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Preface

ISNN 2011 – the 8th International Symposium on Neural Networks – was held
in Guilin, China, as a sequel of ISNN 2004 (Dalian), ISNN 2005 (Chongqing),
ISNN 2006 (Chengdu), ISNN 2007 (Nanjing), ISNN 2008 (Beijing), ISNN 2009
(Wuhan), and ISNN 2010 (Shanghai). ISNN has now become a well-established
conference series on neural networks in the region and around the world, with
growing popularity and increasing quality. Guilin is regarded as the most pic-
turesque city in China. All participants of ISNN 2011 had a technically rewarding
experience as well as memorable experiences in this great city.

ISNN 2011 aimed to provide a high-level international forum for scientists,
engineers, and educators to present the state of the art of neural network research
and applications in diverse fields. The symposium featured plenary lectures given
by worldwide renowned scholars, regular sessions with broad coverage, and some
special sessions focusing on popular topics.

The symposium received a total of 651 submissions from 1,181 authors in
30 countries and regions across all six continents. Based on rigorous reviews
by the Program Committee members and reviewers, 215 high-quality papers
were selected for publication in the symposium proceedings. We would like to
express our sincere gratitude to all reviewers of ISNN 2011 for the time and effort
they generously gave to the symposium. We are very grateful to the National
Natural Science Foundation of China, the Institute of Automation of the Chinese
Academy of Sciences, the Chinese University of Hong Kong, and the University
of Illinois at Chicago for their financial support. We would also like to thank
the publisher, Springer, for cooperation in publishing the proceedings in the
prestigious series of Lecture Notes in Computer Science.

Guilin, May 2011 Derong Liu
Huaguang Zhang

Marios Polycarpou
Cesare Alippi

Haibo He
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Maximum Variance Sparse Mapping 
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Abstract. In this paper, a multiple sub-manifold learning method oriented clas-
sification is presented via sparse representation, which is named maximum 
variance sparse mapping. Based on the assumption that data with the same label 
locate on a sub-manifold and different class data reside in the corresponding 
sub-manifolds, the proposed algorithm can construct an objective function which 
aims to project the original data into a subspace with maximum sub-manifold 
distance and minimum manifold locality. Moreover, instead of setting the 
weights between any two points directly or obtaining those by a square optimal 
problem, the optimal weights in this new algorithm can be approached using L1 
minimization. The proposed algorithm is efficient, which can be validated by 
experiments on some benchmark databases. 

Keywords: MVSM, sub-manifold, Sparse representation. 

1   Introduction 

Recently, feature extraction methods based on manifold learning have been attracting 
much attention. Among these original manifold learning methods and their extensions, 
one representative is Laplacian Eigenmaps (LE) [1], which is based on graph mapping 
method. LE constructs the nearest graph with K Nearest Neighbors (KNN) criterion on 
the training data points and sets the weights between any two points either belonging to 
K Nearest Neighbors or not respectively. Then an objective function can be formed 
which connections to the graph Laplacian, the Laplacian Beltrami operator on the 
manifold and the heat equation. LE seeks the optimal feature subspace by solving the 
objective function where locality can be preserved. However, LE is a nonlinear di-
mensionality reduction approach with less generalization ability. That is to say, the 
image of a test in low dimensional space can not be easily acquired with the projection 
results of the training set, which is also entitled out-of-sample problem [2]. Lineariza-
tion, kernelization and tensorization are some often used techniques to overcome the 
problem [3]. For example, Locality Preserving Projection (LPP) [4, 5] is a linear ap-
proximation of LE. It is the linearization to LE that the LPP algorithm shows its merits 
on favorable clustering and low computational cost [5]. In most methods, the linear 
transformation matrix is also under the orthogonal constraint to reduce the redundancy 
of the data. However, this constraint does not defined in LPP. In order to solve the 
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problem, an Orthogonal LPP (OLPP) algorithm is presented by Cai, which shows more 
discriminating than LPP [6]. Recently, Yang also proposed an Unsupervised Dis-
criminant Projection (UDP) algorithm [7] to consider both manifold locality and 
non-locality. Later, UDP can be viewed as a simplified version of LPP under constraint 
that the local density is uniform [8]. After characterizing the local scatter and the 
non-local scatter, UDP aims to look for a linear projection to maximize non-local 
scatter and to minimize the local scatter simultaneously. Therefore UDP is more in-
tuitive and more powerful than most of up-to-date methods. However, it must be noted 
that UDP is a linear approximation to the manifold learning approaches without any 
class information involved. Nevertheless, the class information has been considered to 
have much to do with discriminating features for classification. So combining to UDP, 
Li proposed an Orthogonal Discriminant Projection (ODP) by taking the data labels 
into account [9]. All the methods mentioned above are linear versions of the original 
LE with all kinds of constraints, so there are some points in common for them. First, 
Unlike Locally Linear Embedding (LLE) [10,11], which obtains the reconstruction 
weights by solving a square optimal problem, either LE or its extensions including 
LPP, OLPP, UDP and ODP set the weights between points simply 0, 1 or the value of a 
function, thus the weights can not be always optimal. Second, the weights are not ro-
bust to noise and outlier. Third, most of the mentioned methods pay more attention to 
the locality preserving and lose sight of the class information. 

In this paper, a new feature extraction method, named Maximum Variance Sparse 
Mapping (MVSM), is proposed to overcome the problems mentioned above. Making 
full consideration of class information, a multiple sub-manifold model for classification 
is constructed, then the weights between K nearest neighbors can be gained by a sparse 
representation with L1 normalization, which will be robust to noise and outlier. The 
aim of MVSM is to locate the original data on a subspace where the distance between 
sub-manifolds is maximized and the sparse locality is minimized. 

2   The Proposed Algorithm 

In proposed method, a multiple sub-manifold classification model is proposed, which 
make use of labels to construct sub-manifolds. In other words, data with the same label 
should locate on a sub-manifold and different class data should reside in the corre-
sponding sub-manifolds. Moreover, the sub-manifolds distance is defined based on the 
class information. At the same time, a spare optimized objective function is adopted to 
compute the optimal sparse weights, which is robust to noisy and outlier [12]. And then 
the locality of sub-manifolds can be determined with the optimal sparse weights. In the 
following, definitions of the sub-manifolds distance, the sparse optimal weights and the 
locality of sub-manifolds are described, respectively. 

2.1   The Sub-manifolds Distance 

In most algorithms, Euclidean distance is often used to measure similarity. If the 
Euclidean distance between two points is very large, it can be said that these two points 
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will be of high dissimilarity. Otherwise, it will probably be similar to each other. 
Therefore, Euclidean distance can also be taken use of scaling the distance of 
sub-manifolds. However, it must be noted that the dissimilarities also exist between 
different manifolds. How to distinguish one manifold from the others will heavily 
depend on the manifold class labels. Based on the multiple sub-manifolds model, the 
data distributed on a manifold are belonging to the same class. So a label matrix H  can 
be designed to mark the class relation between points. The label matrix H is stated as 
follows: 

0 if   and have the same class label

1
i j

ij

X X
H

otherwise

⎧
= ⎨
⎩

 (1)

Based on the label matrix H , we define the sub-manifolds distance to be the sum of 
the squared distance between sub-manifolds as follows, which can also be found in 
Constrained Maximum Variance Mapping (CMVM) [13].  

,

( )( )

2 2 2 ( )

n
T

D ij i j i j
i j

T T T
i ii i i ij ji ij

J H Y Y Y Y

YQ Y Y H Y Y Q H Y

= − −

= − = −

∑

∑ ∑
 (2)

where ii ijj
Q H=∑  

2.2   The Weights through Sparse Representation 

In the past few years, sparse representations of signals have received a great deal of 
attentions, which is initially proposed as a substitute to traditional signal processing 
methods such as Fourier and wavelet. The problem solved by sparse representation is to 
search for the most compact representation of a signal in terms of linear combination of 
atoms in an over-complete dictionary. Compared to methods based on orthonornal 
transforms or direct time domain processing, sparse representation usually offers better 
performance with its capacity for efficient signal modeling. In the proposed algorithm, 
the sparse representation is introduced to compute the weights between points in 
sub-manifolds instead of directly setting them a simply value or result of a heat kernel 
function. In the proposed MVSM, a point can be linear representation by data with the 
same labels contained in k nearest neighbors, that is to say, the k nearest neighbors must 
be selected from data belonging to the same class, thus an objective function can be 
constructed as follows: 

1
min

. . 
i i

i i

S S

s t X XS

=

=
 (3)

Or  
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1
min

. . 

i i

i i

S S

s t X XS ε

=

− <
 (4)

Where iS  denotes the weighted vector by representing iX  with its K nearest 

neighbors belonging to the same class. 

The 1l  minimization problem can be solved by LASSO [14] or LARS [15]. Thus 

repeat 1l  minimization problem to all the points, the sparse weights matrix can be 

expressed to 1 2[ , ,..., ]nS S S S= . 

2.3   The Locality of Sub-manifolds 

Based on the above discuss, on the one hand, the sparse weight matrix S can reflect 
intrinsic geometric information because it can be obtained by K nearest neighbors; on 
the other hand it also offer much discriminant information due to the K nearest 
neighbors all with the same class label. So using the sparse weight matrix S, the locality 
of sub-manifolds can be deduced via the following sparse representation. 

( ) ( ) ( )2

1 1 1 1

1 1

2 2

( )

i j j

n n n n T

L ij i j ij i j i j
i j i j

T T T T
i ij i ij i ii i i ij

ij ij i ij

T T

J S Y Y S X X X X

X S X X S X X D X X S X

X D S X XLX

= = = =

= − = − −

= − = −

= − =

∑∑ ∑∑

∑ ∑ ∑ ∑  (5)

Where diagonal matrix ii ij
j

D S=∑ and L D S= −  

2.4   Justification 

In the above Subsections, the sub-manifolds distance and the locality of sub-manifolds 
via sparse representation have been offered. However, MVSM is a manifold learning 
based method which inevitable encounters out-of-sample problem and small sample 
size problem. So if there is a linear transformation which can project the original data 
into a subspace with the maximum sub-manifold distance, it not only naturally over-
comes out-of-sample problem but also shows its superiority to classification; secondly, 
due to introducing a linear transformation, minimizing the locality of sub-manifolds 
means to map the original data into a subspace where manifold geometry can be well 
preserved with less computational cost. So if the sub-manifold distance can be maxi-
mized and the locality of sub-manifolds can be minimized by a linear transformation 
simultaneously, we will find an optimal linear subspace with higher recognition rate 
and lower computational cost.  



 Maximum Variance Sparse Mapping 5 

Provided that the linear features Y can be obtained by a linear transformation, i.e., 
T

i iY A X= . Then LJ  and DJ  can be rewritten into the following forms: 

T T
LJ A XLX A=  (6)

                                                                                                                       

( )T T
DJ A X Q H X A= −  (7)

According to the motivation mentioned above, the corresponding objective function 

can be represented as follows: 

( )
( ) max max

T T
D

T TA A
L

J A X Q H X A
J A

J A XLX A

−= =  (8)

This optimization problem can be figured out by enforcing the following Lagrange 
multiplier:  

( )
( )

T T

T T

A X Q H X A
L A

A XLX A

−=  (9)

Then, the optimal transformation matrix A  can be obtained from the following 
expression: 

( , )
0

L A

A

λ∂ =
∂

 (10)

At last we have: 

( ) T T T
i i iX Q H X A A XLX Aλ− =  (11)

So it can be found that A  is composed of the eigenvectors associated with the d top 

eigenvalues by solving the above generalized eigen-equation. However, it must be 

noted that if matrix, i.e.
TXLX , is singular, Eqn. (16) has no solution. The case always 

exists in real-word applications when sample numbers is less than the dimensions of the 

original data. Thus in order to avoid the problem, a preprocessing method can be per-

formed when encountering the case mentioned above. Generally speaking, the dimen-

sions of the original data can be reduced to some extent to ensure the matrix
TXLX  to 

be positively definite. In this study, PCA will be adopted because of its simplicity. 

After the proposed algorithm is applied to the preprocessed data, the transformation 

matrix including the preprocessing can be expressed as follows: 

PCA MVSMA A A=  (12)
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3   Experiments 

In this Section, ORL face data, YALE face data and Palmprint [17]are applied to 
evaluate the performance of the proposed MVSM algorithm, which is compared with 
those of LPP, CMVM and Sparsity Preserving Projection (SPP) [16]. 

3.1   Experiment on ORL Face Database 

The ORL database contains 400 images of 40 individuals, including variation in facial 
expression, pose and other details like glasses/non-glasses. Fig.1 illustrates a sample 
subject of the ORL database along with all ten views, which are cropped to 
32 32× size. For each person, the first 5 images are selected for training and the rest 
are used for testing. For MVSM, LPP, CMVM and SPP, the dimension of preprocessed 
data obtained is  n c− dimensions and 100 percent image energy is kept when per-
forming PCA, where c denotes the class number. Then k nearest neighbor criterion is 
adopted to construct the adjacency graph and k is set to 4. At last, the nearest neighbor 
classifier is also taken to classify the test data.  

From Table 1, it can be found that MVSM obtains the lowest error rate compared 
with LPP,CMVM and SPP.  

 

Fig. 1. The cropped sample face images from ORL database 

Table 1. Performance comparison by using MVSM, LPP, CMVM and SPP on ORL face 

Methods LPP CMVM SPP MVSM 
Recognition rate 95.6% 97.8% 96.7% 98.9% 
Dimensions 24 26 42 30 

3.2   Experiment on Tumor Gene Expressive Data 

In this subsection, we used another two tumor gene expressive data datasets for experi-
mentation. One is the Leukemia dataset [17].  We randomly selected 10 cases of ALL_B, 
4 cases of ALL_T and 6 cases of AML as the training set, and use the rest samples as test 
data. Another dataset is the central nervous system tumors dataset [18], which is com-
posed of four types of central nervous system embryonal tumors. We randomly selected 5 
medulloblasomas, 5 malignant gliomas, 5 rhabdoids and 3 normals as training set, and 
use the rest samples as test data, at last KNN is adopted to classify the features extracted 
by LPP, CMVM, SPP and MVSM. These experimental results are displayed in Table 2. It 
can be found that the proposed method gains the best results. 
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Table 2. The multi-class gene expressive data classification results by different methods 

Leukemia dataset Central Nervous System Tumors 
Methods 

Accuracy(%) Dimensions Accuracy(%) Dimensions 
LPP 95.21 6 92.33 6 
CMVM 98.33 2 94.38 3 
SPP 97.66 3 93.97 4 
MVSM 99.12 4 95.56 3 

4   Conclusion 

In this paper, a multiply sub-manifold learning method via sparse representation, 
namely MVSM, is proposed for classification. The proposed algorithm uses the sparse 
local information to construct the locality of sub-manifolds as well as the class infor-
mation of the data to model the sub-manifold learning. So the proposed algorithm 
becomes more suitable for the tasks of classification. This result is validated either from 
the theoretical analysis or from experiments on real-world data set.   
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Contourlet-Based Texture Classification with

Product Bernoulli Distributions

Yongsheng Dong and Jinwen Ma�
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Abstract. In this paper, we propose a novel texture classification method
based on product Bernoulli distributions (PBD) and contourlet trans-
form. In particular, product Bernoulli distributions (PBD) are employed
for modeling the coefficients in each contourlet subband of a texture
image. By investigating these bit-plane probabilities (BPs), we use the
weighted L1-norm to discriminate the bit-plane probabilities of the cor-
responding subbands of two texture images and establish a new distance
between the two images. Moreover, the K-nearest neighbor classifier is
utilized to perform supervised texture classification. It is demonstrated
by the experiments that our proposed method outperforms some current
state-of-the-art approaches.

Keywords: Texture classification, Contourlet transform, Product
Bernoulli distributions(PBD), Bit-plane probability (BP).

1 Introduction

Texture classification plays an important role in computer vision with a wide
variety of applications. Examples include classification of regions in satellite
images, automated inspection, medical image analysis and document image pro-
cessing. During the last three decades, numerous methods have been proposed
for image texture classification and retrieval [1]-[13]. Among these approaches,
wavelet-based methods may be the most popular due to the multiresolution and
orientation representation of wavelets which is consistent with the human visual
system [10].

However, two-dimensional wavelets are only good at catching point discon-
tinuities but do not capture the geometrical smoothness of the contours. As
a newly developed two-dimensional extension of the wavelet transform using
multiscale and directional filter banks, the contourlet transform can effectively
capture the intrinsic geometrical structure that is key in visual information,
because the contourlet expansion can achieve the optimal approximation rate
for piecewise smooth functions with C2 contours in some sense [14]. Recently,
the contourlet transform has been successfully used in content-based texture re-
trieval [15], palmprint classification and handwritten numeral recognition [16].

� Corresponding author, jwma@math.pku.edu.cn
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Of course, the contourlet transform also provides us an efficient tool to extract
the features from a texture image for texture classification.

Modeling wavelet detail subband coefficients via the Product Bernoulli Dis-
tributions (PBD) [11]-[12] has received a lot of interest. The PBD model makes
use of a binary bit representation for wavelet subband histograms and the so-
called Bit-plane Probability (BP) signature is constructed based on the model
parameters. Essentially, the main merits of BP approach are its efficiency for sig-
nature extraction and similarity measurement based on Euclidean metric, and
the statistical justification of the model parameters for use in image process-
ing applications [10]-[11]. However, it has two main disadvantages. First, the
wavelet transform used in [11] cannot capture directional information and then
the wavelet coefficients don’t represent a texture image well. So the recognition
performance is not satisfying. Second, the minimum distance classifier used in
[11] doesn’t work well because the BP signature is obtained by concatenating all
the bit-plane probabilities of all high-pass subbands, and the distance between
a new image and a texture class is obtained by the weighted − L1 distance of
the BP signature of the test sample and the mean of the BP signatures of all
training samples in each class.

Motivated by the advantages and disadvantages of PBD, we propose a new
method for texture classification using contourlet transform and PBD together.
More specifically, this paper makes the following contributions. First, we use
product Bernoulli distributions to model the contourlet coefficients instead of
wavelet coefficients. Second, we present a new distance of two images, which is
measured by summing up all the weighted − L1 metrics of the bit-plane prob-
abilities of the corresponding subbands. Finally, we apply the PBD model in
the contourlet domain to supervised texture classification through the K-nearest
neighbor classifier, and experimental results on large texture datasets reveal that
our proposed method with the use of the new distance performs better than the
method based on the PBD in the wavelet domain [11], and outperforms the
current state-of-the-art method based on M-band ridgelet transform [17].

The rest of the paper is organized as follows. Section 2 introduces the con-
tourlet transform. In Section 3, we present a new texture classification method
based on the product Bernoulli distributions in the contourlet domain. Experi-
mental results on three large datasets are conducted in Section 4 to demonstrate
the effectiveness of our proposed texture classification method. Finally, we con-
clude briefly in Section 5.

2 Contourlet Transform

The contourlet transform was recently developed by Do and Vetterli [14] in
order to get rid of the limitations of wavelets. Actually, they utilized a double
filter bank structure in which at first the Laplacian pyramid (LP) [18] is used
to capture the point discontinuities, and then a directional filter bank (DFB)
[19] is used to link point discontinuities into a linear structure. So, the overall
result of such a transform is based on an image expansion with basis elements
like contour segments, and thus it is referred to as the contourlet transform.
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Due to its cascade structure accomplished by combining the Laplacian pyra-
mid (LP) with a directional filter bank (DFB) at each scale, multiscale and
directional decomposition stages in the contourlet transform are independent of
each other. Therefore, one can decompose each scale into any arbitrary power of
two’s number of directions, and different scales can be decomposed into different
numbers of directions. Therefore, it can represent smooth edges in the manner of
being close to the optimal efficiency. Fig. 1 shows an example of the contourlet
transform on the ”Barbara” image. For the visual clarity, only two-scale decom-
positions are shown. The image is decomposed into two pyramidal levels, which
are then decomposed into four and eight directional subbands, respectively.

More recent developments and applications on the contourlet transform can
be found in [15],[16] and [20].

Fig. 1. The result of the Contourlet transform of the ”Barbara” image

3 Proposed Texture Classification Method

3.1 Product Bernoulli Distributions

For L-scale contourlet decompositions of a given texture image, we find the
average amplitude of the coefficients increases almost exponentially with the
scale i (i = 1, 2 · · · , L). Hence, to model the contourlet coefficients at different
scales uniformly, we regularize them by multiplying the factor 1/2i to those in
the high-pass directional subbands at the i-th scale, and multiplying the factor
1/22L to those in the low-pass subband. For simplicity, the contourlet coefficients
in the following will represent the regularized coefficients without explanation.

Considering one particular contourlet subband, we quantize each coefficient
into n bits using deadzone quantization that step size equals 1.0 [11]. It follows
that each of the quantized contourlet coefficients can be expanded into n binary
bit-planes. Thus, we express it as a random variable:

Y =
n−1∑
i=0

2iYi, (1)
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where Yi is a random variable representing the i-th binary bit of the coefficient.
That is, each bit-plane is composed of either 0 or 1, and the joint probabil-
ity distribution of the quantized coefficients is P (Y = y) = P (Y0 = y0, Y1 =
y1, · · · , Yn−1 = yn−1) where yi ∈ {0, 1} is the i-th binary bit of y. If we assume
Yi’s are statistically independent variables and denote the model parameter by
pi = P (Yi = 1), the joint distribution can be written as a product of Bernoulli
distributions (PBD) [11]:

fPBD(Y = y) =
n−1∏
i=0

pyi

i (1 − pi)1−yi , (2)

which can be characterized by the bit-plane probabilities: P = (p0, p1, · · · , pn−1).
In this way, for a given particular contourlet subband with a set of absolute

quantized coefficients y = (y1, y2, · · · , yk) where yj ∈ Z+ is the j-th component
of y and Z+ denotes the set of all the nonnegative integer numbers, the likelihood
function of y can be defined as

L̃(y;P ) = log
k∏

j=1

fPBD(Y = yj;P ) = log
k∏

j=1

n−1∏
i=0

p
yj

i

i (1 − pi)1−yj
i , (3)

where yj
i is the i-th binary bit of the j-th component of y and

P = (p0, p1, · · · , pn−1). (4)

Thus, the ML estimator [11] of P can be obtained by

∂L̃(y;P )
∂pi

= 0, (5)

namely, p̂i = 1
k

∑k
j=1 yj

i , where i = 0, 1, · · · , n − 1. That is, the ML estimator
of the model parameter is equivalent to the probabilities of one-bit occurrence
for each of the bit-planes. Therefore, we can compute the bit-plane probabilities
(BP) for each contourlet subband using the above ML estimators. As we all
know, a sufficient statistic for a model parameter is a statistic that captures all
possible information in the data about the model parameter. In the same manner
as in [11], the sufficiency of the parameter estimators can also be proved by the
Fisher-Neyman factorization theorem [11].

3.2 Discrepancy Measurement and K-Nearest Neighbor Classifier

Once the bit-plane probabilities (BP) of all subbands are obtained for every
texture, we can compare the corresponding BPs of two subbands using a metric.
In [11], it has been investigated and demonstrated that the Relative−L1 (RL1)
distance is suitable for comparing BPs. Hence, we still use RL1 as the metric of
two BPs P 1 and P 2, which is given by

RL1(P 1, P 2) =
n−1∑
i=0

|p1
i − p2

i |
1 + p1

i + p2
i

(6)
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where P 1 = (p1
0, p

1
1, · · · , p1

n−1) and P 2 = (p2
0, p

2
1, · · · , p2

n−1). Note that the RL1
distance is a weighted L1 one.

For two given images I1 and I2, we can obtain M contourlet subbands
(BI1

1 , BI1
2 , · · · , BI1

M ) and (BI2
1 , BI2

2 , · · · , BI2
M ), respectively, after having imple-

mented an L-level contourlet transform on them, and then define the distance
between the two images by

DL(I1, I2) =
M∑

j=1

dj , (7)

where dj = RL1(P 1
j , P

2
j ) is the Relative − L1 distance between the two BPs

P 1
j and P 2

j corresponding to the subbands BI1
j and BI2

j , respectively for j =
1, 2, · · · ,M .

Given a single test sample I∗ and a training set, we will utilize the K-nearest-
neighbor classifier to perform texture classification. In particular, we compare I∗

with each training sample, and then assign it to the class to which the majority
of these k nearest neighbors belong. This classifier performs better than the
minimum distance classifier used in [11], which will be demonstrated in the
following section.

4 Experimental Results

In this section, various experiments are carried out to demonstrate our proposed
method for texture classification. In our experiments, we select the pyramid
and directional filters by the ”9-7” filters in the contourlet transform, which
are the biorthogonal wavelet filters. In addition, we impose that each image
is decomposed into one low-pass subband and four high-pass subbands at four
pyramidal levels. The four high-pass subbands are then decomposed into four,
four, eight, and eight directional subbands, respectively. It follows that the total
number of directional subbands, M , is 25. For texture images, n = 8 bits are
sufficient for subband coefficients. For the sake of clarity, we refer to our proposed
method based on the bit-plane probability model in the contourlet domain and
K-NN classifier as BPC+KNN.

4.1 Performance Evaluation

We first evaluate our method for texture classification on a typical set of 64
grey 640× 640 images (shown in Fig. 2 and denoted by Set-1) from the Brodatz
database [21], which was also used in [23].

In the experiments on Set-1, each image is divided into 25 128× 128 nonover-
lapping patches, and thus there are totally 1600 samples available. We select Ntr

training samples from each of 64 classes and let the other samples for test with
Ntr = 2, 3, · · · , 24. The partitions are furthermore obtained randomly and the
average classification accuracy rate (ACAR) is computed over the experimental
results on 10 random splits of the training and test sets at each value of Ntr.
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Fig. 2. The set of 64 texture images used in [23]

For Set-1, we compare our proposed BPC+KNN with two other methods. The
first is the method based on the bit-plane probability model in the wavelet do-
main and minimum distance classifier (called BPW+MD)[11]. By this approach,
the distance between a test sample and a given class is defined by the RL1 dis-
tance between the input BP signature of the test sample and the mean of the
BP signatures of all training samples in the class. Once the distances between
the test sample and each class are obtained, the label of the class that has the
minimum distance from the test sample is assigned to the test sample. The sec-
ond method is BPC+MD, which is the same as BPC+KNN but the minimum
distance (MD) classifier. For the MD classifier, the distance between a test sam-
ple and a given class is defined as the mean of the ones, defined by DL, between
the test sample and all training samples in the texture class.

Fig. 3 plots the average classification accuracy rates (with error bars) of
BPC+KNN, BPC+MD, and BPW+MD with respect to the number of training
samples Ntr. As can be seen, the ACAR of BPC+KNN increases monotoni-
cally with the number of training samples. However, the ACAR of BPW+MD
does not have the same regularity as that of BPC+KNN. We can also see that
BPC+MD performs better than BPW+MD by about 2.0%-4.0% for each value
of Ntr, which implies PBDs in the contourlet domain outperforms those in the
wavelet domain. BPC+KNN (K = 1) slightly outperforms BPC+KNN (K=3)
and performs better than BPC+MD by 1.9%-4.5% for each value of Ntr, which
implies that the KNN classifier outperforms the MD classifier for the PBD model.
Note that the errors are also shown in Fig. 3 where each error bar is a distance of
one standard deviation above and below the average classification accuracy rate.
All the values of standard deviation of BPC+KNN with K = 1 and K = 3 at
each value of Ntr are about 0.50%, which are slightly less than the average value
of standard deviation of BP Method, 1.54%. In other words, the variation of
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Fig. 3. The sketches of the average classification accuracy rates of our BPC+KNN and
the BPW+MD with respect to the number of training samples

the classification accuracy rates of BPC+KNN for different number of training
samples is small, which affirms the robustness of our proposed BPC+KNN.

We then apply BPC+KNN and BPW+MD to the Vistex dataset [22] of 40
640×640 texture images (shown in Fig. 4 and denoted by Set-2), which has also
been used in [7]. Each texture image is divided into 16 128×128 non-overlapping
patches. We randomly select 3 training samples from each of 40 classes, and let
the other samples for test (that is, the test and training samples are separated).
The ACAR is computed over the experimental results on 10 random splits of
the training and test sets, which is listed in Table 1. We see that BPC+KNN
(K = 1) outperforms BPW+MD by 8.11%.

In order to provide additional justification of our proposed method, we com-
pare BPC+KNN (K = 1) with BPW+MD and M-band ridgelet transform based

Fig. 4. The set of 40 texture images used in [7]
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Table 1. The average classification accuracy rates (%) of the three methods on the
two texture datasets

BPC + KNN (K = 1) BPW + MD [11] MR Method [17]

Set-2 89.90 ± 2.01 81.79 ± 1.82 n.a.

Set-3 80.52 ± 0.89 66.28 ± 1.56 79.10

Table 2. The time for texture classification (TTC) and ACARs of the four methods
on the 64 texture dataset (in seconds) in the 8-training samples case

BPC + KNN (K = 1) BPC + KNN (K = 3) BPC + MD BPW + MD [11]

TTC 206.17 206.16 207.06 692.84

ACAR 98.69% 98.17% 94.60% 91.88%

method (called MR Method) [17] on the Vistex dataset [22] of 129 512 × 512
texture images (denoted by Set-3), which has also been used in [17]. By the
MR Method, the texture features are extracted by the M-band ridgelet trans-
form, which is obtained by combining the M-band wavelet with the ridgelet.
Then, the support vector machine classifier is used to perform supervised texture
classification.

Each texture image is divided into 16 128× 128 non-overlapping patches. We
select 8 training samples and compute the ACAR over the experimental results
on 10 random splits of the training and test sets. The average classification
results of these methods are listed in Table 1. It can be seen from Table 1 that
BPC+KNN (K = 1) outperforms MR Method and BPW+MD by 1.42% and
14.24%, respectively, on the large dataset.

4.2 Computational Cost

We further compare our proposed method with the other methods on compu-
tational cost. All the experiments conducted here have been implemented on a
workstation with Intel(R) Core(TM) i5 CPU (3.2GHz) and 3G RAM in Matlab
environment.

Tabel 2 reports the time for texture classification (TTC) and ACARs using
the BPC + KNN (K = 1), BPC + KNN (K = 3), BPC + MD and BPW +
MD approaches on the 64 texture dataset. The number of training samples used
in the experiments is 8. For this dataset, the BPC + KNN (K = 3) method is
the most efficient. In contrast, BPW + MD is the most time-consuming method
among them. The TTC using BPC + KNN (K = 1) is 206.17 s, which is about
3 times faster than the BPW + MD. In addition, BPC + KNN (K = 1) is also
slightly more efficient than BPC + MD. If we take into account the TTC and
ACAR, the results clearly show that BPC + KNN (K = 1) outperforms the
other methods.
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5 Conclusions

We have investigated the distribution of the coefficients in each contourlet sub-
band and tried to use the product Bernoulli distributions for modeling them. We
then apply the PBD model with the use of KNN classifier to supervised texture
classification. The various experiments have shown that our proposed method
considerably improves the texture classification accuracy in comparison with the
current state-of-the-art method based on product Bernoulli distributions in the
wavelet domain as well as the method based on the M-band ridgelet transform.
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Abstract. The class imbalance problem has been studied from different approa-
ches, some of the most popular are based on resizing the data set or internally ba-
sing the discrimination-based process. Both methods try to compensate the class
imbalance distribution, however, it is necessary to consider the effect that each
method produces in the training process of the Multilayer Perceptron (MLP). The
experimental results shows the negative and positive effects that each of these
approaches has on the MLP behavior.

Keywords: MLP, random sampling, cost function, class imbalance problem.

1 Introduction

Recently, the class imbalance problem has been recognized as a crucial problem in data
mining and machine learning [1]. This inconvenience occurs in real-world domains,
where the decision system is aimed to detect a rare but important case. For instance, in
detection of oil spills, in satellite radar images, fraudulent telephone calls or fraudulent
credit cards [2].

Some of the most popular strategies for handling this problem are resampling tech-
niques (over-sampling and under-sampling) [3,2]. Over-sampling replicates samples in
the minority classes and the under-sampling eliminates samples in the majority classes
[4]. These two basic methods for resizing the training data set (TDS) produce a class
distribution more balanced. However, both strategies have shown important drawbacks:
Under-sampling may eliminate potentially useful data, while over-sampling increases
the TDS size and hence the training time [5]. In the last years, research has been focused
on improving these basic methods (for example see [6, 7]).

In the Multilayer perceptron (MLP) which applies these methods (over or under-
sampling) has demonstrated notable improvements in the classifier performance [4, 1]
and it has been verified that random under-sampling techniques provide better results
than those obtained by means of random over-sampling [8]. However, in [1] is affirmed
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that the under-sampling methods produce negative effects when the TDS is seriously
imbalanced.

Other popular strategy to deal with the class imbalance problem consists in internally
biasing the discrimination-based process and compensate the class imbalance [9, 10].
With the MLP, this approach consists mainly in including a cost function in the training
phase or in the test phase. Empirical studies have shown that the usage of the cost func-
tions improves the classifier performance. Nonetheless, the effects of the cost function
in the training process is similar than over-sampling techniques, i.e., it causes changes
in probability distribution data [5].

This paper studies empirically the effects of the random sampling and the cost func-
tion in the training phase of the MLP. In this way, we could identify methods that are
effective in the moderate and severe imbalance problems.

2 The MLP and the Class Imbalance Problem

The MLP neural network usually comprises one input layer, one or more hidden layers,
and one output layer. Input nodes correspond to features, the hidden layers are used
for computing, and output layers are related with the number of classes. A neuron is
the elemental unit of each layer. It computes the weighted sum of its inputs, adds a
bias term and drives the result through a generally nonlinear (commonly a sigmoid)
activation function to produce a single output.

The most popular training algorithm for MLP is the back-propagation strategy, which
uses a training set for the learning process. Given a feedforward network, the weights
are initialized with small random numbers. Each training instance is sent through the
network and the output from each unit is computed. The output target is compared with
the estimated one by the network, computing the error which is fed-back through the
network.

To adjust the weights, the back-propagation algorithm uses a descendant gradient to
minimize the squared error. Each unit in the network starts from the output unit and
it is moved to the hidden units. The error value is used to adjust the weights of its
connections as well as to reduce the error. This process is repeated for a fixed number
of times, or until the error is minimum or it cannot be reduced.

Empirical studies of the back-propagation algorithm [11] show that class imbalance
problem generates unequal contributions to the mean square error (MSE) in the training
phase. Clearly the major contribution to the MSE is produced by the majority class.

We can consider a TDS with two classes (m = 2) such that N =
∑m

i ni and ni is
the number of samples from class i. Suppose that the MSE by class can be expressed
as Ei(U) = 1

N

∑ni

n=1

∑L
p=1(d

n
p − yn

p )2, where dn
p is the desired output and yn

p is the
actual output of the network for sample n. Then the overall MSE can be expressed as
E(U) =

∑m
i=1 Ei = E1(U) + E2(U).

If n1 << n2 then E1(U) << E2(U) and ‖∇E1(U)‖ << ‖∇E2(U)‖, conse-
quently ∇E(U) ≈ ∇E2(U). So, −∇E(U) it is not always the best direction to mini-
mize the MSE in both classes.

Regarding that the imbalance problem affects negatively in the back-propagation
algorithm due to the disproportionate contributions in the MSE, it is possible to consider
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two options: A) Resizing the training data set in order to cause that the class distribution
of the TDS become more balanced (for instance, replicating samples in the minority
classes or eliminating samples in the majority classes [4]). B) Including a cost function
in the back-propagation algorithm for avoiding that the minority classes are ignored in
the learning process, and it could accelerate the convergence of the neural network.

Consider a cost function (γ) that balance the TDS class imbal-
ance as follows: E(U) =

∑m
i=1 γ(i) Ei = γ(1)E1(U) + γ(2)E2(U)

= 1
N

∑m
i=1 γ(i)

∑ni

n=1

∑L
p=1(d

n
p − yn

p )2, where γ(1)‖∇E1(U)‖ ≈ γ(2)‖∇E2(U)‖
avoiding that the minority class be ignored in the learning process. In this work, the
cost function is defined as γ(i) = ‖∇Emax(U)‖/‖∇Ei(U)‖, where ‖∇Emax(U)‖
corresponds to the largest majority class.

3 Methodology

The experiments were carried out on eleven severely imbalanced datasets. These datasets
were obtained from the transformation of Cayo into two-class problems (reducing a m-
class problem to a set of m two-class sub-problems). The main characteristics of these
subsets have been summarized in the Table 1. To increase statistical significance of the
results the k-fold cross validation technique (with k=10) has been applied. About 90%
out of the total number of samples available has been used for the TDS and the rest for
a test set.

The MLP used in this study was trained by the back-propagation algorithm in batch
mode. The learning rate (η) was set 0.1. One hidden layer was used with four neurons.
The stop criterion was established at 25000 iterations or an MSE below 0.001. The
training MLP has been repeated ten times. The results here included correspond to the
average of those achieved in the ten repetitions and of ten partitions.

A general criterion to measure the classifier performance is the overall accuracy
(Acc). Acc = 1 − ne/n where ne is the number of misclassified examples and n is the

Table 1. Main characteristics of the eleven subsets obtained from Cayo; notice that the distribu-
tion of data is presented in different forms to simplify their interpretation

Data Samples Features Distribution Ratio by class Ratio

C01 6019 4 838/5181 0.14/0.86 0.16
C02 6019 4 293/5726 0.05/0.95 0.05
C03 6019 4 624/5395 0.10/0.90 0.12
C04 6019 4 322/5697 0.05/0.95 0.06
C05 6019 4 133/5886 0.02/0.98 0.02
C06 6019 4 369/5650 0.06/0.94 0.07
C07 6019 4 324/5695 0.05/0.95 0.06
C08 6019 4 722/5297 0.12/0.88 0.14
C09 6019 4 789/5230 0.13/0.87 0.15
C10 6019 4 833/5186 0.14/0.86 0.16
C11 6019 4 722/5247 0.13/0.87 0.15
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total number of testing examples. Nevertheless, in the class imbalance problems this
is not the most suitable measure [6]. The geometric mean (g-mean) is one of the most
widely accepted criterion, and is defined as g =

√
a+ · a−, where a+ = 1−ncls+

e /ncls+

is the accuracy on the minority class (cls+) and a− = 1 − ncls−
e /ncls−

is the accuracy
on the majority class (cls−). In this work, g-mean, Acc, a− and a+ were applied to
measure classifier performance.

4 Experimental Results

The random over-sampling strategies in a severe-imbalance context cannot be consid-
ered suitable alternatives given the considerable increase in the computing cost, they
would generate in the neural network a slow training process. Therefore, this paper is
focused on analyze the random under-sampling and cost function strategies, (see section
2) and its convenience to be used on a context of a severe class imbalance problem.

Japkowicz [4, 1] observe that the random under-sampling method can improve con-
siderably the classifier performance by compensating the class imbalance and by redu-
cing the computational cost associated to the model. But, which is its performance when
the TDS has severe multi-class imbalance problem?.

On the other hand, empirical studies have shown that using a cost function can im-
prove the classifier performance [9]. Functionally, using a cost function is equivalent to
apply random over-sampling, but it does not increase (significantly) the computational
cost in the training process. However, as in the case of the random under-sampling
technique is necessary to ask, what are the effects of the cost function when the TDS is
severely imbalanced?.

In Table 2 the obtained results with the cost function and random under-sampling are
shown. It is possible to observe that the performance of under-sampling is better than
the obtained with the original dataset, but worse than the produced by the cost function.
Moreover, the under-sampling performance is comparable to the cost function (except
in C04, C05 and C06).

For more detail, in the Fig. 1 the accuracy by class is shown (a+ and a−). The Fill
boxes symbolize the cost function and the not fill ones the random under-sampling
strategy. Observe that in the corresponding image, the cls+ (Fig. 1a), in most of the
datasets, a+, is almost the same. In the sets related to C05 and C06, random under-
sampling presents a a+ inferior than the obtained with the cost function. Nonethe-
less, these results are higher than those shown by the MLP with the original dataset
(a+=47.55% for C05 and a+=0.0% for C06). In other words, the random under-sam-
pling increases the a+ in relation to the standard back-propagation algorithm, but it
does not shows better results than those from the cost function.

See Fig.1b (majority class) that in most of the subsets a− both with cost function and
random under-sampling is similar. Also, a tendency towards presenting better results is
observed with cost function. In the particular case of the C04, the a− obtained with
under-sampling (a−=43.87%) is very low regarding with original dataset (a−=100%)
and with the cost function (a−=93.46%).

In summary, the results reported in the Table 2 suggest that on the severe class im-
balance, random under-sampling can be a good choice. However, in some results were
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Table 2. MLP: Average accuracy rate

Acc Original Cost function Under-sampling
C01 97.81(0.03) 97.13(0.63) 96.61(0.74)
C02 97.42(0.36) 94.90(0.02) 92.18(0.15)
C03 96.40(0.04) 94.54(0.20) 91.30(0.42)
C04 94.65(0.00) 93.69(2.93) 46.36(0.92)
C05 97.81(0.00) 90.12(8.30) 91.34(6.17)
C06 96.79(0.04) 92.87(0.10) 93.41(0.36)
C07 94.58(0.00) 95.90(0.24) 95.80(3.43)
C08 98.54(1.01) 98.04(1.17) 96.03(2.75)
C09 98.12(0.06) 96.06(0.34) 95.71(0.71)
C10 92.33(0.72) 85.69(0.39) 82.17(0.06)
C11 89.32(0.97) 88.68(1.12) 85.31(0.46)

g-mean Original Cost function Under-sampling
C01 93.60(0.03) 94.95(1.30) 95.95(1.47)
C02 68.25(6.34) 97.01(0.01) 95.85(0.08)
C03 94.32(0.18) 96.62(0.09) 95.07(0.25)
C04 0.00(0.00) 95.58(1.39) 65.50(0.72)
C05 0.00(0.00) 93.31(4.40) 79.95(4.80)
C06 68.99(0.47) 93.43(0.22) 86.91(0.93)
C07 0.00(0.00) 96.93(0.19) 94.71(2.37)
C08 96.67(3.66) 98.44(1.03) 97.49(1.66)
C09 93.37(0.03) 92.37(0.18) 92.17(0.39)
C10 75.14(3.99) 89.94(0.25) 88.99(0.05)
C11 53.34(13.22) 91.04(1.01) 90.76(0.21)

observed that the sampling methods produce a negative effect when the TDS is seri-
ously imbalanced (confirm previous hypotheses [1]). So, the question here is, why?, or
where reflected this effect?. To answer these questions, the outputs MLP of the C04 and
C03 subsets are analyzed.
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Fig. 1. Accuracy of the minority class (a) and the majority class (b). Numbers in x axis represent
the dataset used. The Fill boxes symbolize the cost function and the not fill boxes the random
under-sampling strategy.
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The Fig. 2 contains the graphic representation of MLP outputs for each sample uti-
lized by evaluate the network performance with C04. Let us notice that x axis indicates
the samples contained in the evaluation set, while y axis reflects the value of the network
output (values between 0 and 1). The continuous line (black) establishes the separation
between cls+ and cls− samples. Observe that in the largest intervals limited by this
line, contain only samples of the most represented class and, in the smallest the ele-
ments of the cls+. Green is associated to the neuron outputs corresponding to cls+ and
blue to the neuron associated to cls−. For instance, in ideal conditions, i.e., when the
network classify correctly, the behavior should be: when a sample is cls+ the output
value of the neuron associated to the cls+ must be high (high values in green) and low
for the neuron of cls− (low values in blue) and viceversa when it is the case of cls−.

Observe in Fig. 2a (cost function), the outputs for samples of the cls− (blue) are high
(values close to 1) when it corresponds of its class and low in other way. This behavior
is constant in the Fig. 2a, which the cost function has a good performance in both cases,
cls+ and cls−. An utterly different situation is shown in Fig. 2b (under-sampling) where
the previous behavior is not observed. The Fig. 2b show a good performance on the
cls+, and very irregular on the cls−.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

N
eu

ra
l n

et
w

or
k 

ou
tp

ut
s

No. of samples

cls+
cls-

(a) Cost function

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

N
eu

ra
l n

et
w

or
k 

ou
tp

ut
s

No. of samples

cls+
cls-

(b) Under-sampling

Fig. 2. MLP outputs for the C04 subset, after to apply cost function and random under-sampling
strategies. The line in black shows the separation between the outputs of both classes.

The results obtained with this subset suggest a weak learning on the cls− (when
random under-sampling is applied). Nevertheless, in the rest of the subsets it seemed as
though this massive elimination of samples does not affect the cls− (as it was observed
in Fig. 1), but, what happen with this?.

The answer is in the sense that the class most represented (cls−) is less learned
when training samples are massively eliminated, i.e., the outputs present more irregular
tendency than the cost function. To exemplify this, the subset C03 was utilized, i.e.,
this subset as the rest of the subsets does not present a significant difference related to
random under-sampling and the cost function in their accuracy values, both for the cls−

and cls+ (Fig. 1).
In Fig. 3, the MLP outputs for the C03 subset are presented after to applying a cost

function and random under-sampling technique. In Fig. 3a (cost function) a steadier
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Fig. 3. MLP outputs for the C03 subset, after apply the cost function and random under-sampling
strategies. The line in black shows the separation between the outputs of both classes.

tendency is observed in the MLP outputs, while in the Fig. 3b shows a more irregular
behavior. However, the negative effects on the cls− are not very severe than the case of
C04 subset.

These results confirm that other problems, such as the overlap between classes or
noise in the TDS, should be taken into account in classification tasks when the TDS is
imbalanced [12, 13].

5 Conclusion

In this paper the suitable random under-sampling and cost functions for handling the
severe class imbalance was empirically studied. The results suggest that when the im-
balance is severe, the random under-sampling presents a tendency to have a weak learn-
ing on the cls−. This situation becomes graver when there are very few elements in
the cls+, then a tendency toward over fitting (over fitting cls+) appears. However, the
main cause of this situation is the existence of overlap or noise in the TDS. Also, was
observed that others subsets with same imbalance level their performance was high.

Finally, under a context of severe class imbalance the best alternative is to use a
cost function for compensate the class imbalance. The application of cost functions
improves two fundamental aspects: they prevent a weak learning on the cls− (because
avoids losing potentially useful data) and, they increase the cls+ participation in the
MLP learning.
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Abstract. Runoff carries pollutants such as oil, heavy metals, bacteria, sedi-
ment, pesticides and fertilizers into streams or groundwater. The combined im-
pacts of hydrologic changes and water pollution can be disastrous for streams 
and rivers in urban areas and the Chesapeake Bay. Therefore, evaluations of 
stormwater runoff are imperative to enhance the performance of an assessment 
operation and develop better water resources management and plan. In order to 
accomplish the goal, a recurrent neural network based predictive model trained 
by the Levenberg-Marquardt backpropagation training algorithm is developed 
to forecast the runoff discharge using the gage height and the previous runoff 
discharge. The experimental results showed that Levenberg-Marquardt back-
propagation training algorithm proved to be successful in training the recurrent 
neural network for the stormwater runoff prediction. Based on the comparison 
studies about the impact of discharge and gage height on the runoff forecast ac-
curacy, it was found that when both the previous discharge and gage height 
were used, the network achieved lower mean squared error, and better time se-
ries response than the case when the gage height is the only input or target.  

Keywords: Urban Runoff Prediction, Recurrent Neural Networks, Levenberg-
Marquardt Backpropagation Training Algorithm, Chesapeake Bay. 

1   Introduction 

Stormwater from urban and suburban areas contributes a significant amount of pollut-
ants to the Chesapeake Bay. Any gage height in an urban or suburban area that does 
not evaporate or soak into the ground, but instead pools and travels downhill, is con-
sidered stormwater. Stormwater is also referred to as urban stormwater, runoff and 
polluted runoff. Increased development across the Chesapeake Bay watershed has 
made stormwater runoff the fastest growing source of pollution to the Chesapeake 
Bay and its rivers [1][2]. The Chesapeake Bay is the largest estuary in the United 
States. It lies off the Atlantic Ocean, surrounded by Maryland and Virginia. The 
Chesapeake Bay's drainage basin covers 64,299 square miles in the District of Co-
lumbia and parts of six states: New York, Pennsylvania, Delaware, Maryland, Vir-
ginia, and West Virginia [3]. More than 150 rivers and streams drain into the Bay. 

Many research studies have been performed to forecast the runoff. They benefit sub-
stantially from the progress of computational intelligence techniques [4]. The techniques 
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include neural networks [5][6], fuzzy logic [7], evolutionary algorithm [8], support 
vector machine [9], particle swarm optimization [10], or the combination of them 
[11][12]. Comparatively, various runoff forecast models based on neural networks per-
form much better in accuracy than many conventional prediction models.  

However, a fact could not be neglected that most of the existing computational intel-
ligence based models have not yet satisfied researchers in forecast precision. In addition, 
none of the above computational intelligence methods have been used for the urban 
runoff prediction in the District of Columbia and the suburbs, although a few runoff 
quality analysis tools of urban catchments with probabilistic models were developed 
[13]. To fill this gap, it is very important to investigate state-of-the-art computational 
intelligence with the potential for higher rates for urban runoff forecast. 

This paper is organized as follows. In Section 2, the data for the study area is intro-
duced, and then the design methods including the neural network architecture and the 
learning algorithm are presented. In Section 3, experimental results are demonstrated. 
The comparison between the cases when the discharge and gage height are inputs, and 
when the gage height is used as the only input is conducted to investigate the impact 
of discharge and gage height on the runoff prediction accuracy. In Section 4, the con-
clusions are given. 

2   Design Method and Algorithm 

2.1   Data 

The study area will focus on the Four Mile Run at Alexandria, VA. The Four Mile 
Run is 9.2 miles long, and is a direct tributary of the Potomac River, which ultimately 
carries the water flowing from Four Mile Run to the Chesapeake Bay. The stream 
passes from the Piedmont through the fall line to the Atlantic Coastal Plain, and even-
tually empties out into the Potomac River. Potomac River was determined to be one 
of the most polluted water bodies in the nation mainly due to the CSOs and stormwa-
ter discharges and wastewater treatment plant discharges. In addition, because of the 
highly urbanized nature of the Four Mile Run watershed, the neighborhoods and  
businesses adjacent to this portion of the run were subjected to repeated flooding, 
beginning in the 1940s. Therefore, the flood-control solutions are the major concern. 
Runoff prediction would provide a promising solution for flood-control. 

The real-time USGS data for the Four Mile Run station include both the discharge 
data and gage height data, which is useful for investigating their impact to the long-
run discharge forecast. The runoff data was retrieved for 120 days between August 
28, 2010 and December 4, 2010. The runoff discharge (cubic feet per second) data is 
plotted in Fig. 1, and the gage height (feet) data is illustrated in Fig. 2. 70% of the 
data is used for training. They are presented to the network during training, and the 
network is adjusted according to its error. 15% of the data is used for validation. They 
are used to measure network generalization, and to halt training when generalization 
stops improving. The last 15% of the data is used for testing. They provide an inde-
pendent measure of network performance during and after training. 
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Fig. 1. The runoff discharge data (cubic feet per second) collected at the Four Mile Run site at 
Alexandria, VA during August 28, 2010 to December 4, 2010 

 

Fig. 2. Gage height (feet) collected at the Four Mile Run site at Alexandria, VA during August 
28, 2010 to December 4, 2010 

2.2   Neural Network Architecture 

Two neural network based predictive models are to be developed to predict future 
values of runoff discharge, based on the previous runoff discharge and/or gage height. 
The first model can be represented mathematically by predicting future values of the 
discharges time series y(t) from past values of that time series and past values of the 
precipitation time series x(t), as shown in Fig. 3.  

This form of prediction can be written as follows: 

))(,),1(),(,),1(()( dtxtxdtytyfty −−−−= ……   (1) 
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Fig. 3. The first neural networks based prediction model. The future values of the discharges 
y(t) can be predicted from past values of y(t) and past values of the gage height time series x(t). 

In the second predictive model, the future values of the discharges time series y(t) 
could be predicted from past values of that time series, as shown in Fig. 4.  

 
 
 
 

 

Fig. 4. The second neural networks based prediction model. The future values of the discharges 
y(t) can be predicted from past values of y(t). 

The corresponding form of prediction can be written as follows: 

))(,),1(()( dtytyfty −−= …      (2) 

The above neural network models are two-layer feedforward networks, with a sig-
moid transfer function in the hidden layer and a linear transfer function in the output 
layer. W is the weight matrix, and b is the bias. This network also uses tapped delay 
lines to store previous values of the x(t) and y(t) sequences. There are 50 neurons in 
the hidden layer, and 1 neuron in the output layer. 11 delay lines are used. The output 
of the network, y(t), is fed back to the input of the network through delays, since y(t) 
is a function of y(t-1), y(t-2), ..., y(t-d). However, the network will be created and 
trained in this open loop form. 

2.3   Network Learning Algorithm 

While backpropagation with gradient descent technique is a steepest descent algo-
rithm, the Levenberg-Marquardt algorithm is an approximation to Newton’s method 
[14]. If a function V(x) is to be minimized with respect to the parameter vector x , then 
Newton’s method would be [15]: 

)()]([ 12 xVxVx ∇∇−=Δ −     (3) 

where )(2 xV∇ is the Hessian matrix and )(xV∇  is the gradient. If V(x) is ex-

pressed as: 
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Then it can be shown that: 

)()()( xexJxV T=∇        (5) 

)()()()(2 xSxJxJxV T +=∇     (6) 

where J(x) is the Jacobian matrix and 
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2 )()(        (7) 

For the Gauss-Newton method it is assumed that 0)( ≈xS , and the equation (3) 

becomes: 

)()()]()([ 1 xexJxJxJx TT −=Δ             (8) 

The Levenberg-Marquardt modification to the Gauss-Newton method is: 

)()(])()([ 1 xexJIxJxJx TT −+=Δ μ      (9) 

The parameter μ is multiplied by some factor (β) whenever a step would result in 
an increased V(x) . When a step reduces V(x), μ is divided by β. When the scalar μ is 
very large the Levenberg-Marquardt algorithm approximates the steepest descent 
method. However, when μ is small, it is the same as the Gauss-Newton method. Since 
the Gauss-Newton method converges faster and more accurately towards an error 
minimum, the goal is to shift towards the Gauss-Newton method as quickly as possi-
ble. The value of μ is decreased after each step unless the change in error is positive; 
i.e. the error increases.  

3   Experimental Results 

3.1   Number of Hidden Neurons and Delays 

We continuously increase both the number of neurons in the hidden layer and the 
number of delays in the tapped delay lines until the network performed well in terms 
of the mean square error (MSE) and the error autocorrelation function. After several 
trials, the best number of hidden neurons is determined to be 50, and the best number 
of delays in the tapped delay lines is 11.   

3.2   Mean Squared Error 

Because the true output is available during the training of the network, we can use the 
open-loop architecture, in which the true output is used instead of feeding back the 
estimated output. This has two advantages. The first is that the input to the feedforward 
network is more accurate. The second is that the resulting network has a purely feed-
forward architecture, and therefore a more efficient algorithm can be used for training. 
In this case, Levenberg-Marquardt backpropagation training algorithm was used.  
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The mean squared error is the averaged squared difference between outputs and 
targets. Training automatically stops when generalization stops improving, as indi-
cated by an increase in the mean square error of the validation samples. The best 
validation performance is 0.00025259 at epoch 19 when the input is gag height and 
the target is discharge, as shown in Fig. 5. For discharge and gauge height, the MSE 
are 8.98160e-5, 2.52594e-4, and 3.71716e-4 for the training data, validation data, and 
testing data, respectively. 

 

Fig. 5. The best validation performance is 0.00025259 at epoch 19. The input is gag height, and 
the target is discharge. 

Comparatively, for gage height as the only input (i.e. used as target), the best vali-
dation performance is 0.00025259 at epoch 1000, as shown in Fig. 6. The MSE are 
1.48464e-5, 2.07226e-2, and 2.08129e-3 for the training data, validation data, and 
testing data, respectively. 

 

Fig. 6. The best validation performance is 0.020723 at epoch 1000. The only input (i.e. target) 
is gage height. 
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3.3   Error Autocorrelation Function 

The error autocorrelation function is used to validate the network performance. The 
error autocorrelation function is demonstrated in Fig. 7. It describes how the predic-
tion errors are related in time. For a perfect prediction model, there should only be 
one nonzero value of the autocorrelation function, and it should occur at zero lag, i.e. 
this is the mean square error. This would mean that the prediction errors were com-
pletely uncorrelated with each other (white noise). If there was significant correlation 
in the prediction errors, then it is possible to improve the prediction by increasing the 
number of delays in the tapped delay lines [16][17]. In Fig. 7, the correlations, except 
for the one at zero lag, fall approximately within the 95% confidence limits around 
zero, so the model seems to be adequate. In comparison, if gage height was used as 
the only input/target, the error autocorrelation function is plotted in Fig. 8. 

 

Fig. 7. Error autocorrelation function when the input is gage height, and the target is discharge. 
It describes how the prediction errors are related in time. 

 

Fig. 8. Error autocorrelation function when the only input is gage height. It describes how the 
prediction errors are related in time. 
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3.4   Time Series Response 

A comparative study was performed between the case when the discharge and gage 
height are inputs, and when the gage height is used as the only input. The time series 
response when both the discharge and gage height are inputs is demonstrated in  
Fig. 9. The time series response when the gage height is the only input/target is shown 
in Fig. 10. The top plot displays the outputs and targets versus time. For each selected  
 

 

Fig. 9. The time series response when both the discharge and gage height are inputs 

 

Fig. 10. The time series response when the gage height is the only input/target 
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time point for training, testing and validation, all the training targets, training outputs, 
validation targets, validation outputs, test targets, and test outputs are plotted. The 
bottom plot shows the error versus time. At those selected time point for training, 
testing and validation, the errors for training target, validation target, and test target 
are plotted. The solid line is used to measure the magnitude of errors.  

4   Conclusions 

This paper proposed a recurrent neural network based predictive model trained by the 
Levenberg-Marquardt backpropagation algorithm to forecast the stormwater runoff 
using the gage height and the previous stormwater runoff.  

A two-layer feedforward network, with a sigmoid transfer function in the hidden 
layer and a linear transfer function in the output layer was developed to investigate 
the influence of the past runoff discharge and gage height on runoff discharge  
prediction accuracy. The experimental results show that Levenberg-Marquardt back-
propagation training algorithm proved to be successful in training the recurrent neural 
network for the stormwater runoff prediction. Based on the comparison studies about 
the impact of discharge and gage height on the runoff forecast accuracy, it was found 
that when both the previous discharge and gage height were used, the network 
achieved lower mean squared error, and better time series response than the case 
when the gage height is the only input or target.  
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Abstract. Traditionally, studies in learning theory tend to concentrate
on situations where potentially ever increasing number of training ex-
amples is available. However, there are situations where only extremely
small samples can be used in order to perform an inference. In such situ-
ations it is of utmost importance to theoretically analyze what and under
what circumstances can be learned. One such scenario is detection of dif-
ferentially expressed genes. In our previous study (BMC Bioinformatics,
2009) we theoretically analyzed one of the most popular techniques for
identifying genes with statistically different expression in SAGE libraries
- the Audic-Claverie statistic (Genome Research, 1997). When compar-
ing two libraries in the Audic-Claverie framework, it is assumed that
under the null hypothesis their tag counts come from the same underly-
ing (unknown) Poisson distribution. Since each SAGE library represents
a single measurement, the inference has to be performed on the smallest
sample possible - sample of size 1. In this contribution we compare the
Audic-Claverie approach with a (regularized) maximum likelihood (ML)
framework. We analytically approximate the expected K-L divergence
from the true unknown Poisson distribution to the model and show that
while the expected K-L divergence to the ML-estimated models seems
to be always larger than that of the Audic-Claverie statistic, the most
divergence appears for true Poisson distributions with small mean pa-
rameter. We also theoretically analyze the effect of regularization of ML
estimates in the case of zero observed counts. Our results constitute a
rigorous analysis of a situation of great practical importance where the
benefits of Bayesian approach can be clearly demonstrated in a quanti-
tative and principled manner.

Keywords: Audic-Claverie statistic, Bayesian averaging, Poisson
distribution, Kullback-Leibler divergence, differential gene expression.

1 Introduction

Studies in (computational) learning theory mostly tend to concentrate on situa-
tions where potentially ever increasing number of training examples is available.
While such results can lead to deep insights into the workings of learning algo-
rithms, e.g. linking together characteristics of the data generating distributions,
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learning machines and sample sizes, there are situations where, by very nature
of the problem, only extremely small samples are available. In such situations it
is of utmost importance to theoretically analyze exactly what and under what
circumstances can be learned.

An example of such a scenario is detection of differentially expressed genes.
One way in which biologists learn about diverse gene functionalities is the anal-
ysis of expression levels of selected genes in different tissues, possibly obtained
under different conditions or treatment regimes. Even subtle changes in gene
expression levels can be indicators of biologically crucial processes [1]. Measure-
ment of gene expression levels can be performed within several frameworks, the
one we concentrate on in this paper is termed ‘Serial Analysis of Gene Expres-
sion’ (SAGE) [2]. The SAGE procedure results in a library of short sequence
tags, each representing an expressed gene. It is assumed that every mRNA copy
in the tissue has the same chance of ending up as a tag in the library. The
crucial task is identification of genes that are differentially expressed under dif-
ferent conditions/treatments. This is done by comparing the number of specific
tags found in the two SAGE libraries corresponding to different conditions or
treatments.

Several statistical tests have been suggested for identifying differentially ex-
pressed genes via comparison of digital expression profiles, e.g. [1,3,4,5]. Audic
and Claverie [3] studied the influence of random fluctuations and sampling size
on the reliability of digital expression profile data in a systematic manner. Even
though there have been further developments in comparison techniques for cDNA
libraries (e.g. [1,6]), the Audic-Claverie method has been and still continues to
be a popular approach used in current biological research (e.g. [7,8,9,10,11]).

When comparing two libraries in the Audic-Claverie framework, it is assumed
that under the null hypothesis the tag count x (for a given gene) in one library
comes from the same underlying (unknown) Poisson distribution P (·|λ) as the
tag count y (for the same gene) in the other library. Crucially, since each SAGE
library represents a single measurement, the inference has to be performed on
the smallest sample possible - sample of size 1! One can, of course, be excused for
being highly skeptical about the relevance of such inferences, yet the methodol-
ogy has apparently been used in a number of successful studies. In an attempt
to build theoretical foundations behind such inference schemes, we proved a
rather surprising result [12]: The expected K-L divergence from the true un-
known Poisson distribution to its model learned from a single realization in the
Audic-Claverie framework never exceeds 1/2 bit.

In this contribution we extend our previous study [12] by comparing the aver-
age behavior of the maximum likelihood and the Audic-Claverie approaches. It
turns out that there is a sense in which the advantage of the Bayesian approach
taken in the Audic-Claverie framework can be quantified, as a function of the
mean λ of the underlying (unknown) Poisson source P (·|λ).

The paper has the following organization: The Audic-Claverie approach is
briefly introduced in section 2. Section 3 contains theoretical comparison of the
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Audic-Claverie and maximum likelihood approaches. Concluding comments are
presented in section 4.

2 Bayesian Averaging in the Audic-Claverie Statistic

Consider a random selection of N clones from a cDNA library. For a given
message (tag), let x denote the number of times it is picked. When repeating
the experiment, possibly under different conditions, by again selecting N clones
at random and generating the sequence tags, the same message will be picked
y times. Under the null hypothesis, the quantity of interest is the probability
of observing y occurrences of a clone already observed x times. For a transcript
representing a small fraction of the library and a large number N of clones, the
probability of observing x tags of the same gene will be well-approximated by
the Poisson distribution parametrized by λ ≥ 0:

P (X = x|λ) = e−λλx

x!
. (1)

The unknown parameter λ signifies the number of transcripts of the given type
(tag) per N clones in the cDNA library.

The probability of count y, given the observed count x from the same (un-
known) Poisson distribution is:

PAC(y|x) =
∫ ∞

0

P (y|λ) p(λ|x) dλ

=
∫ ∞

0

P (y|λ)
P (x|λ) p(λ)∫ ∞

0
P (x|λ′) p(λ′) dλ′ dλ.

Imposing flat (improper) prior p(λ) over the Poisson parameter λ results in

PAC(y|x) =
1
y!

∫ ∞
0 e−2λ λx+y dλ∫ ∞

0 e−λ λx dλ

=
1

2x+y+1

(
x + y

x

)
. (2)

We refer to PAC(y|x) as Audic-Claverie statistic (A-C statistic) based on
counts x and y. The A-C statistic can be used e.g. for principled inferences,
construction of confidence intervals or statistical testing. Note that PAC(y|x) is
symmetric, i.e. for x, y ≥ 0, PAC(y|x) = PAC(x|y), which is quite desirable since
if the counts x, y are related to two libraries of the same size, they should be
interchangeable when analyzing whether they come from the same underlying
process or not. For further details we refer the interested reader to [3].

3 Expected Divergence from the True Underlying
Poisson Distribution

Consider a ‘true’ underlying Poisson distribution P (y|λ) (1) over possible counts
y ≥ 0 with unknown parameter λ. We first generate a count x and then use the
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A-C statistic PAC(y|x) (2) to define a distribution over y, given the already
observed count x. We ask: If we repeated the process above, how different, in
terms of Kullback-Leibler (K-L) divergence, are on average the two distributions
over y? For the A-C statistic to work, one would naturally like PAC(y|x) to be
sufficiently representative of the true unknown distribution P (y|λ).

In [12] we proved that, given an underlying Poisson distribution P (x|λ), if
we repeatedly generated a ‘representative’ count x from P (x|λ), the average
divergence of the corresponding A-C statistic PAC(y|x) from the truth P (y|λ)
would never exceed 1/2 bit.

Theorem 1. ([12]) Consider an underlying Poisson distribution P (·|λ)
parametrized by some λ > 0. Then

EP (x|λ)[DKL[P (y|λ)‖PAC(y|x)]] =
1
2

log 2 + O

(
1
λ

)
,

where DKL[P (y|λ)‖PAC(y|x)] is the K-L divergence from P (y|λ) to PAC(y|x),

DKL[P (y|λ)‖PAC(y|x)] =
∞∑

y=0

P (y|λ) log
P (y|λ)

PAC(y|x)
.

The expected divergence (in bits) can be well-approximated (up to order O(λ−3))
by [12]:

EP (x|λ)[DKL[P (y|λ)‖PAC(y|x)]] ≈ 1
2
− 1

12λ

(
1 − 1

2

)
− 1

24λ2

(
1 − 1

22

)
= DAC(λ). (3)

We now repeat the same analysis with the maximum likelihood estimate
PML(y|x) instead of the A-C statistic PAC(y|x). However, in this case one has
to be careful, as Poisson distribution P (y|λ) is only defined for positive λ. In
the case of observing zero count x = 0, we cannot directly use the ‘maximum
likelihood estimate’ P (y|0). Note that no such problem occurs when the A-C
statistic is used. PAC(y|0) is well defined with the support shared by all Pois-
son distributions (the set of positive integers). There are two options for dealing
with observed zero count and maximum likelihood estimation of the underlying
Poisson distribution:

1. Extend the definition of Poisson distribution to the case λ = 0 by postulating
that the zero count is the only possible outcome:

P (0|0) = 1 and P (y|0) = 0, y ≥ 1.

Such an extension is in line with the notion that both the mean and variance
of P (y|λ) are equal to λ. In this case the divergence DKL[P (y|λ)‖P (y|0)] is
not well defined, since the support of P (y|λ), λ > 0 is not a subset of the
support of P (y|0).
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2. When x = 0 is observed, allow for some form of model regularization, e.g.
infer a Poisson model P (y|ε), for some small ε > 0: If a count x ≥ 1
is observed, follow the standard maximum likelihood procedure and infer
PML(y|x) = P (y|x) as the Poisson model (with mean λ = x). If a zero count
is observed, x = 0, infer PML(y|0) = P (y|ε) for some fixed ε ∈ (0, 1]. This is
the route we follow in this study.

Let us evaluate the expected divergence between the true Poisson source and its
(regularized) maximum likelihood estimate based on a single observation:

Υ (λ, ε) = EP (x|λ)[DKL[P (y|λ)‖PML(y|x)]] =
∞∑

x=1

P (x|λ) DKL[P (y|λ)‖P (y|x)]

+ P (0|λ) DKL[P (y|λ)‖P (y|ε)]. (4)

We first note that for λ, λ′ > 0, the K-L divergence from P (y|λ) to P (y|λ′)
can be evaluated as

DKL[P (y|λ)‖P (y|λ′)] = λ′ − λ + λ log
λ

λ′ . (5)

Also, P (0|λ) = e−λ and
∑∞

x=1 P (x|λ) = 1 − e−λ. We calculate

∞∑
x=1

P (x|λ) DKL[P (y|λ)‖P (y|x)] =
∞∑

x=1

P (x|λ) (x− λ + λ log λ− λ log x)

= −P (x|λ) · 0 +
∞∑

x=0

P (x|λ) x

+λ (log λ− 1) (1 − e−λ)

−λ
∞∑

x=1

P (x|λ) log x

to obtain (see (4))

Υ (λ, ε) = λ + λ (log λ− 1) (1 − e−λ) − λ

∞∑
x=1

P (x|λ) log x

+e−λ (ε− λ + λ logλ− λ log ε)

= λ

(
logλ−

∞∑
x=1

P (x|λ) log x

)
+ e−λ (ε− λ log ε). (6)

We further have,

logλ = log
∞∑

x=0

P (x|λ) x

= log
∞∑

x=1

P (x|λ) x



42 P. Tiňo

so that

logλ−
∞∑

x=1

P (x|λ) log x = log
∞∑

x=1

P (x|λ) x−
∞∑

x=1

P (x|λ) log x.

By Jensen’s inequality, we have

log
∑∞

x=1 P (x|λ) x∑∞
x=1 P (x|λ)

−
∑∞

x=1 P (x|λ) log x∑∞
x=1 P (x|λ)

= log
∑∞

x=1 P (x|λ) x

1 − e−λ

−
∑∞

x=1 P (x|λ) log x

1 − e−λ

≥ 0,

we get

logλ−
∞∑

x=1

P (x|λ) log x ≥ e−λ logλ + (1 − e−λ) log(1 − e−λ). (7)

By plugging (7) into (6) we obtain a lower bound on the expected divergence,

Υ (λ, ε) ≥ λ
(
e−λ log λ + (1 − e−λ) log(1 − e−λ)

)
+e−λ (ε− λ log ε)

= BML(λ; ε). (8)
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Fig. 1. Expected divergence EP (x|λ)[DKL[P (y|λ)‖PML(y|x)]] (in bits) as a function
of the mean λ of the underlying Poisson source P (x|λ) (ε = 10−20). The numerically
determined divergence (6) and its analytical approximation (lower bound) BML(λ; ε)
are shown as solid and dashed lines, respectively.
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As an illustration, we numerically determined the expected divergence1 Υ (λ, ε)
(6) for a range of mean parameters λ of the underlying Poisson source P (x|λ).
The divergence Υ (λ, ε) as a function of λ (ε is set to 10−20) is shown in figure 1.
We also show the analytical lower bound BML(λ; ε) (8) on the expected diver-
gence. For small values of the mean parameter λ, the analytical bound BML(λ; ε)
closely approximates EP (x|λ)[DKL[P (y|λ)‖PML(y|x)]].

To appreciate the influence of Bayesian averaging in the A-C statistic as op-
posed to maximum likelihood (ML) estimation, we evaluated the difference be-
tween the expected divergences from P (y|λ) to maximum likelihood estimates
PML(y|x) and to the A-C statistic PAC(y|x):

Δ(λ; ε) = EP (x|λ)[DKL[P (y|λ)‖PML(y|x)]] − EP (x|λ)[DKL[P (y|λ)‖PAC(y|x)]]

= EP (x|λ)[EP (y|λ)

[
log

PAC(y|x)
PML(y|x)

]
]. (9)
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Fig. 2. A graph of Δ(λ; ε) for ε = 10−20

A graph of Δ(λ; 10−20) is shown in figure 2. The expected K-L divergence
to the ML-estimated models seems to be always larger than that of the Audic-
Claverie statistic. Furthermore, as expected, the maximum likelihood approach
suffers most for true Poisson distributions with small mean parameter due to
the highly peaked character of Poisson distributions P (y|a) for small a > 0.

In view of the large cost associated with inferring PML(y|0) = P (y|ε) for small
ε, one can ask if smaller expected divergences Υ (λ, ε) could be obtained, at least
for smaller true expected rates λ, if we inferred PML(y|0) = P (y|1), e.g. if we
set ε = 1 when x = 0 is observed. It turns out that using ‘regularization’ ε = 1

1 By computing the double expectation up to high values of x and y.
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Fig. 3. Expected divergences Υ (λ, ε) for a range of moderate regularization parameter
values (solid lines). Also shown is the expected divergence of the original A-C statistic
(dashed line).

is universally better in maximum likelihood estimation than any 0 < ε < 1,
regardless of the underlying mean rate λ > 0.7.

Theorem 2. For any mean rate λ ≥ ln 2 parametrizing the underlying Poisson
distribution P (·|λ), the expected divergence Υ (λ, 1) using ε = 1 is strictly smaller
than the one using 0 < ε < 1, i.e.

Υ (λ, 1) < Υ (λ, ε) for any ε ∈ (0, 1), λ ≥ ln 2.

Proof. By (6) ,

Υ (λ, ε) − Υ (λ, 1) = e−λ (ε− λ log ε) − e−λ

= e−λ (ε− 1 − λ log ε). (10)

We ask for which λ the above quantity becomes positive. This happens iff

ε− 1 − λ log ε > 0

which is equivalent to (note that log ε < 0)

λ > λ(ε) =
1 − ε

− log ε
=

(1 − ε) · ln 2
− ln ε

.

Now, for ε ∈ (0, 1), it holds 1 − ε < − ln ε and we have

λ(ε) < ln 2 < 1.
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In figure 3 we show the expected divergences Υ (λ, ε) for a range of regularization
parameter values. For larger λ, the divergence Υ (λ, ε) is dominated by the term
λ[logλ−∑∞

x=1 P (x|λ) log x], while the small λ regimes are influenced by e−λ (ε−
λ log ε). Also shown is EP (x|λ)[DKL[P (y|λ)‖PAC(y|x)]], the expected divergence
of the original A-C statistic. Note that, apart from the small λ regime favored by
the maximum likelihood regularization, the expected divergence of the original
A-C statistic is smaller than that of the ML estimates.

4 Conclusion

There are situations where only extremely small samples can be used. In this
study we concentrated on one such scenario - detection of differentially expressed
genes. We extended our previous theoretical study [12] of one of the most popular
techniques for identifying genes with statistically different expression in cDNA
expression arrays - the Audic-Claverie (A-C) statistic [3].

In the Audic-Claverie framework the true unknown Poisson distribution must
be learned based on a single observation. As a result of Bayesian averaging em-
ployed in the A-C statistic, the expected K-L divergence from the true unknown
Poisson distribution to the model never exceeds 1/2 bit [12]. When a (regular-
ized) maximum likelihood (ML) approach is taken, the biggest divergence from
the truth occurs for underlying Poisson sources with small mean parameter.
This is caused by the abundance of small observed counts and the highly peaked
nature of ML-estimated Poisson models at such low counts.

We analytically approximated the expected K-L divergence from the true
unknown Poisson distribution to the ML estimates. The analytical approxima-
tion closely tracks the expected divergence in the critical region of small mean
parameters of the underlying Poisson source. We also showed that it pays off
to regularize the ML estimation by inferring Poisson model with mean 1, even
though the observed count is 0.

In the future work, the theoretical study presented here will be complemented
with large scale experiments using realistic data that is not necessarily strictly
Poisson distributed. We will also study and verify more involved regularization
schemes, e.g. using gamma prior concentrated on small values of the mean pa-
rameter instead of the flat improper prior used in the A-C statistic.
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Abstract. Model selection for Gaussian mixture learning on a given
dataset is an important but difficulty task and also depends on the
feature or variable selection in practical applications. In this paper, we
propose a new kind of learning algorithm for Gaussian mixtures with si-
multaneous model selection and variable selection (MSFS) based on the
BYY harmony learning framework. It is demonstrated by simulation ex-
periments that the proposed MSFS algorithm is able to solve the model
selection and feature selection problems of Gaussian mixture learning on
a given dataset simultaneously.

Keywords: Gaussian mixtures, Baysian Ying-Yang (BYY) Harmony
learning, Model selection, Feature selection, Clustering analysis.

1 Introduction

Finite mixture models [1] are flexible and powerful statistical tools for data
analysis and information processing. In fact, they been extensively used in a
variety of practical applications such as clustering analysis, image segmentation
and speech recognition. Among these applications, the Gaussian mixture model
is very popular and very important in theory and practice. In order to solve the
problem of Gaussian mixture modeling, several statistical learning methods have
been established, such as the EM algorithm [2]-[3]. However, the conventional
learning algorithm cannot solve the model selection problem, i.e., to determine
the number of Gaussians for a given dataset. When the Gaussian mixture model
is applied to clustering analysis, the model selection problem is just to determine
the number of clusters for a dataset. Since the number of Gaussians or clusters
is not available in the general cases, model selection must be made with the
parameter estimation, which is a rather complicated and difficult task [4].

The other crucial problem on Gaussian mixture learning is feature selection.
In principle, the more information we have about each individual, the better
a learning method is expected to perform. But in practice, some features are
noises and may degrade the learning performance, especially in high-dimension
circumstances. A genic dataset usually has a limited number of observations with
thousands of features. Actually, there are a large number of features which are
� Corresponding author, jwma@math.pku.edu.cn
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irrelevant to the learning or classification problem. So, feature selection is neces-
sary. In fact, feature selection has been investigated in the context of supervised
learning scenarios [5]-[8]. It was shown in [9] that feature selection can improve
the performance of a supervised classifier on learning from a limited number of
data points. But for unsupervised learning or clustering analysis, because of the
lack of labels as guidance, it is rather difficult for a learning method to achieve
the feature or variable selection together with the parameter learning.

As the model selection is related to the feature selection on Gaussian mixture
learning, it is reasonable to consider the two selection problems simultaneously
under a unified framework. In fact, there have been two investigations on this
aspect directly for clustering analysis. Martin et al. [10] proposed a simultane-
ous feature selection and clustering method using mixture models through the
concept of feature saliency and the EM algorithm. On the other hand, Li et
al. [11] proposed a simultaneous localized feature selection and model detection
for Gaussian mixtures by Bayesian variational learning. Now, we try to propose
a a simultaneous model selection and variable selection (MSFS) algorithm for
Gaussian mixtures based on the Bayesian Ying-Yang (BYY) harmony learning
system and theory [12]-[13].

The remainder of this paper is organized as follows. We begin with a brief
description of related works on model selection and feature selection in Section 2.
In Section 3, we present our simultaneous model selection and feature selection
algorithm for Gaussian mixtures. Section 4 contains the experimental results.
Finally, we conclude briefly in Section 5.

2 Related Works

2.1 Feature Selection

Feature selection algorithms can be broadly divided into two categories: filters
and wrappers. The so-called “filter” approaches select proper features before
the learning process or clustering analysis. They evaluate the relevance of each
feature to the learning problem using the dataset alone [14]-[15]. Independent
selection of the features may influence the effect of learning or clustering. On
the other hand, the so-called “wrapper” approaches combine the learning or
clustering algorithm with evaluating the quality of each feature. Specifically,
a learning algorithm (distance-based [16]-[17] or model-based [18]-[19]) can be
implemented for each feature subset. Then this feature subset is evaluated by the
performance of learning or clustering. From this point of view, the “wrappers”
approaches are usually more computationally demanding since they evaluate all
feature subsets.

Intuitionally, feature selection is choosing relevant features, and there are
many definitions of feature irrelevancy for supervised learning, such as the
correlation or mutual information. Here, we adopt such a definition of feature
irrelevancy for unsupervised learning that the i-th variable is irrelevant if its
distribution is independent of the class labels. This means that the i-th variable
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is irrelevant when it comes from a common distribution p(yl|λl) which is inde-
pendent with labels. By contrast, we define the density of a relevant feature l by
p(yl|θjl) for j-th component of the mixture model. Based on these definitions, if
we assume that these variables are independent, the likelihood function can be
written as the following form (refer to [10],[11]):

p(y|θ) =
k∑

j=1

αjp(y|θj) =
k∑

j=1

αj

D∏
l=1

(ρlp(yl|θjl) + (1 − ρl)q(yl|λl)), (1)

where ρl is the probability that i-th feature is relevant and θjl and λl are the
parameters.

2.2 Model Selection

The traditional approaches to solving the compound Gaussian mixture modeling
problem of model selection and parameter learning or estimation are to choose
an optimal number k∗ of Gaussians as the clusters in the dataset via one of the
information, coding and statistical selection criteria such as the famous Akaike’s
Information Criterion [20], Bayesian Inference Criterion (BIC) [21], Minimum
Description Length (MDL) [22], and Minimum Message Length (MML) [23].
Among them, Akaike’s information criterion (AIC) and the MML criterion are
often used. However, the validating processes of these approaches are compu-
tationally expensive because we need to repeat the entire parameter learning
process at a large number of possible values of k, i,e, the number of Gaussians
in the mixture. Moreover, these existing selection criteria have their limitations.

Since the 1990s, there have appeared some statistical learning approaches
to solving this compound modeling problem. The first approach is to utilize
certain stochastic simulations to infer the optimal mixture model. Two typi-
cal implementations are the methods of Dirichlet processes [24] and reversible
jump Markov chain Monte Carlo (RJMCMC) [25]. These stochastic simulation
methods generally require a large number of samples through different sampling
rules. The second approach is the Bayesian model search based on optimizing
the variational bounds [26]-[27]. This approach implements a new selection cri-
terion with the Bayesian variation bound. The third approach is unsupervised
learning [28] on finite mixtures (including Gaussian mixture as a particular case)
which introduces certain competitive learning mechanism into the EM algorithm
such that the model selection can be made adaptively during parameter learn-
ing by annihilating the components with very small mixing proportions via the
MML criterion. Recently, the Bayesian Ying-Yang (BYY) harmony learning sys-
tem and theory [12]-[13] haven been developed as a unified statistical learning
framework and provided a new statistical learning mechanism that makes model
selection adaptively during parameter learning for Gaussian mixtures [29]-[32].
In the following, we will use the BYY harmony learning system as our unsuper-
vised learning framework for Gaussian mixtures.
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3 Simultaneous Model Selection and Feature Selection

3.1 BYY Harmony Learning for Gaussian Mixtures

A BYY system describes each observation x ∈ X ⊂ 	n and its corresponding
inner representation y ∈ Y ⊂ 	m via the two types of Bayesian decomposition
of the joint density: p(x, y) = p(x)p(y|x) and q(x, y) = q(y)q(x|y), which are
called Yang machine and Ying machine, respectively. Given a sample dataset
Dx = {xt}N

t=1 from the Yang or observable space, the goal of harmony learning
on a BYY system is to extract the hidden probabilistic structure of x with the
help of y from specifying all aspects of p(y|x), p(x), q(x|y) and q(y) via a harmony
learning principle implemented by maximizing the following functional:

H(p||q) =
∫

p(y|x)p(x) ln[q(x|y)q(y)]dxdy. (2)

For the Gaussian mixture model with a given sample dataset Dx = {xt}N
t=1,

we can utilize the following specific Bi-architecture of the BYY learning system.
The inner representation y is discrete in Y = {1, 2, · · · , k} (i.e., with m = 1),
while the observation x is continuous from a Gaussian mixture distribution. On
the Ying space, we let q(y = j) = πj ≥ 0 with

∑k
j=1 πj = 1. On the Yang space,

we suppose that p(x) is a latent probability density function (pdf) of Gaussian
mixture, with a set of sample data Dx being generated from it. Moreover, in
the Ying path, we let each q(x|y = j) = q(x|mj , Σj) be a Gaussian probability
density with the mean vector mj and the covariance matrix Σj , while the Yang
path is constructed under the Bayesian principle by the following parametric
form:

p(y = j|x) =
πjq(x|mj , Σj)

q(x|Θk)
, q(x|Θk) =

k∑
j=1

πjq(x|mj , Σj), (3)

where Θk = {πj ,mj , Σj}k
j=1 and q(x|Θk) is just a Gaussian mixture model that

will approximate the true Gaussian mixture model p(x) hidden in the sample
data Dx via the harmony learning on the BYY learning system.

With all these component densities into Eq.(2), we get an estimate of H(p||q)
as the following harmony function for Gaussian mixtures with the parameter set
Θk:

J(Θk) =
1
N

N∑
t=1

k∑
j=1

πjq(xt|mj , Σj)∑k
i=1 πiq(xt|mj , Σj)

ln[πjq(xt|mj , Σj)]. (4)

According to theoretical and experimental results on the BYY harmony
learning on the BI-architecture for Gaussian mixtures [29]-[30],[32]-[33], the max-
imization of the harmony function J(Θk) is able to make model selection adap-
tively during parameter learning when the actual Gaussians in the sample data
are separated in a certain degree. That is, in such a situation, if we set k to be
larger than the number k∗ of actual Gaussians in the sample data, the maximiza-
tion of the harmony function can make k∗ Gaussians from the estimated mixture
match the actual Gaussians, respectively, and force the mixing proportions of
k − k∗ extra Gaussians to attenuate to zero.



Simultaneous MS and FS via BYY Harmony Learning 51

3.2 Proposed BYY Harmony Learning Algorithm

By a transformation, J(Θk) can be divided into two parts:

J(Θk) = L(Θk) −ON (p(y|x)), (5)

where the first part is just the log-likelihood function:

L(Θk) =
1
N

N∑
t=1

ln(
k∑

j=1

(πjq(xt|mj , Σj))), (6)

while the second part is the average Shannon entropy of the posterior probability
p(y|x) over the sample dataset D = {xt}N

t=1:

ON (p(y|x)) = − 1
N

N∑
t=1

k∑
j=1

p(j|xt) ln p(j|xt). (7)

According to Eq.(5), if −ON (p(y|x)) is considered as a regularization term, the
BYY harmony learning, i.e., maximizing J(Θk), is a kind of regularized ML
learning. This regularization term contributes to avoiding over-fitting and achiev-
ing model selection.

If we replace the Likelihood part with (1) and assume that these variables are
independent, the maximization of J(Θk) will be able to make model selection
and feature selection simultaneously.

J(Θk) =
1
N

N∑
t=1

log(
k∑

j=1

αj

D∏
l=1

(ρlp(xtl|θjl) + (1 − ρl)q(xtl|λl)))

+
1
N

N∑
t=1

k∑
j=1

p(j|xt) log p(j|xt), (8)

where θjl, λl are the parameters of Gaussian densities and

p(j|xt) =
αj

∏D
l=1(ρlp(xtl|θjl) + (1 − ρl)q(xtl|λl))∑k

i=1 αi

∏D
l=1(ρlp(xtl|θil) + (1 − ρl)q(xtl|λl))

. (9)

Actually, there have been many learning algorithms to maximize J(θ). Here, we
adopt the fixed-point learning paradigm (refer to [32]) and the learning algorithm
can be derived as follows.

Define:

γj(t) = 1 + log p(j|xt) −
k∑

i=1

p(i|xt) log p(i|xt) (10)

utjl =
ρlp(xtl|θjl)

ρlp(xtl|θjl) + (1 − ρl)q(xtl|λl)
; vtjl = 1 − utjl (11)
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By derivation, we have the derivatives of J(Θk) with respect to αj , θjl and
λl, respectively. Letting these derivatives be equal to zero, we get the following
fixed-point equations:

α̂j =
∑N

t=1 p(j|xt)γj(t)∑k
j=1

∑N
t=1 p(j|xt)γj(t)

(12)

̂mean in θjl =
∑N

t=1 p(j|xt)γj(t)utjlxtl∑N
t=1 p(j|xt)γj(t)utjl

(13)

̂var in θjl =
∑N

t=1 p(j|xt)γj(t)utjl(xtl − ̂mean in θjl)2∑N
t=1 p(j|xt)γj(t)utjl

(14)

̂mean in λl =

∑N
t=1

∑k
j=1 p(j|xt)γj(t)vtjlxtl∑N

t=1

∑k
j=1 p(j|xt)γj(t)vtjl

(15)

̂var in λl =

∑N
t=1

∑k
j=1 p(j|xt)γj(t)vtjl(xtl − ̂mean in λl)2∑N

t=1

∑k
j=1 p(j|xt)γj(t)vtjl

(16)

As for ρl, since the gradient and Hessian of J(Θk) are very complicated (refer
to the appendix), we can use the constrained nonlinear optimization software to
find their optimal values in [0,1].

Summarizing the upper results, we obtain a two-step iterated optimization
algorithm:

Step 1: Fix ρl and estimate αj , θjl and λl according (12)-(16);
Step 2: Fix αj , θjl and λl and obtain the optimized ρl using the constrained

nonlinear optimization software.
In our learning paradigm, k is flexible. However, it should be larger than the

true number k∗ of Gaussians in the dataset. Then when we repeat these two
steps to make the parameter estimation, we cut very weak components (with
αj < 0.05) synchronously.

4 Experimental Results

4.1 Three Synthetic Datasets

The first dateset consists of 800 8-dimensional data or points from two classes
whose distributions are subject to N (mi, 2.25∗I), i = 1, 2, where I is the identity
matrix, m1 = (5, 5, 5, 5, 0, 0, 0, 0) and m2 = (−5,−5,−5,−5, 0, 0, 0, 0). In this sit-
uation, it is clear that the first four features are informative and the rest four are
irrelevant or noises. We check whether our proposed algorithm can distinguish
the informative features from the irrelevant ones. The second dataset consists of
1000 10-dimensional data from two classes. For the two classes, their i-th fea-
tures come from N (1/i, 1) and N (−5/i, 1) respectively, for i = 1, 2, · · · , 10. Note
that the features are arranged in a descending order of relevance. This design is
more challenging for testing the feature selection. The third dataset is an imbal-
anced one containing three classes with 200, 400 and 200 samples, respectively.
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Fig. 1. The sketches of estimated ρl for (a). Dataset 1, (b). Dataset 2, (c). Dataset 3.

The Distributions of the three classes are N (mi, 1.414 ∗ I), i = 1, 2, 3, where I is
still the identity matrix, m1 = (5, 5, 5, 5, 0, 0, 0, 0), m2 = (0, 0, 0, 0, 0, 0, 0, 0) and
m3 = (−5,−5,−5,−5, 0, 0, 0, 0).

4.2 Simulation Results

We repeat our proposed model selection and feature selection algorithm for Gaus-
sian mixtures on each of these three datasets 50 times with the parameters being
randomly initialized. Here, our attention is just focused on the feature selection.
So, we only show the average value of ρl over 50 experimental results in Fig.
1. It can be seen that our proposed algorithm can successfully distinguish the
informative features from the noises, especially for the first dataset on which the
last four irrelevant features are found out exactly. The average values of ρl are
in a descending order just as those features in the second dataset are designed
in a descending order of relevance. It can be also noticed that there are some
fluctuations along the downtrend. This may be caused by the local optimization
of the modified harmony function and can be solved by some global optimization
technique.

As for model selection, when k is set to be 2k∗ (k∗ is the true number of
Gaussians or classes in the dataset), our proposed algorithm achieves the classi-
fication accuracy rates of 66% ,82% and 76% over the three datasets, respectively.
Clearly, the model selection result on the first dataset is not so satisfied. In fact,
the structure of the first dataset is indeed complicated. For comparison, we im-
plement the RPCL algorithm [34] on the first dataset and generally get a poor
clustering result. As for the third dataset, 36 tries out of 50 make the correct
model selection and the rest 14 tries lead to 4 clusters. Actually, the largest
component is split into two clusters.

5 Conclusions

We have investigated the problem of simultaneous model selection and feature
selection for Gaussian mixtures and proposed a new BYY harmony learning
algorithm for solving it. The proposed algorithm is constructed in the fixed-point
learning paradigm. It is demonstrated by the simulation experiments that the
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proposed algorithm can simultaneously detect the number of actual Gaussians
in the dataset and recognize the informative features accurately.
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Appendix

Define:

htjl =
p(xtl|θjl) − q(xtl|λl)

ρlp(xtl|θjl) + (1 − ρl)q(xtl|λl)
.

The gradient and Hessian of J(Θk) with respect to ρl are:

∂J(θ)
∂ρl

=
1
N

N∑
t=1

k∑
j=1

p(j|xt)γj(t)htjl;

if l �= m,

∂2J(θ)
∂ρl∂ρm

=
1
N

N∑
t=1

k∑
j=1

p(j|xt)
[
htjmhtjlγj(t) + htjmhtjl

−
k∑

i=1

p(i|xt)htimhtjlγj(t) −
k∑

i=1

p(i|xt)htilγj(t)htjm

]
.

if l = m,

∂2J(θ)
∂ρ2

l

=
1
N

N∑
t=1

k∑
j=1

p(j|xt)
[
htkl − 2

k∑
i=1

p(i|xt)htilγi(t)
]
htil.
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Abstract. Serving as an effective texture description operator, local
binary pattern (LBP) has been applied in the visible face recognition
successfully. In order to enhance the recognition performance, the tech-
nology of face recognition depending on the near infrared (NIR) image
has attracted extensive attention in the recent years. Although the char-
acteristics of LBP have been researched in optical image thoroughly, the
development of these do not catch enough attention in the NIR image
at all. Therefore, in our paper, we study the characteristics of LBP from
the following two aspects in NIR image. On one hand, we come to the
probability distribution of various patterns of LBP in the NIR facial im-
age. On the other hand, we discuss the influence to LBP caused by the
illumination change in facial image.

Keywords: Local binary pattern, Face recognition, Near infrared facial
image.

1 Introduction

Local binary pattern (LBP)[1]is a kind of effective texture description operator,
which has excellent robustness to the texture image rotation and the gray varia-
tion. On the basis of above properties, LBP operator is widely applied in the tex-
ture classification[2,3], texture segmentation[4] and facial image analysis[5,6,7,8].

Generally speaking, we can use symbol LBPP,R represent the LBP operator
in the domain with a radius R of P pixels. As a result, LBPP,R can produce 2p

kinds of binary patterns. At the same time, with the increasing of parameter P ,
the number of binary patterns will increase greatly. Due to the reason above, the
usage of a large P in LBP operator is disadvantageous to the texture extraction,
identification, classification or information access obviously. Consequently, the
operator LBP8,1 [2] is always used basically in texture analysis and recognition.

As Ojala [2] mentioned, although LBP is an useful texture description opera-
tor, it can take a greatly different effect on various texture images. Moreover, face
recognition is a challenging field both in theoretical level or technical level and
the problem of how to reduce the influence caused by illumination in face recog-
nition has troubled researchers continuously. However, recently, the researchers
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have made use of active near infrared imaging technology[9,10,11,12] to solve the
problem successfully. For the purpose of using LBP operator in face recognition
with NIR more efficiently, it is necessary for us to research its basic characteris-
tics according to this kind of images.

We firstly design an NIR facial image capturing camera, which consists by
36 LEDs (850nm), visible filter and camera etc. This kind of camera can shield
off visible and only shoot 850nm band near infrared images. Then, we use it to
establish the libraries of NIR facial images which contains 34160 images of 854
persons in more positive direction. Through these library, we study the char-
acteristics of operator LBP8,1 in NIR facial image in the following two points.
The first point is the probability distribution of various patterns about LBP in
the NIR facial image. The second one is the influence to LBP caused by the
illumination change in facial image.

The remainder of this paper is organized as follows. In Section 2, we introduce
LBP operator. Following this, in Section 3 we introduce the NIR facial image
capturing camera and facial image libraries. Then, the experiment and research
in characteristics of LBP are introduced in Section 4 followed by the conclusions
in Section 5.

2 LBP Operator

In Fig. 1, the calculation principle of operator is indicated and details about it
can be seen as following. At first, we select a pixel as the center and regard the
grey value of the mid-point as the threshold. After comparing the gray value of
pixel with its neighborhood, if it is greater than the threshold, we set point-value
as 1, or it is 0. Thus, we can obtain a series of binary yards. This group of yards
can get a LBP value from the formula below.

LBPP,R(xc, yc) =
7∑

p=0

s(gp − gc)2p, where s(x) =
{

1 x ≥ 0
0 x < 0 . (1)

Here, xc and yc are the coordinates of the pixel. gc is the gray value of the
center-point, gp is the gray value of each pixel in 3 × 3-neighborhood.

Fig. 1. The example of LBP operator
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The value of LBP8,1 ranges from 0 to 255, which totally contains 256 kinds
of binary patterns. According to the number of spatial transitions (bitwise 0/1
changes) in the patterns, we can divide them into five types. In this paper, we
assume that if this kind of value is equal to 0 , 2 , 4 , 6 , 8 respectively, we call it
type U0 , U2 , U4 , U6 , U8 correspondingly.

3 The NIR Facial Image Capturing Camera and Facial
Image Libraries

3.1 Process of Designing NIR Facial Image Capturing Camera

In order to establish the libraries of near infrared facial images, we need design
NIR facial image capturing camera on the basis of following requirements. Firstly,
it is essential to put LED around the camera so as to emit positive light. Secondly,
we can filter out the visible light. Then, the requirement of imaging only in
850nm band spot needs to be reached. Finally, it is important to minimize the
influence owing to the existence of 850nm band in the ambient light.

Fig. 2. The NIR facial image capturing camera

According to the technical requirements above, we make the NIR facial image
capturing camera, which can be seen in Fig. 2. The imaging device which can
shield off visible light and only catch the 850 ± 5nm band near infrared is
composed of 36 LEDs (850nm), visible filter and camera etc.

3.2 Facial Image Libraries

Owing to the fact that the shooting distance and the difference of shooting angle
can cause inconsistency of face size, we need to normalize the facial images to
explore LBP properties. The proportion about the normalization of face is shown
in Fig. 3(a). In this figure, El and Er represent the left and right pupils position
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Fig 3. (a)The ratio figure of face normalization. (b)The example of histogram
matching.

Table 1. The experimental image libraries

Image library Sum of person Images per person Sum

Set1 854 40 34160

Set2 854 1 854

Set1 Q 854 40 34160

Set2 Q 854 1 854

Set1 M 854 40 34160

Set2 M 854 1 854

Note: The column three indicates the sum of images per person

separately and D represents pupils spacing. In addition, t and b represent for the
proportion from pupil to the top and bottom in the face rectangle respectively.
Moreover, h is the proportion for left and right pupils to its edge. In our study,
t = 0.43, b = 1.33, h = 0.53 and the size of face normalization is 64 × 64.

We use the above camera to capture the images of 854 Chinese (40 images
for every person) and generate six facial image libraries (see Table 1). In these
libraries, the angle range of left-right rotation and upper-lower rotation are re-
spectively −40◦ ∼ 40◦ and −30◦ ∼ 30◦. The image size is 640 × 480. After
that, we can create the following facial image libraries. According to the above
face normalized proportion ,we normalize all the images in NIR face libraries to
64 × 64 size-scale images as Set1. Then, we pick an image from every person in
Set1 randomly to come to Set2 which has 854 images. Thirdly, we do histogram
equalization processing for Set1 and Set2 respectively to generate Set1 Q and
Set2 Q. Finally, we also do histogram matching processing for Set1 and Set2 to
generate Set1 M and Set2 M .
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Fig. 4. (a)Parts of the original NIR facial images. (b) the corresponding normalized
facial images of (a).

We can see the histogram matching processed image in Fig. 3(b) clearly. The
second and third column in the first row are the object histogram matching
images and their histograms. In row2 to row4, the first column are original
images and the second are their images after histogram matching with their
corresponding histograms in third column. Fig. 4(a) shows a part of the original
facial images from Set1 and their normalized images are shown in Fig. 4(b).

4 Experiments and Results

4.1 Probability Distribution of LBP in the NIR Facial Image
Libraries

Operator LBP8,1 has 28 kinds of binary patterns. Obviously, the probability dis-
tribution of 256-patterns is closely related to the texture images, which means
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Fig. 5. (a)The scattergram of average probability of 256-patterns in LBP. (b) The
variogram of average probability of 256-patterns in LBP.
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Fig. 6. (a)The scattergram of average probability of 256-patterns in LBP after his-
togram equalization. (b) The variogram of average of 256-patterns in LBP after his-
togram equalization.

that different texture images have different probability distribution. In the ex-
periment, we use Set1 to research the probability distribution of LBP in such
specific texture images. Firstly, we transform all NIR images into LBP images
by calculating LBP value which ranges from 0 to 255. Secondly, on the basis
of all binary patterns in LBP8,1, we get the probability distribution for every
image through calculating the normalization histogram of corresponding LBP
images respectively. Then, we get the average probability distribution and its
corresponding probability variance of 256-patterns in Set1.

Fig. 5(a) shows the average probability distribution of 256-patterns of LBP8,1

in Set1 and (b) is its corresponding probability variance. After taking knowledge
about these figures, we can draw the following important conclusions about LBP.
Firstly, the probability of the patterns in U0 and U2 accounts for only 23%, which
means type U4, U6 and U8 account for 76% in all 256 patterns. Nevertheless, the
probability of occurrence about U0 and U2 is up to 93% and the rest three types
only contain 7% at all. Secondly, in one facial image, the maximum probability
of occurrence of the patterns in U4, U6 and U8 is 0.1% and the average one is just
0.036%, which indicates that the probability of occurrence of five bitwise types
except U0 and U2 is less than 1.5 pixels in a LBP image with size-scale 64× 64.
In addition, an interesting point here is that we find probability variance of U0

and U2 is fairly large and the rests are very smaller. This suggests that slight
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Fig. 7. (a)The scattergram of average probability of 256-patterns in LBP after his-
togram matching. (b) The variogram of average probability of 256-patterns in LBP
after histogram matching.

difference between different faces can be reflected mainly by the patterns in U0

and U2. What is more, the fact about the larger difference of variance illustrates
that some patterns in U0 and U2 are more sensitive to identify the details in face
recognition.

4.2 The Influence to LBP Resulting from Illumination Changing

Owing to the fact that the shooting distance and the difference of shooting angle
can cause the illumination change when we capture images. In this section, we
analyze the performance of LBP operator under the changing non-monotone
illumination circumstance.

The purpose of histogram equalization[13] is to reach homogeneous distribu-
tion in the gray image. Furthermore, the purpose of histogram matching[13] is
to make use of gray transformation to get one image which contains similar gray
distribution corresponding to the specified image. We can regard these two meth-
ods as gray normalization and use them to promote the image quality through
avoiding the effect caused by illumination changing. Set1 Q and Set2 Q are NIR
normalized image libraries after histogram equalization. Set1 M and Set2 M
are NIR normalized image libraries after histogram matching. At the same time,
Set1 and Set2 are two image libraries without gray normalization. Hence, we can
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think that Table 1 contains three non-monotone illumination changes of varying
degrees.

According to the process of Experiment 4.1, we come to the experimental
results shown in Fig. 6 of Set1 Q firstly. Following is the experimental results
about Set1 M shown in Fig. 7.

From the experiments mentioned above, we find that no change in LBP prob-
ability distribution has been caused by histogram equalization in facial images
according to Fig. 6 with Fig. 7. Next, after comparing Fig. 5 with Fig. 6, the
same condition comes to the histogram matching as well. At last, we also get
the similar result when comparing Fig. 6 with Fig. 7. In sum, LBP has excellent
robustness to the non-monotone illumination changes in the NIR facial image.

4.3 Experimental Verification

In the Section 4.1 and 4.2, we make a research on LBP characteristics in three
large facial libraries including Set1, Set1 Q and Set1 M . In this section, ac-
cording to the experimental process in Section 4.1 and 4.2, we do the same
experiments again in three smaller image libraries, Set2, Set2 Q and Set2 M
which have the quarter samples of Set1, Set1 Q and Set1 M . The experimental
results show that they have exactly the same conclusions in Set2, Set2 Q and
Set2 M as in Set1, Set1 Q and Set1 M .

5 Conclusions

Due to the fact of lacking the study about infrared image, in recent years, more
attention has been paid to the usage of near infrared image in face recognition.
Simultaneously, researching the characteristic of LBP in that kind of images
turns to be more meaningful. In the paper, after doing various experiments in
NIR facial libraries designed by us, we come to some useful outcomes. Firstly,
there are 58 kinds of patterns totally in U0 and U2, but they cover the image
information with 93%. On the contrary, the total kinds of patterns in U4, U6 and
U8 are 198, but they cover the image information with only 7%. That is to say,
it is more efficient to describe the texture image with these 58 kinds of patterns
than others. Secondly, we find that the probability variance of U0 and U2 is fairly
large, but of the rests is very smaller. This means that slight difference between
different faces is reflected mainly by the patterns in U0 and U2. In addition, the
difference of the variance is larger in U0 and U2, which suggests that the patterns
in it have different contributions in describing the texture structure. Finally, we
find that the operator LBP8,1 has excellent robustness to the non-monotone
illumination change in the NIR facial image.
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Abstract. The concept of Smart Grid has gained significant acceptance during the 
last several years due to the high cost of energy, environment concerns, and major 
advances in distributed generation (DG) technologies. Distribution systems have 
traditionally been designed as radial systems, and time coordination of protection 
devices at the distribution level, the main characteristic for fault diagnosis, is a 
standard practice used by the utilities. However, when Smart Grid occurs fault, 
the certainty and integrity of information will be damaged by many causations. In 
order to improve the accuracy and rapidity of fault diagnosis, it is necessary to 
discover a new method that has high fault tolerant and can compress data space 
and filtrate error data. To deal with the uncertainty and deferent structures of the 
causation, rough sets and intuitionistic fuzzy sets are introduced. Based on them, 
intuitionistic uncertainty-rough sets are proposed and the reduction algorithm is 
improved. The rule reliability is deduced using intuitionistic fuzzy sets and 
probability. The worked example for Xigaze power system in China’s Tibet 
shows the effectiveness and usefulness of the approach. 

Keywords: Smart Grid, Fault diagnosis, Rough sets, Intuitionistic uncertainty 
sets. 

1   Introduction 

The concept of “IntelliGrid” [1][2] and “Smart Grid” [3]are put forward by the power 
research organizations in Europe and America, respectively. In recent years, Smart 
Grid has emerged in China due to its obvious advantages in reliable and economic 
operation, energy-saving and environment protection. Until now there has been no 
unified definition of Smart Grid, but some characteristics of Smart Grid are identified 
home and abroad[1]-[4]: ①Self-healing: Online self-assessment of the grid operation 
state, able to detect fault quickly without or with little manual intervention to avoid 
large area blackout. ② Interaction: able to incorporate consumer equipment and 
behavior in the design and operation of the grid. ③Optimization: able to optimize its 
                                                           
*  Projects(60904101, 60972164) supported by the National Natural Science Foundation of 

China; Project(N090404009) supported by the Fundamental Research Funds for the Central 
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capital assets while minimizing operation and maintenance costs in the whole life 
cycle, and reduce the loss of power grid. ④Compatibility: able to accommodate a 
wide variety of distributed generation and storage options. ⑤Integration: assistant 
decision-making system based on the integration of information. It can be seen from 
above that safety and sharing are regarded as the core advantage and key technical 
problem to be tackled of Smart Grid. However, precise and real-time fault diagnosis 
has become one of the key technologies in the application of Smart Grid due to its 
impact on the power grid safety[5]. 

The networking mode of Smart Grid is similar to that of MicroGrid[6] which is 
quite different from traditional distribution network. Because of the connection of DG 
(Distributed Generation), there are many power sources in the system, so the power 
flow is not unidirectional and the fault point may be not at the point with lowest 
voltage. Traditional fault diagnosis methods are no longer suitable and IEEE has 
made guide standard for twice[7] [8]. The factors that influence the accuracy and real-
time performance of fault diagnosis are as follows: ①Currently, fault diagnosis 
mainly depends on the information of the circuit breaker and relay protection. But 
maloperation or miss trip sometimes occur on these devices ②Traditional discrete 
methods are harsh to the boundary of the continuous values of voltage and current. It 
cannot adapt to the diversity of fault information after the connection of DG. ③Some 
faults are not included in the expert database and there’s no inversion record, which 
makes it hard for operators to handle the fault in time. ④There’s no consideration of 
the randomness of the fault. However, large amount of information is not fully 
utilized in the fault diagnosis of Smart Grid, like backup protection, fault voltage, 
current and waveform. If these information is effectively used, the precision of fault 
diagnosis will be largely improved. 

Rough sets are applied for the fault diagnosis of Smart Grid in this paper, 
considering their ability of reduction to mass data and good performance in the fault 
diagnosis of distribution network[9]. Based on the theory of fuzzy-rough sets[10] and 
intuitionistic fuzzy sets[11], and also considering the random fault factors and actual 
situation of Smart Grid, the intuitionistic uncertainty sets are established to perform 
the fault diagnosis. The worked example for Xigaze power system in China’s Tibet 
shows the effectiveness and usefulness of the approach. 

2   Mechanism Analysis of the Impact of Distributed Generators on 
Fault Diagnosis 

2.1   Mechanism Analysis of Fault Diagnosis with Distributed Generators 

If a DG is connected to a feeder with traditional relay protection, the relay protection 
should be installed after DG, as shown in Fig.1. When fault occurs in the feeder with 
DG, the DG will send short circuit current to the fault point, which reduces the 
sensitivity of the relay protection. 

In Fig.1, sZ is the equivalent impedance between the source and the location of the 

relay protection; lZ is the impedance of feeder; DGZ is the impedance of DG and 

transformers; l is the distance between the short circuit point and the end of feeder; x  
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is the distance between the short circuit point and DG. In order to protect the whole 
feeder, current instantaneous trip protection with time limit should provide enough 
sensitivity when phase to phase short circuit fault occurs at the end of feeder under 
minimum operation mode. Generally, sensitivity coefficient is used to check the 
sensitivity. 

DGZ

sZ

kI

LZ

lx

 

Fig. 1. Impact of distributed generation on the protection 

Suppose DGZ = 1 sZα , 2l SZ Zα= , the setting value of instantaneous trip protection 

1opI  is set under the situation that phase to phase short circuit occurs at point k  at the 

end of feeder. Reliable coefficient is kK .The setting value of over current protection 

2opI  is set according to maximum load current. According to the relation of phase to 

phase and three-phase short circuit, the rate of the setting value of instantaneous trip 
protection is 0.5. Feeder sensitivity coefficient is senK . When phase to phase short 
circuit occurs on feeder without DG, the detected fault current by instantaneous trip 
protection device is 1KI ; when with DG for the same situation, the detected fault 

current is 2KI . So 
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It can be seen that traditional fault diagnosis methods will cause fault report and 
missing report in the Smart Grid with DG, which attracts lots of research interests. A 
fault handling strategy based on voltage control was proposed in [12] In [13], a method 
combining voltage and frequency control was used to detect isolated islands. In [14] 
history records were used to reason based on causality. Then a set of plans was obtained 
to detect and handle isolated islands. Based on different DG models, the impact of DG 
on feeder voltage and frequency under fault was studied in [15]. In most researches 
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nowadays, the continuous signals like voltage, current, and frequency were considered 
as important fault diagnosis properties, which was rare in traditional fault diagnosis for 
distribution network. However, methods to handle incomplete information or fuzzy, 
random cases are not solved in the papers above, which is the key problem of fault 
diagnosis application. 

2.2   Theory of Rough Sets 

Rough set [16] introduced by Pawlak in 1982 is a veryimportant mathematical tool to 
deal with vagueness and uncertainty.  

LetU denote a finite and nonempty set called the universe. Suppose R U U⊆ × is 

an equivalence relation on, i.e., R is reflexive, symmetric, and transitive. The 
equivalence relation partitions the setU into disjoint subsets. Elements in the same 
equivalence classes of R are said to be indistinguishable. Equivalence classes of are 
called elementary sets. Every union of elementary sets is called a definable set. The 
empty set is considered to be a definable set, thus all the definable sets form a 

Boolean algebra. ( , )U R is called an approximation space. Given an arbitrary 

set X U⊆  , one can characterize X by a pair of lower and upper approximations. The 

lower approximation
R

apr X  is the greatest definable set contained in X , and the 

upper approximation Rapr X is the least definable set containing X . They can be 

computed by two equivalent formulas 
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The lower approximation
R

apr X and upper approximation Rapr X satisfy the 

following properties: 

  1)  ,  RR
apr U U apr= ∅ = ∅  

  2) ( )
R R R

apr X Y apr X apr Y=∩ ∩ , ( )R R Rapr X Y apr X apr Y=∪ ∪  

  3) ( )c c
RR
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From these six properties, one can obtain many properties of rough sets, we only 
list these six properties because they can be treated as axiomatic characteristics of 
rough sets. 

Based on the definition of intuitionistic fuzzy set sintuitionistic uncertainty rough 
sets is described as follows: universe { | 1, , }iU x i n= = is described by the 

discretization attributes 1 2{ , , , }pP P P . Each attribute measures some important 

feature of and is limited to linguistic terms ( ) { | 1, , }i ik iA P F k C= = . Each object 

ix U∈ is classified by a set of classes ( ) { | 1, , }l QA Q F l C= = .Each ( )lF A Q∈ may 

be a crisp or membership function and Q is decision attribute. The set 
/ { | 1, , ; 1, , }ik iU P F i p k C= = =  can be regarded as a kind of partitions of U by a 

set of attributes P using uncertainty model. 
The lower and upper approximation membership function and nonmembership 

function are defined as follows: 
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Where 0 1β α≤ < ≤  are lower and upper limits in probability. 
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3   Establishment of the Fault Diagnosis System for Smart Grid 

As to the fault diagnosis for Smart Grid, we discuss in two aspects: discrete data and 
continuous data. Discrete data mainly consists of breakers and relay protection 
devices. Continuous data mainly consists of the current, voltage, frequency, and 
power factor. Discrete property can be handled by rough sets so we only need to 
discuss the reliability of devices.  

The fault rate of breakers Qiλ  can be calculated by (1)  

100Qi Q L

Lλ λ λ λ= + +                                           (7) 

where Qλ  is its own fault rate, Lλ is the impact rate of feeders, λ  is the impact rate of 

buses, L is the length of feeder. Qλ  is only relative to itself and can been considered 

as random perturbation. Lλ and λ  are relative to the distance between the device and 

bus, DG, load, and fault point. They can be given by expert experience. The reliability 
of relay protection devices is lower than switchgear, so we set the parameters Rλ  

in MRλ , SRλ , and FRλ  larger than the parameters of breakers by 0.3%、0.2%、0.1%. 

Intuitionistic uncertainty membership and nonmembership functions of discrete 
property are as follows: 

( ) ( ), ,Di i L i Q Rμ μ λ λ σ λ λ= +                                          (8) 

( ) ( ), ,Di i L i Q Rχ χ λ λ σ λ λ= −                                          (9) 

In continuous data, the current error is mainly caused by CT and communication 
interference. The later is a random event and can be expressed by a random 
disturbance; the former is caused by the error of CT, which is defined as follows: 

 2 1 1 1 2% ( ) / 100% % i i dI KI I I Iε λ λΔ = − × = + Φ +                          (10) 

where Φ is flux of CT, dI is the short circuit current, 1 2/N NK I I= is the 

transformation ratio, 1I and 2I  are measured values on the primary side and secondary 

side of CT, 1iλ and 2iλ  are the coefficient of flux and short circuit current, 

respectively. %ε  is the error level of CT defined as follows: 

2
2 10

1

100 1
% ( ) d

T

IK i i t
I T

ε = × −∫                                       (11) 

where 1i and 2i are the short circuit current of the primary side and secondary side of 

CT. T is the period of short circuit current. Definitions of measurement errors of 
voltage, frequency, and power factor are similar. 
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In fault cases, short circuit relation of Smart Grid is described as follows:  

faa aa ab ac a

b ba bb bc b fb

c ca cb cc c fc

IV Z Z Z I

V l Z Z Z I R I

V Z Z Z I I

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                             (12) 

where aV is the voltage of phase A, aI is the rated current of phase A; faI is the short 

circuit current of phase A; LaI is the current of phase A in normal operation. l is the 

distance between the fault point and measurement point. R is the resistance of the 
fault point to the ground. Z is the line impedance matrix. There are two unknown 
variables in equation (12): l and R . Equation of voltage and current including 
uncertainty is shown in (13): 

( )a a LaV lZ R I RI= + −                                           (13) 

where aV , aI , LaI , and Z is known and l and R are random variable. 

Because a LaI I , LaRI equals to iσ in (10), so ( ) alZ R I+ can be seen as a combination 

of a certain variable and a fuzzy variable. In fault cases, membership and 
nonmembership functions of the fault point in Smart Grid are expressed as follows: 

( ) ( ) ( ) ( )%Ci i i a i i LaI I T Iμ μ μ σ σ= Δ + + +                        (14) 

( ) ( ) ( ) ( )%Ci i i a i i LaI I T Iχ χ χ σ σ= Δ + − −                               (15) 

where ( )%i Iμ Δ and ( )i aIμ is the current measurement error by experts and current 

estimation of the fault point to ground, respectively. ( )i Tσ and ( )i LaIσ are random 

mutation and random charging current of the fault point to ground, respectively. 
Now we discuss the reduction algorithm based on the diagnosis model of Smart 

Grid above. According to the definition of dependency degree and non dependency 
degree: when P Q⇒ ,the positive region of intuitionistic uncertainty set /U Q covers 

elements ( )P Qγ ×100% in knowledge base { },K U P= , and impossible to cover 

elements ( )P Qκ ×100% in knowledge base { },K U P= . So coefficient 

( )P Qγ and ( )P Qκ can be considered as dependency relation and non dependency 

relation between P and Q .  

4   Trial Operation Analysis of Fault Diagnosis on Xigaze Power 
System in China’s Tibet 

There has been no unified power grid in Tibet. A power grid forms among Lhasa, 
Rikaze, Shannan, and Naqu in the central Tibet. Power grids in Linzi and Changdu 
are isolated. There’s no power grid in Ali. 
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Until the end of 2004, installed capacity of city-level power grid in Tibet has 
reached 429.8MW, in which hydropower accounts for 179.49MW, pumped storage 
power station accounts for 112.5 MW, geothermal power plant accounts for 24.18 
MW, thermal power accounts for 11.78MW, and new energy accounts for 101.85 
MW. The percentage of the power sources above is 44.7%, 24.3%, 5.4%, 3.6%, and 
22%, respectively. In this paper, Lazi distribution system is researched. The grid 
structure is shown in Fig.2 with voltage level 10KV. 
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Fig. 2. Structure of Lazi distribution system 

Maximum load of each line node of Lazi distribution system is shown in Table.1, 
which are important references for experts to determine the fault electric quantity. 

Table 1. Max load parameters of line node (KW, KVar) 

Node Real load Reactive load Node Real load Reactive load 
1 0 0 18 300 150 
2 90 30 19 90 60 
3 100 70 20 150 100 
4 70 50 21 60 40 
5 120 90 22 150 100 
6 120 80 23 150 100 
7 95 70 24 200 100 
8 150 100 25 130 70 
9 130 80 26 80 60 

10 100 30 27 130 80 
11 70 40 28 120 80 
12 100 70 29 90 60 

13 90 60 30 200 100 

14 95 70 31 200 100 

15 100 70 DG1 369.96 225.60 

16 130 100 DG2 92.15 65.36 

17 150 120 DG3 200.20 160.48 
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Generally, more than 90% of the faults in power system are single fault, 
double fault, and single fault with device’s abnormal action. Based on the three 
cases above, the fault diagnosis rule base is established. 

In the distribution network in Fig.4, there’re 30 branches in total and some 
branches install breakers and current instantaneous trip protection bi-
directionally. Corresponding binary attributes reaches 84. There’re 28 branches 
except the branches connected with nodes in ends of line, so the corresponding 
distance protection is 28. There’s 1 bus main protection in mail power source 
(Node 1). One under frequency load shedding and one under voltage load 
shedding protection are installed on each bus with DG. So there are 118 binary 
attributes in the fault diagnosis system. Measurable voltage and current in the 
branches reach 68. The frequency and power factor of the mail power source 
and DGs are known. So there are 76 continuous attributes. Considering the three 
cases: single fault, double fault, and single fault with abnormal action devices, there 
are 3 decision attribute totally. The following 318 records are included in the expert 
database: 68 records of single fault without device’s abnormal action, 200 records 
of double fault, and 50 records of single fault with device’s abnormal action. 
With additional 32 records of non fault operation, up to 350 records build the 
original rule base. As to the generated rule base, 30 records of single fault without 
switches and with abnormal action (Fault TypeⅠ), 40 records of double fault 
without switches and with abnormal action (Fault TypeⅡ), and 30 records of single 
fault with switches and with abnormal action (Fault Type Ⅲ) are selected as 
inspection data of the knowledge base. The experiment result is shown in Tab.2. 

Table 2. Comparison of different system experiment data 

Correct records of 
Fault 1 

Correct records of 
Fault 2 

Correct rate 

Fault 
Type 

Amount 
of records Rules 

before 
reduction 

Rules 
after 

reduction

Rules 
before 

reduction

Rules 
after 

reduction

Rules 
before 

reduction

Rules 
after 

reduction 

TypeⅠ 30 30 30   100% 100% 

TypeⅡ 40 39 40 6 37 15% 87.5% 

TypeⅢ 30 13 28   43.3% 93.3% 

 
It can be seen from Tab.2 that recognition rate for fault typeⅠis 100%. For fault 

typeⅡ, at least one fault can be recognized by system. In the tested 40 records, only 3 
records cannot recognize the fault correctly because of the incomplete information of 
original records. For system without reduction, only 6 records can recognize the two 
faults. For fault typeⅢ, the anti-interference ability of reduced rules is largely 
improved due to the decrease of redundancy attributes. The two unrecognized records 
is because of the missing information of key attributes. For original records without 
reduction, only 13 records can be recognized correctly. 
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5   Conclusions 

A reduction algorithm based on intuitionistic uncertainty rough sets is proposed in this 
paper according to the special need of fault diagnosis in Smart Grid. The main 
problems which interfere the accuracy of fault diagnosis are effectively solved by the 
proposed algorithm. For handling the uncertain information, the proposed algorithm 
has better performance than the present fault diagnosis methods of power system. The 
worked example for Xigaze power system in China’s Tibet shows the effectiveness of 
the algorithm for fault diagnosis of the practical and complex Smart Grid, which 
largely extends the application scope of Smart Grid. 
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Abstract. In this paper, a new kernel regression algorithm with sparse
distance metric is proposed and applied to the traffic flow forecasting.
The sparse kernel regression model is established by enforcing a mixed
(2, 1)-norm regularization over the metric matrix. It learns a mahalanobis
metric by a gradient descent procedure, which can simultaneously re-
move noise in data and lead to a low-rank metric matrix. The new
model is applied to forecast short-term traffic flows to verify its effective-
ness. Experiments on real data of urban vehicular traffic flows are per-
formed. Comparisons with two related kernel regression algorithms under
three criterions show that the proposed algorithm is more effective for
short-term traffic flow forecasting.

Keywords: Traffic flow forecasting, Kernel regression, Sparse distance
metric learning, Mixed norm regularization, Gradient descent algorithm.

1 Introduction

Short-term traffic flow forecasting is one of the most important and fundamen-
tal problems in intelligent transportation systems (ITS). It contributes a lot to
traffic signal control and congestion avoidance. The benefits of ITS cannot be
realized without the ability to forecast traffic condition in the next time inter-
val, for example, 5 minutes to half an hour. A good traffic condition forecasting
model will provide this ability and make traffic management more efficient [1].
To alleviate the increasingly serious urban traffic condition, traffic flow forecast-
ing, which is an important aspect of traffic condition, has already evoked great
interest of the researchers in recent years.

Up to the present, there are a variety of methods proposed for short-term
traffic flow forecasting such as Markov chain models [1], time series models [2],
Kalman filter theory [3], Bayesian networks [4], and support vector machines [5].
All these methods are based on the fact that historical data, especially the
current and most recent data, can provide information for predicting the future
data. In addition, kernel regression [6,7], which is also a classical and important
method for traffic flow forecasting, is our concern in this paper.

The traditional kernel regression (KR) combines Euclidean distance met-
rics with the Gaussian kernel, which decay exponentially with squared distance

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 76–84, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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rescaled by a kernel width factor. KR is the simplest kernel regression method
for not needing to learn a metric matrix. However, Euclidean distance metric
has its obvious defect of treating all the features the same. It neglects the fact
that features of an input vector may play different roles in a specific task and
should be assigned different weights.

Recently, it has been shown that even a simple linear transformation of the
input features can lead to significant improvements for machine learning algo-
rithms involving distance metric learning. Metric learning for kernel regression
(MLKR) is the first outcome to combine kernel regression and distance metric
learning [9]. It learns a Mahalanobis metric by a gradient descent procedure
to minimize the training error. The application of MLKR in several domains
for regression also shows promising results. However, the observed data, espe-
cially high-dimensional datasets, are probably noisy [11]. If the data can be
preprocessed to remove the irrelevant features, the efficiency and effectiveness of
existing kernel regression algorithms are likely to increase largely. Based on this
rationality, we propose a sparse kernel regression algorithm (SMLKR) in this pa-
per and apply it to forecast short-term traffic flows. Experiments of SMLKR on
real traffic flow datasets show that it can learn a good metric and simultaneously
conduct dimensionality reduction as well.

The rest of this paper is organized as follows. Section 2 thoroughly introduces
the sparse kernel regression model. Section 3 reports our experimental results
on real data of urban vehicular traffic flows, including comparisons with other
two related methods. Finally, Section 4 concludes this paper and gives future
research direction.

2 The Proposed Sparse Kernel Regression Model

2.1 Basic Notations

Let (x, y) represent an example with input x = (x1, x2, . . . , xd) ∈ Rd and y ∈ R
be the corresponding target value. A dataset with n examples is denoted by
Z = {(xi, yi)n

i=1}. The space of symmetric d by d matrices is denoted by Sd. If
S ∈ Sd is positive semi-definite, we write it as S ≥ 0. The cone of positive semi-
definite matrices is denoted by Sd

+ and we denote the set of d by d orthonormal
matrices by Od. The trace operation for matrices is denoted by Tr(·), which is
the sum of all the diagonal elements of a matrix [8]. In addition, any d by d
diagonal matrix is denoted by diag(D11, D22, . . . , Ddd), where D11, D22, . . . , Ddd

are the diagonal elements of the matrix.
In mathematics, the Euclidean distance is the “ordinary” distance between

two points that one would measure with a ruler and is given by the following
formula:

d(xi,xj) = ‖xi − xj‖ =

√√√√ d∑
r=1

(xir − xjr)2, (1)

where xi,xj ∈ Rd and i, j ∈ {1, 2, . . . , n}. The associated norm is called the
Euclidean norm, which is represented as ‖ · ‖ [13]. For simplification, we denote
the difference vector of two vectors by xij = xi − xj .
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2.2 Kernel Regression

Given a training set of (possibly noisy) examples {(xi, yi)n
i=1}, the standard

regression task is to estimate an unknown function f : Rd → R, so that yi =
f(xi) + ε, with ŷi ≈ f(xi), the estimation of yi, at the minimum loss:

L =
∑

i

(yi − ŷi)2, (2)

In short-term traffic flow forecasting model, generally the current traffic flow
is closely related to flows of past time. The previous traffic flows contribute
differently to the prediction of the current flow. Therefore, the corresponding
weights of past flows are different from each other. With the assumption that
the relationship between past flows and the predicted flow is linear, then the
current flow on a certain spot can be forecasted using its previous flows as [7]:

ŷi = a1.yi−1 + a2.yi−2 + . . . + am.yi−m, (3)

where ŷi is the predicted flow and yi−1, yi−2, . . . , yi−m are m flows of past
time. Actually, the estimation of yi is usually obtained by the weighted aver-
age method. If the weights are determined by a kernel function, then (3) can be
reformulated in terms of kernel:

ŷi =

i−1∑
j=i−m

yj.kij

i−1∑
j=i−m

kij

, (4)

where kij is a kernel function based on the squared distance between xi and
xj . In traditional kernel regression, Gaussian kernel is usually adopted and its
concrete formulation is as follows:

kij =
1√
2πσ

e−
d(xi,xj)

σ2 , (5)

where d(xi,xj) is the squared distance between xi and xj . The smaller the
distance, the larger kij is, which means xj is more similar to xi.

2.3 Sparse Distance Metric Learning

Given the transformation matrix A ∈ Rd×d, any input vector xi can get its
corresponding transformation vector x̂i, which is obtained by calculating x̂i =
Axi. In the input space, the Mahalanobis distance between xi and xj is defined
as:

d(xi,xj) = (xi − xj)
T
M(xi − xj), (6)

where metric matrix M can be any symmetric positive semi-definite real
matrix [9]. Setting M to be the identity matrix can recover the standard
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Euclidean metric. Mathematically, M can be decomposed as M = ATA. There-
fore, the Mahalanobis distance in the input space is equivalent to the Euclidean
distance in the transformed space. That is

d(xi,xj) = (xi − xj)
T
ATA(xi − xj) = ‖A(xi − xj)‖2

. (7)

As the observed data are probably contaminated by noise, ideally the trans-
formation vector x̂i should have fewer dimensions than its corresponding input
vector xi as a consequence. Let Ai denote the i-th row vector of A, if ‖Ai‖=0,
then the i-th entry of x̂i becomes 0. That is, ‖Ai‖=0 has the effect of feature
selection. Therefore, to obtain a sparse transformation vector x̂i, we can enforce

a L1-norm regularization across the vector (‖A1‖, ‖A2‖, . . . , ‖Ad‖), i.e.,
d∑

i=1

‖Ai‖.
Therefore, the sparse representation can be realized by a mixed (2, 1)-norm reg-
ularization over transformation matrix A.

We aim at learning a Mahalinobis metirc as well as a low-rank metric ma-
trix M . Let M = ATA = (M1,M2, . . . ,Md), where Mi is the i-th row vector
of M . It is obvious that ‖Mi‖ = 0 is equivalent to ‖Ai‖ = 0. Therefore, in-
stead of enforcing L1-regularization over vector (‖A1‖, ‖A2‖, . . . , ‖Ad‖), we can
enforce L1-norm regularization across the vector (‖M1‖, ‖M2‖, . . . , ‖Md‖) to get
the sparse solution [11]. The (2, 1)-norm regularization over M is denoted by

‖M‖(2,1) =
d∑

i=1

‖Mi‖. A similar mixed (2, 1)-norm regularization was used for

multi-task learning and multi-class classification to learn the sparse representa-
tion shared across different tasks or classes [12].

