
β (α− βγ2) − γ2λ3)T ,

V4 = (α, λ4 + αb, αb(1 + λ4) − β(1 + γ2), αb
β (α− βγ2) − γ2λ4)T .

2) ‖exp(At)‖ ≤ M1e
−σ1t, t ≥ 0,
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where σ1 = min{αb, 1, 1
2 (γ1γ2 −

√
(γ1γ2)2 − 4(β + βγ2 − α))},

M1 = {‖wV1‖2 + ‖V2‖2 + ‖V3‖2 + ‖V4‖2}1/2 · ‖[V1, V2, V3, V4]−1‖.

Lemma 2.4∗. For the system (1), if βγ2
bα = α+βγ1γ2−β

α = γ1γ2 − bα, (γ1γ2)2 −
4(β + βγ2 − α) < 0, then
1) the eigenvalue and corresponding eigenvector of A, respectively
λ1 = −αb, λ2 = −1, λ3 = − 1

2 (γ1γ2 − i
√

4(β + βγ2 − α) − (γ1γ2)2),
λ4 = − 1

2 (γ1γ2 + i
√

4(β + βγ2 − α) − (γ1γ2)2),
V1 = (1, 0,−1, αb

β )T , V2 = (α, bα − 1,−α, α
β + bα− 1)T ,

V3 = (α, λ3 + αb, αb(1 + λ3) − β(1 + γ2), αb
β (α− βγ2) − γ2λ3)T ,

V4 = (α, λ4 + αb, αb(1 + λ4) − β(1 + γ2), αb
β (α− βγ2) − γ2λ4)T .

2) ‖exp(At)‖ ≤ M∗
1 e

−σ∗
1 t, t ≥ 0,

where σ∗
1 = min{αb, 1, 1

2γ1γ2}, v = 1
2

√
4(β + βγ2 − α) − (γ1γ2)2.

M∗
1 = {‖V1‖2 + ‖V2‖2 + ‖V ∗

3 ‖2 + ‖V ∗
4 ‖2}1/2 · ‖[V1, V2, V

∗
3 , V ∗

4 ]−1‖,
V ∗

3 = (αcos(vt), (αb− 1
2 )cos(vt)−vsin(vt), 1

2 (αb−β−βγ2)cos(vt)−vαbsin(vt), 1
2β

(2αb(α− βγ2) + βγ2)cos(vt) + vγ2sin(vt))T ,
V ∗

4 = (αsin(vt), (αb− 1
2 )sin(vt)+vcos(vt), 1

2 (αb−β−βγ2)sin(vt)+vαbcos(vt), 1
2β

(2αb(α− βγ2) + βγ2)sin(vt) − vγ2cos(vt))T

Lemma 2.5. For the system (1), if α
1−γ1γ2

= β−bαβ−α
βγ2

= bα − γ1γ2, 0 <

4(β + βγ2 − α) ≤ (bα)2, then
1) the eigenvalue and corresponding eigenvector of A, respectively
λ1 = −1, λ2 = −γ1γ2, λ3 = − 1

2 (bα−
√

(bα)2 − 4(β + βγ2 − α)),
λ4 = − 1

2 (bα +
√

(bα)2 − 4(β + βγ2 − α)),
V1 = (α, bα− 1,−α, bα + α

β − 1)T , V2 = (1 − γ1γ2, 1, 0, 1)T ,

V3 = (α, λ3 + αb, αb(1 + λ3) − β(1 + γ2), αb
β (α− βγ2) − γ2λ3)T ,

V4 = (α, λ4 + αb, αb(1 + λ4) − β(1 + γ2), αb
β (α− βγ2) − γ2λ4)T .

2) ‖exp(At)‖ ≤ M2e
−σ2t, t ≥ 0,

where σ2 = min{1, γ1γ2,
1
2 (αb−

√
(αb)2 − 4(β + βγ2 − α))},

M2 = {‖V1‖2 + ‖V2‖2 + ‖V3‖2 + ‖V4‖2}1/2 · ‖[V1, V2, V3, V4]−1‖.

Lemma2.5∗. For the system (1), if α
1−γ1γ2

= β−bαβ−α
βγ2

= bα − γ1γ2, (bα)2 −
4(β + βγ2 − α) < 0, then
1) the eigenvalue and corresponding eigenvector of A, respectively
λ1 = −1, λ2 = −γ1γ2, λ3 = − 1

2 (bα− i
√

4(β + βγ2 − α) − (bα)2),
λ4 = − 1

2 (bα + i
√

4(β + βγ2 − α) − (bα)2),
V1 = (α, bα− 1,−α, bα + α

β − 1)T , V2 = (1 − γ1γ2, 1, 0, 1)T ,

V3 = (α, λ3 + αb, αb(1 + λ3) − β(1 + γ2), αb
β (α− βγ2) − γ2λ3)T ,

V4 = (α, λ4 + αb, αb(1 + λ4) − β(1 + γ2), αb
β (α− βγ2) − γ2λ4)T .

2) ‖exp(At)‖ ≤ M∗
2 e

−σ∗
2 t, t ≥ 0,

where σ∗
1 = min{1, γ1γ2,

1
2αb}, v = 1

2

√
4(β + βγ2 − α) − (αb)2.

M∗
2 = {‖V1‖2 + ‖V2‖2 + ‖V ∗

3 ‖2 + ‖V ∗
4 ‖2}1/2 · ‖[V1, V2, V

∗
3 , V ∗

4 ]−1‖,
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V ∗
3 = (αcos(vt), (αb− 1

2 )cos(vt)−vsin(vt), 1
2 (αb−β−βγ2)cos(vt)−vαbsin(vt), 1

2β

(2αb(α− βγ2) + βγ2)cos(vt) + vγ2sin(vt))T ,
V ∗

4 = (αsin(vt), (αb− 1
2 )sin(vt)+vcos(vt), 1

2 (αb−β−βγ2)sin(vt)+vαbcos(vt), 1
2β

(2αb(α− βγ2) + βγ2)sin(vt) − vγ2cos(vt))T ,

3 Main Results

Theorem 3.1. For the system (1),

1) If k = (m1−m0)(1+γ1)
m1+γ1+m1γ1

< 1, then the system (1) has a unique equilibrium point,
and it is (0, 0, 0, 0)T .
2) If k = (m1−m0)(1+γ1)

m1+γ1+m1γ1
> 1, then the system (1) has three equilibrium points,

and they are

(0, 0, 0, 0)T , (kb1,
kb1

1 + γ1
,

kb1
1 + γ1

,
−kb1γ1

1 + γ1
)T , (−kb1,

−kb1
1 + γ1

,
−kb1
1 + γ1

,
kb1γ1

1 + γ1
)T .

3) If k = (m1−m0)(1+γ1)
m1+γ1+m1γ1

= 1, then the system (1) has infinite number of equilib-
rium points.

Proof. From definition 2.2, we know that the equilibrium point X = (x, y, z, w)T

of system (1) satisfies the following equation

AX + F (X) = 0, or

⎧⎪⎪⎨⎪⎪⎩
−(m1 + 1)x + y − (m0 −m1)f(x) = 0,
x− y + z = 0,
y − w = 0,
z + γ1w = 0.

(9)

From (9), we can obtain

(x, y, z, w)T = (kf(x),
x

1 + γ1
,

x

1 + γ1
,
−γ1x

1 + γ1
)T (10)

where k = (m1−m0)(1+γ1)
m1+γ1+m1γ1

. Since f(x) = 1
2 (|x + b1| − |x − b1|), from (10), by

calculation, we have

1) If k < 1, then the system (1) has a unique equilibrium point (0, 0, 0, 0)T .
2) If k > 1, the system (1) has three equilibrium points, i.e.,

(0, 0, 0, 0)T , (kb1, kb1
1+γ1

, kb1
1+γ1

, −kb1γ1
1+γ1

)T , (−kb1,
−kb1
1+γ1

, −kb1
1+γ1

, kb1γ1
1+γ1

)T .

3) If k = (m1−m0)(1+γ1)
m1+γ1+m1γ1

= 1, then the system (1) has infinite number of equilib-
rium points. �
Theorem 3.2. For the system (1), under the conditions of the Lemma 2.3, if
σ − M |α(m0 − m1)| > 0, then the equilibrium point of system (1) is globally
exponentially stably, where M,σ is given of Lemma 2.3.

Proof. From Theorem 3.1, system (1) exists equilibrium point X∗ = (x∗, y∗, z∗,
w∗)T . Let

U(t) =
{
X(t) −X∗, t > 0,
φ(t) −X∗,−∞ < t ≤ 0, V (U(t)) = F (X(t)) − F (X∗).
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From (3) and (5), we have
U ′(t) = AU(t) + V (U(t)). (11)

U(t) = eAtU(0) +

t∫
0

eA(t−s)V (U(s))ds. (12)

By Lemma 2.3, from (12) we have

‖U(t)‖ ≤ M‖U(0)‖e−σt + M
t∫
0

e−σ(t−s) · ‖V (U(s))‖ds

≤ M‖U(0)‖e−σt + M |α(m0 −m1)|
t∫

0

e−σ(t−s)‖U(s)‖ds. (13)

Let P (t) = M‖U(0)‖e−σt + M |α(m0 −m1)|
t∫
0

e−σ(t−s)‖U(s)‖ds, t ≥ 0.
We have

dP (t)
dt = −σP (t) + M |α(m0 −m1)| · ‖U(t)‖ ≤ (−σ + M |α(m0 −m1)|)P (t).

Then
P (t) ≤ M‖U(0)‖e−(σ−M|α(m0−m1)|)t, t > 0.

and
‖U(t)‖ ≤ M‖U(0)‖e−(σ−M|α(m0−m1)|)t, t > 0,

i.e.,
‖X −X∗‖ ≤ M‖φ−X∗‖e−(σ−M|α(m0−m1)|)t, t > 0. (14)

Since σ − M |α(m0 − m1)| > 0,M > 0, from definition 2.3, we know that the
equilibrium point X∗ of system (1) is globally exponentially stable. �
By Lemma 2.3∗, Lemma 2.4, Lemma 2.4∗, Lemma 2.5 and Lemma 2.5∗, we may
obtain the following Theorem 3.3 - Theorem 3.7 with the same proof methods
of Theorem 3.2. Here we omit the proof.

Theorem 3.3. For the system (1), under the conditions of the Lemma 2.3∗, if
σ∗ −M∗|α(m0 −m1)| > 0, then the equilibrium point of system (1) is globally
exponentially stably.

Theorem 3.4. For the system (1), under the conditions of the Lemma 2.4, if
σ1 −M1|α(m0 −m1)| > 0, then the equilibrium point of system (1) is globally
exponentially stably.

Theorem 3.5. For the system (1), under the conditions of the Lemma 2.4∗, if
σ∗

1 −M∗
1 |α(m0 −m1)| > 0, then the equilibrium point of system (1) is globally

exponentially stably.

Theorem 3.6. For the system (1), under the conditions of the Lemma 2.5, if
σ2 −M2|α(m0 −m1)| > 0, then the equilibrium point of system (1) is globally
exponentially stably.

Theorem 3.7. For the system (1), under the conditions of the Lemma 2.5∗, if
σ∗

2 −M∗
2 |α(m0 −m1)| > 0, then the equilibrium point of system (1) is globally

exponentially stably.
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Remark 1. Theorem 3.2−3.7 are developed under different assumptions. They
provide different sufficient conditions ensuring the equilibrium point of system
(1) to be globally exponentially stable. Therefore, we can select suitable theorems
for a fourth-order Chuas circuit system to determine its globally exponential
stability.

4 Example

Example 4.1. Consider the following fourth-order Chuas circuit system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx(t)

dt = α[y(t) − x(t) − g(x(t))],
dy(t)

dt = x(t) − y(t) + z(t),
dz(t)

dt = −β[y(t) − w(t)], t ≥ t0,
dw(t)

dt = −γ2[z(t) + γ1w(t)],

(15)

g(x) = m1x +
1
2
(m0 −m1)(|x + b1| − |x− b1|), (16)

where γ1 = 1, γ2 = 2, α = 1
12 , β = 23

288 ,m0 = 177
8 ,m1 = 22.

We can obtain b = 23, α2b
βγ2

= α
γ1γ2−αb = γ1γ2−1 = 1, 0 < 4(β+βγ2−α) = 3

8 < 1.

5 10 15 20 25 30 35 40

x
y
z
w

Fig. 1. The state diagram of system (15)

From Lemma 2.2, Lemma 2.3, we have

λ1 = − 23
12 , λ2 = −2, λ3 = − 1

2 (1 −
√

6
4 ), λ4 = − 1

2 (1 +
√

6
4 ),

V1 = (1, 0,−1, 24)T , V2 = (−1, 1, 0, 1)T , V3 = ( 1
12 ,

17
12 +

√
6

8 , 207
288 + 23

√
6

96 , 1
23 −

√
6

2 )T ,

V4 = ( 1
12 ,

17
12 −

√
6

8 , 207
288 −

23
√

6
96 , 1

23 +
√

6
2 )T , σ = min{ 23

12 , 2,
1
2 (1−

√
6

4 )} = 1
2 (1−

√
6

4 ),
M = {‖V1‖2 + ‖V2‖2 + ‖V3‖2 + ‖V4‖2}1/2 · ‖[V1, V2, V3, V4]−1‖ < 3

√
21.

Obviously, we have

σ−M |α(m0−m1)| >
16 − 4

√
6 −

√
21

32
> 0,

(m1 −m0)(1 + γ1)
m1 + γ1 + m1γ1

= − 1
180

< 1,
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From (15), we can get the equation of the equilibriums⎧⎪⎪⎨⎪⎪⎩
−23x+ y − 1

8f(x) = 0,
x− y + z = 0,
y − w = 0,
z + w = 0.

(17)

From (17), by calculation, we can solve the unique equilibrium point (0, 0, 0, 0)T .
Figure 1 shows the state diagram of system (15) with the initial values is (−2,−1,
1, 2), i.e., the equilibrium point is globally exponentially stable. Evidently, this
consequence is coincident with the results of Theorem 3.1 and Theorem 3.2.

Example 4.2. For system (15), let γ1 = 2, γ2 = 3, α = 40
9 , β = 8

3 ,m0 =
− 11.01

20 ,m1 = − 11
20 . We can obtain b = 9

20 , and

βγ2

bα
=

α + βγ1γ2 − β

α
= γ1γ2−bα = 4, 0 < 4(β+βγ2−α) =

224
9

< (γ1γ2)2 =36.

From Lemma 2.4, we have
λ1 = −2, λ2 = −1, λ3 = − 4

3 , λ4 = − 14
3 , σ = min{2, 1, 4

3} = 1,
M1 = {‖V1‖2 + ‖V2‖2 + ‖V3‖2 + ‖V4‖2}1/2 · ‖[V1, V2, V3, V4]−1‖ < 221.
Obviously, we have
σ1 −M1|α(m0 −m1)| > 79

450 > 0, (m1−m0)(1+γ1)
m1+γ1+m1γ1

= 3
700 < 1,

From (15), we can get the equation of the equilibriums⎧⎪⎪⎨⎪⎪⎩
−9x + 20y + 0.01f(x) = 0,
x− y + z = 0,
y − w = 0,
z + 2w = 0.

(18)

From (18), by calculation, we can solve the unique equilibrium point (0, 0, 0, 0)T .
Figure 2 shows the equilibrium point of the state diagram of system (15) with the
initial values which is (−2,−1, 1.5, 1) is globally exponentially stable. Evidently,
this consequence is coincident with the results of Theorem 3.1 and Theorem 3.4.

5 10 15 20 25 30 35 40 45 50

x
y
z
w

Fig. 2. The state diagram of system of Example 4.2
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5 Conclusions

Under different assumption conditions, six theorems are given to ensure the
existence, uniqueness and the global exponential stability of the equilibrium
point for a fourth-order Chuas circuit system by selecting properly the system
parameters and using eigenvalue, eigenvector and solution matrix property, and
which algebra conditions are easily verifiable.
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Abstract. We progressively propose a generalized phase reduction
method for a stochastic system of weakly coupled oscillators, regardless
of the noise intensity, and analyze dynamical behavior in such a system.
This is because noise effects on a phase space were so far described for an
uncoupled single stochastic oscillator, subjected only to weak noise. Our
method is established with definition of “a phase of the distribution of
state variables,” rather than by defining distributions on a phase space.
The stochastic system of weakly coupled oscillators can then be reduced
straightforward to one dimensional phase dynamics. It is also confirmed
that our method can be applied into the deterministic system without
any noise intensity.

Keywords: a phase reduction method, weakly couplings, stochastic os-
cillators, noise independence.

1 Introduction

In this paper, we aim at giving a more progressive form of the phase reduction
method, which is more practicable even for a weakly coupled system of stochastic
oscillators, compared to the typical phase reduction method [1,2]. The conven-
tional use of the phase reduction method for stochastic systems [3,4] has long
fallen under the following two restrictions: (i) the weak noise and (ii) the un-
coupling between stochastic oscillators. It will thus be necessary and important
to construct the generalized phase reduction method beyond these restrictions
because a diverse number of physical systems exhibiting oscillatory dynamics
can be regarded to be not only under weak noise, but also under strong one.
For example, in physiological experiments using hippocampal formation slices,
synchronous behaviors in a pair of neurons via chemical synapses were observed
amidst very strong environmental noise [5].
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A typical phase reduction method [1,2] is a powerful tool for straightforwardly
reducing the dynamics of a nonlinear N -dimensional oscillator to the simple
one-dimensional phase dynamics in the deterministic system. This method is
also widely employed for oscillatory systems of electrical circuits [6] and brain
waves [7]. In recent years, the phase reduction method has been, in turn, ap-
plied to an uncoupled stochastic oscillator influenced only by weak noise as a
small perturbation [8,9]. This approach is expected to be useful for studying the
phase description of infinitesimal changes in noise intensity for a single oscilla-
tor. Yoshimura and Arai pointed out that the natural frequency of the single
oscillator varies with the effect of noise [3]. Their approach and results may be
interesting.

Here, since we are interested in studying the way in which two or more in-
teracting stochastic oscillators behave, independent of noise intensity, we must
consider the possibility that the behavior of coupled or uncoupled oscillators re-
mains periodic even with finite noise intensity [10]. The validity of the phase
reduction method is required for coupled stochastic oscillators with a wide
range of noise intensity. In order to construct the innovative phase reduction
method applicable to weakly coupled stochastic oscillator systems, regardless
of the noise intensity, in our approach, a phase variable is defined as on a
space of the probability density of the state variable (see a right figure in
Fig. 1) as long as the uncoupled oscillators show statistically periodic behav-
iors. It is noticed that a Stuart-Landau oscillator with multiplicative colored
noise is one of the easiest models to which our approach is applicable. This
model is given by dx = [x/τ1 − c0y − x(x2 + y2)/r2τ2]dt + xdρ/(x2 + y2)1/2,
dy = [c0x + y/τ1 − y(x2 + y2)/r2τ2]dt + ydρ/(x2 + y2)1/2, dρ = −γρdt + bdW ,
where t1, t2, c0, r, b are constants and dW is a Wiener process. Intuitively, one
might expect that it obviously reaches a temporally periodic state, even with
the large noise intensity. Thus, the noise influence on the system can no longer
be a perturbation. Weak couplings between stochastic oscillators can only be
regarded as small perturbations. On the contrary, in recent publications [8,9],
these phase variables are frequently defined within the well-known framework of
the state space (see a left figure in Fig. 1), because the phase reduction method
for this case [3] can be done using the perturbation expansion in terms of the
small noise.

2 Phase Reduction Method

In this work, a system of two weakly coupled N -dimensional oscillators subjected
to white noise is considered as the general form of the Stratonovich stochastic
differential equation:

ẋ
(n)
i = F

(n)
i (x(n)) + εI

(n)
i (x(n),x(n̄)) + G

(n)
i (x(n))ξ(n)

i (t) (1)

where x(n) = (x(n)
1 , · · · , x(n)

N ) ∈ RN is the state variable of the N -dimensional
oscillator n (n = 1, 2). F (n) is the vector field of the uncoupled deterministic
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Fig. 1. Schematic images of our phase reduction. The “phase variable” defined in a
state space statistically distributes (left circle). The probability density of the “phase
variable” is temporally periodic. On the other hand, our phase variable is defined
in a probability density space (right circle). Our phase variable corresponds to the
probability density of the “phase variable” defined in a state space.

dynamics. The vector function G(n) plays the role of noise intensity. I(n) is the
coupling function of the states of two oscillators x(1) and x(2), and n̄ is the
counterpart of n. ξ

(n)
i (t) is the white Gaussian noise such that 〈ξ(n)

i (t)〉 = 0
and 〈ξ(n)

i (t)ξ(m)
j (s)〉 = 2δijδnmδ(t − s) where 〈. . .〉 denotes averaging over the

realization of ξ and δ is the Dirac delta function. We call the constant D >
0 the noise intensity. Similar to the well-known phase reduction method used
previously, we will restrict ourselves to instances in which coupling strength |ε|
sufficiently small. It is noticed here that, if the vector function G(n) has no zero
components, according to the H-theorem [11], an uncoupled stochastic oscillator
system tends to a steady state and the periodic state does not appear. Thus, we
assume G(n) has some zero components, because of the presence of the periodic
state under the influence of noise.

2.1 Uncoupled Stochastic Oscillator

An uncoupled individual stochastic oscillator n under our aforementioned as-
sumption may obey the periodic probability density P

(n)
p (x(n), t) with its period

T (n) as the limit state solution for the Fokker-Planck equation

∂P
(n)
p (x(n), t)

∂t
= L̂(n)P (n)

p (x(n), t), (2)

L̂(n) = −
N∑

i=1

∂

∂x
(n)
i

[
F

(n)
i + G

(n)
i

∂G
(n)
i

∂x
(n)
i

]
+

N∑
i=1

∂2

∂x
(n)2
i

(
G

(n)
i

)2

, (3)
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where L̂(n) is the Fokker-Planck operator for the uncoupled stochastic oscilla-
tor n. Let us consider that each stochastic oscillator exhibits periodic statistical
properties under the influence of noise, and each of the weak coupled oscilla-
tors also follows a temporally periodic probability density close to that of the
uncoupled case.

We briefly discuss the reason for taking a general form of the stochastic oscil-
lator system such as Eqs. (2) and (3), in which each of the dynamic variables is
influenced by a different noise source. In physiologically plausible spiking models
of the Hodgkin-Huxley [12] and Morris-Lecar [13] types, the state variables in
their dynamics must be defined as representing changes in the membrane po-
tential, or controlling the opening and closing of ionic channels. Each of these
entities is affected by a different noise source, in terms of modeling a realis-
tic system [14]. Nevertheless, in [3,4], many researchers studying a stochastic
phase reduction method dealt with the stochastic system consisting of one N -
dimensional oscillator:

ẋ = F (x) + G(x)ξ(t).

Since this means that all dynamic variables are influenced by the common noise
source ξ(t), the method should have ample room for extension to the generalized
form of the stochastic oscillator system. Therefore, in this paper, we decided to
formulate the phase reduction method for stochastic systems with non-identical
noise sources of arbitrary noise intensity.

2.2 Weakly Coupled Stochastic Oscillators

Return to phase reduction studies on coupled stochastic oscillator systems, the
Fokker-Planck equation of Eq. (1) is firstly given by

∂P (x(1),x(2), t)
∂t

=
(
L̂(1) + L̂(2)

)
P (x(1),x(2), t)

−ε
N∑

i=1

[
∂

∂x
(1)
i

I
(1)
i +

∂

∂x
(2)
i

I
(2)
i

]
P (x(1),x(2), t). (4)

Then the marginal probability density for each oscillator P (n)(x(n), t) obeys

∂P (n)(x(n), t)
∂t

= L̂(n)P (n)(x(n), t)

−ε

N∑
i=1

∂

∂x
(n)
i

∫
dx(n̄)I

(n)
i P (x(1),x(2), t), (5)

where the natural boundary conditions have been used, and the integration along
the right hand side is carried out over the state variables of the oscillator n̄(�= n).
The coupling strength |ε| is assumed to be sufficiently small.

The marginal probability density P (n)(x(n), t), which is assumed to remain pe-
riodic for small values of the interaction εI

(n)
i (x(n),x(n̄)), is decomposed into two
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types of deviations: phase deviation τn(t) and orbital deviation εQ(n)(x(n), t +
τn(t)). The marginal probability density for each oscillator is thus given by

P (n)(x(n), t) = P (n)
p (x(n), t + τn(t)) + εQ(n)(x(n), t + τn(t)), (6)

where P
(n)
p (x(n), t + τn(t)) is the component parallel to the periodic solution

of the uncoupled system. εQ(n)(x(n), t + τn(t)) is a component in the orbital
deviation in the space of probability density. Assume that τ̇n = O(ε) provides a
good approximation for the marginal probability density [1]. The function τn(t)
represents the phase advance or phase delay induced by the weak interaction.

In addition, we use an approximation for probability density, equivalently
written as

P (x(1),x(2), t) = P (1)
p (x(1), t + τ1(t))P (2)

p (x(2), t + τ2(t)) + O(ε).

This means that the distributed states between the two oscillators are almost
independent. Consequently, Eq. (5) is rewritten as

τ̇n(t)
∂P

(n)
p (x(n), s)

∂s

∣∣∣∣∣
s=t+τn(t)

= −ε

N∑
i=1

∂

∂x
(n)
i

∫
dx(n̄)I

(n)
i (x(n),x(n̄))

×P (1)
p (x(1), t + τ1(t))P (2)

p (x(2), t + τ2(t))

+εL̂(n)Q(n)(x(n), t + τn(t))

−ε
∂Q(n)(x(n), s)

∂s

∣∣∣∣∣
s=t+τn(t)

. (7)

where τ̇n(t) is constant with respect to time variable t (at least, up to order
O(ε)), according to our assumption of Eq. (6). This is because the modulated
period for each coupled oscillator T̃ (n) is given by T (n) = τn(t+ T̃ (n))− τn(t) for
arbitrary t. This condition does indeed hold for sufficiently small |ε|.

We introduce the function R(n)(x, t) defined by

R(n)(x, t) =
∂P

(n)
p (x, t)
∂t

/∫
dx

(
∂P

(n)
p (x, t)
∂t

)2

, (8)

which is tangent to the periodic limit state solution P
(n)
p (x(n), t) . This may be

related to a necessary orthogonal condition to obtain a one-dimensional phase
equation using the deterministic phase reduction method[2,6]. In what follows,
let Eq. (8) be also satisfied with the orthogonal condition to the velocity of
distributed state motion. Notice that Q(n) appears in Eq. (7) as the orbital effect
of the weak interaction εI(n). Furthermore, the phase deviation component of
the vector field near the point P

(1)
p P

(2)
p in probability density space is same as

that at P
(1)
p P

(2)
p up to order unity. Then, the dynamics of τn(t) are given by

τ̇n = ε

∫
dx(n)

N∑
i=1

∂R(n)(x(n), t + τn(t))

∂x
(n)
i
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×
[∫

dx(n̄)I
(n)
i (x(n),x(n̄))P (n̄)

p (x(n̄), t + τn̄(t))
]

×P (n)
p (x(n), t + τn(t)). (9)

We finally obtain

dθn

dt
=

1
T (n)

+
ε

T (n)

∫
dx(n)

N∑
i=1

∂R̃(n)(x(n), θn(t))

∂x
(n)
i

×
[∫

dx(n̄)I
(n)
i (x(n),x(n̄))P̃ (n̄)

p (xn̄, θn̄(t))
]

×P̃ (n)
p (x(n), θn(t)), (10)

introducing the phase variable of each oscillator θn(t) = (t+τn(t))/T (n). Here we
have defined the functions P̃

(n)
p (x, θn(t)) = P

(n)
p (x, t+τn(t)) and R̃(n)(x, θn(t))=

R(n)(x, t + τn(t)).

3 Analysis of Synchronization

In order to study the synchronization phenomena of two coupled oscillators on
a one-dimensional phase space, the phase difference between the two oscillators
φ(t) = θ2(t) − θ1(t) is of interest. It is noticed that θn(t) is split into fast and
slow variables, since the time dependence of the second term on the right hand
side of Eq. (10) is small (O(ε)). Averaging the fast phase variable in Eq. (10)
yields

dφ

dt
=

1
T (2)

− 1
T (1)

+ εH2(−φ) − εH1(φ), (11)

where Hn(φ) is defined by

Hn(φ) =
1

T (n)

∫ 1

0

dθ

∫
dx(n)

N∑
i=1

∂R̃(n)(x(n), θ)

∂x
(n)
i

×
[∫

dx(n̄)I
(n)
i (x(n),x(n̄))P̃ (n̄)

p (x(n̄), θ + φ)
]
P̃ (n)

p (x(n), θ), (12)

where it is noticed that if the periods of the two oscillators T (1) and T (2) satisfy
T (2) − T (1) = O(ε), the phase advance or phase delay per unit time, i.e., φ̇(t), is
small (O(ε)), and the phase difference between the two oscillators can be treated
as a constant during the period T (n). In this case, one can average the fast phase
variable in Eq. (10). This fact is consistent even with our assumption that the
marginal probability density P (n), i.e., the solution of Eq. (6), remains periodic.
However if the difference of the periods of the two oscillators is of order unity,
i.e., T (2) − T (1) = O(ε), such an averaging process is invalid. In this case, the
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marginal probability density P
(n)
p (x, t + T (n)(t)) at time t + T (n)(t) differs from

the one at time t and the averaging procedure during the period T (n) becomes
invalid.

Eq. (11) takes the same form as the dynamics for the phase difference in the
deterministic systems, because it is straightforward to see that Eq. (11) repro-
duces the well-known phase difference dynamics for the deterministic system,
when P (x(n), t) = δ(x(n) −x

(n)
p (t)), where x

(n)
p (t) is the periodic solution of the

deterministic dynamics. From Eq. (11), we can obtain a great deal of informa-
tion regarding the synchronization of the system. First, let us consider the case
where the periods of each oscillator are identical as a consequence of the weak
interaction. This is regarded as the synchronization phenomenon of the most
simple case. Here, the phase difference φ(t) is constant with respect to time,
i.e., dφ/dt = 0. Similar to the well-known deterministic case, it is expected that
the function H2(−φ)−H1(φ) is a bounded function with its upper bound ωmax

and lower bound ωmin. Under these circumstances, the condition for the syn-
chronization is given by εωmin < ΔT/(T (1))2 < εωmax, where ΔT = T (2) − T (1).
Furthermore, the stationary solution of the phase difference φ∞ is given by
0 = εH2(−φ∞)− εH1(φ∞)−ΔT/(T (1))2. Then the modulated period under the
influence of the weak coupling is given by T̃ (1) = T̃ (2) = T (1) − ε(T (1))2H1(φ∞).

One may wonder whether there is the possibility that the oscillator 2 oscil-
lates through m2 cycles over time it takes oscillator 1 to complete m1 cycles
((m1,m2) ∈ N2). This is also regarded as synchronization. In this case, the ratio
of the periods T̃ (1) and T̃ (2) of the two oscillators modulated by the weak interac-
tion becomes rational. Since we have assumed that T̃ (n) is constant with respect
to time up to O(ε), we have T̃ (n) = T (n) − ε(T (n))2Hn(δn,1φ − δn,2φ) + O(ε2)
from Eq. (10). Then, if such synchronization occur, there exists the set of natural
numbers (m1,m2) satisfying m1T̃

(1) = m2T̃
(2). The set of minimum numbers

(m1,m2) satisfying this condition gives the synchronization period of the total
system, i.e., Ttot = m1T̃

(1) = m2T̃
(2). However, such natural numbers m1 and

m2 are very large, i.e.,m1 = O(1/ε) and m2 = O(1/ε). This means that the syn-
chronization period Ttot is of order O(1/ε). In this time scale, our assumption
that T̃ (n) is constant with respect to time becomes invalid. In order to deal with
this type of synchronization, it is necessary to take into account higher order
corrections of ε.

4 Discussion and Conclusion

Once the temporally periodic probability density for each oscillator P
(n)
p is ob-

tained by some methods, e.g., numerical simulation or solving the Fokker-Planck
equation (4) numerically, the function R(n) can be calculated by Eq. (8). Then
Eq. (11) can be solved in principle. The time evolution of the phase difference
φ(t) under the influence of the weak interaction is given by Eq. (11), and the
shift in the frequency of each oscillator is given by Eq. (10).

The phase reduction method formulated by using higher order theory will
be reported elsewhere. Higher order theory would provide insight on into noise-
induced synchronization. Noise-induced synchronization for weakly coupled two
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oscillator systems may be characterized into two types. The first type of noise-
induced synchronization is for the stability change of the marginal probability
density P (n)(x(n), t). In this case, a non-periodic stable solution for Eq. (6)
becomes unstable when subject to a slight changes in noise intensity, causing a
new periodic stable solution to appear. Since such a periodic solution cannot be
approximated by the non-periodic solution before the change in noise intensity,
this situation is beyond the dynamical phase description of our approach. The
second type of noise-induced synchronization is for the change in the stability
of the stationary solution for the dynamics of phase difference φ(t). In this case,
the probability density P (x(n), t) varies slightly in response to the effects of
small changes in noise intensity. This change in the marginal probability density
P (x(n), t) causes an infinitesimal change in the form of the function H2(−φ) −
H1(φ), and then the stability of the stationary solution for Eq. (11) may also
change. The scenario for noise-induced synchronization could be treated within
the framework of the phase reduction method. However, for investigating such a
kind of noise-induced synchronization, we must formulate an extended version of
our phase reduction method involving the higher order of ε, since small changes
in the function H2(−φ) − H1(φ) are expected to be O(ε).

In this paper, we have presented a phase reduction method valid for stochastic
oscillator systems with a wide range of noise intensities, and have constructed the
phase reduction method regarding the weak interaction as a perturbation. The
main ideas of our approach are (i) definition of the phase variables in the space of
probability densities, (ii) decomposition of small perturbations, applicable even
for a stochastic oscillator system. These ideas are valid even for the case where
small changes in noise intensity are regarded as a perturbation. This method has
shown that the analysis of the synchronization of coupled stochastic oscillators is
relatively analogous to the analysis of the phase reduction for the deterministic
case.
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Abstract. In the paper, the problem on the stability of anti-periodic so-
lutions is investigated for high-order neural networks with discrete and
distributed time delays. Several sufficient conditions for checking the ex-
istence, uniqueness and global exponential stability of anti-periodic solu-
tion for the considered neural networks are given. A numerical example
is given to show its effectiveness.

Keywords: Anti-periodic, Hight-order Neural networks, Exponential
stability, Mixed delays.

1 Introduction

The study of anti-periodic solutions for nonlinear evolution equations is closely
related to the study of periodic solutions, and it was initiated by Okochi [1].
It is well known that the existence of anti-periodic solutions play a key role in
characterizing the behavior of nonlinear differential equations [2, 3]. During the
past twenty years anti-periodic problems of nonlinear differential equations have
been extensively studied by many authors, for example, see [4–9] and references
therein. In addtion, anti-periodic trigonometric polynomials are important in the
study of interpolation problems [10, 11], and anti-periodic wavelets are discussed
in [12].

Moreover, due to the fact that high-order neural networks have stronger
approximation property, faster convergence rate, greater storage capacity, and
higher fault tolerance than lower-order neural networks, high-order neural net-
works have been the object of intensive analysis by numerous authors in recent
years, for example, see [13–16] and references therein. However, to the best of
our knowledge, very few results are available on the existence and exponential
stability of anti-periodic solutions for high-order neural networks.

Motivated by the above discussions, in the paper, we discuss the existence
and exponential stability of anti-periodic solutions for high-order neural networks
with discrete and distributed time delays which can be described by the following
delay differential equations:

ẋi(t) = − bi(t)xi(t) +
n∑

j=1

cij(t)gj(xj(t − τij(t)))

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 260–269, 2011.
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+
n∑

j=1

dij(t)
∫ σ

0

kij(s)gj(xj(t − s))ds

+
n∑

j=1

n∑
l=1

eijl(t)gj(xj(t − ujl(t)))gl(xl(t − vjl(t))) + Ii(t), (1)

where i = 1, 2, · · · , n, xi(t) denotes the state of the ith unit, bi(t) > 0 denotes
the passive decay rate, cij(t), dij(t) and eijl(t) are the synaptic connections
strengths, τij(t) ≥ 0, uij(t) ≥ 0 and vij(t) ≥ 0 correspond to the delays, Ii(t)
denotes the external inputs, gj is the activation function of neurons, and the delay
kernel kij(s) is real value negative continuous functions defined on R+ := [0,∞).

Let u(t) ∈ C(R, R). u(t) is said to be w-anti-periodic on R if

u(t + w) = −u(t), ∀t ∈ R,

where w is a positive constant. For convenience, we introduce some notations

cij = sup
t∈R

|cij(t)|, dij = sup
t∈R

|dij(t)|, eijl = sup
t∈R

|eijl(t)|,

τ = max
1≤i,j≤n

{
sup
t∈R

τij(t)
}

, u = max
1≤j,l≤n

{
sup
t∈R

ujl(t)
}

,

v = max
1≤j,l≤n

{
sup
t∈R

vjl(t)
}

, τ = max {τ , u, v, σ} ,

Ii = sup
t∈R

|Ii(t)|, I = max
1≤i≤n

{
Ii

}
For ϕ(t) = (ϕ1(t), ϕ2(t), · · · , ϕn(t)) ∈ C([−τ, 0], Rn), we define the norm

‖ϕ‖ = max
1≤i≤n

{
sup

t∈[−τ,0]

|ϕi(t)|
}

.

Throughout this paper, it will be assumed that

(H1) For i, j, l = 1, 2, · · · , n, bi, cij , dij , eijl, gj ∈ C(R, R), kij ∈ C(R+, R+), τij ,
ujl, vjl ∈ C(R, R+), σ ∈ R+, and

bi(t + w) = bi(t), Ii(t + w) = −Ii(t), ∀t ∈ R,

cij(t + w)gj(u) = −cij(t)gj(−u), ∀t, u ∈ R,

dij(t + w)gj(u) = −dij(t)gj(−u), ∀t, u ∈ R,

eijl(t + w)gj(u)gl(u) = −eijl(t)gj(−u)gl(−u), ∀t, u ∈ R,

τij(t + w) = τij(t), ujl(t + w) = ujl(t), vjl(t + w) = vjl(t), ∀t ∈ R.

(H2) For i = 1, 2, · · · , n, there exists a positive constant bi such that

bi(t) ≥ bi, ∀t ∈ R.
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(H3) For j = 1, 2, · · · , n, there exist positive constants Mj and Lj such that

gj(0) = 0, |gj(u)| ≤ Mj , |gj(u) − gj(v)| ≤ Lj|u − v|, ∀u, v ∈ R.

(H4) For i, j = 1, 2, · · · , n, pij(δ) :=
∫ σ

0 eδskij(s)ds is continuous on [0, ε), where
ε > 0 and pij(0) ≤ 1.

(H5) For all i = 1, 2, · · · , n, there exists a constant η > 0 such that

−bi +
n∑

j=1

(cij + dij)Lj +
n∑

j=1

n∑
l=1

eijl

(
LjMl + LlMj

)
< −η < 0.

2 Preliminaries

In this section, we recall some definitions and make some preparations.

Definition 1. Let x∗(t) = (x∗
1(t), x

∗
2(t), · · · , x∗

n(t)) be the solution of system (1)
with initial value ϕ∗ ∈ C([−τ, 0], Rn). If there exist constants λ > 0 and N > 1
such that for any solution x(t) = (x1(t), x2(t), · · · , xn(t)) of system (1) with
initial value ϕ ∈ C([−τ, 0], Rn) satisfies

|xi(t) − x∗
i (t)| ≤ N‖ϕ− ϕ∗‖e−λt, ∀t > 0, i = 1, 2, · · · , n.

Then x∗(t) is said to be globally exponentially stable.

Lemma 1. Suppose that (H1)-(H5) hold. Let x(t) = (x1(t), x2(t), · · · , xn(t)) be
a solution of system (1) with initial conditions

xi(s) = ϕi(s), |ϕi(s)| < γ, s ∈ [−τ, 0],

where γ > I
η . Then for all i = 1, 2, · · · , n,

|xi(t)| < γ, t ∈ [0,+∞). (2)

Proof. Assume, by way of contradiction, that (2) does not hold. Then there must
exist i ∈ {1, 2, · · · , n} and the first time t1 > 0 such that

|xi(t1)| = γ, |xi(t)| < γ, ∀t ∈ [−τ, t1),
|xj(t)| < γ, ∀t ∈ [−τ, t1], j �= i, j = 1, 2, · · · , n.

Calculating the upper left derivative of |xi(t1)|, together with , we can obtain

D+(|xi(t1)|) ≤ −bi(t1)|xi(t1)| +
n∑

j=1

cijLj|xj(t1 − τij(t1))|

+
n∑

j=1

dijLj

∫ σ

0

kij(s)|xj(t1 − s)|ds
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+
n∑

j=1

n∑
l=1

eijlLjLl|xj(t1 − ujl(t1))||xl(t1 − vjl(t1))| + Ii,

≤

⎡⎣−bi +
n∑

j=1

(cij + dij)Lj +
n∑

j=1

n∑
l=1

eijlLjMl

⎤⎦ γ + Ii

< −η
I

η
+ Ii ≤ 0,

which is a contradiction to D+(|xi(t1)|) ≥ 0 and implies that (2) holds.

Remark 1. In view of the boundedness of this solution, from the theory of func-
tional differential equations in [17], it follows x∗(t) can be defined on [−τ,+∞),
provided that the initial conditions are bounded by γ.

Lemma 2. Suppose that (H1)-(H5) hold. Let x∗(t) = (x∗
1(t), x

∗
2(t), · · · , x∗

n(t))
be the solution of system (1) with initial value ϕ∗ = (ϕ∗

1(t), ϕ∗
2(t), · · · , ϕ∗

n(t))
being bounded by γ. Then x∗(t) is globally exponentially stable.

Proof. From (H5), we can choose a small enough positive constant λ such that

λ − bi +
n∑

j=1

(cije
λτ + dijpij(λ))Lj +

n∑
j=1

n∑
l=1

eijl

(
LjMl + LlMj

)
eλτ < 0,

where i = 1, 2, · · · , n. Let x(t) = (x1(t), x2(t), · · · , xn(t)) be an arbitrary solution
of system (1) with initial value ϕ = (ϕ1(t), ϕ2(t), · · · , ϕn(t)). Let y(t) = x(t) −
x∗(t). Then from (1) we have

ẏi(t) = − bi(t)yi(t)

+
n∑

j=1

cij(t)
[
gj(xj(t − τij(t))) − gj(x∗

j (t − τij(t)))
]

+
n∑

j=1

dij(t)
∫ σ

0

kij(s)
[
gj(xj(t − s)) − gj(x∗

j (t − s))
]
ds

+
n∑

j=1

n∑
l=1

eijl(t)
[
gj(xj(t − ujl(t)))gl(xl(t − vjl(t)))

− gj(x∗
j (t − ujl(t)))gl(x∗

l (t − vjl(t)))
]
. (3)

Consider the Lyapunov function V = (V1, V2, · · · , Vn), where

Vi(t) = |yi(t)|eλt, i = 1, 2, · · · , n. (4)

Calculating the upper left derivative of Vi(t), by (3) and (4), we obtain

D+(Vi(t)) ≤ eλt

{
λ|yi(t)| − bi|yi(t)| +

n∑
j=1

cijLj|yj(t − τij(t))|
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+
n∑

j=1

dijLj

∫ σ

0

kij(s)|yj(t − s)|ds

+
n∑

j=1

n∑
l=1

eijl

[∣∣gj(xj(t − ujl(t)))gl(xl(t − vjl(t)))

− gj(x∗
j (t − ujl(t)))gl(xl(t − vjl(t)))

∣∣
+
∣∣gj(x∗

j (t − ujl(t)))gl(xl(t − vjl(t)))

− gj(x∗
j (t − ujl(t)))gl(x∗

l (t − vjl(t)))
∣∣]}

≤ eλt

{
λ|yi(t)| − bi|yi(t)| +

n∑
j=1

cijLj|yj(t − τij(t))|

+
n∑

j=1

dijLj

∫ σ

0

kij(s)|yj(t − s)|ds

+
n∑

j=1

n∑
l=1

eijl

[
LjMl

∣∣yj(t − ujl(t))
∣∣+ LlMj

∣∣yj(t − vjl(t))
∣∣]} (5)

From (4) we can choose a constant N > 1 such that

Vi(t) = |yi(t)|eλt < N‖ϕ− ϕ∗‖, for t ∈ [−τ, 0], i = 1, 2, · · · , n.

We claim that

Vi(t) < N‖ϕ− ϕ∗‖, for t ∈ (0,+∞), i = 1, 2, · · · , n. (6)

If it is not true, there exist some i ∈ N and the first time t1 > 0 such that

Vi(t1) = N‖ϕ− ϕ∗‖,
Vj(t) < N‖ϕ− ϕ∗‖, for t ∈ [−τ, 0), j = 1, 2, · · · , n.

From (5), we obtain

0 ≤ D+(Vi(t1))

≤ eλt1

{
λ|yi(t1)| − bi|yi(t1)| +

n∑
j=1

cijLj|yj(t1 − τij(t1))|

+
n∑

j=1

dijLj

∫ σ

0

kij(s)|yj(t1 − s)|ds

+
n∑

j=1

n∑
l=1

eijl

[
LjMl

∣∣yj(t1 − ujl(t1))
∣∣+ LlMj

∣∣yj(t1 − vjl(t1))
∣∣]}

= (λ − bi)Vi(t1) +
n∑

j=1

cijLjVj(t1 − τij(t1))eλτij(t1)
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+
n∑

j=1

dijLj

∫ σ

0

kij(s)Vj(t1 − s)eλsds

+
n∑

j=1

n∑
l=1

eijl

[
LjMlVj(t1 − ujl(t1))eλujl(t1) + LlMjVj(t1 − vjl(t1))eλvjl(t1)

]
≤
[
(λ − bi) +

n∑
j=1

cijLje
λτ +

n∑
j=1

dijLjpij(λ)

+
n∑

j=1

n∑
l=1

eijl

(
LjMl + LlMj

)
eλτ

]
Vi(t1) < 0,

which is a contradiction. Hence (6) holds. It follows that

|xi(t) − x∗
i (t)| < N‖ϕ− ϕ∗‖e−λt, ∀t ∈ (0,+∞), i = 1, 2, · · · , n.

By Definition 1, we know that x∗(t) is globally exponentially stable.

3 Main Results

The following is our main result.

Theorem 1. Suppose that (H1)-(H5) hold. Then system (1) has exactly one
w-anti-periodic solution, which is globally exponentially stable.

Proof. Let x(t) = (x1(t), x2(t), · · · , xn(t)) be the solution of system (1) with
initial value

xi(s) = ϕi(s), ϕi(s) < γ, s ∈ [−τ, 0], i = 1, 2, · · · .

By Lemma 1, the solution x(t) is bounded and

|xi(t)| < γ, ∀t > 0, i = 1, 2, · · · .

From (1) and (H1), for any natural number k, we have

d

dt

[
(−1)k+1xi(t + (k + 1)w)

]
= (−1)k+1

{
− bi(t + (k + 1)w)xi(t + (k + 1)w)

+
n∑

j=1

cij(t + (k + 1)w)gj(xj(t + (k + 1)w − τij(t + (k + 1)w)))

+
n∑

j=1

dij(t + (k + 1)w)
∫ σ

0

kij(s)gj(xj(t + (k + 1)w − s))ds

+
n∑

j=1

n∑
l=1

eijl(t + (k + 1)w)gj(xj(t + (k + 1)w − ujl(t + (k + 1)w)))
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× gl(xl(t + (k + 1)w − vjl(t + (k + 1)w))) + Ii(t + (k + 1)w)
}

= −bi(t)(−1)k+1xi(t + (k + 1)w)

+
n∑

j=1

cij(t)gj((−1)k+1xj(t + (k + 1)w − τij(t)))

+
n∑

j=1

dij(t)
∫ σ

0

kij(s)gj((−1)k+1xj(t + (k + 1)w − s))ds

+
n∑

j=1

n∑
l=1

eijl(t)gj((−1)k+1xj(t + (k + 1)w − ujl(t)))

× gl((−1)k+1xl(t + (k + 1)w − vjl(t))) + Ii(t). (7)

Thus, for any natural number k, (−1)k+1xi(t + (k + 1)w) are the solutions of
(1). Then, by Lemma 2, there exists a constant N > 1, such that

|(−1)k+1xi(t + (k + 1)w) − (−1)kxi(t + kw)|

≤ Ne−λ(t+kw) max
1≤i≤n

{
sup

−τ≤s≤0
|xi(s + w) + xi(s)|

}
≤ 2γNe−λ(t+kw), (8)

where t + kw > 0, i = 1, 2, · · ·n. It is noted that for any natural number p,

(−1)p+1xi(t + (p + 1)w)

= xi(x) +
p∑

k=0

[
(−1)k+1xi(t + (k + 1)w) − (−1)kxi(t + kw)

]
.

Thus

|(−1)p+1xi(t + (p + 1)w)|

≤ |xi(x)| +
p∑

k=0

∣∣∣(−1)k+1xi(t + (k + 1)w) − (−1)kxi(t + kw)
∣∣∣. (9)

In view of (8), we can choose a sufficiently large constant K > 0 and a constant
M > 0, such that∣∣∣(−1)k+1xi(t + (k + 1)w) − (−1)kxi(t + kw)

∣∣∣ ≤ M(e−λw)k, k > K, (10)

on any compact set of R. It follows from (9) and (10) that
{
(−1)px(t + pw)

}
uniformly converges to a continuous function x∗(t) = (x∗

1(t), x
∗
2(t), · · · , x∗

n(t)) on
any compact set of R.

Now we will show that x∗(t) is the w-anti-periodic solution of system (1).
First, x∗(t) is w-anti-periodic, since

x∗(t + w) = lim
p→∞(−1)px(t + w + pw)
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= − lim
p→∞(−1)p+1x(t + (p + 1)w) = −x∗(t).

Second, we prove that x∗(t) is a solution of (1). In fact, together with the con-
tinuity of the right side of (1), (7) implies that{

d

dt

[
(−1)p+1xi(t + (p + 1)w)

]}
uniformly converges to a continuous function on any compact set of R. Thus,
letting p → ∞, we obtain

d(x∗
i (t))
dt

= − bi(t)x∗
i (t) +

n∑
j=1

cij(t)gj(x∗
j (t − τij(t)))

+
n∑

j=1

dij(t)
∫ σ

0

kij(s)gj(x∗
j (t − s))ds

+
n∑

j=1

n∑
l=1

eijl(t)gj(x∗
j (t − ujl(t)))gl(x∗

l (t − vjl(t))) + Ii(t),

that is, x∗(t) is a solution of (1). Then, by Lemma 2 we can prove that x∗(t) is
globally exponentially stable.

4 Numerical Example

Let us consider the following high-order networks with two neurons and mixed
delays:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −x1(t) +
1
10

g1(x1(t − sin2 t)) +
1
16

g2(x2(t − 7 sin2 t))

+
1
16

| sin t|
∫ 10

0

e−sg1(x1(t − s))ds

+
1
10

| cos t|
∫ 10

0

e−sg2(x2(t − s))ds

+
1
8
(sin t)g1(x1(t − 5 sin2 t))g2(x2(t − 2 sin2 t)) + 4 sin t,

ẋ2(t) = −x2(t) +
1
16

g1(x1(t − cos2 t)) +
1
10

g2(x2(t − 5 sin2 t))

+
1
10

| cos t|
∫ 10

0

e−sg1(x1(t − s))ds

+
1
16

| sin t|
∫ 10

0

e−sg2(x2(t − s))ds

+
1
4
(sin t)g1(x1(t − sin2 t))g2(x2(t − 4 sin2 t)) + sin t,

(11)
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where g1(u) = g2(u) = 1
2 (|u + 1| − |u − 1|). From simple calculation, one gets:

b1 = b2 = M1 = M2 = L1 = L2 = 1,

c11 = c22 =
1
10

, c12 = c21 =
1
16

, d11 = d22 =
1
16

, d12 = d21 =
1
10

,

e112 =
1
8
, e212 =

1
4
, eijl = 0, i, j, l = 1, 2, ijl �= 112, ijl �= 212.

Then

−b1 +
2∑

j=1

(c1j + d1j)Lj +
2∑

j=1

2∑
l=1

e1jl

(
LjMl + LlMj

)
= −17

40
< 0,

−b2 +
2∑

j=1

(c2j + d2j)Lj +
2∑

j=1

2∑
l=1

e2jl

(
LjMl + LlMj

)
= − 7

40
< 0,

which implies all the conditions in Theorem 1 are satisfied. Hence, system (11)
has exactly one π-anti-periodic solution. Moreover, the π-anti-periodic solution
is globally exponentially stable.
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Abstract. In this study we conduct fair and systematic comparisons
of two types of neural networks: single- and multiple-hidden-layer net-
works. For fair comparisons, we ensure that the two types use the same
activation and output functions and have the same numbers of nodes,
feedforward connections, and parameters. The networks are trained by
the gradient descent algorithm to approximate linear and quadratic func-
tions, and we examine their convergence properties. We show that, in
both linear and quadratic cases, the learning rate is more flexible for
networks with a single hidden layer than for those with multiple hidden
layers. We also show that single-hidden-layer networks converge faster to
linear target functions compared to multiple-hidden-layer networks.

Keywords: Neural networks, comparisons, hidden layers, architectures,
gradient descent learning, back propagation, function approximation, lin-
ear function, quadratic function.

1 Introduction and Preliminaries

How many hidden layers should a neural network have? This is a rather funda-
mental question that one may ask in designing a neural network. Surprisingly,
however, very few studies have addressed this issue. Sontag [12] compared one-
and two-hidden-layer networks both consisting of linear threshold units and iden-
tified a class of functions that can be properly approximated by two-hidden-layer
networks but not by one-hidden-layer networks. Chester [2] presented an exam-
ple of a function that can be effectively approximated by a small number of
neurons when two hidden layers are used but not when only one hidden layer
is used. These studies compared representational capabilities of one- and two-
hidden-layer networks.

To our knowledge, no study has conducted fair and systematic comparisons
of single- and multiple-hidden-layer networks. Comparisons of the two types
will be considered fair if the two types of networks (1) use the same activation
and output functions; (2) have the same numbers of inputs, nodes, feedforward
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or feedback connections, and parameters; and (3) approximate the same target
function. Also the comparisons will be considered systematic if their learning
or approximation capabilities are compared by methodically setting or changing
learning parameters (e.g., the learning rate, the training set and its size) and the
target function.

In this study we take a first step toward conducting such fair and system-
atic comparisons of single- and multiple-hidden-layer networks. In order to gain
analytical insight, we consider simple neural networks. However, it will become
clear that they exhibit fundamental differences in convergence and learning.

It is well known that, under certain regularity conditions, the approximation
error between any given continuous target function and the output function of
a neural network with one hidden layer can be made arbitrarily small by in-
creasing the number of nodes (e.g., Funahashi [4], Hornik, Stinchcombe, and
White [9], Hornik [8], Barron [1]). Funanashi [4] also showed that this approxi-
mation property can be achieved by a neural network with two or more hidden
layers. However, we have yet to establish a theory that tells us which of the two
types is preferable for a given target function when both single- and multiple-
hidden-layer networks converge to the target function. Clearly it is important,
both theoretically and practically, to know their convergence properties in order
to create an effective and efficient neural network for a given task.

In Section 2, we construct single- and multiple-hidden-layer networks that use
the same activation and output functions and have the same number of nodes,
feedforward connections, parameters, and inputs. In Section 3, we describe train-
ing procedures applied to these networks. We use the gradient descent algorithm
and batch training in this study. In Section 4, we train the networks to approxi-
mate linear and quadratic functions. We show that, in both linear and quadratic
cases, the learning rate is more flexible for networks with a single hidden layer
than for those with multiple hidden layers. We also show that single-hidden-layer
networks converge faster to linear target functions compared to multiple-hidden-
layer networks.

2 Construction of Single- and Multiple-Hidden-Layer
Neural Networks

In this section we describe the single- and multiple-hidden-layer networks that
we compare systematically. We construct simple neural networks in order to gain
analytical insight and to demonstrate their fundamental differences. Let n denote
the number of nodes. Consider the pair of networks with n = 6 shown in Figure 1.
Both networks each have one input layer, which consists of x1, x2, . . . , x5, and
one output layer, which consists of node 6. Notice that each network receives
n − 1 inputs. Network M has five hidden layers; each of nodes 1–5 constitutes
a hidden layer. Network S has only one hidden layer, which consists of nodes
1–5. However, note that the two networks have the same numbers of inputs,
nodes, and feedforward connections. In order to fairly compare the single- and
multiple-hidden layer networks, we must ensure that the two networks have the
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Fig. 1. Pair of networks with n = 6. Both networks each consist of six nodes (hence
n = 6) and 10 feedforward connections. Network M has five hidden layers. Network S
has one hidden layer.

same number of parameters and use the same activation and output functions.
In fact, the two networks M and S are carefully structured so that they have
the same number of parameters.

At each node, we employ a commonly used activation function: If node i re-
ceives inputs x1, x2, . . . , xm, then we define its activation function Ai by
Ai(x1, x2, . . . , xm) :=

∑m
k=1 w

(i)
k xk − T (i). Let fi denote the output function of

node i. First we examine the multiple-hidden-layer network M . Let fM denote
the final output of M . Then we have

fM (x1, . . . , xn−1) = fn(An(· · · (f1(A1(x1, · · · , xn−1))) · · · ))

= fn(w(n)
1 · · · f1(

∑n−1
k=1w

(1)
k xk − T (1)) · · · − T (n)). (1)

On the other hand, if we let fS denote the final output of network S, then

fS(x1, . . . , xn−1) = fn(An(f1(A1(x1)), . . . , fn−1(An−1(xn−1))))

= fn(
∑n−1

k=1w
(n)
k fk(w(k)

1 xk − T (k)) − T (n)). (2)

Note that (1) and (2) have the same number of parameters. For analytical
tractability, we set T (k) to zero for each k, and consider identity output functions:
For each k, we have fk(t) = t for all t. Then we obtain

fM (x1, . . . , xn−1) = (
∏n

k=2 w
(k)
1 )
∑n−1

k=1w
(1)
k xk. (3)

fS(x1, . . . , xn−1) =
∑n−1

k=1w
(n)
k w

(k)
1 xk. (4)

It is important that fM and fS still have the same number of parameters.
For analytical tractability, we keep these networks simple so that we can

clearly see how the two types are different mathematically. Comparing (3) and
(4), we recognize that the output fM consists of n−1 terms, (

∏n
k=2 w

(k)
1 )w(1)

m xm,
1 ≤ m ≤ n − 1, which each include a product of n parameters. On the other
hand, the output fS consists of n − 1 terms, w

(n)
m w

(m)
1 xm, 1 ≤ m ≤ n − 1,
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which each include a product of only two parameters. Thus, as the number of
nodes increases, the number of parameters that compose the product in each
term also increases for the multiple-hidden-layer network whereas it remains the
same (always two) for the single-hidden-layer network. We will see that this
leads to substantial differences between the two types in terms of convergence
and learning.

Space limitations on this paper force us to focus on comparing the single-
and multiple-hidden-layer networks for n = 3; we must omit our results for
larger networks (we compared single- and multiple-hidden-layer networks for
several values of n). However, it will become clear that the simple networks
exhibit fundamental differences in convergence and learning. We found that the
convergence properties observed with M and S remain qualitatively the same
with larger networks. In fact, their differences are enhanced with larger networks.
We will present these results in our full-length paper.

3 Network Training

We will apply the gradient descent algorithm invented by Rumelhart, Hinton,
and Williams [11] to train the networks constructed in Section 2. Let f(x1, x2)
denote a target function that will be approximated by the final output function
of each network, and let T denote the training set for M and for S. For all the
networks considered in this study, we employ the same widely used quadratic
loss function. The four parameters of M are w

(1)
1 , w

(1)
2 , w

(2)
1 , and w

(3)
1 [see (3)],

so we define the loss function EM (w(1)
1 , w

(1)
2 , w

(2)
1 , w

(3)
1 ) for M , which will also

be expressed as EM for simplicity, by

EM :=
1
2

∑
(x1,x2)∈T

[f(x1, x2) − fM (x1, x2)]2

=
1
2

∑
(x1,x2)∈T

[
f(x1, x2) − w

(3)
1 w

(2)
1

∑2
k=1w

(1)
k xk

]2
. (5)

There are two essential updating schemes for gradient descent learning in neu-
ral networks: batch training and on-line training (see, for instance, Fausett [3],
Hassoun [5], Haykin [6], Wilson and Martinez [13]). As can be seen in (5), we
use batch training in this study. The batch training scheme is a deterministic
scheme that uses the exact gradient to determine the direction of each update;
thus the scheme updates weights only after processing the whole epoch. The
convergence properties of batch training tend to be more desirable compared
to those of on-line training; see Heskes and Wiegerinck [7] and Nakama [10] for
rigorous theoretical comparisons of the two updating schemes.

From (5), we obtain the following four gradients (partial derivatives) associ-
ated with M :

∂EM

∂w
(1)
1

=
∑

(x1,x2)∈T
[
f(x1, x2) − w

(3)
1 w

(2)
1

∑2
k=1w

(1)
k xk

] (
−w

(3)
1 w

(2)
1 x1

)
. (6)



274 T. Nakama

∂EM

∂w
(1)
2

=
∑

(x1,x2)∈T

[
f(x1, x2) − w

(3)
1 w

(2)
1

∑2
k=1w

(1)
k xk

] (
−w

(3)
1 w

(2)
1 x2

)
. (7)

∂EM

∂w
(2)
1

=
∑

(x1,x2)∈T

[
f(x1, x2) − w

(3)
1 w

(2)
1

∑2
k=1w

(1)
k xk

] (
−w

(3)
1

∑2
k=1w

(1)
k xk

)
. (8)

∂EM

∂w
(3)
1

=
∑

(x1,x2)∈T

[
f(x1, x2) − w

(3)
1 w

(2)
1

∑2
k=1w

(1)
k xk

] (
−w

(2)
1

∑2
k=1w

(1)
k xk

)
. (9)

We use a constant learning rate, which will be denoted by r.
We train network S in an analogous manner. The four parameters of S are

w
(1)
1 , w

(2)
1 , w

(3)
1 , and w

(3)
2 [see (4)], so we define the loss function ES for S by

ES :=
1
2

∑
(x1,x2)∈T

[
f(x1, x2) −

∑2
k=1w

(3)
k w

(k)
1 xk

]2
. (10)

From (10), we obtain the following four gradients associated with S:

∂ES

∂w
(1)
1

=
∑

(x1,x2)∈T

[
f(x1, x2) −

∑2
k=1w

(3)
k w

(k)
1 xk

] (
−w

(3)
1 x1

)
. (11)

∂ES

∂w
(2)
1

=
∑

(x1,x2)∈T

[
f(x1, x2) −

∑2
k=1w

(3)
k w

(k)
1 xk

] (
−w

(3)
2 x2

)
. (12)

∂ES

∂w
(3)
1

=
∑

(x1,x2)∈T

[
f(x1, x2) −

∑2
k=1w

(3)
k w

(k)
1 xk

] (
−w

(1)
1 x1

)
. (13)

∂ES

∂w
(3)
2

=
∑

(x1,x2)∈T

[
f(x1, x2) −

∑2
k=1w

(3)
k w

(k)
1 xk

] (
−w

(2)
1 x2

)
. (14)

It is informative to compare (6)–(9) and (11)–(14).

4 Comparisons of Single- and Multiple-Hidden-Layer
Networks

We train the networks described in Section 2 to approximate two target func-
tions. In Section 4.1, we approximate a linear function. In Section 4.2, we ap-
proximate a quadratic function.

4.1 Approximation of a Linear Function

We train M and S to approximate a linear target function fL(x1, x2) := x1 +x2.
We use T := {(−1,−1), (−1, 0), (0,−1), (0, 0), (0, 1), (1, 0), (1, 1)} as the training
set. In T , the first entry of each ordered pair represents the value of x1, and the
second entry represents the value of x2. For simplicity, the initial values of all
the parameters were set to .1. (Basically the same results were obtained with
other initial values.).
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Figure 2 shows the approximation performances by M (the left half) and by S
(the right half). Each panel plots the approximation error defined at (5) against
the number of iterations, and it also indicates the value of the learning rate r.
The error is shown in black if it becomes smaller than .0001 upon completion of
the 1000th iteration and in light gray otherwise. Since the performances of the
networks do not change noticeably after the 200th iteration, each panel shows
the error only for the first 200 iterations.

Fig. 2. Approximations of fL by networks M (the left half) and S (the right half).
Each panel plots the approximation error against the number of iterations. The error
is plotted in black if it becomes smaller than .0001 upon completion of the 1000th
iteration; otherwise it is plotted in light gray. In each case, the value of the learning
rate r is indicated.

First we examine the approximation of fL by M (the left half of Figure 2). The
error does not converge to 0 if the learning rate r is greater than .06. When the
error converges to 0, the output function fM (x1, x2) = w

(3)
1 w

(2)
1

∑2
k=1 w

(1)
k xk in-

deed converges pointwise to the target function. In this case, the four parameters
of M converge as follows:

lim
t→∞w

(1)
1 (t) = lim

t→∞w
(1)
2 (t) = .7956, lim

t→∞w
(2)
1 (t) = lim

t→∞w
(3)
1 (t) = 1.1212.

Note that there are uncountably many values of the parameters with which
we obtain fM (x1, x2) = x1 + x2. Also, notice that the convergence slows down
noticeably as the learning rate decreases from .06 to .02.
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The right half of Figure 2 shows the approximation of fL by S. First notice
that the maximum value of the learning rate with which the error converges to
0 is about .16. This value is about 2.7 times as large as the corresponding value
(about .06) for M . When the error converges to 0, the parameters w

(1)
1 , w

(2)
1 ,

w
(3)
1 , and w

(3)
2 of the final output function fS(x1, x2) =

∑2
k=1 w

(3)
k w

(k)
1 xk all

converge to 1 (Hence fS converges pointwise to the target function.) Also, for all
values of r with which the error converges to 0, S converges to the target function
substantially faster compared to M . When r = .00005, the number of iterations
required to make the error smaller than .0001 is 22215 for M but 14886 for S;
see Figure 3. Therefore, the learning rate is more flexible for S than for M , and
when the two networks converge with the same learning rate, S converges faster
than M .

Fig. 3. Approximations of fL with r = .00005

4.2 Approximation of a Quadratic Function

In this section we train M and S to approximate a quadratic target function
fQ(x1, x2) := x2

1+x2
2. We again use T described in Section 4.1 as the training set

for this approximation. Since both fM and fS are linear in x1 and x2 [see (3)–
(4)], they cannot converge pointwise to fQ. However, we can test whether the two
networks converge to the least-squares linear approximation of fQ. We denote
the least-squares approximation by g and derive it. Let g(x1, x2) := b1x1 + b2x2

and b := (b1 b2)′ (a′ denotes the transpose of a). We will determine the entries
of b that minimizes the squared error resulting from approximating fQ by g.
Let X denote a matrix that represents the training set T . Also, let y denote a
column vector whose entries are the values fQ(x1, x2) of the target quadratic
function evaluated at the ordered pairs (x1, x2) ∈ T : y = (2 1 1 0 1 1 2)′. Then
b is the least-squares solution to the inconsistent system y = Xb, and the solution
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is (X ′X)−1X ′y = (0 0)′. Thus, if the two networks properly approximate the
quadratic target function, then their final output functions should converge to
g(x1, x2) ≡ 0, and the least squared error in this case is

1
2

∑
(x1,x2)∈T

[fQ(x1, x2) − g(x1, x2)]2 = 6. (15)

For simplicity, we set the initial values of all the parameters to 2.
Figure 4 shows the approximations of fQ by M (the left half) and by S (the

right half). As in each panel of Figure 2, the approximation error defined at (5)
is plotted against the number of iterations, and the value of the learning rate
r is indicated. The error is shown in black if it becomes smaller than 6.0001
upon completion of the 1000th iteration; in this case the output function of the
network converges to the least-squares linear approximation. The error is shown
in light gray otherwise (i.e., if the network does not converge to the least-squares
approximation).

First we examine the approximation by M (the left half of Figure 4). The error
does not converge to 6 if the learning rate is greater than .01. In each divergent
case, the error increases so quickly that it is hardly visible in the corresponding
plot. When the error converges to 6, the final output function fM (x1, x2) =
w

(3)
1 w

(2)
1

∑2
k=1 w

(1)
k xk converges pointwise to the least-squares approximation

g(x1, x2) ≡ 0; interestingly, w
(1)
1 (t) and w

(1)
2 (t) converge to 0 whereas w

(2)
1 (t)

and w
(3)
1 (t) converge to -1.83.

The right half of Figure 4 shows the approximation of fQ by S. The maximum
value of the learning rate with which fS converges to the least-squares linear so-
lution is approximately .08, so this value is about eight times as large as the cor-
responding value (approximately .01) for M . When the error converges to 6, the
parameters w

(1)
1 , w

(2)
1 , w

(3)
1 , and w

(3)
2 of the final output function fS(x1, x2) =∑2

k=1 w
(3)
k w

(k)
1 xk all converge to 0, so the output function converges pointwise

to the least-squares solution. (However, notice that the limits of the parameters
of S are different from those of M .) Therefore, as in the linear case described in
Section4.1, the effective learning rate is more flexible for S than for M .

5 Discussion

We believe that our study is the first to conduct fair and systematic comparisons
of single- and multiple-hidden-layer neural networks. The two types of networks
considered in this study use the same activation and output functions and have
the same numbers of nodes, feedforward connections, parameters, and inputs.
They were trained to approximate linear and quadratic functions. In all the cases
examined in this study, the range of the effective learning rate is substantially
wider for single-hidden-layer networks than for multiple-hidden-layer networks.
When they converge to the linear target function fL with the same learning
rate, the single-hidden-layer network converges faster than the multiple-hidden-
layer network. Therefore, at least in these cases, single-hidden-layer networks are
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Fig. 4. Approximations of fQ by networks M (the left half) and S (the right half).
The error is plotted in black if it becomes smaller than 6.0001 upon completion of
the 1000th iteration. In this case, the output function of the network converges to
the least-squares linear approximation. Otherwise it is plotted in light gray. However,
in each divergent case, the error increases so quickly that it is hardly visible in the
corresponding panel. Note that the least squared error is 6 [see (15)].

preferable to multiple-hidden-layer networks. We examined larger networks and
observed the same patterns of results; in fact, the differences between the two
types are more pronounced as the network size increases.

For analytical tractability, we used identity output functions and linear and
quadratic target functions in this study. We intend to compare the two types of
networks with other commonly used output functions, such as sigmoidal func-
tions, and with other types of target functions. We hope that our study serves
to stimulate rigorous comparative studies of single- and multiple-hidden-layer
networks.
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Abstract. In this paper, we consider the stability of Cohen-Grossberg
neural networks with unbounded time-varying delays. Under less restric-
tive conditions those proposed in existing literature, we prove the asymp-
totic stability of the generalized Cohen-Grossberg neural networks. For
the first time, we deal with the case where the unbounded time-varying
delay τ (t) which is not necessarily continuous in time t. And for the
amplification function, we only need it to be positive and continuous, a
uniform positive lower and upper bounds are not necessary.

Keywords: stability; Cohen-Grossberg neural networks; time-varying
delays.

1 Introduction

Since it was first proposed by Cohen and Grossberg in 1983 [1], the Cohen-
Grossberg neural networks has been extensively studied due to its potential
applications in classification and parallel computing. And there are also a lot
of variants and generalization of this model. Today, the stability of Cohen-
Grossberg neural networks with time delays has attracted much attention from
researchers. For example, see [2, 3, 10–15] and references therein. At an early
stage, the time delay is assumed as constant. After that, time-varying delays and
distributed time delays are considered. In most of the papers, the time-varying
delays are assume to be bounded, and only a few papers consider unbounded
time delays. For example, in [11], the authors study the asymptotic stability of
Cohen-Grossberg neural networks with time-varying delays:

ẋi(t) = −ai(xi(t))
(

bi(xi(t)) −
n∑

j=1

cijgj(xj(t)) −
n∑

j=1

dijfj(xj(t − τij(t)))
)

,

when t ∈ [0,+∞);
xi(t) = ϕi(t) ∈ C([−τ, 0], R), when t ∈ [−τ, 0];

i = 1, · · · , n,

where fi, gi are Lipschitz functions, ai(·), i = 1, · · · , n are continuous and there
exist positive constants mi and Mi such that mi ≤ ai(x) ≤ Mi for all x ∈ R, and

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 280–286, 2011.
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b′i(x) ≥ γi > 0 for all x ∈ R, τij(t) is the time-varying delay which is continuous
in t, and τ = supx∈[0,∞] maxi,j=1,··· ,n(τij(s)) which may be ∞. Under these
assumptions, they provide sufficient conditions for the asymptotic stability of
the Cohen-Grossberg networks. Yet there are two basic restrictions, one is that
the time delay τ(t) is continuous in t, the other is that the amplification function
ai(x) has positive lower bounds and upper bounds on R.

In this paper, we will use a different approach which some variants of the
generalized Halanay inequality to deduce the same asymptotic stability under
less restrictive conditions.

The original Halanay inequality was first proved by Halanay [5]. In discussing
the stability of the zero solution of

u̇(t) = −Au(t) + Bu(t − τ∗), τ∗ > 0 (1)

Halanay proved

Proposition 1. (see [5, 6]) If

u̇(t) ≤ −Au(t) + B sup
t−τ∗≤s≤t

u(s) (2)

and A > B > 0. Then, there exist k and γ > 0 such that

u(t) ≤ ke−γ(t−t0) (3)

and hence u(t) → 0 when t → ∞.

Later on, the original inequality was generalized in different ways to discuss the
stability of solutions of Volterra functional equations of a more general type.
These variants of Halanay inequality are called generalized Halanay inequality
in literature. Examples of generalized Halanay inequalities include [6–9, 16].

In [7], the authors discuss stability of the following delay differential systems.

D+u(t) ≤ γ(t) + α(t)u(t) + β(t) · sup
t−τ(t)≤s≤t

u(s) (t ≥ t̃),

u(t) = |ψ(t)|, t ≤ t̃,

where ψ(t) is a bounded and continuous function for t ≤ t̃. For t ∈ [t̃,+∞),
continuous functions γ(t) ≥ 0, α(t) ≤ 0, β(t) ≥ 0 and τ(t) ≥ 0, and t−τ(t) → ∞
as t → ∞. They provide sufficient conditions for the boundedness and stability
of the above system.

Halanay-type inequalities can be used to stability analysis of neural networks
with time delays. For example, in [9], Chen proposed a approach, which is some
variants of Halanay inequality, to solve global stability of the neural networks
with delays:

dui(t)
dt

= −diui(t) +
∑

j

aijgj(xj(t)) +
∑

j

bijfj(uj(t − τij)) + Ii, i = 1, · · · , n.
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In [16], the Halanay inequality is further generalized and used to discuss the
asymptotic stability of Hopfield neural networks with unbounded time-varying
delays. In this paper, motivated by the techniques used in [16], we discuss the
asymptotic stability of the generalized Cohen-Grossberg neural networks with
unbounded time-varying delays. We show that the asymptotic stability of the
generalized Cohen-Grossberg neural networks with unbounded time-varying time
delays can be proved under less restrictive conditions than those appeared in
existing literature. Basically, we don’t require the continuity of τij(t), actually it
can be replaced by any conditions that can ensure the existence and uniqueness
of solutions. And we show that a uniform lower bound and upper bound of ai(x)
on R is also not necessary, we only require ai(x) is positive continuous functions
on R.

The rest of the paper is organized as follows. In Section 2, we provide some
mathematical preliminaries that will be used later, the main results with proof
are given in Section 3, and the paper is concluded in Section 5.

2 Preliminaries

In this section, we will provide some preliminaries from matrix theory that will
be used later.

Definition 1. [4] A real n × n matrix A = [aij ] is said to be a non-singular
M-matrix if aij ≤ 0 for i �= j, i, j = 1, · · · , n, and all successive principal minors
of A are positive.

Lemma 1. [4] If A = [aij ] is a real n× n matrix with non-positive off-diagonal
elements, then the following statements are equivalent:

(i) A is a non-singular M-matrix;
(ii) There is a positive diagonal matrix K = diag[k1, · · · , kn], ki > 0, i =

1, · · · , n, such that KAK−1 is strictly diagonally dominant, i.e., aii >
∑

j 
=i

ki|aij |k−1
j , i = 1, · · · , n.

3 Stability Analysis

In this section, we will consider the asymptotic stability of the generalized Cohen-
Grossberg neural networks with time-varying delays:

ẋi(t) = −ai(xi(t))
(

bi(xi(t)) −
n∑

j=1

cijgj(xj(t)) −
n∑

j=1

dijfj(xj(t − τij(t)))
)

,

i = 1, · · · , n, (4)

where n ≥ 2 is the number of neurons in the network, xi(t) is the state variable
of the ith neuron at time t, ai(xi) is the amplification function, fj and gj are the
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activation functions, C = [cij ] is the feedback matrix and D = [dij ] is the delayed
feedback matrix. And the initial conditions are xi(t) = φi(t) ∈ C([−∞, 0], R).

In this paper, we assume that:

Assumption 1. (i) The activation functions f = (f1, · · · , fn) and g=(g1, · · · ,
gn) are Lipschitz functions, i.e., there exist positive constants αi, βi, i =
1, · · · , n such that |fi(x) − fi(y)| ≤ αi|x − y|, |gi(x) − gi(y)| ≤ βi|x − y|;

(ii) ai(·), i = 1, · · · , n are positive continuous functions on R;
(iii) b′i(x) ≥ γi > 0 for all x ∈ R.

We have the following main result:

Theorem 1. Under Assumption 1, if t − τ(t) → ∞ and B − |CLg| − |DLf |
are non-singular M-matrix, the the model (4) has a unique equilibrium point x∗,
and x∗ is asymptotic stable, where τ(t) = maxi,j τij(t), B = diag[γ1, · · · , γn],
C = [cij ], D = [dij ], Lf = diag[α1, · · · , αn], Lg = diag[β1, · · · , βn], and for a
matrix A = [aij ], |A| = [|aij |].

Proof. Since the existence of the equilibrium point does not depend on ai(·) and
τ(t), so we can use the same method as that in [11] to prove the existence of a
unique equilibrium point x∗.

Now we prove the asymptotic stability of x∗. Let u(t) be a solution of the
model (4), and let v(t) = u(t)−x∗. Since B−|CLg|−|DLf | is a non-singular M-
matrix, from Lemma 1, there exists a diagonal positive matrix K = diag[k1, · · · ,
km] such that K(B − |CLg| − |DLf |)K−1 is diagonally dominant. Let η > 0 be
such that

γi −
n∑

j=1

|cij |βjkik
−1
j −

n∑
j=1

|dij |αjkik
−1
j ≥ η, i = 1, · · · , n.

Let z(t) = Kv(t), that is zi(t) = kivi(t). For t ≥ 0, denote M1(t) =
sups≤t ‖z(s)‖, where we take ‖z(t)‖ as the infinite norm of z(t), i.e., ‖z(t)‖ =
maxi ‖zi(t)‖. First, we claim that ‖z(t)‖ ≤ M1(0) for all t ≥ 0. Otherwise,
there exists ta such that ‖z(t)‖ ≤ M0 for t ∈ [0, ta), ‖z(ta)‖ = M1(0), and
D+‖z(t)‖ ≥ 0, where D+ is the upper-right Dini derivative which is defined as
D+y(t) = limh→0+

y(t+h)−y(t)
h . Let ia be the index such that |zia | = ‖z(ta)‖, then{

D+|zia(t)|
}

t=ta

= − sign(zia(ta))kiaai(xi(ta))
(

bia(xia (ta)) − bia(x∗
ia

)

−
n∑

j=1

ciaj

[
gj(xj(ta)) − gj(x∗

j )
]

−
n∑

j=1

diaj

[
fj(xj(ta)) − fj(x∗

j )
])
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≤ −aia(xia (ta))
(

γia |zia(ta)| −
n∑

j=1

|ciaj |βjkiak
−1
j |zj(ta)|

−
n∑

j=1

|dij |kiak
−1
j αj sup

ta−τiaj(ta)≤s≤ta

|zj(s)|
)

≤ −aia(xia (ta))
[
γia −

n∑
j=1

|ciaj |kiak−1
j βj

−
n∑

j=1

|diaj |kiak
−1
j αj

]
M1(0)

≤ −aia(xia (ta))ηM1(0)
< 0,

which is a contradiction. Thus we have ‖z(t) ≤ M1(0)‖ for t ≥ 0. Since z(t) =
K(x(t)− x∗), ‖x(t)‖ = ‖K−1z(t)+ x∗‖ ≤ M0(0)

mini ki
+ ‖x∗‖. This implies that there

exist constants 0 < m < M such that m ≤ ai(xi(t)) ≤ M for each i = 1, · · · , n
and all t ≥ 0.

Let δ = mini
γi−

∑n
j=1 |cij |kik

−1
j βj− η

2

γi−
∑n

j=1 |cij |kik
−1
j βj

, then δ ∈ (0, 1) and

δ
(
γi −

n∑
j=1

|cij |kik
−1
j βj

)
−

n∑
j=1

|dij |kik
−1
j αj ≥ η

2
.

Then for any t ≥ 0, if ‖z(t)‖ ≥ δM1(0), by a similar argument as above, we
can have

D+‖z(t)‖ ≤ mηM1(0)
2

.

Let t1 = 2(1−δ)
mη , then for any t ≥ t1, ‖z(t)‖ ≤ δM1(0). Since t − τ(t) → ∞,

there exists t̂1 > t1 such that t− τ(t) ≥ t1 for all t ≥ t̂1. For t ≥ t̂1, let M2(t) =
supt1≤s≤t ‖z(s)‖. Similarly, we can prove that there exists t2 > t̂1 such that
‖z(t)‖ ≤ δM2(t̂1) ≤ δ2M1(0) for all t ≥ t2,· · · . Continuing this process, and we
can find a sequence t1 < t2 < · · · < tk < tk+1 < · · · such that ‖z(t)‖ ≤ δkM1(0)
for all t ≥ tk. Thus, limt→∞ ‖z(t)‖ = 0. The proof is completed.

4 An Example

In this section, an example is provided to illustrate the theoretical results.
Consider the following system:(

ẋ1

ẋ2

)
= −

(
e−x1 0

0 e−x2

)
×
[(

1 0
0 1

)
×
(

x1

x2

)
−
(

1
8

1
16

1
9

1
16

)(
tanhx1

tanhx2

)
−
(

1
8

1
16

1
9

1
16

)(
tanh 2(x1 − τ(t))
tanh 2(x2 − τ(t))

)]
.
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It is easy to see that ex > 0 on R, and we can take γi = 1, ki = 1, αi = 2, βi = 1,
for i = 1, 2. So B = I2, Lf = 2I2, and Lg = I2, where I2 is the identity matrix
of dimension 2. We take K = I2, then it is easy to verify that B − |C| − 2|D|
is strictly diagonally dominant. If we take τ(t) = ln(t + 1), then it satisfies that
limt→∞ t − τ(t) = ∞, so the system is asymptotically stable from Theorem 1.

5 Conclusions

In this paper, we study the asymptotic stability of generalized Cohen-Grossberg
neural networks with unbounded time varying delays. Under less restrictive con-
ditions than existing results, we prove the asymptotic stability of such networks.
Our results extended previous results concerning unbounded time varying de-
lays in the sense that we don’t require the continuity or uniform boundedness of
the amplification functions. An example is provided to illustrate the theoretical
results.
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Abstract. We study temperature modulated synchronization phenom-
ena in the Morris-Lecar (ML) models with synaptic couplings. Little
has been known about the thermal effects on synchronization in a real
nervous system. Dynamical mechanisms on such synchronization are in-
vestigated by linear stability analysis with phase descriptions for the ML
type, in order to understand the effects of temperature on the phase
response curve (PRC). We find two types of PRC shape modulation in-
duced by changes in temperature that depend on an injected current
amplitude: (1) the PRC shape switch between the type-I and type-II,
and (2) the almost unchanged appearance of a type-II PRC. A large va-
riety of synchronization is demonstrated with these changes in the PRC
shapes.

Keywords: Temperature modulation, a phase reduction method, phase
response curves, synchronization transition.

1 Introduction

Temperature is one of the most important environmental factors that influences
spiking behaviors of a neuron. Changes in temperature affect the activation
or inactivation of various ionic channels such as voltage-gated K+, Na+ and
Ca2+ channels, which induces an action potential[1, 2]. It is well-known that
temperature increases cause a constant increase in the firing frequency[3, 4]
and a decrease in action potential duration[5]. This thermal dependence of the
neural spiking properties has been actively studied since the electro-physiological
research for model construction of Hodgkin and Huxley[6].

We are interested in studies on synchronization transitions in two coupled
neurons that are influenced by temperature on their ionic or synaptic dynamics.

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 287–296, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In order to understand the thermal influence on synchronization properties of
the two-neuron system, we show how a common temperature scaling factor of
the ionic and synaptic dynamics affects the PRC of the neuron model, which is
regarded as one of the key abilities for two coupled neurons to be synchronized.

In Sec. 2, we introduce the ML model which involves a model of the chemical
synapse. The behavior of chemical synapses modeled here obeys an α-function[7,
8]. In our model, a common temperature factor, μ, is used for controlling the time
constant of ionic and synaptic gating variables. We apply the phase reduction
method[9–11] to the pair system of the ML model and find that temperature
modulation induces two types of the PRC shape changes that are dependent on
an injected current amplitude: A PRC form switch between the type-I and type-
II; and an unchanged type-II PRC appearance.In Sec. 3, we explore analytically
synchronous behavior in the pair system, dependent on the intrinsic parameter
of a synaptic time constant. A discussion and conclusion are given in Sec. 4.

2 Spiking and Synapse Models

We begin by studying thermal effects on neuronal firing properties of the Morris-
Lecar (ML) type with a physiologically plausible assumption that there exist
together ionic and receptor channels on the same place of a neuron. The time con-
stants of the channel gating variables for a potassium channel (W ) and synapses
(s and h) measured at the temperature T0 = 32 ◦C (or = 305.15 K) are com-
monly scaled to ones at the temperature T by μ = 3.0(T−T0)/10 [12, 13]:

dx

dt
= F (x), (1)

The neuronal state x = (V,W, s, h)T ∈ R
4 and T denotes a transpose. V is a fast

variable for the voltage difference across the membrane potential. The synaptic
variable s is driven by the variable h, which is in turn driven by V using the
step function, E(V ), as mentioned below. F (x) is a baseline vector field:

F (x) =

⎛⎜⎜⎝
A(V,W )
B(V,W )
C(s, h)
D(V, h)

⎞⎟⎟⎠ , (2)

A(V,W ) = − 1
Cm

[gL(V − VL) + gCam∞(V )(V − VCa)

+gKW (V − VK) − I] , (3)

B(V,W ) =
μ

τw(V )
[W∞(V ) − W ] , (4)

C(s, h) =
μ

τsyn
(−s + h), (5)

D(V, h) =
μ

τsyn
[−h + E(V )] , (6)
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Fig. 1. An I-μ phase diagram for the PRC of the ML type. Let us define classification
of the PRC type by the boundary line being determined with C = 0.05 in Eq. (7).

where

m∞(V ) =
1
2

[
1 + tanh(

V − V1

V2
)
]
,

W∞(V ) =
1
2

[
1 + tanh(

V − V3

V4
)
]
,

τw(V ) =
3

cosh(V −V3
2V4

)
,

E(V ) =
{

1, x > Θ
0, x � Θ

,

where Cm is the capacitance, which takes the value Cm = 1.00. gCa = 1.33,
gK = 2.00, gL = 0.50, VK = −0.700, VCa = 1.000, VL = −0.500, V1 = −0.010,
V2 = 0.150, V3 = 0.100, V4 = 0.145. These dimensionless parameters were
referred to [14]. Θ is a threshold with V = 0.00. τsyn is a synaptic time constant.
We assume that the injected current I � 0.0695 so that the ML model represents
an oscillatory system exhibiting spontaneous periodic firing. Notice that when
I = 0.0695, the ML has a phase response curve (PRC) shape of the type-I.

