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Preface

This volume includes the articles presented at the 14th International Workshop
on Combinatorial Image Analysis, IWCIA 2011, held in Madrid, Spain, May
23–25, 2011. The 13 previous meetings were held in Paris (France) 1991, Ube
(Japan) 1992, Washington D.C. (USA) 1994, Lyon (France) 1995, Hiroshima
(Japan) 1997, Madras (India) 1999, Caen (France) 2000, Philadelphia (USA)
2001, Palermo (Italy) 2003, Auckland (New Zealand) 2004, Berlin (Germany)
2006, Buffalo (USA) 2008, and Playa del Carmen (Mexico) 2009.

Over the last 20 years, the IWCIA series has been promoting research on
combinatorial approaches to image analysis and processing. In many cases, the
proposed solutions have appeared to be more efficient and accurate than those
based on continuous models and numeric computation.

Following the call for papers, IWCIA 2011 received 60 submissions. After a
rigorous review process, 25 of them were accepted for oral presentation and 13 for
poster presentation and for inclusion in this volume. The IWCIA 2011 Program
Committee consisted of 81 renowned experts from 26 different countries, and
submissions came from about 20 different countries from Asia, Europe, North
and South America. The submission and review process was carried out with
the help of the OpenConf conference system. Review assignments were largely
done matching paper topics to topics of expertise indicated by the reviewers.
The reviewing process was quite rigorous: each paper received at least three
double-blind reviews by members of the Program Committee. The most impor-
tant selection criterion for acceptance or rejection of a paper was the overall
score received. Other criteria included: relevance to the workshop topics, cor-
rectness, originality, mathematical depth, clarity, and presentation quality. We
believe that as a result, only high-quality papers were accepted for presentation
at IWCIA 2011 and for publication in the present volume.

The scientific program of the workshop included oral and poster presentations
of contributed papers, as well as keynote talks by four distinguished researchers:
Jake Aggarwal, Valentin Brimkov, Concettina Guerra, and Sebastián Cerdán.
In addition to the main theoretical track of IWCIA 2011, for the third time a
Special Track on Applications was organized. It provided researchers with the
opportunity to present their latest achievements and discuss various applications.

The present volume starts with a section containing extended abstracts of the
four keynote talks. The contributed papers are grouped into six sections. The
first two sections include 16 papers related to digital geometry. The first one is
devoted to more general issues, such as digital topology and combinatorics in
digital spaces, while the second one is focused on curves and surfaces. The third
section contains eight papers on grammars and models for image analysis and
related tilings and patterns. The fourth section includes five papers on discrete
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tomography. The next one contains five papers on image segmentation, recon-
struction, compression, and fuzzy and stochastic image analysis. The last section
includes five papers addressing applications in medical imaging and biometrics.
We hope that many of these papers are of interest to a broader audience, includ-
ing researchers working in areas such as computer vision and computer graphics.

We would like to thank everyone who contributed to the success of IWCIA
2011. First of all, the Chairs are indebted to IWCIA’s Steering Committee for
endorsing the candidacy of Spain and Madrid for the 14th edition of the Work-
shop, as well as to the keynote speakers Jake K. Aggarwal, Valentin E. Brimkov,
Concettina Guerra, and Sebastián Cerdán for their remarkable talks and overall
contribution to the workshop program.

Our most sincere thanks go to the IWCIA 2011 Program Committee whose
cooperation in carrying out high-quality reviews was essential in establishing a
very strong workshop program. We wish to thank everybody who submitted their
work to IWCIA 2011. Thanks to their contributions, we succeeded in having a
technical program of high scientific quality. We are indebted to all participants
and especially to the contributors of this volume. We hope that the attendees
benefited from the scientific program and got inspired with new ideas. We also
believe they enjoyed the social program and the excellent conditions provided
by the local organizers from the Universidad Autonoma de Madrid. Finally,
we express our gratitude to the Springer editorial team, in particular to Alfred
Hofmann and Anna Kramer, for their efficient and kind cooperation in the timely
production of this book. This book is published with financial support from the
Grant TIN2010-11021-E of MICINN, Spain.

May 2011 Jake K. Aggarwal
Reneta P. Barneva

Valentin E. Brimkov
Kostadin Koroutchev

Elka Korutcheva
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Concettina Guerra Università di Padova, Italy and Georgia Tech,

USA

Program Committee

Til Aach RWTH Aachen University, Germany
Lyuba Alboul Sheffield Hallam University, UK
Eric Andres University of Poitiers, France
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Colin Cartade, Rémy Malgouyres, Christian Mercat, and
Chafik Samir

Ellipse Constraints for Improved Wide-Baseline Feature Matching and
Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Dominik Rueß and Ralf Reulke

Reconstruction of Concurrent Lines from Leaning Points . . . . . . . . . . . . . . 182
Peter Veelaert and Michaël Heyvaert
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Grammars and Models for Image Analysis.
Tilings and Patterns

On Some Classes of 2D Languages and Their Relations . . . . . . . . . . . . . . . 222
Marcello M. Bersani, Achille Frigeri, and Alessandra Cherubini

Petri Net Generating Hexagonal Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
D. Lalitha, K. Rangarajan, and D.G. Thomas

Binary Images, M−Vectors, and Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . 248
K.G. Subramanian, Kalpana Mahalingam, Rosni Abdullah, and
Atulya K. Nagar



Table of Contents XIII

Shuffle on Trajectories over Finite Array Languages . . . . . . . . . . . . . . . . . . 261
H. Geetha, D.G. Thomas, T. Kalyani, and
A.S. Prasanna Venkatesan

Planar Configurations Induced by Exact Polyominoes . . . . . . . . . . . . . . . . 275
Daniela Battaglino, Andrea Frosini, and Simone Rinaldi

Discrete Tomography

Convex-Set Perimeter Estimation from Its Two Projections . . . . . . . . . . . 284
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Support Vector Machine Approach to Cardiac SPECT Diagnosis . . . . . . . 432
Marcin Ciecholewski

An Entropy-Based Technique for Nonrigid Medical Image Alignment . . . 444
Mohammed Khader and A. Ben Hamza

Precipitates Segmentation from Scanning Electron Microscope Images
through Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

João P. Papa, Clayton R. Pereira, Victor H.C. de Albuquerque,
Cleiton C. Silva, Alexandre X. Falcão, and João Manuel R.S. Tavares

Nonlinear Dynamical Analysis of Magnetic Resonance Spectroscopy
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

Alejandro Chinea

A Shared Parameter Model for Gesture and Sub-gesture Analysis . . . . . . 483
Manavender R. Malgireddy, Ifeoma Nwogu, Subarna Ghosh, and
Venu Govindaraju

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495



Recognition of Human Activities

Jake K. Aggarwal

Computer and Vision Research Center
The University of Texas at Austin

Austin, Texas 78712, USA
aggarwaljk@mail.utexas.edu

Computer Vision is the estimation of the three dimensional shape and other
properties of objects based on their two dimensional (projection) images through
the use of computers and cameras. It had its beginning in the early 1960s. At
the time, it was thought to be an easy problem with a solution probably possible
over a summer. However, the basic problem has proved to be far more difficult.
Over the span of the last 50 years, computer vision has matured from a research
topic in the early 1960s to a mature field of research and application. Today,
computer vision, image processing, and pattern recognition are addressing many
societal and technological problems.

Early interest centered on estimating the shape of inanimate objects like
blocks and simple objects such as hand tools. As research progressed in the
1970s, researchers became interested in the motion of objects and in the 1980s
started estimating the motion of people. Analysis and understanding of activities
followed soon thereafter. The recent desire to monitor people and their activ-
ities has led to an added interest in human activity recognition. Security and
surveillance applications vary from monitoring persons in public places like a
subway station, an airport, a bus station and a parking lot to observing per-
sons in a wide area from a camera mounted on an unmanned aerial vehicle
(UAV). Recognition of a person based on static images as well as from video
has many applications in surveillance. Monitoring the elderly in a ‘smart’ home
equipped with multiple cameras and other sensors is a different type of applica-
tion. Analysis and understanding of sports video is still another type of activity
recognition. Content-based video summarization and retrieval, especially useful
to video-sharing websites, is another area with ties to human activity recogni-
tion. The movie industry is interested in synthesizing a given persons actions and
gait based on a model video of a person. This requires careful capture, analysis,
and understanding of the movements of a person and/or a collection of persons.
The added constraint in many applications is the need for real-time delivery of
the results of processing, analysis, and understanding. At times, this is a truly
challenging task.

Advances in several technologies have helped the adoption of computer vision
technology in applications. In particular, cameras come in all different sizes, reso-
lutions, shapes, and prices. Webcams are relatively cheap and small and produce

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 1–4, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 J.K. Aggarwal

good quality images. Video cameras produce high quality images and may be
captured in a computer without difficulty. PTZ cameras with remotely control-
lable pan, tilt, and zoom capability are readily available. One can use infrared
cameras (a bit expensive) or cameras with other modalities for specialized ap-
plications. On another technology front, memory and computers have become
relatively inexpensive and significantly faster. A person can buy an ‘off the shelf’
system that connects to a home computer and can monitor his/her home from
a laptop via the internet. So, the technology is providing an additional boost to
computer vision applications.

Before one reaches the stage of high level processing like understanding an
activity, many low level image processing steps in a long chain of steps must be
performed. In general, these steps pose severe challenges in and of themselves.
Images with limited resolution and low contrast pose serious low level images
processing difficulties. It is not the intention of the author to soft pedal the
difficulties associated with low level processing. A cursory look at the images
obtained, for example, in a subway station without the benefit of bright lights
will convince a person that low level segmentation is a serious problem. In ad-
dition, surveillance is a 24/7 problem, including night-time, rain, and fog if the
surveillance is occurring outdoors. In general, low-level segmentation determines
the success or failure of the overall system.

The duration of an activity varies with the type of activity and activity is
normally a continuous chain of events and not a single event. Given that our
recognition methodologies are bottom up in the sense that we recognize “micro
activities” or “actions” and then build a concatenation of such recognitions to
recognize an activity, several researchers have adopted segmenting an activity
at different levels. Earlier the paradigms of ‘change, event, verb, episode, and
history’; ‘movement, activity, and action’; and ‘agent, motion, and target’ were
used to segment different activities. Other paradigms based on a more flexible
context free grammar description of activities have been developed. This has the
advantage of describing an activity at the level of detail based on the problem
under consideration.

At a gross level, a person is represented as a blob; the level of understanding
attainable at this level of granularity is limited to gross level description of mo-
tion and activity. One may describe simple actions like depart, follow, and meet.
One may construct a system that distinguishes the motion of a person, bicycle,
and a vehicle based on the blob and recognize certain gross actions between play-
ers. For certain applications, this is adequate. In fact, if one is trying to avoid
actual recognition of a person to conform to privacy issues, these techniques
are particularly useful. At the next level, a person is represented by body parts
namely head, torso, arms legs, hands, and feet. A number of methods have been
proposed to address the segmentation of a body into various parts. At times,
one is interested in determining the major joints of the body or the extremities
of the body since they carry a wealth of information about the activity being
performed by the entire body. Semantic recognition of activities based on various
body parts has produced some very good results that range from the recognition
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of simple activities to the recognition of fighting and recursive activities such
as continued fighting. The context of the activity plays an important role in
recognition of human activity.

A variety of methodologies are being pursued and one may impose a number of
taxonomies to gain insight into methods and results. One such taxonomy is based
on dividing the methods into two classes: single layer or hierarchical approaches.
In the single layer approach, it may be divided into two cases: space-time or
sequential. In the case of hierarchical approaches, recognizing higher levels of
activity is based on simpler sub-events related to the activity. The common parts
are re-used again in constructing the description of the overall activity. A general
purpose recognition system (framework) that can provide a semantic description
of diverse human activities is far in the future. Most researchers have focused
on special purpose systems addressing particular problems and considered single
person activities, two person interactions, and/or crowd activities.

The moving light display experiment of Johansson [5] certainly inspired neuro-
science and computer vision based studies of human motion. It motivated Webb
[7] to study human motion. A review by the author [1] and other reviews by
Cedras and Shah [3], Garvila [4], and Turga et al. [6] and the yet unpublished
paper [2] provide an overview of the state of art of recognition of human ac-
tivities in computer vision. Several problems of computer vision/human activity
recognition have proved to be difficult to solve. We have certainly made headway
but a solution ala R2D2 is still far in the future. It is fair to assume that some
of these problems will be solved in the near future.

Contemporary researchers are addressing a variety of problems involving ac-
tivity recognition, for example, recognition of human activities from a moving
platform. It poses some difficult problems whether it is UAV based camera or a
car based camera. In addition to monitoring people, one is naturally interested
in the interaction of persons in a scene, the behavior of a crowd, and the pos-
sible interaction of a person with movable objects like a piece of luggage or an
unmovable object like a fence or a wall. So, working on recognition of human
activities has some challenging and interesting ongoing research. Hopefully, this
brief abstract provides an introduction to the talk that will provide an exciting
array of past accomplishments and future challenges.

References

1. Aggarwal, J.K., Cai, Q.: Human motion analysis: A review. Computer Vision and
Image Understanding 73(3), 428–440 (1999)

2. Aggarwal, J.K., Ryoo, M.S.: Human activity recognition: A review. ACM Comput-
ing Surveys, CSUR (to appear, 2011)

3. Cedras, C., Shah, M.: A motion-based recognition: A survey. Image and Vision
Computing 13(2), 129–155 (1995)

4. Gavrila, D.M.: The visual analysis of human movement: A survey. Computer Vision
and Image Understanding 73(1), 82–98 (1999)

5. Johansson, G.: Visual perception of biological motion and model for analysis. Per-
ception Psychophysics 14(2), 201–211 (1973)



4 J.K. Aggarwal

6. Turga, P., Chellappa, R., Subrahmanian, V.S., Udren, O.: Machine recognition of
human activities: A survey. IEEE Transactions on Circuits and Systems for Video
Technology 18(11), 1473–1488 (2008)

7. Webb, J.A., Aggarwal, J.K.: Structure from motion of rigid and jointed objects.
Artificial Intelligence 19, 107–130 (1982)



Complexity and Approximability Issues in

Combinatorial Image Analysis

Valentin E. Brimkov

Mathematics Department, SUNY Buffalo State College,
Buffalo, NY 14222, USA

brimkove@buffalostate.edu

1 Combinatorial Image Analysis and Discrete Geometry

Image analysis is directly applicable to various important and sensitive societal
sectors, such as medicine, defense, and security. Often, related research is funded
under industrial projects with tight deadlines. Therefore, sometimes certain im-
portant theoretical issues remain unaddressed. Such issues have been discussed
in length in a recent article [2]. The latter suggested a number of strategic ob-
jectives for theoretical research in combinatorial image analysis. Most of these
relate to the need to make the discipline better integrated within a number of
well-established subjects of theoretical computer science and discrete applied
mathematics, such as theory of algorithms and problem complexity, combinato-
rial optimization and polyhedral combinatorics, integer and linear programming,
and computational geometry. Here we concern more in detail one aspect of the
research on combinatorial algorithms for image analysis.

Complexity Results and Approximation Algorithms

Theoretical research in combinatorial image analysis is heavily based on struc-
tural results and algorithms of discrete geometry. The problems in discrete ge-
ometry are combinatorial in nature, which makes them interesting from a point
of view of combinatorial optimization and complexity theory.

The theory of algorithms and problem complexity is a central and most
important part of theoretical computer science. Complexity issues, therefore,
are among the most essential elements distinguishing discrete geometry as an
advanced theoretical field.

Many computational problems of discrete geometry have been proved to be
NP-hard, which suggests to look for efficient approximation algorithms with
guaranteed complexity and accuracy (i.e., together with upper/lower bounds on
the algorithms’ performance). The performance of a heuristic may need to be
analyzed for special probability distributions on inputs. Another possibility is to
look for polynomially solvable subclasses of a computationally hard problem. It
is also important to investigate the practical versus theoretical performance of
an approximation algorithm. As we will illustrate next, poor theoretical perfor-
mance of an algorithm is not always matched by poor performance in practice.
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2 Theoretical vs. Practical Performance: An Example

2.1 Guarding a Set of Segments, Set Cover, and Vertex Cover

Consider any real structure that can be modeled by a set of straight line seg-
ments. This can be a network of streets in a city, tunnels in a mine or corridors
in a building, pipes in a factory, etc. We want to find a minimal (or close to
the minimal) number of locations where to place “guards” (either humans or
machines), in a way that any point of the network can be “seen” by at least one
guard. Alternatively, we can view this problem as finding a minimal number of
devices to place so that a user has access (or a connection) to at least one device
from any location. In terms of our mathematical model, we look for a minimum
(or close to the minimum) number of points on the given segments, so that every
segment contains at least one of them. We call this problem Guarding a Set of
Segments (GSS).

GSS belongs to the class of the art gallery problems. A great variety of such
problems have been studied for at least four decades. Related studies have started
much earlier by introducing the concepts of starshapedness and visibility (see
[6,11]). The reader is referred to the monograph of Joseph O’Rourke [12] and
the more recent one of Jorge Urrutia [14]. See also [3,10] and the bibliography
therein for a couple of examples of art-gallery problems defined on sets of seg-
ments, and [8,1] for possible applications of related studies to efficient wireless
communication.

GSS is germane to the set cover (SC), vertex cover (VC) and edge cover (EC)
problems1 (see for details [13]). These are fundamental combinatorial problems
that play an important role in complexity theory. It should be noted that we
can find applications of GSS anywhere that we find applications of VC where a
planar embedding of the graph is relevant or the vertices of the graph represent
objects with geometric locations.

GSS can be formulated as a special case of the set cover problem. Under
certain restrictions, it can also be formulated as a vertex cover or edge cover
problem.

2.2 GSS: Complexity, Polynomial Classes, Approximate Algorithms
and Their Theoretical and Experimental Performance

It is well-known that both SC and VC are NP-complete [7,9]. GSS is a special
case of the set covering problem where the family of subsets given can be taken
as a set of intersections of the given straight line segments. Requiring that the
given subsets can be interpreted geometrically this way is a major restriction on
the input, yet we have shown that the problem is still strongly NP-complete [4].
1 Given a universe set U and an arbitrary family of subsets F ⊆ P(U), the optimization

set cover problem looks for a minimum cover C ⊆ F so that
⋃

C = U .
Given a graph G, a vertex cover of G is a set C of vertices of G, such that every

edge of G is incident to at least one vertex of C. The optimization vertex cover
problem has as an input a graph G = (V, E), and one looks for a vertex cover with
a minimal number of vertices.
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We have determined certain subclasses of GSS for which the problem admits
a polynomial time solution (for example, this is the case for sets of segments
that feature a tree structure).

In light of the NP-completeness of the general formulation, we studied the
accuracy of three polynomial-time approximation algorithms which return seg-
ment coverings. We show that for each of these, theoretically the ratio of the
approximate to the optimal solution can increase without bound with the in-
crease of the number of segments. Several other theoretical results concerning
GSS approximability have been obtained as well.

In order to study the algorithms performance experimentally, we have used
many different pieces of software. The programs can be divided into three
components:

1) GSS Generators
2) GSS Solvers
3) Data Analyzers and Visualizers

Surprisingly, our extensive experiments demonstrated that on randomly gener-
ated instances the approximate solutions are always very close to the optimal
ones, and often are, in fact, optimal. See [5] for more details.

2.3 Still Open: What Is GSS Approximability?

An important question remains still open: what is GSS approximability? It is
well-known that a minimum set cover can be found in polynomial time within
an O(log n) factor, which is the best possible by order (unless the problems
in NP admit quasi-polynomial time solutions). A minimum vertex cover can
efficiently be computed within a constant factor. GSS is a special case of set cover
and generalization of vertex cover, so its approximability is to be “sandwiched”
between the set cover and vertex cover approximabilities. Which of these does
the approximation of GSS emulate?
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1   Introduction 

Obesity is a pandemic syndrome underlying the most prevalent causes of death and 
disability in developed countries including atherosclerosis, ischemic episodes and 
cancer. Obesity results from an imbalance in global energy metabolism, ultimately 
caused by disturbances in the neuroendocrine control of appetite in the hypothalamus 
and leading to an uncompensated  feeding/fasting balance [3].  On these grounds, the 
non invasive detection of hypothalamic activation by food under healthy or diseased 
conditions entails considerable interest for the diagnosis and treatment of obesity and 
other food intake disorders as anorexia or bulimia. 

Recent evidences support that diffusion weighted imaging (DWI) can provide an 
independent assessment of stimulated brain areas [2]. The sensitivity of functional 
DWI to detect micro-structural changes at high b values, on one hand, and the possi-
bility of using IVIM (DWI at low b values) to detect flow changes, on the other, 
makes this methodology a very suitable technique to explore cerebral hypothalamic 
activation during a feeding-fasting paradigm in mice. 

In this report we propose a systematic approach to analyze DWI data sets includ-
ing the use of high and low b values to emphasize the different contributions of flow 
and diffusion  effects and implemented  a variety of different diffusion models to 
analyze the data. Our results show that hypothalamic activation is associated to a 
significant increase in the contribution of the slow diffusion phase in a high  
b-biexponential diffusion model, and a significant directional-dependent increase in 
the contribution of the fast diffusion phase in the biexponential diffusion model with 
low b values. Together, our data provide a novel intelligent environment for the  
detection and treatment of the cerebral component of obesity. 

2   Materials and Methods 

Animal model: Adult C57 mice (n=8), drinking water ad libitum were imaged in two 
consecutive experimental conditions, fed ad libitum and fasted (48 h). MRI studies: 
Mice were maintained anesthetized with 1% isofluorane/oxygen through a nose cap 
during MRI protocols. We used a 7T Bruker Pharmascan scanner equipped with a 
90mm gradient coil insert (36 G/cm, max intensity) and a mouse head resonator.  
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Diffusion weighting was achieved using the Stejskal-Tanner spin-echo sequence (3) 
with 4 shot EPI-read gradient and 3 different directions defined by the read, phase and 
slice encoding gradients. Acquisition conditions were: δ = 4ms, Δ=20ms, TR=3000ms, 
TE=51ms, FOV=38mm, axial slices (1.5 mm thickness). We obtained 5 “high b” value 
acquisitions (200<b<1200 s/mm2) and 6 “low b” value acquisitions (10<b<90 s/mm2) 
across an imaging plane containing the hypothalamus. Data analysis: The complete 
data set was analyzed either using a Linear Discriminant Analysis (LDA) methodol-
ogy or a biexponential diffusion decay S(b)/S(0)=SDP•exp(bDslow) + FDP•exp(-
bDfast), with slow (SDP) and fast (FDP) diffusion phases characterized by slow 
(Dslow) and fast (Dfast) diffusion coefficients. Parameter values were obtained by 
pixel by pixel fitting of the image data set using home-made MATLAB v7a libraries 
and compared between fed and fasted states.  

3   Results and Discussion 

Model free approaches. Figure 1 illustrates the results obtained by Linear Discrimi-
nant Analysis as applied to a complete set of diffusion weighted image data sets ob-
tained from representative mouse under the fed or fasted condition. Fisher analysis 
(Hastie et al. 2001) calculated the vector that optimally separates the pixels from these 
two conditions. The projection of the values of the fed and fasted conditions of the 
LDA vector, results in a histogram depicting frequency of occurrence of the projected 
value under the fed or fasted states (Figure 1, upper panel). The LDA projection can 
be interpreted as an “appetite index”, with the maximal values for the fed projections 
and the minimal values for the fasted projections, allowing for the classification of a 
given pixel between the two possible classes (fed and fasted). 

 

Fig. 1. Histogram after applying LDA to DWI image data sets from the brain of  fed and fasted 
mice (green-fed, purple-fasted, upper panels). Anatomical location of the most representative 
pixels of between feeding and fasting conditions (lower panels). 
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The histogram of appetite index values from an animal may be used to decide if the 
animal is fed or fasted, since the fed and fasted histograms are different. Using this 
method, we were able to classify correctly the images of all mice between the fed or 
fasted classes, resulting in 100% correct classifications.  

Biexponential Model Approaches. To investigate the physiological causes of the 
LDA obtained classification, we implemented a biexponential model, as described in 
Methods. Figure 2 shows representative parameter maps from the Slow Diffusion 
Phase (SDP) across the hypothalamus of fed and fasted mice for the High b and Low 
b weightings, superimposed on the corresponding T2-weighted images. For the High 
b weighting, SDP values increase very appreciably when animals are fasted (in the 
three diffusion directions measured). Significant differences between feeding condi-
tions are found in the A-P orientation, with p<0.001, and in the H-F direction, with 
p<0.05. For the Low b weightings, differences are significant in the H-F direction, 
where SDP calculated values become lower when animals are fasted. In general, the 
fasted state is described by an increase in the relative contribution of the slow diffu-
sion phase (SDP) component for high b weightings. In the case of low b weightings, 
we observed an increase in the complementary fast diffusion phase (FDP) component. 

 

Fig. 2. Representative SDP values in the hypothalamus of fed and fasted mice as determined by 
the quantitative analysis of DWI using a biexponential model. High b weighting (left) and Low 
b weighting (right). 

4   Conclusion 

Taken together, these observations reveal that fasting induces hypothalamic swelling 
and increased blood flow and these alterations constitute the main physiological  
differences between the fed and fasted brain as detected in Figure 1. Our results pro-
vide in addition, a novel environment for the evaluation of the cerebral component of 
obesity and may help in the development and implementation of novel anti-obesity 
therapeutic strategies. 
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Abstract. Broad and extensive knowledge of the biological function of
proteins would have great practical impact on the identification of novel
drug targets, and on finding the molecular causes of diseases. The experi-
mental in vitro determination of protein function is an expensive and time
consuming process. As a consequence, the development of computational
techniques to complement and guide the experimental process is a cru-
cial step for biological analysis in the post-genomic era. The prediction of
molecular interactions is an important component in functional annota-
tion Here we shortly describe two approaches to tackle this problem. One
approach is structure-based and consists of identifying possible regions of
interface on the surface of proteins. A second approach is to transfer a re-
liable interaction from a species to another species when both species are
represented by networks of experimentally determined interactions.

1 Recognition of Proteins Binding Sites

The prediction of interactions is a major task in biology, that has been considered
with different types of interacting molecules including protein-protein, protein
ligand, protein-RNA and protein-DNA. In particular, the interaction between
proteins and ligands is of great interest to the functional annotation of proteins.
When a novel protein with unknown function is discovered, bioinformatics tools
are used to screen huge datasets of proteins with known function and binding
sites, searching for a candidate binding site in the new protein. More specifically,
if a surface region of the novel protein is similar to that of the binding site of
another protein with known function, the function of the one protein can be
inferred and its molecular interaction predicted.

Much work has been done on the analysis of the binding sites of proteins and
their identification. This problem is often solved by protein surface matching for
which different instances have been considered in the literature:

1. Given binding sites for numerous proteins, the sites are compared and clas-
sified [10,13,15].

2. For a given binding site on a first protein, find the surface region of a second
protein most similar to the given binding site [8,16].

3. Given two protein surfaces find similar patches on the two surfaces [2].

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 13–16, 2011.
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The techniques employed are numerous ranging from geometric hashing of tri-
angles of points and their associated physico-chemical properties [13], to clique
detection on the vertices of the triangulated solvent-accessible surface. Other
methods have been developed to identify specific three-dimensional patterns of
amino acid side-chains, for instance ”catalytic triads” by using for instance graph
isomorphism.

We have developed a suite of methodologies and programs for the problem
of protein-ligand binding site recognition, based on a representation of the pro-
teins by a collection of spin-images [1,2]. Experiments conducted on several pro-
tein structures from different families and binding to different ligands revealed
that in many cases the largest paired regions discovered with high similarity
on two protein surfaces actually correspond to the area around the binding
site.

Cavity detection is often the first step for functional analysis, since binding
sites in proteins usually lie in cavities. Several methods and procedures exist to
detect protein cavities, either internal to a molecule or external on a protein sur-
face. The cavity detection algorithms are often based on fitting probe spheres into
the spaces between the atoms as in the program SURFNET [6]. We have also de-
veloped a method to elucidate protein-protein interactions that identifies cavities
on protein surfaces as potential binding sites and matches them [3]. The method
has been tested on the dataset that comprised 244 non redundant PDB entries
including enzymes (45.9%), nonenzymes (52.9%), and ”hypothetical” (1.2%) pro-
teins, according to PDBsum and Uniprot. For the majority of cases, the binding
site was correctly found to be on one of the four biggest clefts. We have made
our programs available on the web at http://bcb.dei.unipd.it/MolLoc/. The pro-
grams include a web server for cavity detection and for the comparison of binding
sites or cavities.

In [5] a method to quickly identify promising binding sites, either in a protein
cavity or on an entire protein surface was proposed based on spherical harmonics.
The aim was to efficiently detect putative binding sites without explicitly aligning
them, i.e., without actually computing the optimal rotation that best overlaps
two binding sites. Instead, with our method we were able to simultaneously
evaluate all possible rotations corresponding to a single translation.

2 Protein-Protein Interaction Networks: Analysis and
Comparison

Much data has become recently available about protein-protein interaction (PPI)
networks in selected organisms by a number of laboratory experiments,
including high-throughput techniques, such as yeast-2-hybrid assays, and co-
immuno-precipitation. A PPI network is generally modeled by a graph whose
nodes correspond to proteins and edges to interactions between proteins. The
available PPI data are incomplete and often noisy, thus the graphs are generally
rather sparse and their edges not very reliable. The presence of large numbers
of false negatives and false positives affects the studies on these networks. Thus,
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statistical methods have been designed to systematically validate the actual pro-
tein interactions.

The topology of PPI networks is not random and has been characterized in
terms of global features, such as degree distributions, average node distance,
and clustering coefficients [11]. Other studies have focused on local features of
biological networks such as appearance of patterns of local interactions or motifs
[12]. Motifs have been defined as both subgraphs that frequently appear in an
ensemble of graphs, and subgraphs that are over-represented in a single network.
The latter definition assumes a graph model of the given network, thus it as-
sesses the significance of subgraphs frequency with respect to a set of random
networks derived by the same model. Graph isomorphism is a required step in
most motif discovery algorithms proposed in the literature for counting the oc-
currences of subgraphs and distinguishing non-isomorphic subgraphs. Sub-graph
isomorphism is a NP-complete problem; however, for specific instances of graphs,
efficient heuristics can be set up to reduce the search space.

An interesting problem is that of discovering sub-graphs in PPI networks that
are highly conserved across species. There is experimental evidence that PPI net-
works evolve at a modular level. Nodes prefer to attach to well-connected nodes.
Furthermore, it has been observed that the interactions among groups of proteins
that are temporally close in the course of evolution are likely to be conserved.
Consequently, understanding of conserved substructures through alignment of
these networks can provide basic insights into a variety of biochemical processes.
Network alignment is the problem of finding correspondences between the nodes
in two networks based on sequence similarity of the nodes as well as on the sim-
ilarity of their neighbor’s topology. The search for an alignment of two networks
is often formulated as a graph optimization problem that incorporates informa-
tion about the evolution in the definition of the score function to be optimized
in the alignment.

Alignment methods can be classified depending on whether they aim at a
global [14] or a local alignment [7,9], in other words whether the goal is to deter-
mine a measure of similarity between the overall structures of the networks, or to
uncover subgraphs of the two graphs with high degree of sequence and topolog-
ical similarity. Such subgraphs are likely to correspond to functional modules or
complexes involved in the same biological process. They usually consist of a set
of highly interacting proteins, i.e. dense subgraphs in PPI networks. However,
due to the incompleteness of the data, i.e., missing interactions, often they are
sparse subgraphs. For this reason, a recently designed approach [4] addresses
the problem of identifying conserved complexes by searching for relatively dense
groups of nodes with only sparser connections outside.

Comparative analysis is a very powerful tool for the prediction of protein-
protein interactions, based on the fact that their corresponding proteins in the
alignment interact within another species. Network alignment is also useful for
functional prediction since the annotations from the annotated proteins can be
transfered to the aligned proteins which are not annotated in another organism.
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Abstract. Thinning is an iterative layer-by-layer erosion until only the
skeleton-like shape features of the objects are left. This paper presents
a family of new 3D parallel thinning algorithms that are based on our
new sufficient conditions for 3D parallel reduction operators to preserve
topology. The strategy which is used is called subiteration-based: each
iteration step is composed of six parallel reduction operators accord-
ing to the six main directions in 3D. The major contributions of this
paper are: 1) Some new sufficient conditions for topology preserving par-
allel reductions are introduced. 2) A new 6–subiteration thinning scheme
is proposed. Its topological correctness is guaranteed, since its deletion
rules are derived from our sufficient conditions for topology preserva-
tion. 3) The proposed thinning scheme with different characterizations
of endpoints yields various new algorithms for extracting centerlines and
medial surfaces from 3D binary pictures.

Keywords: shape representation, skeletonization, thinning, topology
preservation.

1 Introduction

Skeleton-like shape features (i.e., centerline, medial surface, and topological
kernel) extracted from 3D binary images play an important role in numerous
applications of image processing and pattern recognition [19].

Parallel thinning algorithms [4] are capable of extracting skeleton-like shape
descriptors in a topology preserving way [6]. Their iteration steps are composed
of some parallel reduction operators: some object points having value of “1” in a
binary image that satisfy certain topological and geometric constrains are deleted
(i.e., changed to “0” ones) simultaneously, and the entire process is repeated until
no points are deleted.

An object point is simple if its deletion does not alter the topology of the
image [6]. In a phase of a parallel thinning algorithm, a set of simple points is
deleted simultaneously that may not preserve the topology. A possible approach
to overcome this problem is to use subiteration-based thinning (often referred to
as directional or border sequential strategy) [4]: each iteration step is composed
of k subiterations (k ≥ 2), where only border points of certain kind are deleted.

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 17–30, 2011.
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Since there are six major directions in 3D, most of existing parallel 3D directional
thinning algorithms use six subiterations [3,14].

Object points having value of “1” in a binary image are endpoints if they
provide important geometrical information relative to the shape of the objects
to be represented. Surface-thinning algorithms are to extract medial surfaces
by preserving surface-endpoints, curve-thinning algorithms produce centerlines
by preserving curve-endpoints, and topological kernels (i.e., minimal structures
which are topologically equivalent to the original objects) can be generated if no
endpoint characterization is considered during the thinning process [2]. Medial
surfaces are usually extracted from general shapes, tubular structures can be
represented by their centerlines, and extracting topological kernels are useful in
topological description.

The deletion rules of existing parallel thinning algorithms are generally given
by matching templates with specific and “built-in” endpoint characterizations
[1,3,8,9,10,11,14,15,16,20] with the exceptions of some 3D fully parallel algo-
rithms [17] and some 3D subfield-based thinning algorithms [12,13]. In this pa-
per, we introduce a general scheme for 6-subiteration 3D parallel thinning that
is based on our new sufficient conditions for topology preservation. The pro-
posed scheme coupled with different types of endpoints yields various topology
preserving thinning algorithms.

The rest of this paper is organized as follows. Section 2 gives the basic notions
of 3D digital topology. Then in Section 3 we propose our sufficient conditions for
3D parallel reduction operators to preserve topology. Section 4 presents a family
of new 6-subiteration 3D parallel thinning algorithms. Finally, Section 5 gives
five variations for the proposed thinning scheme by considering five different
characterizations of endpoints.

2 Basic Notions and Results

Let p be a point in the 3D digital space Z3. Let us denote Nj(p) (for j = 6, 18, 26)
the set of points that are j-adjacent to point p (see Fig. 1a).

The 3D binary (26, 6) digital picture P is a quadruple P = (Z3, 26, 6, X) [6],
where each element of Z3 is called a point of P , each point in X ⊆ Z3 is called
a black point and it has a value of “1”, each point in Z

3\X is called a white
point and value of “0” is assigned to it. 26-connectivity (i.e., the reflexive and
transitive closure of the 26-adjacency relation) is considered for black points
forming the objects, and 6-connectivity (i.e., the reflexive and transitive closure
of the 6-adjacency) is considered for white points [6] (see Fig. 1a). Maximal
26-connected components of black points are called objects.

A black point is called a border point in a (26, 6) picture if it is 6-adjacent to
at least one white point. A border point p is called a U-border point if the point
marked U= u(p) in Fig. 1a is a white point. We can define D-, N-, E-, S-, and
W-border points in the same way. A black point is called an interior point if it
is not a border point. There are three opposite pairs U-D, N-S, and E-W in
N6(p)\{p}.
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Fig. 1. Frequently used adjacencies in Z
3 (a). The set N6(p) contains point p and the

six points marked U, D, N, E, S, and W. The set N18(p) contains N6(p) and the twelve
points marked “◦”. The set N26(p) contains N18(p) and the eight points marked “•”.
Notation for the points in N18(p) (b). The 2 × 2 × 2 cube that contains an object (c)

A parallel reduction operator changes a set of black points to white ones (which
is referred to as deletion). A 3D parallel reduction operator does not preserve
topology if any object is split or is completely deleted, any cavity (i.e., maximal
6-connected component of white points) is merged with another cavity, a new
cavity is created, or a hole (that donuts have) is eliminated or created.

A black point is called a simple point if its deletion does not alter the topology
of the image [6]. Note that simplicity of point p in (26, 6) pictures is a local
property that can be decided by investigating the set N26(p) [6].

Parallel reduction operators delete a set of black points and not only a single
simple point. Ma gave some sufficient conditions for 3D parallel reduction opera-
tors to preserve topology [7]. Those conditions require some additional concepts
to be defined. Let P be a (26, 6) picture. The set D = {d1, . . . , dk} of black points
is called a simple set of P if D can be arranged in a sequence 〈di1 , . . . , dik

〉 in
which di1 is simple and each dij is simple after {di1 , . . . , dij−1} is deleted from
P , for j = 2, . . . , k. (By definition, let the empty set be simple.) A unit lattice
square is a set of four mutually 18-adjacent points in Z3; a unit lattice cube is
set of eight mutually 26-adjacent points in Z3.

Theorem 1. [7] A 3D parallel reduction operator is topology preserving for
(26,6) pictures if all of the following conditions hold:

1. Only simple points are deleted.
2. If two, three, or four black corners of a unit lattice square are deleted, then

these corners form a simple set.
3. No object contained in a unit lattice cube is deleted completely.

3 New Sufficient Conditions for Topology Preserving
Parallel Reductions

Theorem 1 provides a general method of verifying that a parallel thinning al-
gorithm preserves topology [5]. In this section, we present some new sufficient
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conditions for topology preservation as a basis for designing 3D 6-subiteration
parallel thinning algorithms. In order to introduce our new sufficient conditions
for topology preserving parallel reductions that delete U-border points, we define
two special kinds of point sets.

Definition 1. Let p ∈ X be a black point in picture (Z3, 26, 6, X) and let S(p) ⊆
X\{p} be a set of black points such that S(p)∪ {p} is contained in a unit lattice
square. The set S(p) is called a U-square-considerable set if for any point s ∈
S(p) ∪ {p}, u(s) 	∈ S(p) ∪ {p}.
We can define D-, N-, E-, S-, and W-square-considerable sets in the same way.
Let us state some properties of U-square-considerable sets.

Proposition 1. The following 33 sets may be U-square-considerable ones (see
Fig. 1b):
∅, {un}, {ue}, {us}, {uw}, {nw}, {n}, {ne}, {w}, {e}, {sw}, {s},
{se}, {dn}, {de}, {ds}, {dw}, {nw,n}, {nw,w}, {n,w}, {ne,n},
{ne,e}, {n,e}, {sw,s}, {sw,w}, {s,w}, {se,s}, {se,e}, {s,e},
{nw,n,w}, {ne,n,e}, {sw,s,w}, {se,s,e}.
Proposition 2. Any subset of a U-square-considerable set is a U-square-con-
siderable set as well.

These properties are obvious by careful examination of the points in N18(p) (see
Fig. 1b).

Definition 2. Let C ⊆ X be an object of picture (Z3, 26, 6, X) that is contained
in a unit lattice cube. C is called a U-cube-considerable object if all of the
following conditions hold:

1. #(C) ≥ 2 (where #(C) denotes the number of elements in C).
2. For any point c ∈ C, u(c) 	∈ C (i.e., C must contain U-border points).
3. C is not contained in a unit lattice square.

We can define D-, N-, E-, S-, and W-cube-considerable objects in the same way.
Let us state the two most important properties of U-cube-considerable objects.

Proposition 3. For any U-cube-considerable object C, #(C) ≤ 4.

It is easy to see that any object contained in a unit lattice cube that contains 5,
6, 7, or 8 points, must contain at least one element that is not a U-border point
(i.e., it must contain a pair of points p and u(p)).

Proposition 4. There are 32 possible U-cube-considerable objects.

The possible U-cube-considerable object are listed as follows (see Fig. 1c):
{a, h}, {a, h, b}, {a, h, b, c}, {a, h, b, g}, {a, h, c}, {a, h, c, f}, {a, h, f}, {a, h, f, g},
{a, h, g}, {b, g}, {b, g, a}, {b, g, a, d}, {b, g, d}, {b, g, d, e}, {b, g, e}, {b, g, e, h},
{b, g, h}, {c, f}, {c, f, a}, {c, f, a, d}, {c, f, d}, {c, f, d, e}, {c, f, e}, {c, f, e, h},
{c, f, h}, {d, e}, {d, e, b}, {d, e, b, c}, {d, e, c}, {d, e, f}, {d, e, f, g}, {d, e, g}.
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The lexicographical order relation “≺” between two distinct points p =
(px, py, pz) and q = (qx, qy, qz) is defined as follows:

p ≺ q ⇔ (pz < qz) ∨ (pz = qz ∧ py < qy) ∨ (pz = qz ∧ py = qy ∧ px < qx).

Definition 3. Let C ⊆ Z3 be a set of points. Point p ∈ C is the smallest element
of C if for any q ∈ C\{p}, p ≺ q.

We are now ready to state our new sufficient conditions for topology preserving
parallel reductions that delete U-border points. Note that sufficient conditions
for simultaneous deletion of D-, N-, E-, S-, and W-border points can be given
in the same way.

Theorem 2. Let T be a parallel reduction operator. Let p be any black point
in any picture (Z3, 26, 6, X) such that point p is deleted by T . Operator T is
topology preserving for (26, 6) pictures if all of the following conditions hold:

1. Point p is a simple and U-border point in picture (Z3, 26, 6, X).
2. For any U-square-considerable set S(p) that contains simple and U-border

points in (Z3, 26, 6, X), p is a simple point in picture (Z3, 26, 6, X\S(p)).
3. Point p is not the smallest element of any U-cube-considerable object.

Proof. To prove it, we show that the parallel reduction operator T satisfies all
conditions of Theorem 1.

1. Operator T may delete simple points by Condition 1 of Theorem 2. Hence
Condition 1 of Theorem 1 is satisfied.

2. Since operator T may delete U-border points (by Condition 1 of Theorem
2), it is sufficient to deal with the 33 possible U-square-considerable sets (see
Definition 1, Proposition 1, and Proposition 2). The following points have
to be checked:

(a) Suppose that S(p) = ∅ (#(S(p)) = 0). Since Condition 1 of Theorem 2
holds, point p is simple in (Z3, 26, 6, X) = (Z3, 26, 6, X\S(p)). Therefore,
Condition 2 of Theorem 1 is satisfied.

(b) Let a and b be two corners of a unit lattice square that are deleted by T .
If p = b and S(p) = ∅, then b is a simple point in (Z3, 26, 6, X) by case
(a). Suppose that p = a and S(p) = {b}. Since Condition 2 of Theorem
2 holds, point a is simple in (Z3, 26, 6, X\S(p)). Consequently, {a, b} is
a simple set. Therefore, Condition 2 of Theorem 1 is satisfied.

(c) Let a, b, and c be three corners of a unit lattice square that are deleted by
T . In this case b and c are two corners of a unit lattice square and {b, c}
is a simple set by case (b). Suppose that p = a and S(p) = {b, c}. Since
Condition 2 of Theorem 2 holds, point a is simple in (Z3, 26, 6, X\S(p)).
Consequently, the set {a, b, c} is simple. Therefore, Condition 2 of The-
orem 1 is satisfied.

(d) Let a, b, c, and d be four corners of a unit lattice square that are deleted
by T . In this case b, c and d are three corners of a unit lattice square
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and {b, c, d} is a simple set by case (c). Suppose that p = a and S(p) =
{b, c, d}. Since Condition 2 of Theorem 2 holds, point a is simple in
(Z3, 26, 6, X\S(p)). Consequently, the set {a, b, c, d} is simple. Therefore,
Condition 2 of Theorem 1 is satisfied.

3. Let us consider object C that is contained in a unit lattice cube. The follow-
ing points have to be checked:
(a) Suppose that #(C) = 1, C = {a}. In this case, a is an isolated point

that is not simple. Since Condition 1 of Theorem 2 holds, point a cannot
be deleted by T . Therefore, Condition 3 of Theorem 1 is satisfied.

(b) Suppose that #(C) = 2, C = {a, b}. If a and b are two corners of a unit
lattice square, then C cannot be deleted completely by Condition 2 of
Theorem 2. If C contains a point that is not a U-border point, then C
cannot be deleted completely by Condition 1 of Theorem 2. Otherwise
C is a U-cube-considerable object and its smallest element cannot be
deleted by Condition 3 of Theorem 2. Therefore, Condition 3 of Theorem
1 is satisfied.

(c) Suppose that #(C) = 3, C = {a, b, c}. If a, b, and c are three corners of
a unit lattice square, then C cannot be deleted completely by Condition
2 of Theorem 2. If C contains a point that is not a U-border point,
then C cannot be deleted completely by Condition 1 of Theorem 2.
Otherwise C is a U-cube-considerable object and its smallest element
cannot be deleted by Condition 3 of Theorem 2. Therefore, Condition 3
of Theorem 1 is satisfied.

(d) Suppose that #(C) = 4, C = {a, b, c, d}. If a, b, c, and d are four cor-
ners of a unit lattice square, then C cannot be deleted completely by
Condition 2 of Theorem 2. If C contains a point that is not a U-border
point, then C cannot be deleted completely by Condition 1 of Theorem
2. Otherwise C is a U-cube-considerable object and its smallest element
cannot be deleted by Condition 3 of Theorem 2. Therefore, Condition 3
of Theorem 1 is satisfied.

(e) Suppose that #(C) > 4. In this case, C must contain at least one point
that is not a U-border point by Proposition 3. That point cannot be
deleted by Condition 1 of Theorem 2. Therefore, Condition 3 of Theorem
1 is satisfied. ��

4 The New 6-Subiteration Thinning Algorithms

Now we propose a set of new 6-subiteration 3D parallel thinning algorithms.
Their deletable points are derived directly from Theorem 2.

Let us consider an arbitrary characterization of endpoints that is called as type
E . The algorithm denoted by 6SI-E is our 6-subiteration 3D parallel thinning
algorithm that preserves endpoints of type E (see Algorithm 1).

The usual ordered list of the deletion directions 〈 U,D,N,E,S,W 〉 [3,14]
is considered in Algorithm 6SI-E . Note that subiteration-based thinning algo-
rithms are not invariant under the order of deletion directions (i.e., choosing
different orders may yield various results).
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Algorithm 1
Input: picture (Z3, 26, 6, X)
Output: picture (Z3, 26, 6, Y )
Y = X
repeat

// one iteration step
for each i ∈ {U, D,N, E,S,W} do

// subiteration for deleting some i-border points
D(i) = { p | p is an i-E-deletable point in Y }
Y = Y \ D(i)

until D(U) ∪ D(D) ∪ D(N) ∪ D(E) ∪ D(S) ∪ D(W) = ∅

In the first subiteration of our 6-subiteration thinning algorithms, the set of
U-E-deletable points are deleted simultaneously, and the set of W-E-deletable
points are deleted in the last (i.e., the 6th) subiteration. Now we lay down U-E-
deletable points. We can define D-, N-, E-, S-, and W-E-deletable points in the
same way.

Definition 4. A black point p in picture (Z3, 26, 6, X) is U-E-deletable if all of
the following conditions hold:

1. Point p is a simple and U-border point, but it is not an endpoint of type E
in picture (Z3, 26, 6, X).

2. For any U-square-considerable set S(p) composed of simple points and U-
border points, but not endpoints of type E in picture (Z3, 26, 6, X), point p
remains simple in picture (Z3, 26, 6, X\S(p)).

3. Point p is not the smallest element of any U-cube-considerable object.

We can state our main theorem.

Theorem 3. Algorithm 6SI-E is topology preserving for (26, 6) pictures for ar-
bitrary characterization of endpoints.

Proof. It can readily be seen that Condition i of Definition 4 satisfies Condition
i of Theorem 2 (i = 1, 2, 3). Consequently, the first subiteration of Algorithm
6SI-E is a topology preserving parallel reduction for (26, 6) pictures for arbitrary
characterization of endpoints.

Similarly, it can be seen that the five parallel reductions assigned to the re-
maining five subiterations of Algorithm 6SI-E are topology preserving as well.
Hence, the entire algorithm composed of topology preserving reductions is topol-
ogy preserving too.

Note that the proof of Theorem 2 does not consider the applied type of end-
points E . Hence arbitrary characterizations of endpoints yield topologically cor-
rect 6-subiteration thinning algorithms. ��
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5 Examples of the New 6-Subiteration Thinning
Algorithms

In Section 3, we defined the deletable points of the proposed 6-subiteration
thinning algorithm 6SI-E that preserves endpoints of type E . We stated that
various characterizations of endpoints yield different algorithms. Here, we define
four types of endpoints (C1, C2, S1, and S2) that determine four new thinning
algorithms (6SI-C1, 6SI-C2, 6SI-S1, and 6SI-S2). Furthermore, if no end-
points are preserved, then we get topological kernels. Therefore, no restriction
is applied to an “endpoint” of type TK, which leads to the algorithm called
6SI-TK.

Definition 5. A “1” point p in picture (Z3, 26, 6, X) is a curve-endpoint of type
C1 if (N26(p)\{p}) ∩ X = {q} (i.e., p is 26-adjacent to exactly one “1” point).

Definition 6. A “1” point p in picture (Z3, 26, 6, X) is a curve-endpoint of type
C2 if (N26(p)\{p})∩X = {q} and the number of elements in (N26(q)\{q})∩X
is less than or equal to 2.

Definition 7. A “1” point p in picture (Z3, 26, 6, X) is a surface-endpoint of
type S1 if there is no interior point in the set N6(p) ∩ X.

Note the characterization of surface-endpoints S1 are applied in some existing
thinning algorithms [1,11,16].

Definition 8. A “1” point p in picture (Z3, 26, 6, X) is a surface-endpoint of
type S2 if the set N6(p)\{p} contains at least one opposite pair of “0” points.

Note that the characterization of surface-endpoints S2 is introduced in [15].
In experiments algorithm 6SI-TK and the further algorithms based on the

four types of endpoints according to Definitions 5-8 were tested on objects of dif-
ferent shapes. Here we present some illustrative examples below (Figs. 2-8). Our
new algorithms are compared with the existing 6-subiteration curve-thinning
algorithm PK-C [14] and surface thinning algorithm GB-S [3]. Numbers in
parentheses mean the count of “1” points.

The tubular test objects in Figs. 2-4 are represented by their centerlines ex-
tracted by the three curve-thinning algorithms 6SI-C1, 6SI-C2, and PK-C.

We can state that algorithm 6SI-C2 produces less skeletal points than algo-
rithm 6SI-C1 does. However, it may produces overshrunk centerlines (see the
sixth short “finger” in Fig. 2) compared to algorithm 6SI-C1 which, on the
other hand, extracts skeletons containing more unwanted line segments (see the
earless horse in Fig. 4). It is not surprising since endpoint characterization C2
is more restrictive than C1. It can be seen that the existing algorithm PK-C
produces several unwanted side branches that are not present in the centerlines
of the new algorithms 6SI-C1 and 6SI-C2.

Note that skeletonization is rather sensitive to coarse object boundaries. The
false segments included by the produced skeletons must be removed by a pruning
step [18].
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original (865 941) 6SI-C1 (1 022) 6SI-C2 (864) PK-C (1573)

Fig. 2. A 174 × 103 × 300 image of a hand and its centerlines produced by the three
curve-thinning algorithms under comparison

original (378 043) 6SI-C1 (891) 6SI-C2 (888) PK-C (1431)

Fig. 3. A 304×96×261 image of a helicopter and its centerlines produced by the three
curve-thinning algorithms under comparison

The medial surfaces of the non-tubular test objects in Figs. 5-7 were extracted
by the three surface-thinning algorithms 6SI-S1, 6SI-S2, and GB-S. Note that
algorithm 6SI-S2 produces much less skeletal points than algorithm 6SI-S1
does: outer “corners” and “edges”, which remain connected with the inner skele-
tal parts, are not deleted by algorithm 6SI-S1. It can be seen that the existing
algorithm GB-S produces overshrunk seams between sheets.

For the test objects without any holes or cavities in Figs. 2, 4, and 6, our
algorithm 6SI-TK produces only one isolated point as their topological kernel
(which is not depicted in Fig. 8). The topological kernels of the remaining test

original (1 099 920) 6SI-C1 (878) 6SI-C2 (833) PK-C (1869)

Fig. 4. A 300 × 239 × 83 image of a horse and its centerlines produced by the three
curve-thinning algorithms under comparison
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original (74 250) 6SI-S1 (15 864) 6SI-S2 (2 370) GB-S (2 370)

Fig. 5. A 45 × 45 × 45 cube with two holes and its medial surfaces produced by the
three surface-thinning algorithms under comparison

original (1 173 750) 6SI-S1 (25 886)

6SI-S2 (16 857) GB-S (14 293)

Fig. 6. A 104 × 104 × 152 image of a cylinder and its medial surfaces produced by
the three surface-thinning algorithms under comparison. Note that algorithm GB-S
produced an overshrunk seam between sheets.



A Family of 3D Parallel 6–Subiteration Thinning Algorithms 27

original (77 280) 6SI-S1 (20 980)

6SI-S2 (6 819) GB-S (6 812)

Fig. 7. A 100×100×30 image of an object with a hole and its medial surfaces produced
by the three surface-thinning algorithms under comparison. Note that algorithm GB-S
produced an overshrunk seam between sheets.

objects containing some holes in Figs. 3, 5, and 7 are formed by 1-point wide
closed curves (see Fig. 8).

By adapting the efficient implementation method presented in [16] our algo-
rithms can be well applied in practice: they are capable of extracting skeleton-like
features from large 3D shapes within one second on a usual PC.