2.4 Sparse Metric Learning for Kernel Regression

The objective of kernel regression is to make the accumulated quadratic leave-
one-out regression error L =

∑
i

(yi − ŷi)2 as small as possible. To learn a sparse

distance metric for kernel regression, we enforce the mixed (2, 1)-norm regu-
larization over the metric matrix M . Therefore, the objective function of our
proposed SMLKR algorithm can be formulated as follows

L(M) =
∑

i

(yi − ŷi)2 + μ‖M‖(2,1), (8)

where μ is a positive step-size constant and will be fixed by cross-validation.
With reference to [11],

min ‖M‖(2,1) = Tr(M). (9)

Therefore, the objective function of SMLKR can be reformulated as

L(M) =
∑

i

(yi − ŷi)2 + μTr(M). (10)
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L(M) is differentiable over M . Consulting [7] and making use of the fact that
∂Tr(M)

∂M = I, the gradient of (10) with respect to M can be stated as

∂L(M)
∂M

= 2
∑

i

(ŷi − yi)

i−1∑
j=i−m

(ŷi − yj)kijxijx
T
ij

i−1∑
j=i−m

kij

+ μI. (11)

After setting initial value of M , we adjust its subsequent values by a gradient
descent procedure. Let Gt denote the gradient of the objective function at the
t-th iteration, then the metric matrix M can be updated by

M(t) = M(t−1) − αGt, (12)

whereα is a small positive step-size constant. To keepM positive semi-definite, it is
projected to the cone of positive semi-definite matrices by the eigen-decomposition
of matrix M(t). That is, M(t) = PΛ+PT , where P is the eigen-vector matrix, and
Λ+ = diag(max{0, λ1},max{0, λ2}, . . . ,max{0, λd}) with λi being the
eigen-value of M(t).

Gradient descent steps for sparse Mahalanobis metric learning in our model
can be illustrated as follows.

– Begin
– Input Matrix M , step-size α for adapting M , step-size μ for adapting L(M),

stop criterion θ, t ← 0.
• Do t ← t + 1
• Compute the gradient of objective function Gt at the t-th iteration.
• M(t) ← M(t−1) − αGt

• M(t) ← PΛ+PT

• Compute the value of objective function L(Mt) at the t-th iteration.
• Until |L(Mt) − L(Mt−1)| ≤ θ.

– Output M
– End

3 Experiment

3.1 Data Description and Configuration

The problem addressed in this paper is to forecast the future traffic flow rates at
given roadway locations from the historical data on a transportation network.
The data used in our experiments are from Beijing’s Traffic Management Bureau.
From the real urban traffic map, we select a representative patch to verify the
proposed approach, which is given in Fig. 1 [10]. Each circle in the sketch map
denotes a road junction. An arrow shows the direction of traffic flow, which
reaches the corresponding road link from its upstream link. Paths without arrows
are of no traffic flow records. Vehicular flow rates of discrete time series are
recorded every 15 minutes. The recording period is 25 days (totally 2400 recorded
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entries) from March, 2002. In our experiment, the raw data are divided into two
sets, 2112 recorded entries of the first 22 days as the training set and the rest
recorded entries as the test set. For evaluation, experiments are performed with
multiple randomly selected roads from Fig. 1.

Fig. 1. A patch of traffic map taken from the East Section of the Third Circle of Beijing
City Map where the UTC/SCOOT system is mounted

Let x1, x2, x3, . . . , x2400 denote the original 2400 ordered recorded entries.
First we need to format the raw data into examples of vector form, which is
represented as (x, y), where x ∈ Rd and y ∈ R. That is, for an example (xi, yi),
yi is the current traffic flow xi and xi is constructed by xi’s d past traffic flows
xi−d, xi−d+1, . . . , xi−1. Then yi, yi+1, . . . , yi+m−1 are used to predict yi+m. In
our experiment, d and m are empirically set as 15 and 8, respectively.

3.2 Experimental Results

The proposed SMLKR is applied to short-term traffic flow forecasting to evaluate
its effectiveness. For comparison purpose, related kernel regression algorithms
KR and MLKR are also conducted to serve as base lines. The objective of kernel
regression is to make the accumulated quadratic leave-one-out regression error
on test examples as small as possible. Therefore, L =

∑
i

(yi − ŷi)2 is adopted as

the first comparison criterion of the three kernel regression algorithms.
Besides accumulated quadratic leave-one-out regression error L, another two

widely-used criterions are also adopted to evaluate the three algorithms. They
are mean absolute relative error (MARE) and root mean squared error (RMSE),
respectively, which are formulated as follows:

MARE =
1
n

n∑
i=1

|yi − ŷi|
yi

, (13)
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and

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2, (14)

where n is the number of test examples.
The accumulated quadratic leave-one-out regression error on each training set

and test set of three kernel regression algorithms are listed in Table 1. The bold
number in the table represents that the corresponding algorithm performs best.
The final dimension of the metric matrix M learnt by SMLKR are also reported
in this table. In addition, performance comparison of the three algorithms based
on MARE and RMSE on training sets and test sets are reported in Table 2 and
Table 3 respectively. In order to give an intuitive illustration of the forecasting
performance, we draw the forecasting results of Roadway Gb on the test set using
KR, MLKR and SMLKR, which is shown in Fig. 2, where blue lines represent
real recorded data and red stars represent forecasted results.

Real traffic flow forecasting results reported in Table 1, Table 2 and Table 3 re-
veal that MLKR and SMLKR are all superior to the traditional kernel regression
algorithm KR, which means metric learning can effectively improve the perfor-
mance of kernel regression algorithms. Different from MLKR, the proposed SM-
LKR is the first to combine kernel regressionwith sparsemetric learning. As shown
in Table 1, only SMLKR has the capability of learning a low-rank metric matrix.

Table 1. Comparison of L and final dimension of metric matrix M

L

Road KR MLKR SMLKR Dimension

Ba 1.275e+008 4.852e+007 4.646e+007 8
Cf 2.620e+007 2.331e+007 2.363e+007 8

Training Fe 1.982e+008 5.408e+007 5.384e+007 7
Gb 1.739e+007 1.532e+007 1.461e+007 10
Hi 2.101e+007 1.683e+007 1.615e+007 9

Ba 2.612e+007 1.103e+007 1.090e+007
Cf 3.690e+006 3.381e+006 3.354e+006

Test Fe 3.307e+007 8.330e+006 8.325e+006
Gb 3.107e+006 2.905e+006 2.740e+006
Hi 3.627e+006 3.370e+006 3.356e+006

Table 2. Training error comparison

MARE RMSE

ML KR MLKR SMLKR KR MLKR SMLKR

Ba 0.165 0.144 0.143 247.055 152.408 149.138
Cf 0.116 0.113 0.115 111.993 105.622 106.349
Fe 0.148 0.112 0.112 308.012 160.900 160.759
Gb 0.158 0.153 0.150 91.246 85.629 83.642
Hi 0.167 0.161 0.158 100.288 89.763 87.714
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Table 3. Test error comparison

MARE RMSE

ML KR MLKR SMLKR KR MLKR SMLKR

Ba 0.188 0.152 0.150 301.149 195.671 194.565
Cf 0.105 0.102 0.107 113.191 108.343 107.918
Fe 0.152 0.108 0.108 338.836 170.070 170.017
Gb 0.159 0.154 0.151 103.866 100.424 97.533
Hi 0.159 0.156 0.155 112.221 108.123 107.949
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Fig. 2. Forecasting results of KR, MLKR and SMLKR for Gb

Furthermore, SMLKR performs better than MLKR on almost all the datasets ex-
cept Cf. Therefore, we can conclude that the proposed algorithm is better than
KR and MLKR, it can learn a good metric and effectively remove noise leading to
dimension reduction as well.

4 Conclusion

In this paper, a sparse kernel regression algorithm is proposed by introducing
a mixed (2, 1)-norm regularization over the metric matrix M into the objective
function of kernel regression. The proposed algorithm is the first to combine
kernel regression and sparse metric learning. When applied to short-term traffic
flow forecasting, SMLKR gets the best forecasting results with comparison to
two related kernel regression algorithms. The promising results demonstrate that
SMLKR is an effective and better kernel regression algorithm for short-term
traffic flow forecasting.

As an effective approach for short-term traffic flow forecasting, kernel regres-
sion with sparse metric learning seems to be another improvement in kernel
regression. In the future, developing the potential of SMLKR in other domains
is our pursuit.
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Abstract. This paper is concentrated on the rate-dependent hysteresis
modeling and compensation for a piezoelectric actuator. A least squares
support vector machines (LS-SVM) model is proposed and trained by
introducing the current input value and input variation rate as the input
data set to formulate a one-to-one mapping. After demonstrating the
effectiveness of the presented model, a LS-SVM inverse model based
feedforward control combined with a PID feedback control is designed to
compensate the hysteresis nonlinearity. Simulation results show that the
hybrid scheme is superior to either of the stand-alone controllers, and
the rate-dependent hysteresis is suppressed to a negligible level, which
validate the effectiveness of the constructed controller. Owing to the
simple procedure, the proposed modeling and control approaches are
expected to be extended to other types of hysteretic systems as well.

Keywords: Piezoelectric actuator, hysteresis, least squares support
vector machines (LS-SVM), motion control.

1 Introduction

Piezoelectric actuators (PEA) are capable of positioning with subnanometer
resolution, rapid response, and large blocking force. Hence, they are popularly
applied in various micro/nano positioning systems such as scanning probe mi-
croscopes and optical fibre alignment devices. However, the PEA introduces
nonlinearity into the system mainly attributed to the piezoelectric hysteresis
and drift effects. The hysteresis is a nonlinear relationship between the applied
voltage and output displacement of the PEA and induces a severe open-loop po-
sitioning error of the system. Thus, the hysteresis has to be suppressed in high
precision applications.

Extensive works have been carried out for the compensation of the hysteretic
behaviors. Normally, the hysteresis is modeled with Preisach model [1], Prandtl-
Ishlinskii model [2], Duhem model [3], or Dahl model [4], etc.. Then, an inverse
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hysteresis model is constructed and utilized as an input shaper to cancel the
hysteresis effect. However, the hysteresis effect is dependant not only on the am-
plitude but also on the frequency of input signals. It is very difficult to precisely
capture the complicated rate-dependent hysteretic behavior. Most of the exist-
ing models employ a great number of parameters to describe the rate-dependent
hysteresis [5, 6], which blocks their use in real-time control as an adverse effect.
Recently, it has been shown that artificial neural networks (ANN) provide an
efficient way to model the nonlinear hysteresis [7, 8]. Nevertheless, ANN have
the problems of overfitting and sinking into local optima, which are their ma-
jor drawbacks for practical applications. Alternatively, support vector machines
(SVM) are a promising way to estimate nonlinear system models accurately.
Based on statistical learning theory and structural risk minimization principle,
the SVM approach is capable of modeling nonlinear systems by transforming
the regression problem into a convex quadratic programming (QP) problem and
then solving it with a QP solver. Compared to conventional ANN, SVM have
the major advantages of global optimization and higher generalization capability.
Furthermore, the least squares support vector machines (LS-SVM) utilize equal-
ity constraints instead of the inequality constraints as in the ordinary SVM.
Hence, it simplifies the regression to a problem that can be easily solved from a
set of linear equations [9].

Although SVM have been widely applied to solve classification and regression
problems [10], their application in the treatment of hysteresis is still limited. To
the best knowledge of the authors, only a few of previous works employ the SVM
techniques for the modeling and compensation of the hysteresis. Specifically, a
SVM-based feedforward controller combined with a self-tuning PID controller is
presented in [11] for the control of a PEA. However, details about how to model
the hysteresis are not given in the paper. Reference [12] proposes two SVM-based
hysteresis modeling methods by using the hysteresis curve direction as one of
input variables and adopting an improved version based on the autoregressive
algorithm, respectively. The superiority of SVM over ANN in term of modeling
accuracy is illustrated in the paper. Additionally, a LS-SVM model is proposed
in [13] for the hysteresis modeling by introducing an input sequences matrix to
transform the multi-valued mapping to one-to-one mapping. Besides, the hys-
teresis modeling and compensation of a humidity sensor is performed in [14] by
using two SVM and treating the increasing and decreasing curves separately.
The aforementioned three works formulate the one-to-one mapping by defining
the hysteresis loop directions firstly, which are not feasible especially when the
input signals are arbitrary and unknown beforehand. The rate-dependent hys-
teresis for a giant magnetostrictive actuator (GMA) is modeled in [15] based
on LS-SVM by using an NARX model to form a one-to-one mapping of the
hysteresis nonlinearity. However, hysteresis modeling is only carried out for the
major hysteresis loop of the GMA actuator, whereas no compensation issues are
mentioned.

In the current research, we propose a LS-SVM-based rate-dependent hysteresis
model for a PEA by introducing the current input value and input variation
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rate as one data set to construct a one-to-one mapping, which is much simpler
and more intuitive than the previous approaches. By adopting the RBF kernel
function, the LS-SVM model only has two parameters to be tuned. Moreover, the
hysteresis nonlinearity is suppressed by a hybrid control employing a LS-SVM
inverse model based feedforward controller combined with an incremental-type
PID feedback controller. The effectiveness of the presented modeling and control
approaches will be validated by a series of simulation studies.

2 LS-SVM-Based Hysteresis Modeling

The hysteresis modeling is treated as a nonlinear regression problem, and the LS-
SVM is employed to model the piezoelectric hysteresis for a PEA in this section.
Owing to the hysteresis effects, an input corresponds to multiple outputs. Thus,
one of the challenges lies in how to convert the one-to-many mapping into a one-
to-one mapping. In this research, both the current input and input variation rate
are introduced to form the input data set, which determines a unique output
value. By taking into account the input variation rate, the rate dependency of
the hysteretic behavior will be captured as well.

The hysteresis model can be identified by using the input voltage (U) and
voltage variation rate (U̇) as the inputs and the displacement (Y ) as the output
to train the LS-SVM as outlined below.

2.1 LS-SVM Modeling

LS-SVM maps the input data into a high dimensional feature space and con-
structs a linear regression function therein. The unknown hysteresis function is
approximated by the equation:

y(x) = wTϕ(x) + b (1)

with the given training data {xi, yi}N
i=1 where N represents the number of train-

ing data, xi = {Ui, U̇i} are the input data and yi = {Yi} are the output data.
Additionally, the weight vector w ∈ Rnh , the nonlinear mapping ϕ(·) : R2 → Rnh

denotes a map from the input space to a feature space, and b is the bias term.
The LS-SVM approach formulates the regression as an optimization problem:

min
w,b,e

J(w, e) =
1
2
wTw +

1
2
γ

N∑
i=1

e2
i (2)

subject to the equality constraints:

yi = wTϕ(xi) + b + ei, i = 1, 2, · · · , N. (3)

In order to solve the optimization problem, a Lagrangian function is defined:

L(w, b, e;α) = J(w, e) −
N∑

i=1

αi[wTϕ(xi) + b + ei − yi] (4)
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where αi are the Lagrange multipliers which can be either positive or negative
values. The conditions for optimality can be obtained by solving the following
partial derivatives:

∂L

∂w
= 0 → w =

N∑
i=1

αiϕ(xi) (5a)

∂L

∂b
= 0 →

N∑
i=1

αi = 0 (5b)

∂L

∂ei
= 0 → αi = γei, i = 1, 2, · · · , N (5c)

∂L

∂αi
= 0 → wTϕ(xi) + b + ei − yi = 0, i = 1, 2, · · · , N (5d)

which can be assembled in the matrix form by eliminating w and ei, i.e.,[
0 1T

s

1s Ω + γ−1I

]
︸ ︷︷ ︸

Φ

[
b
α

]
=

[
0
y

]
(6)

where 1s = [1, 1, · · · , 1]T , α = [α1, α2, · · · , αN ]T , y = [y1, y2, · · · , yN ]T , I is an
identity matrix, and Ωij = ϕ(xi)Tϕ(xj) = K(xi, xj) with i, j = 1, 2, · · · , N .

It is observed that the LS-SVM approach utilizes the equality constraints in-
stead of the inequality constraints as in the ordinary SVM. Thus, it simplifies the
regression to a problem that can be easily solved from a set of linear equations.
Assume that Φ is invertible, then b and α can be calculated from (6):[

b
α

]
= Φ−1

[
0
y

]
(7)

Thus, in view of (5), one can derive the solution for the regression problem:

y(x) =
N∑

i=1

αiK(x, xi) + b (8)

where K(x, xi) is the kernel function satisfying Mercer’s condition, xi is the
training data, and x denotes the new input hereafter.

By adopting the RBF kernel function:

K(x, xi) = exp
(
−‖x− xi‖2

σ2

)
(9)

with the width parameter σ > 0, the LS-SVM model for the hysteresis model
estimation becomes

Y (x) =
N∑

i=1

αi exp
(
−‖x− xi‖2

σ2

)
+ b. (10)

With the assigned regularization parameter γ and kernel parameter σ, the pur-
pose of the training process is to determine the values of αi and b.
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Fig. 1. (a) Input data sets for LS-SVM training; (b) output of the trained LS-SVM
hysteresis model

2.2 Simulation Studies

For simulation studies in the current research, a PEA hysteretic system is rep-
resented by the Bouc-Wen hysteresis model as follows [16]:

MŸ + BẎ + KY = K(DU −H) (11)
Ḣ = κDU̇ − β|U̇ |H − νU̇ |H | (12)

where M , B, K, and Y represent the mass, damping coefficient, stiffness, and
output displacement of the system, respectively; d is the piezoelectric coefficient,
U denotes the input voltage, and H indicates the hysteretic loop in terms of
displacement whose magnitude and shape are determined by parameters κ, β,
and ν. The following model parameters are selected [17]: M = 0.1040 kg, B =
1.8625×104 Ns/m, K = 1.9920×105 N/m, D = 1.8347×10−5 m/V, κ = 0.0786,
β = 0.0995, and ν = 0.0008.

For the training process, the input voltage signal [see Fig. 1(a)] is chosen as:

U(t) = 35e−0.05t[sin(4.0πe−0.23tt− 1.2) + 1]. (13)

The output data are depicted in Fig. 1(b) which are generated by the Bouc-
Wen simulation model. The input and output data sets are then adopted to
train the LS-SVM. The LS-SVM model parameters (γ and σ) are tuned in two
steps [18]. Specifically, the parameters are first determined using the coupled
simulated annealing optimization technique, and then finely tuned by resorting
to the simplex optimization procedure, which give γ = 3112.67 and σ = 3.23.
Once the training is completed, the LS-SVM model produces the output as
shown in Fig. 1(b), which exhibits that the LS-SVM model approximates the
actual output accurately.

To verify the generalization ability of the obtained model, the input signal
[see Fig. 2(a)] is selected as:

Ut(t) = 35e−0.07t[sin(3.8πe−0.22tt− 1.2) + 1]. (14)
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Fig. 2. (a) Input and output of the LS-SVM model; (b) output and output error of
the LS-SVM hysteresis model

The LS-SVM model outputs are depicted in Figs. 2(a) and (b). The model output
errorwith respect to the “actual” output (Yd) givenby theBouc-Wenmodel is illus-
trated in Fig. 2(b). Based on the displacement errorE = Yd−Y , the mean absolute
error (MAE) and root mean square error (RMSE) are defined as follows:

MAE =
1
Nt

Nt∑
i=1

|Ei| (15)

RMSE =

√√√√ 1
Nt

Nt∑
i=1

E2
i (16)

where Nt is the number of test data sets. It is observed that the MAE and RMSE
are 1.46 μm and 1.77 μm, which accounts for 1.2% and 1.4% of the overall motion
range, respectively. The results reveal the efficiency of the established LS-SVM
hysteresis model.

3 Controller Design and Verification

3.1 Controller Design

In order to construct a feedforward control to suppress the hysteresis, an inverse
hysteresis model can be identified by the same principle as shown in Section
2.1 with the selection of the displacement (Y ) and displacement rate (Ẏ ) as the
inputs and the corresponding voltage (U) as the output for the LS-SVM training.
Once trained offline, the LS-SVM inverse model provides online the feedforward
(FF) control effort UFF .

Due to the existence of the modeling error, the hysteresis cannot be completed
eliminated by the stand-alone inverse model-based FF compensator. Therefore, a
PID feedback (FB) control is employed to create a hybrid control as shown in Fig. 3.
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Fig. 3. Block diagram of the feedforward (FF) plus feedback (FB) hybrid controller
for a PEA system

By adopting an incremental PID algorithm, the overall control input can be
derived in the discretized form:

U(kT ) = UFF (kT ) + UFB(kT )
= UFF (kT ) + UFB(kT − T ) + Kp [E(kT ) − E(kT − T )] + Ki E(kT )

+Kd [E(kT ) − 2E(kT − T ) + E(kT − 2T )] (17)

where E represents the displacement error, T is the sampling time, k denotes the
index of time series, UFB(kT − T ) is the FB control command in the previous
time step, and the FF term UFF (kT ) is given by the LS-SVM inverse hysteresis
model. Additionally, Kp, Ki, and Kd are the positive control gains.

3.2 Controller Verification

The LS-SVM inverse hysteresis model is trained using the tuned parameters
γ = 294.23 and σ = 2.58. In addition, the sampling time interval is assigned as
0.01 s. The PID gains are chosen as Kp = 1.980, Ki = 2.585, and Kd = 0.015
by the trial and error approach. With the reference input as shown in Fig. 2(a),
the control results and tracking errors of the FF, FB, and FF+FB methods are
shown in Fig. 4(a). The effectiveness of the FF+FB hybrid control is evident
from the control results. Specifically, the FF+FB produces the MAE and RMSE
of 1.4% and 1.6%, respectively, which have been significantly improved by 73.0%
and 72.3% in comparison with the FF control results, and substantially enhanced
by 49.4% and 55.6% compared to the stand-alone FB outputs, respectively. As
a result, the hysteresis effects have been suppressed by the FF+FB approach
to a negligible level as indicated in Fig. 4(b). The control efforts of the three
methods are compared in Fig. 4(b). The RMS control inputs are 24.3 V, 22.3 V,
and 23.3 V, respectively, which means that the hybrid controller produces the
best results with the moderate magnitude of the control effort.

The results show that introducing the variation rate as an auxiliary input is
enough to establish a one-to-one mapping between the input and output data. In
the future, more training data sets will be employed to generate a more accurate
model. Experimental studies will be conducted to test the effectiveness of the
proposed control, and comparison studies will be performed with respect to other
hysteresis models.
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Fig. 4. (a) Control results and control errors of feedforward (FF), feedback (FB), and
FF+FB approaches; (b) hysteresis loops and control efforts produced by the three
controllers

4 Conclusions

The presented investigation shows that the rate-dependent hysteresis of a piezo-
electric actuator can be accurately modeled by the LS-SVM regression model.
By selecting the input variation rate as an auxiliary input variable, the multi-
valued mapping due to the hysteresis nonlinearity is converted into a one-to-one
mapping, and the LS-SVM is trained to capture the rate-dependent hysteretic
behavior. Simulation results demonstrate that the hybrid control using the LS-
SVM inverse model based feedforward control combined with a simple PID con-
trol is capable of suppressing the hysteresis nonlinearity effectively. Due to the
simple structure of the presented modeling and control framework, it can be eas-
ily extended to hysteretic systems driven by shape memory alloy or other types
of smart actuators as well.
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Abstract. In this paper, we propose a visualization model for a trained
ranking support vector machine. In addition, we also introduce a feature
selection method for the ranking support vector machine, and show visu-
ally each feature’s effect. Nomogram is a well-known visualization model
that graphically describes completely the model on a single graph. The
complexity of the visualization does not depend on the number of the
features but on the properties of the kernel. In order to represent the
effect of each feature on the log odds ratio on the nomograms, we use
probabilistic ranking support vector machines which map the support
vector machine outputs into a probabilistic sigmoid function whose pa-
rameters are trained by using cross-validation. The experiments show the
effectiveness of our proposal which helps the analysts study the effects
of predictive features.

Keywords: Nomogram, visualization, SVM, ranking SVM, probabilis-
tic ranking SVM.

1 Introduction

Ranking support vector machine (SVM) [1] is the most favorite ranking method
that was applied to various different applications [2], [3], [4]. Besides its various
advantages, ranking SVM still has difficulty in intuitively presenting the classi-
fier which is also the disadvantage of original SVM. Inspired by the nomogram
based visualization for SVMs of Jakulin [5], we also proposed a method which
intuitively presents the ranking SVM. In order to present a ranking SVM on
a nomogram, we must use the posterior probabilities of the output of ranking
SVM proposed in [6].

Feature selection recentlyhas gained increasing attention in thedataminingfield
with many applications such as text mining, bioinformatics, sensor networks, etc.
Feature selection selects a subset of relevant features, and also removes irrelevant
and redundant features from the data to build robust learningmodels. Many appli-
cations deal with a very large number of features (for example, tens or hundreds

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 94–102, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Nomogram Visualization with Ranking SVM 95

of thousands of features) and often comparably few training samples. There are
many potential benefits of feature selection: facilitating data visualization and
data understanding, reducing the measurement and storage requirements, re-
ducing training and utilization times, and defying the curse of dimensionality to
improve prediction performance [7].

Inspired by the nomogram-based recursive feature elimination (RFE) meth-
ods in classification problem [8], in this paper we propose a nomogram based
feature selection for a ranking problem. Nomogram-based RFE feature selection
is a method in which a feature is more important when the length of its line
in the nomogram representation is longer. Consequently, features having small
effect are removed by computing their length in the nomogram representation.
Because, features with small effect means noisy or redundant features which re-
duce the accuracy of the classifier. So our contribution are two-folds: firstly, we
propose a nomogram based visualization method for ranking SVMs. Secondly,
based on the nomogram presentation, we propose a nomogram-based RFE fea-
ture selection method for ranking problems.

The remaining of this paper is organized as follows: First, we briefly sum-
marize an approach for visualization of Support Vector Machines in section 2.
Following is the nomogram-based RFE algorithm to eliminate irrelevant and re-
dundant features which having the shortest length in the nomogram. In section
3, we propose a new approach that uses nomogram to visualize ranking Support
Vector Machine. And finally, experimental results and conclusions are described
in section 4 and section 5, respectively.

2 Nomogram Visualization in Classification Problem

2.1 Nomogram Visualization for SVM

In this section, we briefly discuss how to visualize a Support Vector Machines
(SVM) model with a method proposed by Jakulin in [5]. This approach employs
logistic regression to convert the distance from the separating hyperplane into
a probability, and then represents the effect of each predictive feature on the
log odds ratio scale as required for the nomogram. The main advantage of this
approach is that it captures a complete classification model in a single, easy-to-
interpret graph and for all common types of attributes and even for non-linear
SVM kernels.

Suppose that we have a training dataset D = {xi, yi}l
1 in which xi

1 is a feature
vector in n dimensional feature space 	n and yi ∈ {+1,−1} is the class label
of xi. The distance from a sample (xi, yi) to the separating hyperplane of the
SVM can be replaced by the decision function in the SVM as follows [9], [10]:

f(x) =
M∑
1

αiyiK(xi,x) + b (1)

1 We denote the bold variables as vectors or matrices.
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where M(< l) is the number of support vectors, αi > 0 are the Lagrange multi-
pliers for support vectors, b is bias, and K(xi,x) is called kernel function, that
returns a similarity between xi and x. Depending on positive or negative sign
of f(x), SVM classifier predicts the label of an unknown instance of the testing
dataset.

In the case of linearly decomposable kernel with respect to each feature, the
distance becomes:

f(x) =
n∑

k=1

[w]k + b (2)

and the weight vector is defined as:

[w]k =
M∑
i=1

αiyiK(xi,k,xk) (3)

where n is the number of features, xk is kth feature of sample x, and xi,k is kth
feature of ith support vector [5], [8].

According to the method presented in [11], the posterior probability that
the sample x belong to the positive class (in binary classification problem) is
calculated as:

P (y = +1|x) =
1

1 + exp(Af(x) + B)
(4)

The two parameters A and B are fitted using maximum likelihood estimation
from a training set and found by minimizing the negative log likelihood function
of the training data. To avoid overfitting, a cross-validation method is used.

After finding two parameters A and B, these symbols A, B, w and b can be
rewritten as the intercept β0 and the effect function β. The intercept β0 is a
constant delineating the prior probability in the absence of any features, and
the effect function β maps the value of a feature for the instance x into a point
score, and finally using the inverse link function maps these functions into the
outcome probability for an instance. The nomogram is based upon one effect
function for each feature. Each line in the nomogram corresponds to a single
feature, and a single effect function. The mapping is as follows:

β0 = Ab + B (5)

[β]k = A[w]k (6)

Then, the posterior probability (4) can be rewritten as:

P (y = +1|x) =
1

1 + exp(β0 +
n∑
1

[β]k)
(7)
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2.2 Nomogram-Based Recursive Feature Elimination (RFE)

Nomogram-based RFE algorithm [8] is implemented via 3-fold cross validations
(Please refer to [8] for more detail). Initially, the selected feature list is set to
null, the training subset of features (or surviving features) is the full set of
features. At each iteration, we run 3-fold cross validations to get the accuracy
with the current subset of the surviving features. This accuracy is compared to
the stored best accuracy (initially, best accuracy = 0). If the accuracy is greater,
the selected feature list is set to the current subset of the surviving features and
update the best accuracy to the current accuracy. At the end of each iteration,
we will eliminate one feature from the current subset of the surviving features.
The eliminated feature is the one having the shortest length in the nomogram.
To compute the length of each feature in the nomogram, we train an SVM model
with the restricted samples (the current subset of the surviving features) and
compute the nomogram representation from the SVM model. The next iteration
is implemented with the new subset of the surviving features. The loop ends
when the subset of the surviving features is empty.

3 Proposed Nomogram Visualization for Ranking SVM

Similarly to the drawing of a nomogram for a SVM that is summarized in section
2, we propose a nomogram visualization for a ranking SVM. Assume that there
is an input space X ∈ 	n, where n is the dimension. And assume that we are
given a ranking dataset (detailed in [6], [1], [4])

D′ = {x(1)
i − x

(2)
i , zi}k

1 , x
(1)
i , x

(2)
i ∈ X for i = 1, . . . , k (8)

And the score of the ranking SVM function is expressed as:

f(x) =
M∑
1

αiziK(x(1)
i − x(2)

i ,x) + b (9)

where M(< k) is the number of support vectors in the ranking problem. When
the kernel is linearly decomposable with respect to each feature, the distance
becomes:

f(x) =
n∑

k=1

[w]k + b (10)

and the weight vector is defined as:

[w]k =
M∑
i=1

αiziK(x(1)
i,k − x(2)

i,k ,xk) (11)

where n is the number of features, xk is kth feature of sample x, and (x(1)
i,k −x(2)

i,k )
is kth feature of ith support vector.
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The posterior probability that the sample (x(1) − x(2)) belong to the positive
class, it means that z = +1 or (x(1) > x(2)), is calculated as:

P (x(1) > x(2)|x(1),x(2)) =
1

1 + exp{Af(x(1) − x(2)) + B} (12)

The above posterior probability for an output of ranking SVM was proposed in
[6] which also discussed how to find the two parameters A and B.

Similarity with the nomogram visualization with SVM, we convert A, B, w
and b to the intercept β0 and the effect vector β, and use these parameters to
represent the line of the Log OR for the feature in a nomogram.

β0 = Ab + B (13)

[β]k = A[w]k (14)

Thus, the posterior probability (12) can be rewritten as:

P (x(1) > x(2)|x(1),x(2)) =
1

1 + exp(β0 +
n∑

k=1

[β]k)
(15)

Here, we also use the nomogram based-RFE algorithm as the same in section 2 to
eliminate irrelevant and redundant features which having the shortest length in
the nomogram. Instead of considering the input with the beginning classification
training set D, we run the algorithm with the ranking training set D′. It means
that, the training samples consist of all pairs (x(1)

i − x(2)
i ) with their class labels

zi. Other steps in the algorithm are invariant. The output is the best feature list.

4 Experimental Results

We evaluate the performance of ranking support vector machine visualization
on the OHSUMED datasets using LIBSVM [12] and VRIFA [13]. We test our
nomogram based method with two kernel: linear and the localized radial ba-
sic function (LRBF) kernel, that is a nonlinear kernel which was proposed by
B.H.Cho in [8]. Both of them are proved to be linearly decomposable kernels.

OHSUMED dataset is available in the LETOR package [14]. OHSUMED
dataset consists of 348,566 references and 106 queries, which is a subset of MED-
LINE, a database on medical publications. It extracted 25 features (10 from title,
10 from abstract, and 5 from title + abstract). There are totally 16,140 query-
document pairs with relevance judgments. The relevance degrees of documents
with respect to each query are judged on three levels: definitely relevant, possibly
relevant, or irrelevant.

Figure 1 shows the nomogram of a linear ranking SVM. We observe that the fea-
ture 20 has the widest range (thatmeans the most important), whereas the features
5, 6, 7, 15, 16, 17 have effect ranges equal to zero that means they contribute none to
the accuracy of the classifier. This is due to an observation that the values of those
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Fig. 1. Nomogram visualization with a linear ranking SVM without using feature se-
lection. The left panel shows the effect ranges of all features, with an input instance
indicated by a red circle. The right panel shows the probability map and the final
probability output with that respective instance.

features in the dataset are all equal to each other (because we only read a certain
query for ranking), so it makes the ranking dataset with all data pair x

(1)
i − x

(2)
i

at feature ith is equal to zero. Thus zi = 0, then [w]k in 3 ie equal to zero, so the
effect function in 6 is equal to zero. These features are called noisy features. The
result in Fig. 2 show only a subset of the selected features on the nomogram which
makes the largest accuracy of the cross-validation. Figure 2 shows the accuracies of
various feature selection. We observe that the best subset of feature has 17 features
(withhighest accuracy is 0.76302)whicharedrawnon the left panel.The eliminated
features are: 1, 2, 5, 6, 7, 10, 11, 15, 16 ,17, 22, and 23.

Fig. 2. Nomogram visualization with a LRBF ranking SVM without using feature
selection
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Figures 3 and 4 draw the respective nomogram of a LRBF kernel ranking
SVM. Fig. 3 draws the nomogram without feature selection. Fig. 4 draw the best
subset of selected features on the nomogram, and the the accuracies depending
on the various subsets of selected features. The eliminated features are: 2, 5, 6,
7, 15, 16 ,17, and 24.

Fig. 3. Nomogram visualization with a linear ranking SVM using feature selection.
The left panel shows the effect ranges of the best subset of selected features, with an
input instance indicated by a red circle. The top-right panel shows the probability map
and the final probability output with that respective instance. The bottom-right panel
shows the accuracy depending on the number of selected features. The best subset of
selected features is 13 which gives the highest accuracy = 0.7543.

Fig. 4. Nomogram visualization with a LBRF ranking SVM using feature selection.
The best subset of selected features is 17 which gives the highest accuracy = 0.7630.
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5 Conclusion

In this paper, we proposed a nomogram based method to effectively visualize
ranking support vector machines. Nomogram showed us its effectiveness in pre-
senting ranking SVM with many dimensions. More specifically, individual fea-
tures are drawn vertically in a nomogram. Each line on the nomogram shows the
effect of one feature. In order to draw this nomogram, calibrated ranking SVM
outputs [6] were used to calculate the effect function of features, and the ranking
SVM was re-written in the form of a generalized additive model. Through nomo-
gram presentation, analysts can have an insight and study the effects of predic-
tive factors. Moreover, using nomogram presentation, we proposed a nomogram
based-RFE algorithm for a ranking SVM. The proposed feature selection showed
its robustness in eliminating noisy and redundant features, then improved the
overall accuracy. In the experiment, we drew nomograms with both linear and
nonlinear (LRBF [8]) kernels which are both linearly decomposable.
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Abstract. New decision-making function for multi-class support vector domain 
description (SVDD) classifier using the conception of attraction force was pro-
posed in this paper. As for multi-class classification problems, multiple opti-
mized hyperspheres which described each class of dataset were constructed 
separately similar with in the preliminary SVDD. Then new decision-making 
function was proposed based on the parameters of the multi-class SVDD model 
with the conception of attraction force. Experimental results showed that the 
proposed decision-making function for multi-class SVDD classifier is more  
accurate than the decision-making function using local density degree.  

Keywords: Multi-class classification, support vector domain description model, 
decision-making function.  

1   Introduction 

Classical methods of pattern classification mainly include statistical testing methods 
(Kay, 1998; Nanda, 2001). In statistical methods, numbers of samples are usually 
assumed to be sufficiently large, and samples are assumed to be some known distribu-
tion. But samples are usually finite even deficient in practice, and distributions of 
samples are unknown. So new pattern classification methods such as neural networks, 
clustering method, support vector machine (SVM) are proposed in recent years 
(Bernhard, 1997; Gomez-Skarmeta, 1999; Martens, 2008; Pendharkar,2002). Data-
driven classification methods are based on statistical learning theories, and the disad-
vantages of statistical asymptotic assumption in classical statistical methods can be 
tided over. Minimization of experimental risk is used in neural networks predication 
method (Pendharkar, 2002). But several disadvantages of neural networks such as 
over-fitting phenomenon in learning process, lack of generalization ability, and local 
extremum values limit their practical applications (Cortes, 1995; Vapnik, 1998).  
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The complexity of models and experimental risk can be balanced effectively in SVM, 
and generalization ability of model is improved. Different improved SVM models 
have been investigated by researchers. Suykens proposed least squares SVM 
(Suykens, 1999). Zhang proposed wavelet SVM (Zhang, 2004). Doumpos proposed 
additive SVM (Doumpos, 2007). Jayadeva proposed Twin SVM (Jayadeva, 2007). 
Tax proposed support vector domain description (SVDD) model (Tax, 1999; Tax, 
2004). The SVDD model is mainly used to deal with the problem of one-class classi-
fication. And SVDD models can be used to describe dataset and detect outliers (Cho, 
2009; Guo, 2009; Lee, 2005; Tax, 1999; Tax, 2004). Some extended SVDD models 
were proposed by other researchers. Zhang proposed fuzzy SVDD (Zhang, 2009). Lee 
used domain described support vector classifier to deal with multi-classification prob-
lem (Lee, 2007). Hao proposed multisphere method in SVM (Hao, 2007). And as for 
multi-classification problem, each class of samples can be described by an optimized 
hypersphere. Using this ideal, multi-class SVDD model can describe multiple classes 
of dataset. After multi-class SVDD model is established by training the known data-
set, the radius and center of each hypersphere are achieved. As for a new sample, Mu 
used the nearest distance between it and the centers of hyperspheres to predict which 
class the new sample belongs to (Mu, 2009). This decision criterion only considered the 
center position of each class of dataset in feature space. Lee used density estimation 
method to construct a new decision-making function based on the squared radial  
distance decision criterion (Lee, 2007). His decision-making function considered the 
numbers of each class of samples. Inspired by the law of universal gravitation, new 
decision-making function was proposed in this paper. If each sample is assumed to be 
unit mass, the mass of each class of samples is proportion to the numbers of the class of 
samples and the volume of the hypersphere. And attraction force between the new sam-
ple and each class of samples is proportion to the mass of that class of samples and 
reciprocal proportion to the distance between the sample and the class of samples. When 
maximum attraction force was used as decision-making criterion, we proposed new 
decision-making function. The paper is organized as follows. The spirit of this paper is 
discussed in section one. The preliminary SVDD model to describe one class of dataset 
is analyzed in section two. And multi-class SVDD model is established in section three. 
New decision-making function based on parameters of multi-class SVDD model with 
the conception of attraction force is proposed in section four. Then experimental results 
are reported in section five. And conclusion is drawn in the last section.  

2   The Preliminary SVDD Classifier 

The objective of preliminary SVDD model is to describe target dataset by using  
hypersphere with minimized radius R in feature space (Tax, 2004).. And target  

samples are located in the optimized hypersphere. Let dataset { , 1, 2,..., }ix i N=
 
be 

training samples. The mathematic form of the model is minimizing the func-

tion 2( , )F R R=a with the constraint condition 
2 2

ix R− ≤a , and radius R and 

center a of the hypersphere is computed by optimal conditions. The SVDD model to 
describe one class of samples can be sued to classify of samples of two classes.  
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Consider dataset 1 1{( , )x y ， 2 2( , ) ...x y ，，( , )}N Nx y come from two different  

classes of samples, where N is the number of samples, and ix is the i th  

sample, 1iy = or 1− , 1, 2,...,i N= . Not losing generality, for samples ,ix
 

1, 2,...,i l= , let 1iy = , and for samples , 1, 2,...,ix i l l N= + + , let 1iy = − . In 

other words, { , 1, 2,..., }ix i l=
 
are positive samples, and { , 1,ix i l= +

 
2,..., }l N+ are negative samples or outliers. The positive samples  

1 2{ , ..., }lx x x
 
are assumed in hypersphere, and negative samples 1 2{ , ..., }l l Nx x x+ +  

are outside of hypersphere. If errors are allowed for in both classes of samples, lack 

variables 0,iξ
+ ≥

 
( 1, 2,..., );i l= 0,iξ

− ≥ ( 1, 2,..., )i l l N= + + are introduced in 

the objective function. The problem of minimizing the radius of the hypersphere can 
be formulated by the following quadratic programming with inequality constraints  

2
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1 1

2 2

2 2

min                                

: , 0, 1,2,... ;

      , 0, 1, 2,... .

l N

i i
i i l

i i i

i i i

R C C

sub x R i l

x R i l l N

ξ ξ

ξ ξ

ξ ξ

+ −

= = +

+ +

− −

⎧ + +⎪
⎪
⎨ − ≤ + ≥ =⎪
⎪ − ≥ − ≥ = + +⎩

∑ ∑
a

a
             

(1)

 

where the positive constant parameters 1C and 2C are penalty factors. They control the 
trade-off between the radius of hypersphere and the error. Using Lagrange multipliers 
algorithm for Eq.(1), we can draw the corresponding Lagrange function as 
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where 0, 0i iα β≥ ≥ are Lagrange multipliers , 1, 2,...,i N= . Lagrange function L  
should be minimized with respect to , , ,i iR ξ ξ+ −a , and maximized with respect 
to iα and iβ . The extremum conditions of Lagrange function L  are  

0, 0, 0, 0
i i

L L L L

R ξ ξ+ −

∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂a
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Resubstituting the solutions of Eq.(3) into Eq.(2) results in the dual form of the La-
grange optimization problem shown as following quadratic programming problem 
with inequality constraints 

1 1

1 1 1 1 1 1

1 1

1 2
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Let i i iyα α′ = , then we have 

1

1
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i
i

α
=

′ =∑
                                                              

(5)
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N

i i
i

xα
=

′=∑a
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Then Eq.(4) can be simplified as 
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The quadratic programming problem containing inequality constraints denoted as 
Eq.(7) can be solved using simple iterative multiplicative updating algorithm (Sha, 
2007). Then radius R and center a of the hypersphere are solved. And decision-
making function of SVDD to classify a new sample can be constructed. If a new 
sample x  is in the hypersphere, it belongs to the positive class. Otherwise it belongs 
to the negative one. So the decision function can be shown as 

2

1 1 1

( ) sgn( (( ) 2 ( )+ ( )))
N N N

i i i j i j
i i j

y x R x x x x x xα α α
= = =

′ ′ ′= − ⋅ − ⋅ ⋅∑ ∑∑
     

(8)
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In order to determine the decision function, R and center a of the hypersphere should 

be computed. In practice, only part of parameters iα are non-zero. The samples on the 

boundary of the hypersphere are support vectors. They determine radius R and  

center a of the hypersphere. We assume that kα is corresponding to some support 

vector kx . Then radius R of the hypersphere can be calculated as  

1

2

1 1 1

(( ) 2 ( )+ ( )))
N N N

k k i k k i j i j
i i j

R x x x x x xα α α
= = =

′ ′ ′= ⋅ − ⋅ ⋅∑ ∑∑
.

 
(9) 

 

And center a of the hypersphere can also be solved. If the inner product i jx x⋅
 
of ix

 
and jx

 
is substituted by kernel function ( , )i jK x x , the decision function is shown as 

2

1 1 1

( ) sgn( ( ( , ) 2 ( , )+ ( , )))
N N N

i i i j i j
i i j

y x R K x x K x x K x xα α α
= = =

′ ′ ′= − − ∑ ∑∑ . 
(10) 

Kernel functions are usually constructed by mapping function which satisfied positive 
kernel conditions (Vapnik, 1998).  

3   Multi-class SVDD Model 

Similar with binary SVDD model, sample dataset ( ) ( ) ( )
1 2{ , ... }

k

k k k
k ND x x x= ，， come 

from k th class of samples, where 1, 2,..., ,k K=  and K  denotes the number of 
classes, kN  is the number of the k th classes of samples. In multi-class SVDD 
model, each optimized hypersphere { , }k kR a  is constructed to describe each class of 
sample dataset , 1,2,...,kD k K= . And other classes of samples are out of this hy-
persphere. Slack variables ( ) 0,k

iξ ≥ ( 1, 2,..., )ki N= are introduced in objective 
function for each sample similar with in the preliminary SVDD model because errors 
are allowed for. So the problem of minimizing radius of K hyperspheres of multi-
class SVDD model can be formulated by the following quadratic programming with 
inequality constraints 
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where positive constant parameters kC are penalty factors. Using the Lagrange multi-
pliers algorithm, we can draw the corresponding Lagrange function as 
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where ( ) ( ) ( )
1 2, ,...,

k

k k k
Nα α α and ( ) ( ) ( )

1 2, ,...,
k

k k k
Nβ β β are Lagrange multipliers. Lagrange 

function L  should be minimized with respect to 1 2, ,..., ;KR R R 1 2, ,..., ;Ka a a  
( ) ( ) ( )

1 2, ,...,
k

k k k
Nξ ξ ξ , and maximized with respect to ( ) ( ) ( )

1 2, ,...,
k

k k k
Nα α α and 

( ) ( ) ( )
1 2, ,...,

k

k k k
Nβ β β . The extremum conditions of Lagrange function L give the  

following formula 
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(13) 

Resubstituting the solutions of Eq.(13) into Eq.(12), the dual form of the Lagrange 
optimization problem is shown as following quadratic programming problem contain-
ing inequality constraints  
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We noticed that parameters set ( ) ( ) ( )
1 2{ , ,..., }

k

k k k
Nα α α can be solved separately in 

Eq.(14). The optimization problem Eq.(14) can be separated into K  SVDDs with 

one-class samples such as Eq.(7). After computing parameters ( ) ( ) ( )
1 2{ , ,..., }

k

k k k
Nα α α  , 

radius kR and centers ka of each hypersphere are achieved. For example, let  

non-zero ( )kα is corresponding to some support vector ( )kx , kR and centers ka can be 

calculated. 
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4   New Decision-Making Function for Multi-class SVDD Model 

Dataset of one class was described by an optimized hypersphere in SVDD model. 
And as for multi-classification problem, we describe multiple classes of dataset by 
using multiple optimized hyperspheres. Several researchers have proposed different 
decision-making function for multi-class model based on different theories.  

After multi-class SVDD model is established by training the known dataset, the ra-
diuses kR and centers ka of each hypersphere are achieved, 1, 2,..., .k K=

 
Then as 

for a new sample x , the nearest distance between it and the centers of hyperspheres is 
used to predict which class the new sample belongs to (Mu, 2009). The decision-
making function is shown as  

1,2,...,
( ) arg min k

k K
y x x

=
= −a

.
 (15) 

This decision function only considers the center position of each class of samples. Lee 
used density estimation method to construct an improved decision-making function 
based on the squared radial distance decision criterion (Lee, 2007). The decision-
making function with the conception of local density degree is shown as 

22

1,2,...,
( ) arg max *( )k k k

k K
y x N R x

=
= − −a

.
 (16) 

This decision-making function considers the numbers of each class of dataset. But 
information about volume of the hypersphere is not included. The law of universal 
gravitation sees that attraction force between two objects is proportion to their masses 
and reciprocal proportion to their squared distance. Let each sample be unit mass such 

as 1m = , and we assume that the mass Mk  
of each class of sample datasets kD  is 

proportion to the numbers of the class of samples and the volume of the hypersphere 

such as Mk k kN V= , where kV  is volume of the hypersphere in d
 
dimension fea-

ture space. We know that volume of the hypersphere in d
 
dimension space 

is dV cR= ,where c is constant, and R is radius of the hypersphere. So attraction 

force between the new sample x
 
( )kx ≠ a

 
and each class of samples kD

 
can be 

simulated as 

2 2

M d
k k k

k

k k

m cN R
f

x x
= =

− −a a .
 

(17) 

When maximum attraction force is used as decision-making criterion, new decision-
making function based on parameters of the multi-class VDD model with the concep-
tion of attraction force can be shown as  

21,2,...,
( ) arg max

d
k k

k K
k

N R
y x

x=
=

−a .
 

(18) 
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From Eq.(18) we see that if the effects
2

/dR x −a of two classes of samples are 

equal, the new sample x
 
belongs to the class with larger number of the samples.  

 
This is consistent with the density estimation thehod(Lee, 2007). If the effects 

2
/kN x −a of two classes of samples are equal, the new sample x belongs to the 

class with larger volume of hypersphere. We also notice if the effects of volume of 

the hypersphere kV  and the number of the samples kN are not considered, Eq.(18) 

will be equivalent with Eq.(15). 

5   Experimental Results  

Several groups of experiments on different datasets have been performed. Follows 
report experimental results on some classical datasets. Table 1 lists these datasets. The 
first dataset is artificial dataset produced by four Gauss distribution functions in two 
dimension space (Heijden, 2004). The second dataset is artificial dataset produced by 
using three-spiral functions. The third datasets named Heart and Sonar datasets are 
from the UCI Machine Learning Repository (Asuncion, 2007). Each dataset is divided 
into training subset and predicting subset.  

Table 1. Description of datasets used in experiments 

No
. 

Name Classes Dimension Total 
samples 

No. of 
training 

No. of 
predicting 

1 Four-Gauss 4 2 600 300 200 

2 Three-spiral 3 2 300 150 150 

3 Iris 3 4 150 90 60 

We compare the improvement on the accuracy of predication of the proposed deci-
sion-making function Eq.(18) over the decision-making functions Eq.(15) and 
Eq.(16). Because same numerical algorithm named iterative multiplicative updating 
algorithm is used to compute the parameters of models in training stages, and dimen-
sions of matrixes used in the algorithm are the numbers of samples, running times of 
algorithms are equal approximately. So running-times are not listed. Gauss function 

2
( , ) exp( / )K x y x y δ= − −  is used as kernel function. Experiments with differ-

ent penalty factor parameter and different parameterδ of kernel function have been 
performed.  

Table two shows a group of average correct predicting rate (ACPR) using the pre-
liminary-SVDD (P-SVDD) and multi-class SVDD (M-SVDD) models together with 
different decision-making function when parameters ( , )C δ  are (0.25,1) after ten 

times experiments. In table two, ACPR is the average ratio of numbers of correct 
classified samples to numbers of the total predicated samples after ten times  
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experimens.Table two illustrates that the proposed decision-making function Eq.(18) 
improves ACPR compared with decision-making function Eq.(15) and Eq(16).  

Table 2. ACPR of multiple classification problem(%) 

6   Conclusion 

As for multi-class classification problems, multiple optimized hyperspheres which 
describe each class of dataset are constructed separately, and multi-class SVDD 
model is established. Then new decision-making function is proposed based on pa-
rameters of the multi-class SVDD model in which effects of three aspects named 
center positions of hyperspheres, volumes of hyperspheres and numbers of the sam-
ples are all considered. Experimental results show that the proposed decision-making 
function for multi-class SVDD classifier is more accurate than the decision-making 
function using density estimation method under same experiment conditions.  
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Abstract. According to peculiarity of cellular manufacturing, the method of 
drawing control chart was proposal. In the modeling of structure for patterns 
recognition of control chart in cellular manufacturing, the mixture kernel func-
tion was proposed, and one-against-one algorithm multi-class classification 
support vector machine was applied, and genetic algorithm was used to opti-
mize the parameters of SVM. The simulation results show that the performance 
of mixture kernel is superior to a single common kernel, and it can recognize 
each pattern of the control chart accurately, and it is superior to probabilistic 
neural network and wavelet probabilistic neural network in the aggregate classi-
fication rate, type I error, type II error, and also has such advantages as simple 
structure, quick convergence, which can be used in control chart patterns  
recognition in cellular manufacturing. 

Keywords: Cellular Manufacturing; Support Vector Machines (SVM); Control 
Chart; Patterns Recognition. 

1   Introduction 

The control chart as the important tools of quality management and quality control, 
how is application on the cellular manufacturing, there are many problem which now 
confront us. The traditional statistical control chart was designed and applied in the 
production manner of large batch. But the production manner of middle or small 
batch in cellular manufacturing, it is difficult to apply traditional statistical control 
chart as it is short of quality character data. In the study of quality control in cellular 
manufacturing, Shahrukh A(1999) [1] suggested the general method of quality con-
trol. On the middle and small batch quality control, Salti M(1994)[2] reviewed the use 
of SPC in batch production, Jianwen W(2002)[3] Rui M(2005)[4] suggested the gen-
eral method of quality control in middle and small batch. Fajun W(2002)[5] Chong 
X(2000)[6] discussed the applications of group technique in the control chart. 

As to intelligence statistical process control, the key problem is how to recognize 
the patterns of control chart. In recent years, much attention has been paid to the de-
velopment of control chart recognition which is based on neural networks. The key 
factors for their wide use in the field of control chart recognition are the properties 
they have. These properties are the ability of learning and generalizing, nonlinear 
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mapping, parallelism of computation and vitality (Pharm, D. T. and  
E. Oztemel(1992)[7], Hwarng, H. B. and N. F. Hubele (1993) [8], Smith, A. E.(1994) 

[9], Pham, D. T. and E. Oztemel(1994) [10], Cheng C. S.(1995) [11], Ruey-shiang 
Guh. (2003) [12]).Because BP neural network has the characteristics of simple  
structure, stabilized working attitude, strong and easy to realize generalizing ability, 
early research has been concentrated on the structure of BP neural network mainly. 
Nevertheless, BP neural network also has such characteristics as slow training, more 
time consuming and worse adaptability. So some researchers had to recognize the 
control chart patters by improving the BP neural network or other neural networks 
(Cheng S. I. and C. A. Aw. (1996) [13], Cheng C. S. (1997) [14], AI-Ghanim, A. 
(1997) [15], A. S. Anagun (1998) [16], Li Mengqing and Chen Zhixiang(2000) [17], 
Le Qinghong, Gao Xinghai(2004) [18]). 

Support vector machines (SVM) which introduced by Vapnik [19,20] is widely used 
to classification and nonlinear function estimation, such as pattern recognize and regres-
sion analysis and feature abstraction. In this paper, a method of SVM was presented, 
and it was used to pattern recognition of control chart in cellular manufacturing. 

2   Statistical Process Control in Cellular Manufacturing 

2.1   X Control Chart in Cellular Manufacturing 

Supposing the process of cellular manufacturing produced K kind of different specifi-

cation parts for some time, it should be taken ),,2,1( Kkmn k =×  parts from kth 

product batch. On the other hand, the number of time node is km  in each product 

batch, and it was taken number n parts in series. The kth product batch sample data 
shows as following 
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Supposing each product batch has same distribution, that is normal distribution, there 

is ),(~ 2)(
kk

k
ij Nx σμ  . 

In order to draw control chart in one chart with the different distribution quality 
data which obtained from process, normalization method should be used to standard 
each group data in their own way. When it is down, the every group has same scale 
space, and yield N(0,1) distribution. 
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Where 2, kk σμ  are unknown parameter, its estimator can be computed by (2) and (3) 
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2.2   Control Chart Patterns and Its Description 

The control chart patterns for this research can be divided into six types: one is nor-
mal pattern, other are the abnormal pattern, which are included in cyclic pattern, in-
creasing trend, decreasing trend, upward shift and downward shift. This is illustrated 
in Fig. 1. 

(a) Normal pattern (b) Cyclic pattern 

(c) Increasing trend (d) Decreasing trend 

(e)Upward shift (f)Downward shift 

Fig. 1. Control chart patterns 

The mixed patterns are mixed by two or more different abnormal pattern. It was 
divided into eight mixed patterns for this research: increasing trend & cyclic pattern, 
decreasing trend & cyclic pattern, upward shift & cyclic pattern, downward shift & 
cyclic pattern, upward shift & increasing trend, upward shift & decreasing trend, 
downward shift & increasing trend, downward shift & decreasing trend. 

The following expressions is used to generate the training and testing data sets, which 
is expressed in a general form and includes the process and two noise components: 

Y(t)=μ+r(t)+S(t) (4) 
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Where Y(t) is the sample value at time t, μ is the mean value of the process variable 
being monitored, r(t) is a random normal noise or variation, and S(t) is a special dis-
turbance due to some assignable causes. 

1) Normal patterns: S(t)=0 
2) Cyclic patterns: S(t)= )/2sin( Tta π  

Where a is amplitude of cyclic variations, T is period of a cycle. 

3) Increasing or decreasing trends: S(t)= ±gt 

Where g is magnitude of the gradient of the trend, if S(t)>0, it expresses increasing 
trends, otherwise it is decreasing trends. 

4) Upward or downward shifts: S(t)= ±ks 

Where k is parameter determining the shift position, s is magnitude of the shift, if 
S(t)>0, it expresses upward trend, otherwise it is downward trend. 

5) Increasing or decreasing trends & cyclic pattern: S(t)= ±gt +asin(2πt/T). 
6) Upward or downward shift & cyclic pattern: S(t)= ±ks +asin(2πt/T). 
7) Increasing or decreasing trends & shift: S(t)= ±gt±ks. 

3   Basic Method of Control Chart Patterns Recognition 

3.1   Basic Flow of Control Chart Patterns Recognition 

The general framework is illustrated in Fig. 2. The steps are as follows: 

1) Generated training data by formula (4). 
2) Treated the training data using normalization method. 
3) Inputted training data to train the M-SVMs 
4) Obtained the process data 
5) Pretreated the training data using normalization method. 
6) Fed the pretreated process data to M-SVMs for control chart patterns recognition. 

Obtained 
process 

data

Normalization 
data

Patterns 
recognition

Output 
patterns

Train
 M-SVMs

Generated 
training 

data

Normalization 
data

 

Fig. 2. Basic flow of control chart patterns recognition 

3.2   Patterns Recognition Algorithm Choice 

Support vector machines (SVMs), which were originally designed for binary classifica-
tions, are an excellent tool for machine learning. For the multiclass classifications, they 
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are usually converted into binary ones before they can be used to classify the examples. 
Among the existing multi-class SVM methods, such as one-against-all, one-against-one, 
directed acyclic graph, est., the one-against-one method is one of the most suitable 
methods for practical use. In this paper, the method of one-against-one algorithm was 
applied for multiclass classifications of control chart patterns recognition. 

3.3   Kernel Function Choice 

SVM is a kernel based approach, which allows the use of polynomial and RBF ker-
nels and others that satisfy Mercer's condition [19,20].  

(1) Polynomial kernel 

q
jiji xxxxK ]1)[(),( +•=  (5) 

(2) RBF kernel 

}exp{),(
2

2

δ
ji

ji

xx
xxK

−
−=  

(6) 

(3) Perceptron kernel 

))(tanh(),( cxxvxxK jiji +•=  (7) 

Polynomial kernel (a global kernel) shows better extrapolation abilities at lower orders 
of the degrees, but requires higher orders of degrees for good interpolation. On the other 
hand, the RBF kernel (a local kernel) has good interpolation abilities, but fails to  
provide longer range extrapolation. Preferably one wants to combine the ’good’ charac-
teristics of two kernels. Therefore, we will investigate whether the advantages of poly-
nomial and RBF kernels can be combined by using mixtures [21]. There are several 
ways of mixing kernels. What is important though, is that the resulting kernel must be 
an admissible kernel. One way to guarantee that the mixed kernel is admissible, is to use 

a convex combination of the two kernels: gaussanpolymix KKK )1( αα −+= , where the 

optimal mixing coefficient α has to be determined. The value of α is a constant scalar 
)1,0(∈α . The mixed kernel, which is satisfied Mercer’s condition, can be use for 

SVM, and it is shown that using mixtures of kernels can result in having both good 
interpolation and extrapolation abilities.  

4   Simulation and Results 

4.1   Training Sample and Testing Sample 

In this work, the number of input data contained 32 point used to input data from 32 
consecutive sample data point in a control chart. The training sample and test sample 
was generated by formula (4), we takes u=0 and σ=1. Each pattern of training sample 
was generated 100, and total numbers were 1400. Each pattern of testing sample was 
generated 50, and total numbers were 700. The generated training and testing samples 
was normalized by formula (1), and it was the input vectors of M-SVMs.  
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The output layer consists of 14 patterns, each one used for one of control chart pat-
terns. The out value shows in Tab. 1. 

Table 1. Goal value of SVM output layer 

Pattern Output value
Pattern 1 Normal 1 

Pattern 2 Cyclic pattern 2 
Pattern 3 Increasing trend 3 

Pattern 4 Decreasing trend 4 
Pattern 5 Upward shift 5 

Pattern 6 Downward shift 6 
Pattern 7 Increasing+cyclic 7 

Pattern 8 Decreasing+cyclic 8 
Pattern 9 Upward+cyclic 9 

Pattern 10 Downward+cyclic 10 
Pattern 11 Upward+increasing 11 

Pattern 12 Upward+decreasing 12 
Pattern 13 Downward+increasing 13 

Pattern 14 Downward+decreasing 14 

4.2   SVM Parameters Optimal 

In order to optimal parameter (C, α, q,δ2) of mixed-kernel function SVM, the method 
of the real-code genetic algorithm was used. The optimal results is (2000，0.08, 1,0.6). 

4.3   Simulation Results 

4.3.1   Compare Recognition Results with Single Kernel Function 
The several models will be built to test their patterns recognition performance. One 
model was mixed-kernel function with the parameter(C=2000, α=0.08, q=1,δ2=0.6). 
The next was RBF kernel function with the parameter(C=2000,δ2=0.6). The third was 
polynomial kernel function with the parameter(C=2000, q=1). Then we can compare 
their performance in aggregate recognition rate, type I error rate and type II error rate. 

The test results shows in Tab.2. 

Table 2. Compare recognition results with single kernel function 

Recongition rates(%) 

Pattern 
Kernel 

function 

type I 
error 
rate 
(%) 

type II 
error 
rate 
(%) 

aggregate 
recognition 

rate 
(%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

polynomial 8 0 97.85 92 100 96 98 100 98 100 100 100 100 100 96 98 100 
RBF 6 0 98.57 94 100 98 98 100 98 100 100 100 100 100 94 98 100 

mixed 0 0 99.71 100 100 100 100 100 100 100 100 100 100 100 98 100 100 

From the patterns recognition results, the aggregate recognition rate and each 
patterns recognition rate in mixed-kernel function are obviously highe than those in 



 Intelligence Statistical Process Control in Cellular Manufacturing Based on SVM 119 

RBF kernel function and polynomial kernel function, and the type I error rate in 
mixed-kernel function are obviously lower than those in RBF kernel function and 
polynomial kernel function. It shows the method of mixed-kernel function have many 
advantages, such as high accuracy and reliability in control chart patterns recognition. 

4.3.2   Compare Recongition Results with Neural Network 
In order to compare with different models, three type models of control chart patterns 
recognition were designed.  

Model 1 (PNN): applied probabilistic neural network to patterns recognition, that 
the input data was put immediately into probabilistic neural network for patterns rec-
ognition.. 

Model 2 (WPNN)：input data was decomposed to the 3rd lever by wavelet trans-
form. The wavelet transform function was coif5. The features vector combined the 
approximations decomposed at the 3rd lever with energy of each lever’s detail coeffi-
cient, and it was fed to PNN for patterns recognition. 

Model 3(M-SVMs): applied M-SVMs to patterns recognition with the mixed-
kernel function. 

The test results shows in Tab.3. 

Table 3. Each model test recognition results 

Recongition rates(%) 

Pattern 
Kernel 

function 

type I 
error 
rate 
(%) 

type II 
error 
rate 
(%) 

aggregate 
recognition 

rate 
(%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

PNN 78 0 85.28 22 100 78 80 64 60 100 100 100 100 100 90 100 100 

WPNN 4 0.15 98.86 96 100 100 94 100 100 100 100 100 100 100 94 100 100 
M-SVMs 0 0 99.71 100 100 100 100 100 100 100 100 100 100 100 98 100 100 

From the patterns recognition results, the aggregate recognition rate in WPNN ans 
M-SVMs are obviously highe than those in PNN. The aggregate recognition rate, type 
I error rate and type II error rate in M-SVMs are superior to those in WPNN. 

5   Conclusions 

In this work, the SVM with mixed-kernel function was applied in the pattern recogni-
tion of control chart in cellular manufacturing. The simulation results show it have 
many advantages, such as quicker training and better recognition performance than 
single kernel function SVM, ANN and PNN. From the simulation results, we can also 
come to the conclusion as follows: 

(1) It is feasible that genetic algorithm is applied parameter optimal in the SVM. 
(2) It is feasible that SVM with mixed-kernel function is applied in the patterns 

recognition of control chart in cellular manufacturing. The results shows it have high 
aggregate classification rate, low type I error and type II error.  
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Abstract. Mapping way plays a significant role in Support Vector Machine 
(SVM). An appropriate mapping can make data distribution in higher dimen-
sional space easily separable. In this paper Morlet-RBF kernel model is pro-
posed. That is, Morlet wavelet kernel is firstly used to transform data, then Radial 
Basis Function (RBF)is used to map the already transformed data into another 
higher space. And particle swarm optimization (PSO) is applied to find best  
parameters in the new kernel. Morlet-RBF kernel is compared with Mexican-Hat 
wavelet kernel and RBF kernel. Experimental results show the feasibility and 
validity of this new mapping way in classification of medical images. 

Keywords: Wavelet kernel, Morlet-Rbf kernel, PSO, Medical Images. 

1   Introduction 

Recently Support Vector Machine are widely used in pattern recognition[1][2][3]. 
Since wavelet technique is promise for classification[4], many researches are focused 
on combination of wavelet theory with SVM. H.Y.Liu applied Mexican-Hat wavelet to 
the kernel of SVM to classify analogue module of signals. M.H.Banki etc.[5] also used 
Mexican-Hat wavelet kernel SVM to classify hyperspectral images, and the result 
showed higher overall accuracy. L.Zhang, etc.[6] put forward Morlet wavelet kernel 
SVM and applied this model to the recognition of 1-D images of radar target. Their 
results verify that the training speed of the new SVM model is slightly faster than the 
Gaussian kernel SVM, at the same time, it has higher classification accuracy. 

This paper is organized as follows. First, wavelet kernel is described. Second, 
Morlet-RBF SVM model is introduced in detail. Third, some experimental results are 
given. At last, conclusions are drawed. 

2   Wavelet Kernel 

Kernels admissible in SVM must satisfy Mercer’s condition[5], which is showed in 
theorem 1,2 :  
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Theorem 1: Any symmetric function '( , )K x x in the input space can represent an 

inner product in feature space if  

' ' ' 2( , ) ( ) ( ) 0,  0 for which ( ) .K x x g x g x dxdx g g dξ ξ≥ ∀ ≠ ∞∫∫ ∫ ≺
      

(1) 

Where x and 'x  are feature vectors; g(x) is square-integrable function. Then 
'( , )K x x can be written as  

' 1( , ) ( ) ( ) .K x x x xφ φ= ⋅
                                         

(2)
 

Theorem 2: function '( , )K x x  can be written as the form of '( )K x x−  if and only if 

its Fourier transform   

/2 ( ( ))( ) (2 ) e ( ) 0.N j w x
KF w K x dxπ − − ⋅= ≥∫                              

(3) 

Two kinds of wavelet kernels must satisfy the condition in theorem 3. 

Theorem 3: Let ( )xΨ is a mother wavelet, and ', Nx x R∈ , then dot-product 

wavelet kernels are 

' '
'

1

( , ) ( ) ( ).
N

i i i i

i i i

x c x c
K x x

a a=

− −= Ψ Ψ∏
                               

(4)
 

And translation-invariant wavelet kernels are  

'
'

1

( , ) ( ).
N

i i

i i

x x
K x x

a=

−= Ψ∏
                                         

(5)

 

There are several kinds of wavelet SVM have been proposed. Li Zhang etc.[6] made 

use of Morlet wavelet function in the construction of kernel, 

2

2
1

( )
( , ) (cos(1.75 )exp( )).

2

i ji jN
k kk k

i j
k k k

x xx x
K x x

a a=

−−= × −∏
           

(6)

 

Where ,i j
k kx x are elements of feature vectors ix and jx . 

3   Morlet-Rbf Kernel Support Vector Machine 

In recent years, wavelet transform is one of the most popular transformation techniques 
in signals processing and it has been successfully applied in signal approximation and 
classification[4][8]. 
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A function ( )xΨ  is mother wavelet function if it is a square-integrable function 

and its Fourier transform ( )wΨ satisfies, 

2( )
.

R

w
dw

w

Ψ
< ∞∫

                                                 

(7)

 

Wavelet base function , ( )a xτΨ is generated by dilation and translation of a mother 

wavelet function ( )xΨ , 

1

2
, ( ) ( ), 0, , .a

x
x a a a R

aτ
τ τ− −Ψ = Ψ ≠ ∈

                                

(8) 

Where a is dilation factor, τ is a factor of time. 
As for a N dimensional vector, multidimensional mother wavelet function is shown 

as (9), 

1

( ) ( ).
N

n i
i

x x
=

Ψ = Ψ∏
                                                    

(9)

 

We know that data in input space which is non-linear separable are mapped into a 
higher dimensional space by a mapping function and this function is hidden. Some-
times one time of mapping may not make data linearly separable or easily separable. So 
twice mapping can be used. But the two kernels should be similar so that the overall 
transform process is consistent. In the series of wavelet functions, Morlet and Gaussian 
wavelets are similar in distribution where they both have peaks and troughs as shown in 
Fig.1and Fig.2. 

  

Fig.1. Morlet wavelet Fig.2. Gaussian wavelet 

In this paper, Morlet wavelet kernel and Gaussian kernel are used to map data into 

higher feature space. 1K and 2K represent Morlet kernel and Gaussian kernel respec-

tively. Since mapping function can’t be explicitly expressed, but only in the form of 
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product, therefore 1K is used firstly and 2K  is used secondly. Then quadratic pro-

gramming problem is changed as follow: 

~

1 1 1

1

1
min ( , )

2

. .  0,  0 , 1,..., .

l l l

i j i j i j j
i j j

l

i i i
i

y y K x x

s t y C i l

α
α α α

α α

= = =

=

−

= ≤ ≤ =
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∑
                       

(10)
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The discriminant function is 

~
* *

1

( ) sgn( ( , ) ).
nSV

i i i
i

f x y K x x bα
=

= +∑
                                

(12)
 

4   Evaluation Indexes for Classifier 

There are several evaluation methods of classifier. Consider crossing matrix as shown 
in Table 1, No. of actual positive samples is P=TP+FN, No. of actual negative samples 
is N=FP+TN. 

Table 1. Crossing matrix 

Actual value Predicted positive examples(+1) Predicted negative examples(-1) 

Positive examples(+1) Correct positive examples(TP) False negative examples(FN) 

Negative examples(-1) False positive examples(FP) Correct negative examples(TN) 

(1) Accuracy, it is defined by the proportion of correct predicted samples in total 
testing samples, which is computed as follow:  

.
TP TN

accuracy
P N

+=
+                                           (13)
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(2) Precision, it is the ratio of correct predicted positive samples to all the samples 
which are classified as positive as the follow formula: 

.
TP

precision
TP FP

=
+                                            (14) 

(3) Recall, it is the proportion of correct predicted positive sample in total positive 

samples: 

.
TP

recall
P

=
                                                     (15)

 

(4) 1F  value, it is the harmonic mean of precision and recall: 

1

2
1 1

F

precision recall

=
+

                                       (16)

 

5   Experimental Results and Analysis 

Our dataset come from library and [10], there are eight groups of data for binary clas-
sification and four groups of data for regression. Data for classification are liver cyst, 
diabetes, heart disease, liver cancer, fatty liver, breast cancer. And dimension of data 
feature vectors is 28, 8, 13, 6, 28, 10 respectively. The dataset for classification are 
randomly divided into two parts for generating training and testing data which are 
shown in Table 2. In this paper, parameters for kernel in SVM are selected by PSO. 
RBF-SVM, Mexican-Hat SVM and Morlet-RBF SVM are used to classify those data. 
The classification codes are programmed by C++ language, and the codes of drawing 
are programmed by Matlab. The whole program is run at the platform of Windows. 

Table 2. No. of training and testing samples for classification 

Group of samples No. of training samples No.of testing samples 

Liver cyst-normal 53 24 
Diabetes-normal 574 194 

Heart disease-normal 170 100 

Liver cancer-normal 92 41 

Fatty liver-non fatty liver 79 21 

Breast cancer-normal 263 34 
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The parameters C and σ  for classification using RBF are shown in Table 3. 

Table 3. Parameters for classification using RBF kernel 

Group of samples C σ  
Liver cyst-normal 100.0 0.70 
Diabetes-normal 485.0 0.01 
Heart disease-normal 112.5 0.01 
Liver cancer-normal 200.0 0.80 
Fatty liver-non fatty liver 200.0 0.002 
Breast cancer-normal 714.162 2.167 

Parameters C ,σ and a for classification using Mexican-Hat SVM are listed in  

Table 4. 

Table 4. Parameters for classification using Mexican-Hat kernel 

Group of samples C σ  a 
Liver cyst-normal 150.0 1.0 1.0 
Diabetes-normal 1000.0 2.868 71.46 
Heart disease-normal 1000.0 100.0 97.89 
Liver cancer-normal 200.0 0.01 2.5 
Fatty liver-non fatty liver 740.77 61.209 62.042 
Breast cancer-normal 137.725 78.780 44.718 

Parameters C , σ and a for classification using Morlet-RBF SVM are shown in 

Table 5. 

Table 5. Parameters for classification using Morlet-RBF kernel 

Group of samples C σ  a 
Liver cyst-normal 840.0 2.384 37.59 
Diabetes-normal 16.57 100.0 43.95 
Heart disease-normal 0.1 100.0 8.80 
Liver cancer-normal 913.397 22.939 31.038 
Fatty liver-non fatty liver 423.17 1.658 86.415 
Breast cancer-normal 13.893 15.783 90.220 

Finally, the classification results are shown in Fig. 3-8. 
 



 Morlet-RBF SVM Model for Medical Images Classification 127 

  

Fig. 3. Result of liver cyst Fig. 4. Result of diabetes 

 
 

Fig. 5. Result of heart disease 

 

Fig. 6. Result of liver cancer 

 

  

Fig. 7. Result of fatty liver 

 

Fig. 8. Result of breast cancer 
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From the results, we can see that in Fig.3, Morlet-RBF has higher accuracy than the 

other two kernels, but lower in other evaluation indexes; In Fig.4, Mexican-Hat SVM 

does worst in accuracy, and Morlet-RBF has better result from all of assessment  

indexes. In Fig.5, Morlet-RBF has higher results than that of Mexican-Hat, but has 

lower precision than RBF SVM; In Fig.6, the three kernels have the same results; In 

Fig.7, the Mexican-Hat has the worst result, RBF and Morlet-RBF kernels have the 

same results. In Fig.8, Morlet-RBF is lower than RBF in each evaluation, but higher 

than Mexican-Hat model. By and large, Morlet-RBF gets better performance than the 

other two kernels. Except in the liver cyst data, where Morlet-RBF only achieves 

higher accuracy but lower precision, recall and F1 value, because many positive 

samples are false predicted. When one time of mapping can’t get good result, the 

proposed two mapping model can be used to make data in higher dimension separated 

easily. 

6   Conclusion 

As discussed above, data in input space are mapped two times using Morel-RBF. This 

model of SVM has a overall better performance although there is lower result in an 

individual example. Moreover , PSO algorithm optimizes kernel parameters, avoiding 

triviality of random selection method. However, how to make PSO algorithm faster and 

how to apply Morlet-RBF to multiclass SVM are our research contents in the future. 
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Abstract. Sequencing batch reactor (SBR) processes, a typical batch process, 
due to nonlinear and unavailability of direct on-line quality measurements, it is 
difficult for on-line quality control. A MKPCA-LSSVM quality prediction 
method is proposed for dedicating to reveal the nonlinearly relationship be-
tween process variables and final COD of effluent for SBR batch process. 
Three-way batch data of the SBR process are unfolded batch-wisely, and then 
nonlinear PCA is used to capture the nonlinear characteristics within the batch 
processes and obtain irrelevant variables of un-fold data as input of LS-SVM. 
Compared with the models of LS-SVM, the result obtained by the proposed 
quality prediction approach shows better estimation accuracy and is more  
extendable. The COD prediction of sewage disposing effluent quality can be 
helpful to optimal control of the wastewater treatment process, and it has some 
practical worthiness． 

Keywords: quality prediction, batch process, MKPCA, LSSVM, SBR. 

1   Introduction 

Sequencing batch reactor (SBR) processes have demonstrated their efficiency and 
flexibility in the treatment of wastewaters with high concentrations of nutrients 
(nitrogen, phosphorous) and toxic compounds from domestic and industrial sources. 
However, due to the process high dimensionality, complexity, batch-to-batch 
variation, the final quality are usually available at the end of the batch, which is 
analysed (mostly offline) after the batch completion. It is difficult for on-line quality 
control[1~3].  

Several statistical modeling methods namely, principal component analysis (PCA) 
and partial least squares (PLS), which perform dimensionality reduction and 
regression, respectively, are commonly used in batch process modeling and 
monitoring[4]. In industrial processes where severe nonlinear correlations exist 
among process variables, linear statistical techniques are not very effective in 
reducing the process data dimensions. If a linear PCA is used in these processes, a 
large number of PCs are required to explain sufficient data variance. For nonlinearly 
correlated data, the results from linear PCA may be inadequate because minor 
components can contain important information on nonlinearity. By discarding the 
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minor components, this important information nonlinearity is lost. However, if these 
minor components are kept, the linear methods may require too much information to 
be useful. For the process quality prediction with nonlinearity, nonlinear statistical 
techniques are more appropriate. 

The kernel principal component analysis (KPCA)is an emerging technique to 
address the nonlinear problems on the basis of PCA. The basic idea of KPCA is to 
map the input space into a feature space first via a nonlinear map and then to extract 
the principal component in that feature space. KPCA extends standard PCA to 
nonlinear data distributions. Using KPCA can capture the high-ordered nonlinear 
principal components in input data space[5~7]. 

In addition, a significant drawback of the PLS is that it is a linear regression 
formalism and thus makes poor predictions when relationships between process 
inputs and outputs are nonlinear. However, an artificial neural network (ANN) had 
the capability to handle the modeling problems associated with nonlinear static or 
dynamic behaviors. The NNPLS method [8]differs from the direct ANN approach in 
that, the input–output datas are not directly used to train the NN, but are preprocessed 
by the PLS outer transform. Jia bo Zhu et al (1998) [3] proposed a time-delay neural 
network (TDNN) modeling method for predicting the treatment result. Suykens and 
Vandewalle (1999) presented LS-SVM method, in which the objective function 
includes an additional sum squared error term. LS-SVM is one of the methods by 
which the statistical learning theory can be introduced to practical application. It has 
its own advantages in solving the pattern recognition problem with small samples, 
nonlinearity, and higher dimension. And it can be easily introduced into learning 
problem such as function estimation[9]. 

Thus, in this paper, for SBR batch process, a MKPCA-LSSVM quality prediction 
method is proposed for dedicating to reveal the nonlinear relationship between 
process variables and COD of effluent qualities, and to build a quality prediction 
model. Firstly, three-way batch data of the SBR processes are unfolded batch-wisely, 
and KPCA is used to capture the nonlinear characteristics of batch-to-batch and 
variables, and can obtain irrelevant variables of un-fold data as inputs of model, COD 
measurements are taken as output of model. Then using LS-SVM to establish a 
correlated regression model between the featured principal components and COD 
variable. Finally, a nonlinear model is developed for COD prediction. Compared with 
the LS-SVM models, the result obtained by the proposed approach shows better 
estimation accuracy and is more extendable.  

2   Process Description 

The Sequencing Batch Reactor (SBR) is an activated sludge process in which one or 
more tanks are filled with wastewater and then operate in a batch mode. The influent 
and effluent from each tank are discontinuously allowing for the full treatment to take 
place in the same tank. If only one reaction tank is used an equalization tank is 
required in front of the reaction tank in order to store the wastewater during the period 
in which the reaction tank does not receive any inlet. After the treatment in the SBR 
system the water is discharged[1~2]. 
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The SBR under study has a unique cyclic batch operation, usually with five well-
defined phases:fill(anoxic and aerated), react, settle, decant and idle as shown figure 1. 

 
 
 
 Anoxic Fill Aerated  Fill React Settle Decant Idle 

sewage sewage sewage air
sludge 

effluent 

 

Fig. 1. Flow chart of Sequencing Batch Reactor Operation 

In fill phase wastewater is admitted to the reaction tank. The phase can last until 
the tank is full or it can be time controlled. During the fill phase the reaction tank can 
allow for nitrifcation or denitrifcation. During react phase nitrifcation takes place.The 
phase is time controlled, however it can be omitted  during high hydraulic loading. In 
Settle phase sedimentation of the sludge takes place. The phase is time controlled. If 
needed hauling of excess sludge can be initiated in the middle of the phase. In decant 
phase the treated water is decanted through a decanter. The phase is controlled by the 
capacity of the decanter. Hauling of excess sludge takes occurs throughout the entire 
phase. In idle phase there is no inlet and outlet and no aeration. The phase is time 
controlled, however, it can be omitted during high hydraulic loading. Hauling of 
excess sludge is performed throughout the entire phase. 

The SBR goal is mainly nitrogen removal. Nitrogen removal has been in two steps:  
Nitrification : the ammonia is converted to nitrate by aerobic microorganisms and 
Denitrification : nitrate is converted to nitrogen gas under anoxic conditions by anoxic 
microorganisms.  

3   MKPCA-LSSVM Modeling  

3.1   Kernel Principal Component Analysis (KPCA) 

Kernel principal components analysis (KPCA) is a nonlinear PCA method introduced 
by Sholkopf et al. [6],an it is a method of non-linear feature extraction. The non-
linearity is introduced via a mapping of the data from the input space to a feature 
space. Linear PCA is then performed in the feature space, this can be expressed solely 
in terms of dot products in the feature space. Hence, the non-linear mapping need not 
be explicitly constructed, but can be specified by defining the form of the dot products 
in terms of a Mercer Kernel function. We concentrate on the case of a Gaussian 
kernel function. For the reasons of brevity, the detailed mathematical formulation of 
the KPCA can refer to documents [6]. 

3.2   LS-SVM ( Least Square-Support Vector Machine) 

LS-SVM follow the approach of a primal-dual optimization formulation, where this 
technique makes use of a so-called feature space where the inputs have been  
transformed by means of a (possibly infinite dimensional) nonlinear mapping. This is 
converted to the dual space by means of Mercer’s theorem and the use of a positive 
definite kernel, without computing explicitly the mapping. It has its own advantages 
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in solving the pattern recognition problem with small samples, nonlinearity, and 
higher dimension. For the reasons of brevity, the detailed mathematical formulation of 
the KPCA can refer to documents [9].  

3.3   MKPCA  LS-SVM Modeling 

The LS-SVM—likewise most ANNs—performs poorly if the network’s input space 
contains redundant inputs, which unnecessarily increase the dimensionality of the 
input space and thus the size of the training set. So, KPCA is performed on the input 
variable data for overcoming this difficulty, thereby achieving the dimensionality  
reduction of the input space and extracting the nonlinear structure of input. 

In this paper, a nonlinear batch irrelevant input variables of SBR is extracted on the 
basis of the MKPCA. Input data and output data are gathered from SBR Batch proc-
esses, input data forms a three-dimensional data matrix, ( )I J K× ×X , where for 

batch process applications, I  denotes cycle number, J  denotes input variable  
number, and K  denotes the number of samples within a cycle, output data forms a 
two-dimensional data matrix, 1( )Y I J× , where for batch process applications, I  de-

notes cycle number, 1J  denotes output variable number. MKPCA needs to unfold this 

matrix in order to obtain a two-way matrix, and then perform KPCA to extract the 
nonlinear structure of the unfolded matrix. That is the ( )I J K× ×X  is unfolded, with 

each of the K time slabs concatenated to produce a two-way array, ( )new I JK×X . 

Multiway KPCA is equivalent to performing an KPCA on ( )new I JK×X and un-fold 

data is proposed to extract the nonlinear local covariance information of process vari-
able and get uncorrelated variables as input variables of model. LS-SVM model is 
established using uncorrelated input variables data and output variables data.  

The data used in this research were collected from a pilot-scale SBR system. The 
operation cycles of the process are fixed. Each batch spend 8 hours of the time, it has 
392 samples. Each cycle of the pilot plant SBR was based on alternating anoxic and 
aerobic reaction, where the filling only occurred during anoxic stages. The anoxic 
period was longer than aerobic period for increasing denitrification. Total filling 
volume was 200 liters, divided in six feeding parts during the cycle of 8 hours. The 
settling and draw spend of 1 hour and 0.46 hours respectively. Ten measurement vari-
ables can be measured online during the SBR run, including Influent Flow(Q), Tur-
bidity of sewage, Suspended Substance of sewage(SS), Dissolved Oxygen(DO), Time 
of aerobic filter(T), Pondus Hydrogenii(PH),Oxidation Redution Potential (ORP), 
Mixed Liquor Suspended Solids(MLSS), temperature of aerobic filter(Kelvin� K), SS 
of effluent, output quality variable is Chemical Oxygen Demand(COD).. Data for 
building the model is 60 batches, which is arranged in a three-way ar-
ray )3921060( ××X , Data for testing the model is 30 batches, which is arranged in a 

three-way array )3921030( ××X . 

4   Experimental Results 

In this research, the Gaussian kernel is selected  for MKPCA and for the mapping to a 
high-dimensional feature space since it is found to be appropriate to capture the 
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nonlinearity of the considered system by testing the prediction performance of a range 
of kernel functions.Twenty PCs were retained by the broken stick rule explaining 
83.8% of the variation in the feature space. These PCs  are input variables of LSSVM. 

For illustration, the results of the LS-SVM and MKPCA-LSSVM output prediction 
for 30 batches are shown in Fig. 2. In Fig. 2，the solid line with circle symbols  
indicates the COD measurements, and the solid line with triangle symbols plots the 
corresponding COD prediction using LSSVM model and the solid line with square 
symbols plots the corresponding COD prediction using MKPCA LSSVM model.  

It is clear that the predictions of two methods are much closer to the COD meas-
urements. But the COD predicted by MKPCA-LSSVM model can be more exactly 
predicted. An analysis suggests that the method proposed can extract the nonlinear 
local covariance information of process variable and get uncorrelated variables as 
input variables of model. 

0 5 10 15 20 25 30
9

10

11

12

13

14

15

16

17

C
O

D

batch number

 Measurement
 MKPCA-LSSVM
 LSSVM

 

Fig. 2. Comparison of LSSVM and MKPCA LSSVM based prediction of COD using data 

5   Conclusion 

In this paper, a hybrid strategy integrating MKPCA and LSSVM has been presented 
for COD prediction of SBR batch processes. The proposed MKPCA-LSSVM strategy 
uses MKPCA for reducing the dimensionality of the process input space and can ef-
fectively be capture the nonlinear relations among the batch operations of the 
SBR� and the first few principal component scores that explain a large amount of 
variance in the input data are used to develop a LSSVM model correlating inputs and 
outputs. Principal advantages of LSSVM-based models are (i) ability to approximate 
nonlinear input–output relationships efficiently; (ii) a model can be constructed exclu-
sively from the historic process input–output data. The results obtained demonstrate 
that the proposed methodology is an attractive formalism for COD prediction of SBR 
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batch processes and the predicted precision of the proposed model is superior to the 
LSSVM model. The results have demonstrated the effectiveness of the proposed 
method. The COD prediction of sewage disposing effluent quality can be helpful to 
optimal control of the wastewater treatment process，and it has a certain practical 
worthiness． 
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A Fixed-Point EM Algorithm for Straight Line

Detection
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Sciences and LMAM, Peking University, Beijing, 100871, China

Abstract. Straight line detection is a basic technique in image pro-
cessing and pattern recognition. It has been investigated from different
aspects, but is still very challenging in practical applications. In this pa-
per, based on the finite mixture model and under the EM framework, we
maximize the Q-function by differentiation and construct a fixed-point
EM algorithm for straight line detection. It is demonstrated by the ex-
periments that this proposed algorithm can effectively detect the straight
lines from a digital image or dataset.

Keywords: Straight line detection, Expectation Maximization (EM),
Fixed-Point iteration.

1 Introduction

Straight line detection is a basic technique in image processing and pattern recog-
nition. In fact, it is a process of locating the straight lines from a digital image or
2-dimensional dataset and there are a variety of learning algorithms for straight
line detection. In the literature, the Hough transform (HT) [1] and its extensions
[2] are important tools for straight line detection. Generally, the Hough trans-
form suffers from heavy computational cost. In order to alleviate this weakness,
Random Hough Transform (RHT) [3] and the constrained Hough Transform [4]
were further established. From the other aspects, there have also established many
learning algorithms for straight line or curve detection (e.g., [5]-[8]).

The local principal component analysis (PCA) algorithm [9]-[12], as an ex-
tension of PCA [13], is often used for straight line detection. It implements the
least mean square error reconstruction (LMSER) principle [14] and detects the
straight lines via minimizing the following cost function [11]:

E =
K∑

k=1

Ek =
K∑

k=1

∑
xt∈Lk

d2(xt,Lk) (1)

where xt is the t-th sample point belonging to the line Lk and d(xt,Lk) denotes
the Euclidean distance from the data point xt to the line Lk. Actually, the line
Lk can be considered as a special subset of points. On the other hand, the line Lk
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can be also regarded as a cluster. Actually, E reaches its minimum when the k-th
straight line is the first principal component vector of the cluster Lk. Therefore,
the solution of Lk is just the same as that of the local principal component
analysis method.

Each xt is assigned to a straight line by the classification membership function
given by

I(xt, k) =
{

1 if k = argmin d(xt,Lj), j = 1, · · · ,K
0 otherwise. (2)

In fact, xt belongs to Lk if and only if I(xt, k) = 1. It means that the distance
from xt to Lk is the smallest one. Thus, we can update Lk by the following
rule: Lk is the first principal component of the subset Lk. Recently, the RPCL
algorithm [15] was combined with the local PCA algorithm for straight line
detection [6].

In this paper, we utilize the finite mixture model for straight line detection.
It is not so easy to solve the maximum solution of the log-likelihood function di-
rectly. So, we resort to the Expectation Maximization (EM) [16] and analyze the
Q-function. By the differentiation of the Q-function, we construct a fixed-point
EM algorithm for straight line detection. It is demonstrated by the experiments
that the proposed fixed-point EM algorithm can detect the straight lines from a
datatet effectively.

The rest of the paper is organized as follows. We begin to introduce the finite
mixture model for straight line detection in Section 2. We then derive and present
our fixed-point EM algorithm in Section 3. The experimental results are further
demonstrated in Section 4. Finally, a brief conclusion is made in Section 5.

2 The Finite Mixture Model for Straight Line Detection

Here, it is assumed that the number of straight lines in our learning model
is equal to the number of actual straight lines in the image or dataset. For
simplicity, we only focus on the 2-dimensional situation, but the derivation and
analysis can be easily generalized to the situations with higher dimensions. Let
the dataset be denoted by S = {xt}N

t=1 and the point xt = (xt1, xt2)T . Then, a
point x = (x1, x2)T on a straight line Lk satisfies:

x1 −mk1

�k1
=

x2 −mk2

�k2
, (3)

where m = (mk1,mk2)T is a specific point on the line Lk, and

�k1
2 + �k2

2 = 1. (4)

Thus, the distance from the sample point xt to the line Lk can be computed by

d2(xt,Lk) = d2(xt, �k,mk) (5)
= |xt −mk|2 − |(xt −mk, �k)|2 (6)
= (xt1 −mk1)2 + (xt2 −mk2)2 − [(xt1 −mk1)�k1 + (xt2 −mk2)�k2]2
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where (xt −mk, �k) denotes the inner product of xt −mk and �k.
In this situation, we can establish the following finite mixture model:

q(x|ΘK) =
K∑

j=1

πjq(x|�j ,mj , σj), (7)

where

q(x|�j ,mj , σj) =
1√

2πσj

exp{−d2(xt, �j,mj)
2σ2

j

}, (8)

‖�j‖2 = �j1
2 + �j2

2 = 1, j = 1, . . . ,K, (9)
K∑

j=1

πj = 1. (10)

In this mixture model, πi represents the mixing proportion. d2(xt, �k,mk) de-
notes the distance between the sample point xt and the line with parameters �k

and mk. σi can be considered as the noise level of the dataset. That is, when σi

is large, the noise level is high.
As it is a finite mixture model, we are difficult to find the maximum of its log-

likelihood function directly. So, we resort to the EM algorithm [16]. Under the
EM framework, we introduce a missing variable j and construct the Q-function:

Q(Θh
K , Θh+1

K ) =
1

N

N∑
t=1

K∑
j=1

p(j|xt, Θ
h
K) ln q(xt|j, Θh+1

K ) (11)

=
1

N

N∑
t=1

K∑
j=1

πh
j q(xt|	h

j , mh
j , σh

j )∑K
i=1 πh

i q(xt|	h
j , mh

j , σh
j )

ln[πh+1
j q(xt|	h+1

j , mh+1
j , σh+1

j )]

=
1

N

N∑
t=1

K∑
j=1

pj(t) ln[πh+1
j q(xt|	h+1

j , mh+1
j , σh+1

j )] (12)

where pj(t) = πh
j q(xt|�h

j ,mh
j ,σh

j )∑
K
i=1 πh

i q(xt|�h
j ,mh

j ,σh
j )

. For simplicity, the Q-function is denoted by

Q =
1
N

N∑
t=1

K∑
j=1

pj(t) ln[πjq(xt|�j ,mj, σj)]. (13)

3 Proposed Fixed-Point EM Algorithm

In the EM algorithm, it is key to solve the maximum of the Q-function. We now
analyze the Q-function and try to establish a fixed-point learning algorithm to
solve the maximum of Q-function.

Since
∑K

j=1 πj = 1 and �j1
2 + �j2

2 = 1 for any j, we introduce the Lagrange
multiplier β, λj(j = 1, . . . ,K) and the Lagrange function

L(ΘK , β, λ1, . . . , λK) = Q + β(1 −
K∑

j=1

πj) +
K∑

j=1

λj(1 − �2j1 − �2j2). (14)
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By differentiation, we have the following derivatives:

∂L

∂πj
=

1
N

K∑
j=1

1
πj

pj(t) − β, (15)

∂L

∂β
= 1 −

K∑
j=1

πj , (16)

∂L

∂λj
= 1 − l2j1 − l2j2, (17)

∂L

∂�j1
=

1
N

K∑
j=1

pj(t)
1
σ2

j

{−(xt1 −mj1)[(xt1 −mj1)�j1 + (xt2 −mj2)�j2]},(18)

∂L

∂mj1
=

1
N

K∑
j=1

pj(t)
1
σ2

j

{−(xt1 −mj1) + �j1(xt −mj , �j)}, (19)

∂L

∂σj
=

1
N

K∑
j=1

pj(t){ 1
σj

+
1
σ3

j

d2(xt, �j ,mj)}. (20)

By letting these derivatives given by Eqs. (15)-(20) be 0, we have

β =
1
N

K∑
j=1

N∑
t=1

pj(t), (21)

and further obtain the following fixed-point learning algorithm:

mh+1
j =

∑
t
pj(t)xt∑

t
pj(t)

, (22)

πh+1
j =

1
N

∑
t

pj(t), (23)

(σh+1
j )2 =

∑
t
pj(t)d2(xt, �k,mk)∑

t
pj(t)

, (24)

and �j is the eigenvector of Σj =
∑N

j=1 pj(t)(xt −mj)(xt −mj)T corresponding
to the largest eigenvalue.

Based on the above fixed-point learning algorithm, we can establish the fixed-
point EM algorithm which consists of the following three steps:

(i) Initialization of the parameters.
(ii) Update mj , πj , σ

2
j by Eqs. (22)-(24). Update �j by the eigenvector of

Σj =
∑N

j=1 pj(t)(xt − mj)(xt − mj)T corresponding to the largest eigen-
value.

(iii) Repeat Step (ii) until the values of parameters are unchanged.
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4 Experiments Results

In this section, several simulation experiments are carried out to demonstrate
the performance of the fixed-point EM algorithm for straight line detection. We
consider the binary images or datasets of four straight lines with three kinds of
noises. The true parameters of the finite mixture models for the three datasets
are listed in Table 1. Obviously, the noise levels in S2 and S3 are much higher
than that of S1.

In our experiments, we set the number of straight lines to be the true number
of straight lines, i.e., K = 4. We implement the fixed-point EM algorithm on each
dataset, with the parameters being initialized by the random Hough transform
[3]. The algorithm stops if |Q(Θnew

K ) − Q(Θold
K )| < 10−6. The results of the

straight line detection as well as the obtained Q-function are shown in Fig.
1-3, respectively. The learned parameters of the finite mixture model on each
experiment are listed in Table. 2.

Table 1. The true parameters of the finite mixture models for the datasets S1,S2 and
S3, respectively

Sample set πi 	i mi σi

S1 0.25 (-0.7071,0.7071) (1,1) 0.01
0.25 (-0.7071,0.7071) (-1,1) 0.01
0.25 (-0.7071,0.7071) (-1,-1) 0.01
0.25 (0.7071,0.7071) (1,-1) 0.01

S2 0.25 (-0.7071,0.7071) (1,1) 0.2
0.25 (-0.7071,0.7071) (-1,1) 0.2
0.25 (-0.7071,0.7071) (-1,-1 0.2
0.25 (0.7071,0.7071) (1,-1) 0.2

S3 0.25 (-0.7071,0.7071 (1,1) 0.3
0.25 (-0.7071,0.7071 (-1,1) 0.3
0.25 (-0.7071,0.7071 (-1,-1 0.3
0.25 (0.7071,0.7071) (1,-1) 0.3

It can be observed from the figures in Fig. 1 that the Q-function increases
during the iterations and finally reaches its maximum. Meanwhile, the straight
lines are accurately located in each case. We can also observe that the Q-function
increases sharply at the beginning of the iterations. The reason may be that the
parameters are initialized by the random Hough transform, being only some
rough estimates of the parameters. As the initialization of the parameters be-
comes better, the curve of the Q-function will be more smooth.

From these experimental results, we are sure that our proposed fixed-point
EM algorithm can effectively detect the straight lines in all the three datasets
with different noise levels. Moreover, it is shown in Fig. 3-(c) that the fixed-point
EM algorithm also performs well on the strongly noisy situation.

It is pity that the number of straight lines in the learning mixture model
should be known in advance. But this information may be not available in
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Fig. 1. (a). The experimental result of straight line detection on the dataset S1, (b).
The sketch of the Q-function on the iterations
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Fig. 2. (a). The experimental result of straight line detection on the dataset S2, (b).
The sketch of the Q-function on the iterations
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Fig. 3. (a). The experimental result of straight line detection on the dataset S3, (b).
The sketch of the Q-function on the iterations
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Table 2. The learned parameters of the finite mixture models on the three datasets
S1,S2 and S3, respectively

Sample set πi 	i mi σi

S1 0.2498 (-0.7084,0.7058) (0.9715,1.0290) 0.0103
0.2489 (-0.7084,0.7058) (-0.9695,1.0302) 0.0083
0.2502 (-0.7077,0.7065) (-0.9516,-1.0491) 0.0089
0.2511 (0.7067,0.7075) (1.0120,-0.9871) 0.0097

S2 0.2617 (0.7101,-0.7041) (1.0192,0.9542) 0.1726
0.2421 (0.7119, 0.7023) (-1.0138,0.9835) 0.1812
0.2380 (0.7210,-0.6930) (-0.9720,-1.0285) 0.1760
0.2582 (-0.7157,-0.6984) (0.9778,-0.9707) 0.2138

S3 0.2386 (-0.7908,0.6120) (0.8080,1.0306) 0.2695
0.2557 (-0.7459,-0.6661) (-0.8380,1.0016) 0.2826
0.2335 (0.7296,-0.6839) (-0.8854,-0.9882) 0.2867
0.2722 (-0.7323,-0.6810) (0.8837,-0.9461) 0.3386

practical applications. In order to overcome this weakness, we can introduce
the Bayesian Ying-Yang (BYY) harmony learning system [17]-[18] and the en-
tropy penalized automated model selection mechanism [19] into the fixed-point
learning algorithm.

5 Conclusions

We have investigated the straight line detection problem from the finite mix-
ture modeling. Since it is difficulty to solve the maximum of the log-likelihood
function, we resort to the EM algorithm and analyze the Q-function. By differen-
tiation, we derive a fixed-point learning procedure for maximizing the Q-function
and thus construct a fixed-point EM algorithm for straight line detection. It is
demonstrated by the experiments that the proposed fixed-point EM algorithm
can effectively locate the straight lines in a dataset.
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Abstract. While there are many methods in classifier ensemble, there is not any 
method which uses weighting in class level. Random Forest which uses deci-
sion trees for problem solving is the base of our proposed ensemble. In this 
work, we propose a weightening based classifier ensemble method in class 
level. The proposed method is like Random Forest method in employing deci-
sion tree and neural networks as classifiers, and differs from Random Forest in 
employing a weight vector per classifier. For evaluating the proposed weighting 
method, both ensemble of decision tree and neural networks classifiers are ap-
plied in experimental results. Main presumption of this method is that the reli-
ability of the predictions of each classifier differs among classes. The proposed 
ensemble methods were tested on a huge Persian data set of handwritten digits 
and have improvements in comparison with competitors. 

Keywords: Classifier Ensembles, Random Forest, Bagging, Class  
Weightening. 

1   Introduction 

Ensemble algorithms train multiple base classifiers and then combine their predic-
tions. Generalization ability of an ensemble could be significantly better than a single 
classifier for difficult problems [4].  

In [11] and [12], the relationship between the ensemble and its component artificial 
neural networks (ANN) has been analyzed from the context of both regression and 
classification, which has revealed that it may be better to ensemble many instead of 
all of the ANNs at hand. They trained a number of ANNs at first. Then random 
weights were assigned to those networks and genetic algorithm (GA) was employed 
to evolve the weights so that they can characterize to some extent the fitness of the 
ANNs in constituting an ensemble. Finally some ANNs were selected based on the 
evolved weights to make up the ensemble. 

In contrary, assuming that the reliability of the classifiers differs among classes, an 
approach based on dynamic selection of the classifiers by taking into account their 
individual votes, was proposed in [5]. In particular, a subset of the predictions of each 
classifier was taken into account during weighted majority voting. Others were  
considered as unreliable and were not used during combination. 
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In general, an ensemble is built in two steps: (a) generating multiple base classifi-
ers and then (b) combining their predictions. AdaBoost [8] and Bagging [1] are two 
famous methods in this field. 

AdaBoost sequentially generates a series of base classifiers where the training in-
stances wrongly predicted by a base classifier will play more important role in the 
training of its subsequent classifier. Bagging generates many samples from the origi-
nal training set via bootstrap sampling [7] and then trains a base classifier from each 
of these samples, whose predictions are combined via majority voting. A kind of 
bagging method is Random Forest, where many decision trees (DT) are trained over 
distinguished perspectives of training dataset [2]. 

An ANN has to be configured to be able to produce the desired set of outputs, 
given an arbitrary set of inputs. Various methods of setting the strength of connec-
tions exist. One way is to set the weights explicitly, using a prior knowledge. Another 
way is to 'train' the ANN, feeding it by teaching patterns and then letting it change its 
weights according to some learning rule [10]. In this paper an MLP neural network is 
used as classifier.  

GA which is one of the optimization paradigms, bases on natural process [3]. A 
GA can be considered as a composition of three essential elements: first, a set of po-
tential solutions called individuals or chromosomes that will evolve during a number 
of iterations (generations). This set of solutions is also called population. Second, an 
evaluation mechanism (fitness function) that allows assessing the quality or fitness of 
each individual of the population. And third, an evolution procedure that is based on 
some "genetic" operators such as selection, crossover and mutation. The crossover 
takes two individuals to produce two new individuals.  

The quality of the individuals is assessed with a fitness function. The result is a real 
value for each individual. The best individuals will survive and are allowed to pro-
duce new individuals.  

A common and obvious way for classifying an instance is from a sequence of ques-
tions, so that next question is asked with regard to this current question. Using trees 
are the most common representation way for theses question-answers. DT is used to 
create a classifier ensemble, expansively. Also, they are used for the application of 
data mining and clustering. Their functionality is understandable for human. Besides, 
unlike other methods such as ANN, they are very quick. It means their learning phase 
is quicker than other methods [6].  

In the next section, we explain the proposed ensemble method in more details. 

2   Proposed Method 

Let us to assume that total number of obtained classifiers is denoted by M. Let the total 
number of labels (classes) be denoted by N. The solution of the selection problem en-
coded in the form of a chromosome which has N×M genes. First N genes belong to the 
first classifier. Second subsequent N genes belong to the second classifier. i-th N genes 
belong to the i-th classifier. The encoding of a chromosome is illustrated in Figure 1, for 
N=10. The genes of each chromosome have real data type. In the exemplary chromo-
some depicted in Figure 1, the first classifier is not allowed to vote for only fourth, fifth, 
eighth and tenth classes, And it is allowed to vote for first, second, third, sixth, seventh 
and ninth classes with coefficients 0.5, 0.6, 0.6, 1, 1 and 1 respectively. 
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Fig. 1. Encoding of a chromosome of used GA, provided the number of classes is N=10 in the 
problem 

Let us denote a chromosome by b, an array of N×M numbers belonging to closed 
interval [0,1]. In the Figure 1, b(i) is the effect weight of k-th classifier to vote for 
selecting j-th class, where k and j is calculated according to the equation 1 and 2 re-
spectively. 

Because of non-normalization of the raw b chromosome, we first convert it to a  
normalized version according to the following equation. We denote this normalized 
version of chromosome b by nb. 

where k and j are the same in the equation 1 and 2. The nb is employed in calculating 
confidences of classifier ensemble per classes for a data item x. These confidences are 
obtained according to the following equation. 

where k and j are the same in the equation 1 and 2, c is length of chromosome, i.e. 
N×M, and Ci,j(x) is considered as output of i-th classifier for j-th class for data item x. 

Now we define the following terms for the following usage. Normalization of an 
array of a number is defined as following equation. 

Label is a pre-assigned category of data item x. It is denoted by l. li(x) is a number 
which is considered as membership of x to the class i. If x belongs to i-th class, li(x) is 
1 and lj(x) is 0 for all j≠i. The fitness of each chromosome (classifier ensembles) is 
defined as the amount of its accuracy on the evaluation set. The fitness function of a 
chromosome is computed as equation 6. 
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where DV is validation dataset, l is label function. ||.|| is considered as one of norm 
function like Euclidean distance. 

In all experiment, genetic parameters are fixed. Tournament selection is used for 
the reproduction phase. In this study, the crossover operator that has an important role 
in evolutionary computing, allowing them to explore the problem space by sharing 
different chromosomes information is two-point crossover. The mutation operator, 
allowing evolutionary computing algorithm to exploiting the problem space, is  
applied to each entry of the offspring chromosomes with a probability pmut = 0.01. 
Probability of selection operator is pcross= 0.8. The tournament size is fixed to 5. In 
the simulation experiments, the population size is selected as 200. It means that 200 
different ensemble candidates evolved simultaneously. Pseudo-code of the GA used 
in the proposed method for evolving the classifier ensembles is shown in Figure 2. 

 

 

Fig. 2. The GA used in the proposed method 

We use two types of classifier in the ensembles: ANN, DT.  The first classifier is 
ANN with N outputs which each of the outputs corresponds to a class.  

The accuracy of each classifier ensembles is defined as the number of true estima-
tion on the test data set. 

In order to evaluate the proposed classifier selection approach, we compare it with 
weighted and unweighted static classifier selection for Hoda data set. Each chromo-
some is encoded as a string having M entries, one for each classifier with data types 
real and binary respectively in those two methods. In unweighted static classifier 
selection which has data type binary, if the value of a gene is 1; this means that the 
classifier is selected for being used in the corresponding ensemble. All the design 
parameters of the above-mentioned algorithm including population size, number of 
iterations, crossover and mutation rate etc. are kept the same. The Figure 3 illustrates 
the proposed method generally. 

 

∑
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Generate randomly an initial population of size POP_SIZE 
For each chromosome in the population 

Compute fitness of the chromosome (as it will be mentioned below) 
For Iteration_Num = 1 .. GENERATION_NUM 

For Chromosome_Num = 1 .. POP_SIZE 
1-Select two parents from the old population 
2-Crossover the two parents to produce two offspring with probability 
Pcross 
3-Mutate each bit of each offspring with probability Pmut 
4-Apply weighted majority to each of the offspring 
5-Compute fitness of each offspring (as it will be mentioned below) 

End for 
Replace the original population with the offsprings to form the new population 

End for 
Select the best chromosome as the resultant ensemble
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Fig. 3. Scheme of the weighted ensemble of classifiers 

3   Experimental Results 

Hoda data set [9] is a handwritten OCR data set. This data set contains 100000 data 
points. Some data instances are depicted in the Figure 4.  

We have divided our data set into training, validation and test sets containing 
60000, 20000 and 20000 data points, respectively. The validation data set acts as 
pseudo-testing for obtaining fitness of each chromosome as it was explained above. 
The ensemble is produced by bagging mechanism. Ensemble size is also set to 201. 
So, the training process is iterated 201 times for performing 201 different base classi-
fiers, ANN and DT. Each classifier is trained over 10% of training dataset. As it is 
shown in Figure 5, the proposed method outperforms other methods and full ensem-
ble. It shows that a full ensemble classification method can be optimized as well. 

 

Fig. 4. Some instances of Farsi OCR data set, with different qualities 

Training Dataset Validation Dataset 
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Data Bag 1 

Data Bag 2 

b% selection 
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The method in column 2 in Figure 5, unweighted static classifier selection focuses 
only on selected classifiers which are allowed to vote. Because of unbalanced accu-
racy of classifiers in the ensemble, generally, the static classifier selection can give 
better results than the simple full ensemble. Usually the weighted approaches are 
doing better than unweighted ones as it is shown in the column 3 of the Figure 5. 
However, the results of weighted and unweighted approaches are close to each other, 
the weighted method slightly outperforms unweighted. It improves the result achieved 
by the full ensemble. Even though, a classifier is not able to achieve good accuracy in 
all classes; it may obtain a good accuracy on one special class. So, the proposed 
method has a good result. Figure 5 illustrates the same results in a diagram based 
representation. 

Another aspect of the proposed approach is that its computational cost is very low. 
Although we can train just one MLP to reach to a good accuracy, it consumes many 
days for large data sets like Hoda. We need to train an MLP for some weeks to reach 
the accuracy approximately 98% on Hoda data set. The weak learners can converge to 
a good accuracy very soon, but the subsequent small improvements are very slow. In 
this approach, we have some weak base classifiers that are under-trained but ensemble 
of them is not under-trained. We provided 201 individual weak base MLPs or DTs as 
members in the ensemble. Also it is notable that both ensembles of MLPs and DTs 
are comparable, with fairly superior of DTs ensemble. 
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Fig. 5. Results of the proposed ensemble method 

4   Conclusion 

Because of their robustness and high performance, classifier ensemble methods are 
used for difficult problem solving. In this paper, a new ensemble algorithm is pro-
posed, which is designed for building ensembles of bagging classifiers. The proposed 
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method is a weighted vote-based classifier ensemble like Random Forest method 
which employs DT and ANN as classifiers. 

The empirical study on the very large dataset of Persian handwritten digits, Hoda 
shows that the proposed approach is superior to another combination of classifiers 
methods, as it is discussed. It effectively improves the accuracy of full ensemble of 
ANN or DT classifiers. 
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Abstract. Traffic flow forecasting is an important application domain
of machine learning. How to use the information provided by adjacent
links more efficiently is a key to improving the performance of Intelligent
Transportation Systems (ITS). In this paper, we build a sparse graph-
ical model for multi-link traffic flow through the Graphical Lasso (GL)
algorithm and then implement the forecasting with Neural Networks.
Through a large number of experiments, we find that network-scale traf-
fic forecasting with modeling by Graphical Lasso performs much better
than previous research. Traditional approaches considered the informa-
tion provided by adjacent links but did not extract the information.
Thus, although they improved the performance to some extent, they did
not make good use of the information. Furthermore, we summarize the
theoretical analysis of Graphical Lasso algorithm. From theoretical and
practical points of view, we fully verify the superiority of Graphical Lasso
used in modeling for multi-link traffic flow forecasting.

Keywords: Traffic flow forecasting, Neural networks, Graphical Lasso.

1 Introduction

In recent years, research on statistics and computer science appears to intersect
in the long-term goals. The most obvious area in this trend is that of graphical
model. The graphical model is a family of probability distributions which defined
according to a directed or undirected graph. Furthermore, the model provides a
general methodology for approaching correlation problems. Often, the problems
involve large-scale models with thousands or millions of random variables linked
in complex ways [1]. Thus, graphical model makes a link between probability
theory and graph theory [2]. It is used widely in many machine learning areas
such as bioinformatics, information retrieval and image processing etc [1].

Graphical Lasso (GL) is an approach of estimating a sparse undirected graph-
ical model through the use of L1 (lasso) regularization which has the basic model
for continuous data obeying a multivariate Gaussian distribution with mean μ and
covariance matrix Σ [3]. According to the components of inverse covariance ma-
trix Σ−1, we construct the graphical model. If the ij -th component of Σ−1 is zero,

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 151–158, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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then there is no link between the twonodes corresponding to variables i and j in the
graphical model. That is, variables i and j are conditionally independent given the
other variables when the ij -th component of Σ−1 is zero. In next sections, we show
the theoretical analysis of the procedure of Graphical Lasso algorithm.

Neural Networks (NNs) are well-known in machine learning for their good
capability at modeling non-linear and uncertain problems [4]. They are widely
used in traffic flow forecasting. From single-link single-task to multi-link multi-
task traffic flow forecasting, or other various kinds of prediction algorithms,
are all to improve the performance of forecasting. However, how to make good
use of the information provided by adjacent links is the key. All the experiments
performed in this paper are based on Neural Networks. More details about multi-
link traffic flow forecasting can be seen in [5].

The remainder of this paper is organized as follows. In Section 2, we give the
theoretical analysis of Graphical Lasso and its implementation in modeling sparse
graphical model. In Section 3, combining with multi-link traffic flow forecasting,
we show a large of experiments basing on Neural Networks with the model built by
Graphical Lasso. Finally, conclusions and future works are given in Section 4.

2 Modeling Sparse Graphs

In modeling of a sparse graph, whether there is a link between two nodes is
determined according to the corresponding component of the inverse covariance
matrix. If the component is zero, there is no link between the two nodes. Oth-
erwise, link the two nodes in the sparse graph. Thus, it makes sense to increase
the sparsity of the inverse covariance matrix Σ−1. In recent years, there are
a number of researchers have taken an approximate or exact approach to this
problem. For approximate approaches, sparse graphical model is estimated by
fitting a lasso model to each variable, using the other variables as predictors [6].
The approaches adopt an AND rule to estimate whether a certain component of
Σ−1 is zero or not. While the exact approaches are to maximize an L1-penalized
log-likelihood problem [7-9]. Graphical Lasso is the exact approach of solving
the problem to make the inverse covariance matrix Σ−1 more sparsely.

2.1 Problem Setup

Assume that there are N multivariate normal observations of dimension p, with
mean μ and covariance Σ. Marking the empirical covariance matrix as S, the
exact problem is to solve the L1-penalized log-likelihood problem

Σ−1 = arg max
X�0

log detX − trace(S ·X) − ρ ‖X‖1 , (1)

where ‖X‖1 is the L1 norm of matrix which is the sum of the absolute values
of the elements of X, ρ is the penalty parameter which controls the extent of
penalization [8].

Make a transformation of formula (1), we can write the problem as

max
X�0

min
‖U‖∞�ρ

log detX + trace(X,S + U), (2)
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where ‖U‖∞ denotes the maximum absolute value element of the symmetric
matrix U. Exchange the max and the min, the dual problem of formula (2) is

min
‖U‖∞�ρ

− log det(S + U) − p, (3)

where the relation between the primal and dual variables is: X = (S + U)−1.
To write neatly, let M = S + U [8]. Then, the dual of our maximum likelihood
problem is

Σ = max{log detM : ‖M − S‖∞ � ρ}. (4)

We can see that, through a series of transformations above, the inverse covariance
matrix Σ−1 is estimated in the primal problem (1) while the covariance matrix
Σ is estimated in the dual problem (4). Also, the diagonal element of Σ and S
has the relation: Σii = Sii + ρ for all i.

2.2 Block Coordinate Descent (BCD) Algorithm

According to formula (4), we begin to consider the estimation of Σ instead of
Σ−1 as follows. Let W be the estimate of Σ. The algorithm is to optimize over
each row and column of matrix W at a time, and repeats all columns until
convergence. Details can be seen in [8]. Dividing W and S into blocks as

W =
(

W11 w12

wT
12 w22

)
, S =

(
S11 s12

sT
12 s22

)
.

The block coordinate descent algorithm solves the quadratic program

w12 = argmin
y

{yTW−1
11 y : ‖y − s12‖∞ � ρ}, (5)

for w12 at each iteration. Permuting the rows and columns to make the target
column always be the last one, the BCD algorithm solves problem (5) for each
column of W. Repeating until convergence, we will finally get a sparse matrix
W which is also the covariance matrix Σ solving formula (4).

Furthermore, [8] gives the dual problem of problem (5) is

min
β

{1
2

∥∥∥W 1/2
11 β − b

∥∥∥2

+ ρ ‖β‖1}, (6)

where b = W
−1/2
11 s12. It is easy to find that formula (6) is similarly a lasso

regression, and which is the launching point of our Graphical Lasso approach.

2.3 Graphical Lasso

In Graphical Lasso algorithm [3], let W = S + ρI firstly and the diagonal of W
remains unchanged in the following. Then, for each row and column of W, solve the
lasso problem (6) and obtain the solutionβ. Computingw12 = W11β and replacing
the corresponding row and column with w12. Like this, repeat until convergence.
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After thewholeprocedure,weobtain the inversematrixΣ−1. In [3], the authors also
mentioned a relatively cheap method for recovering the inverse covariance matrix
from the obtained coefficient matrix in the Graphical Lasso algorithm.

According to the sparse matrix Σ−1, we build the sparse undirected graphical
model of the multi-variables included in the matrix. Data with the dimension
of p has p nodes in the graphical model, and each dimension corresponds to a
row and a column in the inverse covariance matrix. In the next section, combing
with the practical application in traffic flow forecasting, we will get a more clear
cognition of modeling with Graphical Lasso.

3 Experiments

3.1 Data Description

The datasets collected are the vehicle flow rates of discrete time series which
were recorded every 15 min, gathering by the UTC/SCOOT system of the Traf-
fic Management Bureau of Beijing along many road links. Vehicles per hour
(vehs/h) is the unit of the data. In short-term traffic flow forecasting, we take 15
minutes as the prediction horizon and carry a one-step prediction. That is, we
predict the traffic flow rates of the next 15 minutes interval using the historical
data of a certain road link on the same time series [5].

Part of the real urban traffic map we selected is shown in Fig. 1. Each cir-
cle node in the figure denotes a road junction. The arrows show the directions
of traffic flows from the upstream junctions to the corresponding downstream
junctions. Paths without arrows represent no traffic flow records. Raw data is
taken from March 1 to March 31, 2002, totaling 31 days [10]. Considering the
malfunction of traffic flow detector, we wiped away the days with empty data.
Finally, the remaining data we used are of 25 days and have totaling 2400 sample
points. We divide the data into two parts, the first 2112 samples as training data
and the rest as test data, in all the experiments we did.

Fig. 1. The sketch map of road links used in the paper
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3.2 Model Building

As can be seen from the data described above, the map has 31 links in all, in
which every path with an arrow represents a link. Like what we did in previous
experiments [5], we predict one interval traffic flow using traffic flows of the five
continuous intervals before it on the same time series of the same link in single-
link flow forecasting. While in multi-link flow forecasting, we use traffic flows of
all the links with their each five intervals before the predicted interval.

In order to use the correlation between adjacent links more efficiently, we take
traffic flows of 6 continuous intervals of each link to build the sparse graphical
model through Graphical Lasso. There we will obtain the inverse variance matrix
Σ−1 with dimension of 186 which is computed by 31 multiply 6, for there are 31
links and 6 selected traffic flows of each link. According to the actual meaning of
traffic flow forecasting, we do not consider the correlation between the predicted
traffic flow with the same interval traffic flows of all the other links. Thus, we
ignore the components in the inverse covariance matrix corresponding to two
same intervals traffic flows of each two links. Therefore, for one predicted traffic
flow, there are at most 155 nodes linked in the graphical model.

 Ba(t)

 Ba(t−3)

 Ba(t−2)
 Ba(t−1)

 Eb(t−1)

 Fe(t−2)

 Fe(t−1)
 Hl(t−1)

 Ib(t−1)

Fig. 2. The sparse graphical model identified for link Ba

Take link Ba as an example, in single-link traffic flow forecasting, we predict
the traffic flow Ba(t) using the continuous traffic flows Ba(t-5), Ba(t-4), . . . ,
Ba(t-1) of link Ba. However, in multi-link traffic flow, we consider the 5 intervals
t-5, t-4, . . . , t-1 of all the 31 links. That is, we predict the traffic flow of Ba(t)
using the 155 intervals traffic flows of all the 31 links each with 5 intervals
t-5,t-4, . . . , t-1. In modeling for link Ba, we just consider whether the components
of the corresponding column or row in the inverse covariance matrix are zero or
not. Fig. 2 shows the sparse graphical model of Ba for predicting the traffic flow
Ba(t), in which we ignore the nodes evaluated to have little relevance with Ba(t)
by Graphical Lasso. We can see that there are only 8 nodes linked with node
Ba(t) in Fig. 2. That is, 8 traffic flows are evaluated relevant to the predicting
of Ba(t), which is much less than the original possible 155 traffic flows.
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Comparing Fig. 2 with link Ba in traffic map Fig. 1, we can find the predicting
of Ba(t) is not only relevant to the three traffic flows Ba(t-3), Ba(t-2), Ba(t-1)
on link Ba but also with other five traffic flows Eb(t-1), Fe(t-2), Fe(t-1), Hl(t-
1), Ib(t-1) which come from the four links Eb, Fe, Hl and Ib. In other words,
the sparse graph modeled by Graphical Lasso, to one certain predicted traffic
flow, indicates its relevance with traffic flows on the same link and points out its
relevance with traffic flows on all the other links in the whole map as well. This
model is superior to all previous approaches which only consider the relevance
between intervals on the same link or relevance between links, the model built
by Graphical Lasso combines the two traditional approaches.

3.3 Selection of Parameters and Design of Neural Networks

In the Graphical Lasso algorithm, the selection of the penalty parameter is re-
ferred to Section 2.3 in [7]. Basing the selected penalty parameter, for finite
samples, the probability of error in estimating the graphical model is controlled.
More details can be seen in [7]. Since the sparse graphical model we built is based
on the inverse covariance matrix, we need a criterion to determine whether there
is an effective correlation between each two nodes. In our experiments, we set
the component to be 0 while it is less than 5e-4, that is, we think there is little
relevance between the two nodes when the corresponding component is so small.

In the design of Neural Networks, we choose a three-layer neural network
model for which can approximates arbitrary bounded and continuous function
[11]. On the other hand, less layers make the network less complex and then less
time-consuming. As we all know, Back Propagation (BP) networks have perfect
self-learning ability. Thus, in all our experiments, BP networks with three layers
were selected. The transfer and train functions and all the related parameters
of the BP networks are all the same as our previous studies [5], for they are the
common foundation of all the comparisons.

3.4 Results

According to the model built by Graphical Lasso, we process the dataset to the
corresponding form. Still take link Ba as an example, according to Fig. 2, we
choose the related eight traffic flows as inputs and the corresponding Ba(t) as
the output. Since there are different numbers of related nodes in sparse graphical
models for different links, we make different data processing respectively. Then,
basing the common foundation of Neural Networks, we compared our experiment
with previous multi-link multi-task learning (MMTL) and multi-link single-task
learning (MSTL) approaches [5]. The results are shown in Table 1, in which we
represent our approach as GL NN for it models the traffic flow with Graphical
Lasso and does the predicting basing on Neural Networks. All the predicted
performance is evaluated by root mean square error (RMSE).

From the results shown in Table 1, we can see that, in the total 31 road links,
there are 21 links showing our approach GL NN performs better than MSTL
and 20 links even outperforms MMST. In order to highlight the advantages of
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GL NN, we also compared the sum of the RMSE of the whole 31 links corre-
sponding to the three different approaches in Table 2. Uniting the two compar-
isons in Table 1 and Table 2, we can obviously see the superiority of our approach
GL NN.

Table 1. RMSE of all the 31 road links corresponding to the three approaches

RMSE MMTL MSTL GL NN

Ba 147.79 150.81 139.71
Bb 72.59 73.60 70.46
Bc 97.65 98.80 91.89
Ce 53.57 54.73 52.70
Cf 84.58 86.79 81.62
Cg 49.19 49.51 53.27
Ch 63.13 63.48 64.02
Da 77.15 82.28 95.47
Db 53.49 54.60 63.75
Dc 87.69 88.32 73.39
Dd 65.07 68.61 55.99
Eb 165.58 168.14 150.17
Ed 199.36 208.95 179.67
Fe 119.94 122.73 112.40
Ff 83.23 83.88 103.15
Fg 92.40 93.12 87.67
Fh 136.23 141.46 144.00
Gb 83.34 83.64 103.03
Gd 155.08 153.39 144.28
Hi 87.10 87.23 95.11
Hk 131.61 131.72 158.27
Hl 129.67 130.04 108.92
Ia 88.13 88.60 100.65
Ib 129.45 132.83 124.16
Id 133.13 135.06 113.36
Jh 148.88 148.23 130.23
Jf 119.46 120.33 108.42
Ka 76.45 75.72 75.60
Kb 130.85 134.27 159.13
Kc 378.47 385.35 365.17
Kd 161.21 163.50 159.61

Table 2. Sum of the RMSE of the 31 road links corresponding to the three different
approaches

MMTL MSTL GL NN

RMSE 3601.47 3659.74 3565.27
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4 Conclusions and Future Works

Traditionalmulti-link trafficflow forecasting just considers the correlationbetween
directly adjacent links and does not extract the correlation information. The ap-
proach we proposed efficiently extracts the information provided by adjacent links
and considers all the directly or indirectly adjacent links. That is, we consider more
comprehensively and efficiently than traditional approaches.Through the compar-
ison with multi-link multi-task learning in traffic flow forecasting, it is shown that
our approach has further superiority in traffic flow forecasting.

In the future, further research would take on the combination of Graphical
Lasso with other predicting methods, or other applications not just in traffic
flow forecasting. In our paper, we verified the high efficiency of modeling with
Graphical Lasso. While model building used widely in machine learning, we
believe that the Graphical Lasso can also be used efficiently in many other areas.
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Abstract. Producing cost of Torpedo decreases with the increase of turnout. 
Based on the theory of approaching discretional function by three layers BP 
neural network, a learning curve model for torpedo based on neural network is 
set up. Result indicates that this model can achieve satisfactory precision. At the 
same time, it has practical value. 

Keywords: Torpedo; BP Neural Networks; Producing Cost; Output; Learning 
Curve. 

1   Introduction 

Influenced by factors of society, economy, and so on, all kinds of cost of torpedo are 
increasing rapidly. How to use the limited financial resources to obtain efficient tor-
pedo becomes more and more important to the developing department, the purchasing 
department, and the users. To solve this problem, the life cycle cost analysis has been 
proposed. 

Life cycle cost (LCC) is the total cost in the whole life cycle period from research, 
developing, and production, to use and warranty, till ex-service. The research cost and 
the ex-service cost is little in all the life cycle cost, so the research cost and the ex-
service cost is often not considered, and the life cycle cost of torpedo is divided into 
developing cost, producing cost, and maintaining cost. 

The producing cost is represented by purchasing cost. With more independent of 
the purchasing department, more competitive of the purchasing course, more market-
able of the purchasing mechanism, the purchasing cost should be thought much. No 
matter the developing department or the purchasing department, the sensitivity to the 
purchasing cost will boost up remarkably. 

2   Learning Curve 

The relationship between producing cost and cumulative turnout is often described by 
learning curve. The learning curve denotes that the producing cost of the first product 
is the highest, and it will decrease regularly by a certain rate with the increase of the 
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turnout. The rate is high at the beginning, and then slower slowly, at last reach stabili-
zation. That is to say, producing cost will reduced by a certain rate with the increase 
of turnout. The learning curve denotes the decreasing cost rule of the repeated product 
when the producing course carries out ceaselessly.   

The existing learning curve [1], like Wright formula and Carwford formula, are 
experiential formula. The first developed formula is Wright formula: 

1
bC C N=  (1) 

where, C is the cumulative average producing cost when the total turnout is N ; 1C  is 

the producing cost of the first product; N is the cumulative turnout; b is learning 
index.  

Carwford formula has the same form with Wright formula, but the meaning of C  
is unlike:  

1
bC C N=  (2) 

where, C is the producing cost of product; 1C is the producing cost of the first prod-

uct; N is the cumulative turnout; b is learning index. 
Index b is the slope of the learning curve: 

log / log 2b S=  (3) 

where, S  is the slope of learning, that is, the decreasing rate of producing cost with 
the increasing of turnout. It can be gained by historical data. The relationship of the 
two learning curve forms is shown as fig. 1 [2]. 

N

C
Wright curve

Carwford curve

 

Fig. 1. The relationship of the two learning curve form 

The Carwford formula is often modified or developed to get the learning curve by 
many company of Europe. 

The learning curves differ with the aim and the Scopes. It can be gained by the his-
tory data of the producing cost, and then the producing cost will be forecasted by the 
curve.  
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The relationship between the producing cost and the cumulative turnout is nonlin-
ear, and neural network is very fit for disposing nonlinear relation. So, neural network 
is adopted to set up the model of producing cost and cumulative turnout for torpedo. 

3   Neural Network Model 

Neural network [3][4] is directional map composed by many neural nerve cells. It 
imitates the structure of the biological neural system and has the ability of learning by 
itself and adapting by itself. The knowledge which learned by itself hide in the struc-
ture of the net, and it needn’t to get distinct formula. So the disposal mode of neural 
network to the complicated nonlinear system has essential difference compared with 
the traditional method.  

The neural cell is the basic constitution (shown as fig. 2). A neural cell has three 
elements: (1) a set of connection weight, which shows the connection intensity. Posi-
tive weight shows stimulant, and negative weight shows restrained; (2) an adding cell, 
which is used as the weighted sum of the input information; (3) a nonlinear stimulant 
function, whose function is nonlinear mapping, and confining the output signal in a 
certain region (within [0,1] or [-1,+1]). Besides, there is a threshold. There are many 
representative neural network models, such as Perceptron, BP neural network, RBF 
neural network, Self-Organizing network, Feedback network [5]. 

∑

1x

xp

yk

wkp

2wk

1wk

2x
functionstimulant 

threshold

 signal
Input 

 signal
Output 

  

Fig. 2. Neural cell model 

BP neural network is a kind of multilayer neural network, and it is consisted by  
input layer, hidden layer, output layer. Error back propagation learning algorithm is 
adopted to adjust the weight. The transform function of nerve cell is Sigmoid function:  

( ) ( )( )1/ 1 exp aϕ ν ν= + −  (4) 

whose output signal is continuous value within 0 and 1. When the structure of the BP 
neural network is confirmed, the BP neural network is trained by the sample of input 
and output. That is to say, the weight and the threshold are trained and adjusted, so the 
neural network can achieve the arbitrary nonlinear mapping of input signal and output 
signal. The BP neural network, which has been trained, can gain the output signal no 
mater the input signal is in the sample or not. So the BP neural network has the strong 
ability of generalization. BP neural network is the clearest understood and the  
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broadest applied neural network by now, so it is the most important model of neural 
network. This paper adopts BP neural network to set up learning curve model. 