2.1 Temperature-Dependent PRC

we study how temperature and injected current amplitude variations influence
a shape of the PRC Zv. The PRCs are derived by a phase reduction method as
written in Appendix A. Type-I PRC is well-known to take negative values as
well, which are in a very minor region. So, we will have to define again the PRC
classification that is different from the one that has so far been been well-known.
In this work, the PRCs can be classified by measuring a difference between
regional sizes of the positive and negative of the Zv-function∫ θ1

θ0

Zv(θ′)dθ′ < C

(∫ θ0

0

+
∫ 1

θ1

Zv(θ′)dθ′
)

, (7)
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Fig. 2. μ-dependent PRCs for the ML type with I = 0.0695. (a) PRCs are the type-I
for μ = 1.0, 0.75, 0.5 and 0.25, T0 = 305.15, 302.53, 298.84 and 292.53 K. (b) The
type-II for μ(T0) = 0.1(284.19), 0.75(281.57) and 0.05(277.88).

where Zv(θ0) = 0, Zv(θ1) = 0 and C = 0.05. The left hand is the size of negative
region of the Zv. The right hand presents a total size of the positive region. The
PRC is called type-I if the above equation is satisfied, otherwise it is called type-
II. This equation would as well describe how the timing of consequential output
spike is shifted by small perturbation at an arbitrary phase. The positive and
negative regions respectively correspond to the next spike advances and delays.
Based on Eq.(7), we have obtained an I-μ diagram [Fig. 1]. The μ parameter
region of [0.05, 1.00] is set up with the temperature region of [277.88, 305.15] K
while the region of an injected current amplitude is [0.0695, 0.1000]. The region
below a solid line is the type-I in our case while the other is type-II.

According to the μ-I diagram, the PRC is calculated on computers with I =
0.0695 in the ML model. For μ = 1.0, the PRC takes a shape of the type-I
which has dominantly positive values as shown in Fig. 2(a). However when the
temperature parameter μ gradually decreases, the initially formed type-I PRC
changes to the typical type-II PRC. It appears that the type-I PRC takes both
negative and positive values (Fig. 2(b)). In the remainder of the article, we refer
to this type of PRC as type-A.

Another temperature-modulated PRC is investigated for I = 0.1000 (Fig. 3).
As shown in Fig. 3(a), we have found that the PRC can no longer take the
form of type-I with any value of μ, which is unlikely for I = 0.0695. We refer
to this type of PRC as type-B. In this case, the PRC takes only a type-II form
with both the negative and positive values. However, it appears that this is an
atypical form for the original type-II, as shown in FIG. 3(b).

3 Temperature Modulated Synchronization Transition in
Two Neurons

Since we have found how the PRC shapes are shifted by variations of temper-
ature and an injected current amplitude, it would be interesting to analyze the



Thermal Effects on PRC and Synchronization Transition 291

(a) (b)

-120
-100
-80
-60
-40
-20

 0
 20
 40
 60
 80

 0  0.2  0.4  0.6  0.8  1

Z
(θ

)

θ

μ=1.0
μ=0.5

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 0  0.2  0.4  0.6  0.8  1

Z
(θ

)

θ

μ=0.25
μ=0.1

μ=0.05

Fig. 3. μ-dependent PRCs for the ML type with I = 0.1. (a) μ = 1.0 and 0.5. (b)
μ = 0.25, 0.1 and 0.05.

dynamical mechanisms of temperature modulated synchronization even in the
pair system that neurons excitatorily interact with each other:

dx(n)

dt
= F (n)(x(n)) + εG(n)(x(n),x(n̄)), (n = 1, 2), (8)

where n̄ represents a counterpart of the n th neuron. εG(n)(x(n),x(n̄)) = (εs(n̄),
0, 0)T where ε � 1. In this analysis, we employ a phase reduction method.
In the phase reduction method, the weakly coupled oscillatory models can be
reduced to equations consisting of the phase degrees of freedom [Appendix A].
The obtained phase equations are given as follows:

dφ

dt
= εH2(−φ) − εH1(φ) ≡ Γ (φ), (9)

where

Hn(φ) =
1
Tp

∫ 1

0

{Z̃(n)
(θ)}T · G(n)

(
x̃(n)

p (θ), x̃(n̄)
p (θ + φ)

)
dθ.

where φ = θ1 − θ2 denote the phase difference between the two neurons. Γ
is expressed as an average interaction function of φ. Zv is a so-called PRC.
Numerical calculations are used for all results. For Γ (φ), synchronous solutions
are represented as fixed points, φ0, satisfying with the condition Γ (φ0) = 0.0.
The in-phase and anti-phase synchronous solutions are defined respectively as
φ = 0.0 or 1.0, and φ = 0.5. In general, for ε > 0, the synchronous solution,
φ0, is stable if Γ ′(φ0) < 0, while it is unstable if Γ ′(φ0) > 0. Since in the
previous section, we explored two different types of PRC shape modulation for a
change of temperature, in particular, the cases of I = 0.0695 and 0.1000, We will
show how a temperature-scaling factor μ affects the scheme of synchronization
of oscillations with respect to α = 1/τsyn by the stability analysis for Γ (φ).
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Fig. 4. μ-dependence of synchronization transition for I = 0.0695. (a) μ = 1.0, (b)
μ = 0.1 and (c) μ = 0.05. Light green and red lines are stable and unstable synchronous
solutions, respectively.
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Fig. 5. μ-dependent synchronization transition in the two coupled neuronal oscillators
with I = 0.1000. (a) μ = 1.0 and (b) μ = 0.05.
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3.1 Type-A Synchronization Transition

We study the temperature dependence of PRC shape for I = 0.0695 when α =
2.0. As shown in Fig. 2, the PRC shape is modulated for changes in μ. When μ
decreases from 1.00 to 0.05, an unstable solution φ = 0.5 for μ = 1.0 in Fig. 4(a)
splits into the two unstable synchronous solutions around the stable solution
φ = 0.5. Furthermore, we investigate the case for α < 2.0. As shown in Fig.
4(a), for μ = 1.0, we have found a trivial pitchfork bifurcation. This was already
observed by van Vreeswijk et al. in the integrate-and-fire neuronal oscillators
with α-function derived from Eqs. (5) and (6) [15, 16]. The stable anti-phase
synchronous solution undergoes a transition to two stable in-phase synchronous
solutions and one unstable anti-phase synchronous solution with an increase of
α. However, when μ < 0.1, another supercritical pitchfork bifurcation appears
for small α (Fig. 4(b)). Furthermore when μ gradually decreases to 0.05, the new
sub-critical pitchfork bifurcation appears as shown in Fig. 4(c).

3.2 Type-B Synchronization Transition

As in other studies on type-A synchronization, we examine simulation results
for I = 0.1000 when α = 2.0. In Fig. 5(a), the supercritical pitchfork bifurcation
at α ∼ 0.4 has two unstable branches around α ∼ 0.5. Another supercritical
pitchfork bifurcation and the two saddle-node bifurcations occur around α ∼ 0.0.
When μ is decreased to 0.5, the locations of one supercritical pitchfork and two
saddle-node bifurcations around α ∼ 0.0 for I = 0.1000 shift to slightly larger
α values. The saddle-node bifurcation points for α smaller becomes close to the
other for the larger α. Colliding with each other, another new unstable and
stable branches appear around α ∼ 0.25 after demonstrating in Fig. 5(a). The
stable branches then link to the in-phase synchronous solutions, φ = 0.0 and 1.0.
For μ = 0.05, two sub-critical pitchfork bifurcations occur at φ = 0.5 instead of
two supercritical pitchfork bifurcations. One of the two unstable branches of the
pitchfork bifurcation links to the other (Fig. 5(b)).

4 Discussion and Conclusion

We have investigated how synchronization in two neurons are influenced by their
environmental temperature through the synaptic and ionic dynamics. Tempera-
ture modulated synchronization have not been widely reported. Using a multi-
body system of globally coupled identical neurons in all-to-all fashion, Wang
and Buzsáki [17] have simulated the loss in complete synchrony of the system
through controlling the temperature-scaling factor. They show the system dy-
namically broken into two clusters; the neurons fire simultaneously within each
cluster, and the spike timings of the two clusters alternate in time. However, why
such phenomena occur in a decrease of temperature was not discussed. In con-
trast, we have explored dynamical mechanisms involved in these synchronization
transitions even in the two-neuron system with the full use of phase response
curve analysis, and under the physiologically reliable condition on temperature.
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In this work, we have found two main types of μ-modulated PRCs. This fact
implies one possibility for neuron type classification, because the ML model
for I = 0.1000 can be regarded as type-II. Even for the HH or FHN models,
type-II PRCs are found. The shapes of such PRCs do not change drastically
with temperature modulation. On the other hand, it is well-known that the
ML model for I = 0.0695 typically takes a form of the type-I. In addition,
for the ML model with I = 0.0695, the μ-dependent PRC shape modulation
between type-I and type-II has been shown. This temperature modulated PRC
is expected even in the Wang and Buzsáki (WB) type model [17]. Common
synchronous behavior is expected to arise in neuronal systems of the same type
in our classification pair system, regardless of the detailed neuron type. When μ is
small, a common dynamical property involved in synchronization phenomena is
found in all models of ML, HH and WB (referred to [18]). The common dynamical
property is that there are stable synchronous solutions of φ = 0.0 and 1.0 for any
α with sub-critical pitchfork bifurcation for φ = 0.5 at an arbitrary α. However, a
dynamical relationship between neuron model classification and synchronization
is still open for discussion. Such a relationship should be intensively investigated
in the future.

Finally, we are aware of the existence of synchronization transitions driven
by the changes of α and I within a wide temperature region of [277.88, 305.15]
K. Our analytical approaches on synchronization phenomena were originally
carried out to understand the neuronal information processing in a real brain.
A human brain usually maintains a constant temperature around 37 ◦C. Thus,
we may need to study synchronization transition in a remarkably narrow range
of temperature around 37 ◦C under the human brain condition. The difficulty
associated with this is whether extremely fast speeds of the ionic channels can
be observed with small changes of temperature. A temperature coefficient and
a temperature-scaling factor μ need to be considered again, according to the
physiological observation of extremely fast channel speeds. So, ample discussions
and open questions of our work still remain.

In summary, we have used the phase reduction method to study the ther-
mal effects on the PRCs for the ML type. Through linear stability analysis using
the phase description we obtained, temperature modulated synchronization phe-
nomena have been found numerically in the ML type models with synaptic cou-
plings. We have also found two different types of PRC shape changes modulated
by temperature: the switch of PRC shape from the type-I to the type-II, and the
mostly unchanged appearance of a type-II PRC. A variety of synchronization of
oscillations have been demonstrated with these changes in the PRC shape.
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A Phase Reduction Method

The general formulation of a phase reduction method is presented in [9–11]. Let
x

(n)
p (t) denote a stable Tp-periodic solution for the uncoupled dynamics,

ẋ(n)
p = F (n)(x(n)

p ), x(n)
p (t + Tp) = x(n)

p (t). (10)
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The stable solution of Eq. (1) is approximated as

x(n)(t) = x(n)
p (t + τ (n)) + εu(n)(t + τ (n)(t)), (11)

where τ (n)(t) means a small perturbation in the phase direction on the periodic
orbit, and u(n) denotes orbital deviation from the periodic orbit, x

(n)
p . Substi-

tuting Eq. (11) into Eq. (8) and expanding both sides into a Taylor series, we
obtain the evolution equation for τ (n):

τ̇ (n)(t) = ε{Z(n)(t + τ (n)(t))}T

·G(n)
(
x(n)

p (t + τ (n)(t)),x(n̄)
p (t + τ (n̄)(t))

)
, (12)

using the normalization condition {Z(n)(t)}T · [dx
(n)
p (t)/dt] = 1 for every t.

Here {Z(n)(t)}T is the phase response curve, which is the unique solution to
[dZ(n)(t)/dt] = −

[
L(n)(t)

]T
Z(n)(t). Introducing phase variables θn(t) = (t +

τ (n)(t))/Tp, Eq. (12) can be rewritten as

dθn

dt
=

1
Tp

+
ε

Tp
{Z̃(n)

(θn)}T · G(n)
(
x̃(n)

p (θn), x̃(n̄)
p (θn̄)

)
. (13)

Let the phase difference of the two oscillators φ(t) = θ2(t) − θ1(t) is a slow
variable. We have obtained the evolution equation for φ(t) as

dφ

dt
= εH2(−φ) − εH1(φ) ≡ Γ (φ), (14)

where

Hn(φ) =
∫ 1

0

dθĤn(θ, φ).
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Abstract. This paper is concerned with studying the robust H∞ fil-
ter design problem for a class of recurrent neural networks with time-
varying delay. A delay-dependent criterion involving a scaling parameter
is established under which the resulting filtering error system is globally
asymptotically stable with a guaranteed performance in the H∞ sense.
The purpose of the introduction of the scaling parameter lies in that the
developed result can be efficiently applied to the neural networks with
complex dynamic behaviors, which is illustrated by an example.

Keywords: Neural networks, time-varying delay, filter design, linear
matrix inequality.

1 Introduction

This paper considers the robust H∞ filtering problem of delayed neural networks.
There are two reasons why time delay should be taken into account in the neural
network models. One is that time delay is frequently encountered in the electronic
implementations of neural networks because of the finite switching speed of the
used amplifiers. It is now well recognized that time delay is one of the main
sources resulting in instability and oscillation. The other is that it would be
more effective to some neural networks based applications (for examples, speed
detection of moving objects and processing of moving images) when time delay
is intentionally introduced. During the past few years, delayed neural networks
have received increasing research interest. Among them, much effort has been
devoted to the stability analysis of various neural networks with time delay.
Many stability results have been reported in the literature (see, e.g., [1–5]).

On the other hand, the state estimation of large-scale delayed neural net-
works is also an important issue and has recently attracted lots of attention.
A neural network is generally a highly interconnected network with substantial
connections between neurons. As mentioned in [6], in such a large-scale neural
network, it may be very difficult or even impossible to completely obtain the
state information of all neurons via the available network measurements. Mean-
while, one often needs to acquire the neuron states and then utilizes them in
practical applications to achieve certain objectives such as system modeling and

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 297–304, 2011.
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state feedback control, etc. Therefore, it is of great importance to investigate the
state estimation problem of delayed neural networks.

Recently, some interesting results on the state estimation of delayed neural
networks have been published in the literature [6–13]. The authors in [6] firstly
studied the state estimation of delayed neural networks and derived a delay-
independent design criterion. The free-weighting matrix approach was applied
to discuss this problem in [8], and a delay-dependent condition was established
to ensure the existence of a suitable state estimator. The robust state estimation
problem was investigated in [10, 12] for delayed neural networks where the pa-
rameter uncertainties were taken into account. Several delay-dependent results
were presented in [13] to the state estimation of neutral-type neural networks
with time-varying delay. It should be pointed out that only the state estimator
design problem was addressed in the above literature. As suggested in [14], a
neural network is often subject to noise perturbations. In some situations, the
noise may be deterministic rather than random. That is, it can be modeled as an
energy-bounded input noise. Therefore, the performance analysis, which was not
discussed in [6–13] is another important issue from the point of view of theory
and applications. Although the authors in [14] obtained some delay-independent
and delay-dependent results on the robust filter design for delayed neural net-
works, this problem has not been fully studied yet and remains challenging. This
motivates the current study.

In this paper, the robust H∞ filtering problem is further discussed for a class
of neural networks with time-varying delay, where the activation function is
not required to be monotonic. A delay-dependent condition is derived under
which the resulting filtering error system is globally asymptotically stable with a
guaranteed performance in the H∞ sense. It is shown that the design of a desired
filter is accomplished by solving a linear matrix inequality (LMI), which can be
facilitated by numerical algorithms. A scaling parameter is introduced such that
the proposed result can be efficiently applied to the delayed neural networks with
complex dynamic behaviors (for example, the chaotic neural networks), which
can not be solved by the results in [14].

2 Problem Formulation

The delayed neural network disturbed by a noise input is represented by the
following equations:

(N) : ẋ(t) = −Ax(t) + W0f(x(t)) + W1f(x(t − τ(t)))
+J + B1w(t) (1)

y(t) = Cx(t) + B2w(t) (2)
z(t) = Dx(t) (3)
x(t) = φ(t) ∀t ∈ [−τ, 0] (4)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vector of the neural
network with n neurons; y(t) ∈ R

m is the network measurement; z(t) ∈ R
p,
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which needs to be estimated, is a linear combination of the states; w(t) ∈ Rq

is a noise input belonging to L2[0,∞) which is the space of square integra-
bel vector functions over [0,∞). A = diag(a1, a2, . . . , an) is a diagonal matrix
with ai > 0(i = 1, 2, . . . , n). The matrices W0 and W1 are, respectively, the
connection weight matrix and the delayed connection weight matrix. B1, B2, C
and D are known real constant matrices with compatible dimensions. f(x(t)) =
[f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T is the neuron activation function. τ(t) rep-
resents a time-varying delay. J = [J1, J2, . . . , Jn]T is an external input vector.
ξ(t) ∈ C([−τ, 0]; Rn) is a real-valued continuous initial condition on [−τ, 0].

For the delayed neural network (N), a full-order filter is designed to estimate
z(t):

(Nf ) : ˙̂x(t) = −Ax̂(t) + W0f(x̂(t)) + W1f(x̂(t − τ(t)))
+J + K(y(t) − ŷ(t)) (5)

ŷ(t) = Cx̂(t) (6)
ẑ(t) = Dx̂(t) (7)
x̂(0) = 0 (8)

where x̂(t) ∈ Rn, ŷ(t) ∈ Rm, ẑ(t) ∈ Rp, and K, to be determined, is the gain
matrix of the filter.

Let the filter errors be e(t) = x(t) − x̂(t) and z̄(t) = z(t) − ẑ(t). The filtering
error system can be immediately obtained from (Nf ) and (N):

(E) : ė(t) = −(A + KC)e(t) + W0g(t)
+W1g(t − τ(t)) + (B1 − KB2)w(t) (9)

z̄(t) = De(t) (10)

with

g(t) = f(x(t)) − f(x̂(t)),
g(t − τ(t)) = f(x(t − τ(t))) − f(x̂(t − τ(t))).

The problem to be addressed here is to develop an algorithm to implement
an H∞ filter design for the delayed neural network (N). Specifically, given a
prescribed level of noise attenuation γ > 0, find a proper filter under which the
filtering error system (9) with w(t) = 0 is globally asymptotically stable, and

‖z̄‖2 < γ‖w‖2 (11)

under zero-initial conditions for all nonzero w(t) ∈ L2[0,∞), where the norm is

defined as ‖ψ‖2 =
√∫∞

0
ψT (t)ψ(t)dt. Then, the filtering error system (E) is said

to be globally asymptotically stable with the H∞ performance γ.
In order to facilitate the derivative of the main result, two assumptions are

always made throughout this paper:
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Assumption 1. The time-varying delay τ(t) satisfies

0 ≤ τ(t) ≤ τ, τ̇ (t) ≤ μ (12)

for t > 0, where τ > 0 and μ are constant scalars.

Assumption 2. The activation function f(·) satisfies:

l−i ≤ fi(u) − fi(v)
u − v

≤ l+i , u �= v ∈ R, i = 1, 2, . . . , n, (13)

with l−i and l+i being constant scalars.

Then, it follows from (13) that

l−i ≤ gi(t)
ei

=
fi(xi) − fi(x̂i)

xi − x̂i
≤ l+i , ei �= 0, i = 1, 2, . . . , n. (14)

Remark 1. It should be pointed out that the scalars l−i and l+i may be positive,
negative or zero [7, 9]. That is to say, it is not required that the activation
function is monotonic. It is thus less restrictive than the popularly-used sigmoid
functions.

Lemma 1. [16] For any given constant matrix X ∈ Rm×m,X = X T > 0, scalar
ν > 0, vector function ω : [0, ν] → R

m such that the integrations concerned are
well defined, then

ν

∫ ν

0

ωT (s)Xω(s)ds ≥
(∫ ν

0

ω(s)ds
)T

X
(∫ ν

0

ω(s)ds
)

.

3 Main Result

This section is dedicated to presenting an approach to the H∞ filter design
problem of the neural network (N). A delay-dependent criterion is derived in
terms of an LMI, which is formulated as the following theorem:

Theorem 1. Let α be a positive constant and γ > 0 be a prescribed constant,
the filtering error system (E) is globally asymptotically stable with the H∞ per-
formance γ if there exist real positive definite matrices P > 0, Q1 > 0, Q2 >
0, Q3 > 0, R > 0, two diagonal matrices Λ = diag(λ1, λ2, . . . , λn) > 0, Σ =
diag(σ1, σ2, . . . , σn) > 0 and a matrix G such that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω1 0 α2R Ω2 PW1 Ω3 Ω4

∗ Ω5 α2R 0 0 0 0
∗ ∗ Ω6 0 Ω7 0 0
∗ ∗ ∗ Ω8 0 0 ατWT

0 P
∗ ∗ ∗ ∗ Ω9 0 ατWT

1 P
∗ ∗ ∗ ∗ ∗ −γ2I Ω10

∗ ∗ ∗ ∗ ∗ ∗ Ω11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (15)
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where ∗ always represents the symmetric block in a symmetric matrix, and

Ω1 = −PA− AT P − GC − CT GT + Q1 + Q2 − α2R − 2L+ΛL− + DT D,

Ω2 = PW0 + L−Λ + L+Λ, Ω3 = PB1 − GB2,

Ω4 = −ατAT P − ατCT GT , Ω5 = −Q2 − α2R,

Ω6 = −(1 − μ)Q1 − 2α2R − 2L+ΣL−, Ω7 = L−Σ + L+Σ,

Ω8 = −2Λ + Q3, Ω9 = −(1 − μ)Q3 − 2Σ,

Ω10 = ατBT
1 P − ατBT

2 GT , Ω11 = −2P + R,

L− = diag(l−1 , l−2 , . . . , l−n ), L+ = diag(l+1 , l+2 , . . . , l+n ).

Then, the gain matrix K of the filter is designed as

K = P−1G.

Proof. Choose a Lyapunov-Krasovskii functional candidate as

V (t) = eT (t)Pe(t) +
∫ t

t−τ(t)

eT (s)Q1e(s)ds +
∫ t

t−τ

eT (s)Q2e(s)ds

+
∫ t

t−τ(t)

gT (s)Q3g(s)ds + α2τ

∫ t

t−τ

(s − t + τ)ėT (s)Rė(s)ds. (16)

Evaluating the time-derivative of V (t) along the trajectories of system (9) and
noting (12) yield

V̇ (t) ≤ eT (t)[−P (A + KC) − (A + KC)T P + Q1 + Q2]e(t) + 2eT (t)PW0g(t)
+2eT (t)PW1g(t − τ(t)) + 2eT (t)P (B1 − KB2)w(t)
−(1 − μ)eT (t − τ(t))Q1e(t − τ(t)) − eT (t − τ)Q2e(t − τ)
+gT (t)Q3g(t) − (1 − μ)gT (t − τ(t))Q3g(t − τ(t))

+α2τ2ėT (t)Rė(t) − α2τ

∫ t

t−τ

ėT (s)Rė(s)ds. (17)

Using Lemma 1, one has

− α2τ

∫ t

t−τ

ėT (s)Rė(s)ds = −α2τ

∫ t−τ(t)

t−τ

ėT (s)Rė(s)ds

−α2τ

∫ t

t−τ(t)

ėT (s)Rė(s)ds

≤ −α2

(∫ t−τ(t)

t−τ

ė(s)ds
)T

R

∫ t−τ(t)

t−τ

ė(s)ds

−α2

(∫ t

t−τ(t)

ė(s)ds
)T

R

∫ t

t−τ(t)

ė(s)ds

= −α2[e(t − τ(t)) − e(t − τ)]T R[e(t − τ(t)) − e(t − τ)]
−α2[e(t) − e(t − τ(t))]T R[e(t) − e(t − τ(t))]. (18)
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For the diagonal matrix Λ = diag(λ1, λ2, . . . , λn) > 0, it follows from (14) that

0 ≤ −2
n∑

i=1

λi[gi(t) − l+i ei(t)][gi(t) − l−i ei(t)]

= −2gT (t)Λg(t) + 2gT (t)ΛL−e(t)
+2eT (t)L+Λg(t) − 2eT (t)L+ΛL−e(t). (19)

Similarly, for the diagonal matrix Σ = diag(σ1, σ2, . . . , σn) > 0,

0 ≤ −2gT (t − τ(t))Σg(t − τ(t)) + 2gT (t − τ(t))ΣL−e(t − τ(t))
+2eT (t − τ(t))L+Σg(t − τ(t)) − 2eT (t − τ(t))L+ΣL−e(t − τ(t)). (20)

By combining (17)-(20) together, one can deduce that

z̄T (t)z̄(t) − γ2wT (t)w(t) + V̇ (t) ≤ ζT (t)[Θ1 + α2τ2ΘT
2 RΘ2]ζ(t), (21)

with

ζ(t) = [eT (t), eT (t − τ), eT (t − τ(t)), gT (t), gT (t − τ(t)), wT (t)]T ,

Θ1 =

⎡⎢⎢⎢⎢⎢⎢⎣
Φ1 0 α2R Ω2 PW1 PB1 − PKB2

∗ Ω5 α2R 0 0 0
∗ ∗ Ω6 0 Ω7 0
∗ ∗ ∗ Ω8 0 0
∗ ∗ ∗ ∗ Ω9 0
∗ ∗ ∗ ∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Θ2 =
[
−A− KC 0 0 W0 W1 B1 − KB2

]
,

Φ1 = −P (A + KC) − (A + KC)T P + Q1 + Q2 − α2R − 2L+ΛL− + DT D.

By Schur complement, Θ1+α2τ2ΘT
2 RΘ2 < 0 is equivalent to

[
Θ1 ατΘT

2 R
∗ −R

]
<

0. Pre- and post-multiplying it respectively by diag{I, I, I, I, I, I, PR−1} and its
transpose, and noting that K = P−1G and −PR−1P ≤ −2P + R, one can
easily derive that Θ1 + α2τ2ΘT

2 RΘ2 < 0 is guaranteed by (15). It means that
z̄T (t)z̄(t) − γ2wT (t)w(t) + V̇ (t) < 0 for any ζ(t) �= 0.

Define

J(t) =
∫ ∞

0

[z̄T (t)z̄(t) − γ2wT (t)w(t)]dt. (22)

Under the zero-initial condition, it follows from (16) that V (t)|t=0 = 0 and
V (t) ≥ 0 for t > 0. Then, for any nonzero w(t) ∈ L2[0,∞), one gets

J(t) ≤
∫ ∞

0

[z̄T (t)z̄(t) − γ2wT (t)w(t)]dt + V (t)|t→∞ − V (t)|t=0

=
∫ ∞

o

[z̄T (t)z̄(t) − γ2wT (t)w(t) + V̇ (t)]dt

< 0. (23)
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It thus follows from (22) that ‖z̄‖2 < γ‖w‖2. On the other hand, similar to
the derivative of (21), one can obtain that the filtering error system (9) with
w(t) = 0 is globally asymptotically stable if the LMI (15) is satisfied. Due to the
page limit, the procedure is omitted here. This completes the proof.

Remark 2. As can be seen from Theorem 1, a scaling parameter α is introduced.
Its advantage is that Theorem 1 can be efficiently employed to tackle the H∞ fil-
ter design problem of delayed neural networks with complex dynamic behaviors,
where the results in [14] are invalid.

Remark 3. The H∞ performance index γ described in Theorem 1 can be opti-
mized via solving:

Algorithm 1. minP,Q1,Q2,Q3,R,Λ,Σ,G γ2 subject to the LMI (15).

Remark 4. It should be pointed out that the conservatism of Theorem 1 can be
further reduced by using the delay decomposition approach [3, 5, 17].

4 An Illustrated Example

Let x(t) = [x1(t), x2(t)]T ∈ R2. Consider a delayed neural network (N) with

A =
[

1 0
0 1

]
,W0 =

[
2 −0.1
−5 3

]
,W1 =

[
−1.5 −0.1
−0.2 −2.5

]
, J =

[
0
0

]
,

B1 =
[

0.1 −0.1
]T

, B2 = 0.2, C =
[

0 1.5
]
, D =

[
1 1
0 −1

]
.

The activation function is given by f(x) = tanh(x) with l−1 = l−2 = 0 and
l+1 = l+2 = 1, the time delay τ(t) is taken as τ(t) = 1, and the noise disturbance is
assumed to be w(t) = 1

1+t . It is known from [18] that this neural network exhibits
chaotic dynamic behaviors. No feasible solution can be found by Theorem 2 in
[14]. However, by letting α = 0.3 and resorting to Matlab LMI Control Toolbox,

the gain matrix K of the filter can be designed as K =
[
−9.7532
15.1932

]
with the H∞

performance γ = 0.7437. It clearly confirms the effectiveness of the proposed
result for the H∞ filter design of delayed chaotic neural networks.

5 Conclusion

In this paper, a delay-dependent approach has been presented to deal with the
robust H∞ filter design problem for a class of neural network with time-varying
delay. A design criterion has been obtained by means of an LMI, which can
be easily solved by some standard software. A scaling parameter has been in-
troduced such that the developed result can be efficiently applied to the de-
layed neural networks with complex dynamic behaviors including chaotic neural
networks.
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Abstract. Metastability is known as the phenomenon that a multi-stable system
may have transitions between different stable states under random perturbations
of proper intensity. In this paper, we make a trial metastability analysis of cellu-
lar neural networks with multi-stable equilibria analytically and numerically. Via
the large deviation theory, we can define the MOST stable equilibrium according
to the minimum action of the transition paths between these equilibria. Under
a proper intensity of white noise, the trajectories from any initial position will
go and stay near the most stable equilibrium as defined, even if the trajectory is
initiated right at the other stable equilibria or its attracting basins. We provide a
sufficient condition to find the most stable equilibrium by estimating and compar-
ing the minimal value of the action functional in the random perturbation theory.
In addition, we give a simulation of 2-dimensional CNN system to illustrate the
theoretical result.

Keywords: Cellular neural networks(CNNs), random perturbation, metastabil-
ity, action functional, large deviation theory.

1 Introduction

In recently years, cellular neural network (CNN), introduced by Chua and Yang [1], [2],
has been extensively investigated due to their important applications in many fields. The
CNN can be written in the following standard form:

u̇i = −ui +
n∑

j=1

aijvj + Ii, i = 1, · · · , n. (1)

where

vj = s(uj), s(z) =

⎧⎪⎨⎪⎩
1 z > 1
z z ∈ [−1, 1]
−1 z < −1

is the saturation function, ui(t) represents the state of the i-th unit at time t,aij corre-
sponds to the connection weight of the j-th unit on the i-th unit; vj is the output of the
j-th neuron; Ii stands for the external input current to the neuron i.

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 305–314, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



306 L. Zhou and W. Lu

A number of literature were engaged in studying the multi-stability of the CNN,
which is thought of the key dynamical behaviors for the application to pattern forma-
tion. That is, each stable equilibrium stands for a pattern and the multi-stable dynamics
form a map from the initial values to the stable equilibria, the patterns. See [3–5] and
their references therein. In particular, [3] studied the attracting basins of multistable
equilibria in cellular neural networks, which helps to construct this map.

What will the dynamics of (1) be if random noises occur at the right-hand side? It has
been widely studied that transitions between stable states happen owing to the presence
of noise in many systems arising in physics, chemistry, and biology. This is named by
“metastability”. In a gradient system, the transition can be measured by the potential
of the system. But, how about the system without a scalar potential? [6, 7] provided an
approach to study the transition path between stable attractors via the celebrated large
deviation theory proposed in [11], where the action functional is proposed. Minimizing
the action functional will obtain the mean time it costs from one stable state to another
and the most possible path of this transition. So, it provides an index to compare the
stability between equilibria. That is, if the minimal action functional value from one
stable equilibrium A to another B is larger than that from B to A, we can justify that
A is more stable. This implies that with a noise of a proper intensity, any trajectory
initiated near or even at B will go and stay near A, according to the theory of stochastic
resonance (SR) (See [8] and references therein). This phenomenon also provide a map
from the system parameter to the most stable attractor if the noise is well adapted. For
example, [9, 10] gave examples of logistic gate realized by SR.

In this paper, we are to identify the most stable equilibrium among all stable equilib-
ria of the multistable CNN. Here, we accomplish this work through the theory of large
deviations, by estimating and compareing the minimum action functional between the
equilibria, to find the most stable one. Also, we can tune the parameters such as external
input current or aij to control the transition motions between the equilibria. Then we
give a two-dimensional CNN system with numerical simulation to verify our result.

2 Action Functional of CNN with Random Perturbation

We start with the general CNN as described as (1). It can be seen from [4] that we
can divide Rn into 3n sub-regions with respect to whether its components belong to
(−∞,−1], (−1, 1), or [1,+∞). We define an index vector ξ = [ξ1, · · · , ξn] with ξi =
−1, 0, 1. So, we have 3n such index vectors and define a set Ξ comprising all such
index vectors. Thus, we define the sub-region induced by ξ:

Φξ =
{

x = [x1, · · · , xn]� ∈ R
n : xi

⎧⎪⎨⎪⎩
≥ 1 ξi = 1
≤ −1 ξi = −1
(−1, 1) ξi = 0

}
.

If x ∈ Φξ , then we can rewrite the CNN (1) in the following linear compact form

u̇ = (AD(ξ) − In)u + I(ξ), u ∈ Φξ, ∀ ξ ∈ Ξ,
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with u = [u1, · · · , un]�, D(ξ) = diag[d1(ξ), · · · , dn(ξ)], and I(ξ) = [I1(ξ), · · · ,
In(ξ)]�, where

di(ξ) =

{
1 ξi = 0
0 otherwise

, Ii(ξ) =
∑

j: ξj 
=0

aijξj + Ii, i = 1, · · · , n.

The basic assumption here is to make all stable equilibria existing in the saturation
sub-regions:

H1 : aii > 1 +
n∑

j=1

|aij | + |Ii|, i = 1, · · · , n. (2)

Then, we immediately have

Lemma 1. Under the condition (2), the system (1) has 3n equilibria and among them,
there are 2n stable ones; the system (1) is completely stable and the attracting basins
of the stable equilibria composed of the stable manifolds of the unstable equilibria.

Readers can refer to [3, 4] for the details of the proof.
Now, we consider the a random perturbation on the right-hand side of (1):

u̇i = −ui +
n∑

j=1

aijvj + Ii + ηi(t), i = 1, · · · , n. (3)

where ηi, i = 1, · · · , n, are independent white noise satisfying:

E(ηi) = 0, E(ηi(t)ηi(t′)) = D2δ(t − t′),

with D stands for the intensity of the noise. By the large deviation theory, the action
functional works to measure the probability or the mean escape time from a stable
equilibrium which can be read as an index of the stability of different attractors with
respect to small random perturbation. See [11] for details. Here, we define the stability
of each stable equilibrium according to the minimum action it costs to escape from its
attracting basin. Let uξ be a stable equilibrium of (1) lying in Φξ , B(uξ) be its attracting
basin, and ∂B(uξ) be the boundary of B(uξ), of which the structure is well analyzed
in our previous paper [3]. Thus, we define the following functional:

inf
x(t)∈C1([0,+∞),R2)

∫ T

0

‖ẋ(t) − F (x(t))‖2
2dt

s.t. x(0) = uξ and x(T ) ∈ ∂B(uξ) for some T > 0, (4)

where F (x) represents the R2 → R2 map of the right-hand side of (1). We define
the value of the infimum above as an index χξ to measure the stability of uξ in the
sub-region Φξ. The mean escape time τ and the probability p can be expressed as the
following large deviation form as D → 0 [11]:

τ ∼ exp
(

χξ

2D2

)
, p ∼ exp(− χξ

2D2
).
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Definition 1. In the system (1), one stable equilibrium uξ is said to be more stable than
another stable equilibrium uξ′

if χξ > χξ′ .

Therefore, the most stable equilibrium is defined as ξ∗ = argmaxξ χξ.
We carry out the variational calculus to search the necessary and sufficient condition

for locally minimum of the following problem: for a given T > 0 and x(T ) = u1 ∈
∂B(uξ),

min
x(t)∈C1([0,T ],R2)

∫ T

0

‖ẋ(t) − F (x(t))‖2
2dt

s.t. x(0) = u∗ and x(T ) = u1. (5)

It is clear that if we relax the T > 0 and u1 ∈ ∂B(u∗), then we can obtain the infimum
of (4).

First, we take the case of n = 1 of (3) to illustrate the main idea. We consider the
following system:

u̇ = −u + av + I + η(t). (6)

So the potential of this system is

H =

⎧⎪⎨⎪⎩
1
2u2 + au − Iu, u < −1
1
2u2 − a

2u2 − Iu,−1 ≤ u ≤ 1
1
2u2 − au − Iu, u > 1.

It’s been proved that when a and I are in the proper range, there are three equilibria and
two of them are stable and the other is unstable. For u < −1, then the corresponding
equilibrium is u1 = −a + I , which is clearly stable. In this case, the potential is H1 =
1
2u

2 + au − Iu. So the increasing potential it needs to arrive at the edge ξ = −1 is
ΔH1 = (1

2 − a + I) − (1
2 (−a + I)2 + a(−a + I) − I(−a + I)) = 1

2 [1 − (a − I)]2.
For −1 ≤ u ≤ 1, the equilibrium u2 satisfies u2 = I

1−a , which can be seen unstable.
For u > 1, via the same process above, we get the equilibrium u3 satisfying u3 = a+I ,
which is also stable.

After the trajectory passes the edge ξ = −1, it will approach u2. Now its potential
becomes H2 = 1

2u
2 − a

2u2 − Iu. So the increasing potential it needs to approach u2 is
ΔH2 = [12 ( I

1−a )2 − a
2 ( I

1−a )2 − I I
1−a ]− (1

2 −
a
2 + I) = 1

2(a−1) [1− (a− I)]2. Use the
same method, we can get the increasing potential which the trajectory costs to arrive at
edge ξ = 1 from u3 is ΔH3 = 1

2 [1− (a + I)]2. Passing the edge of ξ = 1, its potential
cost to approach u2 is ΔH4 = 1

2(a−1) [1 − a − I]2. Therefore, in order to compare the
stability of these two stable equilibria, we just need to compare the following quantities:{

If ΔH1 > ΔH3 + ΔH4, then u1 is the more stable one.

If ΔH3 > ΔH1 + ΔH2, then u3 is the more stable one.

For the general case, according to the large deviation theory and the definition 1
above, we can give an estimating means to compare the stability of different stable
equilibria of the system (3).
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Theorem 1. If there is an index vector ξ with all components nonzero such that

min
i

1
2
[Ii(ξ) − ξi]2 >max

ζ �=ξ,
δ(ζ)=0

min
ζ′∈N (ζ)

1
2

{
[Iiζ′ (ζ) − ζiζ′ ]2

+
[(aiζ′ iζ′ − 1)ζiζ′ + Iiζ′ (ζ′)]2

aiζ′ iζ′ − 1

}
,

then χξ is the largest one over all {ζ : δ(ζ) = 0}.

This implies that the stable equilibrium uξ is the most stable equilibrium over all stable
ones. The proof of the Theorem 1 can be presented via two propositions as follows.

Proposition 1. For each ξ with all components nonzero, it holds

χξ ≥ min
i

1
2
[Ii(ξ) − ξi]2

Proof. First, we consider an arbitrary stable equilibrium uξ ∈ Φξ with some ξ satisfying
ξi �= 0 for all i = 1, · · · , n. The differential equation in this sub-region becomes:

u̇i = −ui + Ii(ξ), i = 1, · · · , n. (7)

The equilibrium uξ satisfies:

uξ
i = Ii(ξ), i = 1, · · · , n.

Thus, we have its potential as

Hξ(u) =
n∑

i=1

[
1
2
u2

i − Ii(ξ)ui

]
,

which satisfies

u̇ = −∂uHξ(u), u ∈ Φξ. (8)

Since if a trajectory reach ∂B(ξ) from a small neighborhood of uξ, then it must pass the
edges of the sub-region Φξ , we immediately can get the proposition after computation.

Proposition 2. For each ξ with all components nonzero, it holds

χξ ≤ min
ξ′∈Nξ

1
2

{
[Iiξ′ (ξ) − ξiξ′ ]

2 +
[(aiξ′ iξ′ − 1)ξiξ′ + Iiξ′ (ξ

′)]2

aiξ′ iξ′ − 1

}
where iξ′ stands for the index distinguishing ξ and its neighbor ξ′.

Proof. After proofing the proposition 1, we continue it letting i0 be the index of the
minimum value of the above, the focus point where the minimum trajectory leaves Φξ

is u3 = [u3
1, · · · , u3

n]� with

u3
i =

{
uξ

i i �= i0

ξi0 i = i0.
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Since it is not a gradient system when u(t) ∈ Φξ′ for any ξ′ with some components
zeros but the other nonzero, we can not find a potential to calculate the action functional
minimum. Here, we just concentrate on one trajectory which reaches the boundary of
the attracting basin and is a locally minimum one. Let ξ′ be an index of a neighbor
sub-region of Φξ with one component of ξ′ zero whose index is i0. Without loss of
generality, we suppose ξ′1 = 0 and the other same with ξ and consider a trajectory from
u3 to uξ′

by the following equations:

u̇1 = u1(1 − a11) − I1(ξ′) (9)

u̇i = −ui + ai1u1 + Ii(ξ′), i ≥ 2, (10)

with u(0) = u3. It can be seen that limt→∞ u(t) = uξ′
. Noting that u̇i = Fi(u) for

all i ≥ 2, the only contribution to the action functional comes from the first equation,
which is a gradient system with the following potential:

Hξ′(u) =
1
2
(a11 − 1)u2

1 + I1(ξ′)u1.

So with the proof of proposition 1, we can get the result of the proposition 2 after
computation.

Therefore, by the proposition 1 and 2, Theorem 1 is derived as a direct consequence
from Propositions 1 and 2. It indicates that the stable equilibrium uξ is the most stable
one if the index χξ is the largest one over all {ζ : δ(ζ) = 0}.

3 Numerical Illustrations: Two-Dimensional CNN System

We consider a two-dimensional CNN system as follows:{
u̇1 = −u1 + a11v1 + a12v2 + I1 + η1(t)
u̇2 = −u2 + a21v1 + a22v2 + I2 + η2(t).

(11)

Here, we pick a11 = 3.5, a12 = 1,a21 = 0.5, a22 = 3, η1,2(t) are independent noises
with variance D2, determined below. From Lemma 1, it can easily be verified that the
system without noise has 8 equilibria in the sub-regions and 4 stable equilibria in the
saturation sub-regions.

First, let (I1, I2) = (−1,−1). Then we can get 4 stable equilibria lying in the 4
sub-regions respectively as follows:

uξ =

⎧⎪⎪⎨⎪⎪⎩
(3.5, 2.5) ξ = (1, 1)
(−3.5, 1.5) ξ = (−1, 1)
(1.5,−3.5) (1,−1)
(−5.5,−4.5) ξ = (−1,−1)

,

According to the Theorem 1, the stable equilibrium corresponding to (−1,−1) is the
most stable one. In fact, to the inequality (7), the minimal of its left is 12.25, and the max
of its right is 9.375. So the stable equilibria in other saturation sub-regions all transit to
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Fig. 1. The phase transition from other stable equilibria to the most stable one with D = 1. The
trajectories are plotted by initial position at other stable equilibria: the red for the transition from
the equilibrium corresponding to (−1, 1), the black for (1,−1), and the blue for (1, 1).

the stable one in region Φξ = (−1,−1) with a properly selected noise intensity D = 1,
which is as Fig. 1 shows.

With a similar reasoning, if (I1, I2) = (1, 1), we can know the stable equilibrium
corresponding to (1, 1) is the most stable one. The same result can be suggested by
computing the (7), which tells the minimal of the left is 12.25, the maximal of right is
9.375, too. Therefore, the result of Fig. 2 is in accordance with the Theorem 1.

In order to show the result more sufficiently, Fig. 3 tells that the output transition
from other stable equilibria to the most stable one, namely v(t). During the time interval
[0, 8000], the output switches between v = (1, 1) corresponds to (I1, I2) = (1, 1) and
v = (−1,−1) corresponds to (I1, I2) = (−1,−1).

Also, we consider the probability of succeeding transitions from other stable equilib-
ria to the most stable one when (I1, I2) = (1, 1) and (I1, I2) = (−1,−1) respectively.
Because not all variance D2 is suitable and the desired output is obtained only for opti-
mal noise intensities. Here, P is defined as the probability of u(t) stays in the sub-region
Φξ , in other words, v(t) = ξ, where ξ corresponds to the most stable equilibrium, with
initial values at another stable equilibrium. We calculate the probability by counting
how long v(t) = ξ in a long time interval [0, T ]:

P =
μ

(
{t ∈ [0, T ] : v(t) = ξ}

)
T

,

where μ(·) denotes the Lebesgue measure in R. As shown by Figs. 4 and 5, we can
explore that when D varies in a proper interval, for example between 0.3 to 1.6 approx-
imately in our examples, the probability is equal to about 1. It means that the SR can be
realized.
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Fig. 2. The phase transition from other stable equilibria to the most stable one with D = 1. The
trajectories are plotted by initial position at other stable equilibria: the red for the transition from
the equilibrium corresponding to (−1, 1), black for (1,−1), and blue for (−1,−1).
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Fig. 3. The output of the system corresponding to different input(I1, I2) in different time intervals
with D = 1
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Fig. 4. The probability of succeeding transition from other stable equilibria to the most stable one
corresponding to (1, 1) with different D. We pick a11 = 3.5, a12 = 1, a21 = 0.5, a22 = 3.
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Fig. 5. The probability of succeeding transition from other stable equilibria to the most stable one
corresponding to (−1,−1) with different D. We pick a11 = 3.5, a12 = 1, a21 = 0.5, a22 = 3.
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4 Conclusions

In this paper, we provide an approach to analyze the metastability of CNN systems
based on the large deviation theory [11], via estimating the minimal action functional
of the transitions between stable equilibria. Then we compare the two results and gain
the Theorem 1, by an example of two-dimensional CNN system, where we give the
numerical simulation to testify Theorem 1. This paper is only an initial of this topic and
many issues need further exploration. These will be our research concentration in the
future.
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Abstract. This paper discusses the boundary controller of string vibration 
systems, a new boundary controller of string anti-stable vibration system based 
on fractional calculus will be considered. This paper presents a boundary 
control method of anti-stable vibration systems. The fractional controller of the 
anti-stable system is obtained from the integer-order controller by replacing the 
first-order time derivative with a fractional derivative of order b. Numerical 
simulations are used to illustrate the improvements of the proposed controller 
for the anti-stable vibration systems. 

Keywords: fractional calculus, adaptive control, boundary control. 

1   Introduction 

Boundary control of the diffusion-wave equation has been studied extensively [1][2]. 
In this paper, it is mainly discussed that the boundary controllers of string vibration 
systems. A new boundary control method based on fractional calculus of string 
vibration system will be considered. Fractional calculus is the field of mathematical 
analysis, which deals with the investigation and applications of integrals and 
derivatives of arbitrary order, which can be real or complex derivatives and integrals 
to arbitrary orders are referred to as differ integrals by many authors. It starts to play 
an important role in many branches of science during the last three decades. The 
fractional controller is obtained from the standard controller by replacing the first-
order time derivative with a fractional derivative of order b, It mainly discusses the in 
the using fractional calculus tool.  

This paper presents a boundary control method of anti-stable vibration systems. 
The paper is organized as follows. The first problem is boundary control of the 
integer-order diffusion equation, and we give the mathematical description of the 
boundary control of the integer-order diffusion equation, sees Section 2. The second 
problem is fractional-order boundary control of the anti-stable diffusion equation, and 
we give thesees Section 3. The basic principle of the introduced method is simple. No 
extra software is needed except Matlab and the Matlab Symbolic Math Toolbox. 
Numerical simulations are used to illustrate the improvements of the proposed control 
method for the anti-stable vibration systems. 
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2   Problem Definition 

We consider the vibration system governed by diffusion equation: 

( , ) ( , )

(0, ) (0, )

(1, ) ( )

=
= −
=

t xx

x t

x

u x t u x t

u t Au t

u t f t

 (1)

where ( )f t  is the control input and A is a constant parameter. For A = 0, equations 

(1) model a string which is free at the end x = 0 and is actuated on the opposite end. 
For A < 0, the system (1) model a string which is fixed at one end, and stabilized by a 
boundary controller  (1, ), 0u ku t k= − >  at the other end. For A > 0, the system (1) 

model a string which is fixed at one end, and the free end of the string is negatively 
damped, so that all eigen values located on the right hand side of the complex plane, 
so the open-loop plant of this kind of string system is “anti-stable”. 

In this paper we study the string system with A > 0, bescouse the vibration system 
is anti-stable system, so we want to transfer the anti-stable plant to the stable system. 
We map the equation (1) into the following target system. As will be shown later, the 
transformation (4) is invertible in a certain norm, so that stability of the target system 
ensures stability of the closed loop system: 

( , ) ( , )

(0, ) (0, )

(1, ) ( )

t xx

x t

x d

v x t v x t

v t bv t

v t f t

=
=
=

 (2)

which is exponentially stable for B > 0. 
Consider the follow transformation for the anti-stable wave equation: 

0 0
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) )

x x

t xv x t u x t m x y u y t dy n x y u y t dy= − −∫ ∫  (3)

where the gains ( , ), ( , )m x y n x y are to be determined.  

Substituting (3) into (2) we obtain: 

0

0

0

0

( , ) ( , ) ( ( , ) ( , )

( , ) ( , ) )

( , ) ( ( , ) ( , ))

( , ) ( , ) ( , )

( , ) ( , ) ( , )

x

t t t

x

x t

t t

x

t

x

x

v x t u x t m x y u y t dy

n x y u y t dy

u x t A x t B x t

A x t m x y u y t dy

B x t n x y u y t dy

= −

−

= − −

=

=

∫
∫

∫
∫

 (4)

( , ) ( , ) ( ( , ) ( , ))xx xx xxv x t u x t A x t B x t= − −
 (5)

From (4) (5), we obtain: 
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( ( , )) ( , )) ( ( , ) ( , ))

( ( , ) ( , ))

( , )) ( ( , ) ( ( , )) )

(( ( , )) ( , ))

t xx xx

t

xx xx t

t xx

v x t v x t A x t B x t

A x t B x t

v x t A x t A x t

B x t B x t

= + −
− −
= + −
+ −

 (6)

Matching all the terms, we get two equations as follow: 

( , ) ( ( , ))

( , ) ( ( , ))
xx t

xx t

A x y A x y

B x y B x y

=
=

 (7)

Substituting (4) into the boundary condition of the equation (2), we obtain: 

2

2 2

0 (0, ) (0, )

( (0,0) (0,0) ) (0, )
x t

t

v t b v t

a n m a b u t

= −
= − − −

 (9)

To deal with the boundary control problem of the anti-stable system, we employ 
the following transformation invented by A.Smyshlyaev [3] (for known q): 

0
( , ) ( , ) ( (0, ) ( , ) )

1

x

t

a b
v x t u x t au t u y t dy

ab

+= + − +
+ ∫  (10)

Differentiating (3) with respect to x, setting x=1, and using the boundary condition 
of the equation (1), we get the following controller: 

( ) ( ) 1( ) (0, ) (1, ) (1, ) ( , ) )0
1 1 1

t

ka a b a b k a b
f t u t ku t u t u y t dy

ab ab ab t

+ + +
= − − − ∫

+ + +
 (11)

where k is the controller gain . 
We used the Caputo definition for fractional derivative of any function ( )f t , for m 

to be the smallest integer that exceeds α , the Caputo fractional derivative 0>α  is 
define as: 

1

0 0

1 ( )
( )

(1 ) ( )

m
tC

t

f
D f t d

t
α

α
τ τ

α τ

+

=
Γ − −∫  (12)

Based on the definition of (5), the Laplace transform of the Caputo fractional 
derivative is  

{ }
1

1
0

0 0

( )
( ) ( )

km
k

t k
k t

d f t
L D f t s f s s

dt
α α α

+

−
− −

= =

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∑  (13)

where mm <<− α1  

3   Analysis Method Using Fractional Calculus 

The control law (11) has been widely used in the boundary control of the anti-stable 
diffusion equation; its effectiveness when applied to the boundary control of fractional 
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diffusion equation is still unknown. In this section, we study the performance and 
properties of the fractional-order boundary controller, the fractional-order boundary 
controller can be obtained by the integer-order boundary control law (11), The 
fractional controller is obtained from the standard controller by replacing the first-order 
time derivative with a fractional derivative of order β,: 

( ) ( ) 1( ) (0, ) (1, ) (1, ) ( , ) )0
1 1 1

tD
ka a b a b k a b

f t u t ku t u t u y t dy
ab ab ab t

β+ + +
= − − − ∫

+ + +
 (14)

Laplace transform method is based on the classical partial differential equations to 
solve the general method of fundamental solutions, one of the basic idea of this 
method is: first, using Laplace transform the equations into ordinary differential 
equations, then obtain the general solution of ordinary differential equations and using 
the initial conditions and boundary conditions of the coefficients of the general 
solution, and finally obtained by Laplace inverse transformation in order to determine 
the expression of the fundamental solution equation. The literature [8] proposed the 
fractional Laplace transform-based partial differential equation algorithm is integer 
order partial differential equation based on the proposed, but for fractional partial 
differential equations, we must apply the MATLAB Math Toolbox, and the numerical 
solution of Laplace inverse transform can be resolved. Here are the time fractional 
partial differential equations for initial boundary value problem of the implementation 
process, the specific algorithm described as follows:  

1. Take the Laplace transform of the equation (1) with respect to t, according to our 
application of the definition of Caputo fractional calculus, so an ODE is obtained for 
the transformed variable ( , )u x s . 

2. Solve the ODEs for ( , )u x s  as a function of x, with the transform variable s still 

appearing as a parameter in the solution, and use the boundary conditions of the 
original problem to determine the precise form of ( , )u x s . 

3. Take the inverse Laplace transform of ( , )u x s  with respect to s to the solution 

( , )u x t .  

Several problems make the above method hard to use in practice to solve a PDE 
boundary control problem. 

To test if fractional order boundary controllers can be used to stabilize the 
fractional wave equation, First, we choose k = 1 and study the responses the following 
two different systems were simulated. The case 1 is the integer-order vibration system 
using the fractional-order boundary controller. The case 2 is the fractional-order 
vibration system using the fractional-order boundary controller. 

Case 1: 1, 1, 0.5, 0.7, 0.9kα β= = = ， 

Case 2: 0.8, 1, 0.5, 0.7, 0.9kα β= = =  

The simulation results of the displacement response at the free end of integer-order 
string systems are shown in Figure 1, and the simulation results of the displacement 
response at the free end of fractional-order string systems are shown in Figure 2.  
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Simulation results show that the fractional order boundary controller to stabilize the 
string control system, the smaller fractional order controller will have a small 
overshoot and a relatively long rise time; and the larger fractional order controller has 
the overshoot and settling time is short features. So we can clude that t the fractional 
order controller to control anti-stable fractional order string system is better than the 
integer order controller. 
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Fig. 1. Displacement of the tip end, 1α =  
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4   Conclusions 

The boundary controllers previously applied to the anti-able diffusion equation, 
simulation results show that the studied controllers are also applicable for the 
boundary control of diffusion equations. Boundary control of anti-stable diffusion 
equations is a new research topic. Based on the experience from the boundary control 
of the diffusion equations, controllers better suited for the fractional diffusion 
equations are to be explored in the future. 
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Abstract. This paper aims to study the periodic solutions to two kinds
of generalized brain-state-in-a-box (GBSB) neural models, which is dif-
ferent from the classical BSB neural networks. The results on the exis-
tence and global stability of the periodic solutions are derived.

Keywords: generalized brain-state-in-a-box, neural models, periodic
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1 Introduction

The brain-state-in-a-box (BSB) neural model was proposed by Anderson, Silver-
stein, Ritz, and Jones in 1977 as a memory model based on neurophysiological
considerations [1], which dynamics is often described in discrete form as the
following difference equation:

x(k + 1) = g((In + αW )x(k)),

where x(k) is the state vector at time k, α is a step size, W ∈ Rn×n is a weight
matrix, and g is an activation function defined as following linear saturating
function:

For every y = (y1, y2, · · · , yn)T ∈ Rn, then the ith component of g(y) is

gi(y) =

⎧⎨⎩1, if yi ≥ 1;
yi, if − 1 < yi < 1;
−1, if yi ≤ −1.

Since the structure of the BSB neural model is similar to the nervous sys-
tem, the BSB neural network can be used in the implementation of associative
memories. Therefore the BSB neural model has been widely researched. Hui and
Żak [2] studied the dynamics of the following generalized BSB (GBSB) neural
models

x(k + 1) = g((In + αW )x(k) + αb), (1)

where b ∈ Rn. In 1994, Lillo et al. [3] analyzed the dynamics of the GBSB
neural network (1) and presented a synthesis procedure to realize an associative

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 321–328, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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memory using the GBSB neural model. Later in 1995 Perfetti [4] presented qual-
itative properties of the BSB neural network and proposed an efficient synthesis
procedure for networks that function as associative memories. Sometime after
that, the BSB model was often studied by many researchers, see [5–8] in the
reference. Recently, Park [9] presented a new optimization approach to the de-
sign of associative memories via the BSB neural network, which provided the
large and uniform domains of attraction of the prototype patterns, the large
robustness margin for the weight matrix of the perturbed BSB neural network,
the asymptotic stability of the prototype patterns, and the global stability of the
BSB neural network. On the whole, the study of BSB neural models has never
stopped.

It is noted that the above results are all on the equilibrium point of the
BSB neural networks. In this paper, we investigate the periodic solutions to the
following GBSB neural model

x(k + 1) = a(k)g((In + αW )x(k)), (2)

where a : Z → R+ is a ω periodic, presents the connection strength. The other
notations are the same as above.

So far, many researchers have paid attention to the existence and stability of
periodic solutions for neural networks or other mathematical models by Mawhin
continuation theorem [10], see [11–15] and references therein. For example, Liu
and Cao [12] studied the existence and stability of the unique periodic solution
for the neural networks by using the differential inclusions theory, the Lyapunov-
Krasovskii functional method and linear matrix inequality (LMI) technique. By
applying the continuation theorem, Li [14] studied the existence and global sta-
bility of periodic solutions for a kind of the discrete cellular neural networks with
delays.

In this paper, stimulated by the above studies, we study the existence and
global stability of the GBSB neural model (2). The remainder is organized as
follows. In section II, the result on the existence of periodic solutions of GBSB
neural model (2) is obtained after introducing some notations and Mawhin
continuation theorem. Finally, the stability of periodic solutions is analyzed in
section III.

2 Existence of Periodic Solutions

In this section, we investigate the existence of periodic solutions of the GBSB
neural networks (2) by Mawhin continuation theorem [10]. Firstly we introduce
some notations and lemmas.

2.1 Preliminaries

For convenience of recounting, we introduce some definitions as follows.
Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm

operator with index zero; here D(L) denotes the domain of L. This means that
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ImL is closed in Y and dim kerL = dim(Y/ImL) < +∞. Consider the supple-
mentary subspaces X1, Y1 of X , Y respectively, such that X = kerL

⊕
X1 and

Y = ImL
⊕

Y1 , and let P : X → kerL and Q : Y → Y1 be natural projectors.
Clearly, kerL ∩ (D(L) ∩ X1) = {0}, thus the restriction LP := L|D(L)∩X1 is
invertible. Denote by K the inverse of LP . Let Ω be an open bounded subset
of X with D(L) ∩ Ω �= ∅. A map N : Ω → Y is said to be L-compact in Ω, if
QN(Ω) is bounded and the operator K(I − Q)N : Ω → X is compact.

Now we introduce the Mawhin’s continuation theorem which the study on the
existence of periodic solutions based on.

Lemma 1 (Gaines and Mawhin [10]). Suppose that X and Y are two Banach
spaces, and L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Fur-
thermore, Ω ⊂ X is an open bounded set and N : Ω → Y is L-compact operator
on Ω . If
(1)Lx �= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(2)Nx /∈ ImL, ∀x ∈ ∂Ω ∩ kerL;
(3)The Brouwer degree

deg(JQN,Ω ∩ kerL, 0) �= 0,

where J : ImQ → kerL is an isomorphism. Then the equation Lx = Nx has a
solution in Ω ∩D(L).

Here, we adopt the following symbols.
R, R+, Z, Rn and Rn×n denote the real numbers, positive real numbers,

integer numbers, n-dimension Euclidean space and n × n real matrix space,
respectively. Let Iω = {0, 1, · · · , ω − 1}. As introduced in the literatures [13, 14]
and so on, we introduce again the following notations here.

ln = {x = {x(k)} : x(k) ∈ R
n, k ∈ Z}.

Let lω ⊂ ln be the subset of all ω periodic sequences equipped with the norm
‖ · ‖ as

‖x‖ =
n∑

i=1

max
k∈Iω

|xi(k)|,

where x = {x(k)} = {(x1(k), x2(k), · · · , xn(k)), k ∈ Z} ∈ lω. Then it is easy to
show that lω is a finite-dimensional Banach space. Let

lω0 =

{
x = {x(k)} ∈ lω :

ω−1∑
k=0

x(k) = 0

}
,

lωc = {x = {x(k)} ∈ lω : x(k) = h ∈ R
n, k ∈ Z} ,

then it is easy to note that lω0 and lωc are both closed linear subspace of lω,
moreover,

lω = lω0 ⊕ lωc , dim lωc = n.
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In order to apply lemma 1, we take X = Y = lω and denote a linear operator
by

L : X → Y, (Lx)(k) = x(k + 1) − x(k), x ∈ X, k ∈ Z,

a nonlinear operator

N : X → Y, (Nx)(k) = a(k)g(x(k) + αWx(k)) − x(k), x ∈ X, k ∈ Z.

It is easy to see that L is a bounded linear operator, furthermore, one has

kerL = lωc , ImL = lω0 , dim kerL = codim ImL = n,

therefore L is a Fredholm operator with index zero.
Let projectors P : X → kerL and Q : Y → ImQ be defined by

Px =
1
ω

ω−1∑
s=0

x(s), x ∈ X, Qy =
1
ω

ω−1∑
s=0

y(s), y ∈ Y.

It is easy to verify that P and Q are continuous projectors such that ImP = kerL
and ImL = kerQ. Set the operator Kp be the generalized inverse of L|D(L)∩kerP ,
then

Kp : ImL → D(L) ∩ kerP, (Kpy)(k) =
k−1∑
s=0

y(s) − 1
ω

ω−1∑
s=0

(ω − s)y(s).

Therefore QN and Kp(I − Q)N are continuous. Noting that X is a finite-
dimensional Banach space, which together with the Arzela-Ascoli theorem, it
is easy to verify that QN(Ω̄) and Kp(I − Q)NΩ) are both relatively compact
for any open bounded set Ω ⊂ X . Therefore, N is L-compact on Ω̄, here Ω is
any open bounded set of X .

Remark 1. It follows from the definition of g that |gi(x)− gi(y)| ≤ |xi − yi|, i =
1, 2, · · · , n, for all x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Rn.

2.2 The Existence of Periodic Solutions

Based on the Mawhin continuation theorem and preliminaries introduced above,
we have the following result.

Theorem 2. The generalized brain-state-in-a-box neural networks (2) has at
least one ω-periodic solutions.

Proof. Let Ω1 = {x : Lx = λNx, λ ∈ (0, 1)}. If x(k) ∈ Ω1, then it follows from
the definitions of L and N that

x(k + 1) − x(k) = λa(k)g(x(k) + αWx(k)) − λx(k),

that is

xi(k + 1) − xi(k) = λa(k)gi(x(k) + αWx(k)) − λxi(k), i = 1, 2, · · · , n. (3)
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For each i ∈ {1, 2, · · · , n}, it follows from the (5) that

max
k∈Iω

|xi(k)| = max
k∈Iω

|xi(k + 1)|
≤ max

k∈Iω

[(1 − λ)|xi(k)| + λa(k)|gi(x(k) + αWx(k))|]
≤ (1 − λ)max

k∈Iω

|xi(k)| + λmax
k∈Iω

a(k)|gi(x(k) + αWx(k))|,

moreover, we have

max
k∈Iω

|xi(k)| ≤ max
k∈Iω

a(k)|gi(x(k) + αWx(k))| ≤ max
k∈Iω

a(k) := ā.

Therefore
‖x‖ ≤ nā, x ∈ Ω1.

Denoting a =
1
ω

ω−1∑
k=0

a(k), therefore, a ≤ ā.

Now we take Ω = {x = {x(k)} = {(x1(k), x2(k), · · · , xn(k)), k ∈ Z} ∈
X : max

k∈Iω

|xi(k)| ≤ 1 + ā, i = 1, 2, · · · , n}. Therefore, Ω satisfies condition

(1) of lemma 1. If x ∈ ∂Ω ∩ kerL, then x ≡ h ∈ Rn is constant vector. Thus for
x ∈ ∂Ω ∩ kerL, it follows from the definitions of Q and N that

QNx =
ω−1∑
k=0

(
a(k)g(x + αWx)

ω
− x

ω

)
= ag(x + αWx) − x

=

⎛⎜⎜⎜⎝
ag1(x + αWx) − x1

ag2(x + αWx) − x2

...
agn(x + αWx) − xn

⎞⎟⎟⎟⎠ �= 0,

the last inequality hold as following reason:
Since x ∈ ∂Ω ∩ kerL, there exists a i ∈ {1, 2, · · · , n} such that |xi| = 1 + ā,
therefore, |agi(x + αWx) − xi| ≥ |xi| − |agi(x + αWx)| ≥ 1 + ā − a > 0.

Therefore Ω satisfies condition (2) of lemma 1.
Define H(μ, x) = −μx + (1 − μ)JQNx, for μ ∈ [0, 1], x ∈ X , where J is an

identity operator. Then for all μ ∈ [0, 1], x ∈ ∂Ω ∩ kerL, H(μ, x) �= 0 holds
similarly. Then by the degree theory

deg{JQN(·), Ω ∩ kerL, 0} = deg{H(0, ·), Ω ∩ kerL, 0}
= deg{H(1, ·), Ω ∩ kerL, 0}
= deg{−I,Ω ∩ kerL, 0} �= 0.

Applying lemma 1, we reach the conclusion. �

Corresponding to GBSB (1), the GBSB neural model

x(k + 1) = a(k)g((In + αW )x(k) + αb), (4)

has the similarly result as following corollary.
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Corollary 3. The generalized brain-state-in-a-box neural networks (4) has at
least one ω-periodic solutions.

3 Stability of Periodic Solution

In this section, we discuss the stability of the periodic solution by constructing
suitable Lyapunov functions.

Theorem 4. The ω-periodic solution of generalized brain-state-in-a-box neural
networks (2) is globally stable if δ = 1 − ā

(
1 + α

∑n
i=1 ω̄i

)
> 0, where ω̄i =

max
1≤j≤n

|ωij |.

Proof. It follows from theorem 2 that (2) exists an ω-periodic solution, which
denoted by x∗(k) = {(x∗

1(k), x∗
2(k), · · · , x∗

n(k))} here. To prove it is globally
stable, let x(k) = {(x1(k), x2(k), · · · , xn(k))} be an arbitrary solution of (2),
and ui(k) = xi(k) − x∗

i (k). Then

ui(k + 1) = xi(k + 1) − x∗
i (k + 1)

= a(k)gi((In + αW )x(k)) − a(k)gi((In + αW )x∗(k))
= a(k)[gi((In + αW )x(k)) − gi((In + αW )x∗(k))].

Now define the function V as

V (k) =
n∑

i=1

|ui(k)|.

∇V = V (k + 1) − V (k) =
n∑

i=1

|ui(k + 1)| −
n∑

i=1

|ui(k)|

=
n∑

i=1

|xi(k + 1) − x∗
i (k + 1)| −

n∑
i=1

|xi(k) − x∗
i (k)|

=
n∑

i=1

a(k)|gi((In + αW )x(k)) − gi((In + αW )x∗(k))| −

n∑
i=1

|xi(k) − x∗
i (k)|

≤ a(k)
n∑

i=1

∣∣∣∣∣∣xi(k) + α

n∑
j=1

wijxj(k) − x∗
i (k) − α

n∑
j=1

wijx
∗
j (k)

∣∣∣∣∣∣−
n∑

i=1

|xi(k) − x∗
i (k)|

≤ [a(k) − 1]
n∑

i=1

|xi(k) − x∗
i (k)| + αa(k)

n∑
i=1

n∑
j=1

|wij ||xj(k) − x∗
j (k)|
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≤ [ā − 1]
n∑

i=1

|xi(k) − x∗
i (k)| + αā

n∑
i=1

ω̄i

n∑
j=1

|xj(k) − x∗
j (k)|

≤
[
ā

(
1 + α

n∑
i=1

ω̄i

)
− 1

]
n∑

i=1

|xi(k) − x∗
i (k)|

= −δ

n∑
i=1

|xi(k) − x∗
i (k)| ≤ 0. (5)

The first inequality according to remark 1. Summing the both sides of (5)
from 0 to m − 1

V (m) + δ
m−1∑
k=0

n∑
i=1

|xi(k) − x∗
i (k)| ≤ V (0),

which implies
∞∑

k=0

n∑
i=1

|xi(k) − x∗
i (k)| ≤ δ−1V (0) < ∞,

that is lim
k→∞

|xi(k) − x∗
i (k)| = 0, i = 1, 2, · · · , n. This completes the proof of

Theorem 3. �

Similarly, one has the following result for GBSB neural model (4)

Corollary 5. The ω-periodic solution of generalized brain-state-in-a-box neural
networks (4) is globally stable if δ = 1 − ā

(
1 + α

∑n
i=1 ω̄i

)
> 0, where ω̄i =

max
1≤j≤n

|ωij |.

Remark 2. If periodic solution is global stability, then it is unique. Therefore,
theorem 4 implies the uniqueness of periodic solution.

Remark 3. There is no limitation on the a(k) on the existence of periodic solu-
tions, however, the periodic solution is global stability if ā < 1

1+α
∑n

i=1
ω̄i

.

Remark 4. In [5], Varga, Elek and Żak proposed new type of neural network
models, which can be viewed as discrete linear systems operating on compact,
convex domains. They select the following nonlinear activation function Ψ :
Rn → Rn:

Ψ(y) =
{

y, if y ∈ U,
z, if y �∈ U,

where U ⊂ Rn is a compact convex domain such that the origin belongs to it, z is
the point of intersection of the boundary of U by the line segment joining 0 ∈ Rn

and y. This paper discussed the GBSB neural models on compact and convex
domains by trying a different method of [5], by adding a connection strength of
the activation function, and obtained results on the existence and stability of
periodic solutions of GBSB neural model.
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4 Conclusion

This paper investigates the periodic solutions for two kinds of generalized brain-
state-in-a-box (GBSB) neural models which are different from the previous lit-
eratures. The results on the existence and global stability of two kinds of GBSB
neural models are obtained.
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3. Lillo, W.E., Miller, D.C., Hui, S., Żak, S.H.: Synthesis of Brain-State-in-a-Box
(BSB) Based Associative Memories. IEEE Trans. Neural Networks 5, 730–737
(1994)

4. Perfetti, R.: A Synthesis Procedure for Brain-State-in-a-Box (BSB) Neural Net-
works. IEEE Trans. Neural Networks 6, 1071–1080 (1995)
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Abstract. This paper is concerned with the adaptive control problem
for a class of strict-feedback nonlinear systems, in which unknown virtual
control gain function is the main feature. Based on the neural network
approximate ability and backstepping control design technique, adaptive
neural network based dynamic surface control technique is developed.
The advantage is that it does not require priori knowledge of virtual
control gain function sign, which is usually demanded in many designs.
At the same time, by dynamic surface control scheme, the explosion of
computation is circumvented. The control performance of closed-loop
systems is improved by adaptive modifying the estimated error upper
bound. By theoretical analysis, the signals of closed-loop systems are
globally ultimately bounded and the control error converges to a small
residual set around the origin.
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strict-feedback systems, unknown virtual control gain function.

1 Introduction

Since the integral backstepping technology was proposed to deal with the non-
linear system control problem [1], it has been paid much attention [2–4]. In [2],
systematic adaptive backstepping control techniques were introduced for nonlin-
ear systems including strict-feedback systems, pure-feedback systems and block
strict feedback systems. In [3], adaptive backstepping controller approach was
extended to a class of nonlinear systems with stochastic jump parameters. For
systems with high uncertainty, for example, the uncertainty that cannot be lin-
early parameterized or is completely unknown, various adaptive control methods
were further developed in[5–13] by means of neural network or fuzzy logic sys-
tem based backstepping techniques. In these papers, the backstepping technique
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was used to synthesize adaptive control laws for strictly feedback systems or
lower triangular systems. The controllers can achieve bounded tracking error for
bounded initial states. The main advantages of backstepping technique are that
many restriction of matching conditions for usual nonlinear control system are
removed, such as matching condition, extended matching conditions, or growth
conditions [14].

Though backstepping has become one of the most popular design methods
for a large class of SISO nonlinear systems, it also subject to the problem of
“explosion of complexity” in the traditional approaches, that is, the complex-
ity of controller grows drastically as the order of the system increases. This
“explosion of complexity” is caused by the repeated differentiations of certain
nonlinear functions such as virtual controls, as pointed out in [15, 16]. To over-
come such problem, dynamic surface control approach was proposed for a class of
strict-feedback nonlinear systems with known system functions. By introducing
first-order filtering of the synthetic virtual control input at each step of tra-
ditional backstepping approach, the system differentiation is not required and
the smoothness of system functions need not be considered [11, 17, 18]. When
the system functions are unknown, neural networks were used to approximate the
unknown functions and adaptive dynamic surface control scheme was provided
in [19–21].

On the other hand, virtual control gain function plays an important role in
the controller design. Usually, it assumed that the priori knowledge about the
signs of virtual control coefficients is known, which is either strictly positive or
strictly negative. When this priori knowledge is unknown, that is, the signs of
virtual control coefficients are unknown, it is a deeply challenge. The first so-
lution was provided by Nussbaum for a class of first-order linear systems [22],
where the Nussbaum-type gain function concept was originally proposed. This
kind of control approach was extend to the high-frequency control gain linear
systems [23, 24], in which the arguments of the Nussbaum functions are con-
structed. For the nonlinear systems, in [25], the high order nonlinear systems
for constant virtual control coefficient was considered and the coupling terms in
backstepping were canceled by young’s inequality technique. In [26], the nonlin-
ear time-delay system with unknown virtual control coefficient was investigated,
and adaptive neural controller was designed. In [27], the pure-feedback nonlin-
ear systems with unknown dead zone and perturbed uncertainties was studied
based on the neural network model and dynamic surface control technique. In
[28], such research was generalized to the stochastic system and fuzzy adaptive
controller was designed such that closed-loop stochastic systems are globally ul-
timately bounded in probability. To the best of authors knowledge, the results
on dynamic surface control for unknown virtual control coefficients systems have
not been found in the literature, which motivates our study of this paper.

In this paper, we consider adaptive dynamic surface control problem for a
class of nonlinear systems with the unknown virtual control coefficient. Based
on the neural network approximate ability, a new neural network-based adaptive
dynamic surface control design scheme is proposed. It avoids the priori knowledge
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assumption of the virtual control gain function sign, and the solving problem
due to the “explosion of complexity”. Furthermore, the control performance of
closed-loop systems can be improved through the adaptive adjusting of estimated
error upper limit. It is proved that all the signals in the closed-loop systems are
globally ultimately bounded.

2 Problem Formulation

Consider the class nonlinear systems described below

ẋi(t) =fi(x̄i)xi+1 + gi(x̄i), i = 1, ..., n − 1,
ẋn(t) =fn(x)u + gn(x), (1)

where t ≥ 0, x = [x1, · · · , xn]T ∈ Rn is the state vector, and x̄i = [x1, · · · , xi]
T ,

x̄n = x. u is the control input. Functions fi : Ri → R, gi : Ri → R are unknown
smooth, where i = 1, ...n. The aim of the paper is to design a globally stabiliza-
tion controller such that all the signals of closed-loop system are bounded.

Assumption 1. Unknown functions fi(x̄i) is smooth, and there exist scalars fi

and known smooth functions f̄i(x̄i) such that 0 < fi ≤ |fi(x̄i)| ≤ f̄i(x̄i) < ∞,
∀x̄i ∈ Ri.

Definition 1. [22] Any continuous function Q(s) : R −→ R is a function of
Nussbaum type, if it has the following properties:

lim
s−→+∞ sup

1
s

∫ s

0

Q(ρ)dρ = +∞

lim
s−→+∞ inf

1
s

∫ s

0

Q(ρ)dρ = −∞

For example, the continuous functions ρ2cos(ρ) and eρ2
cos(π/2ρ) suffice.

Lemma 1. [26] Let V (·) and ρ(·) be smooth functions defined on [0, tf} with
V (t) > 0, ∀t ∈ [0, tf}, and N(·) be a even smooth Nussbaum-type function. If
the following inequality holds:

V (t) ≤ c0 + e−c1t

∫ t

0

f(x(τ))Q(ρ)ρ̇ec1τdτ + e−c1t

∫ t

0

ρ̇ec1τdτ, ∀t ∈ [0, tf} (2)

where constant c1 > 0, f(x(t)) is a time-varying parameter which takes values
in the unknown closed intervals I := [l−, l+] with 0 /∈ I, and c0 represents some
suitable constant, then V (t), ρ(t) and

∫ t

0
f(x(τ))Q(ρ)ρ̇ec1τdτ must be bound on

[0, tf}.

In this paper, the following RBF neural network will be used to approximate
any continuous function Φ(Z) : Rn −→ R

Φ(Z) = θT ξ(Z) (3)
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where θ ∈ Rn for some integer N is called weight vector, and ξ(Z) = [ς1, · · · , ςn]
is a vector valued function defined in Rn with ςi chosen as commonly Gaussian
function, i.e., ςi(Z) = exp(−‖(Z − τi)‖/2σ2), i = 1, · · · , n, where τi ∈ Rq is
constant vectors called the center of the basis function, and σ is the width of
the basis function. As indicated in [29], the neural network can approximate any
continuous function Φ(Z) ∈ Rn to arbitrary accuracy.as

Φ(Z) = θ∗T ξ(Z) + δ(Z), ∀Z ∈ Rn (4)

where θ∗ is the ideal constant weights, and δ(Z) is the network reconstruction
error, satisfying ‖δ(Z)‖ ≤ η∗, η∗ is known constant.

Since Φ(Z) is unknown, we need to estimate θ∗ online. We use the notation θ̂
to estimation of θ∗ with the estimation error θ̃ and develop an adaptive law to
update the parameter θ̃.

3 Adaptive Controller Design

In this section, we will incorporate the DSC technique proposed in [16] into a
neural network based adaptive control design scheme for the nth-order system
described by (1). Similar to the traditional backstepping design method, the
recursive design procedure contains n steps. let us design adaptive control laws
based on the following coordinate transformation:

z1 =x1,

zi =xi − αi−1, i = 2, ..., n, (5)

where αi−1 is the output of first-order filter of virtual control input ᾱi−1, which
is to define lately. Let u = αn is the practical controller. zi is the ith error surface
of xi and αi−1.

Then we have

ż1(t) =f1(x1)x2 + g1(x1),
żi(t) =fi(x̄i)xi+1 + gi(x̄i) − α̇i−1, i = 2, ..., n, (6)

Define the Lyapunov function as follows,

Vz =
1
2

n∑
i=1

z2
i (7)

Then we have

V̇z =
n∑

i=1

zi(fi(x̄i)xi+1 + gi(x̄i) − α̇i−1)

=
n∑

i=1

zi(fi(x̄i)(zi+1 + αi) + gi(x̄i) − α̇i−1)

≤
n∑

i=1

zi(fi(x̄i)αi + Φi(Zi)) (8)



Neural Network-Based Dynamic Surface Control 333

where
Φ1(Z1) = g1(x1) + z2

1 − α̇0,
Φi(Zi) = gi(x̄i) − α̇i−1 + z2

i + f2
i−1(x̄i−1)z2

i ,
Φn(Zn) = gn(x̄n) − α̇n−1 + f2

n−1(x̄n−1)z2
n

with Z1 = [x1, α0, α̇0] ∈ ΩZ1 ∈ R3, where ΩZ1 is compact set.
Similarly,
Zi = [x̄T

i , αi−1, α̇i−1] ∈ ΩZi ∈ Ri+2

Zn = [x̄T
n , αn−1, α̇n−1] ∈ ΩZn ∈ Rn+3.

In equation (8), the result of inequality 2zifi(x̄i)zi+1 ≤ z2
i + f2

i (x̄i)z2
i+1 is

used.
Due to the unknown functions fi and gi, the controllers including Φi(Zi) does

not be applied directly. So, we use the RBF neural network to approximate the
function Φi(Zi) as follows:

Φi(Zi) = θT
i ξi(Zi) = θ∗T

i ξi(Zi) + δi(Zi) (9)

Choose a virtual control ᾱ1 as follows:

ᾱ1 = Q(ρ1)[k1z1 + θ̂T
1 ξ1(Z(1))] (10)

with parameter adaptive update law

ρ̇1 = k1z
2
1 + θ̂T

1 ξ1(Z(1))z1 (11)

and network weight update law

˙̂
θ1 = Γ1ξ1(Z(1))z1 − !1Γ1θ̂1 (12)

where constants k1, Γ1, and !1 are positive.
Let ᾱ1 pass through a first-order filter with time constant ε1 to obtain α1

ε1α̇1 + α1 = ᾱ1, α1(0) = ᾱ1(0) (13)

Similar, choose the virtual control ᾱi−1 as follows:

ᾱi−1 = Q(ρi−1)[ki−1zi−1 + θ̂T
i−1ξi−1(Z(i − 1))] (14)

with

ρ̇i−1 = ki−1z
2
i−1 + θ̂T

i−1ξi−1(Z(i − 1))zi−1 (15)

and

˙̂
θi−1 = Γi−1ξi−1(Z(i − 1))zi−1 − !iΓi−1θ̂i−1 (16)

where constants ki−1, Γi−1, !i−1 are positive.
Let ᾱi−1 pass through a first-order filter with time constant εi−1 to obtain

αi−1

εi−1α̇i−1 + αi−1 = ᾱi−1, αi−1(0) = ᾱi−1(0) (17)
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Finally, let the final control u be as follows:

u = αn = Q(ρn)[knzn + θ̂T
n ξn(Z(n)) + η̂nsign(zn)] (18)

with

ρ̇n = knz2
n + θ̂T

n ξn(Z(n))zn + η̂nsign(zn)zn (19)

˙̂
θn = Γnξn(Z(n))zn − !nΓnθ̂n (20)

and network approximation error update law η̂n, which is the estimation of
reconstruction error ηn

˙̂ηn = κ [|zn| − γη̂n] . (21)

4 Stability Analysis

In this section, the semi-global boundedness of all the signals in the closed-loop
system with be proven. To prove the boundedness, define the boundary layer
errors as follows:

S1 =α1 − ᾱ1

Si−1 =αi−1 − ᾱi−1 (22)

Moreover,

z1 =x1 − yd

zi =xi − Si−1 − ᾱi−1, i = 2, · · · , n − 1 (23)

Then the closed-loop system in the new coordinates zi, αi, θ̃i can be expressed
as follows:

ż1 =f1(x1)(z2 + α1) + g1(x1),
żi =fi(x̄i)(zi+1 + αi) + gi(x̄i) − α̇i−1, i = 2, ..., n− 1,

żn =fn(x̄n)Q(ρn)[knzn + θ̂T
n ξn(Z(n)) + η̂nsign(zn)] + gn(x̄n) − α̇n−1 (24)

Noting that

α̇i =
ᾱi − αi

εi
= −Si

εi
(25)

and we have

Ṡi = α̇i − Q̇(ρi)ρ̇i[kizi + θ̂T
i ξi(Z(i))] − Q(ρi)[kiżi + ˙̂

θT
i ξi(Z(i)) + θ̂T

i ŻT
i ξi(Zi)]

= −Si

εi
− Q̇(ρi)ρ̇i[kizi + θ̂T

i ξi(Z(i))] − Q(ρi)[kiżi + ˙̂
θT

i ξi(Z(i)) + θ̂T
i ŻT

i ξi(Zi)]

(26)
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and by induction some positive continuous function Di, we have

|Ṡi +
Si

εi
| ≤ Di(z1, · · · , zi, θ̂1, · · · , θ̂i, S1, · · · , Si), i = 1, · · · , n − 1 (27)

then ṠiSi ≤ −S2
i

εi
+ D̄i|Si|.

Now, we are in the position to give our main result in the follow theorem.

Theorem 1. Consider the closed-loop systems (1), the controller (18), and the
adaptation laws that are described as (11), (12), (15), (16), (19), (20), and (21)
with constants ki = ki1 + ki2 > 0, Γi > 0, !i > 0 for i = 1, ..., n, εl > 0 for
l = 1, ..., n− 1 and κ > 0, γ > 0. Then, for the bounded initial conditions, all the
signals of closed-loop systems are semi-globally uniformly ultimately bounded.