The proposed implementation uses a pre-calculated look-up-table to encode
the simple points. Since the simplicity of a point p can be decided by examining
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Fig. 8. Three objects with holes (upper row) and their topological kernels produced
by algorithm 6SI-TK (lower row). The extracted structures do not contain any simple
points and they are topologically equivalent to the original objects.

the set N26(p), that look-up-table has 226 entries of 1 bit in size, hence it requires
just 8 MB of storage space in memory.

In addition, two lists/sets are used to speed up the process: the first one for
storing the border points in the current picture. It is easy to see that thinning
algorithms can only delete border-points, thus the repeated scans of the entire
array storing the actual picture are not needed. The second list/set is to store
all points that are “potentially deletable” in the current subiteration. At each
phase of the thinning process, the deletable points are deleted, and the list of
border points is updated accordingly.

The array storing the actual picture may contain five kinds of values: the value
of “0” corresponds to “0” points, the value of “1” corresponds to interior points,
the value of “2” is assigned to border points (that are stored in the first list/set),
the value of “3” is assigned to all points that satisfy Condition 1 of Definition
4, and the value of “4” corresponds to all points that satisfy Conditions 1 and 2
of Definition 4.

6 Conclusions

Fast and reliable extraction of skeleton-like shape features (i.e., medial surface,
centerline, and topological kernel) is extremely important in numerous appli-
cations for large 3D shapes. In this paper, we presented a new scheme for 6-
subiteration parallel 3D thinning algorithms that is based on our new sufficient
conditions for topology preservation. Hence the topological correctness of our
algorithms is guaranteed. Five variations for the proposed thinning scheme were
presented by considering five different characterizations of endpoints. Additional
types of endpoints coupled with our general thinning scheme yield newer thin-
ning algorithms.
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Abstract. Topology preservation is the key concept in parallel thinning
algorithms on any sampling schemes. This paper establishes some suffi-
cient conditions for parallel thinning algorithms working on hexagonal
grids (or triangular lattices) to preserve topology. By these results, vari-
ous thinning (and shrinking to a residue) algorithms can be verified. To
illustrate the usefulness of our sufficient conditions, we propose a new
parallel thinning algorithm and prove its topological correctness.

Keywords: hexagonal grids, parallel reduction operators, topology
preservation, thinning.

1 Introduction

Thinning is an iterative layer-by-layer erosion until skeleton-like shape features
of binary objects are left [2,5,11]. A thinning algorithm should preserve topology,
that is, the produced output pictures should be topologically equivalent to the
input ones for all possible digital binary pictures [4]. Parallel thinning algorithms
are composed of parallel reduction operators (i.e., some object points having
value of “1” in a binary picture that satisfy certain topological and geometric
constrains are changed to “0” ones simultaneously) [2].

Sufficient conditions for topology preserving parallel reduction operators work-
ing on orthogonal grids have been given in 2D [2,3,8] and 3D [3,6]. These results
provide methods of verifying that a parallel thinning (and shrinking to a residue)
algorithm preserves topology.

Digital pictures on non–orthogonal grids have been studied by a number of
authors [4,7]. A hexagonal grid is formed by a tessellation of regular hexagons. By
duality, it corresponds to the triangular lattice, where the points are the centers
of that hexagons, see Fig. 1. Hexagonal grids have a major advantage over the
orthogonal ones. In 2D orthogonal/rectangular grids, the 8-adjacency relation is
frequently used [4], where the length of diagonal moves is

√
2 · a if the length

of the horizontal and vertical moves is a. In hexagonal sampling scheme, each
pixel is surrounded by six equidistant nearest neighbors. This results in a less
ambiguous connectivity structure and in a better angular resolution compared
to the rectangular case.

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 31–42, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The majority of existing thinning algorithms work on orthogonal grids [2,11].
However, some parallel thinning methods were also proposed for hexagonal grids
[1,9,10,12].

Fig. 1. A hexagonal grid and the corresponding triangular lattice

In this work we establish sufficient conditions for topology preserving parallel
reduction operators in binary digital images sampled on hexagonal grids. By our
results, various thinning (and shrinking to a residue) algorithms can be proved
to be topology preserving.

The rest of this paper is organized as follows. Section 2 summarizes the basic
notions of 2D digital topology. In Section 3, we discuss the mentioned sufficient
conditions. To illustrate the usefulness of these conditions, we propose a new
parallel subiteration–based thinning algorithm in Section 4 and prove that it is
topology preserving for (6, 6) pictures.

2 Basic Notions

Let us consider a hexagonal grid denoted by H , and let p be a pixel in H . Let
us denote N6(p) the set of pixels being 6-adjacent to pixel p and let N∗

6 (p) =
N6(p)\{p}. Figure 2 shows the 6–neighbors of a point p denoted by N6(p). The
pixel denoted by pi is called as the i-th neighbor of the central pixel p.

The sequence S of distinct pixels 〈x0, x1, . . . , xn〉 is called a 6-path of length
n from pixel x0 to pixel xn in a non-empty set of pixels X if each pixel of the
sequence is in X and xi is 6-adjacent to xi−1 for each 1 ≤ i ≤ n. Note that
a single pixel is a 6-path of length 0. In the special case when x0 = xn in S,
we talk about a 6-cycle, and the sequence 〈xi, xi+1, . . . , xj〉 (0 ≤ i ≤ j ≤ n) is
called a subpath of S . Two pixels are said to be 6-connected in set X if there is
a 6-path in X between them.



On Topology Preservation for Hexagonal Parallel Thinning Algorithms 33

Fig. 2. Indexing scheme for the elements of N6(p) on hexagonal grid (left) and trian-
gular lattice (right)

Based on the concept of digital pictures as reviewed in [4] we define the 2D
binary (6, 6) digital picture as a quadruple P = (H, 6, 6, B). The elements of
H are called the pixels of P . Each pixel in B ⊆ H is called a black pixel and
has a value of 1. Each pixel in H\B is called a white pixel and the value of 0
is assigned to it. 6-adjacency is associated with both black and white pixels. A
black component or an object is a maximal 6-connected set of pixels in B, while
a white component or a cavity is a maximal 6-connected set of pixels in H\B.
An object composed of three mutually 6-adjacent black pixels is a unit triangle.

Let us denote C6(p) the number of black components in picture (H, 6, 6, B ∩
N∗

6 (p)). A black pixel is called a border pixel in a (6, 6) picture if it is 6-adjacent
to at least one white pixel. A black pixel p is called an i-border pixel in a (6, 6)
picture if its i-th neighbor (denoted by pi in Fig. 2) is a white pixel (1 ≤ i ≤ 6).
A black pixel p is called an end pixel in a (6, 6) picture if it is 6-adjacent to
exactly one black pixel.

A reduction operator transforms a binary picture only by changing some black
pixels to white ones (which is referred to as the deletion of 1’s). A parallel
reduction operator deletes all pixels satisfying its condition simultaneously. A
2D reduction operator does not preserve topology [3] if any black component
is split or is completely deleted, any white component is merged with another
white component, or a new white component is created.

A simple pixel is a black pixel whose deletion is a topology preserving reduc-
tion [4]. Let P be a (6,6) picture. The set of black pixels D = {d1, . . . , dk} is
called a simple set of P if D can be arranged in a sequence 〈di1 , . . . , dik

〉 in which
di1 is simple and each dij is simple after {di1 , . . . , dij−1} is deleted from P , for
j = 2, . . . , k. (By definition, let the empty set be simple.)

3 Sufficient Conditions for Topology Preserving Parallel
Reductions

In this section we discuss two important relationships for topology preservation
in (6, 6) pictures. We will prove in Theorem 1 that the simplicity of a pixel in
a (6, 6) picture is a local property, and based on this rule we will give sufficient
conditions for a parallel reduction operator to preserve topology in Theorem 2.
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Theorem 1. Black pixel p in picture (H, 6, 6, B) is simple if and only if both of
the following conditions are satisfied:

1. p is a border pixel.
2. C6(p) = 1.

Proof. First we show indirectly that if Conditions 1 and 2 are satisfied, then p is
simple. Let us suppose that the above conditions hold for p, and if we delete p, an
object will be split into more components. Then there must be two pixels q, r ∈ B
such that all 6-paths in B between q and r contain p. This implies that all 6-paths
in B between q and r contain a subpath 〈pi, p, pj〉 (i, j ∈ {1, 2, . . . , 6}, i 	= j),
as well (see Fig. 3a). However, this contradicts Condition 2, by which pi and pj

are also 6-connected in picture (H, 6, 6, B\{p}). Hence, no object is split by the
removal of p.

Now let us suppose that if we delete p then a white component is merged
with another white component (or with the background). Then, there exist two
white pixels q, r ∈ H\B such that all 6-paths in (H\B) ∪ {p} between q and
r contain p. Thus, all 6-paths in H\B from q to r contain a subpath 〈pi, p, pj〉
(i, j ∈ {1, 2, . . . , 6}, i 	= j), as well. Let us consider the case when i = 1. j 	= 2,
or else the path 〈pi, pj〉 would be also a subpath of a 6-path from q to r, but
this subpath does not contain p. If j = 3 (see Fig. 3b), then, according to our
assumption, both of the 6-paths 〈p1, p2, p3〉 and 〈p3, p4, p5, p6, p1〉 must contain
a black pixel. Similarly, if j = 4 (see Fig. 3c), then the 6-paths 〈p1, p2, p3, p4〉
and 〈p4, p5, p6, p1〉 must contain a black pixel. But for both of the possible cases
we come into a contradiction with Condition 2. Because of the symmetry of
the neighborhood of p composed by the elements of N6(p) (see Fig. 2), we can
derive similar results if we change the values of the indexes i, j. Hence, no white
component is merged with another white component (or with the background)
by the removal of p.

If a new white component would be arisen when deleting p, then p could not
be a border pixel in picture (H, 6, 6, B), but this means a contradiction with
Condition 1.

If an object would be deleted by the removal of p, then this would mean
that p is an isolated object pixel, which implies C6(p) = 0. However, this is a
contradiction with Condition 2.

For all possible cases we came into a contradiction with Condition 1 or 2,
therefore, p is a simple pixel. Now we will also indirectly show that if p is simple,
then Conditions 1 and 2 hold.

Let us suppose that p is a simple pixel but at least one from the above men-
tioned conditions fails to hold. If p would not be a border pixel, then a new white
component would be arisen by the removal of p, which can not happen because
of the simplicity of p, therefore, C6(p) 	= 1 must be satisfied.

As p is a simple pixel, the deletion of p does not lead to splitting an object
into more components. This can only happen if between any two pixels pi, pj

(i, j ∈ {1, 2, . . . , 6}, i 	= j) there exists a 6-path in B not containing p. If we add
p to this path, then we obviously get a 6-cycle in B. Let us denote this 6-cycle
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P1 (see the continuous line in Fig. 3d). From the property C6(p) 	= 1 follows
that such a 6-cycle does not only contain pixels from N∗

6 (p), hence there exist
such q, r ∈ (H\B) ∩ N∗

6 (p) for which the 6-path from pi to pj in set N∗
6 (p)\{r}

contains q and the 6-path from pi to pj in set N∗
6 (p)\{q} contains r. There must

be a 6-path between q and r in the set H\B, or else a white component would be
merged with another white component (or with the background) by the removal
of p, which is not possible. If we add p to this path, we get a 6-cycle in H\B∪{p}
that we denote by P2 (see the dotted line in Fig. 3d).

Let SPk = {x | x is contained in Pk} (k ∈ {1, 2}). It is easy to see that both of
the pictures (H, 6, 6, H\SP1) and (H, 6, 6, H\SP2) contain exactly two objects.
One of the objects in picture (H, 6, 6, H\SP1) necessarily contains all elements of
set SP2\{p}, or else q and r would not be 6-connected in picture (H, 6, 6, H\B),
hence the removal of p would reduce the number of white components. It is
obvious that this object in (H, 6, 6, H\SP1) fully contains one of the objects in
(H, 6, 6, H\SP2), which we will denote by O. pi or pj must be a member of O,
or else q and r would be also 6-connected in picture (H, 6, 6, (H\B) ∩ N∗

6 (p)),
hence one of the 6-paths from pi to pj in N∗

6 (p) should contain both q and r,
which contradicts to our assumptions on q, r. However, pi and pj are contained
in cycle P1, which means, pi, pj ∈ SP1 , therefore, none of these pixels may be a
member of O. According to the derived contradiction, Conditions 1 and 2 hold
for simple pixel p. ��
Lemma 1. Let p and q two 6-adjacent simple pixels in picture P = (H, 6, 6, B).
The following statements are equivalent:

1. p is simple in picture (H, 6, 6, B\{q}), or q is simple in picture
(H, 6, 6, B\{p}).

2. N∗
6 (p) ∩ N∗

6 (q) ∩ (H\B) contains exactly one element.

Proof. The first part of the proof will be carried out indirectly. Let us suppose
that Statement 1 is true but the set S = N∗

6 (p) ∩ N∗
6 (q) ∩ (H\B) contains two

elements or S = ∅. First, let us examine the case when S contains two elements,
i.e., both common 6-neighbors of p and q are white in picture P . As both p
and q are simple in this picture, C6(p) = C6(q) = 1 holds by Theorem 1, which
is possible only if N∗

6 (p) ∩ B = {q} and N∗
6 (q) ∩ B = {p}. But in this case,

p is an isolated object pixel in picture (H, 6, 6, B\{q}), thus the removal of p
would also result in the removal of an object. Hence, p is not a simple pixel in
this case, which contradicts the condition on p. As a conclusion, S = ∅, i.e.,
both pixels in N∗

6 (p) ∩ N∗
6 (q) must be black. Let us denote these pixels by r1

and r2. By Statement 1 and Theorem 1, C6(p) = 1 in picture (H, 6, 6, B\{q}) or
C6(q) = 1 in picture (H, 6, 6, B\{p}). Because of the symmetry of the image part
covered by the pixels of N∗

6 (p)∩N∗
6 (q), it is sufficient to only examine the first of

these possible situations. In this case, there must be a 6-path from r1 and r2 in
N∗

6 (p)∩(B\{q}). This path necessarily contains all elements of N∗
6 (p)\{q}, from

which follows that all 6-neighbors of p is black in picture P . But in this case, p
can not be a border pixel, which is a contradiction with our initial assumption.
Hence, if Statement 1 is satisfied, then Statement 2 must be also fulfilled.
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Now let us suppose that Statement 2 is true. We show that p is simple in
picture (H, 6, 6, B\{q}). As one of the 6-neighbors of q contained in N∗

6 (p) is
white in picture P , the removal of q from P does not result in splitting of any
component in picture (H, 6, 6, B∩N∗

6 (p)). Furthermore, as one of the 6-neighbors
of q contained in N∗

6 (p) is black, the removal of q from P does not lead to the
removal of any object from the latter picture. Hence, C6(p) = 1 still holds, which
means, Statement 1 is also satisfied by Theorem 1. ��

Fig. 3. The examined cases in the proof of Theorem 1

Lemma 2. Let O be a parallel reduction operator, and let S be the set of black
pixels removed by O from an arbitrary picture P = (H, 6, 6, B). O is topology-
preserving, if for any pixel p ∈ S and for any set Q ⊆ S ∩ N∗

6 (p), p is simple in
picture (H, 6, 6, B\Q).

Proof. Let us suppose that the condition in the lemma is fulfilled on O. As
∅ ⊆ S ∩ N∗

6 (p), any pixel p ∈ S is simple in P . Let S = Sn = {s1, s2, . . . , sn}
(n ∈ N+), furthermore, let Si = {s1, s2, · · · , si} (1 ≤ i ≤ n). It is sufficient to
see that Sn is a simple set in P .
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The proof will be done by induction on i. s1 is simple in P , hence set S1 = {s1}
is also simple in P . Let us suppose that set Sk is simple in P (1 ≤ k < n). Sk+1 =
Sk ∪{sk+1}, thus we have to prove that sk+1 is simple in picture (H, 6, 6, B\Sk).

It is useful to make a distinction between the pixels in Sk being and not-being
6-neighbors of sk+1, as by Theorem 1, only the deletion of pixels in N∗

6 (sk+1)
may influence the simplicity of sk+1. Therefore, sk+1 remains simple in picture
Pk =

(
H, 6, 6, B\(Sk\N∗

6 (sk+1))
)
. We only have to examine what happens if we

remove some black 6-neighbors of sk+1 in Pk. Let Qk = Sk ∩N∗
6 (sk+1) (i.e., Qk

contains exactly that pixels of Sk which are 6-neighbors of sk+1). As Sk ⊆ S,
Qk = Sk ∩ N∗

6 (sk+1) ⊆ S ∩ N∗
6 (sk+1) holds, too. It is easy to see that if we

remove Qk from the set of black pixels in Pk, then we obtain the reduced set
B\Sk. Thus, if we apply the condition on O for picture Pk, we get that sk+1 is
simple in picture (H, 6, 6, B\Sk). ��
Theorem 2. A parallel reduction operator O is topology-preserving in picture
P = (H, 6, 6, B), if all of the following conditions hold:

1. Only simple pixels are deleted by O.
2. If O removes two 6-adjacent pixels p, q, then p is simple in picture (H, 6, 6,

B\{q}), or q is simple in picture (H, 6, 6, B\{p}) (i.e., {p, q} is a simple
set).

3. O does not delete completely any black component contained in a unit
triangle.

Proof. Let us suppose that O satisfies Conditions 1-3, and let us denote S the
set of black pixels deleted by O. By Lemma 2 it is sufficient to show that, for
any p ∈ S and for any Q ⊆ S ∩N∗

6 (p), p is simple in picture (H, 6, 6, B\Q). This
is obviously satisfied for Q = ∅ by Condition 1, thus we have only to examine
the case when Q 	= ∅.

If N∗
6 (p) ∩ S = {q}, i.e., O deletes exactly 1 black pixel from the 6-neighbors

of p, then Q = {q} must hold, and according to Conditions 1 and 2, p is simple
in picture (H, 6, 6, B\Q).

Now let us assume that N∗
6 (p) ∩ S = {q, r}, i.e., O deletes exactly 2 black

pixels from the 6-neighbors of p. If Q contains only one element, then we can
show similarly to the previous case that p is simple in picture (H, 6, 6, B\Q). Let
us suppose that Q = {q, r}. The following two cases can be distinguished:

I. q and r are 6-adjacent.
II. q and r are not 6-adjacent.

First, let us examine Case I. By Conditions 1-2 and by Lemma 1, set N∗
6 (p) ∩

N∗
6 (r)∩(H\B) contains exactly one element, hence the 6-neighbor of r not coin-

ciding with q is white in picture (H, 6, 6, N∗
6 (p)∩B). It can be similarly derived

that the 6-neighbor of q not coinciding with r is white in picture (H, 6, 6, N∗
6 (p)∩

B). Thus, set {q, r} is a black component in picture (H, 6, 6, N∗
6 (p) ∩ B). Be-

cause of the symmetrical arrangement of p, q, r, we can similarly prove that
set {p, q} is a black component in picture (H, 6, 6, N∗

6 (r) ∩ B), and the set
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{p, r} is a black component in picture (H, 6, 6, N∗
6 (q) ∩ B). As by Theorem 1,

C6(p) = C6(q) = C6(r) = 1 holds for P , it also follows from the above conclusions
that set {p, q, r} is not 6-connected with any pixel s ∈ B\(N6(p)∪N6(q)∪N6(r))
in B. Therefore, set {p, q, r} is surrounded only by white pixels in P , which means
that {p, q, r} is a black component in P . However, this contradicts to Condition
3, hence Case I can not come into question.

Now, let us discuss Case 2. According to Conditions 1-2 and Lemma 1, both of
the sets N∗

6 (p)∩N∗
6 (q)∩ (H\B) and N∗

6 (p)∩N∗
6 (r)∩ (H\B) contain exactly one

element. Obviously, N∗
6 (p)∩N∗

6 (r) contains two elements. From these also follows
that set N∗

6 (p) ∩ N∗
6 (r) ∩ B contains exactly one element. Let N∗

6 (p) ∩ N∗
6 (r) ∩

B = {s}. Based on Conditions 1 and 2, p is simple in picture (H, 6, 6, B\{q}).
Furthermore, by Condition 1, r is simple in P , thus C6(r) = 1 holds by Theorem
1, and as q /∈ N6(r), C6(r) = 1 still holds after the removal of q, which means that
r is simple in picture (H, 6, 6, B\{q}). By examining the possible arrangements
of q and r, we can conclude that q 	= s, therefore the set N∗

6 (p) ∩ N∗
6 (r) ∩

(H\(B\{q})) also contains exactly one element. Hence, by Lemma 1, p is simple
in picture (H, 6, 6, B\Q).

Finally, we indirectly prove that O may not delete more than 2 black 6-
neighbors of p. Let q1, q2, q3 ∈ N∗

6 (p) and let us suppose that O deletes all the
pixels of set S = {p, q1, q2, q3}. If a pixel qi (i ∈ {1, 2, 3}) would be 6-adjacent to
every element of S\{qi}, then N6(p)∩N6(qi)∩ (H\B) = ∅ would hold. However,
this would lead to a contradiction with Lemma 1, hence this case is not possible.
In every other cases, it is sure that some pixels qi and qj (i, j ∈ {1, 2, 3}, i 	= j)
are not 6-connected in picture (H, 6, 6, B∩N∗

6 (p)), which implies that C6(p) > 1.
But this is not possible as p is a simple pixel in P , which means by Theorem 1
that C6(p) = 1 holds, thus we came into a contradiction again. ��

4 A New Topology Preserving Thinning Algorithm

In this section we introduce a new parallel thinning algorithm working on hexag-
onal arrays. The strategy which is used is called subiteration-based [2]: each it-
eration step is composed of six parallel reduction operators according to the six
directions assigned to the six neighbors of a pixel in a hexagonal array. Deletable
pixels assigned to the i-th subiterations are given by matching template Ti, see
Fig. 4 (1 ≤ i ≤ 6).

Algorithm 1 outlines the proposed 6-subiteration parallel thinning algorithm.
It is easy to see that Algorithm 1 cannot delete any end pixel since each

template Ti (1 ≤ i ≤ 6) matches black pixels that are 6-adjacent to more than
one black pixels (see Fig. 4). Hence Algorithm 1 can produce medial curves.

In experiments Algorithm 1 was tested on objects of different shapes. Figure
5 presents three illustrative examples.

Now we show that the proposed algorithm is topology preserving. At first,
some important properties of pixels that are matched by template T1 are stated.

Proposition 1. All pixels deleted by the parallel reduction operator given by
template T1 are 1-border pixels.
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Fig. 4. Matching templates of the proposed subiteration-based algorithm. Template
Ti is assigned to the i-th subiteration (i = 1, 2, . . . , 6). Notations (for each template):
positions marked “p” and “1” match two black pixels; position marked “0” matches a
white pixel; at least one positions marked “x” and “v” matches a black pixel; if position
“y” matches a black pixel, then position “x” matches a black pixel, too; if position “z”
matches a black pixel, then position “v” matches a black pixel, as well.

This holds since the 1st neighbor of a black pixel matched by T1 is a white pixel.

Proposition 2. If a black pixel can be deleted by template T1, then its 4th neigh-
bor cannot be deleted by T1.

Algorithm 1
Input: picture (H, 6, 6, X)
Output: picture (H, 6, 6, Y )
Y = X
repeat

// one iteration step
for i= 1 to 6 do

// subiteration for deleting some i-border pixels simultaneously
D(i) = { p | p ∈ Y is matched by template Ti }
Y = Y \ D(i)

until D(1) ∪ . . . ∪ D(6) = ∅
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Fig. 5. Thinning of three objects sampled on hexagonal grids. Medial curves produced
by Algorithm 1 are superimposed on the original objects.

This holds by Proposition 1, since if an object pixel matches template T1, then
the 4th neighbor of that pixel can not be a 1-border pixel, hence that neighbor
does not match T1.

Theorem 3. Algorithm 1 is topology preserving for (6, 6) pictures.

Proof. To prove it, we show that the parallel reduction operator given by tem-
plate T1 satisfies all conditions of Theorem 2.

1. Let us examine the simplicity of a pixel p that is matched by template T1.
The first thing we need to verify that p is a border pixel. This holds by
Proposition 1, hence Condition 1 of Theorem 1 is satisfied. To prove that
Condition 2 of Theorem 1 holds, we show that C6(p) = 1 for any p deleted by
T1. This is fulfilled since if position “y” matches a black pixel, then position
“x” matches a black pixel, and if position “z” matches a black pixel, then
position “v” matches a black pixel (see Fig. 4). Hence Condition 1 of Theorem
2 is satisfied.

2. It was proved that only simple pixels are deleted by T1. To prove that Con-
dition 2 of Theorem 2 holds, we show that for each pixel p deleted by T1,
C(p) remains 1 after a neighbor of p is deleted by T1.

– The 1st neighbor of p is a white pixel.
– The 2nd neighbor of p coincides with the template position “y”. If it can

be deleted by T1, then the template position “x” matches a black pixel.
Hence C(p) = 1 after the deletion of its 2nd neighbor.

– The 3rd neighbor of p coincides with the template position “x”. If it
can be deleted by T1, then template position “y” coincides with a white
pixel. Hence C(p) = 1 after the deletion of its 3rd neighbor.

– The 4th neighbor of p is a black pixel. Since p is its 1st neighbor, it
cannot deleted by T1.
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– The 5th neighbor of p coincides with the template position “v”. If it
can be deleted by T1, then template position “z” coincides with a white
pixel. Hence C(p) = 1 after the deletion of its 5th neighbor.

– The 6th neighbor of p coincides with the template position “z”. If it can
be deleted by T1, then the template position “v” matches a black pixel.
Hence C(p) = 1 after the deletion of its 6th neighbor.

If pixel p is deleted by T1, then p is a 1-border pixel by Proposition 1. It is
obvious that pixel p remains a 1-border pixel after q ∈ N∗

6 (p) is deleted by
T1. Since p is a 1-border pixel and C(p) = 1 after the deletion of q, p remains
a simple pixel after q is deleted by T1. Hence Condition 2 of Theorem 2 is
satisfied.

3. Suppose that pixel p is an element of an arbitrary black component. If p is
deleted by T1, then its 4th neighbor q is a black and it cannot be deleted by
Proposition 2. Since both pixels p and q are in the same black component,
no black component can be deleted completely by T1. Hence Condition 3 of
Theorem 2 is satisfied.

We proved that the parallel reduction operator given by template T1 is topology
preserving. The remaining five subiterations of Algorithm 1 given by templates
T2, T3, T4, T5, and T6 are topology preserving operators since these templates
can be obtained by rotations of template T1. Algorithm 1 is topology preserving
since it is composed of topology preserving operators. ��

5 Conclusions

This paper presents a characterization of simple point in (6, 6) digital pictures
sampled on hexagonal grids (or triangular lattices) and establishes sufficient
conditions for topology preserving parallel reduction operators working on (6, 6)
pictures. By our results, various thinning (and shrinking to a residue) algorithms
can be proved to be topology preserving. To illustrate the usefulness of our suf-
ficient conditions, we have proposed a new parallel subiteration–based thinning
algorithm and we have proved its topological correctness.

Acknowledgements

This research was supported by the TÁMOP-4.2.2/08/1/2008-0008 program of
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4.2.1/B-09/1/KONV-2010-0005, and the grant CNK80370 of the National Of-
fice for Research and Technology (NKTH) & the Hungarian Scientific Research
Fund (OTKA).



42 P. Kardos and K. Palágyi
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Université de Savoie, Le Bourget-du-Lac, 73376, France
jacques-olivier.lachaud@univ-savoie.fr

Abstract. We propose in this paper a new curvature estimator based
on the set of maximal digital circular arcs. For strictly convex shapes
with continuous curvature fields digitized on a grid of step h, we show
that this estimator is mutligrid convergent if the discrete length of the

maximal digital circular arcs grows in Ω(h− 1
2 ). We indeed observed this

order of magnitude. Moreover, experiments showed that our estimator
is at least as fast to compute as existing estimators and more accurate
even at low resolution.

1 Introduction

The accurate estimation of geometric parameters such as perimeter, tangent
and curvature along digital objects is important for many image analysis appli-
cations, for instance the detection of dominant points and corners. We focus here
on curvature estimation along digital contours, assumed to be digitizations of
smooth Euclidean shapes of the plane. This subject has led to the development
of many estimators, which fall roughly in three categories according to [17,16,8]:
(i) derivative of the tangent orientation, (ii) norm of the second derivative of the
curve considered as a path, (iii) inverse of the osculating circle radius. In most
approaches, a user-given window or smoothing parameter is used so as to remove
the jaggedness of digital contours and to make it continuous [17,16,4,12,13,3,5,6].

In approaches of (i), the curvature estimation relies on the convolution of the
contour tangent by some derivative of Gaussian kernel, either in a continuous
setting [17,16,4], or in a discrete setting [13,3,5]. Furthermore a preprocessing
with digital straight segments is sometimes used to limit the arithmetic effects
[16,4]. Methods of (ii) generally reconstruct locally the contour with some poly-
nomial of given degree [14,8]. Again, an important parameter is the size of the
window. Methods of (iii) tries to estimate the osculating circle around the point
of interest [1,2,8,6].

Among all these curvature estimators, few do not require an external pa-
rameter. They all rely on digital straight segment (DSS) recognition. Only the
length of DSS is used in [1] to estimate the osculating circle, but this approach

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 43–55, 2011.
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does not give accurate estimations. In [2] (HK2005 in [8]), the two half-tangents
define a triangle whose circumscribed circle approximates the osculating circle.
This technique gives correct results on average, but oscillates a lot and leads to
very large errors as reported in [9]. The GMC estimator [9] computes, among all
Euclidean shapes that are digitized as the input digital shape, the shape that
minimizes its squared curvature. Digital straight segments are used here as a
preprocessing to make easier the optimization.

An important property that should have a discrete estimator is the multigrid
convergence [10]. Indeed, at a given resolution, infinitely many shapes have the
same digitization, which hampers the objective comparison of estimators. For
estimators of local geometric quantities like tangent or curvature, few results
exist. We may quote some convergence results for tangent estimators [11,13,3].
And there is no correct convergence results for curvature as far as we know.

In this paper, we present in Section 2 a new curvature estimator based on
Maximal Digital Circular Arcs detection (MDCA). It is thus a natural extension
of uniformly convergent tangent estimators based on maximal DSS [11]. It is
a parameter-free method, with linear computation time in practice. Section 3
discuss the multigrid convergence of this estimator and establishes the impor-
tance of the asymptotic length evolution of MDCAs as the resolution gets finer.
Section 4 verifies experimentally the asymptotic behavior of MDCAs and of the
curvature field estimation. These results backs up our claim that this estimator
is multigrid-convergent. Section 5 compares numerically this estimator with the
latest curvature estimators of the literature: the binomial convolution (BC) es-
timator of [13,3], and the global min-curvature (GMC) estimator of [9]. They
show that this new estimator outperforms the previous ones on tested shapes.

2 Curvature Estimation Based on the Set of Maximal
Digital Circular Arcs

We propose in this section a curvature estimator based on a curvature map
computed from the set of maximal digital circular arcs.

Let X be a family of compact simply connected subsets of R2 with continuous
curvature fields. The reason that explains why we need continuous curvature
fields is postponed to section 3.1. We denote by Dh(X) the Gauss digitization
of X ∈ X with grid step h, seen as a union of pixels of side h in R

2. For sake of
clarity, we shorten in the sequel Dh(X) into D and denote its complementary
by D̄. Moreover, let us assume that D contains at least one pixel, i.e. |D| ≥ 1.

Let the digital contour C of D be the topological border ∂D of D. Any side
of any pixel is a grid edge. The contour C is a circular list of grid edges in
the clockwise orientation. Any part C′ of C is a sequence of consecutive grid
edges. The discrete length of C′ is defined as its number of grid edges. The
distance between two grid edges is defined as the discrete length of the shortest
part joining these two grid edges. Each grid edge lies between two pixels, one
belonging to D, the other belonging to D̄. The centers of the pixels incident to
C′ and belonging to D are the interior points of C′, whereas those of the pixels
incident to C′ and belonging to D̄ are the exterior points of C′.
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Any part C′ of C is a digital circular arc (DCA for short) if and only if
the interior and exterior points of C′ are circularly separable, i.e. there exists a
(Euclidean) circle that either encloses the interior points without enclosing any
exterior points or that encloses the exterior points without enclosing any interior
points. Given a grid step h, the map associating to any DCA A the value 0 if
the interior and exterior points of A are linearly separable and the curvature of
an arbitrary separating circle otherwise is denoted by kh, such that kh(A) is the
curvature of the part A (and h is the unit).

Any DCA A is maximal if and only if all the parts C′ containing A, i.e. such
that A ⊂ C′, are not a DCA. The set of all maximal DCAs (MDCAs for short)
that lie on a given contour is unique. The first grid edge of any two distinct
MDCAs cannot be identical because if it is, the shortest MDCA is necessarily
contained in the longest one and is thus not maximal. Consequently, the MDCAs
can be ordered according to the position of their first grid edge in the contour.
Let us then denote by (Ai)i∈1,...,n the sequence of the n MDCAs lying on C.

Given any DCA A of discrete length L, the map associating A to its middle
grid edge is denoted by m such that m(A) is the �L

2 �-th grid edge of A. Note
that the middle grid edges of any two consecutive MDCA are never the same
grid edge.

As a result, a contour C can be partitioned without ambiguity into a sequence
(Vi)i∈1,...,n such that Vi is the set of grid edges closer to m(Ai) than to any
other grid edge m(Aj), j ∈ 1, . . . , n and j 	= i (the first one with respect to the
clockwise orientation of the contour is assumed to be closer in case of tie). For
all i ∈ 1, . . . , n, we associate to any grid edge of Vi, the curvature value of the
separating circle associated to the MDCA Ai.

Definition 1. Let (Ai)i∈1,n be the sequence of MDCAs lying on C. Let (Vi)i∈1,n

be a partition of C such that Vi is the set of grid edges closer to m(Ai) than to
any other grid edge m(Aj), j ∈ 1, . . . , n and j 	= i Given a grid step h, the
curvature estimator κ̂h

MDCA is the piecewise constant function that associates to
any digital contour C and to any point p of C a curvature value in R such that:

∀i ∈ 1, . . . , n,∀e ∈ Vi, ∀p ∈ e, κ̂h
MDCA(C, p) = kh(Ai).

A minimal example is provided in Fig. 1.

3 On the Multigrid Convergence of the MDCA Estimator

In this section, we first propose a discrete curvature estimator definition and
next discuss of the multigrid convergence properties of κ̂MDCA.

3.1 Multigrid Convergence Definition for a Curvature Estimator

The curvature is some function of the shape boundary. However, the contour
of the shape digitization does not define the same domain. Therefore we can-
not directly compare the true curvature function with the estimated curvature
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(a) (b)

Fig. 1. The set of MDCAs (12 arcs) is depicted in a) with pieces of rings along the
contour of the digitization of an ellipse having a great axis of 9 pixels long and a small
axis of 6 pixels long. The angle between the main orientation and the x-axis is equal
to 1.9 radians. The curvature plot defined from the set of MDCAs is shown in b). The
blue grid edges are those whose curvature depends on the radius of the blue MDCA.

function. We provide below a definition of multigrid convergence for discrete
curvature estimators. It is neither a parametric definition as in [3] nor a point-
wise definition as the standard multigrid convergence reported in [10]. It is a
geometric definition, stating that any digital point sufficiently close to the point
of interest has its estimated curvature which tends toward the expected curva-
ture. This definition of multigrid convergence imposes shapes with continuous
curvature fields.

Let us recall that X is a family of compact simply connected subsets of R2

with continuous curvature field. We denote by Dh(X) the Gauss digitization of
X ∈ X with grid step h. For any x in the topological boundary ∂X of X , let
κ(X, x) be the curvature of ∂X at x. A discrete curvature estimator κ̂ = (κ̂h)h>0

is a family of mappings which associates to any digital contour C and a point
p ∈ C some value of R. Note that the estimator proposed in Definition 1, is
a discrete curvature estimator as defined above. The following section aims at
studying the multigrid-convergence of this estimator:

Definition 2. The estimator κ̂ is multigrid-convergent for the family X if and
only if, for any X ∈ X, h > 0, for any x ∈ ∂X,

∀y ∈ ∂Dh(X) with ‖y − x‖1 ≤ h, |κ̂h(Dh(X), y) − κ(X, x)| ≤ τx(h),

where τX,x : R+∗ → R+ has null limit at 0. This function defines the speed of
convergence of κ̂ toward κ at point x of X. The convergence is uniform for X
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when every τX,x is bounded from above by a function τX independent of x ∈ X
with null limit at 0.

3.2 Relation with Growth of MDCAs

In this section, we establish a link between the multigrid convergence of our
estimator and the asymptotic length of the MDCAs along the digital shape. We
restrict our study to convex shapes having strictly positive and finite curvature.

We recall first that any convex shape X is uniquely determined by its support
function f of center B, with f : [0, 2π[→ R. In our case, f(φ) is the algebraic
distance between B and the point of ∂X with normal n(φ) = (cosφ, sin φ). A
(θ1, θ2)-piece of (B, R, e)-ring is the subset of R2 defined in polar coordinates as
{(r, θ) : R − e ≤ r ≤ R + e, θ1 ≤ θ ≤ θ2}. It is said to be simply covering ∂X if
its intersection with ∂X is a simple curve whose extremities have a polar angle
of respectively θ1 and θ2.

Lemma 1. Let R be a (θ1, θ2)-piece of (B, R, h)-ring that simply covers ∂X,
whose Euclidean length R(θ2−θ1) is lower bounded by Ω(ha) and upper bounded
by O(hb), 0 < b ≤ a < 1/2. Then, the radius R tends towards the inverse of the
curvature of ∂X at any points of R∩ ∂X as h → 0.

Proof. Let R be such a ring. Its length is L = R(θ2 − θ1). The points of ∂X at
θ1 and θ2 are respectively denoted by M1 and M2. The points Mi, i = 1, 2, have
normals n(φi). We represent X with its support function f centered on B. We
proceed in four steps.

1. We relate θ2 − θ1 and φ2 − φ1.
Let L12 be the length ∂X between M1 and M2. By convexity of X , L12 is
longer than the shortest arc of R and shorter than the longest arc of R plus
twice its thickness. We get:

(R − h)(θ2 − θ1) ≤ L12 ≤ (R + h)(θ2 − θ1) + 4h

But L12 =
∫ φ2

φ1

1
κdφ. Introducing κmin and κmax as a lower and upper bound

on the curvature in ∂X ∩R, we easily get by integration:

κmin(R − h)(θ2 − θ1) ≤ φ2 − φ1 ≤ κmax((R + h)(θ2 − θ1) + 4h),

and since L/R = θ2 − θ1:

κmin(1 − h/R)L ≤ φ2 − φ1 ≤ κmax((1 + h/R)L + 4h), (1)

2. We major f ′′ at point M ∈ ∂X whose normal has angle φ = (φ1 + φ2)/2.
Finite differences applied on f ′′(φ) gives:

f ′′(φ) =
f(φ1) − 2f(φ) + f(φ2)

((φ2 − φ1)/2)2
+ O(φ2 − φ1). (2)
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Since M1, M, M2 are all in R and since the support function f has center
B, the values f(φ1), f(φ), f(φ2) are bounded by R − h and R + h. We also
insert (1) in (2) to get:

|f ′′(φ)| ≤ 16h

κ2
minL

2

(
1

1 + O(h/R)

)
+ O(L(1 + h/R)) + O(h). (3)

3. The quantity f ′′(φ) tends toward 0 as h → 0.
The radius R of the ring is lower bounded by some constant for sufficiently
small h since ∂X has finite curvature everywhere. As a result h/R → 0 as
h → 0. We insert the hypothesis Ω(ha) ≤ L ≤ O(hb) into (3):

|f ′′(φ)| ≤ O(h1−2a) + O(hb) + O(h). (4)

From 1/2 > a and 0 < b, it is clear that |f ′′(φ)| tends toward 0 as h → 0.
4. We relate the behavior of f ′′ to the curvature.

It is well known that the curvature has a close relation with the support
function: ∀φ, 1/κ(φ) = f(φ)+ f ′′(φ). Now ∀φ, φ1 ≤ φ ≤ φ2, we have R−h ≤
f(φ) ≤ R + h. This holds also for φ which lies between φ1 and φ2. We
immediately obtain

1/κ(φ) = R + O(h) + O(f ′′(φ)). (5)

From (4) and (5), it is now obvious that the radius of the covering ring tends
toward the inverse of the curvature of some point in R∩ ∂X . The curvature
of ∂X being continuous and R being included in some ball of radius O(hb),
b > 0, the same holds for all points of R∩ ∂X . ��

It remains to show that there always exists a piece of ring simply covering ∂X
for any MDCA.

Theorem 1. Let X be the family of compact convex subsets of R2, whose cur-
vature field is continuous, strictly positive and upper bounded. If the length of
MDCAs along any Dh(X), X ∈ X, is lower bounded by Ω(ha) and upper bounded
by O(hb), 0 < b ≤ a < 1/2, then the curvature estimator κ̂MDCA is uniformly
multigrid convergent for X, with τ = O(hmin(1−2a,b)).

Proof. Let h > 0, x ∈ ∂X , and y ∈ ∂Dh(X), ‖y − x‖1 ≤ h. The point y is closer
to some MDCA Ai than to any other one. Let C be any circle separating the
interior and exterior points of Ai. Let us denote by B its center and R its radius.
Let θ1 and θ2 be the polar angle (with respect to B) of the extremities of Ai. Let
R be the (θ1, θ2)-piece of (B, R,

√
2h)-ring. See Fig. 2 for an illustration. The

circle C separates all the interior points from the exterior points of Ai. Since we
have chosen the width

√
2h, we also know that all these points are included in R.

Since ∂X is contained in the one-pixel wide strip between interior and exterior
points of the grid edges, ∂X can only exit R on its sides. It is well known that for
a sufficiently small h, the digital contour ∂Dh(X) has the same topology as ∂X
(e.g. par-regularity [7]). Therefore ∂X∩R has the same topology as ∂Dh(X)∩R,
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Fig. 2. Illustration of the proof of Theorem 1: piece of ring defined from the separating
circle of a given MDCA

i.e. it is curve without intersection. We conclude that R is simply covering ∂X .
By definition R covers y, but also x: indeed, it is the most centered MDCA,
and an MDCA is at least longer than three pixels. Applying Lemma 1, gives
that the inverse of R tends toward the curvature at x, and more precisely in
O(hmin(1−2a,b)) according to (4). We conclude since κ̂MDCA gives by definition
1/R at y. ��
If N = 1/h is the resolution, The discrete length of MDCAs (length divided
by h) must thus grow at speed faster than Ω(h− 1

2 ), i.e. Ω(
√

N), and smaller
than O(h−1), i.e. O(N), so that the curvature estimator κ̂MDCA is multigrid
convergent.

4 Experimental Evaluation

We experimentally observed on digitizations of ellipses that the average discrete
length of the MDCAs grows in Θ(h− 1

2 ) as h tends towards 0 (Fig. 3.a). According
to the results of the previous section, this suggests that the proposed estimator
is multigrid convergent for strictly convex shapes having continuous curvature
fields such as ellipses.

In order to observe the multigrid convergence of our estimator for an ellipse
E of center c, we compared the value of κ̂h

MDCA to the ground-truth κ̂. For each
grid edge, we associated to the midpoint p, its projection p′ on ∂E along the ray
coming from c so that the absolute error at p is defined as:

εabs(p) = |κ̂(∂E, p′) − κ̂h
MDCA(∂Dh(E), p)| (6)

The relative error at p is consequently defined as:

εrel(p) =
εabs(p)

κ̂(∂E, p′)
(7)

The average absolute and relative error have been plotted against the grid step
h in Fig. 3.b. We experimentally observed that the convergence speed is Θ(h

1
2 ).

Note however that the discrete length of the smallest MDCA grows more likely
in Θ(h−0.43) (Fig. 3.a), which means that the proposed estimator may not be
uniformly convergent.
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Fig. 3. The set of MDCAs has been computed from the contour of the digitization of
an ellipse of elongation 1

3
. The minimal, average and maximal discrete length of the

MDCAs have been plotted against the grid step h in (a). The average absolute and
relative error have been plotted against the grid step h in (b).

The position and the orientation of the ellipses have no significant impact
on the discrete length of the MDCAs (and as expected, the finer the resolution
is, the smaller the variation is). The elongation of the ellipses has however an
impact on the magnitude of the discrete length of the MDCAs. We set the great
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axis of an ellipse to 24 pixels and set the small one to 6, 8, 12, 16 and 18 pixels,
in order to test ellipses of elongation 1

4 , 1
3 , 1

2 , 2
3 and 3

4 respectively. In either case,
the average discrete length of the MDCAs grows in Θ(h− 1

2 ) as h tends towards
0. Though, for a given great axis, the larger the small axis is, the higher the
average discrete length of the MDCAs is.

5 Comparisons

We report below the comparison of our estimator to the latest curvature esti-
mators of the literature for three shapes: a disk of radius 15, an ellipse of great
(resp. small) axis 30 (resp. 20) and a flower of five petals, of great (resp. small)
radius 15 (resp. 10).

These shapes have been digitized (according to Gauss scheme) at three dif-
ferent grid steps: h = 1, h = 0.1 and h = 0.01. The digital objects obtained for
h = 1 and h = 0.1 are depicted Fig. 4. Their digital contour is the input of the
curvature estimation methods.

(a) 1 (b) 0.1 (c) 1 (d) 0.1 (e) 1 (f) 0.1

Fig. 4. Digitization at two different grid steps of the circle (a-b), the ellipse (c-d) and
the flower (e-f) for which the curvature has been estimated

5.1 Implementation Issues

The GMC estimator [9] computes the shape whose digitization coincides with the
input digital object and that minimizes its squared curvature. The minimization
is performed by an iterative numerical technique that stops when the difference
between the squared curvature of the last two solution shapes is less than a small
quantity set to 1.10−8 in what follows.

The BC estimator [13,3] is computed from derivative estimations, get by finite
differences after the convolution of the contour points by a binomial kernel of a
given size. The mask size is an input parameter that is not easy to determine,
but following [13], it has been set to d.h

4
3 where d is the diameter of the shape,

equal here to 30 for the circle, the ellipse and the flower.
As explained in Section 2, the proposed estimator is computed from the set

of MDCAs.
For the recognition of the DCAs, we use the on-line algorithm proposed in [15].

The algorithm incrementally computes one (Euclidean) circle that separates the
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interior and exterior points of a DCA and that is called below current circle.
Deciding whether a DCA can be extended to a new grid edge requires to check
the location of the interior and exterior points of the grid edge with respect to
the current circle. If the interior (resp. exterior) point is located inside (resp.
outside) the current circle, nothing has to be done because the current circle is
still separating. However, if the interior (resp. exterior) point is located outside
(resp. inside) the current circle, then either the point is located on another
separating circle, or the sets of interior and exterior points are not circularly
separable at all. A linear-time procedure, which computes the set of separating
circles passing through a given point, is used in the aim of deciding between
these two alternatives. A naive upper bound for the extension of a DCA to a
new grid edge is thus O(n), but we experimentally observe a constant time in
average because the linear-time procedure is called only a few times.

The set of MDCAs is then computed DCA by DCA using the above recog-
nition algorithm and following the scheme given in [4] for the maximal digital
straight segments. The mechanism can be coarsely described as follows: given a
MDCA Ai and the first grid edge e following Ai, the next MDCA Aj is computed
in two steps. First, we compute the longest DCA starting from e and scanning
the contour backward. Then, we extend this DCA forward as far as possible until
it is maximal. The number of times we try to extend a DCA is bounded by the
sum of the discrete length of the MDCAs. We experimentally observe that this
sum is proportional to the length of the contour and that the global complexity
the MDCAs computation is linear in practice.

5.2 Accuracy and Running Time

In Fig. 5, we compare the curvature plots derived from the MDCA, GMC and
BC estimators to the ground-truth. The visual deviation between the estimated
graphs and the ground-truth graph reflects the average absolute error available
in Tab. 1. For either estimator, the curvature estimations are more accurate
for the circle than for the ellipse and more accurate for the ellipse than for the
flower. For either shape, the GMC and MDCA estimations gets closer to the
ground-truth (Fig. 5) and their absolute error decreases (Tab. 1) as h decreases.
However, the BC estimations are not improved by increasing the resolution,
except for the flower. Lastly, MDCA estimations are always better than GMC
and BC estimations except in one case (maximal error for the flower at grid
step 0.01), even by several orders of magnitude for the circle. For the ellipse and
the flower, at grid step 0.01, MDCA estimations are 4 times better than GMC
estimations in average and much more better than BC estimations (Tab. 1). In
Fig. 5, the MDCA graph is hardly confounded with the ground-truth graph.

Tab. 2 reports the running times. The algorithms have been implemented in
C++ and have been run on an Intel Core Duo processor work-station with a 2.4
GHz Clock and 2GB of main memory.

The running times of the BC estimator grow quickly as h decreases and is high
at grid step 0.01 (18s) because the mask size must be set to d.h4/3. The GMC
estimator and leads to rather low running times, minimal for the flower (823ms
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Fig. 5. Curvature plots for two shapes digitized at three different resolutions, com-
puted from the proposed estimator (MDCA) and the latest curvature estimators of the
literature (BC [13,3] and GMC [9])
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Table 1. Average and maximal absolute error of the curvature estimation for three
shapes digitized at three different grid steps and comparisons with the BC and GMC
estimators

circle ellipse flower

h 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01
� grid edges 120 1200 12000 100 1008 10078 122 1220 12184

BC
avg 0.0143 0.0143 0.0143 0.0168 0.0170 0.0170 0.1044 0.0623 0.0440
max 0.0262 0.0205 0.0203 0.0577 0.3634 0.0389 0.4648 0.3236 0.2143

GMC
avg 8.10−4 3.10−5 3.10−5 0.0168 0.0086 0.0044 0.1103 0.0519 0.0222
max 5.10−3 4.10−5 9.10−5 0.0562 0.0336 0.0281 0.5250 0.2869 0.1529

MDCA
avg 4.10−5 5.10−7 8.10−8 0.0094 0.0034 0.0009 0.0845 0.0281 0.0084
max 4.10−5 5.10−7 8.10−8 0.0413 0.0149 0.0068 0.4356 0.1918 0.1552

Table 2. Running time of the curvature estimation for three shapes digitized at three
different grid steps and comparisons with the BC and GMC estimators

circle ellipse flower

h 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01
� grid edges 120 1200 12000 100 1008 10078 122 1220 12184

timing (ms)
BC < 1 63 18596 < 1 55 30197 < 1 83 18704

GMC < 1 820 2360 < 1 27 1843 < 1 15 843
MDCA < 1 23 455 7 139 1783 3 127 2195

at 0.01) and maximal for the circle (2360ms at 0.01). The MDCA estimator
is linear-time in practice and also leads to low running times, minimal for the
circle (455ms at 0.01) and maximal for the flower (2195ms at 0.01). It is the best
method when averaging over the three shapes.

6 Conclusion and Perspectives

The proposed estimator does not require any parameter, is fast to compute
(linear-time in practice) and more accurate than the latest estimators of the lit-
erature at low as well as high resolution. We provide a necessary condition about
the length of the maximal digital circular arcs under which the proposed esti-
mator is multigrid convergent. We experimentally observed that this condition
is fulfilled and proving this fact is our main perspective. We are also interested
in dealing with shapes corrupted by noise in a multi-resolution framework.
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Abstract. Deformable models have shown great potential for image seg-
mentation. They include discrete models whose combinatorial formula-
tion leads to efficient and sometimes optimal minimization algorithms. In
this paper, we propose a new discrete framework to deform any partition
while preserving its topology. We show how to combine the use of multi-
label simple points, topological maps and minimum-length polygons in
order to implement an efficient digital deformable partition model. Our
experimental results illustrate the potential of our framework for seg-
menting images, since it allows the mixing of region-based, contour-based
and regularization energies, while keeping the overall image structure.

Keywords: Topological Map, ML-Simple Point, Minimum-Length
Polygon, Deformable Model, Interpixel Boundaries, Multi-Label Image.

1 Introduction

Energy-minimizing techniques are now widely spread approaches for segmenting
images into meaningful regions. They express the problem as a balance between
several energies: (i) fit-to-data: energies that express the consistency of the re-
gions with the data, (ii) regularization: energies that enforce spatial coherence.
Fit-to-data is either region-based (squared error for homogeneity) or contour-
based (strong gradient). Regularization is generally enforced through boundary
length penalization, sometimes curvature penalization or some a priori knowl-
edge on the probability distribution of the partition model.

Energy minimization can be solved in the continuous world with iterative solv-
ing of partial differential equations, leading to snakes and geometric or geodesic
active contours [13,3,4] and Mumford-Shah approximation [19,25,20]. Energy
minimization can also be expressed in the discrete world, generally as a graph-
cut problem [1,5] or a Markov Random Field (e.g., see [24]). To sum up, con-
tinuous approaches achieve optimality for specific energies. Discrete approaches
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are close to the optimal for a wider set of energies, to the price of less pertinent
regularization energies: for instance, the length of the boundary is approximated
as its staircase length.

As noted by Meltzer et al. [17] or Szeliski et al. [24], appropriate energies are
more important than optimality for good segmentation results. In this paper, we
therefore focus on defining an energy-minimizing framework for image segmen-
tation that is as versatile as possible to define energies and relations between re-
gions. We propose a purely discrete framework, which encodes both the topology
and the geometry of an image partition. This digital partition is “deformable”
in the sense that pixels may change their label during the minimization. The
deformation is controlled so that the partition may not change topology during
the deformation. This property is desirable in many image analysis applications,
like segmentation with a priori knowledge on the output topology (as often in
biomedical image segmentation) or atlas matching. This aspect has even been
recognized by the level-set community: although the level-set principle allows
arbitrary topology changes, several authors have proposed methods to reintro-
duce topology control in the segmentation (e.g., see [22]). This paper extends
the work of [9] because our framework incorporates a new length penalizer with
better regularization properties. Moreover, it combines in a single balance the
energies: on one side, length penalization and alignments of boundaries with
strong gradients define one energy term (in the same spirit as geodesic active
contours [4]), on the other side region homogeneity.

Our objective is to define a digital deformable partition model. To that effect,
several bottlenecks must be solved. First, we need to describe digital contours
as closed paths, eventually intersecting themselves. We use interpixel topology
[14] which allows to have in digital spaces good topological properties similar to
the ones in continuous spaces. Second, we need to control the topology of the
deformable partition. This is achieved thanks to multi-label simple points [11,9].
Last, during deformations, we need a data structure to manage various queries
like access to image statistics in region, estimation of the length of boundaries,
etc. We use topological maps [8] to describe all the cells composing the deformable
partition, and all the incidence and adjacency relations between these cells. Then,
we use the minimum length polygon [18,23,21] criteria in order to estimate the
length or evolving regions.