4   The Learning Curve Model Based on Neural Network 

The relationship between the producing cost and the cumulative turnout is nonlinear. 
Three layers BP neural network can approach arbitrary function, and the precision can 
be controlled. So it is adopted to set up the model of the learning curve for torpedo. 

The principle of the learning curve model for torpedo based on neural network is: 
the known cumulative turnout is adopted as the input signal of the BP neural network, 
and the producing cost is adopted as the output signal. The neural network is trained 
by enough samples (the more the samples are, the more accurate the neural network 
will be). The output signal will be distinct with the distinct input signal. The weight 
and the threshold of the trained neural network are denotation of the relationship be-
tween producing cost and cumulative turnout. Every layer is buildup by several neural 
cells. The neural cells in the same layer have no connection with each other, and the 
neural cells in different layer have complete connection with each other. The training 
course is buildup by the onwards propagation and backwards propagation. In the 
course of the onwards propagation, the input signal spread from input layer, pass 
hidden layer, then reach the output layer. The state of each layer only influents the 
state of next layer. If the expected result is not gotten in the output layer, then the 
neural network turns to the backward propagation. The error of the output signal will 
be feedback by the primary access. The weight of every layer is adjusted to make the 
error be least. Then the trained weight and the threshold will be gotten and can be 
used. Taking the cumulative turnout as the input signal, the output signal of producing 
cost will be gotten by onward propagation. 

5   Example 

Certain torpedo is produced 7 groups, the recorded producing cost and the corre-
sponding cumulative turnout is shown in table 1. Considering time value, the cost has 
been converted to 1990 money year. The learning curve model for torpedo based on 
neural network should be set up. 

Table 1.  Producing Cost and the Corresponding Cumulative Turnout Unit:10 000 RMB￥, 
(first fiscal year) 

Groups 1 2 3 4 5 6 7 

Cumulative Turnout 10 25 45 80 120 180 240 

Producing Cost 440 430 410 400 390 386 383 

Training the model with the date of former 5 groups, and validate the model with 
the date of the 6th, 7th groups. Because the BP neural network needs large numbers of 
training sample, the median method is adopted to enlarge the number of the sample. 
The model is validated time after time. 3 is selected as the node number of hidden 
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layer, Sigmoid is selected as the transfer function of input layer and hidden layer, 
liner transfer function is selected as the transfer function of output layer. The weight 
and the threshold are adjusted by the BP arithmetic, whose study ratio is variable. The 
maximal study number is set as 5000, the study ratio is set as 0.001, and the study aim 
is set as error sum of square, premnmx function is used to make the date of sample 
unitary, so the date of sample will within [-1,1]. 

Matlab [6] is used as the emulational tool. The constringency of the model can be 
gotten. The net pinches at 4324 step, and the anticipant error is satisfied. The effect of 
training is show as fig.3. After the training is accomplished, the date of the 6th, 7th 
groups is emulated, and the result is in table 2.   

 

Fig. 3. The effect of training 

Because the torpedo is build up group by group, the average cost of the fist group 
is regarded as the first producing cost 1C , and the estimate of Carwford curve can be 

get from the cumulative turnout of 2th group, the 3th group, the 4th group, the 5th 
group with the cost of them.  

0.02440*C N −=  

(5) 

The producing cost of 6th, 7th group can be predicted according to the Carwford 
curve. The result is in table 2. 

Table 2. The contrast of the prediction of 6th, 7th group 

Producing Cost Relative Error 

Groups 
Cumulative 

Turnout Real 

value 

Prodiction of 

Carwford 

curve 

Prodiction of 
Neural Network 

Carwford 

Curve 

Neural  

Network 

6 180 386 396.5950 385.4933 0.0301 0.0013 

7 240 383 394.3197 378.3230 0.0300 0.0122 
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From Table. 2 we can see, for the date of the 6th, 7th groups, the average of the 
relative error of Carwford curve is 0.0300, somewhat bigger than the average of the 
relative error of BP neural network, 0.0068. 

6   Conclusion 

Neural network is adopted to set up the learning curve model for torpedo. The essen-
tial is to find the nonlinear relationship between the producing cost and the cumula-
tive turnout. Using the trained weight and threshold, more accurate result will be 
gained than parameter method. So using the neural network to set up learning curve 
model is a new way for those problems. 
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Abstract. The mixture of Gaussian processes (MGP) is an important
probabilistic model which is often applied to the regression and classifica-
tion of temporal data. But the existing EM algorithms for its parameter
learning encounters a hard difficulty on how to compute the expecta-
tions of those assignment variables (as the hidden ones). In this paper,
we utilize the leave-one-out cross-validation probability decomposition
for the conditional probability and develop an efficient EM algorithm for
the MGP model in which the expectations of the assignment variables
can be solved directly in the E-step. In the M-step, a conjugate gradi-
ent method under a standard Wolfe-Powell line search is implemented to
learn the parameters. Furthermore, the proposed EM algorithm can be
carried out in a hard cutting way such that each data point is assigned
to the GP expert with the highest posterior in the E-step and then the
parameters of each GP expert can be learned with these assigned data
points in the M-step. Therefore, it has a potential advantage of handling
large datasets in comparison with those soft cutting methods. The exper-
imental results demonstrate that our proposed EM algorithm is effective
and efficient.

Keywords: Mixture of Gaussian processes, Leave-one-out cross-
validation, EM algorithm, Conjugate gradient method.

1 Introduction

As an extension of the mixture of experts (ME) architecture, the mixture of
Gaussian processes (MGP) is a combination of several single Gaussian processes
by a gating network. With the help of the divide-and-conquer strategy, the MGP
model is more flexible for modeling a temporal dataset than a single Gaussian
process. Moreover, Gaussian process has been shown to have a good performance
on regression and classification. However, just as many other powerful tools,
Gaussian process is not so perfect and has two main limitations. First, a Gaussian
process has a stationary covariance function and this characteristic cannot be
adapted in the cases of temporal datasets which have varying noises in different
times. Second, the computational cost of the parameter learning or inference is
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very high since it is involved in the computation of the inversion of an n × n
matrix where n is the number of the training dataset.

Since the MGP model was firstly investigated by Tresp [11], there have ap-
peared some variants of the MGP model and the corresponding learning methods
have been established ([3-4], [12], etc.). For clarity, we summarize all these in-
vestigations from two aspects: gating network and inference method. In fact,
there are three kinds of gating networks in the literature. Firstly, as the MGP
model is inspired by the ME model, the gating network of the ME model can
be straightforward inherited [7, 9, 11]. The second kind of gating network is just
a set of mixing coefficients which are assumed to follow a Dirichlet distribution
[6] or be generated from a Dirichlet process [4] (in this case, the finite mixture
model can be generalized to an infinite one). The third kind of gating network
is based on the distribution of the data points from the input space. In this
situation, data points from one GP expert space are assumed to be subject to a
Gaussian distribution [3], or a Gaussian Mixture distribution [12].

With the diversity of gating networks, there have developed two main infer-
ence methods: the Bayesian inference method and the non-Bayesian parameter
estimation method. By the Bayesian inference method, all the parameters are
assumed to have some prior distributions and certain sophisticated techniques
like the Markov Chain Monte Carlo methods are used for the parameter learning
or estimation [3-4], [12]. On the other hand, since the well-known EM algorithm
has been successfully implemented to learn the ME model [1-2], several imple-
mentations of the EM algorithm have been proposed to learn the parameters
of the MGP model (e.g., [7], [9], [11]). However, since the outputs of the MGP
model are not independent as those of the ME model, it becomes a very difficult
problem to compute the posterior probability that a data point belongs to each
GP expert. Actually, the computation schemes of the posterior probabilities in
the existing EM algorithms are heuristic, in lack of theoretical proofs, and often
lead to a low efficiency.

In this paper, in order to solve this difficult problem more efficiently, we uti-
lize the leave-one-out cross-validation probability decomposition for these con-
ditional probabilities and develop an efficient EM algorithm for the MGP model
in which the expectations of the assignment variables can be computed directly.
In fact, the leave-one-out cross-validation probability decomposition was already
used for the parameter learning in the single GP model [5], [10], but it has not
been used for the parameter learning of the MGP model. Here, as the conditional
probability of the output with respect to the input and the parameters is ex-
pressed by the leave-one-out cross-validation probability decomposition, we can
get a novel expression of the posterior probability that each data point belongs
to a GP expert in the E-step. In the M-step, we implement a conjugate gradient
method under a standard Wolfe-Powell line search to maximize the log likelihood
with the gradients being computed via the expressions given by Sundararajan
et al. [10].

As compared with the Bayesian inference methods, the existing EM algo-
rithms must use all the data points for inferring each GP expert. This may
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cause a great computation cost in dealing with a large dataset. To get rid of
this difficulty, we further modify the proposed EM algorithm in a hard cutting
way by assigning every data point to the GP expert with the highest posterior
in the E-step. Then, in the M-step, only these assigned data points are used to
learn the parameters of each expert. Therefore, the modified EM algorithm is
more adapted to deal with the learning problem of a large dataset. To demon-
strate the proposed algorithms in this situation, we conduct experiments on the
motorcycle dataset.

The remainder of this paper is organized as follows. In Section 2, we introduce
the MGP model and the leave-one-out cross-validation probability decomposi-
tion. The new EM algorithm is derived and investigated in Section 3, with the
experimental results being illustrated in Section 4. In Section 5, we make a brief
conclusion.

2 MGP and Leave-One-Out Cross-Validation Probability
Decomposition

We begin with a brief introduction to the Gaussian Process according to the work
by Rasmussen and Williams [5]. Give a set of training data X = [xT

1 , · · · , xT
n ]T

as inputs and Y = [yT
1 , · · · , yT

n ]T as the corresponding outputs, where n is the
number of the training data. This dataset is said to follow a Gaussian Process
if Y ∼ N (m(X),Ky(X,X)), where m(X) is a prior defined mean function and
Ky(X,X) is a covariance matrix function with its element Ky(xp, xq) being a
kernel function. For simplicity, we assume that the mean function m(X) is zero.
There are some varying forms for the covariance function and here we use the
common one named the squared exponential (SE) covariance function as follows:

Ky(xp, xq) = l2 exp{−σ2
f

2
||xp − xq||2} + δpqσ

2
n, (1)

where l, σf and σn are nonzero real values. δpq = 1 if p = q; otherwise, δpq = 0.
The MGP model, as an extension of mixture of experts (ME) architecture, is

a combination of several single Gaussian processes by a gating network g(x|φ),
where φ denotes the set of all the parameters in the gating network. The gat-
ing network aims to divide the input space into regions for specific Gaussian
processes making predictions. As described in [3], we assume that data points
in the input space are i.i.d. and those from the same GP expert are Gaussian
distributed.

Suppose that there is a training dataset {Y,X} = {yt, xt}N
t=1 being generated

from a mixture of Gaussian processes containing M single components. The co-
variance matrix Kj of the j-th GP component is specified by the parameters
θj = {lj, σfj , σnj} and each Gaussian component in the input space (i.e., Rd) is
specified by the parameters φj = {νj, Σj}. Let Y−t and X−t be the corresponding
datasets leaving out yt and xt, respectively. The leave-one-out cross-validation
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probability decomposition can be given by

p(Y,X,Θ) =
N∏

t=1

M∑
j=1

αtjp(yt|xt, Y−t, X−t, A, θj)p(xt|φj), (2)

where A = {αtj}, αtj is the probability that (yt, xt) belongs to the j-th compo-
nent, under the constraint that

∑M
j=1 αtj = 1. In our consideration, the gating

network is set by g(x|φ) = [p(x|φ1), · · · , p(x|φM )]T . Specifically, we have

p(xt|φj) =
1

(2π)d/2|Σj |1/2
exp{−1/2(xt − νj)TΣ−1

j (xt − νj)}. (3)

For any pair of yp and yq in given Y−t, the covariance of them can be written
as K(xp, xq) = Cov(yp, yq) =

∑M
i=1 αpiαqiKi(xp, xq), where Ki is the covariance

function of the i-th GP component. Under the assumption that yt belongs to
the j-th component, the covariance of yt and any yp in Y−t is Cov(yp, yt) =
αpjKj(xp, xt). Therefore, we have[

Y−t

yt

]
∼ N

(
0,

[
K(X−t, X−t) βtj

βT
tj Kj(xt, xt)

])
where βtj(xp, xt) = αpjKj(xp, xt). Hence, we further get

p(yt|xt, Y−t, X−t, A, θj) ∼ N (μtj , σ
2
tj) (4)

where

μtj = βT
tjK(X−t, X−t)−1Y−t, (5)

σ2
tj = Kj(xt, xt) − βT

tjK(X−t, X−t)−1βtj . (6)

Until now we have specified the leave-one-out cross-validation probability de-
composition (2), and in the following analysis we will try to maximize it under
an EM framework.

3 Proposed EM Algorithm for MGP

Let {Y,X} = {yt, xt}N
t=1 be a dataset drawn from a MGP model which contains

M components, where N is the number of training data points. In order to
carry out the EM algorithm for MGP, we first consider a set of binary variables
Z = {ztj} such that ztj = 1, if (yt, xt) is drawn from the j-th GP expert;
otherwise, ztj = 0. Obviously,

∑M
j=1 ztj = 1. Let Y j and Xj denote the output

and input data points of the j-th GP, and Y j
−t and Xj

−t be the corresponding
datasets leaving out yt and xt, respectively.

Suppose that all the values of the binary variables Z = {ztj} are known, the
joint probability eqn. (2) can be written as

p(Y,X |Θ,Φ) =
N∏

t=1

M∏
j=1

(αtj(p(xt|φj)))ztjp(yt|xt, X−t, Y−t, Z, θj), (7)
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where p(yt|xt, X−t, Y−t, Z, θj) is obtained by replacing αti with ztj in eqn. (4).
We then get the log likelihood function as follows:

l0(Θ,Φ;Y,X,Z) =
N∑

t=1

(log p(yt|xt, X−t, Y−t, Z,Θ)+
M∑

j=1

ztj logαtjp(xt|φj)). (8)

In this situation, the missing data are the hidden variables Z, the observed data
are {Y,X} and l0 is the log likelihood of the complete data which we aim to
maximize. We further define a so-called Q function as the expectation of the log
likelihood w.r.t. the missing data Z:

Q(Θ,Φ|Θ(k) , Φ(k)) = EZ{l0(Θ(k), Φ(k);X,Y, Z)}, (9)

where Θ = {θj}, Φ = {φj}. In the EM framework, we actually do not maximize
the log likelihood function directly. Instead, we try to maximize the Q function.
In order to compute the Q function, we need to compute the posteriors of each
data point (yt, xt) belonging to the j-th GP expert, denoted by hj(t):

hj(t) =
α̂

(k)
tj p(yt|xt, Y−t, X−t, α̂tj , θ

(k)
j )p(xt|ν̂(k)

j , Σ̂
(k)
j )∑M

l=1 α̂
(k)
tl p(yt|xt, Y−t, X−t, α̂tj , θ

(k)
l )p(xt|ν̂(k)

l , Σ̂
(k)
l )

. (10)

As ztj is replaced by hj(t) in l0, we get

Q =
N∑

t=1

log p(yt|xt, X−t, Y−t, {hj(t)}, Θ̂) +
N∑

t=1

M∑
j=1

hj(t) log α̂tjp(x|φ̂j). (11)

Since there are no common parameters in the first and second terms of the Q
function, we can deal with the maximization of the Q function on the two terms
independently. We can find an analytical solution to the maximization of the
second term by taking the derivatives to zero, that is,

α̂tj = hj(t), ν̂j =
1∑N

t=1 hj(t)

N∑
t=1

hj(t)xt, (12)

Σ̂j =
1∑N

t=1 hj(t)

N∑
t=1

hj(t)(xt − ν̂j)(xt − ν̂j)T . (13)

For convenience, we denote the first term of the Q function as Q1. It is rather
difficult to find a an analytical solution to the maximization of Q1. Here we try to
develop a numerical method to get a maximum of Q1 via the conjugate gradient
method for a standard Wolfe-Powell line search. To implement the conjugate
gradient method, we first need to get the derivatives w.r.t. the parameters θj =
{lj, σfj , σnj}M

j=1.
As investigated by Sundararajan et al. [10], Q1 can be written as: Q1 =

−∑N
t=1((yt − μt)2/(2σ2

t ) + log σ2
t /2 + log(2π)/2), where the predictive mean μt
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and variance σ2
t can be expressed as μt = yt− [K−1Y ]t/[K−1]tt, σ2

t = 1/[K−1]tt,
and the notations [·]t, [·]tt stand for the tth element of the specified vector and
the tth diagonal element of the specified matrix, respectively. K is the covariance
function defined by K(xp, xq) =

∑M
j=1 hj(p)hj(q)Kj(xp, xq). Its gradient can be

given by
∂Q1

∂θj
=

N∑
t=1

αt[Zjα]t
[K−1]tt

− α2
t [ZjK

−1]tt
2[K−1]2tt

− [ZjK
−1]tt

2[K−1]tt
, (14)

where α = K−1Y , Zj = K−1∂K/∂θj and ∂K/∂θj = hj(p)hj(q)∂Kj/∂θj . Ac-
cording to the definition of the covariance function eqn. (1), we have

∂Kj(p, q)
∂lj

= 2lj exp{−σ2
fj

2
||xp − xq||2}, ∂Kj(p, q)

∂σnj
= 2δpqσnj ,

∂Kj(p, q)
∂σfj

= −σfj ||xp − xq||2l2j exp{−σ2
fj

2
||xp − xq||2}.

With the above preparations, we now give our new EM algorithm for MGP
as follows.

1. Initialize the parameters {αtj}, {θj}, {φj}.
2. Calculate the posteriors according to eqn. (10).
3. Calculate α̂tj , ν̂j , Σ̂j according to eqn. (12, 13). Calculate θj by maximizing

Q1 using a conjugate gradient method under a standard Wolfe-Powell line
search.

4. Repeat step 2-4, until convergence.

In the E-step, we compute the posteriors by eqn. (10). In the M-step, we esti-
mate the parameters αtj , ν̂j , Σ̂j by eqn. (12 & 13) and θj by implementing the
conjugate gradient method with the help of eqn. (14). Repeat the two steps until
convergence.

As an disadvantage of the non-Bayesian methods [11] in comparison with the
Bayesian methods [3-4],[12], the computation complexity problem is so knotty
that they require the inverse of an n × n matrix for every GP expert, where n
is the number of the training data points. In order to overcome this complexity
problem, we can modify our proposed EM algorithm in a hard cutting mode.
That is, in the E-step, after getting all the posteriors, we assign each data point
to the GP expert with the largest posterior. In the M-step, only the assigned
data points are used for learning each GP expert. In such a way, the computation
complexity of the modified hard cutting EM algorithm is reduced considerably.

4 Experimental Results

To test the performance of our proposed EM algorithm for MGP, we conduct
some experiments on an artificial toy dataset given in [3] and the motorcycle
dataset given in [8]. The artificial toy dataset consists of four continuous func-
tions which have different levels of noise. The four continuous functions are:
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f1(a1) = 0.25a2
1 − 40 +

√
7nt, f2(a2) = −0.0625(a2 − 18)2 + 0.5a2 + 20 +

√
7nt,

f3(a3) = 0.008(a3 − 60)3 − 70 +
√

4nt, f4(a4) = − sin(a4) − 6 +
√

2nt, where
a1 ∈ (0, 15), a2 ∈ (35, 60), a3 ∈ (45, 80), a4 ∈ (80, 100) and nt ∼ N (0, 1) that
denotes a standard Gaussian distribution (with zero mean and variance 1). We
generate 200 samples (50 samples for each function) from this toy model. We ap-
ply a mixture of four Gaussian Processes to model this dataset and implement
the EM algorithm to learn the parameters of the mixture. The experimental
results are shown in Figure 1. The noise values of each expert learned by our
proposed EM algorithm are very close to the true ones: 7.04, 6.69, 3.98, 1.59. In
the input space the centroids of the experts are 7.28, 46.65, 64.22, 90.90.

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

 

 
data for expert 1
data for expert 2
data for expert 3
data for expert 4

Fig. 1. Experimental results of the proposed EM algorithm on the toy dataset. The
notations ’*’, ’+’, ’o’, ’x’ represent samples from four expert.

The motorcycle dataset consists of 133 observations of accelerometer readings
taken through time. These observations belong to three strata and we present
them in terms of intervals along the time axis: [2.4, 11.4], (11.4 40.4] and (40.4,
57.6]. In the left plot of Figure 2, we illustrate the dataset and denote those
belonging to the same stratum by notations ‘o’, ‘*’ and ‘+’, respectively.

In this case, we set the number of GP experts as 3, and then implement the
proposed EM algorithm for MGP on the dataset. For convenience, we begin to
initialize the posteriors rather than the parameters, as in the MGP model, the
prediction task is impossible to be done only with the parameters. In the M-
step, the conjugate gradient method under a standard Wolfe-Powell line search
is applied to estimating the parameters in the GP experts. In this situation, the
conjugate gradient method is considered to get a maximum solution when the
absolute values of the derivatives w.r.t all the parameters are less than 0.01. We
repeat the E-step and the M-step until convergence. In this particular case we
stop the algorithm as long as the average norm of the difference of the parameters
in the latest two iterations is less than 0.1.

We list the estimated parameters learned by the proposed EM algorithm in
Table 1. It shows clearly that three GP experts divide the input space and model
the corresponding data points, respectively. They have different degree of noises
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Fig. 2. (a) Three strata of the motorcycle dataset denoted by ‘o’, ‘*’ and ‘+’. (b)
Clustering result by the proposed EM algorithm for MGP. Three clusters are denoted
by the notations ‘o’, ‘*’ and ‘+’. We illustrate the predictive medians by the dash-
dot line ‘-·’, with 100 samples at each of the 84 equispaced locations according to the
posterior distribution.

Table 1. The parameters of the MGP model on the motorcycle dataset estimated by
the EM algorithm

l σf σn μ̂ σ̂2

GP expert 1 0.937 0.139 1.106 8.916 15.653
GP expert 2 30.902 0.319 24.212 23.060 53.370
GP expert 3 13.719 1.218 7.833 42.470 73.352

(σ2
n) according to the varying intervals. The GP expert 1 mainly model the data

points at the beginning of the dataset where the data points seem flat. Therefore,
the noise in this area learned by the EM algorithm is much smaller than those
in the other areas.

To show the flexibility of our leave-one-out cross-validation MGP model, we
illustrate the predictive median of the predictive distribution using a dotted line
on the left plot in Figure 3. Meanwhile, we use a dashed line to represent the
median of the predictive distribution of a single stationary covariance GP model.
According to the difference between the two lines, we can observe that the dotted
line performs better especially in the intervals where time < 12ms and > 40ms.
As speculated in [3], our model also performs well by not inferring an ”flat” GP
expert [4] at the beginning of the dataset where time < 11ms. In the interval
where time > 45ms, the data points are not as dense as those around at 30ms. As
compared with the prediction in this interval in [3], the predictive mean of our
model almost passes through every data point. The experimental result shows
that our leave-one-out cross-validation model may be in more agreement with
the idea of the Gaussian process regression that the more closer in the input
space the more closer in the output space. The right plot in Figure 3 shows a
set of samples drawn from the predictive distribution. We select 84 equispaced
locations along the time axis and draw 100 samples at each location.

We further apply the modified hard cutting algorithm on the motorcycle
dataset and illustrate the result in the right plot in Figure 2. Three clusters



An Efficient EM Algorithm for MGP 173

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

Time (ms)

A
cc

el
er

om
et

er
 R

ea
di

ng
s(

g)

(a)

0 10 20 30 40 50 60
−200

−150

−100

−50

0

50

100

Time (ms)

A
cc

el
er

om
et

er
 R

ea
di

ng
s(

g)

(b)

Fig. 3. (a) Two medians of the predictive distributions based on the single stationary
covariance GP model (dashed line) and the proposed leave-one-out cross-validation
MGP model (dotted line). (b) A sample data drawn from the predictive distribution
based on the leave-one-out cross validation MGP model. 20 samples for each of the
equispaced 84 locations.

are denoted by three notations ‘o’, ‘*’ and ‘+’. The dash-dot line represents the
predictive median of the posterior distribution. We draw 100 samples from the
posterior distribution at each of the 84 equispaced locations. We can see from the
clustering results that, the hard cutting method performs very well except for
the area where data points from different clusters are very close. We find in the
experiment that the clustering results and the computation time are sensitive
to the initialization. A proper initialization would lead to a stable performance
and a short computation cost. In this case, we assign three GP experts with 15
data points (about ten percent of the training dataset) from the beginning, the
middle and the end of the dataset, respectively, and all the remaining data points
are assigned randomly. The total computation time is around 34s, in compari-
son with one hour in [4] and 20s in [12]. Notice that we use the whole 133 data
points on the training, but only 40 data points were used for training in [12]. As
for any other dimensional input space, the utilization of the information from
a rough segment of the input space for initialization will help a lot to achieve
good performance and cut down computation cost.

5 Conclusions

We have established an efficient EM algorithm to learn the MGP model. By uti-
lizing the leave-one-out cross-validation probability decomposition, we efficiently
compute the posteriors of data points belonging to each GP expert and make
the Q function into two independent terms. We further modify the algorithm by
assigning data points to the GP expert with the highest posterior and learning
each GP expert with the assigned data points. This modification would lead
the proposed EM algorithm to the learning problems with large datasets. The
experimental results show the efficiency of the EM algorithm and a competitive
computation time of the modified hard cutting EM algorithm.
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Abstract. This paper discusses two models of the anti-stable vibration system. 
The anti-stable vibration system can be expressed the integer wave model and the 
fractional wave model. Many of engineering physical phenomenons can be 
modeled more accurately and authentically using the fractional order differential 
equations. The fractional wave equation is obtained from the standard integer 
wave equation by replacing the first-order time derivative with a fractional 
derivative of order b. The boundary controller of the two models of string 
vibration systems will be considered. This paper presents a boundary control 
method of the anti-stable fractional-order vibration systems. Numerical 
simulations are used to illustrate the improvements of the proposed control 
method for the fractional vibration systems. 

Keywords: fractional calculus, adaptive control, boundary control. 

1   Introduction 

Time and space fractional wave equations have been considered by several authors 
for different purposes[1][2]. One of physical purpose for adopting and investigating 
wave equations is to describe vibration systems. Fractional calculus is the field of 
mathematical analysis, which deals with the investigation and applications of integrals 
and derivatives of arbitrary order, which can be real or complex derivatives and 
integrals to arbitrary orders are referred to as differ integrals by many authors. It starts 
to play an important role in many branches of science during the last three decades. It 
is well known that many of engineering physical phenomenons can be modeled more 
accurately and authentically using the fractional order differential equations[3][4].  

In this paper, it is mainly discussed that two models of the string vibration system. 
The string vibration system can be expressed the integer wave model and the 
fractional wave model. The fractional wave equation is obtained from the standard 
integer wave equation by replacing the first-order time derivative with a fractional 
derivative of order b. The boundary controller of the two models of string vibration 
systems will be considered. This paper presents a boundary control method of anti-
stable vibration systems. Numerical simulations are used to illustrate the 
improvements of the proposed control method for the fractional vibration systems. 
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2   Theory of the Anti-stable String Vibration System 

It is well known that a sting vibration system can be governed by the integer-order 
wave equation, fixed at one end, and stabilized by a boundary control at the other end, 
The system can be represented by: 

      1

1

( , ) ( , )

(0, ) (0, )

(1, ) ( )

tt xx

x t

x

u x t u x t

u t a u t

u t f t

=
= −
=

                                         (1) 

where ( )f t  is the boundary control force at the free end of the string and ( , )u x t  is the 

displacement of the string, a is a constant parameter.  
For the different value of a, equation (1) can model different string vibration 

systems. For a = 0, equations (1) model a string which is free at the end x = 0 and is 
actuated on the opposite end. For a < 0 , the system (1) model a string which is fixed 
at one end , and stabilized by a boundary controller (1, ), 0u ku t k= − >  at the other end. 

In this paper we study the string system with a > 0, the system (1) model a string 
which is fixed at one end, and the free end of the string is negatively damped, so that 
all eigen values located on the right hand side of the complex plane, so the open-loop 
plant of this kind of string system is “anti-stable”. So we call the equation (1) as the 
model of the anti-stable string vibration systems. 

Many authors found the anti-stable string vibration systems can be modeled more 
accurately and authentically using the fractional order differential equations. The anti-
stable fractional-order wave equations are obtained from the classical wave equations 
by replacing the second order time derivative term by a fractional order derivative 
(1,2),so the system (1) can be represented by: 

           

2

2

2

2

( , ) ( , )
( , ) 1 2

(0, ) (0, )

(1, ) ( )

xx

x t

x

u x t u x t
u x t

t x
u t a u t

u t f t

α

α α∂ ∂= = < <
∂ ∂

= −
=

                           (2) 

The definitions of fractional derivative include Riemann-Liouville,Grunwald-
Letnikow,Weyl,Caputo,Marchaud,and Riesz fractional derivatives[5]. Here, we adopt 
the Caputo definition for fractional derivative of any function ( )f t , for m to be the 

smallest integer that exceedsα , the Caputo fractional derivative  0>α  is define as: 

1

0 0

1 ( )
( )

(1 ) ( )

m
tC

t

f
D f t d

t
α

α
τ τ

α τ

+

=
Γ − −∫                                   (3) 

Where Γ is the gamma function, 0 ( )C
tD f tα  is the fractional derivative of order α  

of ( )f t . 

Based on the definition of (5), the Laplace transform of the Caputo fractional 
derivative is  
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  { }
1

1
0
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d f t
L D f t s f s s

dt
α α α

+

−
− −

= =

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∑                      (4) 

where mm <<− α1  

3   Boundary Control of the Anti-stable String Vibration System 

In this section, we study the constant parameter a > 0, the string vibration system is 
anti-stable system, so we want to transfer the anti-stable plant to the stable system.       
For the integer-order model of the anti-stable string vibration system, we want to map 
the equation (1) into the following target system: 

     1

( , ) ( , )

(0, ) (0, )

(1, ) ( ) (1, )

tt xx

x t

x d

v x t v x t

v t b v t

v t f t ku t

=
=
= = −

                                       (5) 

which is exponentially stable for b>0 and k>0 . As will be shown later, the 
transformation (6) is invertible in a certain norm, so that stability of the target system 
ensures stability of the closed loop system. 

To deal with the boundary control problem of the anti-stable system, we employ 
the following transformation invented by A.Smyshlyaev [6] (for known q): 

1 1
1 0

1 1

( , ) ( , ) ( (0, ) ( , ) )
1

x

t

a b
v x t u x t a u t u y t dy

a b

+
= + − +

+ ∫                              (6) 

Differentiating (6) with respect to x, setting x=1, and using the boundary condition 
of the equation (1), we can get the following boundary controller of the anti-stable 
integer-order vibration system: 

1 1 1

1 1

1 1 1 1

1 1 1 1

( )
( ) (0, ) (1, )

1

( ) 1(1, ) ( , ) )01 1

ka a b
f t u t ku t

a b

a b k a b
u t u y t dy
t ta b a b

+
= −

+
+ +

− − ∫+ +

                          (7) 

This result on stabilization is given by A.Smyshlyaev. The boundary control law 
(7) has been used in the boundary control of anti-stable wave equation with anti-
damping on the uncontrolled boundary, its effectiveness when applied to the 
boundary control of integer-order wave equation is also proved by the author 
A.Smyshlyaev. 

We will consider the fractional order can be used as a parameter to model the 
vibration systems, the fractional wave equation is obtained from the standard wave 
equation by replacing the first-order time derivative with a fractional derivative of 
order b. It mainly discusses the system in the using fractional calculus tool. We want 
to transfer the anti-stable fractional-order plant to the stable system. We map the 
equation (2) into the target system (8): 
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  Consider the follow transformation for the anti-stable fractional order wave 
equation: 

0 0
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where the gains ( , ), ( , )m x y n x y are to be determined.  

Substituting (9) into (2) we obtain: 
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                           (10) 

( , ) ( , ) ( ( , ) ( , ))xx xx xxv x t u x t A x t B x t= − −                                (11) 

From (10) (11), we obtain: 
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Matching all the terms, we get two equations as follow: 
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Substituting (4) into the boundary condition of the equation (2), we obtain: 
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To solve the equations (13) (14),we obtain the transformation(9) can be written in 
the following form: 

 
2 2 2 2 2
2 20 0
2 2

( )
( , ) ( , ) ( , ) ( , ) )

1 1

x x

t x

a b a a b
v x t u x t u y t dy u y t dy

a a

+ +
= − −

− −∫ ∫                  (15) 

  Differentiating with respect to x, we get the following controller: 
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We can see that equation(7) and equation(16) in the same form. Although the 
boundary control law (7) has been used in the boundary control of anti-stable wave 
equation with anti-damping on the uncontrolled boundary, its effectiveness when 
applied to the boundary control of fractional wave equation is still unknown. We will 
present some simulation results to show the effectiveness of the boundary control law. 

First, let us fix the value 1k = , we compared the displacement response of the 
different orders 1.25, 1.75, 2.00α =  of string vibration system application of integer 
order boundary controller at the free end of string. The simulation results are shown in 
figure 1. From the figure, we can see that the integer order controller is still able to 
use for fractional vibration and stability control systems, however, the figure shows 
the integer-order controller is applied to some of the fractional order system, the 
settling time is very long, but there is also a more large displacement movement, 
which is harmful for some actual systems. When 2α = , the convergence of the 
controller gain 1dk =  makes the shortest time.  
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Fig. 1. Tip end movement overtime for different α’s 
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Fig. 2. Tip end movement over time for different gains 

Secondly, we study the response of controller gain 0.25, 1.00, 1.50dk =  for the 

anti-stable fractional-order string vibration system. Simulation results show that 
shown in figure 2. Seen from the figure 2, dk  increased from 0.25 to 1.50, the system 

response changed from lack damping state to off damping state. The simulation 
results show that the integer order controller is still able to control the vibration 
equation of fractional order.  

4   Conclusions 

In this paper, two models of the anti-stable string vibration system are be considered. 
A boundary control method of anti-stable vibration systems is presented in the paper. 
Numerical simulations are used to compared the displacement response of the 
different order of string vibration system application of integer order boundary 
controller at the free end of string. We introduced a new integral transformation for 
wave equations and used it to obtain the integer-order controllers of a wave equation 
with negative damping at the boundary. The application of the presented boundary 
controller to other hyperbolic systems is very promising and will be the subject of 
future work. 
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Abstract. This paper considers a stochastic p-hub center problem, in
which travel time is characterized by discrete random vector. The objec-
tive of the problem is to minimize the efficient time point of total travel
time. For Poisson travel time, the problem is equivalent to a deterministic
programming problem by finding the quantiles of the related probability
distribution functions. For general discrete distributed travel time, the
proposed problem is equivalent to a deterministic mixed-integer linear
programming problem. So, we can employ conventional optimization al-
gorithms such as branch-and-bound method to solve the deterministic
programming problem. Finally, one numerical example is presented to
demonstrate the validity of the proposed model and the effectiveness of
the solution method.

Keywords: p-hub center problem, Random travel time, Service level,
Mixed-integer programming.

1 Introduction

The p-hub center problem is to locate p hubs in a network and to allocate non-
hub nodes to hub nodes so that the maximum travel time between any origin-
destination (o-d) pair is minimized. Hubs can serve as consolidation, switching
and sorting centers, and allow for the replacement of direct connections between
all nodes with fewer, indirect connections [1,2,3]. The p-hub center problem ap-
plications can be found in the delivery of perishable or time sensitive systems,
such as express mail services and emergency services [4,5,6], in which the max-
imum travel time represents the best time guarantee that can be offered to all
customers. To be competitive, it is important that this value is as low as possi-
ble. We remark that every node is allocated to exactly one hub. There is also a
multi-assignment version of the problem in which each node is connected to at
least one hub node. In the current development we do not consider the case and
omit the term “single-assignment” in the rest of the paper.

The p-hub center problem was introduced in [7,8], where [8] formulated the p-
hub center problem as a quadratic program. Several linearizations of quadratic
� Corresponding author.
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programs were proposed by Kara and Tansel [9], who also provided an NP-
completeness proof for single allocation case and numerical comparisons for the
linearizations. On the basis of the concept radius of hubs, Ernst et al. [10] pro-
posed a mixed-integer linear programming for the single and multiple-allocation
p-hub center problem.

In the literature, most research has focused on deterministic problems. It is
evident that in real applications the travel time can not be considered determin-
istic since their values may vary because of traffic condition, speed ambulances,
time of day, climate conditions, and land and road type. Thus, a more accurate
model should take explicitly into account uncertainty by including random travel
time rather than deterministic one. As travel time is typically uncertain in real-
ity, Sim et al. [11] first attempted to tackle p-hub center problem with stochastic
time and service-level constraints involving mutually independent normal distri-
butions; some analytical results and solution heuristics were also discussed. Note
that discrete distributions arise frequently in applications, which may also avail-
able through experience distribution or approximating continuous probability
distribution. So, in the current development, we incorporate random travel time
with discrete distributions into p-hub center problem, and suggest alternative
methods to model and solve the problem.

The rest of the paper is organized as follows. In Section 2, we present the prob-
lem formulation with random travel times. Section 3 analyzes the problem with
Poisson distributions and general discrete distributions. The solution method to
the proposed problem with the state-of-the-art commercial code LINGO is dis-
cussed in Section 4. In Section 5, we present the computational results. Finally,
Section 6 summarizes the conclusions in the paper.

2 Problem Formulation

The stochastic p-hub center problem is to locate p hubs in the network and to
allocate non-hub nodes to hub nodes so that the maximum travel time between
any origin-destination (o-d) pair is minimized for a given service-level β. It is
reasonable to assume that the service-level β is close to 1 such as 0.95. For
modeling the problem, we adopt the following notation:

• N = {1, 2, . . . , n}: the set of nodes in the network;
• Tij : random variable representing the travel time on the link from node i to

node j;
• α: discount factor on links between hubs;
• p: the number of hubs to be selected.

For each pair i, k ∈N , we define the following binary decision variables,

Xik =
{

1, if node i is assigned to hub k
0, otherwise.

When i = k, the variable Xkk represents the establishment or not establish-
ment of a hub at node k.
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We define additional binary decision variables Xiklj that represent path in
network from node i to node j through hub k first then hub l, i.e.,

Xiklj =
{

1, if exists a path from node i to j through hub k first then l
0, otherwise.

Objective Function
The objective function includes the following travel time:
The total travel time on a valid path i→k→l→j is

(Tik + αTkl + Tlj)Xiklj , ∀i, j, k, l ∈ N.

Given a service level β ∈ (0, 1), the objective is to minimize the β-efficient
time point of total random time in the sense that

min{ϕ | Pr{(Tik + αTkl + Tlj)Xiklj ≤ ϕ} ≥ β, ∀i, j, k, l ∈ N}.
Constrains
I: Constraint (1) ensures that path i→k→l→j is a valid path in network if and

only if nodes i and j are assigned to hubs k and l, respectively, i.e., Xik=Xjl=1,

Xiklj ≥ Xik + Xjl − 1, (1)

where Xiklj ∈ {0, 1}.
II: Constraint (2) requires that exactly p hubs are established in the network,∑

k∈N

Xkk = p. (2)

III: Constraint (3) states that a non-hub node i can only be assigned to an
open hub at node k,

Xik ≤ Xkk. (3)

VI: Constraint (4) imposes the single-assignment rule,∑
k∈N

Xik = 1, (4)

where Xik ∈ {0, 1}.
Using the notation above, we present a new critical value approach to formu-

lating a meaningful p-hub center problem, which is formally stated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min min{ϕ | Pr{(Tik + αTkl + Tlj)Xiklj ≤ ϕ} ≥ β, ∀i, j, k, l ∈ N}
subject to:

Xiklj ≥ Xik + Xjl − 1, ∀i, j, k, l ∈ N∑
k∈N Xkk = p

Xik ≤ Xkk, ∀i, k ∈ N∑
k∈N Xik = 1, ∀i ∈ N

Xik ∈ {0, 1}, ∀i, k ∈ N
Xiklj ∈ {0, 1}, ∀i, j, k, l ∈ N.

(5)
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In the current development, we assume that travel times Tik, Tkl and Tlj are
random variables. For simplicity of presentation, we define

f(Xiklj , ξiklj) = (Tik + αTkl + Tlj)Xiklj , ∀i, j, k, l ∈ N,

where ξiklj = (Tik, Tkl, Tlj) is a random vector with finite support.
To compute the objective in problem (5), it is required to deal with the fol-

lowing critical value function:

C : Xiklj → min{ϕ | Pr{f(Xiklj , ξiklj) ≤ ϕ} ≥ β, ∀i, j, k, l ∈ N},

where β is a prescribed probability service level.
If the critical value function can be converted into its deterministic form,

then we can obtain equivalent deterministic models. However, in generally case,
we cannot do so. It is thus more convenient to deal with the general case by
stochastic simulation [12].

In order to compute the critical value function C(Xiklj), we generate ωn
iklj

from a probability space (Ω,A,Pr) and produce random samples ξn
iklj = ξ(ωn

iklj)
for n = 1, 2, . . . , Niklj . Equivalently, we generate random samples ξn

iklj for n =
1, 2, . . . , Niklj according to the probability distribution of ξiklj . Now we define

h(Xiklj , ξiklj) =
{

1, if f(Xiklj , ξiklj) ≤ ϕ
0, otherwise

for n = 1, 2, . . . , Niklj , which are random variables such that E[h(Xiklj , ξiklj)] =
β for all n. By the strong law of large numbers, we obtain

1
Niklj

N∑
n=1

h(Xiklj , ξiklj) → β

in the sense of almost sure as N towards infinity. Note that
∑Niklj

n=1 h(Xiklj , ξiklj)
is the number ξn

iklj satisfying f(Xiklj , ξ
n
iklj) ≤ ϕ for n = 1, 2, . . . , Niklj . Thus ϕ

is the N
′
ikljth smallest element in the sequence {f(Xiklj , ξ

k
iklj), k = 1, . . . , Niklj},

where N
′
iklj is the integer part of βNiklj .

Now let us consider problem (5) from a different point of view. By introducing
an additional variable ϕ, we have the following equivalent formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ϕ
subject to:

Pr{(Tik+αTkl+Tlj)Xiklj ≤ ϕ} ≥ β, ∀i, j, k, l ∈ N
Xiklj ≥ Xik + Xjl − 1, ∀i, j, k, l ∈ N∑

k∈N Xkk = p
Xik ≤ Xkk, ∀i, k ∈ N∑

k∈N Xik = 1, ∀i ∈ N
Xik ∈ {0, 1}, ∀i, k ∈ N
Xiklj ∈ {0, 1}, ∀i, j, k, l ∈ N.

(6)
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The equivalence with (5) is immediate by noting that for each fixed feasible
solution to (6), it is sufficient to take into account the minimal ϕ in the constraint,
this minimal ϕ is just min{ϕ | Pr{f(Xiklj , ξiklj) ≤ ϕ} ≥ β, ∀i, j, k, l ∈ N}.

Problem (6) clearly belongs to the class of probabilistic constraint program-
ming problems [13]. The traditional solution methods require conversion of prob-
abilistic constraints to their respective deterministic equivalents. As we know,
this conversion is usually hard to perform and only successfully for special case.
We will discuss the equivalent formulation of problem (6) in the the case when
random travel time are characterized by discrete distributions.

3 Equivalent Mixed-Integer Programming

First, we consider the case when travel times Tik, Tkl and Tlj are mutually inde-
pendent Poisson random variables with parameters λik, λkl and λlj , respectively.
It is known that the sum of a finite number of independent Poisson random vari-
ables is also a Poisson variable. Hence, the total travel time on a valid path
i→k→l→j in problem (6) can be modeled by a Poisson random variable with
mean (λik + αλkl + λlj)Xiklj .

Now we consider the following service level constraint with β ∈ (0, 1),

Pr{f(Xiklj , ξiklj) ≤ ϕ} ≥ β, ∀i, j, k, l ∈ N. (7)

According to Poisson probability distribution, the service level constraint (7)
can then be rewritten as∑

k≤ϕ

Pr{ξiklj = k} ≥ β, ∀i, j, k, l ∈ N,

which is equivalent to

ϕ∑
k=0

e−(λik+αλkl+λlj)Xiklj
((λik + αλkl + λlj)Xiklj)k

k!
≥ β, ∀i, j, k, l ∈ N.

As a consequence, we can express service level constraint (7) as

Q−
ξiklj

(β)Xiklj ≤ ϕ, ∀i, j, k, l ∈ N, (8)

where Q−
ξiklj

(β) denotes the left end-point of the closed interval of β-quantiles
of the probability distribution function of ξiklj .

Therefore, problem (6) with Poisson travel time is transformed into the de-
terministic programming problem with constraint (8) replacing (7), which can
be solved by radial heuristic algorithm [11].

We next consider the case when travel times Tik, Tkl and Tlj are general dis-
crete random variables. For the sake of simplicity of presentation, we denote
ξiklj = (Tik, Tkl, Tlj), which is a discrete random vector with the following prob-
ability distribution
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(T̂ 1

ik, T̂
1
kl, T̂

1
lj) · · · (T̂Niklj

ik , T̂
Niklj

kl , T̂
Niklj

lj )
p1

iklj · · · p
Niklj

iklj

)
,

where pn
iklj > 0, n = 1, 2, . . . , Niklj , and

∑Niklj

n=1 pn
iklj = 1, ∀i, j, k, l ∈ N .

In this case, consider the following service level constraint with β ∈ (0, 1),

Pr{f(Xiklj , ξiklj) ≤ ϕ} ≥ β, ∀i, j, k, l ∈ N.

By introducing a “big enough” constant M , one has

(T̂ n
ik + αT̂ n

kl + T̂ n
lj)Xiklj −M ≤ ϕ, ∀i, j, k, l ∈ N,n = 1, 2, . . . , Niklj .

In addition, we introduce a vector ziklj of binary variables whose components
zn

iklj , n = 1, 2, . . . , Niklj take value 0 if the corresponding constraint has to be
satisfied and 1 otherwise.

As a consequence, stochastic p-hub center problem (6) can be turned into the
following equivalent mixed-integer programming model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ϕ
subject to:

(T̂ n
ik + αT̂ n

kl + T̂ n
lj)Xiklj −M · zn

iklj ≤ ϕ, ∀i, j, k, l ∈ N,

n = 1, 2, . . . , Niklj∑Niklj

n=1 pn
ikljz

n
iklj ≤ (1 − β), ∀i, j, k, l ∈ N

Xiklj ≥ Xik + Xjl − 1, ∀i, j, k, l ∈ N∑
k∈N Xkk = p

Xik ≤ Xkk, ∀i, k ∈ N∑
k∈N Xik = 1, ∀i ∈ N

Xik ∈ {0, 1}, ∀i, k ∈ N
Xiklj ∈ {0, 1}, ∀i, j, k, l ∈ N
zn

iklj ∈ {0, 1}, ∀i, j, k, l ∈ N,n = 1, 2, . . . , Niklj ,

(9)

where
∑Niklj

n=1 pn
ikljz

n
iklj ≤ (1 − β), ∀i, j, k, l ∈ N , define a binary knapsack con-

straint ensuring that violation of stochastic service level constraints is limited to
(1 − β).

4 Solution Method

Since problem (9) is a mixed-integer linear programming problem with binary
variables, one possibility for solving it is to use branch-and-bound method [14],
which is a solution procedure that systematically examines all possible combi-
nations of discrete variables. The solution process is described as follows.
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Consider the relaxation problem of mixed-integer programming problem (9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ϕ
subject to:

(T̂ n
ik + αT̂ n

kl + T̂ n
lj)Xiklj −M · zn

iklj ≤ ϕ, ∀i, j, k, l ∈ N,

n = 1, 2, . . . , Niklj∑Niklj

n=1 pn
ikljz

n
iklj ≤ (1 − β), ∀i, j, k, l ∈ N

Xiklj ≥ Xik + Xjl − 1, ∀i, j, k, l ∈ N∑
k∈N Xkk = p

Xik ≤ Xkk, ∀i, k ∈ N∑
k∈N Xik = 1, ∀i ∈ N

0 ≤ Xik ≤ 1, ∀i, k ∈ N
0 ≤ Xiklj ≤ 1, ∀i, j, k, l ∈ N
0 ≤ zn

iklj ≤ 1, ∀i, j, k, l ∈ N,n = 1, 2, . . . , Niklj .

(10)

Let P denote the set of problems derived from the original mixed-integer
programming. Initially, P will include only the continuous relaxation. As we
proceed toward the solution, P will include problems with added constraints as
the integer restrictions are imposed. Let p0 denote the relaxation problem (10).

Then, the process of branch and bound method includes the following several
steps (see [14]):

Initialize: Set U = +∞ and P = p0. Solve p0. If the solution is 0 or 1, set U
equal to the optimal value and terminate; or if there is no feasible solution,
terminate; else select problem.

Select problem: Remove from P problem p having a solution that fails to
satisfy some 0-1 constraint and has an objective function value greater than
or equal to U and choose variable; or if there is no such problem in P ,
terminate.

Choose variable: Choose an 0-1 constrained variable xi having not value 0 or
1 in the solution to problem p, and branch on xi.

Branch on xi: Add to P the problem p′ and p′′ formed by adding to p the
constraints xi=0 and xi=1, respectively. If an solution to p′ or p′′ is obtained
with objective function value less than U , set U equal to the new objective
function value, and select problem.

Terminate: If U = +∞, then there is no feasible solution; otherwise, the solu-
tion corresponding to the current value of U is optimal.

The code LINGO is a state-of-the-art commercial general branch-and-bound
IP-code, which works in conjunction with the linear, nonlinear, and quadratic
solvers [15]. The structure of the constraints in the problem makes the use of
modeling language particularly appropriate. This yields a rather efficient solution
method for this kind of problem. In the next section, we will consider a specific
application. There we will rely on LINGO to solve the problem.
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5 Numerical Experiments

In this section, we present an application example about stochastic p-hub cen-
ter problem. We only consider the case when travel times are discrete random
variables. Assume that there are 6 cities in a region whose travel time Tij from
city i to city j and location are given in Table 1 and Figure 1, respectively,
where travel times are symmetric and mutually independent random variables.
We also assume that travel time Tij only has three realizations: optimistic arrival
time, mean arrival time and pessimistic arrival time. Obviously, the probability
of mean arrival time is much larger than the other two values.

In the tests, we consider p = 2, 3 and service-level parameters β = 0.80, 0.90,
and 0.95, respectively. All computational tests have been carried out on a per-
sonal computer. Given the service level parameter β, we employ LINGO 8.0
software to solve the equivalent mathematical programming model. In order
to illustrate parameter’s influence to efficiency, we also compare solutions with
different values of parameter β, and the computational results are reported in
Table 2.

In Figure 2, we depict a valid path 1→4→5→3, from which we find that the
optimal locations of p-hubs tend to form a certain structure, where one hub is
located in the center of the region (Figure 2). In addition, when the service-level
parameter β in the network increases, the maximum travel time becomes longer.

Table 1. Travel Time Tij from City i to j

Tij 1 2 3 4 5 6

1 0

(
13 15 16
0.1 0.6 0.3

) (
18 21 23
0.1 0.7 0.2

) (
8 10 12

0.1 0.8 0.1

) (
16 17 18
0.2 0.6 0.2

) (
14 16 17
0.1 0.8 0.1

)
2 0

(
8 9 10

0.3 0.6 0.1

) (
11 12 13
0.1 0.8 0.1

) (
10 11 12
0.2 0.7 0.1

) (
15 17 19
0.1 0.8 0.1

)
3 0

(
14 15 17
0.2 0.7 0.1

) (
7 9 10

0.1 0.8 0.1

) (
13 15 16
0.1 0.8 0.1

)
4 0

(
6 8 10

0.1 0.8 0.1

) (
6 7 8

0.2 0.7 0.1

)
5 0

(
5 6 7

0.1 0.8 0.1

)
6 0

Table 2. Computational Results for Different Parameters

p β Optimal objective value Time CPU (sec)

2 0.80 23.600000 301
2 0.90 23.600000 291
2 0.95 23.900000 239
3 0.80 20.500000 211
3 0.90 21.600000 359
3 0.95 21.900000 212
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Fig. 1. The Locations of Six Cities
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Fig. 2. Plot of the Optimal Hub Locations with p=3, and β=0.80

6 Conclusions

This work studied the p-hub center problem with discrete random travel time,
which seeks to configure a network to minimize efficient time point. For Poisson
travel time, we showed the stochastic problem is equivalent to a determinis-
tic programming problem. For general discrete random travel time, the problem
could be formulated as an equivalent mixed-integer programming model by intro-
ducing auxiliary binary variables. We employed LINGO to solve this equivalent
programming problem.
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From computational point of view, it may be infeasible to employ LINGO
solver for quite large instances of the p-hub center problem. Therefore, other
solution heuristics such as a combination of approximation method and neural
network should be further developed, which will be addressed in our future
research.
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Abstract. This paper presents a new method that uses orthogonalized features
for time series clustering and classification. To cluster or classify time series data,
either original data or features extracted from the data are used as input for var-
ious clustering or classification algorithms. Our methods use features extraction
to represent a time series by a fixed-dimensional vector whose components are
statistical metrics. Each metric is a specific feature based on the global structure
of the time series data given. However, if there are correlations between fea-
ture metrics, it could result in clustering in a distorted space. To address this,
we propose to orthogonalize the space of metrics using linear correlation in-
formation to reduce the impact on the clustering from the correlations between
clustering inputs. We demonstrate the orthogonal feature learning on two popu-
lar clustering algorithms, k-means and hierarchical clustering. Two benchmark-
ing data sets are used in the experiments. The empirical results shows that our
proposed orthogonal feature learning method gives a better clustering accuracy
compared to all other approaches including: exhaustive feature search, without
feature optimization or selection, and without feature extraction for clustering.
We expect our method to enhance the feature extraction process which also serves
as an improved dimension reduction resolution for time series clustering and
classification.

Keywords: time series, clustering and classification, feature learning,
orthogonalization.

1 Introduction

In this paper, we present an algorithm of orthogonal learning on features extracted for
time series clustering or classification. Clustering time series and other sequences of
data has become an important topic, motivated by several research challenges including
similarity search of medical and astronomical sequences, as well as the challenge of de-
veloping methods to recognize dynamic changes in time series [1]. Features extraction
from the original series has been widely used and serves as a dimensionality reduction
techniques to improve the clustering efficiency.

Among various statistical-based dimension reduction techniques, principal compo-
nent analysis has been most commonly used as the dimensionality-reduction tool for the
feature space [2]. In general, the number of principal components should be known as
a predetermined parameter, which may be difficult to select in practice. Hidden markov
models have also been used in time series clustering and classification [3]. Based on
assumed probability distributions, they are capable to capture both the dependencies
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c© Springer-Verlag Berlin Heidelberg 2011



Orthogonal Feature Learning for Time Series Clustering 193

between variables and the serial correlations in the measurements. However, their per-
formance in clustering long time series data was not promising compared to many other
methods [4]. In 2006, wang et al. [5] proposed a characteristic-based clustering method
that transform the original time series into a fixed-dimensional vector. Our previous
work has demonstrated the advantages of handling time series data of various lengths,
with missing values or long (or high dimensional) time series. However, if there are cor-
relations between feature metrics, it could result in clustering in a distorted space. To
address this, we propose to orthogonalize the space of metrics using linear correlation
information to reduce the impact on the clustering from the correlations between clus-
tering inputs. We demonstrate the orthogonal feature learning on two popular clustering
algorithms, k-means and hierarchical clustering.

We assume the statistical features used to represent the time series’ global structure
form a ‘super set’, i.e., a set consisting all best possible features that could be consid-
ered for extraction from the original time series. The focus of this paper is on how to
optimize the features to improve the clustering or classification performance rather than
to seek potential features candidates. More specifically, we aim to produce an optimized
feature set that can effective in feature extraction (or dimension reduction). In addition,
it should be both algorithm independent and domain data independent.

We present our orthogonal features learning method for time series data in Sec-
tion 2. Then in Section 3 we explain the features identified for the feature extraction. In
Section 4 we introduce the clustering algorithms and data sets used for the evaluation
and explain how our orthogonal feature learning can be applied to those algorithms. Fi-
nally, we show the results from the evaluation with promising clustering accuracy, and
discuss some future plans in in Section 5.

2 Orthogonal Features Learning

Let Yi denotes a univariate time series, which is often written as Yi = y1, . . . , yt for a
series with t observations. In a data set, regardless of the variation in the length t, a finite
vector consists of n metrics to be extracted based on the global structure of the time
series Yi. Each Yi = y1, . . . , yt is transformed into a fixed-dimensional feature vector
V , (v1, . . . , vn). In this paper, we demonstrate our method with 13 feature vectors, (i.e.
the value for n is 13). Each feature vector is based on a statistical metric extracted from
the original time series. As discussed in following Section 3, we selected a finite number
of statistical metrics to describe the time series quantitatively, and these metrics should
be informative in measuring time series global structure, such as trend, seasonality, and
many others. (i.e., 13 statistical metrics were computed from Y to form the feature
vector). Then, the time series data set D of m time series objects Y = Y1, . . . , Ym for a
clustering or classification task is transformed into a matrix D := (vi,j)m∗n.

There are a few reasonable approaches based on the idea of a super set of features:

– Use the matrix D directly as the input for a clustering algorithm.
– If the data set comes from a particular domain with certain known background

knowledge, a learning procedure such as a feed-forward algorithm can be used to
select an optimized subset of features from the ‘super set’, and then construct a
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new set V
′
. Let (v1, . . . , vs) denote the new vector, where s ≤ n. Then the matrix

becomes D
′
:= (vi,j)m∗s;

– The most common problem in the features is their correlation. We can remove
the linear correlation between the features and transform each di into a vector in
an orthogonalized space, in which the most independent features are weighted (or
selected) more heavily, V ∗, (v∗1 , . . . , v

∗
n), then the input matrix is: D∗ := (v∗i,j)m∗n.

To orthogonalize the space, we use the fact that correlation between two vectors can
be interpreted as the cosine between the vectors. Let Z be a mean-shifted version of D
where each column has mean zero. Then D∗ := Z(ZtZ)

1
2 has mean zero, and since

its columns are orthonormal, its correlation matrix is I . Note that no training data is
needed to perform the transform.

3 Global Structure Based Statistical Features Extraction on Time
Series Data

Time series can be described using a variety of adjectives such as seasonal, trending,
noisy, non-linear, chaotic,etc. The extracted statistical features should carry summarized
information of time series data, capturing the global picture based on the structure of
the entire time series. A novel set of characteristic metrics were proposed by Wang et
al. [5] to represent univariate time series and their structure-based features. This set of
metrics not only includes conventional features (for example, trend), but also covers
many advanced features (for example, chaos) which are derived from research on new
phenomena in physics [6]. In their work, 13 metrics were extracted based on the fol-
lowing structure-based statistical features to form a rich portrait of the nature of a time
series: Trend, Seasonality, Serial Correlation, Non-linearity, Skewness, Kurtosis, Self-
similarity, Chaotic, and Periodicity.

Trend and Seasonality. Trend and seasonality are common features of time series,
and it is natural to characterize a time series by its degree of trend and seasonality. In
addition, once the trend and seasonality of a time series has been measured, we can
de-trend and de-seasonalize the time series to enable additional features such as noise
or chaos to be more easily detectable. Yt is the original data, Xt = Y ∗

t − Tt denotes
de-trended data after a Box-Cox transformation, and Zt = Y ∗

t − St denotes the de-
seasonalized data after a Box-Cox transformation. Y

′
t = Y ∗

t − Tt − St is a time series
after trend and seasonality adjustment. Then, 1 − Var(Y

′
t )/Var(Zt) is the measure of

trend and 1 − Var(Y
′
t )/Var(Xt) is the measure of seasonality.

Periodicity and Serial Correlation. The periodicity is very important for determining
the seasonality and examining the cyclic pattern of the time series.

Non-linear Autoregressive Structure. Non-linear time series models have been used
extensively in recent years to model dynamics not adequately represented by linear
models. For example, the well-known sunspot data set and lynx data set have non-linear
structure.
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Skewness and Kurtosis. Skewness is a measure of symmetry, or more precisely, the
lack of symmetry in a distribution or a data set. Kurtosis is a measure of whether the
data are peaked or flat relative to a normal distribution. A data set with high kurtosis
tends to have a distinct peak near the mean, declines rather rapidly, and has heavy tails.

Self-similarity. Processes with long-range dependence have attracted a good deal of at-
tention from theoretical physicists and in 1984, Cox [7] first presented a review of
second-order statistical time series analysis. The subject of self-similarity (or long-
range dependence) and the estimation of statistical parameters of time series in the
presence of long-range dependence are becoming more common in several fields of
science.

Chaos. Many systems in nature that were previously considered as random processes
are now categorized as chaotic systems. Nonlinear dynamic systems often exhibit chaos,
which is characterized by sensitive dependence on initial values, or more precisely by
a positive lyapunov exponent. Recognizing and quantifying chaos in time series are
important steps toward understanding the nature of random behavior, and reveal the
dynamic feature of time series [6].

4 Clustering Algorithms and Data Sets for Evaluation

We choose two of the most popular clustering algorithms (k-means [8] and hierarchical
clustering) in the evaluation and use two benchmarking data sets for the convenience of
comparison.

k-means Clustering algorithms
k-means clustering has been recognized as a fast method compared to other clustering
algorithms [9]. It includes the steps: 1) Decide the value of k and initialize the k cluster
centers randomly; 2) Decide the class memberships of the N objects by assigning them
to the nearest cluster center; 3) Re-estimate the k cluster centers, by assuming the mem-
berships found are correct; 4) When none of the N objects changed their membership in
the last iteration, exit. Otherwise go to step 2. The objective to achieve is to minimize to-
tal intra-cluster variance, or, the squared error function: V =

∑k
i=1

∑
xj∈Si

(xj −μi)2,
where there are k clusters Si, i = 1, 2, . . . , k, and μi is the centroid or mean point of all
the points xj ∈ Si. In our experiments, we used two k-means methods: one by Hartigan
and Wong [10], the other the most commonly-used method given by MacQueen [11].

Hierarchical Clustering algorithms
Hierarchical clustering provides a cascading series of partitions of the objects to be
grouped. It subdivides into two types of methods: agglomerative and divisive, of which
the agglomerative method is most commonly used. Single-linkage, complete-linkage
and average-linkage clusterings [12] are three different algorithms are known in the
agglomerative method family defined by three different techniques used as distance
measures in clustering process. We used all three methods in the experiments and Ward
distance [13] which is a weighted group average criterion that keeps the within-cluster
variance as small as possible at each of the agglomerative steps.
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Data Sets
For a fair comparison, we used two benchmark datasets from the UCR Time Series Data
Mining Archive in the experiments [14], “reality check” and “18 pairs” have been tested
for clustering by other researchers and used as benchmarking for comparison. “Reality
check” consists of data from space shuttle telemetry, exchange rates, and artificial se-
quences. The data is normalized so that the minimum value is 0 and the maximum is
1. There are fourteen time series and each contains 1,000 data points. In the “18 pairs”
dataset, thirty-six time series with 1,000 data points each come in eighteen pairs. The
original data from these two data sets are shown in Figure 1.

Fig. 1. Data set ‘18-pairs’ (left) and Data set ‘reality check’ (right)

5 Our Results and Discussion

The accuracy of each clustering algorithm can be measured using a cluster purity, P ,
which is a percentage count: P = (Cd/Ce) ∗ 100%, where Cd is the number of the
dominant class objects within that cluster, and Ce is the expected number of objects in
that cluster. We implemented the proposed ‘orthogonal feature learning’ method on both
k-means clustering and hierarchical clustering algorithms in R [15]. Because the two
data sets used in our experiments were previously studied with known class labels as
ground-truth, the accuracy of clustering results can be calculated using P for evaluation
directly. In both experiments using hierarchical clustering and k-means clustering, two
types of matrices are used as clustering inputs: one is the original matrix D that is
derived from the feature vectors without orthogonal learning, and the other one is the
orthogonalized matrix D∗.

As shown in both Table 1 and Table 2, orthogonal feature learning can provide much
better accuracy compared to using the original feature matrix. Given the five algorithms
and two data sets used in our experiments, there is only one experiment with Single-
linkage on reality check data set, whose clustering accuracy decreased after the orthog-
onal treatment. All other results have shown some strong improvement in clustering
accuracy through the proposed orthogonal learning. In conclusion, the experiments have
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shown that the proposed orthogonal learning on time series statistical features can cer-
tainly improve the clustering accuracy by reducing the correlations between different
features. The promising results from the empirically study also provides evidence that
the orthogonal feature learning can be a flexible and efficient technique for dimensional
reduction for time series clustering and classification. Mathematically, any algorithm
must perform better on features that are orthogonal, since they provide more informa-
tion about the data than correlated features do.

The practical impact of orthogonality may vary depending on which measures the
algotrithm takes internally to address the issue (i.e. by using alternative linear algebra)
and on how strongly correlated the features are. Thus, to establish that orthogonalization
will improve results it is not necessary to run computatational experiments at all. The
theoretical exposition is sufficient. To establish the practical impact, it would be ideal
to have more diverse data sets with different correlation structures and we intend to
explore that further in future research. Such a study must carefully consider the fact that
correlation between n features is an (n − 1)-dimensional quantity and thus is beyond
the scope of this paper. To evaluate our method for algorithm and data dependency or
independence, we plan to do more empirical study with more algorithms and data sets
in the future.

Table 1. Evaluation results with hierarchical clustering algorithms (P %), column D is the clus-
tering experiment using original matrix as input after feature extraction, and column D∗ is the
clustering experiment using orthogonalized features as inputs

Data Complete-linkage Average-linkage Single-linkage Mean
Set D D∗ D D∗ D D∗ D D∗

reality check 76.8 76.8 76.8 76.8 76.8 63.4 76.8 72.3
18 pairs 44.4 55.6 44.4 55.6 44.4 61.1 44.4 57.4
both 51.5 60.2 51.5 60.2 51.5 61.6 51.5 60.7

Mean 57.6 64.2 57.6 64.2 57.6 62.0 57.6 63.5

Table 2. Evaluation results with k-means clustering algorithms (P %), column D is the cluster-
ing experiment using the original matrix as input after feature extraction, and column D∗ is the
clustering experiment using orthogonalized features as inputs

Data Hartigan-Wong MacQueen Mean
Set D D∗ D D∗ D D∗

reality check 76.8 76.8 36.8 83.4 56.8 80.1
18 pairs 44.4 55.6 33.3 55.6 38.9 55.6
both 51.5 60.2 34.1 61.6 42.8 60.9

Mean 57.6 64.2 34.7 66.9 46.2 65.5
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Abstract. Text clustering as a method of organizing retrieval results can organize 
large amounts of web search into a small number of clusters in order to facilitate 
users’ quickly browsing. In this paper, we propose A text document clustering 
method based on ontology which is different from traditional text clustering and 
can improve clustering results performance. We have shown how to include 
background knowledge in form of a heterarchy in order to generate different 
clustering views onto a set of documents. We have compared our approach 
against a sophisticated baseline, achieving a result favorable for our approach. 

Keywords: document clustering, ontology, document preprocessing. 

1   Introduction 

Most of existing search engines often returns a long list of search results, ranked by 
their similarity to the given query. Web users have to go through the list and title to 
find their required results. When multiple sub-topics of the given query are mixed 
together, it would be a time consuming task to find the satisfied results he wants. A 
possible solution to this problem is to cluster these results into different groups and 
enable users to find their required clusters at a glance. However, most traditional 
clustering algorithms cannot be directly used for search results clustering, for some 
practical issues. 

In this paper we have shown how to include background knowledge in form of a 
heterarchy in order to generate different clustering grand-total from a set of documents. 
We have compared our approach against a sophisticated baseline, achieving a result 
favorable for our approach. In addition, we have shown that it is possible to 
automatically produce results for diverging views of the same input. Thereby, the user 
can rely on a heterarchy to control and possibly interpret clustering results. 

2   Related Works 

Most existing text clustering methods use the Vector Space Model (VSM) to 
represent whole documents. The VSM represents a document as a feature vector of 
terms, or words appeared in it. Each feature vector contains term-weights, usually 
term frequency[1,2], of the terms appeared in that document. 
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Similarity between documents is measured using one of several similarity 
measures such as the Cosine measure, the Jaccard measure. Then use a fast algorithm 
(such as k-means [3]) to deal with the datasets. Clustering methods based on this 
model make use of only single-term analysis and seldom make use of any word 
relation analysis. 

In order to improving this problem, the most relevant works are that of Zamir et. al. 
[4,5]. They proposed a phrase-based document clustering approach based on Suffix 
Tree Clustering (STC). The method basically involves the use of a tree structure to 
represent share suffix, which generate base clusters of documents and then combined 
into final clusters based on connect-component graph algorithm. 

3   Ontology-Based Text Document Clustering 

3.1   Definition Ontology  

An ontology in our framework is defined by: 

Definition 1. An ontology is a sign system ( ): , , , ,O V C P H ROOT= , which 

consists of: 

(1) A vocabulary V (contains a set of terms); iv V⊂ can map to ic C⊂ . In 

general, one term may refer to several concepts and one concept may be 
referred to by several terms; 

(2) A set of concept C ; 
(3) Properties P, one concept C may have several properties; 
(4) A hierarchy H : Concepts are taxonomically related by the directed, acyclic, 

transitive, reflexive relation *H C C⊂ . H(c1,c2) means that c1 is a subclass  
of c2; 

(5) A top concept ROOT, For all c C⊂ it holds’ H(c, ROOT). 

3.2   Document Preprocessing: Term Choice (DPTC) 

Documents may be represented by a wide range of different feature descriptions. The 
most straightforward description of documents relies on term vectors. A term vector 
for one document specifies how often each term from the document set occurs in that 
document. The immediate drawback of this approach for clustering is the size of the 
feature vectors. In our example evaluation, the feature vectors computed by this 
method were of size 46,947, which made clustering inefficient and difficult in 
principle, as described above. 

Term choice, the approach we use here for preprocessing, is based on the feature 
vectors from SiVeR, but focuses on few terms; hence, it produces a low dimensional 
representation. Choice of terms is based on the information retrieval measure tfidf: 

Definition 2. (tfidf) Let tf(i,j) be the term frequency of term j in a document *
id D∈ , 

i= 1,…,N. Let df(j) be the document frequency of term j that counts in how many 
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documents term j appears. Then tfidf (term frequency / inverted document frequency) 
of term j in document is defined by: 

( , ) ( , ) * log
( )

N
tfidf i j tf i j

df j

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1)

tfidf weighs the frequency of a term in a document with a factor that discounts its 
importance when it appears in almost all documents. Therefore terms that appear too 
rarely or too frequently are ranked lower than terms that hold the balance and, hence, 
are expected to be better able to contribute to clustering results. 

For DPTC, we produce the list of all terms contained in one of the documents from 

the corpus *D  except of terms that appear in a standard list of stop-words. Then, 
DPTC choice the dim best terms j that maximize and produces a dim dimensional 
vector for document di containing the tfidf values, tfidf(i,j) for the dim best terms.  

1

( ) ( , )
N

i

W j tfidf i j
=

=∑
 

(2)

3.3   Document Preprocessing: Concept Choice and Grand-Total (CCAG) 

Our approach for preprocessing, involves two stages. First, CCAG maps terms onto 
concepts using a shallow and efficient natural language processing system. Second, 
CCAG uses the concept heterarchy to propose good grand-total for subsequent 
clustering. 

Therefore, we have looked for heuristics to further reduce the number of features. 
The principal idea of our algorithm lies in navigating the heterarchy top-down 
splitting the concepts with most support into their sub-concepts and abandoning the 
concepts with least support. Thus, the algorithm generates lists of concepts that 
appear neither too often nor too rarely. The rationale is that too (in-) frequent concept 
occurrences are not appropriate for clustering. 

*

( , )

( , ) : ( , )
B C
H B C

Support i C cf i B
∈

= ∑  
(3)

1

( ) : ( , )
N

i

Support C Support i C
=

=∑
 

(4)

3.4   Logarithmic Values and Normalized Vectors 

The document representations described so far use absolute frequency values for 
concepts or terms (possibly weighted by idf). Considering that the occurrence of terms 
forms a hyperbolic distribution and, hence, most terms appear only rarely, using the 
logarithmic value log(x+1) instead of the absolute value x itself seemed reasonable to 
improve clustering results. Indeed, for all preprocessing strategies given here, we 
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found that results were only improved compared to absolute values. Hence, all results 
presented subsequently assume the logarithmic representation of term or concept 
frequencies. Furthermore, we compared normalized vector representations against 
absolute or logarithmic values. For this latter comparison, we could not find any 
interesting differences, with respect to our measure. 

Algorithm 1 

Input: number of dimensions dim, Ontology O with top 
concept ROOT document set D* 
1 begin 
2  set Agenda is Root   
3  while continue is true 
4   set E is the first common Agenda processing 
function; 
5   set Agenda is the rest common Agenda processing 
function;  
6   if E is a concept without sub-concept;  
7   then set continue is flase; 
8   else 
9    if E is not a list then set E is an arbitrarily 
ordered list of direct sub-concepts of E;end if; 
10   set NE is the Element of E with maximal E 
11   set RE is NE from E 
12   if RE is not empty then set Agenda is sort s RE 
which may be a single concept or a list of concept, as 
a whole into Agenda ordering according to; end if; 
13   set Agenda is sort s NE which may be a single 
concept or a list of concept, as a whole into Agenda 
ordering according to; 
14   if the Length of Agenda > dim then  set Agenda is 
a list identical to Agenda, but excluding the last E; 
end if; 
15  end if; 
16  if the length of Agenda= dim then Output the 
Agenda; end if; 
17 until continue is FALSE; 
18 end 
Output: Set of lists consisting of single concepts and 
lists of concepts, which describe feature choices 
corresponding to different representations of the 
document corpus D*. 

4   Performance Evaluation Approaches 

This section describes the evaluation of applying K-Means to the preprocessing 
strategies SiVeR, DPTC, and CCAG introduced above.  

4.1   Setting 

We have performed all evaluations on a document set from the tourism domain [7]. 
For this purpose, we have manually modeled an ontology O consisting of a set of 
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concepts C ( C 719 ), and a word lexicon consisting of 350 stem entries. The 
heterarchy H has an average depth of 4.2, the longest un-directed path from root to 
leaf is of length 8. 

Our document corpus D* has been crawled from a WWW provider for computer 
information (URL: http://www.pconlie.com) consisting now of 234 HTML 
documents with a total sum of over 170,000 terms. 

4.2   Silhouette Coefficient 

In order to be rather independent from the number of features used for clustering and 
the number of clusters produced as result; our main comparisons refer to the 
silhouette coefficient [6]: 

Definition 3 (Silhouette Coefficient). Let 1{ , , }M kD D D= …  describe a 

clustering result, i.e. it is an exhaustive partitioning of the set of documents D*. The 

distance3 of a document *d D∈ to a cluster 1 MD D∈ is given as 

( , )
( , ) ip D

i

i

dist d p
dist d D

D

∈=
∑

 

(5)

Let further be ( , ) ( , )M ia d D dist d D=  the distance of document d to its 

cluster ( )i iD d D∈ , and 
,

( , ) min ( , )
i M i

M iD D d D
b d D dist d D

∈ ∉
= the distance of 

document d to the nearest neighbor cluster. 

The silhouette ( , )Md Dυ  of a document d is then defined as: 
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The silhouette coefficient as: 
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*
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D
∈=
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(7)

The silhouette coefficient is a measure for the clustering quality, that is rather 
independent from the number of clusters, k. For comparison of the three different 
preprocessing methods we have used standard K-Means4.However, we are well 
aware that for high-dimensional data approaches like[2] may improve results – very 
likely for all three preprocessing strategies. However, in preliminary tests we found 
that in the low-dimensional realms where the silhouette coefficient indicated 
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reasonable separation between clusters, quality measures for standard and improved 
K-Means coincided. 

The general result of our evaluation using the silhouette measure was that K-Means 
based on CCAG preprocessing excelled the comparison baseline. K-Means based on 
DPTC, to a large extent. K-Means based on SiVeR was so strongly handicapped by 
having to cope with overly many dimensions that its silhouette coefficient always 
approached 0 – indicating that no reasonable clustering structures could be found. 

4.3   Varying Number of Features Dim and Clusters k 

Then we explored how CCAG and DPTC would fare when varying the number of 
features used and the number of clusters produced by K-Means. 

Figure1,2 depicts the dependency between the number of features, dim, used and 
the preprocessing method for a fixed number of clusters. k = 10. The line for CCAG 
shows the silhouette coefficient for the best grand-total from the ones generated by 
algorithmic 1. We see that for DPTC and CCAG the quality of results decreases as 
expected for the higher dimensions [1], though CCAG still compares favorably 
against DPTC. 

We have not included the lower bound of CCAG in Figure 1,2. The reason is that 
so far we have not been very attentive to optimize algorithmic 1 in order to eliminate 
the worst grand-total up front. This, however, should be easily possible, because we 
observed that the bad results are produced by grand-total that contain too many overly 
general concepts like. 

In our real-world application we experienced that it is useful to include the user’s 
viewpoint for deriving the number of dimensions with respect to the actual problem. 
In general one may propose the following upper bound for the number of useable 
dimensions: The silhouette coefficient decreases below 0.25 using more than 6 
dimensions. Thus, using more than 6 dimensions may not be useful, because no 
meaningful clustering structure may be discovered. 

k=10 change dimension

0 0.2 0.4 0.6 0.8

dim=1

dim=2

dim=4

dim=6

dim=8

dim=10

CCAG

DPTC

 

Fig. 1. Comparing DPTC and the grand-total of CCAG 
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Fig. 2. Comparing DPTC and the grand-total of CCAG 

5   Conclusion 

In this paper we have shown how to include background knowledge in form of a 
heterarchy in order to generate different clustering grand-total from a set of 
documents. We have compared our approach against a sophisticated baseline, 
achieving a result favorable for our approach. In addition, we have shown that it is 
possible to automatically produce results for diverging views of the same input. 
Thereby, the user can rely on a heterarchy to control and possibly interpret clustering 
results. 
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Abstract. Recent research has advocated the use of sparse represen-
tation for tracking objects instead of the conventional histogram object
representation models used in popular algorithms. In this paper we pro-
pose a new tracker. The core is that the tracking results is iteratively
updated by gradually optimizing the sparsity and reconstruction error.
The effectiveness of the proposed approach is demonstrated via compar-
ative experiments.

Keywords: Visual tracking, sparse approximation.

1 Introduction

Object tracking is an important problem with extensive application in domains
including surveillance, behavior analysis, and human-computer interaction and
has attracted significant interests. The particle filter is a popular approach which
recursively constructs the posterior probability distribution function of the state
space using Monte Carlo integration[3]. However, when a good dynamic model
is not available, or the state dimension of the tracked object is high, the number
of required samples becomes large and the particle filtering can be computation-
ally prohibitive. In [2], the mean-shift, which is a non-parametric kernel density
estimator that can be used for finding the modes of a distribution, is used for vi-
sual tracking. At each iteration, the offset between the previous location and the
new kernel-weighted average of the samples points is used to find the mean-shift
vector that defines the path leading to a stationary point of the estimated den-
sity. However, it has been shown that for tracking scenario, constant subspace
assumption is more reasonable than constant brightness or color assumptions[5].
Currently a lot of works have been developed to construct suitable subspace
representation[5]. But how to get a robust representation remains an open chal-
lenge problem.

Recently sparse signal reconstruction has gained considerable interests[1].
Variations and extensions of l1 minimization have been applied to many vision
tasks[9][4][8]. In [9], the face recognition problem was solved by l1 optimiza-
tion. Ref.[4] and [8] gave further results to deal with registration error and light
illumination changes. In [6], a robust visual tracking framework is developed

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 207–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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by casting the tracking problem as finding a sparse approximation in a tem-
plate subspace. During tracking, a target candidate is represented as a linear
combination of the template set composed of both target templates and trivial
templates. Intuitively, a good target candidate can be efficiently represented by
the target templates. This leads to a sparse coefficient vector, since coefficients
corresponding to trivial templates tend to be zeros. The sparse representation
is achieved through solving an l1-regularized least squares problem, which can
be done efficiently through convex optimization. Then the candidate with the
smallest target template projection error is chosen as the tracking result. This
approach has been tested on some benchmark dataset and shows advantages over
some existing approaches. In addition, Ref.[10] also proposed sparse representa-
tion approach for visual tracking, but their approach requires off-line training.
Both [6] and [10] utilize the particle filter as the tracker. For each particle and
a sparse representation needs to be calculated. Therefore the time cost is very
large. To tackle this problem, we give a different way of treating tracking task
as iterative optimization problem. The advantages of this approach is that only
several iterations need to be calculated. In addition, an extensive experimental
comparison shows that the proposed approach is more robust than the approach
proposed in [6] and some other classical approaches, such as [2].

2 Proposed Approach

Similar to [6], we assume we have a target template set T = [t1, · · · , tn] ∈ Rd×n.
The template ti is generated by stacking template image columns to form a 1D
vector.

To incorporate the effect of noise, following the scheme in [9] and [6], we
introduce the trivial templates I ∈ Rd×d which is essentially an identity matrix
and approximate a potential candidate t as

t = Bc (1)

where B = [T I − I] ∈ Rd×(n+2d) and c represents the coefficient vector. The
role of negative templates −I has been illustrated in [6].

The introduction of trivial templates I makes the problem (1) to be under-
determined and there does not exist unique solution to c. A natural approach is
to get the sparse solution to (1). To this end, Ref.[6] constructed the following
weighted optimization problem:

min ||t− Bc||22 + λ||c||1 (2)

where || · ||1 and || · ||2 denote the l1 and l2 norms respectively, and λ is the
weighting parameter. Furthermore, the reconstruction error ||t − B̄c||2 is used
for likelihood function evaluation, where B̄ = [B 0 0] ∈ Rd×(n+2d). The basic
assumption of the tracking method developed in [6] is that good candidate can
be represented as a sparse linear combination of the templates B. Using this as-
sumption, we re-formulate the tracking task as the following energy minimization
procedure:
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min
c

||t − B̄c||2 + λ||c||1
s.t. t = Bc.

(3)

This optimization problem can be easily solved by using CVX package, which
can be downloaded from http://www.stanford.edu/˜ boyd/cvx/.

The proposed tracking is based on the assumption that the solution of the
optimization problem corresponds to the target location we seek, starting from
an initial guess to the target. Then the problem to be solved is that given an
initial guess t0, how to get the final solution to solve the optimization problem
(3). Therefore (3) is further transformed as

min
c,δu,δv

||t0 + δu∂Fk

∂x + δv ∂Fk

∂y − B̄c||2 + λ||c||1
s.t. t0 + δu∂Fk

∂x + δv ∂Fk

∂y = Bc.
(4)

where Fk is the current image frame; ∂Fk

∂x and ∂Fk

∂y can be obtained by the central
difference; δu and δv are the motion parameter to be estimated. The weighting
factor λ can be set to 1. In practical tracking scenario, this optimization proce-
dure should be repeated for several iterations. The whole tracking algorithm is
summarized in Algorithm 1, where EPS and MAX NUM are the error tolerance
and the maximum iteration number, respectively. They should be prescribed by
the designer.

Algorithm 1. Proposed visual tracking algorithm
Given: Template matrix B; Previous tracking position x̂k−1,ŷk−1, and scale ŝk−1;
Current image frame Fk.
OUTPUT: Current tracking position x̂k, ŷk.
————————————————————
Initialization: u0 = 0, v0 = 0, i = 0.
Do:

– x = x̂k−1 + ui, y = ŷk−1 + vi, s = ŝk−1

– Extract sample t from the box determined by x, y, and s.
– Solve the following optimization problem:

min
c,δu,δv

||t + δu∂Fk
∂x

+ δv ∂Fk
∂y

−Bc||2 + λ||c||1
s.t. t + δu∂Fk

∂x
+ δv ∂Fk

∂y
= Bc.

(5)

– ui+1 = ui + δu, vi+1 = vi + δv.
– err = ||[δu δv]||2.
– i ← i + 1.

While ((err < EPS) AND (i < MAX NUM))
x̂k = x, ŷk = y.

The above iteration converges within about 3 to 4 iterations. Once we have
obtained final estimates of xk and yk, we can further estimate the scale. In this
paper, we use a heuristic approach to estimate the scale. Denote ŝk−1 as the
estimated scale at the last frame. After running Algorithm 1 to get the esti-
mated central point x̂k, ŷk, we extract three samples from the bounding boxes
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determined by three different scales (1 − α)ŝk−1, ŝk−1, and (1 + α)ŝk−1. After
calculating the resulting reconstruction errors made by the three samples, we
select the scale which leads to the minimum reconstruction error to be the esti-
mated scale ŝk. In practical scenario, The coefficient α is usually set to be 0.1
and we find this setting is very effective in practice. Finally, although the above
algorithm description models the motion of the target as pure translation, it can
be easily extended to other motions, such as rotation. For brevity we donot give
further discussions.

Remark 1. The construction of template set is similar to [6]: At initialization,
the first target template is manually selected from the first frame. The rest target
templates are created by perturbation of one pixel in four possible directions at
the corner points of the first template in the first frame.

It should be noted that the proposed optimization scheme will not perform a
global search to find the image region that matches the stored representation.
Rather, given an initial guess, it will refine the position and reconstruction.

In the following we give a brief comparison between the most related work[6]
and the proposed approach. The core difference between the two approaches
is a little like the difference between conventional mean-shift approach[2] and
particle filter approach[7]. In [6], the reconstruction error is used to evaluate the
likelihood function. However, how to construct the likelihood function is still
an open problem and needs setting some tuning parameters. In addition, the
performance of particle filter in [6] strongly depends on some other parameters,
such as the parameters in dynamic equation. In the proposed approach, however,
the tracking is totally automatically realized by optimizing the objective function
(4). On the other hand, the time costs are rather different. In [6], assume we have
N particles, then each particle needs to be represented as the sparse combination
of the templates, and therefore N times sparse decompositions are required. In
practical implementation of particle filter, the number of particles N is usually
set to be a large number. This leads to time-consuming computations. In our
approach, the algorithm usually converges within 3˜ 4 iterations.

Finally, it should be emphasized that in practical tracking scenarios, the tem-
plate set B should be updated to incorporate the changes of appearance, illu-
mination, and so on. In [6], a heuristic update approach is proposed and it also
applies in our algorithm. However, due to the space limitation, we can only focus
on the tracking itself but not update method. In spite of this, we will show in
the next section that the proposed approach which utilizes fixed template set
still performs rather well on many public available testing sequences.

3 Experimental Results

We make extensive experimental comparisons and provide some representative
results in this section. For comparison, we consider the conventional color-based
mean-shift approach[2](MS) and the approach in [6](MEI). The former is a
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classical approach, which utilizes the color information to guide the shift direc-
tion. In [6], a particle filter is utilized and therefore some parameters should be
given. We define the states of the particle filter to be xk = [xk, yk, sk], where
xk, yk indicates the locations of the object; sk is the corresponding scale. The
dynamics can be represented as xk = xk−1 +vk, where vk is a multivariate zero-
mean Gaussian random variables. The variance is set by [σx, σy , σs] = [2, 2, 0.01].
The particle filter is assigned to 50 particles. The authors of [6] suggested that
the likelihood function to be formulated from the error approximated by the
target templates but they did not give precise form. Therefore we construct the
likelihood using exp(−err), where err is the reconstruction error. On the other
hand, since in this work we do not include model update module, we also remove
update stages of MEI. Please note that we do not compare to [10], because it
requires a lot of training samples to be off-line collected. In all of the presented
images, the magenta, blue and red boxes correspond to the MS, MEI and the
proposed approach, respectively.

Table 1. Quantitative comparisons (The averaged position errors in pixels)

Sequence I(0) II(0) III(2) IV(3) V(7) VI(0) VII(18) VIII(3) VIIII(2) X(0)
Number of frames 382 295 234 272 285 855 771 398 310 559

MS 5.4 9.0 8.9 10.9 8.6 11.4 43.1 37.2 37.7 54.4
MEI 8.4 22.0 50.5 63.6 34.9 16.8 62.0 70.6 9.9 10.8

Proposed 1.3 5.2 2.4 3.6 4.6 8.9 10.4 8.7 3.8 4.0

The first sequence was captured by us using a camera which is mounted in
the top of a car. The tracking results are shown in Fig.1. In this sequence, there
is a car running in a tunnel and the lighting condition changes rapidly. MS
tracker quickly loses the target after tracking a few frames (see Frame 61) and
never recovers. MEI approach can track the target for about 200 frames and
our algorithm is able to track the car throughout the entire 530 frames of the
sequence.

The second sequence (ThreePastShop2cor) comes from CAVIAR project(see
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/). The tracking results are shown
in Fig.2. In this sequence, 3 persons walk in the corridor. We initialize the de-
tection results at Frame 398 and the leftmost man in black clothes is selected as
the target. In the following frames, this man walks from left to the right. From
Frame 465 to 512, there occurs some occlusions. During the occlusion period, the
performance of MS is deteriorated and the tracking result is even wrongly locked
onto the man in red clothes (Note that color information is not used by MEI
and us). After this, the target walks along the corridor and the scale is smaller
and smaller. Nevertheless, our approach accurately tracks in both position and
scale (see Frames 627 and 939). Since CAVIAR dataset provides detailed anno-
tations, we can quantitatively compare the three approaches. The left part of
Fig.Fig.4 gives the tracking error, which is defined as the position errors between
the centers of the tracking results and that of the ground truth. It shows that
only the proposed approach succeeds in tracking during the whole period.
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Fig. 1. A car in the tunnel. LEFT to RIGHT: Frames 1, 61, 242, 378, 529.

Fig. 2. CAVIAR ThreePastShop2cor. LEFT to RIGHT: Frames 398, 465, 512, 627,
939.

Fig. 3. CAVIAR OneLeaveShopReenter2cor. LEFT to RIGHT: Frames 2, 207, 225,
245, 559.

The third sequence (OneLeaveShopReenter2cor) has been investigated in
Ref.[6]. In [6] this sequence is initiated at Frame 137 and the approach in Ref.[6]
is able to track up to the 271st frame. However, They did not mention the per-
formance for the remaining frames. In our experiment, this sequence is initialized
at the first frame and the whole 559 frames are investigated. In this case, Both
MEI and our approach are able to track during the period when the woman is
partially occluded by the man (from Frame 190 to Frame 238) while MS fails.
After the occlusion, Both MEI and our approach still track the woman. How-
ever, our algorithm is able to track the object more stably, and hence closer to
the ground truth than MEI(See Fig.3 for some selected frames and Fig.5 for
performance comparison).

Table I gives a quantitative comparison on 10 sequences. Seq.I is EnterEx-
itCrossingPaths1cor, Seq.II is OneLeaveShop2cor, Seq.III is OneLeaveShopReen-
ter1cor, Seq.IV is OneShopOneWait1cor, Seq.V is OneShopOneWait2cor, Seq.VI
is OneStopNoEnter2cor, Seq.VII is ShopAssistant2cor, Seq.VIII is TwoEnter-
Shop2cor, Seq. VIIII is TwoEnterShop3cor, Seq.X is OneLeaveShopReenter2cor.
The number in the parenthese is the object ID which is defined by CAVIAR
ground truth. We use fixed parameter setting [σx, σy, σs] = [2, 2, 0.01] for all
sequences and see that the proposed approach clearly outperforms the other
methods. Based on the un-optimized MATLAB implementation, the average
time cost per frame is 50 seconds for MEI, and 15 seconds for our approach.
The performance can be further improved by operating the tracking at multiple
levels of resolution. An extensive research on improving the efficiency will be the
subject of future works.
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Fig. 4. Performance comparison for Sequence ThreePastShop2cor
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Fig. 5. Performance comparison for Sequence OneLeaveShopReenter2cor

4 Conclusion

We presented a robust algorithm to track object in video sequences using sparse
representation and successive optimization. The proposed approach shows better
performance than existing mean-shift tracker and the recently proposed particle
filter using l1 minimization.
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Abstract. Biological evolution endows human vision perception with
an “optimal” or “near optimal” structure while facing a large variety of
visual stimuli in different environment. Mathematical principles behind
the sophisticated neural computing network facilitate these circuits to ac-
complish computing tasks sufficiently as well as at a relatively low energy
consumption level. In other words, human visual pathway, from retina
to visual cortex has met the requirement of “No More Than Needed”
(NMTN). Therefore, properties of this “nature product” might cast a
light on the machine vision. In this work, we propose a biological inspired
computational vision model which represents one of the fundamental vi-
sual information — orientation. We also analyze the efficiency trade-off
of this model.

Keywords: computational vision model, orientation representation,
efficiency trade-off.

1 Introduction

In the very beginning of human vision pathway, retina deals with visual stimuli
with six interconnected layers [1]. Responses output by the final layer are col-
lected by Lateral Geniculate Nuleus (LGN) and further transmitted to visual
cortex for semantic extraction and representation. Around 75% of ganglion cells
in retina contribute to Parvocellular vision pathway [2]. These ganglion cells
highly response to certain wavelength stimuli and their center-periphery antag-
onized response patterns are well simulated by Differences of Gaussian (DoG)
functions [5]. According to Hubel’s description [3], simple cells that packed in
primary visual cortex are selectivie to orientation which was considered to be the
most basic component for making up more complicated visual representation.
For image processing, objects can be considered as combinations of linear seg-
ments as shown in figure 2. These tiny segments are modeled as linear segments
in our model which are the basic (meta) components of rebuilding apicture.
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Biologically, how does this representation emergy still remains unclear for
scientists. Hubel and Wiesel [3] proposed a hypothesis that explained the struc-
ture of a simple cell’s receptive field and some anatomical evidence have been
collected [4] seemingly to support it. Receptive fields of ganglion cells, in this
case, have to align strictly inside each simple cell’s receptive field. Although it
was an elaborate structure, models built under this assumption will certainly
suffer from rigid geometric requirements which are very expensive to implement
on hardwares. We alleviate the spatial requirement and propose an alternative
model in which “Simple Cell like” (SC-like) neurons can compute and get the
orientation information with fewer properly located ganglion cells.

Also, it is worth noting that biological evolution deals with the trade-off be-
tween performance and energy consumption extremely well. Since better perfor-
mance usually yields to higher energy consumption, biological structures have
been working in a mechanism that best fit the environment. This means if the
current structure has just satisfied surviving requirements (e.g. visual comput-
ing requirement for visual structures), there is no need to evolve into better ones
which may cost more energy and resources. This principle is termed as “No More
Than Needed” (NMTN) in this paper. Much evidence can be found in retina to
support it. For example, foveal center area has been evolved to have exceptionally
high resolution for precisely discerning objects where we are focusing. However,
this high performance can not be afforded or needed throughout the entire retina.
We will follow this principle in the design of our computational model.

The entire computational model will be developed in section 2. We will discuss
the geometry constraints for ganglion cells to achieve the NMTN principle and
explain how does an SC-like neuron work in this section. In section 3, we analysis
the energy efficiency of different geometry pattern and section 4 will show some
picture-rebuilding results produced by this model. Finally, we will end up with
a discussion and future works about this model in section 5.

2 Computational Vision Model

We proposed a three-layer computational vision model, see figure 1. Photorecep-
tors collect information from an input picture; ganglion cells (GC) pre-process

Stimulus sampling

DoG summation

Linear segments computing & 
representation

photoreceptors

ganglion cell

SC-like neuron

Fig. 1. Ganglion cells (marked as green dash circles) get inputs from photoreceptors
(marked as blue hexagons within a ganglion cell’s receptive field) and several neigh-
boring ganglion cells work together making up the receptive field of an SC-like neuron
(marked as a black dash circle) to compute orientation representation
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the responses from photoreceptors with respect to a DoG model, and final rep-
resentations are computed by SC-like neurons.

2.1 Unstable Part of a Ganglion Cell’s Response Curve

Decades ago, Rodieck [5] proposed the DoG (Differences of Gaussian) model for
ganglion cells which simulate biological data quite smoothly [6]. Basically, we
employ the standard two dimensional DoG function F , which is defined as:

F(x|σ0, σ1) = N (x|σ0) −N (x|σ1) (σ0 < σ1) (1)

=
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where the parameters σ0, σ1 denote the standard deviations of inner (positive)
and outer (negative) gaussian function respectively. This function models the
weighting distribution of inputs to a single ganglion cell. Since the integral over
the entire domain is zero, a uniform stimulus within the receptive field will make
a ganglion cell to output 0.

ganglion cellpicture
linear segment

ganglion cell

Fig. 2. A segment of an object’s boundary can be viewed as a straight short line locally.
We term it as “linear segments” which is marked as a thick line in the second subfigure
from left. A ganlgion cell’s response curve of such a segment crossing over its receptive
field is plotted in the last subfigure. The middle part (red part) of that curve which
caused by a segment crossing over the positive region (marked as a red blob) is so-called
the “unstable part”.

According to the data reported by Corner and Kaplan [7], the outer-inner
standard deviation (σ1/σ0) in DoG with respect to parvocellular ganglion cells
remains around 6–8. Ganglion cell’s response curve flips quickly in the middle
(red thick curve) part, which means a tiny difference of a segment across this
positive region will yield to a significant output change, see figure 2. This phe-
nomenon renders the output unreliable to determine the exact position of that
segment. Therefore, we abandon this “unstable part” of the curve.

2.2 Receptive Field of Ganglion Cells

Some visual tasks may require various resolutions to represent a scene. For ex-
ample, given the task that to recognize a person in a crowded street usually need
high resolution on his/her face, however, background objects like vehicles, trees,
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and other pedestrians can be represented with lower resolution in order to save
computing resources. Thus, taking pixels as basic units seems to be incompe-
tent. Inspired by the nonuniform sampling of retina, pixel-independent sampling
methods like proposed in [8] are designed to overcome this problem. Such a
method considers each pixel as continuous color patch in order to get rid of the
restrict of pixels.

We, in this model, employ a pixel-independent sampling technique, see fig-
ure 3(a). Each ganglion cell’s receptive field consists of hexagon-like packed pho-
toreceptors. see figure 3(b).

(a) pixel-independent sampling (b) integration strategy

Fig. 3. (a) shows the pixel-independent sampling method. Each square denotes a single
pixel, while the circles denote ganglion cells’ receptive fields. Pixels are considered as
continuous color patches (i.e. those squares with width and height) and ganglion cells
with various densities and sizes are responsible for summing up sampled signals inside
its receptive field. (b) describes the strategy for computing photoreceptors’ weightings
in DoG model for a single ganglion cell. We integrate the corresponding hexagon region
in x̂oy plane to get corresponding weightings. Outer dash circle indicates 3σ1 and inner
circle indicates σ1. σ1 is the parameter in formula (1).

2.3 The Definition of Ganglion Cell “Neighbors”

In our model, two ganglion cells that are both connected to the same SC-like
neuron may have interactions and stay close to each other. They both contribute
to the receptive field of an SC-like neuron. Such two ganglion cells are termed
as neighbors. Intuitively, if a ganglion cell has a neighbor, the geometrically
nearest ganglion cell should be considered as that neighbor (Note that it may
have more than one neigbor.). Also, we define the receptive field of an SC-
like neuron to be composed of neighboring ganglion cells, i.e. any two ganglion
cells within this field are neighbors. Apparently, at least three ganglion cells
are needed to determine the position of a linear segments and according to
the NMTN principle, SC-like neuron’s receptive field is, therefore, composed of
three ganglion cells. Each two of them are neighbors. If we take each ganglion
cell as a node in a graph, the problem that to define neighbors for ganglion cells
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can be related to 2-D triangulations. Edges in the triangulated graph denote
neighboring relationships.

Definition 1. Let the center of each ganglion cell’s receptive field be a node in
a graph, two cells are neighbors if and only if their centers are connected in the
result graph of the Delaunay triangulation.

According to the properties of Delaunay Triangulation, Nearest Neighbor Graph
is a subgraph of the Delaunay triangulation which corresponds to our intuitive
assumption.

2.4 The Constraint on the Size-Position Relation of Ganglion Cells

The relation between the size and the position of a ganglion cell’s receptive
field has to meet some requirements that enable it correctly determine linear
segments. It should guarantee the ability of discerning response patterns incurred
by different linear segments (In other words, sufficient representation ability).
Also, the entire system has to maintain a low energy consumption level in order
to achieve the optimal trade-off following the NMTN principle.

So, we have two assumptions before discussing the constraint:

1. Smaller number of ganglion cells lead to lower energy consumption level.
2. Smaller receptive field leads to smaller scale of inter-cell-connections that

make up the receptive field. In this case, it costs less computing resouces.

Definition 2. For two or more ganglion cells that have non-zero responses, they
are consistent with the responses if there is at least one linear segment that
satisfies all their responses.

(a) shifting the third cell (b) constraint

Fig. 4. Illustration of the constraint on size-position relation. Note that shaded re-
sponse circle denote their responses are positive, while blank ones like cell B in (b)
represent negative responses.
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As we have discussed, the response of a single ganglion cell uniquely corresponds
to the distance from a linear segment to its receptive field center. Nevertheless,
we can not determine the exact position of that segment only by the response
of one ganglion cell. For “two cells” case, although we can eliminate most of
possible solutions, there still remain two candidates which can not be told apart,
see figure 4(a).

Definition 3. Let an SC-like neuron consists of two or more ganglion cells, it
has a weak discerning ability if more than one possible linear segment satisfy all
ganglion cells’ responses.

Admittedly, discerning ability of a neuron’s receptive field with two ganglion
cells is always weak. Moreover, as long as their centers stay on the same line,
this “weakness” still remains, even if the number of ganglion cell increases. See
ganglion cell A,B,C in figure 4(a). Therefore, the third ganglion cell C has to
shift away from the line to some place like D in order to overcome the weakness.

Let us take a triple-cell set like shown in figure 4(b) as an example. Other
than ganglion cells A and B, the third ganglion cell, as discussed above, shifts
away from the dash line with distance d(d �= 0). For the sake of convenience,
we introduce a function G : R → R, which maps the response of a ganglion cell
to the distance from a segment to its receptive field center. According to our
previous assumption 2, the receptive field of the third ganglion cell D should be
as small as possible. However, it is easy to show that this radius is at least d.

Proof. Suppose its radius r < d, say r = d − ε, we can easily find a situation
that make this triple-cell weak, for instance,

G(RA) = G(RB) ≤ ε

where RA, RB represent the responses of the first two ganglion cells.

Hence, we get r ≥ d. On the other hand, it should be small enough so as to
achieve low level energy consumption which renders the optimal radius r = d.

For each ganglion cell in a triple-cell set should meet the requirement as
described in figure 4(b). The radius of each receptive field must be equal to the
distance from its center to the line connecting the other two neighbors’ centers.
More generally, given a ganglion cell and all its k neighbors (it must be involved
in k triples around), let the minimum requirement of each triple-cell set be
r1, r2, . . . , rk, then the radius of its receptive field should be maxk

i=1 ri.

2.5 SC-Like Neurons

Hopefully, a linear segment is the common tangent of three response circles, see
figure 4(b). Unfortunately, system bias usually lead to inconsistency of these
cells. Thus, we need to release the rigid requirement by introducing tolerance,
see the shaded ring in figure 5(a).

An SC-like neuron attempts to get the optimal linear segment which satisfies
all responses. Given that the equation of a line: u1x1 + u2x2 + 1 = 0, and
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(a) solution tolerance (b) optimize solution

Fig. 5. Getting the optimal solution of an detected segment

let (a1, b1), (a2, b2), (a3, b3) be the centers of three receptive fields with radius
r1, r2, r3 respectively. The optimal linear segment minimizes the sum of square
distances from that segment to each response circle along their radius direction.
So we try to optimize the object function:

min
u

f(u) = min
u

3∑
i=1

( |uT ci + 1|
‖u‖2

− ri

)2

(3)

where u = [u1, u2]
T , ci = [ai, bi]

T .
Under this framework, finally we can get an optimal linear segment û1x1 +

û2x2 + 1 = 0, and fmin(û) = residual. If this residual is smaller than a cer-
tain threshold then report the solution, otherwise, report inconsistency. In our
experiment in section 4, we use

∑3
i=1 0.25r2

i as the threshold.

3 Efficiency Analysis with Difference Cell Distribution

In order to compare the efficiency of the computational vision model in different
ganglion cell distribution patterns, we generate three different distributions of
ganglion cells: randomly packed, matrix-like packed and hexagon-like packed, all
in a square region of [0, 100]× [0, 100], see figure 6.

The generated cells have to meet the requirement discussed in the above sec-
tions. Thus, different distribution cells lead to different mean radius of receptive
fields. Based on hexagon-like packed cells, we also add a series random distur-
bance with εoffset ∼ N (0,σ2), see table 1 for result.

The experiment shows hexagon-like packed ganglion cells yields to smallest
mean radius. In other words, hexagon-like packed ganglion cells require lowest
hardware complexity. This result also seems to be connected with the hexago-
nally packed photoreceptors (especially cones in retinal fovea).
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(a) random packed (b) matrix-like packed (c) hexagon-like packed

Fig. 6. Three different cell distribution patterns within [0, 100] × [0, 100]. Each point
denotes a receptive field center.

Table 1. Mean radius of receptive fields with different distribution patterns

Distribution(no offset) Mean radius

random 3.9245

matrix-like 3.0579

hexagon-like 2.9557

Offsets (σ) Mean radius

0 (no offset) 2.9557

0.05 3.0282

0.1 3.0992

0.15 3.1671

0.2 3.2413

0.25 3.2910

0.5 3.6185

Fig. 7. Mean radius of receptive field and dispersion under different distribution pat-
terns (including disturbance)
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4 Representation of the Output of SC-Like Neurons

Based on the outputs of SC-like neurons, we rebuild some pictures using linear
segments represented by these neurons, see figure 8.

For each valid output of SC-like neurons we use an elongated gaussian function
to represent a linear segment. These gaussian functions can be viewed as building
blocks to rebuild a picture. It is worth noting that although the result shown
looks like those processed by edge detection filters, they are actually composed
of many linear segments. In this case, these segments are much more steerable
than pixels from at least two aspects: firstly, the segments number is much
smaller than that of pixels in an ordinary picture; secondly, rebuilt picutres can
be arbitrarily rescaled. From the results we can see the simplified computational
vision model basically preserves the orientation information of input pictures.

Fig. 8. Rebuilding the original pictures in an 100 × 100 square from SC-like neurons
output. Each rebuilt picture is actually composed of many linear segments.

5 Discussion

Based on some biological facts, we design a three-layer computational vision
model to represent orientation information, and try to reconstruct the original
pictures on an SC-like neuron level. This kind of representation is fundamentally
different to some local descriptors such as SIFT [9], SURF [10] or HoG [11]
etc. which detect the gradient orientation information. Firstly, It is independent
on resolution of input pictures due to the pixel-independent sampling strategy.
Secondly, it provides an interface that is more steerable in further semantic
processing.

Also, we hope to refine this model for further analyzing the optimal efficiency
for the model. For example, introducing spacial-variant sampling like mentioned
in [12][13][14] inspired by biological features and quantitatively analyzing its ad-
vantages in redundancy reduction. In addition, we would like to compare with
the biological structures to get more valuable conclusions. For future works, we



224 Y. Jiang and H. Wei

need to consider more parameters to find out the optimal trade-off of computa-
tional vision model. These parameters also involve parallel color pathways and
non-linear ganglion cell response functions, etc.
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Abstract. In this paper, we have proposed a novel image quality evaluation al-
gorithm based on the Visual Di�erence Predictor(VDP), a classical method of
estimating the visual similarity between an image under test and its reference
one. Compared with state-of-the-art image quality evaluation algorithms, this
method have employed a genetic algorithm based support vector machine, instead
of linear or nonlinear mathematical models, to describe the relationship between
image similarity features and subjective image quality. Subsequent experiments
shows that, the proposed method with the state-of-the-art image quality evalua-
tion algorithms the Mean Square Error (MSE), the Structural SImilarity Metric
(SSIM), the Multi-scale SSIM (MS-SSIM). Experiments show that VDQM per-
forms much better than its counterparts on both the LIVE and the A57 image
databases.

Keywords: image quality evaluation, automated feature selection, genetic
algorithm, support vector machine.

1 Introduction

Image quality evaluation is an important topic of designing imaging systems and eval-
uating their performance, where various image operations (e.g., acquisition, transmis-
sion, processing and transmission) always attempts to maintain and even improve the
quality of digital images.

Assuming humans to be the potential consumer of electrical imaging products, sub-
jective methods dominated image quality evaluation for quite a long time. However,
their complex and cumbersome experiment procedures hindered their application in real
time cases. Therefore objective image quality evaluation using computer algorithms be-
came more popular in recent years [3], where image quality estimated by image quality
evaluation algorithms should be closely consistent with subjective perception to image
quality. Image quality assessment algorithms usually indicate the perceptual quality of
a distorted image by a figure of merit, which is also called the image quality metric.

During the development of image quality evaluation algorithms, psychologists laid
on the foundation by reveal properties of the Human Vision System (HVS), while im-
age processing experts attempted to simulate the whole functionality of the HVS using
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computer algorithms, whose underlying mathematical models can be built either from
conclusions obtained from psychological experiments or by treating the HVS as a black
box.

Based on their requirement on reference images, image quality evaluation algorithms
can be divided into: Full Reference (FR), Reduced Reference (RR) and No Reference
(NR) algorithms, where full, partial, and no information about the reference image is
needed respectively. This paper mainly discusses the development of FR image quality
evaluation metrics.

The first approach to image quality evaluation is to estimate the image quality by
computing the physical di�erence between distorted image signals and their reference
ones, e.g., Mean Square Error (MSE), Signal Noise Ratio (SNR) and Peak Signal Noise
Ratio (PSNR) metrics. It is reported that image quality estimated by these simple meth-
ods usually can not approximate well with subjective ratings.

One of the solutions to this problem is to consider of the anatomy and psychological
properties of the HVS, based on which we can reconstruct the complete HVS. The
metrics following this approach include the Visual Di�erence Predictor(VDP) [1] and
Just Noticeable Di�erence (JND) model [2].

Another approach to reconstruct the HVS is replacing it with a visual information
processing model, which could be in any form in mathematics. Based on the loss of
image structural information, wang has proposed a series of image quality evaluation
algorithms include Structural Similarity Index (SSIM) [4], the Multi-Scale SSIM (MS-
SSIM) [5]. On the other hand, image quality evaluation algorithms Image Fidelity Cri-
teria (IFC) [6] and Visual Image Fidelity (VIF) [7]are developed on the Natural Scenery
Statistics (NSS) model.

Based on the VDP, the the early work of building the HVS model, we have pro-
posed a novel image quality evaluation algorithm called Visual Di�erence based Qual-
ity Metric(VDQM), where a genetic algorithm based support vector machine, instead
of traditionally linear or nonlinear mathematical models, is employed to describe the
relationship between image similarity features and subjective image quality.

2 Related Works

This section briefly introduces the classical MSE metric , and a family of structural-
similarity based image quality metrics, including UQI, SSIM and MS-SSIM. Among
them, MSE and UQI simply measure the di�erence and similarity between image sig-
nals being compared. Based on the proper assumptions about the mechanism by which
humans judge image quality, SSIM and MS-SSIM understand the biological HVS as a
visual-information(signal)-processing system.

2.1 MSE

Despite the earliest known image quality metrics, MSE and PNSR (the Peak Signal
Noise Ratio) are still widely used in many image processing application [3].



The Application of GA-SVM for Image Quality Evaluation 227

Give a distorted image Î and its original form I in the size of M � N, MSE is defined
as follows:

MSE �
1

MN

M�N�
i�1� j�1

(I(i� j) � Î(i� j))2 (1)

(2)

MSE is actually a special case of the Minkowski norm (distance): Ep �

��N
i�1 �xi �

yi�
p
�1�p

� p � [1��], where p � 1 leads to the Mean Absolute Error (MAE) measure,

p � 2 yields the square Root of MSE (RMSE), and p � � gives the Maximum Absolute
Di�erence (MAD) measure E

�
� maxi �xi � yi�.

Compared with other Minkowski norms, MSE is not only mathematically di�eren-
tiable, but also has a clear physical meaning, i.e., the energy of the error signal. However
MSE has long been criticized for its poor correlation with subjectively perceived image
quality.

2.2 SSIM

The development of SSIM [4] follows a di�erent philosophy than MSE. Based on an
assumption that image quality deterioration is mainly cause by the loss of structural
information, SSIM models the HVS using three parallel channels,which are in charge
of processing luminance, contrast and structure information, respectively. Finally, SSIM
is defined as follows:

SSIM �

N�
i�1

[l(xi� yi)]� � [c(xi� yi)]� � [s(xi� yi)]�� (3)

where l(xi� yi), c(xi� yi) and s(xi� yi) are result of comparing two image patches xi and yi

in the luminance, contrast and structure channels.

2.3 MS-SSIM

Taking an input distorted image and its reference one, MS-SSIM [5] iteratively applies a
low-pass filter and downsamples the filtered images by a factor of 2. The original image
is indexed as 1 and the image at the highest scale M is obtained after M � 1 iterations.

At each scale (e.g., the jth scale), the luminance, contrast and structure comparison
(lM(xi� yi), c j(xi� yi), s j(xi� yi)) of two image patches xi and yi is computed in a similar
way to SSIM. The overall MS-SSIM evaluation is obtained by combining comparison
results at di�erent scales together

MS-SSIM �

N�
i�1

[lM(xi� yi)]
�M �

M�
i�1

[c j(xi� yi)]
� j � [s j(xi� yi)]

� j (4)
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Fig. 1. The framework of our proposed method

3 The Proposed Method

In this section, a novel image quality evaluation algorithm VDQM is developed based
on the VDP model for estimating the visual similarity between two images (as shown
in Fig. 1). The whole algorithm is composed of three step: the HVS model, subband
similarity estimation, image quality predication. Their functions are described in detail:

– The HVS model represents the low-order processing of our visual system. As
shown in Fig.2, an input image pass through a series of processes : amplitude non-
linearity, contrast sensitivity function, cortex transform representing the response
of the HVS to light level, spatial frequency and content of images, and are decom-
posed into 30 high-frequency subbands and 1 low-frequency.

– After these 31 subbands are qutiflyed into the range of [0 255], their similarities
between reference and test images are computed using 12 image quality metrics
MSE, PSNR, VSNR, SSIM, MS-SSIM, VIF, VIFP, UQI, IFC, NQM, WSNR and
SNR. Therefore there are a set of 372(31x12) features extracted for each test image.

– Image quality is predicted by the support vector machine(SVM) from image simi-
larity features, i.e, subband similarity measures, where the genetic algorithm (GA)
is in charge of selecting the proper feature subset and parameters for SVM. Finally,
the chosen features and parameters is presented in Table1 .

4 Experiments and Results

The performance test method is presented here: Instead of directly measuring the agree-
ment between image quality measures and subjective ratings (Mean Opinion Score,
MOS) , a nonlinear transformation process in form of PMOS(x) � �1e�2(x��3)

2
�
1�e�2(x��3)

� ��4x��5

is introduced to transform video quality metric values into Predicted MOS (PMOS),
which are then compared with MOS using statistical measures, Correlation CoeÆcient
(CC), Spearman Ranking Order Correlation CoeÆcient (SROCC), RMSE, Maximal
Absolute Error (MAE). By providing a more intuitive impression of the performance
improvement of one image quality metric over another, CC and RMSE are more widely
used in the community of image (video) quality assessment.

Following the method described above: both our proposed method and the state-
of-the art image quality evluation algorithm MSE, SSIM and MS-SSIM are testified
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Fig. 2. The decomposition of “building” image into 31 subbands

on the LIVE image database [8] developed by Laboratory for Image and Video Engi-
neering (LIVE) of Texas university and A57 image database developed [9] by Visual
Communications Lab of Cornell University. All these image databases consist of three
parts: original image with perfect quality, distorted image and subjective image quality
ratings (Mean Opinion scores).

Table 2 presents the performance comparison of our proposed metric VDQM and
the state-of-the-art image quality metrics. It is observed that VDQM performs much
better than its counterparts (MSE, SSIM and IFC) with respect to each of the statistical
measure: CC, SROCC, RMSE and MAE, on the LIVE and A57 image database. That
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Table 1. The chosen features and parameters for image quality evaluation

Chosen Features
index subband number Similarity computation index subband number Similarity computation

1 1 PSNR 15 16 SSIM
2 2 SSIM 16 17 PSNR
3 3 PSNR 17 18 SSIM
4 4 MSE 18 19 PSNR
5 5 PSNR 19 20 MSE
6 6 SSIM 20 20 SSIM
7 7 PSNR 21 22 SSIM
8 11 PSNR 22 26 MSE
9 12 MSE 23 28 MSE

10 12 SSIM 24 29 PSNR
11 14 MSE 25 30 MSE
12 14 SSIM SVM parameters
13 15 PSNR cost gamma epsilon
14 16 MSE 64 4.66�10�10 2

Table 2. Statistical measures between PMOS obtained by image quality evaluation algorithms
and real MOS

LIVE A57
Measures MSE SSIM MS-SSIM VDQM MSE SSIM MS-SSIM VDQM

CC 82.86% 87.69 % 90.56% 96.03 % 77.96% 81.77% 89.12% 91.12%
SROCC 81.97% 87.63 % 89.76% 95.87 % 76.81% 80.51% 88.93% 90.96%
RMSE 9.06 7.74 6.83 4.36 0.5 0.3 0.21 0.12
MAE 7.18 5.87 5.19 3.72 0.42 0.25 0.17 0.10

proved our approach to image quality evaluation based on the incorporation of the HVS
model and machine learning techniques is more successful than the traditional one.

5 Conclusion

In this paper, a novel image quality evaluation algorithm VDQM is proposed based on
the Visual Di�erence Predictor(VDP), the the early work of building the HVS model. a
genetic algorithm based support vector machine, instead of traditionally linear or non-
linear mathematical models, is employed to describe the relationship between image
similarity features and subjective image quality. Experiments show that VDQM per-
forms much better than its counterparts (MSE, SSIM and IFC) on both the LIVE and
the A57 image databases. In the future, we will consider of (1) extending the HVS
model for gray-level images into a HVS model for full-color images and (2) employing
more image similarity features, such as texture similarity, color di�erence equations
and models.
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Abstract. We introduce visual object detection architecture, making full use of 
technical merits of so-called multi-scale feature correspondence in the neurally 
inspired Gabor pyramid. The remarkable property of the multi-scale Gabor feature 
correspondence is found with scale-space approaches, which an original image 
Gabor-filtered with the individual frequency levels is approximated to the 
correspondingly sub-sampled image smoothed with the low-pass filter. The multi-
scale feature correspondence is used for effectively reducing computational costs 
in filtering. In particular, we show that the multi-scale Gabor feature 
correspondence play an effective role in matching between an input image and the 
model representation for object detection. 

Keywords: Gabor Pyramid, Visual Object Detection, Multi-scale Feature 
Correspondence, Computer Vision. 

1   Introduction 

Object detection in real time is one of requisite processes in visual object recognition. In 
this work, we propose a so-called Gabor pyramid of the multi-scale feature 
correspondence finding for visual object detection as shown in Fig. 1. This is based on 
the modeling of receptive fields that are localized or decomposed in the Gabor spatial 
frequency domain (physiologically plausible Gabor decomposition). It has been 
hypothesized that the receptive fields in mammalian visual systems closely resemble 
Gabor kernels and has confirmed by a number of physiological studies on cats and 
primates [1]. 

In this Gabor pyramid object detection system, an input (I) image is down-
sampled at an arbitrary scale, which may be related to the spatial frequency 
levels of the Gabor wavelets. Although the search region for a model (M) object  
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Fig. 1. Sketch of the whole Gabor pyramid algorithm for visual object detection. (x, y) 
represents the position of a single pixel within the image. J is the Gabor feature extracted from 
the image. ⊗  denotes the inner product between Gabor features for a model (M) image and the 
down-sampled (DS) image. Such mathematical symbols are thoroughly described in Sect. 2.  

already stored in the system is localized in each down sampled image (broken 
squares in Fig. 1), the localization is carried out by finding the Gabor feature 
correspondence to the M feature. It is allowed to gradually specify the most 
likely position of the M object in each image, in which is analogous to flow from 
low to high resolution. Finally, an accurate position for the M object on the 
image I with highest resolution can be detected.  

Correspondence finding between the Gabor filter for the image M and the low-
pass Gabor filter for the down-sampled version of the I is the important aspect of 
the Gabor pyramid algorithm. The identification of feature correspondences 
enables to effectively find a search region to specify the M object even at a lower 
resolution than that of the M image. When the image resolution is increased, the 
search region gradually converges to instead detect the most likely position. This 
is analogous to a coarse-to-fine template matching method in pattern recognition 
studies, which is a potentially useful method that makes cost performance much 
lower [2]. However, no one can know the coarse-to-fine matching by finding the 
aforementioned Gabor feature correspondence. 

In addition, physiological plausible Gabor decompositions present another 
significantly crucial advantage in the Gabor pyramid as it enables us to realize 
low computational cost with fewer Gabor filters on the limited image space 
without the loss of any physiological constraints. Conventionally in the 
correspondence-base visual object recognition model of dynamic link matching 
[3], 40 Gabor filters have to be used to computationally establish the recognition, 
putting a heavy burden on the performance of the software system. The same 
performance cost problem occurs even in the feature-based model of the Hubel-
Wiesel type [4][5]. Thus, there is still currently a great deal of discussion 
regarding how to best deal with Gabor filters and the relevant performance cost 
problem.  
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Fig. 2. Face detection process after down sampling an input (I) image. In each down sampled 
(DS) image, 64×64 pixel size windows (for example, solid squares in the DS1, DS2 and DS3) are 
set up to search the most likely pixel position of the model (M) face. A filled circle is an 
extraction point for the M face. After the process, our Gabor pyramid system can detect the M 
face on the image I with a small frame of 20×20 pixel size.  

In this work, with the full use of the physiologically plausible Gabor decomposition 
and scale correspondence finding between multi-resolution and Gabor feature, we 
attempt to develop the Gabor pyramid algorithm that model object images stored in the 
system can effectively and rapidly be detected on an input image. We also show that the 
Gabor pyramid technically supports the functionality of the coarse-to-fine template 
matching. This artificial vision has significant potential for practical applications, 
preserving the physiological nature of the Gabor filter. In Sect. 2, an object detection 
mechanism of the Gabor pyramid is explained in detail. In Sect. 3 and 4, numerical 
results of feature correspondence, multi-object as well as multi-face detection are given. 
In the final section, results will be discussed and conclusions given. 

2   A Gabor Pyramid System 

An outline of the Gabor pyramid system proposed here is shown in Fig. 1. We 
assume that a grey-scale natural input (I) image of multi people is first prepared 
with w×h pixel (w is the width while h is the height). The image I is down-
sampled using the [1/2]l (l=0,…,4), and then is stored as an image DSl in the 
system. Here the l=0 case represents the original size of the image I.  

Let the image M  with 100×100 pixel be cut out from the image I. There has 
to appear one single object centered in the image M. One single feature Jl'

M 
={ Jl',r

M }r=0,1…,7 for l' th spatial frequency (where r represents orientation 
components, and l'=0,…,4) is extracted at a center of the image M, which is 
defined as the convolution of the image with a set of Gabor wavelet 
transformations. The Gabor filter responses J are usually given by: 
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Fig. 3. Scale correspondence of the Model (M) feature to the one corresponding to the low-
passed version features. In this figure, the feature similarity for l’ th spatial frequency takes the 
function of a scaled down index l, plotting an average value and the SD of the similarity, 
calculated with 100 different sample image. 

where σ=2π to approximate the shape of receptive fields observed in the primary 
visual cortex. The wave vector is parameterized as 
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with the orientation parameter 7,,0 …=r  and the scale parameter 4,0 …=l . As 
feature values we use the magnitude 

)(ˆ zJJ = .                                                  (4) 

In each image DSl, the 64×64 pixel size of the Region-of-interest (ROIl) is 
extracted, which (xc

(l), yc
(l)) is located as a center of the ROIl and is matched to 

the model Gabor feature Jl
M. In the ROIl, the Gabor features J(l)(x(l), y(l))= 

{ J(l)
r(x(l), y(l)) }r=0,1,…,7 are extracted for each (x(l), y(l)) in order to calculate 

similarities to the relevant model feature, S(J(l)(x (l), y (l)), Jl
M), which is given 

by 
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We then choose the candidate point (x0
(l), y0

(l)) by computing the highest value 
of the pixel location-specific similarity: 
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and span the new search region of the defined 64×64 pixel size around the 
normalized pixel location (xc

(l-1), yc
(l-1)) on the next up-sampled level:  

),(2),( )(
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)(
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)1()1( lll
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l
c yxyx =−− .                                      (7) 

Repetitively doing such position specific process for each down-sample image, an 
exact position (x0

I, y0
I) for specifying the model object is finally decided on an 

original image I with the highest resolution (see, a small square with 20×20 pixel size 
in the I image of Fig. 2).  This object detection, carried out on a laptop computer (Intel 
Core(TM)2 Duo CPU 1.40GHz RAM 1.91GHz) in this case, is demonstrated as 
shown in Fig. 2. Here we note that the fixed search window seems to gradually 
converging to the desired model object from low resolution to high resolution as 
shown in Fig. 2. The runtime in the object detection process was less than 500 msec. 

3   Scale Feature Correspondence to Image Resolution 

In this work, a substantial reason why our Gabor pyramid algorithm can effectively 
detect not only faces, but also general objects, is to find feature correspondence 
between down-sample image resolutions and spatial frequency factors of the Gabor 
feature. We here confirm such feature correspondence findings, by using 100 different 
images of a single person i (i=0, …, 99). Each image is used both as the input and the 
model, which are respectively called Mi and Ii.  

From the center of the image Mi, the one scale feature vector which consists of 8 
orientation components is extracted for a scale factor l' (l'=0, …, 4). On the other 
hand, the image Ii is down-sampled with (2)-l/2hi and (2)-l/2wi (l=0, …, 4), which we 
will refer to as DSl

i. From the center of each image, one feature vector with the same 
number of orientation components as the Mi case is obtained by filtering with a 
standard spatial frequency of the Gabor wavelets. Then, the Gabor feature for l' of the 
Mi takes inner-product with the Gabor feature of the DSl

i to calculate their feature 
similarity: 
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The feature similarities for each spatial frequency l' are obtained as shown in 
Figure 3. In this figure, all values of the feature similarities are respectively averaged 
over the sampling number of the facial image, calculating the standard deviation (SD) 
of the feature similarity values. We have thus calculated tuning curves for each spatial 
frequency of the M feature. As shown in Fig. 3, the low-pass Gabor filter for the 
image DSl best-matches to the model Gabor filter with the same spatial frequency 
factor, but it has obtained an incorrect scale correspondence to another DS image.  
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Fig. 4. Multi-face detection results. Solid squares on input images are detection windows. 
Filled circles are real positions that successfully achieved correct detection of features stored in 
memory.  

Sato et al. [6][7] suggested the sue of scale-correspondence finding between 
feature components of the input and model. For example, the components of the 
Gabor feature vector are set up as the angular-eccentricity coordinate. If an input 
object is scaled down relative to the original size (in other words, having a lower 
resolution than the original), correspondingly, the components are radically shifted 
towards an outside of the coordinate. This addresses the scale correspondence of the 
down-sample image resolution to the Gabor kernel size filtered on the image. In order 
to support this address, we have shown the scale correspondence in Fig. 3.  

4   Simulation Results 

Finally, we demonstrate two detection experiments for a number of general objects 
and faces. In fact, as shown in Fig. 4(a), even though the face size is so small that its 
appearance has become blurred, and another face is partially occluded, the Gabor 
pyramid can easily detect these objects. This can be achieved due to single Gabor 
feature extraction from a fiducial point (that is, the tip of the nose).  

At present, we notice that the detection window is fixed. Consequently, when the 
face size is big, the corresponding detection window is set up on a small portion of the 
face. When the face size is small, (i.e. smaller than 20×20 pixels), the face is 
positioned within the window. If this Gabor pyramid can be improved to specify the 
most likely size of the detected face, it may be able to automatically modify the 
detection window according to the specified size. In such improvement, we need 
other methods to specify the size, one of which scale and rotation transformation 
specific similarity computations proposed by [11] would be appropriate since it is a 
powerful method for scale and rotation invariant object recognition. When the scale 
and rotation transformation specific similarity computations are integrated within the 
framework of our Gabor pyramid with a functionality of translation invariance, we 
can say this improved Gabor pyramid system is recognition fully invariant to changes 
of scale, rotation and translation. 
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Fig. 5. Detection results for an image containing multiple objects (an ashtray, a cake, a spoon, a 
glass and a coffee cup). Solid squares centered on the filled black circle in the upper figure 
denote that a part of each general object, which is stored as one of the model feature 
representations (yellow circles), which can successfully be detected. 

However, we have to be aware of some detection ability problems in matching by 
finding only single feature correspondence. This is shown in Fig. 4(b). The tip of the 
nose could not be specified for two of the five faces in the natural image even if the 
model Gabor feature is extracted from such a fiducial point on the face. In the cases, 
the face must be detected using another fiducial point such as the mouth. This result 
implies that the system should store not only a single but multiple features in memory 
to yield a better performance in the face detection.  

Next, we test the detection ability for a number of general objects, (in Figure 5, an 
ashtray, a glass, a coffee cup, a cake and a spoon). In this test, the single Gabor feature 
is effectively extracted from the related object's contour. Then, a detection window of 
the Gabor pyramid system fills a segment of the object. As mentioned above, such 
detection may be interpreted as being achieved by selecting one of several stored 
features forming the whole object representation, which must correctly detect the 
position on an input image. Thus, by proposing visual object detection with the Gabor 
pyramid, we may suggest a possible model of visual object recognition. 

5   Discussion and Conclusion 

This work is an important and preliminary step toward practical applications of image 
processing and object recognition. As a next step, we attempt to establish a visual 
object recognition system that is fully invariant to scale, rotation, as well as 
translation, by integrating another detection algorithm for the most likely scale and 
rotation transformational states of the object into the Gabor pyramid algorithm in this 
work. This scale and rotation transformation detection was already proposed [7].  
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In general, the face detection system proposed by Viola and Jones [8] is often used 
in research fields of computer vision and image processing. It is well-known that this 
face detection does not work when a person turns their head to one side, or the facial 
resolution is too low[9]. However such a detection problem is expected to be solved 
in case of an improved version of the Gabor pyramid in which another invariant 
recognition mechanism is integrated. Consequently, the construction of such an 
integrated visual object recognition system is an urgent task. 

We are planning on implementing the Gabor pyramid algorithm into FPGA. By 
this implementation, we will expect much faster speed of the Gabor pyramid 
performance with larger numbers of face or objects. Our Gabor pyramid could detect 
a coupled of faces/general objects in 1 [sec] without parallel processing. However, the 
implementation of our Gabor Pyramid into FPGA will be allowed to, in real time, 
process detection of further more faces or objects. 