Proof. Let us consider the following Lyapunov function candidate:

V = Vz +
1
2

n−1∑
i=1

S2
i +

1
2

n∑
i=1

Γ−1
i θ̃2

i +
1
2
κ−1η̃2

n (28)

Then the time derivative of V is

V̇ =V̇z +
n−1∑
i=1

SiṠi +
n∑

i=1

θ̃iΓ
−1
i

˙̂
θi + η̃nκ−1 ˙̂ηn

=
n∑

i=1

zi(fi(x̄i)αi + Φi(Zi)) +
n−1∑
i=1

SiṠi +
n∑

i=1

θ̃iΓ
−1
i

˙̂
θi + η̃nκ−1 ˙̂ηn

=
n−1∑
i=1

zi(fi(x̄i)(Si + Q(ρi)[kizi + θ̂T
i ξi(Z(i))] + Φi(Zi))

+
n∑

i=1

{ρ̇i − kiz
2
i − θ̂T

i ξi(Z(i))zi}

+ zn{fn(x)Q(ρn)[knzi + θ̂T
n ξn(Z(n)) + η̂nsign(zn)] + Φn(Zn)}

+
n−1∑
i=1

SiṠi +
n∑

i=1

θ̃i

[
ziξi(Z(i)) − !iθ̂i

]
+ η̃n[|zn| − γη̂n]

≤
n−1∑
i=1

[
fi(x̄i)Q(ρi)ρ̇i + ρ̇i − kiz

2
i + δizi

]
+

n−1∑
i=1

zifi(x̄i)Si

−
n−1∑
i=1

S2
i

εi
+

n−1∑
i=1

D̄i|Si| − !iθ̃iθ̂i − γη̃nη̂n

+ fn(x)Q(ρn)ρ̇n + ρ̇n − (knz2
n + η̂nsign(zn)zn) + ηnzn + η̃n |zn| . (29)

Consider the following inequalities results:

zifi(x̄i)Si ≤
1
2
z2

i +
1
2
f2

i (x̄i)S2
i ≤ 1

2
z2

i +
1
2
f̄2

i (x̄i)S2
i , i = 1, ..., n − 1, (30)

D̄i|Si| ≤
1
2
D̄2

i +
1
2
S2

i , i = 1, ..., n − 1, (31)
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−!iθ̃
T
i θ̂i ≤ −1

2
!i

∣∣∣θ̃i

∣∣∣2 +
1
2
!i |θ∗i |

2
, i = 1, ..., n, (32)

−γη̃nη̂n ≤ −1
2
γ |η̃n|2 +

1
2
γ |η∗

n|
2 , (33)

and let ki = ki1 + ki2, where ki1 > 0 and ki2 > 0, we have

−ki1z
2
i + δizi ≤

1
4ki1

δ2
i ≤ 1

4ki1
η∗2

i , i = 1, ..., n − 1. (34)

Then we obtain

V̇ (t) ≤
n−1∑
i=1

[
fi(x̄i)Q(ρi)ρ̇i + ρ̇i − ki2z

2
i +

1
4ki1

η∗2
i

]

+
n−1∑
i=1

[
1
2
z2

i +
1
2
f̄2

i (x̄i)S2
i

]
−

n−1∑
i=1

S2
i

εi
+

n−1∑
i=1

[
1
2
D̄2

i +
1
2
S2

i

]

+
n∑

i=1

[
−1

2
!i|θ̃i|2 +

1
2
!i |θ∗i |

2

]
− 1

2
γ |η̃n|2 +

1
2
γ |η∗

n|
2

+ fn(x)Q(ρn)ρ̇n + ρ̇n − knz2
n

=
n∑

i=1

{−cVzi + fi(x̄i)Q(ρi)ρ̇i + ρ̇i + di} (35)

where c = min{−2ki2 + 1, 2kn, !i/Γi, γ/κ, 2ε−1
i − f̄2

i − 1} with 2ε−1
i − f̄2

i − 1 > 0
and di = 1

4ki1
η∗2

i + 1
2!i |θ∗i |

2 + 1
2D̄

2
i , dn = 1

2γ |η∗
n|

2 + 1
2!n |θ∗n|

2.
Multiplying (35) by ect, we have

d(ectV ) ≤
n∑

i=1

{fi(x̄i)Q(ρi)ρ̇i + ρ̇i + di}dt (36)

Integrating (36) over [0, T ], we have

V (T ) ≤e−cT V (0) +
n∑

i=1

di/c

+ e−cT
n∑

i=1

∫ T

0

fi(x̄i(τ))Q(ρi)ρ̇ie
cτdτ + e−cT

n∑
i=1

∫ T

0

ρ̇ie
cτdτ (37)

From Lemma 1, we can draw the conclusion that for every x0 ∈ Rn function
ρi, e−cT

∫ T

0 fi(x̄i(τ))Q(ρi)ρ̇ie
cτdτ and V (T ) must be bounded. Moreover, all the

signals of closed-loop systems are bounded.

5 Conclusion

In this paper, adaptive dynamic surface control technique was developed for
a class of strict-feedback nonlinear systems in which the virtual control gain
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function is unknown. Backstepping based control technique was developed such
that priori knowledge of virtual control gain function sign does not require. The
problem of “explosion of complexity” was dealt. At the same time, all the sig-
nals of closed-loop systems are bounded and the control performance of systems
is improved by the approach of adaptive modifying the estimated error upper
bound.
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Stochastic Stability Analysis of Delayed Hopfield Neural 
Networks with Impulse Effects 

Wenfeng Hu, Chuandong Li, Sichao Wu, and Xiaofeng Liao 
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Abstract. This paper studies the global exponential stability of the delayed 
Hopfield neural networks with both stochastic perturbations and impulse 
effects. By means of the ˆIto  formula, Lyapunov-Razumikhin theorems and 
certain inequality techniques, some sufficient criteria are obtained which 
guarantee the global exponential stability of the delayed Hopfield neural 
networks with stochastic perturbations and impulse effects. The results 
characterize the intricate effects of the impulses and then can be used to 
estimate the feasible upper bounds of impulses. Furthermore, a numerical 
simulation is given to illustrate the validity of our results. 

Keywords: global exponential stability, delayed Hopfield neural networks (NN), 
stochastic, impulse effects, Lyapunov-Razumikhin theorem, ˆIto  formula. 

1   Introduction 

In the past decades, Hopfield neural networks (HNN), proposed by Hopfield in the 
1980s [1-2], has attracted considerable attention due to its widely employed in many 
areas such as pattern recognition, associate memories and combinatorial optimization 
(see [3-5] and references therein). To the best of authors’ knowledge, in neural 
processing and signal transmission, there are several causes as the sources of 
instability, which may lead to bad performance in the applications mentioned above.  

Among the sources of instability, time delays are inevitable in most circuits during 
the processing and transmission of signals. Hopfield neural networks with such time 
delays is called Delayed Hopfield neural networks (DHNN), which can be represented 
by delayed differential equations. Besides time delays effects, in the implementation  
of electronic neural networks, the state of neural networks is often subject to 
instantaneous perturbations and experience abrupt changes at certain moments of time 
which may be caused by a switching phenomenon, frequency change or other sudden 
noise; namely, the networks exhibit impulse effects. They frequently occur in fields 
such as economics, mechanics, electronics, telecommunications, medicine and biology, 
etc. It has also been known that impulse effects may lead to complicated results [6-9], 
for instance, it may cause instability of the previous system. On the other hand, 
impulsive control has been used for stabilization of the impulse-free neural networks 
which are even not asymptotically stable. Thus, the consideration of impulse effects is 
essential in our study. 
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It is worth noting that, in real nervous systems, the synaptic transmission is a noisy 
process brought on by random fluctuations from the release of neurotransmitters and 
other probabilistic causes. Such factors are stochastic effects, which could stabilize or 
destabilize some certain neural networks. Hence, the stability analysis of stochastic 
neural networks becomes increasingly significant, and some results related to this 
subject have been published recently, see references [10-12]. However, most of them 
utilized the Lyapunov functional method. In this paper, we use the Lyapunov-
Razumikhin method ([13-14]), by which it is much easier to find an appropriate 
Lyapunov function than functional, thus it has the advantage in verifying conditions 
for most systems. Our results are then used to estimate the feasible upper bounds of 
impulses, which guarantee the global exponential stability of the delayed Hopfield 
neural networks with stochastic perturbations and impulse effects.  

2   Problem Statement and Preliminaries 

In this paper, we consider the impulsive DHNN, which is often described by the 
delayed differential equations as follows: 

( ) ( ) ( )( ) ( )( ) ku t Cu t A u t B u t I t tκ η τ= + + − + ≠&  (1)

( ) ( )( ) 1,2, ,k k ku t I u t k−Δ = = L  (2)

Where the fist equation (1) describes the evolution processes of the neural 
networks in the form of continuous-time, ( ) nu t R∈  denotes the state vector of 

neurons, 2n ≥  is the number of neurons, the diagonal matrix ( )1 2, , , nC diag c c c= L  

is the state feedback coefficient with scalar 0 1ic< < , ( )ij n n
A a

×
=  and ( )ij n n

B b
×

=  

are two real matrices, which represent the network’s connection weight matrix and 
delayed connection weight matrix, respectively, nI R∈  represents constant external 

inputs, 0τ >  stands for the time delay. ( ) ( ) ( ) ( )1 1 2 2, , ,
T

n nu u u uκ κ κ κ= ⎡ ⎤⎣ ⎦L  and 

( ) ( ) ( ) ( )1 1 2 2, , ,
T

n nu u u uη η η η= ⎡ ⎤⎣ ⎦L  are the activation functions used in the ith 

neuron, which are usually assumed to satisfy the following inequalities (according to 
Morita ([15]) and Yoshizawa ([16]). 

Assumption 1. ( )κ ⋅  and ( )η ⋅  are assumed to be Lipschitz-continuous, i.e., 

( ) ( ) f
i i ix y l x yκ κ− ≤ −  and ( ) ( ) g

i i ix y l x yη η− ≤ − , thus, ( )1 2, , ,f f f
f nL diag l l l= L  

and ( )1 2, , ,g g g
g nL diag l l l= L  are called Lipschitz coefficients.  

( ): 1, 2,n n
kI R R k→ = L  indicate the state jump operators which satisfy the 

following assumption. 
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Assumption 2. there always exist positive numbers kj  such that 

( ) ( )k k kI x I y j x y− ≤ −  for any , nx y R∈  

Without loss of generality, we let ( ) ( )0, ,u t u t t ϕ=  be any solution of DHNN (1) 

with impulse (2), which means ( )u t  satisfies the initial condition: ( ) ( )i iu s sϕ= , 

[ ]0 0,s t tτ∈ −  where [ ]0 0: , , 1, 2, ,i t t R i nϕ τ− → = L . 

For simplicity, we always shift the equilibrium point * * *
1 , ,

T

nu u u⎡ ⎤= ⎣ ⎦L  of the 

impulsive DHNN to the origin by making a transformation ( ) ( ) *x t u t u= − . What’s 

more, when taking the stochastic perturbations into consideration, we use the 

( ) ( ) ( )1 ,...,
T

nt t tω ω ω= ⎡ ⎤⎣ ⎦  to denote an n-dimensional Brownian motion defined on a 

complete probability space { }( )0
, , ,t t
F F P

≥
Ω  with a filtration { } 0t t

F
≥

 satisfying the 

usual conditions (i.e., it is right continuous and 0F  contains all P-null sets). Then, the 

previous system can be rewritten as: 

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) [ )
( ) ( ) ( )( )
( ) ( ) [ ]

1

0 0

, , ,

,

k k

k k k k

dx t Cx t Af x t Bg x t dt t x t x t d t t t t

x t x t J x t t t

x s s s t t

τ σ τ ω

φ τ

−

− −

⎧ ⎡ ⎤= + + − + − ∈⎣ ⎦⎪
⎪ = + =⎨
⎪

= ∈ −⎪⎩

(3)

Where ( )( ) ( )( ) ( )* *f x t x t u uκ κ= + −  and ( )( ) ( )( ) ( )* *g x t x t u uτ η τ η− = − + − , 

which implies that ( )( ) ( )ff x t L x t≤  and ( )( ) ( )gg x t L x t≤ , according to the assum -

ption 1. ( ) ( ) ( )* *
k k kJ x I x u I u= + −  with the property ( ) , 1,2,k kJ x j x k≤ = L , 

implied by assumption 2. Besides, ( ) ( ) *s s uφ ϕ= −  in system (3). Thus, we will 

investigate the (3) instead of the previous DHNN. 
Where ( )σ ⋅  are assumed to satisfy the following inequality: 

Assumption 3. there exist matrices 1 0D >  and 2 0D >  such that: 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )1 2

, , , ,T

T T

trace t x t x t t x t x t

x t D x t x t D x t

σ τ σ τ

τ τ

⎡ ⎤− ⋅ −⎣ ⎦
≤ + − −

 

3   Main Results 

Theorem 1. The zero solution of system (3) is said to be globally exponentially stable 
in the mean square provided that the following conditions are satisfied: 

(1). There exist positive scalars 1ε , 2ε , 1q >  and matrices 1 1 0TQ Q= > , 

2 2 0TQ Q= > , 0TP P= > ，  such that: 
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1 1
1 1 1 1 1 2 2 1 0T T T T

f fPC C P PAQ A P L Q L PBQ B P D qPε ε ε α− −Ω = + + + + + + ≤ and 
1 1

2 2 2 2 0T
g gL Q L D Pε α− −Ω = + − ≤  whenever ( ) ( )V t s qV t+ ≤  for [ ],0s τ∈ − , where 

( )1l dq eλ +≥ , λ , l , d  are defined later. 

(2). There exist natural number 1l ≥ , ( )1max k
k

ktd t −−=  and dτ ≤  satisfying 

1 /k kt t lτ−− ≥  for any 1,2,k = L   

(3). Let the *λ  to be the exponential decay rate, *2λ λ= , 

( ) ( )1T T
M mP PJ J P J PJ Pβ λ λ −= + + + ⋅  which reflects the effects of impulse, with 

the following inequalities hold: ln 2 0dβ λ+ < . 

Proof. Consider the Lyapunov function ( ) ( ) ( )TV t x t Px t=   

We consider the derivation of ( )V t  along the trajectories of system (3), according 

to the ˆIto  formula, i.e., ( ) ( )
2

2

2

1

2

V V V
dV t dt dx dx

t x x

∂ ∂ ∂= + +
∂ ∂ ∂

 

We can calculate as follows: 

( ){ } ( ){ }dE V t E LV t dt=  (4)

Where ( ){ }E V t  means the expectation of the ( )V t  and  

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
2

2

1
, , , ,

2
T

V V
LV t Cx t Af x t Bg x t

t x

V
trace t x t x t t x t x t

x

τ

σ τ σ τ

∂ ∂ ⎡ ⎤= + + + −⎣ ⎦∂ ∂
⎡ ⎤∂+ − ⋅ ⋅ −⎢ ⎥∂⎣ ⎦

 (5)

It’s not difficult to see that: 

( ) ( )( ) ( ) ( ) ( ) ( )1 1
1 1 1 12 T T T T T

f fx t PAf x t x t PAQ A Px t x t L Q L x tε ε − −≤ +  (6)

( ) ( )( ) ( ) ( ) ( ) ( )1 1
2 2 2 22 T T T T T

g gx t PBg x t x t PBQ B Px t x t L Q L x tτ ε ε τ τ− −− ≤ + − − (7)

When, for a constant 1q ≥ , ( ) ( )V t s qV t+ ≤  for all [ ],0s τ∈ − . So, for a constant 

0α ≥ , we have 

( ) ( ) ( ) ( ) 0T Tqx t Px t x t Px tα τ τ⎡ ⎤− − − ≥⎣ ⎦  (8)

Substituting (6), (7) and (8) into (5) yields 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1
1 1 1 1 2 2 1

1 1
2 2 2

1

2

0
, ,

0

T T T T T
f f

T T
g g

T T T

LV t x t PC C P PAQ A P L Q L PBQ B P D x t

x t L Q L D x t

qx t Px t x t Px t t t

ε ε ε

τ ε τ

α τ τ η τ η τ

− −

− −

⎡ ⎤≤ + + + + +⎣ ⎦
⎡ ⎤+ − + −⎣ ⎦

Ω⎡ ⎤
⎡ ⎤+ − − − ≤ ⎢ ⎥⎣ ⎦ Ω⎣ ⎦

(9)
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Where ( ) ( ) ( ), ,
T

t x t x tη τ τ= −⎡ ⎤⎣ ⎦ , 1Ω  and 2Ω  are defined in the condition (1). 

Besides, we can know that, 1 0Ω ≤  and 2 0Ω ≤  lead to 
( ){ } ( ){ } 0

dE V t
E LV t

dt
= ≤ . 

It’s obvious to see that: ( )2 2

1 2x V t xλ λ≤ ≤ , where ( )1 m Pλ λ=  and 

( )2 M Pλ λ= , we define that 
( ) ( )0sup s sττ

φ φ− ≤ ≤= , we can choose 1M ≥  such that: 

( ) ( )
( )

( )
1 0

2 2 2

2 2
t tM e qλ

τ τ τ
λ φ φ λ φ− −< ≤  (10)

Our goal is to prove that the next inequality is hold for any 1,2,k = L : 

( ) ( )
( ) [ )0

2

1,kt t
k kV t M e t t tλ

τ
φ − −

−≤ ∈  (11)

In order to reach the goal above, the mathematical induction method is applied 
later, when 1k = , we firstly show that:  

( ) ( )
( ) [ )1 0

2

0 1,t tV t M e t t tλ

τ
φ − −≤ ∈  (12)

From (10), for any [ ]0 0,t t tτ∈ − , we get 

( ) ( ) ( )
( )1 0

2 22

2 2( ) t tV t x t M e λ

τ τ
λ λ φ φ − −≤ ≤ <  (13)

Therefore, if (12) is not true, there always exist [ )0 1,t t t∈%  such that  

( ) ( )
( )

( ) ( ) [ )1 0
2 2

2 0 , ,0t tV t M e V t s sλ

τ τ
φ λ φ τ− −> > ≥ + ∈ −%  (14)

Then, we can assume ( ) ( ) ( )
( ){ }1 0

2*
0min , t tt t t t V t M e λ

τ
φ − −= ∈ ≥%  

Obviously, ( ) ( )
( )

( )
1 0

2 2*
2

t tV t M e λ

τ τ
φ λ φ− −≥ >  

Therefore, ( ) ( )
( )1 0

2 t tV t M e λ

τ
φ − −≤  for any *

0t t tτ− ≤ ≤  

Let ) ( ) ( ){ }2** *
0 2max ,t t t t V t

τ
λ φ⎡= ∈ ≤⎣  which implies that: 

When ** *t t t≤ ≤ , 
( )

2

2( )V t
τ

λ φ≥  always hold. Moreover, combined with (10), it’s 

easy to see that: 

( ) ( )
( )

( ) ( ) [ ]1 0
2 2

2 ,0t tV t s M e q qV t sλ

τ τ
φ λ φ τ− −+ ≤ ≤ ≤ ∈ −  (15)

Which results to 
( ){ } ( ){ } 0

dE V t
E LV t

dt
= ≤  under the condition (1). 



344 W. Hu et al. 

Thus ( ){ } ( ){ }** *E V t E V t≥  is approached according to the monotonicity in the 

interval ** *,t t⎡ ⎤⎣ ⎦ , further, we have 
( ) ( )

( )1 0
2 2

2
t tM e λ

τ τ
λ φ φ − −≥ , which contradicts (10) 

obviously. 
Hence, we can conclude that (12) is true and (11) holds when 1k = . 
In the second step, we suppose that the claim (11) is true for any 1,2, ,k m= L , 

i.e., 

( ) ( )
( ) [ )0

2

1, , 1, 2, ,kt t
k kV t M e t t t k mλ

τ
φ − −

−≤ ∈ = L  (16)

Then, we will show that (11) also holds for 1k m= + , i.e., 

( ) ( )
( ) [ )1 0

2

1,mt t
m mV t M e t t tλ

τ
φ +− −

+≤ ∈  (17)

We can suppose (17) is not true, which implies that there exist [ )1,m mt t t +∈  such 

that ( ) ( )
( )1 0

2
mt tV t M e λ

τ
φ +− −> , then we can define that: 

[ ) ( ) ( )
( ){ }1 0

2
min , mt t

mt t t t V t M e λ

τ
φ +− −′ = ∈ ≥  

Which means ( ) ( )
( ) [ )1 0

2
,mt t

mV t M e t t tλ

τ
φ +− − ′< ∈ . So, when mt t= , since 

1k kt t d−− ≤ , from the conjecture (16) and condition (2), (3), we can obtain 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

( )
( )

( ) ( )

( )
( ) ( )

( )
( )

0 0

0 1 1 0

2 2ln

2 2ln

m m

m m m m

T

m m m m m m m

t t t t d d
m

t t t t t td d

V t x t J x t P x t J x t

V t M e e M e e

e M e e e M e e

λ λ λβ
τ τ

λ λ λβ λ λ
τ τ

β β φ φ

φ φ+ +

− − − −

− − − − −−

− − − − − − −

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

≤ ≤ =

≤ <

 
(18)

Namely, ( ) ( )
( )

( )
( ) ( )1 0 1 0

2 2
m mt t t td

mV t M e e M e V tλ λλ
τ τ

φ φ+ +− − − −− ′< < ≤  (19)

Let [ ) ( ) ( )
( ){ }1 0

2
max , mt t d

mt t t t V t M e eλ λ
τ

φ +− − −′′ ′= ∈ ≤ , from the definition of t′  

and t′′ , it’s obvious to see that, when [ ],t t t′′ ′∈ : 

( )
( ) ( ) ( )

( )1 0 1 0
2 2

m mt t t tdM e e V t M eλ λλ
τ τ

φ φ+ +− − − −− ≤ ≤  (20)

Since [ ],t t t′′ ′∈ , from the condition (2), we have [ ],m lt s t t− ′+ ∈  for [ ],0s τ∈ − . 

Based on the (16), one observes that: 
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( ) ( )
( )

( )
( ) ( ) ( ) ( )

( )
( )

( ) ( )

1 0

1 1 2 11 0

1 0

2

2

21

m l

m m m m m l m lm

m

t t

t t t t t tt t

t tl d d

V t s M e

M e e

e M e e qV t

λ

τ

λλ

τ

λλ λ
τ

φ

φ

φ

− +

+ − − + − ++

+

− −

⎡ ⎤− + − + + −− − ⎣ ⎦

− −⋅ + ⋅ −

+ ≤

≤

≤ ≤

L  (21)

Where ( )1l de qλ⋅ + ⋅ ≤ . Furthermore, ( ){ } [ ]0 ,E V t t t t′′ ′≤ ∈&  followed from the 

condition (1). Then we have ( ){ } ( ){ }E V t E V t′′ ′≥ , moreover, lead to 

( )
( )

( )
( )1 0 1 0

2 2
m mt t t tdM e e M eλ λλ

τ τ
φ φ+ +− − − −− ≥ , which is a contradiction. 

Here, we can draw a conclusion that, (17) is true and (16) is true for 1k m= + . 
Thus, our goal (11) is reached. 

By the virtue of ( )2 2

1 2x V t xλ λ≤ ≤  and (11), we can further yield: 

( )

( )

( )
( ) [ )*0

0*2
1

1

, 1, 2,
k

k
t t t t

k k

M
x e M e t t t k

λ
λ

τ τ
φ φ

λ
− − − −

−≤ = ∈ = L  

Finally, our results are proved. 

Remark 1. The theorem 1 presents some sufficient conditions ensuring the global 
exponential stability of the system concerned. It’s noted that, the condition (1) cannot 
even guarantee the asymptotic stability of the differential system. Compared with the 
reference ([9]), in which X. Z. Liu employed the Razumikhin theorem as we do, our 
results is less conservative. In the condition (2), the minimal length of impulse 
interval, namely, [ )1,k kt t−  is not limited to the time delayτ , but 1 /k kt t lτ−− ≥  with 

some 1l ≥ . The condition (3) is the constraint on the impulse effects, i.e., to 
guarantee the stabilizing property of impulses. We also can use this to estimate the 
feasible upper bounds of impulses. 

4   Numerical Examples 

In this section, we present a numerical example to illustrate the validity and 
effectiveness of the theoretical results, and a simulation graph is also drawn. 

Example 1. Consider the impulsive DHNN containing two neurons: 

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) [ )
( ) ( ) ( )( )
( ) ( ) [ ]

1

0 0

, , ,

,

k k

k k k k

dx t Cx Af x t Bg x t dt t x t x t d t t t t

x t x t J x t t t

x s s s t t

τ σ τ ω

φ τ

−

− −

⎧ ⎡ ⎤= + + − + − ∈⎣ ⎦⎪
⎪ = + =⎨
⎪

= ∈ −⎪⎩  

  Where we set 
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0.4 0

0 0.3
C

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 
0.04 0.06

0.01 0.01
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
0.01 0.02

0.03 0.03
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
1.5 0

0 1.5
J

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

We assume that 0.001τ = , that means every 0.001s, there will be an impulse occur 

at that moment. The activation functions, i.e., ( )f ⋅  and ( )g ⋅  are assumed to be 

( ) ( ) ( )tanhf x g x x= = , with the f gL L I= = .  

Using the Matlab LMI Toolbox, we can check if all the conditions of the theorem 1 
in this paper are satisfied. In example 1, with all conditions hold, we can show that the 
system in this example converges to the zero exponentially by the simulation graph 
(see figure 1 and figure 2). 

 

Fig. 1. The corresponding impulse-free system is not divergent 

 

Fig. 2. Impulsive DHNN converges to the zero exponentially 
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5   Conclusions 

Unlike the most existing papers dealing with the stability of the DHNN, we 
investigate the global exponential stability of the impulsive DHNN with stochastic 
perturbations, by means of Lyapunov-Razumikhin theorems instead of Lyapunov 
functional or Hanalay inequality. Some sufficient conditions guaranteeing the global 
exponential stability are obtained, which characterize the complicated effects of the 
impulses or can be used to estimate the feasible upper bound of the impulses.  
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Abstract. In this paper, some sufficient conditions for global robust
exponential stability of neural networks with time-varying delays are
presented. On basis of the obtained results, some linear matrix inequal-
ity(LMI)criteria are derived. A comparison of the present criteria with
the previous criteria is made. Moreover, an example is given to show the
effectiveness of the obtained results.

Keywords: Neural networks, Global robust stability, Time-varying de-
lays.

1 Introduction

Cohen and Grossberg proposed a class of neural networks in 1983 [1], which
include Hopfield neural networks [2], this model has received increasing interest
due to its promising potential for applications in classification, parallel computa-
tion, associative memory, especially in solving some optimization problems. Such
applications rely on the qualitative properties of stability. Thus, the qualitative
analysis of these dynamic behaviors is a prerequisite step for the practical de-
sign and application of neural networks. Because of the finite speed of switching
and transmission of signals in a network, time delays are inevitably resent in
electronic implementation of neural networks, which may influence the stability
of the entire network by creating oscillatory or unstable phenomena. There-
fore, the study of stability of neural networks with delay is practically required
[3-12]. Recently, study on the importance of delays in BAM Cohen-Grossberg
neural networks have been investigated in [8][9]. and some authors [10-12] an-
alyze the global exponential stability of the Cohen-Grossberg neural networks.
Global robust stability analysis of the Cohen-Grossberg neural networks had
been proposed in [3-5]. The methods most of them used is differential inequality
technique and Lyapunov direct method and LMI. In this work, By introducing a
new Lyapunov-Krasovskii functional and considering some useful terms when es-
timating the upper bound of the derivative of Lyapunov functional, new robust
exponential stability criteria are established in term of linear matrix inequal-
ity(LMI).
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The remainder of this paper is organized as follows. In section 2, model de-
scription and preliminaries are given. And then in section 3, our main results
are presented. In section 4, a numerical example is supplied to illustrate the ef-
fectiveness of our obtained results. Finally, in section 5, our conclusion is given.

2 Model Description and Preliminaries

Cohen-Grossberg neural networks model with time-varying delays is described
by the following differential equation:

ẋi(t) = − di(xi(t))[−ci(xi(t)) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

bijfj(xj(t − τj(t))) + Ii],

i = 1, · · · , n, (1)

where n denotes the number of neurons; xi(t) is the state of the ith neuron at
time t, the state vector x(t) := (x1(t), x2(t), · · · , xn(t))T ; di(xi) represent an
amplification function, and ci(xi) is a behaved function. The functions fj(·) rep-
resent the input-output activations, f := (f1, · · · , fn)T ; A := (aij) ∈ Rn×n and
B := (bij) ∈ Rn×n are the interconnection weight matrix and the delayed inter-
connection weight matrix, respectively; τj(t) denotes the time delay associated
with the ith neuron; Ii is the external bias on the ith neuron, I := (I1, · · · , In)T .
The quantities di,ci, aij , bij can be intervalised as follows:

DI := {D = diag(di) : 0 ≺ D � D � D, i.e., 0 < di ≤ di ≤ di, i = 1, 2, · · · , n}
CI := {C = diag(ci) : 0 ≺ C � C � C, i.e., 0 < ci ≤ ci ≤ ci, i = 1, 2, · · · , n}
AI := {A = diag(ai) : A � A � A, i.e., ai ≤ ai ≤ ai, i = 1, 2, · · · , n}
BI := {B = diag(bi) : B � B � B, i.e., bi ≤ bi ≤ bi, i = 1, 2, · · · , n} (2)

where A ≤ A implies that the elements of matrices A,A satisfy the inequality
aij ≤ aij .

System (1) is supplemented with initial conditions of the following form:xi(θ)=
φi(θ), θ ∈ [−τ, 0], (i = 1, 2, · · · , n), where φi(θ) is continuous for θ ∈ [−τ, 0].

For convenience, let ν = (ν1, ν2, · · · , νn) ∈ Rn be a column vector and Q =
(qij)n×n be a real matrix. The three commonly used vector norms ‖ν‖1, ‖ν‖2,
‖ν‖∞ are defined as :

‖ν‖1 =
n∑

i=1

|νi| , ‖ν‖2 = (
n∑

i=1

ν2
i )

1
2

, ‖ν‖∞ = max
1≤i≤n

|νi|

The three commonly used matrix norms ‖Q‖1, ‖Q‖2 and ‖Q‖∞ are defined as
follows:

‖Q‖1 = max
1≤i≤n

n∑
j=1

|qji| , ‖Q‖2 = [Λmax(QT Q)]
1
2 , ‖Q‖∞ = max

1≤i≤n

n∑
j=1

|qij |
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Furthermore, we introduce the following assumptions on (1):
(A1) fi(xi)(i = 1, 2, · · · , n) : R → R are Lipschitz continuous and monotoni-

cally nondecreasing, that is, there exist constants μi > 0 such that

0 ≤ fi(x) − fi(y) ≤ μi |x − y|

(A2) τi(t)(i = 1, 2, · · · , n) are bounded differential functions of time t, and
the following conditions are satisfied:

0 ≤ τi(t) ≤ τ, 0 ≤ τ̇i(t) ≤ hi < 1

Denote Λ = diag(μ1, μ2, · · · , μn), μM = max
1≤i≤n

(μi) and h = max
1≤i≤n

(hi).

(A3) there exist constants αi > 0, αi > 0 such that 0 < αi ≤ αi(xi) ≤ αi > 0.

Definition 1. [5]The neural network defined by (1) with the parameter ranges
defined by (2) is globally exponentially robust stable if system (1) has a unique
equilibrium point x∗ = (x∗

1, x
∗
2, · · · , x∗

n)T for all D ∈ DI , C ∈ CI , A ∈ AI and
B ∈ BI . and there exist constants ζ > 0 and α ≥ 1 such that

‖x(t) − x∗‖ ≤ α‖φ(θ) − x∗‖ exp{−ζT }, ∀t > 0

Lemma 1. [5]For B ∈ [B,B], the following inequalities hold:

‖B‖2 ≤ ‖B∗‖2 + ‖B∗‖2

where B∗ = 1
2 (B + B), B∗ = 1

2 (B − B).

Lemma 2. [10]Continuous map H(x) :Rn → Rn is homeomorphic if:
(1)H(x) is injective;
(2) lim

‖x‖→∞
‖H(x)‖ = ∞.

Lemma 3. [6]The following LMI:(
Q(x) S(x)
ST (x) R(x)

)
> 0

where Q(x) = QT (x), R(x) = RT (x)andS(x) depend affinely on x, is equivalent
to

R(x) > 0 and Q(x) − S(x)R−1(x)ST (x) > 0

Lemma 4. Let ε > 0, for any x, y ∈ Rn and matrix A, then

xT Ay ≤ 1
2ε

xT AAT x +
ε

2
yT y

Lemma 5. B ∈ BI , then, the following inequality holds:

‖B‖2
2 ≤ ‖B∗‖2

2 + ‖B∗‖2
2 + 2‖BT

∗ |B∗| ‖2

where B∗ = 1
2 (B + B), B∗ = 1

2 (B − B).
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Proof. For any vector x = (x1, x2, · · · , xn) ∈ Rn, we have

xT BT Bx ≤ xT B
T
Bx

= xT (B∗ + B∗)T (B∗ + B∗)x

= xT B∗T B∗x + 2xT BT
∗ B∗x + xT B∗T B∗x

≤ ‖B∗‖2
2‖x‖2

2 + 2‖B∗T |B∗| ‖2‖x‖2
2 + ‖B∗‖2

2‖x‖2
2

= (‖B∗‖2
2 + 2‖B∗T |B∗| ‖2 + ‖B∗‖2

2)‖x‖2
2

implying that
‖B‖2

2 ≤ ‖B∗‖2
2 + ‖B∗‖2

2 + 2‖BT
∗ |B∗| ‖2

3 Main Results

Theorem 1. If (A1), (A2) hold, the neural network model (1) has a unique
equilibrium point if there are positive diagonal matrix P = diag(p1, p2, · · · , pn)
and a constant ε such that

Ω1 = 2PCΛ−1 + S − [ε +
1
ε
‖P‖2

2(‖B∗‖2
2 + ‖B∗‖2

2 + 2‖BT
∗ |B∗| ‖2)]I > 0

where S=(sij)n×n with sii =−2piaii, sij =−max(|piaij + pjaji| ,
∣∣piaij + pjaji

∣∣)
for i �= j.

Proof. Letx∗ := (x∗
1, · · · , x∗

n)T denote an equilibrium point of system (1). Then
x∗satisfies

D(x∗)[−C(x∗) + Af(x∗) + Bf(x∗) + I] = 0 (3)

Since D(x∗) is a positive diagonal matrix, (3) is equivalent to the following
equation:

−C(x∗) + Af(x∗) + Bf(x∗) + I = 0

Let
H(x) = −Cx + Af(x) + Bf(x) + I (4)

To complete the proof, it is sufficient to show that H(x) is a homeomorphism
on Rn. Based on Lemma 2, we first prove that the map H(x) is injective on Rn.
For two vectors x, y ∈ Rn, x �= y, it can be obtained that

H(x) − H(y) = −C(x − y) + A(f(x) − f(y)) + B(f(x) − f(y)) (5)

If f(x)− f(y) = 0, then H(x)−H(y) = −C(x− y), it is clear that H(x) �= H(y)
if x �= y. If f(x) − f(y) �= 0, multiplying both sides of by 2(f(x) − f(y))T P , we
have

2(f(x) − f(y))T P (H(x) − H(y) = − 2(f(x) − f(y))T PC(x − y)

+ 2(f(x) − f(y))T PA(f(x) − f(y))

+ 2(f(x) − f(y))T PB(f(x) − f(y)) (6)
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Considering the three parts of the right side of Eq.(6) separately, we first have

−2(f(x) − f(y))T PC(x − y) ≤− 2(f(x) − f(y))T PCΛ−1(f(x) − f(y))

≤− 2(f(x) − f(y))T PCΛ−1(f(x) − f(y)) (7)

We also have

2(f(x) − f(y))T PA(f(x) − f(y))

=(f(x) − f(y))T (PA + AT P )(f(x) − f(y))

=
n∑

i=1

n∑
j=1

(piaij + pjaji)(fi(xi) − fi(yi))(fj(xj) − fj(yj))

≤
n∑

i=1

2piaii(fi(xi) − fi(yi))2

+
n∑

i=1

n∑
j=1,j 
=i

|piaij + pjaji| |(fi(xi) − fi(yi))(fj(xj) − fj(yj))|

≤ −
n∑

i=1

sii(fi(xi) − fi(yi))2

−
n∑

i=1

n∑
j=1,j 
=i

sij |(fi(xi) − fi(yi))(fj(xj) − fj(yj))|

= −
∣∣(f(x) − f(y))T

∣∣S |f(x) − f(y)| (8)

Moreover, it can be derived by Lemma 4 and Lemma 5 that

2(f(x) − f(y))T PB(f(x) − f(y)) ≤1
ε
(f(x) − f(y))T PB(PB)T (f(x) − f(y))

+ ε(f(x) − f(y))T (f(x) − f(y))

≤1
ε
(f(x) − f(y))T ‖P‖2

2‖B‖2
2(f(x) − f(y))

+ ε(f(x) − f(y))T (f(x) − f(y))

≤1
ε
(f(x) − f(y))T ‖P‖2

2(‖B∗‖2
2 + ‖B∗‖2

2

+ 2‖BT
∗ |B∗| ‖2)(f(x) − f(y))

+ ε(f(x) − f(y))T (f(x) − f(y)) (9)

Substing(7), (8) and (9) into (6), yields

2(f(x) − f(y))T P (H(x) − H(y) ≤ −
∣∣(f(x) − f(y))T

∣∣Ω1 |f(x) − f(y)| (10)

Since Ω1 > 0, it follows that

2(f(x) − f(y))T P (H(x) − H(y) < 0, ∀f(x) �= f(y)
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Therefore, H(x) �= H(y) for all x �= y, i.e., H(x) is injective on Rn.
Second, we will show that ‖H(x)‖ → ∞, when ‖x‖ → ∞. If y = 0, it turns

out that

2(f(x) − f(0))T P (H(x) − H(0) ≤ −
∣∣(f(x) − f(0))T

∣∣Ω1 |f(x) − f(0)|
≤ −λmin(Ω1)

∣∣(f(x) − f(0))T (f(x) − f(0))
∣∣

It follows that

2(f(x) − f(0))T P (H(x) − H(0) ≥ λmin(Ω1)‖f(x) − f(0)‖2
2

Furthermore,

‖H(x)‖2 + ‖H(0)‖2 ≥ λmin(Ω1)
2‖P‖2

(‖f(x)‖2 − ‖f(0)‖2)

Since ‖H(0)‖2 and ‖f(0)‖2 are finite, it is obvious that ‖H(x)‖2 → +∞ as
‖f(x)‖2 → +∞. On the other hand, for unbounded activation functions, ‖f(x)‖2

→ +∞ implies ‖x‖2 → +∞; for bounded activation functions, it can be obtained
from (4) that ‖H(x)‖2 → +∞ as ‖x‖2 → +∞. From Lemma 2, H(x) is a
homeomorphism on Rn. The proof is completed.

Let (1) has an unique equilibrium point x∗ := (x∗
1, x

∗
2, · · · , x∗

n)T , we make
a transformation: yi(t) := xi(t) − x∗

i , αi(yi(t)) = di(yi(t) + x∗
i ), βi(yi(t)) =

ci(yi(t) + x∗
i ) − ci(x∗

i ) ≥ γi(yi(t)), gi(yi(t)) := fi(yi(t) + x∗
i ) − fi(x∗

i ), Φi(t) =
φi(t) − x∗

i , i = 1, 2, · · · , n, then system (1) is transformed into the following
system:

ẏi(t) =αi(yi(t))[−βi(yi(t)) +
n∑

j=1

aijgj(yj(t)) +
n∑

j=1

bijgj(yj(t − τj(t)))],

i = 1, · · · , n, (11)

by the initial conditions of system (1), we obtain (11) is supplemented with initial
conditions yi(t) = Φi(t) ∈ C((−∞, t0];R). Φ(t) := (Φ1(t), Φ2(t), · · · , Φn(t))T ,
‖Φ‖ := sup ‖Φ(t0 + θ)‖∞ < +∞, θ ∈ (−∞, 0]. Obviously, gj are Lipschitz con-
tinuous, and gj also satisfy (A1), j = 1, 2, · · · , n. By this way, we shift the
equilibrium point x∗ of system (1) to the origin of system (11).

Theorem 2. If (A1), (A2),(A3) satisfied, then system (1) has an unique equi-
librium point, which is global exponentially robust stable, if there exist positive
diagonal matrices P = diag(p1, p2, · · · , pn) and a constant ε such that

Ω2 = 2PγΛ−1 + S − [ε +
1

(1 − h)ε
‖P‖2

2(‖B∗‖2
2 + ‖B∗‖2

2 + 2‖BT
∗ |B∗| ‖2)]I > 0

where γ ≤ C.
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Proof. It is clear that 0 < Ω2 < Ω1. Consider the following Lyapunov functional:

V (y(t)) =ebtyT (t)y(t) + 2ebt
n∑

i=1

pi

∫ yi(t)

0

gi(s)
αi(s)

ds

+ εebθθ

n∑
i=1

∫ t

t−τi(t)

gT
i (yi(θ))gi(yi(θ))dθ (12)

It is obvious that

V (y(t)) ≥ ebtyT (t)y(t) (13)

Calculating the derivative of V(y(t)) along the solution of system (11) yields

V̇ (y(t)) =bebt[yT (t)y(t) + 2ebt
n∑

i=1

pi

∫ yi(t)

0

μis

αi

ds]

+ 2ebtyT (t)α(y(t)(−β(y(t)) + Ag(y(t)) + Bg(y(t − τ(t))))

+ 2ebtPgT (y(t))(−β(y(t)) + Ag(y(t)) + Bg(y(t − τ(t))))

+ εebt
n∑

i=1

gT
i (yi(t))gi(yi(t))

− εeb(t−τi(t))
n∑

i=1

(1 − τ̇i(t))gT
i (yi(t − τi(t)))gi(yi(t − τi(t)))

≤bebt[yT (t)y(t) + 2ebt
n∑

i=1

pi

∫ yi(t)

0

gi(s)
αi(s)

ds]

− 2ebtαγ
∣∣yT (t)

∣∣ |y(t)| + ebt(αA + αAT )
∣∣yT (t)

∣∣ |g(y(t))|
+ ebt(αB + αBT )

∣∣yT (t)
∣∣ |g(y(t − τ(t)))|

− 2ebtPγΛ−1
∣∣gT (y(t))

∣∣ |g(y(t))| − ebt
∣∣gT (y(t))

∣∣S |g(y(t))|
+ ebt(PB + BT P ) |g(y(t)| |g(y(t − τ(t)))| + ebtε

∣∣gT (y(t))
∣∣ |g(y(t))|

− ebtε(1 − h)
∣∣gT (y(t − τ(t)))

∣∣ |g(y(t − τ(t)))| (14)

and, we can write (12) as following

V̇ (y(t)) ≤ bebtyT (t)y(t) + ebt

⎛⎝ |y(t)|
|g(y(t))|

|g(y(t − τ(t)))|

⎞⎠T

Σ

⎛⎝ |y(t)|
|g(y(t))|

|g(y(t − τ(t)))|

⎞⎠ (15)

where

Σ =

⎛⎝−2αγ αAT αBT

αA −2PγΛ−1 − S + ε PB
αB BT P −ε(1 − h)

⎞⎠
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From Lemma 4 , Σ < 0 is equivalent to

2PγΛ−1 + S − [ε +
1

(1 − h)ε
PBBT P ]

≥2PγΛ−1 + S − [ε +
1

(1 − h)ε
‖P‖2

2(‖B∗‖2
2 + ‖B∗‖2

2 + 2‖BT
∗ |B∗| ‖2)]I

>0

Let 0 < b < λmin(−Σ), then

V̇ (y(t)) ≤ λmin(−Σ)ebtyT (t)y(t)+ebt

⎛⎝ |y(t)|
|g(y(t))|

|g(y(t − τ(t)))|

⎞⎠T

Σ

⎛⎝ |y(t)|
|g(y(t))|

|g(y(t − τ(t)))|

⎞⎠
(16)

So
V̇ (y(t)) ≤ 0

As a result,V (y(t)) ≤ V (y(0)) for all t ≥ 0.
On the other hand,

V (y(0))=yT (t)y(t)+2
n∑

i=1

pi

∫ yi(0)

0

gi(s)
αi(s)

ds+ε

n∑
i=1

∫ 0

−τi(0)

ebθgT
i (yi(θ))gi(yi(θ))dθ

≤ ‖y(0)‖2
2 + max

1≤i≤n
(pi

μi

αi

)‖y(0)‖2
2 + μM

2

∫ 0

−τ

ebθ‖y(θ)‖2
2dθ

≤ [1 + max
1≤i≤n

(pi
μi

αi

) +
1 − e−bτ

b
] sup
−τ<ξ<0

‖y(θ)‖2
2 (17)

Combining (13) with (17) yields

ebt‖y(t)‖2
2 ≤ [1 + max

1≤i≤n
(pi

μi

αi

) +
1 − e−bτ

b
] sup
−τ<ξ<0

‖y(θ)‖2
2

that is
‖y(t)‖2

2 ≤ α sup
−τ<ξ<0

‖y(θ)‖2e
−bt/2

where

α =

√
1 + max

1≤i≤n
(pi

μi

αi

) +
1 − e−bτ

b
≥ 1

Thus,by Definition 1, it follows that the delayed neural network is globally robust
exponentially stable. This completes the proof.

4 Comparison and Corollary

Corollary 1 [13]. If (A1), (A2) satisfied, then Hopfield neural network has an
unique equilibrium point, which is global asymptotically robust stable, if there
exist positive diagonal matrices P = diag(p1, p2, · · · , pn) such that
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Ω3 = 2PCΛ−1 + S − H − [‖P‖2
2‖H−1‖2(‖B∗‖2 + ‖B∗‖2)2]I > 0

where S=(sij)n×n with sii =−2piaii, sij =−max(|piaij + pjaji| ,
∣∣piaij + pjaji

∣∣)
for i �= j.

The Corollary1 is based on the following inequality:

gT (x∗)(2PCΛ−1 − PA− AT P − H − [‖P‖2
2‖H−1‖2(‖B∗‖2 + ‖B∗‖2)2]I)g(x∗)

≥ gT (x∗)(2PCΛ−1 + S − H − [‖P‖2
2‖H−1‖2(‖B∗‖2 + ‖B∗‖2)2]I)g(x∗)

Note that the above inequality is not always correct. By Lemma 5, the obtained
stability conditions are less conservative.

Corollary 2. If (A1), (A2), (A3) satisfied, then system (1) has an unique equi-
librium point, which is global exponentially robust stable, if there exist positive
diagonal matrices P = diag(p1, p2, · · · , pn) and a constant ε such that

Ω4 = 2PCΛ−1 + PA + AT P − [ε +
1
ε
‖P‖2

2‖B‖2
2]I > 0

Corollary 3. If (A1), (A2), (A3) satisfied, then system (1) has an unique equi-
librium point, which is global exponentially robust stable, if there exist positive
diagonal matrices P = diag(p1, p2, · · · , pn) and a constant ε such that

Ω5 = 2PCΛ−1 + PA + AT P − [ε +
1
ε
‖P‖2

2(‖B∗‖2 + ‖B∗‖2)2]I > 0

5 Illustrative Example

Consider the neural system (1) with the following network parameters:

A =
(
−1 −1
−1 −1

)
, A =

(
1 1
1 1

)
, B =

(
−1 −1
−1 −1

)
, B =

(
1 1
1 1

)
, γΛ−1 =

(
5 0
0 5

)
The matrix A∗, A∗, B∗, B∗, are obtained as follows:

A∗ = B∗ = 0, A∗ =
(
−1 −1
−1 −1

)
, B∗ =

(
1 1
1 1

)
.

then

Ω2 = 2PγΛ−1 + S − [ε +
1

(1 − h)ε
‖P‖2

2(‖B∗‖2
2 + ‖B∗‖2

2 + 2‖BT
∗ |B∗| ‖2)]I > 0

where P = diag(p1, p2) = diag(1, 1), ε = 1, h = 1
2 ,S =

(
1 1
1 1

)
, so by Theorem 2,

the system has an unique equilibrium point, which is global exponential robust
stable.
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6 Conclusion

In this paper, we study the global exponential robust stability of Cohen-Grossberg
neural networks with time-varying delays. We give a new method to proof
Lemma 5, and derive some new sufficient conditions based on for global robust
stability of delayed neural networks based on LMI and differential inequality
technique. In comparison with some recent results reported in the literature, the
new stability criteria is very simple to give and less conditions to prove the new
stability criteria.
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Abstract. In this paper, an SEIS epidemic model with latent age and
generally nonlinear contact rate is formulated. The existence and asymp-
totic stability of equilibrium are discussed, respectively. In the same time,
a general condition is obtained by the similar method utilized in [12], un-
der which the endemic equilibrium is exponentially asymptotically stable.
At last, a special example is presented to verified this condition.
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1 Introduction

In most epidemiological models, it has been assumed that all infected individu-
als have equal infectivity during their infective period, and this assumption has
been proved to be reasonable in the study of the dynamics of the communica-
ble diseases such as influenza [1] and the sexually transmitted diseases such as
gonorrhea [2]. However, the early infectivity experiments [3] reported in Fran-
cis together with the measurements of HIV antigen and antibody titers have
supported the possibility of an early infectivity peak (a few weeks after expo-
sure) and a subsequent infectivity plateau (one year or so before the onset of
full-blown of AIDS [4]). Therefore, there are enough reasons to study the pos-
sible effects of variable infectivity on epidemic dynamics. The initial work was
owed to Kermack and Mckendrick [5]-[8], in which the infectivity was allowed
to depend on infection-age (namely, the time that has evolved beginning with
the moment of infection). However, the epidemic models with infection-age were
largely neglected until 1970s [9]-[10]. Recently, this kind of models have been
considered extensively (see [11]-[16] and the references therein for examples).
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In [11], M. Y. Kim and F. A. Milner formulated an SIR epidemic model with
screening together with variable infectivity and proved the global existence and
uniqueness of the positive solution. Subsequently, M. Y. Kim discussed the
asymptotical properties of equilibria in [12]. In [13], to investigate the role of vari-
able infectivity and variable incubation period on the dynamics of HIV transmis-
sion in a homogeneously mixed population, and discussed both the asymptotical
behavior of the equilibria and the possibility whether the undamped oscillations
occur or not. In [14], C. M. Kribs-Zaleta and M. Martcheva modeled a disease
with acute and chronic infective stages, variable infectivity and recovery rates
and exhibited backward bifurcations under some conditions. In [15], H. Inaba
and H. Sekine studied the stability of the equilibria of an infection-age-dependent
model for chagas disease. In [16], Jia Li, etc. considered epidemiological models
for the transmission of a pathogen that can mutate in the host to create a second
infectious mutant strain and showed that there exists a Hopf bifurcation where
the endemic equilibrium loses its stability under certain circumstances.

The latent period of epidemic disease is the lag time between the exposure
to a disease-causing agent and the onset of disease caused by the agent. Some
sexually transmitted diseases such as Aids, Condyloma Acuminata, et al. possess
long latent period, which plays important role on the spreading of the diseases. It
is because of that the infected individual will restrict his or her behaviors once he
or she is diagnosed to be infected by virus, pathogen, et al. Therefore, latent age
as an necessary factor should be considered in process of modeling. On the other
hand, with the development of social economy and communication, the contact
among humans become more and more complex. It is difficult to characterize
the contact rate just by a constant or a proportion of the population size. In
the present paper, latent age and a general nonlinear contact rate are proposed
and incorporated into the classical SEIS epidemic model. Then, the existence
of equilibrium and the global stability of disease free equilibrium are discussed,
respectively. At last, an condition is obtained to guarantee the exponentially
asymptotical stability of the endemic equilibrium and is verified by an example.

The remainder of this paper is organized as follows: Section 2 formulates an
SEIS epidemic model; Section 3 studies the existence of each equilibrium and the
global stability of the disease free equilibrium; Section 4 discusses the asymptot-
ical stability of the endemic equilibrium; Section 5 makes the conclusions.

2 Model Formulation

In [17], Fan Meng, et al. separated the whole population into three classes: the
susceptibles, the exposed and the infectives, formulated and qualitatively studied
the following SEIS epidemic model⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS(t)
dt = Λ − μS(t) − βS(t)I(t) + γI(t),

dE(t)
dt = λS(t)I(t) − (μ + ε)E(t),

dI(t)
dt = εE(t) − (μ + γ + α)I(t),

N(t) = S(t) + I(t) + E(t),

(1)
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where S(t), E(t) and I(t) denote the numbers of the susceptibles, the exposed
and the infectives at time t, respectively, Λ is the input flow, μ is the natural
mortality rate, β is the transmission rate, α is the death rate caused by disease,
1/ε is the mean latent period, 1/γ is the mean infectious period, βSI is the
bilinear incidence rate.

Obviously, the contact rate of system (1) is standard. In the following, neglect-
ing the infection of the infectives and structuring E(t), ε and β by the latent
age, we focus our attention on model (1) again. For convenience, denotes e(t, τ)
as the distribution function of E(t) over latent age τ at time t, β(τ) and ε(τ)
as the distribution functions of β and ε over τ , respectively. Then, the exposed
individuals E(t) at time t equals to

∫∞
0 e(t, τ)dτ, the nonlinear incidence rate is

characterized by C(S(t),E(t),I(t))
S(t)+E(t)+I(t) S(t)

∫∞
0

β(τ)e(t, τ)dτ, where C(S(t), E(t), I(t))
is the contact rate (i.e., the mean number contacts per individual per unit time),
the infective individuals from the exposed is described by

∫∞
0 ε(τ)e(t, τ)dτ, and

the continuous time dynamics of the exposed individuals is governed by a partial
differential equation other than an ordinary equation (i.e., the second equation
in model (1) will be replaced by a partial differential equation of the distribution
e(t, τ)). Gathering up above discussion we derive an SEIS epidemic model with
latent age and general nonlinear contact rate as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = Λ − μS(t) − C(S(t),E(t),I(t))

N(t) S(t)
∫∞
0

β(τ)e(t, τ)dτ + γI(t),

∂e(t,τ)
∂t + ∂e(t,τ)

∂τ = −(μ + ε(τ))e(t, τ),
dI(t)

dt =
∫∞
0

ε(τ)e(t, τ)dτ − (μ + α + γ)I(t),

E(t) =
∫∞
0 e(t, τ)dτ,

N(t) = S(t) + E(t) + I(t),

e(t, 0) = C(S(t),E(t),I(t))
N(t) S(t)

∫∞
0 β(τ)e(t, τ)dτ,

e(0, τ) = η(τ), S(0) = S0, I(0) = I0,

(2)

where η(τ) is the initial distribution of the exposed individuals with latent age
τ , S0 and I0 are the initial susceptibles and infectives, respectively.

Throughout the remainder of the paper, we adopt the following assump-
tions similar to Kim and Milner’s [11]. The contact rate C is a nonnegative
and partially differentiable function of S,E and I such that ∂C

∂S , ∂C
∂E , ∂C

∂I ∈
L∞([0,∞) × [0,∞) × [0,∞)); the nonnegative functions ε and β satisfy ε(·) ∈
C1[0,∞)

⋂
L∞[0,∞) with ε

′
(·) ∈ L∞[0,∞), and β(·) ∈ C2[0,∞)

⋂
L∞[0,∞)

with β
′
(·), β′′

(·) ∈ L∞[0,∞); Λ, α, μ and γ are positive constants. Denote
by ‖ · ‖1 the norm of Banach space L1[0,∞), by ‖ · ‖∞ the norm of Banach
space L∞[0,∞), and by L1

+[0,∞) the positive cone of nonnegative functions in
L1[0,∞), η ∈ L1

+[0,∞).
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3 Existence of Equilibrium

In epidemic dynamic, the existence and stability of equilibrium are important
research topics because of the equilibrium standing for the possible ultima states
of the special disease, and the asymptotic stability of an equilibrium revealing
the capability of disease that tends to the ultima state. This section is mainly
devoted to the existence of equilibrium and the asymptotic stability of disease
free equilibrium of the model (2). Simultaneously, the reproductive number R0

(namely, the number of secondary cases produced in a completely susceptible
population by a typical infected individual during its whole infected period) is
obtained, which is usually intimately connected with the existence of equilibria.

For convenience, we introduce the following denotations:

B(t) =
C(S(t), E(t), I(t))

N(t)
S(t)

∫ ∞

0

β(τ)e(t, τ)dτ,

π(τ) = e−
∫

τ
0 (μ+ε(s))ds, π(τ1, τ2) = e

− ∫ τ2
τ1

(μ+ε(s))ds
,m = μ + α + γ.

It is easy to verify that the equilibrium of system (2) has the following form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S =
Λ−B
(
1− γ

m

∫ ∞
0 π(τ)ε(τ)dτ

)
μ ,

E = B
∫∞
0

π(τ)dτ,

I = B
m

∫∞
0

π(τ)ε(τ)dτ,

B = C(S,E,I)
N SB

∫∞
0

β(τ)π(τ)dτ.

(3)

Define a real function G on [0,∞)

G(B) =
C(S(B), E(B), I(B))
S(B) + E(B) + I(B)

S(B)
∫ ∞

0

β(τ)π(τ)dτ, B ≥ 0, (4)

where S = S(B), E = E(B) and I = I(B) are defined by (3). It is clear that G
is a continuous real function of B.

Let

R0 = C

(
Λ

μ
, 0, 0

)∫ ∞

0

β(τ)π(τ)dτ. (5)

It is easy to see that system (2) always possesses the disease free equilibrium
(Λ

μ , 0, 0). By using the fixed theorem, we have the following results

Theorem 1. If R0 > 1, there exists at least an endemic equilibrium, while if
R0 ≤ 1 and the function G defined by (4) is strictly decrease, no endemic equi-
librium exists.

Remark 1. The restriction on G is not an extreme one. In fact, it is not hard to
check that if C(S,E, I) = C(N) and C′(N) ≥ 0 then G is strictly decreasing,
i.e., the contact rate C is a function of the total population and increases with
the population size.
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In the remainder of this section, we study the asymptotic behavior of the disease
free equilibrium. Using the method applied in [13], we obtain the global asymp-
totic stability of the disease free equilibrium under the condition of R0 < 1.

Theorem 2. Assume that C = C(N), C′(N) ≥ 0 and R0 < 1, the disease free
equilibrium of the model (2) is globally asymptotically stable.

Further, by using the similar method adopted in [12], we obtain the following
more general stability theorem.

Theorem 3. Assume that C(S,E, I) ≤ C(Λ
μ , 0, 0) for all nonnegative S,E and

I. If R0 < 1, then the disease free equilibrium of the model (2) is globally asymp-
totically stable.

The proofs for Theorem 3.2-3.3 are trivial, omit them.

4 The Asymptotical Stability of the Endemic Equilibrium

In the present section, we discuss the asymptotical stability of the endemic equi-
librium when it exists. Let (S∗, e∗(τ), I∗) be an endemic equilibrium of (2). Set
S(t) = S(t) − S∗, e(t, τ) = e(t, τ) − e∗(τ) and I(t) = I(t) − I∗. Then, model (2)
is equivalently transformed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = −μS(t) + γI(t) − B(t),

∂e(t,τ)
∂t + ∂e(t,τ)

∂τ = −(μ + ε(τ))(e(t, τ) + e∗(τ)),

dI(t)
dt =

∫∞
0

ε(τ)e(t, τ)dτ − mI(t),

B(t) = e(t, 0) = M(t)
∫∞
0

β(τ)(e(t, τ) + e∗(τ))dτ − M∗ ∫∞
0

β(τ)e∗(τ),

S(0) = S0 − S∗, η(τ) = η(τ) − e∗(τ), I(0) = I(0) − I∗,

(6)

where M(t) = C(S,E,I)S
N ,M∗ = C(S∗,E∗,I∗)S∗

N∗ .
Integrating the second equation of system (6) along the characteristic t = τ ,

we get

e(t, τ) =

{
B(t − τ)π(τ), t − τ ≥ 0;
η(τ − t)π(τ − t, τ), τ − t > 0.

(7)

Substituting (7) into (6) and integrating (6) with respect to τ from 0 to t lead
to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) = e−μtS(0) +
∫ t

0
e−μ(t−τ)[γI(τ) − B(τ)]dτ,

E(t) =
∫ t

0 [B(t − τ)π(τ)dτ +
∫∞

t η(τ − t)π(τ − t, τ)dτ,

I(t) = e−mtI(0) +
∫ t

0 e−m(t−τ)
∫ τ

0 B(τ − s)π(s)dsdτ

+
∫ t

0
e−m(t−τ)

∫∞
τ

ε(s)η(s − τ)π(s − τ, s)dsdτ,

B(t)=M∗∫∞
0 β(τ)e(t, τ)dτ +∇M∗ ·(S(t), E(t), I(t))

∫∞
0 β(τ)e∗(τ)dτ +Ψ(t)

(8)
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with

Ψ(t) = [M(t) − M∗ −∇M∗ · (S(t), E(t), I(t))]
∫ ∞

0

β(τ)(e(t, τ) + e∗(τ))dτ

+∇M∗ · (S(t), E(t), I(t))
∫ ∞

0

β(τ)e(t, τ)dτ.

Let X(t) = (S(t), E(t), I(t), B(t))T . It can be verified that system (8) is equiv-
alent to the compact form

AX +
∫ t

0

K(t − τ)X(τ)dτ = f(t). (9)

It is a routine matter to verify that there exists a positive D such that

‖K(t)‖, ‖K ′(t)‖, ‖K ′′(t)‖ ≤ De−μt. (10)

Obviously, the Laplace transform K̂(s) of K(t) is analytic in the right half
plane �(s) > −μ. Moreover, it is easy to verify lim|s|→+∞ K̂(s) = 0 and then
lim|s|→+∞ det(A + K̂(s)) = 1. Therefore, all of the roots of det(A + K̂(s)) are
isolated and lie in a certain ball centered at the origin.

Assume that all roots of det(A+ K̂(s)) have negative real parts, that is, there
exists a μ∗ and 0 < μ∗ < μ such that no root of det(A + K̂(s)) lies outside
�(s) < −μ∗. Let L(s) denote the analytic reverse matrix of A + K̂(s) in �(s) ≥
−μ∗. Since A is invertible and lim|s|→+∞ K̂(s) = 0, for sufficiently large |s| and
�(s) > −μ we have L(s) = A−1(I + A−1K̂(s))−1 = A−1

∑∞
j=0(A

−1K̂(s))j and
lim|s|→∞ L(s) = lim|s|→∞ A−1(I+A−1K̂(s))−1 = A−1. Moreover, by Taylor the-

orem it can be shown that K̂(s) = K(0)
s + K

′
(0)

s2 +o(s−2), for |s| → ∞ in �(s) >
−μ∗. Therefore, we get a constant matrix J0 such that L(s) = A−1 + 1

sJ0 +
O(s−2), for |s| → ∞ in �(s) > μ∗. Which implies that Ĵ(s) := L(s) − A−1 is
the Laplace transform of J(t), where

J(t) =
1
2π

e−μ∗t

∫ ∞

−∞
eiξtĴ(−μ∗ + iξ)dξ, t ≥ 0. (11)

It is easy to obtain from (10) that there exists a constant D1 such that

‖J(t)‖ ≤ D1e
−μ∗t, t ≥ 0.

To discuss the asymptotical stability of endemic equilibrium, we make the
following assumption, which is a reduction of the assumption H5 of [12].

A. |M − M∗ − ∇M∗ · (S,E, I)| = o(|S| + |E| + |I|), as |S| + |E| + |I| → 0,
that is, for ε0 > 0, there exists δ(ε0) > 0 such that |S| + |E + |I| < δ(ε0),
|M − M∗ −∇M∗ · (S,E, I)| < ε0(|S| + |E| + |I|).

Remark 2. It should be pointed out that this assumption is obviously satisfied
if C(S,E, I) = β1N , where β1 is nonnegative and N is the population size.
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Theorem 4. Under the assumption A. If all roots of det(A + K̂(s)) have neg-
ative real parts, then there exist positive numbers a, b and δ such that for ini-
tial value S0, η(τ), I0 with |S0| + |I0| + ‖η‖1 < δ, the solutions for (2) satisfy
|S(t) − S∗| + ‖e(t, ·) − e∗(·)‖1 + |I(t) − I∗| + |e(t, 0) − e∗(0)| < ae−bt, t ≥ 0.

Proof. Denote by X̂(s) the Laplace transform of X(t) and by f̂(s) the Laplace
transform of f(t). Then, by using the convolution formulas of Laplace transform,
(9) can be changed into AX̂(s) + K̂(s)X̂(s) = f̂(s). Hence, we have X(t) =
A−1f(t)+

∫∞
0

J(t− τ)f(τ)dτ, t ≥ 0, where L−1 represents the inverse Laplace
transform. To obtain a bound of X(t), we consider the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = −μS(t) + γI(t) − B(t),

∂e(t,τ)
∂t + ∂e(t,τ)

∂τ = −(μ + ε(τ))e(t, τ),
dI(t)

dt =
∫∞
0 ε(τ)e(t, τ)dτ − mI(t),

B(t) = e(t, 0) = M∗ ∫∞
0

β(τ)e(t, τ)dτ + ∇M∗ · (S(t), E(t), I(t)),

S(0) = S(0), I(0) = I(0), η(τ) = η(τ).

(12)

Clearly,

e(t, τ) =

{
B(t − τ)π(τ), t − τ ≥ 0;

η(τ − t)π(τ − t, τ), τ − t > 0,

where B(t) = e(t, 0). Let Y (t) = (S(t), E(t), I(t), B(t))T . Then, system (12) can
be written as

AY (t) +
∫ t

0

K(t − τ)Y (τ)dτ = l(t), (13)

where

l(t) =

⎛⎜⎜⎜⎜⎜⎝
e−μtS(0)∫∞

t
η(τ − t)π(τ − t, τ)dτ

e−mtI(0) +
∫ t

0
e−m(t−τ)

∫∞
τ

ε(ρ)η(ρ − τ)π(ρ − τ, ρ)dρdτ

M∗ ∫∞
t β(τ)η(τ − t)π(τ − t, τ)dτ

⎞⎟⎟⎟⎟⎟⎠ . (14)

and A and K are defined by (9). Similar to the previous discussion, we have

Y (t) = A−1l(t) +
∫ t

0

J(t − τ)l(τ)dτ. (15)

Let us endow 4-dimensional real space R4 with the norm ‖x‖ =
4∑

j=1

|xj |. Then,

it follows from (14) that

‖l‖ ≤
(

1 + M∗β∞ +
ε∞

b − μ

)
N(0)e−μt := D2N(0)e−μt, (16)
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where N(0) = |S(0)| + |I(0)| + ‖η‖1, D2 = 1 + M∗β∞ + ε∞
b−μ , β∞, ε∞ are the

norms of β, γ in L∞[0,∞).
Considering (15), (16) and the second equation of (12), we get the following

estimations of ‖Y ‖ and ‖e(t, ·)‖

‖Y ‖ ≤ D2

[
|A−1| + D1

μ − μ∗

]
N(0)e−μ∗t := D3N(0)e−μ∗t, (17)

‖e(t, ·)‖1 ≤ 1 +
D3

μ − μ∗ )N(0)e−μ∗t := D4N(0)e−μ∗t, (18)

where D4 = 1 + D3
μ−μ∗ . Let W (t) = |S(t)| + |E(t)| + |I(t)| + ‖e(t, ·)‖1. Without

loss of generality, for some ε0, choosing δ(ε0) < ε0, under the assumption A, we
get

|Ψ(t)| ≤ ε0(D5 + D6)W (t) := ε0D7W (t), (19)

where D5 = β∞(ε0 + max{|M∗
j |, j = 1, 2, 3}), D6 =

∫∞
0 β(τ)e∗(τ)dτ . By (19) ,

we obtain

‖f(t) − l(t)‖ ≤ ε0D7W (t). (20)

Note that

X(t) = Y (t) + A−1(f(t) − l(t)) +
∫ t

0
J(t − τ)(f(τ) − l(τ))dτ,

we get

‖X‖ ≤ D3N(0)e−μ∗t + ε0D9

∫ t

0

e−μ∗(t−τ)W (τ)dτ + ε0D10W (t) (21)

and

‖X(t) − Y (t)‖ ≤ ε0D9

∫ t

0

e−μ∗(t−τ)W (τ)dτ + ε0D10W (t), (22)

where D9 = D1D7, D10 = |A−1|D7. Obviously, we have∫ t

0

‖X(τ) − Y (τ)‖e−μ(t−τ)dτ ≤ ε0

(
D10

μ − μ∗ + D9

)∫ t

0

e−μ∗(t−τ)W (τ)dτ.(23)

By using (18), (22), (23), we have

‖e(t, ·)‖1 ≤ D4N(0)e−μ∗t + ε0D13

∫ t

0

e−μ∗(t−τ)W (τ)dτ, (24)

where D13 = D10
μ−μ∗ + D9. Then, we have

W (t)≤ ε0(D9 + D13)
∫ t

0

e−μ∗(t−τ)W (τ)dτ + (D3 + D4)N(0)e−μ∗t+ε0D10W (t).
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Let ε0 < 1
D10

. It follows from Gronwall’s lemma that

W (t) ≤ D3 + D4

1 − ε0D10
N(0)e−μ∗t+ε0

D9+D13
1−ε0D10

t
. (25)

Substituting (17) and (25) into (21) yields

‖X‖ ≤ ε0D9

∫ t

0

e−μ∗(t−τ) D3 + D4

1 − ε0D10
N(0)e−(μ∗− ε0(D9+D13)

1−ε0D10
)dτ

+ε0D10
D3 + D4

1 − ε0D10
N(0)e−(μ∗− ε0(D9+D13)

1−ε0D10
)t + D3N(0)e−μ∗t.

Clearly, there exists positive constant ξ such that

‖X(t)‖ ≤ ξN(0)e−(μ∗− ε0(D9+D13)
1−ε0D10

)t. (26)

Then, it is easy to obtain that there exist positive constants a, b, δ, such that
‖X(t)‖ < ae−bt, t ≥ 0, if |S0| + ‖η‖1 + |I0| < δ. This completes the proof. �
Example 1. Let ε(τ) ≡ ε, β(τ) = e−βτ and C(S,E, I) = β

′
N , where ε, β and β

′

are positive numbers. Correspondingly, we have M = β
′
S,R0 = β

′
Λ

μ(μ+ε+β) , S
∗ =

μ+ε+β

β′ , B∗ = mμ(μ+ε)(μ+ε+β)(R0−1)

β′(m(μ+ε)−γε)
, I∗ = εB∗

m(μ+ε) , E
∗ = B∗

μ+ε . Then, we further

have det(A + K̂(s)) = s4+a1s3+a2s2+a3s+a4
(s+m)(s+μ)(s+μ1)(s+μ2) , where a1 = k + ε + α + γ + 3μ,

a2 = 2kε + kα + 2μα + kγ + εγ + εα + 3kμ + kβ + 2εμ + 3μ2 + 2μγ, a3 =
2kμβ +2kεα+ kε2 +3kμ2 +μ2γ + kγβ +2kμγ + kεβ + kεγ +4kεμ+μαε+μγε+
2kμα + μ3 + kαβ + μ2α + μ2ε, a4 = k(β + μ + ε)(εμ + εα + μ2 + μα + μγ).

For convenience, we introduce the following denotations

Ω1 = a1, Ω2 =
(

a1 a3

1 a2

)
, Ω3 =

⎛⎝a1 a3 0
1 a2 a4

0 a1 a3

⎞⎠ and Ω4 =

⎛⎜⎜⎝
a1 a3 0 0
1 a2 a4 0
0 a1 a3 0
0 1 a2 a4

⎞⎟⎟⎠ .

It is easy to verify that aj > 0 and det(Ωj) > 0, j = 1, 2, 3, 4 if R0 > 1. By
Routh-Hurwitz Criterion, we get that all of roots of s4 + a1s

3 + a2s
2 + a3s + a4

have negative real parts. Then, we arrive at that all of roots of det(A + K̂(s))
have negative real parts.

5 Conclusion

In this paper, by introducing latent age and generally nonlinear contact rate,
an SEIS epidemic model is formulated. It is mentionable that the incidence
rate dependents on the latent age in our model, which makes the model be more
suitable for the disease with long latent period such as AIDS, et al. Then, by fixed
theorem and Lyapunov method, the existence of equilibrium and the globally
asymptotic stability of the disease free equilibrium are discussed, respectively.
Further then, as a main result of the paper a general condition is obtained to
characterize the exponentially asymptotical stability of the endemic equilibrium.
At last, this condition is verified by a special example.
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Abstract. In this paper by applying vector Lyapunov function method and M 
matrix theory which are different from all the existing study methods (LMI 
technique), some sufficient conditions ensuring stochastic exponential stability 
of the equilibrium point of a class of Cohen-Grossberg neural networks with 
Markovian jumping parameters and mixed delays are derived.  

Keywords: Cohen-Grossberg neural networks, stochastic exponential stability, 
mixed delays, Markovian jumping, vector Lyapunov function. 

1   Introduction 

In recent years, considering that time delays which may lead to instability of networks 
unavoidably exist in neural network system, lots of papers about stability of the 
equilibrium point of neural network systems with time-delays have been emerged, see 
[1-6] and the references therein. The neural networks systems in papers [1-6] were 
assumed that the continuous variables propagate from one processing unit to the next. 
However, a phenomenon of information latching frequently happens in neural network 
systems. Therefore, neural network systems with Marvokian jumps attracted increasing 
attention over the last decade, these systems have the advantage of modeling dynamic 
systems subject to abrupt variation in their structures, such as component failures or 
repairs, sudden environmental disturbance, changing subsystem interconnections, and 
operating in different points of a nonlinear plant [7]. Recently, some pioneering works 
on stability analysis for neural network systems with Marvokian jumping parameters 
with time delays have been presented; see [7-12]. However, all the authors in [7-12] 
adopted LMI (Linear Matrix Inequality) technique to analyze the stochastic stability of 
neural network systems with Marvokian jumping parameters.  

Motivated by the above analysis, in this paper it is the first attempt to use another 
study method named vector Lyapunov function method to discuss the stochastic 
exponential stability of the equilibrium point of a class of Cohen-Grossberg neural 
networks with Marvokian jumping parameters and mixed delays.  
                                                           
* Corresponding author. 
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2   Model Description 

For the sake of convenience some notions are introduced as follows.  
For matrix nnijaA ×= )( , || A  denotes the absolute-value matrix given by 

nnijaA ×= |)(||| ; we define nnijaA ×= )( ** , where iiii aa =*  as 0≥iia , and 0* =iia  as 

0<iia , || ijij aa =∗  )( ji ≠ .  

As we known, Cohen-Grossberg neural networks (CGNN) proposed in 1983 [13] is 
a kind of generalized neural networks because it includes the well-known Hopfield 
neural networks, Cellular neural networks and BAM neural networks and so on, 
therefore in this paper we will mainly study the stochastic exponential stability of 
CGNN system with mixed delays and Markovian jumping parameters which can be 
described by the following equations:  

∑
=

−+−−=
n

j

ijjjijjjijiiiii ttugtrbtugtratutrdtutu
1

)))((())(())(())(([)())(()){(()( τα&  

}]))(()())(( ijj

t

ijij Jdssugsttrc +−+ ∫ ∞−
σ , 0≥t , ni ,...,2,1= ,          (1) 

where 2≥n  denotes the number of neurons, )(tui  represents the state variable of i-th 

neuron, ni ,...,2,1= . ))(( trdi  denotes the charging time constant or passive decay rate of 

the n-th neuron, T
nn ugugugug ))(),...,(),(()( 2211=  corresponds to the activation function of 

neurons. 0)( ≥tijτ , nji ,...,2,1, = , is time-varying delays of the neural networks, and 

)}({sup ,,1 tijRtnji ττ ∈≤≤= . ),0[),0[: ∞→∞ijσ  is piecewise continuous on ),0[ ∞  and 

satisfies  

)()(
0

βρσβ
ijij

s dsse =∫
∞

, nji ,...,2,1, = ,                                    (2) 

where )(βρ ij is continuous function in ],0[ δ , here 0>δ , and 1)0( =ijρ . iJ  denotes 

the external input on the i-th neuron, let T
nJJJJ ),...,,( 21= . nnij tratrA ×= ))](([))(( , 

nnij trbtrB ×= ))](([))((  and nnij trctrC ×= ))](([))((  represent the weight matrices of the 

neurons, where ))(( trA , ))(( trB  and ))(( trC  are given matrices for each value of )(tr  

in a finite set },...,2,1{ NS =  with the initial mode and the initial value are 0)0( rr = . Let 

}0),({ >ttr  that determines the mode of the system at each time t be described by the 

probability transitions with transition probability parameters given by following 
equation: 

⎩
⎨
⎧

=ΔΟ+Δ+
≠ΔΟ+Δ===Δ+Ρ

lktt
lktt

ktrlttr
kl

kl

),(1
),(

})(|)({ π
π

,                          (3) 

where 0>Δt , 0>klπ , ∑
≠=

−=
N

kll

klkk

,1

ππ  for Slk ∈, , lk ≠ , and 0/)(lim 0 =ΔΔΟ→Δ ttt . 

The initial conditions of (1) are of the forms )()( ssu ii ϕ= , 0≤s , where )(siϕ  is 

continuous and bounded on ]0,(−∞ .  

Let T
nuuuu ),,,( 21
∗∗∗∗ = L  be the equilibrium point of system (1).  
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Definition 1. The equilibrium point ∗u  of system (1) is said to be stochastically 
exponentially stable if for every system mode there exist constants 0)( >kM  ( Sk ∈ ) 

and 0>λ  such that for all nRJ ∈ , the following inequalities hold: 

t
ii rusEkMktrutu λϕ −∗∗ −≤=−Ε e|},)({|)(|})(,)({| 0 , 

where |,)(|supmax|,)(| 0]0,(10 rusrus iisni

∗
−∞∈≤≤

∗ −=− ϕϕ , ni ,...,2,1= , 0≥t .  

Definition 2. [4] A real matrix nnijaA ×= )(  is said to be a M-matrix if 0≤ija , 

nji ,...,2,1, = , ji ≠ , and all successive principal minors of A  are positive. 

Next, we will give some assumptions for system (1). 

Assumption A1. Each function ig : RR → , ni ,...,2,1= , is globally Lipschitz with 

Lipschitz constant iL , i.e. for all ,iu  iv , the following inequalities hold: 

|||)()(| iiiiiii vuLvgug −≤− . 

Assumption A2. For each },...,2,1{ ni ∈ , iα : RR →  is a continuous function and 

iii
θαθ ≤≤<0 , where 

i
θ , iθ  are constants. 

3   Main Results 

In this section, we will establish a family of sufficient conditions for any Sk ∈  
ensuring stochastic exponential stability of the equilibrium point of (1). 

For the purpose of simplicity, we introduce coordinate translation for system (1), let 
*
iii uux −= , ni ,...,2,1= , the system (1) can be transformed into the following 

equations: 

∑
=

−+−−=
n

j

ijjjijjjijiiiii ttuftrbtxftratxtrdtxtx
1

)))((())(())(())(([)())(()){(()( τβ&  

]}))(()())(( dssufsttrc jj

t

ijij ∫ ∞−
−+ σ  0≥t , ni ,...,2,1= ,                 (4) 

where 
))(())(( ∗+= iiiii utxtx αβ ; 

)())(())(( ∗∗ −+= jjjjjjj ugutxgtxf . 

The initial condition of (4) is *)()( iii uss −= ϕφ , 0≤<−∞ s , ni ,...,2,1= . It is obvious 

that ))(( txiiβ  is continuous and we have iii
θβθ ≤≤<0 . 

Next, we will give some sufficient conditions for (4). 

Theorem 1. Suppose that Assumption A1- A2 are satisfied, then the zero solution of 
system (4) is stochastically exponentially stable if there exist a sequence of positive 
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scalars k
iω , ni ,...,2,1= , Sk ∈ , such that every matrix )(kQ  ( Sk ∈ ) is a M-matrix, 

where  

k
ii

N

l

k
i

l
ikl

k
ii dq θωωπ +−= ∑

=

−

1

1)( ; 

∑
=

− ++−=
n

j

k
ij

k
ij

k
ijj

k
j

k
ii

k
ij cbaq

1

*1 |]|||)[()( γωωθ , nji ,...,2,1, = . 

Proof. Firstly, when the mode of system (4) is decided, the existence and uniqueness of 
the equilibrium point of system (4) can be obtained directly by using the methods in 
literature [3, 4].  

Next, we will discuss the stochastic exponential stability of system (4).  
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From Assumption A1-A2, we have 

∑∑
==

−−++≤
n

j

j
k
ijjiii

k
ii

k
i

t
i

N

l

ikli txaxxdktVltVktVL
1

*

1
)4( |)(|)[()(||{e),(),(),( γθθωλπ λ  

]}|)(|)(|||))((||| dssxstcttxb j

t

ij
k
ijijj

k
ij ∫ ∞−

−+−⋅+ στ  

∑∑
=

−

=

− +−+≤
n

j

j
k
ij

k
j

k
ijii

k
iiii

N

l

k
i

l
ikl tVaktVdktVktV

1

*1

1

1 )()[()(),(),(),()( ωωγθθλωωπ  

]),()(||))((|| )( dsksVestcttVb j
st

t

ij
k
ijijj

k
ij

−

∞−∫ −+−+ λστ .                          (7) 
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From (9) and Definition 1, the zero solution of the system (4) is stochastically 
exponentially stable, namely, the equilibrium point of (1) is stochastically 
exponentially stable. The proof is completed.□  

4   Example 

For the sake of convenience, consider the following 2-dimension neural networks 
system with three modes and mixed delays.  
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0≥t ,  (10) 

where 0=iJ , 2,1=i . We assume that ttij sin1.01)( +=τ , 2,1, =ji . It is easy to verify 

that Assumption A1-A2 are satisfied, and we get 121 == γγ , 5.01 =θ , 5.21 =θ , 12 =θ , 

32 =θ . We assume that 101
1 =d  121

2 =d  92
1 =d  102

2 =d  83
1 =d  123

2 =d . When 1=i , 

let 11
1 =ω , 5.02

1 =ω , 13
1 =ω ; when 2=i , let 21

2 =ω , 12
2 =ω , 5.03

2 =ω , and let jumping 

transfer parameters be 2/111 −=π , 8/112 =π , 8/313 =π , 6/121 =π , 2/122 −=π , 

3/123 =π , 4/131 =π , 4/111 =π , 2/111 −=π . 

We assume weighted matrix:  
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By calculation, we obtain 

⎥⎦
⎤

⎢⎣
⎡
−

−=
325.123.9
75.306.5

)1(Q , ⎥⎦
⎤

⎢⎣
⎡
−

−=
103.9

5.383.3
)2(Q , ⎥⎦

⎤
⎢⎣
⎡
−

−=
1165.4

9125.4
)3(Q . 

Obviously, )1(Q , )2(Q  and )3(Q  are M matrix, so from Theorem 1 the equilibrium 

point T)0,0(  of system (10) is stochastically exponentially stable. 
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5   Conclusion 

In this paper, we have dealt with the problem of stochastic exponential stability of the 
equilibrium point of a class of delayed Cohen-Grossberg neural networks with 
Markovian jumping parameters by applying different analysis methods, i.e. vector 
Lyapunov function method and M-matrix theory. An example given at last illustrates 
the practicability of our results. 

Acknowledgments. This work is supported by Natural Science Foundation of China 
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Periodic Solutions for High-Order

Cohen-Grossberg-Type BAM Neural Networks
with Time-Delays

Yunquan Ke� and Chunfang Miao

Department of Mathematics, Shaoxing University, Shaoxing 312000,
P.R. China, Tel.: +86 57588341897

Abstract. In this paper, the existence and exponential stability is stud-
ied of periodic solutions for a class of high-order Cohen-Grossberg-type
BAM neural networks with time-delays. By differential mean value the-
orem, integral mean value theorem and poincaré mapping, several suffi-
cient conditions guaranteeing the existence, uniqueness and exponential
stability of periodic solutions for high-order Cohen-Grossberg-type BAM
neural networks with time-delays are given. An illustrative examples are
also given in the end to show the effectiveness of our results.

Keywords: High-order Cohen-Grossberg-type BAM neural networks;
Mean value theorem; Periodic solution; Exponential stability.

1 Introduction

Bidirectional associative memory neural networks and Cohen- Grossberg neural
networks have been extensively studied in past years and found many applica-
tions in different fields such as signal processing, associative memory, combi-
natorial optimization and automatic control [1-5]. The Cohen-Grossberg-type
BAM neural networks model (i.e., the BAM model which possesses Cohen-
Grossberg dynamics, and is initially proposed by Cohen and Grossberg [6]),
have great promising potential for the tasks of parallel computation, associative
memory ect.. These applications heavily depend on the dynamical behaviors of
system. Thus, the analysis of the dynamical behaviors of Cohen- Grossberg-
type BAM neural networks are important and necessary. In recent years, many
researchers have studied the global stability and other dynamical behaviors
of the Cohen-Grossberg-type BAM neural networks, see [7-11]. For example,
In [7], Cao and Song investigated the global exponential stability for Cohen-
Grossberg-type BAM neural networks with time-varying delays by using
Lyapunov function, M-matrix theory and inequality technique. In [10], by con-
structing a suitable Lyapunov functional, the asymptotic stability was investi-
gated for Cohen-Grossberg-type BAM neural network. In [11], the authors have
proposed a new Cohen-Grossberg-type BAM neural network model with time
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delays, and some new sufficient conditions ensuring the existence and global asymp-
totical stability of equilibrium point for this model have been derived.

In addition, the research of neural networks with delays involves not only the
dynamic analysis of equilibrium point but also that of periodic oscillatory solu-
tion. In practice, the dynamic behavior of periodic oscillatory solution is very
important in learning theory. Moreover, it is well known that an equilibrium
point can be viewed as a special periodic solution of neural networks with arbi-
trary period. In this sense, the analysis of periodic solutions of neural networks
with delays to be more general than that of equilibrium point. Several important
results for periodic solutions of neural networks with delays have been obtained
in Refs. [12-15]. For example, The authors in [13,14,15] have investigated the
periodicity of delayed Cohen-Grossberg-type BAM neural networks with vari-
able coefficients. The authors in [16] have investigated the periodic solutions for
a class of higher-order Cohen-Grossberg type neural networks with delays. In
[17], Huo , Wan and Sanyi have investigated the dynamics of high-order BAM
neural networks with and without impulses. The authors have investigated the
exponential stability of high-order neural networks with time delays [18-19].

Motivated by the above discussions, a class of high-order Cohen-Grossberg-
type BAM neural networks with time delay is considered in this paper. We will
derive some sufficient conditions of existence, uniqueness and exponential stability
of periodic solution for high-order Cohen-Grossberg-type BAM neutral networks
with time delays by constructing suitable Lyapunov function, using differential
mean value theorem , integral mean value theorem and poincaré mapping.

Consider the following high-order Cohen-Grossberg-type BAM neural net-
works ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui(t)
dt = −ai(ui(t))[bi(ui(t)) −

m∑
j=1

cijfj(vj(t − τij))

−
m∑

j=1

m∑
k=1

Tijkfj(vj(t))fk(vk(t)) − Ii(t)],

dvj(t)
dt = −dj(vj(t))[ej(vj(t)) −

n∑
i=1

hjigi(ui(t − σji))

−
n∑

i=1

n∑
q=1

Sjiqgi(ui(t))gq(uq(t)) − Jj(t)],

(1)

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, where ui(t) and vj(t) are the states of the ith
neuron from the neural field FU and the jth neuron from the neural field FV at
the time t, respectively; fj , gi denote the activation functions of jth neuron from
FV and the ith neuron from FU , respectively; cij weights the strength of the ith
neuron on the jth neuron at the time t− τij ; hji weights the strength of the jth
neuron on the ith neuron at the time t − σji; τij ≥ 0 and σji ≥ 0; Ii(t), Jj(t)
denote the external inputs on the ith neuron from FU and the jth neuron from
FV at the time t , respectively; ai(ui(t)) and dj(vj(t)) represent amplification
functions; bi(ui(t)) and ej(vj(t)) are appropriately behaved functions such that
the solutions of model(1) remain bounded; Tijk and Sjiq are constants, and
denote the first- and second-order connection weights of the neural networks,
respectively.
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The initial conditions of system (1) are given by{
ui(s) = φui(s), s ∈ [−σ, 0],
vj(s) = φvj(s), s ∈ [−τ, 0], (2)

where i = 1, 2, . . . .n, j = 1, 2, . . . .m, σ = max
1≤i≤n,1≤j≤m

{σji}, τ = max
1≤i≤n,1≤j≤m

{τij}, φui(s) and φvj(s) are bounded and continuous on [−δ, 0], δ = max{σ, τ}.

2 Preliminaries

In order to establish the existence, uniqueness and exponential stability of peri-
odic solution for system (1), we give some assumptions.
(H1) : For each i = 1, 2, . . . , n; j = 1, 2, . . . ,m, functions ai(x), dj(x)) are con-
tinuously bounded and satisfy 0 < ai ≤ ai(x) ≤ āi, 0 < dj ≤ dj(x) ≤ d̄j , for
all x ∈ R.
(H2) : There exist βi > 0 and γj > 0, i = 1, 2, . . . , n; j = 1, 2, . . . ,m, such that

(x−y)[bi(x)−bi(y)] ≥ βi(x−y)2, (x−y)[ej(x)−ej(y)] ≥ γj(x−y)2, ∀x, y ∈ R.

(H3) : The activation functions fj and gi(i = 1, 2, . . . , n; j = 1, 2, . . . ,m) satisfy
Lipschitz condition, that is, there exist constant Fj > 0 and Gi > 0, such that

|fj(ξ1) − fj(ξ2)| ≤ Fj |ξ1 − ξ2|, |gi(ξ1) − gi(ξ2)| ≤ Gi|ξ1 − ξ2|, ∀ξ1, ξ2 ∈ R.