The paper is organized as follows. We recall the main notions of these papers
in Section 2 (for further details, interested readers must refer to the original
works). Then, we present the deformable process and the energies in Section 3.
Illustrative experiments are given in Section 4. Future works are discussed in
Section 5.

2 Preliminaries Notions

2.1 Pixels, Image and Regions

A pixel is an element of the discrete space N2. Two pixels p = (x, y) and p′ =
(x′, y′) are 4-adjacent if |x − x′| + |y − y′| = 1. A 4-path between two pixels
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p and p′ is a sequence of pixels (p = p1, . . . , pk = p′) such that each couple of
consecutive pixels are 4-adjacent. A set of pixels S is 4-connected if there is a
4-path between any couple of pixels in S having all its pixels in S.

An image is a set of pixels. In this work, we consider labeled images, i.e. images
in which each pixel is associated with a label (any value). In labeled images, a
region is a maximal set of 4-connected pixels. Thus, regions form a partition
of the image: two different regions are disjoint, and the union of all the regions
is equal to the image. Moreover, we consider a specific region R0, called the
infinite region, which is the complementary of the image. Two regions are said
4-adjacent if there is a pixel in the first region that is 4-adjacent to a pixel in
the second region.

2.2 Interpixel Topology and Cubical Complexes

In interpixel topology, we consider the cellular decomposition of the euclidean
space R2 into regular grids. Pixels are elements of dimension 2 (squares) of the
decomposition, linels are elements of dimension 1 (segments) between pixels,
and pointels are elements of dimension 0 (points) between linels. We call i-face
an element of dimension i (see examples in Fig. 1).

For a pixel p, we note linels(p) the set of the four linels between p and its four
4-neighbors, and pointels(p) the set of the four pointels around p. For a linel
l, we note pointels(l) the set of the two pointels around l. These notations are
directly extended to set of elements. For example, we note pointels(L), L being
a set of linels, the union of pointels(l) for all l ∈ L.

A cubical complex C is a set of pointels, linels, surfels, glued together by
adjacency and incidence relations. A free pair in C is a couple (c, c′) with c ∈ C
being an i-face (0 ≤ i ≤ 1), c′ ∈ C being an (i + 1)-face incident to c′, and such
that there is no other (i + 1)-face in C distinct from c′ incident to c. In such a
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Fig. 1. Example of interpixel topology, cubical complex and collapse. (a) A cubical
complex C. Pointels are black disks (for example 1 and 5), linels are black segments
(for example 2 and 4) and pixels are gray squares (for example 3 and 6). Pointel 1 is
incident to linel 2 and to pixel 3. Linel 2 is incident to pixel 3. Pointels 1 and 5 are
adjacent. Linels 2 and 4 are adjacent. Couple (2, 3) is a free pair. (b) Cubical complex
obtained from C by the elementary collapse of free pair (2, 3). (c) A cubical complex
C′ such that C collapses onto C′. (d) A cubical complex C′′ such that C′′ is simple
for C. “Removing” C′′ from C gives C′. Symmetrically, C′′ is add-simple for C′ and
“adding” C′′ in C′ gives C.
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case, (c, c′) can be removed from C without modifying its topology. This is the
basic operation used to deform a cubical complex while preserving its topology
called the elementary collapse.

A cubical complex C collapses onto a second cubical complex C′ if there
is a sequence of elementary collapse transforming C into C′. We say that a
complex Y is simple for X if Y can be “removed” from X without modifying
the topology of X , and symmetrically, a complex Y ′ is add-simple for X ′ if Y ′

can be “added” into X ′ without modifying the topology of X ′. These two notions
can be defined thanks to the collapse operation (see [6] for precise definitions,
and some examples in Fig. 1).

2.3 Multi-label Simple Points

Given a pixel x belonging to region X , and a region R, we note l(x, R) the linels
around x that “touch” R: l(x, R) = {linels l|l ∈ linels(x) and the second pixel
around l belongs to R}. Similarly we note p(x, R) = {pointels p|p ∈ pointels(x)
and the three pixels around p distinct from x belong to R}. The contour of
x touching R, called c(x, R) is the composition of these two sets: c(x, R) =
(p(x, R), l(x, R)). We note c−(x, R) = (p−(x, R), l(x, R)), with p−(x, R) the set
of pointels touching a linel in l(x, R), i.e. p−(x, R) = pointels(l(x, R)).

The frontier between two regions X and R is noted f(X, R). This is the set
of all the linels between one pixel in X and one pixel in R, denoted l(X, R), plus
all the pointels touching these linels p(X, R) = pointels(l(X, R)).

Definition 1 of multi-label simple points is based on the interpixel topology and
the simple and add-simple notions (see examples in Fig. 2). A pixel x belonging
to region X is ML-simple for region R if the flip of x in R does not modify
the topology of region R (first condition of the definition), does not modify the
topology of region X (second condition of the definition), and if it does not
modify the different frontiers around x (last condition of the definition). For
the two first conditions, a cubical complex C is said homotopic to a 1-disk if
it can be collapsed onto a complex that is composed only by one linel. For the
last condition, intuitively it means that two regions adjacent along one frontier
before the flip are still adjacent after the flip (i.e. the frontier still exists) and
that two regions not adjacent before the flip are still not adjacent after.

Definition 1 (ML-simple points). A pixel x, belonging to region X, is ML-
simple for region R if:

1. c(x, R) is homotopic to a 1-disk;
2. c(x, X) is homotopic to a 1-disk;
3. for each region O 4-adjacent to x, distinct from X and R: c−(x, O) is simple

for f(X, O); and add-simple for f(R, O).

The main operation used during the deformation algorithm is the flip of a pixel
x ∈ X into a given region R. This operation consists in removing x from its
initial region X and adding it to region R. It has been proved in [11] that if the
pixel x is ML-simple point for region R, it can be flipped into region R without



60 G. Damiand, A. Dupas, and J.-O. Lachaud

A R
x

X
1 2

3 4

5 6

b
c

d
e

7

f

a

(a)

A R
x

X
1 2

3 4

5 6a
b

c

e

7

f

g

(b)

R
AxX

a

b

(c)

A B
x

X R

3

5

41

2

b

c

a

(d)

Fig. 2. Examples of ML-simple points and non ML-simple points. (a) x is ML-simple
for R. c(x, R) = ({}, {d}) and c(x, X) = ({}, {g}) are homotopic to 1-disks. c−(x,A) =
({2, 3, 4}, {b, c}) is simple for f(X, A) = ({1, 2, 3, 4}, {a, b, c}); and add-simple for
f(R, A) = ({4, 7}, {f}). (b) Partition obtained from (a) after the flip of x in R.
f(X, R) = ({2, 5, 6}, {e, g}), f(X, A) = ({1, 2}, {a}), f(R, A) = ({2, 3, 4, 7}, {b, c, f}).
(c) x is not a ML-simple point for R because c(x, R) = ({}, {a, b}) is not homotopic to
a 1-disk. Flipping x in R modifies the topology of R. (d) x is not a ML-simple point for
R because c−(x, A) = ({1, 2}, {a}) is not add-simple for f(R, A) = ({}, {}). Flipping x
in R modifies the adjacency between regions.

modifying the topology of the partition. This operation modifies regions R and
X , but also some frontiers. Since pointels are deduced from linels by definition
of frontiers, modifications only concern the linels of the frontiers (see example
in Fig. 2):

– l(X, R) ← l(X, R) \ l(x, R) ∪ l(x, X);
– For any region O with O 	= X , O 	= R: l(X, O) ← l(X, O) \ l(x, O);
– For any region O with O 	= X , O 	= R: l(R, O) ← l(R, O) ∪ l(x, O);

2.4 Minimum Length Polygon

The Minimum Length Polygon (MLP) is a classical polygonalization method
of digital contours [18,23]. Assuming that the digital contour is the boundary
of some digital object, it is the polygon with shortest perimeter, whose interior
contains the centers of the pixels of the object and whose exterior contains the
centers of the pixels of the background. One may also see it at the shortest closed
polygonal line which stays within the strip formed by the minkowski sum of the
digital contour and a centered unit square while making one loop inside it (see
Fig. 3). It has been proved recently that the MLP is a good regularizer for digital
active contours [10]: for instance, it is a kind of convex energy in a digital space.
We use the combinatorial MLP in our experiments, since it is one of the fastest
method for computing it [21].

2.5 Topological Map

Several works have proposed data structures to describe image partitions [12,2].
The common goal is to represent regions of a given partition and all the incidence
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Fig. 4. Example of topological map. (a) Combinatorial map
describing the topology of frontiers. (b) Interpixel matrix
describing the geometry of frontiers.

and adjacency relations between regions. Structures based on combinatorial maps
[15] have several advantages justifying their use: they represent all the cells of
the subdivision (vertices, edges and faces) and all the incidence and adjacency
relations between these cells; they are defined based on a unique element called
dart, simplifying their use; and they are defined in any dimension which allows
extensions of this work in higher dimension.

Topological maps are an extension of combinatorial maps created to describe
the whole topology of image partitions [8]. A topological map is composed of
a combinatorial map that describes the cells of the partition and the incidence
and adjacency relations between these cells (e.g. Fig. 4(a)), plus an interpixel
matrix that describes the geometry of regions (e.g. Fig. 4(b)).

The combinatorial map describes each adjacency relation between two regions
by an edge composed of two darts linked together. Thus, a dart can be seen as
an half-edge (for example darts 1 and 2 in Fig. 4(a)). A cycle of successive
darts describes a contour of a given region (for example (1, 3) or (2, 5)). In the
interpixel matrix, each linel belonging to one frontier between two regions is
switched on, and each pointel touching more than two linels is switched on.
Other elements are switched off. Each dart knows its region, and each region
knows one dart of its external contour. Moreover, each dart d is associated with
a pair (pointel, linel) such that pointel corresponds to the origin of dart d, and
linel is the first linel of the frontier associated with d (for example dart 1 is
associated with pair (p, l)).

3 Deformable Model Process

To propose a new digital deformable partition model, we start by presenting
the energies used and their computation algorithms. Then, we detail the main
operations which are the test if a pixel is ML-simple, and the flip of a pixel. We
study how to update the energies during the flip, trying to keep modifications
as local as possible. Last, we give the global algorithm regrouping all these tools
to minimize the energy of the digital deformable partition model.
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3.1 Energies

We define the global energy of the partition as the weighted sum of two energies:
Ed for the energy attached to data, and Ep for the energy attached to the
deformable partition. In this work, we use the two following energies: contour(C)
is the MLP length of contour C weighted by the pixel gradient; mse(R) is the
minimum square error of region R.

These two energies can be directly computed from the topological map. For
contour(C), we run through all the darts of the given contour, and for each dart
we run through all its linels, providing the geometry of the contour. The corre-
sponding MLP can be computed from this geometry in time linear in the number
of linels [21]. Then, we project each linel of the contour on the corresponding edge
of the MLP. We compute the length of this projection, and multiply it by one
minus the absolute difference between the two pixels around the current linel.
This difference is divided by the maximal difference of the image, giving a num-
ber between 0 and 1. The value of contour(C) is simply the sum of these values
for each linel of the contour. If the image is uniform, contour(C) is equal to the
length of the MLP. Otherwise, contour(C) becomes smaller when it separates
more contrasted pixels.

For mse(R), we run through each pixel of the image that belongs to the given
region, and compute the number of pixels M0(R), the sum of the pixel values
M1(R) and the sum of the pixel squared values M2(R). With these three values,
we can directly estimate mse(R) = 1

M0(R) (M2(R) − M1(R)
M0(R) ).

To avoid several re-computation of these values, we store them in additional
elements associated with the topological map. The value of contour(C) is stored
for each contour, and M0(R), M1(R) and M2(R) are stored for each region.

The two energies Ed and Ep are computed by summing up the basic energies
on each element of the topological map: Ed = wR × ∑

region R mse(R) and
Ep = wC × ∑

contour C contour(c). The weights wR, wC associated to both
energies allow us to change the balance between the two energies.

3.2 Operations

The two main operations of the deformable process are the test if a pixel is
ML-simple, and the flip of a pixel. Algorithm 1 allows to test if a given pixel is
ML-simple. This algorithm follows directly Definition 1 (see [9] for more details).

The two first lines of Algo. 1 correspond to the two first tests of Definition 1.
Function isDisk, not given here, is simple to write since c(x, R) is restricted to
a small number of cases. Indeed, c(x, R) can be empty, a cycle (i.e. a 2-disk), or
made of several connected components: in these cases it is not a disk. The only
other possible case is the case of the disk.

The “foreach” loop of Algo. 1 corresponds to the last condition of Definition 1;
we only detail the two conditions add-simple and simple by using the definitions
given in [6]. The main principle of these definitions is to test if the given set
can be collapsed onto a specific set. This is the role of function collapse not
given here. In our case, the first set is c(x, O) which is bounded by the linels and
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Algorithm 1. isSimple(x,R)
Data: pixel x ∈ X; region R.
Result: true iff x is an ML-simple point for R.
if not isDisk(c(x, R)) then return false;
if not isDisk(c(x, X)) then return false;
foreach region O 4-adjacent to x, O �= X, O �= R do

P1 ← {l ∈ p(x,O)|l ∈ pointels(l(X, O) \ l(x, O))};
if not collapse(c(x, O), P1) then return false;
P2 ← {l ∈ p(x,O)|l ∈ f(R, O)};
if not collapse(c(x, O)), P2) then return false;

return true;

pointels incident to the given pixel x. Thus, the collapse function is restricted to
a small number of cases which can easily be tested.

The complexity of Algo. 1 is O(1) since each test is restricted to pointels and
linels around the considered pixel, and these numbers are both bounded by 4.

Algorithm 2. flip(x,R)
Data: a pixel x ∈ X ML-simple for R.
Result: flip x into region R.
switch off linels in l(x,R);
switch on linels in l(x,X);
foreach dart d touching x do

if pointel(d) ∈ c−(x, R) then update pair(d);

The second main operation is the flip which consists in removing the given
pixel x from its original region X , and add it into its new region R. To be valid,
this operation requires that x is a ML-simple pixel for region R. Algorithm 2 is
made of three steps. First we switch off the linels in l(x, R). Second we switch
on the linels in l(x, X). Since x is flip in region R, the linels in l(x, R) become
“inner linels”, i.e. inside region R, while linels in l(x, X) become frontier linels
between region R and X . The last step consists to update associations between
darts and pairs. This updating is required when the pointel associated with a
dart belongs to c−(x, R) (as in the case shown in Fig. 2(a)). In this case, the flip
of x in R involves modifications of the extremities of some frontiers (in Fig. 2(a)
f(X, A) = ({1, 2, 3, 4}, {a, b, c}) before the flip, and f(X, A) = ({1, 2}, {a}) after:
one extremity has moved).

The complexity of Algo. 2 is also in O(1). Indeed the number of linels in
l(x, R) and in l(x, X) is at most 4, and the number of darts touching pixel x is
at most 12 (3 darts for each pointel around x).

3.3 Update Energies for Flip

The main operation performed during the energy minimization process consists
in flipping a pixel into a given region, and then to update the different energies
accordingly. A first solution is to re-compute all the energies as explained in
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Sect. 3.1. But this involves a considerable computation time since the flip oper-
ation is called many times. A better solution consists in updating incrementally
the energies.

For mse, we know that only region X and region R are modified. Thanks to
the moments stored in each region, we can directly (i.e. in O(1)) update M0, M1

and M2 for these two regions and thus the two mse. This modification can be
made in constant time without additional cost for the flip algorithm. However,
the problem is more complex for contour since there is no algorithm yet able
to update a MLP after the modification of one of its pixels. Thus, contour is
re-computed for the two contours around the flipped pixel by using the same
algorithm than for the initialization step. The improvement of this particular
point is one of our future goals.

The global energy of the partition can thus be updated by subtracting original
values of each energy which will be modified, and by adding the updated energy
values after the flip.

3.4 Energy Minimization Algorithm

We present in Algo. 3 the global minimization algorithm taking a topological
map as input, and minimizing its energy by flipping ML-simple points. The
algorithm starts by an initialization step, first to compute all the energies by
using the principles given in Sect. 3.1. Then, each region X is considered to find
a possible flip. This is the role of the possibleFlip(X) function, which is as
follows. The function runs through each linel l describing a contour of X . Linel
l separates two pixels: x in X , and a second pixel in another region R. If x is
ML-simple for R, then flipping x into R is a possible candidate. Then, we flip
x into R and compute the difference δ between the old energy (before the flip)
and the new one (after the flip). Finally, we apply the reverse flip to retrieve
the initial configuration and proceed to the next linel. If δ is negative, the flip
of x into R decreases the global energy. In this case, this flip (x, R) is stored
in region X into a variable called candidate(X), and function possibleFlip
returns true. Otherwise, we continue to run over the linels of the contours of X .
If no flip decreasing the energy is found, possibleFlip returns false.

At the end of the initialization loop, S contains all regions having a flip that
decreases the energy. In the main loop of the algorithm, we choose a region in
the set, and flip the corresponding pixel. This operation changes the geometry
and the energy values of the regions X and R. Stored flips for X , R, and their
adjacent regions can be invalid (for example the considered pixel is not a simple
point anymore, or the flip increases the energy) and should be updated using
the possibleFlip algorithm. We can then proceed with an other region of S.

The main loop finishes when the set of candidate becomes empty. In this case,
the minimization process is terminated: there is no possible flip decreasing the
global energy.
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Algorithm 3. Digital partition minimization
Data: a topological map M ; an image I .
Result: minimize the energy of the digital partition.
initialize all the energies of M ; S ← ∅;
foreach region X do

if possibleFlip(X) then S ← S ∪ {X};
while S is not empty do

X ← a region in S; S ← S \ X;
(x, R) ← candidate(X);
flip(x, R);
if possibleFlip(X) then S ← S ∪ {X};
foreach region O 4-adjacent to X do

S ← S \ O;
if possibleFlip(O) then S ← S ∪ {O};

4 Experiments

In this section, we first give some deformation results on artificial image using
various weights wR and wC . Then, we show how the digital deformable partition
model is used to fit an initial partition with two pictures from the Berkeley
Segmentation Dataset [16]. In the following, weight values wR and wC are written
as the ratio wR/wC .

(a) Image (b) Partition (c) 1 / 1 (d) 1 / 105 (e) 0 / 1

Fig. 5. Experimentation on an artificial image with two simple regions

In Fig. 5, we deform the initial partition (Fig. 5(b)) of an image containing
two regions (Fig. 5(a)). Different weights are used to illustrate how their val-
ues modify the resulting partition. If the weight of the contour energy is low
(wR/wC < 1/103 as for example in Fig. 5(c)), the value of the region energy
is greater than the value of the contour energy: the contour energy does not
change the resulting partition. As the weight of the contour energy increases, the
curve separating the two regions becomes straighter (Fig. 5(d)). If the weight of
the region energy is set to zero, the obtained contour is nearly a straight line
(Fig. 5(e)). It does not exactly match the frontiers of the initial partition: where
the border crosses the curve, the gradient part of the contour energy slightly
alter the shape of the border and produces some irregularities.
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(a) Image (b) Partition (c) 1 / 1 (d) 1 / 104 (e) Two
steps

(f) 0 / 1

Fig. 6. Deformation of an artificial image with five regions

In Fig. 6, we use the deformation process on an artificial image with five
regions (Fig. 6(a)). The frontiers of the initial partition, presented in Fig. 6(b),
are not aligned with the border of the different shape in the original image.
The deformation process is applied with two different ratio between the energy
weights. When the ratio between wR and wC is high (Fig. 6(c)), the region energy
is privileged and borders follow correctly the image data. But we see that there
is some artifact around the disk region: they are caused by the starting point of
the different edges which do not move during the deformation process. When the
ratio is lower, for instance 1/104, some of the borders move correctly. However the
edge separating the two darker gray region is not positioned correctly (Fig. 6(d)):
the energy cost of having a curved border outweighs the gain in the region mse.
Thus, the border is not able to move toward the separation of the two regions.
To solve this issue, we applied a two step deformation with first a 1/1 ratio
and then a 1/104 ratio: the produced segmentation fits correctly the image data
without artifact (Fig. 6(e)). Figure 6(f) presents the partition obtained using the
contour energy alone: some parts of the disk are retrieved thanks to the gradient
measure used in the energy. The bottom right side of the disk is straighten to
minimize the length of the contour. If we use a 2D energy based on the number
of linels, similar to the one used in [9], the initial partition has already a minimal
contour energy. This shows the improvement of the regularization power of the
new contour energy based on the MLP and the gradient.

(a) Image (b) Partition A (c) A 1/104 (d) Partition B (e) B 1/104

Fig. 7. Deformation of different initial partitions of a picture
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The first real image is presented Fig. 7. Using the partition presented in
Fig. 7(b), the deformation produced the partition shown in Fig. 7(c) with a 1/104

weight ratio. We note that the shape of the object approximate the amphora in
the picture but the contours are not perfectly matched. Using the partition
presented in Fig. 7(d), the result (Fig. 7(e)) also fits correctly the amphora but
for instance the curved shape just up from the handles is not correctly matched
due to a high MLP value.

(a) Image (b) Partition (c) 1/104 (d) 1/106

Fig. 8. Deformation of an initial partition of a picture with different weight ratio

In Fig. 8, we show deformation processes applied on a picture containing two
horses (Fig. 8(a)). With the initial partition, Fig. 8(b), the first deformation
guided by a weight ratio of 1/104 fit the horses shapes (Fig. 8(c)): the legs of the
small horse are segmented with the dark area of grass around. This is caused
by the region energy which decreases when dark area are grouped. In Fig. 8(d),
the weight ratio is 1/106: the smaller horse is poorly segmented and the contour
of the taller horse are approximated. We show that the contours tend to be as
straight as possible: this remove thin parts of the regions.

5 Conclusion

In this paper, we have presented a new method of deformable digital partition.
Several works have shown the interest of using deformable models for image
segmentation, but to our knowledge, no work has yet be done on deforming
any partition while preserving its topology. To achieve this objective, we used:
(1) topological maps to efficiently compute and store features associated with
the image and the partition; (2) minimum length polygons as estimator tools;
and (3) ML-simple points to guarantee the preservation of the topology.

Our experiments show the interest of this approach to deform an initial parti-
tion according to image data. We can, for instance, propose a guided segmenta-
tion tool where a user creates an initial partition that is fitted to image data using
the deformation process. We can also foresee the use of the deformable partition
to improve the result of segmentation algorithms according to our energies.

In future works, we will focus on improving the update of the MLP after a
flip operation. The MLP is currently completely re-computed after flips, involv-
ing important computation time. This can be improved by defining dynamic
MLP capable of incremental update. Another goal is to use other energies to
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improve our results. We can, for example, use edge-detector filters (as Canny or
Marr-Hildreth detectors) instead of a simple gradient energy, or add geometrical
energies on regions to take their shapes into account (for example stretching or
compaction). Finally, we could consider the extension of this work in 3D. Since
topological maps and ML-simple points have already been defined in 3D [7,9],
we need to study the extension of MLP in higher dimension.
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Abstract. The orthogonal cover of a 3D digital object is a minimum-
volume 3D polytope having surfaces parallel to the coordinate planes,
and containing the entire object so as to capture its approximate shape
information. An efficient algorithm for construction of such an orthog-
onal cover imposed on a background grid is presented in this paper. A
combinatorial technique is used to classify the grid faces constituting the
polytope while traversing along the surface of the object in a breadth-
first manner. The eligible grid faces are stored in a doubly connected edge
list, using which the faces are finally merged to derive the isothetic poly-
gons parallel to the coordinate planes, thereby obtaining the orthogonal
cover of the object. The complexity of the cover decreases with increas-
ing grid size. The algorithm requires computations in integer domain
only and runs in a time linear in the number of voxels constituting the
object surface. Experimental results demonstrate the effectiveness of the
algorithm.

Keywords: 3D orthogonal cover, DCEL, isothetic polygon, orthogonal
polytope, shape analysis.

1 Introduction

Characterization and feature extraction of 3D objects have been an important
aspect of 3D image analysis. Several works have been reported for constructing
a polyhedron P enclosing a set of integer points S, usually known as the discrete
volume polyhedrization [6,7]. In general, these algorithms follow the principle of
marching cube that generates a triangulated polyhedral surface in which local
configurations for voxels are modeled by small triangles. However, such an al-
gorithm bears a limitation that the number of triangular faces in the surface
happen to be comparable with the number of points in S. Another work on 3D
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objects relates to digitizing the shape of an object based on range images [21],
which involves combining a collection of range images, captured by the range
scanner, to form a polygonal mesh that completely describes the object. A num-
ber of such meshes aligned and zippered together forms a continuous surface
that correctly captures the topology of the object. Based on the surface rep-
resentation, different techniques for shape analysis of digitized objects form an
important area of research in the 3D domain [8,10,13,19,20].

The marching cubes algorithm triangulates a 3D iso-surface based on cubic
cell decomposition, their local configurations, and displacement [7,16,17]. The
surface intersects a particular cube at certain edges such that the data value of
some of the vertices of the cube is greater than or equal to that of the surface.
These vertices lie on or inside the surface while other vertices do not. An edge
having two opposite type of vertices, thus classified, is intersected by the surface
at locations determined by linear interpolation of the vertices. As a cube consists
of eight vertices, each in one of two states (inside or outside the surface), a surface
can intersect the cube in at most 28 = 256 possible ways, which are reduced to
14 possible patterns using complementary and rotational symmetries. Such an
intersection produces at least one and at most four triangles within the cube.
Once the intersections are obtained for all cubes, a marching procedure through
the subsequent cubes leads to an approximate representation of the iso-surface by
a triangular mesh. However, since adjacent cubes in the configuration share edges
and vertices, the calculation of edge intersection for each cube can be reduced
to three edges instead of twelve edges [16]. Approaches to reduce computational
activities have been suggested by several researchers [9,15,23]. Nevertheless, the
algorithm can be enhanced to handle multi-resolution rectilinear data [22] and
data sets in higher dimensional space [2,3].

This paper presents an efficient algorithm that derives the orthogonal cover
of a 3D object in Z3. The problem of construction of inner and outer iso-
thetic/orthogonal covers/frontiers of digital objects in 2D has already been stud-
ied in great details [4,5,14]. It is implemented by constructing a doubly connected
edge list [1] that maintains complete records of vertices, edges, and faces of the
isothetic polygons constituting the cover. Merging the coplanar and contiguous
faces of the orthogonal cover begets a compact representation and captures the
complete topology without triangulation or any such form of surface decompo-
sition. The algorithm does not consider self-intersecting surfaces or holes lying
inside the object, although it can be extended to consider these aspects. Due
to the complex topology of a digital object, the 3D orthogonal cover is likely to
contain many external concavities, which are gradually revealed as we decrease
the grid size, which is a specialty of the proposed algorithm.

The paper is organized as follows. Section 2 contains preliminary definitions
and the problem statement. Section 3 presents the proposed algorithm with its
step-by-step explanation and time complexity. Experimental results and con-
cluding remarks are given in Section 4.
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Fig. 1. 3D digital space and 26N [14]. Left: A 3-cell and its corresponding grid point.
Right: Three pairs of α-adjacent 3-cells for α ∈ {0, 1, 2}, α ∈ {0, 1}, and α = 0 (from
left to right). The 3-cells in each of these three pairs are connected in 26N.

2 Definitions and Preliminaries

Let A be a 3D digital object, which is defined as a finite subset of Z3, with
all its constituent points (i.e., voxels) having integer coordinates. Each voxel
is equivalent to a 3-cell centered at the concerned integer point. As shown in
Fig. 1, two 3-cells can be α-adjacent for α = 0, 1, 2. Two 3-cells with centers at
(x1, y1, z1) ∈ Z3 and (x2, y2, z2) ∈ Z3 are said to be connected in 26-neighborhood
(26N) if they are α(≥ 0)-adjacent, i.e., max(|x1 − x2|, |y1 − y2|, |z1 − z2|) ≤ 1. In
our work, the voxels/3-cells constituting the object A are connected in 26N [14].

To derive the orthogonal cover of A, we define G := (Gyz, Gzx, Gxy) as the
underlying grid. It consists of three orthogonal sets of equi-spaced grid lines,
namely Gyz, Gzx, and Gxy, their respective grid lines being perpendicular to
yz-, zx-, and xy-planes (Fig. 1). The distance between the two consecutive grid
lines of Gyz (Gzx or Gxy) is defined as the grid size, g, which is a positive
integer. The point of intersection of three orthogonal grid lines is termed as the
grid point. Observe that for g = 1, the grid G essentially corresponds to Z3, as
shown in Fig. 1. Further, as each grid point p is equivalent to a 3-cell cp centered
at p for g = 1, each face of cp is a grid face lying on a grid plane, which is
parallel to one of the three coordinates planes. In particular, all the six faces
of any 3-cell lie in the grid planes which are parallel to coordinate planes and
are unit distance apart. For g > 1, we have cubes of length g each. Each such
cube is called a unit grid cube (UGC) whose vertices are grid vertices, edges
constituted by grid edges, and faces constituted by grid faces. Each face of a
UGC lies on a grid plane, which is parallel to one of three coordinates planes.
Clearly, the distance of each grid plane from its parallel coordinate plane is an
integer multiple of g. A smaller (larger) value of g implies a denser (sparser) grid.
For notational simplicity, henceforth we use the notation G to represent both
the grid-model and the cell-model, the meaning being evident from the context.

The orthogonal cover of the object A is defined as an orthogonal polytope
P (A, G) that tightly circumscribes A. An orthogonal polytope is a simple poly-
tope (i.e., each vertex is incident on exactly three edges) with all its vertices
as grid vertices, all its edges made of grid edges, and all its faces lying on grid
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Fig. 2. An object A in Z
3 and its corresponding orthogonal cover for g = 2

planes. Each face of an orthogonal polytope is an isothetic polygon whose alter-
nate edges are orthogonal and constituted by grid edges of G.

Problem definition. Given the 3D object A imposed on the grid G, the prob-
lem is to construct its orthogonal polytope P (A, G), such that the following
conditions are satisfied:

– each point p ∈ A lies inside P (A, G);
– each vertex of P (A, G) is a grid vertex;
– each edge of P (A, G) is parallel to one of the coordinate axes;
– each face of P (A, G) lies on some grid plane;
– volume of P (A, G) is minimized.

Data structure. A doubly connected edge list (DCEL) is a data structure that
stores topological information about a 2D subdivision (possibly embedded in 3D
space) as a collection of the following records: a) vertex list, b) edge list, and
c) face list. The vertex list contains all the vertices of the polytope excluding
duplicates. The edge list has all the edges of the polytope in sets of four edges per
face of UGC. Each edge is stored as a half-edge (mentioned below) represented by
its source vertex and destination vertex. Four consecutive half-edges are assigned
the face number representing the face to which the edges belong. For each half-
edge eij ∈ fi in the edge list, the plane (yz, zx, or xy) to which the corresponding
face fi is parallel, is also recorded. The edge list also records the pairing of all
half-edges (Sec. 3.1). The face list stores the id of a half-edge for each face of
the polytope. This half-edge is considered as the first half-edge from which the
face can be traversed by referring to the previous and next pointers in the edge
list [1,18].

3 Proposed Algorithm

The algorithm OrthoCover3D first computes the start vertex vs of P (A, G)
from the top-left-front point p0(i0, j0, k0) of A. The object A is stored in a
3D array in which ‘1’s and ‘0’s represent object points and background points,
respectively. The grid G is also represented as a 3D array of structures; each
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vs

p0

Fig. 3. Defining the start vertex, vs, from the top-left-front point p0 (red) of A

structure contains complete information about a UGC—complete and ordered
in all respect regarding its eight vertices, twelve edges, and six faces. Observe
that p0 is the top-left-front point of A if and only if for each other digital point
p(i, j, k) ∈ A, we have (k < k0)∨ ((k = k0)∧ (i > i0)) ∨ ((k = 0)∧ (i = 0)∧ (j <
j0)). The point p0 always lies strictly inside a UGC, whether lying on a grid line,
or coinciding with a grid point, or be an ordinary (i.e., non-grid) digital point.
From p0, the coordinates of vs are obtained as

is = �i0/g� × g, js = �j0/g� × g, ks = �k0/g� × g. (1)

After obtaining vs, one of the eligible UGC-faces (front face) having vs as a
vertex is enqueued in a queue, Q. Iteratively, each UGC-face fi is dequeued from
Q, and the faces incident on all edges of fi are checked one by one for their eligi-
bility of belonging to the orthogonal cover, using the EligibleFace procedure.
If such a UGC-face is eligible as a part of a polygonal face of the orthogonal
cover, then it is enqueued only once in Q. After all the UGC-faces lying close to
the object surface are considered, the faces are merged by MergeFace to derive
the actual faces of the cover as isothetic polygons parallel to yz-, zx-, and xy-
planes. The steps of the algorithm and its related procedures are given below.
Notations: nf = #faces, ne = #edges, nv = #vertices; fid[·], eid[·], and vid[·]
denote face id, edge id, and vertex id; start[e] denotes the start vertex of an
edge e; eij denotes the jth (j = 1, 2, 3, 4) edge of face fi, and its paired half-edge
in fk (if coplanar with fi) is denoted by ēij .

Algorithm. OrthoCover3D(A, G)

01. vs ← (is = �i0/g� × g, js = �j0/g� × g, ks = �k0/g� × g)
02. pick the front face fs of the UGC having vs as a vertex
03. nf ← ne ← nv ← 0
04. fid[fs] ← nf ← nf + 1
05. color[fs] ← Gray
06. EnQueue(Q, fs)
07. while Q is not empty
08. fi ← DeQueue(Q)
09. for each edge eij ∈ fi

10. eid[eij ] ← ne ← ne + 1
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11. face[eij ] ← fid[fi]
12. if start[eij ] /∈ V
13. vid[start[eij ]] ← nv ← nv + 1
14. V ← V ∪ {start[eij ]}
15. assign start[eij ], next[eij ], prev[eij ]  from array G

16. pair[eij ] ← eid[eij]
17. E ← E ∪ {eij}
18. for each face fk incident on (start[eij ], start[next[eij ]])
19. if EligibleFace(fk) = True
20. if color[fk] = White
21. fid[fk] ← nf ← nf + 1
22. color[fk] ← Gray
23. EnQueue(Q, fk)
24. else if color[fk] = Black and fi and fk are coplanar
25. pair[eij ] ← eid[ēij ]  ēij ∈ fk

26. edge[fi] ← eid[ei1]  ei1 is the 1st edge of fi

27. color[fi] ← Black
28. F ← F ∪ {fi}
29. MergeFace(F, E)

Procedure. EligibleFace(fk)

01. var ← var2 ← False
02. if fk intersects A
03. return False
04. else if there exists a point p of A in UGC1

05. var1 ← True  UGC1 is the left UGC of fk

06. else if there exists a point p of A in UGC2

07. var2 ← True  UGC2 is the right UGC of fk

08. if (var1= True and var2 = False) or (var1 = False and var2 = True)
09. return True

Procedure. MergeFace(F, E)

01. for each face fi ∈ F
02. eij ← edge[fi]  1st edge of fi ∈ F
03. count ← 4  number of edges to be visited for fi

04. do
05. if eid[eij] 	= pair[eij ]  pair[eij ] exists
06. ēij ← pair[eij ]
07. fk ← face[ēij ]
08. next[prev[eij ]] ← next[ēij ]
09. next[prev[ēij ]] ← next[eij ]
10. et ← next[prev[eij ]]
11. face[ēij] ← fid[fi]
12. F ← F � {fk}
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13. E ← E � {eij, ēij}
14. eij ← et

15. edge[fi] ← eid[eij ]  1st edge of the modified face fi

16. count ← count+ 2  4 edges added to& 2 edges removed from fi

17. else  pair[eij ] does not exist
18. eij ← next[eij ]
19. count ← count − 1
20. while count 	= 0
21. return (F, E)

3.1 DCEL Construction

The process of constructing the DCEL starts with initialization of all the UGCs
of G (e.g., setting the color of each grid face of G as White, marking each grid
edge as not in E, and marking each grid vertex as not in V ). A UGC face is
enqueued in Q only once after setting its color to Gray and assigning it a unique
id (Steps 4-6 and Steps 20-23 of OrthoCover3D). Once a face fi is dequeued
from Q after all the faces incident at the edges of fi have been considered for
eligibility, the face fi is marked as Black. The UGC-faces are thus traversed
by BFS, as shown in Steps 7-28. For each edge eij ∈ fi, each face fk, incident
on eij , is checked for its eligibility (Step 19). An eligible face is enqueued only
when its color is White. Otherwise, if fk is Black and coplanar with fi, then
fk can be merged with fi by deleting their common edge, eij ; hence, pair[eij ] is
set to the id of the edge ēij ∈ fk whose start and end vertices are the respective
end and start vertices of eij (Steps 24-25).

For each face in F , we maintain its fid, the id of its incident edge, and
the corresponding coordinate plane to which it is parallel. All these attributes
are obtained and updated as shown in different steps of the algorithm Ortho-
Cover3D (Steps 4, 21, and 26). The edge information includes the edge id, the
face on which it is incident, its start vertex, ids of its next and previous edges,
and its paired half-edge, which are updated in Steps 10, 11, 15, 16, and 25.
Vertex information consists of the vertex id, and its coordinates obtaind from
G, as shown in Steps 12-14. A vertex is included in the vertex set exactly once
(Step 12), which is ensured by setting a flag against each vertex recorded in the
concerned structure of its UGC maintained in the 3D array corresponding to G,
as explained earlier.

The procedure EligibleFace checks whether a grid face fk is eligible for
being a face of the 3D orthogonal cover. First, Step 1 intializes two boolean
variables, namely var1 and var2, to False. Step 2 checks whether the grid face
fk contains an object voxel (3-cell). If so, then fk is not eligible (Step 3; see also
Fig. 4(a)). In Step 4, it is checked whether any point p ∈ UGC1 is an object
voxel. If true, then the flag var1 is set to True. Note that UGC1 denotes the
unit grid cube lying in between fk and fk−g, where fk and fk−g are two parallel
consecutive grid faces separated by a distance of g. Similarly, UGC2 is the unit
grid cube lying in between fk and fk+g. In Step 6, similar checking is done for
the set of points inside UGC2 to find whether any of them belongs to the object.
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fkfk−g fk+g fkfk−g fk+g fkfk−g fk+g

(a) (b) (c)

Fig. 4. Testing the eligibility of a face (g = 3): (a) fk intersects the object A; (b) The
UGC between fk−g and fk has object occupancy but no object point is on fk; (c) The
UGC between fk and fk+g has object occupancy but no object point is on fk

If no point p in this set belongs to the object then var2 remains False. Finally,
in Step 8 we ensure that if exactly one adjacent UGC contains object point(s),
then only fk is an eligible face of the orthogonal cover.

3.2 Face Merging

Once the BFS is over, the face list F contains all the grid faces of those UGCs
which contain the points on the surface of the object. The MergeFace proce-
dure considers each face fi listed in F (Step 1) and merges all the adjacent faces
that are coplanar. We start from the edge eij listed in F corresponding to fi, and
iteratively follow its next pointer in E to merge the faces. The do while loop
iterates until the traversal reaches the starting edge corresponding to fi (Steps 4-
21). The variable count is used to keep track of the number of edges that are
yet to be traversed—as the face merging progresses—to construct a single face
as an isothetic polygon of maximal size out of all contiguous UGC-faces that
are coplanar with fi. When count = 0 (Step 20), no other face can be merged
with the current face fi, and the next face is considered. If there is a pair of eij ,
namely ēij , such that pair[eij ] = eid[ēij ] 	= eid[eij], then it indicates that fk,
the face corresponding to ēij , is coplanar with fi (Step 5); hence the face fk is
merged with fi by deleting eij , its pair ēij , and the face fk (Steps 12-13), and by
readjusting the pointers of the related edges (Steps 8-9). Finally, MergeFace
returns the face list F and the edge list E, where some of the faces have been
merged and the first edges of the merged faces have been modified accordingly.

Figure 5 shows a simple example how the grid faces are merged. Let f1 be
selected first from F and e1 is its start edge, with initialized count = 4. As e1 does
not have a paired half-edge whose face is coplanar with f1, it remains an edge
of the face polygon, and the next edge e2 is considered (count = 3). The edge e2

also does not have a pair (count = 2), but its next edge e3 has a pair, e5. Hence,
e3 and e5 are deleted, and the faces f1 and f5 are merged, i.e., f5 is deleted from
F , next[e2] is set to e6, next[e8] set to e4, the face number of all the remaining
edges of f5 are set to fid[f1], and count increases to 2 + 2 = 4 (Fig. 5(a,b)). In
a similar way, as e6 has e12 as its pair, the newly merged face is again merged
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Fig. 5. Demonstration of face merging

with f7, the face corresponding to the half-edge e12. The edges e6 and e12 are
deleted from E, f7 deleted from F , next[e2] is set to e9, next[e11] set to e7, and
count increases further to 4 + 2 = 6 (Fig. 5(b,c)). As the traversal continues,
each of e9, e10, e11, e7, e8, and e4 having no pairing half-edge, are included as
edges of the orthogonal cover; count falls to 6 − 6 = 0, and the traversal stops,
as e1 is reached. Thus an orthogonal polygon, v1v2v3v4v5v6v7v8v1, is obtained
parallel to the xy-plane (Fig. 5(c,d)). Figure 5(d) shows all the merged faces in
different planes for the simple orthogonal polytope.

3.3 Time Complexity

We disregard the time required for grid initialization. The while loop of the
algorithm OrthoCover3D (Steps 7-28) is executed once for each face on the
cover. A face fi is added to Q only if it is an eligible face and not yet been
enqueued (Steps 9-11). If enqueued, the face fi is marked as visited (i.e., colored
Gray, Steps 19-23). So, the while loop runs for the number of times equal
to the total number of grid faces constituting the orthogonal cover. Let n be
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Fig. 6. “Stanford Bunny” and its covers for different grid sizes. Top-left: original object,
n = 58605. Top-right: g = 12, nv = 769, ne = 1492, nf = 367. Bottom-left: g = 7, nv =
2040, ne = 3864, nf = 903. Bottom-right: g = 2, nv = 22305, ne = 42896, nf = 10377.

the number of voxels constituting the object surface connected in 26N. Then the
runtime complexities for the best and the worst cases can be analyzed as follows.

Best Case: Minimum number of UGCs, each UGC being a cube of length g
and containing points of the object surface, is O(n/g3). As each UGC has six
faces—a maximum of five of which can be a part of the cover, the number of
grid faces on the surface of the object is again O(n/g3). In each iteration, the
eligibility of a grid face fk for being a face on the orthogonal cover is decided
by checking the voxels inside the two UGCs on both sides of (i.e., adjacent to)
fk, which requires O(1) comparisons in the best case (Step 19). So, the while
loop (Steps 7-28) over all the grid faces comprising the orthogonal cover requires
at most O(n/g3) × O(1) = O(n/g3) computations. To check the color of a face,
or to check whether a vertex is already included in V , or to check an edge is
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Fig. 7. Results on “Horse”. Top: g = 8, nv = 1205, ne = 2328, nf = 523. Bottom: g =
2, nv = 25512, ne = 53188, nf = 13238.

already in E, we use the grid information as explained earlier. Hence, each of
these checks (Steps 12, 20, 24) needs constant time.

Before applying the MergeFace procedure, the total number of edges (half-
edges) in E is four times the total number of eligible faces, i.e., 4 × O(n/g3) =
O(n/g3); the total number of vertices is also O(n/g3), as each vertex is incident
on at most six edges. During merging, the for loop (Steps 1-20) considers each
face fi ∈ F one by one (do-while loop: Steps 4-20), and checks the pair of
eij . If pair[eij ] 	= eid[eij ], then it indicates that the face fk on which pair[eij ]
is incident, is coplanar with fi. So the face fk is merged with fi and necessary
updates/modifications of the relevant edges and faces are done in constant time.
Since the total complexity (number of faces, edges, and vertices) of the DCEL
is bounded by O(n/g3), the time complexity of MergeFace becomes O(n/g3).
So, the best-case time complexity of the algorithm OrthoCover3D is given by
O(n/g3).
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Fig. 8. Runtime (in secs.) versus grid size g. Left: Stanford Bunny. Right: Horse

Worst Case: Each UGC may contain as low as O(g) surface voxels, and so each
grid face may require O(g3)−O(g) = O(g3) time for checking its eligibility. Max-
imum number of UGCs can be O(n/g), wherefore we have O(n/g) × O(g3) =
O(ng2) time complexity in the worst case for finding the faces of the orthogonal
cover. Maximum number of faces would be O(n/g), since each UGC (contain-
ing surface voxels) will contribute at least one face and at most five faces to
the orthogonal cover. Hence, with a justification similar to the best-case analy-
sis, the time complexity of MergeFace is O(n/g). The overall worst-case time
complexity is, therefore, given by O(ng2) + O(n/g) = O(ng2).

In practice, however, we find that the runtime decreases rapidly with increas-
ing grid size. This is revealed by our exhaustive experimentation, some of which
are presented in Sec. 4. Thus, actual runtime for real-world digital objects in Z3

tends towards the best case, which is a characteristic of our algorithm.

4 Results and Conclusion

We have implemented the algorithm in C in Linux Fedora Release 7, Kernel
version 2.6.21.1.3194.fc7, Dual Intel Xeon Processor 2.8 GHz, 800 MHz FSB.
OpenGL running with MinGW on Windows XP Professional is used for the
purpose of 3D rendering [11,12]. The algorithm has been tested on several 3D
objects for different grid sizes, a few of them being presented in Figs. 6 and 7.

Notice that as g is decreased in Fig. 6, a tighter description of the bunny is
obtained, as the numbers of vertices, edges, and faces increase rapidly. Figure 8
shows the runtimes of the algorithm on different objects (“Stanford Bunny” and
“Horse”) for different grid sizes. For g = 2, 8, and 16, the respective CPU times
required to construct the orthogonal covers for “Stanford Bunny” are 1747, 98,
and 22 seconds, whereas those for “Horse” are 1893, 32, and 10 seconds. Clearly,
the runtime falls significantly with the increase in grid size. The description of
the object in the form of the orthogonal cover at a lower grid size contains more
information (than the one at a higher grid size) about the nature of the object
at the cost of more CPU time and storage space.
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Abstract. In this paper, we propose a skeleton path based approach
to analyze and retrieve nonrigid 3D shapes. The main idea is to match
skeleton graphs by comparing the geodesic paths between skeleton end-
points. Our approach is motivated by the fact that the path feature is
stable in the presence of articulation of components. The experimental
results demonstrate the performance of our proposed method in terms
of robustness to symmetry, discrimination against different graph struc-
tures, and high efficiency in nonrigid shape retrieval.

Keywords: Skeleton Path, Nonrigid 3D Shapes, Retrieval.

1 Introduction

With the increase in the number of scanned 3D objects, 3D shape analysis and
retrieval is becoming popular in the fields of computer vision, computer graph-
ics, and computer aided design. Previous efforts have been, however, mainly
devoted to rigid 3D models, and thus how to efficiently and effectively analyze
and compare nonrigid shapes is still a challenging problem.

The curve skeleton, which integrates geometrical and topological features of
the object, is an important shape descriptor. Shape similarity based on skele-
ton matching usually performs better than mesh surface or other shape de-
scriptors in the presence of articulation of components, especially for non-rigid
shape. As pointed out in [7], the curve-skeleton provides characteristics like
part/component matching, registration and visualization, intuitiveness, and ar-
ticulated transformation invariance.

Nonrigid shape matching is one of the most challenging problems in content-
based 3D object retrieval. The aim of the SHREC 2010 –Shape Retrieval Contest
of Non-rigid 3D Models– is to evaluate and compare the effectiveness of different
3D retrieval methods [10]. For a 3D retrieval algorithm, the shape descriptor
and the similarity discrimination are two key components. The global and local
isometry-invariant descriptor proposed recently by Wu et al. [18] captured well
the global and local information. Also, Agathos et al. [1] proposed a retrieval
methodology based on a graph-based object representation. This method makes
use of a meaningful new mesh segmentation and the Earth mover’s distance
(EMD) similarity measure.
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In recent years, several skeleton based shape analysis and retrieval methods
have been proposed. Sundar et al. [16] encoded the geometric and topological
information in the form of a skeleton graph and used graph matching techniques
for skeleton matching and comparison. Cornea et al. [7] enhanced the frame-
work by using a new skeletonization algorithm and an extension of the many-
to-many matching algorithm. Au et al. [2] presented a fast and fully automatic
correspondence algorithm that allows matching of a wide variety of shapes with
semantically similar structures but with different geometric details. Specifically,
they attempted to find a one-to-one semantic correspondence between two sets
of feature nodes of curve skeletons. However, determining the similarity between
two given shapes does not necessarily require finding an exact correspondence
between their shape components. Our work is partly a 3D extension of the 2D
path similarity skeleton graph matching approach proposed by Bai. et al [4].
Unlike [4], a major goal of our approach is to discover the symmetry instead
of finding correspondences. Siddiqi et al. [15] introduced a medial surface based
method and obtained state-of-the-art performance on McGill Articulated Shape
Benchmark [15].

Partly motivated by Leonardo’s Vitruvian Man, which describes the perfect
human form in geometrical terms, we propose a skeleton path feature to represent
each component of a non-rigid 3D shape, assuming that this feature descriptor
is isometry-invariant, i.e. invariant to the object’s variational representation,
rotation, translation, scaling, and nonrigid bending. A skeleton path refers to
the geodesic paths between two endpoints in the curve-skeleton, as shown in
Fig. 1(a), where these shortest paths are represented as sequences of radii of the
maximal balls at the corresponding skeleton points. We also benefit from the
fact that the proportions of the curve skeleton length for different components
are different and are almost constant. Although we do not explicitly consider
the topological structure of the skeleton graphs, we do not, however, completely
ignore this structure. It is worth pointing out that this topological structure is
implicitly represented by the fact that overlapping parts of the geodesic paths
are similar. Therefore, our approach is flexible enough to perform extremely well
on nonrigid 3D shapes.

The rest of the paper is organized as follows. Section 2 describes the proposed
approach. The experimental results using the proposed algorithm are provided
in Section 3. Finally, we conclude in Section 4.

2 Proposed Approach

Our proposed method may be described as a two-phase approach: 1) Skeleton
path acquisition, which includes curve-skeleton extraction, endpoint detection,
and path construction. 2) Endpoints matching, which consists of finding an or-
dered sequence of end nodes and post-processing of this new sequence.

For convenience and efficiency, we adopt the curve-skeleton extraction al-
gorithm developed by Cornea et al. [8]. Nevertheless, our algorithm can be
generally applied on curve-skeletons with satisfactory homotopic and centered
properties [9].
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(a)

(b)

Fig. 1. (a) Our skeleton path based algorithm describes a 3D cow model as many paths
between end nodes. (b) Symmetric components that are discovered by our algorithm
are represented by end nodes rendered with the same colors. Note that only part of
the results is shown.

The proposed curve-skeleton extraction algorithm works on a volumetric rep-
resentation of a 3D object. It uses a generalized potential field generated by
charges placed on the surface of the object. Given a 3D vector field, we use
concepts from vector field visualization to identify two types of seed points that
we will use to construct a curve-skeleton: critical points and high divergence
points. Skeleton segments are discovered using a force-following algorithm on
the underlying vector field, starting at each of the identified seed points. The
force-following process evaluates the vector (force) value at the current point
and moves in the direction of the vector with a small pre-defined step. At crit-
ical points, where the force vanishes, the initial directions are determined by
evaluating the eigenvalues and eigenvectors of the Jacobian at the critical point.
More details about computing the curve-skeleton can be found in [8].

2.1 Skeleton Path

We first describe the initial steps for building the skeleton graphs. The following
definitions apply to continuous skeletons as well as to curve-skeletons of 3D
models (composed of voxels).
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Definition 1. A skeleton point having only one adjacent point is an endpoint
(the skeleton endpoint); a skeleton point having three or more adjacent points is
a junction point. If a skeleton point is not an endpoint or a junction point, it is
called a connection point.

Definition 2. The endpoint in the skeleton graph is called an end node, and the
junction point in the skeleton graph is called a junction node.

Definition 3. The shortest path between a pair of end nodes on a skeleton graph
is called a skeleton path.

Based on the curve skeletons that are extracted using the method described
above, we provide details on how we detect endpoints and construct the skeleton
path.

A. Skeleton Endpoint Detection

Since the curve-skeleton consists of many segments that have two ends (i.e.
segment endpoints), we detect the skeleton endpoints by considering the distance
between these end nodes. We denote the set of all the N segment endpoints of
an input skeleton by P = {p1, p2, ..., pN}. For simplicity, let pk ∈ P denote the
testing endpoint. Given a threshold εRD, let Q = {q : |pk− q‖ ≤ εRD, q ∈ P, q �=
pk} be the nearest neighbor endpoint set. We consider pk as a skeleton endpoint
if the size of Q is 0 and as a junction point if the size is larger than 2. The rest
of the segment endpoints and all the other skeleton points are connected points
(see Fig. 2).

Fig. 2. Illustration of the critical skeleton points using our method on a 3D airplane
(left). On the right, (a) endpoint, (b) connected points between two segments, (c)
junction points, and (d) connected points in a segment. For better viewing, please see
the original color pdf file.

B. Skeleton Path Construction

After endpoints are detected, we construct the skeleton path as the shortest path
between two given nodes (see Fig. 1). Suppose there are N end nodes {vi}i=1,...,N

in the skeleton graph G to be matched.

Path Length Percentage. Let Γ = (γij) be an N × N path length matrix,
where γij denotes the geodesic distance (shortest path length) from the i-th end
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node vi to the j-th end node vj . To preserve scale-invariance, we normalize the
matrix Γ by the overall curve skeleton length Lskel. In this way, we obtain an
N ×N length percentage matrix L = (�ij), where �ij = γij/Lskel.

Path Radius Vector. Let p(vm, vn) denote the skeleton path from vm to vn.
We sample p(vm, vn) with M equidistant points, which are all skeleton points.
Let Rm,n(t) be the radius of the maximal ball at the skeleton point with index
t in p(vm, vn). We define a vector of the radii of the maximal balls at the M
sample points on p(vm, vn) as follows:

Rm,n =
(
Rm,n(t)

)
t=1,2,...,M

= (r1, r2, . . . , rM ). (1)

The distance transform value for each point is equal to the radius of maximal in-
scribed ball. Suppose there are N0 voxels in the original 3D model, then to make
the proposed method invariant to scale, we normalize Rm,n(t) in the following
way:

Rm,n =
DT (t)

1/N0

∑N0
i=1 DT (si)

, (2)

where si varies over all N0 voxels in the model [4].