Several features extracted from fiducial points on the face or contours of the object, 
such as graphs, are often used a correspondence-based recognition model, and are 
necessary to achieve smooth visual object detection. This because simulation results 
in this work have indicated that there are still some difficulties associated with the 
detection process that uses only single feature, one of which is shown in Fig. 4(b). In 
order to overcome such difficulties, topological constraints such as facial graph 
consisting of several Gabor features is required.  

In conclusion, there still great deal of work to be done in the construction of a 
neurally plausible object recognition model. However, we must also stress that the 
work described here is in the fundamental stage with regard to practical applications. 
In order for these applications to be successful, the method must demonstrate the 
flexibility and universality of the underlying concept of the Gabor pyramid 
processing. One of the most crucial mechanisms is correspondence finding between 
images of different resolutions and spatial frequencies of the Gabor filter. These are 
found due to the physiological plausible Gabor decomposition and have a great deal 
of potential to solve the computer vision problem. It also introduces the possibility of 
recycling view-dependent information about the initially unknown size of an object, 
which may have been regarded as the unnecessary. The similarity computation 
pursued here will contribution substantially to the further understanding of the highly 
integrated visual recognition mechanism behind the invariance.  
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Abstract. Many kinds of distortion take place during the digital image
acquisition, processing, compression, storage, transmission and copy. All
of these distortions would lead to a decline in visual quality of the image.
Therefore, the image quality assessment is very important for us. Digi-
tal watermark is an important application of image processing. Different
applications require different watermark techniques, and the different wa-
termark techniques require different evaluation criteria. Currently, there
have not a complete evaluation system about digital watermark. Because
the uniform description of the performance, the test methods, the method
of attack, the standard test procedure have not been established. How
to judge the performance of a watermarking system is very important.
In this paper, the evaluation of a watermarking system is associated to
the watermark robustness, security, capacity and invisibility.

Keywords: Image quality evaluation, digital watermark, subjective
evaluation, objective evaluation.

1 Introduction

Image quality evaluation method can be divided into the subjective evaluation
and objective evaluation methods. The former is observed directly by setting the
evaluation criteria and evaluation standards, human visual perception as well as,
then give grade and evaluation. In accordance with the image of the statistical
average grade to give a final assessment of the results by observer. There are two
kinds subjective evaluation that is absolute and relative dimension, as shown in
Table 1. This method of measurement reflects the quality of the visual images,
but it can not be applied and described in mathematical models. From the view
of engineering point, it is too time-consuming and laborious. In practice, the
subjective evaluation method of image quality has been limited severely. Even
it is suitable for certain applications, such as real-time video transmission, and
other fields [1,2].
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Image objective evaluation method used mathematical model and computed
similarity between the image distortion and the original image (or distortion) and
quantized evaluation scores. Objective image quality evaluation method based
on the dependence of the original image can be divided: full reference, reduced
reference and no reference [3]. In all kinds of full reference objective image quality
evaluation method, the MSE (mean squared error) and peak signal to noise ratio
(PSNR) is widely used. The MSE is,

MSE =

∑
0≤i≤M

∑
0≤j≤N

(fij − f ′
ij)

2

M ×N
, (1)

where fij and f ′
ij denote the original image and restored image respectively, M ,

N are the high and the wide of images respectively. PSNR is the same as MSE
in essence. Its expression as follows:

PSNR = 10 log10

256 × 256
MSE

. (2)

(1) and (2) looks intuitively and strictly, but the results they get are inconsis-
tent with the visuals effect of human subjective. Because the mean square error
and peak signal to noise ratio reflect the difference of the original image and
restore the image in whole, not reflect in the local of images. As a greater point
of difference between gray and more like a small point there are and other such
a situation. It is clear that all pixels of image are on the same status, they can
not reflect the human visual characteristics.

Table 1. The measure levels of subjective quality evaluation

level Absolute measurement scale Relative measurement scale

1 Best The best in a crowd
2 Better It is better than average in a crowd
3 Normal It is average in a crowd
4 Worse It is worse than average in a crowd
5 Worst The worst in a crowd

There are a variety of evaluation methods based on the above principle, such
as: assessing the quality of enhanced images based on human visual percep-
tion, image quality assessing model by using neural network and support vector
machine, gradient information based image quality assessment, image quality
assessment method based on contrast sensitivity, and so on. In next sections, we
introduce some typical image quality evaluation methods.

2 Image Quality Evaluation Methods

Wang xiang-hui et al. [4] propose an approach that considers the background of
the average brightness in local and space complexity in visual resolution of the
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impact, which is used to judge the local gray-scale’s leap whether is an important
perception of parameter just noticeable difference (JND). And use this parameter
calculates effective pixels perception of change respectively, which is given to the
quantitative evaluation of the results of image enhancement. Firstly, the image is
divided into two regions: detail area and smoothness area, then study the detail
area of information enhancement and the smoothness area of noise reduction
respectively, according to two indicators of image enhancement effect, then give
an objective evaluation of the result.

When use only structure similarity (SSIM, Structure Similarity) method, the
association diagram still exists a number of isolated points on the subjective and
objective evaluation of the quality, (so-called ”isolated point” which is a sample
of subjective evaluation and objective evaluation of the value of the difference is
larger in image quality evaluation model of the relationship between subjective
and objective evaluation diagram) these isolated points reduce to quality evalu-
ation of the accuracy. This method will adopt the value of SSM which regards
as a parameter of the image quality is described. According to PSNR and the
isolated point of issue is considered. Reference [5] adopts an objective evalua-
tion of image quality of the method which based on neural network and support
vector machines.

As the human eye has an extremely high sensitivity on the edge of the image
texture information, gradient can better respond on the edge of the image texture
information, so Yang chun-ling et al. [6] propose a method which improves the
structure of the similarity evaluation method based on gradient information.

We can compute every image pixel of the gradient amplitude by Sobel operator
and gradient amplitude of the image pixels, thus we can get the ”gradient” image
X ’ and Y ’ that relative to image X and Y , and x’ and y’ is defined as the
corresponding sub-block of the image X ’ and Y ’. So sub-block gradient contrast
comparison can be defined as:

Cg(x, y) =
2σx′σy′ + C2

σ2
x′ + σ2

y′ + C2
. (3)

Sub-block gradient of the correlation coefficient can be defined as:

Sg(x, y) =
(σx′y′ + C3)
σ′

xσ
′
y + C3

, (4)

where σx′ and σy′ represents x’ and y’ of the standard deviation respectively,
thus σx′y′ indicates x’ and y’ of the covariance, adding constant C2, C3 to avoid
the denominator is zero. Then, use the formula (5), (6) substitute the second
part c(x, y) and the third part s(x, y) of SSIM model; therefore obtain improving
the model method as follow:

GSSIM(x, y) = [l(x, y)]α · [Cg(x, y)]β · [Sg(x, y)]γ . (5)

In accordance with the same method, according to the whole image of the
similarity comparison, we can obtain the similarity score by averaging the various
sub-blocks,
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MGSSIM(X,Y ) =
1
M

M∑
j=1

GSSIM(xj , yj). (6)

For each block of image, we can compute each pixel of gradient amplitude and
direction of the gradient in sub-block, usually direction of the gradient can be
quantified for 8 discrete values. Then information vector of the sub-block image
is defined:

D = {Amp1, Amp2, Ampi, · · · , Amp8}(i = 1, 2, · · · , 8),

where Ampi is sum which is all the pixels of gradient amplitude and the direction
of gradient is i in the sub-block.

Finally, Dx and Dx represents the original image and degraded image corre-
sponds to block information on the edge of Vector respectively. The similarity
of the two sub-blocks is described:

se(x, y) =
σ′′

xy + C3

σ′′
xσ

′′
y + C3

, (7)

where σ′′
x and σ′′

y represents Dx and Dy of the standard deviation respectively,
and σ′′

xy indicates Dx and Dy of the covariance, adding constant C3 to avoid the
denominator is zero. Then, use the formula (8) substitute the third part s(x, y)
of SSIM model; therefore obtain improving the model method as follow:

ESSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [se(x, y)]γ . (8)

In accordance with the same method, according to the whole image of the
similarity comparison, we can obtain the similarity score by averaging the various
sub-block,

MESSIM(X,Y ) =
1
M

M∑
j=1

ESSIM(xj, yj). (9)

Wavelet-based contour-let transform (WBCT), a non-redundant sparse rep-
resentation of image [3,11], can effectively reflect visual characteristics of the
image, such that it is often used to capture the variation of visual perception
to result from image distortion. The method is as follow: on the sending ter-
minal, firstly, the reference image is decomposed by WBCT, and the reference
image decomposes different scale and direction of the sub-band. Secondly, each
sub-band carries out Contrast sensitivity (CSF) mask by theirs scale in order to
make a different scale of the Coefficient in human perception has the same sense
in all of the scale. Then the human visual perception characteristics determine
a reasonable perception threshold, the separate statistics visual perception coef-
ficient of the proportion which occupies in the various sub-bands. On receiving
terminal, carries on similar processing to the distortion of images. Finally, we
can obtain a comprehensive objective evaluation of image quality by comparing
with reference images and distortion image characteristics information.
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Wang zheng et al. [9] presents new methods which based on contrast sensitiv-
ity and integrate with HVS. According to the contrast sensitivity of HVS char-
acteristics, namely spatial frequency-characteristic curve, 2D multi-level wavelet
decomposition was applied to the test image for obtaining wavelet coefficients.
From these coefficients, brightness, clarity and the relevant indicator in sub-
bands were obtained. Then an arithmetical mean, which came from the geomet-
ric mean of these three measures multiplying sub-band weighted coefficients, was
used as final comprehensive assessment indicator.

3 Quality Evaluation of Digital Watermark

Digital watermark is an important application of image processing. Different ap-
plications require different watermark techniques, and the different watermark
techniques require different evaluation criteria. Currently, there have not a com-
plete evaluation system about digital watermark. Because the uniform descrip-
tion of the performance, the test methods, the method of attack, the standard
test procedure have not been established. How to judge the performance of a
watermarking system is very important.

A user that utilisers a watermarking algorithm to embed an invisible water-
mark in his/her data (still image/video sequence) is concerned with two kinds
of visual quality, namely the visual quality of the data due to the embedding of
the watermark and the visual quality of the watermarked data due to attacks
performed on it. These terms will be called VQ1 and VQ2, respectively. The
following block diagram (Fig. 1) further explains what are the meanings of the
terms.

Measuring the visual quality of a watermarking system concerns two ques-
tions. The first question is whether or not the watermarked data is perceptually
different from the host data. The referenced host data can be data at studio
quality level or data at consumer quality level. The second question is whether
or not the received data, i.e. the data obtained after common processing or initial

WAtermarking
Algorithm

Visual
Quality

Evaluation

Visual
Quality

Evaluation

Attacks

VQ1 VQ1

I
(I+WM) (I+WM)'

Fig. 1. The visual quality of the watermarked image
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attacking, is perceptually different from the host data, in particular for received
data from which the original message can no longer be retrieved.

The most well-known and widely used quality measure is the global mean
square error. By normalizing this metric on the signals variance and taking
the 10-logarithm of this ratio, the signal-to-noise (SNR) metric is obtained. If
the normalization takes place on the signal (squared) peak value, the peak-
SNR (PSNR) metric is obtained. Although it is known that this criterion may
not correlate too well with the subjective ratings, we believe that the initial
implementation of the benchmark should use the PSNR. Since the difference
between host and watermarked data will be small in general, we expect that
reasonable correlations between these initial ratings and the subjective quality
of the watermarked data will be obtained.

In this paper, the evaluation of a watermarking system is associated to the wa-
termark robustness, security, capacity and invisibility. The relationship between
the watermark robustness, capacity and invisibility are shown as Fig. 2.

Watermark robustness and security. Watermark security refers to the ability
for a watermarking system to survive in a hostile environment. Security for
watermarking is naturally split into two kinds of security layers. Robustness
against multiple watermarking is generally required especially against intentional
attacks. Adding an additional watermark to a previously watermarked image
must not remove the original watermark(s). If the original watermark(s) is (are)
removed the image quality must degrade so the image will be unusable according
to there requirements of the application.

Capacity. The term capacity stands for the amount of information that can
be embedded within a given host data. More capacity implies more robustness
since watermarks can be replicated.

Invisibility. In invisible watermarking, information is added as digital data to
audio, picture or video, but it cannot be perceived as such (although it may be
possible to detect that some amount of information is hidden). The watermark
may be intended for widespread use and is thus made easy to retrieve or it
may be a form of Steganography, where a party communicates a secret message
embedded in the digital signal.

If the watermark information embedded in the larger capacity, the original
image will be taken greater changes, then the watermark invisibility and ro-
bustness is likely to be affected; If we improve the invisibility of the embedded
watermark, the watermark embedding capacity and robustness is likely to be

Robustness

Capacity Invisibility

Fig. 2. The relationship between the watermark robustness, capacity and invisibility
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the sacrifice; In order to improve the robustness of the watermark, it may affect
the watermark embedding capacity and invisibility. For the different scenarios,
we can strike a balance between the three points. Most of algorithms choose to
lower the invisibility and capacity and to improve the robustness of the system.

3.1 Evaluation of Invisibility

Invisibility of digital watermark is also known as transparency. In the perfor-
mance evaluation of digital watermark, the watermark transparency is a very
important evaluation. Transparent assessment is divided into the subjective eval-
uation and objective evaluation.

(1) Subjective evaluation
The so-called subjective evaluation refers to the human visual effect as the eval-
uation criterion. That is given by the observer to judge the image quality. Sub-
jective evaluation generally includes two steps. Firstly, images are ranked with
the order from best to worst order. Secondly, observers assess each image based
on the testing protocol to describe the processing of the object can be perceived.
Table 2 lists the definition of image quality in the ITU-R Rec.500.

Table 2. The measure levels of subjective quality evaluation

Rating Impairment Qualilty

1 Not aware Excellent
2 Perceived, but without prejudice to viewing Good
3 Obstruct the view slightly General
4 Prevent viewing Poor
5 Hampered Watch Very poor

In practice, the results of subjective evaluation varies from person to person.
The mathematical models can not be used quantitatively to describe the image
quality, and it is too time consuming. The application of subjective evaluation
is very limited, so we want to use the objective, stable mathematical model to
express the image quality.

(2) Objective evaluation
The commonly used objective evaluation methods include: the peak signal to
noise ratio, mean square error, signal to noise ratio, the average absolute differ-
ence, Laplacian mean square errors etc. They are shown in the Table 3.

3.2 Evaluation of Robustness

Robust is the most important indicators of digital watermarking system. How-
ever, there is no mathematical proof about the robustness of digital watermark
(whether positive or negative).The most common used evaluation of robustness
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Table 3. The commonly used objective evaluation methods

Difference measurement

Maximum differential equation MD = max
m,n

|Im,n − I ′
m,n|

The mean absolute difference AD = 1
MN

∑
m,n

∣∣Im,n − I ′
m,n

∣∣
The average difference of the standard NAD =

∑
m,n

∣∣Im,n − I ′
m,n

∣∣/ ∑
m,n

|Im,n|

Mean squared error MSE = 1
MN

(Im,n − I ′
m,n)2

The standard squared error NMSE =
∑
m,n

(Im,n − I ′
m,n)2/

∑
m,n

I2
m,n

Differential P power mean value Lp = ( 1
MN

∑
m,n

∣∣Im,n − I ′
m,n

∣∣p)1/p

SNR SNR =
∑
m,n

I2
m,n/

∑
m,n

(Im,n − I ′
m,n)2

PSNR PSNR = MN max
m,n

I2
m,n/

∑
m,n

(Im,n − I ′
m,n)2

Image fidelity IF = 1 − ∑
m,n

(Im,n − I ′
m,n)2/

∑
m,n

I2
m,n

Relevant metrics

Standard of mutual relations NC =
∑
m,n

Im,nI ′
m,n/

∑
m,n

I2
m,n

Related quality CQ =
∑
m,n

Im,nI ′
m,n/

∑
m,n

Im,n

is whether the watermarking algorithm is able to withstand the attack. There-
fore, the robustness evaluation is based on the corresponding attacks.

The common attacks include: geometric attacks (such as translation, scaling,
cropping, affine), simple attacks, simultaneous attacks, confusion attacks, collu-
sion attacks. Robustness metrics include the correlation measure and bit error
rate. The correlation measure usually use NC (normalized correlation) coefficient
as the similarity measure of extracted watermark and the original watermark.
Similarity is calculated as follows,

NC =

∑
ij

w(i, j) ∗ w′(i, j)√∑
ij

w(i, j)2
√∑

ij

w′(i, j)2
. (10)

Bit error rate is the ratio of the number of error bits to the number of all
the embedded bits. Usually the correlation calculation is only used in determine
whether a watermark exist or not, and in the other occasion, the bit error rate
is used.
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3.3 Evaluation of Security

Watermark security is a much broader concept than the robustness. Different
watermark applications require different security evaluation. The application of
the watermark in the military, must assume that the adversary’s attack have the
greatest power, then the security requirements of the watermark is very high.
As to products watermark which is designed to avoid the use of children, the
security requirements is only to resist the simplest attacks, and all the security
watermark requirements relatively low. In each application of watermark, we
need design the security according the actual requirements of system.

3.4 Other Evaluation

In addition to the above major evaluation methods, digital watermarking also
have some parameter or properties associated to the evaluation methods, some
of them are as follows,

Watermark capacity: the amount of information that can be embedded within
a given host data.

The effectiveness of embedded watermark: the probability of successfully em-
bedding watermark into a host data.

Blind detection: need not the information of original host image, the water-
mark can be detected successfully.

False alarm rate: the probability of detecting watermark in the image which
has not any watermark in it.

Watermark key: by key or watermark encryption to control the watermark
embedding and extraction.

Multiple watermarking: multiple non-interfering watermark can be embedded.
Calculation: the computing costs of watermark embedding and extraction

algorithm.

4 Conclusions

This paper describes the traditional method of image quality evaluation, respec-
tively, the subjective evaluation and objective evaluation. Digital watermark is
an important application of image processing. Different applications require dif-
ferent watermark techniques, and the different watermark techniques require
different evaluation criteria. Currently, there have not a complete evaluation
system about digital watermark. Because the uniform description of the perfor-
mance, the test methods, the method of attack, the standard test procedure have
not been established. How to judge the performance of a watermarking system
is very important. In this paper, the evaluation of a watermarking system is
associated to the watermark robustness, security, capacity and invisibility.
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Abstract. Automatic face age estimation is a challenging task due to its complexity 
owing to genetic difference, behavior and environmental factors, and also the 
dynamics of facial aging between different individuals. In this paper, we propose a 
feature fusion method to estimate the face age via SVR, which ensembles global 
feature from Active Appearance Model (AAM) and the local feature from Gabor 
wavelet transformation. Our experimental results on UIUC-PAL database show that 
our proposed method works well.  

Keywords: AAM, Gabor, age estimation, feature fusion, ensemble. 

1   Introduction 

Human faces contain important information, such as gender, race, mood, and age 
[1,2]. Face age estimation has attracted great attentions recently in both research 
communities and industries, due to its significant role in human computer interaction 
(HCI), surveillance monitoring, and biometrics. However, there are many intrinsic 
and extrinsic factors which make it very difficult to predict the ages of human 
subjects from their face images accurately. The intrinsic factors include genetics, 
ethnicity, gender, and health conditions. The extrinsic factors include makeup, 
accessories, facial hair, and the variation of expression, pose and illumination. 
Furthermore, a face image of size n1 × n2 is generally represented by a vector with 
dimensionality of or even more than n1 × n2. It is still a challenging topic to 
significantly and effectively reduce the dimensionality from the original image space. 

Recently, Yan et al. [3] proposed the patch-kernel regression (PKR) to study the 
human face age estimation and head pose estimation. Guo et al. [4] studied both 
manifold leanings to extract face aging features and local adjustment for age 
estimation. Luu et al. [5] proposed to conduct age estimation by a hierarchical model 
based on characteristics of human craniofacial development. Ricanek et al. [6] 
proposed a robust regression approach for automatic face age estimation, by 
employing Least Angle Regression (LAR) [7] for subset features selection. Chen et 
al. [7] studied an age estimation system tuned by model selection that outperforms all 
prior systems on the FG-NET face database. Most of the aforementioned publications 
on age estimation share the similar ideas: after facial features are extracted from the 
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images, a dimension reduction method is applied to map the original vectors into a 
lower dimensional subspace. Then all or part of the components of the transformed 
vectors are used to construct a statistical model. Cootes et al. [8] proposed the Active 
Appearance Model (AAM) that described a statistical model of face shape and 
texture. It is a popular facial descriptor which makes use of the Principle Components 
Analysis (PCA) in a multi-factored way for dimension reduction while maintaining 
important structure (shape) and texture elements of face images. As pointed by Mark 
[9], shapes are accounted for the major changes during ones younger years, while 
wrinkles and other textural pattern variations are more prominent during ones older 
years . Since AAM extracts both shape and texture facial features, it is appropriate to 
use AAM in the age estimation system for feature acquisition. However, the adoption 
of PCA’s in AAM can muddle important features because it attempts to maintain the 
greatest variance while creating orthogonal-projection vectors. Yan et al. [3] and Guo 
et al. [4] show that local features can be more robust against small misalignment, 
variation in pose and lightings.  

On the other hand, Gabor wavelets have been applied successfully in image 
analysis and pattern recognition [10]. Therefore, applying Gabor wavelet 
transformation on the shape-normalized patch can take both advantages of shape 
model and local features. Each feature representation has its advantages and 
disadvantages. Fusing two feature representations via SVR could be a potential way 
to get an effective age estimation system. 

2   Active Appearance Models 

The active appearance model was first proposed by Cootes et al. [8]. AAM decouples 
and models shape and pixel intensities of an object. The latter is usually referred to as 
texture. The basic steps involved in building an AAM is as shown in Figure 1. A very 
important step in building an AAM model is identifying a set of landmarks and 
obtaining a training set of images with the corresponding annotation points either by 
hand, or by partial- to completely automated methods. As described in [8], the AAM 
model can be generated in three main steps: (1) A statistical shape model is 
constructed to model the shape variations of an object using a set of annotated 
training images. (2) A texture model is then built to model the texture variations, 
which is represented by intensities of the pixels. (3) A final appearance model is then 
built by combining the shape and the texture models. 

2.1   Statistical Shape Model 

A statistical shape model is built from a set of annotated training images. In a 2-D 
case, a shape is represented by concatenating n point vectors {(xi,yi)} 

1 2 1 2( , , , , , , , )T
n nx x x x y y y=  (1)

The shapes are then normalized by Procrustes analysis [10] and projected onto the 
shape subspace created by PCA  
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s sx x P b= + i  (2)

where x  denotes the mean shape, { }s iP s=  is the matrix consisting of a set of 

orthonormal base vectors si  and describing the modes of variations derived from 
training set, and bs includes the shape parameters in the shape subspace. 
Subsequently, based on the corresponding points, images in the training set are 
warped to the mean shape to produce shape-free patches. 

2.2   Statistical Texture Model 

The texture model is generated very similar to the shape model. Based on the shape 
free patch, the texture can be raster scanned into a vector g. Then the texture is 
linearly normalized by the parameters ( , )Tu α β=  and g is given by  

( 1)gi
g

β
α
−= i

 (3)

where ,α β  are the mean and the variance of the texture g, respectively, and 

1=[1,1,…,1]T is the vector with the same length of gi. The texture is ultimately 
projected onto the texture subspace based on PCA 

g gg g P b= + i  (4)

where g  is the mean texture, { }g iP g=  is the matrix consisting of a set of 

orthonormal base vectors gi and describing the modes of variation derived from 
training set, and bg includes the texture parameters in the texture subspace. 

2.3   Combined Appearance Model 

Finally, the coupled relationship between the shape and the texture is analyzed by 
PCA and the appearance subspace is created. At the end, the shape and the 
appearance can be described as follows:  

sx x Q c= + i  (5)

gg g Q c= + i  (6)

where c is a vector of appearance parameters controlling both the shape and the 
texture, and Qs and Qg are matrices describing the modes of variation derived from the 
training set. Thus the final appearance model can be represented as b = Qc where 

( ) ( )

( ) ( )

T
s s s s

T
g g

W b W P x x
b

b P g g

−= =
−

 (7)

and Q is the matrix of eigenvectors of b. 
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3   Gabor Feature Representation 

Gabor wavelets were successfully used in face recognition. The Gabor wavelets, 
whose kernels are similar to the 2D receptive field profiles of the mammalian cortical 
simple cells, exhibit desirable characteristics of spatial locality and orientation 
selectivity, and are optimally localized in the space and frequency domains. 

The Gabor wavelet can be defined as follows: 

2 2 2 2
, ,

2

( /2 ), /2
, 2

( ) u v u vk zu v ik z
u v

k
z e e e

σ σψ
σ

− −⎡ ⎤= −⎣ ⎦  (8)

where u  and v  define the orientation and scale of the Gabor kernels, ( ),z x y= , i  

denotesthe norm operator, and the wave vector ,u vk  is defined as follows:  

,
ui

u v vk k e φ=  (9)

where  /2
max / 2v

vk k= , and ( / 8)u uφ π= . maxk  is the maximum frequency, and f  is 

the spacing factor between kernels in the frequency domain. In the most cases one 
would use Gabor wavelet of five different scales, { }0, ,4v = , and eight orientations, 

{ }0, ,7u = .  

The Gabor transformation of a given image ( )I z  is defined as its convolution with 

the Gabor functions 

, ,( ) ( ) ( )u v u vG z I z zψ= ∗  (10)

where ( , )z x y=  is the image position, ∗  is the convolution operator, and , ( )u vG z  is 

the convolution result corresponding to the Gabor kernel at scale v  and orientation 
u .  The Gabor wavelet coefficients are complex, which can be rewritten as: 

, , ,( ) ( ) exp( ( ))u v u v u vG z A z i zθ= i  (11)

with one magnitude item , ( )u vA z  and one phase item , ( )u v zθ . We choose the 

magnitude as the feature representation of an image ( )I z . Therefore, the set 

{ }, ( ) : {0, ,7}, {0, ,4}u vS A z u v= ∈ ∈  forms the Gabor feature representation of the 

image ( )I z . Fig.1 shows a face image and its corresponding Gabor magnitude feature 

images at five scale and eight orientation. 
To encompass different spatial frequencies (scales), spatial localities, and 

orientation selectivities, we concatenate all these representation results and derive an 
augmented feature vector Χ . Before the concatenation, we first downsample each 

, ( )u vA z  by a factor ρ  to reduce the space dimension, and normalize it to zero mean 

and unit variance. We then construct a vector out of the , ( )u vA z  by concatenating its 

row (or columns). Now, let ( )
,u vA ρ  denote the normalized vector construct from , ( )u vA z  

(downsampled by ρ  and normalized to zero mean and unit invariance), the 

augmented Gabor feature vector ( )A ρ  is then defined as follows: 
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             (a) A sample image            (b) The corresponding gabor feature representation 

Fig. 1. Examples of Gabor Feature Representation 

( )( ) ( ) ( ) ( )
0,0 0,1 4,7

p t p t p tA A A Aρ =  (12)

where t  is the transpose operation. The augmented Gabor feature vector thus 
encompasses all the elements (downsampled and normalized) of the Gabor feature 

representation set, { }, ( ) : {0, ,7}, {0, ,4}u vS A z u v= ∈ ∈ , as important discriminant 

information. 

4   Our Proposed Face Age Estimation Method 

4.1   The Algorithm 

Our propose face age estimation method can be described as follows: 

Step1. Do AAM on the image to get global feature G and the shape-free image. 
Step2. Calculate the Gabor feature representation of the shape-free image. 
Step3. Do PCA transformation on the Gabor feature representation to get a low 
dimensionality local feature L. 
Step4. Do regress analysis to estimate the face age based on the Global feature G and 
local feature L via SVR. 

Fig 2 shows the framework of our proposed face age estimation method. 

 

Fig. 2. Framework of our proposed face age estimation method 
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4.2   Performance Measure 

The performance of age estimation is measured by the mean absolute error (MAE). 
The MAE is defined as the average of the absolute errors between the estimated ages 

and the observed ages, i.e. 
1

N

i ii
MAE y y N

=
= −∑ , where iy  is the estimated age for 

the ith test image, iy  is the corresponding observed age, and N is the total number of 

test images. 

4.3   Face Aging Database 

The UIUC Productivity Aging Laboratory (UIUC-PAL) face database [12] is selected 
for this experiment due to its quality of images and diversity of ancestry. Only the 
frontal images with neutral facial expression are selected for our age estimation 
algorithm. It contains 540 images with ages ranging from 18 to 93 years old. (See 
Figure 4 for sample images.) It is worth mentioning that UIUC-PAL is a 
multiethnicity adult database, which contains African-American, Asian, Caucasian, 
Hispanic and Indian. Fig 3 shows PAL sample images. 

 

Fig. 3. Sample images of UIUC-PAL database 

Histogram of age distribution of UIUC-PAL database is shown in Fig 4. The 
histogram of PAL database has two modes, one between age 18-20 and the other 
between 61 and 85. 

 

Fig. 4. Age Histogram of UIUC-PAL database 

4.4   Experiment Setups 

In UIUC-PAL database, each image is annotated with 161 landmarks as shown in 
[13]. The annotated faces with shape and texture information are presented to the 
AAM system to obtain the encoded appearance features, a set of transformed features 
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with dimension size 230. Here the AAM-Library tool [14] is utilized to implement the 
AAM system. Meanwhile the shape-free patch is also extracted from the annotated 
faces via the Active Shape Model provided by the AAM-Library tool. Next, Gabor 
wavelet transformation is applied on each shape-free image with 5 scales and 8 
directions. Third, PCA transformation is performed on the Gabor wavelet feature 
representation to get final 400-dimensional feature.  

We use SVR as the age estimation regressor. We perform a standard 10-fold cross 
validation to evaluate the prediction error of the proposed method. We use the 
contributed package “Libsvm” [15] in Matlab for the computation of SVR (svm_type: 
EPSILON_SVR, kernel_type: RBF Kernel, gamma=0.25, C=64).  

4.5   Experimental Results 

In the first experiment, we compare three normalization methods with no-scaling on 
either AAM feature or the Gabor feature for age estimation. The experiment results 
are shown in Table 1. Fig. 5 shows the MAE curves with different feature 
dimensionality. For AAM features, no-scaling turns out to achieve the best MAE, 
comparing to the rest normalization methods. Here we compare two normalization 
methods: Min-Max and Z-score. Note that the Min-Max-[0, 1] with distinct hyper-
parameters for SVR. On the other hand, for the Gabor features, Min-Max method gets 
the best results. In general sense, AAM features achieve better MAE consistently than 
Gabor features. It suggests that with single facial feature representation, AAM is one 
of the best facial feature representations. Based on the aforementioned results, 
hereafter, we only adopt the original AAM feature for further feature fusion studies. 
However, no-scaling method for Gabor is the worse case and we will not consider it 
any further in the feature fusion studies. 

In the second experiment, we concatenate the AAM features with Gabor features 
with three different normalization methods. The results are shown in Table 2. In table 
2, A denotes AAM, B denotes Gabor. From Table 2, we can find that it can improve 
the face age estimation result to ensemble the global and local features. 

In Table 1 and Table 2, the superscript 1 means no scaling, superscript 2 denotes 
Min-Max-[0 1], superscript 3 denotes Z-score to normalize the features. 

                    

       (a) MAE for AAM feature                 (b) MAE for Gabor feature 

Fig. 5. MAE vs. feature dimensionality 
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Table 1. MAES of different normalization methods on global and local features, respectively 

 AAM1 AAM2 AAM3 Gabor1 Gabor2 Gabor3 
MAE 6.29 7.50 18.90 22.32 7.10 17.39 
Std 1.10 0.91 1.21 1.23 0.57 1.60 

Table 2. MAES of different normalization methods on global and local features 

 AB1 AB2 AB3 
MAE 22.37 5.88 18.30 
Std 1.22 0.81 1.52 

5   Conclusions 

In this paper, we propose a method to automatic estimate the face age via SVR, which 
fuse the global feature from AAM and the local feature from Gabor wavelet 
transformation. First, we perform AAM on the image to get the global feature and the 
shape-free image. Second, we do Gabor wavelet transformation on the shape-free 
image to get Gabor feature representation and do PCA to further reduce the 
dimensionality of Gabor feature representation. Third, we do regression analysis on 
the AAM feature and Gabor feature to estimate the face age via SVR. The 
experimental results on the UIUC database show that our proposed method has good 
performance. In the future work, we will research feature selection technologies to 
further improve the performance of the age estimation system. 
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Abstract. In this paper, a new filter based feature selection algorithm using 
Lempel-Ziv Complexity (LZC) measure, called ‘Lempel Feature Selection’ (LFS), 
is proposed. LZC finds the number of unique patterns in a time series. A time series 
is produced from the values of a feature and LZC of the feature is computed from 
the time series. The features are ranked according to their values of LZCs. Features 
with higher valued LZCs are selected and lower ones are deleted. LFS requires 
very less computation, since it just computes the LZCs of all features once. LFS is 
tested on several real world benchmark problems such as soybean, diabetes, 
ionosphere, card, thyroid, cancer, wine, and heart disease. The selected features are 
applied to a neural network (NN) learning model. NN produces better results with 
the selected features than that of randomly selected features. 

Keywords: Feature selection, Filter based methods, Lempel-Ziv complexity, 
Neural network, Classification. 

1   Introduction 

The real world machine learning datasets consist of large number of relevant and 
redundant features. Selecting the relevant feature subset from the entire feature set has 
been a fertile field for the last several decades [1]. Feature selection (FS) increases  
the generalization ability, convergence, and comprehensibility of the learning model 
[1-3]. FS methods are computationally expensive, since only one feature subset is 
selected from 2n feature subsets, where n is the number of features. However, 
appropriate feature selection techniques are essential for machine learning tasks when 
dealing with high dimensional or even low dimensional data. 

There are huge numbers of feature selection approaches based on attenuation 
function and biomarkers [4, 5], correlation dimension [6], fuzzy and genetic 
algorithms [7, 8], ant colony optimization [7, 9] etc. They are broadly classified as 
wrapper and filter methods [2]. In the former one, a learning model is run on a 
particular subset of features and the resulting accuracy on the test set is then used to 
evaluate the feature subset. The subset which shows highest accuracy is finally 
selected. On the other hand, the later one filters out features which are irrelevant to 
the target concept [1]. Filter based methods rank the features according to some 
discrimination measure and select features having higher ranks. Filter methods have 
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the advantage over wrapper-based methods in that the formers are computationally 
inexpensive and they do not need to consider all the subsets of features. 

A number of filter based algorithms are found in the literature [10-12]. Features 
can be selected with measuring the correlations among the features together with 
classes [13, 14]. A feature having the higher correlation with its corresponding target 
is selected, while the lower ones are deleted. Some methods measure the correlation 
among the features [15, 16]. In this case, selecting the highly correlated features may 
be converged finally if less correlated features are deleted. That is why these 
approaches do not perform well in all the cases. Information theoretic measure has 
been used in ranking the features [17-21]. In this case, the mutual information among 
the features together with classes is computed and the redundant features are deleted. 
They have been successfully applied in many application areas such as microarray 
data, gene selection etc. Fractal correlation dimension (CFD) has been used as 
discrimination criterion to filter out the redundant features [6]. Although it has been 
succeeded in promoter recognition problem, it requires high computational cost and it 
is suitable to chaotic data. 

Complexity means a large number of parts in intricate arrangement. Recently, there 
is great interest in measuring the complexity of system to solve real world problems 
[22]. Lempel-Ziv Complexity (LZC) is a good mathematical tool to compute the 
number of unique patterns in a time series [23]. Making use of LZC in feature 
selection is interesting. This paper deals with this issue for the first time. 

In this paper, a filter based FS technique (LFS) that requires low computational 
effort is proposed. LFS ranks the features according to the values of LZC [23]. LZC 
finds the number of unique patterns in a time series. A time series is produced from 
the values of a feature and LZCs of the features are computed from the time series 
accordingly. The feature with higher value of LZC is selected and the lower one is 
deleted. In order to justify LFS, the selected features are applied to neural network 
(NN) learning model [24]. In the experiments, several benchmark classification 
problems such as soybean, diabetes, ionosphere, card, thyroid, cancer, wine, and heart 
disease are used. LFS is compared with one that selects features randomly. It is shown 
that the selected features with LFS produces good generalization ability in NN 
learning. 

LFS has a number of advantages such as (i) it helps to produce important features 
which are indeed necessary for the training, (ii) it helps to produce robust 
classification, and (iii) it helps to remove the redundant information from the dataset. 
The rest of the paper is organized as follows. Section 2 presents a brief of Lempel-Ziv 
Complexity measure. The proposed algorithm LFS is described in section 3. Section 4 
contains the experimental results. The paper is concluded in section 5. 

2   Lempel-Ziv Complexity 

A definition of complexity of a string is given by the number of the bits of the shortest 
computer program which can generate this string. There are many techniques to 
compute the complexity of a string. Among them algorithmic complexity [25-27], the 
Lempel-Ziv complexity [28], and a statistical measure of complexity [29] are most 
useful. The Lempel-Ziv algorithm objectively and quantitatively estimates the system 
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complexity through the change process of system structure, and has overcome the 
limitation of depicting the complexity through characteristic quantities of statistical 
complexity [30]. A short description of LZC measure is given below. 

Lempel and Ziv proposed a useful complexity measure [23], [28], which finds the 
number of unique patterns in a time series. A standard algorithm how to compute 
LZC of a binary string S is realized from Fig. 1. The method uses merging and 
copying operations. Suppose, the i-th element of the string S is si and c(n) denotes the 
LZC of S. B1 and B2 are two buffers in computer memory. The method searches the 
unique patterns along each component of S and stores in a buffer consecutively. At 
first, c(n) is set to zero, the method increases c(n) by one if a new pattern is found. 
Final value of c(n) indicates the LZC of S. 

 
1. Consider a binary string S with length n 
2. Set: B1=NULL, B2=NULL, c(n)=0 and i=1 
3. Repeat step 4 to step 7 while i≤n 
4. Store si at the end of B1 
5. If i>1 
       Store si-1 into the B2 
    Else  
       B2=NULL 
6. If B2 does not contain B1 
         Set: c(n)=c(n)+1 and B1=NULL 
7. Set: i=i+1 
8. End 

Fig. 1. Computation of Lempel-Ziv Complexity 

According to the algorithm, a binary string consisting only of 0’s (or 1’s) has the 
complexity 2, since there are two unique patterns 0 and 000……. . A string consisting 
of sequence of 01’s i.e. 01010101……01 has complexity 3, since there are three 
unique patterns 0, 1, 010101……. . For the binary string 0001101001000101, the 
unique patterns are 0, 001, 10, 100, 1000, 101 and so its LZC is 6. 

3   LFS 

The values of a feature are the floating values in the range of zero to unity. If a value 
is greater than 0.5, it is considered as one, otherwise zero. Hence a binary string is 
formed for a feature. The LZC of the string is computed and it is considered as the 
LZC of corresponding feature. In a similar fashion, LZCs of all the features are 
computed. The median value (MD) of LZCs is determined. If a feature has LZC less 
than MD, it is deleted. A feature with LZC of greater than MD is selected. In order to 
test the selected features, they are applied to a neural network classifier [24]. The 
consecutive steps of LFS are shown in Fig. 2. 
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Fig. 2. Algorithmic flow of LFS 

4   Experimental Studies 

4.1   Characteristics of Datasets 

In order to demonstrate the performance of LFS, eight real world benchmark datasets 
such as soybean, diabetes, ionosphere, card, thyroid, cancer, wine, and heart disease are 
used. The datasets are collected from the University of California at Irvine (UCI) 
Repository of the machine learning database [31] and PROBEN1 [32]. The 
characteristics of datasets are listed in Table 1. For example, soybean is a 19 class 
problem with 82 features. It has total 683 examples. The total examples are divided into 
– training, validation, and testing sets. The training examples are used to train model, 
while the testing examples are used to test the generalization ability of learning. 

Table 1. Characteristics of datasets 

Number of Datasets 
examples features classes 

soybean 683 82 19 
diabetes 768 8 2 
ionosphere 351 33 2 
card 690 51 2 
thyroid 7200 21 3 
cancer 699 9 2 
wine 178 13 3 
heart 920 35 2 

4.2   Experimental Results and Comparison 

LZC may depend on the order of examples. Therefore, the examples are randomly 
arranged. LFS selects the feature subset and the selected features are applied to a 

a) Construct the binary strings of features 
b) Calculate LZCs of all features 
c) Calculate median value (MD) of LZCs 
d) Repeat for k features 

  If( LZCk<MD) 
   Delete k feature 
  End 
 End 

e) Design a classifier for selected features 
f) Train the classifier 
g) Test the accuracy of classifier 



264 S.U. Ahmed, M.F.E. Khan, and M. Shahjahan 

 

feed-forward neural network (NN) [24]. A NN consisting of single hidden layer is 
considered. The number of input nodes is equal to the number of selected features, the 
number of hidden nodes is arbitrary taken, and the number of output nodes is equal to 
the number of classes. The weights of NN are initially randomized in the range [-0.1, 
+0.1]. Backpropagation algorithm is used to train the NN to a desired accuracy [24]. 
In order to check the generalization ability, ‘testing error rate’ (TER) is defined as the 
ration of number of misclassified examples to the number of examples over testing 
set. The percentage average value (mean) of TERs over 20 independent trials are 
reported at several learning rate (η). 

It is often very difficult to compare with other algorithms. This is because different 
algorithms have the different setups and focusing issues. It is quite difficult to develop 
an algorithm that coincides with all conditions of other algorithms. Therefore, an 
algorithm called ‘random feature selection’ (RFS) is developed in order to make a fair 
justification of the effectiveness of LFS. RFS is same as LFS except that it deletes 
features randomly without making any feature wise discrimination criteria. The same 
number of features that were deleted by LFS should be deleted by RFS. The results 
obtained with LFS and RFS are shown for several problems. 

 
Soybean. LFS selects 45 features from 82 and RFS selects the same number of 
features randomly. The selected features are applied to a 45-30-19 (45 input nodes, 30 
hidden nodes and 19 output nodes) NN. Soybean consists of total 683 examples. The 
first 342 examples are used as training and the last 170 examples as testing. Table 2 
shows that LFS has always lower TER than that of RFS. For examples, at η=0.2, 
TERs of LFS and RFS are 8.00 and 9.35 respectively. 

Table 2. Testing error rates (TERs) of soybean problem with LFS and RFS over 20 
independent trials 

TER η 
LFS RFS 

0.20 8.00 9.35 
0.30 8.00 12.71 
0.40 8.06 13.12 

Diabetes. LFS selects 5 features. A NN size of 5-3-2 is considered. Diabetes problem 
consists of total 768 examples. The first 348 examples are used as training and the last 
192 examples as testing. TERs obtained from NN training are reported in Table 3. 
The features selected with LFS always show lower TERs than those selected with 
RFS. For examples, at η=0.1, TERs of LFS and RFS are 21.51 and 26.88 respectively. 

Table 3. TERs of diabetes problem with LFS and RFS over 20 independent trials 

TER η 
LFS RFS 

0.10 21.51 26.88 
0.20 21.66 26.51 
0.30 22.18 28.33 
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Ionosphere. Both LFS and RFS select 18 features from 33. The size of NN is 18-7-2. 
The first 175 examples are used to train the NN and the last 88 examples are used to 
test the trained NN. The results are shown in Table 4. Although at η=0.3, LFS and 
RFS show same results, LFS marginally improves the results at other learning rates. 

Table 4. TERs of ionosphere problem with LFS and RFS over 20 independent trials 

TER η 
LFS RFS 

0.10 9.89 12.27 
0.20 11.59 12.27 
0.30 11.47 11.47 

Card. 27 features are selected from 51. The first 345 examples are used to train a NN 
of 27-10-2 and the last 172 examples for testing. LFS obtains lower TERs than that of 
RFS as shown in Table 5. For examples, at η=0.1, TER of LFS is 14.07 while it is 
20.93 with RFS. 

Table 5. TERs of card problem with LFS and RFS over 20 independent trials 

TER η 
LFS RFS 

0.10 14.07 20.93 
0.20 14.19 20.47 
0.30 14.07 19.65 

Thyroid. Thyroid has total 21 features and the number of selected features is 11. A 
NN having 6 hidden nodes is trained with first 3600 examples. The last 1800 
examples are used as testing. Table 6 contains the TERs with LFS and RFS. LFS 
always obtains lower TER than that of RFS. One can say that LFS selects the features 
that are relevant in the training. 

Table 6. TERs of thyroid problem with LFS and RFS over 20 independent trials 

TER η 
LFS RFS 

0.10 3.24 6.73 
0.20 1.69 5.36 
0.30 2.41 4.48 

Cancer. A 5-3-2 NN is trained with first 350 examples of 5 selected features. The 
trained NN is tested with last 174 examples. Table 7 shows that the selected features 
with LFS can train the model with good generalization ability. RFS can select the 
relevant or redundant features, while LFS selects only the relevant features. 
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Table 7. TERs of cancer problem with LFS and RFS over 20 independent trials 

TER η 
LFS RFS 

0.10 0.69 2.75 
0.15 0.63 2.18 
0.20 0.63 2.59 

Wine. 7 features are selected from 13. A NN size of 7-4-3 is trained with first 89 
examples and the last 44 examples are used for testing. LFS always achieves zero 
TER as shown in Table 8. It is understood that there is some redundancy in the entire 
features which are extracted out and removed by LFS, although wine is an easy 
problem for NN. 

Table 8. TERs of wine problem with LFS and RFS over 20 independent trials 

TER η 
LFS RFS 

0.10 00.0 1.36 
0.20 00.0 0.68 
0.30 00.0 0.91 

Heart Disease. The number of selected features is 18. A NN of 18-5-2 is trained with 
first 460 examples and it is tested with last 230 examples. The experimental results 
are reported in Table 9 in terms of TER. The selected features with LFS shows good 
classification rate than of with RFS. 

Table 9. TERs of heart problem with LFS and RFS over 20 independent trials 

TER η 
LFS RFS 

0.1 19.74 21.65 
0.15 20.26 21.65 
0.2 20.57 21.83 

4.3   Experiments by Varying Threshold Point – The Median (MD) Value 

LFS considers the median value (MD) as a threshold to separate the relevant and 
redundant features. In this section, the effectiveness of LFS whether or not it can 
produce expected results if more features are allowed to delete followed by a 
modified threshold point is investigated. Several modified threshold points such as 
(MD+ 5%), (MD+10%) and (MD+15%) are made. In this case, LFS will remove 
those features which have LZC values smaller than the modified ones. 

The results are listed in Table 10 for soybean, card, and heart disease problems. It 
is clear from the table that up to a threshold point (MD+5%); the results are 
approximately similar with those for the threshold MD. If the features are further 
removed by making a threshold such as (MD+10%) and (MD+15%), the average 
results greatly deteriorate for heart disease problem, while it slightly deteriorate for 
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soybean and card problems. One reason behind this may be removal of some 
important features by LFS with the new thresholds - (MD+10%) and (MD+15%). 
This indicates that the median is appropriate threshold point to decide how many 
features should be removed, although the threshold value has not been optimized. 

Table 10. TERs of LFS by varying the threshold ‘median’ (MD) over 20 independent trials 

Problem η Threshold TER 
MD+5% 9.88 
MD+10% 10.29 

0.2 

MD+15% 10.35 
MD+5% 9.18 
MD+10% 10.06 

0.3 

MD+15% 9.47 
MD+5% 9.29 
MD+10% 9.53 

Soybean 
 

0.4 

MD+15% 9.76 
MD+5% 15.41 
MD+10% 15.35 

0.1 

MD+15% 15.47 
MD+5% 15.20 
MD+10% 15.35 

0.2 

MD+15% 15.47 
MD+5% 15.47 
MD+10% 15.64 

Card 
 

0.3 

MD+15% 17.70 
MD+5% 20.30 
MD+10% 25.34 

0.1 

MD+15% 25.53 
MD+5% 20.43 
MD+10% 25.17 

0.15 

MD+15% 25.17 
MD+5% 20.30 
MD+10% 24.96 

Heart 

0.2 

MD+15% 33.30 

5   Conclusions 

A new filter based feature selection algorithm to find a feature subset from entire 
feature set using LZC measure, called LFS is presented in this paper. Features are 
ranked according to the higher values of LZC. Features with higher valued LZCs are 
chosen for training and lower valued ones are deleted according to a threshold level. 
In fact LZC is a good tool to determine the number of unique patterns in a feature and 
hence LFS selects the features which have higher number of unique patterns. The 
features obtained from the scheme produces promising results after applying to a NN 
learning model. The algorithm is tested on several real world benchmark 
classification problems such as soybean, diabetes, ionosphere, card, thyroid, cancer, 
wine, and heart disease. The effectiveness of LFS is justified throughout the various 
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experimental conditions such as different threshold points, different learning rates etc. 
The method produces good results when it is compared with one that selects features 
randomly. 
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Finger-Knuckle-Print Recognition Using LGBP 
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Abstract. Recently, a new biometrics, finger-knuckle-print recognition, has 
attractive interests of researchers. The popular techniques used in face recognition 
are not applied in finger-knuckle-print recognition. Inspired by the success of 
Local Gabor Binary Patterns (LGBP) in face recognition, we present a method 
that uses LGBP to identify finger-knuckle-print images. The experimental results 
show that our proposed method works well. 

Keywords: finger-knuckle-print, Gabor feature representation, LBP. 

1   Introduction 

With the rapid development of computer techniques, in the past three decades 
researchers have exhaustively investigated the use of a number of biometric 
characteristics [1,2], including fingerprint, face, iris, retina, palm-print, hand 
geometry, finger surface shape, voice, ear, gait and signature, etc. Although many 
biometric techniques are still under the stage of research and development, some 
biometric systems have been developed and used in a large scale; for example, the 
Hong Kong government has been using the fingerprint recognition system as the 
automated passenger clearance system (e-channel) since 2004 [3].  

Recently, researchers noticed that the textures in the outer finger surface, especially 
in the area around finger joint, has the potential to do personal authentication. D. L. 
Woodward et al. [4,5] recently used the 3D range image of the hand to calculate the 
curvature surface representation of the index, middle, and ring fingers for similarity 
comparison. In [6], C. Ravikanth et al. applied the subspace analysis methods, which 
are widely used in appearance based face recognition, to the finger-back surface 
images for feature extraction and person classification. The above works made a good 
effort to validate the uniqueness of biometric characteristic in the outer finger surface; 
however, they did not provide a practical solution to establishing an efficient system 
using the outer finger surface features. In addition, the method [4,5] mainly exploits 
the 3D shape information of finger back surface but does not fully use the texture 
information; while the subspace analysis methods used in [6] may not be able to 
effectively extract the distinctive line and junction features in finger back surface. 
Since the main features in an FJP image are lines, L. Zhang et al. designed a hardware 
captured device and used multiple 2-D Gabor filters along different directions to filter 
the finger-knuckle-print image and extract the local orientation information. The local 
orientation was then coded using a competitive coding scheme and then two FJP 
images can be matched by calculating their angular distance with the code maps [7].  
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W. Zhang et al. [8,9] proposed a method for face recognition, named Local Gabor 
Binary Patterns (LGBP), which combined Gabor wavelet and LBP and has achieved 
impressive performance. Inspired by LGBP, we propose that use Gabor feature 
representation and locale binary pattern (LBP) to identify finger-knuckle-print images 
in this paper. The kernels of Gabor wavelets are similar to two-dimensional receptive 
field profiles of the mammalian cortical simple cells, exhibit desirable characteristics 
of spatial locality and orientation selectivity. The LBP operator has strong gray-scale 
and rotation invariance, can greatly conquer rotating shift and uneven illumination 
problem which is hardly to be avid in pretreatment process, so as to exact Finger-
Knuckle-Print feature more effectively. 

The rest of this paper is organized as follows. Section 2 introduces Gabor feature 
representation and LBP. Section 3 reports the experimental results. Finally, 
conclusions are presented in Section 4. 

2   Gabor and LBP 

2.1   Gabor Feature Representation 

Gabor wavelets were successfully used in face recognition. The Gabor wavelets, 
whose kernels are similar to the 2D receptive field profiles of the mammalian cortical 
simple cells, exhibit desirable characteristics of spatial locality and orientation 
selectivity, and are optimally localized in the space and frequency domains. 

The Gabor wavelet can be defined as follows: 

2 2 2 2
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where u  and v  define the orientation and scale of the Gabor kernels, ( ),z x y=  , *  

denotesthe norm operator, and the wave vector ,u vk  is defined as follows:  

,
ui

u v vk k e φ=  (2)

where  / 2
max / 2v

vk k= , and ( /8)u uφ π= . maxk  is the maximum frequency, and f  if the 

spacing factor between kernels in the frequency domain. In the most cases one would 
use Gabor wavelet of five different scales, { }0, ,4v = , and eight orientations, 

{ }0, ,7u = .  

The Gabor transformation of a given image ( )I z  is defined as its convolution with 
the Gabor functions 

, ,( ) ( ) ( )u v u vG z I z zψ= ∗  (3)

where ( , )z x y=  denotes the image position, ∗  denotes the convolution operator, and 

, ( )u vG z  is the convolution result corresponding to the Gabor kernel at scale v  and 

orientation u .  The Gabor wavelet coefficients is a complex, which can be rewritten 
as: 
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, , ,( ) ( ) *exp( ( ))u v u v u vG z A z i zθ=  (4)

with one magnitude item , ( )u vA z  and one phase item , ( )u v zθ . We choose the 

magnitude as the feature representation of an image ( )I z . Therefore, the set 

{ }, ( ) : {0, ,7}, {0, ,4}u vS A z u v= ∈ ∈  forms the Gabor feature representation of the 

image ( )I z . Fig. 1 shows Gabor feature representation of one scale and eight 
orientations of one Finger-Knuckle-Print image, with the following parameters: 

2σ π= , max 2.5* / 2k π= . 

 
 

 
 
                  
 
 
 
 

        

(a) One FKP image 
 
 

 
 
 
 

                       (b) The corresponding Gabor feature representation 

Fig. 1. Gabor feature representation of one scale and eight orientation 

To encompass different spatial frequencies (scales), spatial localities, and 
orientation selectivities, we concatenate all these representation results and derive an 
augmented feature vector Χ . Before the concatenation, we first downsample each 

, ( )u vA z  by a factor ρ  to reduce the space dimension, and normalize it to zero mean 

and unit variance. We then construct a vector out of the , ( )u vA z  by concatenating its 

row (or columns). Now, let ( )
,u vA ρ  denote the normalized vector construct from , ( )u vA z  

(downsampled by ρ  and normalized to zero mean and unit invariance), the 
augmented Gabor feature vector ( )A ρ  is then defined as follows: 

( )( ) ( ) ( ) ( )
0,0 0,1 4,7

p t p t p tA A A Aρ =  (5)

where t  denotes the transpose operation. The augmented Gabor feature vector thus 
encompasses all the elements (downsampled and normalized) of the Gabor wavelet 
representation set, { }, ( ) : {0, ,7}, {0, ,4}u vS A z u v= ∈ ∈ , as important discriminant 

information. 
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2.2   Locale Binary Pattern (LBP) 

The original LBP method is introduced by Ojala to be used in texture description 
[10][11]. It is based on thresholding neighborhood pixel values against the center 
pixel in a circular order to form a binary pattern. Then these patterns of different 
pixels are assorted and concatenated into a histogram so that each pattern corresponds 
to one bin. This histogram is used to represent the original image for later 
classification purpose. Fig. 2 gives an illustration of the basic LBP operator. Fig 3 
shows a LBP encode image. 

       

               Fig. 2. The basic LBP operator                  Fig. 3. LBP transform image of           
                                  one Finger-Knuckle-Print image 

 
We can use ,P RLBP to denote LBP operators with different sizes, in which ( , )P R  

means P sampling points on a circle of radius R . It allows for any value of P and R , 
for the gray values of neighbors which do not fall exactly in the center of pixels is 
estimated by bilinear interpolation. The total 2 p  different patterns are concatenated 
into a histogram by their number of occurrences. 

Allowing for that experimental results show certain local binary patterns are 
fundamental properties of texture images, Ojala proposed an improved LBP operator 
called uniform patterns, which contain at most two 0/1 or 1/0 transitions when the 
binary string is considered circular. We denote it by 2

,
u

P RLBP , in which 2u reflects the 

use of rotation invariant uniform patterns with bit transitions at most two. For 
example, the 2

8,1
uLBPLBP operator quantifies the total 256 LBP values into 59 bins 

according to uniform strategy (58 uniform patterns and the other patterns are assorted 
to the 59th pattern). Ojala reported in their experiments with texture images, uniform 
patterns account for a bit less than 90% of all patterns when using the (8,1) 
neighborhood and for around 70% in the (16,2) neighborhood[10]. 

The histogram of image is defined as 

,

{ ( , ) }i l
x y

H I f x y i= =∑ 0,1, , 1i n= −  (6)

in which n  is the number of different labels produced by LBP operator. 

1 A is true
( )

0 A is false
I A

⎧
= ⎨
⎩

 (7)

A large number of documents and experimental results showed that extract the 
LBP histogram of the whole image in the high-capacity database is far from enough. 
Take Finger-Knuckle-Print as example, if we only use the LBP histogram of the 
whole image as the discriminate feature, the recognition rate is quite low. To solve the 
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problem, we usually divide the original image to several blocks, e.g. 3*3 or 7*7, 
calculates the LBP histogram of each sub-image. Then, we concatenate all these 
histogram results and derive a new one, as the feature representation of the whole 
image. In this way, we merge the locale feature and the whole information of the 
image together effectively. 

Algorithms such as Histogram Intersection, Log-likelihood Statistic and Chi 
Square Statistic can be used to discriminate histogram features [12]. In proposed 
algorithm, we use Chi Distance Statistic to calculate the distance between histogram 
features: 

2
2 ( )
( , ) i i

i i i

S M
S M

S M
χ −=

+∑  (8)

in which S denotes the test image to be recognized, M denotes marked images in 
library, iS means probability of test image in the ith area of histogram, iM means 

probability of marked image in the ith area of histogram. 
When we calculate the 2

,
u

P RLBP  operator histogram of the image in blocks, the Chi 

Distance Statistic could be extended as follows: 
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2.3   The Algorithm of the Proposed Method 

The aforesaid algorithm can be described as follows: 

Step1. Calculate the Gabor feature representation of finger-knuckle-print image; 
Step2. For every Gabor feature representation of image, extract the histogram feature 
by 2

8,1
uLBP  in blocks. 

Step3. Classify test samples by Chi Distance Statistic, get the recognition rate. 

3   Experiments 

We use the PolyU FKP database [7,13,14] to evaluate the performances of PCA, 
LDA, Gabor+PCA, Gabor+LDA, LBP and the propose method. The PolyU FKP 
database was collected from 165 volunteers, including 125 males and 40 females. 
Among them, 143 subjects are 20-30 years old and the others are 30-50 years old. The 
images were collected in two separate sessions. In each session, the subject was asked 
to provide 6 images for each of the left index finger, the left middle finger, the  
right index finger and the right middle finger. In total, the database contains 7,920 
images from 660 different fingers. The original image size is 220*110. Some finger-
knuckle-print images are shown in Fig. 4. In all the experiment, we do experiments on 
left index finger, left middle finger, right index finger and right middle finger 
respectively. 
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Fig. 4. Part of Finger-Knuckle-Print images in Ploy FKP 

 

In the experiment, we resize the image size to 110*55 and used the first l 
(l=5,6,7,8) images per class for training and the remaining images for testing. In the 
PCA stage of PCA, LDA, we preserved nearly 90 percent image energy to select the 
number of principal components. Finally, a nearest neighbor classifier with cosine 
distance is employed. In LBP, we use Chi Distance Statistic for classification. The 
final recognition rates are shown in Table 1, Table 2, Table 3 and Table 4.  

Table 1. Recognition Rates of Left index finger 

 5l =  6l =  7l =  8l =  
PCA 0.5974 0.5638 0.7459 0.8561
LDA 0.7255 0.7283 0.8691 0.9364
Gabor+PCA 0.9342 0.9253 0.9806 0.9879
Gabor+LDA 0.9437 0.9485 0.9891 0.9909
LBP 0.9100 0.9010 0.9709 0.9848
Proposed 0.9394 0.9414 0.9903 0.9939

 

Table 2. Recognition Rates of Left middle finger 

 5l =  6l =  7l =  8l =  
PCA 0.5827 0.5364 0.7467 0.8273
LDA 0.7143 0.7030 0.8655 0.9167
Gabor+PCA 0.9117 0.9101 0.9842 0.9924
Gabor+LDA 0.9238 0.9263 0.9903 0.9955
LBP 0.8952 0.8909 0.9770 0.9864
Proposed 0.9411 0.9424 0.9976 0.9985

 
From Table 1, Table 2, Table 3, Table 4, we can find that: (1) The proposed 

method has the top recognition rate; (2) LDA has better performance than PCA; (3) 
Gabor plus former methods has better performance than the corresponding methods; 
(4) The recognition rate of the middle finger is higher than that of the index finger. 
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Table 3. Recognition Rates of Right index finger 

 5l =  6l =  7l =  8l =  
PCA 0.6355 0.6051 0.7782 0.8500
LDA 0.7697 0.7606 0.8788 0.9303
Gabor+PCA 0.9584 0.9586 0.9927 0.9955
Gabor+LDA 0.9680 0.9626 0.9927 0.9985
LBP 0.9550 0.9556 0.9952 0.9955
Proposed 0.9784 0.9727 0.9988 1.0000

 

Table 4. Recognition Rates of Right middle finger 

 5l =  6l =  7l =  8l =  
PCA 0.6251 0.6010 0.7733 0.8621
LDA 0.7758 0.7525 0.8885 0.9242
Gabor+PCA 0.9299 0.9293 0.9867 0.9939
Gabor+LDA 0.9446 0.9323 0.9867 0.9985
LBP 0.9091 0.9121 0.9758 0.9939
Proposed 0.9515 0.9475 0.9927 0.9970

4   Conclusions 

In this paper, we chose LGBP to identify finger-knuckle-print. First, we calculate the 
Gabor feature representation of the image; Second, for every Gabor feature 
representation, calculate LBP histogram feature corresponding. Third, use Chi 
Distance Statistic to get the classification rate. The experimental results show that our 
proposed method has a good performance.  
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Abstract. Mixture control chart patterns (CCPs) mixed by two types of basic 
CCPs together usually exist in the real manufacture process. However, most 
existing studies are considered to recognize the single abnormal CCPs. This study 
utilizes independent component analysis (ICA) and support vector machine 
(SVM) for recognizing mixture CCPs recognition in a process. The proposed 
scheme, firstly, uses ICA to the monitoring process data containing mixture 
patterns for generating independent components (ICs). The undetectable basic 
patterns of the mixture patterns can be revealed in the estimated ICs. The ICs are 
then used as the input variables of the SVM for building CCP recognition model. 
Experimental results revealed that the proposed scheme is promising for 
recognizing mixture control chart patterns in a process. 

Keywords: Control chart pattern recognition, out-of-control process, 
independent component analysis, support vector machine. 

1   Introduction 

Control charts are one of the most popular tools used in statistical process control 
(SPC) and have been intensively used to monitor and improve the quality of 
manufacturing processes. A process is out-of-control when a data point falls outside 
the control limits or a series of data points exhibit unnatural/abnormal patterns [1]. 
Recognizing unnatural control chart patterns (CCPs) is an important issue in SPC 
since they can be associated with specific assignable causes adversely affecting the 
process. Six basic CCPs are commonly exhibited in control charts including normal 
(NOR), stratification (STA), systematic (SYS), cyclic (CYC), trend (TRE) and shift 
(SHI) [2][3]. Note that the stratification, systematic, cyclic, trend and shift patterns 
are called abnormal CCPs. The basic CCPs can happen in a process. Figure 1 shows 
these six basic control chart patterns.  
                                                           
* Corresponding author. 
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(a) Normal (b) stratification (c) Systematic 

   

(d) Cyclic (e) Trend (f) shift 

Fig. 1. Six basic control chart patterns 

There have been many studies have been conducted on control chart pattern 
recognition [3][4][5]. Most of the existing studies were concerned with the 
recognition of the single abnormal control chart patterns (as shown in Figure 1) in a 
univariate process. Few researches have been reported on identifying CCPs in a 
process [6]. However, in most real control chart applications, the observed process 
data may be mixture patterns where two patterns may exist together. Without loss of 
generality, Figure 2 shows six mixture CCPs which are respectively mixed by two 
basic patterns. Compared to the patterns illustrated in Figure 1, it can be observed 
from Figure 2 that the mixture CCPs are more difficult to be recognized than the basic 
CCPs.  

Only few literatures have been reported on the recognition of mixture process 
patterns. The work of [7] used the back-propagation neural network (BPN) to 
recognize mixture CCPs. The work of [8] integrated wavelet method and back-
propagation neural network for on-line recognition of mixture CCPs. An efficient 
statistical correlation coefficient method for the recognition of mixture CCPs was 
proposed by [9]. However, the existing studies were proposed for recognizing mixture 
CCPs in a univariate process. Since, in modern manufacturing process, there are 
usually a number of quality characteristics that need to be simultaneously controlled, 
how to effective identify mixture CCPs in a process is an important and challenging 
task.  

In this study, a control chart pattern recognition scheme by combining independent 
component analysis (ICA) and support vector machine (SVM) is proposed (called 
ICA-SVM scheme) for identifying mixture CCPs in a process. ICA is a novel feature 
extraction technique feature extraction technique to find independent sources given 
only observed data that are mixtures of the unknown sources, without any prior 
knowledge of the mixing mechanisms [10]. The independent sources, called 
independent components (ICs), are hidden information of the observable data. ICA 
has been employed successfully in various fields of multivariate data processing, from 
signal processing to time series prediction [10]. However, there are still few 
applications of using ICA in control chart pattern recognition. Lu et al. [11] integrated 
ICA, engineering process control and BPN to recognize shift and trend patterns in 
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correlated process. An ICA-based monitoring scheme to identify shift pattern in an 
autocorrelated process was studied by [12]. The combination of ICA and SVM for 
diagnosing mixture CCPs which are mixed by the normal and other abnormal basic 
patterns was investigated by [13]. However, their work did not consider the 
recognition of CCPs mixtured by any two basic patterns.   

 

   

(a) NOR+STA (b) STA+TRE (c) SYS+CYC 

   

(d) CYC+SHI (e) TRE+SYS (f)SHI+TRE 

Fig. 2. Mixture CCPs: (a) Normal+Stratification (b) Systematic+Trend, (c) Systematic +Cyclic, 
(d) Cyclic+Shift, (e) Trend+ Systematic, (f) Shift+Trend 

Support vector machine (SVM), based on statistical learning theory, is a novel 
neural network algorithm [14]. It can lead to great potential and superior performance 
in practical applications. This is largely due to the structure risk minimization 
principles in SVM, which has greater generalization ability and is superior to the 
empirical risk minimization principle as adopted in neural networks. The SVM has 
attracted the interest of researchers and has been applied many applications such as 
texture classification and data mining [14]. However, few studies have been 
conducted using SVM for CCP recognition [13]. 

The proposed ICA-SVM scheme first uses ICA to the observed process data 
contained mixture patterns for generating independent components. The estimated ICs 
are then served as the independent sources of the mixture patterns. The hidden basic 
patterns of the mixture patterns could be discovered in these ICs. The ICs are then 
used as the input variables of the SVM for building CCP recognition model. The rest 
of this paper is organized as follows. Section 2 gives brief overviews of ICA and 
SVM. The proposed model is described in Section 3. Section 4 presents the 
experimental results and this study is concluded in Section 5. 

2   Methodology 

2.1   Independent Component Analysis 

In the basic conceptual framework of ICA algorithm [13], it is assumed that m 

measured variables, T
mxxx ] , , ,[ 21=x  can be expressed as linear combinations of n 

unknown latent source components T
ns ]s , ,s ,[ 21=s : 
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where ja  is the j-th row of unknown mixing matrix A. Here, we assume nm ≥  for A 

to be full rank matrix. The vector s is the latent source data that cannot be directly 
observed from the observed mixture data x. The ICA aims to estimate the latent 
source components s and unknown mixing matrix A from x with appropriate 
assumptions on the statistical properties of the source distribution. Thus, ICA model 
intents to find a de-mixing matrix W such that  

Wxwy ==∑
=

n

j
jj x

1

,                                                (2) 

where T
nyyy ] , , ,[ 21=y  is the independent component vector. The elements of y 

must be statistically independent, and are called independent components (ICs). The 
ICs are used to estimate the source components js . The vector jw  in equation (2) is 

the j-th row of the de-mixing matrix W.  
The ICA modeling is formulated as an optimization problem by setting up the 

measure of the independence of ICs as an objective function followed by using some 
optimization techniques for solving the de-mixing matrix W. Several existing 
algorithms can be used for performing ICA modeling [13]. In general, the ICs are 
obtained by using the de-mixing matrix W to multiply the observed data x, i.e. 

Wxy = . The de-mixing matrix W can be determined using an unsupervised learning 

algorithm with the objective of maximizing the statistical independence of ICs. The 
ICs with non-Gaussian distributions imply the statistical independence [13]. 

The ICA modeling is formulated as an optimization problem by setting up the 
measure of the independence of ICs as an objective function followed by using some 
optimization techniques for solving the de-mixing matrix W. Several existing 
algorithms can be used for performing ICA modeling [10]. In this study, the FastICA 
algorithm proposed by [10] is adopted in this paper. 

2.2   Support Vector Machine 

The basic idea of applying SVM to pattern recognition can be stated briefly as 
follows. We can initially map the input vectors into one feature space (possible with a 
higher dimension), either linearly or non-linearly, which is relevant with the selection 
of the kernel function. Then, within the feature space from the first, we seek an 
optimized linear division, that is, construct a hyperplane which separates two classes 
(this can be extended to multi-class).  

A description of SVM algorithm is follows. Let ( ){ }N
iii y 1, =x , d

i R∈x , { }1 ,1−∈iy  

be the training set with input vectors and labels. Here, N is the number of sample 
observations and d is the dimension of each observation, iy  is known target. The 

algorithm is to seek the hyperplane 0=+⋅ bixw , where w is the vector of 

hyperplane and b is a bias term, to separate the data from two classes with maximal 
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margin width 
2

/2 w , and the all points under the boundary is named support vector. 

In order to optimal the hyperplane that SVM was to solve the optimization problem 
was following [14].  

Min 
2

2

1
)( wx =Φ                                                   (3)

S.t. Niby i
T

i ..., ,2 ,1 ,1)( =≥+xw  

It is difficult to solve (3), and it can transform the optimization problem to be dual 
problem by Lagrange method. The value of α  in the Lagrange method must be non-
negative real coefficients. The (3) can be transformed into the following constrained 
form, 

Max ∑ ∑
= ==

−=Φ
N

i

N

ji
j

T
ijijii yyb

1 1,12

1
),,,,( xxw αααβαξ                   (4)
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=

=
N

j
jj y

1

0α  

NiCi ..., ,2 ,1 ,0 =≤≤α  

In (4), C is the penalty factor and determines the degree of penalty assigned to an 
error. It can be viewed as a tuning parameter which can be used to control the trade-
off between maximizing the margin and the classification error. 

In general, it could not find the linear separate hyperplane in all application data. In 
the non-linear data, it must transform the original data to higher dimension of linear 
separate is the best solution. The higher dimension is called feature space, it improve 
the data separated by classification. The common kernel function are linear, 
polynomial, radial basis function (RBF) and sigmoid. Although several choices for 
the kernel function are available, the most widely used kernel unction is the RBF 

kernel defined as 0),exp(),(
2

≥−−= γγ jijiK xxxx  [14], where γ  denotes the 

width of the RBF. Thus, the RBF is applied in this study. The original SVM was 
designed for binary classifications. Constructing multi-class SVM is still an ongoing 
research issue. In this study, we used multi-class SVM method proposed by [15]. For 
more details, please refer to [15]. 

3   The Proposed ICA and SVM Model 

Figure 3 shows the research scheme of the proposed ICA-SVM model. As shown in 
Figure3, the proposed scheme consists of two stages. In the training stage, the aim is 
to find the best parameter setting to train SVM model for CCP recognition. The first 
step of the training stage is to generate six basic CCPs as shown in Figure 1. Then, 
they are used as training sample to build SVM model. Since the RBF kernel function 
is adopted in this study, the performance of SVM is mainly affected by the setting of 
parameters of two parameters (C and γ ). There are no general rules for the choice of 
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the parameters. In this study, the grid search proposed by [16] is used for parameters 
setting. The trained SVM model with best parameter set is preserved and used in the 
monitoring stage for CCP recognition. 

In the monitoring stage, the first step is to collect two observed data from 
monitoring a process. Then, the ICA model is used to the observed data to estimate 
two ICs. Finally, the trained SVM is utilized to each IC to produce CCP recognition 
results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. The research scheme of the proposed ICA-SVM model 

As an example, Figures 4(a1) and (a2) show two observed data collected from the 
monitoring a process. It is assumed that the data are mixed by systematic and cyclic 
patterns. Then, the ICA model is used to the data to generate two ICs which are 
illustrated in Figures 4(b1) and (b2). It can be found that Figures 4(b1) and (b2) can 
be used to represent systematic and cyclic patterns, respectively. For each IC, the 
trained SVM model is used to recognize the pattern exhibited in the IC. According to 
the SVM results, the process monitoring task is conducted to identify which basic 
patterns are exhibited in the process.   

 

  
(a1) (b1)  

  
(a2) (b2) 

Fig. 4. (a1) and (a2) the observed data mixed by systematic and cyclic patterns; (b1) the IC 
represents systematic pattern; (b1) the IC represents cyclic pattern 

Generate six basic CCPs as 
training sample 

Train SVM model 

Generate two monitoring data 

Use ICA to estimate two ICs 

IC1 IC2 

Recognition results 

Training stage Monitoring stage 
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4   Experimental Results 

In this study, eight basic CCPs (as shown in Figure 1) and 21 mixture CCPs are used 
for training and testing the proposed ICA-SVM scheme, respectively. The eight basic 
patterns are generated using the same equations and values of different pattern 
parameters, as used by [3]. The parameters along with the equations used for 
simulating the CCPs are given in Table 1. The values of different parameters for 
abnormal patterns are randomly varied in a uniform manner between the limits. It is 
assumed that, in the current approach for pattern generation, all the patterns in an 
observation window are complete. The observation window used in this study is 34 
data points.  

Table 1. Parameters for simulating control chart patterns 

Control 
chart 
patterns 

Pattern equations Pattern parameters 

NOR σii rux +=  Mean(u)=0 
Standard deviation(σ )=1 

STA 'σii rux +=  Random noise(σ ′ )=(0.2(σ ) to 0.4(σ )) 

SYS i
ii drux )1(−++= σ  Systematic departure(d)=(1(σ ) to 3(σ )) 

CYC )/2sin( tiarux ii πσ ⋅++=  Amplitude(a)=( 1.5(σ ) to 2.5(σ )) 
Period(t)=( 8 and 16) 

TRE igrux ii ±+= σ  Gradient(g)=(0.05(σ ) to 0.1(σ )) 

SHI 
ksrux ii ±+= σ  

k=1 if i>P, else k=0 
Shift magnitude(s)=(1.5(σ ) to 2.5(σ )) 
Shift position(P)=( 7, 13, 19) 

Note: i = discrete time point at which the pattern is sampled (i= 1, ..., 34), ir = 

random value of a standard normal variate at i-th time point, and ix =sample value 

at i-th time point. 
 
 
For generating 21 mixture patterns, the equation is defended as 

11 121 1

13 142 2

w wx s

w wx s

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
, where 1s  and 2s  represents two source patterns composed of 

basic CCPs, ijw  are mixing coefficients which are randomly generated between 0 and 

1. In this study, without loss of generality, it is assumed that 
2

1 1j
j

w =∑  and 

2

2 1j
j

w =∑ . 
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Features of observation window, such as mean, standard deviation, kurtosis and 
slop characteristics are adopted in literatures to improve the performance of CCP 
recognition [3]. However, features may ignore some useful information contained in 
the original data points of observation window since they are abstract information of 
the data points. Therefore, the proposed ICA-SVM model directly uses the 34 data 
pints of observation window as inputs of the SVM model. That is, there are 34 input 
variables are used in the proposed model for CCP recognition. In order to demonstrate 
the performance the proposed ICA-SVM scheme, the single SVM model without 
using ICA as preprocessing is constructed. It also directly uses the data pints of 
observation window as inputs.  

After using the Grid search method to the two models, the best parameter sets for 
the ICA-SVM and single SVM models are (C=23, γ =23) and (C=25, γ =21), 
respectively. Note that the model selection details of the three models are omitted for 
saving space. The recognition results of the ICA-SVM and single SVM models are 
respectively illustrated in Tables 2 and 3.  

From Tables 2-3, it can be found that the average correct classification rates of the 
proposed ICA-SVM model and the single SVM model are 86.09% and 78.77%, 
respectively. The proposed model outperforms the single SVM model in most testing 
mixture CCPs. Therefore, the proposed ICA-SVM scheme can effectively recognize 
control chart patterns mixtured by any two basic patterns in a process.  

Examination of the recognition results in Table 2 reveals that the correct 
classification rate of SHI+SHI pattern is significantly lower than that of other 
patterns. It may because that the profile of the SHI pattern is difficult to be recognized 
from the original data points. There results suggest that inclusion of an additional 
feature that can distinguish between SHI and other CCPs can be very useful. 
Improving the recognition capabilities of the proposed ICA-SVM scheme are needed 
to be investigated in the future. 

Table 2. Recognition results using the proposed ICA-SVM model 

Mixture 
patterns 

Correct 
Rate 

Incorrect 
Rate 

Mixture 
patterns 

Correct  
Rate 

Incorrect 
Rate 

NOR+NOR 96.05% 3.95% SYS+SYS 97.35% 2.65% 

NOR+STA 99.35% 0.65% SYS+CYC 81.83% 18.18% 

NOR+SYS 98.20% 1.80% SYS+ TRE 98.63% 1.38% 

NOR+CYC 92.75% 7.25% SYS+ SHI 56.63% 43.38% 

NOR+TRE 98.10% 1.90% CYC+CYC 65.25% 34.75% 

NOR+SHI 100.00% 0.00% CYC+TRE 81.80% 18.20% 

STA+STA 98.85% 1.15% CYC+SHI 57.00% 43.00% 

STA+SYS 99.20% 0.80% TRE+TRE 99.60% 0.40% 

STA+CYC 99.28% 0.72% TRE+SHI 56.68% 43.33% 

STA+TRE 99.18% 0.82% SHI+SHI 4.80% 95.20% 

STA+ SHI 100.00% 0.00% Average 84.79% 15.21% 
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Table 3. Recognition results using SVM model alone 

Mixture 
patterns 

Correct 
Rate 

Incorrect 
Rate 

Mixture 
patterns 

Correct  
Rate 

Incorrect 
Rate 

NOR+NOR 97.95% 2.05% SYS+SYS 97.60% 2.40% 

NOR+STA 97.83% 2.18% SYS+CYC 0.78% 99.23% 

NOR+SYS 83.88% 16.13% SYS+ TRE 100.00% 0.00% 

NOR+CYC 88.20% 11.80% SYS+ SHI 27.13% 72.88% 

NOR+TRE 100.00% 0.00% CYC+CYC 66.15% 33.85% 

NOR+SHI 100.00% 0.00% CYC+TRE 100.00% 0.00% 

STA+STA 94.65% 5.35% CYC+SHI 8.78% 91.23% 

STA+SYS 94.58% 5.43% TRE+TRE 100.00% 0.00% 

STA+CYC 87.35% 12.65% TRE+SHI 100.00% 0.00% 

STA+TRE 100.00% 0.00% SHI+SHI 9.30% 90.70% 

STA+SHI 100.00% 0.00% Average 78.77% 21.23% 

5   Conclusion 

Effective recognition of mixture CCPs in a process is an important and challenging 
task. In this study, a CCPs recognition scheme by integrating ICA and SVM is 
proposed. The proposed scheme, firstly, uses ICA to the mixture patterns to generate 
ICs. Then, the SVM model is used to each IC for pattern recognition. Twenty-one 
mixture CCPs are used in this study for evaluating the performance of the proposed 
method. Experimental results showed that the proposed ICA-SVM scheme 
outperforms the single SVM model without using ICA as preprocessing. According to 
the experimental results, it can be concluded that the proposed scheme can effectively 
recognize mixture control chart patterns in a process. 
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Abstract. Gender classification has attracted a lot of attention in computer vision 
and pattern recognition. In this paper, we propose a gender classification method. 
First, we present a robust profile extraction algorithm; Second, we implement 
Principal Components Analysis (PCA) and Independent Components Analysis 
(ICA) to extract discriminative features from profile to estimate the face gender 
via SVM. Our experimental results on Bosphorus 3D face database show that our 
proposed method works well.  

Keywords: PCA, ICA, gender classification, feature extraction. 

1   Introduction 

Human faces contain important information, such as gender, race, mood, and age [1, 2]. 
In the area of human-computer interaction, there are both commercial and security 
interests to develop a reliable gender classification system from a good or low quality 
images. Gender perception and classification have been studied extensively from 
psychological prospect [3,4], which show that gender has close relationships with both 
2D information and 3D shape [5,6]. 

Wild et al. showed that gender classification achieved much lower recognition rate 
for children’s face than the ones of adults [4]. Moghaddam and Yang [7] developed a 
robust gender classification system based on RBF-kernel SVM on a set of FERET raw 
images, and concluded that the nonlinear SVM outperformed the traditional pattern 
classifiers on gender classification problems. There are many publications on gender 
classification by using FERET database, such as [2,8] etc. Recently, Yang et al. in-
vestigated three gender classification algorithms (SVM, FLD and Real Adaboost) with 
three different preprocessing methods on a large Chinese database and achieved a good 
accuracy [9]. Baluja and Rowley [3] studied a method based on an Adaboost for clas-
sification from low resolution grayscale face images. Gao and Ai [] proposed using 
Active Shape Model (ASM) for face representation and using probabilistic boosting 
trees approach for gender classification on a set of multiethnic faces. Guo et al. [10] 
studied the aging effect on gender classification and showed that the gender classifi-
cation accuracy on young and senior faces can be much lower than the one on adults’ 
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faces, and hence concluded that the age of a person affected the gender recognition 
significantly. Wang et al. [11] gave a robust gender classification system via model 
selection. Erno et al. [2] gave a systematic study on gender classification with face 
diction and face alignment. 

Currently most of research works about gender are based on 2D images and only a 
few studies have research gender based on 3D shapes information, which is due to the 
expensive price of 3D sensors and the high calculation complexity of 3D data. Alice et 
al. studied the roles of shape and texture information in gender classification [12]. X. 
Lu et al. presented a method by combing the registered range and intensity images for 
gender classification via SVM [13]. J. Wu et al. proposed a weighted PGA and super-
vised PGA to parameterize the facial needle-maps and compared their performances 
with PGA for gender classification [14]. Y. Hu et al. gave a 3D facial gender classifi-
cation by fuse the classification results of the facial regions [15].   

Inspired by the success of the facial profile in 3D face recognition, we propose a 
method for gender classification, named ICProfile, which is based on 3D facial profile, 
Independent Components Analysis (ICA) and SVM. 

2   Related Knowledge 

2.1   Independent Components Analysis 

Bartlett et al [16] proposed two architectures for ICA. Here we use the architecture I. 
Denote by x  a -dimensionalp  vector, the ICA of  x  seeks for a sequence of projec-

tion vectors 1 2, , , ( )qw w w q p<  to maximize the statistical independence of the pro-

jected data. It can be expressed as follows: Ts W x=  (1) where s  denotes the ICs of x  
and 1[ , , ]qW w w=  is called the unmixing matrix. Various criteria, such as those 

based on mutual information, negentropy and higher-order cumulants, have been 
proposed for computing W [17]. Among them the FastICA algorithm has been widely 
used in pattern recognition [17,18]. Usually, principal components analysis (PCA) is 
implemented to whiten the data and reduce the dimensionality before  
applying ICA. 

2.2   SVM 

SVM [19] is a supervised learning technique from the field of machine learning and is 
applicable to both classification and regression. The basic training principal behind 
SVM is finding the optimal separating hyperplane that separates the positive and 
negative samples with maximal margin. Based on this principal, a linear SVM use a 
systematic approach to find a linear function with the lowest VC dimension. For line-
arly non-separable data, SVM can map the input to a high dimensional feature space 
where a linear hyperplane can be found. SVM has been successfully used in gender 
classification and age estimation [7]. 
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3   Our Proposed Method for Gender Classification 

Facial profile has been successfully applied in 3D face recognition [20]. So it is nature 
to classify gender based on the 3D facial profile. In the proposed method, first, we 
extract the profile; second, we normalize the profile; third, we extract discriminative 
feature from the normalized profile and classify gender via SVM. 

3.1   Pre-process and Profile Extraction Algorithm 

In this paper, we evaluate the performance of the proposed method on Bosphorus 3D 
face database. The presented 3D face point in Bosphorus 3D face database [22] is a raw 
3D point cloud. Some 3D point clouds and the corresponding 2D images in bosphorus 
face database are shown in Fig 1. Here we do some pre-processing work to extract the 
profile. The pre-processing and profile extraction framework is shown in Fig 2. In this 
paper, we present a 3D face as a n*3 matrix of x, y, z-coordinates of the point cloud 
(i=1,2,…,n, where n is the point number).  

 

                            

 

Fig. 1. Some images and point clouds in Bosphorus 3D face database 

 

Fig. 2. Framework of pre-processing and profile extraction 

First, we remove the spike (outliers) since the spikes influence the calculation the 
nose tip location. We stat the neighbors in 5mm distance in x-y plane and 1mm distance 
in z-direction. And we remove the 5 percent points with the fewest neighbor number, 
which are statistically judged as spikes. Fig 3(a) shows a point cloud with spikes,  
Fig 3(b) shows the point cloud after spike removing.  

Second, we choose the point with largest z-coordinate as the nose tip since the faces 
in Bosphorus are almost front faces. Fig 3(c) shows a nose tip of one point cloud.  

Third, we use a sphere of radius r centered at the nose tip to crop the face. In our 
experiments we set r=80. Fig 3(d) shows a cropped face.  
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           a)                                b)                         c)                             d)                       e) 

Fig. 3. An example of pre-processing and the extraction of the profile 

Forth, we use PCA transformation to correct the pose of the cropped face to get the 
rotation matrix R and the translation matrix T [21]. We use matrix R and T to correct the 
pose of P. Let P is 3*n matrix of x, y, z coordinates of the point cloud of a face.  

                          
1

1

1

n

n

n

x x

P y y

z z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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                                                    (1) 

The total scatter matrix R and the eigenvectors and eigenvalues of R are described as 
follows: 

1 1

1 1
( )( ) ,  

Tn n

k k kk k
R P m P m m P

n n= =
= − − =∑ ∑                          (2) 

1 2 3 ( 1,2,3,  )i i iR w w iλ λ λ λ= = > >i i  

where Pk is the kth column of P. w1 denotes the direction of the largest deviation of P 
and w3 denotes the direction of the smallest deviation of P. So, w1 denotes the profile 
direction (y-coordinate direction) and w3 denotes the z-coordinate direction, w2 denotes 
the x-coordinate direction. So far, we get the rotation matrix R and the translation ma-
trix T.  

Fifth, we correct the pose of the point cloud P according to R and T. Fig 3(e) shows a 
correct point cloud. 

Sixth, we choose the intersection between P and the y-z plane as the profile. Fig 3(e) 
shows the extracted corresponding profile. Finally, we only choose z-coordinate vec-
tors to denote the final extracted profile. 

So far, we give the complete algorithm to extract the profile. When we obtain the 
profile, the first step of the normalization process is to resizes the vectors to a fixed 
length vectors, and the second step is to normalize the vectors to have a minimum 0 and 
a maximum 255. Fig 4(a) shows some normalized results of the whole profiles. Fig 4(b) 
shows some normalized results of the upper profiles. From Fig 3(a), we can find that 

mouth parts of a profile are easy to be influenced by the expression. We use { }k
ta  to 

denote the normalized profile. 
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                                                            (a) 

 

                                                          (b) 

Fig. 4. Some normalized profile 

3.2   Feature Extraction and Classify 

We compute the independent components 1 2[ , , , ]qs s s s=  and principal ocmpo-

nents 1 2[ , , , ]dw w w w=  of { }k
ta  by FastICA [18] and PCA []. Here FastICA uses a 

contrast function 4( ) (1 4)G u u= . By projecting a  onto s  and w , we get the feature 

vectors ( )Tv v s a=  and ( )Tv v w a=  of the wrist-pulse { }k
ta , respectively. 

After transformations by ICA and PCA, feature vectors are obtained for each profile. 
Then, a SVM classifier is used for classification. Fig 5 shows the gender classification 
framework. 

 

Fig. 5. Gender classification framework 

3.3   Experiment Setups 

The Bosphorus 3D face database [22] consists of 105 people in various pose, expres-
sion and occlusion. The majority of the subjects are aged between 25 and 35. There are 
60 men and 45 women in total, and most of the subjects are Caucasian. Up to 54 face 
scans are available per subject, but 34 of these subjects have 31 scans. Thus, the number 
of the total face scans is 4641. Each scans only contains the main face region. In the 
experiments, we only choose a subset with nature expression, totally 290 scans. 

In the feature extraction step, we compare the performances of PCA and ICA. 
In PCA, we set the final dimension as 120. In ICA, we set the final dimension as 120.  
We use SVM as the gender classifier. We perform a standard 10-fold cross valida-

tion to evaluate the prediction error of the proposed method. We use the contributed 
package “Libsvm” [15] in Matlab for the computation of SVR (svm_type: EPSI-
LON_SVR, kernel_type: RBF Kernel, gamma=0.25, C=64).  
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3.4   Experimental Results 

In the experiment, we compare three normalization methods with no-scaling on either 
PCA feature or ICA feature for gender classification. The experiment results are shown 
in Table 1. Fig. 6(a) and Fig. 6(b) show the recognition rates with different feature 
dimensionality on the whole profiles. Fig. 6(c) and Fig. 6(d) show the recognition rates 
with different feature dimensionality on the upper profiles. For ICA and PCA features, 
no-scaling turns out to achieve the best MAE, comparing to the rest normalization 
methods. Here we compare two normalization methods: Min-Max and Z-score. Note 
that the Min-Max-[0, 1] with distinct hyper-parameters for SVM.  

  
                                                (a)                                                   (b) 

  
(c)                                                     (d) 

Fig. 6. PCA / ICA recognition vs. dimension 

Table 1. Recognition rates on PCA and ICA features, respectively 

 PCA1 PCA2 PCA3 ICA1 ICA2 ICA3 
Mean1 0.5619 0.8595 0.7860 0.5619 0.8528 0.7960 
Std1 0.0956 0.0958 0.1037 0.0956 0.1037 0.1031 
Mean2 0.5619 0.8796 0.8395 0.5619 0.8863 0.8462 
Std2 0.0956 0.1070 0.0795 0.0956 0.0760 0.1058 

In Table 1, PCA/ICA superscript 1 means no scaling, PCA/ICA superscript 2 de-
notes Min-Max-[0 1], PCA/ICA superscript 3 denotes Z-score to normalize the fea-
tures. Mean/Std superscript 1 denotes results on the whole profiles, and Mean/Std 
superscript 2 denotes results on the upper profiles. From Table 1, we can find that: 
1)The upper profiles have better performance than the whole profiles since the lower 
profiles are easy noised by the expression and the upper profiles are more robust.  
2) ICA has better performance than PCA. 
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4   Conclusions 

In this paper, we give a roust method to extract 3D face profile, then propose a method 
to automatic estimate the face gender via SVM, which uses the 3D facial profile and 
subspace learning methods. The experimental results on the Bosporus 3D face database 
show that our proposed method has a good performance. In the future work, we will 
research supervised method to extract feature and feature selection technologies to 
further improve the performance of the gender classification system. 
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Abstract. In previous work, we proposed the Gabor manifold learning method 
for feature extraction in face recognition, which combines Gabor filtering with 
Marginal Fisher Analysis (MFA), and obtained better classification result than 
conventional subspace analysis methods. In this paper we propose an Enhanced 
Marginal Fisher Model (EMFM), to improve the performance by selecting ei-
genvalues in standard MFA procedure, and further combine Gabor filtering and 
EMFM as Gabor-based Enhanced Marginal Fisher Model (GEMFM) for feature 
extraction. The GEMFM method has better generalization ability for testing 
data, and therefore is more capable for the task of feature extraction in face rec-
ognition. Then, the GEMFM method is integrated with the error correction 
SVM classifier to form a new face recognition system. We performed compara-
tive experiments of various face recognition approaches on the ORL, AR and 
FERET databases. Experimental results show the superiority of the GEMFM 
features and the new recognition system. 

Keywords: Face recognition, Gabor wavelets, Marginal Fisher analysis,  
Manifold learning, Error correction SVM. 

1   Introduction 

Face recognition is one of the most challenging research topics in computer vision 
and machine learning [1]. Two issues are essential in face recognition: the first is to 
use what features to represent a face that will be more robust for the variations of 
illumination, express, and pose etc. The second is how to design an efficient classifier 
to fulfill the discriminative ability of the features. Both the representation and  
classification methods are very important for face recognition, and an optimization 
combination of them usually brings better recognition performance. 

Face images have a relative high dimensionality, but they usually lie on a lower 
dimensional subspace or sub-manifold. Thus, subspace learning and manifold  
learning methods have been broadly studied in face recognition. Eigenface [2] and 
Fisherface [3] are two typical subspace learning methods. Eigenface method  
computes the principal vectors from training set and represents each face image as the 
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coefficients of the small set of characteristic facial images. Fisherface method extracts 
the discriminative information by maximizing the between-class scatter matrix, while 
minimizing the within-class scatter matrix in the projective subspace. However, both 
Eigenface and Fisherface methods fail to reveal the underlying structure nonlinearly 
embedded in high-dimensional space. Hence, the manifold learning methods have 
been proposed to overcome this problem, e.g., ISOMAP [4], LLE [5], and Laplacian 
Eigenmap [6]. These manifold learning-based methods have the ability to find the 
intrinsic structure. Therefore they are superior and more powerful methods than the 
traditional ones. In [7], we presented a hybrid feature extraction method named  
Gabor-based Marginal Fisher Analysis (GMFA) for face recognition by combining 
Gabor filtering with manifold learning method MFA. The GMFA method applies the 
MFA [8] to the augmented Gabor feature vectors derived from the Gabor wavelet 
representation of face images, and has been proved as an efficient method for feature 
extraction. However, the overfitting problem in GMFA method would cause degrada-
tion in the generalization ability. The MFA procedure is equivalent to two operations: 
firstly whitening the intra-class similarity matrix, and then applying PCA on the inter-
class difference matrix with the transformed data. While the intra-class similarity 
matrix tends to capture noise, which causes the transformed inter-class difference 
matrix to fit for misleading variations, and thereby overfitting occurs. We propose in 
this paper an improved MFA method, namely Enhanced Marginal Fisher Model 
(EMFM), to reduce the adverse effect of overfitting by selecting eigenvalues in MFA 
process. We then further combine Gabor filtering with EMFM method as GEMFM to 
achieve better separability.  

As in any pattern classification task, classifier also plays an important role in face 
recognition process. The Support Vector Machine (SVM) is an optimal classifier in 
term of structural risk minimization based on VC theory [9], and has been widely and 
successfully applied in pattern recognition. However, the SVM was originally de-
signed for binary classification. For multi-class classification problem, it must be 
realized by a suitable combination of a number of binary SVMs. Several methods 
have been proposed to solve the multi-class classification problem using binary 
SVMs, including the M-ary algorithm [10], the One-against-one [11], the One-
against-the-others [10], and the error correction SVM [12]. The error correction SVM 
has the error control ability that can correct a certain number of intermediate misclas-
sifications by training some extra SVMs, and it has been applied to face recognition 
successfully in our previous work [12]. Based on the GEMFM and the error  
correction SVM classifier, a new face recognition system is proposed in this paper. 
Many simulation experiments have been conducted using the ORL, AR and FERET 
databases in the paper. Experimental results show the superiority of the GEMFM 
features and the new recognition method. 

The rest of the paper is organized as follows: Section 2 describes the new face  
recognition method in detail, including the Gabor wavelets filtering algorithm, the 
Gabor based enhanced marginal fisher model, and the error correction SVM classifier. 
Section 3 gives the application results of the new method to face recognition. A  
summary and further research direction are given in Section 5. 
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2   Face Recognition Method Based on GEMFM and SVM 

A new method is proposed here by combining the Gabor-based Enhanced Marginal 
Fisher Model (GEMFM) and the error correction SVM classifier. In the method, the 
images are first filtered by Gabor wavelets in order to capture salient visual properties 
such as spatial localization, orientation selectivity, and spatial frequency characteris-
tic. Then, the high-dimensional Gabor representation of the image is processed by the 
Enhanced Marginal Fisher Model to find the underlying structure and extract  
low-dimensional features. Finally, the Gabor-based EMFM (GEMFM) feature is input 
into the error correction SVM classifier to obtain classification result. 

2.1   Gabor Feature Representation 

The 2-D Gabor wavelets, which can extract the desirable local features at multiple 
scales and orientations from face images, have been widely and successfully used in 
face recognition. The Gabor wavelets can be defined as follows [13]: 
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where [ , ]Tz x y= , , [ cos , sin ]T
v v vk k kμ μ μφ φ= , v  and μ  define the scale and orienta-

tion of the Gabor kernels, max / v
vk k f= , / 8μφ μπ= , and f is the spacing factor be-

tween kernels in frequency domain. We select the parameters in accordance with [13].  
The Gabor wavelet representation of an image is the convolution of the image with 

the family of Gabor kernels of (1):  

, ,( ) ( )* ( )v vO z I z zμ μψ= ,                                           (2) 

where I(z) is the gray level distribution of an image, “*” denotes the convolution op-

erator, and , ( )vO zμ  denotes the convolution result corresponding to the Gabor kernel 

at scale v  and orientation μ . The augmented Gabor feature of the image could be 

obtained by concatenating all , ( )vO zμ .  

Since the Gabor features are extracted from the local regions of face images, they 
are less sensitive to variations of illumination, expression and pose, etc, which can 
usually improve the recognition accuracy. However, the augmented Gabor features 
suffer from the curse of dimensionality, and the dimension needs to be reduced to 
make the recognition progress computationally feasible. Next, the EMFM will be 
proposed to perform dimension reduction for the augmented Gabor features.  

2.2   Gabor-Based Enhanced Marginal Fisher Model 

The feature dimension of the Gabor filtering is usually immense, and here we first 
down-sample the Gabor feature by a 4 4×  window, and conduct PCA transformation 
to further reduce the dimension of Gabor feature. Suppose we obtain from the above 
methods N data points [ ]1 2, , , D N

NX x x x R ×= ∈  that can be divided into C classes, 

where N is the sample number and D is the PCA feature dimension. However we 
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cannot employ X directly to the classification before dimensionality reduction, since 
D is still too high for the classifier, and meanwhile the data points X do not have a 
favorable separability.  

Marginal Fisher Analysis [7-8] has been proved to be an effective and desirable 
method for dimensionality reduction. Using the graph embedding framework, MFA 

designs an intra-class compactness graph { },c cG X W= as intrinsic graph, and an 

inter-class separability graph { },p pG X W=  as penalty graph, where cW  and pW are 

similarity matrices. For each sample ix X∈ , set 1c c
ij jiW W= =  if jx  is among the 1k -

nearest neighbors of 
i

x  in the same class, and set 0c c
ij jiW W= =  otherwise. For each 

class c, set 1p p
ij ijW W= =  if the pair ( , )i jx x  is among the 2k  shortest pairs among 

different classes and set 0p p
ij ijW W= =  otherwise. The procedure of Marginal Fisher 

Analysis algorithm can be summarized as follows: 

Step1: Construct the intra-class compactness and inter-class separability graphs by 
setting the similarity matrices cW and pW . The geometrical explanation of neighbor-
hood relation of MFA is given in Fig. 1.  

Step2: Find the optimal projection direction by the Marginal Fisher Criterion: 
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where diagonal matrix cD  and pD  are defined by 
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ii ij ii ijj i j i

D W D W i
≠ ≠

= = ∀∑ ∑ .                                   (4) 

Step 3: Project the high dimensional data point x into lower dimensional space via 
linear projection: 

T
MFAwy x= .                                                          (5) 

The MFA method does overcome one limitation of LDA: the data of each class no 
longer has to be a Gaussian distribution. Therefore MFA is a more general algorithm 
with a better discriminative ability. Nevertheless, its performance can be further  
improved.  

Inspired by [13], we propose herein an improved MFA method, namely Enhanced 
Marginal Fisher Model (EMFM). Noticing that the methods combining PCA and 
LDA could lack in generalization ability due to overfitting to the training data, MFA 
method does as well have the same problem.  

The MFA procedure which involves simultaneous diagonalization of the intra-class 
similarity matrix ( ) TX D W X−  and the inter-class difference matrix ( )p p TX D W X−  is 

equivalent to two operations: firstly whitening the intra-class similarity matrix, and 
then applying PCA on the inter-class difference matrix with the transformed data. 
Here using too many principal components (PCs) would lead to lower recognition 
rate. Smaller eigenvalues of the intra-class compactness matrix usually correspond to 
high-frequency components, which contain much noise that degrades the separability 
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of data, and if these eigenvalues are brought to describe the PCA subspace, the MFA 
procedure has to fit for those misleading information, which eventually leads to over-
fitting. As shown in Fig.2, although the trailing eigenvalues are rather trivial, the 
misguiding information should not be ignored.  

The EMFM method overcomes overfitting by selecting eigenvalues of the intra-
class similarity matrix: 

( )( - ) , .T TX D W X U U  U U I= Γ =                                   (6) 

Select s  out of m  eigenvectors of U  corresponding to s  largest eigenvalues in the 
decreasing order 

1 2 ... sγ γ γ≥ ≥ ≥ , we have 

[ ]1 2, , ,s sU u u u= , { }1 2, , , .s sdiag γ γ γΓ =                            (7) 

The new inter-class difference matrix in sR  becomes 

( ) ( ) ( ) ( )1/ 2 1/2
( ) .

T P P T
p s s s sS U X D W X U

− −= Γ − ⋅ ⋅ Γ                 (8) 

Diagonalize pS  by 

,   .T
pS IΘ = ΘΛ Θ Θ =                                                (9) 

The transform matrix of EMFM can be obtained by 

( ) 1/2
.EMFM s sT U

−= ⋅ Γ ⋅Θ                                           (10) 

Thus the inter-class difference matrix can be described by more “purified” data.  
Finally the EMFM feature vector y  is given by 

( )T

EMFMy T x= .                                               (11) 
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Fig. 1. Neighborhood Graph for MFA Fig. 2. Relative Magnitude of Eigenvalues in 
whitening step of MFA 
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2.3   Error Correction SVM Classifier 

The SVM is originally designed for binary classification. For multi-class classifica-
tion problems, a number of SVMs are required to achieve the classification task. For 
an m-class classification problem, k binary SVMs, where 2logk m= ⎡ ⎤⎢ ⎥ , is enough in 

theory for classifying the m classes. However, the classifier with this number of 
SVMs has no error tolerance, since if one SVM gives a wrong intermediate classifica-
tion, the final classification result of the SVM-based classifier will be incorrect. This 
problem can be effectively solved by the error correction SVM algorithm [12].  

There are two stages for implementing the error correction SVM classifier: the 
training (or encoding) stage and the classification (or decoding) stage. For the training 
stage, the first step is to generate an n-bit BCH code according to the predefined error 
correction ability; the second step is to assign a unique codeword of the code to each 
class of the training samples; and the final step is to construct n training sets and use 
each training set to trained a binary SVM classifier.  

For the classification (or decoding) stage, the n trained SVMs are used to classify 
new samples. In this stage, the first step is to input a sample into each trained SVM to 
get a binary output, in which n binary values can be obtained. The second step is to 
construct a codeword using the n binary values in the same way as in the encoding 
stage, and then decode the codeword to get the possible errors in the codeword  
corrected by using the error correction algorithm. The final step is to classify the  
sample into the class denoted by the decoded codeword.  

3   Experiments 

To verify the effectiveness of the proposed approach, we conducted experiments on 
three different face databases: ORL, AR and FERET. The feature extraction method 
based on Gabor Enhanced Marginal Fisher Model (GEMFM) is compared with  
several classic sub-space learning methods and manifold learning methods, and the 
error correction SVM classifier is compared with the nearest neighbor classifier and 
One-Against-One SVM classifier. 

Example 1 - Experiment on the ORL Database 

The ORL database contains 400 images of 40 people with 10 images for each person. 
In the experiment, all images are resized to 46×56 pixels. Since there are 40 classes of 
face images in the database, the BCH (31, 6) code that has 31 bits in total with 6  
information bits and the minimum Hamming distance 15 is chosen for the error cor-
rection SVM algorithm. Correspondingly, there are 31 SVMs in total for the face 
recognition problem and up to 7 errors can be corrected by the error correction SVM 
classifier. For each simulation experiment, 200 samples (5 samples selected randomly 
for each person) are used as the training set, and the remaining 200 samples are used 
as the testing set. We conduct the simulation experiments 20 times, and take the  
average recognition rate as the final result. Table 1 gives the recognition rates for 
different methods implemented in the experiment on the ORL database. 
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Table 1. Recognition rates (%) tested on the ORL database 

Feature extractor Nearest Neighbor One-Against-One Error Correction SVM 

LPP 94.33 95.53 95.45 

EFM 95.28 96.05 96.40 

MFA 95.48 96.45 96.60 

EMFA 95.59 96.96 97.05 

Gabor+LPP 98.08 98.13 98.25 

Gabor+EFM 98.42 98.88 98.98 

Gabor+MFA 98.59 99.05 99.12 

Gabor+EMFA 98.6 99.2 99.25 

Example 2 - Experiment on the AR Database 

For the AR database [14], we chose a subset consisting of 50 male subjects and 50 
female subjects. 14 images without occlusion for each subject were selected: the 
seven images from session 1 for training, and the other seven from session 2 for test-
ing. In this experiment, each image has the size of 64×80. For the error correction 
SVM classifier, since there are 100 subjects in the database, the BCH (63, 7) code is 
selected that has 63 bits in total with 7 information bits and the minimum Hamming 
distance 31. Table 2 shows the recognition rates for various methods conducted in the 
experiment on the AR database. 

Table 2. Recognition rates (%) tested on the AR database 

Feature extractor Nearest Neighbor One-Against-One Error Correction SVM 

LPP 76.71 85.00 86.29 

EFM 82.14 86.14 88.00 

MFA 82.57 87.00 88.14 

EMFA 85.14 87.43 88.71 

Gabor+LPP 81.57 91.29 94.71 

Gabor+EFM 88.14 94.14 95.43 

Gabor+MFA 89.14 94.57 95.71 

Gabor+EMFA 90.00 95.28 96.14 

Example 3 - Experiment on the FERET Database 

Here we use the pose subset of the FERET database [15], which includes 1400 images 
from 200 subjects with 7 images for each subject. The subset is composed of the im-
ages marked with ‘ba’, ‘bd’, ‘be’, ‘bf’, ‘bg’, ‘bj’ and ‘bk’. In the experiment, each 
image is resized to the size of 80×80. We select images marked with ‘ba’, ‘be’ and 
‘bg’ as the training set, and the remaining images as the testing set. Since there are 
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200 classes of face images in the database, for the error correction SVM classifier, the 
(127, 8) BCH code is chosen that has 127 bits in total with 8 information bits and the 
minimum Hamming distance 63. Table 3 gives the recognition rates for various meth-
ods conducted in the experiment on the FERET database. 

Table 3. Recognition rates (%) tested on the AR database 

Feature extractor Nearest Neighbor One-Against- One Error Correction SVM 

LPP 69.88 70.38 72.00 

EFM 71.50 74.00 74.25 

MFA 71.63 74.38 74.62 

EMFA 73.13 74.50 75.00 

Gabor+LPP 80.38 83.50 84.50 

Gabor+EFM 81.50 85.00 85.50 

Gabor+MFA 80.25 85.30 85.88 

Gabor+EMFA 83.00 85.75 86.25 
 

From Table 1 to Table 3, it can be seen that, for each classifier, the highest recogni-
tion rate can always be obtained using the Gabor-based EMFM features compared to 
using other features. It can also be seen that, by using the same kind of the features (in 
each row of the table), the error correction SVM classifier can always achieve the 
highest recognition rate among the 3 kinds of classifiers. By examining all the results, 
we can see that the combination of the GEMFM feature with the error correction 
SVM classifier outperforms all the other combinations. 

4   Summary and Further Directions 

In this paper, we proposed a new face recognition method using Gabor-based En-
hanced Marginal Fisher Model and error correction SVM classifier. In the method, 
the image to be classified is first filtered by Gabor wavelets, and the high-dimensional 
Gabor feature is then processed by the Enhanced Marginal Fisher Model to find the 
underlying structure and extract low-dimensional features. Finally, the GEMFM fea-
ture vector is input into the error correction SVM classifier to obtain the classification 
result. 

Many simulation experiments have been conducted to valuate the proposed 
method, and experimental results show that the GEMFM feature can always obtain 
the higher recognition accuracy than other features. And, the combination of the 
GEMFM feature with the error correction SVM outperforms all the other methods. 

It is noticed that the computational complexity of the proposed method is quite 
high for the training process. Thus, more efficient algorithms such as parallel  
algorithms need to be developed to increase computational speed. This is the problem 
for further study of the paper. 
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Abstract. Research on facial expression recognition is critical for
personalized human-computer interaction (HCI). Recent advances in
localized, sparse and discriminative image feature descriptors have been
proven to be promising in visual recognition, both statically and dy-
namically, making it quite useful for facial expression recognition. In
this paper we show that the independent Log-Gabor feature (IGF), a
localized and sparse representation of pattern of interest, can perform
conveniently and satisfactorily for facial expression recognition task. In
low-level feature extraction, Log-Gabor wavelet features are extracted,
then ICA is applied to produce independent image bases that reduce the
redundancy, emphasize edge information, while preserving orientation
and scale selection property in the image data. In high-level classification,
SVM classifies the propagated independent Log-Gabor features features
as discriminative components. We demonstrate our algorithm on facial
expression databases for recognition tasks, showing that the proposed
method is accurate and more efficient than current approaches.

Keywords: ICA, Gabor Wavelet, Facial Expression.

1 Introduction

Facial expression, in which human emotions are uniquely embodied and visually
manifested, is one of the most powerful ways that people coordinate conversa-
tion and communicate emotions and other mental, social, and physiological cues.
Correspondingly, facial expression recognition plays an extremely important role
in a variety of applications such as non-verbal behavior analysis (often refer to
the interpretation of non-prototypic expression style such as “raised brows” or
“stared eyes” [1]), or intelligent human computer interaction (often refer to the
analysis of labeled prototypic expression such as “happy” or “Anger”) and secu-
rity (such as video based surveillance and access control), etc. Various methods
for recognizing human facial expressions from face images have been proposed
and their performance has been evaluated with databases of face images with
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Information Resources Monitoring Project (Grant 104-00102211)).
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variations in expressions. Detailed survey please refer to [2]. Since any well de-
veloped and widely accepted facial expression analysis system consists of the
following two parts: salient facial expression feature extraction and discrimina-
tive classifier. Our story follows this tradition, but come up with different view
points.

Image representation (features) is arguably the most fundamental task in
facial expression recognition. Generally, there are two categories of feature rep-
resentation: geometric feature based and appearance feature based. Appearance
features have been demonstrated to be better than geometric features, for the
superior insensitivity to noises, especially illumination noise. Gabor wavelets are
reasonable models of visual processing in primary visual cortex and are one of
the most successful approaches to describe local appearance of the human face,
exhibiting powerful characteristics of spatial locality, scale and orientation selec-
tivity [3]. However they fail to provide excellent simultaneous localization of the
spatial and frequency information due to the constraints of the narrow spectral
bandwidth, which is crucial to the analysis of facial expression in the highly
complex scene. The logarithmic Gabor filters proposed by Field et al [4] could
be viewed as an incremental modification. However, the dimensionality of the
resulting data is very high. For this reason, a computationally effective approach
is needed. One common choice would be principle component analysis (PCA),
however, the global feature vectors provided by PCA may cause the subspace
projection vulnerable to small variation of the input. On the other hand, local-
ized, sparse, spatial feature vector extraction techniques may be less susceptible
to occlusion and illumination and thus more suitable for the topic.

As a generalization of PCA, Independent Component Analysis (ICA) repre-
sents a mechanism by which not only second-order dependencies but also high-
order dependencies of the data are concerned and can be described in meaningful
patches. When dealing with feature extraction, most of the ICA basis features
extracted from original images turns out to be sparse and similar to localized
and oriented edge patches, which can provide essential traits for classification
or recognition (see fig. 1). As the result, in the context of discriminative image
descriptor, ICA has been shown to produce much better results for those ob-
tained by PCA. However, as a categorized unsupervised learning, crucial class
information is not taken into consideration when feature extraction is carried
out during ICA algorithm performing. Therefore, high separability of extracted
features is not always guaranteed. To overcome this problem, a natural solution
is turn to the supervised research field for help.

In this paper, we propose a highly discriminative and computationally efficient
facial expression recognition method. In particular, our method first derives a
Log-Gabor feature vector from a set of downsampled Log-Gabor wavelet repre-
sentations of face images, then reduces the dimensionality of the vector by means
of PCA, and further reduce redundancy by ICA, forming the salient, indepen-
dent Log-Gabor features that are suitable for facial expression recognition. The
experiment results verify the effectiveness of our approach.
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Fig. 1. Framework of the entire facial expression recognition system

The main contribution of this paper is as follows:

1) a hybrid combination of Log-Gabor/ICA feature descriptor is proposed.
2) a verification of our proposed method on a multi-category large scale facial

expression dataset is presented.

To our best knowledge, this is the first published work on facial expression
recognition using independent Log-Gabor feature descriptor.

2 Detailed Implementation

2.1 Gabor Wavelet Based Feature Extraction

Commonly recognized as presenting the best simultaneous localization of spatial
and frequency information, the Gabor wavelets have been found to be particu-
larly suitable for image decomposition and representation when the goal is the
derivation of local and discriminating features. Most recently, Donato et al [7]
have experimentally shown that the Gabor filter representation offers better per-
formance for classifying facial actions, which provides the theoretical foundations
for our contribution.

The Gabor wavelets (kernels, filters) can be defined as follows

ψμ,ν(z) =
‖k(μ, ν)‖2

σ2
e−

‖kμ,ν‖2‖z‖2

2σ2 [eikμ,νz − e−
σ2
2 ] (1)

where μ, ν define the orientation and scale of the Gabor kernels, z = (x, y), and
we have kμ,ν = kve

jψu, where kv = kmax/f
′′

and ψu = πu/8. f is the spacing
factor between kernels in the frequency domain. Fig. 2 shows the real part of
the Gabor kernels at five scales and eight orientations and their magnitudes (top
left part) and a demonstration of the Gabor based feature descriptor.
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2.2 Log Gabor Filters

As an enhancement of the Gabor approach, the Log-Gabor functions is adopted
in this paper. Being characterized by discarding DC component, which reinforces
the contrast ridges and edges of images, and having the transfer function with
an extended tail at the high frequency end, which contributes to broad spectral
information with localized spatial extent, and preserving true ridge structures
of images, the kernels exhibit strong characteristics of spatial locality, scale and
orientation selectivity (fig. 2 left bottom part), corresponding to those displayed
by Log-Gabor filters, making them a suitable choice for image feature extraction
since our goal is to derive local and discriminating features for (facial expression)
classification.

The log-Gabor filters defined in the frequency domain using polar coordinates
by the transfer function H(f, θ) can be represented in a polar form as:

H(f, θ) = Hf ×Hθ = exp{1
2

(ln f
f0

)2

(ln σf

f )2
} exp{−1

2
(θ − θ0)2

σ2
θ

} (2)

the radial component Hf controlling the bandwidth and the angular component
Hθ, controlling the spatial orientation that the filter responds to. See Lajevardi’s
work for detailed explanation in [6].

2.3 Independent Component Log-Gabor Feature Extraction

The obtained Log-Gabor feature vector resides in a space of very high dimension-
ality. For this reason, dimension reduction techniques are introduced to acquire
a more sparse, decorrelated and discriminative subset of the feature set. PCA is
a widely used technique for such purpose, achieving optimal signal reconstruc-
tion by using a subset of principal components to represent the original signal.
However, sometimes the subtle facial expression movements can not be char-
acterized by second order statistics due to the fact that the movements of the
muscles which control such subtle facial expressions are actually relatively small
and not sufficient to constitute reliable statistics, thus, they can not be captured
by the second order statistics based PCA or related methods. To get the tradeoff
between discriminativeness and sparsity, independent component analysis (ICA)
seems to be a promising solution. Note that dimensionality reduction is the third
preprocessing step that ICA use to facilitate the iterative computing procedure
(the first and second are the centering and whitening, respectively). Interestingly,
using the ICA based techniques to perform dimension reduction and further fea-
ture extraction have received little attention in the past perhaps due to the fact
that the ICA is not originally developed for that purpose, instead, it focus mainly
on separating a multivariate signal into additive subcomponents supposing the
mutual statistical independence of the non-Gaussian source signals.

Similar to the independent Gabor feature extraction method proposed in [2],
independent Log-Gabor Features (ILGF) method applies the independent com-
ponent analysis on the (lower dimensional) Gabor feature vector defined by
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Eq. 2. In particular, the Log-Gabor feature vector Ψ(p) of an image p is first
calculated as detailed in Sect II. PCA then reduces the dimensionality of the
acquired Log-Gabor feature vector and derives the lower dimensional feature
vector, S(p) (see Eq. 2). Next, the ILGF method derives the overall (the com-
bination of the whitening, rotation, and normalization transformations) ICA
transformation matrix, A. The new feature vector, Z(p), of the image p is thus
defined as follows:

S(p) = AZ(p) (3)

Finally, after the extraction of features, we choose SVM as the classifier.

Fig. 2. A large scale facial expression dataset (including different typical facial expres-
sions) and the convolution output of a sample image (the first framed image). Note that
the outputs exhibits powerful characteristics of spatial locality, scale and orientation
selectivity, providing highly salient local features, such as the eyes, brows, nose, and
mouth, essential for facial expression recognition.

3 Experiments

3.1 Database Description

The experiment presented here is the evaluation of the approach on a newly
created facial database we have designed and constructed, namely, a large-scale
racially diverse face database, the CUN face database, which covers different
source of variations, especially in race, facial expression, illumination, back-
grounds, pose, accessory, etc. Currently, it contains 112,000 images of 1,120 in-
dividuals (560 males and 560 females) from 56 Chinese ”nationalities” or ethnic
groups.

The aim of the database is listed as follows:

1, to provide the worldwide scholars of face recognition with exhaustive ground-
truth information in a cross-race face database. While most of the current
face database mainly consists of Caucasian people, we mainly focus on the
”cross-race effect” during the face recognition experiment.
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2, aimed at understanding culture specific difference in facial expression pro-
duction and interpretation, which have been long viewed as a crucial interlink
between individual and social communication.

Fig. 3 shows the configuration of the photographic room, including lamps, camera
system, etc, and some typical example images of subjects belonging to different
races in our database.

Fig. 3. Diagram showing the whole configuration of CUN face database

The most commonly used baseline facial recognition algorithm (Gabor+ICA)
and our proposed method are evaluated on the seven frontal datasets (six dif-
ferent typical facial expressions plus one neutral expression). Before training
and testing, all the images are preprocessed (histogram equalization and geo-
metric normalization). We experimented then with the independent Log-Gabor
features, which were computed as follows: first, PCA reduced the dimensionality
of the Log-Gabor convolution outputs downsampled by a factor 64; and second,
ICA derived the independent Log-Gabor features from the reduced convolution
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outputs. For the evaluation of our system, we used the publicly available libsvm
library. Each experiment was repeated for 200 iterations and average results
obtained for overall accuracy.

Fig. 4 shows the performance. As it can be seen from the figure, both methods
shows that the performance is best when dealing with happiness and neutral,
which are easy to interpret. However, neither methods perform well as dealing
with disgust and fear, two reasons can be account for this, first, in eastern Asia,
people seldom express negative inner emotions explicitly, esp, when posing facial
expression intentionally instead of naturally, making it hard to analysis those
facial expressions, whereas in some other datasets consists of mainly Caucasian
subjects, it is relatively easy to analyze for negative facial expressions more
directives and explicitly. Second, individual subjects may differ from each other
when posing facial expressions with different intensity. Nevertheless, the boost
of the accuracy still implies that using independent Log-Gabor feature based
on ICA instead of conventional Gabor features extracted neither directly from
original grayscale images or ICA can yield satisfactory results.

Fig. 4. Empirical recognition result

Fig. 5. Empirical recognition result under different illumination directions

During the experiment, we also found that the independent Log-Gabor fea-
tures are robust to the background noise such as illumination and pose variation,
fig. 5 shows some empirical results and detailed variation recognition results are
given in fig. 6.
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Fig. 6. Empirical recognition result under different illumination directions

4 Conclusions and Future Work

We have proposed a method for local independent Log-Gabor feature descriptors
which can perform better than other descriptors for facial expression recogni-
tion, since the ICA-based representation is localized and sparse, providing highly
discriminative and efficient feature descriptors. In future work we plan to apply
the method to the dynamic facial expression recognition problem.
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Abstract. Shape information is essential for image understanding. De-
composing images into shape patterns using a learned dictionary can
provide an effective image representation. However, most of the dictio-
nary based methods retain no structure information between dictionary
elements. In this study, We propose Hierarchical Dictionary Shape De-
composition (HiDiShape) to learn a hierarchical dictionary for image
shape patterns. Shift Invariant Sparse Coding and HMAX model are
combined to decompose image into common shape patterns. And the
Sparse Spatial and Hierarchical Regularization (SSHR) is proposed to
organize these shape patterns to construct tree structured dictionary.
Experiments show that the proposed HiDiShape method can learn tree
structured dictionaries for complex shape patterns, and the hierarchical
dictionaries improve the performances of corrupted shape reconstruction
task.

Keywords: Hierarchical Dictionary, Image Shape, Sparse Coding, Shift
Invariant, HMAX, unsupervised learning.

1 Introduction

Shape provides crucial information for object recognition and image understand-
ing. With only shape information, human can quickly and correctly recognize an
object from a caricature, a black-white cartoon image, or a sketch with several
hand drawn lines. To stimulate V1 cells in human visual cortex, sparse coding
[1] is introduced to learn Gabor-like basis patterns. And it decomposes an image
patch into the linear combination of several Gabor-like shape patterns. But on
learning shape patterns, the classical sparse coding has two drawbacks . (1) It
is hard to learn more complex shape patterns than Gabor-like filters. (2) The
”flat” dictionary ignores the relationship between the elements.

Shape patterns are not independent from each other. The shape contours of
the objects from the same categories may be similar but not identical. And it is
possible that some shape patterns are dissimilar but share equivalent semantic
meaning, such as sofa and chair. Making an analogy between shape in image
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understanding and word in text analysis, shape should have its own ”word-net”
or ”shape-net”. It should be organized as a hierarchical dictionary containing
various meaningful common shape patterns and between-shape dependence re-
lationships (Please refer to Fig.4 as a brief idea). This type of hierarchical dictio-
nary will be helpful for object recognition and image understanding. How can we
learn complex and meaningful shape patterns? And how can we organize these
shape patterns by hierarchical structure? This is the story of this work.

Most of the previous sparse coding approaches [1][2][3][4][5] can only learn
”flat” dictionaries of Gabor-like patterns. Several works [6][7][8] can learn
structured dictionaries. However, without any alignment technique, they can
only learn pixel level patterns but not complex shape patterns. SISCHMAX
[9] can learn complex shape patterns from given images. But it cannot learn a
hierarchical dictionary.

We propose Hierarchical Dictionary Shape Decomposition (HiDiShape) to
learn a hierarchical dictionary for image shape patterns. Each dictionary ele-
ment is a vector representation for a shape pattern. We follow our previous work
SISCHMAX [9] to handle the global and local position variance of the shape pat-
terns. And we introduce Sparse Spatial and Hierarchical Regularization (SSHR)
to organize the dictionary by tree structures. This regularization term encour-
ages the coefficient co-occurrence of shape patterns at the same position in the
same dictionary subtree. Therefore, the learned shape patterns in the same dic-
tionary subtree prefer to being similar and synchronous. We test the proposed
HiDiShape method on several categories from Caltech 101 dataset. HiDiShape
can learn tree structured dictionaries for shape patterns from given images. And
the learned hierarchical dictionaries perform better than flat ones (such as the
classical sparse coding) on reconstructing corrupted image shapes.

The rest of this paper is organized as following. Section 2 introduces how
to learn dictionaries for image shape patterns. And we propose the method to
learn hierarchical dictionaries for image shape patterns in Section 3. The experi-
ment results are illustrated in Section 4. Finally, in Section 5, we summarize the
conclusions of this paper, and discuss our future work.

2 Learning Image Shape Patterns

A common shape component may occur at any place of the image, with any
local position variance. Both the global and local position variances increase the
difficulty of learning complex shape contours. If only randomly sampling patches
directly from the pixel-level images, the dictionary will turn to Gabor filters at
all kinds of positions. Without any consideration for global and local variances,
this rough method can only learn lines but not shape contours with meaningful
corners or cycle structures.

In this paper, we adopt the SISCHMAX [9] method to learn the ”flat” dictio-
nary.( The further extension is proposed in Section 3 to learn the ”hierarchical”
dictionary.) SISCHMAX combines shift invariant factor (Shift Invariant Sparse
Coding [10]) and Local max method (HMAX model [11]), to robustly handle
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the global and local position variance of the shape contours. And it can learn
common complex shape contours from given images. Since our proposed method
is based on SISCHMAX, this section will briefly introduce SISCHMAX method.

2.1 Sparse Coding

Sparse coding [1] is a well established component analysis method. Given a
dictionary B = {Bt}, each sample vector Y k is reconstructed by the linear
combination of the basis vectors Bt and their corresponding coefficients αk

t . The
reconstruction error for Y k is as following.

min
{αk

t }
‖Y k −

∑
t

αk
t Bt‖2

2 + λ
∑

t

|αk
t | (1)

L1-regularization leads to a sparse representation. Dictionary can be randomly
sampled from the datasets or learned[4][12]. Sparse coding provide an extensible
framework for unsupervised dictionary learning. And HiDiShape is also formu-
lated in sparse coding framework.

2.2 Shift Invariant Sparse Coding

Shift Invariant Sparse Coding (SISC)[10][13][14] adds shift invariance to the
sparse coding framework. An image may be constructed by several objects. An
image pattern is a part of an object, which may occur at any location. Given
the target image and a group of basis patterns, reconstructing an image is not
only to recover the appearance but also to recover the location of the part. Fig.1
briefly shows how SISC reconstructs an image, and it also shows sparse coding
for comparison. A SISC basis can be placed anywhere in the image.

Learning SISC dictionary is equivalent to optimize Eq. (2). Y k represents
the image feature vector such as pixel values. Denote Φ(Bt, z) a transformation

Basis Image Componets

Sparse
Coding

Shift
Invariant

Sparse
Coding

Fig. 1. Illustration of sparse coding and SISC (Best viewed in color). This figure is
cited from [9]. A SISC component is a basis occurring at any position in the image.
The linear combination of these components approximately reconstructs the image.
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which places the basis pattern Bt at the location z on an empty image with
the same size of Y . t is the basis index. And z is the location of basis patch
in the image. The corresponding coefficient of Bt at location z is αt,z. The
linear combination of Φ(Bt, z) and αt,z is used to approximate the image Y .
Therefore, the coefficients set α covers all the conditions that any basis occurs
at any place. λ is the weight for coefficient sparsity loss. For each αt,z, we can
consider Xi = Φ(Bt, z) as a basis in the original sparse coding framework.

min
{Bt},{αk

t,z}
1
n

n∑
k=1

‖Y k − ∑
t,z αk

t,zΦ(Bt, z)‖2
2 + λ

∑
t,z |αk

t,z|
Area(k)

(2)

There are substantial differences between SISC and the original version of sparse
coding. The original sparse coding pastes the basis to the whole target image
or patch, while SISC can paste a basis at any position. Overlap is also allowed.
SISC can reduce to sparse coding by prohibiting z and restricting the image
shares the same size with basis patches.

2.3 HMAX Model

HMAX model is a biological inspired computational model for visual cortex
[15][16][11]. It stimulates the feed-forward processing of the primary visual cortex
(V1) of human. HMAX works very well on the local invariance of position and
scale.

The S1 units in HMAX are designed according to the simple cells of Hubel
and Wiesel found in the primary visual cortex(V1)[17]. Gabor function [18][19]
is adopted to serve as the response function of S1 units. This gabor like unit can
represent a short part of straight line at a specific position and scale. To detect
all the line parts at all positions, the filters slide on the whole image. And the
filter pyramids are built to capture the responses from different scaled versions
of the filters at any position.

The C1 units of HMAX perform like cortical complex cells. The input of C1
layer is the output of S1 layer. A C1 unit is implemented as a maximum operator
over a local region of the S1 units within a range of S1 filter scales. It tolerates the
local position and scale variance, but it keeps orientation sensitivity and robust
output. Only S1 and C1 units of HMAX model are used in SISCHMAX [9].

2.4 Shift Invariant Sparse Coding HMAX

Shape contour is the essential visual representation for the object. However,
contour base representation is not as popular as color and texture based features
in the computer vision area for last twenty years. Possible reason is that shape
contour has a lot of variance, and it is a higher level representation which is hard
to extract stably. The local position and scale variance and lack of fine aligned
images limits the extraction of common shape contour.

HMAX model is good at tolerating local position and scale variance, while
shift invariant sparse coding is capable to latently align the basis patterns. SIS-
CHMAX [9] combines this two work for shape discovering. (Please refer to the
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left part of Fig. 3.) The image is first processed by HMAX to produce C1 layer
output. This step will robustly extract small parts of lines. After that the re-
sponse map is processed by shift invariant sparse coding algorithm to discovery
common shapes. The different C1 orientation correspond to different feature
channels in sparse coding. The bases learned by shift invariant sparse coding are
the common shape patterns.

All the parameters for Gabor-filters are the same as [11], except that there
are 8 orientations in this paper. Each C1 unit take a 10× 10 receptive field over
S1 response map. And C1 units are placed every 10 S1 units. Inhibition strategy
is adopted as [11], thus the small response values are restricted to zero.

3 Hierarchical Dictionary Shape Decomposition

3.1 Sparse Spatial and Hierarchical Regularization

Instead of the ”flat” dictionary, we focus on learning a ”hierarchical” structured
dictionary. Each basis can be considered as a node. And all the elements of
the dictionary can construct one or several trees. The structure of the tree is
predefined. In this paper, we organize the dictionary elements by several balanced
2-branch trees. (Please refer to Fig.2 for example). To learn a tree structure,
Eq.(3) defines the Sparse Spatial and Hierarchical Regularization (SSHR).