(H4) : There exist numbers Ni > 0 and Mj > 0 such that

|fj(x)| ≤ Mj, |gi(x)| ≤ Ni, ∀x ∈ R.

(H5) : The activation functions fj(x) and gi(x)(i = 1, 2, . . . , n; j = 1, 2, . . . ,m)
are continuously differentiable on x, x ∈ R.
(H6) : The activation functions fj(x) and gi(x)(i = 1, 2, . . . , n; j = 1, 2, . . . ,m)
are continuously differentiable on x, and there exist Lj > 0 and Ti > 0, such
that |dfj(x)

dx | ≤ Lj , |dgi(x)
dx | ≤ Ti, ∀x ∈ R.

(H7) : Ii(t) and Jj(t) are continuously periodic functions defined on t ∈ [0,∞)
with common period ω > 0, and they are all bounded, denote

I∗i = sup
0≤t<∞

|Ii(t)|, J∗
j = sup

0≤t<∞
|Jj(t)|, i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

Definition 2.1. For u(t) = (u1(t), u2(t), · · · , un(t))T , v(t) = (v1(t), v2(t),

· · · , vm(t))T , we define the norm: ‖u‖2 =
n∑

i=1

|ui(t)|2, ‖v‖2 =
m∑

j=1

|vi(t)|2.

Definition 2.2. Let Z∗(t) = (u∗
1(t), u∗

2(t), · · · , u∗
n(t), v∗1(t), v∗2(t), · · · , v∗m(t))T be

an ω− periodic solution of system (1) with initial value

ψ = (ψu1(t), ψu2(t), · · · , ψun(t), ψv1(t), ψv2(t), · · · , ψvm(t))T .
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If there exist constants α > 0 and M > 1, for every solution Z(t) = (u1(t), u2(t),
· · · , un(t), v1(t), v2(t), · · · , vm(t))T of system (1) with initial value

φ = (φu1(t), φu2(t), · · · , φun(t), φv1(t), φv2(t), · · · , φvm(t))T ,

such that
n∑

i=1

|ui(t) − u∗
i (t)|2 +

m∑
j=1

|vj(t) − v∗j (t)|2 ≤ Me−αt[‖φu − ψu‖2 + ‖φv − ψv‖2],

then Z∗(t) is said to be exponentially stable, where

‖φu−ψu‖2 = sup
−σ≤t≤0

n∑
i=1

|φui(t)−ψui(t)|2, ‖φv−ψv‖2 = sup
−τ≤t≤0

m∑
j=1

|φvj(t)−ψvj |2.

Lemma 2.1. Under hypotheses (H1), (H2), H(4) and (H7), there exist con-
stants Ri > 0 and R∗

j > 0 such that

|ui(t)| ≤ Ri, |vj(t)| ≤ R∗
j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m, t > 0.

Lemma 2.2. For (x1(t), x2(t), · · · , xm(t))T , (x∗
1(t), x

∗
2(t), · · · , x∗

m(t))T ∈ Rm ,
if hj(xj) are continuously differentiable on xj(j = 1, 2, . . . ,m), then we have

(A1)
m∑

j=1

m∑
k=1

bijk[hj(xj)hk(xk) − hj(x∗
j )hk(x∗

k)] =
m∑

j=1

m∑
k=1

(bijk + bikj)
∂hj(ξj)

∂xj
(xj

− x∗
j )hk(ξk).

Or,

(A2)
m∑

j=1

m∑
k=1

bijk[hj(xj)hk(xk) − hj(x∗
j )hk(x∗

k)] =
m∑

j=1

m∑
k=1

(bijk + bikj)[hj(xj)

− hj(x∗
j )]hk(ξk),

where ξj lies between xj and x∗
j , ξk lies between xk and x∗

k, j, k = 1, 2, . . . ,m.
Lemma 2.3. Assume that

− 2aiβi + āi

m∑
j=1

[|cij | +
m∑

k=1

|Tijk + Tikj |Mk]Fj +
m∑

j=1

[|hji| +
n∑

q=1

|Sjiq

+ Sjqi|Nq]Gid̄j < 0, (3)

− 2djγj +
n∑

i=1

[|cij | +
m∑

k=1

|Tijk + Tikj |MK ]āiFj + d̄j

n∑
i=1

[|hij | +
n∑

q=1

|Sjiq

+ Sjqi|Nq]Gi < 0, (4)

for i = 1, 2, . . . .n, j = 1, 2, . . . .m, then there exists α > 0, such that

α − 2aiβi + āi

m∑
j=1

[|cij | +
m∑

k=1

|Tijk + Tikj |Mk]Fj

+
m∑

j=1

[eασ|hji| +
n∑

q=1
|Sjiq + Sjqi|Nq]Gid̄j ≤ 0,
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α − 2djγj +
n∑

i=1

[eατ |cij | +
m∑

k=1

|Tijk + Tikj |MK ]āiFj

+ d̄j

n∑
i=1

[|hij | +
n∑

q=1
|Sjiq + Sjqi|Nq]Gi ≤ 0,

for i = 1, 2, . . . .n, j = 1, 2, . . . .m.
They are clear that the result of Lemma 2.1 and Lemma 2.3 are correct, is
omitted of proof.

3 Main Results

Theorem 3.1. For the system (1), under the hypotheses (H1)−(H5) and (H7),
there exists one ω-periodic solution of system (1), and all other solutions of (1)
exponentially converge to it as t → +∞, if (3) and (4) in Lemma 2.3 hold.

Proof. Let

Ω = {φ|φ =
(

φT
u

φT
v

)
, φu = (φu1, φu2, · · · , φun)T , φv = (φv1, φv2, · · · , φvm)T }.

For any φ = (φT
u , φT

v )T ∈ Ω, we define the norm of φ: ‖φ‖ = ‖φu‖ + ‖φv‖, in

which ‖φu‖2 = sup
−σ≤s≤0

n∑
i=1

|φui(s)|2, ‖φv‖2 = sup
−τ≤s≤0

m∑
j=1

|φvj(s)|2,

then Ω is the Banach space of continuous functions which map ([−σ, 0], [−τ, 0])T

into Rn+m with the topology of uniform convergence. For any (φT
u , φT

v )T , (ψT
u ,

ψT
v )T ∈ Ω, we denote the solutions of system (1) in the initial conditions((

0
0

)
,

(
φT

u

φT
v

))
,

((
0
0

)
,

(
ψT

u

ψT
v

))
,

as u(t, φu)=(u1(t, φu), u2(t, φu), · · · , un(t, φu))T , v(t, φv)=(v1(t, φv), v2(t, φv),
· · · , vm(t, φv))T , and

u(t, ψu) = (u1(t, ψu), u2(t, ψu), · · · , un(t, ψu))T , v(t, ψv) = (v1(t, ψv), v2(t, ψv),
· · · , vm(t, ψv))T , respectively. Defining

ut(φu) = u(t + ρ, φu), ρ ∈ [−σ, 0], vt(φv) = v(t + ρ, φv), ρ ∈ [−τ, 0], t > 0,

then (ut(φu), vt(φv))T ∈ Ω, for all t > 0.
Let yi(t) = ui(t, φu) − ui(t, ψu), zj(t) = vj(t, φv) − vj(t, ψv),

ȳi(t) =

ui(t,φu)∫
ui(t,ψu)

ds

ai(s)
, z̄j(t) =

vj(t,φv)∫
vj(t,ψv)

ds

dj(s)
, i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

Note that ai(s), dj(s) are continuous, ai(s) > 0, dj(s) > 0, from Lemma 2.1,
ui(t, φu), vj(t, φv), ui(t, ψu) and vj(t, ψv) are bounded. By mean-value theorem
for integral, we have ȳi(t) = 1

ai(ξi)
[ui(t, φu) − ui(t, ψu)] = 1

ai(ξi)
yi(t), where

ξi ∈ [min{ui(t, ψu), ui(t, φu)},max{ui(t, ψu), ui(t, φu)}], and

z̄j(t) =
1

dj(ηj)
[vj(t, φv) − vj(t, ψv)] =

1
dj(ηj)

zj(t),
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where ηj ∈ [min{vj(t, ψv), vj(t, φv)},max{vj(t, ψv), vj(t, φv)}], then we have
sgn(ȳi(t)) = sgn(yi(t)), sgn(z̄j(t)) = sgn(zj(t)).

From (1), and (A2) of Lemma 2.2, we derive
d|ȳi(t)|

dt = sgn(yi(t)){−[bi(ui(t, φu)) − bi(ui(t, ψu))] +
m∑

j=1

cij [fj(vj(t − τij , φv)) −

fj(vj(t− τij , ψv))]+
m∑

j=1

m∑
k=1

(Tijk +Tikj)[fj(vj(t, φv))− fj(vj(t, ψv))].fk(vj(t, ψv)

+(vj(t, φv) − vj(t, ψv))θ1)}, (5)

d|z̄j(t)|
dt = sgn(zj(t)){−[dj(vj(t, φv))− dj(vj(t, ψv))]+

n∑
i=1

hji[gi(ui(t−σji, φu))−

gi(ui(t− σji, ψu))] +
n∑

i=1

n∑
q=1

(Sjiq + Sjqi)[gi(ui(t, φu))− gi(ui(t, ψu))].gq(ui(t, ψu)

+(ui(t, φu) − ui(t, ψu))θ2)}, (6)

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, 0 < θ1, θ2 < 1.
We consider the following Lyapunov function

V (t) = eαt
n∑

i=1

a2
i (ξi)|ȳi(t)|2 +

n∑
i=1

m∑
j=1

|cij |āiFj

t∫
t−τij

eα(s+τij)|zj(s)|2ds

+eαt
m∑

j=1

d2
j(ηj)|z̄j(t)|2 +

m∑
j=1

n∑
i=1

|hji|d̄jGi

t∫
t−σji

eα(s+σji)|yi(s)|2ds, (7)

where α is given by Lemma 2.1.
Calculate the rate of change of V (t) along (5)-(6), we derive

D+V (t) ≤ eαt
n∑

i=1

{α−2aiβi + āi

m∑
j=1

[|cij |+
m∑

k=1

|Tijk +Tikj |Mk]Fj +
m∑

j=1

[eασ|hji|+
n∑

q=1
|Sjiq + Sjqi|Nq]d̄jGi}y2

i (t) + eαt
m∑

j=1

{α − 2djγj +
n∑

i=1

[eατ |cij |

+
m∑

k=1

|Tijk + Tikj |Mk]āiFj +
n∑

i=1

[|hji| +
n∑

q=1

|Sjiq + Sjqi|Nq]Gid̄j}z2
j (t). (8)

By Lemma 2.3, from (8), we can find D+V (t) ≤ 0, and so V (t) ≤ V (0), for all
t > 0. From (7), we have

V (t) ≥ eαt[
n∑

i=1

|yi(t)|2 +
m∑

j=1

|zj(t)|2], t ≥ 0. (9)

V (0) =
n∑

i=1

|yi(0)|2 +
m∑

j=1

|zj(0)|2 +
n∑

i=1

m∑
j=1

|cij |āiFj

0∫
−τij

eα(s+τij)|zj(s)|2ds

+
m∑

j=1

n∑
i=1

|hji|d̄jGi

0∫
−σji

eα(s+σji)|yi(s)|2ds. (10)
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From (8)-(10), we obtain
n∑

i=1

|ui(t, φu) − ui(t, ψu)|2 +
m∑

j=1

|vj(t, φv) − vj(t, ψv)|2

≤ e−αt[1 + eασ

α

m∑
j=1

max
1≤i≤n

(|hji|Gi)d̄j ]‖φu − ψu‖2 + e−αt[1+

eατ

α

n∑
i=1

max
1≤j≤m

(|cij |Fj)āi]‖φv − ψv‖2 = Me−αt[‖φu − ψu‖2 + ‖φv − ψv‖2], (11)

where M = max{1 + eασ

α

m∑
j=1

max
1≤i≤n

(|hji|Gi)d̄j , 1 + eατ

α

n∑
i=1

max
1≤j≤m

(|cij |Fj)āi} > 1.

Let |u(φu)−u(ψu)|2 =
n∑

i=1

|ui(t, φu)−ui(t, ψu)|2, |u(φv)−u(ψv)|2 =
m∑

j=1

|vj(t, φv)−

vj(t, ψv)|2.
From (13), we have |u(φu)−u(ψu)|2 ≤ Me−αt[‖φu−ψu‖2+‖φv−ψv‖2], t > 0,

|u(φv) − u(ψv)|2 ≤ Me−αt[‖φu − ψu‖2 + ‖φv − ψv‖2], t > 0.
We can choose a positive integer N , such that Me−α(Nω+ρ) ≤ 1

3 , ρ ∈ [−δ, 0].
Now we define a Poincaré mapping F: Ω → Ω by F (φT

u , φT
v )T=(uT

ω (φu), vT
ω (φv))T ,

then FN (φT
u , φT

v )T = (uT
Nω(φu), vT

Nω(φv))T . Let t = Nω, then have
|FNφu − FNψu|2 ≤ 1

3 [‖φu − ψu‖2 + ‖φv − ψv‖2], |FNφv − FNψv|2 ≤
1
3 [‖φu − ψu‖2 + ‖φv − ψv‖2].
This implies that FN is a contraction mapping, hence there exist a unique fixed
point (φ∗T

u , φ∗T
v )T ∈ Ω, such that FN (φ∗T

u , φ∗T
v )T = (φ∗T

u , φ∗T
v )T . Since

FN

(
F

(
φ∗T

u

φ∗T
v

))
= F

(
FN

(
φ∗T

u

φ∗T
v

))
= F

(
φ∗T

u

φ∗T
v

)
,

then F (φ∗T
u , φ∗T

v )T ∈ Ω is also a fixed point of FN , and so F (φ∗T
u , φ∗T

v )T =
(φ∗T

u , φ∗T
v )T , i.e., (uω(φ∗T

u ), vω(φ∗T
v ))T = (φ∗T

u , φ∗T
v )T . Let (u(t, φ∗T

u ), v(t, φ∗T
v ))T

be the solution of system (1) through ((0, 0)T , (φ∗T
u , φ∗T

v )), then (uT (t + ω, φ∗
u),

vT (t + ω, φ∗
v))T is also a solution of (1). Obviously(

uT
t+ω(φ∗

u)
vT

t+ω(φ∗
v)

)
=
(

uT
t (uω(φ∗

u))
vT

t (vω(φ∗
v))

)
=
(

uT
t (φ∗

u)
vT

t (φ∗
v)

)
,

for all t > 0. Hence (
uT (t + ω, φ∗

u)
vT (t + ω, φ∗

v)

)
=
(

uT (t, φ∗
u)

vT (t, φ∗
v)

)
,

for all t > 0.
This shows which is exactly one ω− periodic solution of system (1) and other

solutions of system (1) exponentially converge to it as t → +∞. �
On the one hand, by using (A1) of Lemma 2.2, the proof is similar to that in
proving Theorem 3.1, we may obtain the following Theorem 3.2 results. Here we
omit the proof.
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Theorem 3.2. Under hypotheses (H1)− (H4), (H6) and (H7), there exists one
ω-periodic solution of system (1), and all other solutions of (1) exponentially
converge to it as t → +∞, if

−2aiβi + āi

m∑
j=1

[|cij |Fj +
m∑

k=1

|Tijk + Tikj |MkLj]

+
m∑

j=1

[|hji|Gi +
n∑

q=1

|sjiq + sjqi|NqTi]d̄j < 0, (12)

−2djγj +
n∑

i=1

[|cij |Fj +
m∑

k=1

|Tijk + Tikj |MkLj]āi

+d̄j

n∑
i=1

[|hji|Gi +
n∑

q=1

|sjiq + sjqi|NqTi] < 0, (13)

for i = 1, 2, . . . .n, j = 1, 2, . . . .m.

Remark 1. Theorem 3.1 and Theorem 3.2 are developed under different as-
sumptions and use of various lemmas. They provide different sufficient condi-
tions ensuring the periodic solution of system (1) to be exponentially stable.
Therefore, we can select suitable theorems for a high-order Cohen-Grossberg-
type BAM neural networks to determine the existence and exponential stability
of the periodic solution.

4 Examples

Example 4.1. Consider the following high-order Cohen-Grossberg-type BAM
neural networks(n = m = 2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui(t)
dt = −ai(ui(t))[bi(ui(t)) −

2∑
j=1

cijfj(vj(t − τij))

−
2∑

j=1

2∑
k=1

Tijkfj(vj(t))fk(vk(t)) − Ii(t)],

dvj(t)
dt = −dj(vj(t))[ej(vj(t)) −

2∑
i=1

hjigi(ui(t − σji))

−
2∑

i=1

2∑
q=1

Sjiqgi(ui(t))gq(uq(t)) − Jj(t)],

(14)

for i = 1, 2, j = 1, 2, where
fi(r) = gi(r) = sin r

2 , ai(r) = 3 + sinr, dj(r) = 3 + cosr, bi(r) = 9r,
ej(r) = 27r, Ii(r) = − 1

4cosr, Jj(r) = sinr, i, j = 1, 2. Since ∀ r1, r2 ∈ R,
|fi(r1) − fi(r2)| = |gi(r1) − gi(r2)| ≤ 1

4 |r1 − r2| , |fi(r)| = |gi(r)| ≤ 1, 2 ≤
ai(r) ≤ 3, 2 ≤ dj(r) ≤ 3, bi(r1) − bi(r2) = 9(r1 − r2), ej(r1) − di(r2) =
27(r1 − r2). ∣∣∣∣dfi(r)

dr

∣∣∣∣ = ∣∣∣∣dgi(r)
dr

∣∣∣∣ = 1
2

∣∣∣cos
r

2

∣∣∣ ≤ 1
2
, i = 1, 2.
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We select Fi = Gi = 1
4 , Ni = Mi = 1, Li = Ti = 1

2 , āi = 4, ai = 2, d̄i =
4, di = 2, βi = 9, γi = 27, τij = 4, σij = 5, i = 1, 2.
Let c11 = 1, c12 = −1, c21 = 1

2 , c22 = 1
2 , h11 = −1, h12 = 1, h21 =

1, h22 = −1, s111 = 1, s121 = −1, s211 = −1, s221 = −1, s112 = −1, s122 =
− 1

2 , s212 = 1, s222 = 1, T111 = 1, T121 = −1, T211 = −1, T221 = 1, T112 =
1, T122 = −1, T212 = −1, T222 = −1.

By calculation, we have (3) and (4) in Theorem 3.1 hold. It follows from
Theorem 3.1 that this system has one unique 2π- periodic solution, and all other
solutions of system exponentially converge to it as t → +∞. Figs. 1-4 depict
the time responses of state variables of u1(t), u2(t), v1(t) and v2(t) of system in
example 4.1, respectively.
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0.05

0.1

u1
(t)

Fig. 1. Transient response of state variable
u1(t)
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u2
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Fig. 2. Transient response of state variable
u2(t)

0 10 20 30 40
−0.04

−0.02

0

0.02

0.04

0.06

0.08

v1
(t)

Fig. 3. Transient response of state vari-
able v1(t)
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−0.05

0

0.05

v2
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Fig. 4. Transient response of state vari-
able v2(t)
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Abstract. Differing from gradient-based neural networks (GNN), In
this paper, we present a special kind of recurrent neural networks us-
ing a new design method to solve online the time-varying Stein matrix
equation A(t)X(t)B(t) + X(t) = C(t). This paper investigates simula-
tion and verification of the resultant Zhang neural networks (ZNN) for
the nonstationary Stein equation by using MATLAB simulation tech-
niques. Theoretical analysis and simulation results substantiate the su-
perior performance of the ZNN models for the solution of time-varying
Stein equation in real-time, in compared with the GNN models.

Keywords: Neural networks, Time-varying, Stein equation, Global ex-
ponential convergence.

1 Introduction

The problem of Stein matrix equations solving is widely encountered in science
and engineering, since it is usually an essential part in many applications such
as control system design [1], optimization [2], and signal processing [3]. In view
of these, we consider in this paper the following Stein matrix equation (which
could also be viewed as a linear matrix equation):

AXB + X = C (1)

where A ∈ Rm×m, B ∈ Rn×n and C ∈ Rm×n are the given constant coefficient
matrices, while X ∈ Rm×n is the unknown matrix to be solved. Particularly, if
A = BT , the matrix equation (1) can be transformed to the Lyapunov matrix
equation [4][5]. In addition, if B in (1) is a nonsingular matrix, post-multiplying
(1) by B−1 can yield the Sylvester matrix equation [4][6]-[7].

There are two general types of solutions to the problem of algebraic matrix
equations. One type of solution is numerical algorithms performed on digital
computers. Usually, such numerical algorithms are of serial-processing nature
and may not be efficient enough for large-scale online or real-time applications
[8]. Being the second type of solution, many parallel-processing methods have

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 385–392, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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been developed and implemented on specific architectures [9]-[13]. Recently, due
to the in-depth research on neural networks, numerous dynamic and analog
solvers based on recurrent neural networks (RNN) have been developed and
investigated [9]-[13]. The neural-dynamic approach is now regarded as a pow-
erful alternative for online computation and optimization owing to its parallel-
distributed nature as well as convenience of electronic implementation [11][13].

2 Problem Formulation and Neural Solvers

In this ensuing subsections, ZNN and GNN models are developed and investi-
gated for comparative purposes to solve online the time-varying Stein equation.

2.1 Preliminaries

It follows from [4] that, Ding et al have proposed a hierarchical identification
principle to solve the constant linear matrix equations with accuracy and effec-
tiveness. In March 2001 [6], Zhang et al formally proposed a special kind of RNN
for time-varying problems solving, which is different from gradient-based neural
networks (GNN) exploited for constant problems solving [9][11][13]. That is, In
this work, we mainly consider the following time-varying Stein matrix equation:

A(t)X(t)B(t) + X(t) = C(t) (2)

where A(t) ∈ Rm×m, B(t) ∈ Rn×n, and C(t) ∈ Rm×n are smoothly time-varying
coefficient-matrices, which, together with their time-derivatives, are assumed to
be known numerically or could be estimated accurately. In addition, X(t) ∈
Rm×n is the time-varying unknown matrix to be solved, and our objective in
this work is to find X(t) so that the time-varying Stein equation (2) holds true
for any time t � 0. Before solving (2), the following lemmas are presented.

Lemma 1. [4][5] The time-varying Stein equation (2) is uniquely solvable, if
λi[A(t)] · λj [B(t)] �= −1 for ∀i = 1, 2, 3, · · · ,m and j = 1, 2, 3, · · · , n at any time
instant t ∈ [0,+∞), where λi[P (t)] denotes the ith eigenvalue of the time-varying
matrix P (t).

Lemma 2. If Lemma 1 is satisfied, then M(t) := BT (t)⊗A(t)+I is a nonsingu-
lar time-varying matrix, where I denotes an appropriately-dimensioned identity-
matrix, symbol ⊗ denotes the Kronecker product [6][10][14], and superscript T

denotes the transpose operator of a matrix or vector.

2.2 Neural Solver Models Description

To solve online equation (2), we could develop a RNN model by Zhang et al’s
design method [6,10,12,13]. Firstly, we set up a matrix-valued indefinite error-
function E(t) = A(t)X(t)B(t) + X(t) − C(t) ∈ Rm×n, where every element
eij(t) ∈ R (with i = 1, 2, 3, · · · ,m and j = 1, 2, 3, · · · , n) of error function E(t)
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could be positive, negative, bounded or even unbounded. Then, to make every
element eij(t) of E(t) converge to zero [i.e., in mathematics, limt→∞ eij(t) = 0],
by following ZNN design formula Ė(t) = −ΓF(E(t)) [6][10][12][13], we have the
following general ZNN model with an implicit-dynamic equation:

A(t)Ẋ(t)B(t) + Ẋ(t) = − γF
(
A(t)X(t)B(t) + X(t) − C(t)

)
− Ȧ(t)X(t)B(t) − A(t)X(t)Ḃ(t) + Ċ(t)

(3)

where the matrix-valued design parameter Γ could simply be γI with constant
scalar γ > 0, F(·): Rm×n → Rm×n denotes a matrix activation-function array of
neural networks, and X(t) ∈ Rm×n, starting from any initial condition X(0) :=
X0 ∈ Rm×n, is the activation state matrix corresponding to the time-varying
theoretical solution X∗(t) ∈ Rm×n of (2). We use Ȧ(t) ∈ Rm×m, Ḃ(t) ∈ Rn×n

and Ċ(t) ∈ Rm×n to denote the known numerical forms or measurements of
the time-derivatives of matrices A(t), B(t) and C(t), respectively. As for the
convergence of ZNN (3), we have the following two propositions [12][13].

Proposition 1. Consider smoothly time-varying matrices A(t) ∈ Rm×m, B(t) ∈
Rn×n and C(t) ∈ Rm×n in (2), which satisfy Lemma 1. If a monotonically-
increasing odd activation-function-array F(·) is used, the neural state X(t) ∈
Rm×n of ZNN (3), starting from any initial state X(0) ∈ Rm×n, globally con-
verges to the theoretical solution X∗(t) of (2).

Proposition 2. In addition to Proposition 1, if the linear function f(eij) = eij

is employed, then the neural state X(t) of ZNN model (3) could globally converge
to the time-varying theoretical solution X∗(t) with the exponential convergence
rate γ. Moreover, if we use the power-sigmoid activation function

f(eij) =

{
ep

ij , if |eij | � 1
1+exp(−ξ)
1−exp(−ξ) ·

1−exp(−ξeij)
1+exp(−ξeij) , otherwise

(4)

with suitable design parameters p � 3 (being an odd integer) and ξ � 2, the
neural state X(t) of ZNN (3) is superiorly globally convergent to the theoretical
solution X∗(t), as compared to the usage of the linear situation.

For comparison purposes, we can also develop a GNN model to solve (2).
According to the conventional GNN, we firstly define a scalar-valued norm-
based energy-function, such as ε := ‖AXB + X − C‖2

F /2 with Frobenius norm
‖A‖F :=

√
trace(AT A) [10]. Then, evolving along the negative gradient method

and applying the time-varying situation, we can obtain a linear GNN model

Ẋ(t) = −γ
∂ε

∂X
= − γ

(
AT (t)

(
A(t)X(t)B(t) + X(t) − C(t)

)
BT (t)

+
(
A(t)X(t)B(t) + X(t) − C(t)

))
,

and also a general nonlinear GNN model

Ẋ(t) = − γ
(
AT (t)F

(
A(t)X(t)B(t) + X(t) − C(t)

)
BT (t)

+ F
(
A(t)X(t)B(t) + X(t) − C(t)

))
.

(5)
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3 Computer Simulation Techniques

While Section 2 presents ZNN and GNN models together with related analysis
results, in this section, the following MATLAB simulation techniques [15] are
employed and investigated to show the characteristics of neural solvers.

3.1 Kronecker Product and Vectorization

Review ZNN (3) and GNN (5). Their dynamic equations are all described in
matrix-form, which cannot be directly simulated. Thus, the Kronecker product
and vectorization techniques are needed to transform such matrix-form differen-
tial equations to vector-form differential equations.

Proposition 3. Matrix differential equation (3) could be reformulated as the
following vector differential equation:

(BT (t) ⊗ A(t) + I) vec(Ẋ(t)) = − γF((BT (t) ⊗ A(t) + I) vec(X(t)) − vec(C(t)))

− BT (t) ⊗ Ȧ(t) vec(X(t))

− ḂT (t) ⊗ A(t) vec(X(t)) + vec(Ċ(t))

or simply put,

M(t)Ẏ (t) = −γF(M(t)Y (t) − M3(t)) − M1(t)Y (t) − M2(t)Y (t) + Ṁ3(t),

where M(t) := BT (t)⊗A(t)+ I, M1(t) := BT (t)⊗ Ȧ(t), M2(t) := ḂT (t)⊗A(t),
M3(t) := vec(C(t)), and Y (t) := vec(X(t)).

For example, given matrices A(t) and B(t), to generate the mass matrix
M(t) = BT (t) ⊗ A(t) + I, we have the following user-defined function by ex-
ploiting MATLAB routine “kron”.

function output=MatrixM(t,x)

A=MatrixA(t,x);[ma,na]=size(A);

B=MatrixB(t,x);[mb,nb]=size(B);

output=kron(B.’,A)+eye(ma*mb,na*nb);

3.2 Obtaining Matrix Derivatives

In the process of Stein equation solving by using ZNN (3), the time derivatives
Ȧ(t), Ḃ(t) and Ċ(t) are assumed to be known or measurable. This implies that
these derivatives can be given directly in an analytical form or can be estimated
via finite difference. Thus, to obtain all the time derivatives required in vector-
form ZNN model, without loss of generality, we can use MATLAB routine“diff”
for such derivatives evaluation. For example, we can obtain the time-derivative
of the time-varying matrix A(t) using the following user-defined function.
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function output=DiffA(t,x)

syms u; A=MatrixA(u);

D=diff(A);

u=t;

output=eval(D);

Note that, a symbolic object “u” has to be constructed firstly, and then we
could use the command D=diff(A) to generate the analytical form of Ȧ(t). Fi-
nally, evaluating such an analytical form with a numerical value of t will give us
the required value of Ȧ(t). Similarly, we can generate other matrix-derivatives.

3.3 ZNN Right-Hand Side

With the usage of command “reshape”, the vectorization of a matrix could be
achieved. For example, the following MATLAB code is used to evaluate the
right-hand side of vector-form ZNN model.

function output=ZnnRightHandSide(t,x,gamma)

A=MatrixA(t,x);B=MatrixB(t,x);C=MatrixC(t,x);

M=MatrixM(t,x);

DotA=DiffA(t,x);DotB=DiffB(t,x);DotC=DiffC(t,x);

[m,n]=size(C);vecC=reshape(C,m*n,1);vecDotC=reshape(DotC,m*n,1);

M1=kron(B.’,DotA);

M2=kron(DotB.’,A);

err=M*x-vecC;

output=-M1*x-M2*x-gamma*AFMpowersigmoid(err)+vecDotC;

In a similar way, we can evaluate the GNN right-hand side.

4 Illustrative Example

In the previous sections, the neural-dynamic models, their theoretical results,
and simulation techniques [15] have been presented. For illustration and com-
parison purposes, ZNN (3) and GNN (5) are both exploited for online solution of
the same time-varying Stein matrix equation (2), which are based on the usage
of power-sigmoid activation functions with design parameters p = 3 and ξ = 4.

Consider the Stein matrix equation A(t)X(t)B(t) + X(t) = C(t) with the
following time-varying coefficient matrices:

A(t) =
[
2 + cos 2t 2 sin 2t

sin 2t 2 − cos 2t

]
, B(t) =

⎡⎣2 + cos 2t sin 2t 0
sin 2t 1 cos 2t
cos 2t sin 2t 2

⎤⎦ , and

C(t) =
[
−2 + cos 2t 1 + sin 2t cos 2t

sin 2t −2 sin 2t 1 + cos 2t

]
.

Note that, in order to check the correctness of the neural solutions X(t) of
ZNN (3) and GNN (5), the time-varying theoretical solution X∗(t) can be ob-
tained by simple algebraic manipulations.
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(a) X(t) of ZNN (3) solving (2)
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(b) X(t) of GNN (5) solving (2)

Fig. 1. Online solution of the time-varying linear Stein equation (2) by ZNN and GNN
models with γ = 1, where dash-dotted red curves correspond to the theoretical state
X∗(t), and solid blue curves correspond to the neural solution X(t)

4.1 Neural-State Simulation

By following ZNN model (3), we could self-define a function used to generate
the neural-sate of the Stein matrix equation (2) with the above time-varying
coefficients, which could seen in Fig. 1. Part of code is listed as follows.

close all;

clear,clc;

gamma=1;

for i=1:8

x0=(rand(6,1)-0.5*ones(6,1));

options=odeset(’Mass’,@MatrixM,’MStateDep’,’none’);

[t,xz]=ode45(@ZnnRightHandSide,tspan,x0,options,gamma);

figure (3);subplot(2,3,1);plot(t,xz(:,1));hold on

figure (3);subplot(2,3,2);plot(t,xz(:,3));hold on

figure (3);subplot(2,3,3);plot(t,xz(:,5));hold on

figure (3);subplot(2,3,4);plot(t,xz(:,2));hold on

figure (3);subplot(2,3,5);plot(t,xz(:,4));hold on

figure (3);subplot(2,3,6);plot(t,xz(:,6));hold on

end

As shown in Fig. 1(a), starting from eight initial states randomly-selected
within [−0.5, 0.5]2×3, the neural state X(t) (denoted by solid blue curves) of the
presented ZNN model (3) could always converge to the theoretical solution X∗(t)
(denoted by dash-dotted red curves) exactly with design parameter γ = 1. For
comparison, GNN model (5) is employed as well to solve (2) under the same con-
ditions similarly. Its convergence could be seen in Fig. 1(b). The GNN-solution
could not always fit well with the time-varying theoretical solution X∗(t) with
quite large lagging-behind errors. This is evidently because the time-derivative
information of the time-varying coefficients A(t), B(t) and C(t) has not been
fully utilized in these gradient-based computational schemes.
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(b) ZNN (3) with γ = 10
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(c) GNN (5) with γ = 1

Fig. 2. Residual errors ‖A(t)X(t)B(t) + X(t) − C(t)‖F of ZNN and GNN for (2)

4.2 Residual-Error Simulation

In addition, the residual-error ‖A(t)X(t)B(t)+X(t)−C(t)‖F can also be used to
monitor the neural-network convergence characteristics. The user-defined func-
tion could be used to generate Fig. 2. Part of code is also attached.

close all;

clear,clc;

gamma=1;

for i=1:8

x0=(rand(6,1)-0.5*ones(6,1));

options=odeset(’Mass’,@MatrixM,’MStateDep’,’none’);

[t,xz]=ode45(@ZnnRightHandSide,tspan,x0,options,gamma);

for j=1:length(t)

T=t(j);

C=MatrixC(T,xz);[m,n]=size(C);vecC=reshape(C,m*n,1);

M=MatrixM(T,xz);

errz(:,j)=M*(xz(j,:))’-vecC;

nerrz(j)=norm(errz(:,j));

end

figure(4); plot(t,nerrz);

hold on

nerrz=0;

end

It can be seen from Fig. 2(a) that, by applying ZNN model (3) to solve
online (2), the residual error is convergent to zero within 6 seconds. In contrast,
as shown in Fig. 2(c), by using GNN model (5) to solve online equation (2)
under the same conditions in a similar way, the residual error is rather large.
In addition, it is worth pointing out that, as shown in Figs. 2(a) and (b), the
convergence time for ZNN model (3) can be expedited from around 6 seconds to
0.6 second, as the value of design parameter γ is increased from 1 to 10.

5 Conclusions

In this paper, a ZNN model is developed and investigated for the online solu-
tion of the time-varying Stein equation A(t)X(t)B(t) + X(t) = C(t) by using
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MATLAB simulation techniques. Theoretical analysis demonstrated that the
neural state of such a ZNN model can globally exponentially converge to the
theoretical solution. In comparison with the conventional neural-network com-
putational approaches, the new design approach and its resultant ZNN models
could have much superior efficacy on time-varying problems solving. Computer-
simulation results have further substantiated the effectiveness, efficiency and su-
periority of the presented ZNN models for such time-varying problems
solving.
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Abstract. Our previous work has shown the efficacy and promising per-
formance of continuous-time Zhang dynamics (CTZD) for solving online
nonlinear equations, as compared with conventional gradient dynam-
ics (GD). It has also shown that, with linear activation functions used
and with step-size being 1, the discrete-time Zhang dynamics (DTZD)
reduces to the Newton-Raphson iteration (NRI) (i.e., being a special
case of the DTZD model) for static nonlinear equations solving. It is
known that the NRI may fail to converge to the theoretical roots of
some difficult or special problems. In this paper, the CTZD model and
NRI method are investigated comparatively for online solution of static
nonlinear equations by performing numerical tests in different situations.
Computer testing and simulation results further demonstrate the efficacy
and different convergence-performance of the CTZD model (activated by
a power-sigmoid function) and NRI for nonlinear equations solving.

Keywords: Zhang dynamics (ZD), Newton-Raphson iteration (NRI),
Numerical comparisons, Nonlinear equations.

1 Introduction

The problem of solving nonlinear equations is considered to be an important is-
sue widely arising in science and engineering fields. Many numerical algorithms
(e.g., [1–3] and references therein) have thus been proposed for such a prob-
lem solving. However, it may not be efficient enough for many numerical algo-
rithms performed on digital computers in a serial-processing manner [4]. In recent
decades, owing to the in-depth research in artificial neural networks, various
neural-dynamic (ND) solvers [e.g., recurrent neural networks (RNN)] have been
proposed, developed, investigated and implemented [5–10]. Due to the poten-
tial suitability for analog VLSI implementation [7, 11] as well as the high-speed
processing and parallel-distributed properties, the ND approach is now regarded
as a powerful alternative to online problems solving [8–10]. Besides, it is worth
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mentioning that most computational schemes are theoretically/intrinsically de-
signed for time-invariant problems solving currently, which are usually related
to the traditional gradient-based methods [7–10].

Differing from the gradient-based dynamics (GD) approach for static prob-
lems solving, a new neural-dynamic solver [termed Zhang neural network (ZNN)
or Zhang dynamics (ZD)] has been proposed by Zhang et al. [12–14] (formally
since March 2001) for time-varying problems solving (e.g., time-varying Sylvester
equation solving, time-varying matrix square roots finding, time-varying matrix
inversion and optimization). Applied to the aforementioned time-varying situ-
ation, the proposed ZD models utilize the time-derivative information of time-
varying coefficients of a nonlinear equation, and thus the exact time-varying
solution can be obtained in an error-free manner [15, 16]. In contrast, the GD
models generate relatively larger errors for the same time-varying problems solv-
ing, since no time-derivative information is utilized in GD models [12–16]. By
following Zhang et al’s design method, the ZD model has recently been intro-
duced to handle static (or termed, time-invariant) nonlinear equations [15, 16].

In our previous work [15–17], theoretical analysis and computer-simulation
results about the aforementioned continuous-time ZD (CTZD) model have been
given for online solution of both time-varying and static nonlinear equations. It is
worth mentioning that, if we utilize a linear activation function and fix the step-
size to be 1, the Newton-Raphson iteration (NRI) is obtained as a special case
of the discrete-time ZD (DTZD) models (by focusing on static problems solving
only) [17, 18]. For NRI, we know that it may fail to converge to some theoretical
roots of some special problems [1]. In this paper, the CTZD and NRI are inves-
tigated for online solution of static nonlinear equations by performing numeri-
cal comparisons in different situations. Computer testing and simulation results
demonstrate well the efficacy and different advantages of CTZD (activated by
power-sigmoid functions) and NRI for solving static nonlinear equations.

2 Problem Formulation and Solvers

Our main purpose in this paper is to solve the nonlinear equation depicted by

f(x) = 0, (1)

where the unknown scalar x ∈ R is to be obtained, and nonlinear mapping
f(·) : R → R is assumed a continuously-differentiable function [15–17]. For ease
of presentation, let x∗ denote a theoretical solution (or termed, root, zero) of
nonlinear equation (1). In the ensuing subsections, both ZD model and NRI
method are generalized, developed and exploited to solve (1) comparatively.

2.1 CTZD Model

To monitor and control the solution process of nonlinear equation (1), by fol-
lowing Zhang et al’s neural-dynamic design method [12–15], we firstly define the
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following Zhang function E(t), being a form of error-monitoring function, which
is evidently indefinite and lower-unbounded:

E(t) := f
(
x(t)
)
.

Secondly, the time derivative Ė(t) of E(t) should be chosen such that E(t)
(globally) exponentially converges to zero. Specifically, Ė(t) is chosen via the
following Zhang et al’s design formula [15–17]:

dE(t)
dt

= −γφ
(
E(t)

)
, or

df(x)
dt

= −γφ
(
f(x)

)
. (2)

In equation (2), the design-parameter γ > 0, being used to control the con-
vergence rate of the CTZD model, should be set suitably large for simulation
purposes. The activation function φ(·) : R → R is assumed to be monotonically-
increasing and odd. Expanding the above ZD design formula (2), we obtain a
CTZD model depicted in the following explicit dynamics if f ′(x) �= 0 [with time
t ∈ [0,+∞), f ′(x) := ∂f(x)/∂x and ẋ := dx/dt]:

ẋ = −γ
φ
(
f(x)

)
f ′(x)

, (3)

where x(t) is the state as well as the output of CTZD model (3) corresponding
to theoretical root x∗ of nonlinear equation (1). Note that different performance
of CTZD model (3) is achieved by using different design-parameter γ and activa-
tion function φ(·) [15–17]. In general, any monotonically-increasing odd function
can be the activation function of the CTZD model. Since March 2001 [12], we
have introduced and used five types of activation functions (i.e., linear activa-
tion function, power activation function, power-sum activation function, sigmoid
activation function and power-sigmoid activation function) for the ZD models
(for more details, see [10, 13, 15, 19]). Besides, it is worth pointing out that the
pitfall of the CTZD model is the possibility of division by zero in equation (3),
which would occur if f ′(x) = 0; and that, for nonlinear equation (1) involving
points with f ′(x) = 0, the initial condition x(0) has to be chosen close enough
to x∗ and thus root x∗ is obtained.

For CTZD model (3) solving the nonlinear equation (1) with no local minima,
we have the following proposition about its convergence [15, 16].

Proposition 1. Consider a solvable nonlinear equation f(x) = 0, where func-
tion f(·) is continuously differentiable. If a monotonically-increasing odd activa-
tion function φ(·) is used, then the state x(t) of CTZD model (3), starting from
randomly-generated initial condition x(0) := x0 ∈ R, can converge to theoretical
root x∗ of nonlinear equation f(x) = 0. Note that the specific value of x∗, in the
situation of not less than two zeros existing, depends on the sufficient closeness
of initial state x0.
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Fig. 1. Online solution of nonlinear equation (5) by CTZD model (3) with γ = 1 and
NRI method (4), starting from the same initial state x(0) = x0 = 3

Review CTZD model (3) further. If we utilize a linear activation function
φ(x) = x and fix the design parameter γ to be 1, the CTZD model (3) reduces
to the following so-called continuous Newton’s method interestingly [20]:

ẋ = −f(x)/f ′(x).

2.2 NRI Method

Differing from the traditional (or to say, standard) explanation to NRI method
appearing in almost all literature and textbooks, i.e., via Taylor series expansion
[1, 7], we have discovered once more that a general form of NRI is obtained
by discretizing the CTZD model (3). Specifically, the NRI for solving nonlinear
equations can be derived by focusing on the static problem solving (1), dis-
cretizing CTZD model (3) via Euler forward difference, using a linear activation
function and fixing the step-size to be 1 [17, 18]. Thus, we obtain the NRI for
online solution of nonlinear equation (1) as follows:

xk+1 = g(xk) := xk − f(xk)
f ′(xk)

, k = 0, 1, 2, 3, · · · . (4)

It is known that xk in NRI (4) may fail to converge to a theoretical root when an
initial condition is improperly chosen [1]. So far, many convergence results about
NRI have been introduced and presented (e.g., [1, 20, 21] and references therein),
and most of them are on the choices of initial condition and the estimation of
convergence speed (i.e., quadratic for simple roots and linear for multiple roots).

Remarks. It is worth comparing the two methods of CTZD (3) and NRI (4),
both of which are now exploited for online solution of static nonlinear equation
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Fig. 2. The graphical interpretation of the failure of NRI (4) when solving (5)

(1). In addition to the main difference being ZD for time-varying problems solv-
ing and NRI for static problems solving, other differences lie in the following.

1) CTZD (3) is a continuous-time method, of which the design method is
based on the elimination of an indefinite error-function E(t) := f

(
x(t)
)

which
can be positive, negative, bounded or even unbounded. In contrast, NRI (4) is
a discrete-time (iterative) method, which is traditionally thought to be obtained
from Taylor series expansion [or newly thought in our research to be derived by
discretizing CTZD (3) with some specific conditions].

2) The convergence behavior of CTZD (3) is that the state x(t), starting from
an initial condition, traverse every point of the curve until the root is found. In
contrast, the convergence behavior of NRI (4) is that the current point jumps
to the next point on the function curve by finding the intersection between the x
axis and the line tangent to the curve of y = f(x) at the current point.

3) The theoretical analysis on convergence of CTZD (3) is based on the well-
known Lyapunov theory or ordinary differential equations [15]. Differing from
that of CTZD, the standard theoretical analysis on convergence of NRI (4) is
based on the well-known fixed-point theorem and related knowledge [1].

4) The convergence speed of CTZD (3) can be expedited by increasing γ and
using a suitable activation function. In contrast, the convergence rate for NRI
(4) is fixed, which is quadratic for simple roots and linear for multiple roots [1].

3 Computer Testing and Simulation Results

The previous sections have addressed the CTZD model (3) and the NRI method
(4) for solving nonlinear equations. In this section, by performing numerical
comparisons in different situations, computer testing and simulation results are
provided to show the characteristics of the two solvers. Though NRI (4) can be
obtained from CTZD (3), their convergence behaviors are quite different from



398 Y. Zhang et al.

1 2 3 4 5
−4

−2

0

2

4

6

8

10

iteration numbers

xk

(a) Divergent trajectory of NRI (4)

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 x(t)

time t (s)

(b) Convergent trajectory of CTZD (3)

Fig. 3. Online solution of (6) by NRI (4) and CTZD (3) with γ = 1, starting from the
same initial state x0 = x(0) = 1.45

each other, which evidently results in different advantages of CTZD (3) and NRI
(4) for solving nonlinear equations. To investigate and compare the efficacy of
such two solvers, let us consider the following illustrative examples.

Example 1. f(x) with x defined in a range [a, b]

It is widely encountered in science and engineering problems that the variable
x in nonlinear function f(x) is defined only in a finite range, e.g., [a, b]. For
illustration and comparison, let us consider the following nonlinear equation:

f(x) = cos(x) = 0, with x ∈ [0, π]. (5)

Evidently, the only theoretical root in the defining range [0, π] is x∗ = π/2. Both
CTZD (3) and NRI (4) are then exploited to solve the above nonlinear equation
(5). By using CTZD (3) with γ = 1, we see from Fig. 1(a) that, starting from
initial state x(0) = 3, the state x(t) converges to the desired theoretical root
x∗ = π/2 ≈ 1.57 after a short time (e.g., 3 s or so). But, for the same initial state
x0 = 3, as shown in Fig. 1(b), the state xk of NRI (4) converges to a different
root −3π/2 ≈ −4.71 which is out of range [0, π]. Actually, the state calculated
from the first iteration x1 = x0 − f(x0)/f ′(x0) = −4.015 has already been out
of range [0, π]. Simply put, CTZD (3) generates a right solution, whereas NRI
(4) generates a wrong solution.

As seen from the simulation results, CTZD (3) has superior effectiveness to
NRI (4) in the situation of x defined in a range [a, b] according to their conver-
gence behaviors discussed in the aforementioned remarks. In addition, the initial
condition of NRI (4) should be chosen close enough to the desired theoretical
root; otherwise, it may converge to some other root. Moreover, as seen from Fig.
2, the absolute value of the slope f ′(x0) should not be small; otherwise [e.g., the
slope f ′(x0) of (5) is about −0.14], the tangent line of function f(x) at point x0

is nearly horizontal and the first intersection x1 is far away from x0, leading to
the consequence {xk} running out of the defining range [0, π].
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Fig. 4. Online solution of (7) by CTZD model (3) with γ = 1, 10 and 100 as well as
NRI method (4), starting from the same initial state x(0) = x0 = 3.5

Example 2. The divergent oscillating case of NRI (4)

According to the fixed-point theorem given in [1], NRI (4) may oscillate and
diverge when |g′(x)| ≥ 1 on an interval containing root x∗. For illustration and
comparison, let us consider the following nonlinear equation:

f(x) = arctan(x) = 0. (6)

Evidently, one theoretical root is x∗ = 0. By using NRI (4) to solve nonlinear
equation (6), we obtain g′(x) = −2x · arctan(x) [1]. As seen from Fig. 3(a), the
initial state is set as x0 = 1.45, and then the sequence {xk} generated by NRI
(4) is divergently oscillating (with x1 = −1.55, x2 = 1.85, x3 = −2.89, · · · ). In
contrast, as shown in Fig. 3(b), the state x(t) of CTZD (3), starting from the
same initial state, converges to theoretical root x∗ = 0 after a short time. All of
these demonstrate the superior effectiveness of CTZD (3) [as compared to NRI
(4)], in addition to the important link between them.

Example 3. Convergence speed

To compare the convergence speed of such two models [i.e., CTZD (3) and
NRI (4)], let us consider the following nonlinear equation:

f(x) = (x + 1)(x − 3)5 = 0. (7)

Evidently, this nonlinear equation (7) theoretically has a simple root x∗
1 = −1

and a multiple root x∗
2 = 3 of order five. As shown in Fig. 4(a), starting from

initial state x(0) = 3.5, the state x(t) of CTZD (3) with γ = 10 converges to
the multiple root x∗

2 = 3 (about 1.4 s) much faster than the state with γ = 1
(about 14 s). Moreover, if γ = 100, the convergence time is 0.14 s. Thus, CTZD
(3) has an exponential-convergence property, and the convergence speed can be
expedited effectively by increasing the value of design parameter γ. In contrast,
for the same initial state, as seen from Fig. 4(b), the convergence rate of NRI
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Fig. 5. Convergence performance of CTZD (3) with γ = 1 and NRI (4) for online
solution of nonlinear equation (8), starting from the same initial state x(0) = x0 = 0.5

(4) is fixed, which takes about 25 iterations. Furthermore, for root x∗ = 3, the
convergence rate for NRI (4) is linear as it is a multiple root [1].

Example 4. Nonlinear equation containing a local minimum

Let us consider the situation of nonlinear equation containing a local mini-
mum. According to the different convergence behaviors discussed in the afore-
mentioned remarks, the state x(t) of CTZD (3) may move towards the local
minimum point and then stop; in contrast, the state xk of NRI (4) may con-
verge to the theoretical root after a few iterations. For further illustration and
comparison, let us consider the following nonlinear equation:

f(x) = x3 − x − 3 = 0. (8)

The theoretical root we consider is x∗ = 1.6717. As shown in Fig. 5(a) and
(b), starting from initial state x(0) = 0.5, the state x(t) of CTZD (3) with
γ = 1 can not converge to the theoretical root x∗; instead, it stops at the point
x = −0.5774 which is the local minimum of nonlinear equation (8). In contrast,
starting from the same initial state, the state xk of NRI (4) converges to the
theoretical root after a few iterations. These demonstrate that the NRI method
(4) could have a superior effectiveness when nonlinear function f(x) possesses
a local minimum, as compared to the CTZD model (3). Note that, as observed
from the related simulation results, when we choose the initial state x0 = 0.6 or a
bigger value, the state x(t) of CTZD (3) with γ = 1 converges to the theoretical
root. Thus, if nonlinear function f(x) possesses a local minimum, the initial state
of CTZD (3) has to be set close enough to the theoretical root so as for x(t)
to avoid falling into the basin of attraction of the local minimum of nonlinear
function f(x).
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4 Conclusions

A special class of neural dynamics (i.e., Zhang dynamics, ZD) has been discov-
ered, developed and analyzed for online solution of time-varying problems. By
following and generalizing Zhang et al’s design method, the ZD model has re-
cently been introduced to handle the static (or termed, time-invariant) nonlinear
equations. In this paper, as an extension of our previous work, comparisons on
CTZD and NRI have been made and illustrated for online solution of static non-
linear equations. Both theoretical analysis and simulation results have shown the
efficacy and different superiorities of CTZD (3) and NRI (4) for solving nonlinear
equations, according to their different convergence behaviors.
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Abstract. An Extreme Learning Machine (ELM) approach has already
been applied to Time-Variant Neural Networks (TV-NN) with greatly
reduced training time. However, several parameters need to be tuned
in ELM-TV-NN, such as number of hidden neurons, number of basis
functions. Interesting approaches have been proposed to automatically
determine the number of hidden nodes in our previous work. In this pa-
per, we explored a way to extend the Error Minimized Extreme Learning
Machine (EM-ELM) algorithm along with one incremental based ELM
method to the output basis functions case study. Simulation results show
the effectiveness of the approach.

1 Introduction

A fast learning algorithm called Extreme Learning Machine (ELM) introduced
by Huang et al[1,2], has recently caught much attention within the Neural Net-
work (NN) research community. ELM is designed for single hidden layer feed-
forward neural networks (SLFNs): it randomly chooses hidden nodes and then
determines the output weight analytically. However, one of the open problem
of ELM is how to assign the number of hidden neurons, which is the only fac-
tor that needs to be set by users, usually by trial-and-error. The first hidden
nodes increment algorithm for ELM, referred to as Incremental Extreme Learn-
ing Machine (I-ELM)[3], randomly adds nodes to the hidden layer one by one
and freezes the output weights of the existing hidden nodes when a new hidden
node is added. Another ELM-based hidden nodes incremental learning algorithm
referred to as Error Minimized Extreme Learning Machine (EM-ELM)[4] can
also add random hidden nodes to SLFNs one by one or even group by group,
with all the previous output weights updated accordingly at each step. Com-
pared with I-ELM which keeps the output weights of existing hidden nodes fixed
when adding a new hidden node, EM-ELM attain a much better generalization
performance.

Time-Variant Neural Networks(TV-NN) represent a relevant example in the
field of neural architectures working properly in non-stationary environments.
Such networks have time-variant weights, each being a linear combination of
a certain set of basis functions. Titti et al. [5], proposed an extended version
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of the Back-Propagation(BP) algorithm to suitably train such networks. An
Extreme Learning Machine approach is also developed for TV-NN(ELM-TV-
NN), introduced by Cingolani et al[6], accelerating the training procedure sig-
nificantly. However, ELM-TV-NN also has the problem to determine the size
of network, e.g. the number of hidden nodes and the number/type of basis
functions.

Recently, some interesting variants have been studied on purpose. One [7] is
oriented to apply a Group-selection theory approach to optimally size the net-
work and choose the type of basis functions, whereas another one proposes some
incremental-based learning algorithms for ELM-TV-NN [8], able to automati-
cally determine the number of hidden nodes, avoiding to use the trial-and-error
method typically adopted in standard ELM-TV.

In this paper, we attempt to extend I-ELM and EM-ELM to output basis
functions of time-variant networks, as well as testing and comparing them in two
different task scenarios. The ELM approach for time-variant neural networks is
briefly introduced in Section 2, followed by our proposal algorithms presented
in Section 3, and the simulation results in Section 4. Finally, conclusion is given
in Section 5. Due to the space constraint, we do not present more details for
ELM algorithm and its related incremental-based variants I-ELM and EM-ELM.
Please refer to [2,3,4] for more information.

2 The ELM Approach for Time-Variant Neural Networks

The application and extension of ELM to the time-variant case has been studied
in [6]. In a time-variant neural network, the input weights, or output weights,
or both are changing through the training and testing time. Each weight can
be expressed as a linear combination of a certain set of basis functions: w[n] =∑B

b=1 fb[n] · wb, in which fb[n] is the known orthogonal function at n-th time
instant of b-th order, wb is the b-th order coefficient of the basic function to
construct time-variant weight wn, while B is the total number of the bases
preset by user.

If time-variant input weights are introduced in a SLFN, hidden neuron output
function can be rewritten as: hk[n] = g

(∑I
i=0 xi[n] · wik[n]

)
, where wik[n] =∑B

b=1 fb[n] · wb,ik. Similarly, if time-variant output weights are introduced, the
standard output equation can be rewritten as:

∑K
k=1 hk[n] · βkl[n] = tl[n], where

βkl[n] =
∑B

b=1 fb[n] · βb,kl.
To train a TV-NN, {wb,ik} can be randomly generated and then hidden-

layer output matrix H can be computed. However, the values of a set of out-
put weight parameters {βb,kl} can not be so straightforward calculated. Some
transformations are needed. Let us expand the time-variant output weights
βkl[n] and assume the following notation: f [n] = [f1[n], f2[n], . . . , fB[n]]T ∈ RB,
h[n] = [h1[n], h2[n], . . . , hK [n]]T ∈ RK , βb,l = [βb,1l, βb,2l, . . . , βb,Kl]T ∈ RK ,
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β(l) = [β1,l,β2,l, . . . ,βB,l] ∈ RK×B, ω(l) = [βT
1,l,β

T
2,l, . . . ,β

T
B,l]

T ∈ RK·B×1. We
can now state:

tl[n] =
K∑

k=1

hk[n] ·
(

B∑
b=1

fb[n] · βb,kl

)
= h[n]T · β(l) · f [n]

=
(
f [n]T ⊗ h[n]T

)
· ω(l) (1)

where ⊗ denotes the Kronecker product of f [n]T and h[n]T . The last step consists
in: vec(ABC) = (CT ⊗ A)vec(B), (note that vec(tl[n]) = tl[n].) and ω(l) =
vec(β(l)) is the vectorization of the matrix β(l) formed by stacking the columns
of β(l) into a single column vector.

Moreover, we define: G = F∗H, where F = [f [1], f [2], . . . , f [N ]]T = {fb[n]} ∈
R

N×B, H = [h[1],h[2], . . . ,h[N ]]T = {hk[n]} ∈ R
N×K , ∗ denotes the Khatri-

Rao product of matrices F and H, with f [n]T and h[n]T as their submatrices, re-
spectively. Further assuming that: T={tl[n]} ∈ RN×L, Ω = [ω(1),ω(2), . . . ,ω(L)]
∈ RK·B×L, we get: G · Ω = T

Since F is obtained by the type of the basis function predetermined by the
user; H can be calculated once input weight parameters are randomly generated.
Hence we can get G. Similar to the ELM algorithm described in previous section,
the time-variant output weight matrix Ω can be computed by:

Ω̂ = G† ·T (2)

where G† is the MP inverse of matrix G, and consequently, Ω̂ is a set of optimal
output weight parameters minimizing the training error.

3 Proposed Output Basis Functions ELM Algorithms for
TV-NN

3.1 Incremental Output Basis Functions for ELM-TV

It is proved in [3] and [9] that for one specific output neuron, when the k-th
hidden neuron is added and βk = h̃T

k ·ẽk−1

h̃T
k ·h̃k

, ‖ẽk‖ = ‖t̃− (t̃k−1 + βkh̃k)‖ achieves

its minimum and the sequence {‖ẽk‖} decreases and converges. Note that βk =
h̃T

k ·ẽk−1

h̃T
k
·h̃k

, is a special case of βk = h̃†
kẽk−1 when ẽk−1 and h̃k are vectors. Actually,

the MP generalized inverse of h̃k is just h̃†
k = (h̃T

k ·h̃k)−1h̃T
k For our time-variant

output basis functions case, this can also be extended to matrix computations.

Let δΩb =

⎡⎢⎣ βb,11, · · · , βb,1L

...,
. . . ,

...
βb,K1, · · · , βb,KL

⎤⎥⎦
K×L

and δGb =

⎡⎢⎣ fb[1] · h[1]T
...

fb[N ] · h[N ]T

⎤⎥⎦
N×K

,

(Note Ω =

⎡⎢⎣δΩ1

...
δΩB

⎤⎥⎦ and G = [δG1, · · · , δGB].) Similarly, if δΩb = δG†
b · Eb−1,
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‖Eb‖ = ‖T− (Tb−1 + δGbδΩb)‖ achieve its minimum and the sequence {‖Eb‖}
would decrease and converges.

Hence, we have our time-variant output basis functions version of I-ELM.
Assume we have a set of training data {(x[n], t[n])}N

n=1, the target output matrix
T, the residual matrix E, the maximum number of output basis functions Bmax,
and the expected learning accuracy ε. We get Algorithm 1.

Algorithm 1. I-OB
1: Generate random input weights {wb,ik} and calculate H.
2: Let b = 0 and residual error E = T,
3: while b < Bmax and ‖E‖ > ε, do
4: Increase by one the number of output basis functions: b = b + 1;
5: Calculate the hidden layer output submatrix for new output basis

δGb =

⎡⎢⎣ fb[1] · h[1]T

...
fb[N ] · h[N ]T

⎤⎥⎦
N×K

6: Calculate the output weight δΩb for the new output basis

δΩb = δG†
b · E

7: Calculate the residual error after adding the new output basis b:

E = E − δGb · δΩb

8: end while

9: The output weight matrix would be Ω =

⎡⎢⎣δΩ1

...
δΩB

⎤⎥⎦
K·B×L

3.2 Error Minimized Output Basis Functions for ELM-TV

Similarly, with proper modifications, the Error Minimized ELM approach can
also be extended to the time-variant output basis functions case study. Replace
H0, δHk, β with G1,δGb, Ω, respectively. With Gb+1 = [Gb, δGb], we have

G†
b+1 = (GT

b+1Gb+1)−1Gb+1 =
[

GT
b Gb, GT

b δGb

δGT
b Gb, δGT

b δGb

]−1 [GT
b

δGT
b

]
(3)

Denote

A =
[
A11, A12

A21, A22

]
=
[

GT
b Gb, GT

b δGb

δGT
b Gb, δGT

b δGb

]−1

(4)

and

G†
b+1 =

[
Ub

Db

]
=
[
A11GT

b + A12δGT
b

A21GT
b + A22δGT

b

]
(5)
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Based on the inversion of 2 by 2 block matrices, we have

A11 =(GT
b Gb)−1 + (GT

b Gb)−1GT
b δGbR−1δGT

b Gb(GT
b Gb)−1

A12 = − (GT
b Gb)−1GT

b δGbR−1

A21 = − R−1δGT
b Gb(GT

b Gb)−1

A21 =R−1 (6)

where

R = δGT
b δGb − δGT

b Gb(GT
b Gb)−1GT

b δGb = δGT
b (I − GbG

†
b)δGb (7)

with I − GbG
†
b a symmetric and projection matrix, we have

Db =R−1δGT
b − R−1δGT

b GbG
†
b

=(δGT
b (I − GbG

†
b)δGb)−1δGT

b (I − GbG
†
b)

=(δGT
b (I − GbG

†
b)

T (I − GbG
†
b)δGb)−1δGT

b (I − GbG
†
b)

T

=((I − GbG
†
b)δGb)† (8)

Ub =G†
b + G†

bδGbR−1δGT
b GbG

†
b − G†

bδGbR−1δGT
b

=G†
b − G†

bδGbDb (9)

Now we can obtain our Error Minimized Output Basis Functions ELM algo-
rithm for time-variant network (EM-OB). For the sake of presentation clarity, we
only add output basis functions one by one in our proposed EM-OB algorithm,
which can be easily generalized to the group-by-group node addition means.

Assume we have a set of training data {(x[n], t[n])}N
n=1, the target matrix T,

the residual matrix Eb = GbG
†
bT − T, the maximum number of output basis

functions Bmax, and the expected learning accuracy ε. We get Algorithm 2.

4 Simulation Results

In this section, we compare I-OB and EM-OB with ELM-TV in time-variant
MLP and Narendra identification problems. All the data depicted in figures are
the average values of 10 trials. All the programs are run in MATLAB 7.8.0
environment with Windows Vista, Intel Core2 Duo CPU P8400 2.26GHz.

4.1 Time-Variant MLP System Identification

The system to be identified here is the same with that in [5,6,8]: a time-variant
IIR-buffered MLP with 11 input lines, one 5 neurons hidden layer, one neuron
output layer. The input weights and output weights are combination of 3 Cheby-
shev basis functions; the lengths of the input and output TDLs are equal to 6
and 5 respectively. Note that the output neuron of this system is not linear, both
the hidden neurons and output neuron use tangent sigmoid activation function.

A range of output basis functions from 1 to 20 are tested in this scenario. The
accuracy performance of EM-OB is quite the same with that of ELM-TV.
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Algorithm 2. EM-OB
1: Randomly generate input weights and calculate H.
2: Calculate the time-variant hidden layer output matrix G1:

G1 =

⎡⎢⎣ f1[1] · h[1]T

...

f1[N ] · h[N ]T

⎤⎥⎦
N×K

3: Calculate the output error ‖E1‖ = ‖G1G
†
1T − T‖.

4: Let b = 1
5: while b < Bmax and ‖Eb‖ > ε, do
6: Add another output basis. The corresponding time-variant hidden layer output

matrix becomes Gb+1 = [Gb, δGb], where

δGb =

⎡⎢⎣ fb[1] · h[1]T

...
fb[N ] · h[N ]T

⎤⎥⎦
N×K

7: Update the output weight Ω

Db = ((I− GbG
†
b)δGb)

†

Ub = G†
b − G†

bδGbDb

Ω(b+1) = G†
b+1T =

[
Ub

Db

]
T

8: b = b + 1
9: end while

4.2 Time-Variant Narendra System Identification

The next test identification system is a modified one addressed in [10], adding
the coefficients a[n] and b[n] to form a time-variant system, as done in [5,6,8] :

y[n] = a[n] · y[n − 1] · y[n − 2] · y[n − 3] · x[n − 1] · (y[n − 3] − 1) + x[n]
1 + b[n] · (y[n − 3]2 + y[n − 2]2)

(10)

Simulation results for Narendra system are depicted in Fig 3 and Fig 4. We
can conclude from these that I-OB and EM-OB produce more stable results than
ELM-TV in Narendra system. Again, same behavior as in the time-invariant case
is recognized. The performance comparison in terms of necessary output basis
functions between ELM-TV and EM-OB, has also been conducted in these time-
variant systems. The target training RMSE(dB) ε are set as: -21 for MLP system
and -16 for Narendra system. The optimal number of output basis functions for
ELM-TV is obtained by trial-and-error. Table 1 displays performance evaluation
between ELM-TV and EM-OB, since I-OB is not able to reach the training
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Table 1. Performance Comparisons for the Number(average of 10 trials) of Output
Basis Functions When the Expected Accuracy is Reached

Systems Algorithms Training Testing Output Basis
[stop RMSE(dB)] Time (s) RMSE(dB) Functions

MLP [-21]
ELM-TV 0.1189 -21.63 5.9
EM-OB 0.0958 -21.17 5.1

Narendra [-16]
ELM-TV 0.1462 -16.07 6.0
EM-OB 0.0945 -16.24 6.2

goals of them within 20 bases. Focusing on the MLP and Narendra Systems case
studies for reasons explained above, results reported in Table 1 prove that EM-
OB has similar generalization performance and optimal number of output basis
functions attainable with ELM-TV, but at reduced training time. Therefore,
EM-OB is able to optimally select the number of output basis functions more
efficiently than the trial-and-error approach typically used in common ELM-TV.
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5 Conclusions

In this paper, we have proposed two output basis functions incremental Extreme
Learning Machine algorithms for Time-Variant Neural Networks training. They
are the extensions of the corresponding time-invariant I-ELM and EM-ELM, and
they have been addressed as I-OB and EM-OB.

The main advantage of the incremental approach consists in automatically
determining the number of output basis functions. Two system identification
simulations show that EM-OB approach can significantly reduce the training
time, with good generalization performances and similar optimal number of out-
put basis functions comparable to the original ELM.

Moving from results obtained in this paper and in [8], future works are in-
tended to apply a joint ELM-based incremental method for automatically deter-
mine the number of hidden nodes and of output basis functions to Time-Variant
Neural Networks.
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Abstract. In this paper, we study the invariant set and attractor of the
discrete-time impulsive recurrent neural networks (DIRNNs). By using
a powerful delay difference inequality and properties of nonnegative ma-
trices, we get some sufficient criteria to determine the invariant set and
attractor of DIRNNs. Some examples demonstrate the efficiency.

Keywords: Invariant set, Attractor, Exponential stability, Neural
networks.

1 Introduction

Over the past few decades, the recurrent neural networks (RNNs) have attracted
more and more attentions because of the rich dynamical behaviors. It plays an
important role in a variety of information processing systems such as signal pro-
cessing, pattern recognition, optimization, model identification and associative
memories. Note that, up to now, most RNNs have been assumed to act in a
continuous-time manner. However, the discrete-time recurrent neural networks
(DRNNs) which is described by difference equation usually appears in the nu-
merical solution of continuous-time networks or it comes to the implementation
of continuous-time networks for the sake of computer-based simulation, experi-
mentation, etc. In recently, many researches about discrete-time neural networks,
including DRNNs, focus on a variety of dynamical behaviors such as stability,
invariant set, attractor and so on [1]- [10].

As we know, pulse phenomena usually exist in our world. The discrete-time
impulsive recurrent neural networks (DIRNNs) may exhibit several real world
phenomena such as rhythmical beating, merging of solutions and noncontinuous
of networks. Then the DIRNNs are emerging as an important area of inves-
tigation, since it has much richer dynamical behaviors than networks without
impulse. We can find some studies on stability and invariant set of discrete-time
dynamic system such as [11, 12]. Unfortunately, up to now, to the best of au-
thors knowledge, there is not enough theories on DIRNNs because of some new
difficulties with impulsive effects. Therefore, new techniques and methods on
invariant set and attractor should be developed and explored.

For the above reasons, the aim of this paper is developing some new methods
and techniques to discuss the invariant set, attractor of DIRNNs. This work is

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 411–419, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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organized as follows. In Section 2, we introduce a general model and some prelim-
inaries. In Section 3, by using an improved difference inequality and properties of
nonnegative matrices, we obtain a few sufficient conditions guaranteeing global
attracting and exponentially stable. Some numerical examples and simulations
are given in Section 4 to show the efficiency of proposed methods.

2 Model and Preliminaries

Throughout this paper, let R and R+ be the sets of real numbers and nonnegative
real numbers, respectively. Rn is the space of n-dimensional real column vectors
and Rm×n represents the class of m × n matrices with real components. For
x ∈ Rn, A ∈ Rm×n, we denote [x]+ = col{|x1|, · · · , |xn|}, [A]+ = (|aij |)m×n.
The inequality ” ≤ ”(” > ”) between matrices or vectors such as A ≤ B(A >
B) means that each pair of corresponding elements of A and B satisfies the
inequality ” ≤ ”(” > ”). Rn

+ means a set Rn
+ = {x ∈ Rn|x ≥ 0} and Rn×n

+

means a set Rn×n
+ = {A ∈ Rn×n|A ≥ 0}. Z and Z+ denote the integers set and

nonnegative integers set, respectively. Z[t1, t2] ≡ {t1, t1 + 1, · · · , t2} where t1,
t2 ∈ Z and t1 < t2. Cτ means the set of all functions φ : Z[−τ, 0] → Rn, τ ∈ Z+.
For any φ = col{φ1, · · · , φn} ∈ Cτ , we define [φ]+τ = col{||φ1||τ , · · · , ||φn||τ}, in
which ||φi||τ = max

−τ≤m≤0
|φi(m)|, i ∈ Z[1, n].

We consider the following DIRRNs model⎧⎨⎩
x(m + 1) = Cx(m) + Af(x(m)) + Bf(x(m − τ(m))) + J(m),m �= mk,
x(mk) = Hk(x(m−

k )), m = mk,
x(m) = φ(m), m ∈ Z[−τ, 0].

(1)

where the neurons x(m) = col(x1(m), · · · , xn(m)) ∈ Rn, the activity functions
f((·) = col(f1(·), · · · , fn(·)) ∈ Rn, m ∈ Z+, the weight of impulse perturbations
Hk(x) = col{Hk1(x), · · · , Hkn(x)} ∈ Rn, 0 < τ(m) ≤ τ . The initial string
φ(m) ∈ Cτ . The fixed impulsive moments mk satisfy 0 < m1 < m2 < · · · and
lim

k→+∞
mk = +∞. The real valued sequence x(m,φ) satisfying (1) is called a

solution denoted simply by x(m) if no confusion occurs. At first, we assume (1)
satisfies the following assumptions
H1. [f(x)]+ ≤ M [x]+, where M ∈ Rn×n

+ ,
H2. [J(m)]+ ≤ J , where J = col{J1, · · · , Jn} ∈ Rn

+,
H3. [Hk(x)]+ ≤ Rk[x]+, where Rk ∈ Rn×n

+ .
The following definitions and lemmas are employed throughout this paper.

Definition 1. The set S ⊂ Cτ is called a positive invariant set of (1), if for any
initial string φ(m) ∈ S, the corresponding solution x(m,m0, φ) ∈ S, ∀m > m0.

Definition 2. The set D1 ⊂ Cτ is called to be global attracting for the solutions
of model (1) if D1 possesses an open neighborhood D2 such that for any initial
string φ ∈ D2,

dist(x(m,φ), D1) −→ 0, as m −→ +∞, (2)
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in which dist(x,D1) = inf
y∈D1

d(x, y), and d(x, y) is the distance of x to y in Rn.

The open set D2 is called to be a basin of attracting of D1.

Lemma 1. [13] If the matrix A = αE −P , in which P ∈ Rn×n
+ and α > ρ(P ),

then A is a nonsingular M-matrix.

Lemma 2. [13] If A is a nonsingular M-matrix, then A−1 ∈ Rn×n
+ .

Lemma 3. [13] Suppose that M ∈ Rn×n
+ and ρ(M) < 1, then there is a positive

vector z ∈ Rn
+ such that

(E − M)z > 0. (3)

For M ∈ Rn×n
+ with ρ(M) < 1, we denote

Ωρ(M) = {z ∈ Rn|(E − M)z > 0, z > 0}, (4)

which is not empty by Lemma 3.

3 Main Results

In this section, by using an improved difference inequality and properties of
nonnegative matrices, we derive some new sufficient conditions guaranteeing
positive invariant, global attracting of the DIRNNs model (1).

Lemma 4. Let x(m) ∈ Rn
+ be a vector sequence of real numbers satisfying the

inequality as follows:

x(m + 1) ≤ P1x(m) + P2x(m − τ) + I, m > 0. (5)

Suppose that ρ(P1 + P2) < 1, then x(m) satisfies

x(m) ≤ Ke−λm + (E − P1 − P2)−1I, ∀m > 0, (6)

provided that there exists a constant vector K ∈ Rn
+ such that the initial string

satisfies
φ(m) ≤ Ke−λm + (E − P1 − P2)−1I, ∀m ∈ Z[−τ, 0], (7)

where the real number λ > 0 is determined by the following inequality

(P1 + P2e
τλ)K ≤ e−λK, (8)

Proof. The proof is similar to the Lemma 3 in [12]. �

Next, some new criteria on positive invariant set and attractor of (1) will be
obtained.

Theorem 1. Assume that ρ([C]+ +[A]+[M ]+ +[B]+[M ]+) < 1 and ρ(Rk) ≤ 1,
then the set S = {φ(m) ∈ Cτ |[φ(m)]+τ ≤ T } is a positive invariant set of (1),
where T = (E − ([C]+ + [A]+M ]+ + [B]+M ]+))−1J .
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Proof. For any initial string φ(m) ∈ S ⊂ Cτ , we have

[φ(m)]+τ ≤ T, −τ ≤ m ≤ 0. (9)

By Lemma 4, we obtain that the corresponding solution x(m,φ) satisfies

[x(m)]+ ≤ T, 0 ≤ m < m1. (10)

When m = m1, we have

[x(m1)]+ = [H1(x(m−
1 ))]+ ≤ R1[x(m−

1 )]+

≤ ρ(R1)[x(m−
1 )]+

≤ T. (11)

According to Lemma 4 again, we obtain

[x(m)]+ ≤ T, m1 ≤ m < m2. (12)

By mathematical induction, we can get

[x(m)]+ ≤ T, ∀m > 0. (13)

We complete the proof. �

Theorem 2. Suppose that model (1) satisfies assumptions as follows
(A1). ρ([C]+ + [A]+[M ]+ + [B]+[M ]+) < 1,
(A2). there exist positive sequences γk and σk in which γk ≥ max{1, ρ(Rk)},

σk ≥ max{1, ρ(Rk)}, such that RkK ≤ γkK for K ∈ Ωρ([C]+ + [A]+[M ]+ +
[B]+[M ]+) and RkT ≤ σkT ,

(A3). there are two positive numbers γ and σ such that

ln γk

mk − mk−1
≤ γ < λ,

+∞∏
k=1

σk ≤ σ, (14)

where λ is determined by

([C]+ + [A]+[M ]+ + [B]+[M ]+eτλ)K ≤ e−λK,

then the set D = {φ(m) ∈ Cτ |[φ(m)]+τ ≤ σT } is a global attracting set of (1).

Proof. Considering DIRNNs model (1) under (H1)-(H3), we can transform (1)
to ⎧⎨⎩

[x(m + 1)]+ ≤ ([C]+ + [A]+[M ]+)[x(m)]+

+([B]+[M ]+)[x(m − τ(m))]+ + J,
[x(mk)]+ = [Hk(x(m−

k ))]+ ≤ Rk[x(m−
k )]+, m = mk.

(15)

The initial string comes to be

[φ(m)]+τ = col{||φ1(m)||τ , · · · , ||φn(m)||τ}, ∀m ∈ Z[−τ, 0]. (16)
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Since ρ([C]++[A]+[M ]++[B]+[M ]+) < 1 and [C]++[A]+[M ]++[B]+[M ]+ ∈
Rn×n

+ , then, from Lemma 3, we know that there must be a positive vector
z ∈ Ωρ([C]+ + [A]+[M ]+ + [B]+[M ]+) such that (E − ([C]+ + [A]+[M ]+ +
[B]+[M ]+))z > 0. Combining with (16), we denote

K = max
i∈Z[1,n]

{ ||φi(m)||τ
zi

}z, (17)

Obviously, we get K ∈ Ωρ([C]+ + [A]+[M ]+ + [B]+[M ]+).
It is easy to see that the initial string φ(m) satisfies

[φ(m)]+τ ≤ K, ∀m ∈ Z[−τ, 0]. (18)

From (A1), it is not difficult to choose a positive scalar λ such that ([C]+ +
[A]+[M ]+ + [B]+[M ]+eτλ)K ≤ e−λK by continuity. Meantime, we know T =
(E−([C]++[A]+M ]++[B]+M ]+))−1J > 0. Based on these, we can easily obtain

[φ(m)]+τ ≤ Ke−λm + T, ∀m ∈ Z[−τ, 0]. (19)

We denote γ0 = σ0 = 1 and m0 = 0. By employing Lemma 4, (15) and (19),
we derive that

[x(m)]+ ≤ γ0Ke−λm + σ0T, m0 ≤ m < m1. (20)

Suppose that for all ν = 1, · · · , k, the inequality as follows hold

[x(m)]+ ≤ γ0γ1 · · · γν−1Ke−λm + σ0σ1 · · ·σν−1T, mν−1 ≤ m < mν . (21)

Next, we will show the conclusion is still correct when ν = k +1. Considering
m = mk, by the second inequality in (15) and (21), we can deduce

[x(mk)]+ = [Hk(x(m−
k ))]+ ≤ Rk[x(m−

k )]+

≤ Rk{γ0γ1 · · · γk−1Ke−λmk + σ0σ1 · · ·σk−1T }
≤ γ0γ1 · · · γk−1(RkK)e−λmk + σ0σ1 · · ·σk−1(RkT ). (22)

Employing (A2), we can deduce that (22) changes into

[x(mk)]+ ≤ γ0γ1 · · ·γk−1γkKe−λmk + σ0σ1 · · ·σk−1σkT (23)

Noting that γk ≥ max{1, ρ(Rk)}, σk ≥ max{1, ρ(Rk)}, from (21) and (23) we
can show that

[x(m)]+ ≤ γ0γ1 · · · γkKe−λm + σ0σ1 · · ·σkT, mk − τ ≤ m ≤ mk. (24)

And according to (15), we get

[x(m + 1)]+ ≤ ([C]+ + [A]+[M ]+)[x(m)]+ + ([B]+M ]+)[x(m − τ(m))]+

+σ0σ1 · · ·σkI, mk < m < mk+1, (25)
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Combining (24) with (25) and applying Lemma 4, we can get

[x(m)]+ ≤ γ0γ1 · · ·γkKe−λm + σ0σ1 · · ·σkT, mk ≤ m < mk+1. (26)

(26) shows that the conclusion (21) is right at ν = k + 1. By the mathematic
induction, we conclude that ∀k ∈ Z+

[x(m)]+ ≤ γ0γ1 · · ·γkKe−λm + σ0σ1 · · ·σkT, mk ≤ m < mk+1. (27)

Since ln γk

mk−mk−1
≤ γ < λ, it means that γk ≤ eγ(mk−mk−1). Furthermore,

because
+∞∏
k=1

σk ≤ σ, we obtain that ∀k ∈ Z+

[x(m)]+ ≤ γ0γ1 · · · γkKe−λm + σ0σ1 · · ·σkT

≤ eγmke−λmK + σT

≤ e−(λ−γ)mK + σT, mk ≤ m < mk+1. (28)

(28) indicates that

[x(m)]+ ≤ e−(λ−γ)mK + σT, ∀m ≥ 0. (29)

Let m → +∞ in both sides of (29). We can deduce

lim
m→+∞[x(m)]+ ≤ σT (30)

By Definition 2, we know that the D = {φ(m) ∈ Cτ |[φ(m)]+τ ≤ σT } is a global
attracting set. We complete the proof. �

4 Illustrative Examples

We consider the following DIRNNs

y(m + 1) = Cy(m) + Af(y(m)) + Bf(y(m − 1)) + J(m), m �= mk, (31)

with impulse perturbation

y(mk) = R(k)y(m−
k ), m = mk, (32)

in which y = col{y1, y2}, f(·) = col{f1, f2}, J(m) = col{J1(m), J2(m)}, R(k) =
diag{R1(k), R2(k)}.

CASE 1. We choose f1(y1) = y1 sin(y1), f2(y2) = |y2|, J1(m) = sin(m),

J2(m) = cos(m) and R1(k) = R2(k) = e
1

(πk)2 , mk = mk−1 + k, C =
(

1
4 0
0 1

5

)
,

A =
(

1
5

1
10

1
6

1
8

)
, B =

(
− 1

6
1
8

− 1
3

1
10

)
.

It is easy to see that there is a positive matrix M =
(

1 0
0 1

)
, such that

[f(y)]+ ≤ M [y]+. We derive that Rk = diag{e
1

(πk)2 , e
1

(πk)2 } and J = col(1, 1).
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We can easily observe that ρ([C]+ + [A]+[M ]+ + [B]+[M ]+) = 0.8697 < 1.

Let γk = σk = e
1

(πk)2 , so (A2) hold. Taking λ = 0.4, K = col{1, 1}, we can
deduce that ([C]++[A]+[M ]++[B]+[M ]+eλ)K ≤ e−λK. There exist γ = 0.1013
and σ = e

1
6 such that ln γk

mk−mk−1
≤ 0.1013 < 0.4 and

∏
k

σk ≤ e
1
6 . So (A3) hold.

Clearly, by using Theorem 2, we can obtain that the set

D = {
(

φ1(m)
φ2(m)

)
∈ R2| max

−1≤m≤0
|φ1(m)| ≤ e

1
6 7.413, max

−1≤m≤0
|φ2(m)| ≤ e

1
6 8.185}

is the global attracting set.
Figure 1 illustrates the dynamical behaviors of (31) and (32) under Case 1.
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Fig. 1. State trajectory under case 1

CASE 2. We consider f1(y) = 1
5 (y1+|y2|), f2(y) = 1

5 (y1 sin(y2)+y2), I1(m) =
cos(m), I2(m) = 1

2 + (−1)m 1
3 and R1(k) = R2(k) = e

1
2k , mk = mk−1 + k,

C =
(

1
8 0
0 1

9

)
, A =

(
1
9 − 1

10
− 1

9 − 1
10

)
, B =

(
− 1

8
1
10

1
9 − 1

9

)
.

It is easy to count out M =
(

1
5

1
5

1
5

1
5

)
, ρ([C]+ + [A]+[M ]+ + [B]+[M ]+) =

0.2922 < 1. We can choose λ = 0.5, K =
(

1
1

)
, such that ([C]+ + [A]+[M ]+ +

[B]+[M ]+eλ)K ≤ e−λK, T = (E − ([C]+ + [A]+[M ]+ + [B]+[M ]+))−1J =(
1.4012
1.1902

)
> 0.

Considering γk = σk = e
1
2k , we get γ = 0.25 < λ = 0.5 and σ = 1 ≥

∞∏
k=1

σk.

By Theorem 2, the set

D = {
(

φ1(m)
φ2(m)

)
∈ R2||φ1(m)| ≤ 1.4012, |φ2(m)| ≤ 1.1902}

is the global attracting set.
In Figure 2, we can see the simulation result under Case 2.
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Fig. 2. State trajectory under case 2

Remark 1. Obviously, the results proposed in [2] are invalid because of the exis-
tence of impulse. However, our results can go into effect with or without impulse.
Moreover, it is easy to see that we can still get the global attracting set even
though the weights of impulsive perturbations do not satisfy the assumption
ρ{R(K)} < 1 proposed in [12]. Hence, our results are less conservative than
those in [2] and [12].

5 Conclusions

We studied the invariant set and attractor of the discrete-time impulsive re-
current neural networks (DIRNNs) in this paper. By introducing an improved
delay difference inequality, we obtained some sufficient criteria to determine the
invariant set and attractor of DIRNNs. The examples in Section 4 demonstrate
the power of our methods. Compared with some previous results, our results are
less conservative.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China under Grants 60974132 and 10671133.
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Optimal Control for Boiler Combustion System Based on 
Iterative Heuristic Dynamic Programming* 

Bilian Liao, Kui Peng, Shaojian Song, and Xiaofeng Lin 
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Nanning Guangxi 530004, China 

Abstract. Boiler combustion system is a complex nonlinear system which has 
characteristic of strong coupling and strong-disturbance. It is hard to build 
accurate mathematical model and achieve optimal control for it. In this paper, 
radial basis function (RBF) neural network model for boiler combustion system 
is built based on data driven method firstly, then performing the optimal control 
of the boiler combustion system via the iterative heuristic dynamic programming 
(HDP) algorithm, and improving the initial weights of neural network and the 
utility function. Finally compared with the traditional HDP algorithm in Matlab. 
The result shows that the optimization algorithm of the iteration HDP based on 
the RBF neural network gets better in overshoot, convergence speed, steady state 
error, adaptability and robustness. 

Keywords: optimal control; iteration HDP; RBF neural network; boiler combustion 
system. 

1   Introduction 

Boiler combustion system is an important section in the boiler system, the main 
steam pressure is an important monitoring parameter of boiler combustion system 
which is to ensure the safe operation of boiler and the balance energy between boiler 
and load.  

To ensure the safe operation of boiler and the energy balance between the boiler 
and load, many experts in the optimization of combustion system have done a lot of 
scientific researches, and develop their corresponding optimization equipments. 
Some European and American companies develop some optimization softwares, such 
as NeuSIGHT system is an boiler combustion control system, which uses the 
artificial intelligence, neural network technology [1]. Li Zhi et al employ boiler 
combustion optimization with based online technical of the identification, and the 
convergence speed is improved [2]. Yan Gao et al implement the optimal control of 
                                                           
*  “This work was supported by the Natural Science Foundation of China under Grant 60964002; 

the Natural Science Foundation of Guangxi Province of China under Grant 0991057; the 
Science & Research Foundation of Educational Commission of Guangxi Province of China 
under Grant 200808ms003.” 
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boiler combustion system with expert system[3]. Peihong Wang et al study the boiler 
combustion optimizing by the artificial intelligence technology [4]. These studies 
have played a very important role in guiding the boiler combustion, but remain some 
disadvantages such as slow response, poor robustness, slow convergence speed and 
so on. In 1977, Werbos proposed a new optimization method—Adaptive Dynamic 
Programming (ADP), this method is very suitable to be used in hybrid, nonlinear and 
non-stationary environment. Huaguang Zhang, Qinglai Wei proposed the greedy 
iterative algorithm which is used to solve a class of discrete time nonlinear systems 
and a new infinite time optimal tracking control problem[5]. Qinglai Wei proposed 
iteration HDP algorithm which is implemented mainly by BP neural network and this 
method has a good convergence speed and stability[6]. The RBF neural network has 
advantages such as simple structure, fast training and learning speed, and can 
approximate any nonlinear function than BP neural network. Therefore, in this paper, 
boiler combustion system model is built by the RBF neural network based on the 
data, at the same time design the controller of boiler combustion system with RBF 
neural network of iterative HDP algorithm and compared with traditional HDP 
algorithm.  