Path Distance. The model dissimilarity between two skeleton paths is called
a path distance. If R = (ri)i=1,...,M and R′ = (r′i)i=1,...,M denote the vectors of
radii of two model paths p(u, v) and p(u′, v′) respectively, then the path distance
is defined as

ϕ
(
p(u, v), p(u′, v′)

)
=

M∑
i=1

(ri − r′i)
2

ri + r′i
+ α

(�− �′)2

� + �′
, (3)

where � and �′ are the length percentages of p(u, v) and p(u′, v′) respectively.
The parameter α is a weight factor [4].

In order to make our representation scale invariant, the path lengths are nor-
malized. We include the path length percentages in Eq. (3), since the percentage
is not reflected in the sequences of radii (all paths are sequences of M radii).
Thus, our path representation and the path distance are scale invariant.

2.2 Endpoints Matching

Sorting endpoints by summing path length percentage. In a skele-
ton graph G with N end nodes {vi}i=1,...,N , each end node has the skeleton
paths to all other end nodes in the graph. Let T (vi) =

∑N
j=1 �ij be the to-

tal path length percentages of the end node vi. Thus, given an end node vk,
there is a corresponding length percentage T (vk). We order all the end nodes
in G following these percentages, by ranking an endpoint with a higher percent-
age at the top of the list. Therefore, we obtain an ordered end node sequence
S = {u1, u2, . . . , uN}.
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Endpoints Distance. Let G and G′ be two graphs to be matched, and denote
by S = {ui}i=1,...,K+1 and S′ = {u′

i}i=1,...,N+1 their respective ordered end
node sequences, with K ≤ N . Similar to shape contexts [5], the matching cost
c(ui, u

′
j) between ui and u′

j is based on the paths to all other end nodes in G
and G′ that emanate from ui and u′

j , correspondingly. Then, we compute the
path distances between the two sequences and obtain a matrix Φ =

(
ϕ(ui, u

′
j)

)
of the path distances computed using Eq. (3). As suggested by Bai et al. [4], we
use the optimal subsequence bijection (OSB) to compute the dissimilarity value:

c(ui, u
′
j) = OSB

(
ϕ(ui, u

′
j)

)
(4)

Global Matching. Using Eq. (4), we compute the total dissimilarity matrix
C(G, G′) =

(
c(ui, u

′
j)

)
1≤i≤K+1
1≤j≤N+1

between G and G′ using the Hungarian algo-

rithm. For each end node vi in G, the Hungarian algorithm can find its corre-
sponding end node v′

i in G′. Since G and G′ may have different numbers of end
nodes, the total dissimilarity value should include a penalty for end nodes that
did not find any partner. To achieve this, we simply add additional rows with a
constant value κ so that C(G, G′) becomes a square matrix. This constant value
κ is the average of all the other values in C(G, G′). The intuition behind using
the Hungarian algorithm is that we want to have a globally consistent one-to-one
assignment of all end nodes with possibly assigning some end nodes to κ, which
represents a dummy node. This means that we seek a one-to-one correspondence
of the end nodes in the skeleton graphs (with possibly skipping some nodes by
assigning them to a dummy node). However, the Hungarian algorithm does not
preserve the order of the matched sequences. This does not influence the final
score, since we can change the order only for similar symmetric end nodes. This
is also part of the reason why we can detect symmetric components.

3 Experimental Results

In this section, we evaluate the performance of the proposed method in three
parts: Symmetric components discovery, matching between different graph struc-
tures, and illustration of the recognition performance of our method on McGill
Articulated Shape Database.

3.1 Symmetric Components Discovery

Given an end node sequence S = {u1, u2, . . . , uN} of a skeleton G, we obtain a
new sequence Ŝ by changing the order of certain end nodes in a set C ⊆ G and
compute the dissimilarity to the original. If the result C(S, Ŝ) is less than a given
threshold εC , we consider the components containing these end nodes in C to be
symmetric. Obviously, for a given nonrigid 3D shape, it is possible that there are
more than one such set C, whose size may be larger than 2. In other words, there
exist many symmetric component groups and that each group might have more
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Fig. 3. The curve skeleton and discovered symmetric components indicated by end
nodes with the same color

Table 1. The matrix of dissimilarity values between the skeleton graph with the cor-
responding end nodes exchanged and the original. The colored values are symmetric
node pairs.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0.0120

6.2616

2.7178

2.8752

2.0865

1.0400

0.0120

0

0.8897

3.3483

2.9786

1.7213

1.2096

6.2616

0.8897

0

0.0096

0.7720

2.0073

6.7315

2.7178

3.3483

0.0096

0

0.1581

5.0328

10.4491

2.8752

2.9786

0.7720

0.1581

0

0.0025

1.2911

2.0865

1.7213

2.0073

5.0328

0.0025

0

0.1677

1.0400

1.2096

6.7315

10.4491

1.2911

0.1677

0

than 2 components. We now give a simple example illustrating our symmetry
components discovery approach. Fig. 3 shows the curve skeleton and the results
on a 3D cow model. The end nodes, displayed with the same color, indicate
the symmetric components. As we observe, the left front leg and the right front
leg are symmetric components, they are shown in yellow color. The back legs
in green and horns are displayed in blue. We indexed the end nodes so that
symmetric nodes are clear to be presented. The matrix with elements indicating
the dissimilarity if the corresponding nodes are exchanged is shown in Table 1.
The dissimilarities between two most symmetric end nodes are marked with
colored numbers. Here, we choose the parameters εC = 0.1, M = 50, α = 10.

Besides the symmetry discovery of the 3D cow model in Fig. 3, we tested the
process on several other examples. In Fig. 4(a), we first discover the symmetry
in both the hands and the legs of a dancer. And the head is not symmetric to
any part of the human body. Obviously, our method finds the correct symmetric
components even in large variability due to articulation. Secondly, Fig. 4(b)
shows the result of an eight-leg octopus, which demonstrates that the proposed
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(a) (b)

(c) (d)

Fig. 4. (a) Symmetry discovery of a dancer; (b) Symmetry discovery of an octopus;
(c) Symmetry discovery of a crab; (d) Symmetry discovery of a chair

method is able to discover symmetric groups with numerous members. A crab
with eight legs and two eyes in Fig. 4(c) illustrates that our method works
correctly in the situation when there are many symmetric groups with different
quantities of member. Finally, we show the result of a four-leg chair in Fig. 4(d).
It demonstrates that the proposed method also performs well in the presence of
a rigid shape, even when its skeleton graph is not a tree.

3.2 Matching Skeletons with Different Graph Structures

For skeleton graphs with the same number of end nodes, they might have very
different graph structure. Sometimes there are similar path radii vectors. But
path length percentage will enhance the performance. For example, shapes like
snake and spectacle have two endpoints in their curve-skeletons. Moreover, the
skeleton graph of the snake is a tree, whereas the skeleton graph of the spec-
tacle is not a tree. To evaluate the performance of our proposed algorithm on
distinguishing the topological difference, we use a small database that contains
four nonrigid 3D shapes: Two spectacles and two snakes as shown in Fig. 5. The
parameter M for this database was set to M = 50. We also show the results
with α = 0 in Fig. 6(a) and α = 10 in Fig. 6(b). By observing the rankings, it is
evident that both of them could discriminate the skeleton graphs with different
structures. Although the shortest paths between end nodes of the two classes
are similar, the proposed method is, however, able to distinguish the structural
difference between a closed loop and a line better by considering the length
percentages. No matter how shapes, e.g. spectacles or snakes, deform due to
articulation, the length percentages are always almost constant. Moreover, as
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Fig. 5. Top: Two spectacles and their curve-skeletons; Bottom: Two snakes and their
curve-skeletons

(a) (b)

Fig. 6. Comparison between α = 0 and α = 10 on a small database. The distance
between query and the given shape is also displayed.

a matter of fact, shapes in different classes have different length percentages,
which lead to more effective discrimination.

3.3 Retrieval on McGill 3D Articulated Shape Database

Based on the above experimental results, our algorithm is validated to be robust
to symmetry and discriminative to different graph structures. We demonstrate it
further on McGill Articulated Shape Database with 255 objects divided into ten
categories, namely, ‘Ants’, ‘Crabs’, ‘Spectacles’, ‘Hands’, ‘Humans’, ‘Octopuses’,
‘Pliers’, ‘Snakes’, ‘Spiders’, and ‘Teddy Bears’. Sample models from this database
are shown in Fig. 7.
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Fig. 7. Sample shapes from McGill Articulated Shape Database. Only two shapes for
each of the 10 classes are shown.

Skeleton Path based Methods. Retrieving shapes that are similar to a given
query shape from a database involves shape matching. However, determining the
similarity between two given shapes does not necessarily require finding an exact
correspondence between their shape components. In this section, we extend the
shape similarity measure discussed in Section 3 to shape retrieval, and we also
propose five methods based on the skeleton path. In the sequel, we will use the
following abbreviations:

SH: We denote the method in section 3 as SH, since it uses the square matrix
with penalty and Hungarian algorithm.

SDP: We denote the method that uses the square matrix with penalty and
dynamic programming algorithm as SDP.

NSH: We denote the method that uses the matrix, which is not square and
without penalty, and the Hungarian algorithm as NSH.

EMS: We define the dissimilarity from the query to a shape in the dataset as
the sum of minimum endpoint distance of the query to all endpoints of the
latter, and denote it as EMS.

PMS: We define the dissimilarity from the query to a shape in the dataset as
the sum of minimum skeleton path distance of the query to all skeleton paths
of the latter, and denote it as PMS.

Here we use the parameters M = 50 and α = 50. In our comparative analysis,
we have used the precision/recall curve to measure the retrieval performance.
Ideally, this curve should be a horizontal line at unit precision. For each query
shape, we use the first 77 returned shapes with descending similarity rankings
(i.e., ascending Euclidean distance ranking), dividing them into 11 groups ac-
cordingly. The retrieval results of the 5 skeleton path based methods on the
whole McGill Articulated Shape Database are shown in Fig. 8. Obviously, PMS
provides a much better performance that the other methods because it fully ex-
ploits the original information that skeleton paths carry. By finding the minimum
value of skeleton path distances, we might establish a potential corresponding
relationship between paths. However, as a matter of fact, there is no veracious
global path correspondence. As for EMS, the second best method, we assume
that the endpoints with minimum distance are corresponding to each other, al-
though it may fail to find the global endpoints correspondence. Furthermore, SH
and SDP are almost neck and neck in terms of retrieval accuracy, and both are
superior to NSH, which demonstrate that the penalty plays a key role in shape
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Fig. 8. Precision-recall plot of the proposed skeleton path based methods

discrimination. Our implementation was done in MATALB on a Intel Core 2
Duo with 2.0 GHz. To give an idea about the timing: constructing the skeleton
path takes on average slightly less than 1 minute for a 3D model; most of this
time is actually consumed by Dijkstra’s algorithm for finding the shortest path
between two end nodes.

4 Conclusions

We proposed a skeleton path based technique that is able to detect symmet-
ric components, discriminate different graph structure and retrieve nonrigid 3D
shapes. We represented a nonrigid shape by a set of geodesic paths between
skeleton endpoints. These paths were compared using sequence matching. By
detecting symmetric components, our framework is shown to be consistent with
human semanteme based on curve-skeleton. Also, we found that it is possible to
discover multiple components in a symmetric group. In addition, the proposed
approach could enhance the performance of distinguishing the topological differ-
ence. Finally, our skeleton path based approach is shown to be effective, efficient
and easily understandable for articulated 3D shape retrieval.
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Abstract. We determine the number of Khalimsky-continuous func-
tions defined on an interval, having two fixed endpoints, and with values
in Z, in N, or in a bounded interval. The number of Khalimsky-continuous
functions with two points in their codomain gives an example of the
Fibonacci sequence. A recurrence formula shall be presented to deter-
mine the number of Khalimsky-continuous functions with the values in
a bounded interval. Using a generating function leads us to determine
the number of increasing Khalimsky-continuous functions. Considering
N as a codomain of these functions yields a new example of the classical
Fibonacci sequence.

Keywords: Digital geometry, Khalimsky plane, Khalimsky-continuous
functions.

1 Introduction

Digital geometry has been called the geometry of the computer screen. After the
advent of the computer and developing the technique in handling digital pictures
through image processing tools, it became an important theoretical framework
for image processing. In digital geometry we need to redefine geometric objects
from Euclidean geometry such as line, curve, surface, and also establish some
new criteria for the study of discrete planes. The book by Klette and Rosenfeld
[10] provides a good survey of almost everything in this field. The lecture notes
by Kiselman [8] contain concepts of digital geometry in simple mathematical
formulations.

The subject is growing fast towards developing computer techniques and there
are many recent publications in this area. Some objects have been of special in-
terest and been studied a long time. Digital lines and hyperplanes are such
objects. Digital lines were studied arithmetically by Reveillès [15] by means of
double Diophantine inequalities. As a generalization of this, naive digital hyper-
planes are obtained. Kiselman [7], [9] generalized Reveillès’ definition of a digital
hyperplane by allowing more freely strict and non-strict inequalities.

Digital lines were also studied geometrically. We mention the work by Rosen-
feld [17] in which he defined the chord property, the work by Ronse [16] on
the strong chord property, and Sharaiha [21] on the compact chord property.
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The concept of runs was introduced in [17] and continued by Smeulders and
Dorst [22], Stephenson [23] and Uscka-Wehlou [24].

A pioneering and fundamental way to study digital arcs is by using codes.
Maloň and Freeman [12] and Freeman [3] introduced the chain code as a tech-
nique for representing 8-connected arcs and lines. The chain code of an arc is
a sequence the elements of which can be one of the values 0, . . . , 7. The corre-
sponding chain code of lines with slope 0 � α � 1 can contain only zeros and
ones.

As combinatorial work on digital objects we can mention the work by Huxley
and Zunić [5] on the number of different digital discs consisting of N points. The
number of discrete segments with slope 0 � α � 1 and length L was studied by
Berenstein and Lavine [2]. The number of digital straight lines on an N×N grid
was determined by Koplowitz et al. [11]. Work on the number of digital straight
line segments was done by Bédaride et al. [1] in order to determine the number
of digital straight line segments of given length and height.

Digital geometry is providing a method to transform real objects to discrete
ones, digitization. However, digital geometry does not consist just of digitizing
Euclidean objects. In some cases we need to define a discrete object indepen-
dently of the digitization process to provide a good model. A function Z→ Z is
not in general a good model for curves in digital geometry even though it can be a
digitization of some real functions. As is the case for a function of real variables,
it is convenient to require it to be continuous. To do that we need to define
a topology on Z2 to define the concept of continuity using open sets and the
inverse images of these. At the same time, we need a topology which provides
a connectivity that makes all Z

2 connected. Khalimsky topology is a suitable
choice. It was introduced by Khalimsky [4], and developed towards problems in
digital geometry by Khalimsky et al. [6]. After equipping the discrete plane Z2

with a topology, as we expect, we are able to speak about a continuous function.
For more information in these subjects see Kiselman [8] and Melin [13] and [14].

Enumeration of Khalimsky-continuous functions was studied by Samieinia
[18], [19] and [20]. We studied these functions when they have two points in
their codomain, and it yields a new example of the classical Fibonacci sequence.
For the case of three or four points in their codomain, some new sequences were
presented (see [19]). We also determined the number of such functions on a given
interval. In this case it turned out that these numbers are related to the Delannoy
and Schröder arrays (see [20]).

From Euclidean geometry we know that there are just one line segment be-
tween two points, but in the digital plane this is not true. The other difference
between the world of real numbers and the discrete world is the number of
digital arcs between two points. In R2 we have infinitely many continuous func-
tions R → R between two points, but we do not have the same situation for
the Khalimsky-continuous functions Z → Z. Although there are many discrete
functions with two fixed endpoints, it is possible to count them.

In Section 2 we define the Khalimsky topology on Z2 and then we review
the definition of Khalimsky-continuous function. In Section 3 we consider six
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different cases for enumerating the Khalimsky-continuous functions. This clas-
sification depends on the codomain and on the fact whether the functions are
required to be increasing or not. The first and the third case deal with the num-
ber of Khalimsky-continuous functions when the codomain is Z or N. These cases
were studied in [20] by the author. These two cases give examples of the Delannoy
and Schröder numbers. Considering increasing Khalimsky-continuous functions
with codomain Z and N implies that the values for these two cases are exactly
the same. The number of Khalimsky-continuous functions when the codomain
contains only two elements gives an example of Fibonacci sequence. The fifth
and sixth cases deal with the Khalimsky-continuous functions when they have a
finite codomain possibly with more than two points. These numbers are given by
a recurrence formula. The exact value for the increasing Khalimsky-continuous
functions shall be determined by introducing a generating function.

2 The Khalimsky Topology and Khalimsky-Continuous
Functions

We present the Khalimsky topology using a topological basis. For every even
integer m, the set {m − 1, m, m + 1} is open, and for every odd integer n, the
singleton set {n} is open. A basis is given by

{{2n + 1}, {2n− 1, 2n, 2n + 1}; n ∈ Z}.

It follows that even points are closed. A digital interval [a, b]Z = [a, b]∩Z with the
subspace topology is called a Khalimsky interval, and a homeomorphic image of
a Khalimsky interval into a topological space is called a Khalimsky arc. Figure 1
illustrates the Khalimsky line.
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Fig. 1. The Khalimsky line

On the digital plane Z2, the Khalimsky topology is given by the product
topology. A point with both coordinates odd is open. If both coordinates are
even, the point is closed. These types of points are called pure. Points with
one even and one odd coordinate are neither open nor closed; these are called
mixed. We can see easily that the mixed point m = (m1, m2) is connected in the
topological sense to its four neighbors,

(m1 ± 1, m2) and (m1, m2 ± 1),
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whereas the pure point p = (p1, p2) is connected to all its 8-neighbors,

(p1 ± 1, p2), (p1, p2 ± 1), (p1 + 1, p2 ± 1) and (p1 − 1, p2 ± 1).

More information on the Khalimsky plane and the Khalimsky topology can be
found in [8].

When we equip Z with the Khalimsky topology, we may speak of continuous
functions Z → Z. It is easy to see that a continuous function f is Lipschitz
with constant 1. This is however not sufficient for continuity. It is not hard to
prove that f : Z→ Z is continuous if and only if (i) f is Lip-1 and (ii) for every
x �≡ f(x) (mod 2), f(x ± 1) = f(x). For more information see Melin [13] and
[14].

Also, we observe that the following functions are continuous:
(1) Z 
 x �→ a ∈ Z, where a is constant;
(2) Z 
 x �→ ±x + c ∈ Z, where c is an even constant;
(3) max(f, g) and min(f, g) if f and g are continuous.

Actually every continuous function on a bounded Khalimsky interval can be
obtained by a finite succession of the rules (1), (2), (3); (see Kiselman [8]). The
Khalimsky plane is illustrated in Figure 2.

� �� � �� �

�� � �� � ��

� �� � �� �

�� � �� � ��

� �� � �� �

�closed point

�open point

�� mixed point

Fig. 2. The Khalimsky plane

3 Khalimsky-Continuous Functions with Two Fixed
Endpoints

Here we are interested in finding the number of Khalimsky-continuous functions
with two fixed endpoints. We define six different cases as follows:

Definition 1. 1. Let As
n denote the number of Khalimsky-continuous functions

f : [0, n]Z → Z such that f(0) = 0 and f(n) = s.
2. Let as

n denote the number of increasing Khalimsky-continuous functions
f : [0, n]Z → Z such that f(0) = 0 and f(n) = s.

3. Let Bs
n denote the number of Khalimsky-continuous functions f : [0, n]Z → N

such that f(0) = 0 and f(n) = s.
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4. Let bs
n denote the number of increasing Khalimsky-continuous functions

f : [0, n]Z → N such that f(0) = 0 and f(n) = s.
5. Let Cs,t

n denote the number of Khalimsky-continuous functions
f : [0, n]Z → [0, s]Z such that f(0) = 0 and f(n) = t.

6. Let cs,t
n denote the number of increasing Khalimsky-continuous functions

f : [0, n]Z → [0, s]Z such that f(0) = 0 and f(n) = t.

The first and the third cases were studied in Samieinia [20].

Theorem 1 (Samieinia [20]). Let As
n, |s| ≤ n, be the number of Khalimsky-

continuous functions f : [0, n]Z → Z such that f(0) = 0 and f(n) = s, and di,j

be the Delannoy numbers. Then we have that As
n = di,j for i = 1

2 (n + s) and
j = 1

2 (n− s) where n + s ∈ 2Z, and As
n = As

n−1 for n + s odd.

Theorem 2 (Samieinia [20]). Let Bs
n be the number of Khalimsky-continuous

functions f : [0, n]Z → N such that f(0) = 0 and f(n) = s for s ∈ N and s ≤ n,
and ri,j be the Schröder numbers. Then we have Bs

n = ri,j for i = 1
2 (n + s) and

j = 1
2 (n− s), where n + s ∈ 2N.

Considering increasing Khalimsky-continuous functions with codomain N yields
an example of the Fibonacci sequence.

Theorem 3. Let bn be the number of increasing Khalimsky-continuous func-
tions f : [0, n]→ N such that f(0) = 0. Then bn = Fn+2, n ∈ N, where (Fn)∞0 is
the Fibonacci sequence, defined by F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n � 2.

Proof. Let bs
n be the number of increasing Khalimsky-continuous functions

f : [0, n] → N such that f(0) = 0 and f(n) = s. Using the properties of the
Khalimsky topology we have that

bn = b0
n + b1

n + · · ·+ bn
n. (1)

By the properties of the Khalimsky topology for n, s of the same parity we have

bs
n = bs−1

n−1 + bs
n−1, (2)

while for n, s of opposite parity,

bs
n = bs

n−1. (3)

Inserting equations (2) and (3) into 1 will give the result.

In the next table we can see the values of bs
n and their sum bn.
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s \ n 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 0 1 1 2 2 3 3 4 4 5
2 0 0 1 1 3 3 6 6 10 10
3 0 0 0 1 1 4 4 10 10 20
4 0 0 0 0 1 1 5 5 15 15
5 0 0 0 0 0 1 1 6 6 21
6 0 0 0 0 0 0 1 1 7 7
7 0 0 0 0 0 0 0 1 1 8
8 0 0 0 0 0 0 0 0 1 1
9 0 0 0 0 0 0 0 0 0 1
bn 1 2 3 5 8 13 21 34 55 89

To study the number Cs,t
n defined in 1, we first consider the Khalimsky-continuous

functions when they have two points in their codomain.

Proposition 1. Let C1,t
n be the number of Khalimsky-continuous functions

f : [0, n]Z → [0, 1]Z such that f(0) = 0 and f(n) = t. Then for k � 1, C1,1
2k =

C1,1
2k−1 = F2k and C1,0

2k+1 = C1,0
2k = F2k+1 where Fn is the Fibonacci number.

Proof. By the properties of the Khalimsky topology we have

C1,0
2k+1 = C1,0

2k , k � 1,

C1,0
2k = C1,0

2k−1 + C1,1
2k−1, k � 1,

(4)

and
C1,1

2k = C1,1
2k−1, k � 1,

C1,1
2k+1 = C1,0

2k + C1,1
2k , k � 1.

(5)

It is clear that C1,1
1 = C1,0

1 = 1. By using equations (4) and (5) we have

C1,1
2k = C1,1

2k−1 = C1,0
2k−2 + C1,1

2k−2,

and
C1,0

2k = C1,0
2k−1 + C1,1

2k−1.

Now using an induction can give the result.

In the next table we can see the number of C1,0
n and C1,1

n for 1 � n � 11.

n 1 2 3 4 5 6 7 8 9 10 11
C1,0

n 1 2 2 5 5 13 13 34 34 89 89
C1,1

n 1 1 3 3 8 8 21 21 55 55 144
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As we have seen the number of Khalimsky continuous functions with two
points in their codomain presented an example of the known Fibonacci sequence.
In the following theorem we consider the Khalimsky-continuous functions with
bounded codomain possibly with more than two points.

Proposition 2. Let Cs,t
n be the number of Khalimsky-continuous functions

f : [0, n]Z → [0, s]Z such that f(0) = 0, f(n) = t for 0 � t � s. Then for
n, s of the same parity we have

Cs,s
n = Cs,s−1

n−1 + Cs,s−1
n−3 + · · ·+ Cs,s−1

s+1 + Cs,s−1
s−1 , 1 � s � n, (6)

while for n, s of opposite parity,

Cs,s
n = Cs,s

n−1, 1 � s � n. (7)

Proof. Suppose that n and s have the same parity. From the Lipschitz property
it follows that

Cs,s
n = Cs,s

n−1 + Cs,s−1
n−1 . (8)

Since n and s have the same parity, from the properties of the Khalimsky topol-
ogy

Cs,s
n−1 = Cs,s

n−2, (9)

so
Cs,s

n−2 = Cs,s
n−3 + Cs,s−1

n−3 . (10)

Hence, by using in turn (8), (9) and (10), we have

Cs,s
n = Cs,s−1

n−1 + Cs,s−1
n−3 + Cs,s

n−3, n > 3. (11)

In the same way we can continue for Cs,s
n−3 and so on, until we get Cs,s

s . Since
Cs,s

s = Cs,s−1
s−1 = 1, we get the result.

The next table shows the values of C5,t
n , which are the number of Khalimsky-

continuous functions f : [0, n]Z → [0, 5]Z, f(0) = 0, f(n) = t for 0 � t � 5 and
0 � n � 9.

s \ n 0 1 2 3 4 5 6 7 8 9
0 1 1 2 2 6 6 22 22 90 90
1 0 1 1 4 4 16 16 68 68 304
2 0 0 1 1 6 6 30 30 146 146
3 0 0 0 1 1 8 8 48 48 263
4 0 0 0 0 1 1 10 10 69 69
5 0 0 0 0 0 1 1 11 11 80

Considering the increasing Khalimsky-continuous functions with a bounded
codomain (possibly with more than two points) implies the same recurrence
formula as (6).
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Proposition 3. Let cs,t
n be the number of increasing Khalimsky-continuous func-

tions f : [0, n]Z → [0, s]Z such that f(0) = 0, f(n) = t for 0 � t � s. Then for
n, s of the same parity we have

cs,s
n = cs,s−1

n−1 + cs,s−1
n−3 + · · ·+ cs,s−1

s+1 + cs,s−1
s−1 , 1 � s � n, (12)

while for n, s of opposite parity,

cs,s
n = cs,s

n−1, 1 � s � n. (13)

Proof. The proof can be done in the same way as Proposition 2.

Now we shall define a generating function gn with cs,s
n as its coefficients. Us-

ing this generating function we determine the number of increasing Khalimsky-
continuous functions cn,n

n+2i for a fixed natural number n � 2 and for i ∈ N. By
the Khalimsky topology, we can see easily that cn,n

n+2i+1 = cn,n
n+2i. Thus we just

need to compute one of them. Let

gn(x) = cn,n
n x0 + cn,n

n+2x
2 + · · · =

∞∑
i=0

cn,n
n+2ix

2i. (14)

By Proposition 3 and equation (14) we have

gn(x) = cn,n−1
n−1 (x0 + x2 + · · ·+ x2i + · · · )

+ cn,n−1
n+1 (x2 + x4 + · · ·+ x2i + · · · ) + · · · .

(15)

We can get easily the following relation for the generator function gn.

Proposition 4. Let n � 2 and denote by gn the generating function of the
sequence (cn,n

n+2i)
∞
i=0. It satisfies

(1− x2)gn(x) = gn−1(x). (16)

Proof. By equation (15),

x2gn(x) = cn,n−1
n−1 (x2 + x4 + · · ·+ x2i+2 + · · · ) + · · · . (17)

Thus by (17), (15) and (14);

gn(x)− x2gn(x) = x0cn,n−1
n−1 + x2cn,n−1

n+1 + · · ·
+ xmcn,n−1

n+m−1 + · · · = gn−1(x).

If we use n− 1 times the equation (12), we get

g1(x) = (1− x2)n−1gn(x) for n � 2. (18)

Using equation (18) leads us to find the number of increasing Khalimsky-
continuous functions which is stated as follows:



104 S. Samieinia

Theorem 4. Let cn,t
n+2j be the number of increasing Khalimsky-continuous func-

tions f : [0, n + 2j]Z → [0, n]Z such that f(0) = 0, f(n + 2j) = t for 0 � t � n
and j ∈ N. Then

cn,n
n+2k =

∑
i,j∈N

i+j=k

(
n+i−2

i

)
cn,1
1+2j ,

which is, more precisely,(
n+k−2

k

)
+ 2

(
n+k−3

k−1

)
+ · · ·+ (k + 1)

(
n−2

0

)
. (19)

Proof. By using (18) and (14);

gn(x) = (1− x2)−(n−1)g1(x)

=

( ∞∑
i=0

(
n+i−2

i

)
x2i

) ⎛⎝ ∞∑
j=0

cn,1
1+2jx

2j

⎞⎠ .
(20)

Now a simple calculation and comparing the coefficient of x2k of the right and
the left sides of (20) together with the fact that cn,1

1+2j = j + 1 for j ∈ N give the
result.

The next table shows the values of c5,t
n , which are the number of increasing

Khalimsky-continuous functions f : [0, n]Z → [0, 5]Z such that f(0) = 0 and
f(n) = t for 0 � n � 9 and 0 � t � 5.

s \ n 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 0 1 1 2 2 3 3 4 4 5
2 0 0 1 1 3 3 6 6 10 10
3 0 0 0 1 1 4 4 10 10 20
4 0 0 0 0 1 1 5 5 15 15
5 0 0 0 0 0 1 1 6 6 21

It is easy to see that as
n = bs

n = cs,s
n . Therefore, we can determine as

n and bs
n

by knowing the values of cs,t
n which was determined in equation (19). We notice

that although we have the same result of Theorem 4 for the values of Cs,t
n , the

generator function gn cannot be used to determine those values.

4 Conclusion

There are contrasts between the objects and criteria in the real plane as com-
pared with the discrete plane. From Euclid’s first Postulate, we may conclude
that there is a line segment between two points. He did not say that we have
just one line, but we may conclude that this is so. However, there are usually
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more than one digital straight line segment between two points in the digital
plane. The other contrast between the Euclidean and the discrete planes are
exhibited by digital curves. There are as many smooth curves as we like between
two points in the Euclidean plane, but not in the discrete plane. The interesting
fact for the discrete case is that we may count them.

In this paper we studied six different cases for the number of Khalimsky-
continuous functions when they have two fixed endpoints. Two of these six cases
were studied in a previous work by the author. We gave a recurrence formula to
determine the number of Khalimsky-continuous functions not exiting from a rect-
angle and between two points. The number of increasing Khalimsky-continuous
functions with two fixed endpoints and with values in a rectangle was also stud-
ied by using a generating function. The exact value for the number of increasing
Khalimsky-continuous functions was established. The sum of the values of those
numbers when the functions are in a rectangle with the same length and different
heights gave an example of the classical Fibonacci sequence. These are the num-
ber of increasing Khalimsky-continuous functions with just one fixed endpoint
(the origin) and N as codomain.
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Abstract. Let I be a 3D digital image, and let Q(I) be the associated
cubical complex. In this paper we show how to simplify the combina-
torial structure of Q(I) and obtain a homeomorphic cellular complex
P (I) with fewer cells. We introduce formulas for a diagonal approxima-
tion on a general polygon and use it to compute cup products on the
cohomology H∗(P (I)). The cup product encodes important geometrical
information not captured by the cohomology groups. Consequently, the
ring structure of H∗(P (I)) is a finer topological invariant. The algorithm
proposed here can be applied to compute cup products on any polyhedral
approximation of an object embedded in 3-space.

Keywords: Cellular complex, cohomology, cup product, diagonal
approximation, digital image, polyhedron.

1 Introduction

Throughout this paper, coefficients lie in the field Z2. Let X be a cellular com-
plex embedded in 3-dimensional space and constructed by gluing 3-dimensional
polyhedra together along common faces (see [4]). At a most basic level, the con-
nected components, homotopy classes of non-contractible loops, and boundaries
of tunnels in X generate the cellular cohomology H∗(X). At the next level, cer-
tain relationships among the generators are encoded by the cup product, which
endows H∗(X) with a graded commutative ring structure. Indeed, the discrimi-
nating information encoded by the cup product improves our capability to dis-
tinguish between 3D images. For example, H∗(S1 ∨ S1 ∨ S2) and H∗(S1 × S1)
are isomorphic as vector spaces but not as rings since cup products vanish in
the wedge but not in the product. Thus S1 ∨ S1 ∨ S2 and S1 × S1 have quite
different topological properties.

To date, the cup product has seen limited application to problems in 3D image
processing. In [10,11], Gonzalez-Diaz and Real used their 14-adjacency algorithm
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Fig. 1. Left: A digital image I = (Z3, 26, 6, B); the set B consists of 8 unit cubes
(voxels). Right: The quadrangles of ∂Q(I).

and the standard formulation in [17] to compute cup products on the simplicial
complex K(I) associated with a given digital image I. More recently, Gonzalez-
Diaz, Jimenez and Medrano introduced a method for computing cup products
on cubical approximations Q(I). Their cup products are computed directly from
the cubical complex, and no additional subdivisions are necessary [8,9]. For a
geometrical interpretation of cohomology in the context of digital images, we
refer the reader to [5,6,15].

In [14], Kravatz computed cup products on a general 2-dimensional polygon
in terms of a combinatorial diagonal approximation, which assumes a particular
ordering of the vertices. In this paper, we introduce a more general formula for
computing cup products, which is independent of the ordering of vertices and
computationally effective.

A problem that frequently arises in 3D image processing is to efficiently en-
code the boundary surface of a given digital object as a set of voxels. The most
popular approach to this problem uses a triangulation. While triangles are com-
binatorially simple, and visualization of triangulated surfaces is supported by
existing hardware and software, the number of triangles required is often large
and the computational analysis correspondingly slow. It is desirable, therefore,
to seek more computationally economical combinatorial approximations. Adja-
cent coplanar triangles in a triangulation, for example, can be merged into more
general polygons and become faces of more general but combinatorially simpler
polyhedra. The payoff from combinatorial simplicity is improved computational
efficiency.

Approximating 3D objects with polyhedral complexes is a well-studied prob-
lem in the field of Computational Geometry (for example, see [1,2,3]). An al-
gorithm for constructing polyhedral approximations in certain special cases was
given by Kovalevsky and Schulz in [13,19]. Their algorithm generates the convex
hull of a given object then modifies the convex hull by recursively generating
convex hulls of either subsets of the given voxel set or subsets of the background
voxels. The result of this method is a polyhedron that separates object voxels
from background voxels.

The computational methods introduced in this paper can be effectively ap-
plied to any polyhedral approximation of a 3D object. Indeed, one maximizes
computational efficiency by approximating a given 3D object with a polyhedral
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Fig. 2. Left: Quadrangles in the boundary of cubes c and σ sharing a square σ′ (in
bold). Right: Quadrangles in ∂(c) := ∂(c + σ), the boundary of the cell c after remov-
ing σ′.

complex containing a minimal number of cells. To the extent that this is our
long-term objective, we take a first step in this direction here.

The paper is organized as follows: In Section 2 we introduce a simplification
procedure, which produces a cellular complex P (I) homeomorphic to Q(I) with
significantly fewer cells. In Section 3 we define a diagonal approximation on a
general polygon and use it to compute the cohomology ring of P (I). Conclusions
and some ideas for future work are discussed in Section 4.

2 3D Digital Pictures and Cellular Complexes

Let I be a 3D digital image and let Q(I) be an associated cubical complex. In
this section we introduce a simplification procedure, which produces a cellular
complex P (I) homeomorphic to Q(I) with significantly fewer cells.

Intuitively, a cellular decomposition of a 3D space X embedded in R3 is a
representation of X as a finite union of vertices (0-cells), edges (1-cells), polygons
(2-cells), and polyhedra (3-cells), which have been glued together in such a way
that the non-empty intersection of two cells is a cell. A k-cell is also referred to
as a k-face. A cellular complex is a 3D space X embedded in R3 together with
a cellular decomposition. For a precise definition of a cellular complex, which is
more subtle than one might expect, see [4].

A cubical complex Q is a cellular complex whose 2-cells are squares (or quad-
rangles) and whose 3-cells are cubes. Note that if a cube is in Q, its bounding
quadrangles are in Q; if a quadrangle is in Q, its bounding edges are in Q; and
if an edge is in Q, its endpoints are in Q.

Consider a 3D binary digital picture I = (Z3, 26, 6, B), where Z3 is the un-
derlying grid and B (the foreground) is a finite set of points of the grid fixing
the 26-adjacency for the points of B and the 6-adjacency for the points of Z3 \B
(the background). The cells of Q(I) are unit cubes centered at the points of B
with faces parallel to the coordinate planes (called the voxels of I), together with
their quadrangles, edges, and vertices.

Let K be a cellular complex. An i-cell σ′ ∈ K is a facet of a cell σ ∈ K if σ is
an (i+1)-cell and σ′ is a face of σ. A maximal cell of K is not a facet of any cell
of K. The boundary of K, denoted by ∂K, is the subcomplex of K consisting of
all cells that are facets of exactly one (maximal) cell, and their faces. Note that
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Fig. 3. Critical configurations (i), (ii) and (iii) (modulo reflections and rotations)

the maximal cells of ∂Q(I) are all the quadrangles of Q(I) shared by a voxel of
B and a voxel of Z3 \B (see Figure 1).

Following the exposition in [8,9], given a digital image I and its associated
cubical complex Q(I), we apply a face-reduction technique to reduce the num-
ber of cells in Q(I) \ ∂Q(I) and obtain a cellular complex K(I) homeomorphic
to Q(I) whose maximal cells are the quadrangles of ∂Q(I) (see Figure 2 and
Algorithm 1). Then, ∂K(I) = ∂Q(I).

Input: A cubical complex Q(I) associated to a 3D digital image I .
Initially, K(I) := Q(I).
While there exists a cell σ′ ∈ Q(I) \ ∂Q(I) do

If σ′ is a facet of exactly two cells c, σ ∈ Q(I) do

remove σ and σ′ from the current K(I);
redefine c as c ∪ σ.

If σ′ is a facet of exactly one cell σ ∈ Q(I) do

remove σ and σ′ from the current K(I).
Output: the cellular complex K(I).

Algorithm 1. Face-Reduction Process

Next, we preform a simplification process in ∂K(I) to produce a cellular
complex P (I) homeomorphic to K(I) such that the maximal cells of ∂P (I) are
polygons. But first, we need a definition.

Definition 1. A vertex v ∈ ∂K(I) is critical if one of the following situations
occurs:

(i) v is a face of some edge e shared by four cubes, exactly two of which intersect
along e and lie in Q(I) (see cubes w1 and w2 in Figure 3).

(ii) v is shared by eight cubes, exactly two of which are are corner-adjacent and
contained in Q(I) (see cubes s1 and s2 in Figure 3).

(iii) v is shared by eight cubes, exactly two of which are corner-adjacent and not
contained in Q(I) (cubes t1 and t2 in Figure 3).
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Fig. 4. (a) Nv ← {q1, q2, q3, q4}, (b) facets of p ← {e1, e2, e3, e4, e5, e6, e7, e8}

It is a well-known fact that a non-critical vertex of ∂K(I) lies in a neighborhood
of ∂K(I) homeomorphic to R2 (see [16]).

Algorithm 2 processes the non-critical vertices of ∂K(I) to obtain the cellular
complex P (I). Initially, P (I) = K(I). For a vertex v ∈ ∂P (I), let Nv be the set of
2-cells q ∈ P (I) incident to the vertex v. If Nv defines a region Rv homeomorphic
to a disc, then Nv is replaced by a new 2-cell p in P (I), which is the union of the
cells of Nv. The edges of ∂P (I) incident to v and the vertex v are removed from
P (I) (see Figure 4). Observe that the maximal cells of the final cellular complex
∂P (I) are polygons and ∂P (I) has fewer cells than ∂K(I). We can set some
terminating conditions. For example: (1) terminate when the number of edges
of the polygons in ∂P (I) reach some specified maximum; or (2) terminate after
merging the set Nv of coplanar 2-cells of ∂P (I) (this preserves the geometry but
removes fewer cells). An example of the differences that arise from these different
terminating conditions is demonstrated in Example 1.

Observe that Algorithm 2 uses the ordering on the set of non-critical vertices
V ⊂ ∂K(I) to select the next non-critical vertex. To the best of our knowl-
edge, this is the first algorithm to appear that produces a cellular complex with
polygonal maximal cells by removing non-critical vertices.

Example 1. Let μI be a μMRI of a trabecular bone of size: 85× 85× 10 voxels
(see Figure 5 in which μI is given by a sequence of 10 2D digital images of size

Input: The output of Algorithm 1: the cellular complex K(I).
Initially, P (I) := K(I);

V := ordered set of non-critical vertices of ∂K(I).
While ∃v ∈ V such that Rv is homeomorphic to a disc do

remove v from P (I) and V ;

remove the edges incident to v from P (I);
remove the 2-cells of Nv from P (I);
add a new 2-cell p to P (I) which is the union of the cells of Nv.

Output: The cellular complex P (I).

Algorithm 2. Algorithm to obtain the cellular complex P (I)
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Fig. 5. A μMRI of a trabecular bone

85 × 85). The number of quadrangles in ∂Q(μI) is 20956 (see Figure 6). After
applying Algorithm 1 to obtain the cellular complex K(μI), we apply Algorithm
2 to K(μI) with the terminating condition 1 (the number of the edges of the
polygons in ∂P (μI) is smaller or equal to 10). Then, the number of polygons of
∂P (μI) is 1567 (see Figure 7.a). If we only consider the set of coplanar polygons
Nv, then the number of polygons of ∂P (μI) after applying Algorithm 2 is 9321
(see Figure 7.b).

3 Computing the Cohomology Ring of P (I)

Traditionally, one computes cup products in simplicial or cubical complex using
the standard formulas in [17,20]). In this section, we give a procedure for comput-
ing cup products on P (I) (the output of Algorithm 2), which avoids triangulation
by defining explicit formulas for diagonal approximations on polygons.

We begin with a review of some standard definitions from Algebraic Topology
(for details see [17]). Given a graded set S = {Sq}q, the q-chains of S, which are
finite formal sums of elements of Sq, define an additive abelian group structure
on Sq. These groups, called q-chain groups, are denoted by Cq(S). The collec-
tion of all chain groups associated with S is denoted by C∗(S) = {Cq(S)}q

Fig. 6. The cubical complex ∂Q(μI)
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and is referred to as the chain group of S. A chain complex (C∗(S), ∂) is
a chain group C∗(S) together with a square zero homomorphism ∂ = {∂q :
Cq(S) → Cq−1(S)}q, called the boundary operator. For example, consider a tri-
angle 〈vi, vj , vk〉 with vertices vi < vj < vk. The boundary of the triangle is the
formal sum of its edges, that is, ∂2(〈vi, vj , vk〉) = 〈vi, vj〉 + 〈vj , vk〉 + 〈vi, vk〉.
Note that any chain group C∗(S) together with the zero boundary map ∂ ≡ 0
is a chain complex.

The chain complex associated with P (I) (the output of Algorithm 2) is the
collection (C∗(P (I)), ∂) = {Cq(P (I)), ∂q}q where:

• each Cq(P (I)) is the chain group generated by the q-cells of P (I),
• the boundary ∂q : Cq(P (I)) → Cq−1(P (I)) evaluated on a q-cell of P (I) is

the formal sum of its facets, and
• the boundary of a general q-chain is defined by linearly extending ∂.

Given a chain complex (C∗(S), ∂), a q-chain σ ∈ Cq(S) is called a q-cycle if
∂q(σ) = 0. If σ = ∂q+1(μ) for some (q +1)-chain μ then σ is called a q-boundary.
Referring to the triangle 〈vi, vj , vk〉 above, σ = 〈vi, vj〉+〈vj , vk〉+〈vi, vk〉 is both
a 1-cycle and a 1-boundary since ∂1(σ) = 0 and σ = ∂2(〈vi, vj , vk〉).

Two q-cycles a and a′ are homologous if there exists a q-boundary b such
that a = a′ + b. Denote the groups of q-cycles and q-boundaries by Zq(S) and
Bq(S), respectively. All q-boundaries are q-cycles (Bq(S) ⊆ Zq(S)). Define the
qth homology group to be the quotient group Hq(S) = Zq(S)/Bq(S), for all q.
Each element of Hq(S) is a class [a] = a+Bq(S) and a is a representative q-cycle.
The homology of S is the collection of all the homology groups associated with
S, i.e., H∗(S) = {Hq(S)}q.

Let (C∗(S), ∂) and (C∗(S′), ∂′) be chain complexes. A homomorphism f =
{fq : Cq(S) → Cq(S′)}q such that fq∂q = ∂′

qfq for all q is a chain map. Note
that the identity idC∗(S) = {idCq(S) : Cq (S)→ Cq (S)}q is a chain map.

Let f = {fq : Cq (S) → Cq (S′)}q and g = {gq : Cq (S) → Cq (S′)}q be
chain maps. A chain homotopy from f to g is a homomorphism φ = {φq :
Cq(S) → Cq+1(S′)}q such that φq−1∂q + ∂′

q+1φq = fq + gq for all q. A chain
contraction of (C∗(S), ∂) to (C∗(S′), ∂′) is a triple (f = {fq : Cq(S)→ Cq(S′)}q,
g = {gq : Cq(S′)→ Cq(S)}q, φ = {φq : Cq(S)→ Cq + 1(S)}q) such that

(i) f and g are chain maps;
(ii) φ is a chain homotopy from idC∗(S) to gf = {gqfq : Cq(S)→ Cq(S)}q;
(iii) fg = {fqgq : Cq(S′)→ Cq(S′)}q = idC∗(S′).

Cochain groups are the linear duals of chain groups. Given a chain complex
(C∗(S), ∂), a q-cochain c ∈ Hom(Cq(S), Z/2). If we index the q-cells in a cellular
complex from 1 to nq, their corresponding duals generate C∗(S). Thus a cochain
c ∈ C∗(S) is a Z2-linear combination of the nq elements in the dual basis, and
as such can be thought of as a bit string of length nq.

The set Cq(S) of all q-cochains is a group, and the direct sum of all cochain
groups associated with S is the graded group C∗(S) = {Cq(S)}q. The coboundary
operator δ = {δq : Cq(S) → Cq+1(S)}q is defined on a q-cochain c by δq(c) =
c∂q+1. Note that δ◦δ = 0. The associated cochain complex is the pair (C∗(S), δ).
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Fig. 7. (a) The cellular complex ∂P (μI) for 10 edges as upper bound on p ∈ ∂P (μI).
(b) The cellular complex ∂P (μI) preserving geometry.

A q-cochain c is a q-cocycle if δq(c) = 0. A q-cochain b is a q-coboundary if
there exists a (q−1)-cochain c such that b = δq−1(c). Two q-cocycles c and c′ are
cohomologous if there exists a q-coboundary b such that c = c′ + b (see Figure
8). We denote the subgroup of q-cocycles by Zq(S), and the subgroup of q-
coboundaries by Bq(S). The qth cohomology group is defined to be the quotient
Hq(S) = Zq(S)/Bq(S). Each element of Hq(S) is a class [c] = c + Bq(S).
The element c is a representative q-cocycle of the cohomology class [c]. The
cohomology of S is the graded Z/2-vector space H∗(S) = {Hq(S)}q.

Since P (I) (the output of Algorithm 2) is embedded in R
3, homology and

cohomology of P (I) are isomorphic and torsion free.
An AT-model [10,11] for a chain complex (C∗(S), ∂), denoted by ((S, ∂), H,

f, g, φ), consists of a chain complex (C∗(H), ∂′ ≡ 0) together with a chain con-
traction (f, g, φ) of (C∗(S), ∂) to (C∗(H), ∂′). The following properties hold:

• If σ ∈ Hq, then gq(σ) ∈ Cq (S) is a representative cycle of a class of
Hq (C (S)).

• The cochain ∂σf : Cq(S)→ Z/2 defined by

∂σf(μ) :=
{

1, if σ appears in the expression of f(μ),
0, otherwise;

is a representative cocycle of a class of Hq (S).

• The map Hq → Hq(S) given by σ �→ [g(σ)] linearly extends to an isomor-
phism Cq(H) ∼= Hq (S) .

• The map Hq → Hq(S) given by σ �→ [∂σf ] linearly extends to an isomor-
phism Cq(H) ∼= Hq (S) .

Example 2. Consider the cellular complex ∂P (μI) shown in Figure 7.b obtained
after applying Algorithm 2 to a μMRI of a trabecular bone of size 85× 85× 10
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0-cochain {v1}
1-cochain {e1, e4}
1-coboundary δ{v1} = {e3, e4}
1-cocycle c = {e1, e2}
1-cocycle d = {e1, e2, e3, e4}
homologous cocycles c and d; since d = c + δ{v1}

Fig. 8. Example of cochain, cocycle and coboundary

voxels. Table 1 shows the results of the homology computation, i.e, the number
of connected components, holes and cavities obtained after computing an AT-
model for ∂P (μI). Representative 1-cycles are shown in Figure 9.

Table 1. Results of the homology groups computation for the cellular complex ∂P (μI)
shown in Figure 7.b. (see Figure 9).

Cellular Complex H0 H1 H2

∂P (μI) 5 2 6

An AT-model for (C∗(S), ∂) always exists and can be computed in O(m3), where
m is the number of elements of S (see [10,11]).

Given an AT-model ((P (I), ∂), H, f, g, φ) for P (I) (the output of Algorithm
2), we have that

C∗(H) ∼= H∗(P (I)) ∼= H∗(P (I)) ∼= Hom (H∗(P (I)), Z/2) ∼= C∗(H).

Let α ∈ Hn. Consider the dual elementary n-cocycle in Cn (H),

α∗ : Cn(H)→ Z/2 such that for μ ∈ Hn, α∗(μ) :=
{

1 if μ = α,
0 otherwise.

Proposition 1. Given an ordering {v1 < · · · < vn} of the vertices of P (I),
each polygon p ∈ P (I) can be expressed as an ordered list of vertices {vi1 <
· · · < vik

} ⊆ {v1 < · · · < vn} with edges

ej :=
{ 〈vij , vij+1 〉, if j < k,
〈vik

, vi1〉, if j = k.

The following two theorems formulate a diagonal approximation∇′ on a polygon
and the cup product on H∗(P (I)) in terms of ∇′. All non-trivial cup products
in H∗(P (I)) are products of 1-cocycles for dimensional reasons.

Theorem 1. Consider a polygon p = 〈v1, . . . , vn〉 with edges ei = 〈vi, vi+1〉,
i < n, and en = 〈vn, v1〉. Then a diagonal approximation on p is given by

∇′(p) :=
∑

1<i<n, vi<vi+1
(e1 + · · ·+ ei−1)⊗ ei

+
∑

1<i<n, vi>vi+1
(ei+1) + · · ·+ en)⊗ ei.
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Fig. 9. Representative 1-cycles

Theorem 2. Consider a digital image I, the cellular complex P (I), an ordering
of the vertices of P (I), and an AT-model ((P (I), ∂), H, f, g, φ) for P (I). Then
for α, β ∈ H1 and γ ∈ H2 the cup product α∗ �′ β∗ is given by

(α∗ �′ β∗) (γ) = m(∂αf ⊗ ∂βf)∇′g(γ), (1)

where m denotes multiplication in Z/2. The cup product is bilinear, commutative,
associative, and independent of the ordering of the vertices .

Fig. 10. Representative 1-cocycles
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Table 2. Results of the computation of the cup product for the cellular complex shown
in Figure 7.b

(α , α) (α , β) (β , β)

γ1 0 0 0
γ2 0 0 0
γ3 0 0 0
γ4 0 0 0
γ5 0 0 0
γ6 0 1 0

Table 3. Time (in seconds) and the results of the computation of the cup product on
the cellular complexes shown in Figure 11

Cell complex Number of 2-cells Time to compute the cup product

A (see Figure 11) 1920 18.19 sec.
B (see Figure 11) 57 3.8 sec.

(α1 , α2) (α1 , α3) (α1 , α4) (α2 , α3) (α2 , α4) (α3 , α4)

β 0 0 1 1 0 0

Fig. 11. Left: cell complex A. Right: cell complex B

Proof. (Sketch) To verify formula (1), we subdivide the polygons of P (I), obtain
a very special triangulation K of P (I), and apply a chain contraction (fT , gT , φT )
of C∗(K) to C∗(P (I)) (we only need to subdivide the polygons of P (I) since the
cup product is non-trivial only on 1-cocycles). We then appeal to the standard
formula on a triangle with vertices vi < vj < vk (see [17]):

∇(〈vi, vj , vk〉) = 〈vi, vj〉 ⊗ 〈vj , vk〉.

Finally, for a polygon p ∈ P (I) we have ∇′(p) = (fT ⊗ fT )∇gT (p). ��
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Example 3. Starting from the results obtained in Example 2 and applying the
formula given in Theorem 2, representative 1-cocycles are shown in Figure 10.
Table 2 shows the cup product.

The following table illustrates the dramatic improvement in computational effi-
ciency realized by removing faces and non-critical vertices:

4 Conclusions and Plans for Future Work

Given a 3D digital image I, we have formulated the cup product on the coho-
mology of the cellular complex P (I) obtained by simplifying the cubical complex
Q(I). The algorithm proposed here is valid for any encoding of a 3D digital ob-
ject given as a set of polyhedra. Nevertheless, our ultimate goal is to compute
the cup product on any cellular complex without making use of triangulations or
other kind of subdivision. To this end, we shall apply some standard geometric
constructions such as forming quotients, taking Cartesian products, and merging
cells.
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Abstract. We study a certain Alexandroff topology on Z
2 and some

of its quotient topologies including the Khalimsky one. By proving an
analogue of the Jordan curve theorem for this topology we show that it
provides a large variety of digital Jordan curves. Some consequences of
this result are discussed, too.