Ω(α) =
∑

z

∑
s

ws max
t∈subtree(s)

‖αt,z‖ (3)

where αt,z is the coefficient of the basis t at any position z. For any basis node s
in the dictionary, subtree(s) is the set of the nodes of the subtree whose root is s.
ws is the weight for the dictionary subtree rooted by s. In this paper, all the ws

is simply set to 1. The max operator works over all the coefficients in a subtree.
This design encourages simultaneously occurrence of the coefficients in the same
subtree. And the sum operator over all subtree cost keeps the sparsity of active
positions and subtrees. This regularization formulation derives from the Sparse
Hierarchical Dictionary Learning [6][20][21]. The position factor is additionally
considered in this paper to handle the global shift invariance over [6].

The proposed SSHR drives the learned hierarchical dictionary to have the
following properties. (1) The shape patterns in the same subtree are probably
similar or complementary with high co-occurrence ratio. Because relative shape
patterns probably have large coefficients simultaneously. These patterns will be
less punished, if they are in the same subtree. Thus the subtree works like to
cluster shape patterns with similar semantic meaning. (2) The shape patterns
at tree roots (e.g. node ”a” and ”h” in Fig.2) have higher occurrence proba-
bility than those at tree leaves (e.g. node ”m”,”n” in Fig.2). Because leaf node
coefficient is more punished by attending all the maximum operation of its an-
cestor nodes. It is similar to Huffman Coding. (3) The coefficients retain the
sparse property from sparse coding, especially between different trees. (4) The
coefficients are sparse over different positions.
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Fig. 2. Illustration for the tree-structured dictionary and costs of the coefficients in
the subtrees.(Best viewed in color) (a) Dictionary with tree structures. Each squared
rectangle (e.g. ”a”,”b”,”c”) represents a dictionary element or shape patterns. (b)
Coefficient map for an image. Each position (e.g. the yellow pixel) can have a group of
coefficients. (c) How to compute the coefficient cost of a tree at a position.

3.2 Hierarchical Dictionary Shape Decomposition

To learn a hierarchical dictionary for shape patterns, we extend the SISCHMAX[9]
method by introducing the Sparse Spatial and Hierarchical Regularization. The
SISCHMAX method aligns the shape patterns during decomposition processing.
It keeps the advantages of the Shift Invariant Sparse Coding and HMAX model.
It can tolerate the global and local position variance for shape patterns. But it
can only learn ”flat” dictionary. In our HiDiShape, predefined tree structured
dictionary is used instead of ”flat” dictionary. And Sparse Spatial and Hierar-
chical Regularization is introduced to replace L1-norm in SISCHMAX method
to encourage co-occurrence coefficients in the same subtree at the same posi-
tion. Fig.3 describes the overview of the proposed Hierarchical Dictionary Shape
Decomposition (HiDiShape) method.

min
{Bt},{αk

t,z}
1
n

n∑
k=1

‖Y k − ∑
t,z αk

t,zΦ(Bt, z)‖2
2 + λΩ(αk)

Area(Y k)
(4)

The cost function for learning hierarchical dictionary is Eq.(4). where Bt is basis
and is constrained by ‖Bt‖2 ≤ 1. z is the position. αk

t,z is the coefficient of
the basis t in the image Y k at position z. Denote Φ(Bt, z) a transformation
which places the basis pattern Bt at the location z on an empty image with the
same size of Y k. n is the number of the training images. And Area(Y k) is the
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Image S1 Layer

Local MaxGabor Filter

DictionaryComponetsC1 Layer

Shift Invariant Sparse Coding
+ Sparse Spatial and Hierarchical Regularization

Fig. 3. Overview of the proposed HiDiShape method (Best viewed in color). The two
training images contains ”L”,”U” and ”I” contour with obvious local variance. After
the processing of S1 and C1 layer, local variance are handled. And after shift invariant
sparse coding using hierarchical dictionary, common shape patterns are aligned and
learned and organized as dictionary trees.

area of image Y k. We use L2-constraint for the bases. λ is the cost weight for
regularization term. Ω is described by Equation 3.

The above function is convex over B = {Bt}, if the α = {αk
t,z} are fixed. And

it is also convex over α, if B are fixed, although the differential coefficient of
Ω(α) is not continuous. Therefore, we can adopt a two-step strategy. The target
function is first optimized over α with B fixed to update the coefficients for each
image, and then is optimized over basis B by fixing α. These two-step procedure
can run iteratively until convergence. And gradient descent method is used in
this work to optimize this overall cost function.

The dictionary elements learned by the proposed HiDiShape method are the
shape patterns. And to visualize the result, we create a shape map for each
learned shape pattern. For each C1 unit at the same position of a basis pattern,
only one unit with the maximum response survives to show its corresponding
Gabor filter in the contour image. Thus a shape pattern image is created with
the same size as the original image. If the shape patterns are common, they will
look familiar to human, or are even clear enough to recognize an object.

4 Experiment Results

The experiment images are from Caltech 101 image dataset. All the images we
selected are from three categories: ”Face easy”, ”Motorbikes” and ”Yin yang”.
For each image, the width or height is resized to 200. And 60 images are randomly
sampled to train the shape dictionary. The regularization weight λ is set to 0.5 .

Fig.4 illustrated the dictionary learned by HiDiShape. There are 4 dictionary
trees. Each non-leaf node has two child nodes. And each tree is 3 layers with
7 nodes. The shape pattern is represented by 20 × 20 HMAX C1 cell with 8
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Fig. 4. Dictionary Learned by HiDiShape for ”Face easy”, ”Motorbikes” and
”Yin yang” categories

orientation. It is obvious that some of the shape patterns in the same tree is
very alike. Some of the shape patterns are almost clear enough to recognize as
object parts or even the whole object, such as Yin yang graph , motorbike and
face. (Please refer to Fig.4 and view the root nodes of top left tree, top right tree
and bottom left tree respectively.) And the most of the root nodes look more
clear than its descendant nodes. A possible reason is that these root node shape
patterns are more common than other patterns learned in this image dataset.

For corrupted shape reconstruction task, we use 60 images as testing dataset.
And the dictionary sizes are all set to 42 for different methods. The shape pattern

Table 1. Quantitative results of the corrupted shape reconstruction task. The First row
shows percentages of missing C1 units. And the other rows show mean square errors
per C1 unit multiplied 100 for classical sparse coding, SISCHMAX and HiDiShape.
HiDiShape(a) contains 14 two-layer trees. HiDiShape(b) have 6 three-layer trees.

noise 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Sparse Coding 0.927 0.958 0.998 1.049 1.110 1.183 1.263 1.354 1.439 1.513
SISCHMAX 0.275 0.334 0.414 0.512 0.630 0.764 0.921 1.091 1.263 1.431
HiDiShape(a) 0.263 0.316 0.392 0.484 0.597 0.726 0.879 1.047 1.211 1.388
HiDiShape(b) 0.274 0.327 0.402 0.496 0.606 0.733 0.882 1.044 1.212 1.388
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is represented by 8 × 8 HMAX C1 cell with 8 orientation. Since we focus on
shape reconstruction but not image pixel reconstruction, the HMAX C1 output
is directly used as the reconstruction unit. For each test image, we randomly
select and remove C1 values according to the specific noise percentage (missing
rate). The mean square errors are shown in Table 1. The reconstruction errors of
HiDiShape are lower than SISCHMAX, and significantly lower than the classical
sparse coding. This result shows that hierarchical dictionary and SISCHMAX
are both very helpful to learn better shape representations.

5 Conclusion

Shape representation is crucial for image understanding. In this study, we fo-
cus on learning tree structured dictionaries for common shape patterns. The
Hierarchical Dictionary Shape Decomposition (HiDiShape) is proposed not only
to robustly learn complex common shape patterns but also to embed them in
tree structures. The experiments illustrated the superiority of the hierarchical
dictionary over flat dictionary on corrupted shape reconstruction task.

This approach provides an optional method to build a word-net-like hierarchi-
cal dictionary for image shapes, if the images from the internet are collected for
training. Improving computational efficiency will be worthful in this case. The
Sparse Spatial and Hierarchical regularization is also easy to extend for other
types of graph structures. And we also urgently want to know whether and how
much these kind of structured dictionaries can help object recognition and image
segmentation.
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Abstract. In this paper, we apply the sparse representation based al-
gorithm to the problem of generic image classification. Keypoints with
different descriptors are used as the bases of the training matrix and test
samples. A learning algorithm is also presented to select the most im-
portant keypoints as the bases of the training matrix. Experiments have
been done on 25 object categories selected from Caltech101 dataset, with
salient region detector and different descriptors. The results show that
keypoints with histogram of oriented gradients descriptor can achieve
good performance on image categories which have distinctive patterns
detected as keypoints. Furthermore, the base learning algorithm is use-
ful for improving the performance while reducing the computational
complexity.

Keywords: Image classification; sparse representation; keypoints.

1 Introduction

The task of image classification involves two important issues. One is image
representation, the other is classification algorithm.

Recently, keypoints-based image features are getting more and more attention
in the computer vision area. Keypoints, also known as interest points or salient
regions, refer to local image patches which contain rich information, have some
kind of saliency and can be stably detected under a certain degree of variations.
Extraction of keypoints-based image feature usually includes two steps. First,
keypoints detectors are used to find keypoints automatically. Second, keypoints
descriptors are used to represent keypoints features. Ref. [1] and [2] gave a per-
formance evaluation among several different keypoints detectors and descriptors
respectively.

Corresponding to the different kinds of image representation, many classifi-
cation algorithms have been proposed, which can be divided into two classes.
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One is generative models such as constellation model [3]. The other is discrimi-
native models, such as support vector machines (SVM), which have been proved
to be effective for object classification in [4-6].

Recently, sparse coding has been used for the learning of the codebook and
image representation [7]. Wright et al. proposed sparse representation based
classification [8] for the recognition of human faces. Although good performances
have been achieved with the algorithm, the image database is strictly confined
to human frontal faces with only illumination and slight expression changes.

In [9], we have applied the sparse representation based classification algorithm
to the problem of generic image classification with a certain degree of background
clutter, scale, translation, and rotation variations within the same image class.
Bag of visual words features are used in the experiments. Comparable experi-
mental results have been obtained with SVM classifiers under different size of
vocabulary and numbers of training images.

However, bag of visual words features quantize local features into a given size
of codebook and reflect the distribution of visual words detected on an image.
Original local features of keypoints are omitted, which may contain distinctive
patterns and be very helpful for recognizing some classes of images. In this paper,
we propose local features for image classification based on sparse representation
(Local-SRC). A base learning algorithm is also presented in order to select the
most important keypoints as the bases of the training matrix.

The remainder of this paper is organized as follows. In section 2, the extrac-
tion method of keypoints is described. Section 3 gives a detailed description of
the Local-SRC algorithm. A base learning algorithm is presented in section 4,
followed by experiments and conclusions in section 5 and 6.

2 Image Keypoints Extraction

The keypoints extraction method includes the following two steps.

1) Keypoints detector. Salient region detector [10] proposed by Kadir et al. is
one of the most widely used keypoints detectors. This detector selects regions
which exhibit unpredictability both in the local attributes space and scale
space. Unpredictability of image regions is measured by Shannon entropy
of local image attributes, such as the pixel gray value. A value of saliency
is computed for each region and the salient regions are sorted by the value
of saliency. The amount of regions which are detected in one image usually
varies from dozens to hundreds.

2) Keypoints descriptor. Histograms of Oriented Gradients (HOG) descriptor
[11] is used to describe the feature for each keypoint. It computes gradients
for every pixel in the keypoint local patch. The orientation of gradients
(unsigned 0o − 180o, or signed 0o − 360o) is quantized to a certain number
of bins. Local patches can be divided into different size of blocks, on which
HOG features are computed. Ref. [11] experimented on different block sizes
and normalization schemes. The results show that 2× 2 blocks and l2-norm
perform well.
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Therefore, an image is represented as a set of keypoint with its local feature
and importance {(f1, w1), (f2, w2) . . . , (fn, wn)}, in which there are n regions
detected as keypoints. fi ∈ Rm is the local feature, in which m is the dimension
of the local features. The importance wi is initialized as the value of saliency of
the keypoint.

3 Local-SRC Algorithm

In the following, we give a detailed description of the Local-SRC algorithm.

1) Preparing dataset. Randomly select a certain number of images per category
as the training set, with the remaining as the testing set.

2) Computing of training feature matrix A. For every training image from cat-
egory i, load the ns most important local features fl, l = 1, · · · , ns. Local
features of images belonging to the same category form the sub-matrix Ai.
Given training set from k categories, matrix A is composed of every sub-
matrix Ai, A = [A1, A2, · · · , Ak]; A ∈ Rm×n , in which m is the dimension
of the local features, n is the total number of local features loaded in the
training set.

3) Solving the optimization problem. For the given test image, load the local
feature y . Solve the l1-minimization problem in (1) or (2).

x̂1 = argmin ‖x‖1 subject to Ax = y . (1)
x̂1 = argmin ‖x‖1 subject to ‖Ax− y‖2 ≤ ε . (2)

4) Computing of the residual between y and its estimation for every category..
Let δi(x̂1) ∈ Rn keep only nonzero entries in x̂1 that are associated with
category i. We can approximate the local feature y of the test image as
ŷi = Aδi(x̂1), using only the coefficients of which correspond to category i.
For every category, compute residuals ri = ‖y −Aδi(x̂1)‖2 for i = 1, 2, . . . , k.

5) Saving the category label of the local feature y of the test image. The local
feature y is assigned to the category i that has the minimum residual between
y and ŷi.

Steps 3) to 5) are repeated for every local feature of the test image. The final
label of the test image is assigned to the category that is voted by most local
features.

4 Base Learning for Local-SRC Algorithm

In this section, we propose a base learning algorithm for Local-SRC. Correspond-
ing to the region importance and learning algorithm [12], we define the keypoint
importance which is initialized as the saliency value of the keypoint. Given a
training dataset, the keypoint importance can also be learned through a similar
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way as the region importance. The keypoint importance is used to select the
local features of the most important keypoints to form the training matrix A.

The basic assumption is that the important keypoint should have as more
similar keypoints as possible from the same category. At the same time, the
important keypoint cannot have many similar keypoints from the whole image
dataset.

Suppose there are N images {I1, I2, . . . , IN} in the training set. From category
c, there areNc images which are denoted as Ic

+ = {I1+, I2
+, . . . , INc

+}. For every
keypoints Ki from images in Ic

+, the Keypoint Frequency (KF) is defined as

KF (Ki) =
Nc∑
j=1

s(Ki, Ij
+). (3)

If there is a keypoint in image Ij
+ which is similar as the keypoint Ki, then

s(Ki, Ij
+) = 1; otherwise s(Ki, Ij

+) = 0. The two keypoints are similar if the
Euclidean distance between the local features of the two keypoints is below a
designated threshold εp. Therefore, the KF represents the frequency of a key-
point occurred in the images from the same category. On the other hand, if a
keypoint also emerges many times in the images from other categories, then the
discriminative capability of the keypoint is very low. Analogous to the Inverse
Image Frequency (IIF) of a region defined in [12], we define the IIF for the
keypoint as the equation (4).

IIF (Ki) = log

⎛⎝N

/ N∑
j=1

s(Ki, Ij)

⎞⎠ . (4)

As a result, the keypoint importance can be defined as

KI(Ki) = KF (Ki) × IIF (Ki). (5)

Since we only use the keypoint importance to select the keypoints from high im-
portance to low importance as the bases of the training matrix A, normalization
of the keypoint importance is not necessary.

For every keypoint in the images from the training set, the keypoint impor-
tance is calculated by equation (5). The ns most important local features from
every training image are loaded to serve as the bases of the training matrix A.

5 Experiments

5.1 Experiment Dataset

From Caltech 101 dataset [13], we select 25 object categories in which images
from the same category do not vary greatly, for example, accordion, airplanes,
leopards, pagoda, scissors etc. Each category contains 30 images. The task is to
recognize object on the 25 object categories dataset.
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5.2 Comparison of Different Descriptors for Local-SRC

In the experiments, salient region detector is used to find keypoints for every im-
age. Two kinds of descriptors are used to represent the keypoints detected. One is
72-dim HOG feature, with the signed orientation (0o −360o) quantized to 18 bins
and 2 × 2 blocks division. The other is pixel values of salient regions sampled to
the designated size, from7 × 7, 8 × 8, 9 × 9, 10 × 10 to 11 × 11.

Local features from the training set compose the training feature matrix A for
Local-SRC algorithm. For every local feature of the test image, we solve the opti-
mization problem (2) with the error tolerance ε = 0.05. For the consideration of
computational complexity, we only keep the 10 most important regions for train-
ing and testing. The keypoint importance is initialized as the value of saliency.

Fig. 1 and Fig. 2 give performance comparison of different descriptors for Local-
SRC. The results show that performance increases slowly as the size of image patch
changing from 7×7 to 11×11.Evenwith 11×11 image patch and 121-dim feature,
the mean precision is about 10% lower than 72-dim HOG feature. The lower per-
formances of the sampled pixel values may be caused by no alignment of keypoints
detected by salient region detector. On the other hand, HOG calculates gradients
on every block divided, which are not very sensitive to pixel alignment. As a result,
HOG is selected as the keypoints descriptor in the following experiments.

Fig. 1. Performance comparison of different local descriptors (1)

Fig. 2. Performance comparison of different local descriptors (2)
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5.3 Comparison of Local-SRC and Local-SRC with Base Learning

In the experiments, salient region detector and HOG descriptor are adopted. The
keypoint importance is initialized as the value of saliency. After the procedure of
base learning, the keypoint importance is updated by equation (5). The threshold
ofEuclideandistance between local features of two keypoints to be similar εp = 0.4.

Performance comparison between Local-SRC algorithm and Local-SRC with
base learning (Local-SRC BL) is shown in Fig. 3, under the condition of 5 training
images per category. In order to verify the effectiveness of the base learning algo-
rithm,we experimentwithLocal-SRC 10, Local-SRC 5 andLocal-SRC BL 5.The
suffix indicates the number of local features per training image. The average preci-
sions over the 25 object categories are 0.448, 0.424, and 0.464 respectively. The ex-
perimental results shows that with base learning algorithm, the precision of Local-
SRC BLusing only 5most important local features per training image outperforms
that of Local-SRC using 10 most salient local features. At the same time, the scale
of the training matrix is decreased and computational complexity is reduced.

Fig. 3. Performance comparison between Local-SRC and Local-SRC BL

There is great variation of performance among different object classes. We try
to give an explanation why the Local-SRC performs well on some of the objects
but not on the others. The Local-SRC algorithm performs well on the categories,
which are shown in table 1.

A common property of images from these categories is that keypoints detected
by salient region detector have strong discriminative capability. For example,
spots on Dalmatian are very distinctive and the outputs of sparse representation
of local features are almost identical for the most important regions. Another
example is images from face category. Although there are not many keypoints
detected by salient region detector in one image, the detected keypoints are
usually located on the eyes and hair of the forehead of a person. For different
people with different background, these salient regions have very similar features.

The classifiers do not perform well on the objects, such as crocodile, ketch and
laptop. Images from these categories do not have obvious textures or distinctive
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Table 1. Object categories with good performances

Object category
Precision

Local-SRC BL 5 Local-SRC 5 Local-SRC 10

accordion 0.80 0.80 0.84
airplane 0.84 0.88 0.96
car side 0.92 0.56 0.52

Dalmatian 0.88 0.84 0.92
face 0.88 0.88 0.96

grand piano 0.84 0.60 0.56
pagoda 0.76 0.68 0.52

patterns. In other words, the local features cannot represent the whole structure
of objects. It has its limitations in these cases.

6 Conclusion

Local features based sparse representation applied to generic image classification
is presented in this paper. Keypoints with different descriptors are used as the
bases of the training matrix and test samples. A base learning algorithm is also
presented to select the most important keypoints for every training image.

Performances of different descriptors have been compared, which demonstrate
that HOG outperforms the feature of sampled pixel values. With salient region
detector and HOG descriptor, experiments have been done so that the effec-
tiveness of the base learning algorithm can be verified. The experimental results
show that the Local-SRC can achieve good performance on the image classes
when the keypoints based local features have strong discriminative capability.
The base learning algorithm is effective for improving the performance and re-
ducing the computational complexity.
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Abstract. An effective framework for general object recognition and localiza-
tion from complex backgrounds had not been found till the brain-inspired Where-
What Network (WWN) series by Weng and coworkers. This paper reports two
advances along this line. One is the automatic adaptation of the receptive field of
each neuron to disregard input dimensions that arise from backgrounds but with-
out a handcrafted object model, since the initial hexagonal receptive field does
not fit well the contour of the automatically assigned object view. The other is the
hierarchical parallelization technique and its implementation on the GPU-based
accelerator using the CUDA parallel language. The experimental results showed
that automatic adaptation of the receptive fields led to improvements in the recog-
nition rate. The hierarchical parallelization technique has achieved a speedup of
16 times compared to the C program. This speed-up was employed on the Haibao
Robot displayed at the World Expo, Shanghai 2010.

Keywords: WWN; CUDA; GPU; Adaptive receptive field.

1 Introduction

Up to now, the general object recognition in cluttered backgrounds is still a challenging
topic although a lot of tries including the methods of conventional computer vision have
been done by many researchers. The appearance-based feature descriptors are quite
good in object shape selectivity but no satisfying to the object transformations; the
histogram-based descriptors, for example, the SIFT features, show great tolerance to the
object transformations but are incomplete in the sense that they do not take all useful
information in trying to achieve certain invariance using a single type of handcrafted
feature detectors [3]. Compared to these artificial vision systems, human vision systems
can accomplish such tasks quickly. Therefore, to create a proper network by simulating
the human vision systems is thought as one possible approach to address this open yet
important vision problem.

In recent decades, with the advances of the studies on object recognition in visual
cortex [8] in physiology and neuroscience, several biologically-inspired network mod-
els are proposed. One famous model is HMAX, introduced by Riesenhuber and Poggio

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 331–341, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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[7]. It is based on hierarchical feedforward architecture similar to the organization of
visual cortex. It analyzes the input image via Gabor function and builds an increas-
ingly complex and invariant feature representation by maximum pooling operation [9].
HMAX is a cortex-like model of the ’what’ pathway, only simulating the ventral path-
way in primate vision system. The location information is lost.

However, recognition is more than the mere detection of a specific object. Everyday,
vision solves the problem of ”what is where”. Also, models mimicking both ventral path-
way and dorsal pathway are proposed. One model is Where-What Network (WWN) in-
troduced by Juyang Weng and co-workers [2]. It is a biologically plausible developmental
model which is designed to integrate the object recognition and attention (i.e., what and
where information in the ventral stream and dorsal stream respectively) interactively for
any unspecific task by using both feedforward (bottom-up) and feedback (top-down) con-
nections. Furthermore, WWN develops the features through a Hebbian learning which is
very useful for intelligent robots. Up to now, four versions of WWNs have been proposed.
WWN-1 [2] can realize object recognition in complex backgrounds performing in two
different selective attention modes: top-down position-based which finds a particular ob-
ject given the location information and top-down object-based which finds the location of
the object given the type, but only 5 locations were tested. WWN-2 [1] can additionally
perform in the mode of free-viewing, realizing the visual attention and object recognition
without the type or location information and all the pixel locations were tested. The third
version WWN-3 [4] can deal with multiple objects in natural backgrounds using arbi-
trary foreground object contours, not the square contours in WWN-1. WWN-4 used and
analyzed multiple internal areas [5].

However, for the above versions of WWN, various backgrounds are a serious prob-
lem which also exists in other approaches. In real applications, the object contours are
arbitrary while the receptive fields are usually regular (e.g., square) in the image scan-
ning. Thus, the leak of pixels of backgrounds into the receptive field is hardly to be
avoided which may produce distracter-like patterns. Additionally, training time is an-
other problem. With general CPU-based implementation, it may spend hours or even
days to train a network if the size of the input image meets the demands of real appli-
cation. Considering visual processing in cortex is collective parallel, which means the
operations of each neuron are executed concurrently, parallel processing of above mod-
els might be best way for real application. At present, multi-core GPUs become more
popular which provide a hardware solution to implement parallel computation.

In the remainder of the paper, the architecture of the latest version of WWN is de-
scribed in Section II. Adaptive receptive field in WWN is presented in Section III. The
parallelization of network training is introduced in Section IV. Experiments and results
are provided in Section V. Section VI gives the concluding remarks.

2 WWN Structure and Training/Application Procedures

Up to now, four versions of WWN have been proposed. The latest version WWN-4
has the same structure of WWN-3 but mainly concentrate on multiple internal areas.
So, in this section, the newest structure of both WWN-3 and WWN-4, and its detailed
implementation including network training and recognition is reviewed firstly.
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(a) The original architecture (b) The modified architecture

Fig. 1. Illustration diagrams of the WWN architecture

The architecture of WWN-3/WWN-4 is illustrated in Fig. 1(a), in which there are
three areas, V2, IT/PP and motor (the stream from V2, through PP, and to PM corre-
sponds to the dorsal pathway and the stream from V2, through IT, and to TM corre-
sponds to the ventral pathway in human vision systems).

Each neuron in V2 area has a local receptive field from the retina (i.e., input image)
which perceives a×a area of the input image. The distance of the two adjacent receptive
field centers in horizontal or vertical directions is 1 pixel. Suppose the size of the input
image is w×h, and the depth of V2 is c (c layers), therefore, totally n = (w−a+1)×
(h− a + 1) × c V2 neurons can cover the entire input image.

After perception, each neuron in V2 will generate the pre-response zb
i,j(t), which

can be computed as follows:

zb
i,j(t) =

wb
i,j(t) · xi,j(t)∥∥wb
i,j(t)

∥∥∥∥xi,j(t)
∥∥ (1)

where wb
i,j(t) are the bottom-up weights of the neuron (i, j) and xi,j(t) are the bottom-

up local input (i.e., the a× a area perceived by neuron (i, j)).
Top-down supervision is essential in the training process and is omitted in the recog-

nition process. It imposes neurons in 3 × 3 × c area centered at the training position
(i.e., the corresponding neuron just covers the object) and suppress the others.

zt
i,j(t) =

{
1 if i, j ∈ R
0 otherwise

(2)

where zt
i,j(t) is the top-down response of the neuron (i, j), R denotes 3 × 3 × c area

centered at the training position.
With pre-response and top-down supervision input, the paired-response zp

i,j(t) is

zp
i,j(t) = αzb

i,j(t) + (1 − α)zt
i,j(t) (3)

here zp
i,j(t) is the paired-response of the neuron (i, j) in V2, α is a weight to control the

contribution by the bottom-up input versus top-down supervision. In our experiment,
α = 0.25 in the training process and α = 1 in the recognition process.
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Lateral inhibition among neurons in the same layer is used to obtain the best feature
of the training object. In WWN-3/WWN-4, top-k competition is applied to simulate the
lateral inhibition which effectively suppresses weak-responding neurons (measured by
paired-response). Usually top-k competition is realized by sorting the paired-responses
in the descending order and normalizing the top k values while setting all the others to
zero (i.e., the neurons with top k values can fire). The response z′i,j(t) after top-k is

z′i,j(t) =
{

zp
i,j(t)(zq − zk+1)/(z1 − zk+1) if 1 ≤ q ≤ k

0 otherwise
(4)

where z1,zq and zk+1 denotes the first, qth, (k + 1)th paired-responses after sorted in
descending order respectively.

Finally, the bottom-up weights wb
i,j(t) of firing neurons (e.g., neuron (i, j) has

fired)in V2 need to be updated by Hebbian learning as the new weights wb
i,j(t + 1)

in the next loop of training. In the recognition process, the weights do not need to been
updated. The Hebbian learning is described as follows:

wb
i,j(t + 1) = w1(t)wb

i,j(t) + w2(t)zi,j(t)xi,j(t) (5)

w1(t) and w2(t) are determined by the following formula.

w1(t) = 1 − w2(t), w2(t) =
1 + u(ni,j)
u(ni,j)

(6)

where ni,j is the age of a neuron, or the times of firing of a neuron. ni,j is defined as

u(ni,j) =

⎧⎨⎩
0 if ni,j ≤ t1
c(ni,j − t1)/(t2 − t1) if t1 < ni,j ≤ t2
c + (ni,j − t2)/r if t2 < ni,j

(7)

where t1 = 20, t2 = 200, c = 2, r = 10000 in our experiment.
Next to V2 area, IT/PP is usually used to fuse the local features into global features

and/or combine the individual features to the multi-feature set. Since only single fea-
tures exist in our experiment, not shared features, IT/PP can be omitted to achieve a
better performance. This has been proved in some experiments whose training curves
of recognition rate is shown as Fig. 2(a) and (b).

The motor area TM/PM, output the ”what” and ”where” information. Each neuron in
these two motor areas denotes the type of an object and its position respectively. Similar
to V2, weights of the firing neurons in motor areas also need to be updated by Hebbian
learning in the training process.

3 Adaptive Receptive Field

In practice, one annoying problem is the leak of background pixels in the receptive field
fully covering the foreground target which is mentioned in Section I. In some cases,
such a leak can seriously interfere the response of the neurons to the foreground object.
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If the network can segment the foreground and the background automatically (i.e., out-
line the object contours), the irrelevant components (backgrounds) in the receptive fields
of V2 will be neglected in the pre-response computation, which reduces the background
interference in the process of object recognition. In the training stage, the appearance
of each foreground object remains almost the same in any location and any training
loop, that is, the foreground pixel values are almost the same, while the backgrounds
may be significantly different. Statistically, the mean deviations of the foreground pix-
els and background pixels in receptive fields are discriminative. Thus, a new set of
weights (named ”trimmed weights”) is introduced into V2 of WWN structure by using
this characteristic as a new segmentation mechanism.

3.1 Principle of the Receptive Field Adaptation Mechanism

Assumed that for the neuron (i, j) in original WWN, the bottom-up local input is
xi,j(t) = (x1, x2, x3, ..., xd), the bottom-up weights are wb

i,j(t) = (v1, v2, v3, ..., vd),
the trimmed weights are wm

i,j(t) = (w1, w2, w3, ..., wd) and the trimmed factors, fi,j(t)
= (f1, f2, f3, ..., fd), are the variables introduced into WWN structure by new receptive
field adaption mechanism. fm (m = 1, 2, 3..., d) is used to evaluate the deviation of the
corresponding pixel. Assumed that the f̄ denotes the average value of f1, f2, f3, ..., fd.
The trimmed factor fm is defined as follows:

fm =

⎧⎨⎩1 if r < βs

(βb − r)/(βb − βs) if βs ≤ r ≤ βb

0 otherwise
(8)

where r = fm/f̄ , βs = 1.0, βb = 1.5.
The trimmed bottom-up input x

′b
i,j(t) = (x′

1, x
′
2, x

′
3, ..., x

′
d) is defined as:

x′
m = fmxm (9)

and the trimmed bottom-up weights w
′b
i,j(t) = (v′1, v

′
2, v

′
3, ..., v

′
d) is defined as:

v′m = fmwm, where m = 1, 2, ..., d (10)

Thus the trimmed bottom-up response z
′b
i,j(t) is calculated as follows:

z
′b
i,j(t) =

w
′b
i,j(t) · x

′b
i,j(t)∥∥w′b

i,j(t)
∥∥∥∥x′b

i,j(t)
∥∥ (11)

Therefore fm dynamically determines whether the pixel m provides a full supply, no
supply, or in-between to the pre-response of the corresponding V2 neuron.

3.2 Trimmed Weights Learning

Similar to the bottom-up weights of the neurons, the trimmed weights also need to be
updated by Hebbian learning as follows:
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wm(t) =
{

1/
√

12 if t ≤ t1
w1(t)wm(t− 1) + w2(t) | xm − vm | otherwise

(12)

where w1(t) and w2(t) are the same definitions in formula (6) and (7). xm and vm

denotes the local input and the bottom-up weight individually. If the pixel m belongs
to the foreground region, | xm − vm | is nearly zero; conversely, if the pixel m belongs
to the background region, | xm − vm | is relatively large. In application, usually we set
t1 = 20, which means the trimmed weights begin to be updated after the corresponding
neurons have fired 20 times in order to wait the bottom-up weights of the neurons to get
good estimates of the training objects.

4 Parallelization of Network Training

In the example of WWN-3, a is 19, w and h are 38 and c is 3. It is meaningless for ap-
plications on HAIBAO robot with such small input images. Usually, the size of images
captured by cameras is 320 × 240 or 640 × 480 in general application. The necessary
memory required by WWN-3 can be roughly estimated following (suppose all the data
in computation using floating point type).

memory ≈ 4c[(h− a + 1)(w − a + 1)]2 (byte) (13)

For the 320 × 240 image, h is 320, w is 240, assumed that c and a is still 3 and 19,
then about 54GB memory is needed. That is a huge amount even for main memory on
PC unless we use some compression techniques. Considering that usually, the memory
on a graphics card is no more than 2GB and the situation of the demonstration in 2010
World Expo (objects only can be learnt in limited area), we finally set the size of input
images 42×113. Thus V2 contains (42−19+1)×(113−19+1) = 2280 neurons each
layer (i.e., 6840 neurons totally) which is about 5.7 times that of the original network.
After expanding the size and omitting IT/PP, the modified network is shown as Fig. 1(b)
in which V2 connects to the motor layers directly.

In WWN, the in-place learning algorithm is used so that each neuron is responsible
for its own learning through interactions with other neurons in the same layer. Besides,
as the number of the learning objects, locations and variations within each type (e.g.,
rotation, illumination, size) increase, the architecture and the algorithm of the network
does not need to be modified but simply increase the number of neurons. Thus, the
design of WWN fit to be parallelized.

Further, in WWN, recognition spends much less time (in milliseconds) than train-
ing does so that it is not necessary to do the parallelization. Therefore, we only fo-
cus on the parallelization of the WWN training. The network training mainly includes
three parts, pre-response computation of the neurons in V2, top-k competition for all
the neurons in V2 and weight updates of the winners via Hebbian learning. Among
them, the pre-response computation and Hebbian learning on each neuron is done in-
dependently so that these two processes can be performed in parallel. For top-k com-
petition, although it has to be done after the pre-response computation in sequential,
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the core operation is essentially sorting which is a well-known NP problem in com-
puter science and so many parallel algorithms can be chosen. Here, the bitonic sorting
network, a famous sorting algorithm designed specially for parallel machines [2] is
adopted. Therefore, in detailed algorithm level, the WWN can be also parallelized.

In implementation, as one of attractive parallel processing techniques on PC re-
cently, GPU-based parallel computation is developing rapidly. GPU has evolved into a
highly parallel, multithreaded, many core processors (much more than the CPU cores)
with very high memory bandwidth. Among the GPU programming techniques, CUDA
(Compute Unified Device Architecture), a general purpose parallel computing architec-
ture designed by NVIDIA, is widely accepted by most programmers. In this research,
we use GPU/CUDA in parallelization of WWN.

4.1 Parallelization of Pre-response Computation

From formula (1), obviously the inner product of wb
i,j(t)(bottom-up weights) and

xi,j(t)(bottom-up input) is the major operations in the pre-response computation of
each neuron. In our experiments, this computation is assigned to 6840 threads grouped
in 27 blocks, that is to say, each thread executes the inner product for one neuron in V2
so that these 6840 same operations can be executed concurrently to save a lot of time.

4.2 Parallelization of the Hebbian Learning

Similar to the parallelization of pre-responses computation, both bottom-up and top-
down weights updated by Hebbian learning are assigned to threads too. The only differ-
ence is that in this part every thread within a block corresponds to one or two elements
of a vector stored in shared memory (low latency) instead of all elements of a vector
stored in global memory (high latency) because of the small amount of data. Addi-
tionally, considering the branch structure will greatly affect the acceleration of parallel
processing, a lookup table of w2(t) for formula (6) and (7) is transferred from CPU to
GPU before the network training.

4.3 Parallelization of the Top-k Competition

The read and write operation is frequent in sorting, so using low latency of the memory
units as much as possible is necessary. In CUDA, shared memory is the best candidate.
As only the threads within the same block (256 threads per block in the GPU of our
experiment) can communicate through shared memory, groups of 256 numbers (6840
numbers in 27 groups totally) are sorted in ascending order independently. Then take
out the first eight numbers in each block (i.e., 8 × 27 = 216) and fill enough zeros to
complete 256 numbers. In the same way, assign these numbers to a single block with
256 threads and sort these numbers in ascending order. Finally, select the top k numbers
(i.e., 3) from 256 numbers. As k is 3, 2, and 1 in our experiment, selecting 8 numbers
from each block is enough.
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Fig. 2. (a) Recognition rates in 10 epochs with/without IT/PP (b) Distance errors in 10 epochs
with/without IT/PP (c) Recognition rates in 15 epochs with adaptive receptive field (RF) and
static RF (d) Distance errors in 15 epochs with adaptive RF and static RF

5 Experiments and Results

The backgrounds and foregrounds in the experiments are selected from 13 natural im-
ages1 and the MSU 25-objects dataset [6] respectively.

5.1 Experiments of Receptive Field Adaption

In order to evaluate the effectiveness of receptive field adaption mechanism, the recogni-
tion performances of the network with/without this new auxiliary mechanism are com-
pared. Furthermore, the trimmed factors are visualized to observe the behaviors in the
network with sufficient/limited resources. The training objects with the size of 19 × 19
and input images with the size of 38 × 38 are shown as Fig.3 (a) and (b).

In WWN, the depth of V2 determines the available feature storage resources in each
certain position. For example, in our experimental WWN, the depth of V2 is 3 which
means the network can store 3 appearance features for each local receptive field. Thus,
if 5 objects need to be learned, there is (5 − 3)/5 = 40% resources shortage, called
’limited resource’. Correspondingly, ’sufficient resources’ means each neuron in V2
has enough memory space which can store all the objects to be learned. Compared with
the objects contours in super resolution (e.g., by Adobe Photoshop) shown as Fig. 3(c),
for the network with sufficient resources, the contours of the foreground can be outlined
roughly while the effect became a little worse when the network has limited resources as
Fig. 3(d) and (e) show. In the case of limited resources, the V2 neurons will remember

1 Available from http://www.cis.hut.fi/projects/ica/imageica/
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(c)

(d)

(e)

(a)

(b)

Fig. 3. (a) The training samples (b) The input images (c) Object contours in super resolution (by
Adobe Photoshop) (d) Visualization of trimmed factors for WWN with sufficient resources (e)
Visualization of trimmed factors for WWN with limited resources

the objects as many as possible with the help from their neighbors. Doubtlessly, such
help from adjacent neurons will result in precision loss of the object positions.

Fig. 2(c) and (d) shows the performance of the network with/without receptive field
adaptation mechanism including recognition rate and position error. It is found that with
the new auxiliary mechanism, the recognition rate is a little better than that without the
mechanism.

5.2 Parallelization of WWN

The experiments are carried on a machine equipped with an Intel Core 2 Duo 2.99GHz
CPU with 3GB memory and a GeForce GT 240 with 1GB memory which possesses
12 Stream Multiprocessors composed of 96 Stream Processors. In order to assess the
parallelization effect of the WWN, the network training times in one epoch of GPU-
based WWN using CUDA and CPU-based WWN using C language are compared in
real environment.

For network training time, the GPU-based WWN using CUDA only spent 91.719
seconds while the CPU-based WWN using C language spent about 1423.235 seconds.
Apparently, the GPU-based WWN using CUDA achieved a 16 times acceleration.

For recognition performance, in ideal condition (i.e., the foreground is overlapped on
the background), the distance error and recognition rate are shown as Fig. 4. Note that
the size of foreground and background is 19 × 19 and 42 × 113 respectively, this indi-
cates that at least about 92.4% of the input image is background. So the performance is
satisfying. In real environment (i.e., the input image is captured by camera on the robot
exhibited in 2010 World Expo in Shanghai), some testing examples in free viewing
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Fig. 4. The performance of the network parallelized with CUDA in 30 epochs
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Fig. 5. Examples from robotics demonstration in 2010 Shanghai Expo using modified WWN

mode are shown in Fig. 5. It is found that the network can be tolerant to little changes
in scale, illumination and viewpoint. But when those changes became significant, the
recognition performance became poor too.

6 Conclusion and Future Work

The WWN framework is moving toward real-time generic object recognition and local-
ization in increasingly more natural settings. The adaptive receptive fields seem to play
a positive role in dealing with objects of various shapes in complex backgrounds. The
hierarchical parallelization technique reported here takes advantage of the inexpensive
GPU computing engines to reach a real-time or nearly real-time speed, paving the way
toward real-time learning. While some results on view variance with WWN-3 have been
reported before, our work on scale variance has been drafted and will appear elsewhere.
Future work includes experimental studies on illumination variation and increased va-
riety of objects, which the WWN framework seems to be able to deal with.
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Abstract. In this paper, we proposed an enhanced variable size HOG feature 
based on the boosting framework. The proposed feature utilizes the information 
which is ignored in quantization gradient orientation that only using one 
orientation to encode each pixel. Furthermore, we utilized a fixed Gaussian 
template to convolve with the integral orientation histograms in order to 
interpolate the weight of each pixel from its surroundings. Either of the two 
steps have an important effect on the discriminative ability of HOG feature 
which leads to increase the detection rate. Soft cascade framework is utilized to 
train our final human detector. The experiment result based on INRIA database 
shows that our proposed feature improves the detection rate about 5% at the 
false positive per window rate of 10-4 compared to the original feature. 

Keywords: human detection, soft cascade, integral HOG feature, enhanced 
integral HOG feature. 

1   Introduction 

In the last few years, human detection in still image or video stream has received a lot 
of attention [1, 2]. It is widely used in visual surveillance, behavior analysis or 
automated personal assistance field. Detecting humans is a challenge work due to 
several factors such as articulation, difficult contract and background, occlusion and 
illumination conditions especially in outdoor scenes.  

Recently, Dalas & Triggs presented a human detection method which made use of 
the Histogram of Orientation features[3] to model human silhouette and apply linear 
svm to classify the stacked 3780 dimensional features which is generated by dense 
sampling. This method is very effective in detecting upright fully visible humans and 
robust to slight deformation. But the evaluation speed is more than 500ms to scan a 
240x320 image that only have 1000 detection windows. This baffled its application in 
many of the field which needs real-time running speed. The key idea to improve 
running speed is based on Adaboost framework or makes use of simplified HOG 
features. Zhu [4]proposed a cascade structure based human detection algorithm which 
using Adaboost to selection discriminative Blocks to exclude negative patches at a 
low cost at 5-30 fps. Chen [5] presented a meta cascaded structure to combine 
heterogeneous features and result in a effective detector at 6-8fps. Other method used 
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EOH[6] and Haar features combination[7], Covariance features[8], motion 
information[9, 10], integral channel features[11] and so on.  

In this paper, we propose an improved feature named enhance variable size HOG 
(EVSHOG) feature which utilizes the information ignored in quantization of gradient 
orientation and uses Gaussian template to approximate the interpolation between 
different pixels in order to improve the discriminative of integral HOG features. 
Furthermore, we apply soft cascade structure to connect weak classifiers which fully 
make use of the information flow between weak classifiers. 

2   Integral HOG Feature 

Dalas & Triggs proposed the HOG feature [3] and successfully applied to object 
detection, but it is rather slow to calculate and cannot use in real-time task. In order to 
deal with this problem, Zhu proposed a variable size HOG (VSHOG) features[4], 
which uses one gradient orientation to encode each pixel and ignored the spatial 
interpolation which is not fit well to integral histogram calculation at the sacrifice of 
decreasing the detection rate. The gradient histogram for separated channels is shown 
in figure 1, we only quantize four orientations in 4x4 pixels image for simplicity. 
Firstly, image gradient in horizontal and vertical orientation are calculated by sobel 
operator and gradient orientation is calculated by Eq. 2.  

                  2 2( , ) x yM x y I I= +                                                 (1) 

                      ( , ) arctan( )y

x

I
O x y

I
=                                              (2) 

where [0,180]O∈  and [0,180] is equally quantized into N=4 bins. 

Secondly, the angle of gradient orientation is trimmed to the nearest bin and the 
energy of this orientation is represented by Eq. (1). 

In order to get fast calculation histogram in image, integral histogram 
technique[12] is utilized which is widely used in computer vision field . The integral 
histogram can be defined in Eq. (3). The procedure of calculating integral HOG 
feature is shown in figure 2 and we can get the histogram of image using only three 

times float operation in each channel of histogram bH . so it’s very fast to get any sub-

histogram in an image. 

             
1 ' , '

( , ) ( ', ')
B

b
b x x y y

IHist x y H x y
= ≤ ≤

= ∑∪                                 (3) 

where B is the number of bins in histogram H and bH  is thb  histogram of H. 
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Fig. 1. Gradient histogram in four channels 

 

Fig. 2. Integral HOG 

3   Enhanced Variable Size HOG 

In order to deal with the problem of ignorance in quantizing the gradient orientation 
and interpolation in spatial positions, we first use linear interpolation to quantize the 
gradient orientation of each pixel more accurately which is demonstrated in figure 3. 
In figure 3(b), we can see that degree 30 only trim into interval 1 using original 
method. Actually it is not very accurate to encode gradient information and distribute 
energy for each pixel, so we interpolate the degree 30 into two nearby intervals (0 and 
1) and weighted by its relevant distance in order to reflect the energy information in 
local area more accurately. The interpolation formula is show in Eq. 4. 

             ( ) (1 ) ( ) ( 1)f x dx dx f x dx f x+ = − + +i i , (0,1)dx∈                 (4) 

where ( )f x  is the strength of gradient in pixel x which is defined in Eq. (1). 

 

Fig. 3. Linear interpolations in quantization gradient orientation 
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After linear interpolation of gradient orientation, we further utilized the Gaussian 
template to bilinear interpolate the weight of pixel with its surrounding pixels in order 
to smooth the local variation of pixels and decrease the effect of noise. The bilinear 
interpolation is show in figure 3(c). Finally, we normalized the histogram with L2-hys 
technique[3] which is show in Eq.5.  

2 2
2

, max( ,0.2), 1,.. .
|| ||

d
i i

v
v v v i d v R

v ε
= = = ∈

+
        (5) 

It is also mentioned in paper [3], interpolation is very important in generating 
robust gradient orientation histogram.  

 

Fig. 4. Soft Cascade 

4   Soft Cascades 

Soft cascade is proposed by Bourdev [13] who first applied to face detection filed and 
gained nice performance. It is improved version based on hard cascade [14] and 
boosting chain [15], and it fully makes use of the information flow between connect 
strong classifier and exclude the negative patches as earlier as possible in order to 
improve the detection speed. It is a special case of boosting chain and only uses one 
weak classifier in each stage. The soft cascade classifier can be defined in Eq. (6): 

,
1

( ) ( )
t

T

t t
t

C x f xθα
=

=∑                                                  (6) 

where T  is the total number of classifier trained and , ( )
ttf xθ  is the weak classifier 

chosen in stage t  and tθ  is the threshold to refuse negative patches in stage t . 

Tuning the parameter tθ  can calibrate the classifier to get a satisfied speed and 

accuracy. The parameter of tθ  can be modeled as an exponential function family 

which is defined in Eq. (7): 
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where /t Tτ =  and k  normalizes the vector sum to satisfy the target detection rate 
and α  is the free parameter for the function family.  

The structure of soft cascade is shown in figure 4, where WC indicates the selected 
weak classifier and the dark arrow means the cumulated confidence value which is 
generated by each weak classifier. Soft cascade has the advantage of using lesser 
weak classifier and fast detection speed. 

4.1   Fisher Linear Discriminative (FLD) Weak Classifier 

The choice of weak classifier has an important effect in the convergence rate of 
boosting algorithm. For one dimensional feature such as haarlike, decision stump is 
an efficient choice to get an optimal threshold in ( log )O n n  time, where n is 

number of training data. But for a high dimensional feature df R∈ , find a optimal 

need ( )
n

o
d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 time which is intractable which either n and d is large. Although SVM 

or Neural Network can deal with classification of high dimensional features, but it is 
very time consuming in training. But the large number of classifier prohibits the usage 
of such classifier. In order to deal with high dimensional features, one of the solutions 

is to find a mapping function ( ) : dx R Rφ → to project d dimensional feature into 

one dimension and train classifier on this feature after projection.  
An efficient classifier for high dimensional features is based on fisher criterion 

which intent to find a optimal projection vector to maximize the between-class 
distance and minimize the within-class distance simultaneously. The criterion is 
formulated in Eq.(8): 

                    ( )
T

B
T

w

J = w S w
w

w S w
                                                (8) 

where BS  and wS  is between-class scatter matrix and within-class scatter matrix 

respectively, w is the projection vector. 

5   Experiments 

5.1   Experiment Setting 

In order to validate the effectiveness of our proposed features, we conduct experiment 
on INRIA database which is widely used in evaluating human detector. The 
information of INRIA benchmark datasets is demonstrated in Table 1. 
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Table 1. INRIA dataset 

Dataset site http://pascal.inrialpes.fr/data/human/ 

Train data 2416 human annotations in 614 images 
1218 non-human images  

Test data 1132 human annotations in 288 images 
453 non-human images 

Image size Human image are 70x134 with 3 pixels padding  
Non-human images are from 214x320 to 648x486 

In training our human detector, 2416 human images and 2416 non-human images 
(randomly sampled from 1218 images) was used in the beginning, then bootrap in the 
1218 images in later stage training. All the training samples are cropped into 128x64. 
The total number of weak classifier is T=600. We use window size=7 and sigma=2 
two dimension Gaussian function to generate the template. We quantized the gradient 
orientation into 9 bins from [0, 180] and using L2-hys method to normalize 
histogram. Soft cascade[13] and Adaboost algorithm are used to train our human 
detector and using linear SVM to train each weak classifier. 

5.2   Evaluation in INRIA Dataset 

We evaluated our proposed EI-HOG features on INRIA datasets, the result is 
represented by false positive per window (FPPW) versus miss rate curves. The curve 
is defined as Eq.(9): 

Miss rate =
false negatives

true positives false negatives+
, FPPW=

false positives

total windows
          (9) 

The lower of the curve is better. There different algorithms (HOG+SVM[3], Adaboost+ 
VSHOG [4], Haar[4] and our proposed) are compared which are shown in figure 5. 

 

Fig. 5. Comparing the HOG+SVM, Adaboost+VSHOG, Haar and our proposed feature 
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From figure 5, we can see that our proposed EVSHOG feature is superior than 
Adaboost+VSHOG and haar features by the use of trilinear interpolation between 
orientation and spatial positions. It is also worth to mention that our proposed feature 
has little difference with Dalal’s original well tuned HOG feature which means that 
our proposed feature can approximate the Dalal’s feature very well, but is much faster 
because of using boosting framework at the 10-15 fps. Some of the human detection 
result on INRIA database is demonstrated on figure 6. 

 

 

Fig. 6. Some of the human detection results on INRIA dataset 
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Abstract. In this paper, different from most of existing methods, an additive 
term as noise is considered in the proposed method besides a multiplicative 
illumination term in the illumination model. Discrete cosine transform 
coefficients of high frequency band are discarded to eliminate the effect caused 
by noise. Based on local characteristic of human face, a simple but effective 
illumination normalization method local relation map is proposed. The 
experimental results on the Yale B and Extended Yale B prove the 
outperformance and lower computational burden of the proposed method 
compared to other existing methods. 

Keywords: Face Recognition, Illumination Variation. 

1   Introduction 

Illumination variation is one of the most challenging issues in face recognition to 
address. In [1], differences between varying illumination conditions are proven to be 
more significant than differences between individuals. The existing methods can be 
generally classified into three categories: face and illumination modeling, illumination 
invariant features extraction and normalization. Compared to other two categories, the 
methods of normalization usually take less computational loan and require less 
training samples. The methods proposed in [2] and [3] are two of the most 
representative normalization methods. Both of them achieve convincing performances 
based on their experiments. 

In most of existing approaches, the image under different illuminations is simply 
modeled as  

                    y)e(x,y)r(x,=y)f(x, ⋅                  (1) 

where f(x, y) is the image gray level, r(x, y) is the reflectance and e(x, y) is the 
illumination. Based on the model, illumination variations are proposed to mainly lie 
in the low frequency band [2]. Therefore, low frequency DCT coefficients in the 
logarithm domain are discarded in [2] to compensate illumination variations. In [3], 
the noise is considered as an additive term besides the multiplicative term e(x, y). The 
noise is taken as a constant in a local area. Furthermore, the assumption that 
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illumination is related to low frequency band is extended to that illumination can be 
considered as a constant (only related to the DC component) in a small local area [3].   

In this paper, an additive term as noise is considered in the illumination model. 
Different previous researchers [3], we propose to apply the high frequency DCT 
coefficients obtained in the entire image to estimate the noise. After that, a logarithm 
transform is taken to change the model into an additive model. With the simplified 
model, a simple but efficient approach, Local Relation Map (LRM), is proposed based 
on local characteristics of human face. The experimental results on the Yale B and 
Extended Yale B prove the outperformance and lower computational burden of the 
proposed method compared to other methods.  

The rest of this paper is organized as follows. In Section 2, we introduce our 
illumination model and novel local illumination normalization method LRM in 
details. Furthermore, we prove that the LRM is illumination invariant in this section. 
Experimental results and discussions are presented in Section 3. Finally, conclusions 
are drawn in Section 4. 

2   Local Illumination Normalization Technique 

2.1   Face and Illumination Model 

As mentioned before, most existing method simply model human face under different 
model as Eq. (1). With considering the noise, the model can be changed to 

                          y)n(x,y)e(x,y)r(x,=y)f(x, +⋅  (2) 

where f(x, y), r(x, y) and e(x, y) are still the same as those in Eq. (1), and n(x, y) is the 
additive noise. Considering the local properties of human face, the noise can be 
modeled as a constant as shown in [3]. However, observing the noise in an entire 
image, we propose to use high frequency components to model the noise. 
Experimental results in Section 3 will prove the validity of our assumption. 

To remove the effects of noise, discrete cosine transform (DCT) is firstly applied in 
face images. The values of k dimensions of high frequency DCT coefficients are set to 
zeros in zigzag mode.   

2.2   Local Relation Map 

After the denoising described in the above section, the model is simplified into 

                                  y)e(x,y)r(x,=y)(x,f ' ⋅          (3) 

Taking logarithm transform on Eq. (3), we have 

                          y).e(x,logy)logr(x,=y)(x,logf ' +     (4) 

A human face can be treated as a combination of lots of small and flat facets [3]. In 
such a small facet W, the illumination can be considered as a constant as in [3]. 
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Compared with the model (4), the loge(x, y) can be taken as a constant A. Therefore, 
for a special illumination condition, a small facet W can be modeled as  

            W         y)(x, ,y)p(x,=y)I(x, ∈+ A              (5) 

 
where  

y)e(x, logy)p(x, and y)(x,logfy)I(x, ' ==  

Based on Eq. (5), we propose a simple illumination approach local relation map, 
which eliminate the effect of A by comparing the relation between the gray level of 
desired point with those of the points in the boundary of W. The details of the LRM 
are described as following: 

1) Given a point (x, y), determine the local facet W. In this paper, we mainly 
focus on a square local facet because it is easier to implement.  

2) Determine the boundary points U in the facet. For a square facet with size of 
n, there is only 4(n-1) boundary points. 

3) Compare the gray level of point (x, y) with those of points in U as 

 )1(4),(-y)I(x,=y)(x,I
),(

' −∑ ∈
nbaI

Uba                      
(6) 

4) After all the points on a given image are processed, the normalized image, 
named local relation map, is obtained.   

Please note that only the boundary point in the facet will be involved in the 
calculation instead of all the points in the facet. The advantage is that it reduces the 

computational complexity from )( 2nO to )(nO . The effect on real computational 

time will be discussed in the experiment section. Other advantages in adaptive size 
selection of the facet will be studied in further research. 

2.3   Properties of Local Relation Map 

Here, we will prove that the LRM is illumination invariant. Given two images of the 

same person 1I and 2I , taken under different illumination conditions, for the same 

point (x, y), we have 

   y)p(x,=y)(x,I 11 A+                                        (7) 

    y)p(x,=y)(x,I 22 A+                                       (8) 

After the calculation of the LRM, we will have  

            )1(4),(-y)p(x,
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and  
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Easily, we have  

    y)(x,Iy)(x,I '
2

'
1 =                                         

(11)
 

This means that the LRM is unrelated to illumination conditions. Therefore, we can 
use the LRM for further face recognition. 

3   Experimental Results and Discussions 

3.1   Database 

In the experiments, we use the Yale Face database B and Extended Yale Face 
database B as the test database. In the Yale Face database B, there are 10 persons with 
64 different illumination conditions for nine poses per person [4]. In the Extended 
Yale Face database B, there are 16128 images of 28 persons with the same conditions 
as Yale B [5]. Because the main concern in this paper is on illumination variation, 
only 64 frontal face images per person under different illumination conditions are 
chosen. After combining the Extended Yale B with the Yale B except 18 corrupted 
images, there are 2414 images of 38 subjects named as the Completed Yale B. The 
images are divided into 5 subsets based on the angle between the light direction and 
the camera axis as other methods shown in Table 1. Because of lack of coordinates of 
the eyes in the Extended Yale B database, we directly use the cropped and aligned 
images with the size of 192×168 provided by the database [5]. 

Table 1. Subsets divided based on light source direction 

 Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 
Light angle 0~12 13~25 26~50 51~77 >77 
Number of images in Completed Yale B 263 456 455 526 714 

3.2   Experimental Results 

In the experiments, only one frontal image per person with normal illumination 
(0°light angle) is applied as a training sample, which increases the difficulty of 
recognition. Recognition is performed with the nearest neighbor classifier measured 
with the Euclidean distance. For comparison, the proposed methods of [2] and [3] are 
implemented and named as “the DCT” and “the LN”. To compare the illumination 
model with noise and that without noise, we simply use the LRM in logarithm domain 
of the images without the step of denoising, and name the method as “LRM without 
denoising”. All the results are shown in Table 2. 



354 Z. Lian, M.J. Er , and J. Li 

From the table, it is clear that the proposed method achieves the best total 
performance compared with other methods. The results prove the validity of our 
assumption that the noise can be modeled based on high frequency components. For 
small illumination variations such as Subset 3, the DCT and LRM without denoising 
(they both only model the illumination as Eq. (1)) obtain better performances. For 
large illumination variations such as Subset 4 and 5, the LN and LRM (they consider 
the model as Eq. (2)) outperform other two methods. The comparison results 
demonstrate that the noise does not need to consider when only small illumination 
variation exists, and the noise needs to be modeled as an additive term when larger 
illumination variation exists.  

Table 2. Performance comparisons of different methods 

Error rate (%) Method 
Subset 3 Subset 4 Subset 5 Total

The DCT 10.5 10.8 12.6 8.1 
The LN 12.3 6.3 8.4 6.2 
LRM  11.2 7.6 7.6 6.0 

LRM without denoising 10.5 8.2 10.9 7.0 

3.3   Computational Complexity 

Furthermore, we compare computational time of the LN and that of our proposed 
method because they achieve a better total recognition performance and apply similar 
local properties of human face. Suppose that the image size is m*m and the size of 
local area is n*n. The real computational time is calculated with the Matlab in a 
personal computer with a 2.66GHz CPU. The comparison is shown in Table 3. From 
the table, we can see that our method significantly reduces computational burden and 
speed up 64%. 

Table 3. Comparison of computational complexity 

 Computational complexity Real computational time (per image) 

The LN )( 22mnO  2.51s 

The LRM ))((log 2mnmO +  0.91s 

4   Conclusions 

In this paper, a low computation complexity illumination normalization approach for 
face recognition is proposed to address the problem of illumination variations. 
Different from most of existing methods, an additive term as noise is considered 
besides a multiplicative illumination term in illumination model. An appropriate 
number of high frequency DCT coefficients are zeroed to eliminate the effect caused 
by the noise. Based on local characteristic of human face, a simple but effective 
illumination normalization approach, local relation map, is proposed. We prove that 
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the LRM is robust against illumination variations. The experimental results on the 
Yale B and Extended Yale B prove the outperformance and lower computational 
burden of the proposed method compared to other existing methods. Further research 
on adaptive size selection of local area will be carried out in future. 
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Abstract. Human face detection plays an important role in applications such as 
video surveillance, human computer interface, face recognition, and face image 
database management. We propose a face detection algorithm for color images 
in the presence of varying lighting compensation technique and we segment  
the skin color of the face image with the improved skin color model which is in 
the space of YCrCb, and then find the human face in a small area using the 
template matching method. The application on the skin color information is add 
to the face detection algorithm, the purpose of which is to pre-judge whether the 
image exist a face, thus we can exclude non-skin regions to reduce the space to 
search and improve the efficiency of the face detection algorithm. This paper 
proposed various adaptive templates to overcome the shortcomings of poor 
adaptability, the scale of the template can be seized to adjust the size of the 
area, so the adaptability of template can be increased. 

Keywords: Face Detection, Skin Color Clustering, Template Matching. 

1   Introduction 

Human activity is a major concern in a wide variety of applications such as video 
surveillance, human computer interface, face recognition [1], [2], [3], and face image 
database management [4], [5]. Detecting faces is a crucial step in these identification 
applications. Most face recognition algorithms assume that the face location is known. 
Similarly, face tracking algorithms often assume the initial face location is known. 
Therefore, some techniques developed for face recognition (e.g., feature-based 
approaches [6], and their combination [7], [8], [9], [10]) have also been used to detect 
faces, but they are computationally very demanding and cannot handle large 
variations in face images. 

In color images, skin color is not sensitive to the attitude change, so we can 
extraction of color information features easily. Face detection method based on 
                                                           
* This paper is supported by the Key Project of Science and Technology Development Plan for 

Jilin Province (Grant No.20071152), project 20101027 supported by Graduate Innovation 
Fund of Jilin University and the Jilin University "985 project" Engineering Bionic Sci. & 
Tech. Innovation Platform. 

** corresponding author 



 Rapid Face Detection Algorithm of Color Images under Complex Background 357 

template-matching is effective and generally applicable. Use face template matching 
with the original image can detect faces in images, and then we can locate the organ 
of face with the location of the template. Template matching method has a huge 
amount, so it does not apply to real-time systems. Generally, we need to reduce by 
auxiliary method detection range in a small area and then using the template method 
to achieve detection speed improved.  

This paper sets completing earlier preparation for face recognition as its objection, 
using skin color clustering, and it has designed and realized human face detection 
algorithm under a complex background. The System Block Diagram as shown as in 
Fig.1. 

Color space transformation

Locating the centre of skin 
color region

              Color 
              image

                Lighting 
                 compensation

                     Skin Color
                     Detection

                     Connected 
                     Component

Adaptive
Template matching

 

Fig. 1. System Block Diagram 

2   Segmentation of Human Face Images Based on Skin Color 
Information 

Skin color segmentation cannot work well in all conditions，nevertheless its low 
computational complexity makes the method much faster than many other ways of 
human face detection and using the message of skin color can remove most of the 
interference and only skin color and approximate skin color remain. According to the 
positive factors of human face detection based on skin color，it can be used as a 
preprocessing before some methods whose algorithm may be accurate in the aspect of 
detection but complexity to narrow the detection area. Through this preprocessing, the 
overall performance of algorithm will be promoted and it is crucial for the following 
steps of human face detection. 
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In order to meet the necessary of our face detection system，we propose a method 
based on nonlinear skin color clustering and local edge method. The reason why the 
method proposed here can be described as: (1)As one of the most important 
information of human faces, skin color hardly depends on the details, rotation angles 
and different expressions of human faces, so skin color segmentation is stable to some 
degree and it can tell the differences between the skin color and complex 
background.. (2)With the simple algorithm, skin color clustering method has less 
computational cost, so it fit for the demand of real time detection. (3)Because of local 
discreteness of skin color clustering in color space, using nonlinear transformation 
can improve the effect of clustering. 

2.1   Skin Color Model 

People make some color models to unify the expression of different color.  Nowadays 
CIE，RGB，HIS，YUV and YCrCb color models are commonly used and different 
color methods have different application areas. In skin color detection we normally 
choose YCrCb color space. It is similar to the HIS color space which can separate 
luminance information from color imagines. Because of the luminance component Y 
can be computed through linear transformation of RGB color space, Y is related to 
chrominance and the skin color clustering area has the trendency of nonlinear. 

0.2990 0.5870 0.1140 0 R

0.1687 0.3313 0.5000 128 G

0.5000 0.4187 0.0813 128 B

1 0 0 0 1 1

Y

Cb

Cr

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

i

                            (1) 

First, during the skin color segmentation，we ignore the effective of Y，thus we 
transform the problem from 3-D space to 2-D space. In this 2-D space of b rC C− , skin 

color is concentrated and normally can be described as Gauss distribution，so that 
distribution center can be obtained through the training. Then according to the 
distance of pixels from the center, we can get a similarity distribution compare to the 
initial image. At last the final area of skin color can be detected after transforming the 
similarity distribution into binary with specific rules. Considered the effective of light 
to the luminance Y，we only use the parameters ,b rC C to make Gaussian model, 

therefore for pixels ( , )x y we have 

2

2

ˆ ( , )

ˆ ( , )

b b b

r r r

C N

C N

∼

∼

μ σ

μ σ

⎧⎪
⎨
⎪⎩                                                 (2) 

The parameters , , ,b r b rμ μ σ σ mentioned in this formula are the mean and standard 

deviation of skin chrominance and these parameters can be calculated through our 
experiment. On the basis of experimental and network human face pictures segmented 
by people in normal illumination, the initial value of these parameters are 
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115, 148, 10, 10b r b rμ μ σ σ= = = = . Whereas the illumination, actually, will be 

changing with time and the severe illumination change can not only affect the 
luminance Y, but also the chrominance Cr, Cb. If we keep the Gaussian model remain 
without any change, the system may fail to find the area of human faces. So in this 
paper we propose a new model which can update the parameters with the changing of 
illumination. 

1 2

115, 148 [ , ]

115 ( 115), 148 ( 148)
b r y y

b b r r

if Y TL TH

C C C C otherwise

μ μ
μ μ

= = ∈⎧
⎨ = + − = + −⎩       (3) 

In this formula ,y yTL TH are the upper threshold and lower threshold. , 

For a video image ( , )kF x y′ ， if bC any rC , the value of chrominance of 

pixels ( , )x y , content the Gaussian distribution and they also meet all of the limiting 

conditions which are | | 2.5b b bC μ σ− > and | | 2.5r r rC μ σ− > , we deem that the pixels 

belong to the area of human face image. The other pixels which cannot meet these 
conditions are defined as dark. After these we can exact the human face area from the 
whole image. 

Inevitable the human face images exacted through the processing have noise 
interferences, such as the roughen edges, small holes and color spots. To solve the 
problem we use a method called corrosion and it can well remove these interferences. 

2.2   Skin Color Segmentation 

Due to the reason that the hands and arms of humans are also skin color and the 
existence of some approximate skin color areas, we cannot expect get the exact areas 
of human faces only using skin color segmentation. However human face areas have 
their unique character which is connectivity, thus we can expel the single pixel point 
and make those points of density connected. By this way we can not only reduce the 
noise interference but promote the human face areas. The concrete method is divided 
into three steps: 

(1) Human face area always occupies a certain size in an image. First, we make a 
count on the size of human faces. Then we set rS as the threshold of the size. When 

the size of one area is less than rS , we define this area as black. 

(2) No matter the faces without rotation, extremely rotated faces, upward faces 
and downward faces, the width ratios of their circum-rectangle are all in a certain 
range. According to the prior knowledge, we get the range is [1/2, 2/3] and if one area 
cannot meet the condition, we define it as black. 

3   Adaptive Template Matching 

Template matching method has the advantages of easy to implement, but it has poor 
adaptability. According to the size of the region to be seized of the scale was adjusted 
to increase the adaptability of the template, this paper proposed the method of 
adaptive template matching. 
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3.1   Training for Face-Template 

In consideration of the computing speed, we use one template only, and for the 
template can express face better, we need to make face sample cutting, scale changes, 
and gray distribution standardization for each sample, and then average the gray 
values of all samples and compress to the needed size as the primitive human face 
template. The template is constructed by the way of make averaging of many samples, 
the procedure of operation is: 

(1) Choose the human face area of the image as the face sample image; position 
the eyes manually to ensure that the position of eyes is fixed in the face image;  

(2) Standardize the scale and gray of every face sample;  
(3) Extract the edge of samples using Sobel operator;  
(4) Average the gray values of the images that have been processed by the step 3. 

the final human face template by training is as shown as Fig.2. 

  

Fig. 2. Training Face Template 

Here the major work is the gray standardization of images. For eliminating the 
effection of light and other conditions on the image acquisition, we need to 
standardize the gray so as to make the expectation and variance close. Using the 
vector 0 1 1[ , , ]nx x x x −= ⋅⋅⋅  to represent an image, and then its expectation of gray can 

be expressed as μ ; the variance can be expressed asσ . For each input sample, to 

transform the expectation and variance of it into the expected ones, the transformation 
for each pixel should be done as follows: 

                    0
0ˆ ( ) 0i ix x i n

σ μ μ
σ

= − + ≤ <                                     (4) 

3.2   Template Scaling 

Because that the size of the detected region is not always the same as the template, we 
have to scale the template in accordance with the detected region when the size of the 
template and the one of the detected region are different. The concrete process is that, 
first, to define the location and size of the image according to the center and outside 
rectangle of the detected region determined by the formula; and then calculate the 
area of the detected region; finally, determine the scaling ratio of the template by 
calculating the ratio of the area of the detected region and the one of the template. 
That can scale the template by the way of changing the size of the image. ( , )c cX Y is 

the center of mass of skin region. 
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Fig. 3. Template Scaling 

3.3   Detection 

Suppose the gray matrix of face template is [ ][ ]T M N , gray mean is
rμ , standard 

deviation is
rσ , the gray matrix of input image area is [ ][ ]R M N and then the 

correlation coefficient between them and pixel gray value corresponds to the average 
deviation values respectively are: 
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Measure the matching degree depends on the formula (7) 
                   

( , ) ( , )
1 ( , )

D T R r T R
d T R

α= +
+

                                    (7) 

Because of skin color image segmentation have multiple color pieces, we should 
match every pieces. To scan each piece of image, if the face is greater than the 
relevant threshold in the scan window, we can mark the location of human face. 

4   Experimental Results and Conclusion  

We use the PC with Celeron (R) CPU 2.8G, 2G memory. The system detects a single 
image use 70ms. We can see that the system can meet the requirements of real-time. 
In the absence of any tracking algorithm into the case, face detection, the average 
speed of 6 FPS. In the Fig.6, we list a part of images contain different background and 
facial stance. The simulation results are given in TABLE I. 

  

(a) Image in Gallery 

Fig. 4. A part of Simulation Results are shown here 
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(b) Real-time Tracking 

Fig. 4. (Continued) 

Table 1. Simulation Results 

Image types Correct number Wrong number 

Rectify face 10 0 

Upward face 9 1 

Downward face 
Left side face 

8 
10 

2 
0 

Right side face 
With expresstion 
Uneven illumination 

10 
10 
7 

0 
0 
3 

5   Conclusion 

The way of face detection mentioned in this paper needs less computational cost, so it 
can be used to handle images. Additionally, the algorithm based on the combination 
of skin color segmentation and template matching could not only inherit their speed 
advantage but also overcome the adverse effect from complex background. From the 
whole paper we can conclude that the method mentioned in this paper can promote 
the efficiency and the accuracy in face detection and tracking in images with complex 
background.This paper proposed various adaptive templates to overcome the 
shortcomings of poor adaptability, the scale of the template can be seized to adjust the 
size of the area, so the adaptability of template can be increased. 
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Abstract. An improvement method is present in this paper for Daugman’s iris 
localization algorithm. It may make iris localization more rapid and more precise. 
It may also decrease the computational complexity of the localization algorithm 
by reducing the search area for the iris boundary center and the radius, In addition, 
a new method excluding the upper and lower eyelids is proposed. Experiments 
indicate that the present method have better performance. 

Keywords: iris, localization, inner boundary, outer boundary. 

1   Introduction 

Reliable automatic recognition of persons has long been an attractive goal. The 
central issue in pattern recognition is the relationship between within-class variability 
and between-class variability. Objects can be reliably classified only if intra-class 
variability is less than inter-class variability. While seeking to maximize the 
between-person variability, biometric templates must also have minimal within-
person variability across time and changing conditions of capture [1]. For example, 
in face recognition, difficulties arise from the fact that the face is a changeable 
social organ displaying a variety of expressions [2][3]. Against this intra-class (same 
face) variability, inter-class variability is limited because different faces possess the 
same basic set of features, in the same canonical geometry. It has been shown that 
current algorithms can have error rates of 43% to 50%[4]-[7].  

For all of these reasons, iris patterns become interesting as an alternative approach 
to reliable visual recognition of persons, and especially when there is a need to search 
very large databases without incurring any false matches despite a huge number of 
possibilities. The iris begins to form in the third month of gestation and the structures 
creating its pattern are largely complete by the eighth month [8]. Its complex pattern 
can contain many distinctive features such as arching ligaments, furrows, ridges, 
crypts, rings, corona, freckles, and a zigzag collarette [9][10]. The number of degrees-
of-freedom in Iris Codes is 249[11]. In NIR wavelengths, even darkly pigmented 
irises reveal rich and complex features [12][13]. Monochrome CCD cameras 
(768*576) and NIR have been used at distances of 20 centimeters collection the image 
of iris may be seen in Fig. 1.  

In the iris recognition, it is necessary to localize precisely the inner and outer 
boundaries of the iris, and to detect and exclude eyelids if they intrude. Influences the 
veracity of iris recognition directly. Daugman’s algorithm for recognizing iris 
patterns has been the executable software used in most iris recognition systems so far 
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deployed commercialllly or in tests, including those by British Telecom, Sandia Labs, 
U.K, and so on. The Daugman’s algorithm operation is very complex. Moreover, the 
Asian iris color is darker and texture is more blur. At times, using Daugman’s 
algorithm directly maybe happen mistake to localize iris for Asian. At the same time, 
eyelids are usually covered with eyelash. It is very difficult to use Daugman’s 
algorithm to localize eyelid. So it is needed to improve the Daugman’s algorithm. 
This thesis introduces an improvement method for Daugman’s iris localization 
algorithm and proves it is feasible. 

 

Fig. 1. Example of an iris pattern, imaged monochromatically at a distance of about 20cm 

2   Daugman’s Algorithm for Iris Localization 

The iris localization can be completed after having ascertained the center coordinates 

(x 0 , y 0 ) and radius(r), which are the three parameters defining the pupillary circle 

and limbus circle. Daugman’s algorithm localizes iris by searching max difference 
of gray between the arcs. A very effective integrodifferential operator for determining 
these parameters is: [14]-[17] 
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*)(|max

),,(),,( 0000

ds
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rG

yxryxr ∫∂
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πσ  (1)

Where ( , )I x y  is the gray of single-pixel in the image. The operator searches 

over the image domain ( , )x y  for the maximum in the blurred partial derivative with 

respect to increasing radius r, of the normalized contour integral of ( , )I x y along a 

circular arc of radius and center coordinates 0 0( , )x y . The symbol * denotes 

convolution and )(rGσ  is a smoothing function such as a Gaussian of scaleσ . The 

complete operator behaves as a circular edge detector, blurred at a scale set by σ , 
searching iteratively for the maximal contour integral derivative at successively 
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finer scales of analysis through the three parameter space of center coordinates and 

radius (x 0 , y 0 , r) defining a path of contour integration. 

The operator in (1) serves to find both the pupillary boundary and the outer (limbus) 
boundary of the iris, a similar approach to detecting curvilinear edges is used to 
localize both the upper and lower eyelid boundaries. The path of contour integration in 
(1) is changed from circular to arcuate, with spline parameters fitted by statistical 
estimation methods to model each eyelid boundary. 

3   The Improved Method for Daugman’s Algorithm 

The improvement is based on Daugman’s iris localization algorithm, by use of a 
coarse-to-fine strategy terminating in single-pixel precision estimates of the center 
coordinates and radius of both the limbus and the pupil 

Firstly, localize the inner (pupillary) boundary. Daugman’s iris localization 
algorithm needs to search in the large scope, because we don’t know the center 
coordinates and radius of the pupil. The improvement for this is to localize it by two 
steps. The first step is coarse localization of the pupil according to area formula of 
circle. The second step is fine localization by Daugman’s algorithm to find the pupil’s 
precise center and radius in small area. 

Secondly, localize the outer (limbus) boundary. Because the upper and lower 
eyelid intrudes, we find the outer boundary from right and left canthus. It also follows 
two steps from fast coarse localization to fine localization. 

Thirdly, localizing both the upper and lower eyelid boundaries. Daugman’s 
algorithm doesn’t work very well to localize them because the eyelash usually 
covers with the eyelid. So many noises are used as iris information. The method 
used in this thesis excludes directly the area of iris maybe covered by the eyelid. 

3.1   Finding the Inner (Pupillary) Boundary of the Iris 

As the pupil is always rounding we can localize the pupil if we may ascertain its 
center and radius. At first we localize the inner boundary coarsely by finding those 
points in the pupil. Then, we further localize it precisely. 

Coarse Localization of the Pupil 
The method about ascertaining center and radius is to search all pixels that belong to 
the pupil in the image and store the X-coordinates and Y-coordinates of each pixel. 

According to area formula of circle 2* rS π=  we can get the pupil’s radius, 
where S denotes the number of pixels in the pupil. Get the pupil’s center coordinates 
by computing the mean of all these pixels’ X-coordinates and Y-coordinates. 

The method about searching those pixels belonging to the pupil is based on the fact 
that the pupil is blacker than other area of the image. We can easily find that the 
pupil’s gray is smaller than the other area and that the color is almost the same for 
each pixel in the pupil. The gray change between the pixels is very small. So we can 
judge whether a point is in the pupil accord to the gray. Set the threshold of gray to 
be L, the threshold of gray change between pixels △L. 



 An Improvement Method for Daugman’s Iris Localization Algorithm 367 

128
5 2*

128

DC
L

DC
= −−

 
(2)

Where DC denotes the average gray of the whole image. 
The difference of gray ( )f I  is: 

f(I) = |I(x,y)-I(x-1,y-1)|+|I(x,y)-I(x,y-1)|+|I(x,y)-I(x+1,y-1)|+|I(x,y)-I(x-1,y)|

        +|I(x,y)-I(x+1,y)|+|I(x,y)-I(x-1,y+1)|+|I(x,y)-I(x,y+1)|+|I(x,y)-I(x+1,y+1)| 
 (3)

The average of ( )f I  is )(If  

The threshold of gray change between the pixels △L is: 

( ) / 2L f I=  (4)

If the pixel meets with the following two inequations with simultaneity: I(x, y)<L, 
f(I)<△L, the pixel is concluded to be in the pupil. 

Accurate Localization of the Pupil 
From Fig.1 we can also see, in fact, that there is facular in the pupil. Facular’s gray is 
much higher than normal pixels’ in the pupil, having big gray difference compared to 
normal pixels in the pupil. So it maybe reckoned as the iris’s inner boundary by 
mistake. Thus, before fine localization we must remove the facular. To do so, we can 
find the facular in the coarse scope of the pupil according to gray value and set 
those facular’s pixels to be zero gray.  

After removing the facular, we then localize the pupil accurately according to the 
following operator: 
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ds
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r yxryxr ∫∂
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π
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Suppose the coarsely localized center of the pupil is 1 1 1O (x ,y )  and the radius of 

the pupil is 1r . We generally may assure the actual center of pupil 0 0 0O (x ,y )  is in 

the rectangle area 1 1(x -N)<x<(x +N) , 1 1(y -N)<y<(y +N)  and the true radius of 

pupil 0r in the area m 0 1r < r <K r× , where N and mr are carefully selected by the 

resolution of the image and the experiment. We find through many experiments that if 

the size of image is 768*576 the best value is around N=20 , K=1.4 , r =20m . 

3.2   Finding the Outer (Limbus) Boundary of the Iris 

From Fig.1 we can also find that a part of the iris is usually covered by upper and 
lower eyelid. Thus we can't make the integral calculus by the whole circumference to 
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find the iris’s outer boundary. However, we can localize it by the gray difference on 
the arcs of the right and left canthus. So we choose the arc scope of right side canthus 

to be 0 0-45 < <+45θ and the arc scope of the left side canthus 0 0135 < <225θ . 
The iris’s outer boundary and inner boundary is usually not concentricity, and the 

pupil center is nasal and inferior to the iris center. So we need to relocate the center 
of the outer limbus. Because the distance is very small between the center of the 
pupil and the center of the outer limbus, we can search the center of outer limbus 
around the pupil’s center, which reduces the search scope and hence decreases the 
complexity of calculation. We also use the coarse-to-fine strategy. 

Fast Coarse Localization of the Outer Boundary 
Outer boundary localization is based on the above fine pupil localization. We localize 
outer boundary by magnify the change step of r. Denote the pupil’s center to be 

0 0 0O (x ,y ) and the radius to be 0r . Firstly, suppose 0 0 0O (x ,y ) is the center of 

outer boundary and then after localizing the arc of the left and right side canthus, the 

radius is in 0K*r <r<M . We get the radius of right arc 2r  and the radius of left arc 3r  

according to operator (6).  
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Set the average of 2r and 3r as the coarse radius of iris’s outer boundary 0R . It 

means that 0 2 3R =(r +r )/2  and the coarse coordinates of center of limbus 

are: 0 0O(X ,Y ) , where 0 0 3 2 X = x +(r -r )/2 , 0 0Y =y . In experiment we find that the 

best value is M =200, K=1.4, rΔ =9, if the size of image is 768*576. 

Accurate Localization of the Limbus 
After coarsely localizing the iris’s outside edge, find the outer boundary of iris 
accurately according to operator (1). The search scope for the center is 

0 0(X -A)<x<(X +B) , 0 0(Y -C)<y<(Y +D) , the radius scope is: 

0 0(R - r)<r<(R + r)Δ Δ , The search is processed on both left and right canthus 

synchronously. The distance is very small between the center of the pupil and the 
center of the outer limbus. We let A=2, B=4, C= 3, D=5 in our experiment. Finally, we 
can get the fine center and radius of outer boundary of iris. 

3.3   Finding the Upper and Lower Eyelid Boundaries 

From Fig.1 we can also find that the pixels between iris and eyelids have gray 
difference, If we use the Daugman’s algorithm to exclude the upper and lower eyelid 
by searching max difference of gray between the arcs, the eyelash will are withheld 
in the iris. Yet, iris complex pattern can contain many distinctive features. Moreover, 
the most distinctive features convergence is close to the inner boundary of the iris [18], 
and in theory [19] only 65% of the iris is quite enough for our recognition. so we can 
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remove the area of the iris which might be covered with eyelid. It doesn’t influence the 
result of recognition. In this thesis, we extract the iris as follows: Suppose the iris’s 

radius of inner boundary to be 1R  and the iris’s radius of outer boundary to be 2R .  

 

Fig. 2. The extracted area of the iris. R 1 is pupil’s radius and R 2 is iris’s radius of outer 
boundary 

In the left canthus, choose the iris in the scope 0 0225 < <315θ and 1 2R r R< < . 

In the right canthus, Choose the iris in the scope 0 045 < <135θ and 1 2R r R< < . For 

the area maybe covered with eyelid, Choose the iris in the scope 0 0225 < <315θ and 
0 045 < <135θ and 1 1 2R (R ) / 2r R< < + . This extracted area of the iris can be 

seen in the Fig.2. The black segment is the area of extracted iris. 

4   Experimental Results 

On a 1.9GHZ CPU and 256M EMS memory computer, our improved Daugman’s 
algorithm needs only 112 ms to localize the iris while the original Daugman’s 
algorithm needs 195ms. Fig. 3 illustrated the result of the localization by Daugman’s 
localization algorithm. We can see that many eyelashes are withheld in the iris. Fig. 4 
illustrated the result of the localization by our improved algorithm. We can see that 
the eyelash noises are excluded effectively. So the improvement method of 
Daugman’s algorithm can accomplish the iris recognition more rapidly and more 
precisely.  

After finding an iris in image, we use 2-D wavelet demodulation to achieve iris 
feature encoding [20][21]. Then using the simple Boolean Exclusive-OR test 
statistical independence [22], Hamming Distance (HD) as the measured of the 
dissimilarity between any two irises [23]. The end set the judge criterion of HD to get 
the result of recognition. 

We have token pictures of 500 eyes to do iris recognition experiments; 
Distribution of HDs from all 124750 possible comparisons between different pairs 
of irises is shown in Fig.5. 
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Fig. 3.The results of the iris localization by Daugman’s algorithm 

 

Fig. 4. The results of the iris localization by the improved algorithm  

 

Fig. 5. Distribution of HDs from all 124750 possible comparisons between different pairs of 
irises. The histogram forms a perfect binomial distribution with p=0.5 and N=249 degrees-of-
freedom, mean=0.451. 
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We set HD criterion to be 0.32 and the false accept rate is zero.  Indicating that 
the improvement method of Daugman’s algorithm can be applied to iris recognition 
very reliably. 

5   Conclusions 

In this paper we improved Daugman’s iris localization algorithm in two aspects. One is 
to localize the iris firstly by fast coarse localization and then by fine localization. The 
other is to exclude the area of the iris that might be covered by the eyelid. These 
improvements may make iris localization faster and more precise than the original 
Daugman’s algorithm. Our experiments have shown that the improved algorithm could 
be reliably used for iris recognition 
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Fire Detection with Video Using Fuzzy c-Means and 
Back-Propagation Neural Network 
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Abstract. In this paper, we propose an effective method that detects fire 
automatically. The proposed algorithm is composed of four stages. In the first 
stage, an approximate median method is used to detect moving regions. In the 
second stage, a fuzzy c-means (FCM) algorithm based on the color of fire is 
used to select candidate fire regions from these moving regions. In the third 
stage, a discrete wavelet transform (DWT) is used to derive the approximated 
and detailed wavelet coefficients of sub-image. In the fourth stage, using these 
wavelet coefficients, a back-propagation neural network (BPNN) is utilized to 
distinguish between fire and non-fire. Experimental results indicate that the 
proposed method outperforms other fire detection algorithms, providing high 
reliability and low false alarm rate.  

Keywords: fire detection, color segmentation, fuzzy c-means algorithm,  
back-propagation neural network. 

1   Introduction 

Fire detection becomes more and more appealing because of its important application 
in surveillance systems. Thus, it is very attractive for the personal security and 
commercial application. Several conventional methods were proposed to detect fire. 
However, most of these methods require a close proximity to the source of the fire 
and are based on particle sensors. Therefore, they cannot detect fire in open or large 
spaces and cannot provide additional information regarding the process of burning. 
To overcome these weaknesses, video fire detection is a suitable candidate.  

A lot of fire detection algorithms in video have been proposed. Most of these 
algorithms are based on the color pixel recognition, on motion detection, or on both of 
them. In [1], a dynamic analysis of flames with the growth of pixels using an 
RGB/HIS color model was used to check for the existence of a fire. However, the 
decision rule of this method is not good at distinguishing real fire regions from 
moving regions or noise since they measured the flame difference between only two 
consecutive frames. In [2] and [5], the boundary of flames was represented in the 
wavelet domain and the high frequency nature of the boundaries of fire regions was 
also used as a clue to model the flame flicker spatially, yielding good results. 
                                                           
* Corresponding author. 
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However, this algorithm was performed with a stationary camera, and it required high 
computational complexity despite of working in real-time. In [3], a new method of 
flame detection was proposed that use the pixel color properties of the flame. In [4], 
fire detection based on vision sensor and support vector machines was proposed. In 
this paper, a non-linear classification method using support vector machines and 
luminescence maps was proposed, showing robust results in several scenarios 
compared to features used earlier for flame detection. In [6], a probabilistic approach 
for vision-based fire detection was proposed. In this paper, a probabilistic model for 
color-based fire detection was utilized to extract the candidate fire regions. In 
addition, four parameters were extracted from the features of candidate fire regions, 
such as area size, surface coarseness, boundary roughness, and skewness. Moreover, 
Bayes classifier was used to distinguish between fire and non-fire. Some of the above 
algorithms were applied to the real system, achieving considerable successes. 
However, these algorithms have limited application and lacked enough robustness. In 
order to enhance the performance of fire detection, we proposed an effective four 
stage fire detection method that investigates characteristics of fire using an 
approximate median, fuzzy c-means, discrete wavelet transform, and back-
propagation neural network algorithms.   

The rest of this paper is organized as follows. Section 2 introduces the feature of fire. 
Section 3 represents the proposed four stage fire detection method. Section 4 discusses 
experimental results of the proposed method and compares the performance of the 
proposed method with other fire detection algorithms, and Section 5 concludes this paper. 

2   Features of Fire 

In practice, most fuels will burn under appropriate conditions, reacting oxygen from 
the air, generating combustion products, emitting light, and releasing heat. When fire 
appears, the color of fire usually range from red to yellow, and it may become white 
when the temperature is high. The size of area in the fire regions will be changed 
contingently from frame to frame. The surface and the boundary of the fire regions 
are usually rough and coarse.  

3   The Proposed Fire Detection Method 

The proposed fire detection method in video consists of four stages: (1) moving 
region detection using an approximate median method, (2) color segmentation of fire 
using the fuzzy c-means (FCM) clustering, (3) parameters extraction from the 
candidate fire regions using the discrete wavelet transform (DWT), and (4) fire 
identification using the back-propagation neural network (BPNN). In the following 
sections, the proposed fire detection method is presented in detail. 

3.1   Moving Region Detection 

The detection of moving regions is a fundamental key in video fire detection, which is 
the first stage of the proposed method. In this stage, an approximate median method is 
used to balance between the accuracy and the computational time [7]. 
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In the experiment, we utilized only the gray image. Let In(i, j) be the intensity value 
of the pixel at the location (i, j) in the nth video frame. The estimated background 
intensity value Bn+1(i, j) at the same position is calculated as follows: 
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where Bn(i, j) is the previous estimate of the background intensity value at the same 
pixel position. From (1), we observe that the background is updated after every frame. 
In this way, the background eventually converges to an estimate where half of the 
input pixels are greater than the background, and half are less than the background. 
Initially, B1(i, j) is set to the first image frame I1(i, j). A pixel positioned at (i, j) is 
assumed to be moving if: 
 

( ) ( ) TjiBjiI nn >− ,,                     (2) 

 
where T is a threshold that is picked by guesswork and experience. 

3.2   Color Segmentation of Fire Using the FCM Algorithm 

In practice, there are several objects in video which move along with fire such as 
people, vehicles, birds, cloud, and smoke. However, most the colors of these objects 
differ from the color of fire. Because of this fact, we take into account for the color 
segmentation of fire in this study. The basic idea in this stage is composed of two 
steps: (1) the pixels in the moving regions are distributed into groups and then (2) the 
groups having the similar color of fire are selected. To accomplish this, the well-known 
fuzzy c-means (FCM) is employed [8, 9]. In addition, since the RGB color space is not 
device independent and is deficient in enough robustness, the CIE LAB color space is 
used which is completely device independent and is the most effective for the physical 
vision with higher accuracy. The CIE LAB color components can be obtained by 
converting from RGB to CIE LAB [10]. It consists of three components L, A and B 
where L indicates the luminosity of pixels, A and B indicate the color of pixels. The 
chrominance components A and B are considered as an input for the FCM algorithm. 
The output of the FCM algorithm is the clusters of pixels in the moving regions. The 
steps followed by the FCM algorithm are listed as follows: 

1. Compute the number of groups c and initialize centroid V(0) = {v1
(0), v2

(0), ... , 
vc

(0)}.  
2. Compute the membership values uij for each data element using the following 

equation:  
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3. Update the centroid value vi as follows:  
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4. Evaluate the terminating condition { }( ) ( 1)
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Euclidean norm). The iteration stops when it is satisfied, otherwise go to step 2. 
5. Assign all pixels to each cluster according to the corresponding maximum 

membership values. 

In order to improve the accuracy of clustering, it is necessary to compute the 
precise number of clusters and the initial values of centroid in the clusters. To 
compute the initialization of the aforementioned parameters, we utilized the empirical 
method in [11]. The value of centroid of each cluster is compared with the color of 
fire. The clusters, with the values of centroid approximated to the fire color, are 
selected for processing in the next step of the proposed method. If there is no suitable 
centroid, it can be concluded that the objects in the moving regions are not fire. 

3.3   Parameter Extraction Using a Discrete Wavelet Transform 

In the previous step, we can select the candidate fire regions from moving regions. 
However, the candidate regions still can be fire or non-fire because there are several 
moving objects whose color is the same as the color of fire, such as vehicles, people, 
and the light of vehicles. Thus, we utilize the discrete wavelet transform (DWT) 
algorithm to extract special parameters of fire for distinguishing between fire and 
non-fire. In this step, the candidate regions are divided into a block of 16x16 pixels. 
We then apply the discrete wavelet transform for each block.   

Wavelets [12,13] are mathematical functions that decompose the data into different 
frequency components and study each component with a resolution matched to its 
scale. This is a fast, linear, and invertible orthogonal transform with the basic idea of  
 

 

Fig. 1. Multi-resolution wavelet decomposition, where L is low pass decomposition filter, H is 
high pass decomposition filter, ↓2 is down sampling operation, A1, A2, A3 are the approximated 
coefficients of the original signal S at level 1, 2 and 3, and D1, D2, D3 are the detailed 
coefficients at levels 1, 2, 3 
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defining a time-scale representation of a signal by decomposing it onto a set of basic 
functions, called wavelets. The discrete wavelet transform is based on sub-band 
coding. It gives a time-scale representation of the digital signal using digital filtering 
techniques. The wavelet transform decomposition is computed by successive low-
pass and high-pass filtering of the discrete time-domain signal [14]. The wavelet 
decomposition results in the levels of approximated and detailed coefficients. The 
algorithm of the decomposition of 3-level wavelet transform on the signal S is shown 
in the following Figure 1. 

The decomposition of k-level wavelet transform on the original image will be 
represented by (3k+1) sub-images. The output of DWT we received is the parameters 
[Ak, (Hi, Vi, Di)i=1…k], where Ak is a low resolution approximation of the original 
image, and Hi, Vi, Di are the wavelet sub-images containing the image details in 
horizontal, vertical and diagonal directions, respectively, at the i-level decomposition. 
In this study, we applied that k equals to 3 for each block, resulting in 10 sub-blocks. 
At each level, the sub-blocks after transformation contain information in the 
horizontal, vertical and diagonal directions. However, the use of all these coefficients 
as features is exhaustive and time consuming for processing. In order to reduce the 
number of features and give better representation, six derived features are calculated 
from the coefficients of the sub-bands. The chosen six features for each sub-block are 
arithmetic mean, geometric mean, standard deviation, skewness, kurtosis and entropy, 
resulting in 60 parameters for the three levels. These 60 parameters are used as an 
input to the classifier of neural network in the following stage. 

3.4   Fire Identification Using Back-Propagation Neural Networks 

For the final stage of the proposed fire detection method, the back-propagation neural 
network (BPNN) is utilized to distinguish between fire and non-fire, which is one of 
commonly used neural network models in the fields of image processing, such as 
preprocessing, feature extraction, image segmentation, object classification, pattern 
recognition [15]. BPNN is composed of an input layer, one or more hidden layer, and an 
output layer. It is fully connected between upper and lower layer, and no connections 
between neurons in each layer. The topology of BPNN is shown in Figure 2. 

 

Fig. 2. The topology of the back-propagation neural network, where x1, x2,…xn are input, y1, 
y2, …ym are output and w1, w2, …, wL are the weight matrix 
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During the training process, an input pattern or a set of patterns is presented to the 
network and propagated forward to determine the resulting signals at output units. The 
difference between the actual output and the desired output represents an error which is 
then back-propagated through the network in order to adjust the connection weights 
among artificial neurons in adjacent layers. Each weight is adjusted in proportion to the 
descent gradient of the sum of the squared errors, where the proportionality constant, η 
is called the learning rate. More detailed information of the training process is available 
at [16, 17]. 

In the previous section, for each sub-image of 16x16 pixels, the parameter vector 
whose dimension is 60 elements was extracted. This vector is used as an input vector 
of the BPNN. The dimension of BPNN’s output vector is 1. Therefore, we select the 
60-60-1 topology of BPNN as shown in Figure 3. The activation function, which is 
used in our proposed method, is log-sigmoid. Thus, the output value y of the network is 
constrained between 0 and 1. When y is close to 0, it means that the possibility of fire 
is low. On the other hand, when the output value y is close to 1, it means that the 
possibility of fire is high in the current sub-image. By observing several video clips, 
we make the following rule for fire or non-fire:  
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Fig. 3. The topology of the back-propagation neural network of the proposed method 

4   Experimental Results 

To evaluate the performance of the proposed fire detection method, we implemented 
the proposed method using MATLAB on a PC platform. The resolution of the 
selected movies is 320x240 pixels. With many simulations on several video clips, we 
selected optimal parameters for the proposed method as follows: the threshold T 
equals to 5, the exponent weight factor m equals to 2, the terminal condition ε equals 
to 0.001, and the learning rate η equals to 0.05. In addition, Daubechies second order 
moments (DB2) was chosen as mother wavelets for the discrete wavelet transform. To 
train back-propagation neural network, we simulated with several video clips which 
include fire or non-fire. The number of fire and non-fire samples is 25,000 and 
15,000, respectively. Figure 4 shows examples of test videos used in this study.  
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Movie 1 

 
Movie 2 

 
Movie 3 

Fire examples 

 
Movie 4 

 
Movie 5 

 
Movie 6 

Non-fire examples 

Fig. 4. Examples of test videos 

In addtion, we compared our proposed method with other four fire detection 
algorithms, called Algorithm 1 [3], Algorithm 2 [4], Algortithm 3 [5], and Algorithm 
4 [6] with the same test videos. Table 1 shows the performance comparison of the 
proposed method and other fire detection algorithms. The propsed method 
outperforms other algorithms in terms of consistantly increasing accuracy of fire 
detection with fire movies and decreasing an error rate of fire detection incorrectly 
with non-fire movies. The proposed method was also tested with several videos with 
the same result 

Table 1. Performance comparison of the proposed method and other fire detection algorithms 

Algorithm Accuracy (%) Error (%) 
Algorithm 1 93.72 3.42 
Algorithm 2 93.76 3.85 
Algorithm 3 94.27 2.63 
Algorithm 4 94.36 2.87 

Proposed Algorithm 94.86 2.58 

5   Conclusion 

In this paper, we proposed a novel approach for fire detection using FCM and 
BPNN. The proposed approach consists of four stages: (1) an approximate median 
method for detecting moving regions, (2) the FCM algorithm for selecting candidate 
fire regions from these moving regions based on the color of fire, (3) the DWT 
algorithm for deriving the approximated and detailed wavelet coefficients to be 
used as an input for the neural network, and (4) the back-propagation neural 
network for distinguishing between fire and non-fire. Experimental results showed 
that the proposed approach outperforms other state-of-the-art fire detection 
algorithms in terms of fire detection accuracy, providing a low false alarm rate and 
high reliability in open and large spaces.  
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Multiple Kernel Active Learning for Facial

Expression Analysis

Siyao Fu�, Xinkai Kuai, and Guosheng Yang

School of Information and Engineering, the Central University of Nationalities,
Beijing 100081, China

Abstract. Multiple Kernel Learning (MKL) approaches aim at deter-
mine the optimal combination of similarity matrices (since each repre-
sentation leads to a different similarity measure between images, thus,
kernel functions) and the optimal classifier simultaneously. However, the
combination of “passive” kernels learning scheme limits MKL’s efficiency
because side information is provided beforehand. A framework of Multi-
ple Kernel Active Learning (MKAL) is presented in this paper, in which
the most informative exemplars are efficiently selected by min−max al-
gorithm, the margin ratio is used for querying next instance. We demon-
strate our algorithm on facial expression categorization tasks, showing
that the proposed method is accurate and more efficient than current
approaches.

Keywords: Active Learning, Supervised Learning.

1 Introduction

Kernel based learning is arguably the most crucial issue concerned in the machine
learning field. Recent works [1, 2, 3, 4] have shown that using a sparse combina-
tion of multiple kernels can enhance interpretability of the decision function and
improve classifier performance. By specifying the coefficients for the classifier
and the weights for the kernels in a convex optimizing problem in linear case,
the algorithm searches for the linear combination of base kernel functions which
maximizes a generalized performance measure (see fig. 1 for systematic illustra-
tion), which is known as the multiple kernel learning (MKL) problem. However,
MKL is plagued by its inefficient learning procedure. During the training process,
labeling failure instances (common at early training stage) to create a training
set is overwhelmingly time consuming for the random sampling scheme for tra-
ditional, passive SVM used as classifier, thus, finding modified enhancement to
minimize the number of labeled instances for MKL framework is by no means
beneficial and necessary. Unfortunately, little works have been reported on that,
which is crucial for learning efficient classifier over large-scale dataset.
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University of Nationalities (Grant 98501-00300107) and Beijing Municipal Public
Information Resources Monitoring Project (Grant 104-00102211).
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Fig. 1. MKL framework [6]

So what is the alternative? A natural choice would be seeking the trade-off
between sparsity and efficiency, thus, we try to maintain the sparse essence of
the MKL while simultaneously reducing computational burden, facilitating the
learning procedure.

In this paper, we present an efficient approach for the multiple kernel learning
problem, active learning approach is introduced, particularly, a pool based active
learning algorithm for choosing which instances to request next in order to reduce
the learner’s need for large quantities of labeled data, and avoid the potential
poor performance for randomly selecting labeled training set. The experiment
results verify the effectiveness of our approach.

After submission of this paper, we learned about a related approach proposed
in [8], in which the MKL proposed in [4] and active learning approach had been
combined together to form a framework for image classification. However, the
main difference between our work and theirs lies in that we choose the MKL
structure proposed from [2], which has been reported gaining more efficiency
in learning, especially for large scale database, and we adopt pool based active
learning scheme (using margin ratio query method) from [5].

2 Overview of the Approach

In general, MKL falls into the category of finding sparse solution, which is being
regard as one of the hot topics of research interest in machine learning. And
active learning, in essence, seeks for the most informative sample during the
training procedure. A natural choice is to try the combination of both methods.
But doing so we still have to answer the three subsequent questions:

(1): What kinds of the MKL framework (with different regularization terms)
is the best and should be chosen?

(2): Is there an efficient algorithm for solving the problem?
(3): How is active learning combined with the learning procedure?
In the following section, our aim is to provide a satisfactory answer to the

above questions. We first give MKL learning framework, including the prime
problem and dual problem, then a detailed solution is presented. Finally, active
learning is encapsulated to the learning framework.
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Algorithm 1. The multiple kernel active learning algorithm
Input: Gram matrix K0, constraint matrices Ai

k = 1
β1

k = 1
M

for k=1,...,M
Define map P = arg min{||z − β||, z ∈ X}
repeat

for t = 1, 2, ... do
Solve the Active SVM with K =

∑
k βt

kKk (see algorithm 2)
Compute the gradient ∂J

∂βk
using standard method, for k = 1, 2, ..., M

βt+1
k ← βt

k + τtDt,k

Map to X we obtain
βt+1

k ← P (βt
k + τtDt,k) for map P

Find the step size τ for the direction Dt,k.
if stopping criterion then

break
end if
end for

until ‖βk‖ < ε

Fig. 2. (a) MaxMin Margin will query b. The two SVMs with margins m− and m+ for
b are shown. (b) Ratio Margin will query e. The two SVMs with margins m− and m+

for e are shown. See Tong’s work in [5] for a detailed illustration.

2.1 MKL Prime Problem

When dealing with multiple kernels, in [6] the primal model of MKL can be
formulated as follows,

min
1
2

(
K∑

k=1

||wk||2
)2

+ C

N∑
i

ξi (1)

s.t. yi

(
K∑

k=1

(wk, ψk(xi)) + b

)
≥ 1 − ξi, (2)

ξi ≥ 0.∀i ∈ 1, ..., N

for which multiple kernels Ki belong to different RKHS Hi. MKL is actually the
form of k(xi, xj) =

∑K
k=1 βkkk(xi, xj), where βi denotes the weights (positive)

associated with each kernel. So the problem can be reformulated as
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Algorithm 2. SVM with active learning scheme
Input: labeled dataset X, label set +1,−1, unlabeled instances pool U
Define active learner AL with three components (f, q, X)
Define classifier f : X → −1, +1, querying function q(X)
repeat

for i = 1, 2, ... do
V +

i = Vi ∩ {ω ∈ W |+ (ω · Φ(xi+1)) > 0}
V −

i = Vi ∩ {ω ∈ W | − (ω · Φ(xi+1)) < 0}
m+ ← radius of V +

i , m− ← radius of V −
i

Training AL using ratio margin function max min( m−
m+ , m+

m− )
if stopping criterion then

break
end if
end for

until ‖βk‖ < ε

min
fi,b,ξ,β

1
2

(∑
i

1
βi

||fi||2Hi

)
+ C

∑
i

ξi (3)

s.t. yi

(
m∑

i=1

fi(xi) + b

)
≥ 1 − ξi, ∀i ∈ 1, ...,m∑

i

βi = 1, βi ≥ 0, ∀i ∈ 1, ...,m

The non-negative parameter βi renders that the combined regularizer is convex,
and so the resulting kernel is positive semi-definite. ξ is slack variables for soft
margin. We refer the readers to [7] for the details of MKL.

2.2 Solving the Problem

The coefficients and kernel weights can be learnt by solving a joint dual opti-
mization problem as follows:

min max J = min max

⎛⎝−1
2

∑
i,j

αiαjyiyj

m∑
i=1

βiki(xi, xj) +
∑

i

αi

⎞⎠ (4)

with βi ≥ 0,
∑

i αiyi = 0, 0 ≤ αi ≤ C, ∀i ∈ 1, ...,m. Recall in the formulation
section the combined kernel K(x, y) takes the form of

∑
i βiKi(x, y), then it can

be seen as the standard SVM dual problem’s formulation, and can be solved by
any classical SVM algorithm. Detailed algorithm refers to [6] and algorithm 1.

2.3 Active Learning Scheme

As discussed earlier, MKL tries to find the sparse solution for the learnt ker-
nel weights, while simultaneously retaining computational burden, however, this
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do not always perform well, especially for the sample selection part in large-
scale tasks. During the training procedure, the conventional random training set
selection is plagued for causing labeling instances to create training set time-
consuming and costly. A natural choice would be the introducing the active
learning, which tackles the problem of finding the most crucial data in a huge
set of unlabeled examples so that the classification system maximizes the ben-
efit of the discriminatory capability given the label of that example. Since in
this paper we only explore categorization using MKL. Active learning strat-
egy is employed in this paper to make an optimal data selection through per-
forming limited number of queries. The motivation comes from Tong et al [6],
the max−min Margin approximation approach is adopted in the paper, the
idea is to query the unlabeled exemplar with the largest min(m+,m−) approx-
imated by choosing the instance with the largest margin ratio min(m−

m+ , m+

m− )
(m−,m+ stands for the margin obtained by adding point x as +1 or −1, re-
spectively.), see algorithm 2 for details. Fig.2 illustrates the two simple cases
(original max min margin and margin ratio, respectively, we choose latter for the
experiment ).

Fig. 3. Diagram showing the whole configuration of CUN face database
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3 Experiments

The experiment we consider here is the evaluation of the approach on a newly
created face database we have designed and constructed, namely, a large-scale
racially diverse face database, the CUN face database, which covers different
source of variations, especially in race, facial expression, illumination, back-
grounds, pose, accessory, etc. Details please refer to [7]. We choose a subset
which contains the typical facial expressions for categorization. For efficiency,
we limit the number of test images to 50 per class. 280 images from 7 categories
(typical facial expressions for 10 subjects) are mixed up to form the unlabeled
data pool for active learning. The remaining 70 images are used for testing.
The image is decomposed into sets of SIFT features, which is used as low-level
features, the dimensionality is reduced by PCA to 10.

The experiment investigates the overall categorization ability among tradi-
tional MKL and MKL with active learning. At the stage of active learning, we

Fig. 4. Sample facial expression and SIFT feature descriptor detection results. Note
that the most discriminative feature points are scatted around the eyes, mouth, nose,
all are essential for detecting facial expression variations.

Fig. 5. Empirical comparison results
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query and label 35 images (on average 5 samples for each of the 7 categories)
at each cycle in total 5 rounds. Fig. 5 shows that active learning based MKL
performs competitively with the original one and using active learning further
improves the performance. In fact we can see that a mean accuracy per class
close to a 82% can be obtained with just 20 labeled examples, whereas the non-
active learners achieve around 78% accuracy for the same amount of labeled
data, the difference may be attributed to the benefit of MKAL in selecting more
informative samples than the random selection in each round. This demonstrates
that active learning can provide a significant boost in accuracy, and makes it
possible for the case where labeled data are rare and expensive while unlabeled
data are relatively easy to acquire.

4 Conclusions

Kernel learning methods can be viewed as a computational shortcut which makes
it possible to represent linear patterns efficiently in high-dimensional feature
spaces to ensure adequate representation power. We observe that compared with
MKL using traditionally random sampling approach, the performance of MKAL
is satisfactory using less but specifically selected data with lower computational
burden as well. We conclude that the introduction of an active learning paradigm
for kernel based learning can optimally selects unlabeled test points for inter-
active labeling, with active learning small amounts of interactively labeled data
one can provide very accurate categorization performance.
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Abstract. Nowadays, a higher accuracy with lower time consuming detection 
method is required extremely. To achieve that, a moving target detection 
method based on gray correlation analysis and background subtraction is 
proposed in this paper. It mixes them together in order to improve the quality of 
the results. From the experiments, the method shows a much higher accuracy of 
detection and lower time consuming. In addition, the algorithm is insensitive to 
noise and the shadow, and can be used in real-time processing.  

Keywords: Real-time moving target detection, background subtraction, gray 
correlation analysis. 

1   Introduction 

In recent years, with the rapid development of computer technology, moving target 
detection has been more and more popular in military, bank management, traffic 
monitor and so on. It is the base of target recognition and tracking. Accuracy and time 
consuming are concerned. So, a good algorithm in moving target detection must have 
a higher accuracy of detection and a lower time consuming. 

Traditional methods, such as background subtraction, frame-to-frame differences, 
optical flow, are also used. But they have appeared many limitations. The background 
subtraction and frame-to-frame differences have a much lower time consuming, but 
lack of accuracy while the optical flow has a higher accuracy but spending a lot of 
time [1]. Wei Zhang, Q.M. jonathan use adaptive motion histogram to detect the 
moving vehicles [2]. It takes the advantage of the gray histogram information in order 
to find out the foreground picture. Li Yi, Zhengxing Sun mix the frame-to-frame 
difference method and background subtraction method together [3]. It has a good 
result of denoising. Aurelie Bugeau, Patrick Rerez use background modeling and 
background subtraction method to detect the moving object in complex environment 
[4] and its improved denoising method makes it be used in complex environment. 

Gray correlation analysis, which is first inferred by J. Deng, has been used in many 
areas for its superiority in lack of recognition researches. It has a high accurate result 
in edge detection [5] and moving target detection [6]. But it costs a lot of time to 
process. So, how to improve the time consuming is an important point in detection 
area using gray correlation analysis. 
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In this paper, a real-time moving target detection method is firstly proposed and 
studied. Based on background subtraction and gray correlation analysis, we can get a 
high accurate result with low time consuming. Because gray correlation analysis 
needs to calculate the degree of correlation from every pixel between background 
image and foreground image, it spends a lot of time. If we use background subtraction 
to detect the target first and then use gray correlation analysis to process the pixels 
that the gray levels are not zero (target or noise), we can accelerate the algorithm. For 
one hand, background subtraction decreases its time of processing. For another, gray 
correlation analysis ensures the detection accuracy. Therefore, a fast moving target 
detection method can be achieved. 

2   Method 

2.1   Gray Correlation Analysis Theory 

Gray correlation analysis (GCA) is a method that describes the variation trend of a 
system and makes a comparison [7]. Its aim is to find out the degree of correlation 
between each element. Then, catch the features of the elements accordingly. The basic 
idea of GCA is to figure out the similarity from the geometry of the data sequences in 
order to judge whether they are similar. 

The steps of processing using GCA are described as follow. First, establish the gray 
system. Ensure the features that are suitable for the objects. It is so important that it 
can impact the results good or not. Second, establish the reference sequences and 
comparison sequences. Then, find out the gray correlation coefficient. The gray 
correlation coefficient is defined by 

       

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
min min max max

,
max max

j i j ii j i j
j i

j i j i
i j

x k y k x k y k
x k y k

x k y k x k y k

ζ
δ

ζ

− + −
=

− + −
             (1) 

where ( )jx k  is the reference sequence. ( )iy k is the comparison sequence. ζ  is the 

resolution coefficient which is between 0 to 1 (normally is 0.5). At last, calculate the 
degree of gray correlation. We defined the degree of correlation between two systems 
or two elements by 

             

( ) ( ) ( )( ) ( )
1 1

1 1
, ,

N N

ji j i j i ji
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N N

γ γ δ δ
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= = =∑ ∑                        (2) 

where ( ),j ix yγ  is the degree of correlation. N is the length of the data.  

After having done these steps, we can get the degree of gray correlation between 
two elements. From the degree of gray correlation, we can judge whether the two data 
sequences are similar. 

2.2   Background Subtraction Method  

Background subtraction is widely used in engineering area recently. It can be used in 
real-time image processing. The idea of this method is to use the current image ( tI )  
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Fig. 1. The FGCA algorithm flow chat 

and background image ( B ) and then, find out the different area as its moving area. 
Background subtraction is defined by 
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,

0

t
t

if I x y B x y T
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                             (3) 
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Where ( ),x y
 
is the coordinate of the image matrix. ( ),tF x y is the foreground area 

(include moving object, cast shadow and other noise). T is the threshold (this paper 
uses OTSU method as its threshold method [9]). 

From Eq.3, we can see much clearly that the background subtraction method has a 
higher speed because of its simple algorithm. However, the quality of the result may 
be affected by threshold and the quality of the image. So, the detection may often 
have much noise. Also, this method couldn’t remove the cast shadow which caused 
by the moving target. 

2.3   Moving Target Detection Based on Gray Correlation Analysis and 
Background Subtraction 

Background subtraction [8], as we all know, is a fast method in moving target 
detection. But its detective accuracy is not good. Gray correlation analysis can 
achieve a good detection for its high accuracy and insensitive to noise. So, mix them 
together can get a much better detection not only in accuracy, but also in time 
consuming. 

Fig. 1 shows the whole detection processing flow based on gray correlation 
analysis and background subtraction (here, we called this algorithm as FGCA).The 
steps of moving detection algorithm based on gray correlation analysis and 
background subtraction is as follow: 

First, calculate the background image with accumulating the first 20 frames, getting 
the average result as its background image. 

Second, make a subtraction between background image and current image. Because 
background subtraction may have a low quality image if the original image is full of 
noise. Any gray level of pixel which is not zero is considered as the moving target or 
the noise. 

Then, use GCA to process these pixels in order to increase its accuracy (removing 
the noise including the shadow). After having finished this step, a degree of gray 
correlation image will be created.  

At last, a threshold algorithm (this paper use OTSU algorithm [9]) is used to 
segment. 

Therefore, we use not only GCA to make sure the accuracy of detection, but also 
background subtraction to decrease its time consuming. 

3   Experimental Results 

The video is taken indoors. There are 240*320 pixels in the images. We convert every 
RGB frames into gray-scale image and each pixel is represented by 256 gray-scales. 
This issue requires MATLAB environment.  

Due to moving target detection, we suppose the background image as its 
comparison image, the current image as its reference image. Fig.2 (a) shows the 
original background image and Fig.2 (b) displays the current image. The background 
image is captured by the first 20 frames (getting their mean image). 
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  (a) background image                                    (b) current image 

Fig. 2. The preprocessed background image and the current image 

First, use background subtraction to pre-detect. Fig.3 shows the result of this step. 

 

Fig. 3. Background subtraction pre-detection 

Second, use GCA to detect the target. Fig.4 shows the result of this step where 
Fig.4 (a) gives the gray correlation analysis degree image and Fig.4 (b) shows the 
thresh result. 

      

       (a)                                                             (b) 

Fig. 4. The threshold result of detection 

Fig.5 shows the comparison with other traditional methods in accuracy where GCA 
is the result using Li Nan’s method [6]. Fast Gray Correlation Analysis (FGCA) is the 
result using GCA and background subtraction. 
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    (a) GCA                                                (b) FGCA  

        

     (c) background subtraction                     (d) frame-to-frame difference 

Fig. 5. Comparison with traditional methods 

Table 1. Time consuming of each method (/s) 
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Fig. 5 illustrates that using the method this paper proposed is much clearer with a 
higher accuracy. Table.1 shows the time consuming of each method which has been 
mentioned above. 

From table.1, it gives the time of processing to each frame. We can see that using 
FGCA is faster than GCA. But it takes a little more time than background subtraction 
and frame-to-frame differences (because it gives up a part of time to increase the 
detective accuracy). The time of processing is nearly 20ms. So, it can be used in real-
time image processing. 

4   Conclusion 

The moving target detection based on gray correlation analysis and background 
subtraction is first proposed and studied in this paper. The method gives a much 
higher accuracy and lower time consuming. It can be used in real-time image 
processing. Also, from the result, we can see much clearly that the cast shadow can be 
removed and this method is insensitive to noise. But, this method doesn’t include the 
background adaption block. It couldn’t be used in the situation that the background is 
changing. Our further research is to find a proper background adaption algorithm to 
solve this problem. 
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Abstract. Nowadays, moving target detection plays an important part in our 
daily life. Time consuming and detective accuracy are concerned. Gray 
correlation analysis, which has been proved to be used in moving object 
detection, really has a high accuracy. But, this higher accuracy often brings cast 
shadow disturbance and it is always misclassified as part of moving target. In 
order to solve this problem, an efficient cast shadow removal method using 
Sobel edge detection algorithm in moving target detection is proposed in this 
paper. The experiments show this method can remove the cast shadow 
efficiently and it can be used in real-time processing. 

Keywords: Moving target detection, cast shadow removal, edge detection, gray 
correlation analysis. 

1   Introduction 

Shadow is popular in natural world. It is created by the light source which is kept out 
by object. Shadow may produce different effect on different computer vision areas. 
Some are advantages. For example, shadow can increase the stereoscopic impression 
and sense of reality in virtual reality or 3D games. But in most cases, it may bring a 
lot of disadvantages. In aviation imaging area, the existing cast shadow may influence 
the remote sensing of image processing, such as image matching, pattern recognition 
and physical extracting. In medical imaging area, shadow may influence the judgment 
of diseased image for doctors. In video monitor area, shadow may influence the result 
of moving target detection and leads to missing moving target in tracking area. So, it 
is necessary to analysis the shadow in moving target detection, weaken or even 
eliminate the shadow. 

In recent years, there are many achievements in cast shadow removal area. Elena 
Salvador put forward a proposal in using photometric color invariants to remove the 
cast shadow [1]. Because the invariant color features of image are not sensitive to the 
light, change the RGB space into any spaces that are not sensitive to light can 
eliminate the shadow. It is a fast algorithm. But single light source, the object and the 
shadow coexisting and smooth surface of the shadow area constraints the algorithm. 
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In Kobus Barnard and Martin D. Levine’s paper, they use color ratio feature to detect 
the shadow [2]. The algorithm is simple and efficient. It needs all the color ratio 
values although it is impossible. So, it leads some edges of shadow not be detected. 
G.D. Finlayson uses illuminant invariant image to detect the shadow [3] [4]. It can get 
a much complete edge in complex scenes. But it needs the photographic coefficient of 
the camera. Different camera may have different photographic coefficient. What’s 
more, he and C.Fredembach use one-dimensional integral based on Hamiltonian path 
to remove the shadow [5]. Using the algorithm can get a good result of shadow 
removal but with a high complexity.  

Gray correlation analysis really has a high accuracy in moving object detection [6]. 
Because of this, the cast shadow of the target also will be detected although it is not 
the real target. In this paper, we present a new method for cast shadow detection and 
removal in moving target detection. First, use gray correlation analysis to detect the 
targets (which contains the shadow). Then, use the method which this paper referred 
to remove the cast shadow. The method improves on increasing the degree of cast 
shadow detection with little time consuming. We can use it to not only detect the cast 
shadow, but also remove the shadow. Experiments on the video sequences show that 
our method has a much better detecting result in cast shadow removal and can be used 
in real-time processing. 

2   Method 

We set gray correlation analysis as its moving target detection algorithm. The 
algorithm is first inferred by Julong Deng. It has been widely used in security science, 
medical diagnosis and so on. Also, the gray correlation analysis has been used in 
image processing [6] [7] and shows a high accuracy.  

The method begins from the gray correlation analysis. First, use gray correlation 
analysis to get the gray correlation degree image. It is an image that shows the 
relation degree between the background image and the foreground image. So, the 
pixels which have a lower relation degree are the moving target. Figure.1 shows the 
gray correlation degree image. Figure.2 shows the threshold image using OTSU 
algorithm [8]. We can see there is so much cast shadow that is detected in figure.2. 

      

                          (a) original image                         (b) gray correlation degree image 

Fig. 1. Gray correlation degree image 
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Fig. 2. Threshold image 

Second, after getting the gray correlation degree image, we need to extract the 
contour of the moving target. There are so many edge detection algorithms, such as 
Robert algorithm, Sobel algorithm, Prewitt algorithm, LOG algorithm, Canny 
algorithm and so on [8]. The edge detection algorithm, we want, is to find the edge of 
target and not sensitive to the cast shadow. Sobel algorithm is the edge detection 
algorithm this paper is used. Its aim is to find the image edge information from 
horizontal direction or vertical direction. Because Sobel algorithm is a 3*3 
convolution kernel, it is good at the gray scale of pixels that are gradual change. In the 
gray correlation degree image, background is extremely weakened. But if we use 
other algorithms, the background can also be detected. After do some experiments, we 
select Sobel algorithm as its edge detection algorithm.  

Third, an edge connection is needed. This step gives service to fill the target. In 
order to fill the target, we have to connect the contour of the target.  

At last, fill the target with pure white (show the target area and remove the 
shadow).  

Figure.3 shows the flow of the method this paper mentioned.  

 

Fig. 3. Flow of the method 
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3   Experimental Results 

The video is downloaded from the Internet [10]. There are 240*320 pixels in the 
images, and each pixel is represented by 256 gray-scales. This issue requires 
MATLAB environment. 

First, we give the background image and the foreground image. Figure.4 (a) shows 
the original background image and Figure.4 (b) shows the current (foreground) image. 

   

                            (a)                                                                    (b) 

Fig .4. Background and foreground image 

Then, the result that Li Nan’s paper inferred is given [6]. Figure.5 shows the gray 
correlation degree image and its threshold image.  

    

                (a) gray correlation degree image                            (b) threshold image 

Fig. 5. Literature [6] result 

Third, use edge detection algorithms to detect the edge of the moving target. 
Figure.6 shows the results of this step. From the picture, we can see using Sobel 
algorithm is better than any other algorithms because it can detect the edge of the 
target and not sensitive to the cast shadow. So, we choose Sobel algorithm as its edge 
detection algorithm. 
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                                (a) Sobel                                                 (b) literature [7] 

       

                                 (c) LOG                                                     (d) Canny 

Fig. 6. Results of each edge detection algorithm 

Forth, edge connection. Figure.7 (a) shows the result. At last, fill the image. After 
have done this step, the cast shadow removal will be finished. Figure.9 (b) gives the 
result. 

     

                                 (a)                                                               (b) 

Fig. 7. The result of edge connection and filled image 
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From the result Figure.7 (b), we can see that the cast shadow is removed 
efficiently. The computer spends 0.382048s to run the whole steps. Figre.8 shows the 
comparison between the method this paper proposed and any other traditional 
method. Figure.9 gives the result corresponding to the original foreground image. 

     

                      (a) edge detection method                            (b) division method 

     

    (c) C1C2C3 space conversion method          (d) HSV space conversion method 

Fig. 8. The comparison between each method 

 

Fig. 9. Corresponding to the foreground image 
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4   Conclusion 

Today, cast shadow removal is a very hot research. How to remove the shadow 
efficiently and fast is concerned. In this paper, first, we use gray correlation analysis 
as its moving target detection method. Then, a cast shadow removal method using 
Sobel edge detection and morphological method is proposed. From the experiment, 
we can see that the cast shadow is removed efficiently and it can be used in real-time 
image processing. 

To use this method, we need to conduct gray correlation analysis method to detect 
the moving target first. It has a pretty good result in shadow removal. Also, we can 
see from Figure.8 (a) that there are some noises in shadow removal results. So, further 
research is to increase its accuracy of the algorithm and let this algorithm be used 
much robust. 
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Abstract. This paper proposes an efficient moving object detecting sys-
tem that detects moving objects in dynamic scene. The system con-
sists of three parts: motion saliency calculation, moving area extraction
and bounding box generation. We further analyze the the phase discrep-
ancy algorithm and use it to get the motion saliency map from adjacent
images. We use Canny-like salient area extraction algorithm to extract
moving segments from motion saliency map. We then use graph based
image segmentation algorithm to extend salient areas to bounding boxes.
Computer simulations are given to demonstrate the high performance in
detecting moving objects.

1 Introduction

Moving object detection in complex scenes is an important and challenging prob-
lem in computer vision. It is related to many applications such as object tracking,
traffic monitoring and robotics. There are many approaches to solve the prob-
lem, such as background modeling, detection by recognition, view geometry and
phase discrepancy.

The background substraction method is proposed under certain assumption,
such as a stationary camera. The main idea is to learn the appearance model
of the background [2] [3]. A moving object can not match the background well
in the scene captured by a stationary camera. However, this kind of approaches
don’t work well in the scene captured by a moving camera.

Some other approaches come from object detection and recognition. The al-
gorithm can detect moving object from particular categories, such as faces or
pedestrians [4], with pre-trained detectors. The algorithms usually require off-
line training and can only handle particular object categories.

Detecting motion from camera geometry is another kind of approach. This
method estimate the camera parameters under certain geometric constraints,
use there parameters to compensate for camera induced motion, and separate
the moving object from the residual motion in the scene [5].

Detecting moving objects in dynamic backgrounds using phase discrepancy
is a novel method proposed by Zhou et.al [1]. The method is based on 1). the
displacement of the foreground and the background can be represented by the

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 402–411, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Moving Object Detecting System with Phase Discrepancy 403

Fig. 1. An illustration of phase discrepancy with fast-moving object. A and B: Two
adjacent frames. C: The motion saliency map of A and B. The red box is the bounding
box of salient area.

phase change of Fourier spectra; 2). the motion of background objects can be
extracted by phase discrepancy in an efficient and robust way. The algorithm
does not rely on prior training on particular features or categories and can be
implemented in 9 lines of MATLAB code. The algorithm is very efficient, it is
a good choice for the implementation of an efficient moving object detection
system.

However, it is not an easy task to use the algorithm directly in a moving
object detection system for the following reasons.

First, the motion saliency map is generated using two images, the salient
area covers the areas of moving object in both images. The bounding box of
salient area is significantly larger than the object in each of the image if the
displacement of the object is large. As illustrated in Fig.1, the bounding box
covers the position of the moving car in both A and B, this leads to large False
Alarm Rate(FAR).

Second, the saliency map is a pixel based representation, it favors moving parts
of an object over the entire object [1]. Assume Ii−1(a) and Ii(a) are the intensity
of a pixel at position a in two adjacent frames. If the difference di−1(a) =
‖Ii(a) − Ii−1(a)‖ is small, the saliency value of position a is also small. Thus,
the most salient areas of saliency map are the edges on moving objects and
boundaries between moving objects and background. Salient areas cannot cover
the whole moving object in two situations: 1). The moving object is composed of
segments that have about the uniform intensity. As in Fig.2, many parts of the

Fig. 2. An illustration of phase discrepancy. A and B: Two adjacent frames. C: The
motion saliency map of A and B using phase discrepancy.
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right leg and upper body of the pedestrian are not salient. 2). The slow-moving
parts of a moving object is not salient. As in Fig.2, the left leg of pedestrian is
not salient though it is a part of the moving object.

From the discussion, we know that the extraction of moving objects from
the saliency map of phase discrepancy is not a trivial problem. We describe our
moving object detecting system in the following sections.

2 System Overview

Our moving object detecting system consists of three modules in general. They
are saliency map calculation, salient area extraction, and image segmentation.
As illustrated in Fig.3, the input of the system is two adjacent images. First,
the phase discrepancy module generates one motion saliency map from the two
adjacent input images. Next, Canny-like salient area extraction module extracts
the salient areas from the saliency map. And then we use the result of image
segmentation to connect different salient areas and generate the final bounding
boxes of moving objects. The detail is discussed in Sect. 3 and 4.

Fig. 3. Flowchart of the system

3 Canny-like Salient Area Extractor

Non-maximal suppression [6] is used in [1] to extract moving objects and generate
bounding boxes from saliency maps. However, it is not suitable for the task. In
this section, we first analyze the non-maximal suppression algorithm and then
explain our Canny-like salient area extractor.

3.1 Flaw of Non-maximal Suppression

Non-maximal suppression is used in [1], it has three parameters θ1, θ2 and θ3.
θ1 is the radius, θ2 is the threshold for seeds, θ3 is the binarizing threshold. All
the parameters have to be tuned properly to get good results. The parameters
was chosen using cross validation to minimize error in [1]. However, images are
only available on the fly in a real system and the noise caused by background
movement is indeterminable, it is difficult to get the proper parameters.
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Fig. 4. Illustration of non-maximal suppression in detecting moving objects from mo-
tion saliency map. A: Motion saliency map of a pedestrian. B: Salient points generated
by non-maximal suppression with large θ2. C: Salient points generated by non-maximal
suppression with small θ2.

As illustrated in Fig.4, the result is strongly affected by the parameters. If
θ2 is set too large, salient points will be sparse and may result in several small
bounding boxes that split the moving object into several parts. This also oc-
curs when different parts of the object are moving at different speed, such as a
pedestrian, because different parts of the moving object have different saliency
values. If θ2 is set too small, objects in background may be marked as moving
objects.

We have analyzed the non-maximal suppression algorithm in extracting mov-
ing objects from motion saliency maps. Clearly, it is not the best choice for the
task. So we designed the Canny-like salient area extractor, which performs better
in a real system.

3.2 Canny-like Salient Area Extraction Algorithm

Canny edge detector is a state-of-art edge detector proposed by Canny [7]. The
detector has four stages. The first stage is noise reduction. The detector uses a
first derivative Gaussian filter to blur the input image and suppress the noise.
The second stage is the finding of intensity gradient of the image. The detec-
tor use filters to detect horizontal, vertical and diagonal edges in the blurred
image. The third stage is to do non-maximal suppression on the gradient mag-
nitude to find the local maximal. The final stage is to trace the edges with
hysteresis.

The detector has three parameters: θc, tlow and thigh. θc is the the standard
deviation of the Gaussian filter used in the first stage. thigh is the high threshold
used in hysteresis to mark out the points that are surely on edges. tlow is the
low threshold used in hysteresis to trace the edges.