2   Adaptive Dynamic Programming (ADP)  

For nonlinear systems, stability is only a bare minimum requirement in a system 
design. Ensuring optimality guarantees the stability of the nonlinear system. Dynamic 
programming is a very useful tool to solve optimization and optimal control problems 
by employing the principle of optimality. 

2.1   Dynamic Programming 

In order to solve optimization and optimal control problems, dynamic programming is 
proposed [7]. There are several fields about the dynamic programming, such as 
multiple-input and multiple-output systems, linear systems and nonlinear systems. 

For nonlinear discrete-time:  

( 1) [ ( ), ( )], 0,1,2...x k f x k u k k+ = =     (1)

Where x(k) represents the system state vector, u(k) is the control action, f is the 
system function. Suppose that one associates with this system the performance index 
(or cost)  

[ ( ), ] [ ( ), ( ), ]k i

k i

J x i i r U x k u k k
∞

−

=
=∑  (2)

According to Bellman equation, the optimal cost from time k is equal to 

))}1(())(),(({min))(( *

)(

* ++= kxJkukxUkxJ
ku

γ  (3)
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The optimal control at time k is the u(k), which achieves this minimum,    

* *

( )
( ) argmin{ ( ( ), ( )) ( ( 1))}

u k
u k U x k u k J x kγ= + +  (4)

However, for a practical dynamic programming problem, it is often computationally 
untenable to run true dynamic programming due to the backward numerical process 
required for its solutions, as a result of the well-known “curse of dimensionality”[8]. In 
order to overcome the curse of dimensionality problem of dynamic programming, 
adaptive dynamic programming is proposed. 

2.2   Adaptive Dynamic Programming 

In 1977, Werbos introduced an approach for ADP that was later called adaptive critic 
designs (ACDs)[9]. To implement the ADP algorithm, Werbos proposed “approximate 
dynamic programming” formulations. Adaptive dynamic programming has two basic 
versions which are heuristic dynamic programming (HDP) and dual heuristic 
programming (DHP) 

[10]. 
HDP is the most basic and widely applied structure of ADP. HDP is a method for 

estimating the cost function. Estimating the cost function for a given policy only 
requires samples from the instantaneous utility function U, while models of the 
environment and the instantaneous reward are needed to find the cost function 
corresponding to the optimal policy[10]. The structure of HDP is shown in Fig. 1. 

2.3   The Iterative HDP Algorithm 

The structure of iterative HDP is similar to the conventional HDP. For the analysis of 
convergence and stability, Qinglai Wei has been the strict mathematical proof in his 
doctoral thesis. Consider the following nonaffine nonlinear system:  

( 1) ( , )k kx k f x u+ =   (5)

According to equation 3, we can obtain the derivative of u 

* *
1 1

1

( ) ( )
0

T T
k k k k k k k

k k k k

J x x Qx u Ru x J x

u u x x
+ +

+

∂ ∂ + ∂ ∂= + =
∂ ∂ ∂ ∂

 

*
* 1 1 1

1

( )1
( ) ( )

2
Tk k

k
k k

x J x
u x R

u x
− + +

+

∂ ∂=
∂ ∂

 
(6)

Combining equation 3 and 6, the equation of discrete-time HJB can be derived, and 
then the explicit optimal control expression *u  is obtained by solving the HJB 
equation. The schematic of iteration HDP algorithm as follow:  
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( 1)x t +( )u t( )x t ( ( 1))J x t +

( )x t

( )x t

( ( ))J x t

  

1( ) ( )i k i kJ x J x ε+− <

0( ) 0kJ x =

1( ) argmin( ( ))T T
i k k k k k i ku

u x x Qx u Ru J x += + +
*

* 1 1 1

1

( )1
( ) ( )

2
Tk i k

i k
k k

x J x
u x R

u x
− + +

+

∂ ∂=
∂ ∂

1 ( , ( )) ( ( , ( )))i k i k i k i kJ U x u x rJ f x u x+ = +

1i i= +

 

Fig. 1. The structure diagram of the HDP           Fig. 2. Iteration HDP algorithm process 

3   Building the Neural Network Model of the Boiler Combustion 

3.1   Neural Network Model of the Boiler Combustion 

In this paper, model of the boiler combustion system is built by RBF neural network. 

For a boiler combustion system, the control variables are: the fuel quantity (B), 

supplied air rate (V) and air input amount rate (G), the state variable is: the main steam 

pressure (PT). As shown in Fig.3, sm represents the input of the network model , 

[ ( ) ( )]sm x t u t= , where ( )x t is the state variable at time t, ( )u t is the control variables 

at time t, )1( +tx is the actual output value of the model network, )1( +tx  is the desired 

output value, me  is error of the neural network model. In this paper, the structure of the 

model of the boiler combustion system is 4-60-1. 
The transfer function of RBF neural network is Gaussian function: 

1) Initialize the network parameters, the initial input is [ ( ) ( )]sm x t u t= , the center of 

Gaussian function is 
mc , the variance of Gaussian function is mb , the weights from 

hidden layer to output layer are mw ; the mapping from input to output is:  

2

2
exp[ ], k=1,2 60mk

mk

sm c
mh

b

−
= − L    ( 1) mx t w mh+ =  (7)

2) Define the error of the model network ( 1) ( 1)me x t x t= + − + ，

20.5 mE e= . 
3) Using the gradient descent method adjust the RBF neural network parameters. 
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So the gradient-based weight updating rule for the model network is given by 

 ( 1)
m m m m

m

x t
w w e e mh

w
η η∂ += − =

∂
   (8)

The center of Gaussian function updating rule for the model network is given by: 

( 1)
m m m

m

x t mh
c c e

mh c
η ∂ + ∂= +

∂ ∂
 (9)

The variance of Gaussian function updating rule for the model network is given by: 

( 1)
m m m

m

x t mh
b b e

mh b
η ∂ + ∂= +

∂ ∂
 (10)

Where the η =0.05 is learning rate. 

3.2   Model Testing and Results Analysis of Generalization 

The data-based RBF neural network model has good generalization ability from the 
simulation result. This is because RBF neural network has many advantages such as: 
fast learning, a wide range of data fusion, and the ability of parallel processing of data. 
Thus, the model of boiler combustion system has good generalization ability and 
accuracy based on RBF neural network. 

sm )1( +tx

)1( +tx

me

    

      Fig. 3. The idea of modeling of boiler        Fig. 4. Generalization ability of the model 

4   Neural Network Implementation of Iteration HDP  

In this paper, we use the iteration HDP to design the controller of the boiler combustion 

system based on RBF network. This control objective is to minimize cost of the output of 

the critic network, then the optimal control is a linear state feedback ( ) ( )*x k ku x f x x= , 
therefore, the training goal of iteration HDP is to find the feedback function ( )kf x . 
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For the conventional RBF neural network, assuming that the input is x, the number 
of hidden layer neurons is 60,that is because the RBF neural network has a strong 
classification, and this controller is trained 1000 times, so in order to get a better 
clustering, the number of the center of the critic network and action network are 60.The 
center and width of the Gaussian function is the c and b, the weight matrix between the 
hidden layer and output layer is denoted by W, then the output of neural network is 
represented by: 

2

2
( , ) exp( )T x c

F x W W
b

−
= −   (11)

4.1    The Model Network  

The model network is to approximate the system dynamic and it should be trained 
before the implementation of the iterative ADP algorithm. The update rule of the model 
network is adopted as gradient decent method. After the model network is trained, its 
weights are kept unchanged. 

4.2   The Critic Network  

The structure of critic network is: 1-60-1. The critic network is used to approximate the 
performance index function ( )i

kJ x . The output of the critic network is denoted as 

( ( )) ( ( ))i T
cJ x k W f x k

∧

=  (12)

The target function can be written as 

      1( ( )) ( ( ), ( ( ))) ( ( 1))i i iJ x k U x k u x k J x kγ
∧

+ = + +  (13)

Where ( ( ), ( ( )))iU x k u x k  is the utility function,γ （ 0 γ< ≤ 1） is discount factor. 

Then we define the error function for the critic network 

1 1( ( )) ( ( )) ( ( ))i i
ce x k J x k J x k

∧
+ += −    

1
( ( )) ( ( ))

2
T

c c cE e x k e x k=  (14)

So the gradient-based the center of Gaussian function updating rule for the critic 

network is given by                      

2

1 2
1 1

( )
( )( ( ) )

L N
ci

ci ci c j ci
i j ci

x k c
c c e G x k c

b+
= =

−
= − − −∑∑   (15)
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The centers of the Gaussian function updating rule for the critic network is given by 

2

1 3
1 1

( )
( )

L N
ci

ci ci c j
i j ci

x k c
b b e G

b+
= =

−
= − −∑∑   (16)

The gradient-based weight updating rule for the critic network is given by 

2

1 2
1

( )
( )

N
c

ci ci c j
j c

x k c
w w e G

b+
=

−
= − −∑  (17)

Where L represents the number of the center, N represents the number of output node 

cl =0.05 is the learning rate of critic network. 

4.3   The Action Network 

The goal of action network is to find the optimal control signals, so as to minimize the 
cost-to-go function ( ( ))J x k . 

( ( )) ( 1)
0

( ) ( ) ( )

J x k U J k
r

u k u k u k

∂ ∂ ∂ += + =
∂ ∂ ∂

 (18)

The optimal control is 
*

* 11 ( 1) ( ( 1))
( ) ( )

2 ( ) ( 1)
Tx k J x k

u k R
u k x k

− ∂ + ∂ +=
∂ ∂ +

 (19)

In the action network the state x(k) is used as input to create the optimal control as 
the output of the network. The output can be formulated as 

( ) ( ( ))i T
au k W f x k

∧

=  (20)

The error function of action network is defined as: 

*( ) ( )i
ae u k u k

∧

= −         
1

2
T

a a aE e e=  (21)

The weights updating algorithm is similar to the one for the critic network. By the 
gradient descent rule, we can obtain 

1( ) ( ) a
ai ai a a

a

e
w k w k l e

w+
∂= −
∂

 (22)

1( ) ( ) a
ai ai a a

a

e
c k c k l e

c+
∂= −
∂

 (23)

1( ) ( ) a
ai ai a a

a

e
b k b k l e

b+
∂= −
∂

 (24)

Where al =0.02 is the learning rate of action network, r is the discount factor. 
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4.4   Improvement of the Training Strategy 

The initial value of the neural network is randomly generated, so it is difficult to ensure 
the stability. Therefore, this paper based on the saved data, which is the best training 
results of a number of times in the course of training, then we can directly load the last 
saved data to train the neural network.  

4.5   Improvement of Utility Function 

Traditional utility function is defined as a quadratic about state variables and control 
variables. When the control objective is given, the utility function can be defined as the 
way with a tracking error. 

( )kZ x x= −    *( ( ))k i kP u u x= −    T TU Z QZ P RP= +    (25)

Where x represents control objectives, Q is positive definite quadratic form, R is 
semi-positive definite quadratic form. 

5   Simulation and Testing 

The initial condition is x(k) = 0.5, the model network has been trained offline. The 
control objective of the main steam pressure is maintained at 4.82MPa nearby. In this 
paper iteration HDP algorithm and conventional HDP algorithm are programmed, and 
compared the result of them in the Matlab environment. The control effects of iterative 
HDP and the traditional HDP are shown in Fig.5. 

    

         (a) Result of main steam pressure                         (b) Result of optimal control 

Fig. 5. Shows the result of experimental  

The experimental results show that, the controller which is based on RBF neural 
network of iterative HDP algorithm not only features its strong robustness, high speed 
of convergence and high control precision, but also in terms of energy consumption and 
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combustion efficiency is much better than conventional HDP. The coal consumption of 
the two controllers is: 5.16t/h and 6.17t/h based on iterative HDP algorithm and 
conventional HDP algorithm. 

6   Conclusion 

In this paper, first RBF neural network model of boiler combustion system is built .RBF 
neural network have a good approximation for nonlinear systems. Experiment shows 
that: the RBF neural network model has good generalization ability. Then optimal 
control system of the boiler combustion is designed the by iterative HDP method. The 
simulation result shows that: the controller of boiler combustion system has many 
advantages of strong robustness, fast convergence speed and high control precision 
based on RBF neural network of the iterative HDP algorithm. So the controller not only 
meets the security requirement of the boiler combustion system in industrial 
production, but also achieves the target of low consumption and low pollution. 
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Abstract. In order to fully mine the characteristics of load data and improve the 
accuracy of power system load forecasting, a load forecasting model based on 
Ensemble Empirical Mode Decomposition (EEMD) and Artificial Neural 
Networks (ANN) is proposed in this paper. Firstly, the load data can be resolved 
into a limited number of Intrinsic Mode Function (IMF) components and one 
remainder by EEMD which avoids the mode mixing problem of Empirical Mode 
Decomposition (EMD). Then, through the observation of the spectrum by Hilbert 
transform, it’s obvious that the regularity and periodicity of low frequency 
components are stronger than high frequency components. So one sole 
appropriate ANN forecasting model is chosen for each low frequency 
component, and the linear combination of ANN model is applied to forecasting 
each high frequency component. Simulation results show that the new model 
proposed in paper is better than anyone ANN forecasting model. 

Keywords: EEMD; load forecasting; one sole ANN model; linear combination 
of ANN model. 

1   Introduction 

Load forecasting is important for the development and operation of power system. For 
the short-term load forecasting, raising the accuracy of forecasting can both improve 
the economical efficiency and enhance the reliability of power system operation[1]. 
Many scholars have made a lot of extensive research, and proposed a variety of 
forecasting methods, such as Time Series Method, AR Model Algorithm, Fuzzy 
Algorithm, Expert System, Wavelet and ANN Algorithm. In recent years, a new 
method of load forecasting based on Empirical Mode Decomposition (EMD)[2], has 
been proposed. The complex power system load data can be decomposed into several 
Intrinsic Mode Function (IMF) components and a remainder by EMD, so that the 
feature and the regularity of the load are mined completely. And the forecasting object 
of EMD changes from the complex data to a series of components with certain 
characteristics. The accuracy of the forecasting result is greatly improved. But 
sometimes there is a problem called mode mixing existing in the process of EMD. It 
makes the IMFs lose the original physical meaning and weaken the regularity. Thereby, 
the forecasting accuracy may be reduced. A new method[3] called Ensemble Empirical 



430 W. Sun, Z. Liu, and W. Li 

Mode Decomposition (EEMD) which can effectively improve the mode mixing of 
EMD is introduced. A forecasting model based on EEMD and ANN is proposed in this 
paper. Firstly, the power system historical load data is decomposed into several 
mono-component signals by EEMD. Secondly, through the characteristics and the 
influence factors of the components, the appropriate ANN model is chosen for each 
decomposed IMF to forecast. Lastly, we take the superposition of each component 
forecasting results as the ultimate forecasting value. The result of load forecasting 
indicates that this proposed method can achieve a higher accuracy. 

2   EMD and EEMD 

2.1   EMD Theory 

EMD[4] is a process to decompose the time series signal into many different kinds of 
time series components. Any complex data can be divided into a limited number of 
IMFs by it. Each local oscillation structure or frequency structure of signal can be 
described by the IMFs. EMD method is adaptive and efficient. This decomposition is 
based on local time scale, so that EMD is very suitable to analyze the non-linear and 
non-stationary signal. The steps to extract IMF from a signal )(ts  are as follows: 

(1) Make )(tx  equal the value of original signal )(ts . 

(2) Spline interpolates between local maxima (minima) of )(tx  to obtain the upper 

(lower) envelope, and calculate the mean— )(tm of the upper and lower envelope. 

(3) Subtract )(tm  from )(tx , get the result— )(th .  

(4) If )(th  meets the two properties, it’s an IMF. If not, )(th  as a new )(tx  repeats 

the 2, 3, 4 steps. 
(5) Subtract the IMF from original to obtain the residue. Use the residue to extract the 
new IMF, until the residue becomes a monotonic function. At last, the original is 
represented as: 

n

n

i
i rcts +=∑

=1

)(  (1)

nr  is the residue of data )(ts , ic is the ith IMF obtained from )(ts . 

However, sometimes EMD can not decompose the original data sequence correctly. 
The IMF, sifted out from the original signal, is not a mono-component. Some signals 
with different scales exist in the same IMF, or the signals with a similar scale exist in 
different IMFs. These IMFs extracted by EMD lose physical meaning and weaken the 
regularity. This is so called mode mixing. 

2.2   EEMD Theory 

In order to improve the mode mixing of EMD, a new method called EEMD[5] was 
proposed in 2005. The process of EEMD is as follow:  
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(1) Add a white noise to the targeted data. 
(2) Decompose the data with added white noise into IMFs. 
(3) Repeat step 1 and step 2 again and again, but with different white noise series each 
time. 
(4) Obtain the (ensemble) means of corresponding IMFs of the decompositions as the 
final result. 

)(
1

)(
1

tC
N

tC
N

n
jnj ∑

=

=  (2)

)(tC j is the jth IMF decomposed from the original signal by EEMD, and N is the 

number of added white noise. 

The essence of EEMD eliminating mode mixing is that the uniform distribution 
statistical characteristic of minimal amplitude white noise is used. With the added white 
noise, the signal will be continuous in different scales, and different scales of the signal 
region will be automatically corresponded to the suitable scale. So the problem of mode 
mixing is avoided by EEMD[6]. 

3   Load Forecasting Model Based on EEMD and ANN 

3.1   Overview for Neural Network 

Artificial Neural Networks (ANN)[7] is one of the most popular forecasting techniques. 
With the strong nonlinear mapping ability, ANN can obtain the inherent law of known 
data easily. In this paper, the linear neural network, BP (Back propagation) network and 
RBF (Radial Basis Function) network are used. A brief introduction of each model is 
made below. 

Linear neural network, made up with one or more linear neuron, is one of the 
simplest networks. The transfer function of each neuron is a linear function, so output 
of linear neural network can be any value. BP network is the multilayer feed forward 
neural network based on back propagation algorithm. The problem of sample between 
input and output changes into the problem of nonlinear optimization. Compared with 
other types of ANN, a novel neural network—RBF network is stronger in physiological 
basis, simpler in structure, faster in learning and more excellent in approaching 
performance. 

3.2   Forecasting Model 

Load forecasting based on ANN is one of the most appropriate methods in power 
system applications. It’s also an issue been extensively studied now. There is no need to 
determine the relationship between the input and output in the neural network. It’s just 
according to train the historical data, to obtain the relationship between the forecast 
results and the variables such as weather. Using this relation, it’s easy to predict the 
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future load. Load series of power system is non-stationary time series with certain 
periodicities and random. So it can be regarded as a linear combination of sub-serials 
characterized by different frequency. Each component shows the similar periodic 
changes with similar frequency characteristics and changes of the same. If electric 
power load forecasting is only operated by ANN, the result is to deviate from the truth. 
And its reliability is to reduce with the influence of random facts[8].  

For the forecasting model’s choice, the paper applies a method which is the suitable 
combination of several ANN forecasting models. The basic idea is that the actual value 
has the linear relationship with the forecasting value of the several networks. It needs to 
consider this several forecasting results totally and gets the weight coefficient through 
the mathematical method. The forecasting combination model is more systematic and 
comprehensive than a model. The linear combination method[8-9] is : 

⎪⎩

⎪
⎨
⎧

=≥=++
++=

∧∧∧

)3,2,1(0,1321

332211

ikkkk

ykykyky
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tttt  (3)

Where 1ˆ ty , 2ˆ ty , 3ˆ ty are the forecasted load value from BP networks, RBF networks, 

linear networks, and k1, k2, k3 are the weigh coefficients of each one, ty  is the 

combined predictive value. 
The steps forecasting model proposed in the paper are shown in Fig. 1[10].  

(1)Using EEMD, load data can be decomposed into several IMFs which are IMF1, 
IMF2, …, IMFn and res. The spectrum of each IMF is arranged by frequency. 
(2)In order to select the suitable forecasting model, the spectrum of each IMF is 
calculated with Hilbert transform. 
(3)The superposition of each forecasting results are obtained as the ultimate forecasting 
value. 

 

Fig. 1. Hybrid forecasting model of EEMD and ANN 
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4   Simulation of Load Forecasting 

The power system load data, which is used to forecast the next day’s load data (24 
points), comes from a certain place of Sichuan Province from June 30 to August 5 in 
2006. With the help of EEMD, the load sequence can be resolved into a series of 
independent IMF components with different scales. Fig. 2 shows the waveforms of load 
data and the sifted IMF components. The instantaneous frequency of each component is 
shown in Fig. 3. 
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Fig. 2. Original load and the sifted components of
EMD 

Fig. 3. Spectrum of each IMF 

 
From the Fig. 3, it’s obvious that each of the first two IMFs is high frequency 

component, and has a wide band and strong fluctuations. Simulation results show that 
it’s hard to find a suitable one sole ANN forecasting model for this kind of component 
to achieve high forecasting precision. So a liner combination model is applied in the 
forecasting for IMF1 and IMF2. Weight coefficients can be calculated by the formula 
in [9]. 
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Table 1. Comparison of forecasting error of IMF1 

model BP  RBF  Linear  Combination  
Maximum difference 35.097 19.507 23.476 15.806 

Mean difference 14.456 7.419 7.615 4.985 

Table 2. Comparison of forecasting error of IMF2 

model BP  RBF  Linear  Combination  
Maximum difference 13.303 3.507 23.476 15.806 

Mean difference 13.608 8.084 6.716 3.436 

Through the figures and tables above, the forecasting result of liner combination 
model is more accurate than the results of BP model and RBF model. Each frequency 
band of IMF3-IMF6 is narrow and these components are basically stable. According to 
the characteristics of the waveform and frequency, the forecasting models of rest 
components are as follows: RBF model for IMF3 and IMF4, BP model for IMF5 and 
IMF6. Because the frequencies of IMF7, IMF8 and the remainder are low, and the 
volatility of them is weak, liner model is selected for them. The ultimate forecasting 
value that is the superposition of every forecasting result is shown in Fig. 6. 
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Fig. 6. Forecasting curve of Aug.6 with the 
combination model 

Fig. 7. Forecasting curve of Aug.6 with each 
model 

In order to verify the high precision and accuracy of proposed combination model 
based on EEMD and ANN, the result forecasted only by BP model or RBF is compared 
with result forecasted by proposed model. Fig. 7 shows the curves forecasted by each 
model. Table 3 lists the relative error and mean error of each forecasting model. Though 
the Fig. 7, it is clear that the combination method achieves a better forecasting result 
than other methods. From the Table 3, the relative error and mean error forecasted by the 
model proposed in paper are smaller than those forecasted by RBF model and BP 
model directly. The validity of the proposed method is verified. 
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Table 3. Comparison of the 24-hour forecasting error of Aug.6 

Time 
(hour) 

BP  
Error 
(%) 

RBF  
Error 
(%) 

Combination 
Error 
(%) 

Time 
(hour) 

BP  
Error 
(%) 

RBF  
Error 
(%) 

Combination 
Error 
(%) 

0 2.036 0.660 0.055 12 1.040 3.821 1.470 
1 0.734 0.565 0.248 13 1.194 6.529 2.795 
2 0.262 0.789 0.826 14 3.947 5.222 1.695 
3 0.263 1.584 0.566 15 1.296 2.815 1.037 
4 1.974 1.215 0.896 16 0.628 0.590 0.031 
5 3.706 0.675 0.839 17 0.114 0.359 1.003 
6 1.739 1.408 0.483 18 2.637 1.819 0.466 
7 0.120 0.426 0.481 19 6.531 0.928 0.362 
8 1.910 2.909 0.050 20 2.788 0.618 0.361 
9 3.038 1.983 0.764 21 2.392 2.066 0.808 
10 0.177 0.480 0.996 22 1.879 1.438 3.246 
11 4.420 2.469 0.175 23 0.421 0.826 1.901 

Maximum 
error     

6.531 6.529 3.245 

Mean error     1.885 1.758 0.898 

5   Conclusions 

In this paper, a new load forecasting model based on EEMD and ANN is proposed. 
With EEMD, the load data sequence can be divided into a limited number of IMF 
components and remainder. Through the spectrum analyze with Hilbert transform, a 
suitable forecasting model can be chosen for each component. Finally, the 
superposition of every forecasting result is taken as the ultimate forecasting value. The 
forecasting relative error of the model proposed in this paper is compared with the 
relative error of BP neural network model and error of RBF neural network model. The 
result indicates that new method is effective to achieve the higher forecasting accuracy. 
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Abstract. Analog circuit fault diagnosis can be modeled as a pattern recogni-
tion problem. Fault patterns are complicated which has high demands for classi-
fication accuracy and efficiency. Therefore a new analog circuit fault diagnosis 
method using Echo State Networks (ESNs) is proposed. We adopt the time 
windows function to construct reservoir with corresponding clusters of ESNs 
inspired by complex network topologies imitating cortical networks of the 
mammalian brain. Multiple-cluster reservoir is generated instead of non-
clustering reservoir of the original ESNs with random sparse connections. We 
use the number of classes to determine the number of clusters to improve per-
formances in specific analog circuit fault diagnosis problems. Simulation results 
show the effectiveness of the proposed method.  

Keywords: Echo State Networks; Time windows; Analog circuit fault diagnosis. 

1   Introduction 

Analog circuits are the most unreliable part to malfunction in electronic equipments. 
Fault diagnosis of analog circuits can improve the maintenance of electronic equip-
ments. Due to the component tolerances and nonlinear effects, complex relationships 
exist between circuit response and component parameter in analog circuit [1]. Re-
searchers introduced neural networks into analog circuit fault diagnosis [2]. Thus, 
fault diagnosis is modeled as pattern recognition problem. However, traditional neural 
networks have several defects such as high computational training costs, which can-
not meet the needs of practical fault diagnosis. 

In 2001, H. Jaeger presented Echo State Networks (ESNs) [3] which provided an 
architecture and learning principle without the slow convergence for Recurrent Neural 
Networks (RNNs). By mapping the input to a higher dimension by the dynamics of a 
random, fixed dynamical system called dynamical reservoir (DR) and only training a 
simple output mechanism, ESNs has achieved state-of-the-art performance in practic-
al problems, such as time series prediction [4], classification [5] and anomaly  
detection [6]. Traditionally, people used ESNs for time domain tasks. ESNs for static 
pattern classification presented in [7] achieve good performances. However, it is  
difficult to use DR without clusters to meet the needs of classification problems of 
different categories of data. 
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In real-world complex networks, researchers have discovered small-world pheno-
mena and scale-free properties in the past few years. Recently, several new neural 
network models that have some characteristics of complex network topology attracted 
the attention of researchers. Associative ESNs with either small-world architecture or 
scale-free topology have been investigated, and most of which demonstrate better 
performance than the randomly connected.  

Kaiser et al. proposed a multi-cluster cortical network generation method [8]. The 
generated networks simulate certain characteristics of mammalian cerebral cortices 
well. Two growth mechanisms manage the generating process. One depends on the 
spatial-distance between neurons while the other depends on specific time-windows. 

In order to generate a clustered classifier and improve the accuracy of analog cir-
cuit fault diagnosis, complex network theory is introduced to generation of ESNs 
dynamic reservoir. Moreover, to meet the demands of specific classification tasks, we 
associate the numbers of clusters in dynamic reservoir with the number of classes. 

The remainder of the paper is structured as follows. In Section 2 we introduce ana-
log circuit fault diagnosis. Section 3 presents echo state networks based on corres-
ponding clusters. We present the experiment results and discussion in Section 4  
followed by the conclusions in Section 5. 

2   Introduction of Analog Circuit Fault Diagnosis 

Traditional approaches, such as fault dictionary technique and parameter identifica-
tion method, have several difficulties associated with analog fault diagnosis. For in-
stance, fault dictionary technique always deal with the single fault and hard fault 
situation due to the component tolerances and the limited volume of fault dictionary. 
And we can hardly identify all the circuit parameters due to the large number of ele-
ments in analog circuit. Neural networks overcome these difficulties. 

Analog circuit fault diagnosis with neural networks is built up with two phases: 
learning and diagnosis. In the learning phase, the responses of circuit under test 
(CUT) were obtained by intentionally introducing faults to generate fault data sam-
ples. The fault-free components are varied within their tolerance ranges. Thus, the 
circuit responses reflect the faults status. A diagnosis model with neural networks can 
be buit up with the fault data samples and the fault classes. In addition, feature extrac-
tion is always adopted to improve the diagnosis performance, because the data sam-
ples are always high-dimentional due to the small sampling interval. In the diag nosis 
phase, the diagnosis model is fed with testing sets for fault classification. The genera-
lizability of the model can be evaluated during this phase. 

Fault patterns are complicated which has high demands for classification accuracy 
and efficiency. Therefore, we propose a new analog circuit fault diagnosis method 
using ESNs as fault diagnosis model. 

3   ESNs Based on Corresponding Clusters 

3.1   Introduction of Echo State Networks  

ESNs maps the input to a higher dimension by a random, fixed dynamical architecture 
called reservoir. The basic idea of ESNs is shared with Liquid State Machines (LSM). 
Both are subsumed under the name of Reservoir Computing. 
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Fig. 1. Scheme diagram of a typical structure of ESNs 

Fig. 1 shows a typical structure of ESNs which consists of input units, dynamical 
reservoir (DR) and output units. ESNs with K input units, N dynamical reservoir 
processing elements and L output units can be described as 

 in backx( +1) = f(W u( +1)+Wx( )+W y( ))n n n n  (1) 

 out outy( +1) = f (W (u( +1),x( +1),y( )))n n n n  (2) 

In (1) and (2), x(n) = (x1(n),…, xN(n)), y(n) = (y1(n),…, yL(n)), u(n) = (u1(n),…, 
uK(n)) are activations of the DR processing elements, output units and input units at 
time step n, respectively. The functions f = (f1,…, fN) are activation functions for DR 
processing elements. The functions out out out

1f  = ( ,..., )Lf f  are the output units’ output 

functions (implemented as identity functions in this paper). By an N×K input weight 
matrix in inW  = ( )ijw , the input is tied to DR processing element. The DR processing 

elements are connected by an N×N matrix W = (wij). 
back backW  = ( )ijw  is an N×L matrix 

for the connections that project back from the output to DR. And DR is tied to the 
output units by an L×(K+N+L) matrix out outW  = ( )ijw . The term (u(n + 1), x(n + 1), 

y(n)) is the concatenation of the input, internal, and previous output activation vectors. 
ESNs learning process can be briefly described as training suitable output weights 

to obtain the desired output from DR which is random and fixed in advance. Determi-
nation of optimal output weight matrix Wout is a linear regression task of mean-square 
error (MSE) minimization [3][9]. 

ESNs have been used traditionally for time domain tasks. The way to use ESNs for 
static pattern classification was firstly presented by Embrechts and Alexandre [7]. The 
issue was to break the dependency of activations of DR processing elements. Equa-
tion (3) shows the stabilization phase of x(n). Every input sample is held until x(n) 
does not change significantly. The index n in Equation (3) is only used to distinguish 
between different patterns and does not represent time. 

 ( ) in ( 1)x( +1)  = W u( +1)+Wx( 1)i in n n −+  (3) 

Before using the activation function, x(n) has been stabilized. The method keeps the 
advantages of ESNs and achieves good performances. However, the reservoir is gener-
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ated randomly without using priori knowledge of the number of classes. It is difficult 
for the connection structure without clusters to meet the needs of classification of 
different data categories. 

3.2   The Proposed Method 

In order to meet the specific classification demands and improve the classification 
accuracy, complex network theory was introduced to the dynamic reservoir of the 
original ESNs. Note that one of effective mechanisms, multi-cluster cortical networks 
by time windows, was carried out by Kaiser. 

In Kaiser’s research, it shows that many neural networks, such as the complex cor-
tical networks of the mammalian brain [10], are organized in multiple clusters, with 
many connections within but few links between clusters. Motivated by this discovery, 
he introduced this time window mechanisms. Reference [8] took advantage of this 
time window mechanism to generate clustered dynamic reservoir of ESNs, combined 
with complex network theory. 

Based on the above results and discoveries, this paper proposes ESNs based on 
corresponding clusters for static classification. We expect this structure to generate 
the relationship between the number of clusters in our ESNs and the number of 
classes in different tasks. 

P tim
e

(i)
(t)

 

Fig. 2. Plot of ( )i
timeP (k=3, α=0.2) 

In our method, connection of two nodes is established with probability 

 ( ( )) ( ( ))( ( , )) ( ) ( )w V w U
dist time timeP P d U V P t P t= ⋅ ⋅  (4) 

where ( , )( ( , )) d U V
distP d U V e γβ − ⋅= is the distance-dependent probability. d(U, V) de-

notes the Euclidean distance between thenodes U and V. 
( ) ( )( ) ( , , ( )), ( 1, , )i i

timeP t P t i kμ σ α= = K  is the time window dependent probability. α  

is the time window integral value. k is the number of pioneer nodes as well as the 
number of clusters which is determined according to the number of classes in this 
paper. Fig. 2 shows the time window function functions with k=3 and α=0.2. Fig. 3 
shows the clusters in the reservoir of ESNs corresponding to the number of classes 
with specific data (k=3). Due to space constraints, we will not go into details of the 
parameter settings, and refer the reader to [8]. 



 Analog Circuit Fault Diagnosis with ESNs Based on Corresponding Clusters 441 

 

Fig. 3. Scheme diagram of DR with corresponding clusters (k=3) 

In order to generate the connections of reservoir processing elements, we implement 
the method by the following five steps. 

1) Set the parameters of the algorithm including N,α , β ,γ  representing the size 

of reservoir, the time window integral value, the distance-dependent parameters. We 
set the number of pioneer nodes - k according to the number of classes. 

2) Pioneer nodes are deployed in a two-dimensional plane with range [0,1] random-
ly. Store their spatial coordinates. In this paper, we don’t use a highly symmetric 
placement of the pioneer nodes which is used in [8] for brain simulation [11]. 

3) New node U is placed randomly and corresponds to the nearest pioneer node. 
Then compute the time window dependent probability ( ( )) ( )w U

timeP t . 

4) The distance-dependent probability ( ( , ))distP d U V  and the time window depen-

dent probability ( ( )) ( )w V
timeP t  of new node U and existing nodes V are computed. Then 

the connection probabilitys P are calculated by Equation (4). Connections exist if the 
connection probabilities are not smaller than some random number. 

5) Repeat 4) until all the connection probabilities of new node U are computed and 
compared. If the connections of new node U and existing nodes V do not exist, then 
go back to 3) until the number of existing nodes is N. 

3.3   Training of ESNs 

In this paper, the activation functions for DR processing elements were implemented 
as tanh functions and the output units’ output functions fout were implemented as iden-
tity functions. The connections denoted as dashed line in Figure 1 were not adopted. 
We state the training of ESNs in this paper as: 1) Set the parameters of ESNs. 2) In-
itialize connection matrices Win and generate W by our method presented in Section 
3.1. 3) Collect x(n) by feeding training samples into Equation (3). 4) Calculate Wout 
with pseudo-inverse method by Equation (2). 

4   Experiments and Discussions 

In this paper, analog circuit fault diagnosis experiments are built up with two phases: 
learning and diagnosis. In the learning phase, the impulse responses of circuit were 
obtained and processed by Haar wavelet transform. Then we selected the first coeffi-
cient of approximation levels 1–5 as features fed into ESNs for training the diagnosis 
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model. Note that, feature extraction is not the focus of this paper. Moreover, feature 
selection can be beneficial to improve the results of the method which will be ad-
dressed by future work. In the diagnosis phase, testing sets were obtained by the same 
procedure and fed it to the diagnosis model for fault classification. 

 

Fig. 4. Sallen-Key bandpass filter (S-K) 

 

Fig. 5. Four op-amp biquad high-pass filter (4-OPA) 

We adopted a Sallen-Key bandpass filter circuit (Fig. 4) and a four op-amp biquad 
high-pass filter circuit (Fig. 5) using PSPICE software in experiments. In order to 
simulate working condition for circuit more precisely, the resistors and capacitors are 
assumed to have tolerances of 5% and 10%, respectively. We conduct 50 times of 
Monte Carlo analysis to acquire fault samples by varying components within their 
tolerances to every kind of fault class. We get 8 and 12 kinds of fault classes from S-
K circuit and 4-OPA circuit, respectively. Due to space constraints, we will not go 
into details of the faults setting, and refer the reader to [2]. 

For each dataset, we did 10 repetitions of a 2-fold cross validation and adopted 
same parameters including the number of DR processing elements, ESNs reservoir 
spectral radius and DR connectivity for generating reservoir of the original ESNs and 
our method. 

We also obtained results from experiments with the original ESNs and MLPs with 
BP training (BPNN) as fault diagnosis methods. We obtained the time consuming 
data in seconds by calculating the average of 100 continuous operations with 90% of 
samples as training sets and 10% as testing sets. 
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Table 3 shows the diagnosis results. Our method achieves the lowest error rate. We 
proved the advantages of reservoir with corresponding clusters by the better perfor-
mance than the original ESNs. The training time of our method is significantly lower 
than BPNN and also lower than original ESNs. Due to the additional time consumed 
by reservoir generation with corresponding clusters, the time for generating DR of our 
method is higher than original ESNs. Note that generation of reservoir can be com-
pleted independently before training. Therefore, the time for generating DR has little 
effect on the applications. 

Table 3. Results comparisions 

Circuit Method BPNN Original ESNs Our method 

S-K 

Error rate 10.11% 5.33% 4.91% 

Training time 3.309 0.162 0.139 

Tesing time 0.009 0.017 0.014 

Generating time —— 0.071 0.926 

4-OPA 

Error rate 17.88% 8.91% 8.37% 

Training time 8.031 0.197 0.117 

Tesing time 0.010 0.017 0.010 

Generating time —— 0.134 0.717 

Experiment results indicate that the methods which adopt ESNs outperform the 
BPNN in analog circuit fault diagnosis. Reservoir with corresponding clusters is 
beneficial for improving the diagnostic performance with priori knowledge of the 
number of fault classes. Our method achieves good performance on time consumed, 
and can meet the needs of analog circuit fault diagnosis. 

5   Conclusions 

Motivated by the discovery that, the complex cortical networks of the mammalian 
brain are organized in multiple clusters, we propose an interesting model——ESNs 
with corresponding clusters for analog circuit fault diagnosis. Experiment results 
show that the new method outperforms the original ESNs and BPNN. 
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Abstract. We propose a novel approach based on wavelet decomposi-
tion and echo state networks to discover the multiscale dynamics of time
series which we call anti-boundary-effect wavelet decomposition and echo
state networks (ABE-WESNs). ABE-WESNs use the wavelet decompo-
sition as preprocessing steps and choose a matched ESNs for every scale
level. We use the data extension methods to overcome the boundary
effect. The introduced weight factors can both resolve the problem of
cumulation of errors resulting from the wavelet decomposition. Experi-
ments and engineering applications show that the ABE-WESNs can ac-
curately model and predict some time series with multiscale properties.

Keywords: Echo State Network, Wavelet, Time Series Prediction,
Boundary Effect.

1 Introduction

As a new paradigm in recurrent neural network training, Echo State Networks
(ESNs) have recently attracted great interest because of its simple mathemati-
cal formulation, simple and linear learning algorithm and superior performance
compared with other classical methods. It has become a vivid research field
with numerous extensions of the basic idea and been successfully used to a vari-
ety of applications, such as time series predictions, pattern classification, object
tracking and motion prediction. However, ESNs is still in its infancy and needs
further improvements and extensions, such as reservoir design and adaptation
methods[1].

One of the shortcomings of classical ESNs is that even though the reservoir
is sparse, the activations are still coupled so strongly that the ESNs is poor in
dealing with different time scales simultaneously, e.g., predicting several super-
imposed generators [1]. To model and predict multiscale time series with ESNs,
there are two different ideas. One is to make some modifications in ESNs it-
self, such as changing the types of neuron activation functions. By replacing
part of the neuron functions in the reservoir with sigmoid-wavelet functions, Se
Wang et al proposed a novel model called sigmoid-wavelet hybrid echo state net-
works (SWHESN) to improve the performance of classical ESNs when it is used

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 445–454, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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as chaotic predictor[2]. By dividing the reservoir into decoupled subreservoirs
and introducing inhibitory connections among all the sub-reservoirs, Yanbo Xue
proposed a new structure of reservoir called decoupled echo state networks [3].
Simulation experiments show that the decoupled echo state networks can tackle
some multi-scale time series prediction problem. Designing a finite impulse re-
sponse or infinite impulse response filter as neurons in reservoirs can also enable
ESNs to simultaneously learn multiple attractors and signals at different time
scales, which is especially important for modeling real-world time series[4,5]. It
is natural to design hierarchical models to solve multi-timescale and/or spatial
scale problem. The authors of [6] proposed hierarchical echo state networks to
discover multiscale dynamical features of dynamical system. These methods of
process multiscale problem mentioned above have a common feature that the
training process of model is too complex to be applied to practical applications.

Another way to solve multiscale problems is straightforward. It introduces the
wavelet decomposition in the model as the preprocessing step. Francis Wyffels
et al. took wavelet decomposing as preprocessing step to capture the information
at different scales and determine a matched ESNs for different scale levels. We
call this model wavelet decomposition echo state networks(WESNs)[7]. Although
WESNs can model and predict all the three time series defined in ESTSP 2008,
there are still some problems. First, there is no consideration on boundary effect
of wavelet decomposition which actually exists in wavelet decomposition [11].
Second, there may be the cumulation of errors generated by different ESNs.
The original WESNs model[7] determined a matched ESNs model for each scale
level. For every ESN, people carry out the training for minimizing the root mean
square error of this scale level. Thus, the model can only guarantee the accuracy
of every scale level instead of the whole time series. In other words, it may
undergo a large cumulation of errors.

As a result, we propose a enhanced model to overcome the problems, which
we call anti-boundary-effect wavelet decomposition Echo State Networks
(ABE-WESNs). Compared with the original WESNs, there are two major mod-
ifications. First, to overcome the boundary effect resulting from wavelet decom-
posing, we truncate the data without boundary distortion and use the truncated
data as the input of every matched ESNs of a different time scale. Second, we
introduce the weight coefficients, also known as the weight factors here, to the
ABE-WESN model to solve the problem of error cumulation. Specifically, we
consider the final output of the model as a linear combination of the outputs of
the matched ESNs other than a summation of them. The introduction of weight
factor can also make the parameter determination of the matched ESNs of every
time scale easy. We can obtain the weight factors by minimizing errors of the
output of the ABE-WESNs model and teacher samples.

The organization of this paper is as follows. In section 2, we describe the
structures of the ABE-WESNs in detail. We also discuss the structure of the
models and training algorithm of the parameters. We describe some experiments
and real-life world engineering applications with the proposed approach in detail
in section 3. We conclude this paper in section 4.
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2 ABE-WESNs Model

2.1 The Structure of ABE-WESNs Model

The aim of the ABE-WESNs is to simultaneously model and predict in every
time scale and as a whole. Therefore, we introduce the wavelet decomposition as
the preprocessing step to capture useful information at different time scales and
choose different ESNs to match different properties of every time scale, which
may result in the ESNs having totally different parameters. To improve the over-
all predicting accuracy, we introduce weight factors. Fig. 1 shows the structure
of the ABE-ESNs in detail. According to Fig. 1, the ABE-WESNs consist of four
submodules: wavelet decomposition and single-branch reconstruction, boundary-
effect processing, ESN models and weight factor.

Fig. 1. The Structure of the ABE-WESNs

2.2 Wavelet Decomposition and Single-Branch Reconstruction

Let {cm0
0 ,m ∈ Z} denote the multiscale time series, where m is the length of the

sequence. We describe the wavelet decomposition as follows.⎧⎪⎪⎪⎨⎪⎪⎪⎩
c
mj

j =
∑

mj−1∈Z

hmj−1−2mjc
mj−1
j−1

d
mj

j =
∑

mj−1∈Z

gmj−1−2mjc
mj−1
j−1

(1)

In (1), d
mj−1
j−1 are the detail coefficients, which mainly consist of a high-frequency

noise; c
mj−1
j−1 are the approximation coefficients, which contain much less noise

than that of the original signal. j−1 corresponds to the number of levels. mj −1
is the length of the series. h and g are the high-pass and low-pass filter respec-
tively. The reconstruction is the inverse process of decomposition, which we can
implement by (3)
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
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hm1−2m0

∑
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hm2−2m1 · · ·
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mj∈Z

hmj−2mj−1d
mj
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m1∈Z

gm1−2m0

∑
m2∈Z

gm2−2m1
· · ·
∑

mj∈Z

gmj−2mj−1
d

mj

j

(2)

In the famous Mallat Algorithm, we decompose the original sequence {cm0
0 } level

by level according to (1) and get the final high-frequency sequence {dmj

j , j =
1, 2, · · · e} and the low-frequency sequence {cmj

j , j = 1, 2, · · · e}, where mj =
(1/2)mj−1, i = 2, 3, · · · , e correspond to the length of the sequence d

mj

j or c
mj

j .
Then we can obtain the single-branch reconstruction sequence Dj, j = 1, 2, · · · , e
and Ce in terms of (3), whose length are all m meeting the purpose of single
branch reconstruction.

2.3 Dealing with Boundary Effect

Boundary effect, also known as Gibbs phenomenon, are common in wavelet de-
composition and other methods. We summarize the mechanism of the boundary
effect as follows: The discard of parts of the original sequence inevitably results
in some harmonic of the spectrum being discarded or the changed on the mag-
nitude or phase of the spectrum, which in turn result in some distortion on the
boundary of the original sequence.

There are several methods to overcome the boundary effect in the wavelet
decomposition, such as Zero-Value Padding, Symmetric-Value Padding, Smooth-
Value Padding, algorithm of Matching Wave. In this paper, we choose the data
extension method to overcome this problem. The steps are as follows.

Step 1. Truncate n samples from the original time series and construct sequence
cn
0 , where n > m0 and m0 is the number of the samples we expect to use.

Step 2. Perform wavelet decomposition on the sequence cn
0 and reconstruct the

sequence Di, i = 1, 2, · · · , e and Ce, where the length of these sequence is m.
Step 3. Truncate the sequence Di, i = 1, 2, · · · , e and Ce to make the length of
these sequence are m0.

2.4 ESN Model

We obtain e+1 sequence(Di(i = 1, 2, · · · , e) and Ce) from the original sequence
by decomposing the wavelet and removing the boundary effect, where Di(i =
1, 2, · · · , e) and Ce have different properties respectively. It is difficult to predict
all the sequence accurately using the same ESNs model, which can partially
explain why ESN is poor in dealing with different time scales simultaneously.
Therefore, it is rational to choose different ESNs for sequence Di(i = 1, 2, · · · , e)
and Ce. This means that we set up suitable parameters for every ESNs model.

(1)Choosing input and output sequences. Based on the principle of ESNs
[8], we choose the following format sequence as the input of (ESNs)Dj , where
we use (ESNs)Dj to denote the ESN model applied to sequence Dj .
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{
uDj (n) = [Dj(n), Dj(n − v1), · · · , Dj(n − vK−1))]
yDj (n) = [Dj(n + vK)]

(3)

In (3), vi, i = 1, 2, · · · ,K denotes the delay time such that vi < vi+1, i =
1, 2, · · · ,K−1, where K is the embedding dimension. This means uDj (n)(K×1)
is the input vector of time n and y(n)(1 × 1) is the output of the time n. There
are several methods to determine the delay time and embedded dimension, such
as autocorrelation function[9], Mutual Information, C-C method. We can choose
a proper method according to the characteristics of the problem.

(2)Parameters of the reservoir. The important reservoir parameters of
(ESNs)Dj are activation function fDj , spectral radius ρ(W ) of the internal
weight matrix W , the size of the reservoir, the scale of the input SCDj , the shift
of the input SFDj , the sparse connectivity CDj of the internal weight matrix W .
Based on the principle of the ESN[8], we update the states of the (ESNs)Dj as

XDj = fDj

(
W in

Dj
uDj (n) + WDjXDj (n + 1) + W back

Dj
yDj (n − 1)

)
(4)

where W in
Dj

(NDj ×KDj ), WDj (NDj ×NDj ) and W back
Dj

(NDj × 1) are the input,
internal and feedback weight matrix respectively. NDj denote the sizes of the
reservoirs.

(3)Calculating Output Weight Matrix. Assuming that the initial state
of the reservoir is XDj (0) = 0, we apply the input sequence {uDj(n), n =
1, 2, · · · , T } to the (4). For each time that is larger than or equal to an ini-
tial washout time T0, we collect the corresponding network state {XDj(n), n =
T0, T0+1, · · · , T } as a new row into a state collecting matrix MDj . In the end, one
will obtain a state collecting matrix of size (T −T0 +1)× (KDj +NDj +1). Simi-
larly, for each time larger than or equal to T0, we collect the teacher output y(n)
row-wise into a teacher collection matrix MDj

with the size of (T −T0+1)×LDj .
According to the (5)

W out
Dj

= M−1
Dj

TDj (5)

(4)Calculating Output of (ESN)Dj . According to the output equation of
(ESN)Dj , we can calculate its output as follows

ŷ = W out
Dj

(
uDj (n),xDj

)
(6)

where (cot, ·) denotes the vector concatenation. Repeating Step (1)-(4), we can
obtain the output of each scale level, which means ŷDj (n), j = 1, 2, · · · , e and
ŷCe(n).

2.5 Weight Factor

So far, we have described how to predict the sequence of every scale level. Note
that we carry out the modelling and prediction process on every scale and only
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use the information of this level. Therefor, we can only ensure the accuracy of
each level. This inevitably results in error cumulation if the predicted results are
simply summed. In this paper, we introduce weight coefficients which are also
called weight factors to solve this problem. By adjusting the weight factors, we
can not only improve the accuracy of the whole but also overcome the boundary
effect to some extent. Therefor, the ABE-WESN can predict the multiscale time
series at both different scale and the whole.

Let

E(n) = y(n) − ŷ(n) = y(n) −
(

e∑
i=1

aiŷDi + ae+1Ĉj(n)

)
(7)

where y(n) are the teacher data which we can construct from the original se-
quence; (̂y)(n) are the output of the ABE-WESN; ai, i = 1, 2, · · · , e + 1 are the
weight factors. We can calculate the weight factor by a optimal problem

min
a1,··· ,ae,ae+1

T∑
n=T0+1

E(n) (8)

For (8), we can obtain the solutions by (2.5)

A =
(
XT X

)−1
XT Y (9)

where Y = [y(T0), y(T0 + 1), · · · , y(T )], A = [a1, a2, · · · , ae] and⎡⎢⎢⎣
ŷD1(T0 + 1), ŷD2 (T0 + 1), · · · , ŷDe (T0 + 1),ŷCe(T0 + 1)
...

...
...

ŷD2(T ), ŷD1(T ), · · · , ŷDe(T ),ŷCe(T )

⎤⎥⎥⎦
Up to now, we have described the ABE-WESN model in detail. By (2.5) we

can calculate the weight factor and further obtain the output of ABE-WESN.

3 Experiments

To verify the validation of the ABE-WESN, this section shows several experi-
ments results. The experiments include both synthetic data and real-world en-
gineering applications. First, we predict three challenging time series defined
in [7], which are proposed on European Symposium on Time Series Predic-
tion(ESTSP2008). Second, we use the proposed ABE-WESN models to predict
the mobile traffic time series, which are from the real-life application and typi-
cally multiscale.

3.1 Experiments Setup

These section describes the setup of the experiments, including the performance
measurements and the choice of the wavelet families.
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Performance Measurements. The performance index used in this paper is
the error of unbiased root mean square error(RMSE)

err =

√√√√ 1
(T − T0 + 1)σ2

T∑
n=T0+1

(ŷ(n) − y(n))2 (10)

where y(n) and ŷ(n) are the value of the original sequence and its corresponding
estimation. σ is the variance of the sequence y(n).

Choice of the Wavelet Families. One can choose different wavelet families,
such as Haar, Daubechies, SymletsA, Biorthogonal, according to the properties
of the original sequence. In this paper, we choose Dauberchies wavelet family
according to the characteristics of the sequence.

3.2 Prediction of Time Series Defined on ESTSP 2008

Francis Wyffels et al presented an approach and solution to the European Sym-
posium on Time Series Prediction 2008 challenge problem. The solution utilizes
wavelet and ESNs architecture to model and predict all three time series defined
in this conference. In this paper, we also deal with the challenging problem using
the proposed ABE-WESN instead of WESN. For comparison, we carry out the
experiments using the same setup for all three time series defined on ESTSP
2008. We repeat the experiments 100 times. Table 1 shows the average results.
Fig. 2 illustrates the predicted result of the 3rd sequence.

Table 1. The predicting results of the ABE-WESN and WESN for the 3 time series
defined on the ESTSP 2008. Trn Error and Tst Error denote training and testing
,respectively, which are calculated by (10).

Sequence Model Trn Samples Tst Samples Trn Error Tst Error

I ABE-WESN 331 18 0.591 0.4902

I WESN 331 18 – 0.5000

II ABE-WESN 1195 100 0.2501 0.3417

II WESN 1195 100 – 0.3742

III ABE-WESN 31409 200 0.1028 0.4804

III WESN 31409 200 – 0.6481

We refer the predicted results of the WNESN model given in Table 1 to [7].
As we can see from Table 1, the proposed approach in this paper obtains better
performance in terms of the performance index defined in (10). There are about
%2,%8.6,%25 percent enhancement, respectively.

3.3 Prediction of the Mobile Traffic Time Series

An accurate model and a prediction of mobile traffic play a crucial role in mobile
network planning and design[10]. The data used in our experiments are from
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Fig. 2. Prediction Results of the 3rd time series using the proposed ABE-WESN.
The top shows the original sequence. The bottom gives the comparison results of the
practical and predicted results.

Fig. 3. The frequency of cells with NRMSE. we show the normalized root mean square
error(NRMSE) on the horizontal axis and the frequency on the vertical axis. The top
is of training error and the bottom is of the testing error.

the Network Monitoring System in China Mobile Communication Corporation
Heilongjiang Co. Ltd. We extract the conversation traffic series from different
129 cells from July 1, 2008 to July 30, 2008. Note that we sample the conversation
traffic every hour.

The conversation traffic sequences are typically multiscale time series and have
several different periods. Thus, in the experiments, we choose 4 as the decom-
posing level and “db2” as wavelet family. The training and testing samples are
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Fig. 4. The frequency of cells with NRMSE. The horizontal axis represents the nor-
malized root mean square error(NRMSE). The vertical axis represents the frequency.
The top is the training error and the bottom is the testing error.

480 and 24 ,respectively. The average training and testing error are 0.268(0.097)
and 0.335(0.130)1 .respectively. The histogram of training and testing errors of
the 129 mobile cells are given in Figure 3. we can find that both training errors
and testing error concentrate on the ranges of mean value. Note that we use the
same parameters of the ABE-WESN in the previous experiments to different
129 mobile cells.This means that the proposed approach not only can model and
predict the traffic time series accurately but also has strongly robust property.
Figure 4 shows the training and testing results of a mobile cell.

4 Conclusion

To solve the multiscale problem, we proposed a novel approach, called ABE-
WESN, based on the wavelet decomposition and echo state network. Considering
the boundary effect and error cumulation of wavelet decomposition, we introduce
weight factors. The weight factors make the final output of the model a linear
combination instead of the sum of the different outputs of the ESN. Thus, this
approach is totally different from previous approaches. The proposed approach
not only models and predicts the multiscale time series accurately but also has
a strong robust property. We carry out the experiments on both synthetic and
real-world data. For synthetic data, we apply the proposed method to model and
predict the 3 time series defined on the ESTSP 2008 and gain better performance.
At the same time, we use the proposed method to solve a real-world engineering
problem on how to predict the conversation traffic which is very key issue in
network planning and design. The results show that the ABE-WESN can meet
the requirements of modelling and predicting of the mobile conversation traffic.
1 The data in the () are the variance.
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Abstract. Boiler drum system is an important component of a thermal power 
plant or industrial production, and the water level is a critical parameter of 
boiler drum control system. Because of non-linear, strong coupling and large 
disturbance, it is difficult to reach a suitable working state of drum system by 
using traditional control methods. It is necessary to explore new methods to 
realize optimal control of drum water level. The back propagation (BP) neural 
network model of boiler drum system is built in this paper firstly, then the 
optimal control of the drum system by the dual heuristic dynamic programming 
(DHP) algorithm is realized, and compared with the heuristic dynamic 
programming (HDP) algorithm at last. The result shows that the DHP 
optimization algorithm has good performance in control precision and rejecting 
process disturbances.  

Keywords: boiler drum level; BP neural network; dual heuristic dynamic 
programming; optimal control. 

1   Introduction 

Industrial boiler is an important equipment widely used in thermal power plant or 
industrial production. As the production equipment of high temperature and high 
pressure steam, which can drive turbine as power source and can be used as heat 
source for distillation and chemical reaction process as well, the drum system is the 
most important component of a boiler. 

Water level is one of the main control parameters in boiler drum control system. 
On one hand, if the water level is too low, the water will evaporate quickly, then 
steam pressure will increase rapidly, which will affect the water circulation and threat 
to the safe of boiler system, even will cause a burst in steam pipe or result in 
catastrophic accident. On the other hand, if the water level is too high, it will lead to 
the steam bringing water into superheater and scaling in heating pipelines, which will 
cause superheater damaged. What’s more, too high of water level will decrease the 
boiler efficiency and increase energy consumption [1]. So it is very important to keep 
drum water level within a desired range. However, because of the phenomenon of 
                                                           
* This work was supported by the Natural Science Foundation of China under Grant 60964002; 

the Natural Science Foundation of Guangxi Province of China under Grant 0991057; 
Scientific Research Foundation of GuangXi University under Grant XGL090017. 
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False Water Level and the characteristic of typical nonlinear and strong coupling, it is 
difficult to obtain satisfying control quality with traditional control methods.  

Many researchers have developed some control strategies such as two-impulse 
control and three-impulse control and other intelligent control for water level. For 
example, Fugang Huang [2] and Weijie Yue [3] et al researched adaptive drum water 
level based on fuzzy PID control, the stability was improved, but dynamic response 
was still slow. In 1977, Werbos proposed a new optimization method, that was 
adaptive dynamic programming (ADP). The method is very suitable to be used in 
hybrid, nonlinear and non-stationary environment. Chao Lu et al applied action-
dependent heuristic dynamic programming (ADHDP) to a large power system 
stability control problem [4]. Derong Liu et al demonstrated a good engine torque and 
exhaust air-fuel ratio (AFR) control with adaptive critic techniques for an engine 
application [5]. Jianqiang Yi and Dongbin Zhao et.al formulated the ADP methods 
for ship course control problem and obtained fine tracking control result. 

Because of good approximation capability to nonlinear system, BP neural network 
is used to build drum model based on offline data from a 75T/H industrial boiler in 
this paper. Then an optimal controller is designed with the dual heuristic dynamic 
programming algorithm to explore new method to stabilize the water level of boiler 
drum. 

2   Adaptive Dynamic Programming (ADP) 

2.1   Dynamic Programming [6] 

Dynamic programming is based on Bellman’s principle of optimality, which is a very 
useful tool in solving optimization and optimal control problems. Suppose that a 
nonlinear discrete-time system is given:  

( 1) [ ( ), ( )], 0,1,2...x t f x t u t t+ = =  (1)

Where x∈ nR  represents the system state vector, u mR∈  is the control action, f is 
the system function. Suppose the performance index of this system is  

[ ( ), ] [ ( ), ( ), ]t i

t i

J x i i r U x t u t t
∞

−

=
=∑  (2)

Where U is called the utility function, r (0<r ≤ 1) is the discount factor. Note that 
the function J is dependent on the initial time i and the initial state x(i), and it is 
referred to as the cost-to-go of state x(i). The objective of dynamic programming 
problem is to choose a control sequence u(t), t =i, i+1,…., so that the function J in (2) 
is minimized. According to Bellman equation, the optimal cost from time t is equal to 

* *

( )
[ ( ), ] min( ( ( ), ( )) [ ( 1), 1])

u t
J x t t U x t u t J x t tγ= + + +  (3)

The optimal control at time t is the u(t), which achieves this minimum.  

* *

( )
( ) argmin( ( ( ), ( )) [ ( 1)])

u t
u t U x t u t J x tγ= + +  (4)
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2.2   Adaptive Dynamic Programming  

In any case, it is often computationally untenable to run true dynamic programming 
due to the backward numerical process required for its solutions, which is the “curse of 
dimensionality”. In 1977, Werbos [7] proposed an approach for ADP. To implement the 
ADP algorithm, Werbos proposed “approximate dynamic programming” formulation. 
The main idea of ADP shows in Fig. 1.  

)(tu)(tx )1( +tx )1( +tJ
γ

)()( tUtJ −

 

Fig. 1. The structure diagram of the ADP 

The heuristic dynamic programming (HDP) and dual heuristic dynamic 
programming (DHP) are two main forms of adaptive dynamic programming. Of 
which, HDP has a critic network that estimates the function J(cost-to-go) in the 
Bellman equation of dynamic programming. DHP has a critic network that estimates 
the derivatives of J with respect to the vector x(t) . The critic network of DHP training 
is more complicated than in HDP since we need to take into account all relevant 
pathways of back propagation. Although the average training is much longer than 
HDP, DHP has better accuracy than the HDP. According to the characteristics of the 
boiler drum system, the optimal controller of boiler drum level is researched based on 
DHP algorithm in this paper [8]. 

3   Building the Neural Network Model of the Boiler Drum 

3.1   The Analysis of Drum System  

As the drum internal is a complex process, which has characteristic of typical nonlinear 
and strong coupling, it is difficult to find a suitable mathematical relationship to 
describe the model of the drum system. Since artificial neural networks can 
approximate to complex nonlinear system, we build the model of the drum system 
based on neural network.  

According to the flow of steam measured by flow transmitter and water level 
measured by level transmitter last time, the water level of boiler drum can be 
changed by regulating water supply executor. As shown in Fig. 2, when the load is 
changed, the flow of steam is changed, then water supply are regulated before the 
water level fluctuations, in this way the water level will be stabilized within a 
reasonable scope [9].  
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Fig. 2. Automatic drum level regulation system 

3.2   Building the Model of Drum System  

In this paper, model of the drum level system is built by BP neural network. For a 
drum level system, the control variable is: water supply, the state variables are: drum 
level and flow of steam. As shown in Fig.3, sm  represents the input of the network 
model, [ ( ) ( )]sm x t u t= , where ( )x t  is the state variables at time t, ( )u t  is the 

control variable at time t, )1( +tx is the actual output value of the model network, 

)1( +tx  is the desired output value. In this paper, the structure of the model of the 

boiler drum system is 3-10-2. According to the structure of the boiler drum, the main 
controlled parameter is the drum water level, and the control parameter is water 
supply of the drum, while steam flow is determined by the load.  

•

•

•

1mw 2mw

( )u t

( )x t

( 1)x t +{sm

 

Fig. 3. The structure of BP neural network  

Calculate model network forward, the transfer function is tansig:  
Calculate input layer to hidden layer: 

11 *T
mmh w sm=  (5)
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Output of hidden layer is:  

)1(tan2 mhsigmh =  (6)

Calculate hidden layer to output layer:  

2 * 2T
mv w mh=

 
(7)

Output of the model network is:  

( 1) tan ( )x t sig v+ =  (8)

Define the error fuction of the model network:  

( 1) ( 1)me d t x t= + − +     21

2m mE e=  (9)

Where )1( +td  is the desired output under the control signal )(tu , )1( +tx is the 

actual output signal of the next network under the control signal )(tu and state signal 

( )x t . 

Using the gradient descent method adjust the weights of BP neural network.  

2
2 2

* *m m m
m m m

m m m

E E e
w l l

w e w

∂ ∂ ∂Δ = − = −
∂ ∂ ∂

* * 2m ml e mh= −  (10)

1
1 1

( 1) 2 1
* * * * * * *

( 1) 2 1
m m

m m m m
m m

E e x t v mh mh
w l l e

w x t v mh mh w

∂ ∂ ∂ + ∂ ∂ ∂Δ = − = −
∂ ∂ + ∂ ∂ ∂ ∂

 (11)

Where ml =0.05 is the learning rate of model network.  
Neural network model is trained based on 700 sets of offline historical data, 

which is collected from DCS of the boiler drum system. After data preprocessing, 
400 sets of them are chosen as training samples, another 300 sets of them as the 
generalization ability testing samples of the model network. Part of them is shown 
in Table 1 

Table 1. Part data of the drum system 

NO. flow of water 
supply（t/h） 

flow of steam 
（t/h） 

drum water level 
(mm) 

1 80.586082 74.031746 40.952381 
2 79.323563 74.622711 38.021976 
3 78.598289 74.810745 29.084249 
4 78.840051 74.864471 26.300365 

… … … … 
700 64.442001 78.732597 14.285714 
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3.3   Model Testing and Results Analysis of Generalization Ability 

The curve in Fig. 4 is the generalization ability curve of neural network model. The 
testing result shows that the model of the drum level system based on BP neural 
network has good generalization ability.  

  

Fig. 4. Generalization ability of neural network model 

4   Designing the Neural Network Controller Based on DHP 
Algorithm [10] 

4.1   Training the Critic Network of DHP 

According to the characteristic of input and output of the drum system, the controller 
of drum level system is designed by DHP optimization algorithm, which based on BP 
neural network. As shown in Fig. 1, the output of critic network is the derivatives of J 
with respect to the vector x(t), that is 

( )
( )

( )

J t
t

x t
λ ∂=

∂
 (12)

The structure of critic network is: 1-10-1. The activation functions of hidden layer 
neuron and output layer neuron are tansig function and linear function respectively. 
The goal of critic network is to minimize the cost-to-go function J→∞ . According to 

the principle of dynamic programming, we can obtain 

( ) ( ) ( 1)J t U t J tγ= + +  (13)

( ) ( ) ( ) ( ) ( 1) ( 1)
( )

( ) ( ) ( ) ( ) ( 1) ( )

J t U t U t u t J t x t
t

x t x t u t x t x t x t
λ γ
∧ ∂ ∂ ∂ ∂ ∂ + ∂ += = + +

∂ ∂ ∂ ∂ ∂ + ∂
 (14)

( 1)
( 1)

( 1)

J t
t

x t
λ ∂ ++ =

∂ +
 (15)

Where )(tU  is the utility function, γ =0.8 is discount factor. 
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The output of the critic network is ( 1)tλ + , the control strategy is evaluated by 

critic network. Reward or punishment is given by utility function, who gives a reword 
when the control result is more accurate. Define utility function by fixed-point 

tracking, ( ) ( ( ) )U t x t x= − , where x  represents control objective.  

So we define the error function for the critic network 

( ) ( ) ( )ce t t tλ λ
∧

= −  (16)

1
( ) * ( )

2
T

c c cE e t e t=  (17)

The weights update rule for critic network is a gradient-based adaptation given by 

2
2 2

* * * * 2c c c
c c c c c

c c c

E E e
w l l l e Jh

w e w

∂ ∂ ∂Δ = − = − = −
∂ ∂ ∂

 (18)

2 2 2c c cw w w= + Δ  (19)

1 2
1 1

* * * (1 2* 2)* ( 1)c c c
c c c c c

c c c

E E e
w l l e w Jh Jh x t

w e w

∂ ∂ ∂Δ = − = − = − − +
∂ ∂ ∂

 (20)

1 1 1c c cw w w= + Δ  (21)

Where cl =0.05 is the learning rate of critic network. 

4.2   Training the Model Network of DHP 

The model network is to approximate the system dynamic and it should be trained 
before the implementation of the DHP algorithm. The update rule of the model 
network is adopted as gradient decent method. The weights of the model network are 
kept unchanged after the network is trained. 

4.3   Training the Action Network of DHP 

The structure of action network is: 2-10-1. The activation functions of hidden layer 
neuron and output layer neuron are still tansig function and linear function respectively. 
The goal of action network is to find the optimal control signals *( )u t , so as to minimize 

the cost-to-go function ( )J t . According to optimal control equation, we can obtain  

( ) ( ) ( 1) ( ) ( 1) ( 1)
0

( ) ( ) ( ) ( ) ( 1) ( )

J t U t J t U t J t x t
r r

u t u t u t u t x t u t

∂ ∂ ∂ + ∂ ∂ + ∂ += + = + =
∂ ∂ ∂ ∂ ∂ + ∂

 (22)

So, we define the error function for the action network:  

( ) ( ) ( 1) ( ) ( 1) ( 1)
( )

( ) ( ) ( ) ( ) ( 1) ( )a

J t U t J t U t J t x t
e t r r

u t u t u t u t x t u t

∂ ∂ ∂ + ∂ ∂ + ∂ += = + = +
∂ ∂ ∂ ∂ ∂ + ∂

 (23)
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21

2a aE e=  (24)

The weights update rule for action network is a gradient-based adaptation given by 

2
2 2

* * *a a
a a a a

a a

E e
w l l e

w w

∂ ∂Δ = =
∂ ∂

     2 2 2a a aw w w= − Δ  (25)

1awΔ =
1 1

* * *a a
a a a

a a

E e
l l e

w w

∂ ∂=
∂ ∂

      1 1 1a a aw w w= − Δ  (26)

Where al =0.03 is the learning rate of action network, r =0.9 is discount factor. 

5   Simulation and Testing 

For the critic network and the action network, the hidden layer uses the tansig 
function, and the output layer uses the linear function. The model network has been 
trained offline. The structure of the critic network and the action network are chosen 
as 1-10-1and 2-10-1 respectively. The control target of drum water level is 26mm and 
the initial weights of action network are constrained in (-1,1) randomly. We realized 
DHP algorithm and HDP algorithm and compared the result of them under the 
MATLAB environment. The result is shown in Fig. 5.  

 

                                  (a)                                                                        (b) 

Fig. 5. Simulation results of DHP and HDP control algorithm 

We display in Fig. 5(a) a typical trajectory of the drum level using the DHP 
algorithm. We conduct experiments starting from the initialized randomly inputs of 
action network. The experiment results show that, the controller which is based on 
DHP algorithm features its high speed of convergence and high control precision. 
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6   Conclusion 

This paper is concerned with the drum level optimal control problem. Firstly, we 
analyze the boiler drum system and then build a BP neural network model based on 
the data from DCS. After that, the optimal control strategy of dual heuristic dynamic 
programming for water level system of boiler drum has been designed, whose 
structure and algorithm is made up of three BP networks. Through a large number of 
simulation studies have done, the optimal control strategy is more effective than the 
heuristic dynamic programming, which can adapt the changes of object parameters 
and shows a good quality on control with strong robustness, anti-jamming capacity 
and self-adaptability. 
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Abstract. In this paper, we introduce polynomial-based Radial Basis Function 
Neural Networks (p-RBF NNs) classifier based on Fuzzy C-Means (FCM) clus-
tering method. The parameters (fuzzification coefficient of FCM and polynomi-
al type of models) are optimized by means of Particle Swarm Optimization 
(PSO). The fitness of hidden layer is expressed in term of partition matrix  
resulting from fuzzy clustering in this case being FCM. As weights between 
hidden layer and output layer, four types of polynomials are considered. The 
performance of proposed model is affected by some parameters such as the fuz-
zification coefficient of the fuzzy clustering (FCM) and the type of polynomial 
between hidden layer and output layer. The parameter coefficient of polynomial 
(weight) is obtained by using Weighted Least Square Estimation (WLSE) to 
improved performance and interprebility of local models. The proposed clas-
sifier is applied to a synthetic and machine learning dataset and its results are 
compared with those reported in the previous studies.  

Keywords: Radial basis function neural network, Fuzzy C-means clustering, 
Weighted Least Square Estimation, Particle Swarm Optimization. 

1   Introduction 

In many pattern recognition systems, the paradigm of neural classifiers have been 
shown to demonstrate many tangible advantages with regard of criteria of learning 
abilities, generalization aspects, and robustness characteristic. Among these classifi-
ers, multilayer perceptrons (MLPs) have been in a wide use. It is shown that the MLP 
can be trained to approximate complex discriminant functions. However, the MLP 
classifier requires a large number of parameters to be determined especially in case of 
a multilayer topology of this network. Also the number of iterations required to train 
these networks is often quite large. Radial Basis Function Neural Networks (RBF 
NNs) came as a sound alternative to the MLPs. RBF NNs exhibit some advantages 
including global optimal approximation and classification capabilities, and a rapid 
convergence of the learning procedures, see [1]. In spite of these advantages of RBF 
NNs, these networks are not free from limitations. In particular, discriminant functions 
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generated by RBF NNs have a relatively simple geometry which is implied by the 
limited geometric variability of the underlying receptive fields (radial basis functions) 
located at the hidden layer of the RBF network. To overcome this architectural limita-
tion, we introduce a concept of the polynomial-based Radial Basis Function Neural 
Networks (p-RBF NNs). Given the functional (polynomial) character of their weights 
connetcion in the P-RBF NNs, these networks can generate far more complex nonli-
near discriminant functions. 

In this paper, the fuzzy clustering-based p-RBF NNs classifier designed with the 
aid of FCM and the WLSE method involves structural and parametric optimization. 
As far as the structure optimization is concerned, there are three components to con-
sider, i.e., the number of the cluster, fuzzification coefficient used in the FCM algo-
rithm and the order of the polynomials that is equals to weights between hidden layer 
and output layer. These three components impact the performance of the proposed 
model and need to be optimized. In this paper, we carried out the structural as well 
parametric optimization by means of the Particle Swarm Optimization (PSO). 

Section 2 describes the architecture of the FCM-based p-RBF NNs classifier and 
section 3 presents a learning method applied to the construction of proposed  
model. Section 4 deals with the PSO and the optimization of proposed model using 
the PSO. Section 5 presents the experimental results. Finally, some conclusions are 
drawn in Section 6. 

2   Fuzzy Clustering-Based p-RBF Neural Networks 

The construction of the conventional RBFNN involves an input layer, a hidden layer 
and an output layer with feed forward architecture. The input layer denotes the num-
ber of n-dimensional input variables. All nodes of input layer connected to hidden 
nodes in hidden layer. The each node in hidden layer expresses a level of activation 
(fitness) of the receptive filed (radial basis function) given input variables. The node 
located at the output layer realizes a linear combination of the activation levels (fit-
ness) and weights of single numeric values. 

2.1   The Learning Method of Fuzzy C-Means in Hidden Layer  

The proposed fuzzy clustering-based p-RBF neural networks comes as the extended 
structure of the conventional RBFNNs and the characteristic of the proposed model 
change hidden layer into FCM algorithm as shown in Fig. 1.  

The hidden layer of proposed model used FCM algorithm divide input space as the 
number of cluster and the partition matrix of FCM is used as activation levels of re-
ceptive fields. Also, weights are not single numeric values but come in the form of 
polynomials involved input variables. 

The weights of the fuzzy clustering-based p-RBF Neural Networks, four types of 
polynomials are considered. These are constant, linear, quadratic and modified qua-
dratic as follows.  
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Fig. 1. Architecture of the fuzzy clustering-based p-RBF Neural Networks 
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These functions are activated by partition matrix and lead to local regression models 
located at the local model.  

There are many different ways to describe pattern classifiers. One of the most use-
ful ways is the one realized in terms of a set of discriminant functions gi(x), i=1,…,p 
(where p stands for the number of classes). The classifier is said to assign a input 
vector x to class ωi  

if 
gi(x)> gj(x)      for all j≠i. (5)

Thus, the classifiers are viewed as networks that compute p discriminant functions 
and select the category corresponding to the largest value of the discriminant. 

In this paper, the proposed p-RBF NNs classifier is used as a discriminate function 
for two-class or multi-class. If a classification problem is multi-class one then we use 
(5) as discriminant function, otherwise, we use the following decision rule defined 
commonly as a single discriminant function g(x) in two-class problem. 

Decide ω1 if g(x) > 0; otherwise decide ω2. (6)

2.2   The Learning Method of Fuzzy C-Means in Hidden Layer  

We briefly review the objective function-based fuzzy clustering. The FCM algorithm is 
aimed at the formation of ‘c’ fuzzy sets (groups) in input space. The objective function 
Q is expressed as a sum of the distances of individual input data from the prototypes 
(v1, v2, …, vc ). 
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Here, || || denotes a Euclidean distance method, ‘m’ stands for a fuzzification coeffi-
cient, m>1.0. N is the number of patterns (data). The resulting partition matrix is de-
noted by U=[uik], i=1, 2,…,c; k=1, 2, …, N. While there is a substantial diversity as 
far as distance functions are concerned, here we adhere to a weighted Euclidean dis-
tance taking on the following form  
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Where, σj denote a standard deviation of the jth input variable. This type of distance is 
still quite flexible and commonly used. 

Consider the set X which consists of N patterns treated as vectors located in some 
n-dimensional Euclidean space, that is, X={x1,x2,…,xN}, xk∈Rn, 1≤k≤N. In clustering 
we assign patterns xk∈X into c clusters, which are represented by its prototypes 
vi∈Rn, 1≤i≤c. The assignment to individual clusters is expressed in terms of the parti-
tion matrix U = [uik] where 

∑
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0 ,    1≤i≤c (10)

The minimization of Q is realized in successive iterations by adjusting both the proto-
types and entries of the partition matrix, that is min Q(U, v1, v2, …, vc). The corres-
ponding formulas used in an iterative fashion read as follows 
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We note that the resulting partition matrix produces ‘c’ fuzzy sets with the elements 
of the matrix u1, u2, …, uc forming the corresponding rows of the partition matrix U, 
that is U = [u1

T u2
T …. uc

T]. From the design standpoint, there are several essential 
parameters of the FCM that impacts its usage of the produced results. These parameters 
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concern the number of clusters, the values of the fuzzification coefficient and a form 
of the distance function. The fuzzification coefficient exhibits a significant impact on 
the form (shape) of the developed clusters. The commonly used value of “m” is equal 
to 2. Lower values of the fuzzification coefficient produce more Boolean-like shapes 
of the fuzzy sets where the regions of intermediate membership values are very much 
reduced. When we increase the values of “m” above 2, the resulting membership 
functions start to become “spiky” with the values close to 1 in a very close vicinity of 
the prototypes. 

2.3   The Learning Method of WLSE  

The weights between hidden layer and output layer are concerned with the estimation 
of the parameters of the polynomial of the local model. The main difference between 
the WLSE and standard LSE is the weighting scheme which comes as a part of the 
WLSE and makes its focus on the corresponding local model. The learning method of 
standard LSE is oriented to minimize its overall squared error between real output and 
model output, therefore local models which are obtained by using LSE do not proper-
ly represent local input-output characteristics of each sub-space resulting from the 
division of the input space. As a result, the interpretability of the local models which 
are obtained by using LSE tends to be limited or non-existent. 

In the WLSE, we estimate the optimal coefficients of the model through the mini-
mization of the objective function QL. 
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2Error(E) vx  (13)

Where, uik is the partition matrix u1 (activation level) of the ith cluster  
The performance index JL can be re-written using matrix notation 
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Where, ai is the vector of coefficient of polynomial (local model), is Y the vector of 
output data, Ui is the diagonal matrix (weighting factor matrix) which represents de-
gree of activation of the individual information granules by the input data. Xi is matrix 
which is formed with input data and centers point of cluster. In case the polynomial 
function is linear, Xi and ai can be expressed as follows 
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For the local learning algorithm, the objective function is defined as a linear combina-
tion of squared error, which is a difference between real (desired) output and the  



 Fuzzy Clustering-Based Polynomial RBF NNs (p-RBF NNs) Classifier Designed 469 

output of local model when considering the weighting factor matrix Wi. This matrix 
captures the activation levels with respect to the ith fuzzy cluster. In this sense, we can 
consider the weighting factor matrix as activation levels of the corresponding cluster. 
The optimal coefficients of the polynomial of ith cluster are described as follows  

YUXXUXa iiii
T
ii

1)( −=  (15)

Notice that the coefficients of the polynomial of each local model have been com-
puted independently using a subset of training data. Also, the computation can be 
implemented in parallel meaning that the computing overhead becomes independent 
from the number of cluster.  

3   Optimization Process of Fuzzy Clustering-Based p-RBF NNs 

The underlying principle of the PSO involves a population-based search in which 
individuals representing possible solutions carry out a collective search by exchang-
ing their individual findings while taking into consideration their own experience and 
evaluating their own performance. PSO involves two competing search strategy as-
pects. First, the individuals ignore their own experience and adjust their behavior 
according to the successful beliefs of individuals occurring in their neighborhood. 
Second, the cognition aspect of the search underlines the importance of the individual 
experience where the individual is focused on its own history of performance and 
makes adjustments accordingly. PSO is conceptually simple, easy to implement, and 
computationally efficient. Unlike many other heuristic techniques, PSO has a flexible 
and well-balanced mechanism to enhance the global and local exploration abilities. 
The particle swarm optimization (PSO) is applied to parametric optimization such as 
the number of cluster, the fuzzification coefficient and Polynomial type. 

4   Experimental Results 

To evaluate the performance of our model, we used a synthetic datasets and Machine 
Learning datasets. Our objective is to quantify the performance of the proposed model 
and compare it with the performance of some other classifiers reported in the litera-
ture. In the assessment of the performance of the classifiers, we report the % of cor-
rectly classified patterns (classification rate). 

4.1   Synthetic Datasets  

We start with a series of two dimensional synthetic datasets as shown in Figure 2. 
This dataset is divided into three classes having each class consists of 100 pattern. 

We carried out the experiment about synthetic datasets, Case I is non-optimization 
model that just changed the number of the cluster from 2 to 5 and Case II is optimized 
model using PSO.   
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Fig. 2. Synthetic datasets ( two inputs – three classes ) 

In Table 1, the number for each model indicates the success rate for recognition 
and the number in parenthesis describe the total number of classification error. 

Table 1. Classification Rate for synthetic datasets 

Model 
No. of 
clusters 

Fuzzification 
Coefficient 

Polynomial 
type 

Classification 
Rate [%] 

Case I 
 

Without 
optimization 

2 2 
Linear 99.00 (3) 

Quadratic 99.33 (2) 
M. Quadratic 99.67 (1) 

3 2 
Linear 99.33 (2) 

Quadratic 99.33 (2) 
M. Quadratic 99.33 (2) 

4 2 
Linear 99.33 (2) 

Quadratic 99.33 (2) 
M. Quadratic 99.33 (2) 

5 2 
Linear 99.00 (3) 

Quadratic 99.33 (2) 
M. Quadratic 99.33 (2) 

Case II 
 

 With 
optimization 

4 1.19 M. Quadratic 100.00 (0) 

5 1.10 Quadratic 100.00 (0) 

 
Figure 3 (a) and (b) shows the classification boundary and partitions in case of 

Case II, and (c) and (d) denote boundary and partitions of Case I corresponding Case 
II. Figure 3 visualize the classification boundaries when Classification Rate is 
100.00%, 100.00%, 99.33%, and 99.33% respectively, In the all case, the perfor-
mance of proposed model with optimization (Case II) is better than its without opti-
mization (Case I). 

4.2   Machine Learning Dataset 

We consider glass datasets concerning classification problems coming from the Ma-
chine Learning repository (http://www.ics.uci.edu/~mlearn/MLRepository.html). This 
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(a) Case II (No. of cluster 4)        (b) Case II (No. of cluster 5) 
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              (a) Case I (No. of cluster 4)           (b) Case I (No. of cluster 5) 

Fig. 3. Classification Boundaries of Classifiers  

Table 2. Classification Rate for glass dataset 

No. of cluster 
Fuzzification 
Coefficient 

Polynomial 
type 

Training 
CR 

Validation 
CR 

Testing 
CR 

2 

2 split 
1.10 

~ 
4.15 

All 
Quadratic 

87.74 
± 

04.18 
 

69.65 
± 

9.08 

3 split 
1.10 

~ 
2.15 

All 
Quadratic 

88.42 
± 

0.64 

80.59 
± 

1.61 

56.67 
± 

9.13 

4 

2 split 
1.10 

~ 
1.51 

Quadratic 
or 

M. Quadratic 

95.91 
± 

2.23 
 

67.74 
± 

8.37 

3 split  
1.17 

~ 
1.18 

Quadratic 
or 

M. Quadratic 

95.44 
± 

0.26 

81.76 
± 

1.32 

78.89 
± 

2.48 

6 

2 split 
1.10 

~ 
1.48 

All 
Quadratic 

97.20 
± 

1.91 
 

69.63 
± 

11.60 

3 split 
1.19 

~ 
1.20 

Quadratic 
or 

M. Quadratic 

94.50 
± 

0.32 

85.29 
± 

6.09 

83.33 
± 

6.09 
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(a) 2split datasets ( Training, and Testing ) 
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(b) 3split datasets ( Training, Validation, and Testing ) 

Fig. 4. Classification rate and standard deviation versus the number of cluster 

dataset includes 214 input-output pairs. The number of input variables is 9 (after re-
moving index number) and outputs consist of 6 class. In this experiment, we divided 
into type I) 2plit datasets (training and testing) and type II) 3split datasets (training, 
validation, and testing). The five-fold cross-validation (CV) is used and the final clas-
sification rate is the average of 5-fCV.  

Table 2 describes the Classification Rate (CR) for recognition according to the 
number of cluster. Table 2 shows classification rate of training, validation, and testing 
versus the number of cluster. The performance of testing in case of 3split is better 
than in case of 2 split. Figure 4 describes average classification rate and standard 
deviation using error-bar in MATLAB. 

Table 3. Comparison of classification rate reported in in the experiments 

Models Classification Rate of Testing dataset  [%] 

Reported in the literature 

Tabu Search/k-Nearest Neighbor [5] 81.4 
Locally Adaptive Metric Nearest Neighbor [6] 75.2 

Decision Tree Method [6] 68.2 
Bayesian networks [6] 74.4 

Proposed model 

3split 
Cluster : 4 78.89 
Cluster : 6 83.33 

5   Concluding Remarks 

In this paper, we have proposed fuzzy clustering-based polynomial radial basis func-
tion neural network classifier. The proposed model is the extended architecture of 
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conventional RBFNN. The classification rate of fuzzy clustering-based p-RBF NNs 
classifier is affected by the type of polynomials as well as some parameters such as 
the number of cluster and fuzzification coefficient of FCM algorithm. The PSO is 
exploited to find the structural as well as parametric factors minimizing classification 
rate of the proposed model.  
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Abstract. The synthetic ammonia decarbornization industrial process is a 
complex production process with strong nonlinearity, large delay and strong 
coupling. It is difficult to set up the on-line control model of the process. The 
drawback of the conventional BP neural network algorithm used to building 
system modeling is easily falling into the minimum value. This paper is 
concerned with the use of a RBF (Radial Basis Function) neural network 
control based on particle filter algorithm to solve above problems. The RBF 
neural network can approximate any continuous function and the particle filter 
can deal with nonlinear problems. This approach could deal with a complex 
multi-phase system. The method introduced in the paper is to set up a RBF 
neural network control model firstly, and then, the weights of RBF neural 
network are optimized by the particle filter algorithm. Compared to the fuzzy 
neural network which is applied, the simulation result of the method in this 
paper demonstrates that the control accuracy and system response speed are 
improved significantly.  

Keywords: RBF neural network; nonlinear particle filter; the synthetic ammonia 
decarbornization. 