1 Introduction

Geometric and topological properties of (two-dimensional) digital images are
crucial in creating new, efficient algorithms to solve various problems of com-
puter image processing. To study these properties, we need the digital plane
Z2 to be equipped with a convenient structure. Here, the convenience means
that such a structure satisfies some analogues of basic geometric and topological
properties of the Euclidean topology on R2. Most importantly, it is usually re-
quired that an analogue of the Jordan curve theorem be valid. (Recall that the
classical Jordan curve theorem states that any simple closed curve in the Eu-
clidean plane separates this plane into exactly two components). In the classical
approach to this problem (see e.g. [11] and [12]), graph theoretic tools are used
for structuring Z2, namely the well-known binary relations of 4-adjacency and
8-adjacency. Unfortunately, neither 4-adjacency nor 8-adjacency itself allows an
analogue of the Jordan curve theorem - cf. [8]. To overcome this, a combination
of the two binary relations has to be used. Despite this inconvenience, the graph-
theoretic approach is used to solve many problems of digital image processing
and to create useful graphic software. In [5], a new, purely topological approach
to the problem was proposed which utilizes a convenient topology on Z

2, called
Khalimsky topology (cf. [4]), for structuring the digital plane. At present, this
topology is one of the most important concepts of the theory called digital topol-
ogy. It has been studied and used by many authors, see e.g. [2] and [6]-[9]. The
possibility of employing convenient topological structures on Z2 different from
the Khalimsky topology is discussed in [13]-[17].

In [17], a new topology on Z2 has been introduced and studied that was
obtained by a slight modification of the topology introduced in [15] and then
studied also in [16]. It was shown in [17] that the new topology provides a certain
convenient Jordan curves behaving more advantageously than the Jordan curves
in the Khalimsky space. And, by results proved in [16], the quotient topologies
of this topology include the Khalimsky topology as well as two other convenient

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 120–131, 2011.
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topologies on Z2. In the present note we continue the study from [15]. We will
show that the variety of Jordan curves in the topology under consideration is
much larger than that one determined in [15].

2 Preliminaries

For the topological terminology used we refer to [1] and [3]. Throughout the note,
all topologies dealt with are thought of as being (given by) Kuratowski closure
operators. Recall that a topology p on a set X is said to be a T0-topology if, for
arbitrary points x, y ∈ X , from x ∈ p{y} and y ∈ p{x} it follows that x = y,
and it is called a T 1

2
-topology if each singleton subset of X is closed or open (so

that T 1
2

implies T0). Recall also that p is said to be an Alexandroff topology if
pA =

⋃
x∈A p{x} whenever A ⊆ X . So, if p is an Alexandroff topology on a set

X , then it is given by determining the closures of all points of X and there is an
Alexandroff topology p on X given by x ∈ p{y} ⇔ y ∈ p{x} whenever x, y ∈ X .
The topology p is said to be dual to p. Clearly, p = p and a subset A ⊆ X is
closed (open) in (X, p) if and only it is open (closed) in (X, p).

A map f : (X, p) → (Y, q) between topological spaces (X, p) and (Y, q) is
said to be continuous if f(pA) ⊆ q(f(A)) whenever A ⊆ X . Given a topological
space (X, p) and a surjection e : X → Y , a topology q on Y is called the
quotient topology of p generated by e if q is the finest topology on Y for which
e : (X, p) → (Y, q) is continuous. Here, given topologies q and r on X , q is said
to be finer than r (and r coarser than q) if qA ⊆ rA for every A ⊆ X .

By a graph on a set V we always mean an undirected simple graph without
loops whose vertex set is V . Recall that a path in a graph is a finite (nonempty)
sequence x0, x1, ..., xn of pairwise different vertices such that xi−1 and xi are
adjacent (i.e., joined by an edge) whenever i ∈ {1, 2, ...n}. By a cycle in a graph
we understand any finite set of at least three vertices which can be ordered into
a path whose first and last members are adjacent.

The connectedness graph of a topology p on X is the graph on X in which a
pair of vertices x, y is adjacent if and only if x �= y and {x, y} is a connected
subset of (X, p). Let p be an Alexandroff topology on a set X . Then a subset
A ⊆ X is connected in (X, p) if and only if each pair of points of A may be
joined by a path in the connectedness graph of (X, p) contained in A. Clearly,
p is given by its connectedness graph provided that every edge of the graph is
adjacent to a point which is known to be closed or to a point which is known to
be open (in which case p is T0). Indeed, the closure of a closed point consists of
just this point, the closure of an open point consists of this point and all points
adjacent to it and the closure of a mixed point (i.e., a point that is neither closed
nor open) consists of this point and all closed points adjacent to it. In the sequel,
only the connectedness graphs of some connected Alexandroff topologies on Z2

will be considered in which the closed points will be ringed and the mixed ones
boxed (so that the points neither ringed nor boxed will be open - note that no
points of Z2 may be both closed and open). Obviously, there are 2ℵ0 Alexandroff
T0-pretopologies on Z2 having the same given connectedness graph.
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By a (discrete) closed curve in a topological space (X, p) we mean a cycle
in the connectedness graph of p. Thus, every cycle is a nonempty, finite and
connected set. In accordance with [16], a closed curve C ⊆ X in (X, p) is said to
be simple if, for each point x ∈ C, there are exactly two points of C adjacent to
x in the connectedness graph of p. A simple closed curve C in (X, p) is said to
be a (discrete) Jordan curve if it separates (X, p) into precisely two components
(i.e., if the subspace X − C of (X, p) consists of precisely two components).

Since we will work with quotient topologies of a certain Alexandroff topology
on Z2, we will start with presenting some general facts concerning the behavior
of quotient topologies of Alexandroff topologies.

Lemma 1. Let (X, p) be an Alexandroff space, let Y be a set and let e : X → Y
be a surjection. Then the following condition is necessary and sufficient for a
topology q on Y to be the quotient topology of p generated by e:

q is an Alexandroff topology on Y with the property that, for every pair of
points x, y ∈ Y , x ∈ q{y} if and only if there are a ∈ e−1(x) and b ∈ e−1(y)
such that a ∈ p{b}.

Proof. Let q be the quotient topology of p generated by e and let x, y ∈ Y . If
there are a ∈ e−1(x) and b ∈ e−1(y) such that a ∈ p{b}, then x ∈ q{y} because
e : (X, p)→ (Y, q) is continuous. The converse implication follows from the fact
that q is the smallest topology on Y such that e : (X, p)→ (Y, q) is continuous.
The same fact implies that q is Alexandroff.

Conversely, let the condition of the statement be satisfied. If a, b ∈ X are
points such that a ∈ p{b}, then, putting x = e(a) and y = e(b), we get a ∈ e−1(x)
and b ∈ e−1(y). Therefore, e(a) = x ∈ q{y} = q{e(b)}. We have shown that
e : (X, p) → (Y, q) is continuous. Let q′ be an arbitrary topology on Y such
that e : (X, p) → (Y, q′) is continuous. Let B ⊆ Y be a subset and x ∈ qB
be a point. Then there is a point y ∈ B with x ∈ q{y}. Consequently, there
are points a ∈ e−1(x) and b ∈ e−1(y) such that a ∈ p{b}. We get a ∈ p{b} ⊆
p{e−1(y)} ⊆ p{e−1(B)}, hence x = e(a) ∈ q′(e(e−1(B))) = q′B. We have shown
that qB ⊆ q′B. Thus, q ≤ q′ and the statement is proved.

Proposition 1. Let (X, p) be an Alexandroff space, e : X → Y be a surjection
and let q be the quotient topology of p on Y generated by e. Let e have the property
that e−1({y}) is connected in (X, p) for every point y ∈ Y and let B ⊆ Y be
a subset. Then B is connected in (Y, q) if and only if e−1(B) is connected in
(X, p).

Proof. If e−1(B) is connected, then so is B because B = e(e−1(B)). Conversely,
let B be connected. Then every pair of points of B may be joined by a path in the
connectedness graph of q contained in B. As e−1(y) is connected for every point
y ∈ B, Lemma 1 implies that every pair of points of e−1(B) =

⋃
y∈B e−1(y) may

be joined by a path in the connectedness graph of p contained in e−1(B). Thus,
e−1(B) is connected in (X, p).
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Let us note that, in general, for a topological space (X, p) and a quotient topology
of p, the statement of the previous Lemma need not be true. It is true if, for
example, B is closed or open in (Y, q).

Corollary 1. Let (X, p) be an Alexandroff space and let q be the quotient topol-
ogy of p on a set Y generated by a surjection e : X → Y . Let e have the property
that e−1({y}) is connected for every point y ∈ Y and let C ⊆ X be a simple
closed curve in (X, p). Then C is a Jordan curve in (X, p) if the following two
conditions are satisfied:

(1) e(C) is a Jordan curve in (Y, q), i.e., separates (Y, q) into exactly two com-
ponents D1 and D2.

(2) The subspace e−1(e(C))−C of (X, p) has at most two components and there
are sets E1, E2 with {E1, E2} = {C1, C2} if e−1(e(C)) − C has two compo-
nents C1, C2 and {E1, E2} = {∅, C0} if e−1(e(C))−C has only one compo-
nent C0 (in which case C0 = e−1(e(C))−C) such that, for every i ∈ {1, 2},
Ei �= ∅ implies that there is a point in Ci adjacent to a point of e−1(Di)
but no point in Ci is adjacent to a point of e−1(D3−i) (in the connectedness
graph of p).

Proof. Let the conditions (1) and (2) of the statement be fulfilled and, for every
i ∈ {1, 2}, put C′

i = Ei ∪ e−1(Di). Clearly, C′
1 ∪C′

2 = X −C. By Proposition 1,
e−1(Di) is connected, hence C′

i is connected for both i = 1, 2. Since C′
1 ∪ C′

2 is
clearly not connected, C′

1 and C′
2 are the components of X − C.

Let z = (x, y) ∈ Z2 be a point. We put

H2(z) = {(x + k, y); k ∈ {−1, 1}},
V2(z) = {(x, y + l); l ∈ {−1, 1}},
D5(z) = H2(z) ∪ {(x + k, y − 1); k ∈ {−1, 0, 1}},
U5(z) = H2(z) ∪ {(x + k, y + 1); k ∈ {−1, 0, 1}},
L5(z) = V2(z) ∪ {(x− 1, y + l); l ∈ {−1, 0, 1}},
R5(z) = V2(z) ∪ {(x + 1, y + l); l ∈ {−1, 0, 1}}.
Next, we put

A4(z) = H2(z) ∪ V2(z),
A8(z) = L5(z) ∪R5(z)(= D5(z) ∪ U5(z)), and
A′

4(z) = A8(z)−A4(z).

Thus, the number of points of each of the nine sets introduced above equals the
index of the symbol denoting this set. In the literature, the points of A4(z) and
A8(z) are said to be 4-adjacent and 8-adjacent to z, respectively. It is natural
to call the points of H2(z), V2(z), D5(z), U5(z), L5(z), R5(z) and A′

4(z) hor-
izontally 2-adjacent, vertically 2-adjacent, down 5-adjacent, up 5-adjacent, left
5-adjacent, right 5-adjacent and diagonally 4-adjacent to z, respectively. Clearly,
each of these adjacencies implies 8-adjacency.

The union of each of the above nine sets H2(z), V2(z)... with the singleton
{z} is denoted by the corresponding bared symbols, i.e., by H̄2(z), V̄2(z)....
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Recall [5] that the Khalimsky topology on Z2 is the Alexandroff topology t
given as follows:

For any z = (x, y) ∈ Z2,

t{z} =

⎧⎪⎪⎨⎪⎪⎩
Ā8(z) if x, y are even,
H̄2(z) if x is even and y is odd,
V̄2(z) if x is odd and y is even,
{z} otherwise.

The Khalimsky topology is connected and T0; a portion of its connectedness
graph is shown in Figure 1.
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Fig. 1. A portion of the connectedness graph of the Khalimsky topology

In the literature, the topology t dual to t is also called Khalimsky.
Clearly, (Z2, t) is a connected topological space - it is called the Khalimsky

plane. In [5], Khalimsky, Koppermann and Meyer proved the following digital
Jordan curve theorem for (Z2, t):

Theorem 1. In the Khalimsky plane, any simple closed curve having at least
four points is a Jordan curve.

We will need the following

Corollary 2. Let C be a closed curve in the Khalimsky plane such that every
point z ∈ Z2 with z = (2k, 2l + 1) or z = (2k + 1, 2l) for some k, l ∈ Z satisfies
the following two conditions:

(1) z ∈ C implies that H2(z) ⊆ C or V2(z) ⊆ C.
(2) If A ⊆ C ∩A4(z) is a three-element set, then z /∈ C and there are two points

in A that are the only points of C adjacent to the other point in A (in the
adjacency graph of the Khalimsky topology).

Then C is a Jordan curve in the Khalimsky plane.

Proof. The statement follows from Theorem 1 because it may easily be shown
that, in the Khalimsky plane, the closed curves satisfying conditions (1) and (2)
coincide with the simple closed curves having at least four points.

Note that simple closed curves in the Khalimsky plane can not turn, at any of
its points, at the acute angle π

4 and, in mixed points, they can not turn at all.
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3 Topology w

We denote by w the Alexandroff topology on Z2 given as follows:
For any point z = (x, y) ∈ Z2,

w{z} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ā8(z) if x = 4k, y = 4l, k, l ∈ Z,
Ā′

4(z) if x = 2 + 4k, y = 2 + 4l, k, l ∈ Z,
D̄5(z) if x = 2 + 4k, y = 1 + 4l, k, l ∈ Z,
Ū5(z) if x = 2 + 4k, y = 3 + 4l, k, l ∈ Z,
L̄5(z) if x = 1 + 4k, y = 2 + 4l, k, l ∈ Z,
R̄5(z) if x = 3 + 4k, y = 2 + 4l, k, l ∈ Z,
H̄2(z) if x = 2 + 4k, y = 4l, k, l ∈ Z,
V̄2(z) if x = 4k, y = 2 + 4l, k, l ∈ Z,
{z} otherwise.

Clearly, w is connected and T0. A portion of the connectedness graph of w is
shown in Figure 2.
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Fig. 2. A portion of the connectedness graph of w

The following result immediately follows from [15], Theorem 11:

Theorem 2. Every cycle in the graph a portion of which is demonstrated in
Figure 3 is a Jordan curve in (Z2, w).
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Fig. 3. A portion of a subgraph of the connectedness graph of w

We will need the following immediate consequence of [16], Theorem 10:
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Theorem 3. The Khalimsky topology is the quotient topology of w generated by
the surjection f : Z2 → Z2 given as follows:

f(x, y) =

⎧⎪⎪⎨⎪⎪⎩
(2k, 2l) if (x, y) = (4k, 4l), k, l ∈ Z,
(2k, 2l + 1) if (x, y) ∈ Ā4(4k, 4l + 2), k, l ∈ Z,
(2k + 1, 2l) if (x, y) ∈ Ā4(4k + 2, 4l), k, l ∈ Z,
(2k + 1, 2l + 1) if (x, y) ∈ Ā′

4(4k + 2, 4l + 2), k, l ∈ Z.

The surjection f is demonstrated in Figure 4 where the corresponding decom-
position of the topological space (Z2×Z2, w) is marked by the dashed lines. All
points of a class of the decomposition are mapped by f to the center point of
the class given by the bold coordinates.
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Fig. 4. Decomposition of (Z × Z, w) given by the surjection f

Consider the following three conditions for a cycle C in the topological space
(Z2, w):

(1) H̄2(z) �⊆ C whenever z = (4k + 2, 2l + 1) for some k, l ∈ Z and V̄2(z) �⊆ C
whenever z = (2k + 1, 4l + 2) for some k, l ∈ Z.

(2) If z ∈ Z2 is a point with z = (4k, 4l + 2) for some k, l ∈ Z, then
a) C ∩ A4(z) �= ∅ implies that either {(4k, 4l), (4k, 4l + 4)} ⊆ C or C ∩

V2(4k − 1, 4l + 2) �= ∅ �= C ∩ V2(4k + 1, 4l + 2) and
b) if {(4k, 4l), (4k, 4l+4)} ⊆ C and C∩(V2(4k−1, 4l+2)∪V2(4k+1, 4l+2)) =

A where A is a singleton, then V2(4k− 1, 4l + 2)∪{(4k− 2, 4l +2)} ⊆ C
if A ⊆ V2(4k − 1, 4l + 2) and V2(4k + 1, 4l + 2) ∪ {(4k + 2, 4l + 2)} ⊆ C
if A ⊆ V2(4k + 1, 4l + 2).
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(3) If z ∈ Z2 is a point with z = (4k + 2, 4l) for some k, l ∈ Z, then
a) C ∩ A4(z) �= ∅ implies that either {(4k, 4l), (4k + 4, 4l)} ⊆ C or C ∩

H2(4k + 2, 4l− 1) �= ∅ �= C ∩H2(4k + 2, 4l + 1) and
b) if {(4k, 4l), (4k+4, 4l)} ⊆ C and C ∩ (H2(4k+2, 4l−1)∪H2(4k+2, 4l+

1)) = A where A is a singleton, then H2(4k+2, 4l−1)∪{(4k+2, 4l−2)} ⊆
C if A ⊆ H2(4k+2, 4l−1) and H2(4k+2, 4l+1)∪{(4k+2, 4l+2)} ⊆ C
if A ⊆ H2(4k + 2, 4l + 1).

As the main result of this note, we get the following digital analogue of the
Jordan curve theorem which generalizes Theorem 2:

Theorem 4. In the topological space (Z2, w), every simple closed curve C with
at least eight points satisfying conditions (1)-(3) is a Jordan curve.

Proof. It may easily be seen that every simple closed curve C in (Z2, w) with at
least eight points satisfying conditions (1)-(3) has the property that its image
D = f(C), where f is the surjection from Theorem 3, is a cycle in the Khalimsky
plane fulfilling the assumptions of Corollary 2. Therefore, the condition (1) of
Corollary 1 is satisfied. It may be shown that condition (2) of Corollary 1 is
satisfied too, which proves the statement.

Remark 1. Clearly, there are Jordan curves in (Z2, w) that have not been deter-
mined in Theorem 4. These are, for example, the ”square” Jordan curves having
four points and also those having six points (one may easily identify these Jordan
curves among the closed ones in the connectedness graph of w).

Example 1. Every cycle in each of the six graphs portions of which are demon-
strated in Figure 5 is a Jordan curve in (Z2, w).

We have determined Jordan curves in the topological space (Z2, w) by using
Jordan curves in a quotient space of (Z2, w), namely the Khalimsky plane. Now,
conversely, the Jordan curves in (Z2, w) may be used to determine Jordan curves
in the topologies on Z2 that are quotient topologies of w. More precisely, we may
apply the following statement:

Corollary 3. Let (Z2, p) be an Alexandroff topological space and let q be the
quotient topology of p on Z2 generated by a surjection e : Z2 → Z2. Let e have
the property that e−1({y}) is connected for every point y ∈ Z2 and let D ⊆ Z2

be a simple closed curve in (Z2, q). Then D is a Jordan curve in (Z2, q) if the
following two conditions are satisfied:

(1) There is a Jordan curve C in (Z2, p) such that e(C) = D.
(2) Ci− e−1(D) is nonempty and connected in (Z2, p) for i = 1, 2 where C1 and

C2 are the two components of Z2 − C.

Proof. Let the conditions of the statement be fulfilled and put C′
1 = C1 −

e−1(D) and C′
2 = C2 − e−1(D). We clearly have e(C1) ∩ e(C2) = ∅ (because,

otherwise, there is a point y ∈ e(C1) ∩ e(C2), which means that e−1({z}) ∩
C1 �= ∅ �= e−1({z}) ∩ C2 - this is a contradiction as e−1({z}) is connected).
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Therefore, e(C′
1) ∩ e(C′

2) = ∅. This yields C′
i = e−1(e(C′

i)) for i = 1, 2, hence
e(C′

i) is connected for i = 1, 2 by Proposition 1. Suppose that Z2 − D is con-
nected. Then e−1(Z2 − D) = C′

1 ∪ C′
2 is connected by Proposition 1. This is

a contradiction because ∅ �= C′
i ⊆ Ci for i = 1, 2, C1 and C2 are disjoint and

C1 ∪ C2 is not connected. Therefore, Z2 −D = e(C′
1) ∪ e(C′

2) is not connected
and, consequently, e(C′

1) and e(C′
2) are components of Z

2 −D.

One of the quotient topologies of w is the Marcus-Wyse topology (cf. [10]), i.e.,
the connected Alexandroff T 1

2
-topology s on Z2 given as follows:

For any z = (x, y) ∈ Z2,

s{z} =
{

Ā4(z) if x + y is odd,
{z} otherwise.

For the definition of the map g : (Z2, w) → (Z2, s) with respect to which s is
the quotient topology of w see [16]. The Marcus-Wyse topology is quite simple -
its connectedness graph coincides with the 4-adjacency graph. We will therefore
discuss another quotient topology of w on Z2.

Let v be the Alexandroff topology on Z2 given as follows:
For any z = (x, y) ∈ Z2,

v{z} =

⎧⎪⎪⎨⎪⎪⎩
H̄2(z) if x is odd and y is even,
V̄2(z) if x is even and y is odd,
Ā′

4(z) if x, y are odd,
{z} if x, y are even.

Evidently, v is connected and T 1
2
. A portion of its connectedness graph is shown

in Figure 6.
Theorem 12 in [16] implies:

Theorem 5. v is the quotient topology of w generated by the surjection h : Z2 →
Z2 given as follows:

h(x, y) =

⎧⎪⎪⎨⎪⎪⎩
(2k, 2l) if (x, y) ∈ Ā8(4k, 4l), k, l ∈ Z,
(2k, 2l + 1) if (x, y) ∈ H̄2(4k, 4l + 2), k, l ∈ Z,
(2k + 1, 2l) if (x, y) ∈ V̄2(4k + 2, 4l), k, l ∈ Z,
(2k + 1, 2l + 1) if (x, y) = (4k + 2, 4l + 2), k, l ∈ Z.

The surjection h is demonstrated in Figure 7 where, similarly to Figure 3, the
corresponding decomposition of the topological space (Z2×Z

2, w) is marked by
the dashed lines. All points of a class of the decomposition are mapped by h to
the center point of the class given by the bold coordinates.

Proposition 2. Let D be a simple closed curve in (Z2, v) having more than
four points and such that every pair of different points z1, z2 ∈ D with both
coordinates even satisfies A4(z1) ∩ A4(z2) ⊆ D. Then D is a Jordan curve in
(Z2, v).
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Fig. 5. Six subgraphs of the connectedness graph of w
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Fig. 7. Decomposition of (Z × Z, w) given by the surjection h

Proof. By Theorem 5, v is the quotient topology of w generated by h. It imme-
diately follows from Theorem 4 and the definition of h that there exists a Jordan
curve C in (Z2, w) such that d(C) = D. We may even choose C to be a cycle in
the graph from Figure 3. Let C1, C2 be the two components of Z2 −C and put
C′

i = Ci−d−1(D) for i = 1, 2. Clearly, we have C′
i �= ∅ for i = 1, 2. Let (x, y) ∈ D

be a point and write d−1(x, y) briefly instead of d−1({(x, y)}). It is evident that
d−1(x, y) ⊆ C if and only if x = 4k + 2 and y = 4l + 2 for some k, l ∈ Z (then
d−1(x, y) is a singleton). Thus, let z = (x, y) ∈ D be a point with x �= 4k + 2
or y �= 4l + 2 for all k, l ∈ Z. Then, taking into account all cases of such points,
one may show that Ci − h−1(z) is connected fort i = 1, 2. Consequently, C′

i is
connected for i = 1, 2. Thus, D is a Jordan curve by Corollary 3.

4 Conclusion

It is well known that, in computer imagery, Jordan curves play an important role
because they represent boundaries of regions of digital images. It is therefore
useful to work with a connectedness structure on Z2 possessing certain rich
enough variety of Jordan curves. We have discussed one such structure, namely
the topology w. The results obtained show that the topology may be used as
a background structure on Z2 to solve problems of digital image processing,
especially those closely related to boundaries (image data compression, pattern
recognition, boundary detection and contour filling, etc.). It provides Jordan
curves that may turn, in some of its points, in the acute angle π

4 , which is an
advantage over the Khalimsky topology.
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Abstract. The sequence of maximal segments (i.e. the tangential cover)
along a digital boundary is an essential tool for analyzing the geometry
of two-dimensional digital shapes. The purpose of this paper is to de-
fine similar primitives for three-dimensional digital shapes, i.e. maximal
planes defined over their boundary. We provide for them an unambigu-
ous geometrical definition avoiding a simple greedy characterization as
previous approaches. We further develop a multiscale theory of maximal
planes. We show that these primitives are representative of the geometry
of the digital object at different scales, even in the presence of noise.

1 Introduction

Maximal segments [5,7] are the inextensible digital straight segments over the
boundary of digital shapes. They have proven to be an essential tool for analyzing
the geometry of 2D digital shapes, for instance for length and tangent estimation
[14,3], curvature estimation [7,9], multiresolution analysis [6], unsupervised noise
detection [10] or minimum length polygon computation. Furthermore, this theory
of maximal segments can be extended to take into account possible noise in the
data. The principle is simply to authorize thicker digital straight segments. This
approach was proposed by Debled-Rennesson et al. [4], where a user specifies a
maximal thickness in the segment decomposition.

Unfortunately, there is for now no equivalent theory for 3D or nD shapes, i.e.
the definition and computation of maximal planes. A natural approach would
be related to the convex hull, but it is not satisfactory for non convex shapes.
Polyhedrization methods could also be considered as good candidates for defin-
ing maximal planes, since they are piecewise linear reconstruction of the shape
boundary. Unfortunately, existing methods use greedy algorithms, whose result
is for instance dependent on the starting point. Several polyhedrization methods
[8,12] starts from a point and greedily aggregates surrounding points as long
as they form a digital planar set. Then, it chooses arbitrarily a new point and
repeat the process until all points have been visited. As the reader may check on
the freely available implementation of [16], these methods do not capture well

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 132–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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linear or smoothly curved parts. More elaborate methods ([1] and especially [15])
address partially the problem of distinguishing polyhedral parts from smoothed
parts. A user-given parameter and some ad hoc rules improve the previous poly-
hedrization algorithms. However, the obtained planes are again algorithmically
obtained, without geometric or analytic description.

There exists a lot of reconstruction algorithms from scattered data in the
image synthesis and computational geometry field. However, they do not take
into account the specific geometry of digital spaces. For instance, if the object
is the digital polyhedron, such algorithms cannot recognize digital planes as
Euclidean planes. A staircase effect or an over-smoothing is generally the result
of these algorithms.

The essential problem for defining interesting digital planes over a digital
surface is that they must be characteristic of the local shape geometry, i.e. they
should act as a local tangent plane. Now, no such problem exists in 2D, since
the greedy inextensible digital linear sets — the so-called maximal segments
— have been proven to be good tangent approximation [14]. However, in 3D,
most inextensible digital planar sets are not characteristics of the local tangent
geometry of the shape. For instance, any slice in the shape is planar, whatever
the chosen direction. We must therefore find a way to select the representative
planes within all these planar sets.

It is clear that the combinatorics of all planar sets of an object is too impor-
tant. A natural approach is to find the smallest subset of these primitives which
covers the digital boundary. But it is unlikely to find such an algorithm since
this problem has been shown to be NP-complete [17].

We propose a new approach to tackle this problem by introducing the concept
of maximal (hyper)planes at a given scale and the hierarchy of such primitives.
Its objective is to satisfy the following requirements:

1. Maximal planes should approach the notion of tangent plane, whether the
object under study is the digitization of a smooth shape with curvatures or
the digitization of polyhedral surfaces.

2. It should take into account the specific nature of digital data, for instance,
digital planes should be recognized in one piece.

3. Maximal planes must have a sound geometric definition. They are not only
defined as the result of an algorithm, nor depend on user-given parameter(s).

4. They should be defined at different scales, so as to analyze the shape geome-
try at progressive resolutions. In this way, geometric analysis of noisy shapes
can be addressed.

5. Ideally, this definition should encompass the classical 2D definition of max-
imal segments.

The paper is thus organized as follows. Maximal (hyper)planes are defined in
Section 2, and their hierarchy is also presented. Section 3 proposes algorithms to
compute them, a time complexity analysis is also carried out. Section 4 presents a
natural application of hierarchical maximal planes: the estimation of the normal
vector field of digital shapes. Results on known shapes show that maximal planes
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are characteristic of the shape geometry at different scales, whether the shape
is the digitization of a polyhedral or smoothly curved object. Furthermore, the
presence of noise is addressed by the multiscale hierarchy. Section 5 concludes
and lists several future research perspectives.

2 Definition of Maximal Hyperplanes

In this section, we define the hierarchy of maximal planes that covers any dis-
crete surface. We restrict our study to digital surfaces of Zn, but the framework
remains valid for finite subsets of Rn with connectivity relations like triangulated
surfaces.

2.1 Digital Surface and Tightiest Hyperplane

We recall that in the 3D cell complex approach of Kovalevsky (e.g., see [13,11]),
3-cells (open unit cubes), 2-cells (open unit squares), 1-cells (open unit seg-
ments) and 0-cells (closed points) are respectively called voxels, surfels, linels
and pointels.

The surface under study is always denoted by S and it corresponds to some
graph (V, E), where the set of vertices V is a subset of Zn and the set of edges
E is the connectivity relation between these vertices. Note that this framework
covers several definitions of digital surfaces, for instance:

– The set V may represent the border voxels of a digital object and E is
then the neighborhood graph of V , choosing for instance the (2n, 3n − 1)
adjacencies [Rosenfeld]

– The set V may represent the surfels centroid of a digital object boundary
and E is then any bel adjacency [Herman93,Udupa94]

– The set V may represent the pointels of a digital object boundary and E is
simply the grid 1-cells between them.

A subset X of Zn is called a piece of digital hyperplane if it corresponds to the
discretization of a piece of Euclidean hyperplane. As a Euclidean hyperplane is
characterized by its normal vector, the same applies for digital hyperplanes.

We usually define arithmetically digital hyperplanes as follows. The set of
points X in Zn corresponds to a piece of digital naive hyperplane of normal
vector N = (N1, . . . , Nn) ∈ Zn if any point p of X satisfies:

μ ≤ N · p < μ + ||N ||∞ (1)

where N is in its lowest terms. Let ek denote the axis such that ||N ||∞ = Nk,
then ek is called the major axis of the piece of digital hyperplane.

We can rewrite the preceeding double inequality as follows :

maxp∈X(N · p)−minp∈X(N · p)
||N ||∞ < 1 (2)
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We can geometrically interpret this definition of digital naive hyperplane. Con-
sider two Euclidean hyperplanes of normal vector N such that the set of points
X is contained between the two hyperplanes and such that at least one point of
X lies one each hyperplane. These two hyperplanes are called supporting hyper-
planes and (2) means that the Euclidean distance between these two hyperplanes
relative to the major axis is strictly less than 1. We notice that, by allowing a
larger distance between supporting hyperplanes, we can define thicker digital
hyperplanes.

Obviously, a given subset X corresponds to the discretization of several Eu-
clidean hyperplanes, resulting of a small variation of the normal vector. As a
consequence, we choose the following definition, which has the advantage of
defining without ambiguity one plane for a given subset X of Zn. Among all
arithmetic digital hyperplanes which contain X , the one with the smallest axis-
aligned thickness is called the tightiest hyperplane containing X , and is written
TH(X). If several axes induce a tightiest hyperplane, we choose the first one.
The normal vector N(X) to X is the normal vector to the tightiest hyperplane,
pointing in the same half-space as its axis. The thickness of X is the thickness
of TH(X), otherwise said the quantity t(X)

def
= maxp∈X(N(X)·p)−minp∈X(N(X)·p)

||N(X)||∞ .

2.2 Neighborhood, ν-Thick Disk and Extension

Let ‖·‖ be the Euclidean norm. The closed ball of radius r centered at some point
p is denoted by Bp(r). For a given vertex p of S, the set of vertices of S lying
in Bp(r) defines a subgraph of S. There may be several connected component in
this subgraph, but the only one containing p is called the r-neighborhood of p in
S, and is written Sp(r).

The r-neighborhood of p admits a tightiest plane. Its thickness is clearly an
increasing function of r, denoted by wp. Since we are considering a finite graph,
this function is piecewise constant on intervals [rk, rk+1[. Inversely, for a given
thickness ν, the radius function ρp(ν) is defined as follows: ρp(ν) = rk iff ν ∈
[wp(rk), wp(rk+1)[.

The subgraph Sp(ρp(ν)) is called the ν-thick disk around p, and is simply

denoted with Sν
p . The ν-tightiest plane around p is defined as THν

p
def
= TH(Sν

p ).

Its normal direction is written as
−→
N ν

p.
This plane is characteristic of the tangent space at p at a given scale ν. It

forms a strip in the space of axis-thickness no greater than ν, which contains p
and an isotropic connected neighborhood around it of radius ρp(ν). Having an
isotropic neighborhood is interesting when analyzing the digitization of shapes
with smooth boundaries. However, when the object under study contains planar
facets (e.g. polyhedra, manufactured objects), this neighborhood is not always
pertinent. It is therefore interesting to consider the extension to the largest
connected component including p and belonging to THν

p . The ν-thick extension
around p is defined as the subgraph of S:

Sν

p
def
= {The connected component of {S ∩ THν

p } that contains p}.
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Fig. 1. A ν-thick disk and its surrounding ball (left), its ν-thick extension (right)
(ν = 1)

Since Sν
p ⊂ THν

p , it is obvious that Sν
p ⊂ S

ν

p. The ν-thick extension thus contains
the ν-thick disk around any vertex.

Figure 1 illustrates an example of a 1-thick disk (in yellow) and its surrounding
ball (in green) on the surface of an ellipse (left). On the right, its 1-thick extension
is represented.

2.3 Maximal Disks and Hierarchy of Active Vertices

The preceding definitions may let us think that any point of a surface induces
a maximal disk and a maximal plane for a given scale. This is rather counter-
intuitive. We tend to think that the coarser is the scale the simpler is the object.
We would expect less maximal disks and extensions at coarser scales. We there-
fore introduce a mechanism to keep only the most significant disks and exten-
sions at each scale. Furthermore, this mechanism naturally induces a hierarchy
on these neighborhoods.

A ν-thick disk is maximal iff for any vertex q ∈ S, q �= p, the ball Bp(ρp(ν))
is not included in the ball Bq(ρq(ν)) or p �∈ THν

q . The first condition guarantees
that Sν

p ⊂ Sν
q whenever p and q lie in the same component of S ∩ Bp(ρq(ν)).

The second condition approximates this connection condition efficiently.
We may now define a hierarchy of active vertices for any sequence of increasing

thicknesses (νi)i=0,...,L, with ν0 = −1, ν1 = 0, νL = t(S). For the sake of
convenience, we admit that the first thickness of the sequence is negative. The
following process defines a hierarchy (Fνi)i=−1,...,L:

Fνi =
{ {set of vertices of S} if i = 0,
{p ∈ Fνi−1 : Sνi

p is maximal} if i ≥ 1.
(3)

Furthermore, if the sequence (νi) is refined uniformly, then the family of sets
converges uniformly toward a piecewise constant family of sets (Fν)ν∈R, with
the convenient convention that ∀ν < 0,Fν = S. The sequence of values ν,
such that Fν is only right-continuous, represents the stable scales for S and
are denoted as a sequence (μi)i=0,...,L′ . By construction, this hierarchy of active
vertices at progressive scales only depends on the input surface S (vertices and
edges).



Maximal Planes and Multiscale Tangential Cover 137

By definition of the hierarchy (Fνi)i=−1,...,L, it is obvious that S = F<0 ⊃
F0 ⊃ . . . ⊃ Fμi ⊃ Fμi+1 ⊃ . . . ⊃ FμL′ . As a consequence, we obtain the
following property:

Property 1. ∀μ, μ′ ∈ R, μ < μ′ ⇒ Fμ ⊇ Fμ′
.

Moreover, we notice that at a given scale ν each vertex q ∈ S belongs to at least
one ν-thick disk. This leads to the next property :

Property 2. ∀ν ∈ R,
⋃

p∈Fν Sν
p = S and ∪p∈FνSν

p = S.

Definition 1. The tangential cover Tν at scale ν of S is the set of subgraphs

T
ν def

= {Sν

p : p ∈ Fν}.

Each element of T
ν is called a ν-maximal plane of S. The set of ν-maximal

planes containing a vertex p is called the ν-linear pencil of p.

Figure 2 shows an example of maximal 1-thick disk (yellow) containing two
different non maximal 1-thick disk.

Fig. 2. 1-thick maximal disk in yellow (left), 1-thick disks included in the yellow one
(right)

Figure 3 shows an example of two maximal ν-thick disks in red and yellow
for 1 ≤ ν ≤ 3 (from (a) to (c)) on a noisy surface. The red one is not maximal
anymore when ν = 4 because it is included in the yellow one, as a consequence,
its center is not an active vertex anymore at scale 4.

3 Computation and Time Complexity

In this section, we present our algorithm for the computation of the hierarchy of
active vertices. This hierarchy leads to the computation of the tangential cover
of the surface at different scales.
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(a) ν = 1 (b) ν = 2 (c) ν = 3 (d) ν = 4

Fig. 3. Two distinct maximal ν-thick disks for 1 ≤ ν ≤ 3, inclusion of the red 4-thick
disk in the maximal yellow one

3.1 Algorithm Design

Our method computes the hierarchy of active vertices Fνi

i=−1,...,K for a given
sequence of increasing thicknesses (νi)i=0,...,K , with ν0 = −1, ν1 = 0, . . ., relative
to a given surface S. It is summarized in Algorithm 1 and we return to the main
steps in the following.

Algorithm 1. Hierarchy of active vertices algorithm
INPUT : S , (νi)i=0,...,K1

OUTPUT : Fνi
i=−1,...,K2

Q ← NULL3

F−1 ← {set of vertices of S}4

FOR EACH increasing thickness νi, 0 ≤ i ≤ K5

L ← NULL6

FOR EACH vertex p of Fνi−17

Q.push(Sνi
p );8

WHILE(!empty(Q))9

A ← Q.pop()10

IF(∀B ∈ L, !(A ⊂ B))11

L.push(A)12

Fνi ← Fνi ∪ A.center()13

By convention, F−1 corresponds to the set of vertices of S. For each thickness
νi, 0 ≤ i ≤ K, the set Fνi is induced by the set Fνi−1 and the main steps of our
approach are the following :

1. Computing the νi-thick disk around p, for each vertex p belonging to Fνi−1 .
The νi-thick disks are stored in a priority queue (denoted by Q) ordered
relative to the radius of the disks, the largest disk lying on the top of the
priority queue.

2. Extracting of the priority queue the maximal νi-thick disks and adding their
vertex center to Fνi

The first step consists in computing the νi-thick disk Sνi
p around p, for each

vertex p belonging to Fνi−1 . For this, we use in an incremental way a digi-
tal plane recognition algorithm such as the COBA algorithm introduced in [2].
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The method adds neighboors of p in a specific order as long as they belong to
the same νi-thick plane. Let us call rk-ring of a point p the subgraph defined
by Sp(rk) \ Sp(rk−1). It adds the vertices of the rk-ring of p, for each increas-
ing k > 1. If a vertex of the rk-ring cannot be added (the set of vertices will
not correspond to a νi-thick disk anymore), all the vertices of rk-ring of p are
removed from the subgraph and the algorithm stops. We illustrate the construc-
tion of νi-thick disk around p, denoted by Sνi

p , in Algorithm 2. We use a priority
queue, denoted by Q, which contains vertices ordered relative to their Euclidian
distance to the initial point p. The closest vertex lies on the top of the queue.

Algorithm 2. The ν-thick disk algorithm
INPUT : S , ν, p1

OUTPUT : Sν
p2

DP ← TRUE Sν
p ← ∅ Q ← NULL3

Q.push(p)4

WHILE(!empty(Q) AND DP )5

q ← Q.pop()6

IF(q /∈ Sν
p )7

Sν
p ← Sν

p ∪ q8

IF(isDigitalPlane(Sν
p ,ν))9

Q.push(neighboors of q)10

ELSE11

r ← q.EuclidianDistanceTo(p)12

Sν
p ← Sν

p \ r-ring(p)13

DP ← FALSE14

The second step consists in extracting the maximal νi-thick disks and adding
their vertex center to Fνi . At the end of the first step, νi-thick disks are stored in a
priority queue ordered relative to their radius. We remove each disk of the priority
queue, beginning with the disk on the top, and we wonder whether it is maximal
or not. If it is maximal, it is added to a queue called L and its center is added to
Fνi . Obviously, a disk cannot be included in one of smaller radius. We also notice
that, because two disks cannot have the same center, a disk cannot be included in
one of the same radius. The first extracted disk is obviously maximal and so it is
added to the queue L. By construction of the priority queue, for each extracted
disk d, we only have to test the inclusion of d in the disks of the queue L.

3.2 Time Complexity Analysis

We propose to analyse the time complexity of the hierarchy of active vertices
algorithm (Algorithm 1).

Let S denote the surface under study, let us denote by D and m its diameter
and the number of vertices of its associated subgraph respectively. According to
Property 1, for all i such that 0 ≤ i ≤ k, Fνi is included in or equal to Fνi−1 .
As a consequence, the number of vertices of each Fνi is bounded by m, for all i
such that −1 ≤ i ≤ k. As the time complexity of the computation of each Fνi
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only depends on the cardinality of its ascending set and of the diameter of the
surface, we can study separately the time complexity of the computation of a
set Fνi whatever νi.

For a given thickness νi, the first step consists in computing the maximal
νi-thick disks centered on each vertex of the set Fνi−1 and adding it to priority
queue. To compute each νi-thick disk, the COBA algorithm is used to incremen-
tally construct a maximal isotropic piece of digital plane of thickness νi. As in
the non-incremental case, the COBA algorithm runs in O(m log(D)) time (see
[2]). The pushing operation on a prority queue runs in O(log(l)) time where l
denotes the size of the priority queue. As the size of our priority queue is obvi-
ously bounded by m, this step runs in O(log(m)) time. Because O(log(m)) can
be neglected relative to O(m log(D)), the first step runs in O(m2 log(D)) time.

The second step consists in extracting the maximal νi-thick disks. For each
νi-thick disk of the priority queue, the method tests whether it is included in
a larger one. As the number of larger νi-thick disks is bounded by m for each
disk, deciding whether it is maximal or not runs in O(m) time. As a consequence,
checking the maximality of every disks of the priority queue runs in O(m2) time.

To conclude, as O(m2) can be neglected relative to O(m2 log(D)), the com-
putation of the set Fνi for a given thickness νi runs in O(m2 log(D)) time in the
worst case. The computation of all the hierarchy of active vertices for (νi)i=0,...,L

runs in O(Lm2 log(D)) in the worst case.

4 Application

We proposed in Section 3 an algorithm to compute the hierarchy of active vertices
at different scales. Moreover, we introduced the definition of the tangential cover
of a surface S at a given scale ν (see Definition 1), induced by the set of active
vertices at scale ν.

Knowing the tangential cover Tν of a surface S at a scale ν naturally leads
to the normal estimation of the surface at each point at this scale. Indeed, each
ν-maximal plane of Tν represents a tangent plane for each covered vertex. To
each vertex v of the surface, we associate the average of the normal vectors of
each ν-maximal plane of its ν-linear pencil.

For a regular discrete surface, we expect the normal estimation to be well
representative at scale 1. Conversely, if the discrete surface is noisy, the normal
estimation could be wrong for some vertices representing noise at scale 1. Nev-
ertheless, we expect that at coarser scales our normal estimation gets improved,
until we reach the stable scale. This stable scale represents the global noise level
added on the surface.

We implement our method in C++ using the ImaGene library. We generate
three-dimensional regular discrete shapes, we choose to add noise or not, we com-
pute its tangential cover at a given scale and we estimate a normal vector at each
surface voxel. In order to visualise the result, we display the three-dimensionnal
surface using Inventor by associating to each surface voxel its estimated normal
vector. As a consequence, when the surface is lighted, we can immediatly judge
whether the normal estimation is consistent.
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Figure 4 shows the result of our normal estimation at scale 1 on the regular
surface of a cube, of a sphere and of an ellipse. Figure 5 and figure 6 show the
result of our normal estimation on noisy surfaces of a cube and of an ellipse
respectively, at scales 1, 2 ,3 and 4. We notice that the normal estimation gets
more and more consistent until stability at scale 4.

(a) (b) (c)

Fig. 4. Normal estimation at scale 1 of regular discrete surfaces

(a) ν = 1 (b) ν = 2 (c) ν = 3 (d) ν = 4

Fig. 5. Normal estimation at scale 1, 2, 3 and 4 of a noisy discrete surface : a cube

(a) ν = 1 (b) ν = 2 (c) ν = 3 (d) ν = 4

Fig. 6. Normal estimation at scale 1, 2, 3 and 4 of a noisy discrete surface : an ellipse
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Finally, we show the result of our normal estimation on realistic data repre-
senting an old car (data available on the TC18 website1). Figure 7 shows the
original object and the result of our normal estimation at scale 1. Figure 8 shows
the original object with additional noise and the result of our normal estimation
on this noisified object at scale 1, 2 and 3.

(a) (b)

Fig. 7. Discrete object representing a Dodge (left), normal estimation at scale 1 (right)

(a) original (b) ν = 1

(c) ν = 2 (d) ν = 3

Fig. 8. Original object and normal estimation at scale 1, 2 and 3 of a noisy discrete
object : a dodge

5 Conclusion and Perspectives

We propose in this paper a new definition for the tangential cover of a three-
dimensional digital shape based on the computation of maximal planes over its
surface. Moreover, we provide an algorithm to compute the hierarchy of active
vertices at different scales, which induces the tangential cover of the shape at each
scale. We highlight the fact that maximal planes are locally representative of the
shape and so that they can be used to estimate the normal vector at each point
on the surface. The study of maximal planes over a discrete surface could also
1 http://tc18.liris.cnrs.fr
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lead to estimation of local or global noise level on a three-dimensional surface.
Moreover, we think that, as they provide an estimation of the normal vector at
each point, they could also be used to extract other geometric characteristics
as the curvature. We could work on them to discriminate curve parts from flat
parts on the surface or to divide up the surface in convex and in concave parts.
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Abstract. We consider a new problem of recognition of digital prim-
itives – digital hyperplanes or level layers – arising in a new practical
application of surface segmentation. Such problems are usually driven
by a maximal thickness criterion which is not satisfactory for applica-
tions as soon as the dimension of the primitives becomes greater than 1.
It is a good reason to introduce a more flexible approach where the set to
recognize (whose points are called inliers) is given along with two other
sets of outliers that should each remain on his own side of the primitive.
We reduce this problem of recognition with outliers to the separation
of three point clouds of R

d by two parallel hyperplanes and we provide
a geometrical algorithm derived from the well-known GJK algorithm to
solve the problem.

Keywords: Digital Hyperplane Recognition, Outliers, Linear Program-
ming, GJK.

1 Problem Statement

1.1 Why a New Problem of Recognition?

The starting point of this paper is an application of digital shape decomposition
into algebraic primitives. Since 15 years, many researches have provided a large
literature about the decomposition of two- or three-dimensional digital shapes –
a subset of Z2 or Z3 – in digital straight segments or pieces of planes [6,12,11].
There is however now a large interest for working with digital algebraic primi-
tives of degree greater than 1, such as digital circles, parabola, conics and more
generally with digital algebraic manifolds of any degree. Although the degree be-
comes greater than 1, the problem remains linear after the construction of a new
geometrical instance based on quadratic or higher degree structures. Hence, the
recognition of such nonlinear objects can for instance be encoded as a problem of
digital hyperplane recognition. Many efficient algorithms have been proposed to
solve this classical problem of Digital Geometry, from the linear time algorithm
to recognize digital straight segments [6], to Computational Geometry [7,4] or
Linear Programming approaches [3,1,2]. Some variations around these recogni-
tion problems have also been investigated more recently, for instance with the
problem of optimization of the best consensus lines and planes [13].
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This reduction from algebraic manifolds fitting to digital hyperplanes recog-
nition presents nevertheless an important drawback. Let us explain where is the
challenge by considering for instance the digital conic recognition problem.

Let S be a 8-connected curve in Z2 and C denote a conic. We consider a
family of increasing conic strips Cδ around C depending on a maximal distance
δ ≥ 0 (C0 is exactly C). Whatever the exact definition of Cδ (several choices are
possible), the recognition problem of a digital conic is given as follows (Fig. 1):

Problem 1. Input: S, δmax.
Output: Existence of a conic C such that S is a subset of Cδmax .

Fig. 1. S is a 8-connected curve (on the left). The recognition problem consists in
finding a conic C such that S is in Cδ (a satisfying strip Cδ is drawn in the middle).
There is however no guarantee – as there exists with linear objects – that the neighbors
on both sides of the curve do not belong to Cδ. The problem with this approach, if we
consider now the digitization of C as the trace of Cδ on Z

2, is that there are extra-points
(in red) which can be strongly undesired.

Even if we admit that we have an algorithm to compute a solution, at least
one question remains: How should δmax be chosen? This choice is easy in the
framework of linear structures or circles, because for some values of δmax, we
have arithmetical properties that lead to choose them, but it is no more true in
the framework of higher degree structures. Hence, the question about the choice
of δmax cannot be easily derived from the properties of the lattice points in Cδ.

We nevertheless claim that by choosing δmax first and searching C in a second
time is not necessarily the best strategy for applications. There is an important
problem of reversibility because the conic strip Cδmax can contain many other
points than the ones of S. In some regions far from the points of S, it is not a
problem: we can consider that these points of (Cδmax \S)∩Z2 are the extension of
S in these regions. It becomes a problem if (Cδmax \S)∩Z

2 contains neighbors of
S that cannot be considered as the extension of the digital curve. A good choice
of δmax avoids this problem in the case of linear structures but it is no more true
in the general framework. The conic Cδmax can have bad configurations. Hence,
there is a risk that its trace on Z2 adds undesired neighbors to S (Fig. 1).
Having these undesired neighbors in the digitization of the conic C and loosing
the property of local reversibility is a bad point. It is however not unavoidable,
but we have to consider the recognition problem from another point of view.
We think that instead of choosing δmax according to a criterion that remains to
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determine, it would be better to provide directly in the input the points of the
curve of S and the points that we do not want to be added in a digitization of
S, namely a set of points called inliers and another set of points called outliers
(Fig. 2). It leads to the following formulation of the recognition problem:

Problem 2. Input: Sin and Sout (the undesired neighbors).
Output: Existence of a conic C and a positive real δ such that Sin

is a subset of Cδ and such that Sout ∩ Cδ is empty.

Fig. 2. Sin is a 8-connected curve drawn on the left. Its points are called inliers. We
can choose or compute automatically a second set Sout of points called outliers that
should not be added in a digitization of Sin. The inliers and outliers are shown in the
middle. In this framework, the recognition problem is to find a conic strip Cδ that
contains all the inliers and no outlier. The value δ is not given a priori. It is replaced
by the outliers in the input. A solution is drawn on the right.

The value δ is not fixed a priori. The undesired neighbors are given in the input
instead and we think that it is more suitable for the applications. Procedures
to choose them automatically are easy to obtain, for example by choosing as
undesired neighbors all the points of the complement of S (i.e. Z2 \ S) which
have at least two 8-neighbors in S.
This approach has been used for instance in [5], in the framework of digital arc
recognition, and we suggest to generalize it in this paper.

1.2 Exact Formulation

Now that we have precised the kind of the recognition problems we consider –
with inliers, outliers and not with a fixed maximal thickness – it remains to set
an important parameter of the problem: How do we define the continuous strip
Lδ around a continuous curve or surface L of given equation f(x) = 0?
– Mathematical morphology suggests to define Lδ as the Minkowski sum of L
with a structuring element which is usually a ball of radius δ or δ

2 for a given norm
(||.||∞, ||.||2 or ||.||1). But in this framework, even with degree 2, the Problem 1
of recognition presents combinatorial difficulties which are not yet solved and
the difficulties will of course increase in 3D and with degrees greater than 2. The
introduction of outliers instead of δmax does not simplify the question.
– A second option is to define Lδ by a double-inequality − δ

2 ≤ f(x) ≤ δ
2 .

Such strips, between two level sets of equations f(x) = − δ
2 and f(x) = δ

2 , are
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called Level Layers and Digital Level Layers [8] (DLL for short) if we consider
lattice sets. In the framework of DLL, Problem 1 can be easily solved by Linear
Programming or Computational Geometry. But what about Problem 2? Let us
rewrite it in terms of DLL characteristics:

Problem 3. Input: Two subsets Sin and Sout of Zd, a linear space of functions
F generated by n functions f1, f2,..., fn from Zd to R.

Output: Existence of a strip Lδ of double inequality
− δ

2 ≤ f(x) ≤ δ
2 such that Sin ⊂ Lδ, the intersection Lδ ∩ Sout is

empty, the function f is in F and δ is a positive real.

It follows that, given a solution Lδ, some outliers are on one side, i.e. f(x) < − δ
2 ,

while other outliers are on the other side, i.e. δ
2 < f(x). There are two things

that we can notice:
– In practice the partition of the outliers into two sets on both sides of Lδ is
usually easy to obtain before the resolution of Problem 3.
– Even with a linear space of functions F which are just affine combination of
the coordinates, Problem 3 remains difficult. The missing information to make
it easier, from a computational point of view, is the partition of the outliers
according to the side they are from the strip Lδ. Hence, we have an information
which is easy to obtain in practice and which would be of much importance
to reduce the computational complexity of our problem. It leads to consider a
variant of Problem 3 where this missing information is added in the input.

Problem 4. Input: A first subset Sin ⊂ Zd of inliers and two subsets Sdown,
Sup ⊂ Zd of outliers, a linear space of function F generated by n
functions f1, f2,..., fn from Zd to R.

Output: Existence of a strip Lδ of double inequality
− δ

2 ≤ f(x) ≤ δ
2 such that Sin ⊂ Lδ, with f(x) < − δ

2 for all
outliers of Sdown and δ

2 < f(x) for all outliers of Sup, where the
function f is in F and δ is a positive real.

The purpose of the paper is to provide an efficient method to solve Problem 4.
This method is a variant of the well-known GJK algorithm used in order to
compute the distance between the convex hulls of two point clouds in Rd [9].

The next section is devoted to the reduction of the general case of Problem 4
with arbitrary functions fi to a problem of affine Computational Geometry. In
Section 3, we present our variant of GJK, while in Section 4 the experimental
results and the potential applications of such a technique are presented.

2 From Arbitrary Functions to Affine Separation

2.1 Computation by Linear Programming

Let us start with the investigation of the properties of Problem 4. There are two
unknowns: the real value δ and the function f in the finitely generated space F .
Let us denote by ai its coefficients: f =

∑n
i=1 aifi. Hence, the problem is to find

the n real coefficients ai and δ verifying:
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(i)
∑n

i=1 aifi(x) < − δ
2 for all outliers of Sdown,

(ii) − δ
2 ≤

∑n
i=1 aifi(x) ≤ δ

2 for all inliers, i.e. all the points of Sin,
(iii) δ

2 <
∑n

i=1 aifi(x) for all outliers of Sup.