As discussed in Sect. 1, the boundaries related to moving objects have the
strongest saliency values. They are similar to edges in the Canny edge detecting
algorithm. The saliency values near the boundaries are smaller, but still larger
than most parts of background. So we can trace from the points on the bound-
aries to other parts of moving objects using hysteresis. We adopt the thought of
Canny edge detector and designed the Canny-like salient area extractor.
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Our extractor has three stages. The first stage is noise reduction, like Canny
edge detector, we use a first derivative Gaussian filter to blur the saliency map to
suppress noise. The second stage is the finding of local maximal. Non-maximal
suppression is used in this stage. Unlike Canny edge detector, our extractor do
not need direction information, so we use the intensity of blurred saliency map
directly instead of gradient magnitude. The final stage is to trace salient areas
using hysteresis.

Like Canny edge detector, the extractor needs three parameters: θc, thigh and
tlow. θc is the standard deviation of the Gaussian filter used in the first stage.
thigh is the high threshold used in hysteresis to mark out the points that are
surely on moving objects. tlow is the low threshold used in hysteresis to trace
the salient areas.

We denote the number of local maximal points having saliency values below
v by

H(v) =
∑
vi<v

N(vi) (1)

where N(vi) is the number of local maximal points that have saliency value vi.
We get the high threshold vh through{

H(vh) ≥ thigh ×Nl

H(vh − 1) < thigh ×Nl
(2)

where Nl is the number of all local maximal points. The local maximal points
above or equal to vh will be treated as points on the moving object, the collection
of them is denoted by Vh. We then get the low threshold through

vl = vh × tlow (3)

The points having saliency value above or equal to vl will be traced, the collection
of them is denoted by Vl.

The pseudo code of Canny-like salient area extractor is shown below. The
final salient segs is a integral matrix with 0 denotes background, other values
denote different salient areas respectively. The bounding box of each salient area
can be generated simply from the matrix.

function salient_area_extractor(salieny_map, theta, thigh, tlow)

salient_segs = zeros(saliency_map.size)

seg_label = 0

smoothed = gaussian_smooth(saliency_map, theta)

local_max = non_maximal_suppression(smoothed)

Vh = get_Vh() # Get Vh from (2)

Vl = get_Vl() # Get Vl from (3)

foreach vh in Vh:

if salient_segs(vh.position) == 0:

seg_label += 1

salient_segs(vh.position) = seg_label

follow(saliency_map, salient_segs, seg_label, Vl)

end if
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end for

return salient_segs

end function

function follow_segs(saliency_map, salient_segs, seg_label, vh, Vl)

foreach v near vh:

if v in Vl and salient_segs(v.position) == 0:

salient_segs(v.position) = seg_label

follow_segs(saliency_map, salient_segs, seg_label, v, Vl)

end if

end for

end function

4 Generation of Bounding Boxes

The Canny-like salient area extractor can extract many parts of salient area
from motion saliency map. However, the saliency values of some parts on mov-
ing objects are about the same magnitude with background. It is hard to extract
moving object as a whole with only saliency maps. We incorporate image segmen-
tation algorithm and use bounding box intersection to enhance the performance
of the system.

4.1 Connecting Salient Areas

As discussed in Sect. 1, the boundaries related to moving objects are likely to
have the largest saliency values. The smooth parts of moving objects are likely to
have smaller saliency values. It is possible that two salient areas are the different
boundaries of the same segment on the moving object. Inspired by this, we use
the result of image segmentation to connect different salient areas on the same
object.

Image segmentation is the process of partitioning a digital image into mul-
tiple segments. The goal of segmentation is to simplify and/or change the rep-
resentation of an image into something that is more meaningful and easier to
analyze [8]. There exists several general-purpose algorithms and techniques for
image segmentation, such as clustering method, compression-based method [10],
histogram-based method [8] [11] and graph partitioning method [9]. We choose
the Efficient Graph-based Image Segmentation algorithm [9] in our system. For
the algorithm is efficient while having good properties.

We define an salient area Ai connect to a segment Sm if there exists a point
p that p ∈ Ai and p ∈ Sm. We define two salient areas Ai and Aj are connected
if they connect to the same segment Sm or they are connected with the same
salient area Ak. A salient area can be connected with any number of other salient
areas.

We merge all the connected salient areas and generate the bounding boxes for
each merged area. Experiments show that our generated boxes cover the whole
moving objects in most cases.
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4.2 Refining Bounding Boxes

Although the bounding boxes generated using Canny-like salient area extractor
and image segmentation cover the whole moving objects in most cases, they are
not the best bounding boxes. As discussed in Sect. 1, the salient areas cover the
moving objects in both the images, so the bounding boxes often cover larger
area than moving objects and leads to large False Alarm Rate(FAR) with the
criterion of [1].

Let’s denote the ith input image by Ii, the saliency map generated from Ii

and Ii+1 by Mi, the salient area of Mi by Ai, the area of moving object in Ii

by Oi. We have Oi ⊂ Ai−1 and Oi ⊂ Ai. If the moving direction of the object
doesn’t change or changes smoothly, then (Ai−1 − Oi) ∩ (Ai − Oi) tends to be
∅, which suggests that Ai−1 ∩ Ai ≈ Oi. So we intersect the bounding boxes
generated from two adjacent motion saliency maps to produce more accurate
bounding boxes for Ii.

This approach dose not add much computational burden, because Mi and Ai

are used in the generation of bounding boxes of Ii+1.

5 Experiments

We introduce the experiments and results of our system in this section.

5.1 Experiment Setup

Phase discrepancy can detect moving objects when camera is moving. Many
existing databases such as PETS [12] and CAVIAR [13] consider less about the
situation. We choose the database and criterion introduced in [1]. The database
consists of indoor/outfoor scenes. Different categories of objects are included in
the video clip, such as walking pedestrians, cars and bicycles, and sport players.
The criterion use Detection Rate(DR) and False Alarm Rate(FAR) to evaluate
models. DR and FAR are defined by:

DR =
∑

i TPi∑
i GTi

FAR =
∑

i FPi∑
i TPi + FPi

(4)

where GTi,TPi,FPi denotes the number of ground truth, true positive, and
false positive bounding boxes respectively. A detection is true positive if:

Area(RGT ∩RD)
Area(RGT ∪RD)

≥ Th (5)

where RGT and RD denotes the ground truth and result generated by the algo-
rithm respectively, Th is a threshold defines the tolerance of a system [1].

As discussed in Sect. 3, Canny-like salient area extractor has three parameters.
θc affects the size of Gaussian filter, large θc causes more blurring. Small θc allow
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extraction of small salient areas. Since noise of saliency map are often spines and
salient areas are clusters that stand against smoothing, we use relatively large
θc to reduce noise.

thigh decides the number of seeds to be selected. Since the amount of salient
area is limited, we set thigh with a large value. Experiments show that the best
thigh is between 0.9975 and 0.9995. We use 0.999 in the comparing with other
methods.

tlow affects the size of each salient area. Small tlow leads to large area and False
Alarm Rate(FAR), large tlow leads to small salient area and Detection Rate(DR).
As discussed in Sect. 1, the saliency values of smooth parts on moving object
are slightly large than the background, so we choose a relatively small tlow, 0.3
for all the experiments.

The image segmentation module of the system has two parameters, σ is the
standard deviation of smooth filter, k is the constant to punish small segments
[9]. Image segmentation is only used to connect different salient areas of the
same object in the system. We find the parameters affect little about the fi-
nal result through experiments, so we use the suggested parameters mentioned
in [9].

5.2 Results

Fig.5 illustrates some results of our system. We can see that the bounding boxes
generated by our system is very close to the ground truth bounding boxes of
moving object.

We compare our system with the non-maximal suppression approach [1] with
different Th. Table 1 is the result of comparison. Results show the DR of our
system is about the as the non-maximal approach while FAR is smaller. When
Th is large (greater than 0.4), our system performs much better. This suggests
that our approach is more suitable for a real system, where large Th is needed.
[1] have shown that other kinds of popular approaches perform poorly compared
with non-maximal approach. So our system is also better than them in detecting
moving objects in dynamic scene.

Despite of having many modules, our system is efficient. It performs 5 frames
per second on a 2.2 GHz Core 2 Duo personal computer with image size 160×120.

Table 1. Comparison of different approaches

Th 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Our System
DR 0.85 0.82 0.76 0.71 0.65 0.57 0.47 0.37 0.27 0.15 0.00

FAR 0.03 0.05 0.12 0.18 0.25 0.33 0.42 0.54 0.68 0.83 1.00

Non-maximal Suppression DR 0.83 0.82 0.80 0.75 0.63 0.46 0.20 0.07 0.02 0.00 0.00
Approach [1] FAR 0.18 0.20 0.24 0.31 0.43 0.58 0.80 0.93 0.98 1.00 1.00
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Fig. 5. Sample results of our system. A,B,C: Three adjacent frames. D: Motion saliency
map of A and B. E: Motion saliency map of B and C. F: Salient areas of D. G: Salient
areas of E. H: Moving object, red box is the bounding box of F, green box is the
bounding box of G, yellow box is the final bounding box.
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6 Conclusion

In this paper, we proposed an efficient moving object detecting system. The sys-
tem use phase discrepancy to generate motion saliency map, Canny-like salient
area extractor and image segmentation to generate bounding box, rectangular
intersection to refine results. Experiments show that the system performs better
than existing approaches in the detection of moving objects in dynamic scene.
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Abstract. This paper describes a gesture recognition algorithm based
on the particle filters for automation of virtual interview system. The
particle filter is well operated for human gesture recognition than any
other recognition algorithm. Through the experiments, we show that the
proposed scheme is stable and works well in virtual interview system’s
environments.

1 Introduction

In this paper, we focused into the development of hand gesture recognition us-
ing particle filter. It is applied for virtual interview system automation. Particle
filter[1] is based on the Bayesian conditional probability such as prior distribu-
tion and posterior distribution. First of all, we expanded the existing algorithm[2]
to derive the CONDENSATION-based particle filter for hand gesture recogni-
tion. Also, we adopt the two hand motion model to confirm the algorithm perfor-
mance such as leftover and paddle. The overall scheme for the gesture recognition
system is shown in Figure1.

Fig. 1. Overall operation block diagram of recognition system
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2 CONDENSATION Algorithm

2.1 CONDENSATION Algorithm

The particle filter approach to track motion, also known as the condensation
algorithm [1] and Monte Carlo localisation , uses a large number of particles to
explore the state space. Each particle represents a hypothesised target location
in state space. Initially the particles are uniformly randomly distributed across
the state space, and each subsequent frame the algorithm cycles through the
steps illustrated in Figure 2:

Resampling

Convolution

Model Application

(Sampling)

Fig. 2. Process of particle filter calculation

1. Deterministic drift: particles are moved according to a deterministic motion
model (a damped constant velocity motion model was used).

2. Update probability density function (PDF): Determine the probability for
every new particle location.

3. Resample particles: 90with replacement, such that the probability of choos-
ing a particular sample is equal to the PDF at that point; the remaining
10throughout the state space.

4. Diffuse particles: particles are moved a small distance in state space under
Brownian motion.

This results in particles congregating in regions of high probability and dis-
persing from other regions, thus the particle density indicates the most likely
target states. See [3] for a comprehensive discussion of this method. The key
strengths of the particle filter approach to localisation and tracking are its scala-
bility (computational requirement varies linearly with the number of particles),
and its ability to deal with multiple hypotheses (and thus more readily recover
from tracking errors). However, the particle filter was applied here for several
additional reasons:

– it provides an efficient means of searching for a target in a multi-dimensional
state space.
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– reduces the search problem to a verification problem, ie. is a given hypothesis
face-like according to the sensor information?

– allows fusion of cues running at different frequencies.

2.2 Application of CONDENSATION for the Gesture Recognition

In order to apply the Condensation Algorithm to gesture recognition, we extend
the methods described by Black and Jepson [2]. Specifically, a state at time t is
described as a parameter vector: st = (μ, φi, αi, ρi) where: μ is the integer index
of the predictive model, φi indicates the current position in the model, αi refers
to an amplitudal scaling factor and ρi is a scale factor in the time dimension. Note
that i indicates which hand’s motion trajectory this φ∗, α∗, or ρ∗ refers to left and
right hand where i ∈ {l, r}. My models contain data about the motion trajectory
of both the left hand and the right hand; by allowing two sets of parameters, I
allow the motion trajectory of the left hand to be scaled and shifted separately
from the motion trajectory of the right hand (so, for example,φl refers to the
current position in the model for the left hand’s trajectory, while φr refers to
the position in the model for the right hand’s trajectory). In summary, there are
7 parameters that describe each state.

Initialization. The sample set is initialized with N samples distributed over
possible starting states and each assigned a weight of 1

N . Specifically, the initial
parameters are picked uniformly according to:

μ ∈ [1, μmax]

φi =
1 −√

y√
y

, y ∈ [0, 1] (1)

αi = [αmin, αmax]
ρi ∈ [ρmin, ρmax]

Prediction. In the prediction step, each parameter of a randomly sampled st

is used to st+1determine based on the parameters of that particular st . Each
old state,st , is randomly chosen from the sample set, based on the weight of
each sample. That is, the weight of each sample determines the probability of its
being chosen. This is done efficiently by creating a cumulative probability table,
choosing a uniform random number on [0, 1], and then using binary search to
pull out a sample (see Isard and Blake for details[1]). The following equations
are used to choose the new state :

μt+1 = μt

φi
t+1 = φi

t + ρi
t + N(σφ) (2)

αi
t+1 = αi

t + N(σα)

ρt+1 = ρi
t + N(σρ)
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where N(σ∗) refers to a number chosen randomly according to the normal dis-
tribution with standard deviation σ∗ . This adds an element of uncertainty to
each prediction, which keeps the sample set diffuse enough to deal with noisy
data. For a given drawn sample, predictions are generated until all of the pa-
rameters are within the accepted range. If, after, a set number of attempts it is
still impossible to generate a valid prediction, a new sample is created according
to the initialization procedure above.

Updating. After the Prediction step above, there exists a new set of N pre-
dicted samples which need to be assigned weights. The weight of each sample is
a measure of its likelihood given the observed data Zt = (zt, zt1 , · · · ). We define
Zt,i = (zt,i, z(t−1),i, · · · ) as a sequence of observations for the ith coefficient over
time; specifically, let Z(t,1), Z(t,2), Z(t,3).Z(t,4) be the sequence of observations of
the horizontal velocity of the left hand, the vertical velocity of the left hand, the
horizontal velocity of the right hand, and the vertical velocity of the right hand
respectively. Extending Black and Jepson [2], we then calculate the weight by
the following equation:

p(zt|st) =
4∏

i=1

p(Zt,i|st) (3)

where p(zt,i|st) = 1√
2π

exp
−∑ ω−1

j=0 (z(t−j),i−α∗mμ
(φ−ρ∗j),i)

2

2(ω−1) and where ω is the size
of a temporal window that spans back in time. Note that φ∗, α∗ and ρ∗ refer
to the appropriate parameters of the model for the blob in question and that
α∗m(μ)

(φ∗−ρ∗j),i refers to the value given to the ith coefficient of the model μ

interpolated at time φ∗ − ρ∗j and scaled by α∗ .

3 Gesture Model and Image Preprocessing

We adopt the two gesture model to verify the proposed particle filter. As shown
in Figure 3, gesture 1 means leftover and gesture 2 means paddle.

Right hand Starting PointLeft hand Starting Point

End

Right handLeft hand

End

A. Gesture 1 B. Gesture 2

Fig. 3. Two gesture model
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3.1 Raw Image Preprocessing

The image sequences were filmed using a Sony DCR Camcoder. They were man-
ually aligned and then converted into sequences of TIFs to be processed in MAT-
LAB. Each TIF was 320x240 pixels, 24bit color. The lighting and background
in each sequence is held constant; the background is not cluttered. The focus
of my project was not to solve the tracking problem, hence I wanted the hands
to be relatively easy to track. I collected 7 film sequences of each sign (see
Figure 4.)

Fig. 4. Gesture Images of the Two Models

3.2 Skin Extraction

In order to segment out skin-colored pixels, we used the color segment routine we
developed in MATLAB. Every image in every each sequence was divided into
the following regions: skin, background, clothes, and outliers. First of all, we
set up the mask using the gaussian distribution based on mean and covariance
value which is stored in the database. Then we segment the images into four
section above mentioned regions. So, we get the the segment of skin as shown in
Figure 5.

Origianal Image Skin Segment

Background Segment Clothes Segment

Fig. 5. Output of Segmentation



Automation of Virtual Interview System 417

3.3 Finding Skin-Colored Blobs

We then calculated the centroid of the three largest skin colored ’blobs’ in each
image. Blobs were calculated by processing the skin pixel mask generated in the
previous step. A blob is defined to be a connected region of 1’s in the mask. Find-
ing blobs turned out to be a bit more difficult than we had originally thought.
Our first implementation was a straightforward recursive algorithm which scans
the top down from left to right until it comes across a skin pixel which has yet
to be assigned to a blob. It then recursively checks each of that pixel’s neighbors
to see if they too are skin pixels. If they are, it assigns them to the same blob
and recurses. On such large images, this quickly led to stack overflow and huge
inefficiency in MATLAB.

3.4 Calculating the Blobs’ Motion Trajectories over Time

At this point, tracking the trajectories of the blobs over time was fairly simple.
For a given video sequence, we made a list of the position of the centroid for
each of the 3 largest blobs in each frame. Then, we examined the first frame in
the sequence and determined which centroid was farthest to the left and which
was farthest to the right. The one on the left corresponds to the right hand of
signer, the one to the right corresponds to the left hand of the signer. Then, for
each successive frame, we simply determined which centroid was closest to each
of the previous left centroid and called this the new left centroid; we did the
same for the blob on the right. Once the two blobs were labelled, we calculated
the horizontal and vertical velocity of both blobs across the two frames using
[(change in position)/time]. We recorded these values for each sequential frame
pair in the sequence. The example of the tracking is shown in Figure 6

Fig. 6. Tracking result using centroid calculation
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3.5 Creating the Motion Models

We then created models of the hand motions involved in each sign. Specifically,
for each frame in the sign, we used 5 training instances to calculate the average
horizontal and vertical velocities of both hands in that particular frame. The
following graphs show the models derived for both signs (see Figure 7:)

Fig. 7. Velocity of Model I

Fig. 8. The Tracking process of particle filter for the model 1(From left to right, top
to down)
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4 Experiment Result

To test the proposed particle filter scheme, we used two gesture model which
is shown in Figure 3 in this paper. The coefficient of particle filter are μmax =
2, αmin = 0.5, αmax = 1.5, ρmin = 0.5, ρmax = 1.5 to maintain the 50Also, the
other parameters are settled by σφ = σα = σρ = 0.1. The variable of ω equation
3 is 10.

5 Conclusions

In this paper, we have developed the particle filter for the gesture recognition.
This scheme is important in providing a computationally feasible alternative to
classify the gesture in real time. We have proved that given an image, particle
filter scheme classify the gesture in real time.
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Algorithm for Image Semantic Annotation 
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Abstract. In an image semantic annotation system, it often encounters the 
large-scale and high dimensional feature datasets problem, which leads to a 
slow learning process and degrading image semantic annotation accuracy. In 
order to reduce the high time complexity caused by redundancy information of 
image feature dataset, we adopt an improved affinity propagation (AP) 
algorithm to improve annotation by extracting and re-grouping the repeated 
feature points. The time consumption is reduced by square of repetition factor. 
The experiments results illustrate that the proposed annotation method has 
excellent time complexity and better annotation precision compared with 
original AP algorithms. 

Keywords: Information retrieval, Image semantic annotation, Clustering, 
Affinity propagation. 

1   Introduction 

For semantic annotation of natural images or human-activity images, in order to 
describe complex and elaborated image semantics, as many as possible images are 
required in most existing annotation systems. Because of both the image redundancy 
and image features redundancy, such as overlapping sampling and repeated 
emergence of similar image regions, it is very common there are a lot of repeated or 
near same image feature samples before applying vector quantization (VQ) 
techniques [15] to optimize training data in large datasets.  

For unsupervised annotation, each semantic label is considered as a variable. The 
annotation is treated as a joint probability modeling problem, with clustering 
representations of image features or words, such as N-cut based method [10] and 
cross media relevance models [11]. For supervised annotation, each semantic label is 
considered as a class. The annotation is regarded as a classification problem, which 
adopts clustering to get sparse representation or posterior probabilistic distribution of 
image features for each class, and some supervised learning techniques such as the 
divide and conquer strategy-based scene classifier [12], supervised multi-class 
labeling algorithm [13], and multi-class annotation using optimized training data [4] 
are applied to annotate the images. 
                                                           
* Corresponding author. 
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In both unsupervised and supervised annotation systems, clustering has become an 
important process to handle the huge number feature samples. Affinity propagation 
(AP) clustering algorithm has been validated powerful for image categorization and 
annotation [1][2][4], because of its excellent performance, such as automatically 
determining cluster number, and using similarity of data pairs instead of data values. 
Recently, weighted AP (WAP) [5][7] and AP with repeated points (APRP) [8] are 
developed to process large dataset with repeated points.  

Time consumption problem for large dataset has been studied, including following 
three aspects: (1) introducing prior knowledge such as sparse similarity matrix [6]; (2) 
divide-and-conquer strategy such as hierarchical method [7], partition method[9], and 
sampling techniques [3]; (3) vector quantization techniques [14], which is powerful 
especially for large and high-dimensioned data.  

In this paper, we study the problem to reduce time complexity based on vector 
quantization and APRP algorithm and analyze the performance of the algorithm for 
supervised image annotation. 

2   Image Annotation Using APRP 

Image semantic annotation can be regarded as a multi-class classification problem, 
which maps image features to semantic class labels, through the procedures of image 
modeling and image-semantic classification [4]. For image modeling, APRP is 
adopted instead of original AP (OAP) and WAP to process image feature dataset with 
repeated points. The algorithm flowchart is illustrated as in Fig. 1. 

 

Fig. 1. The algorithm flowchart 

2.1   OAP, WAP and APRP 

Brief reviews of OAP, WAP and APRP are given according to the literatures [1], [7] 
and [8], respectively. Repeated point is usually represented as (xi, ni), with datum xi 
and its repetition factor ni [7].  

AP algorithm is a graph-based message-passing clustering algorithm. Each data 
vector is viewed as a point in the graph, and real-value messages are recursively 
transmitted along edges of the graph until a relatively small number of exemplars and 
corresponding clusters emerge. The similarity s(i, k) is the negative distance square 
between datum i and j, and the self similarity s(k, k) is called preference. 

The responsibility r(i, k), which is sent from datum i to potential exemplar k, 
reflects the accumulated evidence for how appropriate datum k is the exemplar of 
datum i, considering other potential exemplars of datum i. The availability a(i, k), 
which is sent from datum i to potential exemplar k, reflects the accumulated evidence 
for how appropriate it would be for datum i to choose datum k as its exemplar, 
considering the support from other data that datum k should be an exemplar.  

The exemplar is determined by combing the availability and responsibility.  
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The main differences of OAP, WAP and APRP are at the message-passing, 
similarity and preference setting. These differences lead to that WAP and APRP treats 
repeated points as one point thus to reduce the time complexity, while OAP does not 
consider the repeated point problem. 

Frey and Dueck [1] set the initial a(i, k) as 0, then the r(i, k) and a(i, k) are 
iteratively updated:  
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OAP does not refer to the repetition factor ni of the datum i, therefore there should 
be ni copies of xi in the dataset for OAP. 

Zhang et al. [7] changed similarity and preference as:  

( ) ( ) jijis
i

njis ≠=     , ,,' . (5)

( ) ( ) ( ) 0    ,1,,' ≥−+= iiiniisiis εε . (6)

The formula (5) expresses the repetition factor ni of the datum i by changing the 
similarities from datum xi to all other data. However, if ni grows large, i tends to be 
dissimilar with all other data, which makes xi tends to be an isolated point. 

Yang and Guo [8] set the preference similar to formula (6) and change the 
objective function as: 

( ) ( ) ( )∑∑ ==
+= N

k k

N

i ii ccisncS
11

, δ . (7)

Where c is the clustering result that maps datum i to its exemplar, δ(c) is a function 
that will produce a large value if an exemplar does not choose itself as its exemplar, 
and S(c) is the summation of the similarity of all data and their exemplars, adding the 
penalty factor δ(c). 

The update rule of availability is changed as:  
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The formula (8) and (9) considers the repetition factor ni because of the summation 
operation. APRP does not change the similarity because the similarity is a distance-
like measure, which is not influenced by repetition factor. 

2.2   Applying APRP to Large Dataset 

Each image is divided into  sub-blocks of 8×8 pixels with overlapping margin. For 
each sub-block, discrete cosine transform is applied on each color channel, the 
coefficient values are quantized and zigzag scanned from left top to right down. The 
first 16 values are selected as the feature vector of this color channel. Then the three 
vectors from three color channels are concatenated as a 48-dimensional feature vector 
of the sub-block. Vector quantization algorithm [15] is adopted on the vector group, 
while the codebooks are trained once in the whole dataset and are fixed in each 
quantization process. 

The training set of each class label is composed with feature points from training 
images that has this label. APRP algorithm is adopted to get exemplars with 
automatically determined cluster number for each training set. The image feature 
distribution of each class label is estimated in the form of Gaussian mixture model 
(GMM) [4]. 

{ } { }( )xe aprp=k
, ( ) ( )

1

| , , | ,
K

k k k
k

P Nπ π
=

∑ = ∑∑x μ x μ , (10)

where {x} is the set of 48-dimensional feature vectors. Each feature vector is assigned 
an exemplar by APRP algorithm, which means all the feature vectors are clustered 
into K clusters. Each cluster {xk} has one exemplar μk=ek as the mean vector. The 
covariance matrix is Σk=cov({xk}) and cluster weight is πk=num({xk}). 

2.3   Image Semantic Annotation 

Bayesian classifier is adopted for image semantic annotation. The classifier is trained 
using training images which are manually pre-annotated with single class label.  

For each class label c, the re-grouping process collects repeated points from every 
image of this  label c and assign them into groups. Then APRP algorithm is applied 
on these groups, and the class distribution P(x|c,μc,Σc,πc) is computed hierarchically 
using the GMM image modeling method. 

For annotating a test image I, the Bayesian decision rule is adopted. For a given 
class c, the probability that the test image belongs to this class is the product of the 
probabilities that the image feature samples x belong to this class. 

( ) ( )∏
∈

∑=∑
Ix

,,,|,,,| cccccc cPcP ππ μxμI . (11)

By computing all class-conditional distributions P(I|c), the semantic annotation 
results for this image I can be obtained with the labels whose posterior probabilities 
P(c|I) are the top several large values [4]. 
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2.4   Performance Analysis of APRP 

Image annotation system usually processes many similar image regions, which 
increase the probability of forming repeated points after vector quantization of a large 
number of feature points. On consider this fact, it is expected that APRP-based 
annotation algorithm works well with the dataset with repeated points. 

Assuming the number of feature points is M and the number of repeated points is 
N, we count the repeated points as one point. N is less than the codebook length of 
vector quantization. The relationship between M and N is: 

∑
=

=
N

i
inM

1

. (12)

Where ni is the repetition factor of point i, M/N is the repetition factor of the whole 
group of feature points.  

In figure 2, the influence of repetition factor on clustering is illustrated. The 
distance criterion is the sum of similarities from data to their exemplars, and the sum 
of similarities from exemplars to their center, which is used to prevents that the 
cluster number becoming too large.  

∑∑
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i
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11
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When the M/N increases from 1.67 times to 3.00 times, the increase of similarity 
sum of WAP increase almost one time. The APRP performs the best among  three 
algorithms, and when repetition factor is more than 2.00, the performance of APRP is 
stable compared with WAP and OAP. 

 

Fig. 2. The repetition factor vs. corresponding distance criterion of clustering 

APRP algorithm greatly reduces the time consumption. AP algorithm repeatedly 
processes every copy of the repeated points. AP algorithm has the loop of comparing 
each point with other points, and its time consumption is M2/N2 times of APRP’s time 
consumption. 
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3   Experiments 

The annotation of natural images has become a difficult problem but a valuable 
benchmark to validate the image annotation algorithm. The performance of the 
proposed algorithm is evaluated in both the image modeling and annotation stages. 
The different image annotation method is compared with adopting the following 
clustering algorithms separately: OAP[1], WAP[7], APRP[8].  

3.1   Dataset and Criteria 

The images are selected from databases [18] and [19]. We select a subset of 2000 
images which contain seven labels: building, car, crossroad, grass, plant, road and 
sky. There are 628 single-label images (we name it DBS), and 1372 multiple-label 
images (we name it DBM). One multiple-label image usually contains two or three 
labels. Using these images, we set up two training and testing scenarios, as in table 1. 

Table 1. Two training and testing scenarios 

 Training Testing
Scenario1 2/3 DBS 1/3 DBS
Scenario2 DBS DBM

 
Each image is divided into some sub-blocks with size of 8×8 pixels, and the 

adjacent blocks overlap 2 pixels. We resize the image with the resolution 
300~500×300~500. A fixed code-vector number of 1000 is set up for vector 
quantization of each image. 

The image modeling criteria are sum of point-to-centroid distance [17], and the 
logarithm of likelihood [16], which are shown in formula (13) and (14), respectively.  

( ) ( )lik e lih o o d
x I

lo g | , , lo g | , ,
N

f P Pπ π
∈

= ∑ = ∑∑I μ x μ . (14)

The image annotation criteria are average recall and precise. For a given semantic 
class, we assume that there are wh human annotated images wauto computer annotated 
images in the test set, of which wc are correct, the recall and precision are defined as 
following: 

h

c

w

w
recall = , 

auto

c

w

w
precise = . (15)

3.2   Experiment Result Analysis 

In table 2, we compare the time consumption of annotating one image, OAP-based 
method is several times of that of WAP or APRP. The total annotation time in table 2 
contains clustering time. The time consumption is reduced by M2/N2 times. For 
example, if the repetition factor M/N is 3, the time consumption of OAP is nearly 9 
times of that of WAP or APRP. 
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Table 2. Time consumption of annotating one image 

Time (s) OAP WAP APRP

DBS 331.0 54.3 56.3
DBM 487.9 77.2 78.6

 
In table 3 and table 4, we compare the image modeling results of the three 

annotation systems, where the APRP-based method performs similarly even a little bit 
better than OAP, and much better than WAP.  

Table 3. Sum of point-to-centroid distance of image modelling in DBS and DBM 

fdistance OAP WAP APRP
DBS 24872 33515 24362
DBM 42238 48993 42626

Table 4. Logorithm of likelihood of image modelling in DBS and DBM 

flikelihood OAP WAP APRP
DBS -48.4 -56.6 -47.7
DBM -52.1 -73.6 -56.1

 
In table 5, we compare the image annotation result of the three methods. In 

scenario 1, we use single-label testing images to simulate image categorization tasks; 
in scenario 2, we use multiple-labels testing images to simulate image annotation 
tasks. 

Table 5. Image semantic annotation result 

Annotation Scenario 1 Scenario 2 
 OAP WAP APRP OAP WAP APRP 
Recall 85.7 75.3 88.5 74.5 67.8 75.2 
Precise 73.5 69.4 75.0 61.2 59.1 60.9 

 
The proposed APRP algorithm improves the accuracy of image annotation than 

WAP does, and it performs close to even higher than OAP. Considering the time 
consumption of OAP is several times of that of APRP, the proposed algorithm 
performs the best among the three algorithms for image annotation on large dataset. 

4   Conclusion 

On considering there exists redundancy information in image feature dataset, the 
performance of improved AP algorithm for image semantic annotation is analyzed in 
this paper. The redundancy information usually appears to be repeated points in the 
large feature datasets after vector quantization, we propose to adopt improved AP 
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algorithm to solve this problem. The image modeling accuracy is improved and time 
consumption in annotation is greatly reduced with APRP algorithm. The annotation 
precision approaches or even outperforms than the original AP algorithm, and is much 
better than that of WAP algorithm. For the case of repetition factor increases because 
of vector quantization, the performance of APRP algorithm is more stable compared 
with OAP and WAP. The proposed algorithm is promising on the effectiveness and 
response speed of the image semantic annotation. 
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Abstract. In this paper, we show how a nonlinear transformation can be ap-
plied to model the variance statistics of natural images resulting in a sparse dis-
tributed representation of image structures. A variance representation of the input
is learned from raw natural image patches using likelihood maximization. The
simulation results demonstrate that the model can not only learn new families of
basis functions, including multi-scale blobs, Gabor-like gratings and ridge-like
basis functions, but also captures more abstract properties of the image, such as
statistical similarity of regions within natural images. Moreover, in contrast to
traditional linear model, such as sparse coding and ICA, responses show only
very little residual dependencies.

Keywords: Natural Image Statistics, Variance Dependencies, Generalized
Gaussian Distribution, Receptive Fields.

1 Introduction

As humans, we can effortlessly differentiate between natural images and man-made
pictures or random noise images. When one naively tries to construct an image by
randomly assigning luminance values for each pixel, it is highly unlikely that the con-
structed random image appears to be a picture taken of a natural scene. This is because
the statistical structure of natural images differs profoundly from simple noise images
in that they show complex dependencies between luminance values at relative pixel lo-
cations. At the present stage, the true statistics of natural images is far from being well
characterized, and, due to its complexity, finding a compact statistical description of
natural images is difficult.

It is widely hypothesized that neurons in early sensory systems represent sensory
information efficiently [1,2]. Over the past twenty years, this theory has been applied
to derive efficient codes for the processing of natural signals. Independent component
analysis (ICA) [3,4] and sparse coding [5] have been developed to linearly transform
signals to a new representation in which individual components are as statistically inde-
pendent as possible. These methods derived basis functions that resemble the localized
receptive fields of simple cells in primary visual cortex when applied to natural im-
ages [5,6,7].

Most of these algorithms presume that the input signals are generated by a linear
mixture of independent source signals. For natural signals, however, this linearity as-
sumption is mostly not valid. Indeed, in case of natural signals the responses of such

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 429–436, 2011.
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linear filters still exhibit striking dependencies [8,9]. Apparently, these linear models
are not sufficient to capture the complex statistical structures of natural images. In par-
ticular, it remains an open question how to represent or model higher-order image struc-
ture. A number of more recent works attempt to model higher-order dependency by the
pooled magnitudes or exact values of the linear filters [10,11,12].

In this paper, we take an approach to encode the statistics of the input images that
is similar to hierarchical covariance model recently proposed by Karklin and Lewicki
[13]. In contrast to [13], we directly learn the variance representation of the natural
images. We assume that the joint probability of all pixel locations in natural images
factorize and that the luminance value distribution at each pixel location obeys the gen-
eralized Gaussian distribution (GGD). Using a maximum likelihood method, we show
that a distributed sparse representation can be learned directly from the raw natural sig-
nals, showing that the first linear ICA procedure in the hierarchical network of [12] can
be avoided. Our main finding is that when the variance representation is directly em-
ployed on natural images, new families of basis functions emerge, including multi-scale
blobs, Gabor-like gratings, and ridge-like basis functions. Our model thus naturally re-
produces the high diversity of receptive fields also found in visual cortex[14], which
were recently acquired by Rehn and Sommer [15] only if carefully fitting their sparse-
set coding model to biological data.

2 Model

In the learning methods we closely follow the procedure in [12]. However, in contrast to
their model which is designed to account for the residual dependencies of the responses
of an ICA model, we here assume that the intensity values xi of each pixel location i of a
natural image patch directly obey a generalized Gaussian distribution (GGD). The GGD
describes a family of probability distributions under the control of two parameters, σ
and β. The probability density function of the continuous random variable x of GGD
takes the form:

P (x;σ, β) =
β

2σΓ (1/β)
exp

(
−

∣∣∣x
σ

∣∣∣β)
(1)

where σ > 0 is the scale parameter, and β > 0 is the shape parameter. Note that for
β = 2, the GGD equals a Gaussian distribution, and for β = 1 a Laplacian distribution.

We here assume that the joint distribution of all input signals (pixel locations) x
factorizes, i.e. P (x|σ,β) =

∏
i P (xi|σ,β). However, there are striking dependencies

between pixel locations of natural images, especially in their variance. Thus, similar to
[12], we include these dependencies by assuming that σ, the scale of the variance for
the GGD, is modeled as a distributed non-linear transformation of N latent higher-order
variables s, which mediate these dependencies using basis functions A. In the neural
interpretation, s would be related to the neural responses and A to the receptive fields
of the neurons. Thus the variances σ of all M input channels (pixel locations) can be
written as

σ = c exp(As) (2)

where c =
√

Γ (1/β)/Γ (3/β) and Γ (·) is the Gamma-function.
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We assume that the joint distribution is factorizable. Then the input channels are
independent when conditioned on the variance basis function coefficients, P (x|σ,β) =
P (x|A, s,β) =

∏
i P (xi|A, s,β). We can therefore write for the joint probability of the

data x given the model parameters

P (x|A, s,β) =
∏

i

βi

2c exp([As]i)Γ (1/βi)
exp

(
−

∣∣∣ xi

exp([As]i)

∣∣∣βi
)

(3)

where [As]i represents the ith element of the vector As.
We further assume the neural activities s to be sparse and independent and

hence model their distribution with a Laplacian distribution, P (s) =
∏

j P (sj) ∝∏
j

1
2c exp(−∣∣ sj

c

∣∣) (obtained from generalized Gaussian distribution with βj = 1, and
variance σj = c).

Having established the model we would like to learn the model parameters A and s
from the input statistics by maximizing the mean log likelihood of the input data. The
goal is to find a set of basis functions, Â, such that Â = arg maxA 〈logP (x|A)〉.

To compute P (x|A), we approximate the integral over all possible neural states

P (x|A) =
∫

P (x|A, s)P (s)ds ≈ P (x|A, ŝ)P (̂s) (4)

with a single estimation at the maximum a posterior value ŝ, i.e. ŝ=argmaxs P (s|x,A).
Now, the objective function L is given by

L = logP (x|A) ≈ logP (x|A, ŝ)P (̂s)

∝ −
M∑
i=1

[As]i −
M∑
i=1

∣∣∣ xi

c exp([As]i)

∣∣∣βi −
N∑

j=1

∣∣∣sj

c

∣∣∣ (5)

where M is the dimension of the input data and N is the number of basis functions. The
basis functions can be learned by gradient ascent. The optimization procedure is divided
into two stages: (1) adapt the basis functions A (2) determine the coefficients s given
the input data x, while holding the basis functions fixed. Taking the partial derivative of
L, one can obtain the learning rules for the gradient ascent.

3 Learning and Results

We build the training set by randomly extracting 16×16 image patches from a standard
set of ten 512 × 512 natural images as in [5]. DC components were removed, and the
shape parameters βi were set to 1 for all i. The number of basis functions were set to
1024 achieving a four times over-completeness. The basis functions A are initialized to
Gaussian random values and the coefficients s are initialized to small random values.
We use a batch of 100 image patches to infer the MAP estimate ŝ using gradient as-
cent with fixed learning rate of 0.01 (depending somewhat on the type of data). After
convergence of the maximization of ŝ (about 50 steps), we update the basis functions
A once. After each update the length of all basis functions ai (the column of matrix A)
are re-normalized to unity.
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(a) Sparsenet (b) Sparse-set (c) Macaque (d) Our model

Fig. 1. Comparison of receptive fields (RFs) from three models and from recordings in monkey
primary visual cortex. Each panel displays 128 randomly selected cells, sorted according to the
shape. (a) RFs of the Sparsenet model [5]. (b) RFs of the sparse-set model [15]. (c) A Gabor fit to
experimental measured RFs in macaque primary visual cortex. (d) RFs structures learned by our
model. One notes the high diversity in RF shapes, including multi-scale-blobs, oriented Gabor
patches of different frequencies and ridge-like elongated Gabor patches. For better visualization
we have subtracted the background level of each RF (the median) and scaled the gray values.
Figures (b) and (c) are re-drawn from [15] with permission of the authors.

Fig. 1 shows the basis functions A learned on natural images (Fig. 1d). Our model
produces diverse families of basis functions that match the diversity found in nature
very well. We found multi-scale blob-like and non-oriented RFs (top several rows in
Fig. 1d), as well as Gabor-like RFs and elongated ridge-like functions (bottom rows). In
Fig. 1, our results are contrasted with the results of two other efficient coding models,
as well as compared to recordings from primary visual cortex in monkey [14]. The
displayed RFs were randomly selected from the models and from the experimental data.
One notes that the Sparsenet model of [5] only converges to localized Gabor-like RFs
with rather stereotypical form. In contrast, in the visual cortex RF structures are very
diverse: not only Gabor-like RFs of different spatial frequencies and elongations can
be observed, but also non-oriented blob-like RF appearances. This natural occurring
diversity is very similar to the learned basis function of our model. A recent study
by Rehn and Sommer [15] exhibit a similar diverse family of basis functions, when
adjusting a sparseness parameter in order to fit the RF shapes of the biological data
closer. However, note that we do not fit parameters to the RF shapes of biological data.
The structure of the RFs are directly inferred from the statistics of natural images.

3.1 Image Patches Classified by the Model Response

One feature of the proposed model is the emergence of a sparse representation of similar
statistical patterns in natural image patches. To show whether the model can represent
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Fig. 2. Selected image patches which highly activate a neuron corresponding to a particular ba-
sis function. Five types of basis functions are selected according to their typical shapes: low-
frequency, small blob, big blob, localized Gabor-patch, and ridge like appearance (left column).
Highly activating image patches are shown on the right. Each row on the right corresponds to
the basis function in the same row on the left. One notes that the structure of the image patches
correspond to the shape of the basis functions.

similarity of patterns in natural images, we look for image patches from natural images
that produce the greatest responses: for a given basis function ai, we search for image
patches that yield large values of the basis coefficient si (Fig. 2).

We selected five typical shapes of basis functions, namely low frequency structure,
small blob-like, large blob-like, Gabor-like and ridge-like basis functions. One can see
that the image patches which mostly activate a particular basis function display a high
luminance fluctuation (high contrast) in locations, where the absolute value of the ba-
sis function is high and a rather uniform luminance (low contrast), where the values of
the basis functions are near zero. Note that the basis functions (together with the coeffi-
cients) code for the estimated variance in the luminance values per pixel location but not
for the luminance value itself (as in traditional ICA models). Therefore image patches
similarly activating one basis function can show very different luminance values (see
right panel of Fig. 2 row-wise, some highly activating image patches are almost black,
others almost white).

3.2 Segmentation of Statistical Similar Regions in Natural Images

Since we approximate the luminance distributions of natural image patches, similar
variance structure in image patches will results in responses of similar neurons. If one
estimates the responses of the neurons for all local regions (16 × 16 pixels) within a
much larger natural image, objects (defined by a similar variance distribution of their
surface texture) therefore tend to segregate in the neural responses. In Fig. 3b we show
the identity of the maximal responsive neuron within randomly selected pool of 50 neu-
rons in color code. One notes that similar textures tend to be represented by similar
neurons, for instance regions containing the texture of tree bark (blue regions). In con-
trast, in the Sparsenet model edges of particular orientation are detected regardless of
the local statistical structure.

Because the proposed model approximates the variances of each pixel location, we
can infer the variance structure given a particular image patch: after learning the basis
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(a) original image (b) Our model (c) Sparsenet

Fig. 3. Segmentation of locally similar statistical structures in natural images. The responses of
our model are tuned to the structure of local luminance variations. Neurons therefore naturally
tend to segregate similar textures. (a) Original gray scale image (b) Identity of maximally re-
sponsive neurons in our model plotted in color code. One notes that the tree bark is very well
represented by only few neurons (blue region). (c) As in plot (b) but for the Sparsenet model [5],
many different neurons code for the tree. Edges but not textures are pronounced.

Fig. 4. Variance images. Upper row shows five example natural image patches (luminance im-
ages). The lower row displays the corresponding “variance images”, i.e. the estimated variances
of the generalized Gaussian distribution for each pixel location. Note that structure seen in the
luminance images are also present in the variance images albeit in a smoothed fashion.

functions A and calculating the MAP estimate of the responses ŝ to one particular im-
age patch, we can calculate σ according to equation 2. We call the variance estimates
for each pixel location the “variance image”. We found that the relative value of the
variances between pixel locations (as mediated by the basis functions) contain similar
structure as in the luminance values of the raw image patches (see Figure 4). However,
the variance image appears spatially smoothed. This smoothness has the advantage to
allow the model to generalize over image patches having roughly similar luminance
structure but differ in their fine details. This property is important for the ability to
segregate regions of similar local image structure from the background.

3.3 Conditional Distribution of Responses

Traditional ICA and sparse coding methods residual dependencies typically remain be-
tween filter responses after learning the basis functions on natural images, indicating
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(a) Our model (b) Sparsenet

Fig. 5. Conditional histograms of the coefficients si. (a) The conditional histograms between
six selected basis functions having typical RF shapes (shown in the left column) for all pair-
wise combinations. The residual dependencies of the responses are very low. (b) The conditional
histograms in case of the Sparsenet model [5] calculated on the same set of images. The residual
dependencies are much higher.

that a linear model is not able to extract all present structure from natural images. The
conditional dependencies typically have a “bowtie” shape [9] (see also Fig. 5). Fig. 5
shows the conditional histograms of typical basis functions in case of the Sparsenet
model [5] and for the proposed model. We have chosen six basis function having char-
acteristic appearance, however, conditional histograms are very similar for nearly all
learned basis functions. Note that we have selected two Gabor-like RFs in both models
that have almost identical structure, to allow a direct comparison between the two mod-
els (the forth and fifth row in Fig. 5a and Fig. 5b). It is apparent that the responses in the
proposed model are typically much less dependent, suggesting that more dependency
structure is extracted.

4 Discussion

We have demonstrated that modeling the variance statistics of natural images yields
nonlinear representations that are different from those obtained using linear generative
models. The resulting basis functions show a high diversity of RF shapes, including
Gabor-patches, multi-scale blobs and ridges. Moreover, in contrast to traditional ICA
or sparse coding methods, we found that neuronal responses exhibit much less residual
dependencies. This low residual dependency is in accordance with recent findings in
the visual cortex that single cortical neurons are mostly decorrelated [16].

Furthermore, our approach is quite general and not restricted to natural images. It
could also be applied to other types of structured signals such as auditory signals, gene-
sequences or texts, to learn a representation capturing abstract properties in the local
statistical structure of these signals. Presently, the shape parameter β is set to one, be-
cause we empirically found it suitable for DC removed natural images. For other types
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of data the shape parameter β might have to be changed. One possible extension of our
model would be to simultaneously infer the shape parameter β from the data.
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Abstract. Blind source separation and speech dereverberation are two
important and common issues in the field of audio processing especially
in the context of real meetings. In this paper a real time framework
implementing a sequential source separation and speech dereverberation
algorithm based on blind channel identification is taken as starting point.
The major drawback of this approach consists in the inability of the BCI
stage of estimating the room impulse responses when two or more sources
are concurrently active. To overcome the aforementioned disadvantage
a speaker diarization system have been successfully inserted in the ref-
erence framework to pilot the BCI stage. In such a way the identifica-
tion task can be accomplished by using directly the microphone mixture
making the overall structure well suited for real-time applications. The
proposed solution works in frequency domain and the NU-Tech software
platform has been used on purpose for real-time simulations.

Keywords: Blind Source Separation, Speech Dereverberation, Speaker
Diarization, Real-time Signal Processing, NU-Tech.

1 Introduction

The meeting scenario is one of the hardest situation to handle in the context of
audio signal processing. In such a situation the extraction of a desired speech
signal from mixtures picked up by microphones placed inside an enclosure can
be a difficult task. In a multiple input multiple output (MIMO) acoustic system,
the speech mixtures consist of a speech signal corrupted by the interference from
other co-existing sources and the echoes due to the reverberation produced by
multiple acoustic paths. Blind source separation (BSS) and speech dereverbera-
tion techniques are then required in order to retrieve the clean source signals.

In [1] a two stage approach leading to sequential source separation and speech
dereverberation based on blind channel identification (BCI) is proposed. A real-
time implementation of this approach has been presented in [2] and it is taken
as starting point in this paper. The major drawback of such implementation is
the inability of the BCI stage of estimating the room impulse responses (IRs) in
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presence of overlapping speakers. To overcome the aforementioned disadvantage
a speaker diarization system is inserted in the reference framework to steer the
BCI stage. Thus, the identification task can be accomplished by using directly
the microphone mixture making the overall structure well suited for real-time
applications in real world scenarios.

The proposed framework has been developed on a freeware software plat-
form, namely NU-Tech [3], which allows to efficiently manage the audio stream
by means of the ASIO interface with the PC sound-card and provides a useful
plug-in architecture which has been exploited for the C++ implementation. Ex-
periments performed over synthetic conditions at 8 kHz sampling rate confirm
the effectiveness and real-time capabilities of the aforementioned architecture
implemented on a common PC.

2 Problem Formulation

Let us assume having M independent speech sources and N microphones with
M < N ; the relationship between them is described by an M × N MIMO FIR
system. According to such a model and denoting (·)T as the transpose operator,
we can write the following equation for the n-th microphone signal:

xn(k) =
N∑

n=1

hT
nmsm(k, Lh) + bn(k), k = 1, 2, ...,K, n = 1, 2, ..., N (1)

where hnm = [hnm,0 hnm,1 . . . hnm,Lh−1]T is the Lh-taps impulse response be-
tween the m-th source and the n-th microphone (m = 1, 2, ...,M , n = 1, 2, ..., N)
and sm(k, Lh) = [sm(k) sm(k − 1) . . . sm(k − Lh + 1)]T . The signal bn(k) is
a zero-mean gaussian noise with variance σ2

b , ∀n. By applying the Z-transform,

the MIMO system can be expressed as

(
Hnm(z) =

Lh−1∑
l=1

hnm,lz
−l

)
:

Xn(z) =
N∑

m=1

Hnm(z)Sm(z) + Bn(z), n = 1, 2, ..., N. (2)

Our objective consists in recovering the original clean speech sources by means
of a proper source separation and speech dereverberation algorithms considering
in addition the presence of overlapping speakers.

3 Algorithm Description

The framework proposed in [2] consists of three main stage: source separation,
speech dereverberation and BCI. Firstly source separation is accomplished by
transforming the original MIMO system in a certain number of single input mul-
tiple output (SIMO) systems and secondly the separated sources (but still rever-
berated) pass through the dereverberation process yielding the final cleaned-up
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speech signals. In order to make the two procedures properly working, it is nec-
essary to know the MIMO IRs of the audio channels between the speech sources
and the microphones by the usage of the BCI stage.

As stated in the introductory section, the major drawback of this approach
leads on the inability of the BCI stage of estimating the IRs when two or more
sources are concurrently active. To overcome this disadvantage we propose to
include a speaker diarization system to steer the BCI stage. In such a way, the
new framework is able to detects which one of the source is actually speaking.
Using the information carried out by te speaker diarization stage the BCI will
perform the estimation of the IRs if the correspondent source is the only active
source. The block diagram of the proposed framework is reported in Fig.1 where
N = 3 and M = 2 have been considered.

Fig. 1. Block diagram of the proposed framework

3.1 Speaker Diarization Stage

In this section we report the description of a speaker diarization system designed
for real meeting, recently proposed in [4] and used in this contribution to steer
the BCI stage.

First of all a voice activity detector (VAD) is applied to each channel indepen-
dently in order to define the speech and non-speech frame. Let us denote xn(f, τ)
as the short-time Fourier transform (STFT) of xn(k) where f is the frequency
and τ is the frame index. The direction of arrival (DOA) is performed using the
generalized cross correlation method with the phase transform (GCC-PHAT):

q′nn′(τ) = argmaxq′
∑

f

xn(f, τ)x∗
n′(f, τ)

|xn(f, τ)x∗
n′(f, τ)|e

j2πfq′
(3)

where q′nn′(τ) is the time differences of arrival (TDOA) in between a microphone
pair n−n′. The DOA vector q(τ) is calculated by the TDOA information q′(τ),
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which consists of the q′nn′(τ) of all microphones pairs, and the given microphone
coordinate information D:

q(τ) = cD†q′(τ) (4)

where c is the propagation velocity of the signals, D is the microphone coordinate
information matrix and † denotes the Moore-Penrose pseudo-inverse. The DOA
vector can be written as

q(τ) = [cos θ(τ) cos φ(τ), sin θ(τ) cosφ(τ), sin φ(τ)]T (5)

where θ(τ) and φ(τ) are the source azimuth and the elevation respectively. The
speaker diarization output, i.e. the individual speaker periods Pk are determined
by clustering the estimated DOA at all speech frames τ in each speech period.

The previous description represents the basic speaker diarization method. In
order to overcome some problems with this approach in [4] were also proposed
three refined methods. Since the system cannot estimate multiple DOAs even if
there are some speakers in a frame, the GCC-PATH have been substituted with
a DOA estimation at each time-frequency slot (TFDOA). The second refinement
concerns the suppression of the noise influence using amplitude weights for the
DOA clustering procedure, while the third refinement employ a probabilistic
VAD to make more robust the speech/non-speech discrimination. The complete
description of the overall system with the implementation details and related
references can be found in [4].

3.2 Blind Channel Identification Stage

MIMO blind system identification is typically obtained by decomposing the
MIMO system in a certain number of SIMO subsystems in order to make the
problem tractable and use powerful algorithms to properly estimate involved
IRs. The solution can be achieved using different techniques among them we can
cite the subspace methods [5] and adaptive filters [6]. Considering a real-time
scenario the adaptive filter techniques are the most suitable. In particular the
so-called unconstrained normalized multichannel frequency-domain LMS (UNM-
CFLMS) [6] algorithm, which has been employed here, represents an appropriate
choice in terms of estimation quality and computational cost.

3.3 Source Separation Stage

In this section we brief review the procedure already described in [1] according
to which it is possible to transform an M × N MIMO system (with M < N)
in M 1 × N SIMO systems free of interferences, as described by the following
relation:

Ysm,p(z) = Fsm,p(z)Sm(z) + Bsm,p(z), m = 1, 2, . . . ,M, p = 1, 2, . . . , P (6)

where P = CM
N is the number of combinations. It must be noted that the SIMO

systems outputs are reverberated, likely more than the microphone signals due
to the long IR of equivalent channels Fsm,p(z). Related formula and the detailed
description of the algorithm can be found in [1].



Real-Time BSS and Dereverberation in Presence of Overlapping Speakers 441

3.4 Speech Dereverberation Stage

Given the SIMO system corresponding to source sm, let us consider the poly-
nomials Gsm,p(z), p = 1, 2, . . . , P as the dereverberation filters to be applied to
the SIMO outputs to provide the final estimation of the clean speech source sm,
according to the following:

Ŝm(z) =
P∑

p=1

Gsm,p(z)Y ′
sm,p(z). (7)

Typically optimal filtering is considered, as done in [1], but also adaptive solu-
tions can be employed. The same iterative solution presented in [7] and adopted
in [2] is still used here to achieve a real-time implementation of the overall
algorithm.

4 Real Time Implementation

This section is devoted to show how the entire framework has been implemented
in real-time within the Nu-tech platform [3]. NU-Tech allows the developer to
concentrate on the algorithm implementation without worrying about the in-
terface with the sound card. The ASIO protocol is also supported to guarantee
low latency times. NU-Tech architecture is plug-in based: an algorithm can be
implemented in C++ language to create a NUTS (NU-Tech Satellite) that can
be plugged in the graphical user interface. Inputs and outputs can be defined
and connected to the sound card inputs/outputs or other NUTSs. To achieve a
more optimized and efficient code, all the NUTSs are written by using the Intel�
Integrated Performance Primitives (Intel� IPP). In Fig.2 is shown the global
scheme of the various plug-in and their interconnection used for testing ses-
sions. Five main NUTSs have been developed on purpose, four corresponding to
the main stages of the algorithmic architecture (i.e. SPEAKER DIARIZARION,
BCI, SEPARATION, DEREVERBERATION ) and one devoted to performance
evaluation (EVALUATION ).

The speech signals loaded in FileRead(0) are mixtures captured by the micro-
phones and are the inputs for SEPARATION, SPEAKER DIARIZARION and
the two BCI NUTSs. The latter take as input the speaker diarization result also
in order to provide the IR estimates, the corresponding NPM values (see section
5.1 for proper definition) and value of cost function for each frame. IR estimates
are then used by SEPARATION, DEREVERBERATION and EVALUATION.
Signals delivered by SEPARATION feed DEREVERBERATION which pro-
vides the clean speech estimates. At each stage, the output signals are used by
EVALUATION together with the original sources (loaded in FileRead(1-2)) for
performance evaluation. The block ADelay(0-1) has been inserted to properly
align original and estimated speech signals and therefore guarantee the cor-
rect performance calculation. Nu-Tech built viewers are used to visualize all the
quality indexes described in section 5.1. Through the Switch blocks the user can
decide which audio signal send to the PC loudspeakers.
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Fig. 2. Nu-Tech setup

5 Computer Simulations

Some computer simulations have been performed to prove the effectiveness of
the proposed solution, both in terms of separation/dereverberation performances
and also real-time processing capabilities.

5.1 Experimental Setup and Performance Indexes

The setup depicted in Fig.3 has been considered in our test sessions. It consists
of two independent speech sources (1 male and 1 female) sampled at 8 kHz and
three microphones arranged in a triangle configuration. MIMO IRs have been
generated using the tool RIR Generator [8] with all FIR filters of 256-sample
long and reverberation time set to T60 = 310 ms. It is important to note that
the separation angle between the sources is set to α = 120◦. This angle was
chosen according to the experiment conducted in [4] and related works. To better
understand ad illustrate the behaviour of the proposed framework two proper
source signal have been constructed. In our simulations no additive noise has
been considered. The mixture are constructed in such a way all the possible
situations are considered.

As in [1] some quality indexes have been used to evaluate the algorithm per-
formances. They have been calculated in real-time through the dedicated NUTS.
First we have the signal to interference ratio (SIR) related to the n-th micro-
phone, defined as:

SIRin
n

.=
1
M

M∑
m=1

E{[hnm ∗ sm(k)]2}∑M
i=1,i�=m E{[hni ∗ si(k)]2} . n = 1, 2, . . . , N (8)
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Fig. 3. Room setup (coordinate values measured in meters)

The overall SIR is the average over all microphones. The SIR after the separation
stage is defined analogously. Let us note φp,ji(p = 1, 2, . . . , P, i, j = 1, 2, . . . ,M)
as the IR of the equivalent channel between the i-th input and j-th output of
the p-th subsystem. The output SIR for the p-th subsystem is therefore defined
as:

SIRout
p

.=
∑M

i=1 E{[φp,ii ∗ si(k)]2}∑M
j=1

∑M
i=1,i�=j E{[φp,ji ∗ si(k)]2} . p = 1, 2, . . . , P (9)

Global output SIR is the average over all P subsystems. Comparing the global in-
put and output SIR allows us evaluating the separation stage effectiveness. Then
the well-known Itakura-Saito distance (dIS) has been used to evaluate the speech
distortion after the separation and dereverberation stages. It is is calculated on
a frame-by-frame basis and the global dIS value will be the average over all
frames. In our real-time implementation two global dIS values are considered, at
the output of the separation and dereverberation stages. Finally, to evaluate the
BCI algorithm performances the normalized projection misalignment (NPM) has
been used: NPM(k) = 20 log10 (‖ε (k)‖/‖h‖), where ε(k) = h − hT ht(k)

hT
t (k)ht(k)

ht(k)
is the projection misalignment, h is the real IRs vector whereas ht(k) is the
estimated one at k-th iteration (i.e. the frame index).

5.2 Real Time Simulations

Three different configurations of the framework have been considered in order to
view the benefit arising from the introduction of a speaker diarization system.
In the fist configuration no speaker diarization system have been included and
the BCI stage performs the IRs estimation using the reverberated version of
the source signals and not the microphone mixtures. This configuration has
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been exhaustively studied in [2] and reported here, with a different setup, for
comparison purpose. The second configuration considers a system where the
BCI is performed directly using as input the microphone mixtures without the
usage of a speaker diarizazion system, while the third configuration implement
the proposed framework whose block diagram and Nu-Tech configuration are
depicted in Fig.1 and Fig.2 respectively.

In Fig.4 and Fig.5 are showed the obtained NPM values for the male and
female source signal considering the first configuration. It can be notice that
if the IRs estimation is performed using the reverberated version of the source
signals and not the microphone mixtures, no problem are encountered during
the estimation procedure and final NPM values are low enough to guarantee
that successive stages can work properly.

For the second configuration the NPM curves are depicted in Fig.6 and Fig.7.
When the BCI stage takes as input the microphone mixture the estimation is
very poor since there are speech period where the two sources are concurrently
active. The initial trend visible in Fig.7 is achieved since at the beginning of
input signal only the female source is active but when the male source is also
present, the performance rapidly decay. This means that the separation and
dereverberation stages perform the required operation in a wrong way.

Fig.8 and Fig.9 show the NPM curves for the proposed architecture. In this
case, the BCI stage is steered by the speaker diarization system and the IRs
estimation is performed if the correspondent source is the only active source.
It is possible to see that the NPM curve show the right trend and since the
identification operation is not performed if an overlap period is detected the
UNCFMLS do not suffer of misconvergence problem. On the other hand, com-
paring this results with the one obtained for the first configuration it can be
notice that the convergence speed of the identification algorithm decrease if the
speaker diarization stage is used.

In table Tab.1 is reported the comparison between the indices of performance
evaluation averaged over all processed frames for the three different configura-
tions1. The obtained results show that the introduction of the speaker diarization
system decrease the performance with regard to configuration 1 but allow the
system to deal with the overlapped speaker. The small decrease in performance
is attributable to the error occurring in the speaker diarization result. In fact
if a speaker error is commited or a false speaker time is detected the IRs are
wrongly estimated. In addition in the case of missed speaker time, the BCI stage
do not perform the identification even if only a source signal is active thus de-
creasing the convergence rate. Finally, it is important to note that, the real-time
simulation has been conducted on a common end-user PC (Intel�Core2 Duo
1.83GHz, 2GB RAM) with Windows 7 32-bit operating system. The percentage
of time the threads of the process used the processor is 52% including the Nutech
application overload, showing a not heavy computational load.

1 The values of SIR are computed only in the frame where the sources are concurrently
active.
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Fig. 5. NPM for source 2 (configuration 1)
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Fig. 6. NPM for source 1 (configuration 2)
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Fig. 7. NPM for source 2 (configuration 2)
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Fig. 8. NPM for source 1 (configuration 3)
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Fig. 9. NPM for source 2 (configuration 3)

Table 1. Comparison of performance of the source separation (SS) and speech dere-
verberation (SD) for the different configuration

SIRin (dB) SIRout (dB) dSS
IS,s1 dSS

IS,s2 dSD
IS,s1 dSD

IS,s2

Configuration 1 10.27 47.22 1.96 2.23 0.24 0.27

Configuration 2 10.27 30.10 7.22 7.02 1.10 1.10

Configuration 3 10.27 40.82 3.12 2.85 0.31 0.37
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6 Conclusions

In this paper a real-time implementation (within the PC-based NU-Tech soft-
ware) of a framework for the multichannel joint speech separation and dere-
verberation is proposed. A speaker diarization have been included in order to
make the overall structure able to deal with overlapping speakers. Simulation
results show the effectiveness of the proposed approach both in terms of quality
of IRs estimation and separation/dereverberation capabilities. The insertion of
such a speaker diarization system makes the overall solution well-suited for a
real meeting scenario. As future works, the case of additive noise will be in-
vestigated, together with the possibility to use different identification algorithm
in order to make the framework more robust to the speaker diarization error
improving the overall quality of the audio outputs. Different room setup with
smaller separation angle will also be taken into account.
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Abstract. In this paper, we present a noble method to segment and classify 
audio stream using a temporally weighted fuzzy c-means algorithm 
(TWFCM). The proposed algorithm is utilized to determine the boundaries 
between different kinds of sounds in an audio stream; and then classify the 
audio segments into five classes of sound such as music, speech, speech 
with music background, speech with noise background, and silence. This is 
an enhancement on conventional fuzzy c-means algorithm, applied in audio 
segmentation and classification domain, by addressing and reflecting the 
matter of temporal correlations between the audio signals in the current and 
previous time. A 3-elements feature vector is utilized in segmentation and a 
5-elements feature vector is utilized in classification by using TWFCM. 
The audio-cuts can be detected accurately by this method, and mistakes 
caused by audio effects can be eliminated in segmentation. Improved 
classification performance is also achieved. The application of this method 
is demonstrated in segmenting and classifying real-world audio data such as 
television news, radio signals, etc. Experimental results indicate that the 
proposed method outperforms the conventional FCM.  

Keywords: Audio segmentation and classification, fuzzy c-means algorithm, 
database retrieval. 

1   Introduction 

Recently, the spread of high speed access of multimedia signals and applications have 
created demands for databases and summarizing system as well as classify signals [1]. 
For these purposes, the audiovisual materials must be segmented and indexed with 
labels to represent its contents. A number of methods have been proposed for audio 
segmentation and classification [2]. Conventional methods utilize threshold 
processing to audio features, such as zero-crossing rate and energy of signal, to detect 
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the abrupt changes in the audio stream, which are called the boundaries of audio 
segment (audio-cuts) [1]. These methods could cause misclassification of audio that 
contains sound effects such as fade-in, fade-out, cross-fade, etc. A robust data 
clustering method is the fuzzy c-means (FCM), which can detect audio-cuts 
accurately even if the audio signal contains fade-in, fade-out and cross-fade [3]. By 
applying FCM clustering, the possibility of the existence of audio-cut can be 
represented as a real value between 0 and 1, thus addressing the issues of sound effect 
in audio cuts. All possible audio-cuts can be detected efficiently in this way. Further, 
FCM clustering method subdivides the audio-segments into five audio classes: 
silence, speech, music, speech with music background, and speech with noise 
background. These classification results are utilized for the performance evaluation of 
audio signal segmentation and classification. However, the conventional fuzzy c-
means algorithm considers each point of data as an independent object without any 
correlation [4]. In addition, this algorithm ignores the impact of neighboring data 
points to its membership value and center value of each cluster, though the data 
elements in an audio stream are temporally correlated with each other. When the data 
elements are correlated then, the membership of each element for segmentation or 
classification is caused by its membership and the memberships of neighboring 
elements which depend on their distances to the considered data element [5]. 

In this paper we propose a temporally weighted fuzzy c-means algorithm 
(TWFCM) algorithm to detect audio-cuts and segment audio signals. The proposed 
TWFCM algorithm utilizes important correlation information between the 
neighboring segments and the center segment. For example, if all the neighbors 
around a data point in an audio signal are in the same cluster, then the center point has 
higher possibility to belong to this cluster. To improve the performance of audio 
classification, we also utilize the TWFCM. To evaluate the performance of audio 
classification using the proposed TWFCM algorithm, we employ the state-of-the-art 
cluster validity functions. Experimental results indicate that the proposed algorithm 
outperforms the conventional FCM in terms of audio segmentation and classification.  

The remainder of this paper is divided into three sections. Section 2 describes the 
background information regarding to the conventional FCM and cluster validity 
functions. Section 3 introduces audio segmentation and classification using the 
proposed TWFCM algorithm, and Section 4 presents experimental results of the 
proposed TWFCM in comparison with the traditional FCM. Finally, Section 5 
concludes this paper. 

2   Background Information 

2.1   Fuzzy c-Means Algorithm for Audio Segmentation and Classification 

Fuzzy c-Means (FCM) is an iterative method of clustering which produces optimal 
partitions [6]. It allows one piece of data to belong to two or more clusters. Let an 
unlabelled data set X = (x1, x2, x3,…, xn) represents the intensity of the audio stream, 
where n is the number of frames. The FCM algorithm tries to sort the data set X into c 
clusters. The standard FCM objective function is defined as follows: 
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where d2(xk, vi) represents the Euclidian distance between the data point xk and the 
center vi of i-th cluster, uik is the degree of membership of the data xk in the k-th 
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i iku
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of the resulting partition with m ≥ 1, and c is the total number of clusters. Local 
minimization of the objective function Jm(U,V)  is accomplished by repeatedly 
adjusting the values of uik and vi according to the following equations:  
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As Jm is iteratively minimized, vi becomes more stable. The iteration of the FCM 

algorithm is terminated when the ending condition { } ε<− −
≤≤

1max t
i

t
icii vv  is 

satisfied, where v(t-1) is the center of the previous iteration, and ε is the predefined 
termination threshold. Finally, all data points are distributed into clusters according to 
the maximum membership uik. In addition, the fuzzy partition matrix U is congregated 
for further operations to evaluate the efficiency of clustering. 

2.2   Cluster Validity Functions 

To evaluate the classification performance quantitatively, two important types of 
cluster validity functions are used: the fuzzy partition and the feature structure of data 
set. For the fuzzy partition, partition with less fuzziness provides better performance. 
Fuzzy partitions include two parameters: Bezdek’s partition coefficient Vpc and 
partition entropy Vpe [7]. These two parameters are defined as follows:  

        ( ) ∑ ∑= =
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j ijpc uUV
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When Vpc is maximal or Vpe is minimal, the optimal clustering is achieved. 
However, these two parameters are only depending upon the membership value of 
data in the clusters, not the data precisely. To overcome this shortcoming, other 
validity functions based on the feature structure are proposed in [8][9]. Using  
the feature structure of data set, a robust clustering result can be generated in which 
samples are compact within one cluster and separated among different clusters.  
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To evaluate the performance of clustering with the feature structure, two parameters 
are defined as follows:  
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where ∑ =
= c

i iv
c

v
1

1
, Vfs is the Fukuyama-Sugeno function [8], and Vxb is the Xie-

Beni function [9]. The smaller the values of Vfs or Vxb, the better the clustering results.  
The aforementioned four cluster validity functions are the basis of comparison of 

the proposed TWFCM and the conventional FCM algorithm proposed in [3] for audio 
segmentation and classification. 

3   Audio Segmentation and Classification Using a Temporally 
Weighted Fuzzy c-Means Algorithm 

3.1   The Proposed Temporally Weighted Fuzzy c-Means Algorithm 

The traditional FCM for audio segmentation and classification classifies each segment 
using only the attributes of that segment [3]. However, the general aspects of an audio 
segment are highly correlated with the aspects of its neighboring segments. Therefore, 
the traditional FCM algorithm leads to accuracy degradation in segmentation. This 
aspect of performance degradation of FCM is explored by Lung et al in the image 
segmentation domain [5]. To solve this problem inherent in the audio segmentation 
and classification domain, we propose a temporally weighted fuzzy c-means 
(TWFCM) algorithm that not only utilizes the current segment attributes but also 
considers the memberships of its neighboring segments by modifying the membership 
functions, in which the membership of each segment is calculated with a weighted 
sum of the current segment membership and the memberships of the previous 
neighboring segments in the window length of  Wl along with the center segment xk. 

TWFCM utilizes a neighboring impact factor, called pik, to take into account the 
temporal information of neighbors, which is defined as the following function: 
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The function h(xk,xj) is the distance coefficient between the center segment xj and 
the neighbor xj, and uij is the membership value of the neighbor xj in the cluster i. The 
smaller the distance between center segment with its neighbor, the higher probability 
that this segment and its neighbor are at the same cluster.  

To assign appropriate function of h(xk,xj) in (9), we define some hypotheses. The 

neighbor impact factor pik is ranged in [0,1] with j in the range of ⎥⎦
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2
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k  

to indicate the importance of neighbor segments. If all segments in the range of Wl 
completely belong to cluster i, then the impact factor value pik =1.  This implies that 
this segment is mostly impacted by its neighbors. To determine the function h(xk,xj), 

we assume that uik =1, as a result, ( )∑ +

−=
=2

2

1,
l

l

W
k

W
kj

jk xxh  when the neighbor impact 

factor pik =1. Therefore, the function h(xk,xj) defined in (9) satisfies that the longer 
distance between xk and xj, the smaller value of h(xk,xj). So, we can re-write the 
function pik as follows: 
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In (10), the function pik incorporates the fuzzy partition matrix UcxN. We generate 
the distance function regarding to the impact factor pik as follows:  

( ) ( ) 122 ,, −×= ikikiknew pvxdvxd .                                      (11) 

So, the new membership function is calculated as: 
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By simplifying (12), finally we get the membership function for TWFCM in (13) 
and the center of the clusters in (14): 
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The steps of TWFCM for audio segmentation and classification are summarized as 
follows:  

1. Distribute the segments of audio stream into data set X and initiate center values 

( )00
2

0
1

0 ,...,, cvvvV = . 

2. Compute the membership values uik from (2). 
3. Compute new membership values wik from (13) by calculating pik from (10). 
4. Calculate the new center values using (14).    

5. Evaluate the termination condition { } ε<− −
≤≤

1max t
i

t
icii vv . Finish if it is 

satisfied, otherwise go back to step 2.  
6. Assign each segment according to its maximum membership to the clusters. 

3.2   Audio Segmentation and Classification Using TWFCM 

To segment and classify audio signals, we calculate the following feature parameters 
of audio signals:  

1. Power of audio signal with sample steps wl is defined as 
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where ( )ksig  indicates the intensity of the signal in the sample k , sig  

indicates all the samples within the window of length wl, and ( )abs  indicates 

the absolute value. 

2. Parameter sequence C(n) is defined as  
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where xw  is a predefined window, described in [3]. 

3. The mean μE and variance 2
Eσ  of the power sequence E(n), where E(n) is in 

decibel value calculated by (15).  

4. The mean μG and variance 2
Gσ of the center of gravity G(n). G(n) is a parameter 

that observes alteration of a low frequency domain, and it is computed as 
follows:  
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where n, i, and j represent the granule number, sub-band number, and sample 
number, respectively. Thus, Fn(i, j) represents the modified discrete cosine transform 
(MDCT) coefficient of the n-th granule, i-th subband, and j-th sample [3]. 

5. The zero ratio ZR, between the number of zeros and the total number in an index 
sequence such as [10]  

( ) ( )[ ] ( )[ ] )(1sgnsgn
2

1
mnwmxmxnZ

m
−−−= ∑ .                     (18) 

The feature vector for audio classification includes five parameters from the 
aforementioned features such as 

    [ ]RGGEEf ZV ,,,, 22 σμσμ= .                           (19)  

Audio-cut detection: The proposed TWFCM utilizes parameter sequence C(n) to 
detect the audio-cuts. In segmentation, three vectors defined in (19), (20) and (21) are 
grouped into two clusters by applying the proposed TWFCM algorithm:  

( )[ ]Tn WnCnCP 1),...,( 2 −+= ,                      (20) 

( )[ ]Tn WnCnCP 1),...,( 2 −+Δ−Δ−=Δ− , and                           (21) 

[ ]TZ 0,...,0= .                       (22) 

When the distance between Pn and Z is smaller than the distance between Pn-Δ  and 
Pn, then audio-cut can be obtained [3].  

Audio-segment classification: the audio-segments are classified into the following 
five audio classes: 

• Silence: An audio signal which only contains quasi-stationary background noise. 
• Speech: An audio signal which contains the voices of human beings, such as the 

sound of conversations. 
• Music: An audio signal which contains sounds made by musical instruments. 
• Speech with music background: An audio signal which contains speech in an 

environment in which music exists in a background.  
• Speech with noise background: An audio signal which contains speech in an 

environment in which noise exists in a background 
Audio-segment classification using TWFCM utilizes the feature vector defined in 

(19) to classify each segment into the respective classes. 

4   Experimental Results 

This section evaluates the performance of the proposed TWFCM algorithm and 
compares it with the conventional FCM in [3]. The clustering performance is 
measured with several audio streams in terms of four cluster validity functions 
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described in Section 2.2. For all cases, we use the same empirical values such as: 
weighting exponent m=2.0, ε=0.001, and wl=5. We implemented and simulated the 
proposed TWFCM algorithm for audio segmentation and classification with 
Matlab7.6 on a PC platform. 

To evaluate the performance of the proposed TWFCM, we use two representative 
audio streams, containing TV program, drama, and music. Figure 1 and Figure 2 show 
the original audio signals, namely Demo1 and Demo2, for evaluating the performance 
of the TWFCM algorithm and their corresponding membership function values of 
audio-cuts. 
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Fig. 1. Demo1 signal amplitude and 
membership function values of the signal 
with respect to time 

Fig. 2. Demo2 signal amplitude and 
membership function values of the signal 
with respect to time 

 

Audio-cut detection results with the two audio stream Demo1 and Demo2 are 
illustrated in Table 1, where the recall rate and precision rate are defined as follows: 

cuts-audiodetectedmanuallyofNumber

cuts-audiodetectedcorrectlyofNumber
rate Recall =                   (23) 

cuts-audiodetectedallofNumber

cuts-audiodetectedcorrectlyofNumber
ratePrecison =                    (24) 

Table 1. Audio-cut detection results 

 
 

  TWFCM 
   Demo1     Demo2 

FCM 
Demo1  Demo2 

Number of all audio-cuts 
Number of correct detection 
Number of over detection  
Number of misdetection 

14 
13 
0 
1 

27 
26 
3 
2 

14 
11 
1 
3 

27 
23 
5 
6 

Recall rate 
Precision rate 

0.929 
1.000 

0.963 
0.929 

0.786 
1.000 

0.852 
0.885 
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According to these definitions, there are a few misdetections if the recall rate is 
high, and there are a few over detections if the precision rate is high [3]. The proposed 
TWFCM outperforms the conventional FCM in both the recall rate and the precision 
rate in the audio-cuts detection, as shown in Table 1. 

In addition, a quantitative evaluation using the cluster validity functions is 
necessary to analyze the classification performance. As described in Section 2.2, the 
better performance of the clustering is achieved if Vpc is maximal and Vpe, Vfs, Vxb 
are minimal. Table 2 shows performance comparison between the proposed TWFCM 
and the traditional FCM with the two sample audio streams Demo1 and Demo2, in 
terms of these validity functions. The results indicate that the TWFCM algorithm 
outperforms the conventional FCM by all means of the cluster validity functions. We 
also tested the TWFCM with several audio streams, and had similar results in audio 
segmentation and classification. 

Table 2. Performance comparison between the TWFCM and the conventional FCM, in terms 
of cluster validity functions 

Audio files Technique Vpc Vpe Vxb Vfs 

FCM 0.7530 0.2154 0.3245 -6.6759 
Demo1.wav 

TWFCM 0.8472 0.1177 0.1489 -9.1918 

FCM 0.8542 0.1359 0.1844 -0.5844 
Demo2.wav 

TWFCM 0.9612 0.0350 0.0626 -0.7826 

5   Conclusion 

In this paper, we proposed a robust audio segmentation and classification approach 
using a temporally weighted fuzzy c-means (TWFCM) algorithm. Unlike the 
conventional FCM in clustering audio signals, the proposed TWFCM utilizes the 
impact of previous audio signals. This results in noticeably achieving high 
performance than the conventional FCM algorithm. Experimental results showed that 
the proposed TWFCM outperforms the conventional FCM in audio segmentation and 
classification. These results demonstrate that the proposed TWFCM algorithm is a 
suitable candidate to apply in real-world applications of audio content analysis, 
segmentation, and retrieval.  
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Abstract. To address the problem of extracting specific signal from
the post-nonlinear (PNL) mixture, we propose a novel algorithm based
on maximum negentropy. Assume that the prior knowledge of the de-
sired source, such as its rough template referred as the references sig-
nal, is available. The closeness measurement between the corresponding
estimated output and given reference signal is treated as a constraint
and incorporated into the negentropy objective function. Therefore, a
constrained optimization problem is formed, which is solved by the aug-
mented Lagrange function method with standard gradient descent learn-
ing. The inverse of the unknown nonlinear function in the post-nonlinear
(PNL) mixture model is approximated by the multilayer perceptions
(MLP) network. Experiments on the synthesis dataset demonstrate the
validity of our proposed algorithm.

Keywords: blind source extraction (BSE), the augmented Lagrange
function, multilayer perceptions (MLP) network, reference.

1 Introduction

Blind source extraction (BSE) is a powerful technique which can obtain the
desired sources from the mixed signals with some prior knowledge available.
Compared to blind source separation (BSS) which is an important technique to
recover the sources from all kinds of their mixtures, BSE has many advantages.
The most obvious advantage is that only extracting the sources of interest can
save a large time and reduce unnecessary computation, specially when the num-
ber of sensors is large and the number of the desired sources is small. In many
practical situations, such as biomedical signal processing [1] and speech signal
processing [2], only a single source or a subset of sources is subject of interest
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and their prior knowledge, e.g. statistical properties or rough templates, are usu-
ally available. Therefore, in these scenarios, BSE is more appropriate and more
competitive than BSS.

There are many BSE algorithms proposed in the open literature. These al-
gorithms can be divided into two categories. One is sequential BSE [3,4], which
combines extraction stage and deflation stage. By this technique, the source is re-
covered one by one until the desired sources have been extracted. Another kind is
constrained BSE [1,5,6] which provides a general framework to incorporate some
prior information, e.g. autocorrelation, kurtosis and rough templates, into the
contrast function. With these prior knowledge, the constrained BSE algorithm
usually has a better performance, whereas the performance of sequential BSE
algorithms is easily affected by accumulation of error during deflation. Besides,
due to the fact that the desired sources obtained by sequential BSE algorithms
are not the first outputs, most of these algorithms are not suitable to extract
the desired source at a time. However, most of these existing constrained BSE
algorithms have been specially designed for the linear instantaneous mixtures
which are not realistic and accurate in many practical applications [7].

To address these problems above, in this paper, we propose a novel algorithm
for extracting the desired source as the first output from a specific nonlinear
mixture model known as post-nonlinear (PNL) mixture. The PNL mixture is a
realistic and accurate model in many situations [7] and the sources can be es-
timated in such a nonlinear mixture, subject to the ambiguities of permutation
and scaling. In our approach, assume that some prior information of the desired
source, such as its rough template, is available. A constrained optimization prob-
lem is then constructed by incorporating the prior knowledge as a constraint into
the contrast function. The unknown nonlinear function in the PNL mixture is
approximated by the multilayer perceptions (MLP) network, because the neural
network can uniformly approximate any continuous function if there is sufficient
number of neurons in the hidden layers. Finally, the desired source is extracted
by the augmented Lagrange function method with standard gradient descent
learning for the constrained optimization problem. Experimental results demon-
strate that the proposed algorithm can successfully extract the desired source
from the PNL mixture as the first output.

The manuscript is organized as follows. The mathematical model of BSE
from the PNL mixture is briefly introduced in Section 2. A novel algorithm
for extracting the desired source from the PNL mixture based on maximum
negentropy is described in detail in Section 3. Experiments on synthetic data
are performed in Section 4. Finally, discussions and conclusions are drawn in
Section 5.

2 Problem Formulation

The PNL mixture consists of a linear instantaneous mixture followed by an
unknown and invertible memoryless nonlinear distortion. Assume that the source
vector is denoted by S(k) = [s1(k), s2(k), ..., sn(k)]T and the observed signal
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Fig. 1. The PNL mixture model and its extracting system

vector by X(k) = [x1(k), x2(k), ..., xm(k)]T , where k = 1, 2, ... is the discrete
time or sample index, n and m are the numbers of the sources and the observed
signals, respectively. The PNL mixture model and its extracting system can
be shown in Fig.1 where A is an unknown and nonsingular mixing matrix and
M(.) = [M1(.),M2(.), ...,Mm(.)]T is an invertible nonlinear function vector that
operates componentwise.

From Fig. 1, we can see that the extracting structure of the PNL mixture is
a two-stage system, namely, a nonlinear stage followed by a linear stage. There-
fore, if we just want to extract the desired source from the PNL mixture, the
corresponding estimated output y can be given by

y(k) = wTF (X(k)), (1)

where X(k) = M(AS(k), F is the inverse of M and w is a demixing vector.
Our goal is to extract the desired source from the PNL mixture with some prior

knowledge of its rough template. The rough template, generally referred to as the
reference signal, is the trace of the desired source and carries some information
to distinguish the desired source, but is not identical to the corresponding source
[8]. So, the desired source is both an independent component and the one closest
to the given reference signal.

According to the analysis of the literature [7], when blind source separating
from the PNL mixture, the output independence can be obtained if and only if
∀j = 1, 2, ...,m, Fj(.) ∗ Mj(.) are linear. Similarly, to extract the desired source
from the PNL mixture, under the above restrictions, due to the central limit
theory, we can use the following classical negentropy contrast function:

J(y) = −ρ[E{G(y)} − E{G(v)}]2, (2)

where ρ is a positive constant, G(.) can be any non-quadratic function and v is
a Gaussian variable with zero-mean and unit-variance.

For simplicity, in the following, we assume that the sources S(k) are statisti-
cally independent components with zero-mean and unit-variance, the observed
signals X(k) are removed the correlation by whitening and m = n.
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3 Proposed Method

To extract the desired source from the PNL mixture with the reference signal,
we need to minimize the contrast function J(y) and take into account the prior
knowledge of its reference signal. Due to the desired source closest to the given
reference signal, the closeness measurement between the corresponding estimated
output and the reference signal can be treated as a constraint and incorporated
into the contrast function. So, a constrained optimization problem is formed,
which can be solved by the augmented Lagrange function method with standard
gradient descent learning. Detailed derivation of our algorithm is as follows. For
simplicity, in the following, the time index k is omitted.

Let us denote the closeness measurement between an estimated output y cor-
responding to the desired source and the given reference signal r by ε(y, r).
The demixing vector for the desired source is represented by w∗ and wi, i =
1, 2, ..m− 1 denote the demixing vectors for other undesired independent com-
ponents. Assume that the minimum value of ε(y, r) is the desired source closest
to r, so we have

ε(w∗TF (X), r) < ε(wT
1 F (X), r) ≤ ε(wT

m−1F (X), r). (3)

The following inequality relationship is matched if and only if w = w∗,

ε(wTF (X), r) − τ ≤ 0, (4)

where τ ∈ [ε(w∗TF (X), r), ε(wT
1 F (X), r)) is a threshold parameter.

Therefore, a constrained optimization problem is constructed by incorporating
the above inequality constraint into the objective function as following:{

min J(y) = −ρ[E{G(y)} − E{G(v)}]2,
s.t. ε(y, r) − τ ≤ 0, (5)

where y = wTF (X).
The inequality constraint in Eq.(5) can be transformed into an equality con-

straint ε(y, r) − τ + z2 = 0 by introducing a slack variables z. To search for
the optimal solution for Eq.(5), we adopt the augmented Lagrange multipliers
method. The corresponding Lagrange function is given by

L(w,F, λ, μ) = − ρ[E{G(y)} − E{G(v)}]2

+ λ[ε(y, r) − τ + z2] +
μ

2
[ε(y, r) − τ + z2]2,

(6)

where λ is the non-negative Lagrange multiplier and μ is the scalar penalty
parameter. The inequality constraint is further translated to eliminate the slack
variable z as:

L(w,F, λ, μ) = − ρ[E{G(y)} − E{G(v)}]2

+
1
2μ

{[max(0, λ + μ(ε(y, r) − τ))]2 − λ2}. (7)
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The constrained optimization problem has been transformed into an optimiza-
tion problem without constraints by the augmented Lagrange multiplier method
and the new objective function is formulated in Eq.(7). Now, the PHR algorithm
is used to search for the optimal solution for this new objective function.

First, a positive and non-decreasing sequence of the penalty factor {μq, q =
1, 2, ...}, is selected, the initial point y0, the initial Lagrange multiplier λ1 and
the required precision ε are chosen and set iteration number q = 1.

Second, with y0 as the initial point, the new objective function in Eq.(7) is
solved by the standard gradient descent learning. Since the demixing vector w
and the nonlinear function F in y = wTF (X) are unknown, the partial derivative
of the objective function with respect to w is

∂L

∂w
= − ρ̂E{G′(y) ∗ F (X)T } + [max(0, λ + μ(ε(y, r) − τ))]

∂ε(y, r)
∂w

, (8)

where ρ̂ = 2ρ[E{G(y)} − E{G(v)}].
The nonlinear function vector F can be expressed as F = (F1, F2, ...Fn)T ,

where Fi = F (θi, X) and θi are the unknown parameters of Fi. The partial
derivative of the new objective function with respect to θi is given by

∂L

∂θi
= − ρ̂E{G′(y) ∗ w(i) ∗ ∂F (θi, X)

∂θi
}

+[max(0, λ + μ(ε(y, r) − τ))]
∂ε(y, r)

∂θi
.

(9)

Following the universal approximation theorem for a nonlinear input-output
mapping [9], Fi(i = 1, 2, ...n) can be approximated by a group of MLP networks
as follows:

Fi(X) =
P∑

j=1

αjσ(ωjX + bj), (10)

where P denotes the number of hidden neurons of the j-th perceptions, ω and
α are the weights of the input and the output layers, respectively, b are bias and
σ represents the activation function.

The partial derivatives of Eq.(10)) with respected to αj , ωj and bj can be
derived as ⎧⎪⎨⎪⎩

∂Fi(X)
∂αj

= σ(ωjX + bj),
∂Fi(X)

∂ωj
= αj ∗X ∗ σ′(ωjX + bj),

∂Fi(X)
∂bj

= αj ∗ σ′(ωjX + bj).

(11)

The unknown parameters w and F in the extracting system of the PNL mix-
ture can be updated by Eq.(8)-Eq.(11). To avoid the critical case where the
norm of w becomes too small, after each update, w should be normalized to unit
length.

Finally, when the minimum value of Eq.(7) has been obtained after the above
second step, whether the algorithm meets the predetermined required precision
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ε is judged. If the condition is satisfied, the algorithm can be terminated and the
approximate values yq is obtained; otherwise, the Lagrange multiplier is updated
by

λq+1 = max(0, λq + ε(yq, r)), (12)

and the second step of the algorithm is repeated until the maximum iteration
number is reached.

4 Experiments and Discussions

To investigate the validity of our proposed algorithm, experiments are performed
on a synthetic dataset obtained from [10]. Four synthetic source in this dataset
are depicted in Fig.2. For simplicity, we just use the first 600 samples.

The reference signals are obtained from the sign of the corresponding source
signals, drawn in Fig.3. Therefore, the reference signals have the same frequency
and phase as the true ones and are used to extract the desired source with pre-
cise morphology [11]. The closeness measurement ε(y, r) between an estimated
output y and the reference signal r can take any form, such as the correla-
tion coefficient E{yr}, the mean square error (MSE) E{(y − r)2}, or any other
suitable closeness measurement [12]. The correlation coefficient E{yr} is widely
used closeness measurement in BSS or BSE. The correlation coefficient E{yr}
is higher means that these two signals y and r are closer. In our experiments,
the correlation coefficient E{yr} is selected as the closeness measurement and
performance index.

Assume that we want extract the desired source from the PNL mixture of the
same type signals. Certainly, the desired source can also be extracted from the
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Fig. 2. The four source signals
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Fig. 3. The corresponding reference signals

PNL mixture of the different type. To save space, we don’t provide the latter
experiment results. From the Fig.2, we select s1 and s2 (sub-Gaussian) as the
sources to mix together. The mixing matrix A is randomly selected as

A =
(

0.3412 0.7271
0.5341 0.3093

)
,

and the nonlinear function M is chosen as the hyperbolic tangent function
tanh(z) = ez−e−z

ez+e−z for simplicity.
After whitening the mixed signals X(k), we run our proposed algorithm. If

we want to extract the first source s1, we use r1 as the reference signal and
set τ = 0.5. We choose G1(y) = 1

a1
logcosh(a1y), where 1 ≤ a1 ≤ 2 which is a

good general purpose function for G. The experiment result is shown in Fig.4.
To clear contrast, the source s1 and the extracted signal y are drawn together.
From Fig.4, it is clear to see that the waveforms of the extracted signal y are
similar to those of the source s1 except the scale of these amplitudes. Since the
main information of signals are included in the waveforms, how to recover the
waveforms of the desired source from the mixed signals is needed to care about
and the real magnitude of the amplitude is minor. That is to say, the desired
source s1 has been extracted successfully by our proposed algorithms.

To further check the performance of our algorithm, the correlation coefficient
between the source and the corresponding estimated output as the performance
index. Our algorithm has been independently executed 100 times and the cor-
relation coefficient of every trial is shown in Fig.5. The average value of these
correlation coefficients is 0.937897 which means that the performance of our
proposed algorithm is good.
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5 Conclusion

To extract the desired source from the PNL mixture with a given reference sig-
nal, based on maximum negentropy, we propose a novel algorithm which treats
the prior knowledge as a constraint to the contrast function. A constrained op-
timization problem is then formed, which is solved by the augmented Lagrange
function method with standard gradient descent learning. The inverse of the
nonlinear function in the PNL mixture is approximated by the MLP network.
The validity of our algorithm is demonstrate by simulation results.
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Abstract. Digital multimedia forensics is an emerging field that has important 
applications in law enforcement, the protection of public safety, and notational 
security. As a popular image compression standard, the JPEG format is widely 
adopted; however, the tampering of JPEG images can be easily performed 
without leaving visible clues, and it is increasingly necessary to develop reliable 
methods to detect forgery in JPEG images. JPEG double compression is  
frequently used during image forgery, and it leaves a clue to the manipulation. 
To detect JPEG double compression, we propose in this paper to extract the 
neighboring joint density features and marginal density features on the DCT  
coefficients, and then to apply learning classifiers to the features for detection. 
Experimental results indicate that the proposed method delivers promising  
performance in uncovering JPEG-based double compression. In addition, we 
analyze the relationship among compression quality factor, image complexity, 
and the performance of our double compression detection algorithm, and  
demonstrate that a complete evaluation of the detection performance of differ-
ent algorithms should necessarily include both the image complexity and  
double compression quality factor. 

Keywords: Feature mining, SVM, digital forensics, double JPEG compression, 
forgery, image complexity, marginal density, neighboring joint density, DCT 
coefficient, quality factor. 

1   Introduction 

Today’s digital technology allows digital media to be easily altered and manipulated. 
As a conspicuous example, a state-run newspaper in Egypt published in late 2010 a 
doctored picture in an apparent attempt to create the impression that its country’s 
president was leading the Middle East peace talks in Washington [1, 2, 3]. 

JPEG images are one of the most popular media. Generally, tampering manipula-
tion on a JPEG image involves several different basic operations, such as image  
resize, rotation, splicing, double compression, etc. As one decodes the bit stream of a 
JPEG image and implements the manipulation in spatial domain, and then compresses 
the modified image back into JPEG format, if the quantization matrices are different 
between the original image and the modified one, the latter is said to have undergone 
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a double JPEG compression. Although double compression does not by itself prove 
malicious or unlawful tampering, it is evidence of image manipulation. 

For image forgery detection, researchers have proposed several different methods, 
and most of them have been included in a survey [6]. For specifically detecting  
double JPEG compression, due to the fact that double JPEG compression changes the 
compressed DCT coefficients and hence modifies the histogram at a certain frequency 
in DCT 2-D array, Pevny and Fridrich designed a feature set comprising  
low-frequency DCT coefficients [15], and Chen et al. [5] designed a 324-feature set 
consisting of Markov transition probability on the difference 2-D array. 

In studying detection of JPEG-based double compression, we explore the statistical 
property of DCT coefficients and find that the operations in double compression actu-
ally modify some DCT coefficients, and hence modify the marginal density at each 
specific frequency band or change the correlation of neighboring DCT coefficients; 
accordingly, we design a method to detect JPEG-based double compression. In what 
follows, we briefly describe related statistical models of DCT coefficients and the 
modification of the statistical property caused by the manipulations and design mar-
ginal density and neighboring joint density features in section 2. Experiments are 
given in section 3, followed by conclusions in section 4. 

2   Statistical Models and Feature Mining 

2.1   Characteristics and Modification 

The Generalized Gaussian distribution (GGD), given below in (1), is widely used in 
modeling probability density function (PDF) of a multimedia signal, and is very often 
applied to transform coefficients such as discrete cosine transform (DCT) or wavelet 
ones. Experiments show that adaptively varying two parameters of the generalized 
Gaussian distribution (GGD) [14, 16] can achieve a good probability distribution 
function (PDF) approximation, for the marginal density of transform coefficients. 

( ){ }βα
βα

ββαρ /||exp
)/1(2

),;( xx −
Γ

=                                    (1) 

Where Г (·) is the Gamma function, scale parameter α models the width of the PDF 
peak, and shape parameter β models the shape of the distribution. 

An 8×8 DCT block has 64 frequency coefficients, our study shows that the  
marginal density of DCT coefficients at each specific frequency approximately fol-
lows the GGD distribution and certain manipulations, e.g. double JPEG compression, 
changes the density.  Fig.1 demonstrates a singly compressed JPEG image with qual-
ity factor ‘75’ (a); doubly compressed JPEG images with the first compression quality 
factor ‘55’ (b), and ‘90’ (c), respectively, followed by the second compression quality 
factor ‘75’; and the marginal densities at frequency coordinates (2,1), (2,2), and (1,3). 
Compared to the marginal density of the single compression, Fig.1(d), Fig.1(g), and 
Fig.1(j), the modification caused by the double compression from the low quality  
factor ‘55’, shown in Fig.1(e), Fig.1(h), and Fig.1(k), is noticeable. However, the 
modification caused by the double compression from the high quality factor ‘90’, 
Fig.1(f),(i), and (l), is not as noticeable.  
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Although there does not appear to exist a generally agreed upon multivariate  
extension of the univariate GGD, some researchers define a parametric multivariate 
generalized Gaussian distribution (MGGD) model that closely fits the actual  
distribution distribution of wavelet coefficients in clean natural images, exploit the 
dependency between the estimated wavelet coefficients and their neighbors or other 
coefficients in different subbands based on the extended GGD model, and achieve 
good image denoising [6]. The MDDG model is shown as follows: 

 

 
(a) 

 
(b) 

 
(c) 

(d) 
  

(e) 
 

(f) 

(g) 
 

(h) 
 

(i) 

(j) 
 

(k) 
 

(l) 

Fig. 1. Marginal densities of the singly compressed JPEG image (left) and the double  
compressions (middle and right). X-axis shows the values of the DCT coefficients and y-axis 
shows the occurrences. 
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Where γ indicates a normalized constant defined by α and β, ∑X is the covariance ma-
trix and µ  is the expectation vector. 

To exploit the dependency between the compressed DCT coefficients and their 
neighbors, we study the neighboring joint density of the DCT coefficients, and  
postulate that some manipulation such as JPEG double compression will modify the 
neighboring joint density, shown by Fig. 2. Let the left (or upper) adjacent DCT  
coefficient be denoted by random vector X1 and the right (or lower) adjacent DCT 
coefficient be denoted by random vector X2; let X = (X1, X2). The DCT neighboring 
joint density will be modified by the manipulation, and the change hence leaves a trail 
of the manipulation. Fig.2(a), (b), and (c) show the neighboring joint density of the 
singly compressed JPEG image of Fig.1(a), of the doubly compressed JPEG image of 
Fig.1(b), and of the doubly compressed JPEG image of Fig.1(c). The differences of 
the neighboring joint density between the double compression and the single  
compression are given by Fig.1(d) and (e). It verifies our postulation that the 
neighboring joint density has been modified by the double compression. 

 

        

        (a) 

    

(b) 

 

                           (c) 
 

                
               (d) 

 

     
      (e) 

Fig. 2. Neighboring joint densities of the DCT arrays of the singly compressed JPEG image 
(Fig.1(a)), and the doubly compressed images (Fig.1(b) and Fig.1(c)) and the differences 
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2.2   Feature Mining 

2.2.1   Marginal Density Features 
Since manipulations such as double JPEG compression modify the marginal density 
of DCT coefficients at each specific frequency coordinate, it will also modify the 
marginal density of the absolute DCT coefficients. To reduce the number of features 
and speed up the detection process, we design the following marginal density features 
at the low frequency of the absolute DCT coefficients.  

An 8×8 DCT block has 64 frequency coefficients, the frequency coordinates are 
paired from (1, 1) to (8, 8), corresponding to upper-left low frequency to right-bottom 
high frequency. Let F denote the DCT coefficient array of a JPEG image, which con-
sists of M×N blocks, Fij (i =1, 2, …, M; j = 1, 2, …, N). We extract the histogram at 
each location of the following coordinate pair: 

S = {(2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1)}            (3)      

The feature set consists of the following probability values 

( )
⎭
⎬
⎫

⎩
⎨
⎧ ∈= Slkhhhhhh

MN
X klklklklklkl ),(),5(),4(),3(),2(),1(),0(

1         (4) 

Where hkl(m) denotes the histogram of the absolute DCT coefficient at frequency  
coordinate (k,l) with the value m. So there are 54 features in the marginal density set. 

2.2.2   Neighboring Joint Density Features 
In our algorithm, the neighboring joint features are extracted on intra-block from the 
DCT coefficient array and the absolute array, respectively, described as follows. 

DCT Coefficient Array Based Feature Extraction 

Let F denote the compressed DCT coefficient array of a JPEG image, consisting of 
M×N blocks Fij (i = 1, 2, …, M;  j = 1, 2, …, N). Each block has a size of 8×8. The in-
tra-block neighboring joint density matrix on horizontal direction NJ1h and the matrix 
on vertical direction NJ1v are constructed as follows: 
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                    (6) 

Where ijmnc stands for the compressed DCT coefficient located at the mth row and the 

nth column in the block Fij; δ = 1 if its arguments are satisfied, otherwise δ = 0; x and 
y are integers. For computational efficiency, we define NJ1 as the neighboring joint 
density features on intra-block, calculated as follows: 
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{ }1 1 1( , ) ( , ) ( , ) / 2h vNJ x y NJ x y NJ x y= +                             (7)  

In our experiment, the values of x and y are in the range of [−6, +6], so NJ1 has 169 
features.  

Absolute DCT Coefficient Array Based Feature Extraction 

Let F denote the compressed DCT coefficient array as before. The intra-block 
neighboring joint density matrix on horizontal direction absNJ1h and the matrix on 
vertical direction absNJ1v are given by: 
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We define absNJ1 as the neighboring joint density features on intra-block, calculated 
as follows: 

{ }1 1 1( , ) ( , ) ( , ) / 2h vabsNJ x y absNJ x y absNJ x y= +                    (10) 

In our algorithm, the values of x and y are in the range of [0, 5], so absNJ1 consists of 
36 features. 

3   Experiments 

3.1   Detection of Double JPEG Compression 

The original 5150 raw images are obtained in 24-bit lossless true color and never 
compressed format used in our previous study of steganalysis [7, 8, 9, 12]. The single 
and double compressed JPEG images are generated by applying JPEG compression to 
these images with different quality factors. The first and second compression quality 
factors in the double compression are denoted “Q1” and “Q2”, respectively. Table 1 
shows the detection accuracy by using support vector machines (SVM) [16] for the 
binary classification. The results at the first row are gained by using the 324 Markov 
transition probability features presented in reference [5], and the results in the second 
row are obtained by using the integration of Marginal density features, defined in 
equation (4), and the neighboring joint density features, defined in equation (10), for a 
total of 90 features. The results show that our approach achieves the higher detection 
performance with respect to detection accuracy, especially in the detection of the  
double compression in the following: (a) Q2=40, Q1=80/85/90; (b) Q2=45, Q1=90; 
(c) Q2=50, Q1=85/90; (d) Q2=55, Q1=85; (e) Q2=60, Q1=90; and (f) Q2=70, Q1=90, 
our method outperforms the Markov approach by 11.3% to 31.5%.  
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3.2   Compression Quality Factor, Image Complexity, and Detection 
Performance 

Our work in steganalysis has demonstrated that image/signal complexity is a signifi-
cant parameter for the performance evaluation [8, 9, 10, 11, 12, 13] To illustrate the 
relationship among compression quality factor, image complexity, and the detection 
performance, the shape parameter β of GGD of the DCT coefficients is used to meas-
ure the image complexity [8, 9, 10, 16]. All singly and doubly compressed JPEG im-
ages are classified as low image complexity and high image complexity: 

1. β < 0.3, low image complexity 
2. 0.6 ≤ β, high image complexity 

We apply SVM to the feature sets extracted from these five groups for detecting dou-
ble JPEG compression. Thirty experiments are run for testing each type of feature set 
in each group. Average testing accuracy is compared. Henceforth we simplify the fea-
ture set of the 36 marginal features, defined in equation (4), as Marginal, the 324 
Markov transition probability features presented in reference [5] as Markov, and the 
169 neighboring joint density, defined in equation (7) as NJ. Due to the page limit, 
Table 4 gives the average testing detection accuracy over 30 experiments in the low 
image complexity (A) and high image complexity(B). In each comparison, the highest 
average testing accuracy is highlighted in bold.  

Table 1. Average accuracy over 100 testing using Markov approach [5] (first row), marginal & 
neighboring joint density feature set (second row), in binary classification 

Q1 
Q2 

40 45 50 55 60 65 70 75 80 85 90 

40  
94.6% 
96.4 

97.6 
97.8 

98.1 
98.5 

98.0 
98.5 

96.8 
96.9 

93.5 
97.8 

96.4 
97.2 

59.8 
91.3 

82.4 
95.4 

63.9 
82.5 

45 
96.1 
96.9 

 
86.6 
92.8 

96.6 
97.3 

97.3 
98.3 

97.9 
98.5 

96.8 
97.2 

94.2 
98.2 

90.6 
96.0 

88.9 
94.5 

72.9 
89.9 

50 
98.6 
98.6 

91.0 
95.3 

 
85.5 
92.4 

97.2 
97.6 

98.3 
98.6 

97.9 
98.3 

93.0 
95.3 

96.1 
97.2 

82.4 
95.4 

53.9 
85.0 

55 99.1 
99.1 

98.3 
98.4 

90.2 
94.7 

 
91.2 
95.8 

97.6 
98.4 

98.4 
98.7 

97.6 
98.1 

95.2 
97.2 

66.3 
94.5 

83.8 
94.7 

60 
99.2 
99.4 

99.1 
99.1 

98.6 
98.5 

94.8 
96.9 

 
94.7 
97.6 

97.7 
98.6 

98.3 
98.9 

92.8 
97.0 

94.0 
97.4 

81.3 
93.0 

65 
99.3 
99.6 

99.4 
99.6 

99.2 
99.3 

98.9 
99.1 

97.1 
98.1 

 
94.7 
97.4 

97.9 
98.6 

98.2 
98.5 

95.5 
98.5 

88.6 
94.4 

70 
99.4 
99.7 

99.4 
99.7 

99.4 
99.7 

99.3 
99.5 

99.3 
99.2 

97.2 
98.1 

 
96.3 
97.6 

98.5 
99.0 

95.1 
97.2 

72.5 
95.5 

75 
99.5 
99.8 

99.4 
99.8 

99.4 
99.8 

99.4 
99.8 

99.5 
99.7 

99.3 
99.3 

98.2 
98.3 

 
97.1 
98.9 

98.6 
99.1 

94.8 
96.8 

80 
99.6 
99.8 

99.6 
99.9 

99.6 
99.8 

99.5 
99.9 

99.5 
99.8 

99.5 
99.8 

99.5 
99.7 

99.0 
99.6 

 
97.6 
99.0 

94.7 
97.2 

85 
99.6 
100.0 

99.6 
100.0 

99.6 
100.0 

99.6 
99.9 

99.7 
99.9 

99.6 
100.0 

99.6 
99.9 

99.5 
99.9 

99.4 
99.5 

 
98.5 
99.4 

90 
99.8 
100.0 

99.8 
100.0 

99.8 
100.0 

99.8 
100 

99.8 
100.0 

99.8 
100.0 

99.7 
100.0 

99.8 
100.0 

99.9 
100.0 

99.6 
99.9 
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The results show that Marginal and NJ feature sets generally outperform Markov 
feature set, although the feature numbers in Marginal and NJ are less than that in 
Markov. It can be seen that the compression quality factors during the double JPEG 
compression significantly impact the detection accuracy. The detection accuracy un-
der the condition of Q1 > Q2 is generally lower than that under Q1 < Q2.  

The comparison between Table 2(A) and Table 2(B) indicates that image complex-
ity plays a critically important role for the evaluation of detection performance. The 
detection accuracy in high image complexity, shown in Table 2(B), is much less than 
the results in Table 2(A). The detection of the double compression (Q2=40, 
Q1=80/85/90; Q2=45, Q1=90; Q2=50, Q1=85/90; Q2=55, Q1 =85; Q2=60, Q1=90; 
and Q2=70, Q1=90) by using the marginal features is not well, neither  by using 
Markov transition probability features,  nor by using neighboring joint density fea-
tures. These results indicate that at the same compression factors, while image com-
plexity increases, the detection performance deteriorates. 

Table 2. Average detection accuracy over 30 experiments using Marginal (first row), Markov 
(second row), and NJ (third row) feature sets under different image complexities 

(A) Detection accuracy in low image complexity (β < 0.3) 

  Q1
Q2 40 45 50 55 60 65 70 75 80 85 90 

40  
95.9% 
98.2 
98.2 

98.7 
99.1 
99.6 

99.1 
99.5 
99.8 

98.9 
99.3 
99.5 

98.3 
96.7 
99.2 

94.2 
98.4 
95.5 

97.7 
98.9 
99.0 

52.1 
92.7 
64.2 

81.0 
96.7 
83.4 

60.4 
82.9 
62.2 

45 
97.1 
98.1 
98.5 

 
87.8 
88.3 
91.1 

97.8 
98.6 
99.1 

98.4 
99.4 
99.3 

99.0 
99.1 
99.6 

98.2 
97.2 
98.9 

95.2 
98.5 
97.7 

90.5 
98.1 
93.9 

90.5 
95.2 
94.8 

69.6 
89.7 
72.2 

50 
99.5 
99.5 
99.7 

91.8 
93.8 
94.5 

 
85.5 
86.0 
88.7 

98.3 
98.8 
99.5 

99.1  
99.5   
99.7 

98.9   
98.9   
99.5 

93.6   
92.0   
94.0 

97.3   
98.6   
98.7 

79.2   
96.4   
90.2 

43.4 
92.9    
51.2 

55 
99.7   
99.7   
99.8 

99.1   
99.4  
99.7 

90.4   
89.9   
91.0 

 
92.3  
96.2   
95.8 

98.4  
99.1   
99.5 

99.1   
99.4   
99.6 

98.4   
97.9   
99.3 

96.0   
97.4   
98.2 

54.3   
96.0   
56.3 

81.6    
94.4    
89.0 

60 
99.7 
99.9   
99.9 

99.7 
99.8   
99.8 

99.4  
99.4  
99.6 

96.0   
97.8   
97.9 

 
94.5   
98.6   
93.8 

98.2   
99.3   
99.3 

98.7  
99.4   
99.6 

91.7   
98.2   
91.0 

93.6   
98.6   
97.0 

73.1    
96.9    
62.0 

65 
99.8 

100.0 
99.9 

99.8 
99.9 

100.0 

99.7 
99.8 
99.8 

99.5 
99.7 
99.8 

97.3 
99.1 
97.2 

 
95.0 
98.2 
97.5 

98.3 
99.3 
99.5 

98.5 
98.9 
99.4 

95.8 
98.7 
98.1 

87.7 
94.2 
94.5 

70 
99.9 
100 
99.9 

99.8 
100 
99.9 

99.8 
100.0 
100.0 

99.7 
99.9 
99.8 

99.7 
99.8 
99.9 

98.3 
99.1 
99.0 

 
96.7 
98.5 
98.9 

98.9 
99.5 
99.6 

93.4 
98.1 
93.5 

57.9 
97.8 
65.7 

75 
99.9 
100 
99.9 

99.8 
100 
99.9 

99.8 
100 
99.9 

99.8 
100 
99.9 

99.8 
100.0 
99.9 

99.8 
99.8 
99.9 

98.9 
99.1 
99.5 

 
97.2 
99.1 
98.6 

98.1 
99.3 
99.5 

94.3 
97.7 
97.9 

80 
99.9 
100 
99.8 

99.9 
100 
99.9 

99.9 
100 
99.9 

99.8 
100 
99.9 

99.8 
100 
99.9 

99.8 
100 

100.0 

99.6 
99.9 
99.7 

99.3 
99.7 
99.4 

 
96.0 
99.4 
98.9 

89.4 
98.4 
83.0 
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Table 2. (continued) 

85 
99.9 
100 

100.0 

99.9 
100 
99.9 

99.9 
100 
100 

99.9 
100 
99.9 

99.9 
100 

100.0 

99.8 
100 

100.0 

99.9 
100 

100.0 

99.9 
100.0 
100.0 

99.6 
99.9 
99.6 

 
97.3 
99.3 
99.6 

90 
100.0 
100 

100.0 

99.9 
100 
100 

99.9 
100.0 
100 

99.9 
100 
100 

99.9 
100 
100 

99.8 
100 
100 

99.8 
100 
100 

99.8 
100 
100 

99.9 
100 
100 

99.5 
99.9 
100.0 

 

 

(B) Detection accuracy in high image complexity (0.6 ≤ β) 

  Q1
Q2 40 45 50 55 60 65 70 75 80 85 90 

40  
59.7% 
58.0 
63.6 

75.3 
70.3 
77.6 

80.4 
81.0 
80.1 

81.5 
81.9 
82.0 

79.0 
74.2 
80.3 

57.8 
70.7 
48.3 

66.4 
63.3 
62.2 

38.1 
48.5 
41.9 

43.7 
55.5 
43.2 

38.2 
46.7 
42.2 

45 
69.0 
68.9 
71.3 

 
44.8 
49.8 
51.8 

68.0 
67.3 
69.5 

76.8 
76.3 
75.8 

82.1 
81.7 
80.9 

80.2 
77.0 
80.2 

57.7 
76.0 
54.8 

50.7 
55.7 
47.8 

47.9 
53.7 
51.5 

41.7 
48.3 
45.5 

50 
84.1 
81.2 
82.7 

47.4 
56.6 
61.4 

 
44.5 
48.6 
53.9 

75.7 
72.2 
76.4 

83.2 
82.8   
83.6 

83.3   
81.9   
84.3 

70.8   
67.6   
68.5 

66.4   
64.4   
64.3 

43.8   
54.3   
48.2 

38.1    
47.7    
43.6 

55 
90.6   
85.4   
84.5 

82.7   
79.2   
80.3 

48.6   
51.0   
56.1 

 
50.0   
57.8   
63.0 

79.5   
81.3   
77.9 

84.0   
85.5   
85.2 

81.7   
80.4   
84.6 

64.3   
63.8   
66.7 

40.7   
52.3   
44.9 

42.6    
51.0    
46.5 

60 
93.2   
90.6   
90.8 

86.9   
84.8   
85.5 

86.8   
80.4   
78.2 

62.4   
66.1   
69.5 

 
61.9   
69.1   
59.4 

79.4   
82.5   
77.2 

83.6   
85.3   
84.1 

65.9   
78.9   
62.5 

58.4   
64.2   
56.4 

41.1    
58.1    
45.9 

65 
91.7 
89.8 
88.9 

93.4 
90.7 
89.9 

87.1 
86.7 
85.1 

86.8 
84.5 
84.4 

72.7 
77.9 
63.4 

 
54.0 
66.2 
65.0 

79.3 
79.4 
78.6 

81.2 
82.3 
84.1 

61.3 
67.9 
61.2 

45.3 
51.5 
52.2 

70 
92.3 
91.0 
89.7 

93.6 
91.9 
89.6 

95.6 
93.2 
90.8 

93.7 
89.7 
89.9 

89.1 
85.3 
83.4 

68.6 
73.8 
72.5 

 
66.5 
67.1 
72.6 

81.0 
84.3 
80.7 

68.7 
77.8 
64.7 

42.4 
56.9 
46.4 

75 
96.3 
91.6 
89.8 

92.3 
92.4 
89.0 

92.1 
93.6 
88.7 

93.6 
92.7 
89.2 

94.0 
93.4 
89.3 

88.4 
86.8 
85.4 

77.7 
74.0 
74.4 

 
67.7 
83.0 
70.1 

81.8 
84.7 
83.9 

50.5 
55.6 
58.6 

80 
88.6 
95.5 
89.1 

91.3 
94.7 
88.1 

91.6 
95.0 
88.8 

93.2 
95.5 
88.1 

89.5 
95.2 
88.5 

91.0 
94.8 
88.1 

91.4 
92.9 
86.2 

85.5 
92.9 
73.3 

 
68.3 
78.8 
68.4 

65.8 
79.9 
61.1 

85 
89.9 
97.4 
90.1 

91.0 
97.4 
90.5 

90.0 
97.3 
91.0 

90.4 
97.4 
90.1 

94.4 
97.3 
89.7 

91.4 
97.7 
93.9 

92.4 
97.7 
90.4 

91.7 
98.2 
89.6 

90.3 
87.8 
83.9 

 
72.1 
85.5 
81.3 

90 
92.2 
99.9 
98.1 

89.6 
99.8 
98.8 

92.7 
99.9 
97.8 

93.1 
100.0 
98.0 

92.7 
99.9 
98.5 

92.5 
99.9 
98.7 

93.3 
99.9 
97.3 

93.2 
99.9 
97.9 

98.6 
100 
96.7 

97.8 
99.5 
97.9 

 

4   Conclusions 

We presented a method to detect double JPEG compression based on feature mining 
and pattern recognition techniques. The developed features include marginal density 
and the neighboring joint density features on the DCT coefficients. Compared to a  
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recently well-developed detection method, our method is superior with respect to ei-
ther detection accuracy or computational cost. Our study also shows that the detection 
performance is related not only to the compression quality factors but also to image 
complexity, which is an important parameter that seems so far to have been over-
looked by the research community in conducting performance evaluation. To formally 
study the performance evaluation issues, both the image complexity and compression 
quality should therefore be included.   
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Abstract. Hierarchical prosody structure generation is a key component for a 
speech synthesis system. One major feature of the prosody of Mandarin Chinese 
speech flow is prosodic phrase grouping. In this paper we proposed an approach 
for prediction of Chinese prosodic phrase boundaries from a limited amount of 
labeled training examples and some amount of unlabeled data using conditional 
random fields. Some useful unlabeled data are chosen based on the assigned 
labels and the prediction probabilities of the current learned model. The useful 
unlabeled data is then exploited to improve the learning. Experiments show that 
the approach improves overall performance. The precision and recall ratio are 
improved. 

Keywords: Prosodic Phrase; Text-to-speech system(TTS); Semi Supervised 
learning; Conditional Random Fields(CRFs). 

1   Introduction 

In continuous speech, native speakers tend to group words into phrases whose 
boundaries are marked by duration and intonational cues, and many phonological 
rules are constrained to operate only within such phrases, usually termed prosodic 
phrases. Whether the prosodic phrase boundary is properly predicted will affect the 
naturalness and correctness of TTS directly. 

At present, a variety of studies have been done on the subject and some effective 
methods are put forward. For Chinese prosodic phrasing, the traditional method is 
based on handcrafted rules[1]. The method is easily explicable and understandable, 
but it is quite time consuming to get lots of trivial rules. Recently, many researchers 
exploited statistically-based method for this and achieved good performance. For 
instance, CART[2] based method is experienced recently. An HMM based statistical 
method for prosodic structure prediction is used in[3]. Maximum entropy (ME) model 
is also reported[4]. 

However, automatically predicting prosodic phrase boundaries with high precision 
and recall ratio requires a large amount of hand-annotated data, which is expensive to 
obtain. Meanwhile unlabeled data may be relatively easy to collect, but there has been 
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few ways to use them. Semi-supervised learning addresses this problem by using 
large amount of unlabeled data, together with the labeled data, to build better 
classifiers. 

Self-training is a commonly used technique for semi-supervised learning. Initially, 
an underlying classifier is trained using a small number of labeled data with all the 
features. Then the classifier classifies unlabeled data, and a selection metric is used to 
rank these classified data and to select some data that have high rankings to update the 
labeled training set. The procedure iterates until all the unlabeled data have been 
included into the training set or the maximum number of iterations is reached. 

Most relevantly, semi-supervised learning in the sense of self-training has been 
used in natural language processing. Yarowsky uses self-training for word sense 
disambiguation[5]. Riloff et al. uses it to identify subjective nouns[6]. Maeireizo et al. 
classify dialogues as ‘emotional’ or ‘non-emotional’ with a procedure involving two 
classifiers[7]. Self-training has also been applied to parsing and machine translation. 
Rosenberg et al. apply self-training to object detection systems from images, and 
show the semi-supervised technique compares favorably with a state-of-the-art 
detector[8]. As far as we know, semi-supervised learning has not been used for 
prosodic phrase prediction. 

The self-training method requires the underlying classifier with high performance. 
Recently, a probabilistic approach called Conditional Random Fields(CRFs) is 
proposed by Lafferty et al[9]. CRFs is a framework of discriminative method 
developed based on undirected graphical models and produces very good results in 
sequence labeling learning task. In this paper, we study the performance of self-
training using CRFs, as underlying classifier. The semi-supervised learning method 
for CRFs utilizes two sources of information: a small amount of manually-labeled 
data, and a large amount of data with derived labels obtained in an unsupervised 
fashion. Our goal, then, is to make use of these two data sources to learn a better 
CRFs model. We have conducted extensive experiments to demonstrate the 
effectiveness of our approach. 

The paper unfolds as follows. Section 2 describes CRFs model. The principle and 
mathematical representation of CRFs are introduced. CRFs based method to predict 
prosodic phrase boundaries is presented in Section 3 in detail. Section 4 gives the 
description of semi-supervised learning algorithm. Section 5 gives the evaluations on 
each method. And the experiment results and discussion are made in Section 6. 
Section 7 presents the conclusion and the view of future work. 

2   Conditional Random Fields(CRFs) 

Conditional Random Fields are undirected graphical models used to calculate the 
conditional probability of values on designated output nodes given values assigned to 
other designated input nodes. CRFs are recently introduced from of conditional model 
that allow the strong independence assumptions of HMMs to be relaxed, as well as 
overcoming the label-bias problem exhibited by MEMM[10]. This allows the 
specification of a single joint probability distribution over the entire label sequence 
given the observation sequence, rather than defining per-state distributions over the 
next states given the current state. 
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Let 1... TX x x=  be some observed input data sequence, such as a sequence of 

words in training data. Let 1... TY y y= be a set of finite state machine(FSM) states, 

each of which is associated with a label. Linear-chain CRFs thus define the 
conditional probability of a state sequence given an input sequence to be 

1
1 1

1
( | ) exp( ( , , , ))

T K

k k t t
t kX

P Y X f y y x t
Z

λΛ −
= =

= ∑∑  (1)

where XZ  is a normalization factor over all state sequences, 

11
exp( ( , , , ))

T

X k k t ty Y i k
Z f y y x tλ −∈ =

=∑ ∑ ∑  (2)

1( , , , )k t tf y y x t−  is an arbitrary feature function over its arguments. The feature 

function can measure any aspect of a state transition 1t ty y− → , and the observation 

sequence X , centered at the current time step t . kλ  is a learned weight for each 

feature function. Large positive values for kλ  indicate a preference for such an event, 

while large negative values make the event unlikely. 
Traditional maximum entropy learning algorithms, such as GIS and IIS[11] can be 

used to train CRFs. 
Given such a model as defined in formula 1, the most probable labeling sequence 

for an input X is *Y  which maximizes a posterior probability. 

* arg max ( | )
y

Y P Y X
Λ

=  (3)

It can be found with dynamic programming using the Viterbi algorithm. 

3   CRFs Based Method for Prediction of Prosodic Phrase 
Boundaries 

It has been shown that Chinese utterance is also structured in a prosodic hierarchy. As 
proposed by Cao[9], prosodic word(PW), prosodic phrase(PP) and intonation 
phrase(IP) are the three prosodic units utilized in the prosodic scheme for our 
Mandarin speech synthesis system. These three prosodic units are in a hierarchical 
relation. An utterance can contain several IPs, an IP can contain several PPs, and a PP 
can contain several PWs respectively. The paper mainly discussed the prediction of 
prosodic phrases. 

For automatic prediction of prosodic phrase boundaries, the sentences in training 
corpus are dealt with follows: 

XiFang/s/B GuoJia/n/E Zai/p/B Hen/d/I  Da/a/I ChengDu/n/I Shang/m/E 
HuShi/v/B  Le/u/I  FeiZhou/ns/I  De/u/I  ZhaiWu/n/E。/w 

(Western Countries have ignored African’s debt to a large degree) 
Here ‘B’(Beginning) represents the beginning of a PP(prosodic phrase), ‘E’(End) 

is the end of a PP, ‘I’(Inside) represents the middle of a PP. 
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Thus the problem of prosodic phrase prediction can be resolved by CRFs model 
where the observation sequence is 1... TX x x= , and the state sequence is a tag 

sequence 1... TY y y= ( { , , }y B I E∈ ). 

3.1   Feature Selection in Prosodic Phrase Prediction  

Feature templates are established manually from context information. For our specific 
application, most commonly used features include the part-of-speech(POS), the length 
in syllables and the word itself of the words surrounding the boundary. The neighbor 
words are restricted to two words before the boundary and one word after the 
boundary. 

Besides these commonly used features, two important features are also introduced 
into the templates. A prosodic phrase break depends on where the last break 
occurs[12]. The greater the distance from the previous break, the higher the 
probability of a break being inserted. 

For this reason, we take into consideration length measures by adding ‘DTLP’ and 
‘DTNP’ into our templates for prosodic phrase prediction, which means the 
distance(in syllables) from current boundary to the last and next nearest PP boundary. 

The features used in the model are shown in Table 1.  

Table 1. Feature used in CRFs model 

Feature tag Feature explanation 
W-1 previous lexicon word 
W0 current lexicon word 
W+1 next lexicon word 
W0W+1 current lexicon word and next lexicon word 
W-1W0 previous lexicon word and current lexicon word 
P-1 part-of-speech of the previous lexicon word 
P0 part-of-speech of the current lexicon word 
P+1 part-of-speech of the next lexicon word 
P0P+1 part-of-speech of the current lexicon word and next 

lexicon word 
P-1P0 part-of-speech of the current lexicon word and 

previous lexicon word 
WL-1 The length of the previous lexicon word, in Chinese 

characters 
WL0 The length of the current lexicon word, in Chinese 

characters 
WL+1 The length of the next lexicon word, in Chinese 

characters 
WL0WL+1 The length of the current lexicon word and next 

lexicon word, in Chinese characters 
WL-1WL0 The length of the pervious lexicon word and current 

lexicon word, in Chinese characters 
DTLP Distance from current position to last PP boundary 
DTNP Distance from current position to next PP boundary 
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We use the software CRF++1 as our Chinese prosodic phase boundaries prediction 
software. 

4   Semi-supervised Learning Algorithm 

4.1   General Algorithm of Self-training 

In self-training, an underlying classifier is first trained with a small number of labeled 
data which is called the initial training set. The underlying classifier is used to classify 
the unlabeled data. The most confident unlabeled instances with their predicted labels 
are added to the training set. The underlying classifier is then re-trained and the 
procedure repeats. The following is the general procedure of self-training algorithm. 

Input: L  is labeled instance set, U  is unlabeled instance set, C is underlying 
classifier, t  is the number of times of iteration, θ is the number of selected unlabeled 

instances for next iteration, M  is the selection metric, ( , , , )tS U C Mθ is the 

selection function, and maxIteration is the maximum number of iterations. 

Initial: 0t = , tL L= , tU U= , where tL  and tU  are the labeled and unlabeled 

instance set at the t th iteration 
Repeat: 

train C  on tL ; 

( , , , )t tS S U C Mθ= ,where tS is the selected unlabeled instance set; 

1t t tU U S+ = − ; 1t t tL L S+ = + ; 

1t t= +  

Until: ( tU is empty) ∨ (maxIterations reached) 

The selection function is used to rank the unlabeled instances and select a certain 
number of unlabeled instances to update the training instance set for the next iteration. 

CRFs is selected as underlying classifier in the paper. We make use of the 
prediction probabilities and the labels assigned by the current learned conditional 
random fields model[14].Once we obtain these useful unlabeled data, we can annotate 
their labels and add them to the labeled training examples so as to maximize the 
effectiveness of learning. 

5   Experiment 

5.1   The Experiment Corpus  

In our experiments, a speech corpus for training and testing are used. 10000 sentences 
are randomly selected from the People’s Daily corpus read by a radiobroadcaster. The 
sentences with three-level prosodic boundaries are labeled manually by listening to 
the record speech. 

                                                           
1 http://crfpp.sourceforge.net/ 
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To check consistency of annotation across different people, an exploratory 
experiment was carried out. Three annotators were first trained on the same 100 
sentences. At this stage, they were required to discuss criteria for annotation so that 
they could achieve agreement on most of the annotations in the 100 sentences. Then 
they were asked to annotate a small subset of the corpus. All three annotators 
achieved agreement on 85%. That is to say pretty good consistency existed among the 
three annotators. 

The sentences of the corpus are also processed with a text analyzer, where Chinese 
word segmentation and part-of-speech tagging are accomplished in one step using a 
statistical language model. The segmentation and tagging yields a gross accuracy rate 
over 96.5%. 

We randomly hide the labels of 500 sentences to make the unlabeled set, and keep 
the remaining portion as the labeled set which is initially used to train the underlying 
classifier and evaluation. 

5.2   The Evaluation Criteria 

The precision, recall ratio and F-score are adopted as the evaluation criteria. The 
precision and recall are defined as: Pre= 1 2/C C , Rec= 1 3/C C . 1C  is the number of 

prosodic phrase boundaries correctly recognized, 2C  is the total number of prosodic 

phrase boundaries recognized, and 3C represents the total number of real prosodic 

phrase boundaries in the test corpus. 
The F-score is calculated as: 2 Pr Re /(Pr Re )F e c e c= × × + . 

6   Results and Discussion 

In the first experiment, we attempt to illustrate the effectiveness of our approach for 
choosing useful unlabeled data. 

We first randomly selected these 5000 sentences to train a CRFs model and apply 
the trained model to automatically label the unlabeled data. The automatically labeled 
data is then sorted in ascending order of the probability and divided into 5 equal 
portions. The performance for each portion is measured. Table 2 shows the results in 
each portion and the overall performance. It shows that the performance increases 
according to the prediction probability. The useful unlabeled data refers to those data 
in which the model labels do not match with the actual labels. Hence it is likely that 
the 1st portion contains the highest number of useful unlabeled instances. 

Next, we intend to show that the useful unlabeled data can effectively improve the 
performance if they are added to the training set with their actual labels. For each 
portion, we make use of the manual labels of the sequences and added these manually 
labeled sequences to the training set. 

A CRFs model is then trained with this new training set and applied to 
automatically label the sequences in the other nine portions. Table 3 shows the 
performance for the original labeled training set after adding unlabeled data achieved 
on the same testing set. It shows that the portions with lower prediction probability 
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show the greater improvement. This suggests that the unlabeled data with low 
prediction probability are more useful than those with high prediction probability. 

Two factors may influence the performance of self-training. One is the size of the 
initial labeled instance set, and the other one is the number of classified unlabeled 
data selected for the next iteration. A set of experiments is developed for self-training 
with different sizes of initial labeled instance sets. Then, we design the experiments of 
self-training with different numbers of selected unlabeled data for the next iteration. 
The experimental results of F-sore are shown in Table 4 and Table 5. 

In Table 6, the results of F-score on the semi-supervised learning method for CRFs 
are compared with the results from baseline when adding the same labeled set. The 
initial labeled set of the two methods are both 1000. The results from baseline are 
obtained from the corresponding supervised classifiers. From the results, we can see 
that the performance of self-training is better than the baseline. 