1   Introduction 

The synthetic ammonia decarburization industrial process is a complicated process 
with nonlinearity, large delay and strong coupling. The complex system has a lot of 
uncertainties, e.g. lag, randomness, fuzzy, gray. So an accurate model is difficult to be 
established [1]. Some traditional methods are used in the complex system, such as 
fuzzy control, fuzzy-neural network control, neural network forecast. They play a 
definite effect. However, as for the complex systems, these traditional methods are 
only applied to some particular systems. It is a hot point problem and a Gordian knot 
in the field of process control that how to control the complex system effectively. The 
RBF neural network has the advantages, e.g. fast convergence, simple construct and 
approximating any continuous function. Using RBF neural network for modeling and 
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control is an available way. A nonlinear and non-Gauss system can be optimized by 
particle filter algorithm. This algorithm is not restricted by Gauss characteristics and 
is applied to the nonlinear and non-Gauss system. The weights of RBF neural network 
is optimized by the particle filter algorithm. Building RBF neural network structure 
model based on non-linear particle filter is a method of control the complicated 
process effectively. An effective way is provided to solve a class of complex systems 
modeling and optimization control. 

2   Nonlinear Particle Filter 

The method of dealing with state estimation of the nonlinear non-Gaussian system 
includes Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF). But 
they are restricted by the linear Kalman filter algorithm which should meet the 
Gaussian distribution. The accuracy of the nonlinear system state estimation is lower 
by linearization. States of complex systems are estimated by nonlinear particle filter 
algorithm. The accuracy can be improved and the more system state variables prior 
information can be obtained. The nonlinear particle filter algorithm is an appropriate 
method for non-Gaussian state estimation. 

Particle filter algorithm can achieve recursive Bayesian filtering by non-parametric 
Monte Carlo method. It can be applied in state estimation of nonlinear systems[2]. Its 
principle is that finding a group of random sample spreading in the state space, 
approximating probability density function by sample means instead of integral 
operator, obtaining the minimum variance estimation of states. Nonlinear particle 
filter has a unique advantage of parameter estimation and station filtering of nonlinear 
non-Gaussian time-varying systems [3], [4], [5]. At present, the nonlinear particle 
filter has been applied to target tracking [6], signal processing [7] and other fields. 
However, application of it in the process control is not reported. 

We supposed that the dynamic time-varying systems are described as follows: 

( )1 1 1x ,k k k kf x v− − −=  .  (1)

( )kkkk nxhz ,=  .  (2)

By transition probability matrix form, the system can be described as: 

( ) ( )( ) ( ) 111111 ,xx −−−−−− ∫ −= kkkkkkkk dvvPvxfxP  . (3)

( ) ( )( ) ( ) kkkkkkkk dnnPnxhxP ∫ −= ,zz  . (4)

Chapman-kolmogorov equation 

( )( ) ( ) ( )( ) 11-k:11-k11:1 xxxzx −−− ∫= kkkkk dxzPP  . (5)

And the probability density function ( )( )-1 1: -1k kP x z  uses the re-sampling method to 

gain number T random sample points{ }Ti
1 1k i

x − =
. 
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If the sample sizes are enough, then  
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The prediction equation is 
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The state update equation is 
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The key of nonlinear particle filter is the selection of the important probability 
density function and re-sampling. 

1) The important probability density function is selected by sub-optimal algorithm. 
2) Re-sampling is a method which can solve the deficiency of particle number. 

The basic idea is to use particles and the weight probability density function to 
increase re-sampling steps between two samples. In other words, it means increasing 
the number of particles which have larger weight and reducing the number of 
particles which have small weight. Theoretically, such a particle size distribution 
will approximate the true state posterior probability distribution. In practice, random 
sampling method is regard as re-sampling. The schematic diagram of re-sampling is 
shown in figure 1. 

 i=10 
{xt , N}

{xt , ωt}

{xt+1 , N} 

{xt+1 ,ωt+1} 

 

Fig. 1. Schematic diagram of the re-sampling 
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The process of random sampling is: first, generate random numbers from  
uniform distribution[0, 1]; second, find a set of integer values, which makes 

1

0 0

m m

j l j
j j

h hμ
−

= =

< ≤∑ ∑ and the sample ( )m
kx  as a new sampling; according to 

0

, 1,...,
i

j j
j

h i nλ
=

= =∑ , break up the interval [0, 1] into n small intervals; when random 

number lμ is in the m interval, 1( , ]m m mI λ λ−= , copy the sample ( )m
kx . 

From the random sampling process, the samples which have large weights are copied 
several times and the samples which have very small weight are given up. The total 
particle number keeps a constant. The prior probability in time t is expressed by the 
particles with weight. Through systematic observation and re-calculating the weight, the 
particle which has large weight is split into new particles. Other particle which has small 
weight is given up. Therefore, a new set of particles are obtained. This method makes 
the particle size distribution approximate the true state posterior probability distribution. 
Meanwhile, the computational complexity and the computational workload are reduced. 
When the particles are mixed with random, the state in the next time (t+1) can be 
forecasted. It is a system state transition process. When we enter systematic observation 
process, we can forecast the state in the next time [8], [9].  

Nonlinear particle filter algorithm implementation steps are: firstly, number T of 
finite samples is randomly selected from 1( | , )k k kq x x z− ; secondly, the corresponding 

1( | )k kP x x − and ( | )k kP z x are calculated point by point; thirdly, importance weight 

coefficient is calculated sample by sample, using formula (9); fourthly, weights are 
normalized by formula (10); fifthly, 1:( | )k kP x z  is estimated by formula (8). 
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(10)

3   Improved RBF Neural Network 

3.1   RBF Neural Network Model  

Artificial neural network has ability on nonlinear mapping. It can generalize 
automatically the function relation between the data through learning or training. 
Therefore, it is suitable for effective modeling. Currently, the BP neural network 
based on the gradient descent algorithm is used widely. However, when the BP neural 
network approximates a continuous function, it always falls into local minima and 
converges slowly. The RBF neural network has the characteristics of simple construct 
and training concise. Moreover, it can approximate any continuous function. It is 
better in approximation capability, sorting capability and learning speed than BP 
neural network. RBF neural network is widely used in time series analysis, nonlinear 
control, pattern recognition and image processing. Therefore, RBF neural network can 
be used in system modeling and process control [10], [11], [12].  

RBF neural network is a three-layer forward neural network, which consists of 
three layers: input layer, hidden layer and output layer. The RBF neural network 
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structure is 3 inputs and 1 output. The input layer nodes (the number of nodes is i  ) 
are formed by input signals. Hidden layer (the number of nodes is j ) is the middle 

layer. Its excitation function is a non-negative non-linear basis function, which is 
symmetrical and damping about center. Basis function generates response in some 
part. For the theoretical analysis, basis function is Gaussian function usually: 

( ) ( )T

2
, 1,2, ,

2
j j

j
j

X C X C
u exp j m

σ

⎡ ⎤− −
⎢ ⎥= − =
⎢ ⎥
⎣ ⎦

L  . (11)

where uj is the output of hidden layer node j; ( )T

1 2, , , nX x x x= L  are n-dimensional 

input samples; jC is center vector of hidden layer nodes j; m is the number of hidden 

nodes. The third layer is output layer that usually has a linear function. It is a linear 
combination in the output of hidden layer nodes. 

RBF neural network has basic working principles: hidden layer is a product of 
weighted inputs and the corresponding thresholds. In addition, the network output of 
hidden layer is obtained by Radial Basis Function. Weighted input is the distance 
between input layer input vector and the weight vector. It is obtained by distance 
function. The input of output layer is the sum of weighted input and the corresponding 
threshold. The network output is obtained by linear function. Weighted input is a 
product of the hidden layer output vector and weight vector. 

If a set of training samples is given, the key of creating a RBF neural network is 
confirmation of center vector jC , variance jσ  and weight jω  by samples. The radial 

basis network is trained by two steps. Firstly, use the unsupervised K-means 
clustering algorithm to discriminate RBF parameters of hidden layer excitation 
function. The number of hidden nodes, RBF neural network center vector jC  and 

variance jσ  is ascertained. Then, the output layer linear weight jω  is calculated by 

error correction learning algorithm. 

3.2   Improvement of RBF Neural Network  

The radial basis function center is usually ascertained by the unsupervised K-means 
clustering algorithm. This method is simple and has fast convergence. But this 
algorithm is too sensitive to initial conditions. If the parameters of initial nodes are set 
incorrectly, some nodes, which are not trained, are dead nodes. So this paper uses 
improved HCM algorithm (IHCM algorithm) to ascertain the radial basis function 
center. Expanded vector is obtained by combination of input vector and output vector 
to ascertain the radial basis function center. Assume the following expanded vector: 
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The sample set 1 2R { , , , }kr r r= L  is divided into NR classes. Any expanded vector 

in set R belongs to a class entirely. And any class has a sample. The classification 
result is expressed by matrix U（ NR * K） . 

The element of U is  

I/O

I/O

1 when A

2 when A
i

iq

i

r
u

r

⎧ ∈⎪= ⎨ ∉⎪⎩

 

  . 
(14)

where 
iA 1,2, , RN= L（ ）  is sample set i. 

The concrete steps are: 

1) The number
RN  of cluster category is obtained. 2 KRN≤ ≤ , K is the number of 

samples. 
2) Maximum permissible error ( maxE ) is set. 

3) Initial classification matrix Ut  is appointed. t=0， t is iterations. 

4) Expanded center vector jg  is calculated by matrix Ut  and formula (12). 

K
I/O

iq qK
q 1

iq
q 1

1
jg u r

u =

=

= ∑
∑

 . 

(15)

5) Matrix Ut  was updated to 1Ut +  by the following rule. 

1 1
1 when min { }

0 others
R

t t
iq jqt j N

iq

d d
u + ≤ ≤

⎧ =⎪= ⎨
⎪⎩

 

           . 
(16)

where I/O
jq q jd r g= −  stands for the Euclidean distance between expanded vector 

I/O
qr  and expanded center vector jg . 

6) Matrix Ut  and 1Ut +  are compared by a matrix norm ε. If 1U Ut te +−> , it 

stops. Otherwise, t=t+1, back to step (4). 

In IHCM algorithm, expanded center vector jg is obtained, 
N M

R( 1 2 )jg R j N+∈ = L，， ， . The center of RBF neural network vector C j  is the 

ahead N-dimensional expanded center vector jg , namely x NC g Rj j= ∈ . 

4   Weights of RBF Neural Network Is Optimized by the Nonlinear 
Particle Filter Algorithm 

The weights of RBF neural network are optimized by the nonlinear particle filter 
algorithm. First, the RBF neural network model is created, and then the weights of 
RBF neural network are optimized by the nonlinear particle filter algorithm. The 
optimization weights are obtained by re-sampling [13], [14].  
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RBF neural network system equations are: 

- 1  - 1w  = w  + vk k k  . (17)

1 1

= sig + 
n m

k j i ji k
j i

y w x w u
= =
∑ ∑  . (18)

where ( )1,2, , ;  1, 2, ,jiw i m j n= … = … is the weight between input layer and hidden 

layer; ( 1,2, ,jw j n= … ） is the weight between hidden layer and output layer; ix is 

system input; ky is system output (the measurement of system); Observation function 

is 
1 1

( , ) sig 
n m

k k j i ji
j i

G W x w x w
= =

=∑ ∑ ; 1kV − is system noise; ku is observation noise, noise 

is normal distribution; k is time. Put sample data into the particle filter algorithm and 
optimize the weights of RBF neural network. After several iterations, the optimization 
weights are obtained. The flow chart is shown in Fig. 2. 

 

Fig. 2. Flow chart of RBF neural network weights optimization based on particle filter 

5   Application in the Synthetic Ammonia Decarburization 

The core technology of the synthetic ammonia decarburization conducted in 
carbonation towers. The reaction of carbonation tower is the three-phase system with 
gas, liquid, solid. It is also a system with complex absorption, reaction, crystallization 
and heat transfer. Therefore, in the coalition of carbonization process, there is mutual 
coupling in the flow of materials with serious internal and external interference. From 
the control point, carbonation process is a multi-phases, multi-variables, multi-
interference, strong coupling, strong nonlinearity and large time delay process. Actual 
production experience shows that three factors (the temperature in central tower, the 
temperature difference in the middle of the tower and in the upper of tower, the liquid 
height) influence the reaction process [15], [16]. 

An important indicator of carbonization process is sodium bicarbonate 
crystallization particle size. To obtain larger crystalline particles, the solution 
supersaturated must be controlled. The nucleation temperature, which is called the 
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critical temperature, is usually in the middle of carbonation tower. Therefore, the 
temperature in the middle of tower directly affects the quality of crystalloid. The 
temperature in the middle of tower is controlled by the temperature in lower part and 
air flows. Actually, the temperature in lower part is set to a fixed value; air flow rate 
is changed to control the reaction.  

The quality of crystalloid is related with the overall temperature distribution in the 
tower. In the actual production, the temperature difference between the middle of the 
tower and the upper of tower can reflect the overall temperature distribution in the 
tower. It is controlled by changing the air flow rate, which changes the ratio of the air 
flow rate in the middle part and in lower part. Thereby the temperature difference in 
the middle of the tower and in the upper of tower is stabilized. 

The quality of crystalloid is related with the liquid height. If the liquid height level 
is too high, tail gas is mixed with the liquid. In addition, the tower pressure and the 
quantity of soda increase during temperature rising. The quality of crystalloid and the 
alkali elements are affected. The liquid height level is measured difficultly, so the 
tower pressure is instead. 

Through analysis, the tower temperature is controlled by air flow rate in lower part. 
We use RBF neural network to build system model and control. The temperature in 
central tower, the temperature difference between the middle of the tower and the 
upper of tower, and the liquid height are regarded as network inputs. The air flow rate 
in lower part is regarded as network output. The data is normalized to [-1, 1]. A three 
layers RBF neural network (3 inputs and 1 output) is created. Gaussian function is 
selected as activation function. 

6   Simulation and Analysis 

Fuzzy neural network control method has been applied to practical production 
process, and obtained some control effect. But the synthetic ammonia decarburization 
industrial process is a complicated process with nonlinearity, large delay, strong 
coupling. Fuzzy neural network control method has disadvantage (adjustment error is 
big). The result is not satisfied. In this paper, we bring up a RBF neural network based 
on nonlinear particle filter and do some simulation experiments. The result is 
compared to Fuzzy neural network control method. 

One month data was collected in the synthetic ammonia decarburization production 
process of a co-alkali firm. 6000 samples were selected to train the RBF neural 
network. When the model is established, the weights of RBF neural network are 
optimized by the nonlinear particle filter algorithm. Choose 30000 as the particle 
number. The RBF neural network is packaged as simulink module. An initial 
Variation of factors is set. The result of the simulation is the response of the system. 

PF-RBFNN (particle filter-RBF neural network） and Fuzzy NN (fuzzy neural 
network) are applied to the synthetic ammonia decarburization. The results are shown 
in Fig. 3 and Fig. 4. Compared with the experiment results, it is found that the control 
effect of PF-RBFNN is better. 
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  Fig. 3. The temperature transformation in the

middle part of tower 
 Fig. 4. Control of lower air flow changes in 
the carbonation tower 

In Fig. 3, the result in static and dynamic performance of PF-RBFNN control 
method is better than Fuzzy NN control method. System response time is shorter; 
fluctuate range of the temperature in central tower is smaller. From Fig. 4, lower 
carbonation tower fluctuation in air flow decreases, and the control time is shorter. 
Simulation results shows that control accuracy and dynamic parameters are 
significantly increased. 

7   Conclusion 

The synthetic ammonia decarburization industrial process is a typical complex 
industrial process with multi-phases, multi-variables, multi-interference, strong 
coupling, nonlinear, large delay, etc. In response to this feature, we propose nonlinear 
non-Gaussian particle filter algorithm for RBF neural network weights optimization, 
and applied to the ammonia decarburization. Through simulation of the carbonization 
process, this method has a good performance in complex industrial processes control 
and provides an effective way to solve a class of complex industrial process modeling 
and optimization control. 
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Abstract. In reality, the inputs of many complicated systems are continuous 
time-varying functions. It is difficult for traditional Elman neural networks 
(ENN) to simulate such complicated nonlinear systems directly because their 
inputs are all instantaneous constant values. To overcome this limitation, an 
Elman-style process neural network (EPNN) is proposed in this paper. From the 
point view of architecture, the EPNN is similar to the ENN. The major 
characteristics which distinguish the EPNN from the ENN lie in the fact that the 
inputs and the connection weights of the EPNN are time-varying functions. A 
corresponding learning algorithm based on the expansion of the orthogonal 
basis functions is developed. The effectiveness of the EPNN and its learning 
algorithm is proved by the lubricating oil iron concentration prediction in the 
aircraft engine health condition monitoring, and the application test results also 
indicate that the EPNN has a faster learning speed and a higher accuracy than 
the same scale ENN. 

Keywords: Elman-style process neural network; Orthogonal basis function; 
Time series prediction; Aircraft engine health condition monitoring. 

1   Introduction 

Artificial neuron models are extremely simple abstraction of biological neurons. Since 
McCulloch and Pitts proposed MP neuron model in 1943 [1], artificial neural networks 
have received significant attention due to their capability of self-learning and self-
adapting. In 1989, Hornik and Funahashi proved that multilayer feedforward neural 
networks can approximate any continuous function [2, 3]. It seems that artificial neural 
networks have great potential to high nonlinear and uncertain systems. 

Unfortunately, an inherent disadvantage of these artificial neural networks is that 
their inputs are all instantaneous constant values. However, actually physiological 
researches indicate that, in biological neurons, the states of the synapses are 
interrelated with relative time of the input impulse. It makes synapse build up in a 
20ms time window, and makes synapse restrain in another 20ms time window. In 
another word, there exists a reciprocity process between two connected neurons and 
this process lasts for 40ms [4]. At the same time, in practical engineering, the inputs 
of many complicated systems are time-varying functions or processes. In order to 
solve these problems, He and Liang proposed process neuron model in 2000 [5]. 
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From a point view of architecture, the process neuron is similar to the traditional 
artificial neuron. The major difference is that the inputs and the corresponding 
connection weights of the process neuron can be time-varying functions.  

Process neural networks are parallel computational models comprised of densely 
interconnected process neurons [6, 7]. A particularly important element of the design 
of the process neural networks is the choice of the architecture. Generally, multilayer 
feedforward neural network architecture is widely adopted. However, it has been 
shown that feedback occurs in almost every part of the nervous systems of every 
animal [8]. In response to this physiological phenomenon, a number of recurrent 
architectures have been proposed [9, 10]. Perhaps the most widely used, at present, is 
the Elman neural network (ENN) [11, 12]. 

In this paper, an Elman-style process neural network (EPNN) model is proposed to 
aim at solving the complicated problems in real systems where the inputs are time-
varying functions. The EPNN has a feedback connection from the output of the 
hidden layer to the input of the hidden layer like the traditional ENN. The major 
characteristics which distinguish the EPNN from the ENN lie in the fact that the 
inputs and the connection weights of the EPNN are time-varying functions. The 
EPNN proposed in this paper consists of four layers: an input layer with nodes, a 
hidden layer with process neurons, a context layer with process neurons and an output 
layer with process neurons. The EPNN is subjected to the constraint that. A 
corresponding learning algorithm is developed. In order to simplify the computational 
complexity of the learning algorithm, a group of appropriate orthogonal basis 
functions are introduced into the input space of the EPNN to expand the input 
functions and the connection weight functions. The effectiveness of the EPNN and its 
learning algorithm is validated by the lubricating oil iron concentration prediction in 
the aircraft engine condition monitoring, and the comparative application test results 
highlight the performance of the EPNN. 

The plan of this paper is as follows: In section 2, the process neuron model is 
reviewed, which sets the foundation for the remainder of this paper. In section 3, the 
topological structure of the EPNN is described. In section 4, a learning algorithm 
based on the expansion of the orthogonal basis functions for the EPNN is developed. 
In section 5, the effectiveness of the EPNN and its learning algorithm is proved by the 
lubricating oil iron concentration prediction in the aircraft engine condition 
monitoring. Conclusions are given in section 6. 

2   Process Neuron Model 

The process neuron model is composed of three sections: inputs, a processing 
operator and output. This is based on the fact that a biological neuron is composed of 
three basic parts: a dendrite, a soma and an axonal tree. Generally, the inputs and the 
connection weights of the neuron in a traditional neural network are discrete constant 
values. However, the inputs and the connection weights of the process neuron are 
continuous time-varying functions. An aggregation operator on time is added to the 
process neuron, which provides the process neuron with the capability of handing 
simultaneously two items of dimension information of time and space. The process 
neuron architecture is depicted in Fig. (1). 
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Fig. 1. The sketch diagram of process neuron model 

The output of the process neuron model can be expressed as 

0
1

( ( ) ( ) ).
n T

i i
i

y f t x t dtω θ
=

= −∑∫  (1)

Where ],0[)( TCtxi ∈  is the i-th input function, )(tiω  is the i-th weight function, θ  is 

the threshold, and )(⋅f  is the activation function. 

3   Elman-Style Process Neural Network Model 

The topological structure of the EPNN model proposed in this paper is illustrated in 
Fig. (2). 
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Fig. 2. The topological structure of the EPNN model 

The EPNN presented in this section is composed of four layers, with the addition 
of a feedback connection from the output of the hidden layer to the input of the 
hidden layer, i.e. with a feedback connection from the context layer to the hidden 
layer. The input layer is comprised of n  nodes. The hidden layer is comprised of m  
process neurons. The context layer is also comprised of m  process neurons. The last 
layer is output layer, to reduce the complexity, we only consider the case of one 
output process neuron. Every input node is connected to every process neuron in the 
hidden layer, as is every process neuron in the context layer. Similarly, there are 
massively parallel connections between the hidden layer and the output layer. Both  
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the inputs of the EPNN and the process neurons in the context layer activate the 
process neurons in the hidden layer; and then the process neurons in the hidden layer 
feed forward to activate the process neuron in the output layer. The process neurons in 
the hidden layer also feed back to activate the process neurons in the context layer.  

The inputs and the corresponding connection weights of the EPNN are continuous 
time-varying functions. The input function of the EPNN is 

))(,),(()( 1 txtxtX nL= . (2)

The input of the hidden layer can be expressed as 

1 1

( ) ( ) ( ) ( ) ( )
n m

j ij i jc c
i c

net t t x t u t out tω τ
= =

= + −∑ ∑ . (3)

Where ),,1()( mjtnet j L=  denotes the input of the j-th process neuron in the hidden 

layer at time t . )(tijω is the connection weight function between the j-th process 

neuron in the hidden layer and the i-th node in the input layer. ),,1()( mctoutc L=− τ  

denotes the output of the c-th process neuron in the hidden layer at time τ−t , where 
τ  is the time delay, and it also denotes the input of the c-th process neuron in the 
context layer at time t . )(tu jc  is the connection weight function between the j-th 

process neuron in the hidden layer and the c-th process neuron in the context layer.  
The output of the hidden layer can be expressed as 

))(()( )1(
jjj tnetftout θ−= . (4)

Where )(tout j  denotes the output of the j-th process neuron in the hidden layer at time 

t . )1(
jθ  is the threshold of the j-th process neuron in the hidden layer. )(⋅f  is the 

activation function of the process neurons in the hidden layer, it is assumed to be a 
differentiable nonlinear function. 

Suppose that the activation function )(⋅g  of the process neuron in the output layer 
is a linear function. Then, the output of the EPNN model can be written as 

(2)

0
1

( ) ( )
m T

j j
j

y v t out t dt θ
=

= −∑∫ . (5)

Where y  denotes the output of the EPNN. )(tv j  is the connection weight function 

between the j-th process neuron in the hidden layer and the process neuron in the 
output layer, and [0, ]t T∈ . (2)θ  is the threshold of the process neuron in the output 
layer. 

4   Learning Algorithm 

In this section, it is to be demonstrated that the proposed EPNN model does not 
require a complex learning algorithm, and that it is possible to utilize a simple 
gradient descent learning algorithm to train the network. 
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4.1   Basic Learning Algorithm 

Consider a set of S  input/output pairs }),({ ss dtX , where Ss ,,1 L= , sd  represents 

the desired network output upon presentation of )(tX s . Suppose that sy  is the actual 

output corresponding to sd . Thus, the mean square error of the EPNN model can be 
defined below 

∑
=

−=
S

s

ss dyE
1

2)(
2

1
. (6)

The learning algorithm for the EPNN should adjust the network parameters such 
as )(tijω , )(tu jc , )(tv j , )1(

jθ , and )2(θ  to minimize the mean square error E  of the 

EPNN. Applying gradient descent method on this estimate of the mean square error, 
the delta learning rules can be defined as follows 

)()()( tvtvtv jjj Δ+= α . (7)

)()()( tututu jcjcjc Δ+= β . (8)

)()()( ttt ijijij ωγωω Δ+= . (9)

)1()1()1(
jjj θλθθ Δ+= . (10)

)2()2()2( θηθθ Δ+= . (11)

Where ηλγβα ,,,,  are the corresponding learning rates. 
According to Equation (6), we have 
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It is obvious that Equation (12)~(16) are very difficult to be implemented directly. 
In order to raise the efficiency of the computation and the adaptability to practical 
problems solving of the EPNN, a group of appropriate orthogonal basis functions are 
introduced into the input function space of the EPNN. 
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4.2   Learning Algorithm Based on Orthogonal Basis Function 

We know ],0[)( TCtxi ∈ , by Weierstrass approximation theorem, if any 0>ε  is given, 

then there exists a polynomial )(tP  on ],0[ T  such that ε<− |)()(| tPtxi  for all ],0[ Tt ∈ . 

In short, any ],0[)( TCtxi ∈  can be uniformly approximated on ],0[ T  by 

polynomials ),,1)(( LltPl L=  to any degree of accuracy. Therefore, )(txi  can be 

written in the form ∑
=

=
L

l
lli tPctx

1

)()( , where the coefficient Rcl ∈  is easy to find. 

Suppose that the set of )(tPl  is independent. There is a relationship between 
orthogonality and independence. It is possible to convert a set of independent 
functions )(tPl  into a set of orthogonal functions )(tbl  that spans the same space. The 

standard procedure to accomplish this conversion is called Gram-Schmidt 
orthogonalization. Therefore, the input function )(txi , weight functions )(tv j , )(tu jc  

and )(tijω  can be expanded at the same time respectively as follows 

∑
=

=
L

l
lili tbatx

1

)()( . (17)

∑
=

=
L

l
ljlj tbvtv

1

)()( . (18)

∑
=

=
L

l
ljcljc tbutu

1

)()( . (19)

∑
=

=
L

l
lijlij tbt

1

)()( ωω . (20)

where Ruva ijljcljlil ∈ω,,,  are the corresponding coefficients. 

Assume that ],0[ T  contains K  equally spaced nodes kt , where khttk += 0 , 

Kk ,,1 L= , 00 =t  and KTh /= . Thus, Equation (17)~(20) can be written in the 

following forms  
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Then, ( )j kout t  can be written as 
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Thus, Equation (5) can be substituted by 

(2)
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This allows us to conveniently write out an expression for mean square error of the 
EPNN model as 
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The learning algorithm will update the network parameters jlv , jclu , ijlω , )1(
jθ and 

)2(θ  to minimize the mean square error of the EPNN model according to Equation (27).  
For the convenience of analysis, sQ  is defined below 
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Applying the gradient descent method on Equation (27), we have 
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This yields the update rules for weighs and thresholds for each iteration step to be 

jljljl vvv Δ+= α . (33)

jcljcljcl uuu Δ+= β . (34)

ijlijlijl ωγωω Δ+= . (35)

)1()1()1(
jjj θλθθ Δ+= . (36)

)2()2()2( θηθθ Δ+= . (37)

Where ηλγβα ,,,,  are the corresponding learning rates. 
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It is usually possible to express the derivative of the activation )(⋅f  in terms of 

itself. For example, for the logistic function 
ze

zf −+
=

1

1
)( , ))(1()()( zffzfzf −=′ . 

The iterations of the learning algorithm based on the orthogonal basis functions for 
the EPNN can be summarized as follows: 

step 1 Select appropriate orthogonal basis functions to expand the input functions 
and the corresponding weight functions. 

step 2 Initialize jlv , jclu , ijlω , )1(
jθ and )2(θ .  

step 3 Set output error goal 0>ε ; initialize iteration 0=k , and set max iteration as 
K . 

step 4 Utilize Equation (27) to calculate mean square error E , if ε<E  or Kk > , 
go to step6; otherwise, go to step5. 

step 5 Update jlv , jclu , ijlω , )1(
jθ and )2(θ  according to Equation (33)~(37); 

ss →+1 , go to step4. 
step 6 Output results; stop. 

5   Application Test 

In this section, the EPNN proposed in this paper is utilized to predict the lubricating 
oil iron concentration in the aircraft engine condition monitoring. 

Aircraft engine is a complicated nonlinear system, which operates under high 
temperature and speed conditions. Operating such a modern technical system, calls 
for good maintenance to keep the system in an optimal operational condition. 
Predictive maintenance is preferred over scheduled maintenance. The scheduled 
maintenance follows a set of schedule: after a specified usage period, the engines are 
disassembled and overhauled, irrespective of their health condition. Such scheduled 
maintenance is costly. Nowadays, predictive maintenance is becoming more widely 
adopted. The engines are removed and examined or repaired only when some faults 
occur. The predictive maintenance method improved both the economics and 
reliability of the operation. 

The lubrication system is an important working system of the aircraft engine. The 
lubricating oil monitoring is essential in terms of the flight safety and also for 
reduction of the predictive maintenance cost. The monitoring analysis of the 
lubricating oil taken from the aircraft engine gives an indication of its suitability for 
continued use and provides important information about the health condition of the 
lubricated components within the aircraft engine. The concentration of mental 
elements in the lubricating oil contains a great deal of information of the aircraft 
engine’s health condition. By predicting the tendency of the mental elements 
concentration in the lubricating oil, maintenance engineers can judge the wear 
abrasion of the lubricated components in the aircraft engine and can deduce the 
mechanical faults of the aircraft engine in advance. However, the lubricating oil is 
influenced by many complicated factors and varying continuously with time. It is 
difficult or impossible to predict the tendency of the mental elements concentration in 
the lubricating oil by a determinate mathematic model. In this paper, the prediction of 
the lubricating oil iron concentration by the EPNN is presented. 
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The data used in this paper was taken from some aircraft, and the sampling interval 
is about 24 hours. A time series of the lubricating oil iron (Fe) concentration with 155 
discrete points such as 155

1{ }i iFe =  is depicted in Fig. (3). 

 

Fig. 3. Fe concentration time series 

1 4( , , , )i i iFe Fe Fe+ +L  is used to generate an input function iIF  by the nonlinear least-

squares method, where 1, ,150i = L , and 5iFe +  is used as the desired output of the 

EPNN corresponding to iIF . Thus, we get 150 couples of samples such as 
150

5 1{ , }i i iIF Fe + = . The samples 100
5 1{ , }i i iIF Fe + =  are selected to train the EPNN. The EPNN 

model used in this section is composed of 4 layers. The input layer has one node, the 
hidden layer is consisted of 5 process neurons, the context layer is also consisted of 5 
process neurons, the last layer is output layer with one process neuron. The 
orthogonal Legendre basis functions are selected to expand the input functions and 
the corresponding connection weight functions. The error goal is set to 0.0001, and 
the learning rate is set to 0.01, the max iteration number is set to 5000. After 1667 
iterations, the EPNN has converged. 

The samples 150
5 101{ , }i i iIF Fe + =  are selected to test the EPNN. The test results as shown 

in Fig. 5 indicate that the EPNN seems to perform well and appears suitable for using 
as a predictive maintenance tool. 

In order to compare with the traditional ENN, an ENN model with the same scale of 
the EPNN used in this section is trained by the same lubricating oil iron concentration 
data. Five consecutive points in the lubricating oil iron concentration time series are 
used as inputs and the next point is used as the corresponding desired output of the 
ENN. Thus, we also get 150 couples of samples such as 150

1 4 5 1{( , , , ), }i i i i iFe Fe Fe Fe+ + + =L . 

The first 100 samples such as 100
1 4 5 1{( , , , ), }i i i i iFe Fe Fe Fe+ + + =L  are used to train the ENN, 

and the next 50 samples such as 150
1 4 5 101{( , , , ), }i i i i iFe Fe Fe Fe+ + + =L are selected to test the 

EN. After 3101 iterations, the ENN model has converged. The ENN is tested by the 
testing samples, and the test results are also depicted in Fig. (4).  
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Fig. 4. Fe concentration time series prediction 

The comparative test results as shown in Fig. 5 indicate that the EPNN is more 
effective than the ENN. In fact, the ENN is only a special case of the EPNN. Since the 
inputs of the EPNN are time-varying functions, the EPNN can expand the application 
domains of the traditional ENN. It can be seen from Fig. 5 that the EPNN has a faster 
convergence speed and a higher accuracy than the ENN. This suggests that fairly 
complex problems in the practical engineering can be tackled by the EPNN. 

6   Conclusion 

In order to solve the complex problems in real systems where the inputs are time-
varying functions, an EPNN model is proposed in this paper, which has a typical 
architecture like the traditional ENN model. The major difference between the EPNN 
and the ENN is that the inputs and the corresponding connection weights of the 
EPNN are not discrete constant values but continuous time-varying functions. A 
learning algorithm for the EPNN model is developed. In consideration of the 
complexity of the aggregation operation of time in the EPNN, a group of appropriate 
orthogonal functions in the input function space of the EPNN are selected, and then 
the input functions and the corresponding connection weight functions are expanded 
by the same orthogonal basis functions. With the orthogonality of the orthogonal basis 
functions, the aggregation operation of process neurons to time is simplified. This 
application shows that the learning algorithm based on the expansion of the 
orthogonal basis functions simplifies the computing complexity of the EPNN, and 
raise the efficiency of the network learning and the adaptability to real problem 
resolving. The effectiveness of the EPNN and its learning algorithm is proved by the 
lubricating oil iron concentration prediction in the aircraft engine condition 
monitoring, and the application test results indicate that the EPNN has two 
advantages. Firstly, since its inputs are time-varying functions, the EPNN can expand 
the application domains of the traditional ENN. Secondly, compared with the ENN 
model, the EPNN model has a faster convergence speed and a higher accuracy. 
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Abstract. We propose a Spatial Artificial Neural Network (SANN) with
spatial architecture which consists of a multilayer feedforward neural net-
work with hidden units adopt recurrent lateral inhibition connection, all
input and hidden neurons have synapses connections with the output
neurons. In addition, a supervised learning algorithm based on error
back propagation is developed. The proposed network has shown a supe-
rior generalization capability in simulations with pattern recognition and
non-linear function approximation problems. And, the experimental also
shown that SANN has the capability of avoiding local minima problem.

Keywords: multilayer feedforward network, spatial span connection,
lateral inhibition mechanism.

1 Introduction

Warren McCulloch and Walter Pitts [1] gave an academic background of applying
artificial neural networks (ANNs) because they have shown that ANNs have the
capability of computing any arithmetic or logical function in principle. Because of
the characteristic of resembling the process we go through learning something [2],
good at providing fast and close approximations of the correct answer, and best
at identifying patterns and trends in data, ANNs have already been successfully
applied in many industries and daily life for prediction and forecasting [3-8].

Theoretical research of ANNs major focus on two points: architecture (BP,
Hopfield network, RBF etc.) and learning algorithm (Back propagation,
Levenberg-Marquardt, Conjugate Gradient algorithm etc.). These structures of
ANNs basically are planar and symmetrical connection. But the animal’s neu-
ronal system is there dimensional and asymmetry; and the neurons of brain in
previous layers have narrow perception field but have wider perception fields in
deep layers. On the other hand, structure defines function in ANNs. So, there

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 495–504, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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are some structure studies, for instance, based on functional expansion, Chao
proposed a new pyramid network [9] and analyzed the representation and gener-
alization theoretically and experimentally; Jaeger presented Echo State Networks
[10], which combined the trainable linear combination of nonlinear response sig-
nals of internal units and the desired output signals. Research of cortex shown
that the inhibition of cerebral cortex may avoid the excitatory activity caused
by a stimulus ripple across the entire network and prevent the confused jumble
resulted by the overlapping signals [11].

We proposes a neural network with new spatial architecture called Spatial Ar-
tificial Neural Network (SANN) to tradeoff the structure and functions and aim
to achieve higher representation and generalization capability. SANN is based on
a multilayer feed-forward network, spatial span connection and recurrent lateral
inhibitory connection mechanism. Through SANN, all non-output neurons have
connections to the output neurons. Supervised training rules of SANN are then
shown for weights update and learning.

The proposed network applied to several benchmark problems indicated that
this network yields significantly representation capability and generalization per-
formance, and it also can avoid the local minima problems in the supervised
learning.

2 Definition of Spatial Artificial Neural Network

We define the spatial artificial neural network as follows, and the topology struc-
ture is shown in Fig. 1. The first part of SANN architecture is so-called the basic
network lies in the center of SANN architecture. Actually the basic network is a
multilayer feedforward network which adds mutual inhibition mechanism among
the hidden units within a same layer. The feedforward connections among neu-
rons are shown in Fig. 1 using arrowhead line, and its mutual inhibition adopts
the recurrent lateral inhibition mechanism, as shown in Fig. 2. The second part
of SANN is the spatial span connections part which is shown with arrowhead
broken lines.

Inputs

l=0 l=1

Outputs

1outx 2outx

Bias

l=L

i k

Hidden units

l=2

Fig. 1. Architecture of SANN
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This basic network is used for transferring information from the environmental
inputs to the network outputs. The recurrent lateral inhibitory connection of
one hidden layer brings, which is widely found in biological neural systems,
connection and competition to the hidden units.

The input signals were transferred to hidden units through the feedforward
connections, and the outputs of hidden units corresponding to these input sig-
nals are called local output. And in the lateral inhibition theory, it is also called
activation level. It will inhibit other hidden units with strength of inhibitory
coefficients. The feedforward input combines with the inhibitory input (caused
by other hidden units and calculated according to the product of the inhibiting
neuron’s activation level and the corresponding recurrent lateral inhibitory co-
efficient) as the total input of hidden units, and the output was transferred to
the next layers as the input signal.

The accessorial spatial span connections lay over the basic network of SANN.
This part make that any two units of SANN in different layers may have direction
connect according to the spatial span connection and weights. The global output
of any unit through this span connection transfer signals to the next two or more
layer neurons.

Both the inhibitory connection of hidden units and the spatial span connec-
tion between different layers guarantee the structure of SANN is a there dimen-
sional and asymmetry system, which resembles the biological neuronal system
structure.

3 Mathematic Model of SANN

3.1 Review of Lateral Inhibition

Lateral inhibition (LI) is one type of inhibitions of cerebral cortex. It is one of
the basic principles of information treatment within neural system and describes
the capacity of an excited neuron to reduce the activity of its neighbor neurons.
In the design of our SANN network, the architecture in hidden layers uses the
recurrent lateral inhibition to achieve competition.

The topology of lateral inhibitory connection without self-inhibition adapted
in SANN is show in Fig. 2, and the mathematic model is given by [12]

yo,j = yi,j −
h∑

r=1,r 
=j

vrj(yo,r − θrj), r = 1, 2, ..., h (1)

where h is the number of hidden units, yo,j is the output of j -th hidden neuron,
yi,j is the environment stimulates of neuron j received, vrj = vjr is the lateral
inhibitory coefficient between neuron r and j, θrj is the inhibiting threshold value
of neuron j due to neuron r.

3.2 Mathematic Model of SANN

Suppose the SANN has L+1 layers including the input and output layers, the
l -th (l =1, 2, ..., L-1) hidden layer has nl units. The input layer is denoted as
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Fig. 2. Recurrent Lateral Inhibition Network

l = 0, has n units; and the output layer is denoted as l = L, has m units. Symbols
i, l and k denote the input, hidden and output units respectively.

The output of the k -th unit in the output layer is given by:

ok = fL[
L−1∑
l=1

(
nl∑

j=1

ωjko
l
j + bl) +

n∑
i=1

ωikxi + b0], k = 1, 2, ...,m (2)

where the f l is the activation function, ojl is the output of the j -th hidden
neuron of the l -th layer, it is given by:

ol
j =

⎧⎪⎨⎪⎩
f l[
∑n

i=1 ωijxi + b0] −
∑nl

r=1 vrj(o
′l
r − θ), l = 1

f l[
∑l−1

q=1(
∑nq

p=1 ωpjo
q
p + bq) +

∑n
i=1 ωijxi + b0]

−
∑nl

r=1 vrj(o
′l
r − θ), l ∈ [2, L − 1]

(3)

where vrj is the inhibitory coefficient from neuron r to neuron j, o
′r
l is the local

output of hidden unit r in l -th layer, namely the activation level of neuron r, it
is given by:

o
′l
j = f l[

l−1∑
q=1

(
nq∑

p=1

ωpjo
q
p + bq) +

n∑
i=1

ωijxi + b0], p = 1, 2, ..., nq (4)

From Fig. 1 and Eq. (4) we can find that it is output of the current hidden
neuron due to the feedforward input signals, namely the output comes from the
input neurons. vrj is the recurrent lateral inhibitory weight between neuron r
and j of hidden layer l.

4 Learning Algorithm

Here, we reference the standard back propagation algorithm to derivate the
learning algorithm fit for SANN. It is described as follows.

Assume the three-layer SANN with n input neurons, h hidden neurons and
one output neurons respectively. The output of the output unit k due to the
p-th (p ∈ [1, P ]) input sample is given by opk, whereas the desired output is tpk,
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and the output of the j -th hidden unit for the p-th input pattern is given by o
′p
j .

Let ωjk be the weight between the k -th output unit and the j -th hidden unit,
and ωij be the weight between the the j -th hidden unit and i-th input unit. The
input for the i-th input unit due to the p-th input pattern is denoted by xpi.

According to the above definitions, the output of the j -th neuron in the hidden
layer is given by:

o
′
pj = f(

n∑
i=1

ωijxpi +
h∑

r=1

vrj ōpr) (5)

where, ōpr = f(
∑n

i=1 ωijxpi) is the output of the r -th hidden neuron due to the
feedforward input signals, namely the output comes from the input neurons; vrj

is the recurrent lateral inhibitory weight between neuron r and j of hidden layer;
f is the sigmoid activation function defined as: f(x) = 1/(1 + e−x).

Similarly, the output of the k -th unit in the output layer is given by:

opk = f(
n∑

i=1

ωikxpi +
h∑

j=1

ωjko
′
pj) (6)

We define the sum of squared error of output unit with P samples as the
system learning target function, to be:

E =
1
2

P∑
p=1

(tpk − opk)2 (7)

The learning algorithm based error back propagation is to change the weights
iteratively such that the function E Eq. (7) is minimized. The weight updates
are proportional to ∂E. According to the chain rule, we can obtain the partial
derivative of ∂E with respect to wjk and wik , and the weight change for the
(t+1)-th iteration can be expressed as follows,⎧⎪⎨⎪⎩

Δωjk(t + 1) = μ
∑P

p=1 δpko
′
pj ,

Δωik(t + 1) = μ
∑P

p=1 δpkxpi, δpk = (tpk − opk)opk(1 − opk)
Δωij(t + 1) = μ

∑P
p=1 δpjxpi, δpj = o

′
pj(1 − o

′
pj)δpkωjk

(8)

where the term μ is the learning rate of the gradient method.
It is worthwhile to notice that the above gradient consists two parts, the first

term is the basic back propagation in the basic network and the second term is
the span back propagation in the spatial span connection network.

The update of SANN weights according to ωsk(t+1) = ωsk(t)+αΔωsk. Where
the term α is the momentum term used to balance the stability and oscillate
which may caused by the value selection of learning rate μ.

5 Numerical Experimental

We use two benchmark problems to compare the performance of SANN using the
above supervised learning rule to train and the multilayer feed-forward network
is trained by implementation of the back propagation algorithm in Matlab.
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In our experiments, 10-fold cross validation is employed on each problem to
compare the performance. The result is the average result of the ten folds.

5.1 Classification Capability (XOR Problem)

In order to consider the classification capability of SANN, we chose a simplest
problem which is not linearly separable - “exclusive-or” problem which is also
discussed in [13-15]. According to the complexity of XOR problem, in this section
we consider to train 2-1-1 and 2-2-1 two architectures of SANN on the two
dimensional XOR classification problem described in the first two rows of Table
1. Note that the inputs can still be 0 and 1 but the desired values must be
changed keeping in mind the signal range.

(1) 2-1-1 SANN
Because only one hidden unit existed in the architecture of 2-1-1 SANN, there
is no inhibitory effect or connection between the hidden units.

Set the value of global parameters are as follows: max iteration number T =
200, learning rate μ = 0.8, moment term α = 0.7, and the error tolerances are
(1) τ = 1e − 5; (2) τ = 0 respectively.

The corresponding outputs of two experiments are as shown in the last two
rows of Table 1.

Table 1. Real valued XOR patterns and network output

Inputs Desired Output1 Output2

0.1 0.1 0.1 0.1013 0.1000

0.1 0.95 0.95 0.9468 0.9500

0.95 0.1 0.95 0.9468 0.9500

0.95 0.95 0.1 0.1048 0.1000

Fig. 3 shows the training errors of the network output and desired output
in the supervised algorithm. The test input samples and output as shown in
Table 2.

Table 2. Test samples and SANN output

Inputs Desired Output1 Output2

0.95 0.95 0.1 0.1048 0.1000

0.1 0.1 0.1 0.1013 0.1000

0.1 0.95 0.95 0.9468 0.9500

0.95 0.1 0.95 0.9468 0.9500

The average result of ten folds for SANN to solve the XOR problem with
architecture 2-1-1 of τ = 0 are as follows: running time is 0.0812 s, training mse
is 1.77919e-25, test mse is 1.89882e-25.
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Fig. 3. The training mse of SANN (2-1-1) network for XOR problem. The architecture
is two input neurons, one hidden neurons and one output neurons. T = 200, μ =
0.8, α = 0.7.

From Table 1-2, and Fig. 3 we can find that a SANN network with only one
hidden unit can solve the xor problem at any training accuracy, meanwhile, the
similar test accuracy was obtained. Besides, the convergence is very fast that it
only needs several iterations.

(2) 2-2-1 BPN and SANN
The smallest architecture of multilayer feedforward network is with two hidden
units. Here, we compare the generalization capability of SANN and BPN with
the architecture of 2-2-1.

Set the value of global parameters are as follows: max iteration number T =
2000, learning rate μ = 0.8, moment term α = 0.7, and the error tolerances
τ = 0. The training mse is shown in Fig. 4, and the average result of ten folds
for SANN and BPN respectively is given by in Table 3.

Table 3. The average results of ten folds for BPN and SANN with architecture of
2-2-1

BP Network SANN

Global Minimum 3.2741e-33 1.10741e-33

Iteration Number 418 603

Training MSE 3.67811e-31 3.53171e-32

Test MSE 6.5482e-32 4.2695e-32

From this experiment we can find that when they both have two hidden
neurons to solve the xor problem, the SANN network has the similar training
and test accuracy with BP network, and the convergence of SANN network is
faster than BP network, but it need more training time because there are more
weights should be calculated than BP network in the learning.
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(a) BP Network 
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 = 6.3556e-033. 
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(b) SANN Network 

training mse = 1.7141e-032, test mse = 9.629e-033, 

min_mse|
349

 = 4.0445e-033. 

Fig. 4. The training mse of SANN network (2-2-1) for XOR problem. The architecture
is two input neurons, one hidden neurons and one output neurons. T = 200, μ =
0.8, α = 0.7, τ = 0.
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(1) BP Network (#7) 

training mse = 5.740e-03, test mse= 1.04e-02.
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(2) SANN Network (#7) 

training mse = 8.3094e-04, test mse = 1.8e-03 

Fig. 5. The training mse of SANN and BP network (8-4-1) with the parameters of
T = 1000, τ = 1e − 05

5.2 Approximation Capability

Consider the nonlinear function: f(x) = x1x2+x3x4+x5x6+x7x8
400 . Where xi(i =

1, 2, ..., 8) is drawn at random from [0, 10]. Similar mapping functions have been
used in [16-18]. In this paper we use 250 samples to train a SANN network of
size 8-4-1 (same with [17]). The parmaters are set as: the learning error tolerance
τ = 1e − 5, max iteration number T = 1000, learning rate μ = 1e − 4, moment
term α = 0.7. The training data set are sampled uniformly in the domain. In
order to estimate the generalization capability of SANN network, an indepen-
dent set of 500 test data is generated at random. The weights are initialized as the
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training mse = 9.0026e-04, test mse = 0.0019

Fig. 6. The training mse of SANN (8-2-1) with the parameters of T = 1000, τ = 1e−05

random numbers distributed in the interval [-1,1]. As a comprision, a there-
layer feed-forward neural network is used and trained using BP algorithm with
momentum.

Table 4 lists the comparison results of the SANN network and BP network.
The training error results are shown in Fig. 5.

Besides, we also use a SANN network with two hidden units to approximate
the nonlinear function, the training error is shown in Fig. 6.

In this experiment, we can find that for a given training accuracy and fi-
nite iteration number, SANN network need little hidden units than multilayer
feed-forward network. Whether has the same number of hidden units or less
than, SANN network performs better than the multilayer feedforward network
in terms of both the approximation capability and generalization capability. Be-
sides, SANN can alleviate or avoid the local minima problem.

6 Conclusion and Discussion

In this paper, a novel topology architecture of artificial neural network is pro-
posed based on multilayer feedforward network, lateral inhibition mechanism and
spatial span connection mode, and named SANN. The activation function of in-
put neurons is tunable and according to the priori knowledge to chose a proper
function as the input neurons’ activation function. In this paper, when they
connect to the output neurons, choose a nonlinear function, otherwise, choose a
linear function. The proposed network shown higher representation and gener-
alization capability in the numerical experiments, and can alleviate or avoid the
local minima problem than multilayer feedforward network. But because of the
more synapse connections than feedforward network, it needs more time to learn
the samples. Design a suitable learning algorithm for SANN is the next useful
work.
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Abstract. Surface EMG (sEMG) signal classification based on the motion 
pattern plays an important role in control system design of intelligent bionic 
artificial limb. The key problems and the corresponding solutions of sEMG 
signal classification, which consist of recognition rate, algorithm complexity, 
robustness and real-time characteristic, were summarized in this paper. By 
comparing with the performance of practical application, the research directions 
for the future work are pointed out at last. 

Keywords: intelligent bionic artificial limb, sEMG signal, recognition rate, 
robustness, real-time characteristic. 

1   Introduction 

As a new research interest, sEMG classification has attracted more and more attention 
in the past decades years. sEMG signal is a biomedical signal that measures electrical 
currents generated in muscles during its contraction representing neuromuscular 
activities. It is a short time stationary and nonlinear signal whose statistical 
characterization changes when time changes [1]. 

 

Fig. 1. Illustration of a typical sEMG signal of the upper arm. The x axis presents time, y axis 
presents amplitude. 
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However, sEMG signal is an exceeding complicated signal which is composed of 
many recruited motor units under surface electrode and background noises [2], and is 
easily affected by various factors. So classifying sEMG signal correctly which 
determines the practicability of intelligent bionic artificial limb has become the focus at 
home and abroad. This paper generalized the current difficulties in four points, 
recognition rate, algorithm complexity, robustness and real-time characteristic. By 
comparing the methods proposed by researchers, this paper demonstrated the actuality 
and possible challenges, and pointed out the research direction in the future. 

2   Key Problems of sEMG Signal Classification and Solutions  

Efficient classification is the key for sEMG to control intelligent bionic artificial limb. 
The technology that inputs features, which extracted from sEMG signal, to classifiers 
and controls intelligent bionic artificial limb efficiently through correct classification, 
is more and more mature. But it still has some difficulties in recognition rate of 
classifier, algorithm complexity, robustness, and real-time characteristic. 

2.1   Recognition Rate  

a) In 1989, A. Hiraiwa [3] used BP neural network in his paper to classify five motions 
by selecting 1channel sEMG, the average correct rate is 62%. Based on the low 
recognition rate, N. Uchida [4] improved it up to 86% by adding another electrode on 
the extensor digitorum.  
b) Finding appropriate classifiers according to the characteristic of sEMG signal could 
enhance the recognition rate. Fuzzy logic systems can tolerate the contradictions in 
data. F. H. Y. Chan et al. [5] used fuzzy approach to classify single-site EMG signals 
for multifunctional intelligent bionic artificial limb control. The average recognition 
accuracy is above 90%. Fuzzy approach has slightly higher recognition rate, and it is 
insensitive to overtraining, and higher reliability which demonstrated by consistent 
outputs.  
c) multilayer feed-forward neural network based on BP is widely used in actual 
project, but it has limitation in processing complicated construction and small samples 
which can be overcame by Elman neural network [6]. Pingao Mei et al. use Elman 
network to identify four motion patterns that were palmar dorsiflexion and flexion, 
hand opening and closing. The average experimental results can reach 92.5% [7]. 
From the result it shows that this method has a higher identification rate and great 
potential in analyzing other non-stationary physiological signal. 
d) Kernel machine learning has been introduced into sEMG signal classification. 
Kernel machine learning can solve such as small samples, nonlinear, high dimension 
and the local minimum points. A novel EMG classifier called cascaded kernel 
learning machine (CKLM) was proposed by Yi-Hung Liu et al. [8] to achieve the goal 
of high-accuracy EMG recognition. SVM (shown in Table I). The best EMG 
recognition rate 93.54% is obtained by CKLM. 
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Fig. 2. A typical Elman network 

Table 1. Comparisons of Average Classification Rates(%) Among Different EMG Classifiers 
for Three Subjects 

Classifier Subject1 Subject2 Subject3 
k-NN 67.34 70.45 85.12 

BP 79.21 82.78 90.43 

SVM 85.13 86.78 93.74 

GDA+ k-NN 84.43 86.50 92.47 

GDA+ BP 86.73 87.89 93.43 

GDA+ SVM(CKLM) 93.54 92.33 96.76 

 
e ) In 2008, Zhihong Liu proposed a hand motion recognition method based on EMG 
signals, using learning vector quantization (LVQ) neural networks[9] . Compared with 
BP and ART neural networks it possesses simpler network structure, faster learning 
rate, more reliable classification, and better fault tolerance. The recognition accuracy 
can reach up to 98%. Table 2 is the comparison of LVQ and Elman. 

 

Fig. 3. The LVQ neural networks structure 

Table 2. The Comparison Between LVQ and Elman Classifiers 

Method Correct Rate (%) 
WE WF HE HG 

LVQ 100 100 100 96 

Elman 98.3 96.6 88.3 86.6 
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Table 3. Illustration of different recognition rates using different classifiers 

Reference Year Classifier Recognition performance 
A. Hiraiwa [2] 1989 BP 62% 

N. Uchida [4] 1992 BP 86% 

F. H. Y. Chan [14] 2000 Fuzzy approach above 90% 

Yi-Hung Liu [18] 2007 CKLM 93.54% 

Pingao Mei [16] 2008 Elman 92.5% 

Zhihong Liu [21] 2008 LVQ 98% 

Table 3 shows the illustration of different recognition rates using different 
classifiers. we can see that there exist gaps between the obtained results and the 
requirement of practical application. 

2.2   Algorithm Complexity 

Recognition rate is an important criterion to judge the capability of classifiers, but 
the practicality of classifier is determined by algorithm complexity. In practice, a 
classifier which has simple algorithm and high recognition rate, has great 
applicability in the complicated system of intelligent bionic artificial limb 
controlled by sEMG signal. A simple algorithm means low complexity and fast 
convergence rate. By comparing LM method with variable learning rate (VLR) 
method (shown in Table 4), Dongjing Zhao et al. found out that although both of 
them have good classification for three motions, LM method with neural network is 
better. It has higher recognition ratio and learning efficiency and its discrimination 
and robustness are better [10], which means it has great potential in controlling 
human-computer system. 

Table 4. Comparison of Learning Rate between LM and VLR 

Classifier Input Layer Output Layer Samples Times Recognition Rate 
LM 8 3 18 2-3s 94.62% 

VLR 8 3 18 4-5s 91.54% 

 
Besides neural network, Pi-sigma network, which can restrict the number of 

weights on net, is also quickly converged and can avoid construction complicated due 
to the increase of input component. Haihong Zhang [11], comparing this method with 
BP network (shown in Table 5), found out that the learning time of Pi-sigma is much 
faster than BP. 

Table 5. Comparison of Learning Rate between Pi-sigma and BP 

Mean Square Error 0.06 0.04 0.02 0.01 
BP 42s 54s 95s 159s 

Pi-sigma 3 15 57 105s 
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High recognition rate is not the only criterion to judge the capability of classifiers. 
Now researchers do not pursuit higher correct rate blindly any more, but combine 
with the characteristic of the system itself. Therefore, the classifier with simple 
algorithm and relatively high recognition rate is popular with scholars. 

2.3   Robustness 

From early 1970’, researchers have studied the classification of hand motions such as 
finger flexion-extension, wrist flexion-extension and supination-pronation by sensing 
the activities of upper arm muscles. Although the best recognition rates have reached 
98% in the recent research by choosing different classifiers, the number of motions 
which used to classify is still too small, with only 4-6 motions, and the motions are 
quite different so that they can be easily recognized. It has a great distance with 
practical applications. On this point, multi-features and mixed signals were used to 
classify multiple motions. 

a) Xiang Chen et al. [12] proposed a method. In his paper, The recognition results of 
5,6,11,13 and 16 gestures are shown in Table 6. 

Table 6. Recognition Results of Different Numbers of Gestures 

Numbers of Gestures 5 6 11 13 16 
Correct rate 92.1% 96.8% 90.2% 74% 85.3% 

 
From this table, we can see that, generally these are ideal results, but the 

recognition rate of 13 gestures is lower than the others. That is because multi-finger 
extension gestures are more difficult to recognize than single finger extension 
gestures. The problem is more prominent when similar finger activities are involved 
in the different gestures. The classifier used in this paper is Bayesian classifier. In 
further studies, Bayesian classifier should be replaced, and the number of electrodes 
should be increased slightly to enhance the recognition rate. 
b) At present, the recognition rate of multi-motion is relatively low according to sEMG. 
In order to enhance the practicality of the intelligent bionic artificial limb, the  
mixed signals, including perceptual signals and sEMG signals, should be used for 
classification, in addition to increase the number of motions which is used to classify. It 
can improve the reliability of classification. At the same time using the mixed signals 
makes the classifier have better ability of analysis. By adopting different ways to extract 
feature, Zhizeng Luo et al. [13] found out that input tactile and slip signals together to 
classifier was an efficient way to enhance the practicality and dexterity of intelligent 
bionic artificial limb. The recognition results of mixed signals are shown in Table 7. 

Table 7. Correct Rate of Mixed Signals Used Different Classifiers 

Reference Classifier Feature 
Number of 

Motions 
Number of 
Materials 

Correct Rate 

[14] BP AR 2 4 above 86% 

[33] Bayes 
Power 

Spectrum 
Ration 

4 _ 
100%for tactile 
84%for slippage 
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Both multi-motion recognition method and mixed signal method have achieved 
good results. But there is still a great distance between the theory and application. It is 
the focus of the future work to find appropriate features and classify algorithm and to 
improve the robustness of classifier.  

2.4   Real-Time Characteristic 

Faster processing speed and better classification result have been obtained under the 
laboratory conditions recently, but most of them control intelligent bionic artificial 
limb movement by judging whether the sEMG signal is intense to achieve a certain 
threshold, which can not meet the users’ requirement to control multi-motion 
movement with artificial limb, when the movement patterns increase. To let the user 
operates the hand without perceiving a time delay, the response time of a myoelectric 
artificial limb should be less than 300 ms, which requires the system a great real-time 
characteristic. 

a) Zhizeng Luo et al. [14] firstly used wavelet analysis to eliminate the noise in the 
acquired EMG signals to the maximum extent. The recognition rate of 4 motions was 
88%. Using this method, the intelligent bionic artificial limb’s start time and duration 
of a movement can be synchronized with real hand. In this way, user won’t perceive a 
time delay.  
b) Although Pi-sigma has such advantages, it has a serious flaw that the number of 
nodes in hidden layer will influence the network performance significantly. The fact 
that choosing appropriate number of nodes in hidden layer suited to different 
situations needs to be further studied.  

In 2007, JianGao et al. [15] proposed two improved SVM methods [16-21] which 
have global optimization, short training time and good generalization abilities in the 
paper, to enhance the discrimination rate, and shorten the process time.  
c) Because of the cost of artificial limb, single chip microcomputer was widely used 
in intelligent bionic artificial limb systems, which is difficult to be carried out by 
using ANN or SVM. Therefore, binary tree was introduced to the system, which has 
simple configuration, small computation and real-time characteristic. In the paper 
written by Zhizeng Luo et al., five motion patterns of hand (dorsiflexion, flexion, 
hand opening, closing and no action) are identified by using the pattern classification 
of binary tree. The average recognition ratio is above 94%, while some results can 
reach 100% [34]. The system of two-freedom electric artificial hand using binary tree 
has fast response, reliable motions, good manipulation and adaptive ability. It could 
be used practically. 

Most of the myoelectric hand researches are studied in laboratory using simulation 
software. In future work, to meet the need of hardware system, appropriate classifier 
should be selected to improve the correct rate and real-time characteristic, making 
intelligent bionic artificial limb can be used practically. 

3   Conclusion and Prospection 

Accurate recognition of the user’s intention on the basis of the measured sEMG 
signals is the key problem in the realization of myoelectric control. At present, 
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although the recognition rate, algorithm complexity, robustness and real-time 
performance of classifiers have achieved good results, there still exist some 
difficulties which need to be solved in the future: 

1. Low recognition rate: Although some of the recognition results are above 90%, and 
the best correct rate can reach 98%, even 1% error rate can cause injury to users. So 
the correct rate should be steadily increased to higher than 95% in the future work. 
2. Weak robustness: The number of motions should be increased, and perceptual 
signals should be input to classifier combining with sEMG signal, in order to enhance 
the correct rate of classification. It requires the classifier a better ability of analysis. 
Now the average recognition rate is only about 80%, which is much lower than 
practical requirement. Using mixed signals including more than two perceptual 
signals and sEMG signal as input to classifier, and making the result of multi-motion 
recognition above 90%, are the keys of future work. 
3. Bad real-time characteristic: We hope that appropriate classifier which suit to 
single chip microcomputer or DSP can be found to enhance the real-time 
characteristic of system. 

According to the recognition methods summarized above, we find that classifier 
design and application are very important in recognition successful. Besides that, 
choosing feature correctly and typically is also an important factor that influences the 
recognition rate. In order to extract the most representative feature, the corresponding 
relationship between sEMG and all kinds of gestures and movements should be 
analyzed. Therefore, it is the direction of future researches that establishing single-
input, multiple-output model of sEMG signal which actually reflected system 
characteristics.  

Only out-put signal can be obtained when establishing sEMG model. Therefore, 
blind identification is used to build model to recognize different patterns. In this 
paper, instrumental variable is tried to use when studying the corresponding blind 
identification methods. 

   

Fig. 4. Figure of Original Signal (blue) and
sEMG Model (green) 

Fig. 5. Recognition Results 
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Figure 4 is the comparison result between model signal (the colour is blue) and 
original signal (the colour is green). Figure 5 is the recognition results. In this paper, 
only test one movement pattern. The correct rate is 100%, and the training time is 
only 0.20s which is faster than all the mentioned above. From these we can see that 
the instrumental variable with blind identification method is effective in recognizing 
different movement patterns. 

Using instrumental variable with blind identification is the first attempt in 
physiological signal modeling and recognition. It has good application prospect in 
analyzing physiological signal because of its simpleness and less calculation. 
Meanwhile, the unbiased estimation of parameters can be got by using this method. It 
also can improve the correct recognition rate. 

Using sEMG with temperature and tactile information as the controlling signal of 
artificial hand will improve the practicability and the capability of artificial limb. 
sEMG signal still mix with noise after denoising, therefore, appropriate classifier need 
to be found to overcome the noise interference and improve the recognition rate.  

Generally, by analyzing sEMG signal we find that extracting feature effectively 
and recognizing correctly will arouse general interest in studying artificial limb. 
Selecting appropriate features and classifiers are very important in order to improve 
the recognition rate, robustness and real-time characteristic. 
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Abstract. There are several drawbacks of multilayer neural networks
(MLNNs) including the difficulty of determining the number of hidden
nodes and their black box nature. We propose a new dynamic construc-
tion mechanism for MLNNs to overcome such inherent drawbacks. The
main goal of our work is to train a hidden neuron and assemble it to
the network dynamically while making the learning error smaller and
smaller. In this paper, a hidden neuron carries out the function of a linear
classifier which answers yes(Y) or no(N) to whether the input data be-
longs to the specific class. We call such a linear classifier a Y/N classifier
and call the hidden neuron a Y/N neuron. The number of Y/N neurons
are determined self-adaptively according to the given learning error and
then successfully avoid the overlearning problem. The dynamically con-
structed MLNN with Y/N neurons is called a Y/N neural network. We
prove that a Y/N neural network can always converge to the required
solution and illustrate that Y/N neural networks can be applied to very
complex classification problems.

Keywords: Multilayer neural network, Y/N neuron, Y/N classifier,
Y/N neural network.

1 Introduction

Multilayer neural networks (MLNNs) have been developed for solving compli-
cated classification problems by employing hidden layers. The additional hid-
den layers significantly enhance the classification capacity of the network. It
has been proved that feedforward multilayer neural network with only one hid-
den layer can approximate any function to arbitrary accuracy if given sufficient
number of hidden nodes [1]. Compared with statistical models, MLNNs can be
applied without prior knowledge about the statistical distributions of classes
in data sources. This makes MLNNs more suitable for some particular tasks
where it is hard to make some reasonable prior assumptions. However, MLNNs
have some inherent drawbacks which severely hamper their further development.
One of them is how to optimize the structure of MLNNs, especially to deter-
mine the number of hidden nodes. A lot of research has been done in this area.
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c© Springer-Verlag Berlin Heidelberg 2011
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Mirchandani and Cao [2] developed a theorem to establish a relationship between
the number of hidden nodes and other neural network parameters. Geman et al.
[3] discussed how the number of hidden units affects the bias/variance trade-off.
Lawrence et al. [4] illustrated that minimizing the number of hidden units does
not always lead to the best generalization. Bartlett [5] showed that the general-
ization performance depends on the size of weights rather than the number of
weights. Although many methods [6] [7] [8] [9] [10] [11] have been proposed to
solve the problem, in most situations, the best number of hidden nodes is still
selected empirically.

In fact, when a MLNN is applied for forecasting or recognition, the distri-
bution functions are usually unknown and samples from the distributions could
come in any way. It is a really risky work to train a MLNN to approximate an
unknown function by some random samples with only one control parameter. If
the number of hidden nodes is too small, the classification capability of the net-
work may be too poor to handle complex cases. If the number of hidden nodes is
too large, the generalization ability of the network will be severely impaired due
to the network memorizing too much detail of the class patterns in the training
dataset. Besides,the black box nature, the other drawback of MLNNs, increases
the difficulty of classification. When a MLNN is being trained, no useful infor-
mation can be extracted out to guide the network to learn. In conclusion, it is
hard to make some progress in solving the problem under the current working
mechanism of MLNNs.

In this paper, we propose a novel method for constructing MLNNs dynam-
ically to overcome these inherent drawbacks. We also present a new kind of
computing neurons to substitute hidden nodes in the hidden layer of MLNNs.
The new kind of neurons carries out the function of a linear classifier which
answers yes(Y) or no(N) to whether the input data belongs to the specific class.
We call such a linear classifier a Y/N classifier and call the neuron a Y/N neu-
ron. The trained Y/N neurons are assembled to the middle layer of the MLNN
one by one. We call the dynamically constructed MLNN with Y/N neurons a
Y/N neural network. In the following section, we give the detailed description of
what kind of computation is performed by a Y/N classifier. Then we discuss the
construction of a Y/N neural network and how to train a Y/N neural network
for very complex classification problems. In the last section, we summarize our
conclusions and indicate future research.

2 Y/N Classifier

A linear classifier can be interpreted as a hyperplane that separates the input
data space into two parts, the positive and negative sides of the hyperplane. We
define a Y-classifier as a linear classifier on the positive side of which all data
points do belong to the specific class and a N-classifier as a linear classifier on the
positive side of which all data points do not. Data points on the negative side of
the hyperplane are under-constrained. A Y-classifier and a N-classifier together
are called a Y/N classifier. Fig. 1 gives an illustration of how a Y/N classifier
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works. Compared with the SVM methods [12] [13], learning a Y/N classifier only
needs to find support vectors from the target class which makes it more suitable
for complex cases.

Fig. 1. Illustration of how a Y/N classifier works. The line in (a) is a Y/N classifier
while the one in (b) is not.

The most essential problem here is whether there always exists a Y/N classifier
for the given input dataset. We prove that the answer is yes. And we only give the
proof for the two-dimensional case because it can be easily extended to the higher
dimensional spaces. Fig. 2 illustrates why there always exists a Y/N classifier.
Samples from class A are shown with black squares and samples not from class
A are shown with gray diamonds. For finite datasets, there always is a circle,
as circle C shown in Fig. 2, that passes through some points and contains all
the other points in its interior. Assume circle C passes through point P, we can
find a circle E with its centre at point P and contains no other points inside it.
Circle C and circle E intersect at two points, M and N . Draw a line l1 passing
through M and N . Then l1 is a Y/N classifier.

l1

Fig. 2. Illustration of why there always exists a Y/N classifier

The next problem we are concerned with is how to design a Y/N classifier.
We consider the Y-classifier case where our goal is to find a hyperplane on the
positive side of which all data points belong to the specific class A. So data
points not from class A are all on the negative side of this hyperplane. There are
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infinite hyperplanes satisfying this criterion. The best Y-classifier should be the
one that can separate most of the data points in A from those not in A. This
optimization problem can be expressed as

max
∑

i

sgn(w · x i + b) + 1
2

, x i ∈ A (1)

s.t. w · x j + b < 0, x j ∈ Ā (2)

where w is the normal vector of the classification hyperplane, b the bias value
and sgn the signum function. Since sgn(x ) is not differentiable, the optimization
function (1) can not be optimized by Lagrange multiplier method. Hence we
introduce the following optimization problem

max
∑

i

(w · x i + b), x i ∈ A (3)

s.t. −w · x j − b > 0, x j ∈ Ā.

The main idea is that the more points on the positive side of the classification
hyperplane the larger the sum in function (3) is. We do not solve this problem
directly for the reason that the solution procedure is not very suitable for neural
network implementation. In the next part, we will further simplify the problem
to a more tractable one.

3 Construction of a Y/N Neural Network

The basic idea of our Y/N neural network approach for classification is to find
new Y/N classifiers dynamically to make the learning error smaller and smaller,
as shown in Fig. 3. First, the classifier l1 is learned from all data points. Then
classifier l2 is learned from data points on the negative side of l1. This procedure
goes on and more and more data points are classified. At last, the remain data
points can be classified correctly by l3. This procedure is similar to that of the
boosting methods [14] [15] [16]. But our Y/N classifiers are fundamentally dif-
ferent from those statistical classifiers used in the boosting methods. In order to
realize the basic idea, there are two main problems need to be addressed. The first
one is what kind of neuron can work as a Y/N classifier. We call a neuron that
can carry out the function of a Y-classifier(N-classifier) a Y-neuron(N-neuron).
Y-neurons and N-neurons together are called Y/N neurons. The other one is
how these Y/N neurons are organized in the neural network. We discuss these
two problems below.

The optimization function (3) can be rewritten as

max(w ·
∑

i

x i + Nb)

or max(w · Ex i + b) (4)

where N is the number of x i and Ex i the mean. Function (4) suggests that the
best Y/N classifier is the hyperplane on which Ex i has the maximum projection
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l1
l2

l3

Fig. 3. Illustration of the data points being classified by a Y/N neural network gradually

value if given all data points from A are on its negative side. To simplify the
resolution of this problem, we choose the mean of x j , Ex j , as the reference
point. Then w can be calculated by

w = Ex i − Ex j (5)

while b is fixed by Equation (2). Here the computations of w and b are only
an approximate solution for optimization problem (4), but they are very simple
and can be easily implemented by neurons.

Once a Y/N neuron is trained, it is assembled to the middle layer of the neural
network. Y-neurons are linked to the output neuron with excitatory connections
and N-neurons with inhibitory connections. The weight of the connection be-
tween the newly trained Y/N neuron and the output neuron is recommended
to be set to one third or smaller of that of the previously trained Y/N neuron.
Such a mechanism guarantees that the earliest trained Y/N neuron which is
activated determines the final status of the output neuron. If the integration of
Y/N neurons in the middle layer is larger than zero, the output neuron will be
activated which means the input data comes from the specific class. Otherwise,
the output neuron shows no response.

4 Learning in a Y/N Neural Network

Considering how to define the concept of human beings, one may claim that
human beings have two legs as compared to quadrupedal mammals and have no
wings as compared to birds. In this way, one can give a more and more detailed
description of the concept. But one will find that it is impossible to give the exact
definition of human beings. On the contrary, it is much easier to determine what
is not a human being, such as a thing having four legs is not a human being or a
thing having wings is not a human being. So instead of defining a very complex
concept B directly, we can define it by its opposite concept B. That is, if we
have any opportunity to determine an object belongings to the opposite concept
B, the object is definitely not an object called B. Otherwise, we say that it is an
object belonging to the concept of B.

The learning process described above can be implemented by a Y/N neural
network when the training data are selected carefully. Fig. 4 gives an illustration
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Quadrupedal 

mammals

Birds

l1: have wings

l2: have two legs

·

·

·

B

: Human beings

Fig. 4. Illustration of how to learn the concept of human being

of such a learning process. It should be noticed that the specific class A here
is not B but B, which means the output neuron will be activated only when
the input pattern belongs to B. As shown in Fig. 4, patterns from the class
’human beings’ and the class ’birds’ are first used to train the classifier l1. Then
patterns from the class ’human beings’ and the class ’quadrupedal mammals’ are
used to train the classifier l2. In this way, more and more classifiers are trained.
By combining these trained classifiers, we get a Y/N neuron network that can
respond to the concept of B.

5 Conclusions

In this paper we propose the Y/N neural network model to overcome the inherent
drawbacks of the traditional MLNNs. The learning error of our model becomes
smaller and smaller while assembling the newly trained Y/N neurons to the
network dynamically. Compared with traditional MLNNs, Y/N neural networks
provide much more useful information by using Y/N neurons instead of hidden
nodes. We illustrate that Y/N neural networks can be applied to very complex
classification problems. Future work can be focused on the design of new kinds
of Y/N classifiers and the applications of Y/N neural networks.

Acknowledgments. This work was partially supported by the Natural Science
Foundation of China(NSFC) under Grant No. 90920009 and NSFC-Guangdong
Joint Fund under Grant No. U1035004.
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Abstract. By using the continuation theorem of Mawhin’s coincidence
degree theory, some new sufficient conditions are obtained for the exis-
tence of periodic solution of higher-order Cohen-Grossberg type neural
networks with variable delays and impulses, moreover, the monotonicity
and smoothness of activation function are not assumed in this paper.
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pulse; coincidence degree; delays.

1 Introduction

Over the past few years, the Cohen-Grossberg neural network has been widely
studied. the Cohen-Grossberg neural network was introduced by Cohen and
Grossberg[1], They have found important applications in signal precessing, es-
pecially in staticimage treatment, Processing of moving images requires the in-
troduction of delay in the signals transmitted among thecells[2]. In recent years,
Cohen-Grossberg neural networks with time delays has widey studied [3]-[7]. Bai
[3] investigate the existence of periodic solution of Cohen-Grossberg type neu-
ral networks model with impulses by using continuation theorem of coincidence
degree theory and some new analysis techniques.

In this paper, we will study the existence of periodic solution of the following
Cohen-Grossberg neural networks with time-varying delays and impulses⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x′
i(t) = −di(xi(t))

[
ai(t)xi(t) −

n∑
j=1

bij(t)fj (xj(t)) −
n∑

j=1

cij(t)fj(xj (t − τj(t)))

−
n∑

j=1

n∑
l=1

bijl(t)fj(xj (t − τj(t)))fl(xl (t − τl(t) + Ii(t)))
]
, t > 0, t �= tk,

�xi(tk) = xi(t+k ) − xi(t−k ) = −γik(xi(tk)), i = 1, · · · , n, k ∈ Z+.
(1)

� This work is supported by the National Science Foundation of China under grant
10801113, Shandong Province Natural Science Foundation under Grant number
R2010AM012.
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where xi(t) are the state of the ith neurons at the time t; aij , bij and bijl are the
first and second-order connection weights of the neural networks, respectively;
time delays τj are nonnegative constants; fj and fl are activation functions;
we always assume thatai(t) ,aij(t), bij(t) bijl(t),Ii(t)are continuous ω-periodic
functions. �xi (tk) are the impulses at moments tk and t1 < t2 < · · · is a strictly
increasing sequence such that limk→∞tk = +∞, i = 1, · · · , n.

For τ = max
1≤j≤n,t∈[0,ω]

τj(t), C([−τ, 0], Rn) denotes the family of continuous

functions ϕ = (ϕ1, ϕ2, · · · , ϕn)T from [−τ, 0] to Rn with the norm

‖ϕ‖ = max
1≤i≤n

sup
−τ≤s≤0

|ϕi(s)|.

As usual in the theory of impulsive differential equations, at the points of
discontinuity tk of the solution t �→ xi(t), we assume that xi(tk) ≡ xi(t−k ), It is
clear that, in general, the derivatives x′

i (tk) do not exist. On the other hand,
according to the first equality in (1) there exist the limits x′

i

(
t∓k
)

. According to
the above convention, we assume x′

i (tk) ≡ x′
i

(
t−k
)

.
Throughout this paper, we assume that
(H1) There exists number Gi, Li > 0 such that

fi(x) < Gi, |fi(x) − fi(y)| ≤ Li|x − y|, ∀x, y ∈ R, i = 1, 2, · · · , n.

(H2) di(x) is positive and bounded, 0 < di ≤ di(x) ≤ di, i = 1, 2, · · · , n;
(H3) There exists positive integer q such that tk+q = tk + ω, γi(k+q)(x) =

γik(x), k = 1, 2, · · ·.
(H4) ai(t), bij(t), cij(t) and τj(t),Ii(t) are all continuous periodic functions

with the period ω, and the delays 0 ≤ τj ≤ τ, (, j = 1, · · · , n) are bounded, and
0 ≤ τ ′

ji(t) < 1.
The organization of this paper is as follows. In Section 2, we introduce

some lemma needed in later sections. In Section 3, we prove the existence of
the periodic solutions. Moreover, the monotonicity and smoothness of activa-
tion functions are not assumed in this paper, nor is the symmetric connection
requirement.

2 Preliminaries

In this section, based on the Mawhin’s continuation theorem, we shall study the
existence of at least one periodic solution of (1). To do so, we shall make some
preparations.

Let X and Z be two Banach space. Suppose that linear mapping L : DomL ⊂
X → Z is a Fredholm operator with index 0, and N : X → Z is continuous,
and there exist both continuous projects operators P : X → kerL and Q : Z →
Z/ImL such that X = kerP ⊕kerL, Z = ImQ⊕ImL, which satisfy ImP = kerL
and ImL = kerQ = Im(I − Q). If we define LP : Dom ∩ kerP → ImL by
LP = L|DomL∩kerP : (I−P )X → ImL, then it is obviously that LP is one to one
and reversible. Write inverse mapping KP , and denote KP,Q : Z → DomL∩kerP
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is the generalized inverse of LP by KP,Q = KP (I − Q). Let Ω be a bounded
open set in X . If QN(Ω) is bounded and KP (I −Q)(Ω) is compact on Ω, then
N : Ω → X is said to be L−compact.

Lemma 1. (Gaines-Mawhin continuation theorem, Gaines and Mawhin [8]) Let
X and Z be two Banach space, L : DomL ⊂ X → Z a Fredholm operator with
index 0, Ω a bounded open set in X, N : Ω → Z L−compact in Ω. Suppose that

(1) Lx �= λNx for all x ∈ ∂Ω ∩ DomL and λ ∈ (0, 1);
(2) QNx �= 0 for all x ∈ ∂Ω ∩ kerL;
(3) deg{QN,Ω ∩ kerL, 0} �= 0.

Then equation Lx = Nx has at lest one solution in DomL ∩Ω.

For any nonnegative integer q, let

C [0, ω; t1, · · · , tq]

=

⎧⎨⎩u : [0, ω] → Rn |
u(t) is continuous with respect to t �= t1, · · · , tq;
u(t + 0) and u(t − 0) exist at t1, · · · , tq;
u (tk) = u (tk − 0) , k = 1, · · · , q.

⎫⎬⎭ .

Let X = {x ∈ C [0, ω; t1, · · · , tq] | x(0) = x(ω)} , Z = X × R
n×(q+1), and

‖z‖Z = ‖x‖q + ‖y‖,z = (x, y) ∈ Z with x ∈ X, y ∈ Rn×(q+1), then it is standard
to show that both X and Z are Banach spaces.

Let r(t) be a ω-periodic continuous function defined on R. We define r− =

min
0≤t≤ω

|r(t)|, r+ = max
0≤t≤ω

|r(t)|, r = 1
ω

ω∫
0

r(t)dt, ‖r‖2 =
(

ω∫
0

|r(t)|2dt

) 1
2

.

3 Existence of Periodic Solution

Theorem 1. Assume that (H1)—(H4) holds. Then system (1) has at least one
ω-periodic solution.

Proof. In order to use continuation theorem of coincidence degree theory to
establish the existence of an ω−periodic solution of (1), we take

L : DomL ∩ X → Z,Lx = (x′, Δx (t1) , · · · , Δx (tq) , 0)

DomL = {x(t) ∈ C [0, ω; t1, · · · , tq] | x(0) = x(ω)} , N : X → Z,

N(x(t)) = (Ai(t),�xi (t1) ,�xi (t2) , · · · ,�xi (tq))

where

Ai(t) = −di(xi(t))
[
ai(t)xi(t) −

n∑
j=1

bij(t)fj (xj(t)) −
n∑

j=1

cij(t)fj(xj (t − τj(t)))

−
n∑

j=1

n∑
l=1

bijl(t)fj(xj (t − τj(t)))fl(xl (t − τl(t) + Ii(t)))
]

i = 1, · · · , n,
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It is not difficult to show that

kerL = {x ∈ X | x = h ∈ R
n} ,

ImL =

⎧⎨⎩z = (f, C1, C2, · · · , Cq, d) ∈ Z | 1
ω

ω∫
0

f(s)ds +
q∑

k=1

Ck + d = 0

⎫⎬⎭ .

and ImL is closed in Z. Therefore, L is a Fredholm mapping of index zero. Take

P : X → kerL, Px =
1
ω

ω∫
0

x(t)dt;

Q : X → Z, Qz =

⎧⎨⎩ 1
ω

⎡⎣ ω∫
0

f(s)ds +
q∑

k=1

Ck + d

⎤⎦ , 0, · · · , 0, 0

⎫⎬⎭ .

It is trivial to show that P and Q are continuous project operators.
Since dim kerL = n = codimImL. Therefore, L is a Fredholm operator with

the index 0. Hence, ImP = kerL, ImL = kerQ = Im(I − Q). the generalized
inverse KP,Q exists. Furthermore, we have that N is L-compact on Ω, see Gaines
and Mawhin [8].

Now it needs to show that there exists an domain Ω, which satisfies all the
requirements given in corresponding to operator equation Lx = λNx, λ ∈ (0, 1).
We have {

x′
i(t) = λAi(t), t > 0, t �= tk,

�xi (tk) = −λγik (xi (tk)) , i = 1, · · · , n, k ∈ Z+.
(2)

Suppose that x(t) = (x1(t) · · · , xn(t), )T ∈ X is a solution of system (2) for a
certain λ ∈ (0, 1). Integrating (2) over the interval [0, ω], we obtain

ω∫
0

Ai(t)dt −
q∑

k=1

γik (xi (tk)) = 0,

Hence Multiplying both sides of system (2) by xi(t) and integrating over [0, ω],
since

ω∫
0

xi(t)x′
i(t)dt = 1

2

q∑
�=1

[
x2

i (t�) − x2
i

(
t+�
)]

= λ
2

q∑
k=1

γik(2 − λγik)x2
i (tk) .
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we obtain

dia
−
i

ω∫
0

|xi(t)|2 dt =
ω∫
0

di(xi(t))ai(t)x2
i (t)dt + λ

2

q∑
k=1

γik(2 − λγik)x2
i (tk)

=
ω∫
0

di(xi(t))
[
ai(t)xi(t) −

n∑
j=1

bij(t)fj (xj(t))

−
n∑

j=1

cij(t)fj(xj (t − τj(t)))

−
n∑

j=1

n∑
l=1

bijl(t)fj(xj (t − τj(t)))fl(xl (t − τl(t) + Ii(t)))
]
dt

≤ di

ω∫
0

n∑
j=1

Lj

(
b+
ij ||xj(t) + fj(0)| + c+

ij ||xj(t − τj(t))| + fj(0)|
)

|xi(t)|dt + di

ω∫
0

n∑
j=1

n∑
l=1

b+
ijlGl|Lj|xj(t − τj(t))|

+fj(0)||xi(t)| + |Ii(t)||xi(t)|dt

On the other hand, we have

ω∫
0

|xj(t − τj(t))|2dt ≤ k2
j

ω∫
0

|xj(t)|2dt

Then we have

dia
−
i

ω∫
0

|xi(t)|2 dt ≤ di

[ n∑
j=1

Lj

(
b+
ij + c+

ijkj +
n∑

l=1

b+
ijlGlkj

)
‖xi‖2‖xj‖2

+

(
n∑

j=1

|fj(0)|
√

ω

(
b+
ij + c+

ij +
n∑

l=1

b+
ijlGl

)
+ Ii

√
ω

)
‖xi‖2

]

write

Γi = dia
−
i − di

n∑
i=1

Li

(
b+
ji + c+

jiki +
n∑

l=1

b+
jilkiGl

)

Δi = di

(
n∑

i=1

|fj(0)|
√

ω

(
b+
ij + c+

ij

n∑
l=1

b+
ijlGl

)
+ Ii

√
ω

)

Let A = max
1≤i≤n

Γi,B = min
1≤i≤n

Δi. we have

‖xi‖2 ≤ −B

A

.= Mi.
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Let ξi ∈ [0, ω](�= tk), k = 1, · · · , q such that xi(ξi) = inf
t∈[0,ω]

xi(t), i =

1, · · · , n. Then, by Hölder inequality, we have

xi(ξi)
[

ω∫
0

di(xi(s))ai(s)ds +
q∑

k=1

γik

]
≤

ω∫
0

di(xi(s))ai(s)xi(s)ds +
q∑

k=1

γikxi(tk)

=
ω∫
0

di(xi(s))
[ n∑

j=1

bij(t)fj (xj(t)) −
n∑

j=1

cij(t)fj(xj (t − τj(t)))

−
n∑

j=1

n∑
l=1

bijl(t)fj(xj (t − τj(t)))fl(xl (t − τl(t) + Ii(t)))
]
ds

≤ di

[ n∑
j=1

b+
ijLj

ω∫
0

|xi(s)|ds +
n∑

j=1

c+
ijLj

ω∫
0

|xj(s − τj)|ds

+ω
n∑

j=1

(b+
ij + c

|
ijfj(0)| +

n∑
j=1

n∑
l=1

b+
ijlGlLj

ω∫
0

|xj(s − τj)|ds

+ω
n∑

j=1

n∑
l=1

b+
ijlGl|fj(0)| +

ω∫
0

|Ii(s)|ds

= di

[
n∑

j=1

Aij‖xj‖2 + Bi

]

where

Aij =
√

ωLj

(
b+
ij + c+

ij +
n∑

l=1

b+
ijlGlkj

)

Bi = ω
n∑

j=1

(b+
ij + c+

ij +
n∑

l=1

b+
ijlGl)|fj(0)| +

√
ω‖Ii‖2

Hence

xi(ξi) ≤
di

diωai +
q∑

k=1

γik

⎛⎝ n∑
j=1

Aij‖xj‖2 + Bi

⎞⎠ .= Di

Similarly, let ηi ∈ [0, ω](�= tk), k = 1, · · · , q, such that xi(ηi) = inf
t∈[0,ω]

xi(t),

i = 1, · · · , n.

xi(ηi) ≥ − di

diωai +
q∑

k=1

γik

⎛⎝ n∑
j=1

Aij‖xj‖2 + Bi

⎞⎠ .= −Di
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Set t0 = t+0 = 0, tq+1 = ω. From (2), we have

ω∫
0

|x′
i(t)| dt =

q+1∑
k=1

tk∫
tk−1+0

|x′
i(t)| dt +

q∑
k=1

∣∣xi

(
t+k
)
− xi (tk))

∣∣
≤ dia

+
i

ω∫
0

|xi(t)| dt + di

n∑
j=1

ω∫
0

b+
ij (Lj|xj(t)| + |fi(0)) dt

+di

n∑
j=1

ω∫
0

c+
ij (Lj|xj(t − τj(t))| + |fi(0)) dt + diωI+

i

+di

n∑
j=1

n∑
l=1

ω∫
0

b+
ijlGl (Lj|xj(t − τj(t))| + |fi(0)) dt +

q∑
k=1

γik

.= Si.