All these constraints are linear in the unknowns ai and δ. It follows that Prob-
lem 4 can be easily solved by linear programming. We can even notice that the
problem is homogeneous: if (δ, (ai)1≤i≤n) is a solution, then for any positive real
λ, λ(δ, (ai)1≤i≤n) is also a solution. Hence, the first idea, which is to choose
the minimization of δ as objective function, is not interesting. Anyway, Linear
Programing allows us to solve the problem. If we assume that the dimension n
of F is fixed, Megiddo algorithm even provides a linear worst case complexity
in O(|Sin| + |Sdown| + |Sup|) where |Sin| + |Sdown| + |Sup| is the sum of the
cardinalities of the input sets [10].

2.2 Rewriting the Problem in Terms of Computational Geometry

We assume now that one of the functions fi is a constant, say, without loss of
generality, fn = −1. It follows that the equation of the level set f(x) = 0 (where
the constant term is hidden in f) can be rewritten

∑n−1
i=1 aifi(x) = an. It means

that an is just playing the role of the constant. This assumption is completely
consistent with the practice: level sets are of the form g(x) = cste with g in the
linear space G. This equation can be rewritten f(x) = 0 with f in F only if F is
in the sum of the constants and G. It is in particular the case for the algebraic
curves and surfaces: there is of course a constant in the generator.

We introduce now the notations F, h and h′.

– Let F be the function from F : Zd −→ Rn−1 defined by F(x) = (fi(x))1≤i≤n−1.
– Let h and h′ be h = an − δ

2 and h′ = an + δ
2 . These two new variables

replace in fact δ and an. It follows that the linear constraints (i), (ii) and
(iii) of Problem 4 can simply be rewritten respectively

∑n−1
i=1 aifi(x) < h

for all outliers x ∈ Sdown, h ≤ ∑n−1
i=1 aifi(x) ≤ h′ for all the inliers and

h′ <
∑n−1

i=1 aifi(x) for all outliers of Sup.
– For convenience, we denote a the vector composed of the n − 1 coefficients

ai, i.e. a = (ai)1≤i≤n−1.

We can eventually replace the sum
∑n−1

i=1 aifi(x) in the inequalities (i), (ii) and
(iii) by the dot product a.F(x). It provides a simplified expression of Problem 4:
Find a, h and h′ verifying a.y < h for all y ∈ F(Sdown), h ≤ a.y < h′ for all
y ∈ F(Sin) and h′ < a.y for all y ∈ F(Sup).

We can notice that if we have a solution in the opposite direction (a.y < h for
all y ∈ F(Sup) and h′ < a.y for all y ∈ F(Sup)) we just have to take −a as the
new a, −h as the new h′ and −h′ as the new h to reorder the inequality in the
requested direction. Hence, the sense of the inequalities is of no importance in
the problem. We can notice at last that h ≤ a.y < h′ is the equation of an affine
strip of Rn−1 while a.y < h and h′ < a.y characterize the two half-spaces on
both sides of the strip. Thus, Problem 4 has been rewritten into a geometrical
problem in R

d−1:



DLL Recognition with Forbidden Points 149

Problem 5. Input: A first subset Qin ⊂ Rn−1 of inliers and two subsets Qdown,
Qup ⊂ Rn−1 of outliers.
Output: Existence of an affine strip La,h,h′ of double inequality
h ≤ a.x ≤ h′ with Qin in La,h,h′, Qdown on one side and Qup on
the other side.

Under the assumption that fn = −1, we have reduced Problem 4 to Problem 5
by taking Qin = F(Sin), Qdown = F(Sdown) and Qup = F(Sup) as input sets.
The solutions a, h and h′ of Problem 5 provide the solutions of Problem 4 with
a = (ai)1≤i≤n−1 for the indices i from 1 to n− 1, an = h+h′

2 and δ = h′ − h.
The geometrical formulation of the Problem 5 is easy to understand. The

input provides three sets and the problem is to separate them by two parallel
hyperplanes (Qin in the middle, Qdown and Qup on both sides). It is a problem
of affine separation of three sets while the classical separation problem usually
arises in Computational Geometry with only two sets.

3 The GJK Algorithm and Our Variant

The GJK distance algorithm [9] is an iterative method for computing the minimal
distance between the convex hulls of two point clouds in arbitrary dimension. In
3D, this technique is used to detect collisions between 3D objects in real-time
applications such as video games. This algorithm can be used in order to separate
two point clouds S1 and S2 because the closest pair of points in their convex
hulls – the first point is in ConvexHull(S1), the other in ConvexHull(S2) –
corresponds exactly, by duality, to the largest affine strip which separates S1

from S2. If the distance is null, then the two point clouds cannot be separated.
The aim of this section is to explain our variant of GJK which allows us to sep-

arate, if it is possible, three sets Sin, Sup and Sdown by two parallel hyperplanes.
It requires however to understand how the classical version of the algorithm
works. We refer of course to the initial paper [9] for complete explanations, but
we provide in the next subsection the main ideas.

3.1 The Classical GJK Algorithm

Let us consider two point clouds S1 and S2 of R
d. We can denote by x1 ∈

ConvexHull(S1) and x2 ∈ ConvexHull(S2) the pair of points (or in degenerated
cases, one of the pairs) that provide the minimal distance between the convex
hulls of S1 and S2. The first idea of GJK is to consider the difference body
obtained by taking the convex hull of S = S2−S1 = {y2−y1 | y1 ∈ S1, y2 ∈ S2}.
By construction, the difference x2 − x1 is the closest point to the origin in the
convex hull ConvexHull(S2 − S1).

It means that we can reduce in some way the initial problem to the particular
case where one set is S and the other is reduced to the origin. In this framework,
the idea is to work at each step with a current simplex CS whose vertices belong
to S and whose dimension can increase and decrease all along the algorithm. In
fact we start the algorithm with an initial simplex of dimension 0 (a point) and
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Fig. 3. On the left, the initial set S and the origin O. We want to compute the distance
of ConvexHull(S) to the origin. In the first column, we have a current simplex CS
whose vertices belong to S, and its closest point to the origin a. In the second column,
we compute the extreme point b of S according to the direction a. In the third column,
we add the vertex b to the simplex CS which yields the simplex CS′. In the fourth
column, we compute the new point a of the simplex CS′ which is the closest to the
origin. We go one row down (and to the left) by taking the face of CS′ which contains
a as the new current simplex CS. On the bottom right, we reach the Case 1 which
ends the computation and provides the closest point a to the origin.

the algorithm guarantees that the dimension is always less than or equal to d.
Let us denote a the closest point of CS to the origin. Two cases can arise:

– Case 1: All the points of S (and thus all the points of the convex hull of S)
verify a.x ≥ a.a. It follows that a is the closest point to the origin. It ends
the computation.

– Case 2: The minimum of a.x among all the points x in S is strictly less
than a.a. We introduce a point b of S providing a minimum. We extend the
current simplex CS into CS′ by adding the vertex b. By construction, the
distance between CS′ and the origin is strictly less than the distance with
CS. We compute the new closest point to the origin in CS′ and update a.
There are two sub-cases:

– Case 2.1: The point a is in the interior of CS′: it is only possible if CS′

contains the origin, which means that we are in a non-separable case
(convex hulls overlap).

– Case 2.2: Otherwise a is on a face of CS′. It follows that there are
unnecessary vertices in CS′. We remove them by taking as the new
current simplex CS the face of smallest degree of CS′ containing a. And
we start again until the case 1 or 2.1 occurs (Fig. 3).

We should notice that the computation of b is done directly on S1 and S2 – in
linear time wrt. the cardinality of these two sets. Last, we have the guarantee
that there is no loop because the norm of a decreases at each step.
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3.2 Our GJK Variant

We have now three input sets Sdown, Sin and Sout. It is possible to separate them
by two parallel hyperplanes if and only if it is possible to separate the origin from
the union (Sup − Sin) ∪ (Sin − Sdown). It means that instead of working with
S = S2 − S1 as in the classical version of the algorithm, we just have to work
with the set S = (Sup − Sin) ∪ (Sin − Sdown).

Algorithm 1. GJK’nD
Data: Three point sets Sin, Sup and Sdown in Z

d.
Result: The existence of an affine strip La,h,h′ that separates Sin from Sup and

Sdown.
1 begin

// Initialization

2 Pin ←pickPoint(Sin)

3 Pup ←pickPoint(Sup)

4 CS ← Pup − Pin

5 a ← Pup − Pin

// Main loop

6 do
7 b ←supportPoint(a, Sin, Sup, Sdown)

8 if a.b = a.pickPoint(CS) then
9 break

10 CS′ ←addVertex(b, CS)
11 a ←closestPointToOrigin(CS′)
12 CS ←removeVertices(CS′ , a)

13 if dimension(CS) = d then
14 return false
15 else

// h ← −v.supportPoint(−v, Sin),

// h′ ← v.supportPoint(v , Sin)

16 return true

The algorithm 1 summarizes the main part of our GJK variant. The steps are
actually very similar to the classical GJK algorithm except that some functions
have been adapted to deal with the third point set. Let us detail these different
steps.

First we initialize the closest simplex to the origin (CS) with an arbitrary
point in Sup−Sin (we could also choose a point in Sin−Sdown, it does not really
matter). We then start the main loop to incrementally converge toward the real
closest simplex to the origin.

The function addVertex(b,CS) add the vertex b to the simplex CS. The
function closestPointToOrigin(CS′) returns the closest point a to the origin
in the simplex CS′ while function removeVertices(CS′,a) returns the minimal
face of the simplex CS′ containing the point a. These two functions are of course
deeply related. For that purpose, we use a recursive decomposition of the simplex
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CS′ into its faces. Let us suppose that the simplex K of dimension k is a face
of CS′. We compute the barycentric coordinates of the orthogonal projection of
the origin wrt. this k-simplex. If all the barycentric coordinates λi(1≤i≤k+1) are
strictly positives, it means the k-simplex is the closest to the origin. If it is not
the case, we go one step further in the recursion and check all its k− 1-simplices
that are associated to a negative λi coordinate1. We can note that this technique
is however not optimal because a k-simplex in Rd belongs to d − k simplices of
higher degree so it might be checked several times. It would be worth making
this an iterative procedure. But the recursive procedure has been coded and we
give some results in the next section.

The most time consuming function for large instances is supportPoint. It
computes at each step the “furthest” point b of S wrt. the direction a. It is the
main difference with the classical GJK algorithm as we have to deal with three
sets. To do so, we do not need to explicitly compute the set S. We can indeed
notice that for the set Sup−Sin the point b that maximizes the value a.b is given
by P = Mup−min where Mup and min are the points that respectively maximize
the value a.x for all x ∈ Sup and minimize the value a.x for all x ∈ Sin. The
same holds for Sin − Sdown with Q = Min −mdown. To have the desired b we
just have to keep between P and Q the point associated to the min(a.P, a.Q).
The computations are thus linear wrt. the cardinality of Sin, Sup and Sdown.

The next step is to check the validity of b. If a.b = a.pickPoint(CS) it means
CS was the closest simplex to the origin so we can stop the algorithm.

4 Experimental Results and Potential Applications

4.1 Experimental Results

To show the effectiveness of our approach, the GJK’nD algorithm has been coded
and tested over different point sets lying in various dimensions. The input of the
algorithm is three point sets in Zd. We have thus studied the behaviour of the
algorithm according to k, the number of points of the sets, and the dimension
d. The experiments have been carried out on both separable and non separa-
ble point sets. To generate those point sets in dimension d, a normal vector
n is picked out randomly and the characteristics of a thick digital hyperplane
(between 10‖n‖1 and 100‖n‖1) are computed. The lower and upper bounds are
chosen such that h = − δ

2 and h′ = δ
2 , where δ represent the thickness of the

hyperplane. The set Sin is generated by randomly selecting a subset of k points
from the previous digital hyperplane. Sup (resp. Sdown) is generated the same
way, by using the same digital hyperplane translated along the (resp. the op-
posite of the) main direction of n (by more than δ to prevent the convex hulls
of the sets to overlap, or less than δ to give a chance for these convex hulls to
overlap – in this last case the convex hulls might not overlap due to the fact that
the points are picked out randomly, but we do not keep the sets if it happens).
An example of two randomly generated sets in 2D is shown in Fig. 4.
1 If we denote Ki the vertices of K, a k−1-simplex that is associated to a λi coordinate

is a k − 1-simplex of K that does not contain the vertex Ki.



DLL Recognition with Forbidden Points 153

-30

-20

-10

 0

 10

 20

 30

-50 -40 -30 -20 -10  0  10  20  30  40  50  60

Y

X

Set in
Set up

Set down

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

-30 -20 -10  0  10  20  30

Y

X

Set in
Set up

Set down

Fig. 4. An example of two typical inputs used to do the experiments. On the left,
three random subsets of three parallel digital lines that overlap (no separable affine
strip exists). On the right, three other random subsets that are separable by an affine
strip (the supporting lines of a solution are drawn in the figure).

Fig. 5 shows the execution times (in ms) of the algorithm according to both
separable and non separable sets of points in 4D. All the experiments were
carried out on a normal laptop (Core2 Duo 2.20GHz, 4Go RAM). Note that the
number of points shown in the figure refers to the size of only one set. But each
of the three input sets contains k points, so the algorithm actually deals with
3 × k points. For each size, twenty random inputs have been generated. The
vertical lines represent the min, max and the average execution times. We can
notice that for both cases (separable and overlapped) the algorithm has a linear
run-time behavior (even if it seems faster to detect the non separability of the
input sets).
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Fig. 5. The execution times of the GJK’nD algorithm on different point sets in 4D
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To see the influence of the dimension on the algorithm, similar experiments
have been carried out, from dimension 2 up to dimension 10, and the results
are given in Fig. 6. A log-scale is used to have a better view of the results. We
can notice that the slopes of the curves are quite similar, which means that
an increase of the dimension only affects the execution times by a constant
multiplicative factor, but the run-time behavior is still linear.

Fig. 6. The execution times (log-scale) of the GJK’nD algorithm on different point sets
from 2D to 10D. For non separable sets on the left, and separable sets on the right.

4.2 Potential Applications

As stated in the Section 1, an interesting application field to our approach is
the recognition of non linear primitives. We show hereafter an example of such
applications, namely the recognition of digital annulus, an axis-aligned ellipse
and the recognition of an algebraic planar DLL.

Given three point sets Sin, Sup and Sdown in Z2 the problem is here to find
whether there exists a digital annulus that contains Sin which encloses the set
Sdown and let Sup out of the annulus. It means we are looking for a, b, R2 and δ
∈ R such that − δ

2 ≤ (x− a)2 + (y− b)2 −R2 ≤ δ
2 for all (x, y) ∈ Sin, (x− a)2 +

(y − b)2 − R2 < − δ
2 for all (x, y) ∈ Sdown and δ

2 < (x − a)2 + (y − b)2 −R2 for
all (x, y) ∈ Sup. Even if the circle equation in the plane is not linear, we can use
the transformation described in Section 2 with F : (x, y) �→ (x, y, x2 + y2) to get
a linear problem in 3D (we actually projected the points onto a paraboloid). We
can now use GJK’nD to solve this problem in 3D and extract the characteristics
of the annulus from the coefficients of the recognized affine strip. Fig. 7(top-left)
shows the result of this method.

This method can be extended to the case of digital axis-aligned ellipses by con-
sidering the transformation F : (x, y) �→ (x, y, x2, y2) which lead to a 4D problem.
Furthermore, if Sin is given as an 8-connected curve, it is possible to automatically
set Sup and Sdown as the inner and outer 4-neighbors of points of Sin, as illustrated
inFig. 7(right). In the samevein, it isworthmentioning that ourGJKvariant is still
well-suited to recognize basic naive digital hyperplanes. In this case we can indeed
automatically choose Sup and Sdown wrt. to Sin. In 3D, for instance, we just have
to take Sup = Sin + (0, 0, 1) (the set Sdown can even be empty) to recognize naive
digital plane whose main axis is Z.
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Fig. 7. Top-left, a digital annulus recognition with forbidden points by using the GJK’nD
algorithm. Sin are represented with blue pixels and Sup and Sdown are respectively
represented with red and green crosses. Bottom-left, the recognition of an algebraic
DLL based on a degree 5 polynomial, and on the right a digital axis-aligned ellipse.

If we are now interested in the recognition of a DLL associated to an underling
polynomial model, i.e. −δ ≤ y − P (x) < δ with, say, P (x) =

∑5
i=0 aix

i, we just
need to consider another transformation, namely F : (x, y) �→ (x, y, x2, x3, x4, x5).
We then have a problem in 6D, but the flexibility of GJK’nD allows us to solve
this problem. A result is shown is Fig 7(bottom-left).

5 Conclusion

This work comes from the idea that linear digital primitives have been intensively
investigated in the last years and that it is time to try to increase the degree
of the primitives (not only with circles). DLL are a possibility but one of their
drawbacks is that their recognition with a fixed maximal thickness is not suitable
for applications because it can introduce undesired neighbors. Hence, we have
suggested a more flexible approach where the set to recognize is given along with
two sets of outliers instead of a maximal algebraic thickness which has no more
geometrical meaning for non-linear primitives.

This new problem is a generalization of the classical problems of recognition
of digital hyperplanes: the classical version of the problem corresponds to the
case where Sup is the translation of Sin by a vertical vector of length the maxi-
mal authorized thickness and Sdown is empty. The problem generalizes also the
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recognition of digital disks, and thus of their border, namely digital circles. It
means that this problem with two sets of outliers allows to handle several classi-
cal problems. This approach is very flexible and the solution that we provide by
using GJK is rather efficient in practice. Hence, it is a catch-all algorithm that
can be improved in some specific sub-problems but which can recognizes, with
a unique code, a lot of classical or original digital primitives.
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Abstract. We describe a method to compute conformal parameteriza-
tions with a natural boundary based on a simple differentiable expression
measuring angles between edges by using complex numbers. The method
can be adapted to preserve metric properties or map textures with con-
strained positions. Some illustrations are shown to assess the efficiency
of the algorithms.

Keywords: parameterization, conformal, constrained texture mapping,
natural boundary, minimization.

Introduction

Parameterizations of discrete surfaces are one to one maps from a triangulated
surface in 3D to the plane. They are widely used in computer graphics because
they allow one to simplify difficult 3D problems in easy 2D tasks. For instance,
texture mapping, a very classical such application, boils down to the trivial task
of mapping an image on a rectangular domain. They also allow to consider a mesh
as the graph of a function from the plane to the 3D space. Such a representation
is useful for applications such as morphing, surface fitting, etc.

Many methods have been introduced to compute conformal parameteriza-
tions. These parameterizations, by definition, should preserve angles and thus
the local aspect of the mesh. Among them, barycentric methods [2,7] fix the
boundary of the parameterization on a convex shape and then solve a linear sys-
tem to find the parameters for the others vertices. These algorithms are very fast
but introduce a big length distortion near the boundary. Other methods have
then been introduced to find parameterizations with a more natural boundary.
However, attempts such as the so called intrinsic parameterization [1] or least
square conformal map (LSCM) method [4] use boundary conditions that are not
very natural, leading sometimes to strange unsymmetrical results. The angle
based flattening (ABF) method [8,9,10] gives better results in this respect. But
this method is not easy to adapt when using other constraints such as lengths,
areas, positions of specific vertices, etc.
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In this paper, we introduce a differentiable expression to compute both the
angle and the length ratio between two edges. On the one hand, we use it to
define a conformal energy measuring angle distortion of a parameterization in
a similar way to ABF method. And as this energy is expressed in terms of
the position of the vertices of the parameterization and not the angles, it can
be adapted to also preserve metric properties or positional constraints. On the
other hand, we use it to define a boundary energy to find parameterizations with
natural boundary.

The rest of the paper is organized as follows. In Section 1, we define the
angular formula and the resulting conformal energy. In Section 2, we detail the
minimization algorithm. Section 3 introduces boundary conditions to guarantee
convergence of the algorithm and to determine natural boundary. Examples of
area preservation and parameterization with constraints are given in the last
section.

1 Minimizing Angle Distortion

1.1 Main Problem

Our goal is to find a parameterization of a triangular or quadrangular mesh,
that is to say a flattened version of the mesh. A good parameterization should
be as as close as possible to the initial mesh, and in particular its faces should
look like those of the mesh.

By definition, conformal maps are the applications preserving angles and in
consequence they also preserve lengths ratios locally. Therefore, for faces which
are small with respect to the whole mesh, faces in a conformal parameterization
have almost the same shape as those of the initial mesh. Therefore we look at a
good flattened mesh as a discretization of a conformal map.

Although continuous conformal maps exist, in general, we cannot find a pa-
rameterization whose (linear) faces have exactly the same angles as those of the
three dimensional mesh. So a natural approach is to look for the parameteriza-
tion minimizing the angles distortion. It is used by ABF method which computes
the parameterization minimizing the energy∑

(αi − βi)2,

where the sum is over all the angles αi of the mesh and the βi are the corre-
sponding angles in the parameterization. The unknowns of ABF method are not
the vertices of the parameterization but the angles βi. Consequently the method
has three main drawbacks.

– They have to reconstruct the parameterization from the angles which is not
straightforward.

– Not all the angles configurations can be obtained. For example, for triangles
faces the sum of the angles must be π. Thus, it is a constrained minimization
problem which is solved with Lagrange multipliers technique.

– Since the variables are the angles, we cannot add other energy terms, for
example an energy measuring the area distortion.
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1.2 A Differentiable Measure of Angle Distortion

In the sequel we will denote by zi the vertices of the mesh and by z′i the corre-
sponding two dimensional parameters. We will also consider the z′i as complex
numbers.

Given a triangular face (zi, zj , zk), we want a formula giving the angle in zi

that we can easily differentiate. Obviously we cannot use a formula such as

arccos
(

(zk − zi) · (zk − zi)
‖zj − zi‖‖zj − zi‖

)
for this reason.

However, if we imagine the three vertices as complex numbers in the plane
they define, the coefficient

ρ =
zk − zi

zj − zi
∈ �

measures both the angle and the length ratio between the edges [zi, zj] and
[zi, zk]. Thus, the nonnegative number

∣∣z′k − z′i − ρ(z′j − z′i)
∣∣2 is a measure of

the conformal distortion for the face (zi, zj , zk) from the vertex zi. Moreover,
still using complex numbers, we have nice formulas for the derivatives. Indeed,
if zi = xi + i yi,

∂

∂x′
i

= 2 Re
(
(−1 + ρ̄)

(
z′k − z′i − ρ(z′j − z′i)

))
,

∂

∂y′
i

= 2 Im
(
(−1 + ρ̄)

(
z′k − z′i − ρ(z′j − z′i)

))
.

For every face, we only need to define a coefficient ρ on one vertex, to preserve
all the angles of the face. Finally we want to minimize the energy

H =
∑∣∣z′k − z′i − ρf (z′j − z′i)

∣∣2
where the sum is over all the faces f = (zi, zj , zk) of the mesh.

For quadrangular meshes, we could convert each face to two triangles and
thus construct a triangular mesh but it increases the number of faces. We rather
define the ρ coefficients as the ratios of the diagonals. More precisely, for a face
(zi, zj , zk, zl), we define

ρ =
zl − zj

zk − zi
,

and we minimize the function

H =
∑ ∣∣z′l − z′j − ρf (z′k − z′i)

∣∣2.
This definition has the advantage of being more symmetric than the previous
one, we do not have to choose the vertex in which we compute ρ. Besides, it
leads to discrete conformal maps in the sense of [5], where many theorems and
in particular convergence theorems are given.
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2 Minimization Algorithm

We cannot obtain satisfying results by minimizing the energy term H as such.
Nevertheless, we believe it is important to develop the minimization algorithm
first. In particular it allows to understand why we introduce new cost functions
in Section 3 and why we choose these terms.

2.1 The Algorithm

We achieve the minimization using a BFGS algorithm, a very efficient quasi-
Newton method described in [6]. In particular, it computes an approximation of
the second derivatives of the function from the exact gradient. So we only need
to compute the first derivatives.

Remark 1. The BFGS method assumes a quadratic behavior around the critical
point of the function and thus cannot be used to find the critical point of the
ABF Lagrangian.

In practice we start from an initial parameterization whose boundary points are
on the unit circle and whose interior points are in (0, 0). And we would like the
algorithm to unfold the interior points. An example is shown in Figure 1.

Fig. 1. Four steps of the minimization algorithm, example of good convergence

2.2 Necessity of Additional Constraints

The global minimum of H is 0 and is reached when the z′i are solutions of the
complex linear system :
for all faces f = (zi, zj , zk)

z′k − z′i − ρf (z′j − z′i) = 0.

The number of equations of this system is the number of faces of the mesh
whereas its number of unknowns is the number of vertices of the mesh. As a
mesh has always more vertices than faces, the system has an infinity of solutions.
But many of them are not valid parameterizations.

In fact, if we minimize H as such, the boundary points, initially on the unit
circle, pull the interior points to the outside whereas the interior points attract
the boundary points to origin. As there are much more interior points than
boundary ones, if we do not add any energy, the minimization of H leads to the
null parameterization.
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Fig. 2. Four steps of the minimization algorithm, example of bad convergence

3 Stabilizing the Boundary

3.1 Main Idea

The main idea of this section is to add some energy terms to prevent the bound-
ary from being too close to the origin. Constraints should not introduce new
distortions. A drastic solution is to fix the boundary points uniformly on a circle.
It leads to a very fast and stable minimization process. As all parameterizations
methods fixing the boundary, the resulting texture mapping is, in general, un-
natural around the boundary. It is particularly true when the boundary of the
mesh is very different from fixed boundary of the parameterization.

3.2 Preserving Metric Boundary

Our first motivation is to add an energy to preserve edges lengths around the
boundary. Therefore we introduce the following metric energy

L =
∑(|z′i − z′j |2 − ‖zi − zj‖2

)
and we propose to minimize an average E of the metric energy and the conformal
one

E = αH + βL,

where the coefficients α and β are positive real numbers.
It stabilizes the process for meshes with few vertices and it allows convergence

toward a good parameterization. When we increase the number of points, the
algorithm can still reach an undesirable local minimum. Thus, the boundary
points can be attracted by the origin and wind around it in order to respect
boundary edges lengths. An exemple is shown on Figure 2. In this case, using a
high value of β compared to α is no more better.

3.3 Preserving Boundary Angles

To prevent the winding around behavior of the algorithm, we propose to add
an energy term to preserve angles between border edges. And similarly to con-
formal energy, in order to obtain a differentiable energy, we introduce complex
coefficients measuring both angles and lengths ratios.
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zp(i)
zi

zn(i)
α1

α2
α3

Fig. 3. An example of definition of ρ = reiθ where θ = α1 + α2 + α3

More precisely, for each boundary vertex zi, we denote by p(i) and n(i) the
indices of the previous and next vertex along the boundary. We want to associate
to the vertex zi a complex number ρ representing the angle between the edges
[zp(i), zi] and [zi, zn(i)] and their ratio of lengths. We define ρ as reiθ where the
modulus is

r =
‖zn(i) − zi‖
‖zp(i)− zi‖

and the argument θ is the sum of the angles in zi. In case of Figure 3,

θ = α1 + α2 + α3.

Then we introduce the energy

B =
∑ ∣∣z′n(i) − z′i − ρi(z′i − z′p(i))

∣∣2
and minimize

E = αH + βL + γB

for convenient positive real number α, β and γ.
In fact, the energy B is a little redundant with the conformal one. The con-

formal energy intends to preserve all the angles and in particular the boundary
ones. However it is important to strengthen the condition on boundary angles
to keep the boundary points from being quickly attracted by the interior points.
Thus, at each step of the minimization the interior points remains inside the area
delimited by the boundary points allowing convergence toward the right local
minimum. Shown in Figure 1 are four intermediate iterations of the algorithm
to illustrate the successful convergence.

Remark 2. We could believe it is more natural to define directly θ as the angle
between the two edges. But it boils down to choosing an orientation of the
plane (zp(i), zi, zn(i)). Although the mesh is oriented it seems difficult to make a
consistent choice.

The resulting algorithm is quite stable in practice. We made many experiments
with different meshes and various boundaries, and for most of them, we verify
convergence toward the desired parameterization. Moreover the texture mapping
are always good near the boundary even with very distorted boundaries.

An example is shown in Figure 4: on the left we represent the parameteriza-
tion, and on the right, we map a checkerboard on the mesh.
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Fig. 4. Parameterization of a triangular mesh with E = H + B + L

3.4 Finding a Natural Boundary

The energies B and L of the previous section can also be used to find a natural
boundary. Indeed we propose the following three steps algorithm.

1. First we minimize the energy

L + B

to obtain a boundary with almost the same edges lengths and angles between
the edges as the initial boundary of the mesh.

2. Then we fix this boundary and minimize H (the boundary does not move
during the algorithm).

3. Finally we use this minimum as initial condition to minimize

αH + βL + γB.

Although this algorithm needs three minimization steps, it is in general faster
than the one of the previous section. Step 1 is very fast because the function to
minimize has few variables and step 2 too because the boundary is fixed. Finally
step 3 is fast because the algorithm start close to the minimum.

An example is shown on Figure 5. Although, the boundary is fixed during
step 2, we can see that the texture mapping is quite good. Besides, if we need
a fast algorithm to parameterize a mesh with a large number of points and a
simple boundary it can be sufficient. The result is better after step 3. The bound-
ary is more natural and the parameterization more conformal. The difference is
visible near the chin of the mask To make it clear, Figure 6 shows a zoom in on
interesting regions of step 2 and step 3 of Figure 5.
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Step 1 Step 2 Step 3

Fig. 5. Parameterizations and texture mappings after each step of the method

Step 2 Step 3

Fig. 6. Zooms in on texture mappings at steps 2 and 3 respectively in Figure 5

4 Introduction of New Constraints

We now further study the advantage of minimizing a conformal energy that
expresses in term of points instead of angles. It allows one to add quite easily
additional constraints according to the applications.

4.1 Adding Energies: Areas, Lengths Preservation

Even if the main feature of parameterization techniques is to preserve angles,
we could also want to preserve other geometrical properties. In particular, on
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Figure 4, we would like to reduce the strong metric distortion in regions with
high curvature.

In general it is not possible to preserve both angles and lengths. An alter-
nate solution is to relax conformal constraints by adding a new metric energy.
Thus, we only obtain a quasi-conformal parameterization but it leads to a better
texture mapping.

In case of triangular meshes, to preserve areas we could introduce the energy

A =
∑ (

Im(z′k − z′i)(z′j − z′i)
2 − ‖(zk − zi) ∧ (zj − zi)‖2

)2

where the sum is over all the faces (zi, zj, zk).
Then, we minimize an average of the form

E = αH + βA + γL + δB

The texture mapping of Figure 7 is obtained using such an energy.

Fig. 7. Parameterization of a triangular mesh with E = H + A + B

4.2 Constrained Texture Mapping

Another important application of parameterization techniques is texture map-
ping of a 2D image on a 3D model. The main features of the image and the model
must fit. Therefore positions of the corresponding points of the parameterization
must be fixed. Our method can be adapted to that case. In fact it only reduces
the number of variables of the function to minimize: we consider the points that
are not fixed.

In the example of Figure 9 we map an image of a face on a mask of Nefertiti.
We select manually 13 corresponding points. They are displayed with thin points
on the figure. On Figure 9 (a), we map the image on the mesh to see that the 13
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points are mapped to the right position. On Figure 9 (b) we display the map of a
checkerboard with the same parameterization, it shows that the parameterization
is still conformal.

Fig. 8. Corresponding 13 points in the image and the mesh

(a) (b)

Fig. 9. Textured 3D model with (a) an image face and (b) a checkerboard. Same
parameterization computed with E = H + B.

5 Conclusion

We have described a method of conformal parameterization of triangular and
quadrangular meshes. It consists in introducing a complex number to repre-
sent angles between edges and minimizing an energy whose variables are the
vertices of the parameterization. Energies measuring angular and metric distor-
tions along the boundary are added to compute parameterizations with natural
boundaries. The method is general and can be adapted to preserve areas or to do
constrained texture mapping. Many examples are shown to assess the efficiency
of our method.

In future work we plan to do a more important comparative study with the state
of the art. It involves comparisons of qualitative results and computation times.
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Abstract. The classic feature matching process has two drawbacks.
Firstly, ambiguous but possibly correct matches will potentially be re-
moved and secondly, there is no constraint for the 2D size of the features.

In the present paper these drawbacks are tackled at once with a dif-
ferent approach: by considering region features instead of point features
and by adding constraints based on the features’ shape. Here, the shape
will be described with an ellipse. Using existing knowledge about the
algebraic properties of ellipses within the computer vision domain, this
enables additional constraints such as ellipse tangents. The number of
ambiguous matches is reduced and increased control of the physical 2D
size of the features is obtained. This will be shown on known epipolar
geometry.

Additionally, reconstruction of feature ellipses is examined.

Keywords: Key Points, Feature Regions, Ellipses, Feature Matching,
Epipolar Constraints, Reconstruction.

1 Introduction

A major drawback of 2D surveillance systems is inaccuracy when fusing the
data of several cameras after being processed. Some reasons are projection onto
a plane and occlusions. An example of such a setup is given by Reulke et al [17].
Several cameras in a sensor network are used to track multiple traffic objects
to determine atypical events. Data fusion is performed after having extracted
object trajectories in image space.

To improve the quality of such results it is possible to perform the surveillance
tasks in reconstructed 3D space. It eliminates the tedious task to fuse several 2D
trajectories to an erroneous 3D trajectory, for instance. But for this to happen
successfully, robust feature matching algorithms have to be developed:

In many multi camera applications there is some sort of feature matching
involved. Usually this is performed by detecting features or key points followed
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by a computation of some numerical description, e.g. SIFT[8] or MSER[11].
Obtained in both views, these features are matched based on their Euclidean
distances in feature space.

Usually the ambiguity at this stage is very high. In many cases, there are
several key points with an approximately equal lowest feature distance for a
given key point of the other image. The epipolar constraint is a handy tool to
improve this situation. For this, the fundamental matrix F ∈ R3×3 of rank 2
is introduced. F maps a homogeneous point in one image to its corresponding
homogeneous epipolar line in the second image. This leads to the constraint:
Two homogeneous feature locations x in image 1 and x′ in image 2 correspond
to a single point in space, if and only if x is on the epipolar line l = FTx′ or
alternatively x′ is on the epipolar line l′ = Fx. For more details refer to Ma et
al. [9].

This method helps improving the quality of feature matching significantly. Un-
fortunately, in wide-baseline situations the matching may become worse again.
In such a situation the distance of two cameras is relatively high compared to
the scene distance. Due to the projective nature of the problem, i.e. occlusions,
different backgrounds, different lightning and other problems, corresponding fea-
tures can look less alike as compared to small baseline situations and again more
and more ambiguities may arise.

At this point, the present paper will incorporate additional constraints. First
of all, the features will be assigned a geometric shape. The ellipse will show
quite suitable for this as it has a rather simple algebraic description. There are
also many useful properties, in the generalized form of a conic section. This
allows the introduction of additional epipolar constraints, namely the tangency
constraints. The paper will show how these properties can be assembled to add
more robustness to feature matching in wide-baseline situations.

The topic of this paper is aimed at the retrieval of better surveillance data,
that is “real” 3D data. The paper will have a look at a traditional matching
algorithm and provide ways to improve it, such that the number of wrong cor-
respondences decreases.

1.1 Previous Work

Rotation and scale invariant features have become very popular since the intro-
duction of “SIFT”[8]. Ever since, many feature detectors and descriptors have
been added. “Maximally Stable Extremal Regions”[11] (MSER) are of particular
interest for us, as they provide a robust way of detecting the same regions in
different views separated by a wide-baseline. For a comprehensive overview refer
to [12] and [13].

One of the first reconstruction of conics in two views to conics in space has
been done by Quan[16]. This paper also provides an algebraic matching con-
straint, where the section of the two corresponding cones decomposes into two
planes. This test is fine for noise-free perfectly matched ellipses but unfortu-
nately, in our tests it couldn’t be applied to ellipses which are only close to
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match perfectly (as it happens in the case of wide-baseline vision), due to the
algebraic nature of the whole background.

An important work on this topic was given by Cross and Zisserman [3] (for
more details refer to the PhD thesis of G. Cross [2]). They present methods
for reconstruction of quadrics in space, based on conics on the vision sensors.
Important for our paper is the tangency conservation under the fundamental
matrix F . That is, a tangent from an ellipse in the first image to the epipole will
remain a tangent in the second image, for the second epipole – if both ellipses
match. Hence, the reconstruction does not consider planar features, which we
assume.

More work on the topic of reconstruction algebraic curves has been provided
by Kaminski and Shashua, see [6] and [7]. They derive very generic methods
for reconstructing planar and non-planar algebraic curves of any order. Some of
their theory could be used for the current paper.

One of the newer papers is provided by Mai et al [10], where they reconstruct
projective ellipses with minimization techniques. This is not suitable for the
present paper, as it works with circles and ellipses directly and not with features.

Two state of the art approaches show how to determine the epipolar geom-
etry, which is supposed to be known in this report. A first method is based on
one-dimensional features, meaning points on a line [21]. The second way is to
use weighted least squares to actually compute an unbiased estimation of the
fundamental matrix, without outliers [22].

2 Background

The basic mathematical background necessary for the purpose of this paper is
presented in this section. This includes some information about conics, ellipses,
quadrics and transformations. First of all, an ellipse can be described in various
ways. For most methods presented in this paper, it will be provided in the
algebraic projective form.

The classic algebraic ellipse can be written in a conic equation (see [20]):

Ax2 + 2Bxy + Cy2 + 2(Dx + Fy) + G = 0 (1)

with the conditions

Δ =

∣∣∣∣∣∣
A B D
B C F
D F G

∣∣∣∣∣∣ �= 0 , J =
∣∣∣∣ A B
B C

∣∣∣∣ > 0 ,
Δ

A + C
< 0 (2)

All points x which satisfy equation 1 are part of this ellipse (or the elliptical
conic envelope). Equation 1 can also be written for homogeneous coordinates,
with a symmetric matrix:

xT ·E · x = 0 (3)

where E =

⎛⎝A B D
B C F
D F G

⎞⎠ (4)
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Methods to transform ellipses are required, e.g. from image to camera coor-
dinates or to perform a transformation of points on the ellipse. The following
lemma will show to be quite useful:

Lemma 1. Let K be an invertible transformation in RPn, which transforms
a point x, with xTMx = 0, to x′ = Kx. Then the quadric M can also be
transformed with M ′ = K−TMK−1 such that x′TM ′x′ = 0.

Proof. Use x = K−1 · x′ and insert into xT ·M · x = 0

2.1 Parametrization

Later on we will need a parametrization of the ellipse E.

Lemma 2. The ellipse E as defined in equation 3 can be parametrized with:

t ∈ [0, 2π) : x(t) = c +

(
a cos(t) cos(φ) − b sin(t) sin(φ)

a cos(t) sin(φ) + b sin(t) cos(φ)

)
(5)

where

φ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for B = 0 and A < C
1
2π for B = 0 and A > C
1
2 cot−1(A−C

2B ) for B �= 0 and A < C
π
2 + 1

2 cot−1(A−C
2B ) for B �= 0 and A > C

(6)

c =

(
CD−BF
B2−AC

AF−BD
B2−AC

)
(7)

a =

√√√√ 2(AF 2 + CD2 + GB2 − 2BDF −ACG)

(B2 −AC)
[√

(A− C)2 + 4B2 − (A + C)
] (8)

and

b =

√√√√ 2(AF 2 + CD2 + GB2 − 2BDF −ACG)

(B2 −AC)
[
−√(A− C)2 + 4B2 − (A + C)

] (9)

Proof. Refer to [20].

It does also work the other way around:

Lemma 3. Let x(t) be a parametrization as in equation 5. Let further R be
defined as:

R =

⎛⎝ cos(φ) − sin(φ) c0

sin(φ) cos(φ) c1

0 0 1

⎞⎠ (10)
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Then the algebraic ellipse E can be computed as

E = R−T ·
⎛⎝ 1

a2 0 0
0 1

b2 0
0 0 −1

⎞⎠ ·R−1 (11)

Proof. Start with an axis aligned ellipse, for both the parametrization and pro-
jective description. Use any Euclidean movement and lemma 1.

The following two lemmas are of major importance for this paper. They show
how the tangents of an ellipse can be computed with respect to the epipoles.

Lemma 4. In the projective space RP 2 every conic, described by the matrix
M , has exactly two tangents which both contain a given point y ∈ RP 2. These
tangents can be described by the equation

(yTMx)2 − (xTMx)(yTMy) = 0 (12)

Proof. Refer to [19]

Lemma 5. Let y be a point in RP 2. The tangency points of a conic M with
respect to y can be found in the section of the polar line of y with respect to M
and M itself. The equation of the polar line is given by

yTMx = 0 (13)

Proof. Refer to [19].

The last lemma provides the mathematical background for computing tangency
points or tangents of an ellipse to an epipole, for instance. To obtain the tangency
points, one can compute the polar line, followed by solving a quadratic system
of xTMx including the polar line. As the polar line is linear, the system can be
solved by rather easy means.

3 Application to Feature Matching

First of all consider image features being planar. This is only an approximation
of the reality. But any feature detector suffers from this problem. Once a non-
planar surface is viewed from different viewpoints, the accuracy of the point
reconstruction will decrease. And in reality most features are small parts of
surfaces, locally approximately planar. Non-planar features will usually drop in
the matching process anyways, as soon as the epipolar constraints are violated
due to the resulting inaccuracy.

The second important aspect is to assume regions rather than point features.
In a wide-baseline setup it is not desirable to search for point features only,
because most descriptors are not completely invariant to viewpoint change, scale
and rotation. This would not affect vision tasks in a small baseline setup but as
the baseline grows the features become more and more ambiguous. To overcome
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this, it is advisable to use as much additional information as possible. Here, the
geometric shape of the regions, especially the size of the respective fitted ellipse
is used. A good overview for ellipse fitting was provided by Gander et al [4].

As a consequence this rules out famous detectors like SIFT and others, which
search for point features. A very robust and fast region detector is MSER, which
is used here for all experiments (it computes regions in linear time, see [15]).

3.1 Descriptors

For the works of Mikolajczyk and Schmid ([12], [13]) executable binaries can
be found in their on-line supplements. These binaries detect feature points and
are also able to compute descriptions for these features. We tested the “SIFT”
and “GLOH” descriptors (gradient location and orientation histogram, which is
similar to SIFT) on MSER regions.

Unfortunately, it can take quite a long time to compute the descriptions.
We have experienced up to 10 seconds of computation, based on the number of
features and the size of the images. And there are significantly less MSER regions,
as it will be demonstrated in the results section. That’s the reason why an own
SIFT-like circular descriptor has been implemented. It samples the gradients in a
scale space, selecting the level based on the size of the single ellipses. Additionally,
dominant angle computation was used, leading to a normalization of the ellipses
to circles with a predefined dominant direction. The sampling of gradients into
a 3D descriptor is based on the gradients’ properties radial distance, position
(angle) and gradient direction. Based on empirical tests and the experience in
[13] we chose 3 radial bins, 4 position bins for the two outer circles and 8 gradient
direction bins, resulting in a 8 +2× 4× 8 = 72 sized feature vector. These types
of descriptions have been described in great detail and can be found in [12] or
[13], for instance. The performance of our own descriptors is expected to be
worse than the presented ones, sacrificed for speed. But at the same time, it will
turn out that the improved matching process compensates this drawback and
generally improves the results.

3.2 Matching

The matching is now performed as with classical point features, using basic
epipolar geometry conditions, described with the following pseudo code:

1. Determine potential matches,
e.g. using a kd-tree and usual feature distances

2. for all features involved in the potential matching set
determine the ellipses’
- center
- and both tangency points with respect to the epipole

3. for all potential matches (e1,e2) ensure three constraints:
- center2 lies on epipolar line of center1
- one tangency point of e2 lies on the epipolar line of the
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first tangency point of e1
- the other tangency point of e2 lies on epipolar line of the
second tangency point of e1

A proof that tangents of an ellipse and the epipole map to tangents of a corre-
sponding ellipse in a second image can be found in [3] and in [5].

After having discarded many of the potential matches with this method, it is
now even possible to perform an assignment problem on the remaining matches,
where the overall sum of all matches is maximized.

To solve for the remaining matching problem, there are several possibilities:
Firstly, only accept matches where the second best potential match distance is
significantly larger (e.g. by a factor λ - this has been done in [8]). Or, secondly, by
solving the assignment problem with the remaining potential matches, e.g. [14].

3.3 Non-linear Optimization

Given an elliptic match there are usually inaccuracies in the ellipse conditions,
due to image noise and projective effects. That is, the ellipses don’t exactly
match. Therefore, to reconstruct the respective space ellipses, it is recommended
to optimize the ellipse pairs. An optimization is presented in [3], which tries to
optimize the ellipse such that both ellipses converge to the tangent epipolar
lines of the partner ellipse. Here we present a different approach, where also the
centers of both ellipses are considered.

Let

f(x,x′) := d(Fx,x′) + d(FTx′,x) (14)

be the sum of the distances of two corresponding points to the epipolar line of
the respective point, where x in the first and x′ is in the second image. d(l,x)
is the distance of a point to a line. The following overall expression can be
minimized to improve the matching conditions and to obtain exact ellipses E
and E′ simultaneously:

argmin
E,E′

f(c, c′) +
∑

i∈{1,2}
f(ti, t′i) (15)

where c and c′ are the ellipse centers and ti and t′i are the corresponding tangency
point pairs of E, E′.

If equation 15 was minimized directly, using the respective matrices, it would
be possible that the shapes change to parabolas or hyperbolas. To restrict the
minimization to the space of ellipses, we use equations 5 and 11 for conversion
to a parametrized form of the ellipse and vice versa. This procedure is quite
similar to the non-linear optimization approaches in [9]. As an example, they
have provided a way to optimize a rotation not directly using a matrix R ∈
R3x3 rather than optimizing a parametrized representation in SO(3) (utilizing
Rodrigues’ formula). This ensures that any change of the parameters still results
in a rotation, as it couldn’t be guaranteed by direct manipulation of the matrix
entries in R.
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When using the parametrized version of the ellipses, a simple gradient descent
approach has shown to be sufficient to optimize equation 15.

3.4 Reconstruction

We found two major methods for reconstructing ellipses from two imaging sen-
sors to a planar ellipse in space. The first algebraic approach was presented by
Quan [16] and the second approach was provided by Schmid and Zisserman [18],
which describes a more epipolar geometry oriented derivation. We implemented
the method of Quan, for details refer to the respective paper.

Note that a 2D Ellipse in space can’t be described by a quadric. But it can
be described by a conic and a transformation into space: Let p be the vector
which describes the plane where the cones of two corresponding ellipses intersect
in space, then

xTE(p)x = 0 (16)

where E(p) =
1
2
·

⎛⎜⎜⎝
0 0 0 p0

0 0 0 p1

0 0 0 p2

p0 p1 p2 2p3

⎞⎟⎟⎠ (17)

also describes a homogeneousplane equation. To transformp intop′ = (λ, 0, 0, 0)T

choose a transformation T , such that

T TE(p)T = E(p′), (18)

where T =
(

R t
0 1

)
. (19)

Here, xTE(p′)x = 0 equals 2λx0 = 0 and thus describes the x-plane in the
Cartesian coordinate system.

Given a cone C which connects an ellipse to it’s camera center, the ellipse on
the section of C with the plane p in space can be computed by transforming the
cone with T :

C′ = T TCT (20)

and by finally choosing the conic matrix S as upper left 3x3 sub-matrix of C′.
S describes the 2D section ellipse on that section plane, given a transformation

T . This section ellipse S and the respective transformation T can be used to
visualize the ellipses or to put them into a tracking algorithm. In this case the
parametrization can be helpful.

4 Results and Experiments

In this section we will present some experiments utilizing the above theory. In all
settings calibrated cameras were used. Interior parameters were determined using
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the Brown calibration model [1]. This allows for geometrically very exact image
normalization (undistortion). The exterior orientation for all cameras involved
was determined by Photogrammetric means, e.g. by utilizing exactly measured
points (DGPS) or other methods.

4.1 Outdoor Data Set

The outdoor data set shows two images taken from different viewpoints at the
same time. They are taken from a camera system which is able to capture ra-
diometrically very high quality images, every 1 s. Synchronization of the two
cameras is provided with a maximum difference of less than 50 ns. The baseline
length is approximately 6.7m. The distance to the scene begins with 20m and
goes as far as about 100m. The resolution of both cameras is 1360x1024. The
scene contains natural areas, e.g. homogeneous parts of grass, as well as man-
made structures including repeating patterns. Refer to Figure 1 to see two images
of these cameras. The computing unit was equipped with an Intel R© CoreTM2
Duo E8600 processor.

To point out the performance of the presented algorithm, two matching algo-
rithms are compared:

The classical epipolar line matching, were the lowest Euclidean feature dis-
tance d1 wins in case of ambiguities – but only if the feature distance d2 of the
next best pair is of a factor λ larger: d1 < λd2. And the second method: the
three ellipse epipolar lines are considered (tangency points and center), rather
than just the center epipolar lines. Again, only matches are acknowledged if
d1 < λd2, in case of ambiguities. As described before, these ambiguities or the
number of neighbors in the kd-tree should be significantly less in the second
method.

Both algorithms come with pros and cons. The first, classic matching algo-
rithm has been built and used to obtain very reliable matches. So its strength is
a very distinct computation of features and reliable retrieval of correspondences.
It works with point features. The main drawbacks are the longer feature compu-
tation time, the occurrence and rejection of ambiguous matches as well as lack
of control of the features’ size of the. As you will see, the feature computation
on large images takes a very long time. For that reason we took the same feature
computation as in the second algorithm. This further reduces the performance
of this first algorithm.

The newly introduced, second algorithm emphasizes the constraints on geo-
metric shape; therefore it works with region features. It does not use the most
distinctive features, satisfied for faster feature computation times. This is also
the drawback of the method: without the help of the geometric constraints it
would surely perform worse. But tied together it is supposed to work better than
the first version.

Indeed, in table 1 you can see that there are less wrong correspondences of
the introduced ellipse epipolar constraints, as compared to classical epipolar line
matching. This is confirmed by the number of average and maximum neighbors
per feature which satisfy the respective constraints. For the classic matching
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Fig. 1. Outdoor Data Set. The input images are a stereo image pair from an outdoor
scene. The baseline is ≈ 6.7 m and the distance to the scene somewhere between 20 m
to 100 m. The scene contains natural areas and man-made structures (i.e homogeneous
and repeating parts).

there are much more ambiguities. Figure 2 shows some of the matched ellipses,
which illustrate the principle of the tangent epipolar lines.

Table 1. Result Data for the Outdoor Data Set.
The computation times and other results are shown. Note that the feature computation
time of approach [12], [13] is noticeably larger (for way less features). Thus, we did not
conduct further experiments.

outdoor data set classic matching ellipse matching features as in [12], [13]

# of features (l/r) 1079/1181 1079/1181 381/372

times (s):
features 1.18 1.18 6.15
matching 0.068 0.082 -

ellipse optim. - 0.06 -

# of matches 500 313 -
# of wrong matches 171 25 -
max num neighb. 9 1 -
avg num neighb. 1.92122 0.354958 -

The advantage of the ellipse epipolar matching can also be seen in the wrong
correspondences of the classic matching. In Figure 3 you can see a wrong corres-
pondence pair, which is ruled out if ellipse matching was applied.

In Figure 4 you can see a reconstruction of feature ellipses. It turns out that
far away ellipses are much larger than close ones. This is due to features in the
image; they tend to have the same size but projected into space this results in
possibly huge differences.



178 D. Rueß and R. Reulke

Fig. 2. Outdoor Data Set. Displayed are some of the correspondences after match-
ing using the ellipse epipolar constraints. Smaller features are marked with an arrow.
Additionally the tangency epipolar lines of the ellipses are shown.

Fig. 3. Classic Matching: Wrong Correspondences due to Center Constraint
only. Two features were matched by classic epipolar line matching (see yellow/dashed
epipolar lines). This correspondence is wrong but would have been ruled out by the
tangent epipolar lines, as becomes obvious in these images (blue tangent epipolar lines).
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Fig. 4. Ellipse Reconstruction. The reconstructed feature ellipses, viewed from
above the scene. Illustrative camera view areas were overlaid. This figure shows how
the size of the reconstructed space ellipses is related to the respective distance to the
camera positions.

5 Conclusion and Outlook

The present paper has introduced a method to put more epipolar constraints on
features by utilizing geometric properties. By requiring that the tangency points
of the fitted feature ellipse comply with the epipolar geometry, the number of
ambiguities decreases a lot.

It has been shown that this can improve the matching process significantly,
especially in an outdoor setup. The loss of time in the matching process is only
minor (68ms vs 82ms) in comparison to the rest of the process, see table 1.

It has also been shown that “weak” feature descriptors (but potentially faster
ones) can be employed. Table 1 shows that the classic epipolar line matching
collapses whilst the suggested method still performs very well.

Reconstruction of the ellipse features works but it turns out to be difficult
to handle in scenes with high depth variety. The problem is the minimal mean-
ingful area of a region in the image domain. When projected this minimal area
becomes huge if the respective depth is high (see figure 4). Also, the ellipse error
minimization sometimes seems to reshape the ellipses in a bad way, such that
they become elongated in space. Here, more investigation into different error
measurements can be done.

A possible application of the presented methods is a 3D feature tracking sys-
tem for moving traffic objects like pedestrians or cars. We have started working
on this and first results look very promising. It currently uses the improved el-
lipse matching for ambiguity reduction but relies on point reconstruction only.
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As described in the last paragraph, reconstructed ellipses tend to become huge
farther away from the camera. There is no meaningful relation of the different
sizes of the ellipses, which makes it hard to use for tracking. But nevertheless,
the center points of the fitted ellipses can be used for accurate reconstruction of
the feature regions – with less ambiguities and faster feature computation than
before.

Another idea is to investigate into robust calibration methods. In theory,
less than 5 conic correspondences (i.e ellipses) are required to determine the
relative orientation (e.g. see [7]). Point based algorithms do need at least 5
correspondences (e.g. see [9]).

Concluding, the matching process can be improved significantly and some sort
of control of the size of the features can be gained, if more geometric properties
of the feature regions are introduced. This has successfully been done with ellipse
feature matching.
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Abstract. In this paper we formulate an alternative approach to the sketch recog-
nition problem. The figure to be recognized from a sketch is specified as a set of
geometric line relationship rules. This approach normally has a high computa-
tional cost as it essentially is a non-linear optimization problem. We show that
for some cases this cost can be avoided by approaching the geometric relation-
ships testing as a ruler construction. In this paper we formulate the recognition
problem and consider the construction of line concurrency relationships in detail.
We show that the ruler construction is always possible for non-cyclic concurrency
relations.