6.1   Results 

Table 2. The result for using CRFs trained by original labeled data to label the unlabeled data 

Portion Precision(%) Recall(%) F-score(%)
1 82.8 68.4 74.9 
2 83.1 70.1 75.9 
3 85.1 71.2 77.5 
4 87.0 75.0 80.6 
5 89.5 81.2 85.1 
Average 85.5 73.2 78.9 

Table 3. The result for the original labeled training set after adding unlabeled data 

Portion Precision(%) Recall(%) F-score(%)
1 84.5 70.7 77.0 
2 83.4 68.0 74.9 
3 82.1 67.3 74.0 
4 81.3 66.5 73.2 
5 80.1 66.0 72.4 

Table 4. The result of different sizes of initial labeled data 

Initial labeled data F-score(%)
1000 70.7 
1200 71.2 
1400 71.8 
1600 71.0 
1800 70.4 
2000 72.0 
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Table 5. The result of different numbers of selected unlabeled data for the next iteration 

Num of unlabeled data 
for next iteration 

F-score(%)

50 71.7 
100 71.8 
200 71.4 
300 71.9 
400 72.2 

Table 6. The result of self-training, baseline 

 10 30 50 100 200 
Self-training 71.7 72.0 71.5 72.4 73.7
baseline 68.7 69.4 70.0 70.5 70.3

7   Conclusion 

In this paper, we introduce a semi-supervised learning method, self-training, to solve 
the task of prosodic phrase prediction. The results also show that self-training can 
achieve comparable performance to the supervised learning models for prosodic 
phrase prediction. 

Our future work is to incorporate more contextual information into the models. We 
will extend our study of self-training to other applications of machine learning. 
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Abstract. Singer identification is a difficult topic in music information
Retriveal research area. Because the background instrumental accompa-
niment in audio music is regarded as noise source that has to reduce a
performance.

This paper proposes a singer identification algorithm thai is able to
automatically identify a singer in an audio music signal with background
music by using Time-Frequency audio feature. The main idea is used a
spectrogram to able effective Time-Frequency feature and used as the
input for classification. The proposed technique is test with 20 differ-
ent singer. Sereval classification technique are compared,such as Feed-
Forward Neural Network, k-Nearest Neighbor (kNN) and Minimum least
square linear classifier(Fisher). The experimental result on singer identi-
fication using a spectrogram with Feed-Forward Neural Networkand and
k-Nearest Neighbor (kNN) can effectively identify the singer in music
signal with background music more than 92%.

Keywords: Spectrogram, Time-Frequency audio feature, Singer identi-
fication, Feed-Forward Neural Network, k-Nearest Neighbor (kNN).

1 Introduction

With digital music becoming more popular such as music CDs and MP3 music
downloadable from the internet, music databases, are growing rapidly. Tech-
nologies are demanded for efficient retrieval of these music collections, so that
consumers can be provided with powerful functions for browsing and searching
musical content. Among such technologies, is the automatic singer identification
of a song, i.e. to recognize the singer of a song by analyzing audio features of the
music signal. With this capability provided in a music system, the user can easily
get to know the singer’s information of an arbitrary song, or retrieve all songs
performed by a particular singer in a distributed music database. Furthermore,
this technology may be used to classify songs of similar voices of singers in a
music collection, or search for songs which are similar to a query song in terms
of the singer’s voice.

Several techniques are proposed for the algorithm to solve the problem of au-
dio classification [3][4][5][6] [7]. Most of the proposed methods are divided into
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two processing steps: feature extraction and classification. In the first step, fea-
ture exaction, the redundant information contained in the signal are transformed
into descriptors that are used to be the input of classifier. A variety of fea-
ture extraction techniques are applied such as power pattern and frequency pat-
tern [8], short-time Fourier transform [3], continuous wavelet transform [9] and
Mel-frequency cepstral coefficients (MFCCs) [10]. However, only few temporal-
domain features have been developed to identification singer. In the second step,
classification , the singing voice is recognized. Several classification techniques
are applied such as HMM-base method [11][12], multilayered neural network
[13], Limited receptive area (LIRA) neural classifier [3][9]. Support vector ma-
chine (SVM) [14][15].

Whitman [1] presents earliest work on artist identification for MIR. In this
work, ANN and SVM classifiers are applied to spectral features computed from
short clips of popular music by a variety of artists. The audio clips are one second
long, and are analyzed using, alternately, the Discrete Fourier Transform (DFT)
and MFCCs. For a five-artist set, the best-case testing-set classification accuracy
is found to be 91%. Increasing to ten artists lowers this accuracy figure to 70%,
while a twenty-one-artist set yields only 50% accuracy in the best case.

Another system, which is evaluated on the same data as the system in [1],
is presented by Berenzweig et al. [2]. This system is used MFCC’s as features
input to another neural network classifier. On the 21-artist data set, the use of
the vocal identification preprocessing improves classification accuracy to 65%.
Overall, the results suggest that using the spectra of audio segments that contain
vocals improves performance.

Kim [16] presents a system that is similar Berenzweig et al. [2], but it specif-
ically claims to perform singer identification rather than artist identification. In
this system, a armonicity estimate is compared against a threshold to identify
segments of audio containing vocals. Two classifiers, one using Gaussian mixture
models and another using SVMs, are tested using warped linear prediction coef-
ficients. Best case performance on a set of 17 artists is found to be approximately
45%.

Hiromasa Fujihara [17], propose a method that can reduce the negative in-
fluence of accompaniment sounds directly from a given musical audio signal to
solve this problem. This method consists of the following four parts: accompani-
ment sound reduction, feature extraction, reliable frame selection, and stochastic
modeling. To reduce the negative influence of accompaniment sounds, the ac-
companiment sound reduction part first segregates used fundamental frequency
(F0) and resynthesizes the singing voice from polyphonic audio signals on the
basis of its harmonic structure. The feature extraction part then calculates the
feature vectors from the segregated singing voice. The reliable frame selection
part chooses reliable vocal regions from the feature vectors and removes unre-
liable regions that do not contain vocals or are greatly influenced by accompa-
niment sounds. The stochastic modeling part represents the selected features as
parameters of the Gaussian mixture model (GMM).
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An interested word proposed by Peerapol[19], propose a method that can rec-
ognize the word in a singing signal with background music by using the concept
of spectrogram pattern matching. The main idea is to apply both the spectro-
gram for feature extraction to solve the problem of singing voice recognition.
His technique, Each signal that accompanies music is analyzed and generated to
its spectrogram that is used to train data for the classifier. Several classification
functions are compared , such as Fisher classifier, Feed-Forward can effectively
recognize the word in music with the accuracy rate more than 84%.

The object of this paper is to solve the problem singer identification in audio
that accompanying music without using any method to separate a music instru-
mental in background. Especially, The instrumental interference is regard as a
noise source degarding the performance of identification performance. We used
the idea of recognize audio signal in [19] to solve the problem singer identification.
Fig 1 show a diagram of our proposed algorithm. First the audio signal is divided
into a short segment. Fast Fourier transform (FFT) is applied to each segment
to generate a spectrogram. After that a classification technique was used such as
Feed-Forward Neural Network, k-Nearest Neighbor (kNN) and Minimum least
square linear classifier(Fisher). The K-fold cross-validation technique is used to
evaluate the performance of classifier.

The rest of the paper is organized as follows. The detail of our proposed
algorithm is described in Section 2. The experimental results are showed in
Section 3. Section 4 concludes paper.

Fig. 1. Overview of the proposed algorithm

2 Methodology

2.1 Data Collection

The database used in this experiment contains sixteen Thai popular singers
(14 men singer, 2 women singer), 10 music for each singer, total 160 songs All
soungs collected from a commercial music covering five genres. The five genres
are Rock, Soft-Rock, Pop, Acoustic, R&B. We capture by manual 20s vocal area
that accompany music in each song to generate a dataset. All songs were coded
in stereo of frequency 44.2 kHz with 128/s bit rate. The files were converted in
mono and down sampling to 16 kHz.
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2.2 Feature Extraction

There are many features that can be used to characterize audio signals. Feature
extraction is the process of computing a compact numerical representation that
can be used to characterize segments of audio signal. The present work uses
spectrogram analysis based on Fast Fourier transform (FFT) for feature extrac-
tion. Figure 2 shows the block diagram of spectrograms generated by Fourier
transformation.

Fig. 2. Block diagram of spectrograms generated by Fourier transformation

First the audio signal is divided into short time windows. Fast Fourier trans-
form (FFT) is applied to each time window for the discrete-time signal x(n) with
length N and N must be sized equal power of two, given by

X(k) =
N−1∑
n=0

w(n)x(n)exp(− j2πkn
N

) (1)

for k = 0, 1, . . . , N − 1, where k corresponds to the frequency f(k) =(kfs

N ) ,
fs is the sampling frequency in Hertz and w(n) is a time-window. Here, we
chose Hamming window as a time window, given by

w(n) = 0.54 − 0.46 cos
(πn

N

)
(2)

In this paper, each segment is transformed with DFT or FFT in (1). After
that the magnitude frequency vectors are stacked and plotted with the vertical
axis representing the frequency and the horizontal axis representing the time.
In this paper, we used each column of the spectrogram as a feature vector for
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classification the signal. The spectrogram displays just the energy and not the
phase of the short-term Fourier transform, we compute the energy p(n) as

p(k) = 10log10(X(k)) (3)

2.3 Data Classification

This section provides information regarding the classification methods and pa-
rameters used. Three different classifiers, namely Minimum least square linear
classifier(Fisher), K-nearest neighbors (KNN), Feed-Forward neural network [17]
[18] are used. Parameters for each classification technique are shown in Table 1.

Table 1. Parameters for Each Classification Technique

Classifiers Parameters

Feed-Forward NN Hidden neurons = 20, 30 and 40
No. of iterations = 1000

K-Nearest Neighbor K=5, 10 and 5
Fisher Default from PRTools.

K-Nearest Neighbor and Minimum least square linear classifier(Fisher) were
implemented by using the PRTools Matlab package [19]. Feed-Forward Neural
Networks were implemented by using the Neural Network Toolbox Matlab pack-
age [18]. The performances were evaluated by 5-fold cross-validation technique.

Fig. 3. Test classification performance of different classifiers (x axis) using a spectro-
gram, MFCC and LPC with a window of 512
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3 Result

In each experiment, we performed 50 runs of the 5-fold cross-validation to obtain
statistically reliable results. The mean recognition rate was calculated based on
the error average for one run on test set.

First, We created a spectrogram used a window of 512. The experiment is
compared with Mel-frequency cepstral coefficients (MFCCs) 13 coeffs and Linear
predictive coding (LPC) 13th-order. MFCCs and LPC was used a window of
512 same a spectrogram. Figure 3 shows the test classification performance of
different classifiers (x axis) . Experiments by using K-Nearest Neighbor with 5,
10 and 15 Neighbor with a spectrogram show the best performance of 89.13%,
88.47% and 87.44%.

A spectrogram can be obtained from different sizes of windowed segment. We
wanted to find out the size of windowed segment that gives the best accuracy rate
in classification for the data set. The following window sizes were experimented:
4096, 2048, 1024, 512, 256, 128 and 64 Figures 7, 8, 9, 10, 11, 12, and 13 show the

Fig. 4. Test classification performance of different sizes of windowed segment (x axis)
using Feed forward Neuron network 20, hidden neuron

Fig. 5. Test classification performance of different sizes of windowed segment (x axis)
using Feed forward Neuron network 30, hidden neuron
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Fig. 6. Test classification performance of different sizes of windowed segment (x axis)
using Feed forward Neuron network 40, hidden neuron

Fig. 7. Test classification performance of different sizes of windowed segment (x axis)
using K-Nearest neighbor classifier with 5 neighbor

Fig. 8. Test classification performance of different sizes of windowed segment (x axis)
using K-Nearest neighbor classifier with 10 neighbor
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Fig. 9. Test classification performance of different sizes of windowed segment (x axis)
using K-Nearest neighbor classifier with 15 neighbor

Fig. 10. Test classification performance of different sizes of windowed segment (x axis)
using using Fisher classifier

Table 2. AVERAGE ACCURACY OF ALL CLASSES FROM EACH METHOD.
KNN(5) , KNN(10) and KNN(15) refer to KNN with K =5, KNN with K =10 and
KNN with K =15, respectively. FFNet(20), FFNet(30) and FFNet(40) refer to feed
forward networks with 20, feed forward networks with 30 and feed forward networks
with 40 hidden neuron, respectively.

Window Size 4096 2048 1024 512 256 128 64

KNN (5) 82.75% 86.82% 89.18% 89.13% 84.99% 75.26% 50.36%
KNN (10) 81.00% 85.53% 88.25% 88.47% 85.05% 74.85% 53.33%
KNN (15) 79.43% 84.39% 87.44% 87.44% 84.53% 75.96% 54.54%
FFNet (20) 94.6% 85.96% 75.78% 68.75% 57.37% 48.16% 38.96%
FFNet (30) 95.77% 89.59% 76.65% 69.97% 59.38% 47.92% 38.04%
FFNet (40) 96.71% 85.05% 80.22% 70.71% 61.25% 51.69% 42.19%
Fisher 81.05% 77.69% 68.69% 56.78% 49.52% 41.56% 38.54%
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testing accuracy of different classifiers with different sizes of windowed segment (x
axis). Table 2 summarized the average accuracy of all classes from each method.

From these results, a feed forward networks with 20, 30 and 40 hidden neuron
performed on a large size of windowed segment gives better recognition accuracy
than using a small windowed segment. By using Feed forward Neural network
with 40 Hidden neural performed with a window of 4096 received the highest
performance when compared with the other up to 96.71%. In the case of K-
Nearest neighbor the best performance of windowed segment are between 1024
and 512. For every classifier, The use of small windows that are received the very
low performance.

4 Conclusion

In this paper, we propose an algorithm for singer identification without using
separate method music in background in polyphonic music based on spectrogram
and classification technique. This approach is simpler than the existing methods.
The results show all classifiers can identify a singger. In particular, Feed-Forward
neural network with 40 hidden neural performed with a window of 4096 give the
best results and K-Nearest neighbor the best performance of windowed segment
are between 1024 and 512. A spectrogram created by using large windowed
segment gives better recognition rate than a spectrogram created by using small
windowed segment.
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Abstract. Systems for keyword and non-linguistic vocalization detec-
tion in conversational agent applications need to be robust with respect
to background noise and different speaking styles. Focussing on the Sensi-
tive Artificial Listener (SAL) scenario which involves spontaneous, emo-
tionally colored speech, this paper proposes a multi-stream model that
applies the principle of Long Short-Term Memory to generate context-
sensitive phoneme predictions which can be used for keyword detection.
Further, we investigate the incorporation of noisy training material in or-
der to create noise robust acoustic models. We show that both strategies
can improve recognition performance when evaluated on spontaneous
human-machine conversations as contained in the SEMAINE database.

Keywords: Conversational agents, keyword spotting, multi-condition
training, long short-term memory.

1 Introduction

Systems for advanced Human-Machine Interaction which offer natural and intu-
itive input and output modalities require robust and efficient machine learning
techniques in order to enable spontaneous conversations with a human user.
Since speech is the most natural human-to-human communication channel, the
advancement of speech technology is an essential precondition for improving
Human-Machine Interaction. Conversational agents which shall recognize, inter-
pret, and react to human speech rely on speech processing technologies that can
cope with various challenging conditions, such as background noise, disfluencies,
and emotional coloring of speech. Reliably extracting meaningful keywords tends
to be the most important functionality of speech processing modules providing
linguistic information to the dialogue management [1].

As conversational agents are often used in noisy conditions, automatic speech
recognition (ASR) and keyword spotting systems have to be based on features
and models that lead to an acceptable recognition performance even if the speech

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 496–505, 2011.
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signal is superposed by background noise. Thus, most systems apply speech fea-
ture normalization or enhancement techniques such as cepstral mean normaliza-
tion, histogram equalization, or Switching Linear Dynamic Models [2]. A simple
and efficient method to improve the noise robustness of the speech recognition
back-end is to use matched or multi-condition training strategies [3] by incorpo-
rating noisy training material which reflects the noise conditions expected while
running the system.

Another approach to enhance recognitionperformance in challenging conditions
is to apply neural networks for generating state posteriors or phoneme predictions
which are then decoded by a Hidden Markov Model (HMM). These so-called
Tandem or hybrid systems are a popular alternative to the conventional HMM
technique since they efficiently combine the advantages of both, neural networks
and HMMs [4]. However, conventional Multilayer Perceptrons (MLP) or recurrent
neural networks (RNN) as they are used in today’s Tandem ASR systems have
some inherent drawbacks such as the vanishing gradient problem [5] which limits
the amount of contextual information that can be modeled by an RNN. Yet, due
to co-articulation effects in human speech, context modeling is essential for accu-
rate phoneme prediction. As an alternative to learning a fixed amount of context by
processing a predefined number of consecutive feature frames via MLPs, the usage
of Long Short-Term Memory (LSTM) networks [6] has recently been proposed for
keyword spotting [7] and continuous ASR systems [8]. LSTM networks are able to
model a self-learned amount of context information which leads to higher phoneme
recognition accuracies when compared to standard RNNs [8].

In this contribution we investigate both, multi-condition training strategies for
enhanced keyword spotting performance in noisy conditions, and the effect of in-
corporating LSTM phoneme prediction in a multi-stream ASR framework. Both
techniques are evaluated with respect to their suitability for conversational agents.
Thereby we focus on the Sensitive Artificial Listener (SAL) scenario which aims at
maintaining a natural conversation with different virtual characters [9].

Section 2 describes the four virtual SAL characters that allow for emotional
human-machine conversations via the SEMAINE system1. For our keyword spot-
ting experiments we use spontaneous speech as contained in the SEMAINE
database which is introduced in Section 3 and provides training material for
the SEMAINE system. The multi-stream LSTM-HMM technique used for en-
hanced keyword and non-linguistic vocalization detection within the SEMAINE
system is outlined in Section 4. Finally, Section 5 contains the results of our
multi-condition training and multi-stream decoding experiments.

2 Sensitive Artificial Listeners

In contrast to most task-oriented dialogue systems, the Sensitive Artificial Lis-
teners representing the SEMAINE system [9] focus on aspects of communication
that are emotion-related and non-verbal. The system is designed for a one-to-
one dialogue situation in which one user is conversing with one of four available
1 http://semaine-project.eu/
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virtual agent characters. Besides speech, the (multimodal) interaction involves
head movements and facial expressions. The SAL characters have to recognize a
limited set of emotionally relevant keywords, non-linguistic vocalizations such as
laughing or sighing, and the prosody with which the words are spoken. Based on
the interpreted input from audio and video, the system has to show appropriate
listener behavior, e. g., multimodal backchannels, decide when to take the turn,
and select a suitable phrase in order to maintain the conversation.

The four SAL characters roughly represent areas in the arousal-valence space:
‘Spike’ is angry (high arousal, low valence), ‘Poppy’ is happy (high arousal, high
valence), ‘Obadiah’ is sad (low arousal, low valence), and ‘Prudence’ is matter-of-
fact (moderate arousal, moderate valence). During the conversations, the virtual
characters aim to induce an emotional state in the user that corresponds to their
typical emotional state.

3 The SEMAINE Database

The SEMAINE database was recorded in order to provide training material for
the speech and vision-based input components of the SEMAINE system. For this
purpose, the functionality of the virtual agent system was imitated by a human
operator using a Wizard-of-Oz scenario. Thus, users were encouraged to show
emotions while naturally speaking about arbitrary topics.

The transcribed part of the database consists of 19 recordings with different
English speaking users and has a total length of 6.2 h. Models used for the
experiments in Section 5 are trained on recordings 1 to 10 (speech material from
both, user and operator) and tested on recordings 11 to 19 (only speech from
the user). The vocabulary size of the SEMAINE corpus is 3.4 k.

In addition to the SEMAINE database, two other spontaneous speech cor-
pora were used for acoustic and language model training: the SAL corpus and
the COSINE corpus. The SAL database was recorded under similar conditions
as the SEMAINE corpus, which makes it well-suited for our application scenario.
It has already been used in a large number of studies on emotional speech (for
more details on the SAL database, see [10], for example). The COSINE cor-
pus [11] contains multi-party conversations recorded in real world environments
and is partly overlaid with indoor and outdoor noise sources. It consists of ten
transcribed sessions with 11.4 h of speech from 37 different speakers and has a
vocabulary size of 4.8 k.

4 Multi-stream LSTM-HMM

This section briefly outlines the multi-stream LSTM-HMM ASR system we use
for enhanced keyword detection in emotionally colored speech (see Section 5.2).
The main idea of this technique is to enable improved recognition accuracies
by incorporating context-sensitive phoneme predictions generated by a Long
Short-Term Memory network into the speech decoding process.
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Fig. 1. Architecture of the multi-stream LSTM-HMM decoder: st: HMM state, xt:
acoustic feature vector, bt: LSTM phoneme prediction feature, it, ot, ht: input, output,
and hidden nodes of the LSTM network

LSTM networks [6] were introduced after the analysis of the error flow in
conventional recurrent neural nets revealed that long range context is inaccessible
to standard RNNs, since the backpropagated error either blows up or decays over
time (vanishing gradient problem [5]). The LSTM principle is able to overcome
the vanishing gradient problem and allows the network to learn the optimal
amount of contextual information relevant for the classification task.

An LSTM layer is composed of recurrently connected memory blocks, each of
which contains one or more memory cells, along with three multiplicative ‘gate’
units: the input, output, and forget gates. The gates perform functions analogous
to read, write, and reset operations. More specifically, the cell input is multiplied
by the activation of the input gate, the cell output by that of the output gate,
and the previous cell values by the forget gate. The overall effect is to allow the
network to store and retrieve information over long periods of time.

The structure of our multi-stream decoder can be seen in Figure 1: st and xt rep-
resent the HMM state and the acoustic (MFCC) feature vector, respectively, while
bt corresponds to the discrete phoneme prediction of the LSTM network (shaded
nodes). Squares denote observed nodes and white circles represent hidden nodes.
In every time frame t the HMM uses two independent observations: the MFCC fea-
tures xt and the LSTM phoneme prediction feature bt. The vector xt also serves as
input for the LSTM, whereas the size of the LSTM input layer it corresponds to the
dimensionality of the acoustic feature vector.Thevector ot contains oneprobability
score for each of the P different phonemes at each time step. bt is the index of the
most likely phoneme:



500 M. Wöllmer et al.

bt = max
ot

(ot,1, ..., ot,j , ..., ot,P ) (1)

In every time step the LSTM generates a phoneme prediction according to Equa-
tion 1 and the HMM models x1:T and b1:T as two independent data streams.
With yt = [xt; bt] being the joint feature vector consisting of continuous MFCC
and discrete LSTM observations and the variable a denoting the stream weight
of the first stream (i. e., the MFCC stream), the multi-stream HMM emission
probability while being in a certain state st can be written as

p(yt|st) =

[
M∑

m=1

cstmN (xt;μstm, Σstm)

]a

× p(bt|st)2−a. (2)

Thus, the continuous MFCC observations are modeled via a mixture of M Gaus-
sians per state while the LSTM prediction is modeled using a discrete probability
distribution p(bt|st). The index m denotes the mixture component, cstm is the
weight of the m’th Gaussian associated with state st, and N (·;μ,Σ) represents
a multivariate Gaussian distribution with mean vector μ and covariance matrix
Σ. The distribution p(bt|st) is trained to model typical phoneme confusions that
occur in the LSTM network. In our experiments, we restrict ourselves to the 15
most likely phoneme confusions per state and use a floor value of 0.01 for the
remaining confusion likelihoods.

The applied real-time LSTM phoneme predictor is publicly available as part
of our on-line speech feature extraction engine openSMILE [12].

5 Experiments and Results

In the following we will show the effects of using multi-condition training for a
keyword detector based on a conventional single-stream continuous ASR system
(Section 5.1), and the performance gain that can be obtained when applying the
multi-stream LSTM-HMM principle (Section 5.2).

5.1 Multi-condition Training

To improve keyword detection accuracy in noisy conditions, we investigated true
positive and false positive rates when including noisy speech material in the
training process. For all experiments, a part of the training material consisted of
unprocessed versions of the SEMAINE database (recordings 1 to 10), the SAL
corpus, and the COSINE database. This speech material will be referred to as
clean in the ongoing (even though the COSINE corpus was partly recorded under
noisy conditions). In addition to the ‘clean’ models, we evaluated different ex-
tensions of the training material by adding distorted versions of the SEMAINE
and the SAL corpus. For this purpose, we superposed the clean speech with
additive noise at different SNR levels: 15 dB, 10 dB, and 5 dB. We considered
both, white Gaussian noise and babble noise from the NOISEX database. For
evaluation, we used clean and distorted versions of the SEMAINE database
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(recordings 11 to 19). Since conversational agents such as the SEMAINE system
are often used while other people talk in the background, the babble noise eval-
uation scenario is most relevant for our application. We considered a set of 173
keywords and three different non-linguistic vocalizations (breathing, laughing,
and sighing). The training/test distribution for breathing, laughing, and sighing
was 124/54, 268/227, and 45/8, respectively. Keyword detection was based on
simply searching for the respective words in the most likely ASR hypothesis. The
applied trigram language model was trained on the SEMAINE corpus (record-
ings 1 to 10), the SAL database, and the COSINE database (total vocabulary
size 6.1 k). Via openSMILE [12], 13 cepstral mean normalized MFCC features
along with first and second order temporal derivatives were extracted from the
speech signals every 10ms. All cross-word triphone HMMs consisted of 3 emit-
ting states with 16 Gaussian mixtures per state. For non-linguistic vocalizations,
we trained HMMs consisting of 9 states.

Figures 2(a) to 2(d) show the Receiver Operating Characteristic (ROC) oper-
ating points for clean test material as well as for speech superposed with babble
noise at 15 dB, 10 dB, and 5 dB SNR, respectively, when using different acoustic
models. As can be seen in Figure 2(a), models exclusively trained on clean speech
lead to the best performance for clean test data. We obtain a true positive rate
of 56.58% at a false positive rate of 1.89% which is in the range of typical recog-
nition rates for highly disfluent, spontaneous, and emotionally colored speech
[7]. Including noisy training material slightly increases the false positive rate to
up to 2.20% at a small decrease of true positive rates. Yet, when evaluating the
models on speech superposed by babble noise, multi-condition training signifi-
cantly increases the true positive rates. A good compromise between high true
positive rates and low false positive rates in noisy conditions can be obtained by
applying the acoustic models denoted as ‘clean, 15dB, 10dB’ in Figures 2(a) to
2(d), i. e., models trained on the clean versions of the SEMAINE, SAL, and CO-
SINE corpus, on the SEMAINE and SAL database superposed by babble noise
at 15 dB SNR, and on the 10 dB versions of the SEMAINE and SAL database.
For test data superposed by babble noise, this training set combination leads
to the highest average true positive rate (41.66%, see Table 1) at a tolerable
average false positive rate. A similar result can be observed for the evaluation
on test data corrupted by white noise (see Table 2). Models that are partly
trained on speech superposed by white noise enable higher true positive rates in
noisy conditions than ‘clean’ models. As for the babble noise scenario, a com-
bination of clean, 15 dB SNR, and 10 dB SNR training data results in the best
true positive/false positive compromise.

5.2 Multi-stream Decoding

To improve keyword detection in clean conditions, we implemented and evaluated
the multi-stream LSTM-HMM decoder introduced in Section 4. Since the LSTM
network was trained on framewise phoneme targets, we used an HMM system
to obtain phoneme borders via forced alignment. The multi-stream system was
trained on the clean versions of the SEMAINE, SAL, and COSINE databases
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(a) clean (b) 15 dB SNR

(c) 10 dB SNR (d) 5 dB SNR

Fig. 2. ROC operating points obtained for different acoustic models when tested on
clean speech and speech superposed by babble noise at 15, 10, and 5 dB SNR; acoustic
models were trained on unprocessed versions of the SEMAINE, SAL, and COSINE
corpus (‘clean’) and on noisy versions of the SEMAINE and SAL corpus using different
SNR level combinations (babble noise)

and applied an LSTM network with a hidden layer consisting of 128 memory
blocks. Each memory block contained one memory cell.

For LSTM network training we used a learning rate of 10−5 and a momen-
tum of 0.9. Prior to training, all weights were randomly initialized in the range
from -0.1 to 0.1. Input and output gates used tanh activation functions, while
the forget gates had logistic activation functions. We trained the networks on
the standard (CMU) set of 41 different English phonemes, including targets for
silence, breathing, laughing, and sighing. The stream weight variable a was set
to one.
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Table 1. Babble noise: Average true positive rates (tpr) and false positive rates (fpr)
obtained with acoustic models trained on clean data and speech superposed by babble
noise at different SNR conditions; clean and noisy test condition

training data test condition

SNR used for superposition babble noise clean
with babble noise tpr [%] fpr [%] tpr [%] fpr [%]

clean 29.89 1.56 56.58 1.89
clean, 15 dB 36.37 1.81 54.91 1.96
clean, 10 dB 38.40 1.91 55.92 1.92
clean, 5 dB 36.73 2.10 55.90 1.99
clean, 15 dB, 10 dB 41.66 2.16 53.87 2.16
clean, 15 dB, 5 dB 41.29 2.08 53.08 2.05
clean, 10 dB, 5 dB 41.38 2.20 54.28 2.09
clean, 15 dB, 10 dB, 5 dB 38.67 2.16 54.79 2.20

Table 2. White noise: Average true positive rates (tpr) and false positive rates (fpr)
obtained with acoustic models trained on clean data and speech superposed by white
noise at different SNR conditions; clean and noisy test condition

training data test condition

SNR used for superposition white noise clean
with white noise tpr [%] fpr [%] tpr [%] fpr [%]

clean 19.81 1.26 56.58 1.89
clean, 15 dB 39.40 2.28 57.31 2.06
clean, 10 dB 39.33 2.44 56.50 2.03
clean, 5 dB 23.65 1.20 56.02 2.01
clean, 15 dB, 10 dB 42.47 2.54 54.55 2.21
clean, 15 dB, 5 dB 42.11 2.57 54.28 2.16
clean, 10 dB, 5 dB 41.27 2.60 54.09 2.04
clean, 15 dB, 10 dB, 5 dB 42.48 2.69 50.42 2.27

The ROC operating points representing the keyword detection performance
of the standard HMM (SEMAINE 3.0 single-stream) and the LSTM-HMM (SE-
MAINE 3.0 multi-stream) can be seen in Figure 3(a). All systems were evaluated
on recordings 11 to 19 from the SEMAINE database. At a slight increase of the
true positive rate, the incorporation of LSTM phoneme predictions can signifi-
cantly reduce the false positive rate from 1.89% to 1.57%. For comparison, we
also included the results for a preliminary version of the SEMAINE keyword
detector (referred to as the SEMAINE 2.0 system [9]) which does not apply
an in-domain language model and thus cannot compete with the current ver-
sion (SEMAINE 3.0). Figure 3(a) also shows the performance obtained with a
commercial recognizer as used in [13]. The comparably low performance of the
commercial system indicates that using acoustic models tailored for the recog-
nition of emotionally colored speech is essential for virtual agent applications
such as the SEMAINE system. Since the final SEMAINE 3.0 keyword detector
is trained on the whole SEMAINE database (including recordings 11 to 19),
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(a) keyword detection (b) non-linguistic vocalization detection

Fig. 3. ROC operating points obtained for different variants of the SEMAINE keyword
and non-linguistic vocalization detector

Figure 3(a) also shows the ROC performance obtained with models trained on
all SEMAINE data. Note, however, that this configuration does not allow for
a realistic performance assessment since training and test sets are not disjoint
in this case. The reliability of non-linguistic vocalization detection (i. e., recog-
nizing the events breathing, laughing, and sighing) can be seen in Figure 3(b):
Again the multi-stream approach leads to a higher true positive rate, however,
– in contrast to the keyword detection experiment – at the expense of a higher
false positive rate.

6 Conclusion

This paper investigated how a keyword detector incorporated in a conversa-
tional agent system can be improved via multi-stream LSTM-HMM decoding
and multi-condition training. We proposed a multi-stream system that models
context-sensitive phoneme predictions generated by a Long Short-Term Memory
network. In conformance with our previous observations concerning LSTM-based
keyword spotting [7], we found that the LSTM principle is well-suited for robust
phoneme prediction in challenging ASR scenarios. Performance gains in noisy
conditions could be obtained applying multi-condition training. Since virtual
agents are often used while people talk in the background, we mainly considered
test conditions during which the speech signal is superposed by babble noise. In-
corporating training material that is overlaid by background voices at different
SNR conditions could enhance the noise robustness of keyword detection.

To further improve multi-stream LSTM-HMM keyword detection for conver-
sational agents, future experiments should evaluate alternative network topolo-
gies such as bottleneck LSTM architectures as well as bidirectional context mod-
eling for refinement of sentence hypotheses at the end of an utterance.
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Abstract. In this paper, we consider Hopf bifurcation control for an
Internet congestion model, namely fluid flow model of TCP/AQM net-
works with a single link. It has been shown that the system without
control can undergo Hopf bifurcation when the communication delay R
passes through a critical value. To control the bifurcation, a washout filter
based control model is proposed to delay the onset of undesirable Hopf
bifurcation. Numerical simulation results confirm that the controller is
efficient in controlling Hopf bifurcation.

Keywords: Bifurcation control, Time delay, Washout filter, Networks.

1 Introduction

In recent years, controlling and anti-controlling bifurcation and chaos have at-
tracted many researchers from various disciplines. Bifurcation control refers to
the task of designing a controller to suppress or reduce some existing bifurcation
dynamics of a given nonlinear system, thereby achieving some desirable dynam-
ical behaviors. As early as in the 60th of last century, Andronov et al. have
been studied bifurcation control, in the sequence, Abed et al. have developed
the related theory. Since then, the research in this fields was rapidly activated.
For example, in [5], Bleich and Socolar used time-delayed feedback to obtain
stable periodic orbits in a chaotic system. In [9], Yu and Chen developed a non-
linear feedback controller with polynomial functions to control Hopf bifurcation
in the Lorenz and Rossler systems. However, it has been noted that the appli-
cation of washout filter approach in controlling is not so popular. The use of
washout filters ensures that low frequency orbits of the system are retained in
the closed loop system, with only the transient dynamics and higher frequency
orbits modified (see [7, 11, 16]).

Internet congestion, appearing when the required resources overrun the capac-
ity of the Internet communication, is a serious problem in practical applications.
Over the past years, many Internet congestion control mechanisms are developed
to ensure the reliable and efficient exchange of information across the Internet.
Transmission Control Protocol (TCP) and Active Queue Management (AQM)
are among the core of those congestion control mechanisms.
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In [2, 14], a dynamic model of TCP/AQM networks was developed, and de-
scribed by the following system:⎧⎪⎪⎨⎪⎪⎩

Ẇ (t) =
1
R

− W (t)W (t)
2R

Kq(t−R),

q̇(t) = N
W (t)
R

− C,

(1)

where W (t) is the average of TCP windows size (packet), q(t) denotes the average
queue length (packet), See [2] for detailed explanation for the model (1) and the
parameters. In [2, 14], the authors studied the local stability, Hopf bifurcation
and direction of the bifurcation periodic solutions of system (1). In reality, the
occurrence of a Hopf bifurcation is some times harmful to the system. Therefore,
in this paper, by applying the washout filter approach, we are interesting in
designing a controller to delay the onset of Hopf bifurcation. We will show, with
a Hopf bifurcation controller, that one can increase the critical value of the delay
R, which benefits congestion controls.

The rest of this paper is organized as follows. In section 2, we recall the main
results for the Hopf bifurcation of the TCP/AQM networks obtained in [2], then,
based on washout filter, we study the stability and Hopf bifurcation of the control
model of (1). To verify the theoretical analysis, numerical simulations are carried
out for an example in section 3.

2 Bifurcation Control Based on Washout filter

In this section, the results of Hopf bifurcation for the model (1), obtained in [2],
are summarized here for completeness and convenience.

Theorem 1. (Theorem 1, [2]) For system (1), the following results hold:

(1) When R < R0, the equilibrium point E is locally asymptotically stable.
(2) When R > R0, the equilibrium point E is unstable.
(3) When R = R0, system (1) exhibits a Hopf bifurcation.(
where R0 =

1
ω0

arctan(
a

ω0
), E = (

RC

N
,

2N2

R2C2K
)
)
.

Theorem 2. (Theorem 2, [2]) For system (1), when R = R0, the direction
and stability of periodic solutions of the Hopf bifurcation is determined by the
formulas (2) and the following results hold:

(i) μ2 determines the direction of the Hopf bifurcation. If μ2 > 0(< 0), the Hopf
bifurcation is supercritical (subcritical) and the bifurcating periodic solutions
exist for R > R0(R < R0).

(ii) β2 determines the stability of the bifurcating periodic solution. If β2 < 0(>
0), then the bifurcating periodic solutions are stable (unstable).
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(iii) T2 determines the period of the bifurcating periodic solution. If T2 > 0(<
0), the period increases (decreases) The parameters μ2, β2, T2 are given by

μ2 = −Re{C1(0)}
Reλ′(0)

,

T2 = − Im{C1(0)} + μ2Imλ′(0)
ω0

,

β2 = −Re{C1(0)}.

(2)

The detailed derivation of the above formulas can be found in [2].
We consider a general form of dynamical system with parameter μ:

ẏ = f(t,y;μ) (f(t,0;μ) = 0). (3)

Adding a control action u to the equation on one component yi, and taking u as
the following form: {

u = g(x, k),
ω̇ = yi − dω � x,

(4)

where g is a nonlinear function and k is the control parameter.
In order to keep the structure of all equilibrium point of Eq.(4), the following

constrains should be fulfilled: {
d > 0,
g(0, k) = 0. (5)

Furthermore, the control system can be designed as follows:⎧⎨⎩
ẏ = f(t, y;μ) + u,
u = g(x, k),
ω̇ = y − dω � x.

(6)

By employing the above approach, we can obtain the following control system
for (1): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẇ (t) =
1
R

− W (t)W (t)
2R

Kq(t−R) + g(ξ),

q̇(t) =
N

R
W (t) − C,

u̇ = W (t) − αu � ξ,

g(ξ) = −K1ξ −K2ξ
2,

(7)

where α > 0 is a constant scaling parameter and K1, K2 are parameters, which
can be used to control the Hopf bifurcation.

The linearized equation of system (7) is the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ẇ (t) = − 2N

R2C
W (t) − KRC2

2N2
q(t−R) −K1(W (t) − αu),

q̇(t) =
N

R
W (t),

u̇ = W (t) − αu.

(8)
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The associated characteristic equation of system (8) is the following third degree
exponential polynomial equation:

λ3 + (a + K1 + α)λ2 + aαλ + b(λ + α)e−λR = 0, (9)

where a =
2N
R2C

> 0, b =
KC2

2N
> 0.

Obviously, ±iω(ω > 0) is a root of Eq.(9) if and only if ω satisfies

−iω3 − (a + K1 + α)ω2 + aαiω + b(iω + α)
(

cos(ωR) − i sin(ωR)
)

= 0.

Separating the real and imaginary parts, we have{−(a + K1 + α)ω2 + bω sin(ωR) + bα cos(ωR) = 0,
−ω3 + aαω + bω cos(ωR) − bα sin(ωR) = 0,

(10)

which implies
z3 + a1z

2 + a2z + a3 = 0, (11)

where
z = ω2,
a1 = (a + K1 + α)2 − 2aα > 0,
a2 = a2α2 − b2,
a3 = −b2α2 < 0.

Denote
h(z) = z3 + a1z

2 + a2z + a3, (12)

since a3 < 0 and h(+∞) = +∞, then Eq.(12) has at least one positive root.
Without loss of generality, we assume that it has three positive roots defined
by z1, z2 and z3, respectively. Furthermore, we have ω1 =

√
z1, ω2 =

√
z2 and

ω3 =
√
z3.

By (10), we have

R
(j)
k =

1
ωk

(
arccos

{ω4
k − aαω2

k + α(a + K1 + α)ω2
k

b(ω2
k + α2)

}
+ 2jπ

)
,

where k = 1, 2, 3, j = 0, 1, 2, · · ·. Then ±iωk is a pair of purely imaginary roots
of Eq.(9) with R

(j)
k .

Note that when R = 0, Eq.(9) becomes:

λ3 + (a + K1 + α)λ2 + (aα + b)λ + bα = 0. (13)

By Routh-Huruitz criterion, we know that all the roots of (13) have negative
parts, i.e. the positive equilibrium point E is locally asymptotically stable for
R = 0.
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Let λ(R) = α(R) + iω(R) be the root of Eq.(9) satisfying

α(R(j)
k ) = 0, ω(R(j)

k ) = ωk.

Substituting λ(R) into Eq.(9) and differentiating both sides with respect to R,
we have(
3λ2+2(a+K1+α)λ+aα+b(1−R(λ+α))e−λR

)dλ

dR
=−a′λ2−a′αλ+bλ(λ+α)e−λR,

where a′ = − 4N
CR3

.
Then, we can easily obtain

Re
( dλ

dR

)−1
∣∣∣∣
R=R

(j)
k

= Re
{
− 3λ + 2(a + K1 + α)

−a′λ− a′α + b(λ + α)e−λR

}
R=R

(j)
k

+Re
{
− aα+b(1−R(λ+α))e−λR

−a′λ2−a′αλ+bλ(λ+α)e−λR

}
R=R

(j)
k .

After some calculations, we have

Re
( dλ

dR

)∣∣∣∣
R=R

(j)
k

= Re
( dλ

dR

)−1
∣∣∣∣
R=R

(j)
k

�= 0,

then, the transversality condition is hold.

Remark 1. We should point out that Lemma 5 in [2] is incorrect, it is obviously
that the differentiating both sides with respect to R is wrong, this leads to the
mistake of all the proof and the right result for the transversality condition see
[14] .

Till now, we can employ a result from Ruan and Wei [10] to analyze Eq.(9), for
the convenience of the reader, stated as follows.

Lemma 1. Consider the exponential polynomial

P (λ, e−λτ1 , . . . , e−λτm) = λn + p
(0)
1 λn−1 + · · · + p

(0)
n−1λ

+p
(0)
n + [p(1)

1 λn−1 + · · · + p
(1)
n−1λ + p

(1)
n ]e−λτ1

+ · · ·+ [p(m)
1 λn−1 + · · · + p

(m)
n−1λ + p

(m)
n ]e−λτm .

where τi ≥ 0(i = 1, 2, . . . ,m), p
(i)
j (i = 1, 2, . . . ,m; j = 1, 2, . . . n) are constants.

As (τ1, τ2, · · · , τm) vary, the sum of the order of the zeros of P (λ, e−λτ1 , . . . , e−λτm)
on the open right half plane can change only if a zero appears on or crosses the
imaginary axis.

From the above discussion and the Hopf bifurcation theorem (see [4] ), we obtain
the following result.



On Control of Hopf Bifurcation in a Class of TCP/AQM Networks 511

Theorem 3. For system (7), the following statements are true:
The equilibrium point E is asymptotically stable for the delay R ∈ [0, R0) and
unstable for R > R0. System (7) with R = R

(j)
k (k = 1, 2, 3, j = 0, 1, 2, · · ·)

undergoes a Hopf bifurcation (R0 = min
k,j

{R(j)
k }).

3 Numerical Examples

In this section, some numerical examples are given to verify the results obtained
in the previous section. For comparison, we choose the same parameter as [2]

N = 50, K = 0.001, C = 1000.

It follows from system (1) that

W ∗ = 4, q∗ = 125, a = 2.5, b = 10, R = 0.2, R0 = 0.27471.

From Theorem 1, it is shown that when R < R0, trajectories converge to the
equilibrium point, while as R is increased to pass R0, E loses its stability and a
Hopf bifurcation occurs. The dynamical behavior of this uncontrolled model (1)
is illustrated in Figs. 1-2.
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Fig. 1. Waveform of without control system (1) R = 0.2, R0 = 0.27471
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Fig. 2. Waveform of without control system (1) R = 0.23, R0 = 0.20002
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Fig. 3. Waveform of the control system (7) with R = 0.23, K1 = 0.25, K2 = 0, α = 2.3
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Fig. 4. Waveform of the control system (7) with R = 0.3, K1 = 0.25, K2 = 0, α = 2.3
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Fig. 5. Waveform of the control system (7) with R = 0.43, K1 = 0.25, K2 = 0, α = 2.3

Now we choose appropriate value of K1 and K2 to control the Hopf bifurca-
tion. It is easy to see from Theorem 3 that an appropriate value of K1 and K2,
we can delay the onset of the Hopf bifurcation(see Figs. 3-6).
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Fig. 6. Waveform of the control system (7) with R = 0.43, K1 = 1.78, K2 = 0.24,
α = 2.3
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Abstract. In this paper, we introduce a new twin support vector re-
gression (TSVR) algorithm, which estimates an unknown function by
approaching its up and lower boundary, the ending function is obtained
by the mean of the two function. For the class of nonlinear systems com-
posed by linear and nonlinear parts, we use TSVR with a wavelet kernel
to estimate the unknown nonlinear part in the original system and to
counteract it, and then a state feedback control is carried out to realize
a close loop control for the compensated system. Simulation results show
that the TSVR with the wavelet kernel has good approaching ability and
generalization. The whole close loop system with a state feedback control
is stable when the compensating errors satisfy certain conditions.

1 Introduction

Support Vector Machine (SVM) as a powerful learning algorithm has made great
progress in pattern classification and regression for last decade. SVM based on
the statistical learning theory balance the optimization between structural com-
plexity and empirical risk. The solving of optimization problem involves the min-
imization of a convex quadratic function subject to linear inequality constraints.
Advantages of SVM are that no number of hidden units has to be determined
and the curse of dimensionality can also be avoided in comparison with neural
networks [1-4].

Recently, Mangasarian and Wild proposed the generalized eigenvalue proxi-
mal support vector machine (GEPSVM), which is a nonparallel plane classifier
for binary data classification [5]. In this approach, data points of each class are
proximal to one of two nonparallel planes. The nonparallel planes are eigen-
vector to the smallest eigenvalue of two related generalized eigenvalue problems.
Jayadeva and Khemchandani proposed a new nonparallel plane classifier, termed
as the twin support vector machine (TSVM) for binary data classification [6].
TSVM also generate two nonparallel planes such that each plane is close to
one of the two classes and is as far as possible from the other. However, the
formulation of TSVM is much different from that of GEPSVM and is similar
with standard SVM. The solving of TSVM is a pair of quadratic programming
problems (QPPs), whereas, it solves a single QPP in SVM. This strategy of

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 515–524, 2011.
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solving two smaller sized QPP, rather than one large QPP, makes TSVM less
complexity than SVM. TSVM has become one of the popular methods in ma-
chine learning because of its low computational complexity. For example, Ghorai
and Mukherjee et al formulated a simpler nonparallel plane proximal classifier
to speed up the training according to TSVM [7], Kumar and Gopal firstly en-
hanced the TSVM using smoothing techniques and then proposed a least square
version of TSVM for binary classification [8-9]. As for support vector regression
(SVR), there exist some corresponding approximation algorithms as classifica-
tion. In this paper, we introduce a nonparallel plane approximation in the spirit
of TSVM, termed as the twin support vector regression (TSVR).

TSVR also aims at generating two nonparallel functions such that each func-
tion determines the ε-insensitive lower or up boundary of the unknown approx-
imation. Similar to TSVM, TSVR also solve a pair of QPPs instead of a single
QPP in SVR and one group of constraints for all data points are used in each
QPP in TSVR. TSVR is less computational complexity than that of SVR , but
also shows good generalization [10].

Some nonlinear systems can be expressed by the sum of linear and nonlinear
parts, such as chaotic system [11]. Many scholars hope to realize that the control
to the kind of systems by intelligent control. Neural networks have been applied
to identification and control to this kind of systems. In this paper, we use TSVR
with a wavelet kernel to estimate the nonlinear part, and then the nonlinear
TSVR model is as a compensator to counteract the nonlinear part in the original
system, and finally a state feedback control is carried out in a close loop system
to realize effective control.

The paper is organized as follows. Section 2 firstly introduces linear and
nonlinear twin support vector regression. In Section 3, we illustrate the state
feedback control based on TSVR nonlinear compensating. Section 4 deals with
experimental results to validate the effectiveness of the state feedback control
for the compensated system, and Section 5 gives some concluding remarks.

2 Twin Support Vector Regression with Wavelet Kernel

2.1 Twin Support Vector Regression

TSVR is similar to TSVM that derives a pair of nonparallel planes around data
points. However, there are still some differences in essence. TSVR aims to find
a suitable function by approaching the up and lower boundary, while TSVM
is to construct the classifier by two hyperplanes. Two quadratic programming
problems in TSVM have the typical SVM formulation except that not all points
appear in one constraint condition in TSVM, while all points are presented in
the constraint condition for each quadratic programming problem in the TSVR.
Denote a data set as {xi, yi}N

i=1 as {X,Y }, where xi ∈ Rn and yi ∈ R. The
TSVR optimal problem is described by the following formula,
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min
1
2
‖Y − eε1 − (Xw1 + eb1)‖2 + c1e

Tδ

s.t. Y − (Xw1 + eb1) ≥ eε1 − δ, δ ≥ 0, (1)

min
1
2
‖Y + eε2 − (Xw2 + eb2)‖2 + c2e

Tη

s.t. Xw2 + eb2 − Y ≥ eε2 − η, η ≥ 0. (2)

c1, c2, ε1 and ε2 are positive parameters, e is an unit column vector with suitable
dimensions, and δ and η are slack vectors. We obtain f1(x) = wT

1 x + eb1 and
f2(x) = wT

2 x + eb2 by solving the TSVR problem, which respectively determine
the lower and the up boundary of the approached function. The ending function
is decided by the mean of the two functions. The first item in (1) is the sum of
squared distances from y1(x) = wT

1 x + eb1 + ε1 to the training points and the
first item in (2) is also the sum of squared distances from y2(x) = wT

2 x+eb2−ε2

to the training points. Therefore, minimizing these items make f1(x) close to
ε1-insensitive lower boundary and f2(x) close to ε2 insensitive up boundary as
much as possible. The constraint conditions arouse that f1(x) and f2(x) are
at a distance of at least ε1 or ε2 from the training points. In another words,
all training points should be larger than f1(x) at least ε1, while they should be
smaller f2(x) at least ε2. The slack vectors δ and η measure separately the errors
by the distances from data points to yi(x). δ measures the errors from training
points to f1(x) are closer than ε1 and η measures the errors from training points
to f2(x) are closer than ε2. The second term of the objective function is the sum
of all error variables, and its minimization aims accurate approaching.

To solve the problem of TSVR in a dual space, α, β, μ, ν are Lagrange multi-
plier vectors and the Lagrangians are given by the following formula,

L1(w1, b1, δ, α, β) =
1
2
‖Y − eε1 − (Xw1 + eb1)‖2

+ c1e
Tδ − αT(Y − eε1 − (Xw1 + eb1) + δ) − βTδ. (3)

L2(w2, b2, η, μ, ν) =
1
2
‖Y + eε2 − (Xw2 + eb2)‖2

+ c2e
Tη − μT(Xw2 + eb2 − Y − eε2 + η) − νTη. (4)

We have the following equations for the above original problem (1) and (2)
according to Karush-Kuhn-Tucker (KKT) optimal conditions,

∂L1

∂w1
= 0,

∂L1

∂b1
= 0,

∂L1

∂δ
= 0,

∂L2

∂w2
= 0,

∂L2

∂b2
= 0,

∂L2

∂η
= 0.

Since α, β, μ, ν ≥ 0, we have 0 ≤ α ≤ c1e and 0 ≤ μ ≤ c2e. The following
equation are obtained,

−
[
XT

eT

]
((Y − eε1) −

[
X e

] [
w1

b1

]
− α) = 0, (5)

−
[
XT

eT

]
((Y + eε2) −

[
X e

] [
w2

b2

]
+ μ) = 0. (6)
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We can obtain w1, b1, w2 and b2 from the equation (5) and (6).[
w1

b1

]
= (

[
XT

eT

] [
X e

]
)−1

[
XT

eT

]
((Y − eε1) − α), (7)[

w2

b2

]
= (

[
XT

eT

] [
X e

]
)−1

[
XT

eT

]
((Y + eε2) + μ). (8)

As
[
XT

eT

] [
X e

]
is always positive semidefinite, it is possible that it may not be

well conditioned in some situations. In order to overcome the defect, we introduce
a regularization term to take care of the possible ill condition [12]. I is an identity
matrix of appropriate dimensions. Therefore, (7) and (8) can be written as[

w1

b1

]
= (

[
XT

eT

] [
X e

]
+ λI)−1

[
XT

eT

]
((Y − eε1) − α), (9)[

w2

b2

]
= (

[
XT

eT

] [
X e

]
+ λI)−1

[
XT

eT

]
((Y + eε2) + μ). (10)

2.2 Twin Support Vector Regression with Wavelet Kernel

In order to extend the above linear regression to nonlinear regression, the kernel-
generated space is considered. The lower and up boundary of estimated function
are f1(x) = wT

1 k(x,X) + b1 and f2(x) = wT
2 k(x,X) + b2 separately. The kernel

TSVR problem can be considered as follows,

min
1
2

∥∥Y − eε1 − (k(X,XT)w1 + eb1)
∥∥2

+ c1e
Tδ

s.t. Y − (k(X,XT)w1 + eb1) ≥ eε1 − δ, δ ≥ 0, (11)

min
1
2

∥∥Y + eε2 − (k(X,XT)w2 + eb2)
∥∥2

+ c2e
Tη

s.t. k(X,XT)w2 + eb2 − Y ≥ eε2 − η, η ≥ 0. (12)

Similarly, the Lagrangians for the formula (11) and (12) are given by the follow-
ing formula,

L
′
1(w1, b1, δ, α, β) =

1
2

∥∥Y − eε1 − (k(X,XT)w1 + eb1)
∥∥2

+ c1e
Tδ − αT(Y − eε1 − (k(X,XT)w1 + eb1) + δ) − βTδ, (13)

L
′
2(w2, b2, η, μ, ν) =

1
2

∥∥Y + eε2 − (k(X,XT)w2 + eb2)
∥∥2

+ c2e
Tη − μT(k(X,XT)w2 + eb2 − Y − eε2 + η) − νTη. (14)
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According to KKT conditions the following equations are obtained,

[
w1

b1

]
= G−1

[
k(XT, X)

eT

]
(Y − eε1 − α), (15)[

w2

b2

]
= G−1

[
k(XT, X)

eT

]
(Y + eε2 + μ), (16)

where G =
([

k(XT, X)
eT

] [
k(X,XT) e

])
. Still there are possible to have ill-

conditioning case in the formula (15) and (16) and we may use the mentioned
above skill when an ill-conditioning case happens.

The support vector kernel function k(·, ·) must satisfy the Mercer condition. In
other words, if a function can satisfy the mercer condition, it is an allowed kernel
function. The following theorem explains the method to judge and construct a
kernel function.

Theorem 1. For x ∈ Rn and y ∈ Rn, all functions g(x) �= 0 which satisfy the
condition of

∫
Rn g2(x)dx <∝, if and only if the condition of

∫∫
Rn

⊗
Rn k(x, y)g(x)

g(y)dxdy ≥ 0 is satisfied, the symmetry function k(x, y) is an admissible support
vector kernel [13].

Theorem 2. Theorem 2. A translation invariant kernel k(x, y) = k(x − y) is
allowed for a support vector kernel if and only if the Fourier transform F [k(w)] =
(2π)

n
2

∫
Rn

e(−jwx)k(x)dx ≥ 0 holds [14].

When one wants to use a wavelet function as a support vector kernel, the Mercer
condition and the properties of the wavelet function are both considered. Assum-
ing that ϕ(x) is a mother wavelet, then we can get the dot product wavelet kernel
with the form of k(x, y) = Πn

i=1ϕ(xi−bi

ai
)ϕ(yi−bi

ai
) and the translation invariant

wavelet kernel that satisfies Theorem 2 with the form of k(x, y) = Πn
i=1ϕ(xi−yi

ai
).

ai and bi are dilation and translation factor, respectively. Here we choose a trans-
lation invariant wavelet kernel which is constructed by a wavelet function under
the conditions of wavelet frames in this paper. The wavelet function is chosen
as follows ϕ(x) = cos(θx)e−x2

.

Theorem 3. Theorem 3. A wavelet kernel under the wavelet frame is con-
structed as an admissible support vector kernel, which has the expression k(x, y)=

Πn
i=1ϕ

(
xi−yi

ai

)
= Πn

i=1

(
cos(θ xi−yi

ai
)
)
e
−‖xi−yi‖2

a2
i [15].

Using the above wavelet kernel in the lower and up bound function f1(x) and
f2(x) of TSVR, we can obtain the ending expression as f(x) = 1

2 (wT
1 +wT

2 )k(x,X)+
1
2 (b1 + b2).



520 C. Mu, C. Sun, and X. Yu

3 State Feedback Control Based on TSVR Nonlinear
Compensating

We study the class of nonlinear systems which can be written as the sum of linear
and nonlinear functions. Its state equations are given in the following formula,

ẋ = fl(x) + fn(x) = Ax + Bu + fn(x), (17)

where x ∈ Rn and u ∈ Rp are the state and the input of system respectively.
fl(·) expresses a linear relationship and fn(·) expresses a nonlinear relationship.
We describe fl(x) = Ax+Bu with a systematic matrix An×n and a input matrix
Bn×p.

We use TSVR with the wavelet kernel to obtain an estimated function f̂n(x),
which is required to approach fn(x) as much as possible. Define ς(x) to evaluate
the approaching error between fn(x) and f̂n(x), so that we have the equation
ς(x) = fn(x) − f̂n(x). And in a perfect condition, ς(x) should be equal to zero.
We adopt nonlinear compensating for the class of nonlinear systems, using f̂n(x)
to counteract fn(x). After f̂n(x) is obtained by the TSVR method, the nonlinear
state equation can be rewritten as follows,

ẋ = Ax + Bu + fn(x) − f̂n(x) = Ax + Bu + ς(x). (18)

When the condition ς(x) ≈ 0 holds, the compensated nonlinear system has a
dominate linear character by omitting the small nonlinearity. In order to control
this kind of systems, we introduce two assumed conditions [16]. One is the linear
part of original system is controllable and the other is the nonlinear part of
original system is input and output measurable. On these conditions, we can
design a linear state feedback controller to realize the system stable. As the
nonlinear part is input and output measurable, we use TSVR with wavelet kernel
to estimate.

Considering that fn(x) and f̂n(x) are close enough, so we design a linear state
feedback controller under the ideal condition as the expression u = −Kx, where
K denotes a state feedback matrix which can be obtained by pole allocation.
So the state equation of the close loop system can be written as ẋ = Ax −
BKTx + ς(x). When the compensating error ς(x) is approximately equal to
zero, the system is controllable and we can select an adaptive matrix to make
the controlled system to have good performance. When the compensating error
can not be omitted, the following theorem gives the asymptotic stable condition.

Theorem 4. Assuming the balance point of the controlled system is the original
point, the system is asymptotically stable in the balance point, if and only if the
condition ‖ς(x)‖2

‖x‖2
→ 0 holds when ‖x‖2 → 0 [17].

We use TSVR to obtain the approaching function, so that it counteracts and
then a feedback controller is designed to make the close loop system stable at the
expected pole location. The whole frame of state feedback control with TSVR
nonlinear compensating is showed on the Fig. #1.
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Fig. 1. State feedback control based on TSVR nonlinear compensating

4 Simulation

In this section, we validate the state feedback control based on TSVR nonlin-
ear compensating on a nonlinear system example. The studied plant has the
following state equation,

ẋ =

⎡⎣−1 0 1
1 0 0.1
0 0 −3

⎤⎦ ⎡⎣x1

x2

x3

⎤⎦ +

⎡⎣1
1
1

⎤⎦u +

⎡⎣sin(x1) + cos(x2) + cos(x3)
sin(x1)sin(x2)cos(x3)

x1x2x3

⎤⎦ . (19)

The nonlinear state equation can be considered that three nonlinear thorough-
fares add to the linear term. Based on the above assumption, we can obtain input
and output data from the nonlinear terms. Then we estimate every nonlinear
item by a TSVR model. We give the nonlinear thoroughfare white noises as the
input and the nonlinear output also can be obtained. For the studied system, we
estimate nonlinear functions of all three thoroughfares. For the first thorough-
fare, we obtain a set with 400 data points, 200 data points for training and other
200 data points for testing the generalization of the TSVR model. The wavelet

kernel is the following form, k(x, y) = Πn
i=1

(
cos(θ xi−yi

ai
)
)
e
−‖xi−yi‖2

a2
i , where pa-

rameters θ = 1.5 and αi = 3. We select c1 = c2 = 1.5 and ε1 = ε2 = 0.1 as
parameter values in TSVR. The training curves, including the lower boundary
curve in black dashed line, the up boundary curve in red dashed line and the
ending training curve in blue real line, are shown in the Fig. #2. Then we use
other 200 data points to test the nonlinear model approached by TSVR as shown
in the second figure of Fig. #2, where estimated values of testing points in blue
color and expected values in red color. We can observe that the estimated values
are close to the expected values with very small errors which can be considered
as zeros.

For the second and the third thoroughfare, we similarly obtain 400 data points
and 200 for training and the other 200 for testing. All parameters in TSVR are
the same as the frontal declaration. The training and testing of the second and
the third thoroughfare are executed like the first one.

In order to show the approaching ability of TSVR with wavelet kernel, we
give the training and the testing results. We use the index of root square mean
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Fig. 2. The training and testing curves of the first thoroughfare by TSVR

error (RMSE) and mean absolute error (MAE). RMSE =
√∑ n

i=1(yi−fi)2

n and
MAE = 1

n

∑n
i=1 |yi − fi|. Table 1 gives the experimental compare between

TSVR and SVR with wavelet kernels. From that, we can observe that TSVR
method for modeling usually has better accuracy and less computational cost
than SVR method.

Table 1. Modeling results by SVR and TSVR with wavelet kernels

Channel 1 Channel 2 Channel 3
Training Testing Training Testing Training Testing

SVR
RSME 0.0380 0.0354 0.0066 0.0072 0.0447 0.0481
MAE 0.0284 0.0262 0.0052 0.0058 0.0333 0.0345
Time 1.1s 0.7s 0.5s

TSVR
RSME 0.0153 0.0166 0.0074 0.0079 0.0127 0.0135
MAE 0.0111 0.0112 0.0057 0.0058 0.0094 0.0092
Time 0.532s 0.631s 0.723s

Assuming that the initial point x(0) = [1,−2, 3], we design a feedback con-
troller u = −Kx to make the system stable at the original point, where K =
[0.855, 3.521, 0.624] and the pole points of the system are −5, −2 + j and −2 − j.
The left one in the Fig. #3 gives the convergence curves from the initial point to the
original point under the state feedback control based on TSVR nonlinear compen-
sating.Wecompare themethodperformancewiththeperformanceofSVRmethod.
And thenwe also show state curves bydot anddash lines for the systemwithout any
nonlinear compensating. Obviously, the compensated system can be controlled to
the state original point by feedback, but the nonlinear system without compensat-
ing can’t get to the original point under a feedback controller.And the performance
with TSVR compensating is better than with SVR compensating. The ideal result
for nonlinear compensating is to counteract the nonlinear term to become a lin-
ear system absolutely. In simulation, we cancel the nonlinear term to execute feed-
back control on the linear system directly. The right one in the Fig. #3 illustrates
the control performance. Hereby, the state feedback control can’t work well on the
nonlinear system without compensating, and the TSVR compensating method can
change the control of nonlinear systems into a simple control of approximate linear
system. The method is good performance and very valuable in practice.
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Fig. 3. The left figure is convergent curves with feedback control, TSVR compensating
by with real lines, SVR compensating by dash lines and non-compensating by dot and
dash lines. The right one is comparable curves between feedback control with TSVR
compensating by real lines and direct feedback control by dot lines.

According to Theorem 4, when the states run to zeros, the term ‖ς(x)‖2

also runs to zeros, the system is stable. We check the error curves of nonlinear
compensating by the TSVR. From the Fig. #4, we can see the compensating
error curves run gradually to zeros accompanying with the states to zeros, which
is corresponding to Theorem 4. So we can judge that the close loop system of
state feedback control with TSVR nonlinear compensating is stable.
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Fig. 4. The compensating error curves of three nonlinear thoroughfares from left to
right, respectively

5 Conclusion

In this paper, we have introduced a new twin support vector regression algo-
rithm with a wavelet kernel. A large quadratic programming problem in SVR
is changed into two smaller quadratic programming problems in TSVR, which
leads to still good approximate ability and generalization, but less computa-
tional complexity. Furthermore, for a class nonlinear system, we adopt TSVR
with a wavelet kernel to approach the nonlinear part and the estimated model
functionally counteracts the nonlinear part, which makes state feedback control
available. In the simulation section, the TSVR method shows good approxima-
tion to the nonlinear part of system and the compensated system is stable, which
validates the proposed method effective and good performance.
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Abstract. This paper discusses an optimization of Dynamic Fuzzy Neural Net-
work (DFNN) for nonlinear system identification. DFNN has 10 parameters 
which are proved sensitive to the performance of that algorithm. In case of not 
suitable parameters, the result gives undesirable of the DFNN.  In the other 
hand, each of problems has different characteristics such that the different val-
ues of DFNN parameters are necessary. To solve that problem is not able to be 
approached with trial and error, or experiences of the experts. Therefore, more 
scientific solution has to be proposed thus DFNN is more user friendly, Genetic 
Algorithm overcomes that problems. Nonlinear system identification is a com-
mon testing of Fuzzy Neural Network to verify whether FNN might achieve the 
requirement or not. The Experiments show that Genetic Dynamic Fuzzy Neural 
Network Genetic (GDFNN) exhibits the best result which is compared with 
other methods.  

Keywords: Dynamic Fuzzy Neural Network, Fuzzy Neural Network, Genetic 
Dynamic Fuzzy Neural Network, Genetic Algorithm. 

1   Introduction 

The basic idea to unite the NN and fuzzy logic controller is emerged by R.J.Jang to 
establish Adaptive Network Using Fuzzy Inference System (ANFIS). The structure of 
fuzzy logic with neural network architecture is combined, thus the difficulties in the 
obtaining the shape of membership function and suitable rule fuzzy logic controller 
are handled, because the principle of learning on the neural network is utilized. In the 
other hand, the problem to find structure of NN can be overcome due to IF-THEN 
rules of fuzzy logic.  

The integrated neuro-fuzzy system combines advantages of both NN and FIS.  
Application of both technologies are categorized into following four cases [1] : 
                                                           
* Corresponding author. 
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• A NN is used to automate the task of designing and fine tuning the  
membership functions of fuzzy systems. 

• Both fuzzy inference and neural network learning capabilities acting  
separately. 

• A NN is worked as correcting mechanisms for fuzzy systems. 
• A NN is customized the standard system according to each users preferences 

and individual needs. 

Applications of ANFIS controller have been done in the several purposes such as:  
they used ANFIS with PSO to control velocity control of DC motor [2], ANFIS was 
used as controller unmanned air vehicle [3], they developed ANFIS as stability con-
troller of inverted pendulum [4], ANFIS was compared with radial basis function 
neuro fuzzy with hybrid genetic and pattern search algorithm [5]. 

The combination of neuro fuzzy which determines Gaussian membership function 
is called fuzzy neural network. The researches conducted in the area of fuzzy neural 
network are appeared with different objectives, such as: proposes an near optimal 
learning principle [6], extends the fuzzy neural network to be recurrent [7]. However, 
majority of the researches employ back propagation to be invoked in the learning 
phase. Back Propagation is definitely slow to find global optima [8]. Even, BP is of-
ten trapped in the local optima value. Some Research establishes hybrid learning or 
even learning using evolutionary computation. An underlying thing, Evolutionary 
Computation relies on random value, such that the learning time is also high to be 
employed in the learning phase, in addition if many values need to be obtained.  
However, to accomplish optimization problems, evolutionary computation remains a 
reasonable solution. Wu Shi Qian and Er Meng Joo deal with the principle of  
Dynamic Fuzzy Neural Network, which uses hierarchical learning approached instead 
of BP, is to be a function identifier. It also works to be noise cancellation [9]. 

Genetic algorithm with the genetic principle (mutation, crossover) to produce next 
generation is reasonable solution to solve optimization problem. Using objective func-
tion to be the representation of aim, and Applying genetic operation with certain 
probabilities, optimal value may be able to be acquired. Simplicity of the concept 
makes genetic algorithm to be widely implemented into the real world problems. 

Parameters of Dynamic Fuzzy Neural Network (DFNN) are proved sensitive. Not 
suitable values may result bad performance of the DFNN, in the other hand different 
problems require different parameters. Expert experience and trial error could be 
deemed, nevertheless those are not really the solutions. A scientific approach using 
Genetic Algorithm (GA) is proposed so that it always guarantees that every  
implementation into the variety problems always acquires the optimal performance of 
DFNN.  

This paper is organized as follows: Section 2 describes the literature review of  
dynamic fuzzy neural network including a learning principle, Genetic Algorithm  
principle. Section 3 explains the idea of the Genetic Dynamic Fuzzy Neural Network 
(GDFNN). Simulation and discussion are bravely exhausted in the Section 4. Several 
Conclusions are arranged in the rest of this paper.  
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2   Literature Review 

This section is enhanced the materials of DFNN including structure of the DFNN, the 
criteria to generate neurons, learning principle, and pruning technology. Genetic  
algorithm application that is the concern of this paper also brightly discussed. 

2.1   Structure of DFNN 

DFNN is consisted of 5 layers which are input layer, Membership Function (MF),  
hidden layer, normalized layer, and output layer. Output layer gives Takagi Sugeno 
Kang (TSK) model which is utilized by ANFIS. MF’s are determined as Gaussian 
function which is one of the Radial Basis Function (RBF) function. For Simplicity, 
This paper only considers multi inputs, and one output case, nevertheless DFNN might 
be extended to be  multi inputs, and multi outputs concurrently as shown on Fig. 

 

Fig. 1. The structure of DFNN 

Layer 1. This layer doesn’t perform any mathematical operation, it just pass inputs 

into the next layers ( ix , i=1, 2,….,k). 

Layer 2. Inputs are processed in this layer which is mapped into the Gaussian func-
tions, the numbers of MF are determined from the neurons generation criteria.  

2

2)(

j

iji
ij

cx

σ
μ

−
−= , ki ,...,2,1=  uj ,....,2,1=                   (1) 

Layer 3. This layer retrieves output of layer 2, and then those numbers are multiplied 
with output from other MF’s respectively. This layer is commonly called rule layer. 
The outputs of this layer are normally called firing strength. 
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Layer 4. This layer is called normalized layer which is processed the firing strengths 
into a range [0,1]. 
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Layer 5. Outputs normalization are multiplied with weights vector which to retrieve 
one output signal from the output layer. 
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u
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    (4) 

jw  is able to be a constant or linear function as same as TSK model, for TSK model, 

it could be rewritten as stated on the Equation 5. 

kjkjjj xKxkkw +++= ....110 , uj ,....,2,1=         (5)   

 
For constant case, weight can be considered as : 

jj cw =      (6) 

2.2   Learning Principle of DFNN 

The allocation of the RBF unit is important to give a significant output. The idea of 
DFNN creates criteria of allocations of RBF units DFNN so that they can give to 
cover input space. The structure of DFNN is not able to be determined in a prior, 
therefore it is able to automatically generate the RBF units which can establish a 
structure of DFNN, thereby good coverage of RBF units can be achieved. There are 
two underlying concepts in the learning of DFNN, they are criteria of neuron genera-
tion, and Hierarchical learning. 

Neuron Generation Criterion. This criterion describes when the neuron should be 
added or not in order to have feasible structure of DFNN. First factor should be con-
sidered in which the system error is greater that a pre-determined value thus the neu-
ron should be adjusted. It can be formulated as follows: 

iii yte −=                      (7) 

it  is a vector of target value, iy is a vector of actual output value. 

dei ke >      (8) 

 
if Equation 8 is satisfied, then the neuron would better to be added which dek should 

be determined in a priori. Second factor is able to be derived with the concept of how 
close the input space with the center of RBF function is. It is able to be modeled in the 
mathematical form as follows: 
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jii CXjd −=)( , uj ,....,2,1=          (9)   

In which ji CX ,  are the vectors of input and center respectively. 

If 

di kjd >)(minarg                  (10) 

Then neuron should be added. )(minarg jdi  is called mind . 

Hierarchical Learning. The fundamental idea of this concept is the accommodation 
boundary of each RBF unit is not fixed but changed dynamically based on the follow-
ing manner: at the first time the parameters is set to be large to acquire rough but they 
are global values, after that they are decreasing monotonically.  It is able to be  
implemented in these expressions: 

],max[ minmax eek i
e β×=                 (11) 

],max[ minmax ddk i
d γ×=                 (12) 

  
The delighted result are going to be retrieved if de kk , are close to minmin , de  
respectively. 

After the neurons have been generated, the values of those need to be assigned. 
From the observations of Wu Shi Qian [8], the width plays important role. If the 
width is less than the distance between centers and inputs then the DFNN doesn’t give 
a meaningful output, however if the width is too large then the firing strength will 
give value nearby 1, therefore the width and center are tuned as follows : 

 

ii CX =                         (12) 

0σσ ×= ki                             (13)  

 
k is the overlap factor which is determined by overlap response of the RBF units. At 
the first observation width need to be set 01 σσ = , 0σ  is predetermined value. those,  

which have been aforementioned, are the case when ei ke > , and mindkd < . There 

are there other cases which are considered. 

ei ke ≤ , mindkd ≥ , it implies good result, nothing is done. ei ke ≤ , mindkd < , 

this condition pretend to only adjust weight.  ei ke > , mindkd ≥ the width of the 

nearest RBF nodes and all weights should be updated. The nearest thz − RBF nodes 
are updated with following manner: 

1−×= i
zz

i k σσ                        (14) 

k is predefined constant 
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For updating weights, it can be simply found with employing +Φ  which is pseu-
doinverse of Φ .  

+Φ= .TW                           (15) 
TT ΦΦΦ=Φ −+ 1).(                             (16) 

Comparing with back propagation algorithm, this method is much simple such that it 
is able to reduce the computational time therefore it is feasible to be applied in the real 
time applications. 

Sometime the neurons gives good contributions to the output of the neurons, how-
ever sometime they don’t contribute well, thus it leads to utilize pruning technology. 
The less contribution neurons are deleted. 

1

.

+
=
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T
ii

i
δδ

η                                (17) 

If  

erri k<η                            (18) 

then the neurons are deleted. 
To be more detail according to mathematical derivations, those are revealed in [8]. 

This method is called Error Reduction Ratio (ERR).  

2.3   Genetic Algorithm 

Genetic Algorithm is a powerful tool to accomplish optimization problems based on 
the principle of genetic operators. It could guarantee that good values are resulted. 
The principle of genetic algorithm is at the first time it generates numbers of random 
variables called chromosomes, each chromosomes are consisted of gen. Numbers of 
chromosome used during the process are specified beforehand. This paper describes 
chromosome is organized from variables that are desired to be optimized. Rely on the 
fixed probability, selection process is conducted, the manner of selections are actually 
miscellaneous, this paper is utilized Roulette Wheel principle which is probability of 
the selection depends on the number of fitness function. Chromosomes selected are 
going to be processed using genetic operator. Elitist concept is also considered which 
employs the fittest chromosome to be a parent. Genetic processes are crossover and 
mutation. Uniform crossover is used here. The process of uniform crossover is  
explained as follows: 

 
Step 1: Put the two parents together 
Step 2: Swap Gen on chromosome with fixed probability 
 

The numbers of times uniform crossover (M) is calculated as follows: 

NRM .=                               (19) 

R is actually recombination rate, and N is numbers of chromosome. Uniform  
Crossover don’t use chromosome from the elitist. Second Operator is called mutation, 
Mutation operator replaces the chosen parameter from the random chromosomes into 
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the random value. This process is iteratively applied until the randomly generated num-
bers bigger than mutation rate. The evaluation function chosen exhibits on Equation 20. 

)(.)(.)(.
)(

321

0

iTimekiNumkiRMSEk

k
iFitness

++
=    (20)   

RMSE, num, time are root mean square error, number of used rules, and learning time 

in the thi  iteration. In this paper, 3210 ,,, kkkk are set to be 10,1,10,10 84 . That fitness 

function is intended to get the optimum parameters such a way those are able to lead 
DFNN to has good accuracy, efficient structure, and short learning time. GA is con-
ducted in the iterative manner until the stopping criteria are fulfilled. First stopping 
criteria is the iteration is going to be stopped if the result is already converge, Second 
stopping criteria is while there is no changes on average fitness in 5 generations, the 
process will be ended. 

3   GDFNN 

As revealed above, DFNN has 10 parameters which have to be determined earlier, 
those are maxe , mine , maxd , mind , ,β  γ , 0σ , k , wk , errk .  The searching process 

is repeated until stopping criteria are satisfied. During the process, assigned parame-
ters value from GA are used as learning parameter of DFNN, thereby RMSE, number 
of rule, and learning time are included to be evaluation parameters. Parameters ob-
tained by GA are as: 5297.0max =e , 4967.0min =e , 9270.0max =d , 

8520.0min =d , 3463.0,=β  5518.0=γ , 53198.00 =σ , 9845.0=k , 7931.0=wk , 

9133.0=errk  . For a fair comparison, the parameters of DFNN are obtained from its 

original paper [8].  
The parameters of DFNN exhibits that with GA the optimal parameters are devi-

ated from the original parameters, thus they are main reason that parameters of DFNN 
are sensitive and not able to be determined with trial error in order to get good  
generalization within training process. The optimization process’s repeated until the 
stopping criteria are satisfied.  

 

maxd     = max of accommodation criterion 

mind     = min of accommodation criterion 

γ          = decay constant 

maxe     = max of output error 

mine      = min of output error 

β          = convergence constant 

0σ         = the width of the first rule 

k           = overlap factor of RBF units 

wk         = width updating factor 

errk       = significance of a rule 
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4   Simulation and Discussion 

At this section, the proposed technique is applied in the non linear system identification 
which is a common evaluation in the testing of Fuzzy Neural Network (FNN).  The 
GDFNN is compared with Genetic Dynamic Fuzzy Neural Network Back Propagation 
(GDFNNBP) which is actually DFNN with learning principle using back propagation, 
and DFNN without optimization phase. The aims are verified that genetic algorithm is 
able to improve the performance of DFNN,  and Hierarchical learning, which is the 
main idea of DFNN, is still better than learning via back propagation. 

4.1   Non Linear System Identification 

The plant identified is second order highly nonlinear difference function which is de-
fined in the Equation 21. The identification technique is utilized Seri-Parallel method 
that guarantees the stability of the estimated system. Sinusoidal input is applied to the 
system defined by Equation 23. 
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The learning result including Root Mean Square Error (RMSE), and neuron genera-
tion are shown on the Fig 2 and Fig 3. 

From the Fig 2, that is clear that the proposed method shows a superior result, 
RMSE of GDFNN is smallest compared with GDFNNBP, and DFNN. GDFNN is 
fastest to reach the smallest error. The second best method’s DFNN. The worst 
method’s GDFNNBP. From Fig 3, GDFNN is also fastest to establish the feasible 
network structure compared with DFNN, and less rule than GDFNNBP. GDFNN 
 

 

Fig. 2. Root Mean Square Error (RMSE) 
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Fig. 3. Rule Generations 

acquires the most accurate result, and less rules comparing with other methods. It also 
verified that all of the learning procedures are worked well, thereby accurate, and ef-
ficient network could be achieved. Even though, GDFNNBP acquires a shortest learn-
ing time, however the worst RMSE is got, it is reasonable because back propagation 
often retrieves just local minima values not a global optima. DFNN actually results 
enough to be employed in the case of Nonlinear System Identification, however, Us-
ing GA shows much improvements. For the testing, Mean Absolute Percentage Error 
(MAPE) is utilized to measure the prediction accuracy of the all methods. Table 2 
exhibits the details of the learning and testing result. Fig 4 shows the prediction of 
GDFNN. 

 

Fig. 4. Testing of GDFNN 

Table 2. The Parameters of Evaluation 

 TIME RMSE RULE MAPE 
DFNN 1.1431 0.0135 7 0.0793 

GDFNN 1.3232 0.0025 7 0.0048 
GDFNNBP 0.4854 0.041 23 0.086 
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From Table 1, GDFNN shows the longest training time, nevertheless there are 
much different in the RMSE, and MAPE. Between DFNN, and GDFNNBP acquire 
almost same performance, however DFNN need less rule than DFNNBP. 

5   Conclusions 

All of the methods used in this paper actually are feasible to be used to solve real 
problems, it can be seen from the MAPE that less than 0.1. However, to look for the 
best methods, thus GDFNN is the best method. The underlying thing that suggested to 
employ GA, GA is generated with the random numbers principle so that the searching 
process is somewhat long, nevertheless GA always guarantee the optimal numbers 
will be resulted as long as the determined of GA parameters are correct.  
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Abstract. A direct adaptive neural networks (NNs) control based on the back-
stepping technique is proposed for uncertain nonlinear discrete-time systems in 
the strict-feedback form. The NNs are utilized to approximate unknown func-
tions, and a stable adaptive neural backstepping controller is synthesized. The 
fact that all the signals in the closed-loop system are semi-globally uniformly 
ultimately bounded (SGUUB) is proven so that it is clear that the tracking error 
converges to a small neighborhood of zero by choosing the design parameters 
appropriately. Compared with the previous research for discrete-time systems, 
the proposed algorithm improves the robustness of the closed-loop system. 
Therefore, it ensures the feasibility of the control method. 

Keywords: Neural networks, nonlinear systems, adaptive robust control. 

1   Introduction 

Since the universal approximation of the NNs  and the fuzzy logic systems is proved 
[1,2], the NNs have become an active research topic and obtained widespread atten-
tion and they have been a powerful tool for stabilizing complex nonlinear dynamic 
systems [3-5]. 

Robustness in adaptive control has been an active topic of research in continuous-
time [6-8].However, all these elegant methods in continuous-time domain are not 
directly applicable to discrete-time systems because the Lyapunov design for discrete-
time becomes much more intractable than in the continuous-time and the noncausal 
problem in the controller design procedure via backstepping. So the linearity property 
of the derivative of a Lyapunov function in continuous-time is not present in the dif-
ference of Lyapunov function in the discrete-time. For several classes of discrete-time 
systems, some significant results are proposed in [9-13]. But, in [9-13], it is assumed 
that unknown bounds of the NN approximation error are less than bounded constants, 
if unknown bounds are larger than the assumed bounds, no performance of systems is 
guaranteed. 

In this paper, we try to address an adaptive NN control of uncertain nonlinear  
systems in the discrete-time form. In the controller design, the NNs are used to  
approximate the unknown functions. Compared with previous study for the discrete-
time system, the adaptive neural control design approach relaxes the restrictive  
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assumptions that are usually made on the controlled nonlinear systems. Using the 
Lyapunov analysis method, all the signals in the closed-loop system are guaranteed to 
be SGUUB and the output tracks the reference signal to a bounded compact set. 

2   System Dynamics and Preliminaries 

Consider the following SISO discrete-time nonlinear systems 
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(1) 

where ( )( )i if kξ  , ( )( )i ig kξ  are unknown functions; ( ) ( ) ( )1 , ,i i

T
k k kξ ξ ξ= ⎡ ⎤⎣ ⎦ , 

( )u k R∈  and 1y R∈  are the state variable, the system input and the system output. 

Assumption 1. The signs of ( )( ) , 1, 2, ,i ig k i nξ =  are known and there exist con-

stants 0ig >  and 0gi >  such that ( )( ) ( ),
n

i i i i ng g k g k Rξ ξ≤ ≤ ∀ ∈Ω ⊂ . 

The control objective is to design an adaptive NN controller so that: i) all the  
signals in the closed-loop are SGUUB, and ii) the output follows the reference signal 

( )dy k  to a small compact set where ( ) , 0d yy k k∈Ω ∀ >  is a known bounded  

function with { }1: |y χ χ ξΩ = = . In this paper, it assumes that ( )( )i i i ig g k gξ≤ ≤ . 

3   Adaptive NN Control Design and Performance Analysis 

We will design an adaptive controller ( )ku  so that the system output 1y  follows 

( )dy k , and simultaneously guarantees ( ) , 0n k kξ ∈Ω ∀ >  under the condition that 

( )0nξ ∈Ω . With the aim of transformation procedure in [12], the system (1) can be 

transformed into 
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(2) 

For convenience of analysis and discussion, for 1,2, , 1i n= − , let  

( ) ( )( ) ( ) ( )( ),i i n i i nF k F k G k G kξ ξ= =  

( ) ( )( ) ( ) ( )( ),n n n n n nf k f k g k g kξ ξ= =  
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From the definition of ( )( )i nG kξ , ( )( )i nG kξ  satisfies ( )( )i i n ig G k gξ≤ ≤ . Before 

further going, let , 1, 2, , 1ik k n i i n= − + = −  for convenient description. 

Step 1: For ( ) ( ) ( )1 1 dk k y kη ξ= − , its n th difference is given by 

( ) ( ) ( ) ( ) ( )1 1 1 2 1 dk n F k G k k n y k nη ξ+ = + + − − + . (3) 

Considering ( )2 1k nξ + −  as a fictitious control for (3), if we choose  

( ) ( ) ( ) ( ) ( )2 1
1

*
2

1
1 dd

k n k F k y k n
G k

ξ ξ+ − = = − − +⎡ ⎤⎣ ⎦  

It is obvious that 1 ( ) 0k nη + = . Since ( )1F k  and ( )1G k  are unknown, they are not 

available for constructing a fictitious control ( )*

2d
kξ . Thus, we can use NN to ap-

proximate ( )*
2d kξ  and it has ( ) ( )( ) ( )( )* *

2 1 1 1 1 1
T

d zk W S z k z kξ ε= +  where 

( ) ( ) ( ) 1
1 1,

TT n
n d zz k k y k n Rξ +⎡ ⎤= + ∈Ω ⊂⎣ ⎦ . 

Assumption 2. On the compact set ziΩ , ( )( )1 1z z kε  satisfies ( )( )zi i iz kε δ≤  where 

0iδ >  is unknown constant. 

Remark 1. Most of the analytical results in the adaptive NN control literature make 
the key assumptions that the approximation error is bounded by some constants [9-
13], if the approximation error is larger than the assumed bounds, no performance of 
systems can be guaranteed. Assumption 2 relaxes these conditions by requiring only 
that the approximation error is bounded. 

  ( )ˆ
iW k  and ( )î kδ  are used to denote the estimations of *

iW  and iδ , and let 

( ) ( ) *ˆ
i i iW k W k W= − , ( ) ( )ˆ

i i ik kδ δ δ= − . 

Choose the following direct adaptive fictitious control as 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 2 1 1 1 1 2
ˆˆ1 1 1T

fk n k k n W k S z k k k nξ ξ η δ η+ − = + + − = + + + −  

Choose the adaptation law in the following 

( ) ( ) ( )( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1
ˆ ˆ ˆ1 1W k W k S z k k W kη σ⎡ ⎤+ = − Γ + +⎣ ⎦  

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1
ˆ ˆ ˆ1 1k k B k kδ δ η β δ⎡ ⎤+ = − + +⎣ ⎦  

Then, we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 1 1 1 1 2
ˆˆ 1T

dk n F k y k n G k W k S z k k k nη δ η⎡ ⎤+ = − + + + + + −⎣ ⎦  
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Adding and subtracting ( ) ( )*
1 2dG k kξ  and noting the above equation, we have 

( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

*
1 1 1 1 1 1 2 2

*
1 2 1

ˆˆ( ) 1

   

T
d

d d

k n G k W k S z k k k n k

G k k F k y k n

η δ η ξ

ξ

⎡ ⎤+ = + + + − −⎣ ⎦
+ + − +

 

Further, we have 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
11 1 1 1 1 1 1 2

ˆ 1T
zk n G k W k S z k k z k k nη δ ε η⎡ ⎤+ = + − + + −⎣ ⎦  

Consider the Lyapunov function candidate as follows 

( ) ( ) ( ) ( ) ( )1 1 2
1 1 1 1 1

1 1
2

1 1 11 1
1 0 0

1 T
n n

j j
W W BV k k k j k j k jg δη − −

− −

= =
Γ= + + + + +∑ ∑  

Using the fact that 

( ) ( )( ) ( ) ( ) ( ) ( )
11 1 1 1 1 1 1 1 1 2

ˆ1 /T
zW k S z k k G k k kη δ ε η= + − + −  

Based on the above equations, it can be obtained that 

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )

1

2 2 1 1
1 1 1 1 1 1 1 1 1 1 1

1

1 2 1 2
1 1 1 1 1

2 2
1 1 1 2 1 1 1 1

1
1

2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1 1

1 1 1 1

1

1 11 2 1 2 1 2

ˆ ˆ1 2

ˆ ˆ1 2 1

T T

T
z

T T

T

V k k W k W k W k W kg

B k B k

k k k k k W kgg

W k S z k S z k k W k S z k

k W k W k k

η η

δ δ

η η ε η η η σ

η σ

η σ δ η

− −

− −

Δ = + − + + Γ + − Γ

+ + −

≤ − + − − + + + −

+ Γ + + Γ

+ + Γ + + ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1

2 2 2
1 1 1 1 1 1 1 1 1 1 1

ˆ2

ˆ ˆ1 2 1

k k

B k B k k B k

β δ δ

η β δ η β δ

−

+ + + + +

 

Using the facts that 

( )( )( ) ( )( ) ( ) ( ) 1

1

2
121

1 1 1 1 1 1 1 1 1 1 1
1 1

, 2 1 1
T z

z

g
S z k S z k l k k

g

εγγ ε η η
γ

Γ ≤ − + ≤ + +  

( )( ) ( )( ) ( ) ( ) ( )
2

2 21 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

ˆ ˆ2 1 1T l
W k S z k k k g W k

g

γσ η η σ γΓ + ≤ + +  

( ) ( ) ( ) ( ) ( )
22 2*

1 1 1 1 1 1 1 1 1 1
ˆ ˆ2 TW k W k W k W k W k= + −  

( ) ( ) ( ) ( )2 21 1
1 2 1 2

1 1

2 1 1
g

k k k k
g

γη η η η
γ

+ ≤ + +  

( ) ( ) ( ) ( )2 2 2 2
1 1 1 1 1 1 1 1 1 1

ˆ ˆ2 1 1B k k B k kβ δ η η β δ+ ≤ + +  

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 21 1
1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

ˆ ˆ2 , 2 1 1
B g

k k k k k k
g B

δ δ δ δ δ δ η η δ= + − + ≤ + +  
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we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 21 1

1 1 1 1 1 1 1 1 1 1 1
1 1

2 2 21
1 1 1 1 1 1 1 1 2

1
1

ˆ1 1 1
2 2

1ˆ1

V k g W k k
g g

g
B k k kg

ρ ωη σ σ γ σ γ η

β β β δ η θ η
γ

Δ ≤ − + − − − − +

− − − − + +
 

where 1 1 1 1 1 1 11 4 2 2l g lρ γ γ γ= − − − , 2
1 1 1 1 1 11 2 2 2B B g B gω = − − − and 

( )
1

22 2 * 2
1 1 1 1 1 1 1 1 1 1 1/ /zg B W k gθ δ β δ σ ε γ= + + + . Choose the design parameters to  

satisfy ( )1 1 1 11 4 2 2l g lγ < + + , ( )1 1 1 11 2 2 2B g B g< + +  and ( )1 1 11 1 gσ γ γ< + , 

( )1 11 1 Bβ < − . 

Step ( )2 1i i n≤ ≤ − : Following the same procedure as in step 1, define 

( ) ( ) ( )1i i if ik k kη ξ ξ −= −  and choose the Lyapunov function candidate 

( ) ( ) ( ) ( ) ( )1 1 2
2

2

0 0
/ T

i i i i

n i n

i i ii i i
j j

k W W BiV k g k j k j k jδη − −
− −

= =
Γ= + + + + +∑ ∑  

We have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 2

2 2 22
1

2

ˆ1 1 1

1ˆ1

i i
i i i i i i i i i i i

i i

i i i i i i i i i
i

V k g W k k
g g

g
B k k kg

ρ ωη σ σ γ σ γ η

β β β δ η θ η
γ +

Δ ≤ − + − − − − +

− − − − + +
 

where ,i iρ ω and iθ  is defined as 1 4 2 2i i i i i i il g lρ γ γ γ= − − − , 

21 2 2 2i i i i i iB B g B gω = − − −  and ( ) 22 2 * 2/ /
ii i i i i i i i i i z ig B W k gθ δ β δ σ ε γ= + + + . 

Choose the design parameters to satisfy ( )1 4 2 2i i i il g lγ < + + , 

( )1 2 2 2i i i iB g B g< + +  and ( )1i i i igσ γ γ< + , ( )1 1i iBβ < − . 

Step n : Following the same procedure as in Step i , we choose the direct adaptive 
controller and the adaptation laws as 

                                 
( ) ( )( ) ( )ˆˆ( ) T

n n n nu k W k S z k kδ= +  

( ) ( ) ( )( ) ( ) ( )ˆ ˆ ˆ1 1n n n n n n n n n n nW k W k S z k k W kη σ⎡ ⎤+ = − Γ + +⎣ ⎦  

 
( ) ( ) ( ) ( )ˆ ˆ ˆ1 1n n n n n n n nk k B k kδ δ η β δ⎡ ⎤+ = − + +⎣ ⎦  

and obtain  
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( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 2

2 2

ˆ1 1 1

1ˆ   1

n n
n n n n n n n n n n n

n n

n n n n n n n n
n

V k g W k k
g g

B k kg

ρ ωη σ σ γ σ γ η

β β β δ η θ

Δ ≤ − + − − − − +

− − − − +
 

where ,
nnρ ω and nθ  are defined as 1 2 2 2n n n n n n nl g lρ γ γ γ= − − − , 

21 2 2 2n n n n n nB B g B gω = − − −  and ( )
2

22 2 * nn zn
n n n n n n n

n n

gg
W k

B

ε
θ δ β δ σ

γ
= + + + . Choose 

the design parameters to satisfy ( )1 2 2 2n n n nl g lγ < + + , ( )1 2 2 2n n n nB g B g< + +  

and ( )1n n n ngσ γ γ< + , ( )1 1n nBβ < − . 

Theorem 1. Consider the closed-loop system consisting of system (1), controller  u  

and adaptation laws ( )ˆ
i iW k  and ( )î ikδ , under Assumptions 1 and 2, and the bounded 

initial condition, and there exist compact sets 
00 ,y y ϕ ϕΩ ⊂ Ω Ω ⊂ Ω , then, all the  

signals in the closed-loop system are SGUUB and the tracking error can be made 
arbitrarily small. 

Proof. The proof is similar to that of the theorem 1 in [12,13] and will be omitted. 

4   Conclusion 

By using the backstepping technique and the approximation property of the neural 
networks, we have proposed an adaptive control approach for a class of uncertain 
discrete-time nonlinear systems. The approach can improve robustness of the closed-
loop system. The adaptive controllers were obtained based on Lyapunov stability 
theory and all the signals of the resulting closed-loop system were guaranteed to be 
SGUUB, and the tracking errors can be reduced to a small neighborhood of zero. 
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Abstract. We propose a Generalized Online Self-constructing Fuzzy
Neural Network (GOSFNN) which extends the ellipsoidal basis function
(EBF) based fuzzy neural networks (FNNs) by permitting input vari-
ables to be modeled by dissymmetrical Gaussian functions (DGFs). Due
to the flexibility and dissymmetry of left and right widths of the DGF,
the partitioning made by DGFs in the input space is more flexible and
more interpretable, and therefore results in a parsimonious FNN with
high performance under the online learning algorithm. The geometric
growing criteria and the error reduction ratio (ERR) method are incor-
porated into structure identification which implements an optimal and
compact network structure. The GOSFNN starts with no hidden neurons
and does not need to partition the input space a priori. In addition, all
free parameters in premises and consequents are adjusted online based
on the Extended Kalman Filter (EKF) method. The performance of the
GOSFNN paradigm is compared with other well-known algorithms like
ANFIS, OLS, GDFNN, SOFNN and FAOS-PFNN, etc., on a bench-
mark problem of multi-dimensional function approximation. Simulation
results demonstrate that the proposed GOSFNN approach can facili-
tate a more powerful and parsimonious FNN with better performance of
approximation and generalization.

Keywords: Fuzzy neural network, Online self-constructing, Extended
Kalman filter, Dissymmetrical Gaussian function.

1 Introduction

Similar to the well-known ANFIS [1], the traditional design of fuzzy neural
networks (FNNs) is to assume that membership functions have been defined
in advance and the number of fuzzy rules is determined a priori according to
either expert knowledge or trial and error method [2], and the parameters are
modified by the hybrid or BP learning algorithm [3,4] which is known to be slow
and easy to be entrapped into local minima. A significant contribution was made
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by Platt [5] through the development of the resource-allocating network (RAN)
that adds hidden units to the network based on the novelty of the new data
in the sequential learning process. And it is followed by some improved works
[6,7]. Another seminal work was proposed by Chen et al. [2] that an orthog-
onal least square (OLS) learning algorithm is used to conduct both structure
and parameter identification. In addition, several evolving FNNs, i.e. DENFIS
[8] etc., have been reported in the fruitful field. Specifically focusing on variants
of geometric growing criteria [5], some typical self-constructing paradigms have
been proposed lately [9]. The Dynamic Fuzzy Neural Network (DFNN) based
on RBF neural networks has been developed in [10] in which not only the pa-
rameters can be adjusted by the linear least square (LLS) but also the structure
can be self-adaptive via growing and pruning criteria. In [11], the DFNN is ex-
tended to a generalized DFNN (GDFNN) by introducing the ellipsoidal basis
function (EBF). Similar to the GDFNN, a self-organizing fuzzy neural network
(SOFNN) [12] with a pruning strategy using the optimal brain surgeon (OBS)
approach has been proposed to extract fuzzy rules online. In addition, a fast and
accurate online self-organizing scheme for parsimonious fuzzy neural networks
(FAOS-PFNN) [13] based on the Extended Kalman Filter (EKF) method has
been proposed to accelerate the learning speed and increase the approximation
accuracy via incorporating pruning strategy into new growth criteria. A con-
vincing improvement based on the LLS method has been presented to enhance
the accuracy and compactness [14]. In the context of membership functions of
the input variables, the asymmetric Gaussian function (AGF) [15,16] has been
presented to upgrade the learning ability and flexibility of the FNN.

Based on the brief overview of the development of FNNs, we find that it is
difficult to consider the balance between the compact structure and the high
performance. In order to solve this dilemma, an intuitive and straightforward
method is to enhance the descriptive capability of membership functions which
can partition well the input space. Motivated by this idea, a dissymmetrical
Gaussian function (DGF) is presented to extend symmetric Gaussian functions
by permitting the input signal to be modeled by the DGF in this paper. We
present a generalized online self-constructing fuzzy neural network (GOSFNN)
which implements a TSK fuzzy inference system. Simulation results indicate that
the GOSFNN paradigm can online facilitate a more compact FNN with better
performance of approximation and generalization.

2 Architecture of the GOSFNN

2.1 Generalized Ellipsoidal Basis Function

Definition 1 (DGF). If any function satisfies the following condition

DGF (x; c, σ(x)) = exp

(
− (x− c)2

σ2(x)

)
(1)
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Fig. 1. Architecture of the GOSFNN

σ(x) =

{
σright, x ≥ c

σleft, x < c
(2)

where c, σleft and σright denote the center, left width and right width of the DGF,
respectively. We call the function DGF (.) dissymmetrical Gaussian function,
where σ(.) is called the dynamic width.

Definition 2 (GEBF). We call the function defined in (3) generalized ellip-
soidal basis function.

GEBF (X;C,Σ(X)) =
n∏

i=1

DGF (xi; ci, σi(xi)) (3)

where X = [x1, x2, · · · , xn]T and C = [c1, c2, · · · , cn]T denote input vector
and center vector, respectively. And, Σ(X) = [σ1(x1), · · · , σn(xn)]T is called
dynamic width vector, where the dynamic width σi(xi) is defined by (2).

2.2 Architecture of the GOSFNN

The GOSFNN shown in Fig.1 can be described by the following fuzzy rules:

Rule j : IF x1 is A1j and ... and xr is Arj THEN y = wj , j = 1, 2, ..., u . (4)

where Aij is the fuzzy set of the ith input variable xi in the jth fuzzy rule, r
and u are the numbers of input variables and fuzzy rules, respectively. Let μij

be the corresponding membership function of the fuzzy set Aij shown in layer
2, where the foregoing defined DGF is used to model fuzzy sets.

Layer 1: The nodes in this layer denote input variables.
Layer 2: Each node represents a possible membership function as follows:

μij(xi) = DGF (xi; cij , σij(xi)) (5)
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σij(xi) =

{
σR

ij , xi ≥ cij

σL
ij , xi < cij

(6)

where cij , σ
L
ij and σR

ij are the center, left width and right width of the corre-
sponding fuzzy set, respectively.

Layer 3: Each node represents a possible IF-part of fuzzy rules. The output
of the jth rule Rj can be calculated as follows:

ϕj(X) = GEBF (X;Cj ,Σj(X)) (7)

where X = [x1, x2, · · · , xr]T, Cj = [c1j , c2j , · · · , crj ]T, and Σj = [σ1j(x1), σ2j(x2),
· · · , σrj(xr)]T denote input vector, center vector and dynamic width vector.

Layer 4: This layer has single output node for multi-input and single-output
(MISO) systems. The output is the weighted summation of incoming signals,

y(X) =
u∑

j=1

wjϕj (8)

where wj is the consequent parameter in the THEN-part of the jth rule.

3 Learning Scheme of the GOSFNN

For each observation (Xk, tk), k = 1, 2, · · · , n, where n is the number of total
training data pairs, Xk ∈ Rr and tk ∈ R are the kth input vector and the
desired output, respectively.

3.1 Criteria of Rule Generation

1) System Error: The system error can be calculated as follows:

‖ek‖ = ‖tk − yk‖, k = 1, 2, · · · , n (9)

If
‖ek‖ > ke, ke = max{emaxβ

k−1, emin} (10)

a new GEBF hidden neuron should be created for high performance. Otherwise,
no new fuzzy rules will be recruited and only the parameters of the existing fuzzy
rules will be updated. Here, ke is a predefined threshold that decays during the
learning process, where emax is the maximum error chosen, emin is the desired
accuracy and β ∈ (0, 1) is the convergence constant.

2) Input Partition: The distance distjk between the new coming sample Xk =
[x1k, x2k, · · · , xrk]T and the center Cj = [c1j , c2j , · · · , crj ]T of the jth GEBF unit
can be obtained as follows:

distjk(Xk) =
√

(Xk − Cj)TS−1
j (Xk)(Xk − Cj), j = 1, 2, · · · , u (11)
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Sj(Xk) = diag
(
Σ2

j(X
k)

)
=

⎛⎜⎜⎜⎜⎝
σ2

1j(x1k) 0 · · · 0

0 σ2
2j(x2k) 0

...
... 0

. . . 0
0 · · · 0 σ2

rj(xrk)

⎞⎟⎟⎟⎟⎠ (12)

where Σj(Xk) and σij(xik) are dynamic width vector and corresponding dy-
namic widths of the ith dimension in the jth GEBF unit for the kth observation
and can be derived from (6).

For the kth observation, find the nearest GEBF unit given by

J = arg min
1≤j≤u

(distjk(Xk)) (13)

If
distjk(Xk) > kd, kd = max{dmaxγ

k−1, dmin} (14)

existing GEBFs cannot partition the input space well. A new GEBF unit should
be considered for fine partitioning in the input space. Otherwise, no new fuzzy
rules will be recruited and only the parameters of existing fuzzy rules will be up-
dated. Here, kd is a predefined threshold that decays during the learning process,
where dmax and dmin are the maximum and minimum distance, respectively.

3) Generalization Capability: The error reduction ratio (ERR) [3] is used to
calculate the significance of fuzzy rules. Consider (8) as a special case of the
linear regression model which can be described in the following compact form:

T = ΨW + E (15)

where T = [t1, t2, · · · , tn]T ∈ Rn is the desired output vector, W = [w1, w2, · · · ,
wu]T ∈ Ru is the vector of weights, E = [e1, e2, · · · , en]T ∈ Rn is the er-
ror vector which is assumed to be uncorrelated with the regressors, and Ψ =
[ψ1,ψ2, · · · ,ψn] ∈ Rn×u is the output matrix of layer 3 given by

Ψ =

⎛⎜⎝ϕ11 · · · ϕu1

...
. . .

...
ϕ1n · · · ϕun

⎞⎟⎠ (16)

For the matrix Ψ , if its row number is larger than the column number, we can
transform it into a set of orthogonal basis vectors by QR decomposition,

Ψ = PQ (17)

where the matrix P = [p1,p2, · · · ,pv] ∈ Rn×u has the same dimension as the
matrix Ψ with orthogonal columns and Q ∈ Ru×u is an upper triangular matrix.
Substituting (17) into (15) yields

T = PQW + E = PG + E (18)
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where G = [g1, g2, · · · , gu]T = (PTP)−1PTT ∈ Ru could be obtained by the
linear least square (LLS) method. An ERR due to pi is given by

erri =
(pT

i T)2

pT
i piT

TT
, i = 1, 2, · · · , u (19)

In order to define the significance of each fuzzy rule, we propose a novel growth
criterion termed generalization factor (GF) for checking the generalization ca-
pability of the GOSFNN.

GF =
u∑

i=1

erri (20)

If GF < kGF , where kGF is the threshold, the generalization capability is poor
and therefore the fuzzy neural network needs more hidden neurons to achieve
high generalization performance. Otherwise, no hidden nodes will be created.

3.2 Parameter Adjustment

Note that the following parameter learning phase is performed on the entire sys-
tem after structure learning, regardless of whether all the hidden nodes are newly
generated or are existent originally. The network parameter vector WEKF =
[w1,CT

1,Σ leftT1,Σ rightT1, · · · , wu,CT
u,Σ leftTu,Σ rightTu] is adapted using the

following EKF algorithm,

WEKF (k) = WEKF (k − 1) + ekκk , (21)

where κk is the Kalman gain vector given by

κk = [Rk + aT
k Pk−1ak]−1Pk−1ak , (22)

and ak is the gradient vector and has the following form:

ak =[
ϕ1k(Xk), ϕ1k(Xk)

2w1

σ2
11(x1k)

(x1k − c11), · · · , ϕ1k(Xk)
2w1

σ2
r1(xrk)

(xrk − cr1),

ϕ1k(Xk)
2sgn(c11 − x1k)w1

(σL
11)3

(x1k − c11)2, · · · ,

ϕ1k(Xk)
2sgn(cr1 − xrk)w1

(σL
r1)3

(xrk − cr1)2, · · · ,

ϕuk(Xk), ϕuk(Xk)
2wu

σ2
1u(x1k)

(x1k − c1u), · · · , ϕuk(Xk)
2wu

σ2
ru(xrk)

(xrk − cru),

ϕuk(Xk)
2sgn(x1k − c1u)wu

(σL
1u)3

(x1k − c1u)2, · · · ,

ϕuk(Xk)
2sgn(xrk − cru)wu

(σL
ru)3

(xrk − cru)2
]T

, (23)
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Table 1. Comparisons of the proposed GOSFNN with other algorithms

Algorithms Rules APEtrn(%) APEchk(%)

ANFIS 8 0.0043 1.066
OLS 22 2.43 2.56
GDFNN 10 2.11 1.54
SOFNN 9 1.1380 1.1244
FAOS-PFNN 7 1.89 2.95
GOSFNN 7 1.94 2.39

where sgn(.) is the defined sign function given by

sgn(x) =

{
1, x ≥ 0
0, x < 0

(24)

and Rk is the variance of the measurement noise, and Pk is the error covariance
matrix which is updated by

Pk = [I − κkaT
k ]Pk−1 + Q0I , (25)

Here, Q0 is a scalar which determines the allowed random step in the direction
of gradient vector and I is the identity matrix. When a new hidden neuron is
allocated, the dimensionality of the Pk increases to

Pk =
[
Pk−1 0

0 P0I

]
, (26)

where P0 is an estimate of the uncertainty in the initial values assigned to the
parameters. The dimension of the identify matrix I is equal to the number of
new parameters introduced by the new hidden unit.

4 Simulation Studies

In this section, the effectiveness and superiority of the GOSFNN is demonstrated
on a benchmark problem of three-dimensional nonlinear function. Comparisons
are made with other significant works such as ANFIS [1], OLS [2], GDFNN [11],
SOFNN [12] and FAOS-PFNN [13], etc.

The multi-dimensional nonlinear system is given by

f(x1, x2, x3) = (1 + x0.5
1 + x−1

2 + x−1.5
3 )2 (27)

The training samples consisting of a total of 216 data points are randomly ex-
tracted from the input space [1, 6]3 and the corresponding desired outputs can
be derived from (27). The parameters used for the training are chosen as fol-
lows: dmax = 0.8, dmin = 0.1, emax = 0.8, emin = 0.01, β = 0.99, γ = 0.95,
kGF = 0.99, P0 = Rk = 1.0 and Q0 = 0.11. To compare the performance with
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other approaches, the performance index is chosen to be the same as that in [2],
which is given by

APE =
1
n

n∑
k=1

|tk − yk|
|tk| (28)

Another 125 data pairs are randomly selected from the same discourse of universe
to check the generalizationperformance of the resulting fuzzy neural network. Sim-
ulation results are shown in Fig.2-4, from which we can see that there are only 7
fuzzy rules in the finalOSFNNwhich canmodel satisfactorily the underlyingmulti-
dimensional function. Comparisons of the proposed algorithm with ANFIS, OLS,
GDFNN, SOFNN and FAOS-PFNN are listed in Table 1, which shows that the
proposed GOSFNN obtains a parsimonious structure while the performance of ap-
proximation and generalization is considerably better than other algorithms. It
should be noted that the ANFIS is a batch learning approach using the BP method
rather than the sequential learning although it can obtain a more compact struc-
ture. Therefore, the proposed GOSFNN provides the best performance in the sense
of high accuracy and generalization with compact structure.
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Fig. 3. Root mean squared error (RMSE) during online training
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5 Conclusions

In this paper, we present a Generalized Online Self-constructing Fuzzy Neu-
ral Network (GOSFNN) which implements a TSK fuzzy inference system. The
generalized ellipsoidal basis function (GEBF) is introduced by defining a con-
cept of the dissymmetrical Gaussian function (DGF) which releases the sym-
metry of the standard Gaussian function in each dimension of input variables.
Consequently, the proposed GEBF makes the partitioning in the input space
more flexible and more efficient, and therefore enhances the performance of the
resulting fuzzy neural network. In the online learning process, criteria of rule
generation are presented to identify the structure of the GOSFNN by creating
GEBFs. The parameter estimation of the resulting GOSFNN is implemented by
using the Extended Kalman Filter (EKF) method. The effectiveness and supe-
riority of the proposed GOSFNN is demonstrated in multi-dimensional function
approximation. Simulation results show that a compact fuzzy neural network
with better generalization performance can be online self-constructed by the
GOSFNN. Comprehensive comparisons with other popular approaches indicate
that the overall performance of the GOSFNN is superior to the others in terms of
parsimonious structure and high capability of approximation and generalization.
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Abstract. This paper focuses on control of an active vibration isolator that 
possesses a strong nonlinearity and parameter uncertainty. An adaptive fuzzy 
controller is developed. A backstepping approach is employed to design the 
controller. A fuzzy logical system is used to approximate the unknown 
nonlinear function in the system. The developed controller guarantees the 
boundedness of all the signals in the closed-loop system. The unique feature of 
the developed controller is that only one parameter needs to be adapted online. 
The effectiveness of the controller is demonstrated by a computer simulation. 

Keywords: Active vibration isolation, fuzzy control, adaptive control, 
backstepping control. 

1   Introduction 

Vibration isolation is very important for many applications. In general there are two 
types of vibration isolation: isolation of a device from a vibrating source and isolation 
of a vibrating source from its support. This study concerns the first case which is also 
referred to as base isolation. The objective of the base isolation is to reduce the 
displacement transmissibility. In [1], a novel active vibration isolator was developed. 
The study showed that with a proportional feedback, the closed-loop system has a 
narrow stability margin due to the time delay caused by the actuator. A phase 
compensation technique was used to tackle this problem. As the system possesses a 
strong nonlinearity that is difficult to be modeled accurately, it is desired to develop 
an adaptive approximation-based controller for it. Various approximation-based 
adaptive controllers have been proposed in the past. For example, neural network 
(NN) method has attracted considerable attention because of its inherent capability of 
approximating nonlinear functions [2-4]. When an NN is used as an approximator, a 
large number of NN nodes should be used in order to improve the approximation 
accuracy. As a result, a great number of parameters are required to be adapted online, 
which increases the learning time. To overcome this shortcoming, a novel adaptive 
neural control design was presented in [5]. The merit of the proposed controller is that 
the number of online adapted parameters is independent of the number of the NN 
nodes. In [6], the fuzzy logical systems were used as approximators for nonlinear 
time-delay systems. Following the design methodology of [5], a novel adaptive fuzzy 
control scheme was proposed. An advantage of the proposed design scheme is that the 
number of adaptive parameters is not more than the order of the system under 
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consideration. In this study, following the design procedure of [6], an adaptive fuzzy 
controller is developed for the active vibration isolator under consideration.  

2   Active Vibration Isolator and Dynamic Model 

Figure 1 shows a schematic of the active vibration isolator developed in [1]. A steel 
beam (1) is used to support a permanent magnet (PM) block (2) that acts as an 
isolated mass denoted as m . The PM block dimension is 25.4 25.4 29.0l w h× × = × ×  
mm. The mass-beam assembly is placed between a pair of electromagnets (EMs) (3). 
The tension of the beam can be adjusted by screws (4). Both the beam supports and 
the EM supports are fastened to a base which rides on two linear guide carts sliding 
along a precision rail rack (6). The rail rack is fastened to a heavy rigid stand (7). A 
shaker (5) is used to excite the base through a stinger. Figure 2 illustrates a simplified 
model for the system and indicates the polarities of the PM and the EMs. Note that the 
polarities of the EMs vary according to the direction of the coil current. The base 
motion is denoted by y  while the motion of the mass is denoted by x . The stiffness 

of the beam is represented by bk  while the stiffness of the magnetic spring due to the 

interaction between the PM and the EM cores is represented by mk . Both bk  and mk  

are inherently nonlinear.  

 

Fig. 1. Active vibration isolator 

The equation governing the motion of the mass is given by 

                                     ( ) ( )b m cmz cz f z f z my F+ + + = − +  (1) 

where z x y= −  represents the relative displacement of the mass, ( )bf z  is the 

restoring force of the beam and ( )mf z  is the attracting force of the magnetic spring, 
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cF  is the actuating force due to the interaction between the PM and the energized 

EMs. As shown in Fig. 1(b), the actuator is formed by connecting two identical EMs 
in parallel. Therefore, the dynamics of the actuator is defined by  

                                                 0.5 0.5Li Ri kz e+ + =  (2) 

where L  and R  are the inductance and resistance of one EM, e  is the voltage that is 

applied to the EMs, the term kz  represents the effect of back electromotive force 

(emf) induced by the motion of the mass with k  as a proportional constant, and i  is  
the total current applied to the actuator. The actuating force cF  can be approximated 

by 

                                                             cF iγ=   (3) 

where γ  is a proportional constant. 

 

Fig. 2. Schematic of a simplified model for the active isolator 

3   Adaptive Fuzzy Controller 

By defining the system states as  

                                                 1 2 3, , x z x z x i= = =  (4) 

the system of (1) and (2) can be written in a state space form: 

                                                

1 2

2 1 2 23 3

3 32 2 33 3

( , ) ( )

x x

x f x x A x d t

x A x A x ge

=
= + +
= − − +

 (5) 
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where 1 2 1 1 2 23( , ) ( ) ( ) , , ( ) ( )b mf x x f x m f x m cx m A m d t y tγ= − − − = = −   

32 332 , , 2A k L A R L g L= = = . The following assumptions are made 

1.  1 2( , )f x x  is an unknown nonlinear smooth function with (0,0) 0f = . The 

parameters 23A , 32A , 33A  and g  are known positive constants.  

2.  ( )d t  is an unknown external disturbance which satisfies ( )d t d≤  with d  being 

a constant.  

A fuzzy logic system consists of four parts: the knowledge base, the fuzzifier, the 
fuzzify inference engine, and the defuzzifier. With the singleton fuzzifier, product 
inference and center-average defuzzifier, the fuzzy logic system output can be 
expressed as 

                                                     ( ) ( )Tf Wχ χ= Φ  (6) 

where 1 2
T

nχ χ χ χ= ⎡ ⎤⎣ ⎦  and 1 2
T

NW w w w= ⎡ ⎤⎣ ⎦  with iw  being the 

center of the output membership function for the thi  rule and 

1 2( ) ( ) ( ) ( )
T

Nχ φ χ φ χ φ χΦ = ⎡ ⎤⎣ ⎦  with ( )iφ χ  defined as 

                              
1

( ) ( ) ( )i i
j j

n nN
i j jF Fij j
φ χ μ χ μ χ

=
⎡ ⎤= ⎢ ⎥⎣ ⎦∑∏ ∏  (7) 

where ( )i
j

jFμ χ  is the membership function of i
jF . It has been proven in [7] that the 

above fuzzy logic system is capable of uniformly approximating any continuous 
nonlinear function over a compact set χΩ  with any degree of accuracy. Eq. (7) can 

also be considered to be the output of a three-layer neural network. 
The main goal of this study is to design a controller for the system (5) so as to 

quickly attenuate the system response 1x , while all the signals in the closed-loop 

system remain bounded. Following the backstepping technique, the auxiliary 
variables are introduced 

                                       1 1 2 2 1 3 3 2,  ,  z x z x z xα α= = − = −  (8) 

where 1α  and 2α  are virtual control variables. Through a Lyapunov-based design 

procedure given in Appendix, the virtual control signals and the real control signal are 
defined by  

                                1 1 1k zα = −  (9)  

                                 
2 2 2 22

23 23

1 ˆ( ) ( ) ( )
2 2

Tg g
k z Z Z z

A A a
α θ= − + − Φ Φ  (10)  

                                 32 2 33 3 23 2 3 3 2/ / / /e A x g A x g A z g k z gα= − − − − +  (11)  
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and the adaptive law is given by 

                                             

2
22

ˆ ˆ( ) ( )
2

Tr
z Z Z

a
θ σθ= Φ Φ −  (12) 

where [ ]1 2
T

Z z z= and 1k , 2k , 3k , a , r , and σ  are positive design parameters, 

θ̂  is the estimate of a constant parameter defined as 

                                                            
2

W gθ =  (13) 

Theorem. The responses of the system (5) controlled by the control laws given in 
Eqs. (11) to (12) are globally uniformly ultimately bounded. The proof of the theorem 
is given in Appendix. 

4   Computer Simulation 

To examine the effectiveness of the developed controller, a computer simulation is 
conducted. Based on the identification result of [8], the nonlinear restoring force is 
approximated by a 5th-order polynomial 

                                         
8 3 7 5

1 1 1754.0 +3.5 10 +3.5 10sf x x x= × ×   (14) 

the system parameters are taken as 0.17m =  kg, 0.2831c =  Ns/m, 2.46γ =  N/A, 

9.2R =  Ohm, 0.16L =  H, 0.525k =  As/m. 
For the fuzzy logic system, Gaussian function is used as the membership function 

or base function. Thus, for the ith rule and the jz  input universe of discourse, the 

membership function is defined as 

                                            
( )2( ) exp 0.5 ( )i

j

i i
j j j jF z z cμ σ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
 (15) 

where i
jc  and i

jσ  are the center and spread of the membership function, respectively. 

Thus for the ith element of ( )ZΦ  is defined by 

                

( ) ( )
( ) ( )

2 2

1 1 1 2 2 2

2 2

1 1 1 2 2 21

exp 0.5 ( ) 0.5 ( )

( )

exp 0.5 ( ) 0.5 ( )

i i i i

i
N i i i i
i

z c z c

Z

z c z c

σ σ
φ

σ σ
=

⎛ ⎞
− − − −⎜ ⎟
⎝ ⎠=

⎡ ⎤⎛ ⎞− − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑
  (16) 

To evaluate the performance of the controller, two indices are used [9]. The following 
index measures the control performance  

                                                     
1 1
con unc

rms rms
P z z=  (17) 
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where 1
con

rms
z  and 1

unc

rms
z  denote the root-mean-squared (rms) value for the 

system response with control and without control, respectively. The following index 
measures the strength of the control action 

                                                       c rmsrms
S F my=  (18) 

where c rms
F  denotes the rms value for the control force cF  and 

rms
my  the rms 

value for the inertial force due to the base disturbance. Taft’s earthquake record [9] is 
used as a testing disturbance. The initial conditions are chosen to be zero. The number 
of fuzzy rules is chosen to be 7N = . The centers and spreads of the membership 
functions are chosen according to possible ranges jzΔ  of the auxiliary variables.  

2 ( 1) 6  and 0.15 , 1,2, ,7i i
j j j j j jc z i z z iσ σ= −Δ + − Δ = = Δ =  

respectively, In the simulation, the auxiliary variable ranges are chosen to be  

1 0.005zΔ =  and 2 0.05zΔ = . The initial value for θ  is chosen to be zero.  

Table 1. Simulation results 

case 1k  2k  3k  a  r  σ  P  S  

1 25 10 5 0.1 1000 1 0.2523 0.5755 
2 50 10 5 0.1 1000 1 0.1565 0.5968 
3 50 10 5 0.1 0 0 0.5218 0.4552 
4 50 10 5 0.1 1500 1 0.0983 0.6119 
5 50 0 5 0.1 1000 1 0.2642 0.5720 
6 50 10 5 0.5 1000 1 0.6935 0.3213 
8 50 10 5 0.1 1000 10 0.2803 0.5579 
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Fig. 3. Comparison of the open-loop response and the closed-loop response control by case 2 
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Fig. 4. The adaptive parameter θ̂  for control case 2 

Table 1 lists some of the simulation results. Figs. 3 and 4 show the results with 
control case 2. From them, the following observations can be drawn. Among the cases 
considered, case 4 achieves the best vibration suppression at the price of the largest 
control effort used.  Shown by case 3, without the adaptive control part, the 
performance deteriorates. A comparison of case 1 and case 2 indicates that an 
increase of the gain 1k  will improve the control performance while increasing the 

control effort.  Shown by case 2 and case 6, the smaller the parameter a , the smaller 
the index P .  Shown by cases 2, 4, and 7, increasing the parameter r  will reduce the 
index P  and increase the index S . The parameter σ  affects the transient behavior of 
the adaptive parameter. An increase of the  σ  value will negatively influence the 
performance as shown by cases 2 and 8. 

5   Conclusions 

In the paper, an adaptive fuzzy controller is developed for an active vibration isolator. 
A fuzzy logical system is used to approximate the unknown nonlinear function. The 
unique feature of the developed controller is that only one parameter needs to be 
adapted online. A computer simulation has shown the effectiveness of the controller 
and the guidelines for the parameter tuning. 
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Appendix A: Proof of the Theorem 

Lemma 1. For a given 0ε > , any continuous function ( )f χ  defined on a compact 

set nRχΩ ⊂  can be written as: 

                                           
( ) ( ) ( ), ( )Tf Wχ χ δ χ δ χ ε= Φ + ≤  (A1) 

where ( )δ χ  is the approximation error. The term ( )TW χΦ  may be viewed as an 

approximator with ( )χΦ  being a chosen base function vector and W  being the 

weight vector.  

Lemma 2. Let A  and B  be any row vector and column vector, respectively, with 
appropriate dimension then  

                                                

2
2 2

2

1

22
AB A B

ρ
ρ

≤ +  (A2) 

where ρ is any nonzero real number. 

Lemma 3. Let θ̂  denotes the estimate of a constant θ . Define the estimation error as 
ˆθ θ θ= −  then  

                                                  

2 21 1ˆ ˆ and 
2 2

θ θ θθ θ θ= − ≤ −  (A3) 

Step 1. Consider a Lyapunov’s function candidate as: 

                                                               

2
1 1

1

2
V z=   (A4) 
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Differentiating 1V  yields: 

                      
2

1 1 1 1 2 1 1 1 2 1 1 1 1 1 2( ) ( )V z z z x z z k z k z z zα α= = − + = − = − +  (A5) 

Step 2.  Choose a Lyapunov’s function candidate as: 

                                               

2 2
2 1 2

1

2 2

b
V V z

r
θ= + +   (A6) 

where ˆθ θ θ= −  is parameter estimation error. Differentiating 2V  yields: 

                              
2 1 2 2 1 2 2 1

ˆ( )
b b

V V z z V z x
r r
θθ α θθ= + + = + − −  (A7) 

as ˆθ θ= − . From Eqs. (A5) and (5), 

              

2
2 1 1 1 2 2 1 2 23 3 1

2
1 1 2 2 1 2 1 1 23 2 3 23 2 2

ˆ( ( , ) ( ) )

ˆ( ) ( ( , ) )

b
V k z z z z f x x A x d t

r
b

k z z d t z f x x z A z z A z
r

α θθ

α α θθ

= − + + + + − −

= − + + − + + + −
 (A8) 

Using Lemma 2 and Assumption 2,  

                               

2 2
2 2 2

2 2 22 2

1 1
( ) ( )

2 22 2
z d t z d t z d

ρ ρ
ρ ρ

≤ + ≤ +  (A9) 

Therefore 
2

2 2
2 1 1 2 2 1 2 1 1 23 2 3 23 2 22

2
2

1 1 2 1 2 1 1 2 23 2 3 23 2 22

1 ˆ( ( , ) )
22

1 ˆ( ( , ) )
2 2

b
V k z z d z f x x z A z z A z

r

b
k z d z f x x z z A z z A z

r

ρ α α θθ
ρ

ρ α α θθ
ρ

≤ − + + + − + + + −

= − + + − + + + + −
 

Define 1 2 1 1 22

1
( ) ( , )

2
f Z f x x z zα

ρ
= − + +  where [ ] 2

1 2
T

Z z z R= ⊂ , therefore, 

                      

2
2

2 1 1 2 23 2 3 23 2 2
ˆ( )

2

b
V k z d z f Z A z z A z

r

ρ α θθ≤ − + + + + −  (A10) 

By Lemma 1, 

                   
2 2 2 2 2( ) ( ) ( ) ( ) ( )

T
T W

z f Z z W Z z Z z W Z z Z
W

δ δ= Φ + = Φ +  (A11) 

 
Using Lemma 2, then  
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( ) 22 2

2 22

1 1
( ) ( ) ( )

2 2

T
TW

z W Z a z W Z Z
W a

⎛ ⎞
Φ ≤ + Φ Φ⎜ ⎟⎜ ⎟

⎝ ⎠
 (A12) 

                               

2 2 2 2
2 2 2

1 1 1 1
( ) ( )

2 2 2 2
z Z gz Z gz

g g
δ δ ε≤ + ≤ +  (A13) 

Substitution of (A12) and (A13) into (A11) yields: 

                

2
2 2 2 2

2 2 22

2 2 2 2
2 22

1 1 1
( ) ( ) ( )

2 2 22
1 1 1

( ) ( )
2 2 22

T

T

Wg
z f Z a z Z Z gz

g ga
g

z Z Z a gz
ga

ε

θ ε

≤ + Φ Φ + + ≤

Φ Φ + + +

 (A14) 

By Eq. (10), 2 23 2z A α  can be written as: 

            

2 23 2 2 23 2 2 22
23 23

2
2 2 22

1 ˆ( ) ( ) ( )
2 2

1 ˆ( ) ( ) ( )
2 2

T

T

g g
z A z A k z z Z Z

A A a

g
k bz z Z Z

a

α θ

θ

⎛ ⎞
⎜ ⎟= − + − Φ Φ =
⎜ ⎟
⎝ ⎠

− + − Φ Φ

 (A15) 

Substitution of (A14) and (A15) into (A10) yields 

2
2 2 2 2 2

2 1 1 2 2 23 2 3 22

1 ˆ( ) ( )
2 2

Tg r
V k z k gz A z z a d z Z Z

g r a

ε ρ θ
⎛ ⎞ ⎛ ⎞

≤ − − + + + + + Φ Φ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

Substitution of Eq. (12) for θ̂  yields: 

               

2
2 2 2 2

2 1 1 2 2 23 2 3
1 ˆ
2

g
V k z k gz A z z a d

g r

ε σρ θθ
⎛ ⎞

≤ − − + + + + +⎜ ⎟⎜ ⎟
⎝ ⎠

  (A16) 

By Lemma 3, 

      

2
2 2 2 2 2 2

2 1 1 2 2 23 2 3

2
2 2 2 2 2 2

1 1 2 2 23 2 3

1 1 1

2 2 2

1

2 2

g
V k z k gz A z z a d

g r

g g
k z k gz A z z a d

r g r

ε σρ θ θ

σ ε σθ ρ θ

⎛ ⎞ ⎛ ⎞≤ − − + + + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎞

= − − − + + + + +⎜ ⎟⎜ ⎟
⎝ ⎠

 (A17) 

Step 3.  Choose a Lyapunov’s function candidate as: 

                               

2
3 2 3

1

2
V V z= +  (A18) 

Since this Lyapunov function contains all of the signals and parameter estimate error, 
it can be viewed as the total Lyapunov function for the entire system, namely 
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2 2 2 2
1 2 3

1 1 1

2 2 2 2

g
V z z z

r
θ= + + +  (A19) 

Its time derivative is given by 

                            ( )2 3 3 2 3 32 2 33 3 2V V z z V z A x A x ge α= + = + − − + −  (A22) 

Substituting Eq. (11) and Eqs. (A9) and (A11) yields 

2
2 2 2 2 2 2 2

1 1 2 2 3 3
1

2 2

g g
V k z k gz k gz a d pV q

r g r

σ ε σθ ρ θ
⎛ ⎞

≤ − − − − + + + + = − +⎜ ⎟⎜ ⎟
⎝ ⎠

  (A20) 

where ( )1 2 3min 2 ,2 , 2 ,p k k g k g σ=  and 
2

2 2 21

2

g
q a d

g r

ε σρ θ
⎛ ⎞

= + + +⎜ ⎟⎜ ⎟
⎝ ⎠

. 

Eq. (20) implies that  

                           for 0t ≥ , (0) pt q
V V e

p
−≤ + , thus lim ( )

t

q
V t

p→∞
≤  (A21) 

From (A21), V  is shown to be uniformly bounded, which implies that 1z ,  2z ,  3z , 

and  θ  are bounded. Thus, the state variables 1x , 2x ,  3x , and the estimated 

parameter θ̂  are also bounded. As a consequence the boundedness of the control  e  is 
obtained. 
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Abstract. High precision speed and position tracking control is important to en-
sure safe and reliable operation of high speed train. This paper presents a solu-
tion to achieve fault-tolerant control of train consisting of multiple vehicles with 
distributed traction and braking systems. A multiple point-mass model coupled 
with uncertain resistive forces (i.e. aerodynamic resistance, mechanical resis-
tance, transient impacts, etc.) is utilized for control design and stability analysis. 
Traction and braking faults in the form of tracking power loss and/or braking 
capability loss are explicitly considered. To cope with the resultant dynamic 
model that contains actuator faults, uncertain in-train forces as well as resistive 
disturbances, a fuzzy-adaptive fault-tolerant control method is proposed. The 
salient feature of the developed control scheme lies in its independence of the 
precise dynamic model of the train. More specifically,   there is no need for sys-
tem parameter estimation, no need for fault detection and diagnosis, and no 
need for in-train force and resistive force estimation or approximation in de-
signing and implementing the control scheme. The stable control algorithm is 
derived based on Lyapunov stability theory. Its effectiveness is confirmed with 
simulation verification. 