(3)

For t ∈ [0, ω],

|xi(t)| ≤ |xi(ξi)| +
ω∫

0

|x′
i(s)|ds < Di + Si.

Now we take Ω =
{
x = (x1, x2, · · · , xn)T ∈ X |‖x‖ ≤ Zi

}
. Zi = Di + Si, It is

clear that Ω verifies the requirement (1) in Lemma 1. When x ∈ ∂Ω ∩Rn, x is a

constant vector in Rn with ‖x‖ =
n∑

i=1

|xi| = Z, where Z > 0 is taken sufficiently

large so that

min
1≤i≤n

(
dia

−
i − 1

2

n∑
j=1

(b+
ij + c+

ij)diLj + 1
ω

q∑
k=1

γik − 1
2di

n∑
j=1

n∑
l=1

Glb
+
ijlLj

)
Z

− max
1≤i≤n

di

(
n∑

j=1

(b+
ij + c+

ij +
n∑

l=1

Glb
+
ijl)|fi(0)| + I+

i

)
> 0

Then

(QNx)i =
(
− di(xi) 1

ω

[
xi

ω∫
0

ai(s)ds −
n∑

j=1

ω∫
0

fj(xj)(bij(s) + cij(s))

+
ω∫
0

Ij(s)ds −
n∑

j=1

n∑
l=1

fj(xj)fl(xl) 1
ω bijl

]
− 1

ω

q∑
k=1

γijxi, 0, · · · , 0, 0
)

Therefore

xT (QNx) = −
n∑

i=1

(
− di(xi) 1

ω

[
x2

i

ω∫
0

ai(s)ds − xi

n∑
i=1

ω∫
0

fj(xj)(bij(s) + cij(s))

+xi

ω∫
0

Ij(s)ds − xi

n∑
i=1

n∑
l=1

fj(xj)fl(xl) 1
ω bijl

]
+ 1

ω

q∑
k=1

γijx
2
i

)
≤

n∑
i=1

[
dia

−
i x2

i − 1
2

n∑
j=1

(b+
ij + c+

ij)diLj(x2
i + x2

j ) + 1
ω

q∑
k=1

γikx
2
i

− 1
2di

n∑
j=1

n∑
l=1

Glb
+
ijlLj(x2

i + x2
j)

]
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+
n∑

l=1

di

[
n∑

j=1

(b+
ij + c+

ij +
n∑

l=1

Glb
+
ijl)|fi(0)| + I+

i

]
|xi|

≤ −
n∑

i=1

|xi|
[

min
1≤i≤n

(
dia

−
i − 1

2

n∑
j=1

(b+
ij + c+

ij)diLj + 1
ω

q∑
k=1

γik

− 1
2di

n∑
j=1

n∑
l=1

Glb
+
ijlLj

)
|xi|

− max
1≤i≤n

di

(
n∑

j=1

(b+
ij + c+

ij +
n∑

l=1

Glb
+
ijl)|fi(0)| + I+

i

)]
< 0.

Define a continuous functions H : DomL × [0, 1] → X by Hx = −μx +
(1 − μ)QNx, where u ∈ ∂Ω ∩ Rn is a constant vector in Rn and μ ∈ [0, 1].
Thus, ‖H (x1, · · · , xn, μ)‖ > 0. As a result, we have deg{QN,Ω ∩ kerL, 0} =
deg {−x,Ω ∩ kerL, 0} �= 0. Condition (3) of Lemma 1 is also satisfied.

We now know that Ω satisfies all the requirements in Lemma 1. Therefore,
equation (2) has at least a continuous ω periodic solutions.

This completes the proof of the theorem. �
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Abstract. In this work a dynamic neuro-fuzzy network (DyNF-Net) is proposed, 
which is applied on the outgoing telephone traffic of a large organization. It is a 
modified Takagi-Sugeno-Kang fuzzy neural network, where the consequent 
parts of the fuzzy rules are neural networks with internal recurrence, thus 
introducing dynamics to the overall system. Real world telecommunications data 
are used in order to compare the DyNF-Net to well-established forecasting 
models. The comparison highlights the particular characteristics of the proposed 
neuro-fuzzy network. 

Keywords: dynamic neuro-fuzzy network, telecommunications data, non-linear 
time series forecasting. 

1   Introduction 

Forecasting is a valuable aid for telecommunications managers and is used for network 
traffic management, infrastructure optimization and planning, and the scenario 
planning process. To successfully manage their business, carriers must rely on data to 
monitor, analyze and optimize their systems in order to map future trends and usage 
patterns. Charging and billing are vital in telecommunications business as the primary 
motive for telecommunications service provision is profit. However, the aim of the 
telecommunications managers is not only the maximization of profit but also the 
reduction of unnecessary cost. Making use of the historical data, they may predict  
the future demand by creating a reasonably accurate forecast of the call volume.  

A case of such an organization is a University Campus with more than 6000 
employees. Due to the continuous increase of the faculty members and staff, new 
telephone numbers are added daily, and an increasing demand for outgoing trunks 
exists. It is obvious that the changes in call volume are vital to the planning of future 
installations. The University holds an extended database, made by the Call Detail 
Records (CDR) of the Private Branch Exchange (PBX), which includes information 
such as the call origin, the area code and exchange, and the duration of each telephone 
call. The database is mainly used to determine the total number, as well as the number 
of the national, the international and the mobile calls per employee per month. It is 
noticed that the call classification, into different categories, reveals certain and 
different patterns between destinations. In particular, calls to mobile destinations are 
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subject to higher tariffs and demonstrate an increasing trend during the last decade. 
This increasing traffic to mobile destinations may be used as a negotiation tool by the 
University’s managers to negotiate the tariffs with national service providers. In the 
past, the forecasting ability of well established statistical methods on the University’s 
call traffic have been studied [1]. Linear models are also suggested for forecasting 
trends in telecommunications data by the ITU Recommendation E.507 [2]. 

In this perspective, a Dynamic Neuro-Fuzzy Network (DyNF-Net) is proposed and 
its performance is compared with familiar forecasting approaches; namely a series of 
seasonally adjusted linear extrapolation methods, Exponential Smoothing Methods 
and the SARIMA method. All comparisons are performed on real world data. 

The rest of the paper is organized as follows: in Section 2, a brief presentation of 
the classical forecasting methods that are compared with our proposed model is given. 
In Section 3, the Dynamic Neuro-Fuzzy Network is presented. The training algorithm 
used to train the model is described in Section 4. In Section 5 the data used in the 
paper and the outcome of the comparative analysis of the methods are presented. 

2   Statistical Forecasting Methods 

In this section the time series analysis methods that were used to compare and 
evaluate our proposed DyNF-Net are briefly presented. First a simple method to 
forecast future values of the time series was used. This method, which is known as 
Naïve Forecast 1 (NF1) [3], takes the most recent observation as a forecast for the 
next time interval. Another simple method which takes into account the seasonal 
factors was applied. First, the seasonality is removed from the original data and the 
remaining trend-cycle component is used to forecast the future values of the series by 
means of linear extrapolation. Then, the projected trend-cycle component is adjusted 
with the use of the identified seasonal factors [1]. When multiplicative seasonality is 
assumed we have the LESA-M (Linear Extrapolation with Seasonal Adjustment - 
Multiplicative), while in the case of additive seasonality we have the LESA-ADD. 

A familiar group of time series analysis methods are the exponential smoothing 
methods. In exponential smoothing a particular observation of the time series is 
expressed as a weighted sum of the previous observations. The weights for the 
previous data values are terms of a geometric series and get smaller as the 
observations move further into the past. Simple Exponential Smoothing (SES) applies 
to processes without trend. In order to accommodate linear trend, C. E. Holt (1957) 
modified the simple exponential smoothing model. Winters (1960) extended Holt’s 
method in order to cope with seasonal data. Multiplicative seasonal models (Winters 
MS) as well as additive seasonal models (Winters AS) exist [4].  

Although linear trend represents an improvement on simple exponential smoothing, 
it cannot cope with more complex types of trend. Other modifications of SES can be 
applied to time series that exhibit damped trend. A damped trend refers to a regression 
component for the trend in the updating equation which is expressed by means of a 
dampening factor. As before an exponential smoothing model with damped trend and 
additive seasonality (DAMP AS) and its multiplicative seasonality counterpart  
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(DAMP MS) exists. One may also try to fit a damped trend model on time series with 
no seasonality (DAMP NoS). For a comprehensive review on exponential smoothing 
methods, readers are referred to the work of Gardner [4]. The above are popular in 
industry due to their simplicity and the accuracy that can be obtained with minimal 
effort in model identification.  

Another familiar method to analyze stationary univariate time series data was 
developed by G. Box and G. Jenkins. The method, which is called Auto Regressive 
Integrated Moving Average method (ARIMA), presumes weak stationarity, equally 
spaced intervals or observations, and at least 30 to 50 observations. The seasonal 
ARIMA (SARIMA) also exists [5]. 

To evaluate the amount of forecast error and compare the models three statistics 
are used namely the root mean squared error (RMSE), the mean absolute percentage 
error (MAPE), and Theil’s U [3].  

3   Dynamic Neurofuzzy Network (DyNF-Net) 

The suggested DyNF-Net, for the case of an m-input-single-output system, comprises 
generalized Takagi-Sugeno-Kang [6] rules in the form 

1 1 2 2   is   AND   is   AND ... AND   is  

 ( )
m mu (k) A u (k) A u (k) A

g(k) g (k)

IF

THEN = u
 (1)

where 1 2( ) [ , ,..., ]Tmk u u u=u is the input vector. The rule output ( )g (k)u  is 

implemented by a recurrent neural network in the form of 1-H-1, having a linear input 
layer while the hidden and output layers consist of neurons with internal feedback. In 
particular, the DyNF-Net has the following structural characteristics: 

The premise part is static. The degree of fulfillment is the algebraic product of the 
corresponding membership functions (Gaussian functions): 

( )
2

2
1 1

( )1
( ) ( ) exp{ }

2 ( )ji

m m
i ji

j A i
i i ji

u m
k u kμ μ

σ= =

−
= = − ⋅∏ ∏  (2)

The system’s overall output is static as well, derived via the weighted average 
defuzzification method, as given below: 

1 1

( ) ( ) ( ) ( )
r r

j j j
j j

y k k g k kμ μ
= =

= ⋅∑ ∑  (3)

The consequent parts of the r fuzzy rules are dynamic. Their structural elements 
are neurons with local output feedback at the hidden and output layers. Thus, 
dynamics is introduced to the overall system through these feedback connections. No 
feedback connections of the rule’s total output or connections among neurons of the 
same layer exist. The operation of the consequent part of the j-th fuzzy rule is 
described by the following set of equations: 
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(1) (2) (3)
1

1 1

( ) ( ( ( )) ( ( )) )
oDm

ji l ji jijil jil
l l

O k f w u k w O k l w
= =

= ⋅ + ⋅ − +∑ ∑    (4)

(4) (5) (6)
2

1 1

( ) ( ( ( )) ( ( )) )
gDH

j ji ji j jjl
i l

g k f w O k w g k l w
= =

= ⋅ + ⋅ − +∑ ∑  (5)

where i=1,…,H and j=1,…,r. The following notation is used: 

• 
1f  and

2f are the neuron activation functions of the hidden and the output layers, 

respectively. In the following, the activation functions are both chosen to be the 
hyperbolic tangent tanh(.). 

• ( )jiO k is the output of the i-th hidden neuron of the j-th fuzzy rule, at time k, and 

gj(k) is the output of the j-th fuzzy rule. 
• D0 and Dg are the time lag orders of the local output feedback, respectively, for the 

neurons of the hidden and the output layer, respectively. 

• (1)
jilw , (2)

jilw , (4)
jiw , (5)

jiw are the synaptic weights at the hidden and output layers. 

• (3)
jiw , (6)

jw are bias terms for hidden neurons and the output neuron, respectively. 

The formation of the consequent part of the fuzzy rules is given in Fig. 1. 
The selection of the aforementioned features is dictated by the following: 

• The DyNF-Net preserves the local learning characteristics of the classic TSK 
model, since it comprises fuzzily interconnected subsystems, which are local-
recurrent-global-feedforward neural networks [7]. The rules are not linked with 
each other in time, neither through external nor internal feedback. They are 
connected merely via the defuzzification part. The premise part performs the input 
space partition and the consequent part performs the input-output mapping. 
Accordingly, each recurrent neural network is capable of tracking the dynamics of 
the internal states of the unknown system, in the input space’s domain that is set by 
the respective premise part. 

• The selection of the particular neuron as structural unit is based on the DFNN 
model [8], where a more complicated form, nevertheless sharing the same 
underlying philosophy, was employed and exhibited improved identification 
characteristics compared to dynamic elements that have local synapse feedback. 

4   The Training Algorithm 

The DyNF-Net is trained by means of the dynamic resilient back-propagation 
algorithm (D-RPROP) [9], which constitutes a modification of the standard RPROP 
method [10], applicable to fuzzy models whose consequent parts are recurrent neural 
networks. Only minor modifications are made, such that the method takes into 
consideration the special features of the DyNF-Net, requiring calculation of the error 
gradients for the feedback weights, as well as for the parameters of the membership 
functions. A detailed description of the algorithm can be found in [9]. 
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Fig. 1. Consequent part of the j-th fuzzy rule 

A necessary part of the training algorithm is the extraction of the error gradients. 
Since the premise and defuzzification parts are static, the gradients of the error 
function, E, with respect to the weights of the premise part, are derived by use of 
standard partial derivatives, as given in [6]. The gradients of E with respect to the 
weights of the consequent part should be calculated using ordered partial derivatives 
[11], since temporal relations exist through the feedback connections. Calculation of 
the error gradients is based on the use of Lagrange multipliers, as shown below: 

( )( )
(1) (2) (3)

, , O
ji

jijil jil

E E E
f

w w w
λ

+ + +∂ ∂ ∂ =
∂ ∂ ∂

 (6)

( )( )
(4) (5) (6)

, , g
j

ji ji j

E E E
f

w w w
λ

+ + +∂ ∂ ∂ =
∂ ∂ ∂

 (7)

with the Lagrange multipliers derived as follows: 

{ }( ) ( ) (2) ( ) (4)
1 2

    1

( ) ( ) ( , , ) ( ) ( , )
o

f

D
O O g

ji ji j jijil
l=

k+l k

k k l f k l j i w k f k j wλ λ λ

≤

′ ′= + ⋅ + ⋅ + ⋅ ⋅∑ (8)
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( )

{ }

( )

1

( ) (5)
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    1

( )2
( ) ( ) ( ) +

( )

              + ( ) ( , )
g

f

jg
j d n

f
i

i

D
g

j jl
l=

 k+l k

k
k y k y k

k
k

k l f k l j w

μ
λ

μ

λ

=

≤

= ⋅ − ⋅

′+ ⋅ + ⋅

∑

∑
 (9)

where 2 ( , )f k l j′ + and 1( , , )f k l j i′ +  are the derivatives of gj(k+l) and Oji(k+l), 

respectively, with respect to their arguments. Equations (8) and (9) are backward 
difference equations that can be solved for k = kf-1,…1 using the boundary conditions: 

( )( )

1

( ) 2 ( ) ( ) ( ) ( ( ))
n

g
j f f d f j f f i f

i

k y k y k k k kλ μ μ
=

= ⋅ − ⋅ ⋅∑  (10)

( ) ( ) (4)
2( ) ( ) ( , )O g

f f fji j jik k f k j wλ λ ′= ⋅ ⋅
 

(11)

5   Simulation Results 

The data in hand cover a period of 10 years, January 1998 to December 2007, and are 
the monthly outgoing calls to mobile destinations originating from the PBX of a large 
organization. The data set is divided into two subsets. The training set, which is used 
to estimate the parameters associated with each method, and the validation set, which 
is used for the evaluation of the forecasts. The training set is chosen to be 9 years (108 
months) long and the validation set 1 year (12 months) long.  

From the visual observation of the time series (Fig. 2) a distinct seasonal pattern is 
noticeable which is made prevalent from the minimum that occurs in August. Apart 
from that, the number of calls to mobile destinations shows an increasing trend which 
comports with reports on mobile services penetration. 

The parameters, which are estimated during the fitting procedure, are used to 
forecast future values of the series. Since the validation set is not used in model 
fitting, these forecasts are genuine forecasts, and can be used to evaluate the 
forecasting ability of each model. The forecasting accuracy can be evaluated by 
means of the accuracy measures mentioned in Section 2.  

The fuzzy models for the outgoing calls are decided to be single-input-single-
output, with the input being the number of the mobile calls of the previous month, in 
order to investigate whether the models are able to discover the temporal 
dependencies of this time-series through its recurrent structure alone. Several DyNF-
Nets with different structural characteristics are examined and various combinations 
of the learning parameters are tested. Selection of the model- parameter combination 
is based on the criteria of (a) effective identification of the time series and (b) 
moderate complexity of the resulting models. The selected structural characteristics of 
the DyNF-Nets are given in Table 1. 
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Fig. 2. Monthly number of outgoing calls to mobile destinations 

Table 1. Structural characteristics and learning parameters of the DyNF-Net 

DyNF-Net structural characteristics 
Kind of calls Rules H D0 Dg

Mobile 2 6 2 2 
D-RPROP Learning Parameters 

Premise part 
n+ n- Δmin Δmax  Δ0 
1.01 0.95 1E-4 0.30 0.02 

Consequent part 
n+ n- Δmin Δmax Δ0 
1.10 0.80 1E-4 0.90 0.02 

 
The training process is carried out in parallel mode and lasts for 1500 epochs. The 

learning parameters of D-RPROP are hosted in Table 1. The input space is 
normalized to [-1,1] and the initial membership functions are uniformly distributed.  

For each method, three holdout accuracy measures were computed. These are the 
RMSE, the MAPE, and the Theil’s U-statistic. The smaller value of each statistic 
indicates the better fit of the method to the observed data. The results for each one of 
the twelve models are presented in Table 2; bold numbers indicate best fit. 

To further exploit the forecasting ability of the methods, plots of the observed 
values for the validation set with the best fit model (DyNF-Net) and the second best 
fit model (Damped MS) for each case are drawn (Fig. 3). Also, 95% prediction 
intervals (PI) for the forecasts are presented in the plots. The prediction (or 
confidence) intervals were estimated during the fitting process of the second best 
model and are denoted as Upper Confidence Level (UCL) and Lower Confidence 
Level (LCL). 
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Table 2. Comparative performance evaluation (testing data set) analysis  

Model RMSE MAPE Theil’s U 
DyNF-Net 5742 13.166 0.326 
NF1 12009 28.875 1.000 
LESA-M 9915 23.046 0.747 
LESA-ADD 10271 27.218 0.699 
SES 9671 24.698 0.569 
Holt’s Linear 11191 35.507 0.663 
Winter’s MS 9114 20.475 0.665 
Winter’s AS 8495 21.875 0.573 
Damped NoS 11962 31.756 0.715 
Damped MS 7419 15.958 0.524 
Damped AS 9020 23.584 0.599 
SARIMA 10102 20.793 0.775 

 

Fig. 3. Forecast fit with 95% PI and a comparison of DyNF-Net with the second best fit method 
(Damped MS) for each data set 

Visual observation of the plot (Fig. 3) reveals the differences between the two best-
fit models. DyNF-Net gives better forecast, as it follows the evolution of the series 
more closely, identifies the first local minimum that appears in February, but misses 
the significance of the minimum in August. The second best-fit model (indicated by 
all three statistics in Table 2) is a damped trend model with multiplicative seasonality 
(Damped MS). One may observe how the DyNF-Net forecast follows the actual data 
pattern against the second best model, which misses the behavior of the first two 
months (January and February 2007). Moreover, the actual data are not even within 
the 95% prediction interval of the Damped MS forecast. 
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Interestingly, the second best-fit model (Damped MS) was the best fit model 
indicated for the same type of calls in a past analysis [1] and was attributed to “the 
high cost of mobile calls, which desists users from making many calls to mobile 
destinations and retards the upward tendency”. With our current point of view an 
alternative reasoning for this damped trend may be the approach to a saturation point 
in mobile penetration. It should be also pointed out that a recent review of forecasting 
in operational research [12] concluded that the damped trend can “reasonably claim to 
be a benchmark forecasting method for all others to beat” which was the case with our 
DyNF-Net approach for the mobile data. 
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Abstract. Regularization networks represent an important supervised learning
method applicable for regression and classification tasks. They benefit from very
good theoretical background, although the presence of meta parameters is their
drawback. The meta parameters, including the type of kernel function, are typ-
ically supposed to be given in advance and come ready as an input of the al-
gorithm. In this paper, we propose multi-kernel functions, namely product kernel
functions and composite kernel functions. The choice of kernel function becomes
part of the optimization process, for which a new evolutionary learning algorithm
is introduced that deals with different kernel functions, including composite ker-
nels. The results are demonstrated on experiments with benchmark tasks.

1 Introduction

Regularization networks (RN) benefit from very good theoretical background, since
the regularization theory presents a sound framework for solving supervised learning
problems [1–3]. Moreover, there exists a simple, yet quite efficient learning algorithm
introduced in [4]. A disadvantage of regularization network approach is the presence
of meta parameters that are supposed to be known in advance. These meta parameters
are the type of kernel function and the regularization parameter. In addition, the kernel
function typically has additional parameters, for instance the width of the Gaussian
kernel.

It is known from the theory that we can consider networks with multi-kernel units,
although there have not been many case of applying such an architecture in practice.
Multi-kernel units are known to possess the same theoretical properties as the single
kernel units, yet, they can represent the underlying geometry of the data better.

In this paper we introduce a method for optimization of RN meta parameters. The
method is based on minimization of cross-validation error, which is an estimate of gen-
eralization ability of a network, by means of genetic algorithms. Different species are
utilized corresponding to different kinds of kernel functions, thus a natural co-evolution
is employed to solve the meta-learning process. The algorithm is also able to represent
multi-kernel functions mentioned above.

The paper is organized as follows. In the next section, we introduce the regularization
network. In Section 3, sum and composite kernel functions are introduced. Section 4
describes the genetic parameter search. Section 5 contains results of our experiments.
Conclusion can be found in section 6.
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2 Regularization Networks

In order to develop regularization networks we formulate the problem of supervised
learning as a function approximation problem. We are given a set of examples {(xi, yi)∈
Rd×R}N

i=1 obtained by random sampling of some real function f , and we would like to
find this function. Since this problem is ill-posed, we have to add some a priori knowl-
edge about the function f . We usually assume that the function is smooth, in the sense
that two similar inputs correspond to two similar outputs, and that the function does not
oscillate too much. This is the main idea of the regularization theory, where the solu-
tion is found by minimizing the functional (1) containing both the data and smoothness
information.

H [f ] =
1
N

N∑
i=1

(f(xi) − yi)2 + γΦ[f ], (1)

where Φ is called a stabilizer and γ > 0 is the regularization parameter controlling
the trade-off between the closeness to data and the smoothness of the solution. The
regularization approach has sound theoretical background, it was shown that for a wide
class of stabilizers the solution has a form of feed-forward neural network with one
hidden layer, called regularization network, and that different types of stabilizers lead
to different types of regularization networks [3, 4].

Poggio and Smale in [4] proposed a learning algorithm (Alg. 1) derived from the
regularization scheme (1). They choose the hypothesis space as a Reproducing Kernel
Hilbert Space (RKHS) HK defined by an explicitly chosen, symmetric, positive-definite
kernel function Kx(x′) = K(x,x′). The stabilizer is defined by means of norm in HK ,
so the problem is formulated as follows:

min
f∈HK

H [f ], where H [f ] =
1
N

N∑
i=1

(yi − f(xi))2 + γ||f ||2K . (2)

The solution of minimization (2) is unique and has the form

f(x) =
N∑

i=1

wiKxi
(x), (NγI + K)w = y, (3)

where I is the identity matrix, K is the matrix Ki,j = K(xi,xj), and y = (y1, . . . , yN ).
The solution (3) can be represented by a neural network with one hidden layer and

output linear layer. The most commonly used kernel function is Gaussian K(x,x′) =

e
−
( ‖x−x′‖

b

)2

.
The power of the Alg. 1 is in its simplicity and effectiveness. However, network

needs fixed values of meta parameters such as γ, the type of kernel function, and its
parameters (e.g. a width of the Gaussian). Then, the algorithm reduces to the problem
of solving linear system of equations (4).

The real performance of the algorithm depends significantly on the choice of meta
parameters γ and kernel function. However, their optimal choice depends on a particular
data set and there is no general heuristic for setting them.
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Input: Data set {xi, yi}N
i=1 ⊆ X × Y

Output: Function f.

1. Choose a symmetric, positive-definite function
Kx(x′), continuous on X × X.

2. Create f : X → Y as f(x) =
∑N

i=1 ciKxi(x) and
compute w = (w1, . . . , wN ) by solving

(NγI + K)w = y, (4)

where I is the identity matrix, Ki,j = K(xi , xj ),
and y = (y1, . . . , yN ), γ > 0.

Algorithm 1. RN learning algorithm

3 Composite and Product Kernel Functions

In this section we will introduce composite and product types of kernel functions. A
special case of composite kernel function — sum kernels — has been studied in our
previous work [5], while product kernel functions were first introduced in [6, 7].

The kernel function, used in the RN learning algorithm Alg. 1, is traditionally sup-
posed to be given in advance, for instance chosen by a user. In fact, the choice of a
kernel function is equivalent to the choice of a prior assumption about the problem at
hand. Therefore it seems that such a choice is crucial for the quality of the solution and
should be always done according to the given task. However, the choice of the kernel is
most often not part of the learning algorithm.

The real data are often heterogeneous. The heterogeneity refers either to attributes
or parts of the input space, or both. By the former we mean that different attributes are
of different types or differ in quality. By the latter that the data have different qualities
(such as density) in different parts of the input space. Then for different parts of data
different kernel functions are suitable.

We believe that, in such situations, kernel functions that are created as a combina-
tion of simpler kernel functions might better reflect the character of data. Therefore we
proposed multi-kernel functions, namely a product kernel and a composite kernel.

By a composite kernel we mean a kernel function K that can be expressed as a linear
combination of other kernel functions K(x,y) = αK1(x,y) + βK2(x,y), where K1

and K2 are kernel functions, α, β ∈ R.
By a product kernel we mean a kernel function K that can be expressed as a product

of other kernel functions K((x1,x2), (y1,y2)) = K1(x1,y1)K2(x2,y2), where K1

and K2 are kernel functions.
We can combine different kernel functions or combine two kernel functions of same

type but with different parameters such as two Gaussians of different widths (note that
the Gaussians have a same a center).
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4 Genetic Parameter Search

In our approach we use genetic algorithms (GA) [8] that represent a sound and robust
technique used to find approximate solutions to optimization and search problems. The
use of GA gives us versatility, thus with suitable solution encoding, we can search
for different type of kernel units, including product and composite kernels within the
framework of one algorithm. The genetic algorithms typically work with a population
of individuals embodying abstract representations of feasible solutions. Each individual
is assigned a fitness that is a measure of how good solution it represents. The better the
solution, the higher the fitness value.

The population evolves towards better solutions. The evolution starts from a popula-
tion of completely random individuals and iterates in generations. In each generation,
the fitness of each individual is evaluated. Individuals are stochastically selected from
the current population (based on their fitness), and modified by means of operators mu-
tation and crossover to form a new population. The new population is then used in the
next iteration of the algorithm.

4.1 Encoding

We work with individuals encoding the parameters of RN learning algorithm (Alg. 1).
They are the type of kernel function, its additional parameters, and the regularization
parameter. When the type of the kernel function is known in advance, the individual
consists only of the kernel’s parameter (i.e. the width in case of Gaussian kernel) and
the regularization parameter.

In case of simple kernel function, the individual is encoded as

I = {type of kernel function , kernel parameter , γ},

i.e. I = {Gaussian , width = 0.5, γ = 0.01}.
In case of composite kernel function, the individual looks like

I = { α, type of kernel function K1, kernel parameter,

β, type of kernel function K2, kernel parameter, γ}.

Product kernels are encoded as

I = { list of attributes included in x1, type of kernel function K1, kernel parameter,

list of attributes included in x2, type of kernel function K2, kernel parameter, γ}.

4.2 Operators

New generations of individuals are created using operators selection, crossover and
mutation. Mutation operator is implemented as a standard biased mutation introducing
small random perturbation to numerical values of existing individuals (by adding a
small random float drawn from normal distribution).

To work with individuals representing different kernel types we introduce the co-
evolution principle of species. Individuals with different kernel functions naturally rep-
resent different species, where each specie forms one subpopulation. The selection is



542 P. Vidnerová and R. Neruda

performed on the whole population and the selected individual is inserted into subpopu-
lation according its kernel type. Crossover is then performed only among the individuals
of same subpopulation.

The crossover for individuals representing simple kernels of the same type operates
as a version of arithmetic crossover where kernel parameter and γ are subject to the
operator. In our case, the new parameters are chosen randomly from the interval formed
by the old values. In case of sum and composite kernels, the crossover works as a
standard interchange of sub-kernels.

4.3 Fitness

The optimal RN should not only approximate the data from the training set, but also
has a good generalization ability. Our estimate of a generalization ability is a cross-
validation error. Then, it can be stated that we search for such meta parameters that
optimize the cross-validation error. Since we want to minimize the cross-validation er-
ror, the fitness should reflect it. So the lower the cross-validation error is, the higher the
fitness value is.

See Alg. 2 for the sketch of the algorithm.

Input: Data set S = {xi, yi}N
i=1 ⊆ R

n × R

Output: Parameters γ and K.

1. Create randomly an initial population P 0 = P 0
K1 ∪ . . .∪P 0

Kn
,

where Ki is
a particular kernel function and each P 0

Ki
has M

individuals I0
Ki,1 . . . I0

Ki,M.
2. i ← 0
3. ∀j : P i+1

Kj
← empty set

4. for j = 0 to n ∗ M:
(a) I ← selection(P i)
(b) insert I into P i+1

K such that I = {K, p, γ}
5. for j = 0 to n:

(a) for k = 1 to
|P i+1

Kj
|

2
:

with probability pcross:
(Ii+1

Kj,2∗k, Ii+1
Kj,2∗k+1) ← crossover(Ii+1

Kj,2∗k, Ii+1
Kj ,2∗k+1)

(b) for k = 1 to |P i+1
Kj

|:
with probability pmutate: Ii+1

Kj ,k ← mutate(Ii+1
Kj,k)

6. ∀I ∈ P i+1:
(a) E ← Ecross(γ,K, p, S), where I = {K, p, γ}
(b) fitness(I) ← C - E

7. P i+1 ← P i+1
K1

∪ . . . ∪ P i+1
Kn

8. i ← i + 1
9. goto 3 and iterate until the fitness stops increasing

Algorithm 2. Genetic parameter search
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5 Experiments

For our experiments we used the collection of benchmark problems Proben1 introduced
in [9]. The tasks are listed in Table 1. Each task is present in three variants corresponding
to three different partitioning to training and testing sets.

The following procedure is used for experiments:

1. find the values for γ and K using genetic parameter search
2. use the whole training set and the parameters found by Step 1 to estimate the

weights of RN
3. evaluate error on the testing set

The error is computed as E = 100 1
Nm

∑N
i=1 ||yi−f(xi)||2, where || · || denotes the

Euclidean norm.
The standard numerical library LAPACK [10] was used to solve linear systems.

Table 1. Overview of Proben1 tasks. Number of inputs (n), number of outputs (m), number of
samples in training and testing sets (Ntrain,Ntest). Type of task: approximation or classification.

Task name n m Ntrain Ntest Type
cancer 9 2 525 174 class
card 51 2 518 172 class
flare 24 3 800 266 approx
glass 9 6 161 53 class
heartac 35 1 228 75 approx
hearta 35 1 690 230 approx
heartc 35 2 228 75 class
heart 35 2 690 230 class
horse 58 3 273 91 class

Three experiments were performed. In the first one we evolved elementary kernel
functions using genetic algorithm with species. The population had 4 subpopulation,
corresponding to the four common kernel functions: Gaussian (K(x, y) = e−||x−y||2),
multiquadric (K(x, y) = (||x − y||2 + c2)−1/2), inverse multiquadric
(K(x, y) = (||x − y||2 + c2)1/2), and sigmoid (K(x, y) = tanh(xy − θ)).

In the second experiment, the product kernels were evolved, while in the third exper-
iment we evolved composite kernels. The population in these two latter cases had 50
individuals. Note that the regularization parameter as well as kernel parameters were
also found by evolution. The evolution algorithm was run for 300 generations.

Table 2 lists training and testing errors for networks found by genetic parameter
search, first with the Gaussian kernel (which is the most commonly used kernel func-
tion), then by the inverse multiquadric (which was a winning kernel function in all cases
of genetic search for optimal elementary function), and finally by product and compos-
ite kernels.

The Gaussian function gives the best test errors only in four cases out of 27, despite
the fact that it is the most commonly used kernel. The inverse multiquadric function,
that was the absolute winner among elementary kernel functions, gives best test errors
in 14 cases. Product kernels give best test error in 9 cases, composite kernels in 10 cases.
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Inverse multiquadric Composite Kernel
Etrain Etest Etrain Etest

1.83 1.50 0.14 1.53
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Fig. 1. Winning kernels for cancer1 task

Inverse multiquadric Composite Kernel
Etrain Etest Etrain Etest

1.41 2.92 1.34 2.92

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-10 -5  0  5  10

Inverse Multiquadratic

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10

Inverse Multiquadratic plus Sigmoid

Fig. 2. Winning kernels for cancer2 task

Inverse multiquadric Composite Kernel
Etrain Etest Etrain Etest

2.32 6.13 2.19 6.05
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Fig. 3. Winning kernels for glass1 task

In terms of training errors, the Gaussian function gives best results in 10 cases, in-
verse multiquadric function in 1 case and composite kernels in 20 cases.

In some cases, composite kernels achieved very low training errors while preserving
test errors comparable to other kernels. In this cases we get very precise approximation
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Table 2. Error on training and testing set obtained by RN with Gaussian kernels, inverse multi-
quadric kernels, product and composite kernels

Gaussian kernel Inv. multiquadric Product kernel Composite kernel
Task Etrain Etest Etrain Etest Etrain Etest Etrain Etest

cancer1 2.29 1.76 1.83 1.50 2.68 1.81 0.14 1.53
cancer2 1.85 3.01 1.41 2.92 2.07 3.61 1.34 2.92
cancer3 2.05 2.78 1.74 2.54 2.28 2.81 0.51 2.85
card1 7.17 10.29 7.56 10.03 9.22 9.99 6.45 10.06
card2 5.72 13.19 6.06 12.74 7.96 12.90 4.60 12.74
card3 5.93 12.68 6.35 12.28 6.94 12.23 6.35 12.29
flare1 0.34 0.54 0.35 0.54 0.36 0.54 0.35 0.54
flare2 0.41 0.27 0.41 0.27 0.42 0.28 0.41 0.27
flare3 0.39 0.33 0.39 0.33 0.40 0.34 0.39 0.33
glass1 3.37 6.99 2.32 6.13 2.64 7.31 2.19 6.05
glass2 3.92 7.74 1.06 6.79 2.55 7.46 0.76 6.85
glass3 4.11 7.36 2.67 6.27 3.31 7.26 0.50 6.61
heartac1 3.39 3.30 3.66 3.03 4.22 2.76 3.71 3.06
heartac2 2.08 4.15 2.42 3.95 3.49 3.87 2.40 3.95
heartac3 2.52 5.10 2.85 5.13 3.26 5.18 0.64 5.10
hearta1 2.58 4.43 2.73 4.28 3.47 4.39 2.49 4.28
hearta2 2.12 4.32 2.41 4.20 3.28 4.29 2.46 4.22
hearta3 2.59 4.44 2.84 4.40 3.40 4.44 1.44 4.41
heartc1 7.73 16.03 8.23 15.93 10.00 16.08 1.39 15.59
heartc2 10.67 6.82 10.99 6.47 12.37 6.29 0.02 6.38
heartc3 6.88 13.36 7.22 12.86 8.71 12.65 7.23 12.85
heart1 8.56 13.70 9.21 13.55 9.56 13.67 0.87 13.76
heart2 7.99 14.15 8.17 13.88 9.43 13.86 8.22 13.92
heart3 5.85 17.03 5.92 16.85 9.15 16.06 5.85 16.88
horse1 2.52 13.31 4.15 11.77 14.25 12.45 0.26 11.93
horse2 1.58 16.12 3.63 15.22 12.24 15.97 0.72 15.03
horse3 2.27 14.62 3.84 13.53 9.63 15.88 0.33 13.22

of training data and still we have good generalization ability. Most of these kernels
are combinations of wide kernel and narrow kernel. The narrow member ensures the
precise answer for the training point, the wider kernel is responsible for generalization.

For illustration, the simple kernel functions and composite kernel functions evolved
for the cancer1, cancer2 and glass1 tasks are presented in Fig. 1, Fig. 2 and Fig. 3,
respectively.

Time complexity of the evolution is quite high, in terms of hours for tasks considered
in this work. However, for the larger data sets the kernel function and the other meta-
parameters can be found on a subsection of the data set and only the single last training
of the RN is performed on the whole data.

6 Conclusion

In this paper we have explored the possibilities of using multi-kernel units for regular-
ization networks. While the subject is theoretically sound, there has not been a suitable
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learning algorithm that makes use of these properties so far. We have proposed an evolu-
tionary learning algorithm that considers multi-kernel units and adjusts their parameters
in order to capture the geometrical properties of training data better. The learning pro-
cess has been tested on several benchmark tasks with promising results. In general, the
multi-kernels have demonstrated superior performance in comparison to single kernel
units. The most common winning architecture consists of the combination of a wide
and narrow kernel function.

Although only kernels defined on real numbers are considered throughout this work,
in practical applications we often meet data containing attributes of different types, such
as enumerations, sets, strings, texts, etc. Such data may of course be converted to real
numbers by suitable preprocessing. But the regularization network learning framework
may be generalized to be able to work on such data types. For such generalization
sophisticated kernel functions defined on various types were introduced in literature.
Examples of kernel functions defined on objects including graphs, sets, texts, etc. can
be found in [11].
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Abstract. During the last two decades, several neural networks have
been proposed for solving the assignment problem, and most of them
either consist of O(n2) neurons (processing units) or contain some time
varying parameters. In the paper, based on the improved dual neural
network proposed recently, we present a new assignment network with 2n
neurons and some constant parameters only. Compared with the existing
neural networks for solving the assignment problem, its more favorable
for implementation. Numerical simulation results indicate that the time
complexity of the network is O(n).

Keywords: Assignment problem, sorting problem, quadratic program-
ming, linear programming, analog circuits.

1 Introduction

The assignment problem is concerned with assigning n entities to n slots for
achieving minimum cost or maximum profit. It is known to be a polynomial
combinatorial optimization problem. Its applications cover pattern classification,
machine learning, operations research and so on.

For solving the assignment problem, there exist many efficient iterative algo-
rithms such as the auction methods [1], signature methods [2]. Inspired by the
Hopfield network for solving optimization problems with neural networks, many
continuous methods were developed for solving the assignment problem (e.g.,
[3–7]). One of the major advantages of this kind of methods is that they can be
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implemented in parallel analog circuits to achieve super high speed, which is very
attractive in real-time applications. However, most of these methods requires an
“annealing” procedure which is sensitive to the solution quality. In addition, this
time-varying procedure would pose difficulties in circuits implementation.

In [8], an assignment neural network is proposed without any time-varying
procedure. It features elegant theoretical results with constant parameters. The
major demerit lies in its complex structure. For instance, it entails more neurons
and interconnections than the network in [7]. But this is a tradeoff between
the efficiency and structural complexity, as argued in [8]. In the present paper,
we show that this tradeoff is unnecessary. Based on the improved dual neural
network or IDNN proposed in [9], we have designed a very simple assignment
network with constant parameters only.

2 Problem Formulation

Suppose that there are n entities to be assigned to n slots and assigning entity
i to slot j induces cost cij . Then, what is the best assignment in terms of min-
imum total cost? This is called assignment problem. Mathematically, it can be
formulated as a zero-one programming problem:

minimize f1 =
∑n

i=1

∑n
j=1 cijxij

subject to
∑n

i=1 xij = 1 ∀j = 1, . . . , n∑n
j=1 xij = 1 ∀i = 1, . . . , n

xij ∈ {0, 1} ∀i, j = 1, . . . , n

(1)

where cij and xij are, respectively, cost variable and decision variable associated
with assigning entity i to slot j. The variable xij = 1 means assigning entity i
to slot j and xij = 0 means not assigning entity i to slot j. Since any entity
should be, and must be, assigned to only one slot, and any slot should be, and
must be, assigned one entity, a feasible assignment should correspond to a matrix
x = {xij} with only one element equal to one in every column and row.

Lemma 1. The problem (1) is equivalent to the following problem

minimize f2 = q
2

∑n
i=1

∑n
j=1 x2

ij +
∑n

i=1

∑n
j=1 cijxij

subject to
∑n

i=1 xij = 1 ∀j = 1, . . . , n∑n
j=1 xij = 1 ∀i = 1, . . . , n

xij ∈ {0, 1} ∀i, j = 1, . . . , n,

(2)

where q > 0 is a constant.

Proof. This can be proved by showing that
∑n

i=1

∑n
j=1 x2

ij is a constant in the
feasible region. Because xij ∈ {0, 1}, xij = x2

ij . Then

n∑
i=1

n∑
j=1

x2
ij =

n∑
i=1

n∑
j=1

xij = n,

which completes the proof.
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Problem (1) and problem (2) are zero-one programming problems. But, if the
problem has a unique solution, it is known that (1) is equivalent to the following
(continuous) linear programming problem

minimize f1 =
∑n

i=1

∑n
j=1 cijxij

subject to
∑n

i=1 xij = 1 ∀j = 1, . . . , n∑n
j=1 xij = 1 ∀i = 1, . . . , n

xij ∈ [0, 1] ∀i, j = 1, . . . , n.

(3)

In what follows, we formulate the continuous counterpart of problem (2).

Theorem 1. If the problem (2) has a unique solution, then there exists a suf-
ficiently small positive constant q such that (2) is equivalent to the following
problem

minimize f2 = q
2

∑n
i=1

∑n
j=1 x2

ij +
∑n

i=1

∑n
j=1 cijxij

subject to
∑n

i=1 xij = 1 ∀j = 1, . . . , n∑n
j=1 xij = 1 ∀i = 1, . . . , n

xij ∈ [0, 1] ∀i, j = 1, . . . , n.

(4)

Proof. What is only needed to show is that the unique solution of (2), denoted
by x∗, is also a solution of (4), by considering that the objective function of (4)
is strictly convex and it has at most one solution.

Denote the feasible region of (4) by X and the feasible region of (2) by V .
Note that any point in X is called a doubly stochastic matrix and any point in V
is called a permutation matrix. According to the well-known Birkhoff-von Neu-
mann theorem, a square matrix is doubly stochastic if and only if it is a convex
combination of permutation matrices. Namely, any x ∈ X can be expressed as

x =
∑

k

θkv(k),

where v(k) ∈ V ,
∑

k θk = 1, 0 ≤ θk ≤ 1. Denote the unique solution of (2) by x∗.
Then

〈x∗,x∗ − v(k)〉 =
n∑

i=1

n∑
j=1

x∗
ij(x

∗
ij − v

(k)
ij ) =

n∑
i=1

n∑
j=1

(x∗
ij)

2 − x∗
ijv

(k)
ij

= n −
n∑

i=1

n∑
j=1

x∗
ijv

(k)
ij > 0

for v(k) ∈ V ,v(k) �= x∗, where 〈·, ·〉 stands for the Frobenius inner product
of two matrices. Because x∗ is also the unique solution of (3), according to
the equivalence between convex optimization problem and variational inequality
[10], we have

〈∇f1(x∗),x − x∗〉 = 〈c,x − x∗〉 ≥ 0 ∀x ∈ X .

Now we show that for any x ∈ X but x �= x∗, the above equality cannot
hold. Otherwise, there exists such a point x̄ so that 〈c, x̄ − x∗〉 = 0. Then
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〈c,x− x∗〉 = 〈c,x− x̄〉 ≥ 0, ∀x ∈ X , indicating that x̄ �= x∗ is also a solution of
problem (3), which contradicts to the uniqueness of the solution. Therefore

〈c,x − x∗〉 > 0 ∀x ∈ X ,x �= x∗.

Consequently,
〈c,v(k) − x∗〉 > 0 ∀v(k) ∈ V ,v(k) �= x∗,

as V ⊂ X . Let

0 < q ≤ 〈c,v(k) − x∗〉
〈x∗,x∗ − v(k)〉 , ∀v(k) ∈ V ,v(k) �= x∗.

It follows that

〈∇f2(x∗),v(k) − x∗〉 = 〈qx∗ + c,v(k) − x∗〉 ≥ 0, ∀v(k) ∈ V ,v(k) �= x∗.

For any x ∈ X ,

〈∇f2(x∗),x−x∗〉 = 〈∇f2(x∗),
∑

k

θkv(k)−x∗〉 =
∑

k

θk〈∇f2(x∗),v(k)−x∗〉 ≥ 0,

where 0 ≤ θk ≤ 1,
∑

k θk = 1. Hence, x∗ is a solution of (4), which completes
the proof.

From the proof, it can be seen that q should be small enough and its upper
bound is

min
k

〈c,v(k) − x∗〉
〈x∗,x∗ − v(k)〉 (5)

which is positive. In practice, the optimal solution x∗ is unknown, and it is
time consuming to find all feasible solutions v(k) to problem (1) or (2). So, it
is suggested to set q to be very small. Throughout the rest of the paper, it is
assumed that the solution of the assignment problem (1) is unique. Then, with
small q, all of the four problems (1), (2), (3), (4) are equivalent.

3 The Improved Dual Neural Network

3.1 Architecture

The problem (4) is a quadratic programming problem. According to [9], it can
be solved by using the improved dual neural network (IDNN):

– state equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
τ
dui

dt
= −

n∑
j=1

g(ui + vj − cij/q) + 1, i = 1, . . . , n

τ
dvi

dt
= −

n∑
j=1

g(uj + vi − cji/q) + 1, i = 1, . . . , n

(6a)



IDNN for Solving the Assignment Problem 551

– output equations

xij = g(ui + vj − cij), i, j = 1, . . . , n, (6b)

where τ > 0 is the time constant and

g(s) =

⎧⎨⎩0, s < 0,
s, 0 ≤ s ≤ 1,
1, s > 1.

Clearly, this network would entail n neurons for representing ui and n neurons
for representing vi. The block diagram of the neuron ui is plotted in Fig. 1.
Neurons corresponding to the dual variables vi can be constructed similarly.

+

+

+1v

qci /1

iu

-

)(g

+

+2v

qci /2

-

)(g

+

+nv

qcin /

-

)(g

1

-

-
-

Fig. 1. Block diagram for realizing neuron ui

3.2 Comparison with Other Neural Networks

In [7], two neural networks were proposed for solving the assignment problem
(1). One is called the primal neural network, whose dynamic equations are

– state equations

τ
duij

dt
= −

n∑
k=1

(xik + xkj) + 2 − αcij exp
(
− t

T

)
, i, j = 1, . . . , n (7a)

– output equations
xij = h(uij), i, j = 1, . . . , n, (7b)

where τ > 0 is the time constant, α > 0 and T > 0 are scaling constants, and
h is a nonnegative and monotone nondecreasing activation function satisfying
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g(z) ≥ 0 and dg/dz ≥ 0 for any z ∈ R (a typical example is the sigmoid
function). The other model is called the dual neural network, whose dynamic
equations are

– state equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
τ
dui

dt
= −

n∑
j=1

φ(ui + vj − cij) + α exp
(
− t

T

)
, i = 1, . . . , n

τ
dvi

dt
= −

n∑
j=1

φ(uj + vi − cji) + α exp
(
− t

T

)
, i = 1, . . . , n

(8a)

– output equations

xij = δ(ui + vj − cij), i, j = 1, . . . , n, (8b)

where τ, α, T are positive constant, φ is a nonnegative and nondecreasing func-
tion defined as φ(z) = 0 if z ≤ 0 and φ(z) > 0 if z > 0, and δ is a function
defined as δ(z) = 1 if z = 0, or δ(z) = 0 otherwise. It is seen that the primal
neural network entails n2 neurons and O(n2) connections whereas the dual neu-
ral network entails 2n neurons and O(n2) connections (see [7] for details). The
latter model is simpler in structure. In addition, from (8), it can be seen that
the dual neural network is nearly as simple as the IDNN (6).

The two models above were derived from the deterministic annealing neural
network for solving the general convex optimization problems [11]. So, both of
them involve a temperature parameter α exp(−t/T ), which is hard to be realized
in hardware.

In [8], a neural network called primal-dual neural network was proposed for
solving the assignment problem. The state equations are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ
dxij

dt
= −

(
cij

n∑
p=1

n∑
q=1

(cpqxpq − up − vp) + φ(−xij) +
n∑

l=1

(xil + xlj) − 2

)
,

i, j = 1, . . . , n

τ
dui

dt
= −

(
−

n∑
p=1

n∑
q=1

(cpqxpq − up − vp) +
n∑

l=1

φ(ui + vl − cil)

)
, i = 1, . . . , n

τ
dvi

dt
= −

(
−

n∑
p=1

n∑
q=1

(cpqxpq − up − vp) +
n∑

l=1

φ(ul + vi − cli)

)
, i = 1, . . . , n

(9)
where τ > 0 and φ is defined the same as in (8). This network entails constant
parameters only, which is superior to the networks (7) and (8). However, it is
more complicated in architecture because it consists of n2 + 2n neurons and
O(n2) connections.

Since the assignment problem can be equivalently written as a linear pro-
gramming problem or quadratic programming problem, all linear programming
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networks and quadratic programming networks are capable of solving it. Cur-
rently, there are two main streams of researches in this area, characterized by
continuous or discontinuous activation functions. Some typical networks in the
former refer to [12–14]. However, it is easy to see that all of them require n2 +2n
neurons for solving the assignment problem, though most of them are relatively
simpler than the primal-dual network (9). Some typical networks in the latter
refer to [15, 16]. It is easy to see that they require at least n2 neurons for this
problem.

3.3 Stability and Convergence

The following result follows from Theorem 2 in [9] and Theorem 1, directly.

Lemma 2. Let (u∗
i , v

∗
i ) be the equilibrium point of (6), then the unique solution

of the assignment problem (1) x∗
ij can be denoted by g(u∗

i + v∗j − cij).

Since it is assumed that the problem (4) has a unique solution, from Theorem 4
in [9] and Lemma 2, it follows the following theorem.

Theorem 2. If q is sufficiently small, any equilibrium point of the network (6)
is stable in the sense of Lyapunov, and the corresponding output trajectory glob-
ally converges to the unique solution of the assignment problem (1).

4 Numerical Simulations

To verify the correctness of the results presented in last section, we have numeri-
cally simulated the proposed network (6) for solving some problems in MATLAB
with the “ode23” function.

We randomly generated some cost matrices c with every element between
zero and one. Fig. 2 shows the state trajectories of the network (6) for solving
such a problem with n = 10. The parameters were set as follows: τ = 10−6 and
q = 0.001. The output of the network converged to the correct solution of (1),
verified by solving the linear programming problem with the MATLAB build-in
function “linprog”.

According to Theorem 1, q should be set sufficiently small. But it is unclear
how small is enough and what is the influence of the values of q on convergence
properties. We investigated this issue numerically. The idea is to compare the
convergence time of the network with different q values. Let x∗ be the ground
truth obtained by MATLAB function “linprog”. For saving CPU time in running
simulations, we terminated the program when∑

i

∑
j

|round(xij(t)) − x∗
ij | ≤ 10−6

where round(x) is equal to 0 if x < 0.5 and 1 otherwise. The time at which
this was achieved was recorded as the convergence time. For every q value, 30
different runs with random initial points between [−50, 50] were executed. The



554 X. Hu and J. Wang

0 0.5 1 1.5

x 10
−4

−50

0

50

100

150

200

Time t (s)

S
ta

te
s

Fig. 2. State trajectories of the network (6)
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Fig. 3. Convergence time of the network (6) with different q values for (a) n = 10 and
(b) n = 50. Note that the coordinates are in logarithm scale. The circles denote the
mean and the bars below and above them stand for one standard deviation each. The
continuous line in each plot is the linear regression of the logarithm of the mean versus
the logarithm of q.

statistics of the convergence time for two problem sizes is plotted in Fig. 3. It
is seen that as q decreases the convergence time increases, and the logarithm of
the convergence time is roughly a linear function of the logarithm of q. In other
words, the convergence time increases as q decreases. Therefore, q should not be
too small. This poses some difficulty in choosing an appropriate q.

Next, we investigated the relationship between the problem size and the con-
vergence time of the network. Let q = 0.01/n. For each n = 10, 20, 30, 40, 50, 60,
70, 80, 100, thirty different runs with random initial points between [-50,50] were
executed. The same stopping criterion as above was adopted. The statistics of
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Fig. 4. Convergence time of the network (6) for different problem sizes. The circles and
bars denote the mean and the standard deviation, respectively. The continuous line is
the linear fit of the means versus n.

the convergence time is plotted in Fig. 4. It is seen that the convergence time
grows linearly with the problem size, which is in sharp contrast with the iterative
algorithms such as [2] which has O(n3) time complexity.

5 Concluding Remarks

We applied the improved dual neural network or IDNN for solving the assignment
problem. An assignment network with 2n neurons, free of time-varying parame-
ters, was obtained, which was theoretically guaranteed to be globally convergent
to the solution of the problem if only the solution is unique. Numerical simu-
lations indicated that the computing time was roughly a linear function of the
problem size n, implying that this network method, if implemented in hardware,
would be much faster than traditional iterative algorithms for solving large scale
problems.

The main disadvantage of the new assignment network is that it introduces a
parameter that should be set appropriately. If it is too large, the network may
converge to incorrect states; if it is too small, the convergence will be slow. In
most cases, it has to be selected by trial and error.
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Evaluating Model on Effectiveness of Network Defense 
Missile Based on LMBP Neural Network 
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Abstract. For effectively evaluating the operational effectiveness of the netting 
air-defense missile system, the index system of the operational effectiveness for 
the netting air-defense missile system is studied, and evaluating index is 
uniformly quantized according to utility function. And sets up utility function 
equation for the netting air-defense missile system, studies the operational 
effectiveness evaluating model of the netting air-defense missile system based 
on LMBP neural network, then it is validated that the model has higher value by 
an example. 

Keywords: netting air-defense missile system; operational effectiveness; LM 
Algorithm; LMBP neural network. 

1   Introduction 

The netting air-defense missile system warfare is a combined operation that includes 
multiple type defense missile under the uniform command, which emphasizes the 
comprehensive operational effectiveness by uniformly commanding and controlling 
the netting air-defense missile to effectively develop various type air-defense missile. 
In fact, the netting air-defense missile system warfare is a special synergetic warfare, 
which is made up of the four stages: information acquiring, operation decision-
making optimizing, intercepting actions and operational evaluation feeding back 
according to the fighting sequence. And The netting air-defense missile system 
warfare effectiveness is influenced by the multiple factors, whose relation is very 
complex, always have the different direction and content of the operational 
effectiveness, and these relations cannot be distinguished when the different factors 
are simultaneously working. So a specific mathematical model showing their relations 
is not easily obtained. NN(neural network), whose large scale parallel computing, 
distributed processing capacity, self-organization, adaptive ability and self-learning 
capacity, can be easily used to process these problems that need to apply the multiple 
factors and conditions meanwhile, therefore, for effectively evaluating the operational 
effectiveness of the netting air-defense missile system, the evaluating model of the 
netting air-defense missile system based on LMBP NN is set up[1-2]. 
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2   Evaluating Index System of the Operational Effectiveness for 
the Netting Air-Defense Missile System 

The evaluating index system of the operational effectiveness for the netting air-
defense missile system should be given according to its detection capacity, command 
and decision-making, attack and kill rate, operational ability and adaptive capacity. 
The evaluating index system of the operational effectiveness for the netting air-
defense missile system is obtained after consulting opinion of many experts and 
summarizing the references[3] in the following figure 1.  

 

Fig. 1. Evaluating index system of the operational effectiveness 

OENAMS- the operational effectiveness of the netting air-defense missile system, 
DC-detection capacity, CDM-command and decision-making, AKR-attack and kill 
rate, SC-survival capacity, BA-battlefield adaptability, GRNDC-ground radar net 
detection capacity, DEWAC- detection and early warning of air scout, DEWSS- 
detection and early warning of spy satellite, IPC-information processing capacity, 
ITC- information transmission capacity, CWC- command and warfare capacity, PO-
probability of the object that can be fired, KP-kill probability, ANF-the ability that 
can not be found, MA-maneuvering ability, RDC-resist damage ability, SOA-system 
organizing again, EA-environment adaptation, TA-tactics adaptation, RD- resist 
disturbance, IAD- information acquiring density, CPC-comprehensive processing 
delay, IPC- information processing capacity, ITC- information transmission capacity, 
ITQ- information transmission quality, ITD- information transmission delay, ODC-
object distribution capacity, DMRT-decision-making respond time, FE-fire 
efficiency, CQE-control and guide error, DPD-detonating probability, WP-warhead 
power. 
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3   Evaluating Model on the Operational Capacity of the Netting 
Air-Defense Missile System Based on LMBP NN 

3.1   Neural Net and LMBP Algorithm  

BPNN is a multi-level feeding back net, which uses a learning algorithm of training of 
network. The comprehensive evaluation method based on LMBP NN, which utilizes 
the self-learning, adaptive capacity, fast evaluation and powerful fault tolerance, 
approaches the human thinking, which integrates quantitative and qualitative method. 
And it avoids the uncertainty and the subjective influence from the anthropic 
weighting and the related coefficient because the weight vale of the model is obtained 
by an example.  

The principle of LMBP NN includes is that the output value acquiring under the 
activation function according to the initial joints value and the threshold value of the 
network with the input of some samples. And compares the actual output value with 
the expected output value, when it has some error, BPNN can be back propagatation 
from the output value, continually adjusts the joint and the threshold value and make 
it smaller and smaller that the RMS error between the actual value and the 
expectation, when the error gets to the precision demand, shows that the BPNN has 
been trained and can be applied. 

BPNN is made up of the input layer, the hidden layer and the output layer. 
Activation function usually applies the nonlinear S type function in the following 
equation (1).  

1
( )

1 x
f x

e−=
+

 (1)

so a three-layer BPNN is set up in this paper, whose model is as the following figure 2. 

y z

how

ihw

2x

nx

1x

 

Fig. 2. Three-layer BPNN model  

The procedure of the typical BP learning algorithm includes: 

1. set the initial weight value, threshold value and the learning cell of BPNN, and 
so on, then put forward the net precision request and initialize the network. 

2. input the training sample, train the network until it satisfy the precision request. 
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3. calculate the error between the actual and the expected output value according to 
the given input value, if not satisfy the precision request, then go on the step 4, 
otherwise return the step 2. 

4. correct the weight value and threshold value according to the calculation result 
of the same layer unit, and return the step 2. 

The algorithm and procedure of the LMBP includes the followings. 
NN may be trained when its weight value and the threshold value are initialized. 

The training algorithm of BPNN makes the effectiveness function value the smallest 
by calculating the effectiveness function gradient, adjusting the weight value and the 
threshold value according to the negative gradient direction. The regulation function 
formula can be expressed as the following equation 2 in the k cycle. 

1k k k kx x gα+ = −  (2)

kx —the current weight value and the threshold value; 

kg —the current performance function gradient; 

kα —the study speed. 

LM optimization algorithm, which is also called the damping least square method, 
regulates its weight value according to the following equation 3. 

1[ ]T Tw u e−Δ = +J J I J  (3)

e —the error vector; 

J —Jacobian matrix that the error differentializes the weight value; 
u —one quantity. 
Therefore, LM algorithm is a method that smoothly reconciles between the steepest 

descent and Gauss-newton method. And its specific procedure is the followings. 

1. distil all the input signals into the net and calculate the output signals of the net, 
simultaneously train the quadratic sum of the error all the objects that is calculated by 
the error function. 

2. calculate the Jacobian matrix that the error differentializes the weight value, 
first, define the Marquardt sensitivity: 

m
i m

i

E
S

n

∂=
∂

 (4)

from the equation 4, it is well known that the error function E expresses the sensitivity 
of the change of the i  cell from the m  layer, n  is the weight sum of every layer. 

The Marquardt sensitivity recurrence relation equation is the following formula. 

1 1( )( )m m m T m
q q qS E n w S+ +=  (5)

Therefore, it can be back propagation from the last layer to the first layer, as 
follows the formula 6. 
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1 2 1m mS S S S−→ → → →L  (6)

Then calculate the element of Jacobian matrix by the equation 7, as follows the 
formula 7. 

[ ] , , , , 1
, , ,,

, , , ,

m m
k q k q i q i qm m m

i h i h j qm m m mh l
i j i q i j i j

e e e n
S S a

w n w w
−∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

J  (7)

3. calculate the wΔ  by equation 3. 

4. repeatedly calculate the quadratic sum of the error by w w+ Δ . If the new sum 

is smaller than the sum in the equation 1, then divide ( 1)θ θ >  by using the μ , and 

return the step 1; otherwise divide ( 1)θ θ >  by using the μ  and return the step 3. 

When the quadratic of the error to some objective error, the algorithm can be 
considered converge. 

One of the keys of the BP algorithm is to choose the number of the hidden layer, if 
the number of net is not enough, the degree of freedom of the net is not 
enough,learning for expansion is not enough as well, and the fault tolerance is bad; 
contrarily the degree of freedom of the net is excessive, the learning time will extend 
and the error is not certainly good. The following formula may be referred[1][9].  

h m n= ⋅  (8)

1

n
i
h

i

C p
=

>∑  (9)

( 3) 1h m n≤ + +  (10)

h -the neural cell number of the hidden layer 
n - the neural cell number of the input layer 
m - the neural cell number of the output layer 
p -the sum of the samples 

These formulas should be synthetically applied in actual application, and the best 
neural cell number of the hidden layer is chosen by combining the actual training 
result in the computer. 

3.2   Evaluating Model Based on LMBP NN  

The procedure of setting up the evaluating model is the followings. 

1. normalization of the initial data. 
BPNN working function demands that the input signals should be the real number in 
the scope [0,1], but the various parameters in the index system have different unit 
systems, and the main parameter value is all over this scope. So it is necessary that  
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these parameters should be normalized. And the its method is as follows. Suppose that 
min kx  is the smallest value of k  index, max kx  is the largest value of k  index, 

kx  is the initial training sample value. 
Cost-type index can be disposed by the following formula (11). 

max

max min
k k

k
k k

x x
x

x x

−′ =
−

 (11)

Benefit-type index can be disposed by the following formula (12). 

min

max min
k k

k
k k

x x
x

x x

−′ =
−

 (12)

Qualitative index subordination can be obtained by the confidence distribution 

method. Suppose that some expert gives some index value jx , whose confidence 

level is ja , then ( , )j jx a , 1, 2, ,j n= L  can be obtained. So,qualitative index 

subordination can be obtained by the following formula (13).  

1

1

( )

( )

n

j j
j

n

j
j

a x

R j
a

=

=

=
∑

∑
 (13)

2. setting up the neural net model 
the typical three layer BPNN is made up of the input layer, the hidden layer and the 
output layer. Therefore the input layer is the evaluation index system of the netting 
air-defense missile warfare effectiveness. the hidden layer distinguishes the relation 
between the input layer cell and he output layer cell, and extracts the different 
character that the input layer influences the output layer. The output layer is an 
expression of the operational effectiveness for the netting air-defense missile system. 
Then the 23×5×1 net structure model has been made[4-5].  

4   Analysis of a Real Example 

The BPNN can realize the given input and output relation because it can study and 
adjust the connection weight value of the net by using the study samples, therefore the 
training sample acquiring is important, the sample not only demands to include the 
scope of the max and min value but also contains the median value. The sample data 
of this example is made up of the expert’evaluation value and the simulation data 
from t the netting air-defense missile that is in attack and defense. Therefore it makes 
the sample more rational. The training sample can be obtained by statistic data and the 
expert’experiences in the following table 1. 
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Table 1. Training sample 

sample Evaluation index   
1 0.9 0.9 0.90.90.9 0.9 0.90.90.90.90.90.90.90.90.9 0.90.90.90.90.90.90.90.9 
2 0.8 0.8 0.80.80.8 0.8 0.80.80.80.80.80.80.80.80.8 0.8 0.80.80.80.80.80.80.8. 
3 0.6 060.60.60.6 0.6 060.60.60.60.6 060.60.60.6 0.6 060.60.60.60.6 060.6 
4 0.50.50.50.50.5 0.50.50.50.50.50.50.50.50.50.5 0.50.50.50.50.50.50.50.5 
5 0.40.40.40.40.4 0.40.40.40.40.4 0.40.40.40.40.4 0.40.40.40.40.4 0.40.40.4 
6 0.90.70.80.60.6. 0.50.70.80.70.6 0.80.70.90.60.8 0.90.70.50.80.9 0.70.80.6 
7 0.70.60.80.70.6        0.40.80.60.40.9 0.70.60.30.60.4 0.80.60.70.60.5 0.70.70.8 
8 0.60.50.50.40.7     0.40.60.40.50.8 0.60.70.50.40.6 0.50.40.80.60.60.60.50.7 

LMBPNN application procedure is made by the Matlab, whose algorithm net 
training process is in the following figure 3, which can be used to evaluate the netting 
air-defense missile warfare effectiveness. 

 

Fig. 3. LM algorithm net training process 

 

Fig. 4. Steepest descent net training process 
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By comparison, it is disposed by the steepest descent method that is usually 
applied, whose algorithm net training process is in the following figure 4. so the 
former is more than the steepest descent method.  

For validating the evaluating capacity of LMBPNN, some types missile are chosen 
to evaluate the netting air-defense missile warfare effectiveness, whose index value is 
0.7, 0.6, 0.5,0.6,0.7,0.8,0.6,0.5,0.8,0.6,0.7, 0.9,0.5,0.4,0.7,0.9,0.5,0.6,0.5,0.7,0.4,0.8,0.6. 
the output value is 0.8241, which is obtained by the trained LMBPNN. The result is 
basically the same as the qualatative evaluation of the experts, and it demonstrates 
that the model can be effectively applied to evaluate the netting air-defense missile 
warfare effectiveness. 

5   Conclusion 

The index system of the operational effectiveness for the netting air-defense missile 
system is set up according to its operational effectiveness characteristic, and the 
evaluating method of the netting air-defense missile system based on LMBP neural 
network is applied to evaluate the netting air-defense missile warfare effectiveness, 
which in a sense diminishes the human subjective factors. And LM algorithm is 
applied, which has not the defect of the BP that has the slow converge, so makes the 
model a higher value. Therefore it is validated that the model and method can be 
referred for evaluating the netting air-defense missile warfare effectiveness by a real 
example. 
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Abstract. In this paper a new neural network is proposed to solve non-
linear convex programming problems. The proposed neural network is
shown to be asymptotically stable in the sense of Lyapunov. Comparing
with the existing neural networks, the proposed neural network has fewer
state variables and simpler architecture. Numerical examples show that
the proposed network is feasible and efficient.

Keywords: asymptotical stability, neural network, nonlinear program-
ming.

1 Introduction

Nonlinear programming problems are commonly encountered in modern science
and technology, such as optimal control, signal processing, pattern recognition[1].
In many engineering applications, the real-time solution of optimization prob-
lems is required. However, traditional algorithms may not be efficient since the
computing time required for a solution is greatly dependent on the dimension
and structure of the problems. One possible and very promising approach to
real-time optimization is to apply artificial neural networks[2, 3].

In 1985 Tank and Hopfield first proposed the neural network for linear pro-
gramming problems [4]. Their work has inspired many researchers to investigate
other neural network models for solving programming problems. Over the years,
neural network models have been developed to solve nonlinear programming
problems. Kennedy and Chua [5] presented a neural network for solving nonlin-
ear programming problems. It is known that the neural network model contains
finite penalty parameters and generates approximate solutions only. To avoid
using penalty parameters, many other methods have been done in recent years.
Zhang and Constantinides developed [6] a Lagrange neural network for a non-
linear programming problem with equality constrains. Xia [7] presented some
primal neural networks for solving convex quadratic programming problems and
nonlinear convex optimization problems with limit constraints. In order to sim-
plify the architecture of the dual neural network, a simplified dual neural network
was introduced for solving convex quadratic programming problems [8]. Leung[9]
and Yang[10]presented a feedback neural network for solving convex nonlinear
programming problems. Based on the idea of successive approximation, the equi-
librium point sequence of subnetworks can converge to an exact optimal solution.

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 565–571, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In [11, 12], Liu and Wang proposed some one-layer recurrent neural networks
for solving linear and quadratic programming problems. The one-layer recurrent
neural networks have more simply architecture complexity than the other neural
networks such as Lagrangian network and projection network. Recently, several
projection neural networks were developed for solving general nonlinear convex
programming problems [13–21], which were globally convergent to exact optimal
solutions.

In this paper, we present a new neural network for solving nonlinear pro-
gramming problems. The proposed neural network is asymptotically stable in
the sense of Lyapunov. Compared with existing neural networks for such prob-
lems, the proposed neural network has fewer state variables, simpler architecture
and weaker convergence conditions.

This paper is divided into 5 sections. In section 2, the nonlinear convex pro-
gramming problem is described. A new neural network model is proposed to
solve this problem. In section 3, we prove the stability of the proposed neural
network. Two examples are provided to show the effectiveness of the proposed
neural network in section 4. Finally, some conclusions are found in section 5.

2 Problem and the Neural Network Model

In this section,we describe the nonlinear convex programming problem and its
equivalent formulation. Then we construct a new neural network for solving this
problem.

Consider the following nonlinear convex programming problem:

min f(x)
subject to Ax = b

g(x) ≥ 0.
(1)

where x = (x1, x2, · · · , xn)T ∈ Rn, g(x) = (g1(x), g2(x), · · · , gp(x))T ∈ Rp, f(x),
−gi(x) (i = 1, 2, · · · , p) are continuously differentiable and convex form Rn to
R, A ∈ Rm×n, and rank(A) = m (0 < m < n), b ∈ Rm.

According to the Karash-Kuhn-Tucker (KKT ) conditions for convex opti-
mization [1], the following set of equations has the same solutions as the prob-
lem(1).

∇f(x) + AT λ − g′(x)T y = 0 (2)

Ax = b (3)

g(x) ≥ 0, y ≥ 0, yT g(x) = 0 (4)

From(2) and (3), we have

[I − AT (AAT )−1A][∇f(x) − g′(x)T y] + AT (AAT )−1(Ax − b) = 0

Let P = AT (AAT )−1A, then the above equation can be written as

(I − P )[∇f(x) − g′(x)T y] + Px − Q = 0 (5)

where Q = AT (AAT )−1b.
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By the projection theorem , (4) is equivalent to solving the following equation:

(y − g(x))+ − y = 0 (6)

where (y)+ = ([y1]+, · · · , [yn]+)T , [yi]+ = max{0, yi}.
Based on (5) and (6), we propose a neural network for solving (1) as follows:

dx
dt = −2{(I − P )[∇f(x) − g′(x)T (y − g(x))+] − Px + Q}
dy
dt = −y + (y − g(x))+

(7)

Remark 1. From above analysis, it is obvious that x∗ is an optimal solution of
(1) if and only if (x∗, y∗)T is an equilibrium point of system (7).

Remark 2. Comparing with the existing neural networks for solving problem
(1). It is easy to see the neural network in [19], has n + m + p state variables.
However, our neural network has only n + p state variables.

Remark 3. In [16, 17], Xia proposed recurrent neural networks for nonlinear con-
vex optimization subject to linear or nonlinear constraints. Under the conditions
that f(x) or gi(x) are assumed to be strictly convex, the convergence of the pro-
posed neural network are obtained. However, our neural network can converge
to the optimal solution if only f(x) and −gi(x) are convex.

3 Stability Analysis

In this section, we prove the global asymptotical stability of the neural net-
work(7).

Lemma 1. Assume f(x) and −gi(x) are convex. Let (x∗, y∗) be an equilibrium
point of neural network (7) and ϕ(x, y) = f(x) + 1

2 ‖ (y − g(x))+ ‖2, then
(I) ϕ(x, y) is a differential convex function and

∇ϕ(x, y) =
[
∇f(x) − g′(x)T (y − g(x))+

(y − g(x))+

]
(II) ϕ(x, y) − ϕ(x∗, y∗) − (x − x∗)T (∇f(x∗) − g′(x∗)T y∗) − (y − y∗)T y∗ ≥ 0.

The proof of this Lemma is easy and we omit it.

Theorem 1. The neural network (7) is asymptotically stable in the sense of
Lyapunov for any initial point (x(t0), y(t0)) ∈ Rn+p.

Proof. Let (x∗, y∗)T be an equilibrium of (7), considering the following Lynapov
function

V (x, y) = ϕ(x, y) − ϕ(x∗, y∗) − (x − x∗)T∇ϕx(x∗, y∗) − (y − y∗)T∇ϕy(x∗, y∗)

+
1
2
‖x− x∗‖2 +

1
2
‖y − y∗‖2
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By Lemma 1, we can obtain the following inequality

V (x, y) ≥ 1
2
‖x− x∗‖2 +

1
2
‖y − y∗‖2. (8)

Calculating the derivative of V along the solution of (7),
dV
dt = ∂V

∂x
dx
dt + ∂V

∂y
dy
dt

= −2[∇f(x) − g′(x)T (y − g(x))+ −∇f(x∗) + g′(x∗)T y∗ + x − x∗]T

{(I − P )[∇f(x) − g′(x)T (y − g(x))+] − Px + Q}
−[y − (y − g(x))+]T [(y − g(x))+ − 2y∗ + y]
= −[∇f(x) −∇f(x∗) + x − x∗ + g′(x∗)T y∗ − g′(x)T (y − g(x))+]T

{(I − P )[∇f(x) −∇f(x∗)] + (I − P )[g′(x∗)T y∗ − g′(x)T (y − g(x))+]
+P (x− x∗)}
−[y − (y − g(x))+]T [y − (y − g(x))+ + 2(y − g(x))+ − 2y∗]
= −2

{
[∇f(x) −∇f(x∗)]T (I − P )[∇f(x) −∇f(x∗)]

+[∇f(x) −∇f(x∗)]T (I − P )[g′(x∗)T y∗ − g′(x)T (y − g(x))+]
+[∇f(x) −∇f(x∗)]T P (x − x∗)
+(x− x∗)T (I − P )[∇f(x) −∇f(x∗)]
+(x− x∗)T (I − P )[g′(x∗)T y∗ − g′(x)T (y − g(x))+]
+(x− x∗)T P (x − x∗)
+[g′(x∗)T y∗ − g′(x)T (y − g(x))+]T (I − P )[∇f(x) −∇f(x∗)]
+[g′(x∗)T y∗ − g′(x)T (y − g(x))+]T (I − P )[g′(x∗)T y∗ − g′(x)T (y − g(x))+]
+[g′(x∗)T y∗ − g′(x)T (y − g(x))+]T P (x − x∗)

}
− ‖ y − (y − g(x))+ ‖2 −2[y − (y − g(x))+]T [(y − g(x))+ − y∗]

Noting that (I − P )2 = I − P , P 2 = P and P (I − P ) = 0, we have

dV
dt = −2

{
[∇f(x) −∇f(x∗)]T (I − P )2[∇f(x) −∇f(x∗)]

+2[∇f(x) −∇f(x∗)]T (I − P )2[g′(x∗)T y∗ − g′(x)T (y − g(x))+]
+[g′(x∗)T y∗ − g′(x)T (y − g(x))+]T (I − P )2[g′(x∗)T y∗ − g′(x)T (y − g(x))+]
+(x− x∗)T P 2(x − x∗)

}
− 2(x− x∗)T [∇f(x) −∇f(x∗)]

−2(x− x∗)T [g′(x∗)T y∗ − g′(x)T (y − g(x))+]
− ‖ y − (y − g(x))+ ‖2 −2[g(x) − (g(x) − y)+]T [(y − g(x))+ − y∗]
= −2 ‖ (I − P )[∇f(x) −∇f(x∗)] + (I − P )[g′(x∗)T y∗ − g′(x)T (y − g(x))+]
+P (x− x∗) ‖2 −2(x− x∗)T [∇f(x) −∇f(x∗)] − 2(x − x∗)T g′(x∗)T y∗

−2(x− x∗)T g′(x)T (y − g(x))+

− ‖ y − (y − g(x))+ ‖2 −2g(x)T (y − g(x))+ + 2g(x)T y∗

−2[(g(x) − y))+]T (y − g(x))+ − 2[(y − g(x))+]T y∗

= −2 ‖ (I − P )[∇f(x) − g′(x)T (y − g(x))+] − Px + Q ‖2

− ‖ y − (y − g(x))+ ‖2 −2(x − x∗)T [∇f(x) −∇f(x∗)] − [(y − g(x))+]T y∗

−2(x− x∗)T g′(x∗)T y∗ − 2(x − x∗)T g′(x)T (y − g(x))+ − 2g(x)T (y − g(x))+

+g(x)T y∗

= −2 ‖ (I − P )[∇f(x) − g′(x)T (y − g(x))+] − Px + Q ‖2

− ‖ y − (y − g(x))+ ‖2 −2(x − x∗)T [∇f(x) −∇f(x∗)] − [(y − g(x))+]T y∗

+2[g(x) − g(x∗) − g′(x∗)(x − x∗)]T y∗ + g(x∗)T y∗

+2[g(x∗) − g(x) − g′(x)(x∗ − x)]T (y − g(x))+ − 2g(x∗)T (y − g(x))+
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Since f(x) and −gi(x) are convex function, we have

(x − x∗)T [∇f(x) −∇f(x∗)] ≥ 0
g(x∗) − g(x) − g′(x)(x∗ − x) ≤ 0
g(x) − g(x∗) − g′(x∗)(x − x∗) ≤ 0

(9)

In addition, it is easy to verify [(g(x) − y)+]T (y − g(x))+ = 0, g(x∗)T y∗ = 0,
and [(g(x) − y)+]T y∗ ≥ 0, g(x∗)T [y − (g(x))+]T ≥ 0. Thus,

dV
dt ≤ −2 ‖ (I − P )[∇f(x) − g′(x)T (y − g(x))+] − Px + Q ‖2

− ‖ y − (y − g(x))+ ‖2< 0, ∀ (x, y) �= (x∗, y∗). (10)

Thus, the neural network is asymptotically stable for any initial points. This
completes the proof.

4 Numerical Examples

In this section, we will give two examples to demonstrate the effectiveness of the
proposed neural network.

Example 1. Consider the following nonlinear programming problem.

minimize f(x) = x4
1 + (x2 − 2)2 + (x2 − x3)2

subject to 3x1 − x2 + 4x3 = 6
−x1 + 2x2 + 3x3 = 10
g1(x) = x2

1 + x2
2 + x2

3 − 8 ≤ 0
g2(x) = 2x2

1 + 2x2
2 + x2

3 − 12 ≤ 0

This problem has an optimal solution x∗ = (0, 2, 2)T . The simulation result
shows the neural network (7) converges to the optimal solution. The Fig. 1 is
the state trajectory of neural network (7).
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Fig. 1. Transient behavior of (7) in Example 1
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Example 2. Consider the following nonlinear programming problem.

minimize f(x) = (x1 − 1)4 + (x1 − 2x2)4 + (4x2 − x3)4 + (x4 − x5)4

subject to 2x3 − x4 + x5 = 4
−x1 + 2x2 + 2x3 + x4 + x5 = 4
g1(x) = x2

1 + x2
3 + x2

4 − 5 ≤ 0
g2(x) = x2

1 + 4x2
2 + 4x2

5 − 3 ≤ 0

This problem has an optimal solution x∗ = (1, 0.5, 2, 0, 0)T . The simulation
result shows the neural network (7) converges to the optimal solution. The Fig.
2 is the state trajectory of neural network (7).
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Fig. 2. Transient behavior of (7) in Example 2

5 Conclusion

In this paper, we present a new neural network for solving nonlinear convex pro-
gramming problems. The proposed neural network is asymptotically stable in
sense of Lyapunov. Comparing with other neural networks for nonlinear convex
optimization, the proposed neural network has fewer neurons and simpler archi-
tecture. Some examples are given to illustrate the effectiveness of the proposed
neural network.
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Abstract. It is impossible to recognize the direction of the target accurately when 
strong directional interference appears underwater. The adaptive interference 
cancellation based on the neural network filter is used to process the signal to 
solve the problem. In order to improve the calculation precision of the network, 
stochastic gradient BP algorithms is used to adjust the weights and threshold 
values. Finally, the simulation and the corresponding conclusion are presented by 
computer. 

Keywords: neural network; adaptive interference cancellation filter; BP; 
simulation. 

1   Introduction 

When the noise under water is nondirectional or very weak, use the current 
conventional algorithm can distinguish the target and estimated the direction angle very 
well. But when there is a strong directivity interference, Array Signal Processing can 
not completely suppress this interference, and the ‘false target’ spectral peak appeared 
on the energy spectrum. It will produce blind spots in the detecting space and make 
flank arrays can not estimate the direction of the target underwater. In order to reduce 
the spectral peak of the interference on the energy spectrum space, and relatively 
improve the spectral peak of the target underwater, the adaptive interference counteract 
should be used to proceeding the output signal of beam or elements.  

As in the actual environment, the interference in main channel and reference channel 
is a non-stationary, non-Gaussian distribution and it often presents nonlinear 
approaching, nonlinear and adaptive filter must be use in the interference cancellation [1], 

and the neural network filter is worth studying. Neural network filter can be a multi-layer 
perceptron (MLP), and also can be a radial basis function (RBF) networks [2], the 
adaptive interference cancellation (AIC) based on the MLP is discussed in this paper. 

2   AIC Based on the MLP 

The input and output functions of the hidden layer element of the MLP can be chosen as 
linear function, breadth-limit function and sigmoid function. Three layers single-output 
will be discussed, and the Sigmoid function is taken as input and output functions of the 
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hidden layer element, the linear function is taken as input and output functions of the 
output layer element. If replace the FIR of conventional AIC with the MLP, we will get 
the AIC based on the MLP, the structure is shown in Figure 1. From figure 1, there is 
one input layer, one hidden layer and one output layer in MLP. Assume there are N 
elements in the input, and M elements in hidden layer. 

 

After N-1 time delay, get the MLP input vector from the reference input as: 

( ) [ ( ) ( 1) ( -1)]
T

X k x k x k x k N= + +L  (1)

Take the input layer neurons as a linear function, at time k, the output of MLP neuron 
in each input layers is: 

( ) [ ( ) ( 1) ( 1)]0
Tk x k x k x k N= + + −LO  (2)

Take the weight vectors of the first j a element in hidden layer as: 

( ) [ ( ) ( ) ( )]1, 1, ,
Tk w k w k w kj j j N j= LW , (1 )j M≤ ≤  the element's net input is: 

( ) ( ) ( ) ( )0I k k k kj j jθ= +W O  (3)

Where jθ is the first j a element threshold. Due to the hidden layer uses the sigmoid 

function, first j a element output of the hidden layer is: 

1
( )

1 exp[ ( )]
o kj

I kj
=

+ −
 (4)

Write the output of each element in the hidden layer in the vector, we get: 

( ) [ ( ) ( ) ( )]1 1 2
Tk o k o k o kM= LO  (5)

∑

1z−

1z−

1z−

ˆ( )s k

 Fig. 1. AIC based on the MLP 
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Suppose that the weight vectors of element in output layer are:  

( ) [ ( ) ( ) ( )]1 2
Tk v k v k v kM= LV , the element's output is: 

( ) ( ) ( ) ( )1
Ty k k k kγ= +V O  (6)

Where γ  is the element threshold of the output layer. 

If the input of neural network and the element’s weights and thresholds are given, 
can calculate the output of the MLP by using the formula above, which is called 
forward computation of the network, for the input information of the network is started 
by the input layer, then pass on to the next layer by layer, and there is no information 
feedback process. Defined k a error function of the AIC sample is: 

1 2( ) [ ( ) ( )]
2

e k d k y k= −  (7)

Where ( )d k is the k a input data of main channel. 
Under normal circumstances, the initial weights and thresholds of the neural 

network are random, so, if get network output ( )y k  in this way, the error function value 
will be larger, in another word, network calculation precision is very poor. So after 
determining the structure of the network, we could only adjust the weights and the 
thresholds of the element to reduce output deviation ( ( ) ( ))d k y k−  gradually. In order to 
enhance the precision of network, stochastic gradient BP algorithms are used to adjust 
the weights and threshold values. 