Keywords: Sketch recognition, digital geometry, geometric concurrency.

1 Introduction

The introduction of smart boards has triggered renewed interest in the recognition of ob-
jects from loosely drawn sketches [1,7,5,6]. Sketch recognition is used for the automatic
conversion of mechanical and geometrical drawings and diagrams into a beautified dig-
ital version [11] or to improve pen based computer interfaces. When the system has to
recognize a geometric drawing it has to solve a non-linear optimization problem, a task
that, due to its difficulty, is left to a mathematical problem solver [3]. The drawback
of this approach is that it restricts the recognition task to simple problems that involve
only a few lines, and that the time needed to find a solution is quite unpredictable. One
way to avoid non-linear optimization is to limit the recognition to drawings with known
icons or symbols that can easily distinguished, i.e. a drawing of an electrical circuit [2].
However, it is difficult to extend these icon-based techniques to geometric drawings, be-
cause the domain knowledge of geometry is not iconic in nature, but involves geometric
relationships such as collinearity, parallelism and concurrency.

In this paper we show that a certain geometric class of sketch recognition problems
can be solved without referring to a mathematical problem solver. A parameter domain
determines the position and slope uncertainty of a line. We show that all interesting line
configurations can be found by ruler constructions. This construction is always possi-
ble, provided the concurrency relations are not cyclic, a concept that will be clarified
in the paper. Furthermore, we introduce the notion of line and point construction order.
The notion of order is used to predict the complexity of the construction, i.e., the num-
ber of iterations the ruler has to be used to find a line configuration that satisfies the
concurrency relations.

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 182–193, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Section 2 introduces domains, leaning points and lines, and the notion of the order of
a point or line. Section 3 formulates the main problem in geometric sketch recognition.
In Section 4 we prove the main results of the paper.

2 Domains and Leaning Points

Discrete straight lines can be approached in two distinct ways. In a first view one regards
a digital line as a set of points for which there is continuous line that is passing close
to these points. This is the preferable viewpoint when regarding a digital line as the
digitization of a continuous line. Let W of be a finite set of points in R2, and let τ > 0
be a positive thickness. Then the domain of lines that pass close to W can be defined as
the set of parameters (a, b) that satisfy:

−τ

2
≤ yi − axi − b ≤ τ

2
, (xi, yi) ∈W.

The thickness τ can be chosen as large as needed to accommodate for the uncertainty
of the position of the pixels. For a hand-drawn line one can choose the same thickness
as the one that is used to divide a curve into straight line segments.

In a second view one considers a digital line as the straight boundary (or edge) be-
tween two image segments [4]. Let U = {u1, . . . , un} and V = {v1, . . . , vm} be two
finite and non-empty subsets of Z

2 such that U can be linearly separated from V . Then
the domain of the lines separating these two regions is now defined as

yi − axi − b ≥ 0, (xi, yi) ∈ U (1)

yj − axj − b ≤ 0, (xj , yj) ∈ V. (2)

A domain becomes infinite if some of the separating lines are vertical lines. To avoid
this complication, in what follows we will assume that there is at least one slope aV

that does not appear in any of the domains involved in the sketch recognition problem.
In that case, we can always rotate the coordinate axes such that the lines with slope aV

become vertical lines. After rotation all domains will be bounded convex polygons in
the ab-parameter plane.

Fig. 1(a) shows two disjoint point sets U and V . The straight lines that separate these
two sets cover a butterfly shaped region. Fig. 1(b) shows the domain that contains the
parameters of the separating lines. We will use extensively the dualism between lines
and points in the xy-plane and the ab-plane. The point (a, b) in the ab-parameter plane
represents the line y = ax+ b in the xy-plane, and the line b = β−aα in the parameter
plane represents the point (α, β) in the xy-plane. For domains of lines we will make
these notions more specific.

Definition 1. Let D be a convex, polygonal domain of line parameters with vertex set
VD , and edge set ED . Any straight line of the form

y = aix + bi, (ai, bi) ∈ VD,

is called a leaning line of D. A point (x, y) that satisfies
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Fig. 1. (a) Straight lines that separate two discrete sets U and V , and (b) the parameter domain of
all the separating lines

{
y = aix + bi

y = ajx + bj ,
(3)

for an edge {(ai, bi), (aj , bj)} of ED, is called a leaning point of D.

The intersection of two leaning lines is not necessarily a leaning point, unless the lean-
ing lines correspond to adjacent vertices of D. If in (3) we have ai = aj , then (3) has
no solution and there is no leaning point. Likewise, a straight line passing through two
leaning points is not necessarily a leaning line, unless the leaning points correspond to
edges that share an vertex of D.

The concurrency relations will be solved by ruler constructions that start from lean-
ing points. Given a set of leaning points and leaning lines we construct new points and
lines by applying either the meet ∧ or the join operator ∨. Let L1 ∧ L2 denote the in-
tersection of the straight lines L1 and L2, and let p1 ∨ p2 denote the straight line that
joins the points p1 and p2. The number of times an operator has been used to construct
a certain point or line determines its order.

Definition 2. Let D be a domain. The leaning lines and leaning points of D have order
1. When new lines and points are constructed by taking joins or meets, an order is
assigned as follows:

– If p is not a leaning point, the order of p is the smallest number n > 1 for which
we can construct at least two lines L1 and L2 of order n − 1 or less such that
p = L1 ∧ L2.

– If L is not a leaning line, the order of L is the smallest number n > 1 for which we
can construct at least two points p1 and p2 of order n or less such that L = p1 ∨ p2.

Note that the order only increases when we construct intersection points, but not when
we construct lines through points. For example, a point that is not a leaning point, but an
intersection point of two leaning lines, has order 2. However, a line that is not a leaning
line, but that passes through two leaning points, still has order 1. Figure 2 shows a
construction in the xy-plane. The black dots represent the leaning points of 5 distinct
domains. All the leaning points have order 1. The lines L̃1 and L̃2 are leaning lines and
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p34

Fig. 2. Illustration of line and points orders

have order 1. The point p12 was constructed as the intersection of L̃1 and L̃2, and has
has order 2. The line L̃3 was constructed by joining p12 to one of the leaning points of
the third domain. Therefore, L̃3 has order 2. The point p34 lies at the intersection of L̃3

and a leaning line, an therefore p34 has order 3. The line L̃5 has order 3 because it was
constructed by joining p34 to one of the leaning points of the fifth domain.

3 Geometric Figure Recognition

The line y = ax + b will be denoted as L(a,b).

Definition 3. Let C = {D1, . . . , Dn} be a collection of n domains. A line configura-
tion in C is a collection of n lines L(ai,bi) such that (ai, bi) ∈ Di.

Definition 4. Let L(ai,bi), . . . , L(ak,bk) be m lines chosen from a line configuration. A
geometric relation is an equation of the form Pj(ai, . . . , bk) = 0, where Pj is a real
polynomial in the 2m variables ai, . . . , bk.

Parallelism, perpendicularity and concurrency are the primary examples of geometric
relations that can be expressed by a polynomial:

– Two straight lines L(a1,b1), L(a2,b2) are parallel when a1−a2 = 0. We shall denote
the involved polynomial as Ppar(a1, b1, a2, b2) = a1 − a2.

– Two lines L(a1,b1), L(a2,b2) are perpendicular when a1a2+1 = 0. We shall denote
the involved polynomial as Pperp(a1, b1, a2, b2) = a1a2 + 1.

– Three lines L(a1,b1), L(a2,b2) and L(a3,b3) are concurrent if∣∣∣∣∣∣
1 a1 b1

1 a2 b2

1 a3 b3

∣∣∣∣∣∣ = 0.

or Pconc = 0 with Pconc(a1, . . . , b3) = −a2b1 +a3b1 +a1b2−a3b2−a1b3+a2b3.

Our main problem can now be formulated as follows. Suppose we are given n do-
mains Di and m geometric relations Pj . Can we find a line configuration L(a1,b1), . . .,
L(an,bn), with (ai, bi) ∈ Di such that Pj(ai, . . . , bk) = 0 holds for all m relations Pj?
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In its fullest generality this is a non-linear programming problem with linear inequal-
ities (the domains) and non-linear equalities (the geometric relations for perpendicular-
ity and concurrency). However, if the problem is restricted to parallel relations, then it
is still relatively easily to solve, since only the slope intervals of the lines count [8, 10].
In this paper we will focus on the more difficult case of concurrency.

4 Constructions with Leaning Points and Leaning Lines

Geometrically, finding concurrencies in the xy-plane is equivalent to finding common
stabbings in the ab-plane [8,9]. When 3 or more parameter points lie on a stabbing line
in the ab-plane, the corresponding lines in the xy-plane are concurrent. If the stabbing
line has the form b = β − αa, the common intersection point is (α, β).

Figure 3 illustrates this duality between stabbing lines and common intersection
points. Figure 3(a) shows 5 distinct pairs of sets Ui and Vi. Figure 3(b) shows the
corresponding domains in the ab-plane of lines that separate the sets Ui and Vi. The
vertices of the domains correspond to the leaning lines that are shown in Figure 3(a).
The edges correspond to the leaning points, indicated by larger dots in Figure 3(a). In
this example we want to find lines L(a1,b1), . . . , L(a5,b5) that satisfy the concurrency
relations Pconc(a1, b2, a2, b2, a3, b3) = 0 and Pconc(a3, b3, a4, b4, a5, b5) = 0.

Therefore, in the ab-plane we must find common stabbings for D1, D2, D3 and
D3, D4, D5. What complicates the stabbing problem is that the intersection point of
the two stabbings has to lie in D3. This is not guaranteed merely by the existence of the
two stabbings. Their intersection point may lie outside D3. The results that follow will
show that it is nonetheless possible to construct lines that satisfy all the requirements.
These lines are constructed from the leaning points by a straightedge (or ruler) con-
struction. In addition, we prove that the order of the constructed lines is finite. Since the
number of leaning points is also finite, it follows that all possible candidate solutions
can be verified in a finite way.
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Fig. 3. Stabbing relations in the ab-plane correspond to concurrency relations in the xy-plane
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Proposition 1. Let D1, D2, D3 be three disjoint domains. Suppose there is a line con-
figuration L(a1,b1), L(a2,b2), L(a3,b3) with (ai, bi) ∈ Di satisfying the concurrency rela-
tion Pconc(a1, . . . , b3) = 0. Then there also exists a straight line configuration L(ã1,b̃1)

,

L(ã2,b̃2)
, L(ã3,b̃3) with (ãi, b̃i) ∈ Di and satisfying Pconc(ã1, . . . , b̃3) = 0, such that two

of the lines are leaning lines of two distinct domains, and the third line passes through
at least one leaning point of the third domain.

Proof. The proof is based on successive constructions in the ab-plane. Since the lines
L1, L2, L3 satisfy the concurrency relation Pconc(a1, . . . , b3) = 0 they meet at a com-
mon intersection point (x0, y0). Because each of the lines y = aix + bi pass through
(x0, y0), the parameter line b = y0− ax0 stabs each of the domains Di in the ab-plane.
We will consider the position of the vertices of the domains with respect to this stabbing
line. For each domain Di with vertices (cij , dij), j = 1, . . . , let D+

i be the set of ver-
tices for which dij ≥ y0 − cijx0, and let D−

i be the set of vertices (cij , dij) for which
dj ≤ y0 − cjx0. First, consider the following linear system in the unknowns α, β:

dij ≥ β − cijα, (cij , dij) ∈ D+
1 ∪D+

2

dij ≤ β − cijα, (cij , dij) ∈ D−
1 ∪D−

2

b3 = β − a3α.
(4)

This system determines the line parameters (α, β) of all the lines in the ab-plane that
pass through (a3, b3) and that stab both D1 and D2. The solution set is the intersection
of a convex polygon and a straight line. Hence, it is a line segment in the αβ-plane. Let
(α′, β′) be one of the endpoints of this line segment. Then the line b = β′ − aα′ passes
through at least one vertex of either D1 or D2. Without loss of generality we assume
that it passes through a vertex of D1, which we shall denote as (ã1, b̃1).

Next we look for a parameter line that also passes through a second vertex of one of
the domains. For the vertices (cij , dij) ∈ D3, let D+

3 be the set of vertices for which
dj ≥ β′ − cjα

′, and let D−
3 be the set of vertices for which dj ≤ β′ − cjα

′. We then
consider the linear system

dij ≥ β − cijα, (cij , dij) ∈ D+
2 ∪D+

3

dij ≤ β − cijα, (cij , dij) ∈ D−
2 ∪D−

3

b̃1 = β − ã1α.

This second system determines the parameters of the lines in the ab-plane that pass
through a vertex of D1 and that stab both D2 and D3. Let (α′′, β′′) be one of the two
vertices of this line segment. Then the line b = β′′−aα′′ passes through a vertex of D1

and at least one vertex of either D2 or D3. Without loss of generality we assume that it
passes through a vertex of D2, which we shall denote as (ã2, b̃2).

Finally, let (ã3, b̃3) be a parameter point on b = β′′ − aα′′ that lies also on one
of the edges of D3. All three parameter points (ã1, b̃1), (ã2, b̃2) and (ã3, b̃3) lie on a
common line b = β′′− aα′′ in the ab-plane. Therefore the three lines y = ã1x + b̃1 are
concurrent. Furthermore, two of the parameter points are vertices of domains, and thus
correspond to two leaning lines. The third parameter point was chosen such that its line
passes through at least one leaning point. �
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Fig. 4. Illustration of line and points orders

Since leaning lines have order one, their intersection points have order 2. Furthermore,
a line passing through such an intersection point and a leaning point also has order 2.
Thus the previous proposition states that all lines in the configuration have order 2 or
less. This result can be generalized.

Proposition 2. Let D1, . . . , D5 be five disjoint domains. Suppose there is a line con-
figuration L(a1,b1), . . ., L(a5,b5) with (ai, bi) ∈ Di satisfying the concurrency relations
Pconc(a1, b1, a2, b2, a3, b3) = 0 and Pconc(a3, b3, a4, b4, a5, b5) = 0. Then there also
exists a straight line configuration L(ã1,b̃1)

, . . ., L(ã5,b̃5)
satisfying Pconc(ã1, . . . , b̃3) =

0 and Pconc(ã3, . . . , b̃5) = 0, with (ãi, b̃i) ∈ Di, such that each line L(ãi,b̃i)
has order

3 or less with respect to the leaning points of the domains.

Proof. The proof consists of several steps, and is illustrated in Figure 4.

First concurrency relation. Since the lines satisfy concurrency relations, the points
(a1, b1), (a2, b2), (a3, b3) lie on a common straight line in the ab-plane. Also (a3, b3),
(a4, b4) and (a5, b5) lie on a common straight line. These two lines intersect at (a3, b3).
By constructing the system 4 as in Proposition 1 we determine either (ã1, b̃1) or (ã2, b̃2).
Suppose we have determined (ã1, b̃1), then this parameter point yields a parameter line
b = β′ − aα′ that passes through the points (ã1, b̃1) and (a3, b3), and that stabs the
domains D1, D2, D3, as shown in Figure 4.

Iteration step. Let H(D2, (ã1, b̃1)) denote the visual hull of D2 as seen from the point
(ã1, b̃1). Since the domains are disjoint convex polygons, H(D2, (ã1, b̃1)) ∩ D3 is a
convex polygon. Furthermore, this convex polygon contains (a3, b3) because the line
b = β′ − aα′, which passes through (a3, b3), lies in the visual hull.

Let V denote the vertex set of H(D2, (ã1, b̃1)) ∩ D3. Let {D′+
3 , D′−

3 } be a parti-
tioning of the vertex set V with respect to the parameter line passing through the points
(a5, b5) and (a3, b3). Likewise, let {D′+

4 , D′−
4 } denote the partitioning of the vertex set

of D4 with respect to this parameter line. We consider the linear system
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dij ≥ β − cijα, (cij , dij) ∈ D′+
4 ∪D′+

3

dij ≤ β − cijα, (cij , dij) ∈ D′−
4 ∪D′−

3

b5 = β − a5α.

This system defines a line segment in the αβ-plane. Let (α′′, β′′) be one of the two
vertices of this line segment. Then the parameter line b = β′′ − aα′′ stabs the domains
D3, D4 and D5. Furthermore, it passes through at least one vertex of either D4 or
H(D2, (ã1, b̃1))∩D3. If b = β′′−aα′′ passes through a vertex of H(D2, (ã1, b̃1))∩D3,
then we will denote this vertex as (ã3, b̃3). On the other hand, if b = β′′ − aα′′ passes
through a vertex of D4, then we will denote this vertex as (ã4, b̃4). Figure 4 illustrates
the case where b = β′′ − aα′′ passes through (ã3, b̃3) and (a5, b5).

Last concurrency relation. Assume that we have selected (ã3, b̃3) in the previous step.
Let {D′′+

4 , D′′−
4 } and {D′′+

5 , D′′−
5 } be partitionings of the vertex sets of respectively

D4 and D5 with respect to b = β′′ − aα′′. We consider the linear system

dij ≥ β − cijα, (cij , dij) ∈ D′′+
4 ∪D′′+

5

dij ≤ β − cijα, (cij , dij) ∈ D′′−
4 ∪D′′−

5

b̃3 = β − ã3α.

This system yields a new parameter line b = β′′′ − aα′′′ that stabs the domains D3, D4

and D5. Furthermore, this lines passes through (ã3, b̃3) as well as a vertex of either D4

or D5. If it passes through a vertex of D5, we will denote this vertex as (ã5, b̃5). This
is the case shown in Figure 4, where b = β′′′ − aα′′′ is the line joining (ã5, b̃5) and
(ã3, b̃3). If the line passes through a vertex of D4, we denote this vertex as (ã4, b̃4).

Alternatively, if in the iteration step (ã4, b̃4) was selected, then we use the system

dij ≥ β − cijα, (cij , dij) ∈ D′′+
3 ∪D′′+

5

dij ≤ β − cijα, (cij , dij) ∈ D′′−
3 ∪D′′−

5

b̃4 = β − ã4α.

to select a vertex of either D3 or D5. In this case {D′′+
3 , D′′−

3 } is the partioning of the
vertices of H(D2, (ã1, b̃1)) ∩D3 with respect to the line b = β′′ − aα′′.

Trace back step. In the previous steps we have selected three vertices as parameter
points (ãi, b̃i), one for the first concurrency relation, and two parameter points for the
second concurrency relation.

In this final step, we fill in all the other parameters. Suppose, for example, that we
have selected the parameter points (ã1, b̃1), (ã3, b̃3), and (ã5, b̃5), as in Figure 4. Then
the parameter point (ã4, b̃4) can be chosen as an intersection point of the boundary of
D4 and the line passing through (ã3, b̃3), and (ã5, b̃5). The parameter point (ã2, b̃2) can
be chosen as an intersection point of the boundary of D2 and the line passing through
(ã1, b̃1), and (ã3, b̃3). Note that in Figure 4, (ã2, b̃2) coincides with a vertex of D2,
because for (ã3, b̃3) we have selected a point that lies on the boundary of the visual hull
H(D2, (ã1, b̃1)).

As a second example, suppose that we have selected the parameter points (ã1, b̃1),
(ã4, b̃4), and (ã5, b̃5). Then the parameter point (ã3, b̃3) is chosen as an intersection
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point of the boundary of H(D2, (ã1, b̃1)) ∩ D3 and the line passing through (ã4, b̃4),
and (ã5, b̃5). Next, (ã2, b̃2) is chosen as an intersection point of the boundary of D2 and
the line passing through (ã1, b̃1), and (ã3, b̃3).

Order of selected points. It remains to determine upper bounds for the order of the
selected parameter points. A parameter point can either be vertex of a domain, a vertex
of H(D2, (ã1, b̃1)) ∩ D3, or an intersection point of the boundary of a domain and a
parameter line passing through a vertex of a domain and a vertex of H(D2, (ã1, b̃1)) ∩
D3.

Since the boundary edge of a visual hull in the ab-plane passes through two vertices
of a domain, it represents an intersection point of order two in the xy-plane, i.e, the
intersection point of two leaning lines. It follows that the intersection of a boundary
edge of a visual hull and the boundary edge of a domain represents a straight line in the
xy-plane of order two. The intersection point of a line of order two and a leaning line
yields an intersection point of order 3. �

Figure 2 shows the same construction order as the construction that was used in Figure
4 to illustrate the above proof. In accordance with Proposition 2, lines L̃1 and L̃2 have
order 1. Line L̃3 has order 2, and L̃5 has order 3. Proposition 2 states that if a solution
exists, it can always be found in this way. Figure 5 gives the solution of the problem
that was stated earlier in Figure 3. Figure 5(b) shows the two common stabbings and the
selected parameter points. Figure 5(a) shows the lines that correspond to the selected
parameters. In this case, all lines are leaning lines and have therefore order 1.
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Fig. 5. A solution for the concurrency problem introduced in Figure 3

More generally, suppose a set of domains and concurrency relations is given in the
form of Proposition 2. According to Proposition 2, to find a solution it suffices to con-
struct all possible lines of order 3 or less. This line set includes the leaning lines, the
second order lines that pass through intersections of leaning lines, and the third order
lines that pass through intersections of second and first order lines. In this set it suffices
to select those line configurations that satisfy one or more concurrency relations.
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Proposition 3. Let D1, . . . , D2N+3 be 2N + 3 disjoint domains, and let P1, . . . , PN

be N concurrency relations of the form

P k
conc(a2k+1, b2k+1, a2k+2, b2k+2, a2k+3, b2k+3) = 0,

for k = 1, . . . , N . Suppose there is a line configuration L(a1,b1), . . ., L(a2N+3,b2N+3)

with (ai, bi) ∈ Di satisfying the N concurrency relations P k
conc(a2k+1, . . .) = 0.

Then there also exists a straight line configuration L(ã1,b̃1), . . ., L(ã2N+3,b̃2N+3)
, with

(ãi, b̃i) ∈ Di that satisfies the N concurrency relations P k
conc(ã2k+1, . . .) = 0 and such

that each line L(ãi,b̃i)
has order N + 1 or less with respect to the leaning points of the

domains.

Proof. The proof proceeds in the same way as in Proposition 2. With the first concur-
rency relation we determine either (ã1, b̃1) or (ã2, b̃2). Next, we apply the iteration step
to determine either (ã3, b̃3) or (ã4, b̃4). Suppose we have determined (ã3, b̃3). Then the
iteration step is used a second time. That is, we construct the visual hull H(D4, ã3, b̃3)
and the vertex set of H(D4, ã3, b̃3) ∩D5. The system

dij ≥ β − cijα, (cij , dij) ∈ D′+
5 ∪D′+

6

dij ≤ β − cijα, (cij , dij) ∈ D′−
5 ∪D′−

6

b7 = β − a7α.

is used to determine either (ã5, b̃5) or (ã6, b̃6). Next, the iteration step is repeated with
either H(D6, (ã5, b̃5)) or H(D5, (ã6, b̃6)) and so on. The iteration proceeds until we
have determine two parameter points in the N -th concurrency relation. Finally, in the
trace back step, all the remaining parameter points are selected at the boundaries of the
domain. �

Figure 6 shows an example where we have determined the parameter points p̃i =
(ãi, b̃i) in the following order: p̃2, p̃3, p̃5, p̃7, p̃6, p̃4, p̃1.

Proposition 3 does not cover all given sets of concurrency relations. Figure 7 shows an
example with three concurrency relations. Suppose we want to find a line configuration in

p1~
p2~

p3~

p4~

p5~

p6~

p7~

Fig. 6. Illustration of the construction used in Proposition 3 for 3 concurrency relations and 7
domains. The visual hulls constructed from p̃2 as well as p̃3 are indicated by dashed lines.
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Fig. 7. Three way concurrency with a cyclic dependency

which {L1, L5, L3}, {L3, L6, L2}, and {L2, L4, L1} are concurrent triples. Figure 7(a)
shows the defining sets Ui, Vi , the leaning lines, and the leaning points. Figure 7(b)
shows the domains, and three stabbings that would solve the problem. Proposition 3 is
not applicable, however. The sequence of concurrency relations ends where it starts, i.e,
with the line L1. In fact, the proof of Proposition 3 as well as Proposition 2 is explicitly
based on the requirement that the sequence of concurrency relations has a loose end
where the construction can start.

5 Concluding Remarks

In this work we examine the reconstruction of geometric figures specified by a set of
geometric relations. In principle, we could test whether a certain set of detected lines
is valid for a line configuration by algorithmically solving a set of non-linear equations
and linear inequalities. Even for relatively simple line configurations this approach soon
becomes intractable. In this paper we have shown, however, that for a non-cyclic se-
quence of concurrency relations a solution can always be found in a finite number of
steps with a ruler construction, provided such solution exists.

The approach followed differs from previous work on concurrency in digital geome-
try. In [9] the goal was to derive all the concurrency relations by defining a metadomain
as the set of parameters of the lines that stab pairs of domains. Possible candidates for
common stabbings of domains were then found by finding cliques in the intersection
graph of the metadomains. There was no guarantee, however, that this heuristic ap-
proach would always lead to the recognition of a consistent set of geometric relations.
Additional constraints were used to remove some of the inconsistencies. In the present
paper, the geometric results are consistent by construction. The continuous lines that
are constructed must always satisfy a consistent set of relations. The current limitation
of the present method is that it has not been proven yet that the method can discover all
possible concurrency relations.

In the near future we plan to remove these limitations as much as possible, and also
to combine the recognition of concurrent, parallel and perpendicular line relations.
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Abstract. It is well known that a digitized circle doesn’t have the small-
est (digital arc length) perimeter of all objects having a given area. There
are various measures of perimeter and area in digital geometry, and so
there can be various definitions of digital circles using the isoperimetric
inequality (or its digital form). Usually the square grid is used as digital
plane. In this paper we use the triangular grid and search for those (dig-
ital) objects that have optimal measures. We show that special hexagons
are Pareto optimal, i.e., they fulfill both versions of the isoperimetric
inequality: they have maximal area among objects that have the same
perimeter; and they have minimal perimeter among objects that have
the same area.

Keywords: Discrete isoperimetric problem, digital geometry, digital
circles, triangular grid.

1 Introduction

In the Euclidean geometry the isoperimetric inequality shows the privileged role
of the Euclidean circles. It states that the area enclosed by a closed simple
curve is the largest when enclosed by a circle of the same length, with equality
occurring only for circles. This implies two conclusions, as two sides of a coin.
In one hand, among closed simple curves of a certain length, a circle encloses
a maximal area. On the other hand, among curves enclosing a certain area, a
circle has minimal length.

In digital geometry, i.e., in grids (tessellations of the plane) there are some
phenomena which do not occur in the Euclidean plane. For instance, there
are neighbor points (pixels), etc. There is another important example of non-
correspondence of concepts [16]: A digitized circle (see [3,21]) doesn’t have the
smallest (digital arc length) perimeter of all objects that have a given area.
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For discrete spaces there are special shapes that have been proved to have
minimal ‘perimeter’, for various definitions of the perimeter. In Zn, Wang and
Wang [25] presented an ordering of grid points, so that every finite prefix of the
sequence forms a set with minimal boundary size for that cardinality. Similar ar-
guments have been applied to other classes of spaces by Bezrukov [2]. There are
other related results, see [4,9,14]. The results on the hexagonal grid are applied
in chemistry also [5,8]. In [10] a correspondence is established between perfect
matchings in certain classes of benzenoid graphs and paths in the rectangular
lattice that satisfy certain diagonal constraints. A closely related problem in
graph theory is the vertex isoperimetric problem: to minimize the number of
vertices of the outer boundary. The edge isoperimetric problem, that is to min-
imize the number of outgoing edges, is completely solved for various types of
graphs (see, e.g., [6,12]).

We call a polygon optimal if both of the two constraints, to have maximal area
among the grid-polygons of a certain length, and to have minimal perimeter
among the grid-polygons enclosing a certain area, are fulfilled. Note that in
discrete space these two constraints are more or less concurrent, and so, usually
do not coincide. In [24] these polygons are called Pareto-optimal, since in game-
theory [22] when the aims of the players concur the optimal solution is the saddle
point. In that paper results are presented for the square and for the hexagonal
grid with long and difficult proofs.

In digital geometry spaces consist of points that can be addressed by integer
coordinate values. The square and cubic grids are well-known and frequently
used in applications, since they use the Cartesian coordinate system. To use other
grids, one needs a good method to define an appropriate coordinate system. The
pixels of the hexagonal grid can be addressed with two integers [13]. There is a
more elegant solution using three coordinate values whose sum is zero reflecting
the symmetry of the grid [11]. Similarly the triangular grid can be described
with three values [18,19] as we recall in Figure 1. There are two orientations of
the used triangles, the sum of coordinate values are zero and one, respectively.

Fig. 1. A part of the triangular grid with a symmetric coordinate frame
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In this paper we recall some results of [1,24] (regarding isoperimetric inequality
in the square grid), moreover we give an alternative (and simpler) proof of the
result based on combinatorics. Our main result is an extension to the triangular
grid. Since the triangular grid is more sophisticated, we present our result only
by using the closest neighborhood. There is a straightforward possible extension
which is to continue this line of research involving larger neighborhood systems.

We may call a finite set of grid points (pixels) a binary picture or a grid-
polygon, or simply an object.

We omit the proof of the trivial facts that optimal objects are connected and
topologically have no holes (i.e., simply connected). We are dealing only with
these objects in this paper. The aim of this paper is to find those objects that
have maximal area among those that have at most the same perimeter and, at
the same time, they have minimal perimeter among those objects that have at
least the same area.

In the next section we recall results on the square grid with new proofs. In
Section 3 we present some basic concepts on the triangular grid that are used
in Section 4 where our main results are presented. In Section 5 some concluding
remarks follow. References and proof of the main theorem (in Appendix) close
the paper.

2 Preliminary Results: The Square Grid

There are two types of usual neighborhood relations on the square grid: their
original names: city block (or Manhattan) and chessboard neighborhood come
from the initial paper on digital geometry by Rosenfeld and Pfaltz [23]. In cellular
automata theory the terms Moore and von Neumann neighborhood are used [15].
We also note here that in some cases the terms 1-neighbors and 2-neighbors are
used meaning the number of coordinate values that may differ in various types
of neighborhoods (this concept allows simple extension to higher dimensions and
to other grids, as we will use later on the triangular grid).

The area of the object can easily be measured by the number of grid-squares
it occupies. However, the perimeter depends on the used neighborhood criterion.
Let us see which objects are Pareto optimal, first using 4-neighborhood boundary
as perimeter.

2.1 Square Grid with 4-Neighborhood

Let us define the perimeter of a binary picture on the square grid with 4-
neighborhood. The perimeter of an objects is the number of grid-squares that
belong to the 4-neighborhood of an object point but do not belong to the object.

By the usual Cartesian coordinate frame, the embedding rectangle of an object
can also be defined: it is a diamond object defined by four stair-type sides, i.e.
diagonal line-segments in the following way. Let p(p(1), p(2)) be a/the object
point for which the value p(1) + p(2) is minimal/maximal, then the stair-type
‘line’ consisting of points q(q(1), q(2)) with q(1)+q(2) = p(1)+p(2) is two of the
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sides of this diamond. The other two sides are defined by the minimal/maximal
value of p(1)− p(2) for the object points p(p(1), p(2)).

As one can see in Fig. 2 the perimeter does not change, while the area is
strictly increasing if side parts (a) and (b) are replaced by side part (c). By
iteration one can obtain a ‘diamond shape’ object with four ‘stair-type’ sides.
Moreover at the ‘corners’ of these sides there are at most two 4-neighbor pixels
on the boundary. In this way, in the original shape, since the area is not maximal
for the same perimeter, the optimal objects could be only these diamonds. These
objects are called simple shapes in [24].

(a) (b) (c) (d)

Fig. 2. (a)-(c): Excluding ‘concavity’ and long ‘straight’ sides. (d): An object (black)
and its embedding rectangle (grey) with its stair-type sides.

Finally, we need to show what the lengths of the sides of the optimal diamonds
are. So let us consider a diamond shape object (see Fig. 2 (d): black and grey
pixels). The parameters are the distance of the ’parallel’ sides and the type
of the bottom corner: Let Δx = |maxx−minx |, where the stair-type sides of
direction \ are defined by points r(r(1), r(2)) with r(1) + r(2) = maxx and
r(1) + r(2) = minx, respectively. Similarly, let Δy = |maxy −miny |, where the
sides of direction / are defined by points r(r(1), r(2)) with r(1) − r(2) = maxy

and r(1) − r(2) = miny, respectively. Furthermore there are 4 possibilities for
the bottom corner (it is at the intersection of lines defined by minx and miny)
by the parity of minx and miny: oo means both are odd, oe means minx is odd
and miny is even, similarly eo and ee is defined.

The perimeter of the diamond is Δx+Δy +4. (It can be proven by induction
on the sidelengths.)

The area of the maximal diamond with these parameters (the area also de-
pends on the bottom corner and so it may be 1 less as one may prove it by
combinatorial case analysis):

⌊
(Δx+1)(Δy+1)+1

2

⌋
.

Fixing the perimeter there is only one variable and it gives a maximal value
for the area with Δx = Δy.

Based on these values one can easily see that the optimal digital shapes are
those where Δx and Δy are (only almost if the perimeter is odd) equal. The
results are shown in details in [24].
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2.2 Square Grid with 8-Neighborhood

In this case we use a similar argument as in the 4-neighbor case. First we define
the embedding rectangle: it is a rectangle given by straight sides by the lanes of
the minimal/maximal p(1) and q(2) values of the points p and q of the object.

From Figure 3 (a,b) it is clear that if the object has a ‘corner’ which is concave,
then the area can be extended without changing the perimeter.

(a) (b) (c) (d) (e)

Fig. 3. Excluding concavity (a,b) at corners and (c,d) at sides. (e): An object (black)
and its embedding rectangle (grey) with the perimeter points (various color).

Moreover, from Fig. 3 (c,d) one can see that a similar argument holds when
the concave part is not on the corner, but on one of the sides. The area can
be extended without decreasing the perimeter. By combinatory it can easily be
proven that there is no other way of concavity to occur.

By iteration, it is obvious that only embedded rectangles (in the usual sense)
can be optimal. Also since there must be points at each value of x and y between
the maximal and minimal values (see Figure 3 also), actually there are at least
two points that can be assigned to each x and y value of the object in its border.

Let us see which of these have the maximal area.
The parameters are minx, maxx, miny, maxy, we use the notation
Δx = maxx−minx +1, and Δy = maxy −miny +1.

The perimeter is 2(Δx + Δy) + 4.
The area is ΔxΔy.
By fixing the perimeter there is only one parameter. By searching for the

extremal value (simple derivation): it is at Δx = Δy.
One can easily check that for a perimeter value which is divisible by 4 Δx =

Δy is an integer and so it is optimal in the grid as well.
For perimeter values that are even, but not divisible by 4, in grid the optimal

possibilities are those when Δx = Δy ± 1.
The results of this section can also be found in [24] with a much sophisticated

proof. In the next sections, in the triangular grid we prove new results.

3 Definitions and Notions for the Triangular Grid

The triangular grid can be described using a subset of Z3 [17,18]. One way of
doing it is to take the union of the planes having points with coordinate sums 0
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and 1. The points of these two planes are referred as even/odd points of the grid,
respectively. These two types of points are exactly the type  and ∇ triangles
of the grid. In this way, the description of the grid is symmetric by the three
coordinate values [19,20]. The coordinate axes x, y and z are used.

For instance, an even grid point (p(1), p(2),−p(1) − p(2)) has the following
closest neighbors (p(1) + 1, p(2),−p(1)− p(2)) , (p(1), p(2) + 1,−p(1)− p(2)) ,
(p(1), p(2), 1− p(1)− p(2)). Otherwise, if we consider the points where the sum
of the coordinates is 1, the neighbor grid points have difference vectors like the
vectors above but with inverted signs.

In this paper only these closest neighbors are used, they are 1-neighbor pixels,
since exactly one of the coordinate values changes by stepping from a pixel to
one of its 1-neighbors, formally: Let p(p(1), p(2), p(3)) and q = (q(1), q(2), q(3))
be two points of the grid. For k = 1, 2, 3, the points p and q are triangular
k-neighbors if |p(i)− q(i)| ≤ 1 for 1 ≤ i ≤ 3 and

∑3
i=1 |p(i)− q(i)| ≤ k.

Let a coordinate value be fixed (e.g., x = 5); a lane is the set of points that
have this fixed coordinate value.

The area of a binary image on the triangular grid is the number of its triangles.
As we use 1-neighborhood boundary, the perimeter of an object is the number
of triangles outside of the object that are 1-neighbors of some triangles of the
object.

Analogously, as any picture on the square grid has an embedding rectangle,
we define the concept of embedding hexagon on the triangular gird:

The embedding hexagon consists of the points that are in the intersection
of those lanes (all three directions) which have at least one point of the object
(see Fig. 4 for examples). Any picture of the triangular grid has an embedding
hexagon. In some cases it can be degenerated with some sides whose length is
zero (see Fig. 4 (b,c)).

(a) (b) (c)

Fig. 4. Embedding hexagons (grey) on the triangular grid (of the black object). The
examples (b) and (c) are degenerated. The perimeter of the hexagon is shown by red
color.
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4 Digital Circles

In this section we present analogous results about Pareto-optimal polygons using
the triangular grid. First we will prove that optimal shapes are hexagons, and
then we will prove that in optimal polygons the difference of the sidelengths of
the hexagon is as small as possible.

4.1 The Shape of Optimal Circles

In this subsection we show that optimal polygons have only straight sides (par-
allel to sides of the triangles of the grid and there are no ‘hilly’ and ‘sawtooth’
sides in the terms of [20]).

In fact, we will show that the embedding hexagon B (maybe a degenerate
version) of a given object A has at most the same perimeter as the perimeter of
A, while the area of B is not less than the area of A (it is equal if and only if
the objects A and B coincide).

There are two possible types of connection combination of edges that cannot
belong to a (degenerated) embedding hexagon; they can be seen on Fig. 5 (a)
and (c): concavity can occur only in these two ways having the angle 5π

6 or 4π
3

between edges.

(a) (b) (c) (d)

Fig. 5. Excluding concavity in the triangular grid. The object in (a) is blown up to
(b) by excluding corner with angle 5π

6
, while the object in (c) is extended to (d) by

changing an angle 4π
3

to 2π
3

without changing the perimeter.

One can see on Fig. 5 (b) and (d) how these objects can be extended by
adding one or two triangles to them, respectively.

By iterative use of the previous local blowing steps the embedding hexagon
is obtained. Therefore the optimal shapes can be only the embedding hexagons.

Let the sidelengths of a hexagon be a, b, c, d, e, f in this order, then by the
geometry of the grid the lengths of the sides are not independent, but a+b = d+e,
b+ c = e+ f and c+d = f +a (note that in degenerate cases one or more values
are 0).

In the next subsection we determine the optimal embedding hexagons.

4.2 The Side-Lengths of Optimal Polygons

In continuous case those hexagons are optimal that have equal sides. It cannot
be obtained for all possible perimeters in discrete grids. In the triangular grid
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there are six cases for the possible perimeters of the hexagons. We present our
results by these cases.

Theorem 1. The next table shows the perimeter and area of the optimal
pictures.

Case Perimeter Area
1 6n 6n2

2 6n + 1 6n2 + 2n− 1
3 6n + 2 6n2 + 4n
4 6n + 3 6n2 + 6n + 1
5 6n + 4 6n2 + 8n + 2
6 6n− 1 6n2 − 2n− 1

where n is a natural number such that both the perimeter value and the area
are positive.

The proof of the theorem with the optimal objects can be found in the Appendix.
It is not surprising that the optimal hexagons of the continuous case are

approximated; increasing the difference of the sides the area is decreasing with
a fixed perimeter. One can see that optimal shapes are hexagons with (almost)
equal sizes. Fig. 6 shows the perimeter and area of the optimal objects.

Fig. 6. Pareto optimal values on the triangular grid

5 Conclusions and Future Work

Non-traditional grids are used in image processing and computer graphics. In
two dimensions the hexagonal and the triangular grids are the alternatives of
the square grid [7,26,27,28]. Pareto optimal objects on the triangular grid using
the closest neighbors are presented. It is proven that they are hexagons and the
lengths of their sides are as close as possible depending on the perimeter. Our
formulae presented in the previous section works for small objects also (see Fig. 6
also). Our optimal shapes are much closer to the Euclidean optimal circles than
the rectangles/squares of the square grid. Our problem is closely connected to
the vertex-isoperimetric problem of the triangular grid graph and therefore the
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results can be applied on that field. In the other side, our optimal polygons can
be viewed as results of an optimization process, therefore these results could be
applied in some discrete optimization problem.

The result can be extended by using other neighborhood structures, including
the other six 2-neighbors and also, the other three 3-neighbors could be included.
This is one of our tasks for the near future.

References

1. Altshuler, Y., Yanovsky, V., Vainsencher, D., Wagner, I.A., Bruckstein, A.M.:
On Minimal Perimeter Polyminoes. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.)
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Appendix

Proof of Theorem 1:
The perimeter of a hexagon is P while its area is denoted by A. The lengths of
the sides (in order a, b, c, d, e, f) depend on each other by geometry: a+b = d+e,
b + c = e + f , c + d = f + a. The proof goes by cases. There are six possible
remainder of the division perimeter/6. Further n represents any integer such that
the computed perimeter and area are positive (n ≥ 0 at cases 4 and 5, while
n > 0 at the other cases).

– case 1: P = 6n

(a) Statement to prove: the object is optimal if all sides are equal.
P = 6n

A = 2(2n)(2n) = 6n2

(b) Perimeter is unchanged and some sides are changed so P = 6n still. We
can’t change the length of only two sides or all six sides because in this
case the equations among the sides won’t hold.
So we change the length of (at least) two-two sides: (1 ≤ k < n)
n− k, n, n + k, n− k, n, n + k

Area:
A = 2(n− k + n)(n + k + n− k)− (n− k)2 − (n− k)2 =
= 6n2 − 2k2

As k ≥ 1 this area is smaller than the one in part (a).
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– case 2: P = 6n + 1

(a) Statement to prove: We get the largest area when the sides are:
n− 1, n + 1, n, n, n, n + 1
(By symmetry, the area doesn’t change when we “move the sides a-
round”.)
A = 2(n− 1 + n + 1)(n + n)− (n− 1)2 − n2 =
= 6n2 + 2n− 1

(b) We can change 4 sides so that the equations of the lengths hold.
i. Sides: n − 1 + k, n + 1 − k, n, n + k, n− k, n + 1 (2 ≤ k < n, k = 1

gives no change)
P = 6n + 1
Area:
A = 2(n− 1 + k + n + 1− k)(n + n + k)− (n− 1 + k)2 − (n + k)2 =
= 6n2 + 2n− 1 + 2k − 2k2

We need to show that: 2k − 2k2 < 0, it is, iff k < k2.
As 1 < k this is always true.

ii. Sides: n− 1, n + 1 + k, n− k, n, n + k, n + 1− k (1 ≤ k < n)
P = 6n + 1
Area:
A = 2(n− 1 + n + 1 + k)(n− k + n)− (n− 1)2 − n2 =
= 6n2 + 2n− 1− 2k2

We need to show that: −2k2 < 0, it is, iff 0 < k2.
As k �= 0 this is always true.

iii. Sides: n− 1− k, n + 1, n + k, n− k, n, n + 1 + k (1 ≤ k < n)
P = 6n + 1
Area:
A = 2(n− 1− k + n + 1)(n + k + n− k)− (n− 1− k)2 − (n− k)2 =
= 6n2 + 2n− 1− 2k − 2k2

We need to show that: −2k − 2k2 < 0, it is, iff k + k2 > 0.
As k ≥ 1 this is always true.

– case 3: P = 6n + 2

(a) Statement to prove: We get the largest area when the sides are:
n, n, n + 1, n, n, n + 1
(The area doesn’t change when we “move the sides around”.)
A = 2(n + n)(n + 1 + n)− n2 − n2 = 6n2 + 4n

(b) We can change 4 sides:
i. Sides: n + k, n, n + 1− k, n + k, n, n + 1− k (2 ≤ k < n)

P = 6n + 2
Area:
A = 2(n + k + n)(n + 1− k + n + k)− (n + k)2 − (n + k)2 =
= 6n2 + 4n + 2k − 2k2

We need to show that: 2k − 2k2 < 0, it is iff k < k2.
As 1 < k this is always true.
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ii. Sides: n− k, n + k, n + 1, n− k, n + k, n + 1 (1 ≤ k < n)
P = 6n + 2
Area:
A = 2(n− k + n + k)(n + 1 + n− k)− (n− k)2 − (n− k)2 =
= 6n2 + 4n− k2

We need to show that: −k2 < 0, it is, iff 0 < k2.
As k �= 0 this is always true.

iii. Sides: n, n− k, n + 1 + k, n, n− k, n + 1 + k (1 ≤ k < n)
P = 6n + 2
Area:
A = 2(n + n− k)(n + 1 + k + n)− n2 − n2 =
= 6n2 + 4n− 2k − 2k2

We need to show that: −2k − 2k2 < 0, it is, iff k + k2 > 0.
As 0 < k this is always true.

– case 4: P = 6n + 3

(a) Statement to prove: We get the largest area when the sides are:
n, n + 1, n, n + 1, n, n + 1
(The area doesn’t change when we “move the sides around”.)
A = 2(n + n + 1)(n + n + 1)− n2 − (n + 1)2 =
= 6n2 + 6n + 1

(b) We can change 4 sides so that the equations hold.

i. Sides: n + k, n + 1− k, n, n + 1 + k, n− k, n + 1 (1 ≤ k < n)
P = 6n + 3
Area:
A = 2(n + k + n + 1− k)(n + n + 1 + k)− (n + k)2 − (n + 1 + k)2 =
= 6n2 + 6n + 1− 2k2

We need to show that: −2k2 < 0, it is, iff 0 < k2.
As k �= 0 this is always true.

ii. Sides: n, n + 1 + k, n− k, n + 1, n + k, n + 1− k (1 ≤ k < n)
P = 6n + 3
Area:
A = 2(n + n + 1 + k)(n− k + n + 1)− n2 − (n + 1)2 =
= 6n2 + 6n + 1− 2k2

We need to show that: −2k2 < 0, it is, iff 0 < k2.
As k �= 0 this is always true.

iii. Sides: n− k, n + 1, n + k, n + 1− k, n, n + 1 + k (1 ≤ k < n)
P = 6n + 3
Area:
A = 2(n− k + n + 1)(n + k + n + 1− k)− (n− k)2 − (n + 1− k)2 =
= 6n2 + 6n + 1− 2k2

We need to show that: −2k2 < 0, it is, iff 0 < k2.
As k �= 0 this is always true.
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– case 5: P = 6n + 4
(a) Statement to prove: We get the largest area when the sides are:

n, n + 1, n + 1, n, n + 1, n + 1
(The area doesn’t change when we “move the sides around”.)
A = 2(n + n + 1)(n + 1 + n)− n2 − n2 =
= 6n2 + 8n + 2

(b) We can change 4 sides so that the 3 equations hold.
i. Sides: n+ k, n+1− k, n+1, n+ k, n+1− k, n+1 (2 ≤ k < n, k = 1

do not change anything)
P = 6n + 4
Area:
A = 2(n + k + n + 1− k)(n + 1 + n + k)− (n + k)2 − (n + k)2 =
= 6n2 + 8n + 2 + 2k − 2k2

We need to show that: 2k − 2k2 < 0, it is, iff k < k2

As 1 < k this is always true.
ii. Sides: n, n + 1 + k, n + 1− k, n, n + 1 + k, n + 1− k (1 ≤ k < n)

P = 6n + 4
Area:
A = 2(n + n + 1 + k)(n + 1− k + n)− n2 − n2 =
= 6n2 + 8n + 2− 2k2

We need to show that: −2k2 < 0, it is, iff 0 < k2.
As k �= 0 this is always true.

iii. Sides: n− k, n + 1, n + 1 + k, n− k, n + 1, n + 1 + k (1 ≤ k < n)
P = 6n + 4
Area:
A = 2(n− k + n + 1)(n + 1 + k + n− k)− (n− k)2 − (n− k)2 =
= 6n2 + 8n + 2− 2k − 2k2

We need to show that: −2k − 2k2 < 0, it is, iff 0 < k + k2.
It is always true for k ≥ 1.

– case 6: P = 6n− 1
(a) Statement to prove: We get the largest area when the sides are:

n− 1, n, n, n, n− 1, n + 1 (The area doesn’t change when we “move the
sides around”.)
A = 2(n− 1 + n)(n + n)− (n− 1)2 − n2 =
= 6n2 − 2n− 1

(b) Again we may change 4 sides so that the equations hold.
i. Sides: n− 1 + k, n− k, n, n + k, n− 1− k, n + 1 (1 ≤ k < n)

P = 6n− 1
Area:
A = 2(n− 1 + k + n− k)(n + n + k)− (n− 1 + k)2 − (n + k)2 =
= 6n2 − 2n− 1− 2k2

We need to show that: −2k2 < 0, it is, iff 0 < k2.
As 1 ≤ k this is always true.

ii. Sides: n− 1, n + k, n− k, n, n− 1 + k, n + 1− k (1 ≤ k < n)
P = 6n− 1
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Area:
A = 2(n− 1 + n + k)(n− k + n)− (n− 1)2 − n2 =
= 6n2 − 2n− 1− 2k − 2k2

We need to show that: −2k − 2k2 < 0, it is, iff 0 < k + k2.
As k ≥ 1 this is always true.

iii. Sides: n− k, n + 1, n + 1 + k, n− k, n + 1, n + 1 + k (1 ≤ k < n)
P = 6n− 1
Area:
A = 2(n− 1− k + n)(n + k + n− k)− (n− 1− k)2 − (n− k)2 =
= 6n2 − 2n− 1− 2k − 2k2

We need to show that: −2k − 2k2 < 0. As 1 ≤ k this is always true.

All the cases have been analyzed, the proof is finished.
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Abstract. This paper presents a formal framework for representing all
reversible polygonalizations of a digital contour (i.e. the boundary of a
digital object). Within these polygonal approximations, a set of local op-
erations is defined with given properties, e.g., decreasing the total length
of the polygon or diminishing the number of quadrant changes. We show
that, whatever the starting reversible polygonal approximation, iterat-
ing these operations leads to a specific polygon: the Minimum Length
Polygon. This object is thus the natural representative for the whole
class of reversible polygonal approximations of a digital contour. Since
all presented operations are local, we obtain the first dynamic algorithm
for computing the MLP. This gives us a sublinear time algorithm for
computing the MLP of a contour, when the MLP of a slightly different
contour is known.

1 Introduction

It is often interesting to construct a polygonal approximation of digital contours
(i.e. the boundary of a digital object) in order to study their geometry. We are
interested in reversible polygonalizations, which have the property that they are
digitized exactly as the input digital contour. Classically, a reversible polygon can
be obtained by greedy decomposition of the input contour into longest digital
straight segments [21,10]. This decomposition depends on the starting point,
but has at most one more edge than the reversible polygon with the minimal
number of edges. A reversible polygonal approximation which minimizes the
integral summed squared error can also be sought [5]. Another classical reversible
polygon is the Minimum Length Polygon (MLP) [12,16,6]. It is a good digital
tangent and length estimator [9,3] and is proven to be multigrid convergent in
O(h) for digitization of convex shapes, where h is the grid step (reported in
[8,17,18]). Several linear-time algorithms exist to compute it [13,14].

The contributions of this paper are twofold. First, we introduce a kind of
algebra within all reversible polygonal descriptions of a given digital contour.
Each digital contour thus induces a class of reversible polygons which have all
the same digitization. A set of valid operations is then defined to pass from one
polygon to another within the same class. We show that the subset of operations
we provide is necessary and sufficient to go from any element of a class to the
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MLP of the same class. In a sense, the MLP acts as a natural representative
of all the reversible polygonal approximations. Secondly, this approach leads us
to a dynamic algorithm for computing the MLP. Since all operations are local
with controlled complexity, given the MLP of a given contour C of size n, after
a local perturbation on this contour, that is to add or remove one pixel to the
region bounded by C, the MLP of this new region can be computed in O(log n).

Furthermore, a dynamic algorithm for computing the MLP is interesting in
several applications. It has been shown that the MLP is a very good regularizer
for digital deformable models [22]. Unfortunately, existing algorithms are not
dynamic, and the MLP is thus recomputed at each iteration for each possible el-
ementary deformations. A dynamic MLP thus induces a dramatic improvement
in the computation speed of digital deformable models. Another application is
the computation of multiscale digital representations of a digital object [15]. The
MLP of each multiscale contour could thus be computed directly from the de-
composition into digital straight segments computed by their analytic approach.

2 Preliminaries

We call digital contour C a simple 1-curve in Z2 (in the terminology of [8], §7.3.2,
p. 243), such that its cell representation has two boundaries that are Jordan
curves. The inner curve (resp. outer curve) is called the inner polygonal curve of
C (resp. the outer polygonal curve of C). The inner polygon IP(C) is the inner
polygonal curve with its inside in R2. Similarly the outer polygon OP(C) is the
outer polygonal curve with its inside in R2. See Fig. 1 for an illustration. Remark
that C, IP(C) and OP(C) are all polyominoes such that IP(C) and OP(C) have
vertices in Z2 while the interpixel path of C has vertices in Z2 + (1/2, 1/2)).

One can use for instance a Freeman chain to code a digital contour as a word
over the alphabet (0, 1, 2, 3), the associated displacements written as:

−→
0 = (1, 0),−→

1 = (0, 1) ,
−→
2 = (−1, 0) and

−→
3 = (0,−1). These words are usually called

contour words and the contour word of a digital contour C is denoted by F (C).
In order to simplify the presentation, we will assume that digital contour are
always encoded in a clockwise manner.

Clearly, any curve among the digital contour, the inner polygonal curve and
the outer polygonal curve, completely defines the others. For instance starting
with the digital contour C, the Freeman chain code of the inner polygonal curve
is obtained by removing one step in each turn abkc of F (C) with k ≥ 1 and
(a, b, c) ∈ {(0, 3, 2), (1, 0, 3), (2, 1, 0), (3, 2, 1)} by abk−1c and adding one step in
each turn abkc with k ≥ 1 and (a, b, c) ∈ {(0, 1, 2), (1, 2, 3), (2, 3, 0), (3, 0, 1)}
by abk+1c. Similarly, the Freeman chain code of the outer polygonal curve is
obtained from F (C) in the same way by adding one step in former case and
removing one in the latter one.