Keywords: Fuzzy-adaptive fault-tolerated control, multiple point mass model, 
Lyapunov stability theory, in-train force. 

1   Introduction 

As an efficient massive transportation system, high speed train is experiencing rapid 
development worldwide during the past few years [1]-[4]. As the travel speed  
increases, safe and reliable operation naturally becomes an extremely important factor 
to consider in developing ATP/ATO (automatic train protection/automatic train  
operation) systems, where advanced control represents one of the crucial enabling 
technologies.  

This paper is concerned with speed and position tracking control of high speed 
train. A multiple point-mass model is used to describe the dynamic behavior of the 
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train where resistive forces and in-train forces between adjacent vehicles are explicitly 
considered. It should be mentioned that the in-train forces and resistive forces are 
nonlinear and uncertain [6], measuring or modeling such forces are extremely diffi-
cult in practice. The most typical way to around this is to linearize or approximate the 
nonlinear and uncertain impacts based on a prior designed speed [7],[14]. However, 
as the in-train forces and aerodynamic drag forces are proportional to the square of 
the travel speed, its influence on train’s dynamic behavior becomes more  significant 
when the speed increases to a higher level. Furthermore, the distributed trac-
tion/braking units of the train might experience faults during the system operation. 
Therefore it is of theoretical and practical importance to develop effective control 
schemes for speed and position tacking of the train that take into account uncertain 
resistive forces and in-train forces as well as actuation faults. 

We present a fuzzy-adaptive fault-tolerant control scheme to account for all the 
above mentioned issues. A multiple point-mass model coupled with uncertain resis-
tive forces (i.e. aerodynamic resistance, mechanical resistance, transient impacts, etc.) 
is utilized for control design and stability analysis. Traction and braking faults in the 
form of tracking power loss and/or braking capability loss are explicitly considered. 
The developed control scheme is essentially model-independent in that it does not 
need the precise dynamic model of the train. More specifically, the design and  
implementation of the control scheme do not involve system parameter estimation, 
fault detection and diagnosis, nor in-train force and resistive force estimation or  
approximation. 

The rest of this paper is organized as follows. Section II describes multiple  
point-mass model of the train consisting of multiple vehicles. Section III gives a brief 
introduction of the fuzzy system, based on which the fuzzy adaptive and fault-tolerant 
control algorithm is developed. Section IV presents the simulation results to  
demonstrate the performance the proposed method. The paper is closed in Section V. 

2   Modeling and Problem Statement 

Consider a train consisting of n vehicles, as illustrated in Figure 1. The adjacent vehi-
cles are connected by couplers [7], iy  (i=1, 2,..,n) describes the position of each vehi-

cle, the various forces acting on each vehicle includes: pulling/braking force if , 

resistance force dif ,interaction force between two adjacent vehicles bif and 1bif − ,and 

other disturbing forces id . By Newton’s law, the equations of motion for each vehicle 

can be established as follows,  

1i i i i di bi bi im y f f f f dλ −= − + − +  . (1) 

where mi  is the mass of each vehicle, and the resistive force 1 2di i if w w= +  con-

sists of two parts: the basic resistance 1iw  and  additional resistance 2iw , which are 

of the form: 
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2
1 ( , ) ( , ) ( , )i i iw a i t b i t y c i t y= + +  . 

(2) 

and 

2 i ri ci tiw f f f= + +  . (3) 

respectively. The resistive force for the ith vehicle 1iw is caused by the mechanical 

friction and aerodynamic drag (the coefficients ,a b and c are time-varying and un-

available precisely in general), rif is the ramp resistance related to the component of 

the gravity in the direction of the slope, cif denotes the curvature resistance, tif models 

the tunnel resistance (caused by the air in the tunnel), iλ is the distributing parameter 

determining the power/braking effort of the ith vehicle, bif represents the in-train force 

from the couplers connecting the adjacent vehicles. It is noted that modeling or meas-
uring such force is extremely difficult in practice. The commonly used approach is to 
linearize bif or  approximate its impact using [7],[14],[17]: 

2
0 1( )bi i i i i i i if b d d k k d d= Δ Δ + + Δ Δ  . 

(4) 

However, determining the coefficients ib , 0ik  and 1ik is a non-trivial task. In this work, 

we deal with this challenge, together with other anomaly impacts, by integrating 
fuzzy technique with adaptive control.  

yi

1yi+

/ 2li
/21li+sl

idΔ

y

 

Fig. 1. Relative position and connection relationship among the vehicles. 

Considering all the vehicles connected in the train, the following multiple vehicle 
dynamic model can be derived, 

'
d b bMY F F F F D= Λ − + − +  . 

(5) 

where  
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1 1 1 1

2 2 2 2
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n n n n
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λ
λ

λ−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = Λ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

 
Notice that during system operation unexpected faults might occur, which are actually 
difficult to foresee and prevent. To account for this fact, we consider the situation that 
the powering/braking unit suffers from the fault of loss of effectiveness such that the 
dynamic behavior of the multiple vehicle train is governed by 

'[ ( ) ( )] d b bMY t F P t F F F Dμ= Λ + − + − +  . (6) 

1 2( ) { ( ), ( ),...... ( )}nt diag t t tμ μ μ μ=  . (7) 

where ( )P t denotes a vector function corresponding to the portion of the control action 

produced by the actuator that is completely out of control, which might be time-
varying, ( )i tμ is a time-varying scalar function reflecting the effectiveness of the pow-

ering/braking force iF of each vehicle, called actuator efficiency or actuator “health 

indicator”, which bears the following physical meaning: 

 If ( )i tμ =1, the powering/braking system of the ith vehicle is healthy. 

 If ( )i tμ =0, the ith vehicle totally loses its traction or braking capability. 

 If 0< ( )i tμ <1, the ith vehicle partially loses its traction or braking effectiveness. 

In this work, we consider the case that ( ) (0,1]i tμ ∈ , namely, the actuators have faults 

but all are still functional. Also, it is worth noting that the mass of each vehicle mi 

(therefore the total mass of the train M) is unavailable since the loads or the number 
of passengers on board each vehicle are different and uncertain in general. 

The objective is to design the control input F to make the position and speed track-
ing errors of the train ( *E Y Y= −  and *E Y Y= − , where *Y and *Y are the desired 
position and speed, respectively) sufficiently small asymptotically (practical tracking) 
in the presence of possible actuation faults and uncertain system parameters as well as 
external disturbances. 
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To facilitate the control design, we define a filtered variable: 

S E BE= + . (8) 

where 1( ,..., )nB diag β β=  with 0iβ > being a free design parameter chosen by the 

designer/user. Based on which (6) can be expressed as: 

(.) [ ( ) ( ) ( )]d inMS F M Y BE F T I F D P tμ ∗= Λ − − + − − + −Λ . (9) 

where I is a unit matrix, T is an elementary matrix and Fin is the in-train force vector. 
Therefore, the problem of speed and position tracking can be addressed by stabiliz-
ing S , as detailed in next section. 

3   Fuzzy Adaptive Fault-Tolerant Control Design 

As the system involves nonlinearities and uncertainties arisen from resistive forces, 
in-train forces as well as actuator failures, model based control is no longer applica-
ble.  Here fuzzy technique is integrated with adaptive control to deal with the lumped 
uncertainties of the system. As the first step, we denote the lumped uncertainties by 

(.) ( ) ( ) ( )d inR M Y BE F T I F D P t∗= − − − + − − +Λ          (10) 

The next task is to replace (.)R by specific formula of fuzzy systems and develop an 

adaptation law for adjusting the parameters in the fuzzy systems for the purpose of 
forcing the tracking error to converge to a small neighborhood of the origin. 

3.1  Takagi-Sugeno Fuzzy Systems 

A multiple-input single-output (MISO) fuzzy system is a nonlinear mapping from an 

input vector [ ]1 2, .....,
T n

nX x x x= ∈ℜ to an output vector y∈ℜ [9]-[11]. For a 

zero-order Takagi-Sugeno fuzzy systems, the fuzzy rule base contains a collection of 
fuzzy IF-THEN rules of the form[12],[15]: 

1 1: ( ) ... ( )

:

L L L
n n

L

R IF x is F and and x is F

THEN y y=
 

where L
iF is the label of the fuzzy set corresponding to the variable ix , for L=1, 2…N, 

and Ly is a constant parameter representing the consequent part of the fuzzy rule L.  

1 1

1 1

( ( ))

( ( ))

nN
L

L iFi
L i

nN

L iFi
L i

y x

y

x

μ

μ

= =

= =

=
∑ ∏

∑ ∏                               

(11)
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If we fix the
i

L
Fμ ’s and view the Ly ’s as adjustable parameters, then (11) can 

be written as ( )Ty w xψ=  
(12)

where 1 2( , ... )T
Nw w w w= is the parameter vector, and 

1 2( ) ( ( ), ( )... ( ))T
Nx x x xψ ψ ψ ψ= is the vector of fuzzy basis functions defined as: 

1

1 1

( )
( ) , (1,2... )

( ( ))

L
i

L
i

n

iF
i

j nN

iF
L i

x
x j N

x

μ
ψ

μ

=

= =

=
∏

∑ ∏
 

 

(13) 

 

As shown in [8] that Gaussian basis functions do have the best approximation prop-
erty. One of the choices for the Gaussian basis functions to characterize the member-
ship functions is of the form: 

21
( ) exp( ( ) )

2
L

i

L
i i

iF
i

x c
xμ

σ
−

= −  (14)

The centers ic are usually randomly selected over a grid of possible values for the 

vector ix , and the parameter iσ  usually can be chosen as a constant for all the mem-

bership functions. 

3.2  Fuzzy Approximator 

Now the fuzzy system as defined in (12) is used to approximate the nonlinear function 
R(.), 

(.) TR wψ ξ= +  (15) 

where LRψ ∈  is fuzzy basis function vector, ξ is the fuzzy approximation error and 
L nw R ×∈  is the optimal (ideal) weight matrix, L is the total number of fuzzy mem-

bership function. According to the universal approximation theory, the fuzzy recon-
struction error ξ  can be made bounded by a suitably chosen fuzzy system, i.e., 

ξ ρ≤ < ∞ , where ρ is some unknown constant. In our study, the following mem-

bership functions are used, 

2( ) exp( ( ) ), 1,2... , 1, 2k
p

p p kF
e e c k L pμ = − − = =  (16)

where 1e stands for the position tracking error and 2e stands for the velocity tracking 

error. The number of the Gaussian functions is L, and the basis function iψ can be 

expressed as: 
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2 2

2 2

1

exp( ( ) )*exp( ( ) )

(exp( ( ) )*exp( ( ) ))

1, 2... ; 1, 2...

i k i k
L

i k i k
k

e c e c
ik

e c e c

i n k L

ψ

=

− − − −
=

− − − −

= =

∑
 

 

(17) 

 

The input to the fuzzy unit is the velocity error ie  and the position error ie . 

3.3  Adaptive Laws and The Controller Design 

The proposed fuzzy adaptive and fault-tolerant control is of the form 

0 ˆ( )

ˆ(1 )
ˆ

T T
r

T

r

F k S w U

w S
U

S

ψ

ψ
ρ

=Λ − − +

+
= −

 
 

(18a) 

 

with 

1 2
ˆˆ ˆ, (1 )T Tw S S wγ ψ ρ γ ψ= = +  (18b) 

where 0k is a positive number chosen by the designer, ŵ is the estimated value of 

w and ρ̂ is the estimated value of ρ , 1 20, 0γ γ> > . rU is to counteract the impact due 

to reconstruction error ξ  and (.) TμΛ Λ  as seen later. 

Theorem 1 

Consider the train dynamics as governed by (6) and (7). If the control scheme as given in 
(18) is applied, asymptotically stable position and speed tracking are ensured. 

Proof 

To show the stability of the control scheme, we first note that the closed loop error 
dynamics become: 

0 (.) (.)T T T
rMS k S w Uμ ψ η μ= − Λ Λ + + +Λ Λ  (19) 

 
with ˆ( (.) )T TI wη μ ψ ξ= −Λ Λ + . It can be verified that: 

ˆ ˆ ˆ( (.) ) max{ ( (.) ) , }(1 ) (1 )T T T T TI w I w wη μ ψ ξ μ ξ ψ ρ ψ≤ −Λ Λ + ≤ −Λ Λ + = +  (20) 

where max{ ( (.) ) , }TIρ μ ξ= −Λ Λ  is some constant, which is unknown in general 

because both (.)μ  and ξ  are unavailable (although bounded).Now define a constant 

0 min iε λ< < , where iλ is the eigenvalue of the matrix TμΛ Λ  (such constant does 
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exist because the matrix TμΛ Λ is symmetric and positive definite). Consider the 

Lyapunov function candidate: 

2

1 2

1 1 1
ˆˆ ˆ( ) ( ) ( )

2 2 2
T TV S MS w w w w ρ ερ

γ γ ε
= + − − + −  (21) 

 

It follows that: 

( )
{ } ( )
( )
{ }
( ) ( )

1 2

0

1 1
ˆ ˆˆ ˆ( ) ( ) ( )( )

ˆ( ) (.) ( )( )

ˆˆ(1 ) ( )

ˆ( ) (.)

ˆˆ ˆ( )( ) (1 ) ( )

T T

T T

T

T T T
r

T T

V S MS tr w w w

S t F R tr S w w

S w

S t k S w U R

tr S w w S w

ρ ρ ερ
γ γ

μ ψ

ψ ρ ερ

μ ψ

ψ ψ ρ ερ

= + − − + − −

= Λ + + − −

+ − + −

⎡ ⎤= Λ Λ − − + +⎣ ⎦

+ − − + − + −

 

 

 

(22) 

 

Using (18) (19) and (21), and with certain computation, it is not difficult to show that 
2

0V k Sε≤ − , thus 2S L L∞∈ ∩ , therefore E , E L∞∈  from Equation (8). Then it is 

readily known that S L∞∈ . By Barbalat lemma it is concluded that lim 0
t

S
→∞

= , there-

fore 0,   0E E→ →  as t →∞  by the definition of S , which completes the proof. 
It is noted that when S tends to zero, the control component Ur might involve chat-

tering. A simple yet effective method to avoid this is as follows. 

Theorem 2 

Consider the train dynamics as governed by (6) and (7). If the following control scheme is 
applied, ultimately uniformly bounded stable position and speed tracking are ensured. 

 

                      

0

0

ˆ( )

ˆ(1 )
ˆ

T T
r

T

r

F k S w U

w S
U

S

ψ
ψ

ρ
δ

=Λ − − +

+
= −

+

 

2

1 1 2
0

ˆ(1 )
ˆ ˆˆ ,

T

T
S w

w S
S

ψ
γ ψ ρ δ ρ γ

δ
+

= = − +
+

 

where 0 0δ >  and 1 0δ >  designer parameters related to tracking precision and updat-

ing rate.  

4   Simulation 

To verify the effectiveness of the proposed control scheme, simulation study is con-
ducted. A train with 8 vehicles is simulated. The total mass of the eight vehicles is 
345000kg. The actuator failure variable iμ is set as a random function, taking value 
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between (0,1).The distribution matrix is =diag([1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5])B . Other 

control parameters are chosen as: 1 2 05, 4, 1000000kγ γ= = = . A total of 10 fuzzy 

membership functions are used, where a series of kc chosen for simulation are: 

1 2 3 4 5

6 7 8 9 10

0.1, 0.2, 0.4, 0.6, 0.8,

0.8, 0.6, 0.4, 0.2, 0.1

c c c c c

c c c c c

= = = = =
= − = − = − = − = −

 

The goal is to make the actual velocity y  track the desired velocity *y and the ac-

tual position y track the desired position *y  with high precision. 

The simulation results are depicted in Fig. 2- Fig. 4. As indicated from Fig. 2 and 
Fig. 3, position tracking and speed  tracking are  achieved with the proposed control. 
The position tracking error is shown in Fig. 4, one can observe the tracking error is 
small. 
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Fig. 2. Position tracking in 1400s 
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Fig. 3. Velocity tracking in 1400s 
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Fig. 4. The position tracking error 
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5   Conclusion 

In this paper, a fuzzy-adaptive fault-tolerant control scheme based on multiple point 
mass model is presented for high speed train system in the presence of nonlinearity 
and uncertainty. Adaptive control algorithms are derived without using any explicit 
information on the system parameters. The adaptive control scheme guarantees that 
all signals involved are bounded and the system velocity and speed asymptotically 
track the corresponding desired trajectory. The computer simulation results show that 
the fuzzy-adaptive fault-tolerant controller is able to maintain good control precision.  
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Robust Cascaded Control of Propeller Thrust for AUVs 
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Abstract. Robust neural-network controller of propeller thrust is proposed for 
autonomous underwater vehicles (AUVs). The cascaded plant consists of the 
dynamics of surge motion of an AUV, that of the propeller axial flow, that of 
the propeller shaft and that of the electrically-driven circuit. Uncertainties in-
cluding modeling errors and external disturbances are taken into account simul-
taneously. A hybrid control strategy is proposed to the cascaded system with 
uncertainties. An on-line robust neural-network is used to compensate the mod-
eling errors while L2-gain design is used to suppress the external disturbances. 
By backstepping method, the terminated control input to the thrust system is ob-
tained. Design of the controller with L2-gain performance observes the recur-
sive Lyapunov function method, which guarantee the uniformly ultimately 
bounded stability of tracking system. Simulation results demonstrate the  
validity of controller proposed. 

Keywords: underwater vehicle; uncertainties; control of propeller thrust; neu-
ral-network; L2-gain. 

1   Introduction 

Focus has been increasingly directed to the accurate modeling and control of the 
autonomous underwater vehicles (AUVs). However, nonlinear dynamics and uncer-
tainties of the underwater system make it challenging to achieve robust and accurate 
tracking and positioning. To accomplish appointed complicated underwater missions, 
many advanced control schemes have been developed to deal with the uncertainties. 
Healey and Lienard proposed sliding mode variable structure method to multi-degree-
of-freedom AUVs [1]. Fossen applied adaptive control to underwater models with 
uncertain parameters [2]. Mu synthesis [3] and LMI synthesis [4] were used and com-
pared with the sliding mode control. Neural networks controllers were proposed to the 
trajectory following of underwater vehicles [5]. An adaptive approach for motion 
control of underwater vehicles was proposed in the presence of external disturbance 
and uncertain parameters [6].Prasanth Kumar et al. applied a time delay control law to 
the trajectory control of AUVs [7]. Some work paid attention to the dynamics of ac-
tuators of AUVs. Fossen and Blanke used parameter adaptive control methods to the 
speed control of cascaded AUVs [8]. Pivano et al. applied state estimation method to 
the controller of a cascaded underwater vehicle [9]. 
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For a precise plant, satisfying performance can be obtained by using classic control 
strategies such as linearization feedback control, etc. However, some modeling errors 
are inevitable, such as parameter errors, high-order modes ignored and unmodelled 
dynamics of the underwater vehicles. The unmodelled dynamics perhaps result from 
thrust and torque losses caused by viscous drag effects, cross-coupling drag, varying 
wake with turn or sway, air suction and interaction between the thruster and the hull 
etc [10]. Moreover, external disturbances should be considered. This uncertainty may 
refer to some unknown random noises from mechanical or electrical equipments, or 
the environmental forces such as currents. Usually, both unmodelled dynamics and 
external disturbance cannot be modeled by mathematical expressions. 

This paper presents a hybrid controller. H-infinity control and neural network (NN) 
control are both used. Uncertainties including modeling errors and external distur-
bances are taken into account for a cascaded system simultaneously. The controller 
design observes the recursive Lyapunov function method to guarantee the robustness 
and uniformly ultimate bounded stability of the error tracking system. 

2   Problem Formulations 

The plant consists of the dynamics of surge motion of an AUV, that of the propeller 
axial flow, that of the propeller shaft and that of the electrically-driven circuit. 

2.1   AUV and Propeller Axial Flow Dynamics 

Without loss of generality, the surge motion of an underwater vehicle equipped with a 
single propeller aft of hull is considered, which is directly related to propeller thrust. 
And it is assumed that the propeller is driven by a DC motor. The surge motion is 

 ( ) (1 ) ,u u pu um X u X u X u u t T− − − = −  (1) 

where u  is the surge velocity; m  is the mass of the underwater vehicle; uX  is the 

added mass; uX  and u uX  are the linear and nonlinear hydrodynamic derivatives 

respectively; pt  is the thrust deduction coefficient; T  is the thrust force. 

Considering the affecting effect caused by the propeller flow [8], one has 

 0 ( ) ,f p f p f p p am u d u d u u u T+ + − =  (2) 

where pu is the propeller axial flow velocity; fm  is the mass of the control volume; 

0fd  is the linear damping coefficient; fd  is the quadratic damping coefficient; au  is 

the advance velocity to the propeller. 
Taking account of the propeller axial flow dynamics [8], the quasi-steady thrust 

and torque can be calculated as  

 0 ,
n ua

pn nT T n n T n u= −  (3) 

 0 ,
n ua

pn nQ Q n n Q n u= −  (4) 
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where the coefficients are 

4 3 5 4 0 0
0 1 0 1, , , , , ,

1 1
a a

n u n ua a a a

n u n u

n n n u n n n u

T Q
T D T D Q D Q D T Q

a a
ρ α ρ α ρ β ρ β= = = = = =

+ +
 

where ρ  is the water density; D  is the propeller diameter; 0 1 0, ,α α β  and 1β  are the 

constants in the linearly regressive formulas of thrust coefficient TK  and torque coef-

ficient QK  respectively; a  is a ratio determined by pu  and au . 

2.2   Actuator Dynamics 

Assume that the propeller is driven by a DC motor. The dynamics of propeller shaft 
and that of the electrically-driven circuit are given as [11] 

 ,m nJ n K n Q KI+ + =  (5) 

 ,eLI RI Kn u+ + =  (6) 

where mJ  is the inertia moment; n  is the propeller revolution; nK  is the damping 

coefficient; K  is the conversion coefficient; I  is the electrical current; L  is the ar-
mature inductance; R  is the resistance; eu  is the applied voltage. 

2.3   Cascaded System with Uncertainties 

Taking uncertainties into account, a plant of propeller thrust is the cascaded system 

 
1

2

( ) (1 )

,

u u pu u

m n

e

m X u X u X u u w t T

J n K n Q KI

LI RI Kn u

Δ

Δ

− − − + + = − ⎫
⎪⎪+ + + = ⎬
⎪+ + = ⎪⎭

 (7) 

where 1Δ  and 2Δ are the modeling errors, and 2Δ refers to torque losses [9]. w  is a 

bounded external disturbance signal. And the first equation of (7) is coupling with (2). 
As seen, the terminated control input is eu , while both I  and n  are interim state 

variables. In this paper, the assumed object is to design appropriate eu , so that the 

actual surge speed u  can track the desired speed du  well. 

3   Controller Design 

Above all, without loss of generality, two assumptions are given as [A1] The desired 
speed du is differentiable and the system is controllable if 0w = and 0 0( ) ( )du t u t= . 

[A2] The external disturbance is bounded in norm as , 0, 0,w w t w≤ ∀ ≥ ∃ >  

where ⋅  denotes Euclidian norm. 
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3.1   Feedback Linearization Design 

To certain system, the feedback linearization control can guarantee the good perform-
ance of close-loop tracking system. Hence, to the certainties in the cascaded system 
(7), several desired controllers are given first of all 

 1[( ) ] / (1 ),d u d u d d pu uT m X u X u X u u u t= − − − + −  (8) 

 2( ) / ,d m d n d dI J n K n Q u K= + + +  (9) 

 3 ,e d du RI Kn u= + +  (10) 

where dT is the desired thrust force; dI is the desired electrical current; 1u , 2u and 

3u are auxiliary controllers. For desired controls, denoting several tracking errors as 

 1 2 3, , , .d d d de u u T T n n I Iε ε ε= − = − = − = −  

The cascaded system (7) can be reduced to the following error system 

 
1 1 1

2 2 1 1 2 3 2 2

3 3 2 3

[ (1 ) ] / ( )

[ ( ) ] / ,

( ) /

u u u p u

n d d m

d

e X e X u e w t u m X

K a a n n n n K u J

R K LI u L

Δ ε

ε ε ε ε Δ

ε ε ε

= + + + + − − −

= − − − − + + −

= − − + −

⎫
⎪
⎬
⎪
⎭

 (11) 

Obviously, appropriate designs of three auxiliary controllers, i.e. 1u , 2u and 3u , answer 

for the performance of the tracking system. They can be obtained by using the method 
of Lyapunov recursive function method. 

3.2   Lyapunov Recursive Function Method 

Lyapunov recursive function method is used to the controller design. By using this 
method, the controller design complies with a systematic and simple procedure. 
Meanwhile, the robustness and stability of the tracking system can be guaranteed 
[12]. 

A positive definite Lyapunov function candidate is given as for the system (11) 

 2 2 2
0 2 3

1 1 1
( ) .

2 2 2u mV m X e J Lε ε= − + +  (12) 

Note that the error 1ε isn’t involved in the candidate function. Its stability can be 

guaranteed if the error e and 2ε  converge. 

The derivative of 0V satisfies 

 
0 1 1 1

2 1 1 2 2 2 3 3

[ (1 ) ]

[ ( ) ] ( ) .

pu u

d d d

V e X u e w t u

a a n n n n u LI u

Δ ε

ε ε Δ ε

≤ + + + − −

+ − − − + − + −
 (13) 
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Because the mathematical expressions of uncertainties 1 2,Δ Δ and w are unknown, 

neural-networks and L2-gain design are used to compensate these uncertainties. 

3.3   L2-Gain Design 

To external disturbance w, an evaluation signal z is given as  

 
2 22

00 0
,z dt w dt

τ τ
γ γ≤ +∫ ∫  (14) 

to guarantee robust performance [12], where γ  and 0γ  are small positive constants. 

Let ( 0)z re r= > , incorporating the L2-gain index into 0V  yields 

 

2 22 2
0 1 1 12

2 1 1 2 2 2 3 3

1
[ (1 ) ]

4

[ ( ) ] ( ),

pu u

d d d

V z w e X u e e r e t u

a a n n n n u LI u

γ Δ ε
γ

ε ε Δ ε

+ − ≤ + + + + − −

+ − − − + − + −
 (15) 

3.4   Neural-Network Identifiers 

Uncertainties in (15), 1Δ and 2Δ , will be compensated by NN. And because it is tedi-

ous and difficult to obtain the explicit expression of dI , it is also identified by NN. In 

this paper, a two-layer feedforward NN is applied. As pointed out, this NN is a uni-
versal approximation of nonlinear functions with any accuracy provided the activation 
function is selected as basic or squashing one and appropriate number of the hidden 
layer nodes exist [13]. 

Let three nonlinear functions be approximated by NN 

 T
1 1 1 1 1(1 ) ( ) ,pu uX u e tΔ ε η+ + − = +W Φ h  (16) 

 T
1 1 2 2 2 2 2( ) ( ) ,d da a n n n nε Δ η− − − + = +W Φ h  (17) 

 T
3 3 3( ) ,dLI η= +W Φ h  (18) 

where ( 1,2,3)i i =W  is the so-called ideal weight vector and satisfies 

( 0)i iM iMF
≤ >W W W ; 

F
⋅ denotes the Frobenius norm; ( )⋅Φ  is the activation func-

tion of hidden layer; ih  is the preprocessed input vector; ηi  is the reconstruction 

error and will satisfy ( 0)iη η η≤ >iN iN . 

The three auxiliary controllers can be designed as 

 T 2 2
1 1 1 1( ) / 4 ( ) ,e uu e r e m X eγ λ= + + + −W Φ h  (19) 

 T
2 2 2 2 2( ) ,e mu Jλ ε= +W Φ h  (20) 

 T
3 3 3 3 3( ) ,eu Lλ ε= +W Φ h  (21) 
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where iλ  is a positive control gain; ieW  is the updated weight vector designed as 

 1 1 1 2 1( ) ,e ek e k= −W Φ h Wξ  (22) 

 2 3 2 2 4 2( ) ,e ek kε= −W Φ h Wζ  (23) 

 3 5 3 3 6 3( ) ,e ek kε= −W Φ h Wς  (24) 

where 1~6k are positive constants; and three general error vectors are introduced as 

[ ]T

2 ,ε=ξ e [ ]T1 2    ,ε ε=ζ e [ ]T1 2 3ε ε ε=ς e . 

With the auxiliary controllers, the three desired controllers can be calculated as 

 
T 2

1 1 12

1
[( )

(1 )

1
( ) ( ) ],

4

d u d u d du u
p

e u

T m X u X u X u u
t

e r e m X eλ
γ

= − − −
−

+ + + + −W Φ h

 (25) 

 T
1 2 2 2 2 2

1
( ( ) ),d m d n d d d d e mI J n K n a T a n n J

K
λ ε= + + + + +W Φ h  (26) 

 T
3 3 3 3( ) .e d d eu RI Kn Lλ ε= + + +W Φ h  (27) 

Note that no explicit expression of the desired propeller revolution is given. A low-
pass filter is usually applied to the desired propeller revolution [8] 

 2 22 ,d f d f d f dn n n nω ω ω ′+ + =  (28) 

where fω  is the cut-off frequency and dn′  is obtained from the equation (3) 

 ( )2
0 0( ) 4 / 2 .
n u n ua a

d p d p dn n n nn T u sign T T u T T T
⎡ ⎤

′ = + +⎢ ⎥
⎢ ⎥⎣ ⎦

 (29) 

4   Stability Analyses 

Substituting equations (16)-(21) into (15) yields 

 3

2 22 2 2 2 T
0 1 2 2 3 1 1

T T
1 2 2 2 3 3 3 3 3

( ) ( )

( ) ( ) ,  

u mV z w m X e J L e

e e e

γ λ λ ε λ ε

η η ε ε η

+ − ≤ − − − − +

+ + + + +

W Φ h

W Φ h W Φ h
 (30) 

where i i ie= −W W W is the weight error vector. 
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To guarantee the robustness of NN, a step Lyapunov function candidate is given 

 T T T
1 0 1 1 2 2 3 3

1 3 5

1 1 1
{ } { } { } .

2 2 2
V V tr tr tr

k k k
= + + +W W W W W W  (31) 

Introduce a constant 00 1λ≤ ≤  and let 

0 0 1 0 2 0 3 0 2 0 4 0 6min{(1 ) , (1 ) , (1 ) , (1 ) , (1 ) , (1 ) } .k k kα λ λ λ λ λ λ λ λ λ= − − − − − −ξ ζ ς  

One has 

 
1

2 3 2 1

2 22 22
1 0 1 1

1 0

2 264

3 0 5 0

0 .

2 (
4

                          ), 0,
4 4

M

M M
b b

k
V z w V B b W

k

kk
W W B

k k

γ α
λ

λ λ
∀ > >

+ − ≤ − + − +

+ + ∀ >

ς ς
 (32) 

To guarantee the right-hand side of the above inequality negative, if only it holds 

 
1 2 3

2 2 262 4

1 1 0 3 0 5 0

.
4 4 4M M M

kk kB
W W W

b k k kλ λ λ
≥ + + +ς  (33) 

It can be achieved by appropriate parameters. Usually, larger 1 2 3 1 3 5, , , , ,λ λ λ k k k , 

against smaller 2 4 6, ,k k k , will improve the tracking accuracy of the control system. 

5   Simulation Results 

The parameters of vehicle model and DC-motor are from references [8] and [11]. The 
desired surge speed is assumed sin 0.2du t=  and initial deviation exists, (0) 0.5u = . 

The controller gains are given 1 2 3 1λ λ λ= = = and parameters of the neural network 

weights are given as: 3
1 2 3 4 5 65 10 , 25, 50, 0.5, 0.5, 0.05= × = = = = =k k k k k k . The 

initial weights are set zero; the activation function of the hidden layer is selected as 
sigmoid function. The preprocessed inputs to hidden layer are given 

[ ] [ ]T T T

1 2 2 1 2 3 1 2 3( ) 1 , 1 , 1 .pu u e e eε ε ε ε ε ε⎡ ⎤= − = =⎣ ⎦h h h  

The parameters of the L2-gain index are 0.02, 0.1γ = =r ; the modeling error is as-
sumed as 1 50sinΔ = e ; the torque losses 2Δ  is assumed 5% of Q; the external distur-
bance is assumed as a random normally distributed noise constrained in [-150N 
+150N]; The simulation results are shown in figures 1 to 3. 

As it can be seen from the simulation results, not only the tracking errors but also 
the updated weights of neural-networks are uniformly ultimately bounded, under the 
condition of external disturbance and initial deviation from desired. The robustness 
and stability are both guaranteed, tracking accuracy as well. 
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     Fig. 1. Surge velocity and axial flow velocity                    Fig. 2. Control inputs  
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Fig. 3. Approximation abilities of neural-networks 

6   Conclusions 

Study is presented with respect to the propeller thrust control of an AUV. Uncertain-
ties, including modeling error and external disturbances are taken into account. Neu-
ral-networks and L2-gain design are used to compensate the uncertainties respectively. 
The uniformly ultimately bounded stabilities of the tracking errors and the neural-
network weights errors are guaranteed by using the Lyapunov recursive function 
method. An appropriately selected set of parameters in the controller improves  
tracking accuracy. Simulation results have demonstrated the validity of the controller 
proposed. More efforts will be devoted to expand this method to the control of a cas-
caded underactuated underwater vehicle. 
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Abstract. This paper presents a new method for developmental robot
based on a learning automaton. This method can be considered as active
learning to select the best action in order to quickly adapt environment.
The new model built in the framework of learning automata theory is an
abstract and formal mathematical tool to describe the cognitive behav-
ior or cognitive development mechanisms and provide an effective logical
structure for the design of cognitive and development robots. The model
reflects the design principles of cognitive development robotics. The di-
rection of cognition and development is towards entropy minimization
and simulation results verify its effectiveness.

Keywords: Learning Automaton, reward, active learning, developmen-
tal robot.

1 Introduction

The late 60s and the early 70s of last century, Stanford Research Institute de-
veloped a mobile robot called Shakey [1], having the ability of logical reasoning
and behavior planning, which is not only considered the first intelligent robot,
but also be regarded as the birth symbol of intelligent robotics.

In a sense, the robot lack of cognitive ability is not truly intelligent robot. In
1997, Professor Brooks from Artificial Intelligence Laboratory of MIT proposed
the concept of cognitive robotics [2]. Cognitive robotics is aimed to give the
robot cognitive ability that makes the robot form and develop knowledge and
skills independently and gradually through cognitive in the process of interaction
with the environment.

Doctor Chatila [3], EU COGNIRON project coordinator, director of French
National Scientific Research Center System Structure and Analysis Laboratory,
considered that learning is the basic elements of cognitive robots. In recent
years, how the robot form and develop their own ability to solve problems in-
dependently and progressively was gradually emerged from cognitive robotics.

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 583–590, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Thus developmental robotics was derived. Here, the development does not refer
to the body’s development, but the mental or cognitive development of robot
that can also be said to be knowledge and capacity development of robot.

Developmental robot imitates the development process of human brain and
human mental that requires the robot learn the knowledge independently to
complete various tasks in real environment and organize the knowledge in mem-
ory system. Researchers have proposed many different development models [4].
Weng [5] proposed IPCA + HDR tree model which mainly includes two basic
algorithms: the incremental principal component analysis (IPCA) algorithm and
hierarchical discriminating regression (HDR) tree algorithm. The output of the
former is the latter’s input. It can make appropriate response to the changing
environmental in real time and is well applied to real-time development and
autonomous incremental learning for robot. But this model lacks the ability of
high-level decision-making and task-distinguishing, so it is difficult to complete
more complex tasks. For these reasons, Tan et al. [6] proposed task-oriented
developmental learning (TODL) model on the basis of this model. The model
learning for the tasks can make the robot have the ability to handle multiple
tasks, which improves the performance greatly. Blank et al. [7] put forward a
hierarchical development model based on extraction and prediction mechanism,
where extraction mechanism is achieved by self-organizing map (SOM), and pre-
diction mechanism adopts a simple return network (SRN). The main deficiency
of this model is complex structure, high-level decision-making action is too large,
and lack ability of planning specific goals and tasks. Schema model is a devel-
opmental model proposed by Stojanov [8], and the thought comes mainly from
the 20th century’s greatest developmental psychologists Piagetian theories of
cognitive development. This model imitates the development processes of hu-
man cognitive well and has strong robustness and adaptability. But convergence
speed will be affected when the perception states are too much for it will greatly
increase computation time.

Itoh et al. [9] implemented a new behavior model into the Emotion Humanoid
Robot WE-4R and the robot could select suitable behavior according to the
situation within a predefined behavior list. However, the robot can have just one
recognition system in response to a stimulus although humans retrieve various
memories in response to a stimulus according to their mood. We have presented
a compute model with probabilistic automata [10]. Then we improved it and
developed a new developmental model to simulate a bionic autonomous learning
process.

2 Development on Psychology

Developmental psychology is concerned not only with describing the character-
istics of psychological change over time, but also seeks to explain the principles
and internal workings underlying these changes. Psychologists have attempted
to better understand these factors by using models. Developmental models are
sometimes computational, but they do not need to be. A model must simply
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account for the means by which a process takes place. This is sometimes done
in reference to changes in the brain that may correspond to changes in behavior
over the course of the development. Computational accounts of development of-
ten use either symbolic, connectionist, or dynamical systems models to explain
the mechanisms of development.

Piaget was one of the influential early psychologists to study the development
of cognitive abilities. His theory suggests that development proceeds through a
set of stages from infancy to adulthood and that there is an end point or goal.
Modern cognitive development has integrated the considerations of cognitive
psychology and the psychology of individual differences into the interpretation
and modeling of development [11]. Specifically, the neo-Piagetian theories of
cognitive development showed that the successive levels or stages of cognitive
development are associated with increasing processing efficiency and working
memory capacity. These increases explain progression to higher stages, and in-
dividual differences in such increases by same-age persons explain differences in
cognitive performance. Other theories have moved away from Piagetian stage
theories, and are influenced by accounts of domain-specific information process-
ing, which posit that development is guided by innate evolutionarily specified
and content-specific information processing.

3 Experimental Model of Developmental Robot Based on
Learning Automata

To some extent, a learning automaton is a life model, but it is also a calcu-
lation model from the mathematic perspectives. The learning automata have
strict mathematical definition. Defining: a learning automata is a eight-tupe:
LA=(t, Ω,S, Γ, δ, ε, η, Ψ).

(1) t ∈ {0, 1, · · · ,nt
}

is discrete time, t=0 is initial time.
(2) Ω = {αk | k = 0, 1, 2, · · · ,nΩ

}
is the set of all actions of the model.

(3) S = {si | i = 0, 1, 2, · · · ,ns}, is the set of all states of the model.
(4) Γ = {rik(p) | p ∈ P; i ∈ {0, 1, 2, · · · , ns}; k ∈ {0, 1, · · · ,nΩ}}, is the set of all

action rules of the model. Random rule rik(p) : si → αk(p) means that LA
implements action αk ∈ Ω in accordance with the probability p ∈ P , when
its state is si ∈ S, p = pik = p(αk | si) is a probability of action αk in the
state si, P represents the set of pik.

(5) δ : S(t)×Ω(t) → S(t+1), is the state transition function. At the time t+1
the state s(t + 1) ∈ S is confined by the state s(t) ∈ S and action a(t) ∈ Ω
at time t, which has no relationship with the state and action before time t.

(6) ε : S → E = {εi | i = 0, 1, 2, · · · , ns}, is orientation function of LA,
εi = ε(si) ∈ E is orientation of state si ∈ S.

(7) η : Γ (t) → Γ (t + 1) is developmental learning law, which is defined as

η :

⎧⎨⎩
IF s(t) = si, α(t) = αk, s(t + 1) = sj

THEN

{
pik(t + 1) = pik(t) + Δ
piu(t + 1) = piu(t) − Δξ, ∀u �= k

and

{
Δ = φ(−→ε ij), 0 ≤ pik + Δ ≤ 1
ξ = piu(t)/

∑
v �=k piv(t)
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There −→ε ij = ε(sj) − ε(si); φ(x) is monotonic increasing function, satisfied
φ(x) ≡ 0 if x = 0; pij(t)is a probability of action αk in the state si at
time t. Regulate action rule rik(p) ∈ Γ and action probability p ∈ P will
change. Suppose LA implement action α(t) ∈ Ω in the state s(t) at time
t, at time t + 1 LA is in the state s(t + 1), according to the developmental
rule, if ε(s(t + 1)) − ε(s(t)) < 0 then p(α(t) | s(t)) will decrease, vice versa,
if ε(s(t + 1)) − ε(s(t)) > 0 then p(α(t) | s(t)) will increase. There Δ has a
relationship with orientation ε, the greater the orientation values the better
the results of actions. At the same time

∑
k pik(t) = 1 should be satisfied.

(8) Ψ : P × E → R+ is action entropy of LA, R+ is the set of positive real
number. At time t action entropy of LA is Ψ(t) which means the sum of
action entropy under the conditions of si at the moment t, it is given by:

Ψ(t) = Ψ(Ω(t) | S) =
ns∑
i=0

piΨi(t) =
ns∑
i=0

p(si)Ψi(Ω(t) | si).

And Ψi(t) is the action entropy of LA at the moment t, namely:

Ψi(t) = Ψi(Ω(t) | Si) = −
nΩ∑
k=1

pik log2 pik = −
nΩ∑
k=1

p(αk | si) log2 p(αk | si).

So, Ψ(t) = −∑ns

i=0 p(si)
∑nΩ

k=1 p(αk | si) log2 p(αk | si) .
If the action entropy of LA tends to become smaller and smaller, and

in time t → ∞ tend to be the minimum, then action entropy of LA is
convergent. The system self-organization process is a process of drawing
information, draw negative entropy and eliminating uncertainty.

4 The Structure and Learning Mechanism of Learning
Automata

For the shaking hands experiment of development robot, the structure of learning
automata is shown in Fig.1. The environment is a relative concept which is on
behalf of a system interacting with learning system. It is providing external
information of the dynamic behavior for the learning system. Learning system
obtains information from the environment, processes information online, and
finally achieves the desired objectives. Each stage of the learning process requires
two steps: step 1, the learning automaton selects a specific output behavior αi;
Step 2, learning system obtains the behavioral response from the environment
for the first step and automatically updates the action probability pi according
to the response of αi, which will affect the choice of future behavior.

Automating the process of learning can be summarized as follows: at each
learning stage, the automaton chooses a random act of behavior from the lim-
ited options according to certain probability distribution and outputs to the
environment. Then the environment returns a reward or punishment signal to
the automaton as the response to the choice of corresponding actions. Automa-
ton updates its probability of the action selection according to the reaction from
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Environment

Learning
automata

Development
computation

Behavioral
responses

Learning system

Fig. 1. Structure of learning system based on learning automata

environment, and chooses a new behavior in accordance with the modified ac-
tion selection probability. At the beginning, reward/punishment probabilities of
all actions are unknown, so the learning automata select individual behavior ac-
cording to uniform distribution (i.e., equal probability) initially. However, with
repeated exchanges with the environment, automata get to know the environ-
ment characteristics of reward and punishment, and eventually tend to select
the behavior of large rewarded probability or small punished probability with a
larger probability. The developmental learning process runs recursively in accor-
dance with the following procedural steps:

Step 1: initialization. Set t = 0, initial state is s(0), learning rate is α, initial
action probability is pik = 1/nΩ (i = 0, 1, · · · , nS; k = 0, 1, · · · , nΩ)

Step 2: chose action. According to developmental rule, LA selects an action
α(t) ∈ Ω randomly.

Step 3: implement action.

Step 4: observe state. According to the state transition function δ : S(t) ×
Ω(t) → S(t + 1), the result of state transition is fully capable of observing.

Step 5: development learning. LA implements action at time t, not only the
state of LA shifts, the implemental probability of various actions in the next
moment updates as:

η :
{

pik(t + 1) = pik(t) + Δ
piu(t + 1) = piu(t) −Δξ, u �= k

Step 6: calculate action entropy. By the action entropy formula

Ψ(t) = −
ns∑
i=0

p(si)
nΩ∑
k=1

p(αk | si) log2 p(αk | si)

Step 7: recursive transfer. If t+ 1 ≤ Tf , then t = t + 1 and go to step 2; or else
end.
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5 Simulation Results and Analysis

We implemented the developmental model into a robot which quickly increased
robot need and restricted behaviors except for shaking hands. In the experiment,
the robot repeated the action of shaking hands with us and we reacted to it
following the procedure shown in Fig.2. We set the experimental condition as
follows: the initial state is randomly given non-stroking s0 or non-hitting state
s1; the initial probabilities distribution of shaking two hands respectively is P =
(pR, pL) = (0.5, 0.5); the learning coefficient is α = 0.01.

Start Experiment

Robot calls us

Shake hands

Stroke the robot

Refuse to shake hands

Robot requests to
shake hands

Left hand

Right hand

Hit the robot

Fig. 2. Basic action patterns and setups

We obtained the robot’s action probability as in Fig.3. We showed the prob-
ability of the handshake with the left hand using a vertical dotted line, and the
probability of the right handshake using a vertical solid line. As a result, the ac-
tion probability of the right handshake increased while that of the left handshake
decreased as the experiment progressed.

Next, we counted the number of behaviors every 250 steps as shown in Fig.4
in order to confirm the behavior tendency. As for learning, the number of right
handshakes exceeded the number of those made with the left hand during the
first 250 steps. Then, the number of left handshakes increased little, and the
robot did not shake hands with the left hand at the last. Thus we confirmed
that the robot could autonomously change its behavior tendency according to
its experiences.

In addition, the action entropy shown in Fig.5 proves action entropy of LA
is convergent for the value of entropy has been reduced and finally reduced to
zero.

The experimental results show that the robot is able to change its behavior
autonomously through online interactions with the environment, and a learned
action can be easily updated to meet the changing requirements.
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6 Conclusion

In this paper, we presented a developmental model for developmental robots
based on learning automata, where the robot could select and output its behavior
according to its action probability and tropism. We confirmed that the robot
could autonomously change its behavior tendency according to its experiences
through experimental evaluations implementing the model into a robot. In the
future, we will apply the model into robots to realize autonomous exploration.
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Abstract. We present and analyze a model of Opinion Dynamics and Bounded 
Confidence on the Flocking movement world. There are two mechanisms for 
interaction. The theorem of ‘Flocking’ limits the agent’s movement around the 
world and ‘Bounded Confidence’ chooses the agents to exchange the opinion. 
We introduce some special agents with different character into the system and 
simulate the opinion formation process using the proposed model. The results 
show the special agent can change the dynamics of system with small popula-
tion. The infector shortens convergence time; the extremist leads to asymmetry 
polarization or deflection consensus; the leader change dynamics of system 
from consensus to polarization; and the meddler make sure that the final state 
becomes asymmetry polarization.  

Keywords: Multi-agent system, Opinion Dynamics, Flocking, Social Network, 
Computer Simulation. 

1   Introduction 

We are interested in modeling, simulating and analyzing the opinion formation dy-
namics of social scenarios where individuals can benefit from pervasive sources of 
information [1]. Such scenarios include: public opinion on Internet; advertisement in 
Electronic Commerce; damage spreading in information system, etc. The study of 
such processes is of great importance, providing advice to risk assessment, manage-
ment and disaster recovery in consensus emergency and large-scale technological 
incidents. 

The Bounded Confidence model is one of the most famous opinion formation dy-
namics models. It is based on continuous opinions which agent’s opinion adjustments 
only proceed when opinion difference is below a given threshold. An early formula-
tion of such a model was given by Deffuant in 2000 [2]. Another source of opinion 
dynamics is the work by Hegselmann and Krause in 2002 [3]. The two models differ 
in their proposed communication structure but lead to opinion clustering in a similar 
way. Both of models show one of three types of result: consensus, polarization and 
fragmentation [4]. In recent years, a lot of interest has in the fields of formation of 
public and the opinion dynamics in the social network. It is obvious that the  
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“classical” BC (Bounded Confidence) model is not efficient for social systems, so 
there are some well-suited models in recent study. Most extension of these models is 
based on the communication structure with different network topology. The influence 
of this structure, especially of small-world networks, on such models has been studied 

[5]. We find the knowledge of Complex Network is helpful to improve the BC model, 
but most of models extend the communication structure in the static space. We want 
reform the BC model in a dynamic space and combine the BC model with Flocking 
movement by the Multi-Agent System. 

Flocking is a form of collective behavior of large number of interacting agents with 
a common group objective [6]. We can find this kind of phenomena in many systems, 
such as birds, fish, penguins, ant colonies, bees and crowds [7]. In nature, flocks are 
examples of self-organized networks of mobile agents capable of coordinated group 
behavior. The flocking characters include decentralization， adaptability, self-
organization and robustness [8]. In 1986, Reynolds introduced three heuristic rules 
that led to creation of the first computer animation of flocking[9].  

1) Flock Centering: attempt to stay close to nearby flockmates; 
2) Collision Avoidance: avoid collisions with nearby flockmates; 
3) Velocity Matching: attempt to match velocity with nearby flockmates. 

The model presented in this paper is an extension of the BC model in a dynamic 
space. In the model, we add one variable to the agent, “eyeshot”, which limits the set 
of neighbors that the agents can interaction. And there is another mechanism to  
system, “Flocking”, which limits the agent’s movement. The purpose of this paper is 
to present results about continuous opinion dynamics when agents have different 
character in the system with same reaction mechanism. We simulate and analyses the 
model with different type agents, especially the “extremism” agent (individuals with a 
very low uncertainty and an opinion located at the extremes of the initial opinion  
distribution)[5]. We then discuss the observed behavior of our model. 

2   The BC Models on the Flocking Movement World 

2.1   Bounded Confidence Algorithm with Local Communication 

There are a population of N agents i with continuous opinions xi in a two-
dimensionality space. Each agent has an eyeshot value ri and a confidence function 
wi(j,t). The number ε is called a Bounded Confidence. 

When each agent moves in the space, it only can influence the agents in its eyeshot 
area. It means that the communication of the agents is local and limited by the 
eyeshot. We assume that any pair of agent i and agent j has a distance function d(i,j,t). 
It is the value of distance between the agents in the space at time t. The set of 
neighbors for agent i is defined by 

},1,),,(|{),( ijnjrtjidjtjNeighbors ji ≠≤≤≤=  (1) 

When the process of opinion adjustment begins, agent i communicates with every 
agent in set of Neighborsi(j,t). We collect the wi(j,t) of agent j which is the member of 
Calculatei(j,t). 
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},1,|||{),( ijmjxxjtjCalculate ijii ≠≤≤<−= ε  (2) 

We suppose that the agent i has several neighbors, and k is the size of Calculatei(j,t). 
The confidence function can be described by: 
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Agent i’s opinion xi changes at time t+1 by weighting each received opinion at time t 
with the confidence in the corresponding source. Opinions are adjusted according to: 
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When the process of opinion adjustment ends, the agents choose a direction according 
to Flocking algorithm and continue their movement.  

2.2   Flocking Movement 

Each agent has a repulsive value r_radiusi and a gravitation value g_radiusi. When 
agents move in the space, they can influence the agents in its gravitation radius. The 
set of flocking group for agent i is defined by: 

},1,_),,(|{),( ijnjradiusgtjidjtjflocking ii ≠≤≤≤=  (5) 

Agent i has a value of headingi(t) which is its movement direction at time t. When the 
opinion adjustment ends, agent chooses the neighbor h which the d(i,h,t) is minimum. 
If the d(i,h,t) is between the r_radiusi and g_radiusi, the agent i will change the direc-
tion according to formula (6)-(7).  

),()(/)()(
1
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(6) 

The formula makes sure that the speed of agents in a flocking group is alignment in 
the end. It is speed consensus algorithms. 
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(7) 

The directionc(t) achieves the rule of cohesion. According to this formula, the distance 
between agents in the flocking group will come to steady. 

If the d(i,h,t) is smaller than the r_radiusi, the agent i will turn to a new direction 
by formula (8). It makes sure that the agents will not be collisions with neighbors in 
the same flocking group. 

)()()( theadingtheadingtdirection his −=  (8) 
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When we achieve the value of direction(t), the agents will turn to a new direction 
according to the algorithms. Every agent adjusts its direction in the same time, moves 
one step and waits to adjust the opinions. 

3   Simulation and Analysis 

In this section we will study the model by means of simulations. There are hundreds 
of agents moving with flocking track on a square lattice of size 71*71[10]. The world 
is closed and edge connected. At each time step the agents readjust their opinion and 
direction according to the formulas. There are four essential parameters in the simula-
tions: Bounded Confidence, eyeshot, gravitation radius and repulsive radius. We 
research the influence of these parameters in the process of opinion exchange and 
acquire some result of this mode. 

3.1   Agent with Same Characters 

At the beginning, we assume that the entire agents in the system are ordinary with the 
same characters and we achieve some conclusion by the analysis of the results in our 
previous studies. 

First, the Bounded Confidence is the most important element that influences the fi-
nal state of model. With the bounded confidence increasing, the dynamics of system 
will change from fragmentation to polarization, and become consensus in the end. 
Second, the eyeshot of agents does not influence the dynamics of system, but the 
convergence time will shorten when the area of eyeshot expands. Third, the gravita-
tion radius not only influences the movement of agents in the flocking but also 
changes the dynamics of opinions. When the gravitation radius increases, the final 
state of opinions may become fragmentation, and the convergence time of flocking 
will shorten. The last, the repulsive radius only influences the convergence time of 
flocking. The convergence time will be prolonged when the repulsive radius  
enhances. 

The above conclusion is based on the assumptions that agents have the same char-
acter in the system. But in practice the individual should have different attribute (e.g. 
ability, belief, power, etc). We want to know what the impact of the few special 
agents upon the dynamics of system, so the next section is focused on the assumptions 
of this: The different agents have different characters. 

3.2   Agent with Different Characters 

We now introduce some special agents with different character into our system. We 
suppose that these individuals have the larger ability, belief and power with small 
population. 

3.2.1   Infector Agent 
The different agents may have different eyeshot. It means that the influence between 
agents will be not symmetrical in the process of opinion adjustment. The reason might 
be the social sphere of individuals is different in the real world. 



 Meddler, Agents in the Bounded Confidence Model on Flocking Movement World 595 

 

 
(a)rj=2 

 
(b)rj=8 

Fig. 1. The dynamics of opinions with different eyeshot of infector agent(300 agents, bounded 
confidence of εi=0.05, g_radiusi=2, r_radiusi=1, 600 steps) 

There are some special agents that have larger eyeshot in this phase simulation. We 
call it infector agent. It has the uniform bounded confidence and gravitation radius as 
normal agents, and the population of it is small. With the simulation parameter 
N=300, εi=0.05, g_radiusi=2, r_radiusi=1, the normal agent’s eyeshot ri=2 and the 
infector’s population n=10, we define rj as the eyeshot of infector (Fig.1.).  

We can find that the change of convergence time is not distinct with exiguous in-
fector. But the time will decrease when the eyeshot of infector increases. 

3.2.2   Extremist Agent 
Bounded confidence is the most powerful element that influences the opinions dynam-
ics of system. In fact the agents’ self-confidence is not same, so they should have 
different bounded confidence. The individual with strong belief will not change their 
mind easily and usually have a clear opinion. We assume that the extremist agents 
start with an extreme opinion, adhere to the opinion they already have and adjust their 
opinion according as a tiny bounded confidence. 
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(a) deflection consensus 

 
(b) asymmetry polarization 

Fig. 2. The dynamics of opinions with some extremist agents in the system (300 agents, 
bounded confidence of εi=0.3, εj=0.05, opinion of extremist xj(0)=0.9, eyeshot ri=2, 
g_radiusi=2, r_radiusi=1, 600 steps) 

We introduce some extremist agents into the population. Their eyeshot and gravita-
tion radius are not different with normal agents. The simulation results from Figure 2 
are based on randomly generated start distribution of 300 agents with the same 
eyeshot ri=2, g_radiusi=2, r_radiusi=1. The normal agent’s bounded confidence 
εi=0.3, the extremist’s bounded confidence εj=0.05, population n=10 and opinion 
xj(0)=0.9. There are two types of convergence: deflection consensus and asymmetry 
polarization (Fig.2.). 

We repeat the simulation 200 times, the state of asymmetry polarization happened 
58 times. Most of the result is deflection consensus, and the survival opinion usually 
between the mean value of agents’ initialization value and the extremist agents’. In 
the normal condition, agents’ opinion should converge at the mean value of all 
agents’. But the system ends up in two distinct states when we introduce extremist 
agents. In the deflection consensus state, extremist’s opinion deflects the initialization 
value and attracts the normal agent’s opinions. The system’s final opinion will  
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converge at one value. And in the asymmetry polarization situation, the dynamics of 
opinions should converge at polarizations. One pole of polarization is the extremist 
attracts the normal agents to cluster, and the other is the self-organizing by the rem-
nant normal agents. Convergence time of two poles is same and the population of 
cluster is different. The opinion adjustment of extremist in the asymmetry polarization 
is thinner than in the deflection consensus. 

By analysis of the result, we can conclude that the dynamics of opinion will be  
inscrutability if the other parameter (e.g. eyeshot, gravitation radius) keeps the value 
in the system. Because the dynamics of opinion is based on the situation (e.g. loca-
tion, direction, opinion) of the agents at the beginning and the initial state of agents is 
stochastic. 

3.2.3   Leader Agents 
The agents may have different gravitation radius. It means that the power of influ-
ence in the movement will be not symmetrical. The reason might be the status of 
individuals is different in the real world. 

There are some special agents that have larger gravitation radius in this phase 
simulation. We call it leader agent. It has the uniform bounded confidence and 
eyeshot as normal agents. With the simulation parameter N=300, eyeshot ri=2, 
r_radiusi=1, the normal agent’s g_radiusi=2 and the leader’s population n=10, 
g_radiusi=6. We simulate the model with the different bounded confidence εi. 

As is shown in the figure 3, the dynamics of normal agents’ opinions conforms to 
leader’s opinions. With the quite small population of leader agents the dynamics has 
notable change and the final state becomes polarization, when the bounded confidence 
is beyond the threshold of consensus. 

By analysis the result we can find that a small quantity of leader agents can bring the 
normal agents into flocking movement in the short time. The leader attracts the agents to 
cluster with the same speed in the space. Among the clusters, the communication can’t 
touch each other beyond the eyeshot. But the agents will adjust their mind very efficient 
in the same group. The leader’s eyeshot is the same as normal agent that is why the 
dynamics of them are coincident. But the convergence time of flocking will be shorter 
than opinion adjustment when the leader exists, so the dynamics of system will become 
polarization even if the bounded confidence is beyond the threshold of consensus. 

3.2.4   Meddler Agents 
The agent with the characters of infector, leader and extremist we call it ‘meddler’ 
agent. It has the small bounded confidence, extreme opinion, large eyeshot and large 
gravitation radius, while it still adjusts its opinions by the uniform algorithm. The 
reason for such scenarios is for the individuals with great interpersonal relationships 
and powerful personal influence in the real world. 

The final state of simulations will be asymmetry polarization or deflection consen-
sus when the extremist agent exists. We conclude that the dynamics of opinion will be 
inscrutability if the other parameters (e.g. eyeshot, gravitation radius) keep the value 
in the system, but it can be forecasted when we increase the extremist agent’s eyeshot 
and gravitation radius. We randomly generate a start distribution of 300 agents and 
introduce some meddler agents with different eyeshot and gravitation radius into our 
system. For each of these parameters we repeat the simulation 200 times. The statistic 
data is shown in the table 1. 
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(a) εi=0.05 

 
(b) εi=0.25 

 
(c) εi=0.35 

Fig. 3. The dynamics of opinions with some leader agents in the system (300 agents, eyeshot 
ri=2, r_radiusi=1, normal agent’s g_radiusi=2, leader agent’s g_radiusi=6, 600 steps) 
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Table 1. The count of asymmetry polarization happened in the 200 times(300 agents, normal 
agent’s bounded confidence εi=0.3, eyeshot ri=2, g_radiusi=2, r_radiusi=1) 

Meddler’s character eyeshot ri=2 
g_radius=2 

eyeshot ri=4 
g_radius=4 

eyeshot ri=6 
g_radius=6 

times of polarization 58/200 169/200 200/200 

In this table we count the state of asymmetry polarization happened in the 200 
times test. The meddler agent changes the probability of opinions dynamics occurred. 
When the radius of eyeshot and gravitation increases, the final state of system will be 
inclined to the asymmetry polarization. We find that the meddler attracts normal 
agents to cluster very quickly, and the other agents will cluster according to the algo-
rithm by themselves. Eyeshot and gravitation radius is the key that influence the 
probability of asymmetry polarization occurred. 

4   Conclusion and Future Work 

The model presented in this paper is an extension of BC (Bounded Confidence) model 
in a dynamic space. We simulate and analyses the model with different type agents: 
infector, extremist, leader and meddler. The results show that the special agent can 
change the dynamics of system with small population. 

The infector with large eyeshot can shorten the convergence time of opinion. The 
dynamics of system will be asymmetry polarization or deflection consensus when the 
extremist agent exists, and the state occurs in random. The leader with large gravita-
tion radius can influence the final state of system, which will become polarization 
even if the bounded confidence is beyond the threshold of consensus. The meddler 
agent with all characters of three special agents can influence the probability of opin-
ions dynamics occurred. The final state is one hundred percent asymmetry polariza-
tion when the eyeshot and gravitation radius increase enough.  

This system is more complex and realistic than the classic BC model. We can use it 
to simulate the process of public opinion on the Internet and damage spreading in the 
information system, etc. there are still some issues we want to solve. How can we lead 
to a consensus that focuses on the topic we want or avoid a damage spreading by the 
means of interference? In future work, we will make a deep study on the influence of 
different type agents in this system. 
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Abstract. In this paper, we investigated statistical control problems using n-th 
order cost cumulants.  The n-th order statistical control is formulated and solved 
using a Hamilton-Jacobi-Bellman (HJB) partial differential equation. Both 
necessary and sufficient conditions for n-th cumulant statistical control are 
derived.  Statistical control introduces an extra degree of freedom to improve the 
performance. Then, the neural network approximation method is applied to solve 
the HJB equation numerically. This gives a statistical optimal controller. We 
apply statistical optimal control to a satellite attitude control application. This 
illustrates that neural network is useful in solving an n-th cumulant HJB equation, 
and the statistical controller improves the system performance. 

Keywords: statistical control, neural networks, cost cumulants, stochastic 
optimization. 

1   Introduction 

The statistical optimal control method optimizes cumulants of the cost function of a 
stochastic system. For a stochastic system, the cost function is a random function 
because the states are random. This cost function is characterized by cumulants. For 
example, the first cumulant is the mean of the cost function. The second cumulant is 
the variance, which is a measure that tells how much the data deviate from the mean. 
The third cumulant, skewness, measures the departure from symmetry of the cost 
distribution. In statistical control, we shape the distribution of the cost function by 
optimizing cumulants, which will further affect the system performance. 

Statistical control is closely related to adaptive dynamic programming (ADP).  In 
typical ADP, we find the controller such that the expected value (first cumulant) of 
the utility function is optimized [1].  This idea can be generalized to the optimization 
of the higher order cumulants of the utility functions.  This is the concept behind 
statistical optimal control [2, 3].  

A statistical optimization problem is formulated using a Hamilton-Jacobi-Bellman 
(HJB) equation [4]. The n-th cost cumulant HJB equation generation procedure has 
been presented in [5].  However, general necessary and sufficient conditions for n-
cost cumulant statistical control have not been published.  We present HJB equations 
for the n-th order cost cumulant statistical control.  The second cost cumulant case 
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was presented in [6].  Generalizing this to n-th cost cumulant is the main results of 
this paper. 

HJB equations are notoriously difficult to solve both numerically and analytically, 
except for a few special cases such as linear-quadratic-Gaussian case. For general 
nonlinear systems and higher-order cumulant problems, there is no straight forward 
way to solve the HJB equation. Even for a linear system, the higher order cumulant 
problem will yield a nonlinear controller [5]. For general stochastic systems, previous 
work in [4, 7] solves the HJB equation for higher cumulant of the linear system.  For a 
nonlinear stochastic system, however, there is no effective way to solve the 
corresponding HJB equation. In deterministic systems, a neural network method is 
used to approximate the value function of the HJB equation [8].  The neural network 
approximation method is similar to power series expansion method which was 
introduced by Al’brekht in [9] to approximate the value function in infinite-time 
horizon. The approximated value function and the optimal controller are determined 
by finding coefficients of the series expansion. Another application of using neural 
network to solve HJB equation was developed by P. V. Medagam et al., who 
proposed a radial basis function neural network method for the output feedback 
system [10]. All the above works, however, deal with deterministic systems and not 
stochastic systems. In this paper, we develop a neural network method for the 
stochastic systems. We solve HJB equations for arbitrary order cost cumulant 
minimization problems.  

In the next section, we formulate the statistical control problem using HJB 
equations. Then we will discuss the solution of the HJB equation using neural 
network methods in Section 3. The examples are given in Section 4. Section 5 
concludes the paper and proposes the future work. 

2   Problem Formulation and HJB Equation 

The stochastic system that we study has the following dynamics, 

( )( ) , ( ), ( ) ( , ( )) ( ),dx t f t x t u t dt t x t dw tσ= +
               

(1) 

where 
0

[ ,  ]
f

t T t t∈ = , ( ) nx t ∈ is a random state variable which is independent 

of ( )w t , 
0 0

( ) ,x t x=
 
and ( )w t is a d-dimensional Gaussian random process with zero 

mean and covariance of ( )W t dt . The control action is defined as ( )( ) , ( ) .u t k t x t=   

The cost function associated with (1) is given by the following form, 

( )( )
0

( , ( ); ) ( ( )) , ( ), , ( ) .
t f

f
t

J t x t k x t L s x s k s x s dsψ= + ∫           (2) 

where ( ( ))
f

x tψ is the terminal cost, L is a positive definite function which is 

continuously differentiable and satisfies polynomial growth condition. Let 

00
[ ,  ] n

f
t tQ ×= and

0
Q be its closure. We also consider an open set 

0
Q Q⊂ .  The 

feedback control law ( ), ( )k t x t and ,  f σ are assumed to satisfy the Lipschitz 
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condition and the linear growth condition. We want to find an optimal controller for 
system (1), which minimizes the n-th cumulant of the cost function (2).  

We introduce a backward evolution operator ( ),kO  which is defined as 

( )
2

( ) 2

1
, , ( , ) ,  ( , ) ( , ) ' ,

2kO f t x k t x tr t x W t x
t x x

σ σ
⎛ ⎞∂ ∂ ∂= + + ⎜ ⎟∂ ∂ ∂⎝ ⎠

 

where ( )
1

, , ( , ) , ( , , ( , )) ,
n

i

i i

f t x k t x f t x k t x
x x=

∂ ∂
=

∂ ∂
∑  

( )
2 2

,2
, 1

( , ) ( , ) ( , ) ( , ) .
n

i j

i j i j

tr t x W t x t x W t x
x x x

σ σ σ σ
=

∂ ∂′ ′=
∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

The necessary and sufficient conditions for the n-th cost cumulant minimization 
problem are analyzed using HJB equations. The results are given in the following 
theorems.  

Theorem 1. (n-th cumulant HJB equation) Let 1,V 2 ,V …, 1,2
1 ( ) ( )pn C Q QV C− ∈ ∩

 
be 

admissible cumulant cost functions. Assume the existence of an optimal control law 

|

*
V M Mk

k k K= ∈ and an optimum value function * ( , )
n

V t x  
1,2 ( ) ( )
p

C Q C Q∈ ∩ . Then the 

minimal n-th cumulant cost function * ( , )
n

V t x satisfies the following HJB equation. 

( )
1

*
( )

1

( , ) ( , )1 !
0 min ( , ) ( , ) ( , ) ' .

2 ! !M

n
s n s

k nk K
s

V t x V t xn
O V t x t x W t x

s n s x x
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−
−

∈ =
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∑

 

for 
0

( , ) ,t x Q∈  with the terminal condition * ( , ) 0.
n F

V t x =  

Proof. Omitted for brevity.  See [10]. 

Theorem 2. (verification theorem) Let 
1 2 1
( , ), ( , ), .., ( , )

n
V t x V t x V t x−

1,2 ( ) ( )
p

C Q C Q∈ ∩ be 

an admissible cumulant cost function. Let * ( , )
n

V t x ∈ 1,2 ( ) ( )
p

C Q C Q∩ be a solution to the 

partial differential equation  
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with zero terminal condition, then, * ( , )
n

V t x is less than or equal to the n-th cumulant 

of the cost ( ), , ( , )J t x k t x for all 
M

k K∈ and ( , ) .t x Q∈ If in addition, there is a 
*k satisfies the following equation, 
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{ }*( , , )= min ( , , )
M

n n
k K

V t x k V t x k
∈

, 

then * *( , )= ( , , )
n n

V t x V t x k ，which equals to the minimal n-th cumulant of the cost 

( ), , ( , )J t x k t x and *k is the optimal controller. 

Proof. Omitted for brevity.  See [11]. 

3   Solution of HJB Equation Using Neural Networks 

HJB equation (3) is difficult to solve directly, especially for the nonlinear systems. In 
this section, we use a neural network method to approximate the value functions in 
(3), and apply neural network method to find the solution of the HJB equations. 

A number of neural network input functions, ( )i xδ , which are state dependent, are 

multiplied by the corresponding weights, ( )iw t which are time dependent, and are 

summed up to produce an output function, ( , )LV x t . This output function will be the 

approximated value function of the corresponding HJB equation. Sandberg proved 
that the uniform continuous function can be approximated by the summation of some 
basis functions multiplied by the time-varying weights [12, 13]. 

In this paper, we assume that the value functions of the HJB equation are 
uniformly continuous and therefore can be approximated by the combination of basis 
functions. And the neural network functions are used as the basis functions. In this 

chapter, we use a polynomial series expansion { }1 2
( ) ( ), ( ), , ( )

L L
x x x xδ δ δ δ ′=  as 

the neural network input functions. By determining the time dependent weights of the 

series expansion represented by the vector 
1 2

( ) { ( ), ( ), ..., ( )}
L L

w t w t w t w t ′= , we find 

the output functions, which is the approximation to the value function 

*
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=

′= =∑ . Here the short bars above the 

( )
L

w t and ( )
L

xδ stress the fact that ( )
L

w t and ( )
L

xδ are vectors. To keep the notation 

simple, we omit the bar above the vectors x, u, and dw. We use 

notation * ( , )
nL

V t x instead of * ( , )
n

V t x to emphasize the difference between the 

approximated value function and the original value function. 
Because the polynomial series expansion is pre-defined and known, the only 

unknown in the approximated HJB equation is the weight or coefficients of the series 
expansion. These weights are time dependent. Thus, solving the HJB partial 
differential equation problem becomes finding the weight of the series expansion 
problem.  

From [11], the optimal controller k* has the following form. 

*

* 1 3 11 2
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We substitute k* back into the HJB equation from the first to n-th cumulant. Then, 
we use neural network series expansion to approximate each HJB equation. Similar to 

the previous section, we assume that the terminal conditions for 
1 2
, , ...,

n
V V V are zero. 

To distinguish the weights for the different value functions, we define the  

weights for ( , )
iL

V x t as ( ).
iL

w t  For example, we use 
1 1 1

( , ) ( ) ( )
L L L

V x t w t xδ′=
 

to approximate 
1
( , ),V x t

 2 2 2
( , ) ( ) ( )

L L L
V x t w t xδ′= to approximate 
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to approximate * ( , ).

n
V x t

 
Then, we use the 

neural network approximations and substitute 
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apply the method of weighted residual [10].  Then we obtain 
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where quantities AL, BiL, CL, DL, EL, FiL, GL, are defined as follows,  
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Therefore, by knowing the terminal condition of the above ordinary differential 
equations, we solve the n-th cumulant neural network approximations along with 
other cumulant constraint equations.  

Remark. In order to solve the n-th cumulant neural network equation, we need to 
solve all n-th cumulant neural network equations simultaneously. By using neural 
network method, we convert the partial differential HJB equations into the neural 
network ordinary differential equations of (4) to (6). Then, we solve these 

approximated ordinary differential equations for 
1

( )
L

w t to ( )
nL

w t and determine the 

corresponding Lagrange multipliers 
2
γ to

n
γ . We will show the applications of the 

neural network method in the next section. 

4   Satellite Attitude Control Applications 

In this example, we study the statistical control for a linearized satellite attitude 
control model. The satellite attitude control system that we consider is for a low earth 
orbit satellite, KOMPSAT [14, 15].  The satellite attitude is controlled by four 
reaction wheels and four thrusters. We have the following system dynamics, 

x Ax Bu Eξ= + + , 

where matrices A, B, and E are defined in [14],ξ is a Brownian motion with variance 

matrix 
3 3

0.01W I ×= .  We assume the terminal cost is zero. The cost function is given 

in the following quadratic form,  

[ ]
0

( , ( ); ) '( ) ( ) '( , ( )) ( , ( )) .
t f

t
J t x t k x s Qx s k s x s Rk s x s ds= +∫  

Here, we simulate the three cost cumulant control.  Because we use Lagrange 
multiplier method to derive the second and third cost cumulant HJB equations, we 
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solve the HJB equations by assigning different values for the Lagrange 

multipliers
2 3

and γ γ . We compare the system performance with the minimal first, 

second, and third cumulant statistical controls. The results are presented in the 
following figures. 
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Fig. 1. Neural network weights evolution with respect to time 

0 20 40 60 80 100 120 140
-1

0

1

2

3

4

5

6

Time

E
ul

er
 A

ng
le

pitch angle for different cumulant control

 

 

θ (pitch angle 1st cumulant)

θ (pitch angle 2nd cumulant, γ2=0.1)

θ (pitch angle 3rd cumulant, γ2=0.1, γ3=0.01)

 

Fig. 2. Pitch angle θ for the first, second and third cumulant statistical control 
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Fig. 3. Angular velocity of y axis for the first, second, and third cumulant statistical control 

Fig. 1 shows the neural network weights trajectories when we calculate the 
backward integration. There are 168 weights used, out of which six are shown in the 
figure, in this example to yield an accurate neural network approximation for the first 
three cost cumulants HJB equations. Because most of the weights approach zero in 
the equilibrium state, we only show several representative weights which ended up 
with nonzero values. From Fig. 2, we note that the pitch angle trajectory for the third 
cumulant statistical control performs better than the second cumulant statistical 
control from the overshoot and settling time point of view. Moreover, the second 
cumulant statistical control has better performance than the first cumulant statistical 
control. For the angular velocity in Fig. 3, the trajectory of the third cumulant 
statistical control has less undershoot and smaller settling time than the trajectory of 
the second cumulant statistical control, which has less undershoot and smaller settling 
time than the first cumulant trajectory. Thus, the third cumulant statistical control has 
the best performance.  However, in Fig. 4, the speed of the reaction wheel 1 under the 
third cumulant statistical control is much larger than the second and first cumulant 
statistical control. Moreover, the third cumulant statistical control settles the trajectory 
faster than the second and first cumulant statistical control. Therefore, it is shown that 
the third cumulant statistical control has better performance, i.e. settling time and 
angular velocity, but it requires much more actuation (reaction wheel speed) at the 
initial stage (reaction wheel speed). 

Remark. Although the simulation results in this section show that the higher order 
cumulant statistical control generates better state trajectories than the lower cumulant 
statistical control, this is not always the case.  The theory, however, shows that by 
applying different cumulant statistical control, we obtain different system 
performances. Even for the same order cumulant statistical control, we obtain 
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different results by assigning different values to the Lagrange multipliers. These 
properties demonstrate that we added an extra design freedom to the traditional mean 
cost control (minimal first cumulant statistical control) by using higher order 
cumulant statistical controls. 
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Fig. 4. Speed of reaction wheel one for the first, second, and third cumulant statistical control 

5   Conclusions and Future Work 

In this paper, we analyzed the statistical optimal control problem using cost cumulant 
approach. We investigate a method to minimize the different orders of the cost 
cumulants of the system cost. The control of different cumulants leads to different 
shapes of the distribution of the cost function. We developed the n-th cumulant 
control method which minimizes the cumulant of any order for a given stochastic 
system. The HJB equation for the n-th cumulant minimization is derived as necessary 
conditions of the optimality. The verification theorem, which is a sufficient condition, 
for the n-th cost cumulant case is also presented in this paper.  We used neural 
network approximation method to solve HJB equations. Neural network 
approximation converts the partial differential HJB equation into the ordinary 
differential equation and is solved numerically. The Lagrange multiplier method is 
used with the neural network method to solve multiple HJB equations together to 
determine the optimal n-th cumulant controller. Then, a linear satellite attitude control 
example is given. The results of three different cost cumulant controls are presented 
and discussed.  Statistical control improves the performance of a stochastic system. 
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Abstract. The Kernel-based Least-squares Policy Iteration (KLSPI) algorithm 
provides a general reinforcement learning solution for large-scale Markov 
decision problems. In KLSPI, the Radial Basis Function (RBF) kernel is usually 
used to approximate the optimal value-function with high precision. However, 
selecting a proper kernel-width for the RBF kernel function is very important 
for KLSPI to be adopted successfully. In previous research, the kernel-width 
was usually set manually or calculated according to the sample distribution in 
advance, which requires prior knowledge or model information. In this paper, 
an adaptive kernel-width selection method is proposed for the KLSPI algorithm. 
Firstly, a sparsification procedure with neighborhood analysis based on the l2-
ball of radius ε is adopted, which helps obtain a reduced kernel dictionary 
without presetting the kernel-width. Secondly, a gradient descent method based 
on the Bellman Residual Error (BRE) is proposed so as to find out a kernel-
width minimizing the sum of the BRE. The experimental results show the 
proposed method can help KLSPI approximate the true value-function more 
accurately, and, finally, obtain a better control policy.  

Keywords: reinforcement learning, sparsification, least-squares, gradient 
descent, kernel width. 

1   Introduction 

Reinforcement learning (RL) refers to a set of trial-and-error-based machine learning 
methods where an agent can potentially learn optimal policy in an uncertain dynamic 
environment [1]. It provides a knowledge-free methodology and is very promising to 
solve the optimization in complex sequential decision-making problems. However, 
the generalization problem is still an open issue in RL. The traditional RL methods, 
such as the Q-learning and Sarsa learning algorithms, find difficulties in solving the 
Markov decision problems (MDPs) with continuous state-action spaces.  

In [2], Lagoudakis and Parr proposed the Least-Squares Policy Iteration (LSPI) 
algorithm. In LSPI, a set of basis functions are combined linearly to approximate the 
value functions, and it has been shown that the generalization and stability of LSPI 
are illustrated in MDPs with continuous states. Moreover, the Kernel-based LSPI 
(KLSPI) algorithm presented in [3] adopts kernel functions as approximators and 
provides an efficient method for solving RL problems with large-scale and continuous 
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state spaces. In KLSPI, the Radial Basis Function (RBF) kernel is usually used to 
approximate the optimal value-function with high precision. However, how to select 
an appropriate kernel-width for a RBF kernel is crucial for the successful 
implementation of the KLSPI method. An improper kernel-width setting will prevent 
the learned value-function from approximating the true value function, and even 
prevents the learning process from converging to the optimal policy. In the past, the 
kernel-width selection in KLSPI was usually done manually and depended on human 
experiences and model information. In this paper, to overcome such difficulty, an 
adaptive kernel-width optimization method based on a Bellman Residual Error (BRE) 
gradient principle is proposed. Finally, simulations on the Inverted Pendulum problem 
are carried out to evaluate the new method.  

The remainder of this paper is organized as follows. Section 2 introduces the 
kernel-width selection problem in KLSPI and gives an overview of the related works. 
Section 3 describes the key idea of the proposed method. Firstly, it adopts a 
sparsification procedure unrelated to kernel-width, and then introduces a gradient 
descent method based on Bellman residual error to optimize the kernel-width 
selection. Section 4 describes the simulation results. Finally, conclusions are drawn in 
Section 5. 

2   Problem Statement and Related Works 

Let S denote the original state space in an MDP. A kernel function is a mapping from 
S×S to R, which is usually assumed to be continuous. A Mercer kernel is a kernel 
function that is positive definite. According to the Mercer Theorem [4], there exists a 
Hilbert space H and a mapping φ from S to H such that 

>=< )(),(),( jiji xxxxk ϕϕ  , (1)

where <.,.> is the inner product in H. Although the dimension of H may be infinite 
and the nonlinear mapping φ is usually unknown, all the computation in the feature 
space H can still be performed as the form of inner products in S. Due to the above 
properties of kernel functions, kernel methods have attracted many research interests. 
Researchers manage to kernelize the existing RL algorithms in linear spaces by 
selecting appropriate kernel functions in order to achieve better learning performance.  

For instance, a kernel-based LS-TD learning method was proposed in [5] and the 
state-action value function can be represented by:  

1

( , ) ( ( , ), ( , ))
t

i i i
i

Q s a k x s a x s aα
=
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, (2)

where x(.,.) is the combined features of state-action pairs, αi (i =1,2,…, t) are 
coefficients, and ( si, ai ) (i =1,2,…, t) are state-action pairs for the sampled data. 

After the ALD-based sparsification procedure [3], a data dictionary set Dn with 
reduced dimension will be obtained, and the state-action value function can be 
represented as follows: 
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where dn is the length of the dictionary Dn and usually is much smaller than the 
original sample size t. By sparsification, the computational complexity as well as the 
memory cost of kernel methods can be greatly reduced and more benefits of 
generalization ability will also be obtained. 

As mentioned above, kernel-based reinforcement learning algorithms adopt kernel 
functions to obtain nonlinear mapping abilities, and then improve the approximation 
ability and generalization ability remarkably. By introducing Mercer kernels in 
function approximation, KLSPI can be viewed as a kernelized LSPI algorithm [3]. 
The selection of kernel functions includes two parts: selecting appropriate kernel 
function type and selecting appropriate configuration parameters [6]. The Radial Basis 
Function (RBF) kernel is a kernel function in common use and can approximate any 
continuous function precisely by adopting appropriate parameters.  

As a very important parameter, the width of the RBF kernel is always selected by 
two means: firstly, all the RBF functions’ kernel-width parameters can be set as the 
same constant [7, 8]. In [8], the kernel-width was defined as max 2d Mσ = , where maxd  
is the maximal distance between the function centers, and M is the number of centers. 
Secondly, each RBF’s width can be regulated individually. For instance, the kernel-
width can be calculated according to the distance-deviation to corresponding centers. 
In [9], the kernel width is selected as the Euclid distance between the ith RBF’s center 
and the nearest jth RBF’s center. A r–nearest neighbor method was proposed in [10] 

to determine the kernel width as  
2

1

r

j i ji
c c rσ

=
= −∑  , where ci is the r-nearest 

neighbor of the RBF’s center cj, r is the number of the neighbors, which is always set 
as 2. This method takes advantage of the data distribution and gains an advantage 
over the fixed width selection methods. Moreover, an adaptive clustering-based 
method is proposed in [11] and [12] and a supervised learning method is proposed in 
[13] and [14]. Obviously, all the above methods select the kernel-width according the 
data’s distribution in the input space and can’t optimize the width parameter after 
selection. In [15], a kernel-width selection method was proposed based on the mean 
prediction error (MPE) formula for the faulty RBF neural networks. However, it 
needs a kernel-width candidate set as well as the corresponding prior knowledge, too. 
Therefore, in the following, an adaptive kernel-width optimization method will be 
proposed for KLSPI using RBF kernels. 

3   Adaptive Optimization for Kernel-Width  

3.1   Basic Ideas of the Adaptive Kernel-Width Optimization  

In KLSPI, after the samples were collected, the centers and the kernel-widths of the 
RBF kernel functions both affect the learning performance. To select proper centers, 
KLSPI adopts a kernel sparsification method based on the approximate linear 
dependence (ALD) analysis [3], which depends on the presetting kernel-width. If the 
kernel-width is optimized and changed, the sparsification process has to be executed 
again. To simplify the optimization procedure, in this paper, the kernel sparsification 
and kernel-width optimization are decoupled, which is shown in the following Fig. 1. 
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Fig. 1. The schematic diagram for kernel-width optimization in KLSPI 

As depicted in Fig. 1, after the samples were obtained, a sparsification procedure is 
carried out to obtain a reduced dictionary set D. To remove the influence of the 
kernel-width from sparsification, a neighborhood analysis based on a l2-ball of radius 
ε is done instead of the ALD analysis. After the revised sparsification procedure is 
completed, a standard KLSPI is executed based on a kernel-width σ initialized 
randomly. At the same time, a kernel-width optimization process by minimizing the 
Bellman Residual Error (BRE) is performed. The implementation of the new method 
will be illustrated in more detail in the following context. 

3.2   Sparsification with the Neighborhood Analysis Based on a l2-Ball of  
Radius ε 

In KLSPI, an ALD-based sparsification procedure is executed as follows. Given a 
dictionary set Dt-1={sj} (j=1,2,…dt-1), for a new sample st, the ALD condition is 
calculated as the following inequality:  

2

min ( ) ( )t j j t
c

j

c s sδ ϕ ϕ μ= − ≤∑
 
, (4)

where c=[cj]
T, μ is the threshold parameter for controlling sparsification. Due to the 

kernel trick, we can obtain  

1 1min{ 2 ( ) }T T
t t t t tt

c
C K c c K s kδ − −= − +  , (5)

where [Kt-1]i,j=k(si, sj), si and sj (i,j=1,2,…,dt-1) are the elements in the dictionary, dt-1 is 
the size of the dictionary, kt-1(st)=[k(s1,st), k(s2, st),…,k(sd(t-1),st)]

T, c=[c1, c2,…,cd(t-1)]
T 

and ktt=k(st, st). The least-squares solution for equation (5) is 

1 1
1 1 1( ) ( )t tt t t t t tk k s K k sδ − −
− − −= −  . (6)
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Obviously, δt is influenced by the kernel-width. To remove its effect, in this paper, 
a sparsification method with the neighborhood analysis based on a l2-ball of radius ε 
is proposed. Given an obtained dictionary as Dt-1={sj} (j=1,2,…dt-1) , for a new 
sample st, the linear dependence is calculated as: 

1

2
min

t
t j t

j D
s sδ μ

−∈
= − ≤  , (7)

where μ is the threshold parameter, too. If the above inequality holds, then the 
dictionary D keeps unchanged, if not, update D as follows: 

1D D [ ( , )]t t t
a A

x s a−
∈
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. (8)

3.3   Optimization of Kernel-width in KLSPI  

With the new sparsification method, a dictionary without the dependence on the 
kernel width is obtained. So an optimization procedure for kernel-width selection can 
be executed. In KLSPI, a least-squares method is adopted to approximate the Q value 
function. Essentially, the least-squares method is to minimize the sum of the 
approximation error, so, in this paper, a method based on the minimization of the 
BRE (Bellman Residual Error) is proposed similarly.  

Given the samples set S = {(si, ai, si’, ai’, ri) | i = 1, 2,…, N}, the BRE of the sample 
(s, a, s’, a’, r) is defined as: 

( ) ( )
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The objective function is defined as: 
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The objective function E is decided by the kernel-width σ 2 (for the convenience of 
representation, a variable σ 2 is used instead of σ in the following context) and the 
weight vector ω jointly. Given σ2, ω can be calculated with the LSPI method; on the 
other hand, given the weight vector ω, the objective function E can be optimized with 
a gradient descent method to obtain the best σ2. 

To minimize the objective function E, in this paper, a kernel-width optimization 
method, which is an iterative operation between the calculation of the weight vector 
and the calculation of the kernel-width, is proposed. When the extreme value of the E 
is obtained, the iterative operation stops, and then the final kernel-width can be 
obtained. 

To calculate the weight vector, a standard least-squares method is adopted to 
optimize the objective function: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1

, , , , , ,
T
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−
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.
 (11) 
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To optimize the kernel width, a gradient descent method is adopted as follows. 
Firstly, the partial derivative for kernel-width σ2 to the j-th kernel function in D is 
defined as: 
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Then, the partial derivative for objective function can be obtained as follows: 
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The optimization operation for the kernel-width selection can be done as: 
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where h and l are positive constants respectively, h is the regulation step, l is the 
threshold parameter for controlling optimization in one step. 

4   Experiments and Evaluations 

In this paper, a stochastic Inverted Pendulum problem is used to evaluate the 
proposed method, which requires balancing an inverted pendulum of unknown length 
and mass at the upright position by applying forces to the cart which is attached to. 
This problem is depicted as Fig. 2. 

u

θ

l

 

Fig. 2. This shows a figure illustrating the Inverted Pendulum problem 

There are three actions: {-50, 0, 50}(N), and an uniform noise in [-10,10] (N) is 
added to the chosen action. The state space of the problem consists of the vertical 
angle θ and the angular velocityθ  of the pendulum. The transitions are governed by 
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the nonlinear dynamics of the system and depend on the current state and the current 
noisy control u [2]: 

( ) ( ) ( )
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θ α θ θ α θ
θ

α θ
− −

=
−

 
,
 (15)

where g is the gravity constant (g = 9.8m/s2), m is the mass of the pendulum (m = 
2.0kg), l is the length of the pendulum(l = 0.5m), and α = 1.0/(m + Mcart) , Mcart is the 
mass of the cart (Mcart = 8.0kg). The simulation step is set to be 0.1 second. A reward 
0 is given as long as the angle of the pendulum does not exceed π/2 in absolute value, 
and an angle greater than π/2 signals the end of the episode and a penalty of -1 is 
given. The discount factor of the process is set to be 0.90. The kernel function is 
selected as: 

( ) ( ) ( )2 2 2, ( )
i j i ji jk s s exp θ θ θ θ σ− + −⎡ ⎤= − ⎣ ⎦  , (16)

where points si and sj in S are( iθ , iθ )and ( jθ , jθ ) respectively.  
To evaluate the proposed method, the experiments were done as follows: different 

numbers of sampling episodes were chosen as 10, 20, 30, …, 200. The sampling 
strategy is random absolutely, i.e. choosing the action among three given actions 
randomly. Each episode starts from the state initialized as (0, 0) and ends once the 
|θ|>π/2 or the simulation steps are greater than 3000. Furthermore, to remove 
randomness in the simulation results, each experiment was repeated 100 times with 
different random seeds and its data was collected and statistically processed. The 
experimental results are shown in Fig.3 and Fig.4 respectively. 
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Fig. 3. Performance comparisons of BRE results with/without kernel-width optimization 
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Fig. 4. Balancing steps with/without kernel-width optimization 

Fig.3 shows how the number of the episodes and the new method impact the 
results of average Bellman Residual Error. The curve 1 and curve 3 denote the 
average BRE results when the kernel-width (KW) is initialized as 1.0 and 10.0 
respectively. The curve 2 and curve 4 denote the average BRE results when the 
kernel-width is set according to the adaptive optimization method. Obviously, the 
results with the kernel-width optimization are better than the ones without 
optimization. So, it is evident that the proposed method can optimize the kernel-width 
effectively, and help the learned function approximate the true Q function in more 
precise representation. 

Fig.4 shows that how the kernel-width optimization method improves the control 
performance. The average balancing steps resulting from the new method (as depicted 
by curve 2 and curve 4) are greater than the ones resulting from the original KLSPI 
(as depicted by curve 1 and curve 3). Therefore, it is shown that the new method helps 
obtain better control policy.  

Additionally, while the number of episodes comes up to 200, although the initial 
kernel-widths are set differently, such as 1.0 or 10.0, all the optimized kernel-widths 
can converge to the same value, i.e.14.3, approximatively. So the proposed method is 
robust to different initial values and can achieve a local optimum stably.  

According to the above experiments, the feasibility and validity of the proposed 
method are shown.  

5   Conclusion 

In this paper, an adaptive kernel-width selection method is proposed to ease the use of 
the RBF kernel in KLSPI. A neighborhood analysis method based on a l2-ball of 
radius ε is proposed and a gradient descent method based on the Bellman residual 
errors is proposed for optimizing the kernel-width. The experiments on the Inverted 
Pendulum problem show the new method can improve the precision of the 
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approximation and the quality of the learned control policy. Although the results in 
this paper are very encouraging, more experiments on real-world problems need to be 
carried out extensively. Moreover, some new kernel functions and corresponding 
parameter-optimization methods need to be developed in the future.  
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Abstract. In this paper, a new iterative ADP algorithm is proposed to solve the
finite horizon optimal tracking control problem for a class of discrete-time non-
linear systems. The idea is that using system transformation, the optimal tracking
problem is transformed into optimal regulation problem, and then the iterative
ADP algorithm is introduced to deal with the regulation problem with conver-
gence guarantee. Three neural networks are used to approximate the performance
index function, compute the optimal control policy and model the unknown sys-
tem dynamics, respectively, for facilitating the implementation of iterative ADP
algorithm. An example is given to demonstrate the validity of the proposed opti-
mal tracking control scheme.

Keywords: Adaptive dynamic programming, approximate dynamic program-
ming, optimal tracking control, neural networks, finite horizon.

1 Introduction

The optimal tracking problem of nonlinear systems has always been the key focus in
the control field in the latest several decades. Traditional optimal tracking control is
mostly implemented by feedback linearization [1]. However, the controller designed by
feedback linearization technique is only effective in the neighborhood of the equilib-
rium point. When the required operating range is large, the nonlinearities in the system
cannot be properly compensated by using a linear model. Therefore, it is necessary to
study the direct optimal tracking control approach for the original nonlinear system.
The difficulty for nonlinear optimal feedback control lies in solving the time-varying
HJB equation which is usually too hard to solve analytically. In order to overcome the
difficulty, in [2], the finite-time optimal tracking control problem was solved via trans-
forming the system model into a sequence of “pseudo-linear” systems. In [3], an infinite
horizon approximate optimal tracking controller based on the successive approximation
approach was proposed. However, the literature mentioned above is all restricted in the
continuous-time domain. There are few results discussing the optimal tracking control
problem for discrete-time systems. To the best of our knowledge, only [4] has presented
the optimal tracking control scheme in infinite horizon domain. There are no results on
the finite horizon optimal tracking control for discrete-time nonlinear systems. This
motivates our research.
� This work was supported in part by the NSFC under grants 60904037, 60921061, 61034002,

and by Beijing Natural Science Foundation under grant 4102061.

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 620–629, 2011.
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As is known, dynamic programming is very useful in solving the optimal control
problems. However, due to the “curse of dimensionality”, it is often computationally
untenable to run dynamic programming to obtain the optimal solution. The approxi-
mate dynamic programming (ADP) algorithm was proposed by Werbos [5] as a way to
solve optimal control problems forward-in-time. ADP combines adaptive critic design,
reinforcement learning technique with dynamic programming. In [5] adaptive dynamic
programming approaches were classified into four main schemes: Heuristic Dynamic
Programming (HDP), Dual Heuristic Dynamic Programming (DHP), Action Depen-
dent Heuristic Dynamic Programming (ADHDP), also known as Q-learning, and Ac-
tion Dependent Dual Heuristic Dynamic Programming (ADDHP). Though in recent
years, ADP has been further studied by many researchers [6, 7, 8, 9, 10, 12, 11], most
results are focus on the optimal regulation problem. In [13], a greedy HDP iteration al-
gorithm to solve the discrete-time Hamilton-Jacobi-Bellman (DT HJB) equation of the
optimal regulation control problem for general nonlinear discrete-time systems is pro-
posed, which does not require an initially stable policy. It has been rigorously proved
in [13] that the greedy HDP iteration algorithm is convergent. To the best of our knowl-
edge, till now only in [4], ADP was used to solve the infinite-time optimal tracking
control problem. There have been no results discussing how to use ADP to solve the
finite-time optimal tracking control problem for nonlinear systems.

In this paper, it is the first time to solve finite horizon optimal tracking control prob-
lem for a class of discrete-time nonlinear systems using ADP. We firstly transform the
tracking problem into an optimal regulation problem, and then a new iterative ADP
algorithm can be properly introduced to deal with this regulation problem.

2 Paper Preparation

Consider the following discrete-time nonlinear system

xk+1 = f(xk) + g(xk)uk (1)

where xk ∈ 	n and the input uk ∈ 	m. Here assume that the system is controllable. In
this paper, the reference orbit ηk is generated by the n-dimensional autonomous system
as ηk+1 = S(ηk), where ηk ∈ 	n, S(ηk) ∈ 	n. Therefore we define the tracking error
as:

zk = xk − ηk. (2)

Let vk be an arbitrary finite-horizon tracking control sequence starting at k and let
Uzk

=
{
vk : z(f)

(
zk, vk

)
= 0

}
be the set of all finite-horizon tracking control se-

quences of xk. Let U (i)
zk =

{
vk+i−1

k : z(f)
(
zk, v

k+i−1
k

)
= 0,

∣∣vk+i−1
k

∣∣ = i
}

be the set
of all finite-horizon admissible control sequences of zk with length i, where the final
state error can be written as z(f)

(
zk, v

k+i−1
k

)
= zk+i. Then, Uzk

= ∪1≤i<∞U (i)
zk . By

this notation, a state error zk is controllable if and only if Uzk
�= ∅.

Noticing that the objective in this paper is to design an optimal feedback control
policy vk, which not only renders the state error zk asymptotically tracking the reference
orbit, i.e., zk asymptotically approaches zero, but also minimizes the performance index
function as follow
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J(zk, v
N−1
k ) =

∑N−1

i=k

{
zT

i Qzi + vT
i Rvi

}
, (3)

where Q and R are positive-definite matrices. U(k) = zT
k Qzk + vT

k Rvk is the utility
function. In addition, we define

vk = uk − uek, (4)

where uek is the steady control input expressed as

uek = g−1(ηk)(ηk+1 − f(ηk)) (5)

Combining (2) with (5) , we can get

zk+1 = F (zk, vk) = −S(ηk) + f(zk + ηk) + g(zk + ηk) vk

−g(zk + ηk)g−1(ηk)(f(ηk) − S(ηk)). (6)

For any given system state error zk, the objective of the present finite-horizon op-
timal control problem is to find a finite-horizon admissible control sequence vN−1

k ∈
U (N−k)

zk ⊆ Uxk
to minimize the performance index J

(
zk, v

N−1
k

)
. The control sequence

vN−1
k has finite length. However, before it is determined, we do not know its length

which means that the length of the control sequence
∣∣vN−1

k

∣∣ = N − k is unspecified.
This kind of optimal control problems has been called finite-horizon problems with
unspecified terminal time.

3 Properties of the Iterative Adaptive Dynamic Programming
Algorithm

In this section, a new iterative ADP algorithm is proposed to obtain the finite horizon
optimal tracking control for nonlinear systems. The goal of the proposed iterative ADP
algorithm is to construct an optimal control policy v∗(zk), k = 0, 1, . . ., which makes
an arbitrary initial state error z0 to the singularity 0 within finite time, simultaneously
makes the performance index function reach the optimum V ∗(zk). Convergence proofs
will also be given.

3.1 Derivation of the Iterative ADP Algorithm

In the iterative ADP algorithm, the performance index function and control policy are
updated by recurrent iteration, with the iteration number i increasing from 0. Let the
initial performance index function V0(zk) = 0 and there exists a control vk that makes
F (zk, vk) = 0, where zk is any initial state error. Then, the iterative control v0(zk) can
be computed as follows:

v0(zk) = arg min
vk

{U(zk, vk) + V0(zk+1)} , (7)

s.t. zk+1 = F (zk, vk) = 0
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where V0(zk+1) = 0. The performance index function can be updated as

V1(zk) = U(zk, v0(zk)) + V0(F (zk, v0(zk)). (8)

For i = 1, 2, . . ., the iterative ADP algorithm will iterate between

vi(zk) = arg min
vk

{U(zk, vk) + Vi(zk+1)}
= arg min

vk

{U(zk, vk) + Vi(F (zk, vk))} (9)

and performance index function

Vi+1(zk) = min
vk

{U(zk, vk) + Vi(zk+1)}
= U(zk, vi(zk)) + Vi(F (zk, vi(zk)). (10)

3.2 Properties of the Iterative ADP Algorithm

In the above, we can see that the performance index function V ∗(zk) is replaced by a
sequence of iterative performance index functions Vi(zk) and the optimal control law
v∗(zk) is replaced by a sequence of iterative control law vi(zk), where i ≥ 0 is the
iterative index. As (10) is not an HJB equation for ∀i ≥ 0, generally, the iterative
performance index function Vi(zk) is not optimal. However, we can prove that V ∗(zk)
is the limit of Vi(zk) as i → ∞.

Theorem 1. Let zk be an arbitrary state error vector. Suppose that there is a positive
integer i such that U (i)

zk �= ∅. Then, for U (i+1)
zk �= ∅, the performance index function

Vi(zk) obtained by (7)–(10) is a nonincreasing convergent sequence for ∀ i ≥ 1, i.e.,
Vi+1(zk) ≤ Vi(zk).

Proof. We prove this by mathematical induction. First, we let i = 1. Then, We have

V1(zk) = min
vk

{U(zk, vk) + V0(F (zk, vk))}
= min

vk

{U(zk, vk)} = U(zk, v0(zk)) (11)

where V0(F (zk, v0(zk)) = 0. The finite horizon admissible control sequence vk
k =

(v0(zk)).
Next, let us show that there exists a finite horizon admissible control sequence v̂k+1

k

with length 2 such that V1(zk, v
k
k) = V̂2(zk, v̂

k+1
k ). Obviously, v0(zk) ∈ U (1)

zk . The
trajectory starting from zk under the control of vk

k is zk+1 = F (zk, v0(zk)) = 0. Then,
we create a new control sequence v̂k+1

k by adding a 0 at the end of sequence vk
k to

obtain the control sequence v̂k+1
k = (vk

k, 0). Obviously, |v̂k+1
k | = 2. The state error

trajectory under the control of v̂k+1
k is zk+1 = F (zk, v0(zk)), zk+2 = F (zk+1, vk+1)

where vk+1 = 0. As zk+1 = 0 and F (0, 0) = 0, we have zk+2 = F (zk+1, vk+1) = 0.
So, v̂k+1

k is a finite horizon admissible control. Furthermore,

V1(zk, v̂
k
k) =U(zk, vk)

=U(zk, vk) + U(zk+1, vk+1) = V̂2(zk, v̂
k+1
k ). (12)
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On the other hand, we have

V2(zk) =min
vk

{U(zk, vk) + V1(F (zk, vk)} . (13)

According to (11), we have

V2(zk) = min
vk+1

k

{U(zk, vk) + U(zk+1, vk+1)} (14)

where zk+2 = F (zk+1, vk+1) = 0. Then we have

V2(zk) ≤ V̂2(zk, v̂
k+1
k ). (15)

So the theorem holds for i = 1. Assume that the theorem holds for any i = l − 1,
where l ≥ 1. We have

Vl(zk) =min
vk

{U(zk, vk) + Vl−1(F (zk, vk))} (16)

where the corresponding finite horizon admissible control sequence is vk+l−1
k .

Then for i = l, we create a control sequence v̂k+l
k =

{
vk+l−1

k , 0
}

with length
l + 1. Then the state error trajectory under the control of v̂ is zk+1 = F (zk, vl(zk)),
zk+2 = F (zk+1, vl−1(zk+1)), . . ., zk+l = F (zk+l, v0(zk+l)) = 0, zk+l+1 = 0. So
v̂k+l

k is finite horizon admissible control. The performance under the control sequence
is

Vl+1(zk, v̂
k+l
k ) =U(zk, vl(zk)) + U(zk+1, vl−1(zk+1))

+ . . . + U(zk+l, v0(zk+l)) + U(zk+l+1, 0)

=
l+1∑
j=0

U(zk+j , vi−j(zk+j)) (17)

where vl−j = 0 for all l < j.
On the other hand, we have

Vi+1(zk) = min
vk

{U(zk, vk) + Vi(F (zk, vk)} = min
vk+i

k

⎧⎨⎩
i+1∑
j=0

U(zk+j , vi−j(zk+j))

⎫⎬⎭ .

(18)

Then, we have

Vl+1(zk) ≤ Vl+1(zk, v̂
k+l
k ) = Vl(zk) (19)

The proof is completed.

Lemma 1. Let μi(zk), i = 0, 1 . . . be any sequence of tracking control, and vi(zk) is
expressed as (9). Define Vi+1(zk) as (10) and Λi+1(zk) as

Λi+1(zk) = U(zk, μi(zk)) + Λi(zk+1). (20)

Then if V0(zk) = Λ0(zk) = 0, we have Vi(zk) ≤ Λi(zk), ∀i.
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According to Theorem 1, we know that the performance index function Vi(zk) ≥ 0 is
a nonincreasing bounded sequence for iteration index i = 1, 2, . . .. Then we can derive
the following theorem.

Theorem 2. Let zk be an arbitrary state error vector. Define the performance index
function V∞(zk) as the limit of the iterative function Vi(zk), i.e.,

V∞(zk) = lim
i→∞

Vi(zk). (21)

Then, we have the following HJB equation

V∞(zk) = min
vk

{U(zk, vk) + V∞(zk+1)} (22)

holds.

Proof. Let ηk = η(zk) be any admissible control. According to Theorem 1, for ∀i, we
have

V∞(zk) ≤ Vi+1(zk) ≤ U(zk, ηk) + Vi(zk+1). (23)

Let i → ∞, we have

V∞(zk) ≤ U(zk, ηk) + V∞(zk+1). (24)

So

V∞(zk) ≤ min
vk

{U(zk, ηk) + V∞(zk+1)}. (25)

Let ε > 0 be an arbitrary positive number. Since Vi(zk) is nonincreasing for ∀ i and
limi→∞ Vi(zk) = V∞(zk), there exists a positive integer p such that

Vp(zk) − ε ≤ V∞(zk) ≤ Vp(zk). (26)

Then, we let

Vp(zk) = min
vk

{U(zk, vk) + Vp(zk+1)}
=U(zk, vp−1(zk)) + Vp−1(zk+1). (27)

Hence

V∞(zk) ≥ U(zk, vp−1(zk)) + Vp−1(zk+1) − ε

≥ U(zk, vp−1(zk)) + V∞(zk+1) − ε

≥ min
vk

{U(zk, vk) + V∞(zk+1)} − ε. (28)

Since ε is arbitrary, we have

V∞(zk) ≥ min
vk

{U(zk, vk) + V∞(zk+1)}. (29)

Combining (25) and (29) we have

V∞(zk) = min
vk

{U(zk, vk) + V∞(zk+1)} (30)

which proves the theorem.
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Next, we will prove that the iterative performance index function Vi(zk) converges to
the optimal performance index function V ∗(zk) as i → ∞.

Theorem 3. Let the performance index function Vi(zk) be defined by (10). If the system
state error zk is controllable, then the performance index function Vi(zk) converges to
the optimal performance index function V ∗(zk) as i → ∞, i.e.,

Vi(zk) → V ∗(zk). (31)

Proof. As

V ∗(zk) = min
{
V (zk, vk) : vk ∈ U (i)

zk

}
, i = 1, 2, . . . . (32)

we have

V ∗(zk) ≤ Vi(zk). (33)

Then, let i → ∞, we have

V ∗(zk) ≤ V∞(zk). (34)

Let ε > 0 be an arbitrary positive number. Then there exists a finite horizon admis-
sible control sequence ηq such that

Vq(zk) ≤ V ∗(zk) + ε. (35)

On the other side, according to Lemma 1, for any finite horizon admissible control
ηq , we have

V∞(zk) ≤ Vq(zk) (36)

holds.
Combining (35) and (36), we have

V∞(zk) ≤ V ∗(zk) + ε. (37)

As ε is arbitrary positive number, we have

V∞(zk) ≤ V ∗(zk). (38)

According to (34) and (38), we have

V∞(zk) = V ∗(zk). (39)

The proof is completed.

Then we can derive the following corollary.

Corollary 1. Let the performance index function Vi(zk) be defined by (10). If the sys-
tem state error zk is controllable and Theorem 3 holds, then the iterative control law
vi(zk) converges to the optimal control law v∗(zk).
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3.3 The Procedure of the Algorithm

Now we summarize the iterative ADP algorithm for the time-variant optimal tracking
control problem as:

Step 1. Give x(0), imax , ε, desired trajectory ηk.
Step 2. Set i = 0, V0(zk) = 0.
Step 3. Compute v0(zk) by (7) and V1(zk) by (8).
Step 4. Set i = i + 1.
Step 5. Compute vi(zk) by (9) and Vi+1(zk) by (10).
Step 6. If |Vi+1(zk) − Vi(zk)| < ε then go to step 8, else go to step 7.
Step 7. If i > imax then go to step 8, otherwise go to step 6.
Step 8. Stop.

4 Simulation Study

Consider the following affine nonlinear system

xk+1 = f(xk) + g(xk)uk (40)

where xk =
[
x1k x2k

]T
, uk =

[
u1(k) u2(k)

]T
,

f(xk) =
[
0.2x1k exp(x2

2k)
0.3x3

2k

]
, g(xk) =

[−0.2 0
0 −0.2

]
.

( )z k

( )z k

ˆ( 1)z k

( )z k

ˆ( ( ))V z k

ˆ( ( 1))V z k utilityˆ( )v k

Fig. 1. The structure diagram of the algorithm
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The desired trajectory is set to η(k) = [ sin(k + π
2 ) 0.5 cos(k) ]T . We use neural

network to implement the iterative ADP algorithm. We choose three-layer neural net-
works as the critic network, the action network and the model network with the structure
2-8-1, 2-8-2 and 6-8-2 respectively. The initial weights of action network, critic network
and model network are all set to be random in [−1, 1]. It should be mentioned that the
model network should be trained first. For the given initial state x(0) = [1.5 1]T , we
train the model network for 10000 steps under the learning rate αm = 0.05. After the
training of the model network completed, the weights keep unchanged. Then the critic
network and the action network are trained for 5000 steps so that the given accuracy
ε = 10−6 is reached. In the training process, the learning rate βa = αc = 0.05. The
structure diagram of the algorithm is shown in Fig. 1.

The convergence curve of the performance index function is shown in Fig.2(a). The
state trajectories are given as Fig. 2(b) and Fig. 2(c). The corresponding control curves
are given as Fig. 2(d).
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Fig. 2. The results of the algorithm

5 Conclusions

In this paper we propose an effective algorithm to solve the optimal finite horizon track-
ing control problem for a class of discrete-time systems. First, the tracking problems are
transformed as regulation problem. Then the iterative ADP algorithm is introduced to
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deal with the regulation problem with rigorous convergence analysis. Three neural net-
works are used as parametric structures to approximate the performance index function,
compute the optimal control policy and model the unknown system respectively, i.e. the
critic network, the action network and the model network. The construction of model
network make the scheme can be use to control the plant with unknown dynamics. The
simulation study have successfully demonstrated the upstanding performance of the
proposed tracking control scheme for various discrete-time nonlinear systems.
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Abstract. Using the neural-network-based iterative adaptive dynamic
programming (ADP) algorithm, an optimal control scheme for a class of
unknown discrete-time nonlinear systems with discount factor in the cost
function is proposed in this paper. The optimal controller is designed with
convergence analysis in terms of cost function and control law. In order
to implement the algorithm via globalized dual heuristic programming
(GDHP) technique, a neural network is constructed first to identify the
unknown nonlinear system, and then two other neural networks are used
to approximate the cost function and the control law, respectively. An
example is provided to verify the effectiveness of the present approach.

Keywords: Adaptive critic designs, adaptive dynamic programming,
approximate dynamic programming, intelligent control, neural networks,
optimal control, reinforcement learning.

1 Introduction

The optimal control of nonlinear systems is a challenging area because it often
requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation instead
of the Riccati equation. Though dynamic programming (DP) has been an useful
computational technique in solving optimal control problems for many years, it
is often computationally untenable to run it to obtain the optimal solution due to
the “curse of dimensionality”. With strong capabilities of self-learning and adap-
tivity, artificial neural networks (ANN or NN) are an effective tool to implement
intelligent control [2, 1, 3]. Besides, it has been used for universal function ap-
proximation in adaptive/approximate dynamic programming (ADP) algorithms,
which were proposed in [4, 3] as a method to solve optimal control problems
forward-in-time. There are several synonyms used for ADP including “adaptive
dynamic programming”, “approximate dynamic programming”, “neuro-dynamic
programming”, “neural dynamic programming”, “adaptive critic designs”, and
“reinforcement learning”.

In recent years, ADP and the related research have gained much attention
from researchers [15, 12, 11, 9, 14, 18, 17, 19, 7, 10, 8, 13, 6, 16, 20, 3, 21]. Accord-
ing to [3] and [6], ADP approaches were classified into several main schemes:

D. Liu et al. (Eds.): ISNN 2011, Part II, LNCS 6676, pp. 630–639, 2011.
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heuristic dynamic programming (HDP), action-dependent HDP (ADHDP), dual
heuristic dynamic programming (DHP), ADDHP, globalized DHP (GDHP), and
ADGDHP. Al-Tamimi et al. [16] proposed a greedy HDP algorithm to solve the
discrete-time HJB (DTHJB) equation for optimal control of nonlinear systems.
Liu and Jin [13] developed an ε-ADP algorithm for studying finite-horizon opti-
mal control of discrete-time nonlinear systems. Abu-Khalaf and Lewis [15], Vra-
bie et al. [20] studied the continuous-time optimal control problem using ADP.
Though great progress has been made for ADP in optimal control field, there is
still no results to solve the optimal control problem for unknown discrete-time
nonlinear systems with discount factor in the cost function based on iterative
ADP algorithm using GDHP technique (iterative GDHP algorithm for brief).
In this paper, we will give an iterative GDHP algorithm to find the optimal
controller for a class of unknown discrete-time nonlinear systems.

This paper is organized as follows. In Section 2, the DTHJB equation is intro-
duced for nonlinear systems. In Section 3, we first design an NN identifier for the
unknown system with stability proof. Then, the optimal control scheme based
on the learned system dynamics and iterative ADP algorithm is developed with
convergence analysis. At last, the NN implementation of the iterative algorithm
is presented. In Section 4, an example is given to substantiate the theoretical
results. Section 5 contains concluding remarks.

2 Problem Statement

Consider the discrete-time nonlinear system given by

xk+1 = f(xk) + g(xk)u(xk), (1)

where xk ∈ Rn is the state and u(xk) ∈ Rm is the control vector, f(·) and g(·)
are differentiable in their argument with f(0) = 0 and g(0) = 0. Assume that
f + gu is Lipschitz continuous on a set Ω in Rn containing the origin, and that
the system (1) is controllable in the sense that there exists a continuous control
on Ω that asymptotically stabilizes the system.

Let x0 be an initial state and define uN−1
0 = (u0, u1, · · · , uN−1) be a con-

trol sequence with which the system (1) gives a trajectory starting from x0:
x1 = f(x0) + g(x0)u(x0), x2 = f(x1) + g(x1)u(x1), · · · , xN = f(xN−1) +
g(xN−1)u(xN−1). We call the number of elements in the control sequence uN−1

0

the length of uN−1
0 and denote it as

∣∣uN−1
0

∣∣. Then,
∣∣uN−1

0

∣∣ = N . The final
state under the control sequence uN−1

0 can be denoted as x(f)
(
x0, u

N−1
0

)
= xN .

When the control sequence starting from u0 has infinite length, we denote it as
u∞

0 = (u0, u1, · · · ) and then the correspondingly final state can be written as
x(f)(x0, u

∞
0 ) = limk→∞ xk.

Let u∞
k = (uk, uk+1, · · · ) be the control sequence starting at k. It is desired to

find the control sequence u∞
k which minimizes the infinite horizon cost function

given by

J(xk, u
∞
k ) =

∞∑
i=k

γi−kU(xi, ui), (2)
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where U is the utility function, U(0, 0) = 0, U(xi, ui) ≥ 0 for ∀xi, ui, and γ is
the discount factor with 0 < γ ≤ 1. Generally speaking, the utility function can
be chosen as the quadratic form as U(xi, ui) = xT

i Qxi + uT
i Rui.

For optimal control problems, the designed feedback control must not only
stabilize the system on Ω but also guarantee that (2) is finite, i.e., the control
must be admissible.

Definition 1. A control sequence u∞
k is said to be admissible for a state xk ∈ Rn

with respect to (2) on Ω if u∞
k is continuous on a compact set Ω ∈ Rm, u(0) = 0,

x(f)(xk, u
∞
k ) = 0 and J(xk, u

∞
k ) is finite.

Let Axk
=

{
u∞

k : x(f)(xk, u
∞
k ) = 0

}
be the set of all infinite horizon admissible

control sequences of xk. The optimal cost function is defined as

J∗(xk) = inf
u∞

k

{J(xk, u
∞
k ) : u∞

k ∈ Axk
} . (3)

According to Bellman’s optimality principle, it is known that the optimal cost
function J∗(xk) satisfies the DTHJB equation

J∗(xk) = min
uk

{
xT

k Qxk + uT
k Ruk + γJ∗(xk+1)

}
. (4)

The optimal control u∗ is given by the gradient of the right-hand side of (4) with
respect to uk, i.e.,

u∗(xk) = −γ

2
R−1gT (xk)

∂J∗(xk+1)
∂xk+1

. (5)

By substituting (5) into (4), the DTHJB equation becomes

J∗(xk) = xT
k Qxk +

γ2

4

(
∂J∗(xk+1)

∂xk+1

)T

g(xk)R−1gT (xk)
∂J∗(xk+1)

∂xk+1
+ γJ∗(xk+1),

where J∗(xk) is the optimal cost function corresponding to the optimal control
law u∗(xk). Since the above DTHJB equation is difficult to solve, we will present
a novel algorithm to approximate the cost function iteratively in next section.

3 Adaptive Dynamic Programming for Neuro-Optimal
Control of the Unknown Nonlinear Systems

3.1 NN System Identification of the Unknown Nonlinear Systems

In this paper, we consider a three-layer feedforward NN as the function approx-
imation structure. Let the number of hidden layer neurons be denoted by l, the
ideal weight matrix between the input layer and hidden layer be denoted by
ν∗

m, and the ideal weight matrix between the hidden layer and output layer be
denoted by ω∗

m. According to the universal approximation property of NN, the
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system dynamics (1) has a NN representation on a compact set S, which can be
written as

xk+1 = ω∗T
m σ

(
ν∗T

m zk

)
+ θk. (6)

In (6), zk = [xT
k uT

k ]T is the NN input, θk is the bounded NN functional
approximation error according to the universal approximation property, and
[σ(z̄)]i = (ez̄i − e−z̄i)/(ez̄i + e−z̄i), i = 1, 2, · · · , l, are the activation functions se-
lected in this work, where z̄k = ν∗T

m zk, z̄k ∈ Rl. Additionally, the NN activation
functions are bounded such that ‖σ(z̄k)‖ ≤ σM for a constant σM .

In the system identification process, we keep the weight matrix between the
input layer and the hidden layer as constant while only tune the weight matrix
between the hidden layer and the output layer. So, we define the NN system
identification scheme as

x̂k+1 = ωT
m(k)σ(z̄k), (7)

where x̂k is the estimated system state vector, and ωm(k) is the estimation of
the constant ideal weight matrix ω∗

m.
Denote x̃k = x̂k − xk as the system identification error. Combining (6) and

(7), we can obtain the identification error dynamics as x̃k+1 = ω̃T
m(k)σ(z̄k)− θk,

where ω̃m(k) = ωm(k)−ω∗
m. Let ψk = ω̃T

m(k)σ(z̄k), then, we have x̃k+1 = ψk−θk.
Using the gradient-based adaptation rule, the weights are updated as

ωm(k + 1) = ωm(k) − αm

[
∂Ek+1

∂ωm(k)

]
= ωm(k) − αmσ(z̄k)x̃T

k+1, (8)

where Ek+1 = 0.5x̃T
k+1x̃k+1 is the performance measure to be minimized and

αm > 0 is the NN learning rate.

Assumption 1. The NN approximation error term θk is assumed to be upper
bounded by a function of the state estimation error x̃k, i.e., θT

k θk ≤ δM x̃T
k x̃k,

where δM is a constant value.

Theorem 1. Let the identification scheme (7) be used to identify the nonlinear
system (1), and let the parameter update law given in (8) be used for tuning
the NN weights. Then, the state estimation error dynamics x̃k is asymptotically
stable while the parameter estimation error ω̃m(k) is bounded.

Proof. Basing on the Lyapunov theory, this theorem can be proved by choosing
the Lyapunov function candidate as Lk = x̃T

k x̃k + tr
{
ω̃T

m(k)ω̃m(k)
}
/αm. The

details is omitted here due to the length constraints.

According to Theorem 1, after a sufficiently long learning session, the NN sys-
tem identification error converges to zero, i.e., we have f(xk) + ĝ(xk)u(xk) =
ωT

m(k)σ(z̄k), where ĝ(xk) denotes the estimated value of the control coefficient
matrix g(xk). Taking partial derivative of it with respect to uk yields

ĝ(xk) =
∂
(
ωT

m(k)σ(z̄k)
)

∂uk
= ωT

m(k)
∂σ(z̄k)
∂z̄k

ν∗T
m

[
0n×m

Im

]
, (9)

where 0n×m is an n×m zero matrix and Im is an m×m identity matrix. This
result will be used in the derivation and implementation of the iterative ADP
algorithm for the optimal control of unknown discrete-time nonlinear systems.
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3.2 Derivation of the Iterative ADP Algorithm

Now, we present the iterative ADP algorithm. First, we start with the initial
cost function V0(·) = 0, and then solve for the law of single control vector

v0(xk) = argmin
uk

{
xT

k Qxk + uT
k Ruk + γV0(xk+1)

}
. (10)

Once the control law v0(xk) is determined, we update the cost function as

V1(xk) = min
uk

{
xT

k Qxk + uT
k Ruk + γV0(xk+1)

}
= xT

k Qxk + vT
0 (xk)Rv0(xk). (11)

Then, for i = 1, 2, · · · , the iterative ADP algorithm can be used to implement
the iteration between the control law

vi(xk) = arg min
uk

{
xT

k Qxk + uT
k Ruk + γVi(xk+1)

}
= −γ

2
R−1ĝT (xk)

∂Vi(xk+1)
∂xk+1

(12)

and the cost function

Vi+1(xk) = min
uk

{
xT

k Qxk + uT
k Ruk + γVi(xk+1)

}
= xT

k Qxk + vT
i (xk)Rvi(xk) + γVi(f(xk) + ĝ(xk)vi(xk)). (13)

In the following part, we will present a proof of convergence of the iteration
between (12) and (13) with Vi → J∗ and vi → u∗ as i → ∞.

3.3 Convergence Analysis of the Iterative ADP Algorithm

Lemma 1. Let {μi} be an arbitrary sequence of control laws and {vi} be the
control law sequence described in (12). Define Vi as in (13) and Λi as

Λi+1(xk) = xT
k Qxk + μT

i (xk)Rμi(xk) + γΛi(f(xk) + ĝ(xk)μi(xk)). (14)

If V0(xk) = Λ0(xk) = 0, then Vi(xk) ≤ Λi(xk), ∀i.
Proof. It can easily be derived noticing that Vi+1 is the result of minimizing
the right-hand side of (13) with respect to the control input uk, while Λi+1 is a
result of arbitrary control input.

Lemma 2. Let the cost function sequence {Vi} be defined as in (13). If the
system is controllable, there is an upper bound Y such that 0 ≤ Vi(xk) ≤ Y , ∀i.
Based on Lemmas 1 and 2, we now present our main theorems.

Theorem 2. Define the cost function sequence {Vi} as in (13) with V0(·) = 0,
and the control law sequence {vi} as in (12). Then, {Vi} is a monotonically
nondecreasing sequence satisfying Vi+1 ≥ Vi, ∀i.
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We have acquired the conclusion that the cost function sequence {Vi} is a mono-
tonically nondecreasing sequence with an upper bound, and therefore, its limit
exists. Now, we can derive the following theorem.

Theorem 3. For any state vector xk, define limi→∞ Vi(xk) = V∞(xk) as the
limit of the cost function sequence {Vi(xk)}. Then, the following equation holds:

V∞(xk) = min
uk

{
xT

k Qxk + uT
k Ruk + γV∞(xk+1)

}
.

Next, we will prove that the cost function sequence {Vi(xk)} converges to the
optimal cost function J∗(xk) as i → ∞.

Theorem 4. Define the cost function sequence {Vi} as in (13) with V0(·) = 0.
If the system state xk is controllable, then J∗ is the limit of the cost function
sequence {Vi}, i.e., limi→∞ Vi(xk) = J∗(xk).

For space reasons, we will present the details of the proof of Lemma 2 and
Theorems 2–4 in a future paper.

From Theorems 2–4, we can obtain that the cost function sequence {Vi(xk)}
converges to the optimal cost function J∗(xk) of the DTHJB equation. Then,
according to (5) and (12), we can conclude that the control law sequence also
converges to the optimal control law (5), i.e., vi → u∗ as i → ∞.

3.4 NN Implementation of the Iterative ADP Algorithm Using
GDHP Technique

Now, we implement the iterative GDHP algorithm in (12) and (13). In the it-
erative GDHP algorithm, there are three NNs, which are model network, critic
network and action network. All the networks are chosen as three-layer feedfor-
ward NNs. The inputs of the critic network and action network are xk, while
the inputs of the model network are xk and v̂i(xk). The training of the model
network is completed after the system identification process and its weights are
kept unchanged. The learned NN system model will be used in the process of
training the critic network and action network.

The critic network is used to approximate both Vi(xk) and its derivative
∂Vi(xk)/∂xk, which is named costate function and denoted as λi(xk). The output
of the critic network is denoted as[

V̂i(xk)

λ̂i(xk)

]
=

[
ω1T

ci

ω2T
ci

]
σ
(
νT

cixk

)
= ωT

ciσ
(
νT

cixk

)
, (15)

where ωci =
[
ω1

ci ω2
ci

]
. So, V̂i(xk) = ω1T

ci σ
(
νT

cixk

)
and λ̂i(xk) = ω2T

ci σ
(
νT

cixk

)
.

The target function can be written as

Vi+1(xk) = xT
k Qxk + vT

i (xk)Rvi(xk) + γV̂i(x̂k+1) (16)
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and

λi+1(xk) =
∂
(
xT

k Qxk + vT
i (xk)Rvi(xk)

)
∂xk

+ γ
∂V̂i(x̂k+1)

∂xk

= 2Qxk + 2
(
∂vi(xk)
∂xk

)T

Rvi(xk)

+ γ

(
∂x̂k+1

∂xk
+

∂x̂k+1

∂v̂i(xk)
∂v̂i(xk)
∂xk

)T

λ̂i(x̂k+1). (17)

Then we define the error function for training the critic network as e1
cik =

V̂i+1(xk) − Vi+1(xk) and e2
cik = λ̂i+1(xk) − λi+1(xk). The objective function

to be minimized in the critic network training is Ecik = (1 − β)E1
cik + βE2

cik,
where E1

cik = 0.5e1T
cike

1
cik and E2

cik = 0.5e2T
cike

2
cik. The weight updating rule for

training the critic network is also gradient-based adaptation given by

ωci(j + 1) = ωci(j) − αc

[
(1 − β)

∂E1
cik

∂ωci(j)
+ β

∂E2
cik

∂ωci(j)

]
, (18)

νci(j + 1) = νci(j) − αc

[
(1 − β)

∂E1
cik

∂νci(j)
+ β

∂E2
cik

∂νci(j)

]
, (19)

where αc > 0 is the learning rate of the critic network, j is the inner-loop iterative
step for updating the weight parameters, and 0 ≤ β ≤ 1 is a parameter that
adjusts how HDP and DHP are combined in GDHP. For β = 0, the training of
the critic network reduces to a pure HDP, while β = 1 does the same for DHP.

The output of the action network is expressed as v̂i(xk) = ωT
aiσ

(
νT

aixk

)
and

its training target is

vi(xk) = −γ

2
R−1ĝT (xk)

∂V̂i(x̂k+1)
∂x̂k+1

. (20)

The error function of the action network can be defined as eaik = v̂i(xk)−vi(xk).
The weights of the action network are updated to minimize the error measure
Eaik = 0.5eT

aikeaik. Similarly, the weight updating algorithm is

ωai(j + 1) = ωai(j) − αa

[
∂Eaik

∂ωai(j)

]
, (21)

νai(j + 1) = νai(j) − αa

[
∂Eaik

∂νai(j)

]
, (22)

where αa > 0 is the learning rate of the action network, and j is the inner-loop
iterative step for updating the weight parameters.

Remark 1. According to Theorem 4, Vi(xk)→J∗(xk) as i → ∞. Since λi(xk)=
∂Vi(xk)/∂xk, we can conclude that the costate function sequence {λi(xk)} is also
convergent with λi(xk) → λ∗(xk) as i → ∞.
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4 Simulation Study

Consider the nonlinear system derived from [5]:

xk+1 =

⎡⎢⎢⎣
x3

2k + x2k

1 + 2x2
2k

x1k + x2k

1 + x2
1k

⎤⎥⎥⎦ +
[

0
1

]
u(xk),

where xk = [x1k x2k]T ∈ R2 and uk ∈ R are the state and control variables,
respectively. The cost function is chosen as U(xk, uk) = xT

k xk + uT
k uk.

We choose three-layer feedforward NNs as model network, critic network and
action network with the structures 3–8–2, 2–8–3, 2–8–1, respectively. The ini-
tial weights of them are all set to be random in [−0.1, 0.1]. Let the discount
factor γ = 1 and the adjusting parameter β = 0.5, we train the critic network
and action network for 38 training cycles with each cycle of 2000 steps. In the
training process, the learning rate αc = αa = 0.05. The convergence process of
the cost function and its derivative of the iterative GDHP algorithm at time
instant k = 0 are shown in Fig. 1. We can see that the iterative cost function se-
quence does converge to the optimal cost function quite rapidly, which indicates
the effectiveness of the iterative GDHP algorithm. Besides, the costate function
sequence is also convergent as Remark 1 stated.

Then, for the given initial state x10 = 1 and x20 = 1, we apply the optimal
control law derived by the iterative GDHP algorithm to the controlled system
for 15 time steps, and obtain the simulation results are shown in Fig. 2. We can
see that the controller designed by the iterative GDHP algorithm has excellent
performance. Moreover, the most important property that the iterative GDHP
algorithm superior to the iterative HDP and DHP algorithms is that the former
can show us the convergence process of the cost function and costate function
sequence simultaneously.
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Fig. 1. The convergence process of the cost function and costate function sequence



638 D. Wang and D. Liu

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5
T

he
 c

on
tr

ol
 in

pu
t

Time steps

(a)

 

 

0 5 10 15
−1

−0.5

0

0.5

1

T
he

 s
ta

te
 tr

aj
ec

to
rie

s

Time steps

(b)

 

 
x

1

x
2

Fig. 2. The simulation results. (a) The control input u. (b) The corresponding state
trajectories x1 and x2.

5 Conclusion

In this paper, a novel NN-based approach is proposed to design the near optimal
controller for a class of unknown discrete-time nonlinear systems with discount
factor in the cost function. The iterative GDHP algorithm is introduced to solve
the cost function of the DTHJB equation with convergence analysis. Three NNs
are used to implement the algorithm. The simulation example demonstrated the
validity of the derived optimal control strategy.
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