3   Stochastic Gradient BP Algorithm 

With stochastic gradient BP algorithm, the beat should be adjusted at the k-th weight by 
extracting a group of training data which are marked with ( )kX  from the input 
sequences. Then from the input sequences, a new group of training data called ( 1)k +X  
is extracted, the following (k+1)-th weight could be adjusted. However it is different 
from the offline batch whose process of learning is separated from the scene, and only 
all the training data are called, each weight could adjust its beat. With stochastic 
gradient BP algorithm, the weights and threshold values are adjusted along the negative 
gradient direction of error function, as: 

( )
( )

( )

e k
kj

kj
η

∂
Δ =−

∂
W

W
; ( )

( )
( )

e k
k

k
η

∂
Δ =−

∂
θ

θ
 (8)

( )
( )

( )

e k
k

k
η

∂
Δ =−

∂
V

V
; ( )

( )
( )

e k
k

k
γ η

γ
∂

Δ =−
∂

 (9)

Where η  is the learning rate, and 0 1η< < . From the expression (7), the weights and 
threshold values adjustment amount of the output neurons could be calculated firstly, 
then calculate the weights and threshold values of the neurons in the hidden layer. And 
the calculation process is reversed. Will get: 

( )
( ) [ ( ) ( )] [ ( ) ( )] ( )1

( )

y k
k d k y k d k y k k

k
η η

∂
Δ = − = −V O

V
 (10)
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( )
( ) [ ( ) ( )] [ ( ) ( )]

( )

y k
k d k y k d k y k

k
γ η η

γ
∂

Δ = − = −  (11)

( )( )
( ) [ ( ) ( )] [ ( ) ( )] ( )

( ) ( )

           [ ( ) ( )] ( ) ( )[1 ( )]

o ke k j
k d k y k d k y k v k

j jk kj j

d k y k v k I k I k
j j j

θ η η
θ θ

η

∂∂
Δ = − = −

∂

= − −

 (12)

( )
( ) [ ( ) ( )] [ ( ) ( )] ( ) ( )[1 ( )] ( )

0( )

            [ ( ) ( )] ( ) ( )[1 ( )] ( )     ( 1, 2, )

y k
k d k y k d k y k v k I k I k k

j j j jkj

d k y k v k I k I k k j M
j j j

η η

η

∂
Δ = − = − −

= − − = L

W O
W

X

 (13)

From all the formulas above, after each adjustment values are calculated, we could 
calculate the weights on the latest adjusted beat by iterative method. For example, the 
weight value of neuron in the hidden layer is: 

( 1) ( ) ( )k k kj j j+ = +ΔW W W  (14)

Error function ( )e k  usually has multiple local minimum points, and sometimes 
platform. The steepest descent algorithm based on BP algorithm may make the neuron 
weights and thresholds converge to a local minimum point, or stay in one platform. 
Therefore, inertial item should be added to the BP algorithm to prevent them. With 
inertial item, weights’ updated formula of hidden layer neurons is:  

( 1) ( ) ( ) ( 1)k k k kj j j jα+ = +Δ + Δ −W W W W  (15)

Where 0 1α< < , which is called inertial coefficient. Hidden neurons thresholds value 
iteration formula and the iterative formula of the output layer neurons weights and 
thresholds can be modeled on the style as: 

( 1) ( ) ( ) ( 1)k k k kj j j jθ θ θ α θ+ = +Δ + Δ −  (16)

( 1) ( ) ( ) ( 1)k k k kj j j jα+ = +Δ + Δ −V V V V  (17)

( 1) ( ) ( ) ( 1)k k k kγ γ γ α γ+ = +Δ + Δ −  (18)

Based on stochastic gradient BP algorithm, we can get the output from MLP only by 
a set of training data under any adjusted beat. Then error component of the beat could 
be used to construct error function. Another on-line BP algorithm is that p-groups of 
real-time training data could be picked so as to get p outputs of MLP. We can get p error 
components, and its error function is: 

1 2( ) [ ( ) ( )]
2 1

P
e k d k y kp p

P p
= −∑

=
 (19)

The more groups of training data set, the wider will the average scope be. On the 
contrary, the adaptability of the network will be strengthened as the average scope is 
smaller. 
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4   Computer Simulation 

Supposed that the useful signals of AIC main output are 400Hz narrow band ones. 
Interference in the reference input frequency a narrow band signal which is equal to 
240Hz. Through nonlinear system, the interference can get nonlinear interference from 
AIC main channel, the main channel and reference channel input signal are: 

2( ) sin(2 400 ) sin (2 240 ) cos(2 240 0.5)x t t t tπ π π= ⋅ + ⋅ + ⋅ +  
( ) sin(2 240 1)v t tπ= ⋅ +  

After the non-linear system makes a difference on the interference of reference 
channel, the interference of main output has components when its frequency is 0Hz, 
240Hz and 480Hz. With AIC which is based stochastic gradient BP algorithm, the 
linear and nonlinear interferences of the main channel and the reference could offset. 
The AIC based on NLMS algorithm can only cancel linear interference component 
which has 240 Hz frequency and comes from main output, as figure 2 shows: 
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Fig. 2. Input and output power spectrum of two kinds of AIC 

5   Conclusion 

Compared with conventional linear algorithm, AIC is much better by using a neural 
network nonlinear algorithm in nonlinear interference offset. However, for broadband 
interference offset, the convergence speed of nonlinear algorithm is too slow. And its 
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interference ability is poor than conventional one. Therefore, the nonlinear AIC has not 
yet been applied to broadband acoustic signal processing so far. 
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Abstract. The paper presents a novel approach to informational retrieval based 
on a synergy of knowledge-based models, set theoretic models, and vector 
space models of domain within a Fuzzy Logic framework. An input query is 
expanded to multiple synonym queries based on query semantics. Each 
document in the collection is divided into different zones with different relative 
importance assigned to each zone indicating its role in the query. Fuzzy rule 
bases are applied to each zone with parameters derived from vector space 
models and semantic query expansion. Fuzzy inference procedure outputs the 
relevance rank of each zone in satisfying the query. The relevance ranks of 
different zones are aggregated using the Ordered Weighted Averaging (OWA) 
operator to get the overall relevance rank of the complete document. The 
documents are ranked according to their relevance. The system has been tested 
on a standard dataset and has been demonstrated to show improved 
performance over typical vector space based approaches.  

Keywords: Information Retrieval, Fuzzy Logic, Natural Language Processing. 

1   Introduction 

Information Retrieval (IR) refers to search for information in large collection of 
unstructured or semi-structured documents according to user’s requirements [1]. IR is 
a more complex problem than simple database retrieval. A database (e.g. relational 
database) imposes a well-defined, semantically un-ambiguous structure on its 
contents, making it amenable for computer processing. In case of IR there is no hard 
constraint on the structure of the document or its content [2]. An IR system aims to 
maximize the number of relevant documents retrieved while serving a user query, 
simultaneously minimizing the number of irrelevant documents [1][2]. 

Complexity of documents can be reduced by text operations to obtain a logical 
view of document [5]. The most complete logical view of a document is full text 
called bag of words representation but its usage usually implies higher cost. In a large 
document collection, compact logical view of documents can be achieved by means 
of transformations like eliminating stop words, simplifying noun groups, and 
stemming. The keywords or the index terms usually represent the documents that may 
be specified by a human or can be extracted from the text [6][1]. 
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There are four classic models of document and query representation in IR [1] [2] 
[14]: Boolean Model, Vector Model, Probabilistic Model, and Knowledge-based (or 
linguistic) Model. The Boolean models compose a query by combining one or more 
distinct query terms with the help of operators like AND and OR. The model provides 
clean formalism and simplicity. The problem with Boolean search is that using AND 
operators produces high precision but low recall searches, while using OR operators 
tends to produce low precision but high recall searches and it is hard or quiet 
impossible to have a tradeoff between the two [2]. Another problem with Boolean 
model is that it only records the presence or absence of query term in a document 
while actually it is desirable to give more weights to documents that have higher 
frequency of query terms [6]. To be able do this we have to keep the information of 
term frequency. Boolean queries only return the relevant document set but we desire 
to have an effective method to rank the documents in the set with respect to relevance 
with the user query [13]. 

In vector space model [15] a single vector represents each terms of document or 
query in t-dimensional space, total terms are represented by t. The frequency of term 
in document helps to determine its score. This measure is referred to as term 
frequency denoted by tft,d. Raw term frequency experiences a major issue: all terms 
will be considered equally important when calculating the score of document on 
query q. To overcome this issue, the weight of the term having higher collection 
frequency are considered to be less important and its weight need to be scaled down, 
total documents containing the term is represented by df. Let N is total documents in 
collection, inverse document frequency (idf) of term t is [2] log  (1)

In order to produce the net weight of term t, a combination of tf and idf is used [2] _ , ,  (2)

To account for the documents of different lengths tf and idf are generally used in 
their normalized form. The net score of document over all query terms is obtained by 
summing up tf_idf of all the terms. [2] i.e.  , _ ,  (3)

Similarity in user query and document is usually calculated by means of the cosine 
formula. As the method is not constrained to binary weights, so it is possible to get 
ranked similarity. However, there is no notion of relative ordering of terms. e.g. Car is 
on the Road and Road is on the Car are same in each vector representation [2]. 
Moreover, the model requires an exact match between terms and does not consider 
semantic similarity. 

The probabilistic model focuses on the conditional probability of document 
relevance to user query. However, the accurate estimation of initial probabilities is a 
major obstacle in successful implementation of these models. Knowledge-based  
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models make use of natural language knowledge to enhance retrieval results, e.g. 
syntax knowledge, synonym knowledge etc. While these models hold great promise, 
enclosing them in a formal framework is a formidable challenge. 

Although most of the mainstream commercial systems employ the above described 
models for IR, there is a need to improve the performance of these systems by using 
improved modeling techniques. In this regard, the field of Soft Computing holds great 
promise to exploit the peculiar characteristics of IR domain. Traditional techniques do 
not adequately address the inherent imprecision and vagueness in document 
representation, query formulation, and document-query relevance. Fuzzy Logic is a 
Soft Computing paradigm that provides adequate constructs for reasoning with a 
tolerance for imprecision and vagueness. 

Some approaches have been proposed in research literature to handle IR problem 
with the help of Fuzzy Logic. For example, [14] utilizes the concept of fuzzy 
proximity to incorporate flexible definition of relevance between document and query 
terms. [15] addresses the relevance issue by means of fuzzy division of relations. In 
[12] numeric query weights have been replaced by fuzzy linguistic weights to denote 
relative importance of query terms. [13] combines fuzzy relations and ontologies for 
IR. Our proposed approach (RNFIS) is most similar to [3] which uses fuzzy version 
of vector space model; but our approach introduces a combination of vector space and 
knowledge-based parameters which are applied to semantic document zones unlike 
[3] which applies the parameters to the entire document together. 

In this paper fuzzy rule based approach Ranked Neuro Fuzzy Inference System 
(RNFIS) is presented and a list of ranked documents are returned with respect to 
query relevance. The model is hybrid, using vector space for information retrieval and 
fuzzy enhanced Boolean theory for document scoring. The fuzzy inference system 
combines vector space parameters with semantic parameters calculated from semi-
structured documents for exploiting the inherent imprecision of the domain. The 
proposed model gives simplicity of logic based models and the performance and 
flexibility of vector space models. 

Following sections are organized as; proposed system is presented in section 2, 
experimental setup and results are described in section 3. Finally conclusion of paper 
is given in section 4. 

2   Proposed Scheme 

Ranked Neuro Fuzzy Inference System (RNFIS), shown in Fig-1. The proposed scheme 
is Fuzzy Logic based that inherits from Boolean logic. It allows imprecise matching of 
documents with query. IR is modeled by defining a Fuzzy Set against each query and 
every document will have a degree of membership in that set [10]. Other features 
included in this model for better relevance scoring of documents are given below. 

2.1   Weighted Zone Scoring 

Semi structured document is represented through different markup tags that 
demarcate zones of document. Different weights are assigned to the zones according 
to their role in the application domain. For example, in case of research publications 
the Abstract section (Zone) has higher weight than the Reference section (Zone). 
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2.2   Semantic Matching 

Vector Space Models based on exact matching of query terms cannot retrieve all 
documents relevant to user query because of different words used in the documents to 
address the same idea. The proposed approach exploits the notion of synonym queries 
where the original query term is replaced by its synonym to generate multiple queries.  

 

Fig. 1. Flowchart of RNFIS 

2.3   Fuzzy Linguistic Variables 

Various inputs and outputs are represented by fuzzy linguistic variables [13]. The 
input variables are (term frequency) tf, (inverse document frequency) idf, overlap 
(number of query terms found in document), and Zone. All of these variables are 
represented by Gaussian membership functions. Fig-2 shows an example.  

2.4   Fuzzy Inference System 

There are two types of fuzzy inference systems supported, Mamdani’s and Sugeno’s. 
Mamdani’s framework provides simplicity but Sugeno’s inference system gives more  
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Fig. 2. Representation of Parameters 

optimal results so we have used Sugeno’s method. The proposed Sugeno-type 
systems was created, trained and test by using ANFIS (Adaptive Neuro Fuzzy 
Inference System). Its rules provide mapping of input variables to output variables[6]. 
The form of rule in Sugeno’s fuzzy model is. 

If x and y are two input variables, the Output will be 

z = ax + by + c (4)

After all rules have been evaluated, their results are combined by the aggregation 
operation to obtain the final relevance rank of each document. The aggregation 
operation again produces a fuzzy set over values range. This is defuzzified to 
determine a crisp value from using the weighted average operation. 

3   Experimental Results and Evaluation 

3.1   Document Corpus 

A gold standard Cystic Fibrosis Corpus (CFC)[5] is used to evaluate the proposed 
system. The CFC database consists of six files: cf74 to cf79 containing 1239 
documents. There are 100 queries with their set of relevant documents as answered by 
4 different domain experts at scale of 0, 1, 2 from irrelevant, marginally relevant, and 
relevant. 

The CFC database is in SGML format whose parsers is not available for Java. As 
the proposed system is developed in Java, so a manual parser is written to convert 
these documents from existing format into XML format, whose parsers are available 
for almost all languages.  

3.2   FIS Training 

The data used for training the ANFIS is illustrated in Table 1. Here the score has been 
calculated as  

Score = tf × idf × overlap × zone (5)
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The Neuro FIS is trained based on different parameters. Hybrid optimization, 
which is a mixture of least square and back propagation gradient descent method, is 
used to train the system. Other parameters used to train the FIS are error threshold and 
required no of training epochs. 

We have used Grid Partition method for generating RNFIS. Number of input 
membership function for each input variable is chosen that depend upon the desired 
performance level of the system. We have used Gaussian function for input variables 
and linear membership function type is chosen for output variables. 

Table 1. Training Data 

tf idf zone overlap Score 

0.00558659 0.32411947 0.5 1.096710205 0.000992919 

0.00588235 0.32411947 1 1.096710205 0.002090971 

0.00900900 0.32411947 1 1.096710205 0.003202389 

0.00740741 0.432460612 0.5 1.49271137 0.002390885 

0.00740741 0.432460612 4 1.248975876 0.016003937 

0.00740741 0.432460612 16 1.49271137 0.033086831 

0.00769231 0.432460612 2 1.587962963 0.010565099 

3.3   Evaluation Parameters 

To assess the effectiveness of proposed system, we use the following statistics about 
the system’s returned result for a query:  

 
Precision: 
This is the ratio of the returned results that are relevant to the information need to the 
completed fetched results [1,11].    (6)

Recall:  
This is the ratio of the relevant documents in the collection that were returned by the 
system to the completed fetched results [1, 11].    

 (7)

F-measure: 
The weighted harmonic mean that trades-off between precision P and recall R [2].  

  (8)

Where  , α ε [0,1] and thus  0, ∞ . It is usually used with β=1 

represented by  [2].
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2
 (9)

Fig-3 shows the F-measure of proposed system with traditional vector space 
approaches using tf-idf and tf-normalized. A higher value of F-measure for the 
proposed system means that the balance between precision and recall is compared to 
traditional methods.  

 

Fig. 3. Comparison of F-Measure @ 25, 50, 75 & 100 queries 

The Mean Average Precision (MAP): 
For a single information need, the precisions of top k documents is averaged by total 
relevant documents retrieved till that point is said to be Mean Average Precision 
(MAP). For instance, From the set of relevant documents d , d , d , … . , d   for user 
information need q   Q and from the top most results R  is a set of ranked retrieval 
results until the document R  is retrieved [2].  

MAP Q 1| | 1m
| | Precision R  (10)

Precision and Mean Average Precision (MAP) of our proposed approach against 
all the queries is compared with two existing approaches in Table 2. It is clear that the 
proposed approach achieves better precision than other approaches.  

The comparison is illustrated graphically in Fig 4 which shows that the peaks of 
precision values of our proposed approach are greater than those of other approaches 
at most of the places.  

Figure 5 shows the MAP of 25, 50, 75 and 100 queries showing that RNFIS has 
better performance against the exiting approaches.  

F-Measure @25 F-Measure @50 F-Measure @75 F-Measure @100

TF IDF 0.1792 0.2039 0.2084 0.2007

TF-Norm 0.1922 0.2237 0.2244 0.2137

RNFIS 0.2306 0.2634 0.2533 0.2483

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

F-
M

ea
su

re



 Ranked Neuro Fuzzy Inference System (RNFIS) for Information Retrieval 585 

Table 2. Mean Average precision of 100 queries in brief using all approaches 

Query # TF IDF TF IDF Normalized RNFIS 
(proposed) 

1 0.1704 0.1839 0.2366 

2 0.0222 0.0180 0.0252 

3 0.1649 0.1600 0.1509 
… … … … 

99 0.0750 0.0937 0.0615 

100 0.0888 0.0888 0.1471 

MAP 0.1797 0.1851 0.2095 

 

Fig. 4. Comparison of average of 100 cfqueries 

 

Fig. 5. Comparison of MAP @ 25, 50, 75 & 100 cfqueries 
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4   Conclusion 

In this research we introduced a comprehensive model called Ranked Neuro Fuzzy 
Inference System (RNFIS) for the retrieval of relevant documents. RNFIS calculates 
score of documents against a user query based on set of fuzzy rules. The RNFIS 
approach has given significant improvements in comparison with the performance of 
existing schemes such as length normalized TF and traditional TFIDF. The analysis of 
experimental results shows that RNFIS returns more relevant information by making 
synonym queries which cannot be retrieved by existing algorithms. 
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Abstract. Artificial neural network (ANN) is a thoroughly interdisciplinary area, 
covering neurosciences, physics, mathematics, economics and electronics. The 
applications of ANN are very diverse and effective. Some drawbacks, however, 
have been found accompanying with the applications of ANN. In order to 
overcome these drawbacks, many methods have been proposed. In this article, 
two issues will be referred, namely models adjustment and generalization 
capability of ANN. Models adjustment includes two aspects: the model’s 
parameters adjustment and the model’s architecture adjustment. The purpose of 
the former is to improve training speed, enhance convergence and stability of 
network. And the purpose of the latter is to enhance recognition ability. The 
model’s architecture is adjusted through adding a binary-coding layer to it. In 
order to promote the generalization capability, the perfect training sample is put 
forward based on mathematics. 

Keywords: ANN, parameters adjustment, architecture adjustment, generation 
capability. 

1   Introduction 

In recent years, ANN[1] has been a popular topic and made a great progress; 
furthermore, so many scientists are coming into this field annually. ANN is a thoroughly 
interdisciplinary area, covering neurosciences, physics, mathematics, economics and 
electronics. Today, ANN has found diverse applications in pattern recognition, signal 
processing, communication, control systems, optimization, and so on. For instance, 
Li[2] used ANN to identify the damage of Girder Bridge, Huang[3] adopted it to 
research anti-mechanical problem, while Qin[4] forecast the rainfall by this method and 
Zhang[5] predicted the daily water demands as well. 

ANN is defined by processing elements, a topological structure, and learning rules. 
The processing elements are the basic operation elements of ANN. Learning rules 
determine how ANN acquires the pattern recognition knowledge and performs the 
classification accordingly. 
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At present, Back Propagation[6-8] algorithm (BP) and its diversification forms are 
the most important and widely used ANN models. BP network is the core of 
feedforward network, and embodies the soul of ANN. It can mainly be applied for 
function approach, pattern recognition, classification and data compress. 

BPANN is a multilayer feedforward network. The network architecture used by 
BPANN is formed by three or more layers--an input layer consisting of sample patterns 
of input data, an output layer storing the results of the decision-making process, and one 
or more hidden layers transferring the information in the network. The network 
learning process is a supervised training session. The general structure of such a 
network can be illustrated by Fig.1. The input is propagated through the network in a 
forward direction, on a layer-by-layer basis, to the output layer. The output layer is 
compared to target classification and the error is back propagated through the network 
layer-by-layer. 
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y2

y3

ym

Input Layer Hidden Layer Output Layer

 

Fig. 1. A BP Neural Network Models 

Although the BP algorithm remains as the most popular and effective way to train 
BPANN, there are some drawbacks accompanying it. These drawbacks include the 
following aspects:  

① The training process is not convergent; 

② The convergence speed is slow; 

③ The training result is not convergent to the global optima; 

④ When the input sample has some transformation, model’s architecture is lack of  

       recognition ability; 

⑤ The training network is lack of generalization capability; 

In view of these problems, in this paper, two issues will be proposed, namely models 
adjustment and generalization capability. Models adjustment includes two aspects. The 
first one is about model’s parameters adjustment, and the other one is model’s 
architecture adjustment. 
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2   Model’s Parameters Adjustment  

In order to resolve the problems mentioned above, firstly, the neuron which composes 
the network should be researched. A typical neuron in BPANN can be illustrated by 
Fig. 2.  
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Fig. 2. A typical Neuron Models 

The input-output relationship of the neuron can be described as 

1

n

i i
i

y w x b
=

= +∑ , i=1,2…n . (1)

and 

( )z f y=  . (2)

Where xi’s are input to the neuron, wi’s are corresponding connection weights, b is the 
bias, y is the net input to the neuron before activation, z is the output of the neuron, f is 
a nonlinear activation function. 

When the entire network is concerned, the derivation of input-output relationship 
can be seen from many reference books. Here the process of derivation will be ignored. 
It can be found that many model’s parameters can be adjusted. The main model’s 
parameters include the number of layers, the number of hidden neurons, the learning 
rate, momentum term and expectation error. Many efforts have been made by the 
forerunner, and many effects have been acquired. These factors will be briefly 
discussed below.  

① Number of Layers 
The number of layers is an important factor for BP network. To increase the number of 
layer, the error will be declined and the precision will be increased. At the same time, 
the network will be complicated and the training time will be lengthened. Lippman[9] 
and Cyberko[10] put forward that two hidden layer network can resolve all the 
classifications, Nielson[11] thinks that one hidden layer network can resolve function 
approach so long as there is a larger number of hidden neurons.  
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② Number of Hidden Neurons 
It is difficult to assure the number of hidden neurons. Initially, cut-and-try method was 
used to obtain the number and then many experiential formulas appeared later. Qin[4] 
put forward series of ANN. 
③ Learning Rate 
The learning rate decides how the weights will change. The weights come from 
circulation training progress. Choosing an appropriate learning rate parameter is a key 
factor in controlling the learning speed of the BP algorithm. The learning rate is a 
constant in a normal BPANN. However, during the different stages of the same 
learning process, the optimal value may be variable. Adjusting it automatically will be 
preferred during the learning progress. 
④ Momentum Term  
Because it is difficult to choose an appropriate learning rate parameter, a momentum 
term can be introduced to deal with this problem. The following formula can explain 
this relationship. That can be described as 

( 1) ( ) [(1 ) ( ) ( 1)]ji jiw k w k D k D kη α α+ = + − + −  . (3)

Where wji is weight, η is learning rate, D is negative grads, α is the factor of momentum 
term. The value of α is between 0 and 1. Momentum term can reduce the oscillation of 
learning progress.  
⑤ Expectation Error 

The value of expectation error should be an appropriate value. In order to obtain the 
minor value, the number of hidden neuron and the training time will be increased. 
Generally, we can train several networks according to different value of expectation 
error, and then a better value will be obtained through comparing different results. 

In addition, there are many other factors that can be adjusted, such as, activation 
function, optimization algorithm and so on. Nowadays, many researchers proposed 
self-adaptive method to adjust these factors, and they obtain many beneficial results. 

3   Model’s Architecture Adjustment 

At first, four groups of data can be seen in the table 1. Each group of data expresses six 
points. It is difficult for us to find the relationship among these groups of data. 
However, if we depict the points on the picture, it is easy to find that each group data 
represents six vertexes of regular hexagon. Furthermore, it can be concluded that if the 
graph depicted by the first group of data is regarded as the original one, the pictures 
depicted via latter three groups of data are the transformations of the original one. They 
are the translation, rotation and similarity transformation respectively, which can be 
seen easily in Fig 3. The dotted line represents the original picture. 

This transformation phenomenon can be easily found by our visual perception. But 
if ANN is used to recognize the transformation, maybe it is not so easy. The reason is 
that the ANN is on the basis of fixed and discrete retina theory. However, when we 
observe the object, our body can move freely and also our eyes and head can rotate 
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Table 1. Four Groups Data 

Number First Group 
Second 

Group 
Third Group

Fourth 
Group 

1 (-3.54,-3.54) (-1.04,0.16) (-1.29,-4.83
)

(-2.00,0.00) 

2 (-4.83,1.29) (-2.33,4.99) (-4.83,-1.29
)

(-1.00,1.73) 

3 (-1.29,4.83) (1.21,8.53) (-3.54,3.54) (1.00,1.73) 

4 (3.54,3.54) (6.04,7.24) (1.29,4.83) (2.00,0.00) 

5 (4.83,-1.29) (7.33,2.41) (4.83,1.29) (1.00,-1.73) 

6 (1.29,-4.83) (3.79,-1.13) (3.54,-3.54) (-1.00,-1.73) 

 

Fig. 3. Translation, Rotation and Similarity Transformation 
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Fig. 4. New Network Models 

permissively. Therefore, we hope that ANN can embrace the body’s translation, eye 
and head rotation. The advantage is that if we have obtained a completed network, there 
is no necessity for us to train network again when we deal with the similar problems. 
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If these transformations are considered into the ANN, the model’s architecture will 
be adjusted. New ANN architecture should be able to identify these changes. When the 
changes exist, the original training results can be applied instead of running the new 
network training.In order to achieve this, the network model needs to contain 
recognition function. The recognition outcome only has two keys: changes exist or not. 
According to this result, the binary-coding can fulfill the above requirement. 1 indicates 
these transformations are in existence and 0 indicates nonexistence. The new model’s 
architecture can be seen in Fig.4. 

4   Generalization Capabilities 

The network generalization capability means that when the network has been trained, 
the network can make correct reactions to the sample that has not been trained. In other 
words, the ANN learning purpose is to search for the hidden orderliness of gross 
sample through finite training sample. The key of network generalization capability is 
how to select appropriate training sample. If the quantity of training sample is larger, 
the network will be over-fitting, on the contrary, if the quantity of training sample is 
fewer, the network will be lack-fitting. In regard to the research of train sample, many 
researchers have conducted a lot of investigation. 

A perfect training sample should express all the information of the gross sample. 
Here I will research the training sample from the mathematical point of view. 
Mathematical model is shown in Fig. 5. G is the gross sample, T is the training sample. 
The T-G relationship can be described as 

∃ T,G, ⊂T G , T=[t1,t2…,tn], t1,t2…,tn is linearly independent set of vectors, for y 
vector, ∀ y∈G  and y∉T , st. 

1

n

i i
i

y a t
=

=∑ , n
ia R∈ and i=1,2…n . (4)

Then, as a training sample, T covering all the information of the gross sample is a 
best training sample. That is to say, in the gross sample, t1,t2…,tn is the maximal 
linearly independent vector group. Namely 

Rank (T) =Rank (G) . (5)

T
G

 

Fig. 5. Mathematical Model 
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Sometimes, not all the information is needed for some duty. So, the training sample 
quantity can be reduced, which can be referred from mathematics. Suppose there are 
two new vectors y’ and t’, representing available information respectively. The vectors 
y’ and t’ are extracted from y and t which are described above. The proposed method can 
be described clearly .Assume Wn×m is a diagonal weight matrix,  

Wn×m=[eij]n×m, eij= 0 or 1 and i =1,2…n, j=1,2…m . (6)

Where 0 is unavailable information and 1 is available information.  

ti
’=tiWn×m i=1,2…n . (7)

, ,

1

m

i i
i

y c t
=

=∑ , m
ic R∈  and i=1,2…n . (8)

The maximal linearly independent vectors group from a set of vectors ti
’ composes a 

new matrix D, the D-T relationship can be described as 

Rank (D)≤Rank (T) . (9)

⊆D T  . (10)

5   Conclusions 

Along with the continual adjustment of model’s parameters and architecture, the 
drawbacks, such as convergence, training speed, local convergence, and stability of 
ANN, etc, will be eliminated gradually. At the same time, generalization capability of 
ANN will arouse more attention.  
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Abstract. Recent developments on semi-supervised learning have witnessed the
effectiveness of using multiple views, namely integrating multiple feature sets
to design semi-supervised learning methods. However, the so-called multi-view
semi-supervised learning methods require the availability of multiple views. For
many problems, there are no ready multiple views, and although the random split
of the original feature sets can generate multiple views, it is definitely not the
most effective approach for view construction. In this paper, we propose a fea-
ture selection approach to construct multiple views by means of genetic algo-
rithms. Genetic algorithms are used to find promising feature subsets, two of
which having maximum classification agreements are then retained as the best
views constructed from the original feature set. Besides conducting experiments
with single-task support vector machine (SVM) classifiers, we also apply multi-
task SVM classifiers to the multi-view semi-supervised learning problem. The
experiments validate the effectiveness of the proposed view construction method.

1 Introduction

Semi-supervised learning, aiming to improve the performance of pattern recognition
systems using both labeled and unlabeled data, is an active research direction [1]. In
particular, there is a family of methods making use of multiple feature sets to design
semi-supervised learning methods. These multiple feature sets are often called multiple
views and the corresponding approaches are referred to as multi-view semi-supervised
learning methods.

For some domains, multiple views are readily available. For example, in multimedia
information processing we can treat video and audio signals as two distinct views. In
document classification, characters and images can serve as two views. However, for
many other domains, there are no natural multiple views available. Although we can
split the original feature set at random into different views, there is no guarantee to
obtain a satisfactory result by this approach.

This paper focuses on the view construction problem to benefit multi-view semi-
supervised learning methods. Genetic algorithms (GAs) [2] are employed to select
candidate feature subsets which are further assessed by their agreements for classifi-
cation. The feature subsets finally selected are then regarded as multiple views, which
are subsequently used by multi-view semi-supervised learning methods. The feasibility
of the proposed approach is evaluated on multiple experiments involving the traditional

D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 595–601, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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single-task learning and recent multi-task learning paradigms where co-training [3] is
taken as the specific multi-view semi-supervised learning method.

In the rest of this paper, after giving a brief review of multi-view semi-supervised
learning methods in Section 2, we describe our view construction method in Section 3.
Experimental results are reported in Section 4 and conclusions are drawn in Section 5.

2 Multi-view Semi-supervised Learning

During the development of multi-view semi-supervised learning, co-training [3] is known
as an important pioneering method. It trains two classifiers respectively from two views.
Then the classifiers iteratively use their confident predictions on the unlabeled data to
enlarge the labeled set. The effectiveness of co-training has been validated by several
studies [3,4].

Subsequently, by probabilistically labeling the whole unlabeled data pool, Nigam
and Ghani [5] proposed a variant of co-training named co-EM. The idea of co-training
has also been extended to semi-supervised learning methods without multiple views
such as tri-training [6] and democratic co-learning [7]. Later, Balcan et al. [8] relaxed
the conditional independence assumption in co-training with a much weaker expan-
sion condition. The recently proposed manifold co-regularization method [9] can be
regarded as a combination of co-training and manifold regularization.

3 View Construction

3.1 Feature Selection Using GAs

The goal of our feature subset selection is to use less features to get the same or better
performance on a separate validation set. For this purpose, we use GAs. The chromo-
somes in GAs are binary bit strings whose lengths represent the numbers of features,
and each bit is associated with one feature. If the ith bit is 1, the ith feature is selected,
and otherwise this feature is ignored.

The initial population of chromosomes are generated by randomly flipping each bi-
nary bit. Our individual selection strategy is cross generational. Suppose the size of the
population is n. The size of the offspring will double this number. We then select the
best n individuals from the combined parent-offspring population as the next genera-
tion. The crossover and mutation probability used in the experiments are 0.66 and 0.03,
respectively.

3.2 Determining Two Views

After the running of GAs, each individual in the final genetic population corresponds
to a candidate feature subset. As the number of feature subsets is the same as the final
population size, we can generate many views. However, in the present study, we only
consider generating two views for the sake of co-training. To this end, we evaluate
the feature subsets on a validation set, and select the pair with the largest number of
classification agreements as the two views.



View Construction for Multi-view Semi-supervised Learning 597

Consequently, two views are constructed by the feature selection and validation pro-
cedures. As features having significant contributions to the classification task are se-
lected through the feature selection procedure, the two views would be very helpful to
improve the performance of subsequent multi-view semi-supervised learning methods.

3.3 Multi-task Learning

Generally, multi-task learning is motivated by the fact that learning multiple related
tasks simultaneously can be advantageous in terms of predictive performance relative
to learning these tasks independently [10,11]. It is thus advantageous to evaluate our
view construction method on multi-task classifiers in addition to traditional single-task
classifiers. To this end, here we briefly introduce the adopted multi-task support vector
machines (SVMs), which was proposed by Evegniou et al. [12].

Suppose we have T learning tasks and all data for the tasks are from the same
space X × Y where X ∈ Rd and Y ∈ R. For each task we have m training ex-
amples {(x1t, y1t), (x2t, y2t), . . . , (xmt, ymt)} sampled from a distribution Pt on X ×
Y . Pt’s are different but related among tasks [12]. The goal is to learn T functions
f1, f2, . . . , fT such that ft(xit) ≈ yit. The case T = 1 corresponds to the traditional
single-task learning diagram.

In this paper, we assume that function ft for task t is a hyperplane, that is ft(x) =
wt ·x. Binary classification is considered where yit takes the values ±1, and the decision
on a test example is the sign of wt · x.

According to Evegniou et al. [12], weights wt are formulated as wt = w0 + vt,
where vectors vt are small when tasks are similar to each other. Therefore, the following
optimization problem will be solved:

min
w0,vt,ξit

J =
T∑

t=1

m∑
i=1

ξit +
λ1

T
‖vt‖2 + λ2‖w0‖2

s.t.

{
yit(w0 + vt)�xit ≥ 1 − ξit,
ξit ≥ 0, i = 1, . . . ,m; t = 1, . . . , T (1)

where λ1 and λ2 are positive regularization coefficients, and ξit are slack variables
measuring the errors that models wt commit on the training data.

4 Experiments

The feasibility of the proposed view construction method is evaluated on two sets of
multi-view semi-supervised learning experiments. The first one is a single-task learning
scenario. The second one combines multi-task learning with multi-view semi-supervised
learning.

For all the experiments, ten-fold cross-validation (CV) is adopted to evaluate the per-
formance, and the average accuracies across five random runs of this CV are reported.
Linear SVMs are adopted as the specific classifiers, which have a natural expression of
classification confidence in terms of the margin between an example and the classifica-
tion hyperplane. The number of iterations in co-training is set to 25. Since there are two
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classifiers respectively built from two views in the process of co-training iterations [3],
we report classification accuracies of these two classifiers after every iteration. The ran-
dom split approach to generate multiple views is employed as a baseline and compared
to our proposed view construction method.

4.1 Single-Task Classifiers

4.1.1 Handwritten Digit Recognition
Firstly, we performed a handwritten digit recognition experiment using the United State
Postal Service (USPS) database. The data include ten digits from 0 to 9 but only one
view. Two figures 0 and 3 are chosen for performance evaluation, as they have some
overlapping in shape which makes accurate classification not trivial. Thus the data used
have 1553 digits 0 and 824 digits 3 (positive examples).

In order to use the multi-view semi-supervised learning method co-training, we cre-
ate two views from the given data. The proposed method is first using GAs for feature
selection to generate many candidate views. Then after the GAs, two feature subsets
which have the largest number of classification agreements are selected as the final two
views. Here, the two views chosen have 66 and 75 features, respectively. The compared
method is a random split of the original features. It means that two views respectively
have 128 and 128 features are generated, by randomly dividing the original 256 fea-
tures.

After multiple views are formed, co-training can work for multi-view semi-supervised
learning. The ten-fold CV is performed as follows. Fifteen positive and thirty negative
examples are randomly picked out to be the labeled training set. During each round of
co-training, one positive and two negative examples are found with high confidence and
added to the labeled training set by each classifier from each view. This step will not
terminate until the maximum iteration number is reached. At the end of each iteration,
two SVM classifiers from the two views are trained and then classify the test fold.

The test accuracy rates averaged over five such CVs are shown in Figure 1(a) and
Figure 1(b), where the two methods have the same parameter setting. It is clear that for
all the two classifiers the predictive accuracies of the proposed method are always better
than that of the random split method with the same number of iterations.

4.1.2 Heart Classification
To better understand the performance of the proposed method, we continue our investi-
gation using heart classification data from the UCI data repository. The data set contains
150 positive and 120 negative examples. It is a single-view and two-class classification
data set. The total number of features is 13. Two views respectively with two and three
features are generated by the proposed method; while for the random split, the two
views respectively have six and seven dimensions.

For co-training, the original labeled training set consists of 15 positive and 12 nega-
tive examples. During each iteration, two positive and one negative example are found
and added to the labeled training set. Other experimental settings are the same with the
above experiment. The classification results are provided in Figure 1(c) and Figure 1(d),
where the proposed method greatly outperforms the random split method.
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Fig. 1. Accuracies of co-training with single-task SVMs on different data sets. Two views are
generated by random split (a, c) or our proposed method (b, d).

4.2 Multi-task Classifiers

4.2.1 Synthetic Data
Here we combine multi-task learning with multi-view semi-supervised learning to eval-
uate our proposed view construction method. We first test the performance of the method
on a synthetic data set.

The case of two-class classification is considered. The number of tasks is T = 20.
Each of the wt parameters of these tasks is selected from a 20-dimensional Gaussian
distribution with zero mean and diagonal covariance matrix Cov = diag(1, 0.95, 0.90,
. . . , 0.15, 0.10, 0.05). For each of the 20 tasks, we generate 20 examples. As a result,
the total number of examples for the 20 tasks is 400.

Our view construction method found two views respectively with six and seven di-
mensions, while each view found by the random split has 10 dimensions. The final
experimental results are given in Figure 2(a) and Figure 2(b) where for both the two
classifiers the proposed method outperforms the random split method during the 25
rounds. The efficacy of the proposed method is validated again by this experiment.

4.2.2 Real-World Data
The handwritten digit recognition database of USPS mentioned before is used but with
all the ten digits. The ten digits in this data set are divided into five groups, and each
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Fig. 2. Accuracies of co-training with multi-task SVMs on different data sets. Two views are
generated by random split (a, c) or our proposed method (b, d).

group contains one even and one odd digits (in this paper we do not consider the prob-
lem of how to group tasks optimally). Hence, there are five tasks to learn and each task
is to classify the corresponding even and odd digits.

The number of features obtained by the proposed view construction method for
two view are 66 and 67, respectively. Classification results during the iterations of co-
training are shown in Figure 2(c) and Figure 2(d), from which we see that the views
constructed by the proposed method are more suitable than random split for the current
multi-view classification problem.

The experimental results in Section 4.2.1 and 4.2.2 indicate that the features selected
through the view construction method are also suitable for multi-view semi-supervised
learning combined with multi-task learning.

5 Conclusions

This paper proposed a view construction method for multi-view semi-supervised learn-
ing. It uses GAs to select candidate feature subsets from which multiple views are deter-
mined by investigating their classification agreements. We have reported experimental
results on different data sets with both single-task and multi-task SVM classifiers, which
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indicate that the new method can lead to significant performance improvements com-
pared to the random feature split approach adopted previously by others.

In the future, studies on the theoretical justification for the proposed method and its
extensions to other multi-view learning paradigms such as multi-view active learning
are worthy pursuing.
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Abstract. In this paper, we present two fast learning neural network
classifiers with a single hidden layer: the ‘Phase Encoded Complex-valued
Extreme Learning Machine (PE-CELM)’ and the ‘Bilinear Branch-cut
Complex-valued Extreme Learning Machine (BB-CELM)’. The proposed
classifiers use the phase encoded transformation and the bilinear trans-
formation with a branch-cut at 2π as the activation functions in the input
layer to map the real-valued features to the complex domain. The neurons
in the hidden layer employ the fully complex-valued activation function
of the type of a hyperbolic secant function. The parameters of the hid-
den layer are chosen randomly and the output weights are estimated as
the minimum norm least square solution to a set of linear equations.
The classification ability of these classifiers are evaluated using a set of
benchmark data sets from the UCI machine learning repository. Results
highlight the superior classification ability of these classifiers with least
computational effort.

1 Introduction

Recently, complex-valued neural networks are gaining attention to approximate
phase accurately [1–5]. Complex-valued neural networks have better computa-
tional ability than real-valued networks [6]. Their inherent orthogonal decision
boundary [7] that provides them with an exceptional ability to perform real-
valued classification tasks [8] motivates researchers to develop complex-valued
classifiers.

Complex-valued classifiers available in the literature include the Multi Layer
Multi Valued Network (MLMVN) [9] and the single layer complex-valued neural
network with phase encoded input features [10] referred to as ‘Phase Encoded
Complex Valued Neural Network (PE-CVNN)’. A multi-valued neuron used in
the MLMVN [9] uses multiple-valued threshold logic to map the complex-valued
input to C discrete outputs using a piecewise continuous activation function,
where C is the total number of classes. The transformation used in the MLMVN
is not unique, leading to misclassification. The misclassification is further en-
hanced by the increase in number of sectors inside the unit circle in multi-
category classification problems with more number of classes (C). Moreover, the
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MLMVN uses a derivative-free global error correcting rule for network parameter
update that requires significant computational effort.

In the PE-CVNN presented in [10], [11], the real-valued input feature is phase
encoded in [0, π] to obtain the complex-valued input feature. This transformation
retains the relational property and spatial relationship among the real-valued in-
put features [10]. However, the activation functions used in [10], [11] are similar
to the split complex-valued activation functions and do not preserve the phase
information of the error signal during the backward computation. This might
result in inaccurate estimation of the decision function while performing classi-
fication problems. In addition, the gradient descent based learning, presented in
[10], requires significant time to train the classifier.

In this paper, we propose two complex-valued classifiers that provide better
generalization ability and require lesser computational effort. The classifiers have
a non-linear input/hidden layer and a linear output layer. The neurons at the
input layer transform the real-valued input features to the complex domain (� →
C). The bilinear transformation [9] with a branch-cut (δ) and the phase encoding
transformation presented in [10] are used as the transformations in the input
layer. The network employing the bilinear transformation with a branch-cut in
the input layer is referred to as ‘Bilinear Branch-cut Complex-valued Extreme
Learning Machine (BB-CELM)’ and the network employing the phase encoding
transformation in the input layer is referred to as ‘Phase Encoded Complex-
valued Extreme Learning Machine (PE-CELM)’. The neurons in the hidden layer
of these networks use the fully complex-valued activation function of the type
of a hyperbolic secant function [4]. Similar to the C-ELM [2], the parameters of
the hidden neurons are chosen randomly and parameters of the output neurons
of the network are estimated analytically.

The performances of both the BB-CELM and the PE-CELM are studied in
comparison with other complex-valued and a few real-valued classifiers on three
multi-category benchmark classification problems from the UCI repository [12].
It will be observed from the performance study that the proposed classifiers
outperform the other classifiers available in the literature.

The paper will be organized as follows: Section 2 presents the detailed de-
scription of the proposed classifiers. Section 3 presents the performance results
of these classifiers in comparison with other classifiers on a set of multi-category
benchmark classification problems. Finally, Section 4 summarizes the conclusion
from the study.

2 Description of the Classifiers

In this section, we present the detailed description of two fast learning classifiers,
the Bilinear Branch-cut Complex-valued Extreme Learning Machine (BB-CELM)
and the Phase Encoded Complex-valued Extreme Learning Machine (PE-CELM)
in the complex-domain.



604 R. Savitha et al.

2.1 Classification Problem Definition

Let us assume N random observations {(x1, c1) , · · · , (xt, ct) , · · · , (xN , cN )},
where xt ∈ �m are the m-dimensional real-valued input features of tth ob-
servation and ct ∈ {1, 2, · · · , C} is its class label. The coded class label in the
complex domain yt are obtained using:

yt
l =
{

1 + i, if ct = l,
−1 − i, otherwise, l = 1, 2, · · · , C (1)

Now, the classification problem in the complex domain can be viewed as find-
ing the decision function (F ) that maps the real-valued input features to the
complex-valued coded class labels, i.e., F : �m → CC , and then predicting the
class labels of new, unseen samples with certain accuracy.

2.2 Fast Learning Complex-Valued Classifiers

The basic building block of the PE-CELM and the BB-CELM classifiers is the
complex-valued extreme learning machine [2]. The PE-CELM and BB-CELM
are the single hidden layer networks, with a non-linear input/hidden layer and
a linear output layer as shown in Fig. 1.

The neurons in the input layer employ these transformations to map the real-
valued input features to the complex domain (� → C):

– The bilinear transformation with a branch cut: As the bilinear trans-
formation [9] results in aliasing at 0 and 2π, we introduce a branch cut
around 2π. The transformation thus obtained is termed as a bilinear trans-
formation with a branch cut. The network using this transformation (Eq.
(2)) at the input layer is referred to as ‘Bilinear Branch-cut Complex-valued
Extreme Learning Machine (BB-CELM)’.

zl = exp(i(2πxl − δ)); l = 1, · · · ,m (2)

– The phase encoded transformation [10]: The network with the phase
encoded transformation (Eq. (3)) at the input layer is called ‘Phase Encoded
Complex-valued Extreme Learning Machine (PE-CELM)’.1

zl = exp(iπxl); l = 1, · · · ,m (3)

The neurons in the hidden layer of the BB-CELM/PE-CELM classifiers em-
ploy the fully complex-valued activation function of the type of a hyperbolic
secant function [4], and their responses are given by

hj = sech
(
uT

j (zt − vj)
)
; j = 1 · · ·K (4)

where uj is the complex-valued scaling factor and vj is the center of the j-th
neuron, and sech(x) = 2/(ex + e−x).
1 It must be noted here that all the input features are scaled in [0, 1], i.e., xt ∈
	[0, 1], t = 1 · · ·N .
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Fig. 1. The architecture of a BB-CELM/PE-CELM. The transformations are shown
in the inset.

The output (ŷ) of the classifiers is given by:

ŷl =
K∑

j=1

wljhj (5)

where wlj are the complex-valued weight connecting the l-th output neuron and
the j-th hidden neuron.

Eq. (5) can be written in a matrix form as

Ŷ = WH (6)

where W is the matrix of all output weights connecting the hidden layer, and H
is the K × N hidden layer response matrix and is given by

H (V,B,Z) =

⎡⎢⎣ sech
(
uT

1 ‖z1 − v1‖
)
· · · sech

(
uT

1 ‖zN − v1‖
)

...
...

...
sech

(
uT

K‖z1 − vK‖
)
· · · sech

(
uT

K‖zN − vK‖
)
⎤⎥⎦ (7)

Similar to the C-ELM [2], the parameters of the hidden neurons (uj , vj) are
chosen randomly and the output weights W are estimated by the least squares
method according to:

W = Y H† (8)
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where H† is the Moore-Penrose pseudo-inverse of the hidden layer output matrix,
and Y is the complex-valued coded class label.

The class labels can be estimated from the outputs using:

ĉ = max
l=1,2,···,C

real (ŷl) (9)

The proposed PE-CELM/BB-CELM algorithm can be summarized as:

– For a given training set (X , Y ), select the appropriate number of hidden
neurons K.

– Choose the scaling factor U and the neuron centers V randomly.
– Calculate the output weights W analytically: W = TY †

K .

3 Performance Evaluation

In this section, the performances of the PE-CELM and the BB-CELM are evalu-
ated on a set of benchmark multi-category classification problems from the UCI
machine learning repository [12]. The performance results are compared with
other complex-valued classifiers, viz., MLMVN [9] and PE-CVNN [11]. To high-
light the advantages of the orthogonal decision boundaries, the performances are
also compared with a few real-valued classifiers, viz., the Minimal Resource Allo-
cation Network (MRAN) [14], the Growing and Pruning Radial Basis Function
Network (GAP-RBFN) [15], the Online Sequential Extreme Learning Machine
(OS-ELM) [16], the Support Vector Machines (SVM) [17], the Self-regulatory
Resource Allocation Network (SRAN) [18], and the Real Coded Genetic Algo-
rithm Extreme Learning Machines (RCGA-ELM) [19].

The average (ηa) (Eq. (10)) and over-all (ηo) (Eq. (11)) classification efficien-
cies [20] of the classifiers derived from their confusion matrices are used as the
performance measures for comparison in this study.

ηa =
1
C

C∑
i=1

qii

Ni
× 100% (10)

ηo =
∑C

i=1 qii∑C
i=1 Ni

× 100% (11)

where qii is the total number of correctly classified samples in the class ci and
Ni is the total number of samples belonging to a class ci in the data set. In
this paper, an appropriate number of hidden neurons is selected using the addi-
tion/deletion of neurons to obtain an optimal performance, as discussed in [13]
for real-valued networks.

The number of classes, the number of features, the size of the training and the
testing data sets for the three multi-category benchmark classification problems
considered for the study, are presented in Table 1. The image segmentation
data set is a well-balanced data set. The data set for the glass identification
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Table 1. Description of benchmark data sets selected from [12] for performance study

Problem No. of No. of No. of samples
features classes Training Testing

Image 19 7 210 2,100
Segmentation (IS)
Vehicle 18 4 424 422
Classification (VC)
Glass 9 6 109 105
Identification (GI)

Table 2. Performance results for benchmark multi-category classification problems

Dom Algo. Image Segmentation Vehicle Classification Glass Identification
-ain K Time Testing K Time Testing K Time Testing

(sec.) ηo ηa (sec.) ηo ηa (sec.) ηo ηa

MRAN 76 783 86.52 86.52 100 520 59.94 59.83 51 520 63.81 70.24
GAP-RBF 83 365 87.19 87.19 81 452 59.24 58.23 75 410 58.29 72.41
OS-ELM 100 21 90.67 90.67 300 36 68.95 67.56 60 15 67.62 70.12

Real SVMa 96 721 90.62 90.62 234 550 68.72 67.99 102 320 64.23 60.01
SMC-RBF 43 142 91 91 75 120 74.18 73.52 58 97 78.09 77.96
RCGA-ELM 50 - 91 91 75 - 74.2 74.4 60 - 78.1 -
SRAN 47 22 92.3 92.3 55 113 75.12 76.86 59 28 86.21 80.95

MLMVN 80 1384 83 83 90 1396 78 77.25 85 1421 73.24 66.83

Comp. PE-CVNN - - 93.2b - - - 78.7a - - - 65.5a -
BB-CELM 65 0.03 92.5 92.5 100 0.11 80.3 80.4 70 0.08 88.16 81
PE-CELM 75 0.03 92.1 92.1 100 0.11 80.8 81.1 70 0.08 86.35 80

a Support vectors
b -A single layer network was used in [11]. Also, in [11], a 10-fold validation has been

done using 90% of the total samples in training and the remaining 10% for testing
in each validation. Training/testing samples used in our work are shown in Table 1.

problem is a highly unbalanced data set, with no samples in one class. The
vehicle classification data set is also not a well-balanced data set.

The number of hidden neurons chosen according to the discussion in Section
2.2, the training time and the testing performance measures of the BB-CELM
and the PE-CELM classifiers, in comparison with other complex-valued and a
few real-valued classifiers, are presented in Table 2. The results for the SRAN and
RCGA-ELM is reported from [18] and [19], respectively. For the other real-valued
classifiers, the results are reproduced from [20]. The results for the PE-CVNN
are reproduced from [11] (single layered network) and those of the MLMVN are
generated using the toolbox available in the author’s web site1.

From the results, it can be observed that the BB-CELM and PE-CELM classi-
fiers outperform other complex-valued classifiers. The classification performances

1 http://www.eagle.tamut.edu/faculty/igor/Downloads.htm

http://www.eagle.tamut.edu/faculty/igor/Downloads.htm
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of the PE-CVNN and the MLMVN classifiers are affected by their activation func-
tions. The activation function of the PE-CVNN is similar to the split complex-
valued activation function that does not exploit the complete advantage of the
orthogonal decision boundaries of the complex-valued neural networks. On the
other hand, the MLMVN maps the complex-valued inputs to C discrete out-
puts in the unit circle, which increases with C and affects the classification
performance.

It can be also observed that the proposed classifiers perform better than the
real-valued classifiers, especially in the classification of the unbalanced data
sets. This is because of the orthogonal decision boundaries, which is inherent
in complex-valued neural networks. It can also be observed that the BB-CELM
and the PE-CELM require significantly lesser computational effort, compared to
all the other classifiers performing the classification task.

Comparing the performances of the PE-CELM and the BB-CELM classifiers,
it is observable that the BB-CELM classifier performs better than the PE-CELM
classifier. The phase encoding transformation used in the PE-CELM classifier
maps the real-valued input features to only two quadrants of the unit circle pro-
hibiting it from exploiting the advantages of the orthogonal decision boundaries
completely. The bilinear transformation with a branch cut around 2π used in
the BB-CELM classifier uses all the four quadrants of the complex plane.

4 Conclusion

In this paper, we present two efficient, fast learning complex-valued classifiers,
the Bilinear Branch-cut Complex-valued Extreme Learning Machine (BB-CELM)
and the Phase Encoded Extreme Learning Machine (PE-CELM). It is a sin-
gle hidden layer neural network with randomly selected input parameters and
analytically estimated output parameters. The performances of the BB-CELM
and the PE-CELM are evaluated using three benchmark classification problems.
From the performance study, it is evident that both the proposed classifiers
outperform other classifiers with lesser computational effort.
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Abstract. It has been recognized that urban stormwater pollution can be a large 
contributor to the water quality problems of many receiving waters. Stormwater 
pollution is one of most important issues the District of Columbia faces. The 
downtown core of the District is serviced by combined sewer system. Therefore, 
evaluations of stormwater runoff are necessary to enhance the performance of an 
assessment operation and develop better water resources management and plan. In 
order to accomplish the goal, a predictive model based on recurrent neural 
networks with the Levenberg-Marquardt backpropagation training algorithm is 
developed to forecast the stormwater runoff using the precipitation and the 
previous stormwater runoff. This computational modeling tool explored a new 
computational intelligence solution for monitoring and controlling urban water 
pollution in the District of Columbia. The experimental results show that 
Levenberg-Marquardt backpropagation training algorithm proved to be successful 
in training the recurrent neural network for the stormwater runoff prediction. 

Keywords: Runoff Quantity and Quality Prediction, Recurrent Neural 
Networks, Levenberg-Marquardt Backpropagation Training Algorithm. 

1   Introduction 

Stormwater runoff is unfiltered water that reaches streams, lakes, sounds, and oceans 
by means of flowing across impervious surfaces. These surfaces include roads, parking 
lots, driveways, and roofs. It has been recognized that urban stormwater pollution can 
be a large contributor to the water quality problems of many receiving waters, as 
runoff transports a wide spectrum of pollutants to local receiving waters and their 
cumulative magnitude is large [1][2]. The discharge of untreated storm water and 
combined sewer overflows (CSOs) constitutes a source of pollution to the receiving 
waters of the District of Columbia as well as the Chesapeake Bay.  

Forecasting of runoff quantity and quality benefit substantially from the progress of 
computational intelligence techniques, particularly neural networks. Computational 
intelligence relies on heuristic algorithms such as in fuzzy systems, neural networks, and 
evolutionary computation [3]. In addition, it also embraces techniques that use swarm 
intelligence, chaos theory, artificial immune systems, and wavelets. Comparatively, 
various runoff forecast models based on neural networks perform much better in 
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accuracy than many conventional prediction models [4]-[10]. However, a fact could not 
be neglected that most of such existing neural networks based models have not yet 
satisfied researchers and engineers in forecast precision so far, and the generalization 
capability of these networks needs further improving. For example, most publications 
used the feedforward neural networks with Backpropagation algorithms. However, a 
critical "drawback" of the Backpropagation algorithm is the local minima problem 
caused by neuron saturation in the hidden layer [11]. Because of this, the algorithm 
cannot converge to the minimum error, and thus it cannot get accurate prediction 
results.  

To overcome the above challenges, it is extremely important to investigate new 
models with the potential for higher rates of prediction. According to the time series 
prediction competition results in the 2006, 2008, and 2010 Artificial Neural Network 
& Computational Intelligence Forecasting Competitions [12][13], recurrent neural 
networks, wavelet neural networks, particle swarm optimization methods, and fuzzy 
neural networks etc. have been widely recognized as the best models for time series 
prediction [14]-[27]. Because time series prediction is a generalized form of runoff 
prediction, we can expect these models will also work the best for the specific runoff 
prediction. However, these prospective methods have never been used for the  
runoff quantity [4-10] and quality prediction problems [28][29][30]. Therefore, this 
paper is intended to propose a recurrent neural network based model with the 
Levenberg-Marquardt backpropagation training algorithm to forecast the stormwater 
runoff in terms of the precipitation and the previous stormwater runoff.  

This paper is organized as follows: In Section 2, the data and methods are 
introduced. Study area and stormwater runoff data will be explained. Network 
architecture and network learning algorithm are presented. In Section 3, experimental 
results including the error autocorrelation function, input-error cross-correlation 
function, and time series response are demonstrated. In Section 4, the conclusions are 
given. 

2   Data and Methods 

2.1   Study Area and Stormwater Runoff Data 

Since the downtown core of the District of Columbia has been deteriorated with 
increasing levels of stormwater pollution, we thus pay particular attention to the 
stormwater runoff data within the District of Columbia.  

Rea-time stormwater runoff water data are obtained from the U.S. Geological 
Survey (USGS)’s national water information system. Fig. 1 shows all the water 
stations within or near Washington D.C. The dots stand for the water stations. The big 
square in the middle represents the boarder of the District of Columbia. The circle on 
the bottom of the square encloses the Four Mile Run water station. The Four Mile 
Run stream station at Alexandria, VA is selected to retrieve data because a) it is 
located within the District, and b) it is the only site that provides both the precipitation 
data and discharge data within the District. Both datasets will be used to predict the 
stormwater runoff discharge. 
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Fig. 1. Streamflow sites within or near the Washington D.C. The dots on this map depict 
streamflow sites. The big square in the middle represents the boarder of the District of Columbia. 
The circle on the bottom of the square indicates the Four Mile Run water station.  

The input datasets are precipitation (inches) and discharges (cubic feet per second) 
during July 31, 2010 to November 20, 2010, as shown in Fig. 2, and Fig. 3, 
respectively.  

 

Fig. 2. Precipitation data (inches) collected at the Four Mile Run site at Alexandria, VA during 
July 31, 2010 to November 20, 2010 

Real-time data typically are recorded at 15- to 60-minute intervals. Therefore, each 
figure plots 34721 data during the 120 days. Input 'precipitation' is a 34721x1 matrix, 
representing dynamic data: 34721 timesteps of 1 element. Target 'discharge' is a 
34721x1 matrix, representing dynamic data: 34721 timesteps of 1 element. The target 
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data are randomly divided up into 34721 timesteps. 70% of the data is used for 
training, which contributes 24305 target timesteps. They are presented to the network 
during training, and the network is adjusted according to its error. 15% of the data is 
used for validation, which accounts for 5208 target timesteps. They are used to 
measure network generalization, and to halt training when generalization stops 
improving. The last 15% of the data is used for testing, which has 5208 target 
timesteps. They provide an independent measure of network performance during and 
after training. 

 

Fig. 3. Discharge data (cubic feet per second) collected at the Four Mile Run site at Alexandria, 
VA during July 31, 2010 to November 20, 2010 

2.2   Network Architecture 

A predictive model is to be developed to predict future values of runoff discharge, 
based on the precipitation and previous runoff discharge. Such a model can be 
represented mathematically by predicting future values of the discharges time series 
y(t) from past values of that time series and past values of the precipitation time series 
x(t). This form of prediction can be written as follows: 

))(,),1(),(,),1(()( dtxtxdtytyfty −−−−= KK  (1)

The network architecture is shown in Fig. 4. The network is a two-layer 
feedforward network, with a sigmoid transfer function in the hidden layer and a linear 
transfer function in the output layer. This network also uses tapped delay lines to store 
previous values of the x(t) and y(t) sequences. Note that the output of the network, 
y(t), is fed back to the input of the network through delays, since y(t) is a function of 
y(t-1), y(t-2), ..., y(t-d). However, the network will be created and trained in open 
loop form as shown in Fig. 4. Open loop (single-step) training is more efficient than 
closed loop (multi-step) training. Open loop allows us to supply the network with 
correct past outputs as we train it to produce the correct current outputs. After  
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training, the network may be converted to closed loop form, or any other form, that 
the application requires. Because the true output is available during the training of the 
network, we can use the open-loop architecture shown in Fig. 4, in which the true 
output is used instead of feeding back the estimated output. This has two advantages. 
The first is that the input to the feedforward network is more accurate. The second is 
that the resulting network has a purely feedforward architecture, and therefore a more 
efficient algorithm can be used for training.  

  
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Network architecture. The network is a two-layer feedforward network, with a sigmoid 
transfer function in the hidden layer and a linear transfer function in the output layer. This 
network also uses tapped delay lines to store previous values of the x(t) and y(t) sequences. 

2.3   Network Learning Algorithm 

The network is trained using Levenberg-Marquardt backpropagation training algorithm 
because it can achieve better accuracy and convergence speed than the gradient descent 
and conjugate gradient training algorithms. Training automatically stops when 
generalization stops improving, as indicated by an increase in the mean square error of 
the validation samples.  

Levenberg-Marquardt backpropagation algorithm applies a function minimization 
routine, which can back propagate error into the network layers as a means of 
improving the calculated output. It can be represented as [31]: 

kkkkk pxxx α=−=Δ +1  (2)

where kx  is the current estimation point for a function )(xG  to be minimized at the 

kth stage, kp  is the search vector and kα  is the learning rate, a scalar quantity 

greater than zero. The learning quantity identifies the step size for each repetition 

along kp . Computation of kp will depend on the selected learning algorithm. 

Equation (2) can be rewritten as: 

Hidden Layer 
with Delays 

Output Layer

Output y(t)

Input x(t) Input y(t)
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kkkk gAxx 1
1

−
+ −=  (3)

where kg  and kA are the first and the second derivative of )(xG with respect to x, 

and 1−
kA  is the inverse function of kA . Equation (3) can be further derived as: 

)(
2

1
1 xGxx

k
kk ∇−=+ μ

 (4)

where )(xG∇ is the gradient of )(xG . 

In this equation, if the value of coefficient kμ  is decreased to zero the algorithm 

becomes Gauss-Newton. The algorithm begins with a small value for kμ . If a step 

does not yield a smaller value for G(x), the step is repeated with kμ  multiplied by a 

factor greater than one. Eventually, )(xG will decrease since it would take a small 

step in the direction of the steepest descent. If a step does produce a smaller value 
for )(xG , then it is divided by the specified factor for the next step, so that the 

algorithm will approach Gauss-Newton, which should provide faster convergence. 
The algorithm provides a neat compromise between the speed of Newton’s method 
and the guaranteed convergence of steepest descent. 

3   Experimental Results 

The number of neurons in the hidden layer and the number of delays in the tapped 
delay lines have been tried plenty of times until the network has performed well after 
training.  

The best number of hidden neurons is 50, and the best number of delays in the 
tapped delay lines is 11. Both of these numbers are the maximum number that we can 
set; otherwise the network will be out of memory.   

3.1   Error Autocorrelation Function 

The error autocorrelation function is used to validate the network performance. Fig. 5 
displays the error autocorrelation function. It describes how the prediction errors are 
related in time. For a perfect prediction model, there should only be one nonzero 
value of the autocorrelation function, and it should occur at zero lag. (This is the mean 
square error.) This would mean that the prediction errors were completely 
uncorrelated with each other (white noise). If there was significant correlation in the 
prediction errors, then we can improve the prediction accuracy by increasing the 
number of delays in the tapped delay lines. In this case, the correlations, except for 
the one at zero lag, fall approximately within the 95% confidence limits around zero, 
so the model seems to be adequate.  
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Fig. 5. Error autocorrelation function. It describes how the prediction errors are related in time. 

3.2   Input-Error Cross-Correlation Function 

This input-error cross-correlation function illustrates how the errors are correlated 
with the input sequence x(t). For a perfect prediction model, all of the correlations 
should be zero. If the input is correlated with the error, then we can improve the 
prediction accuracy by increasing the number of delays in the tapped delay lines. In 
this case, all of the correlations fall within the confidence bounds around zero, as 
shown in Fig. 6.  

 

Fig. 6. The input-error cross-correlation function. It describes how the prediction errors are 
related in time. 

3.3   Time Series Response 

Fig. 7 demonstrates the time series response. The top plot displays the outputs and 
targets versus time. For each selected time point for training, testing and validation, 
all the training targets, training outputs, validation targets, validation outputs, test 
targets, and test outputs are plotted. The bottom plot shows the error versus time. At 
those selected time point for training, testing and validation, the errors for training 
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target, validation target, and test target are plotted. The solid line is used to measure 
the magnitude of errors. As can be seen from Fig. 7, the prediction of training data, 
validation data, and test data are all satisfactory.  

 

Fig. 7. Error autocorrelation function. It describes how the prediction errors are related in time. 

4   Conclusions 

This paper provides a predictive model based on recurrent neural networks with the 
Levenberg-Marquardt backpropagation training algorithm to forecast the stormwater 
runoff using the precipitation and the previous stormwater runoff.  

In this research, the stormwater runoff at the Four Mile Run stream station was 
studied, because of its impact to the District of Columbia and Potomac River. The 
input data are precipitation and discharges with 120 days duration from July 31, 2010 
to November 20, 2010. The Levenberg-Marquardt backpropagation training algorithm 
is used because of its high accuracy and convergence speed. The error autocorrelation 
function and input-error cross-correlation function were used to validate the network 
performance. The number of neurons in the hidden layer and the number of delays in 
the tapped delay lines have been tried plenty of times until the network has performed 
well after training. The best number of hidden neurons is 50, and the best number of 
delays in the tapped delay lines is 11. The experimental results show that Levenberg-
Marquardt backpropagation training algorithm proved to be successful in training the 
recurrent neural network for the stormwater runoff prediction. 
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Abstract. In this paper, a new maximal margin method, scaled convex hull 
(SCH) method is proposed to solve the cost-sensitive learning. By providing 
different SCH with a different scale factor, the initial overlapping SCHs can be 
reduced to become separable, and the existing methods can be used to find the 
separating hyperplane. The new method changes the distribution of the sample, 
which assigns different scale factor. The experiment results are used to validate 
the effectiveness of the scaled convex hull and its simplicity. 

Keywords: scaled convex hull, cost-sensitive, maximal margin. 

1   Introduction 

In classical machine learning or data mining settings, the classifiers usually try to 
minimize the number of errors which they will make in dealing with new data. Such a 
setting is valid only when the costs of different errors are equal. Unfortunately, the 
costs of different errors are often unequal in many real-world applications. For 
example, in medical diagnosis, the cost of erroneously diagnosing a patient to be 
healthy may be much bigger than that of mistakenly diagnosing a healthy person as 
being sick, because the former kind of error may result in the loss of a life. 

In fact, cost-sensitive learning has already attracted much attention from the 
machine learning and data mining communities. As it has been stated in the 
Technological Roadmap of the MLnetII project (European Network of Excellence in 
Machine Learning), the inclusion of costs into learning has been regarded as one of 
the most relevant topics of future machine learning research. During the past years, 
many cost-sensitive learning methods have been developed [1] [2] [3] [4] [5]. 
However, although there are much research efforts devoted to making decision trees 
cost-sensitive [6] [7] [8], and some studies discuss cost-sensitive neural networks [9] 
[10], while it is usually not feasible to apply cost-sensitive decision tree learning 
methods to neural networks directly. For example, the instance-weighting method 
requires the learning algorithm accept weighted-examples, which is not a problem for 
C4.5 decision trees but is difficult for common feed forward neural networks. 

In this paper, by introducing the notion of scaled convex hull (SCH), a new 
maximal margin method is proposed to solve the cost-sensitive learning. By providing 
different SCH with a different scale factor, the initial overlapping SCHs can be 
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reduced to become separable. Once they are separable, we can find the nearest point 
pair between them using the existing algorithms, and the separating hyperplane a) 
bisects, and b) is normal to the line segment joining these two nearest points. This 
separating hyperplane obtains the maximal margin between SCHs, resulting in a 
maximal-margin classifier. This viewpoint is the same as the reduced convex hull 
(RCH) framework for SVM classifiers, so it can be seen as a variant of SVMs. It 
simplifies the computation of nearest point pair between the SCHs, which is 
independent to the reduction factor. Besides, the SCH has the same shape as the 
original convex hull when the scale factor changes, so we call it scaled convex hull. 
The new method changes the distribution of the sample, which assigns different scale 
factor. The experiment results are used to validate the effectiveness of the scaled 
convex hull and its simplicity. 

2   Scaled Convex Hull 

Given the training data, the SVM training algorithm obtains the optimal separating 
hyperplane between two classes of training samples: ( ) ,f x w x t=< > + , where w  is the 

weight vector and t  is the bias. The optimal separating hyperplane maximizes the 
margin, i.e. 2 / w  (or, alternatively, minimizes 2

/ 2w ) [11]. This classification task, 

expressed in its dual form, is equivalent to finding the pair of nearest points between 
the convex hulls (each is generated by the training patterns of each class), and the 
maximal margin hyperplane a) bisects, and b) is normal to the line segment joining 
these two nearest points [12]. A convex hull generated by training patterns of one 
class { , , 1,2, , }d

i ix x i k= ∈ = LX R  is defined as 

1 1

( ) : 1, ,0 1
k k

i i i i i
i i

conv a x a x a
= =

⎧ ⎫= = ∈ ≤ ≤⎨ ⎬
⎩ ⎭
∑ ∑X X  (1)

For nonseparable problems, i.e., the convex hulls of the patterns in the feature 
space are overlapping. The framework of SCH is introduced to transform them to 
separable ones. 

The scaled convex hull (SCH) of the set { , , 1,2, , }d
i ix x i k= ∈ = LX R with the non-

negative reduction factor 0 1λ≤ ≤ , denoted as ( , )λS X , is defined as 

1 1 1

1
( , ) (1 ) : 1, ,0 1,

k k k

i i i i i i
i i i

a x m a x a m x
k

λ λ λ
= = =

⎧ ⎫= + − = ∈ ≤ ≤ =⎨ ⎬
⎩ ⎭
∑ ∑ ∑S X X  (2)

It can also be rewritten as 

1 1 1

1
( , ) ( (1 ) ) : 1, ,0 1,

k k k

i i i i i i
i i i

a x m a x a m x
k

μ λ λ
= = =

⎧ ⎫= + − = ∈ ≤ ≤ =⎨ ⎬
⎩ ⎭
∑ ∑ ∑S X X

 
(3)

Where m , the mean value of all original points, is called the centroid point of the X . 
For a given λ , every point (1 )i ii

a x mλ λ+ −∑  of ( , )μS X  is the linear combination 

of the centroid m  and the point 
1

k

i ii
a x

=∑  of the original convex hull, i.e., the point 

(1 )i ii
a x mλ λ+ −∑  of the SCH lies on the line segment connecting 

1

k

i ii
a x

=∑  and the 
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centroid m . In fact, the ratio of the distance between (1 )i ii
a x mλ λ+ −∑  and the 

centroid m  to the distance between 
1

k

i ii
a x

=∑  and the centroid m  is the constant λ . 

So the shape of the SCH ( , )μS X  is the same as that of the original convex hull 

( )conv X  (This is why we call it scaled convex hull). It seems that ( , )μS X  is obtained 

by “reducing” ( )conv X  towards the centroid m  by λ  which controls the size of the 
SCH. Furthermore, the reduction factor λ  can be set different for each class, 
reflecting the importance of each class. 

For convenience, we denote the “reduced” point (1 )ix mλ λ+ −  as '

i
x  and 

' '{ , 1,2, , }
i

x i k= = LX . Then, the SCH can be rewritten as 

'

1 1

( , ) : 1, ,0 1
k k

i i i i i
i i

a x a x aμ
= =

⎧ ⎫= = ∈ ≤ ≤⎨ ⎬
⎩ ⎭
∑ ∑S X X

 
(4)

From (4), the SCH can be seemed as a convex hull generated by the points '

i
x s of 

the “reduced” set 'X , so it can also be denoted as '( )conv X . Thus, the candidate 

extreme point set of ( , )μS X  is 'X , having the same number of elements as the original 

X  when 0λ ≠ . 
In this way, the initial overlapping convex hulls can be reduced to become 

separable by a suitable selection of λ , see Fig. 1 . 

w

(1 )w mλ λ+ −
m

 

Fig. 1. Geometric interpretation of SCH 

In the sequel, we will prove some theorems and propositions useful to the SCH 
notion and form the basis for the development of the novel algorithm which is 
proposed in this paper. 

Proposition 1. when 1λ = , the SCH ( , )μS X  is the original convex hull; and when 

0λ =  it becomes the centroid. 

Proof: substituting 1λ =  and 1λ =  into (3) respectively, we can get the result.  



 Maximal-Margin Approach for Cost-Sensitive Learning Based on SCH 623 

Proposition 2. The SCH and the original convex hull have the same centroid. 

Proof: From (3), we know that the SCH can be seemed as spanned by the points '
ix  

which correspond to the point ix for 1,2, ,i k= L . So the centroid of the SCH is  

     ' / ( (1 ) / )i ii i
x k x m kλ λ= + −∑ ∑  

/ii
x k m mλ λ= − +∑  

m= , 

i.e., the SCH and the original convex hull have the same centroid. 
The SCH ( , )μS X  can be rewritten as 

1 1

1 1
( , ) , 1, ,

k k

i i i i i
i i

b x b x b
k k

λ λλ λ
= =

− −⎧ ⎫= = ∈ ≤ ≤ +⎨ ⎬
⎩ ⎭
∑ ∑S X X  (5)

3   SCH for Cost-Sensitive 

Suppose 1 1 2 2{( , ),( , ), , ( , )}n nx y x y x y= LX  is the training set for a binary classification 

problem where kx  is the training pattern belonging to one of two classes and 

{1, 1}ky ∈ −  is its corresponding class label. In the following theorem, we will give the 

relation between the classical C -SVM with slack variables and SCHs, which opens 
the road for applying nearest point algorithms for the nonseparable problems. This 
viewpoint is the same as the SVM framework. Before giving the theorem, we first 
define some notations that have the same meaning in the following sections. 

{ : 1}ii y+ = =I , { : 1}ii y− = = −I , + −= ∪I I I  

{ , }ix i+ += ∈X I , { , }ix i− −= ∈X I  

/ii I
m x n+

+ +
∈

=∑ , where n+ += I  

/ii I
m x n−

− −
∈

=∑ , where n− −= I  

{ }' ' (1 ) ,i ix x m iλ λ+ + + + += = + − ∈X I  

{ }' ' (1 ) ,i ix x m iλ λ− − − − −= = + − ∈X I  

( , ) { ( (1 ) ), }i ii
a x m iλ λ λ+ + + + + += + − ∈∑S X I  

( , ) { ( (1 ) ), }i ii
a x m iλ λ λ− − − − − −= + − ∈∑S X I  

By providing different SCH with a different scale factor, the cost-sensitive can be 
addressed, i.e., providing the positive SCH with bigger scale factor and the two SCHs 
will have the same area, and the resulting classifier will misclassify less positive 
points. 

By a suitable selection of the reduction factors, the initial overlapping convex 
hulls can be reduced to become separable, and the maximal margin hyperplane a) 
bisects, and b) is normal to the line segment joining these two nearest points, as 
shown in Fig. 2. 
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Fig. 2. The SCH for cost-sensitive 

Theorem: The classifier associated with the SCHs converges to that of the cost-
sensitive C -SVM by a suitable selection of parameters, as the number of training 
samples tends to infinity. 

Proof: The problem of finding the pair of closest point in the separable SCHs can be 
written as the following optimization problem 

min / 2i i i ii I i Ib
b x b x+ −∈ ∈

−∑ ∑  (6)

subject to 
1ii I

b+∈
=∑ , 1ii I

b−∈
=∑  

(1 ) / (1 ) /in b nλ λ λ+ + + + +− ≤ ≤ + − , for i +∈I  

(1 ) / (1 ) /in b nλ λ λ− − − − −− ≤ ≤ + − , for i −∈I  

By rescaling the objective function and using the class labels, we can rewrite this 
as 

,
min , / 4i j i j i ji j Ib

b b y y x x
∈

< >∑  (7)

subject to 
0i ii I

b y
∈

=∑ , 2ii I
b

∈
=∑  

(1 ) / (1 ) /in b nλ λ λ+ + + + +− ≤ ≤ + − , for i I +∈ , 

(1 ) / (1 ) /in b nλ λ λ− − − − −− ≤ ≤ + − , for i I −∈ . 

The C -SVM approach with margin slack variables for nonseparable problems is 

2 + -

,
max / 2 i i

w b
i I i I

w C Cξ ξ
+ −∈ ∈

+ +∑ ∑ ；  

( ) 1i i iy w x b ξ⋅ + ≥ − , 1, 2, ,i n= L ；  

0iξ > 。  

(8)

Where C  is a positive constant. 
The dual is  
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,

1
min ( )

4 i j i j i j
c

i j I

a a y y x x
∈

⋅∑ ； 

s.t. 0i i
i I

a y
∈

=∑ ， 2i
i I

a
∈

=∑ ； 

0 ,ia C i I+ +≤ ≤ ∈ ； 

0 ,ia C i I− −≤ ≤ ∈ 。 

(9)

The only difference between the two optimization problems (7) and (9) is that the 
coefficients of the latter are upper-bounded by a constant C , and the coefficients of 
the former are lower-bounded and upper-bounded by some constants. When n+  and 
n−  tend to infinity, (1 ) / nλ + +−  and (1 ) / nλ − −−  converge to zero, i.e., the constraints 
(7) converge to (9), hence the solution of (7) converges to the solution of (9). 

This theorem proves that the separating hyperplane associated with the SCHs 
converges to the Classic C -SVM separating hyperplane, so the method can be 
regarded as an alternative to construct SVM classifiers. 

4   The MDM Algorithm for SCH Classifier 

The so-called MDM algorithm for solving the linearly separable SVM problem has 
been presented recently in [13]. One important advantage of the algorithm is that, the 
adaptation only involves points of training set that may be an extreme point of the 
original convex hulls. Since our two SCHs, ( , )λ+ +S X  and ( , )λ− −S X , are spanned by 
the set '+X  and '−X containing the extreme points of each SCH respectively, the 
algorithm is easily generalized to find an ε -optimal separating hyperplane for them 
once the two SCHs are separable. 

First, two definitions are given. 

Definition 1. let Q be a convex and compact subset of dR , ( ) max ,x Qx x yη ∈= < >  is 

called the support function of Q. 

Definition 2. ( )s y  is called a contact function If ( ) { : , ( )}s y x x y xη∈ < >= ∩ Q , 0y ≠  
and ( )s y ∈Q. 

Then, the MDM algorithm for finding the ε -optimal separating hyperplane can be 
described as follows: 

Step 1: set the vector 
'

1 ii I i
a x+∈

=∑w  and
'

2 ii I i
a x−∈

=∑w . Set the stop criterion ε . 

Step 2: find the vector '
tx  closest to the hyperplane as 'arg min ( )it m x= , where 

' '
2 1 2 1 2( ) , /i im x x w=< − − > −w w w w  for i +∈I  and ' '

1 2 1 1 2( ) , /i im x x=< − − > −w w w w w  for 

i −∈I . 
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If the ε -optimal condition '
1 2 ( )tm x ε− − <w w  holds, then the vector 1 2= −w w w  and 

2 2

1 2( ) / 2b = +w w  gives the ε -solution; otherwise, let 1 2z = −w w  and go to step 3. 

Step 3: if ' '
tx +∈X , find an index mint +∈I such that 

min

' ', min{ , : 0, }t i iz x z x a i +< − >= < − > > ∈I . Let
min

'( ) td s z x= − − , 
min

*tz z a d= + . Let newz  be 

the point of minimum norm on the line segment joining z  and z . Then let 2 2
new =w w , 

1 1 2
new new= +w w w . 

Otherwise, find an index mint −∈I such that 
min

' ', min{ , : 0, }t i iz x z x a i −< − >= < − > > ∈I . 

Let
min

'( ) td s z x= − − , 
min

*tz z a d= + . 

Then let 1 1
new =w w , 2 2 1

new new= +w w w . Continue with Step 2. 

5   Experiments  

In order to extensively investigate the performance (the average cost) of the new 
algorithm presented here, two available test datasets from UCI machine learning 
Repository (Heart and German) have been used. The cost-sensitive SVM and the 
proposed algorithm were implemented, tested and compared. Each algorithm was 
trained and tested for each dataset, under the RBF kernel in order to achieve the same 
accuracy referred in the literature [14]. The same validation method and the same data 
realizations are used. The results of the runs are showed in Fig. 3 and Fig. 4. 

It can be seen that the proposed method gets less cost and is better than the SVM. 
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Fig. 3. The average cost of SVM(“o”) and the proposed method (“*”) for the Heart 
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Fig. 4. The average cost of SVM(“o”) and the proposed method (“*”) for the German 

6   Conclusions 

In this paper, by introducing the notion of scaled convex hull (SCH), a new maximal 
margin method is proposed to solve the cost-sensitive learning. The new method 
changes the distribution of the sample, which assigns different scale factor. The 
experiment results are used to validate the effectiveness of the scaled convex hull and 
its simplicity. 

Acknowledgments 

This work was supported in part by the National Nature Science Foundation Project 
(61071136, 60672060, 60964001,) and Science Foundation Project of Guangxi 
Province (0991019Z) and Information and Communication Technology Key 
Laboratory Foundation Project of Guangxi Province (01902). 

References 

1. Brefeld, U., Geibel, P., Wysotzki, F.: Support vector machines with example dependent 
costs. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. 
LNCS (LNAI), vol. 2837, pp. 23–34. Springer, Heidelberg (2003); Int. Conf. Machine 
Learning, pp. 57–64 (2000) 

2. Domingos, P.: MetaCost: a general method for making classifiers cost-sensitive. In: 
Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining, San Diego, CA, pp. 155–164 (1999) 



628 Z. Liu 

3. Elkan, C.: The foundations of cost-senstive learning. In: Proceedings of the 17th 
International Joint Conference on Artificial Intelligence, Seattle, WA, pp. 973–978 (2001) 

4. Margineantu, D.D., Dietterich, T.G.: Bootstrap methods for the cost-sensitive evaluation of 
classifiers. In: Proceedings of the 17th International Conference on Machine Learning, San 
Francisco, CA, pp. 583–590 (2000) 

5. Ting, K.M.: A comparative study of cost-sensitive boosting algorithms. In: Proceedings of 
the 17th International Conference on Machine Learning, San Francisco, CA, pp. 983–990 
(2000) 

6. Bradford, J.P., Kuntz, C., Kohavi, R., Brunk, C., Brodley, C.E.: Pruning decision trees 
with misclassification costs. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, 
vol. 1398, pp. 131–136. Springer, Heidelberg (1998) 

7. Knoll, U., Nakhaeizadeh, G., Tausend, B.: Cost-sensitive pruning of decision trees. In: 
Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 383–386. Springer, 
Heidelberg (1995) 

8. Ting, K.M.: An instance-weighting method to induce cost-sensitive trees. IEEE 
Transactions on Knowledge and Data Engineering 14(3), 659–665 (2002) 

9. Kukar, M., Kononenko, I.: Cost-sensitive learning with neural networks. In: Proceedings 
of the 13th European Conference on Artificial Intelligence, Brighton, UK, pp. 445–449 
(1998) 

10. Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural network classification 
and prior class probabilities. In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, 
vol. 1524, pp. 299–313. Springer, Heidelberg (1998) 

11. Cortes, C., Vapnik, V.N.: Support Vector Networks. Mach. Learn. 20(3), 273–297 (1995) 
12. Bennett, K.P., Bredensteiner, E.J.: Duality and Geometry in SVM classifiers. In: Proc. 

17th Int. Conf. Machine Learning, pp. 57–64 (2000) 
13. Tao, Q., Wu, G.W., Wang, J.: A general soft method for learning SVM classifiers with L1-

norm penalty. Pattern Recognit. 41(3), 939–948 (2008) 
14. Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: Improvements to Platt’s SMO 

algorithm for SVM classifier design, Dept of CSA, IISc, Bangalore, India, Tech. Rep. 
(1999) 



Erratum: Decision-Making in Drosophila with  
Two Conflicting Cues 

Kuijie Cai1,2, Jihong Shen2, and Si Wu1 

1 Institute of Neuroscience, Shanghai Institutes for Biological Sciences, 
Chinese Academy of Sciences, Shanghai 200031, China 

2 College of Science, Harbin Engineering University, Harbin 150001, China 
{kjcai,siwu}@ion.ac.cn, shenjihong@hrbeu.edu.cn 

 

 
 
 
D. Liu et al. (Eds.): ISNN 2011, Part I, LNCS 6675, pp. 93–100, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 
 

 
DOI 10.1007/978-3-642-21105-8_73   
 
 
 
The affiliations at the top of page 93 of this publication are in the wrong order. Harbin 
Engineering University should have been placed first, as shown below: 
 
 

Kuijie Cai1,2, Jihong Shen1, and Si Wu2 

1 College of Science, Harbin Engineering University, Harbin 150001, China  
2 Institute of Neuroscience, Shanghai Institutes for Biological Sciences,  

Chinese Academy of Sciences, Shanghai 200031, China 
{kjcai,siwu}@ion.ac.cn, shenjihong@hrbeu.edu.cn 

 
 
 
 
 
 
_______________________________________________ 

The original online version for this chapter can be found at 

http://dx.doi.org/10.1007/978-3-642-21105-8_12 
_______________________________________________  

http://dx.doi.org/10.1007/


Author Index

Abdikeev, Niyaz I-1
Ahmed, Sultan Uddin II-260
Ajina, Sonia III-132
Alejo, R. II-19
Alizadeh, Hosein II-144
Arifin, Imam II-525

Balahur, Alexandra III-611
Beigi, Akram II-144
Bo, Yingchun I-52
Bornschein, Joerg II-232
Breve, Fabricio III-426
Burchart-Korol, Dorota III-380

Cai, Kuijie I-93,E1
Cambria, Erik III-601
Cao, Fengjin III-50
Cao, Jianting III-306
Cao, Jianzhi II-506
Cao, Jinde I-321
Chai, Wei III-122
Chang, Chao-Liang II-278
Chen, Bing II-552
Chen, Chun-Chih III-21
Chen, C.L. Philip II-535
Chen, Cuixian II-251
Chen, Hongwei II-356
Chen, Hui III-460
Chen, Jing II-583
Chen, Lingling III-58, III-68
Chen, Ping II-159
Chen, Qiang II-57
Chen, Qili III-122
Chen, Qin I-139
Chen, Wanzhong I-505, III-340
Chen, Xiaofeng I-260
Chen, Xiaoping I-297
Chen, Yen-Wei III-355
Chen, Yuehui III-363
Chen, Yuhuan I-385
Chen, Zhanheng III-280
Cheng, Yifeng III-397
Cheng, Zunshui I-125
Chien, Tzan-Feng III-548

Chiu, Chih-Chou III-228
Chu, Hongyu I-587
Chu, Zhongyi III-41
Chuan, Ming-Chuen III-21
Cui, Jianguo I-139
Cui, Jing III-41
Cui, Li II-225
Czaplicka-Kolarz, Krystyna III-380

Dai, Lizhen II-583
Dai, Xiaojuan I-60
Dang, Xuanju III-50
Dang, Zheng II-388, II-395
Decherchi, Sergio III-523
Deng, Shitao III-397
Ding, Gang I-484
Ding, Heng-fei I-158
Ding, Lixin III-264
Ding, Yi II-199
Ding, Yongsheng III-112
Dong, Beibei III-58, III-68
Dong, Wenyong II-1
Dong, Yongsheng II-9
Dou, Binglin II-591
Dou, Yiwen III-112
Doungpaisan, Pafan II-486
Du, Jing III-460
Du, Ying I-109

Eckl, Chris III-601
Er, Meng Joo II-350, II-525
Essoukri Ben Amara, Najoua III-132

Fan, LiPing II-130
Fang, Chonglun II-136
Fang, Guangzhan I-139
Fu, Chaojin I-348
Fu, Jian III-1
Fu, Siyao II-305, II-381
Fu, Xian II-199
Fu, XiangHua III-485
Fujita, Hiroshi II-121

Gao, Meng II-207
Gao, Xinbo II-395



630 Author Index

Gao, Ya II-151
Gao, Yun I-565
Gasca, E. II-19
Gastaldo, Paolo III-523
Ghaffarian, Hossein III-576
Golak, S�lawomir III-380
Gong, TianXue III-485
Grassi, Marco III-558
Guo, Chengan II-296
Guo, Chengjun III-416
Guo, Chongbin I-10, III-112
Guo, Daqing I-176
Guo, Dongsheng I-393
Guo, Jia I-437
Guo, Ping II-420
Guo, XiaoPing II-130
Guzmán, Enrique III-388

Han, Fang I-109
Han, Min III-313
Han, Peng II-563
Han, Zhiwei III-442
Hao, Kuangrong III-112
Haque, Mohammad A. II-447
He, Haibo III-1
He, Jingwu I-587
He, Wan-sheng I-158
He, Yunfeng I-572
Hermida, Jesús M. III-611
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