2.1 Minimum Length Polygon

Following the works of Sloboda, Zat́ko and Stoer [17,20,19] (or see [7,8]), we
define the minimum length polygon (MLP) of C as the shortest Jordan curve
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C OP(C)

IP(C)

MLP

Fig. 1. A digital contour C with its inner polygon IP(C), its outer polygon OP(C) and
its MLP which is, in a clockwise manner, up to circular permutation, the grid-curve

[(1, 0)3, σ+, (3, 2), (1, 0), σ+, (̃1, 1), (̃1, 1), (1, 0), σ+, (̃1, 1), (1, 0), σ+, (̃2, 1), (1, 0), σ+,
(1, 1), (1, 0)2, σ+, (1, 2), (3, 1)]

which stays inside the 1-pixel width band drawn by the cell representation of C.
More precisely, letting A be the family of simply connected compact sets of R2,
we define:

Definition 1. The minimum perimeter polygon of two polygons V, U with V ⊂
U◦ ⊂ R

2 is a subset P of R
2 such that

P = argminA∈A, V ⊆A, ∂A⊂U\V ◦Per(A), (1)

where Per(A) stands for the perimeter of A, more precisely the 1-dimensional
Hausdorff measure of the boundary of A.

Definition 2. The minimum length polygon (MLP) of a digital contour C is
the minimum perimeter polygon of IP(C), OP(C).

Other equivalent definitions for MLP may be found in [13,14]: they are based
either on arithmetic or word combinatorics. In [17], it is shown that Equation
(1) has a unique solution.

3 Algebra on Reversible Polygonal Representations

We wish to classify polygons with integer vertices according to the digital con-
tour that they represent. Indeed, many different polygons may represent the
same contour. More precisely, a reversible polygonal representation (RPR) of C
is a polygon whose edges stays in OP(C) \ IP(C)◦, whose vertices are integer
vertices of either OP(C) or IP(C) and with an extra bit of information per vertex
specifying if it touches the inside or the outside of the band. It is clear that the
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digital contour can be reconstructed from such object by computing the set of
intersected pixels. If an edge intersects the interior of a pixel, then it is part of
C while if the edges intersect only the border of a pixel, to the abovementioned
extra bit of information allows to determine if this pixel is part of C or not.

We wish now to find a natural representative for all the RPR of a given
contour C. Our approach is to look for the shortest one. Since the MLP of C
is one RPR of C, our unique representative will be the MLP. We thus provide
a notation for RPR and a set of operations within RPR. These operations are
designed so that they shorten the RPR and they act locally. Furthermore, we
show that they preserve the digital contour.

3.1 Grid-Vector, Grid-Curve

Definition 3. A grid-vector is a triplet x = ((p, q), k, δx) ∈ N2 × N × B where
gcd(p, q) = 1, q/p is the slope of x (with the convention that ∞ = 1/0), k ≥ 1 is
its number of repetitions and the boolean δx is true when one endpoint of x lies
on the inner polygonal curve and the other endpoint lies on the outer polygonal
curve.

Such grid-vector x = ((p, q), k, δx) is noted (p, q)k if δx is F and (̃p, q)k if δx is
T, the ∼ meaning that a side change has occurred. A grid-vector has no specific
orientation since its slope is in [0,∞[. Any grid-vector with slope 0 or∞ is called
trivial. The translation associated to a grid-vector is always given relatively to a

pair of letter (a, b) from the alphabet {0, 1, 2, 3} and is denote using
(a,b)−→. These

letters represents the current orientation context, i.e. the oriented quadrant. The
symbol ∼ specifies a side change and thus inverts the current orientation context.
Therefore, after this edge, the context is changed (see Fig. 2). Translations for
arbitrary grid vectors are given by the formulae:

(a,b)−−−−→
(p, q)k = k(p−→a + q

−→
b ), and

(a,b)−−−−→
(̃p, q)k = k(p

−→
b + q−→a ).

The reversed point of view induced by the symbol ∼ explains the different for-
mulae for translation.

Of course, such translation looses any geometrical interpretation when the
pair of letters (a, b) represent elementary steps in the opposite direction as in
the case of (0, 2) or (1, 3). This situation should never happen.

In order to completely describe a circular band, grid-vectors alone are not
enough. We need extra information regarding quadrant changes. That is why we
introduce the σ operators that act solely on the current orientation context (i.e.,
on the pairs of letters):

σ−(a, b) = (b, a): this operator is a turn toward the exterior,
σ+(a, b) = (b, a): this operator is a turn toward the interior,
with the convention 0 = 2, 1 = 3, 2 = 0, 3 = 1.
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In order to unify the notations, we associate the nil vector to any operator so
that

−→
σ+ =

−→
σ− =

−−−→
(0, 0). Similarly, it is convenient to see each grid-vector as an

operator on a pair of letters acting in the following way, let x = ((p, q), k, δx),

x(a, b) =
{

(b, a) if δx is T,
(a, b) otherwise.

An ordered list of grid-vectors and operators defines a 1-pixel width band in
the following way.

Definition 4. A grid-curve Γ is a list Γ = [l0, l1, . . . , ln−1] where each li is
either a grid-vector or one of the operators σ+, σ−.

The geometrical interpretation of a grid-curve Γ = [l0, l1, . . . , ln−1] starting with
the pair of letters (a, b) is the polygonal curve PΓ = [P0, P1, . . . , Pn] where each
point Pi is given by:

– P0 = (0, 0) and (a0, b0) = (a, b).

– Pi+1 = Pi +
(ai,bi)−→

li and (ai+1, bi+1) = li(ai, bi) for each i ∈ {0, 1, . . . , n− 1}.
Figure 2 illustrates this construction. This figure also highlights the fact that
each grid-curve defines a one pixel-wide band bounded on each side by a digital
curve and that the segment associated with each grid-vector x = ((p, q), k, δx)
intersects one of these digital curves exactly k + 1 times. More precisely, each
segment starts on one of the two digital curves that form the band, and it
intersects one curve exactly every p + q steps. In order to simplify the notations
when concatenating two grid-curves, we write Γ (a, b) = (an, bn).

3.2 Christoffel Words, Interpixel Path, RPR

In order to digitize a grid-vector as a piece of digital contour, we make use of
a well-known discrete analog to straight segments, the Christoffel words [2,11].
They have a lot of equivalent definitions, for instance they are the 4-connected
Freeman chaincode between two consecutive upper leaning points of a digital
straight line, or they are the Lyndon factors of sturmian words (e.g., see [1,13]).

The Christoffel word of slope q/p over the alphabet (a, b) is denoted by C(a,b)
q/p .

We then associate to each element li of a grid-curve Γ = [l0, l1, . . . , ln−1] a word
F(a,b)(li) defined as

F(a,b)

(
(p, q)k

)
=
(
C(a,b)

q/p

)n

, F(a,b) (σ−) = b,

F(a,b)

(
(̃p, q)k

)
= abF(b,a)

(
(p, q)k

)
, F(a,b) (σ+) = a.

The word F(a,b)(Γ ) is defined by gluing all F (li). It may contain factors of the
form aa which have no real geometrical interpretation. We thus project this word
in the free group in order to remove these back and forth moves. This reduced
word (each aa = ε, the empty word) is called the interpixel path F ε

(a,b)(Γ ). See
Fig. 2.
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F(0,1)

((
(1, 2), 2, F

))
= (011)2,

F(0,1)

((
(1, 2), 1, T

))
= 03 · 100,

F(1,0)

((
(3, 1), 1, T

))
= 12 · 0001,

F(0,1)

((
(1, 0), 2, F

))
= 02,

F(0,1)

(
σ+

)
= 0,

F(3,0)

((
(3, 2), 1, T

))
= 32 · 00303,

F(0,3)

(
σ−) = 1,

F(3,2)

((
(2, 1), 1, F

))
= 332,

F(3,2)

((
(2, 1), 1, T

))
= 30 · 223,

w = 011011 · 0 ��31 00 · 1��20 001 · 00 · 0 · 3 ��20 030 ��31 332 · 3 ��02 23,
= 011011 · 000 · 1001 · 00 · 0 · 3030 · 3 · 32 · 323.

Fig. 2. Illustration of the grid-curve Γ = [(1, 2)2, (̃1, 2), (̃3, 1), (1, 0)2, σ+, (̃3, 2), σ−,

(2, 1), (̃2, 1)] starting with the letters (0, 1). Each vector of the polygonal curve PΓ

is represented by an arrow. The interpixel path w obtained by the concatenation of
the Freeman code associated to each element of the grid-curve Γ is shown with a
dashed line.

Now, let (Qi) be the clockwise vertices of some RPR of C and let λi be the
boolean that is true when Qi lies on IP(C). The following sequence defines the
grid-curve of Q, for all i:

1. if
−−−−−→
Qi−1Qi and

−−−−−→
QiQi+1 are not in the same quadrant:

– if λi = T

• if
−−−−−→
QiQi+1 is to the right of

−−−−−→
Qi−1Qi, append as many σ+ as the

number of clockwise π/2 rotations to bring these two vectors in the
same quadrant.

• else append as many σ− as the number of counterclockwise π/2
rotations to bring these two vectors in the same quadrant.

– else append the opposite operators of above paragraph.
2. letting (a, b) be the current orientation context, then

−−−−−→
QiQi+1 is some u−→a +

v
−→
b ; let also p = gcd(u, v).

– if λi = λi+1 append (u/p, v/p)p,
– else append ˜(v/p, u/p)p.

The following proposition formalizes the fact that the previous construction does
build the correct digital contour.

Proposition 1. For any RPR Q of a digital contour C, the interpixel path of
the grid-curve of Q has the same chaincode as C up to conjugacy.

For space reasons, we do not detail the proof here. Using this property we will
be able to validate simplification operations defined on grid-curves by showing
that they preserve the digital contour.
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In order to adopt a local approach to process RPR and the associated grid-
curve, we will consider sublists of such grid-curves. Note that they are also
grid-curves (but they do have extremities unlike grid-curves defined by RPR).

We introduce an equivalence relation between these objects, because they
geometrically define the same one pixel-wide band and preserve the orientation
context.

Definition 5. Two grid-curves Γ = [l0, l1, . . . , ln−1] and Γ ′ = [l′0, l
′
1, . . . , lm−1]

are equivalent, noted Γ ≡ Γ ′, if F ε
(0,1)(Γ ) = F ε

(0,1)(Γ
′) and Γ (0, 1) = Γ ′(0, 1).

For instance, [(1, 1), (1, 1)] ≡ [(1, 1)2] since 01 · 01 = (01)2 and both curves leave
the alphabet unchanged. On the other hand, Fig. 5 shows a less trivial example.

4 Simplification Rules

In order to compute the canonical representation of a grid path, we define sim-
plification rules, which are detailed in the following subsections:

– Merging rules: given by equations (2) and (3).
– Splitting rules: given by equation (4).
– Operator simplification rules: given in Section 4.4.

When applied to a grid curve Γ , each of these rules generates another grid
curve Γ ′ such that F ε

(a,b)(Γ ) = F ε
(a,b)(Γ

′) but in each case, we can ensure that
‖Γ‖ < ‖Γ ′‖ (the euclidean length is smaller), or ‖Γ‖ = ‖Γ ′‖ and |F(a,b)(Γ )| <
|F(a,b)(Γ ′)| (same euclidean length but shorter word).

4.1 Grid-Vectors Fusion Rules

Given two vectors −→u = (p, q) and −→v = (r, s) it is well know that the area of the
oriented parallelogram defined by −→u and −→v is simply ps− qr. According to this,
we define the product of x = ((p, q), k, δx) and y = ((r, s), l, δy) as

x⊗ y =
{

ps− qr if δy = F,
pr − qs if δy = T.

The sign, positive or negative, of x ⊗ y has the following geometrical
interpretation:

– x ⊗ y < 0. In such case, the grid-curve [x, y] defines a convex vertex of the
RPR that is optimal in the sense that it may not be replaced by a shorter
polygonal curve that stays within OP(C) \ IP(C)◦.

– x ⊗ y = 0. In such case, x and y are co-linear. When δy = F then y may
simply be added to the number of repetitions of x so that [x, y] may be
replaced by [((p, q), k + l, δx)]:

[((p, q), k, δx) , ((p, q), l, F)] ≡ [((p, q), k + l, δx)]. (2)

On the other hand, if δy = T then no simplification is possible and [x, y] is
optimal.
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– x⊗ y > 0. In such case, [x, y] is not optimal and there exist some grid-curve
Γ such that ‖Γ‖ < ‖[x, y]‖.

Therefore we focus our attention on pairs of grid-vectors x and y such that
x ⊗ y > 0. There are two cases to consider, whether x ⊗ y = 1 or x ⊗ y > 1. In
the first case, the two grid-vectors are compatible: there is no integer points in
the triangle formed by (p, q) and (r, s) and these two segments may be replaced
by the segment (p + r, q + s). This is detailed in Section 4.2. In the second case
however, the latter segment would go outside of OP(C) \ IP(C)◦. Hence, [x, y]
has to be replaced by some grid-curve Γ = [l1, l2, . . . , ln] in which for each i
from 1 to n− 1, li ⊗ li+1 ≤ 0. In section 4.3 we show how to compute Γ in time
proportional to the depth of the continued fraction development of the slopes of
x and y.

4.2 Merging Grid-Vectors

The following merging operation is based on the well known splitting formula
of digital straight segments (see [23]). This is equivalently known in the field of
word combinatorics as the standard factorization of Christoffel words (see [1,2]).

Let x = ((p, q), 1, F) and y = ((r, s), 1, F) be two grid-vectors such that x ⊗
y = 1. In such case, x and y may be merged in order to form the grid-vector
z = ((p + r, q + s), 1, F) so that

[x, y] ≡ [z] and ‖[x, y]‖ > ‖[z]‖.
In particular, a grid-curve of the form [x, x, . . . , x, y] with k copies of x may be

simplified to the shorter [((kp + r, kq + s), 1, δx)]. Similarly, [x, y, y, . . . , y], with
l copies of y, is merged to [((p + lr, q + ls), 1, F)]. On the other hand, if both x
and y are repeated more then one time, a more complex simplification operation
(explained in Section 4.3) is needed. By taking into account the possible changes
from the inner to the outer polygon and vice versa, we obtain the following
merging rule:

– Let x = ((p, q), k, δx) and y = ((r, s), l, δy) with either δy = F and min(k, l) =
1 or δy = T and l = 1, then

[x, y] ≡ [z] where z =
{

((kp + lr, kq + ls), 1, δx) if δy = F.
((kp + ls, kq + lr), 1,¬δx) otherwise. (3)

4.3 Split and Merge Formulae

In order to simplify a grid-curve into a shorter one, we introduce splitting opera-
tions. Given two grid-vectors x and y such that x⊗ y > 1, both x and y are split
in a specific manner. The resulting grid-curve is such that merging operations
are sufficient in order to obtain the shortest equivalent grid-curve.

Let x = ((p, q), 1, F) be a non-trivial grid-vector and let [u0; u1, . . . , un] be the
continued fraction development of q/p. We note qi/pi is the i-th convergent of q/p
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Fig. 3. Illustration of the upper and lower splitting operations. On the left, (3/5) is

split to S↓((3/5)) = [ (1/2)2, (1/1) ] and S↑((3/5)) = [ (̃1/1), (2/1), (̃1/2) ]. On the right,

the segment (̃5/3) is split to S↓((̃5/3)) = [(1/2)2, (̃1/1)] and S↑((̃5/3)) = [(̃1/1), (2/1)2].
On both examples, the upper splitting S↑ is shown in red while the lower splitting S↓
is shown in green.

that is the fraction qi/pi = [u0; u1, . . . , ui]. In order to lighten the presentation,
we introduce the following notations: xi = (pi, qi), x−1 = (0, 1), x−2 = (1, 0).
Also, more generally, if y = ((r, s), l, δy) then y−1 = ((s, r), l, δy) and ỹ =
((r, s), l,¬δy) . The following operation is exactly the opposite operation of (3).

Definition 6. The basic splitting of the grid-vector xn is the grid-curve:

S(xn) =

⎧⎨⎩
[x2m−2, x

u2m
2m−1] if n = 2m,

[xu2m+1
2m , x2m−1] if n = 2m+1,

Computing the inverse of any number from its continued fraction development
is an easy task. This observation leads to following formula:

if S(x) = [uk, vl] then S(x−1) = [(v−1)l, (u−1)k].

The basic splitting operation is only defined on grid-vector of the form x =
((p, q), 1, δx) with δx = F. We extend it to all segments of multiplicity one.

Definition 7. The upper splitting S↑ and the lower splitting S↓ are defined as
follow, let [uk, vl] = S ((p, q), 1, F)) then

x = ((p, q), 1, F) x = ((q, p), 1, T)

S↑(x) [ (̃v−1)l, (u−1)k−1, ũ ] [ (̃v−1)l, (u−1)k ]

S↓(x) [ uk, vl ] [ uk, vl−1, ṽ−1 ]

By repetition of the above splittings, any grid-vector may be decomposed in
order to isolate a trivial grid-vector on the left or the right. See Fig. 4 for an
illustration of the following definition.
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←− −→

Fig. 4. In the center, an illustration of the grid-vector x = (̃7, 4). On the left, the

left splitting S←(x) = [(̃1, 0)2, (0, 1), (2, 1)2, (1, 1)]. On the right, the right splitting

S→(x) = [(1, 1), (1, 2)2, (1, 0), (0, 1), (̃1, 0)].

Definition 8. Let x = ((p, q), k, δx) be a grid-vector, the left splitting S←(x)
and the right splitting are defined as follows:

– if k = 1 and x is trivial, S←(x) = S→(x) = [x];

– if k ≥ 2, S←(x) = S← (((p, q), 1, δx)) + [((p, q), k − 1, F)],

S→(x) = [((p, q), k − 1, δx))] + S→ (((p, q), 1, F)) ;

– otherwise, let S↑(x) = [l1, l2, . . . , ln] and S↓(x) = [l′1, . . . , l
′
m]

S←(x) = S←(l1) + [l2, . . . , ln],

S→(x) =

⎧⎨⎩ [l1, . . . , ln−1] + S→(ln) if δx = F,

[l′1, . . . , l′m−1] + S→(l′m) if δx = T.

(4)

Proposition 2. Let x = ((p, q), k, δx) be a grid-vector, both left and right split-
tings of x are such that: [x] ≡ [S←(x)] ≡ [S→(x)].

Sketch of the proof. These equivalences come from successive applications of
splitting formula on digital straight segments.

Proposition 3. The number of grid-vector in both left and right splittings of
x = ((p, q), k, δx) is Θ(n) where n is the depth of the continued fraction develop-
ment of q/p.

Proof. It suffices to see that each time a basic splitting operation is performed
(Definition 6), the depth of the continued fraction development of the slopes
decreases by one or two. ��
Since the depth n of a continued fraction q/p = [u0; u1, . . . , un] is smaller than
log2(p + q), a weaker form of the previous proposition states that the number of
grid-vector is some O(log N) where N is the length of the contour word.

Algorithm 1 illustrates how to simplify a grid-cruve by the use of our split and
merge formulae. The function Merge called on line 15 of Algorithm 1 performs
the following task: the two grid-curves given as input being a right splitting,
S→(x) = [r1, r2, . . . , rn] and a left splitting, S←(y) = [l1, l2, . . . , lm], both rn
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Algorithm 1. Simplification
Input: Γ = [l0, l1, . . . , ln−1] where each li is a grid-vector
Δ = [ ];1

while Γ is not empty do2

y ← Γ.pop front() ;3

if Δ is empty then4

Δ.push back(y);5

else6

x ← Δ.pop back();7

if x ⊗ y < 0 or (x ⊗ y = 0 and δy = T) then8

Δ.push back(x);9

Δ.push back(y);10

else11

if there exist z such that [z] ≡ [x, y] then12

Γ.push front(z);13

else14

Γ ← Merge (S→(x), S←(y)) + Γ ;15

return Δ;16

and l1 are trivial and may be replaced by the grid-vector (1, 1). Boths lists are
then concatenated into C = [r1, . . . , rn−1, (1, 1), l2, . . . , lm]. Finally, if there is a
pair of consecutive grid-vectors u, v in C such that, according to the fusion rules
described by equations (2) and (3), there exist z satisfying [u, v] ≡ [z], then the
pair u, v is replaced by z. This last step is performed iteratively until there are
no such pairs left.

The following proposition states that whenever line 15 of Algorithm 1 is ex-
ecuted, the grid-curve is simplified in the sense that output curve is strictly
shorter.

Proposition 4. Given two grid-vectors x and y such that x ⊗ y > 1, the grid-
curve Γ = Merge (S→(x), S←(y)) is such that ‖Γ‖ < ‖[x, y]‖.
Sketch of the proof. Consider the grid-curve Γ = S→(x) + S←(y) and the asso-
ciated polygon PΓ = [P0, P1, . . . , Pn], as defined in Section 3.1. Let Pi be the
point between S→(x) and S←(y). One checks that all points P1, P2, . . . , Pi−1,
Pi+1, . . . , Pn−1 lies on the same polygonal contour (inner or outer) while Pi

lies on the other one. The fusion of two grid-vectors removes a points from the
associated polygon. In particular, the first operation performed by Fusion is to
remove Pi from PΓ . Each pair of consecutive grid-vectors u, v from C is such
that either u ⊗ v ≤ 0 or the pair u, v is replaced by a single grid-vector. When
the process stops, the resulting grid-curve Δ defines a convex region.

Finally, let X be some point far enough from P0 in the direction −→y − −→x .
Consider ΠΔ the polygon defined by Δ followed by the line segments PnX and
XP0 and, similarly, Πxy the polygon P0PiPnA. The polygon ΠΔ is a convex
polygon strictly included in Πxy and thus its perimeter is strictly smaller.
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−→ −→

Fig. 5. Illustration of a grid-curve simplification. On the left Γ =

[(1, 4), σ−, (0, 1)2, σ−, (2, 1)] and on the right Δ = [(̃1, 0)3, σ+, σ+, (0, 1)2, (̃1, 0)]
and Γ ≡ Δ since 01111 · 3 · 0 · 22223 = 03 · (1)3 · 1 · 2 · (2)2 · 30 · 2 and both curves
transform the alphabet (0, 1) into (2, 3). On the other hand the euclidean length of Δ
is smaller than the length of Γ .

4.4 Simplification Rules for Operators

As mentioned previously, operator σ+ codes a quadrant change toward the inside
which means that a part of a RPR of the form [x, σ+, y] is locally optimal. On
the other hand, operator σ− may not appear in a MLP since it codes a quadrant
change toward the outside (See Fig. 2). We define local rules to remove the σ−

operators in a grid-curve.
First of all, using the left and right splitting operations defined in the previous

section, we can easily update the grid-curve so that around a σ− operator there
are only trivial grid-vectors. Also, by using the relation [(0, 1)] ≡ [σ−, (1, 0), σ+]
we may only consider trivial grid-vectors with slope 0.

Simplification rules for operator σ− are all local and thus treated in constant
time. These rules are of three types:

Push to the right. The following rules create a shorter grid-curve by replacing a
pattern of the form →↑ by ↗.

[(1, 0), σ−, (1, 0)] ≡ [(1, 1), σ−], and [(̃1, 0), σ−, (1, 0)] ≡ [(̃1, 1), σ−]. (5)

Cancellation rules. Given an occurrence of σ− in a grid-curve, the trivial grid-
vectors right before and after may go back and forth within a single pixel. Such
situation appears in a locally-closed pattern. It is a grid-curve such that: (i) it
includes exactly one or two trivial grid-vectors before σ− and one or two more
after σ−, (ii) it is closed in the sense that the first and last points of PΓ are the
same. Given such locally-closed pattern Γ , if there exists Δ ∈ {[ ], [σ+], [σ+, σ+]}
such that Γ ≡ Δ then replace Γ by Δ. When implemented these rules may be
tabulated so as to apply them in constant time.

Correction rules. When performing a left or right splitting operation, we make
the assumption that all points below the grid-vector belongs to the same polygon
(inner or outer) and all those above lies in the other polygon. Although this is
true in general, it may not be the case for extremities. For example, consider the
grid-vector (1, 4) from Fig. 5. In order to obtain a trivial grid-vector right before

σ−, (1, 4) is replaced by S→(x) = [(̃1, 0)4, (̃1, 0)] while the correct substitution
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would be to replace (1, 4) by [(̃1, 0)3, (̃0, 1), (1, 0)]. One could modify the splitting
operations in order to take these situation into account but we prefer to use above
splitting operations as is and eventually correct the curve afterward. These errors
are locally-closed patterns in which the curve changes from one polygon (inner or
outer) to the other one an odd number of times. Geometrically, this would imply
that a point belongs to both polygons at the same time, which is impossible.
Our splitting operations may cause only two types of these faulty locally-closed
patterns. Let Δ = [l1, . . . , lk] be a locally-closed pattern of the grid-curve Γ :

– if F ε
(0,1)(Δ) = 0 and Δ ((0, 1)) = (2, 1). In this case, let x be the trivial grid-

vector right after Δ in Γ , the pattern Δ + [x] = [l1, . . . , lk, x] is replaced by
[σ−, x̃].

– if F ε
(0,1)(Δ) = 0 and Δ ((0, 1)) = (3, 2). In this case, let y be the trivial

grid-vector with multiplicity one right before Δ in Γ , the pattern [y] + Δ is
replaced by [σ+, ỹ, σ−].

5 Concluding Remarks

We have presented three types of simplification rules (merging rules, splitting
rules and operators simplification rules) that allows to compute the MLP of
any given RPR with local operations. Starting from the interpixel path of some
discrete region, one may use these rules in order to compute its MLP. On the
other hand, the overall computation time would be significantly lower by using
the algorithms presented in [13,14] since their approach are more straightforward
than the iterative one obtained from our local operations. Nevertheless, given
some discrete contour C and its MLP, if a local perturbation is performed on C,
for instance change a factor 01 by 10 in the contour word, a RPR which is not
the MLP can be deduced directly from the previous one. Using the techniques
presented in this paper, a dynamic computation of the new MLP from this RPR
is possible in time sublinear with respect to the length of the section over which
both MLPs differ. We plan to use this algorithm in digital deformable partition
models where the length of region boundaries have to be computed after each
modification [22,4].
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Abstract. Many formal models have been proposed to recognize or to
generate two-dimensional words. In this paper, we focus our analysis
on (regular) pure 2D context-free grammars, regional tile grammars and
Pr̊uša grammars, showing that nevertheless they have been proposed as a
generalization of string context free grammars their expressiveness is dif-
ferent. This work refines the relationship among the classes of languages
generated by the above grammars and Local languages and states some
considerations about closure properties of (regular) pure 2D context-free
languages.

1 Introduction

The interest in extending the theory of formal languages led considerable research
effort towards the two-dimensional languages where words can be considered as
pictures. Several approaches have been proposed during the years; consequently,
a general classification and a detailed comparison of the classes proposed turn to
be necessary, though this work can be really hard. Lots of proposed formalisms
are based on different approaches (automata-based or grammar-based are the
most common ones) whose different nature results, almost always, in classes of
languages which are incomparable each other.

In these recent years,much work is devoted to the study of formalisms which can
be classified as the ones defining the regular languages class and showing interest-
ing properties, i.e., closure properties, polynomial membership, power of expres-
siveness. The most accepted formalism as candidate for regular languages is the
class REC introduced by Restivo and Giammaresi in [4]; it is defined by the family
of Tiling Systems (TS) which can be considered as a generalization to two dimen-
sions of the automata recognizing mono-dimensional words. The class is shown to
be closed under all Boolean operations, row/column concatenations but not under
complement and the membership problem results to be NP-complete. A TS lan-
guage is given by projectioning symbols of a local language (defined by overlapping
matching edges of square tiles of four characters) to symbols of the final language.
The class of languages resulting from local composition of tiles is named as LOC.

Grammars can be considered as an alternative approach to define a language.
Informally, two-dimensional grammars, so far proposed, can be classified into
two distinct groups: isometric grammars transform a picture by means of rules
which do not modify the dimensions of the area on which they are applied
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and, so, of the whole picture. Conversely, non-isometric grammars consist of
rules which can modify the dimensions of pictures; they transform a starting
axiom by means of successive expansions of its sub-pictures, i.e., either terminals
or non-terminals are replaced by a sub-pictures according to the rules defined.
Recently, in [3],[2], it is proposed an isometric family of grammars, named as
Tile Grammars (TG), based on the notion of picture tiling, which encompasses
most of the existing grammar models and known formalisms. A restriction of
the family, called Regional Tiling Grammars (RTG), is also introduced: it is
more expressive than several existing formalisms, but incomparable with REC,
yet it offers a polynomial-time parsing algorithm. Pr̊uša [7] gave a different
definition of Context-Free two-dimensional languages from previous ones. The
formalism consists of a non-isometric family of grammars which yields a set
of languages that is incomparable with REC. In [1],[6], the authors show the
proper inclusion of the languages generated by Pr̊uša grammars in the family
of languages generated by RTG. More recently, Subramanian et al. proposed in
[12,11] a very simple non-isometric grammar formalism, called (R)P2DCFG,
which is based on rewriting rules. Two sort of rules are considered which work
separately both on rows and columns. Although the nature of productions limits
the expressive power of the formalism, grammars can be endowed with a control
(regular) language which defines legal sequences of rules to be used in generating
the two-dimensional words. The resulting family of grammars is rather expressive
since all symbols can be possibly used as non-terminals symbols.

In this work, some new closure results of (R)P2DCFL, preliminaries results
about possible extensions of the class P2DCFL considering more expressive con-
trol languages, and a comparison among the above families of languages are shown.

2 Preliminaries

The following notation and definitions are mostly from [4].

Definition 1. Let Σ be a finite alphabet. A two-dimensional array of elements
of Σ is a picture over Σ. The set of all pictures over Σ is Σ++. A picture
language is a subset of Σ++. For h, k ≥ 1, Σ(h,k) denotes the set of pictures
of size (h, k) (where |p| = (h, k), |p|row = h, |p|col = k). The symbol # /∈ Σ
is used when needed as a boundary symbol; p̂ refers to the bordered version of
picture p, as shown in Fig. 2. A pixel is an element p(i, j) of p. If all pixels
are identical to C ∈ Σ the picture is called C-homogeneous. The domain of
a picture p is the set dom(p) = {1, 2, . . . , |p|row} × {1, 2, . . . , |p|col}. Row and
column concatenations are denoted $ and �, respectively. p $ q is defined iff
p and q have the same number of columns; the resulting picture is the vertical
juxtaposition of p over q. pk� is the vertical juxtaposition of k copies of p; p+� is
the corresponding closure. �,k� ,+� are the column analogous. Let p be a picture
over Σ. A subdomain of dom(p) is a set d of the form {x, x+1, . . . , x′}×{y, y+
1, . . . , y′} where 1 ≤ x ≤ x′ ≤ |p|row, 1 ≤ y ≤ y′ ≤ |p|col; also denoted as
(x, y; x′, y′). The set of subdomains of p is denoted D(p). A subdomain is C-
homogeneous (or homogeneous) when all pixels in the associated subpicture are
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p =

p(1, 1) . . . p(1, k)
...

. . .
...

p(h, 1) . . . p(h, k)

p̂ =

# # # # #
# p(1, 1) . . . p(1, k) #

#
...

. . .
... #

# p(h, 1) . . . p(h, k) #
# # # # #

Fig. 1. A picture p and the corresponding bordered picture p̂

identical to C ∈ Σ. Two subdomains da = (ia, ja; ka, la) and db = (ib, jb; kb, lb)
are horizontally adjacent (resp. vertically adjacent) iff jb = la + 1, and kb ≥
ia, ka ≥ ib (resp. ib = ka + 1, and lb ≥ ja, la ≥ jb). We will call two subdomains
adjacent, if they are either vertically or horizontally adjacent. A homogeneous
partition of a picture p is any partition π = {d1, d2, . . . , dn} of dom(p) into
homogeneous subdomains d1, d2, . . . , dn. The unit partition of p, written unit(p),
is the homogeneous partition of dom(p) defined by single pixels. An homogeneous
partition is called strong if adjacent subdomains have different labels.

If a picture p admits a strong homogeneous partition of dom(p) into subdomains,
then the partition is unique and will be denoted by Π(p).

We now show the definitions of the formalisms we will consider in the paper.
Tiling Systems define a notion of recognizability by means of projection of local
properties. A picture over the alphabet Σ is a projection of an isometric picture
over a local underlying alphabet Γ . Tiles can be considered as local “automata
transitions”; and the process of “tiling” corresponds to a run of the automaton
on the picture. Tiling Systems are defined as follows:

Definition 2. A tile is a square picture of size (2, 2); let denote by �p� the set
of all tiles contained in a picture p. If Σ is a finite alphabet, a (two-dimensional)
language L ⊆ Σ++ is local if there exists a finite set Θ of tiles over the alphabet
Σ∪{#} such that L = {p ∈ Σ++ | �p̂� ⊆ Θ}. Let call such a language LOC(Θ).
A tiling system (TS) is a 4-ple T = (Σ, Γ, Θ, π), where Σ and Γ are two finite
alphabets, Θ is a finite set of tiles over the alphabet Γ ∪ {#}, and π : Γ → Σ is
a projection.

Pure CF grammars which make use of only terminal symbols have been well in-
vestigated in the theory of string languages. Pure 2D context-free grammars [12],
unlike Matrix grammars ([9], [10]), admit rewriting any row/column of pictures
with no priority of columns and rows. Row/column sub-arrays of pictures are
rewritten in parallel by equal length strings and by using only terminal symbols,
as in a pure string grammar.

Definition 3. A Pure 2D Context-Free grammar (P2DCFG) is a 4-tuple G =
(Σ, P c, P r, S′) where:

1. Σ is a finite set of symbols;
2. P c = {ci | 1 ≤ i ≤ m}, where a column rule ci is a set of context-free rules

of the form a → α, a ∈ Σ, α ∈ Σ+ s.t. for any two rules a → α, b → β in
ci, |α| = |β| where |α| denotes the length of α;
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3. P r = {ri | 1 ≤ i ≤ n}, where a row rule ri is a set of context-free rules of
the form c → γT , c ∈ Σ, γ ∈ Σ+ s.t. for any two rules c → γT , d → δT in
ri, |γ| = |δ|;

4. S′ ⊆ Σ++ is a finite set of axioms.

Derivations are defined as follows: for any two arrays p1, p2, we write p1 ⇒ p2

if p2 is obtained from p1 by either rewriting a column of p1 by rules of some
column table ci in P c or a row of p1 by rules of some row table ri in P r. The
reflexive transitive closure of ⇒ is denotes as ∗⇒.

The picture array language L(G) generated by G is the set of pictures {p | S ∗⇒
p ∈ Σ++ for some S ∈ S′}. The family of picture array languages generated by
Pure 2D Context-free grammars is denoted by P2DCFL.

It is worth noticing that all pictures derived at each step by applying a rewrit-
ing rule from the set P c or P r are legal pictures. Since non-terminals are not
admitted by the P2DCFG, each derivation consists of pictures in Σ∗∗.

To augment the expressive power of the P2DCFG grammars, the sequence of
rules to be used can be controlled by requiring it represents a word that belongs
to a specific language. Generally, if the control language constitutes a regular
language, the generative power of a grammar, generating a mono-dimensional
language, may not increase; but this does not hold for two-dimensional gram-
mars, as in the case of P2DCFG.

Definition 4. A Pure 2D Context-Free grammar with a regular control
(RP2DCFG) is a tuple Gr = (G, Γ, C) where:

1. G is a P2DCFG grammar;
2. Γ is a set of labels of the rules of P c and P r;
3. C ⊆ Γ ∗ is a regular language associated to the grammar.

Derivations are done as in G except that p is derived from S by means of a
control word w, S ⇒w p, if w ∈ C and p is generated from S by applying the
sequence of rule w. The picture language generated by Gr consists of all the
pictures obtained from G with derivations controlled by C.
The expressiveness of RP2DCFG is greater than the one of P2DCFG. To
demonstrate this fact we first observe that a P2DCFG is a RP2DCFG where
C = Γ ∗. Moreover, the language of squares over the symbol a does not belong to
P2DCFL family but can be generated by a RP2DCF grammar (G, {c, r}, (cr)∗)
where G = ({a}, {c}, {r}, S) and

S → a; c : {a→ aa}, r :
{

a→ a
a

}
. (1)

The control language can belong to more expressive classes like context-free
or context-sensitive languages. In [12], none of them are not considered but the
generative power of P2DCFG augments depending on the expressiveness of
the family of the control language. In the next section, we consider the class
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of CF2DCFL generated by a P2DCFG endowed with a context-free control
language. It will be demonstrated that the family of RP2DCFL is strictly con-
tained in the one of CFP2DCFL.

For our purpose, in order to refine the given definition of this class of gram-
mars, we consider (R)P2DCFG whose alphabet is Σ = ΣT ∪ ΣC where ΣT is
the alphabet of final symbols defining the words and ΣC is a set of auxiliary
characters, control symbols, that are not intended to be symbols of the final pic-
tures of the language but they are involved only in the process of derivation. Yet,
control symbols can not be considered as proper non-terminal symbols since they
have to be rewritten by means of derivations guided by the control language, so
that no control symbol appear in the final picture. As shown in the Section 4,
the use of an auxiliary alphabet of control symbols increases the expressiveness
of the family of languages defined by RP2DCFG as in [12].

The definition of Pr̊uša Grammar is taken from [8] and adapted as in [1],[6].
The formalism extends the generative power of CF Kolam grammars [10], [5],
since it admits rules in which non-terminal symbols can be substituted with
two-dimensional subpictures.

Definition 5. A 2D CF Pr̊uša grammar (PG) is a tuple (Σ, N, R, S), where
Σ is the finite set of terminal symbols, disjoint from the set N of nonterminal
symbols; S ∈ N is the start symbol; and R ⊆ N × (N ∪Σ)++ is the set of rules.

Let G = (Σ, N, R, S) be a PG. We define a picture language L(G, A) over Σ
for every A ∈ N . The definition is given by the following recursive descriptions:
1. if A→ w is in R, and w ∈ Σ++, then w ∈ L(G, A);
2. let A→ w be a production in R, w = (N ∪Σ)(m,n), for some m, n ≥ 1, and

pi,j, with 1 ≤ i ≤ m, 1 ≤ j ≤ n, be pictures such that:
(a) if w(i, j) ∈ Σ, then pi,j = w(i, j);
(b) if w(i, j) ∈ N , then pi,j ∈ L(G, w(i, j));
(c) if Pk = pk,1 � pk,2 � · · ·� pk,n, for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, |pi,j |col =
|pi+1,j |col, and P = P1 � P2 � · · ·� Pm; then P ∈ L(G, A).

The set L(G, A) contains exactly the pictures that can be obtained by applying a
finite sequence of rules (i) and (ii). The language L(G) generated by grammar
G is denoted as L(G, S).

Tile Grammars (TG) [3] perform an isometric derivation process for which ho-
mogeneous subpictures are replaced with isometric pictures of the local lan-
guage defined by the right part of the rules. The derivation process starts from
a S(axiom)-homogeneous picture and terminates when all non-terminals have
been eliminated. A rule A→ ω defines an unbounded number of isometric pairs
of pictures. The left part consists of all A-homogeneous pictures and the right
part of all pictures of a local language over nonterminal symbols.

Definition 6. A tile grammar (TG) is a tuple (Σ, N, S, R), where Σ is the
terminal alphabet, N is a set of non-terminal symbols, S ∈ N is the starting
symbol, R is a set of rules. Let A ∈ N . There are two kinds of rules:

1. fixed size: A→ t, where t ∈ Σ;
2. variable size: A→ ω, ω is a set of tiles over N ∪ {#}.
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Consider a tile grammar G = (Σ, N, S, R), let p, p′ ∈ (Σ ∪N)(h,k) be pictures of
identical size. Let π = {d1, . . . , dn} be a homogeneous partition of dom(p). We
say that (p′, π′) derives in one step from (p, π), written (p, π)⇒G (p′, π′) iff, for
some A ∈ N , there exist in π an A-homogeneous subdomain di = (x, y; x′, y′),
called application area, and a rule A → α ∈ R such that p′ is obtained substi-
tuting spic(p, di) in p with:

1. α ∈ Σ, if A→ α is of type (1); i.e., x = x′ and y = y′;
2. s ∈ LOC(α), if A → α is of type (2) and s admits a strong homogeneous

partition Π(s).

Moreover, π′ = (π\{di})∪(Π(s)⊕(x−1, y−1)). We say that (p′, π′) derives from
(p, π) in n steps, written (p, π) n⇒G (p′, π′), iff p = p′ and π = π′, when n = 0,
or there are a picture p′′ and a homogeneous partition π′′ such that (p, π) n−1=⇒G

(p′′, π′′) and (p′′, π′′)⇒G (p′, π′). We use the abbreviation (p, π) ∗⇒G (p′, π′) for
a derivation with a finite number of steps.

At each step of the derivation, an A-homogeneous subpicture is replaced with
an isometric picture of the local language defined by the right part α of a rule
A→ α, where α admits a strong homogeneous partition. The process terminates
when all nonterminals have been eliminated from the current picture.

Definition 7. The picture language defined by a grammar G (written L(G)) is
the set of p ∈ Σ++ such that

(
S|p|, {dom(p)}) ∗⇒G (p, unit(p)). For short we also

write S
∗⇒G p.

Regional Tile Grammars (RTG) [1],[6] are specialization of Tile Grammars.

Definition 8. A homogeneous partition is regional (HR) iff distinct (not nec-
essarily adjacent) subdomains have distinct labels. A picture p is regional if it
admits a HR partition. A language is regional if all its pictures are so. A re-
gional tile grammar (RTG) is a tile grammar (see Definition 6), in which every
variable size rule A→ ω is such that LOC(ω) is a regional language.

3 Closure Properties and Hierarchy

In this section some closure properties of the class of (R)P2DCFL are inves-
tigated. The P2DCFL family was shown not to be closed under union in [12].
This is not the case of RP2DCFL as shown by the following:

Proposition 1. Let G1
r =(G1, Γ1, C1) and G2

r =(G2, Γ2, C2) be two RP2DCFG.
Then, the language L(G1

r) ∪ L(G2
r) is RP2DCFL.

Proof. Let G1 = (Σ1, P
c
1 , P r

1 , S1) and G2 = (Σ2, P
c
2 , P r

2 , S2) be two RP2DCFG
grammars. It is possible to define the grammar for L(G1

r) ∪ L(G2
r) by renaming

the rules ci/ri of Gj to cj
i/rj

i where j ∈ {1, 2}. So, each rule of G1 and G2 is
indexed by the respective index naming the grammar itself. Let Γ̄1 and Γ̄2 the
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two renamed alphabets naming the row/column the productions, P̄ c
i and P̄ r

i ,
where i ∈ {1, 2}, be the set of productions and C̄1 and C̄2 be the two control
languages over the renamed control alphabets, derived from the previous ones,
C1 and C2, by replacing each ci/ri (of the grammar Gj) with the respective
cj
i/rj

i . The final grammar is the tuple G1∪2
r = (G1∪2, Γ̄1 ∪ Γ̄2, C̄1 ∪ C̄2) where

G1∪2 = (Σ1 ∪Σ2, P̄
c
1 ∪ P̄ c

1 , P̄ r
1 ∪ P̄ r

1 , S1 ∪ S2). ��
The family of P2DCFL was shown not to be closed under row/colum concate-
nation in [12]; this holds also for the family of RP2DCFL as shown here.

Proposition 2. The family of RP2DCFL is not closed under row/column con-
catenation.

Proof (hint). Let us consider two RP2DCFG grammars G1
r and G2

r defined in
the following way over the alphabet Σ = {a, b}:
1. G1

r = (G1, Γ1, C1), where
– G1 = (Σ, {c}, {r}, S);
– S → a;
– Γ1 = {c, r};
– c : {a→ ab, b→ ba}, r :

{
a→ a

b
, b→ b

a

}
;

– C1 = (cr)∗;
2. G2

r = (G2, Γ2, C2), where
– G2 = (Σ, {c′}, {r}, S);
– Γ2 = {c′, r};
– c′ : {a→ ab, b→ ab};
– C2 = (c′r)∗.

The two grammars produce two different languages of squares of a, b. Since the
row production r does not alter the rewritten symbols a, b (it, indeed, rewrites
a, b into a couple a/b, b/a where the first position is again a, b) then the first row
of the two squares is defined by two different string languages: L1 = a(a∗b+)+

and L2 = a(b+a∗)+. It is possible to show the grammar defining the column
concatenation of the previous languages needs a CF control though a generic
language of rectangles (n, 2n) of a, b can be defined by a RP2DCFG. The pro-
duction b → ba and b → ab are in conflict; they can be only distinguished by
renaming one of the two left part, e.g., b′ → ab′ for G2. But each occurrence of
b in the production set of G2 must be renamed, in turn, to avoid possible new
conflicts. The grammar of the language equivalent to the column concatenation
is given by G12 = (Σ12, P

c
12, P

r
12, S12) where Σ12 = {a, b, a′, b′}, P c

12 = {c1, c2},
P r

12 = {r12}, S12 → aa′ and r12 :
{

a→ a
b
, b→ b

a
, a′ → a′

b′ , b
′ → b′

a′

}
, c1 = c,

c2 = c′ and each occurrence of a, b in c2 is primed, endowed with a regular con-
trol C12 = (c1c2r12)∗. Each derivation yields a picture composed by two squares:
the left one over {a, b} and the right one over {a′, b′}. Each occurrence of primed
characters have to be changed into the corresponding non-primed characters of
the final alphabet {a, b} by means of the rule: f : {a′ → a, b′ → b}. Since the
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dimension of the squares is arbitrarily defined, and the rule f works only on one
row/column at a time, the control language became: (c1c2r12)nfn which is not
regular. ��
Corollary 1. The family of RP2DCFL language is strictly included in the fam-
ily CFP2DCFL.

Proposition 3. The family of P2DCFL is not closed under intersection.

Proof. It is possible to provide a counterexample which shows the intersection
of two languages in P2DCFL yields a language in RP2DCFL. Let Lrect(a) =
{p ∈ {a}∗∗}, Lsquare(a) = {p ∈ {a}∗∗ | |p|row = |p|col} be the languages of
rectangles and squares, respectively, of a. The grammar in (1), shown above,
defines Lsquare(a); rectangles are given by the same grammar without the control
language. Let L be the language given by the union of the following three classes
of languages: (i) squares of a bordered by a right column of b, a row of c on
the bottom and a d in the right-bottom corner; (ii) rectangle of a bordered by a
right column of b, a row of c on the bottom and a e in the right-bottom corner
and (iii) the class of squares of a. The language L is defined by the grammar
G = (Σ, P c, P r, S) where Σ = {a, b, c, d}, P c = {c, f}, P r = {r},

c : {b→ ab | a, d→ ce | a}, r :
{

c→ c
c
| a, e→ b

d

}
,

f : {b→ a, d→ a, d→ a}, S → a b
c d

The rule f is, possibly, used to derive squares of a. It follows that Lrect(a) ∩L is
equal to Lsquare(a), which requires a control regular language to be defined. ��

4 Comparisons

In this paragraph, we give results concerning the relations of the class RP2DCFL
with respect to LOC, L(PG) and L(RTG).

Let us consider the language of words containing an arbitrary number of
diagonals of 1 which consist of at least two characters (no single 1 are admitted
at the corners) and that are separated by at least one diagonal of 0. Let this
language be named as Ldiag. It can be shown to be LOC by showing the tile-set
of the tiling system. The language does not belong to RP2DCFL: its restriction
considering only two diagonals, Ldiag(2) is not in RP2DCFL. The idea of the
proof is based on the fact that a finite number of terminals can only generate
pictures of two diagonals of finite length (with finite reciprocal distance). To
correctly put a symbol 1 of a diagonal by means of row/column rules, control
terminals are used to define the position of the 1 in the picture, by starting the
construction of the word from the reference boundary of the picture. Since the
set of characters is finite, the set of pictures which can be derived is finite as
well. Before the main theorem, some lemmas are here shown. Let Ld = {p ∈
{0, 1}++ | |p|row = |p|col, p(i, j) = 1 for i = j, p(i, j) = 0 for i �= j} be the
language of main diagonals of 1 in a field of 0.
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Lemma 1. The language Ld can be defined by using at least one control char-
acter and a regular control language.

Proof. Let p be a (square) picture of the language, with |p|row = |p|col = n.
Let suppose to enlarge it by adding one row and one column, by means of one
row (column) production followed by one column (row) production. Since the
vertical/horizontal expansion of a character 1 is always 0 and the alphabet is
{0, 1}, two characters 0 laying on a row (column) should yield two different
expansions depending on their position with respect to the 1 on the same row
(column). In Fig. 2 the first column derivation is depicted. Only the 0 in the
right-bottom corner is in charge of placing the 1 below. Since the alphabet does
not contain control characters, the vertical expansion can yield pictures which do
not belong to the language. The same reasoning holds when considering a column
construction. By using a control character • and a regular control language which
constraints a strict alternation of row and column rule, it is possible to define
correct derivations:

1 0 0
0 1 0
0 0 1

→
1 0 0 0
0 1 0 0
0 0 1 •

→
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

��

The following lemma shows that, by using a finite alphabet, a picture of two dis-
tinct diagonals can not be constructed from the origin points, without changing
the relative position between them.

Lemma 2. Let us consider p ∈ Ldiag(2) such that p(|p|row, 1) = 1, p(1, |p|col) =
1 are the starting points of the two diagonals; then, it is not possible to prolong
the two diagonals unless the origins are moved in p(|p|row +δr, 1), p(1, |p|col+δc)
where δr, δc ≥ 1.

Proof. From Lemma 1 it is known that two distinct diagonals can not be con-
structed by means of a binary alphabet; the construction requires at least one
control character more. However, this construction moves the position of the ori-
gin points and makes the distance between them grow when the dimension of the
picture grows. This fact follows, immediately, from the row/column generation
of P2DCFG grammars, due to the following rules:

c : {1→ 1 •}, r :
{

1→ 1
0 , • → 0

1

}
;

1 0 0
0 1 0
0 0 1

→
1 0 0 0
0 1 0 0
0 0 1 0

Fig. 2. Column expansion
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or, alternatively

c : {1→ 1 0, • → 0 1}, r :
{

1→ 1
•
}

��

Corollary 2. A set of control characters is required to prolong diagonals.

From the last two lemmas, it is possible to prove the following:

Proposition 4. The language Ldiag(2) is not in RP2DCFL.

Proof. Let G be a RP2DCFG, L(G) = Ldiag(2) and Σ = {0, 1} ∪ C where C
is a set of control characters. If the cardinality of C is finite then the length of
diagonals is finite. Let suppose p be a sub-picture in the considered language
constructed by means of rules acting over characters in the set C. Since the
cardinality of C is finite and since no control character can be derived yet from
the picture, because of the ambiguity of the derivation as shown in Lemma
1, the set of words with two diagonals is finite. If it was not so, it could be
possible to derive arbitrary diagonals by means of a finite alphabet without
moving their origins. But this is not possible by construction, from the previous
lemmas. Moreover, no row/column rule can be used to modify a picture. If
they are applied outside the gray region, see Fig. 3, the origin of diagonals
will be moved since any production will add at least either one row or one
column in the area between the origins and all the characters of p are only
{0, 1}. Moreover, any rule which makes use of control symbols, and which is
applied on row/column of the gray region, will lead to picture not belonging in
the language: one of the two diagonals is interrupted since a row/column is added
between two consecutive symbols 1. This means that the rules which makes use
of control symbols can not be used to derive pictures of diagonals before the gray
area is obtained and also when it is actually built. Thus, the diagonals have to
be derived by means of control characters and, then, are of finite length due to
Lemma 2. However, by augmenting arbitrarily the distance of the origin points
of diagonals, the area on which the set of rules which uses control symbols are
not admitted will grow and, then, the length of diagonals as well. Since the set of
control characters is finite, then the set of pictures resulting from the grammar is
finite. ��
From here on, other families of languages are considered. The language of pic-
tures with one diagonal of 1 of depth 2 can be shown to belong to LOC,
RP2DCFL, L(RTG) and L(PG). A language of diagonals similar to the one
presented above that can be used to further characterize LOC is the language
of two minor diagonals of 1 beside the main one of 0, in a field of 0’s, de-
fined as L = {p ∈ {0, 1}++ | |p|row = |p|col, p(i, j) = 1 for i − 1 = j and i =
j − 1; p(i, j) = 0 else}. It goes beyond the expressive power of LOC since the
number of diagonals of a picture of arbitrary size can not be controlled by a
local definition. The required tile set necessary to generate all the pictures of the
language is the same as the one of the language Ldiag. To correctly define the
language, a TS should be used. The main diagonals should be locally denoted
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Fig. 3. Regions of a two diagonals picture

by a special symbol different from 0; and, by means of a projection, it has to be
substituted by 0. The language is a RP2DCFL, also definable by a PG and,
consequently, by a RTG.

Although the RTG class seems to be sufficiently expressive insomuch as it con-
tains lots of two-dimensional languages like PG, we show a language of pictures
of symmetrical squares which can not be generated by any regional grammar.
Consequently, the language does not belong to the family of languages resulting
from PG. However, it can be generated by a RP2DCFG. A legal picture of this
language is here depicted.

a b b a a b b a
b b b a a b b b
b b b a a b b b
a a a a a a a a

Note that each square is composed by nested “L” shaped strings of the same
character, over the alphabet Σ = {a, b}. We denote the language as L⊥.

Proposition 5. The language L⊥ is not in L(RTG).

Proof. Let p be a picture of the language L⊥. Let n be the length of the side of
the two squares composing the picture, such that |p|row = |p|col = n. Then, the
number of different pictures is 2n, since the picture is symmetric. In order to de-
fine two square regions, the first production of the grammar should define them
in the first derivation: since the partition is strong, the two sub-pictures gener-
ated from A and B are regionally defined, i.e., the derivations of the one can not
affect the one of the other. So, the number of pictures “L” shaped which can be
derived is, in general, 22n. Moreover, let us consider a rectangle area consisting
of two areas of the same dimension, on the left and on the right of the vertical
axis. If they belong to different regions, i.e., they are the derivation of two differ-
ent non-terminals of a strong partition, there does not exist a method to make
them symmetric because they are regionally defined. Otherwise, they belong to
the same homogeneous partition and, then, there exists at least one derivation
making them symmetric. But, by extending the partition to cover the whole pic-
ture, it is easy to see the two square regions are no longer correctly definable and,
in general, the left and the right part can yield different sub-pictures. ��
Finally, the last language we consider does not belong to RP2DCFL but it can
be generated by a PG and, a fortiori, by a RTG. The language is the set of
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square pictures of size (2n, 2n), where n is an arbitrary natural, i.e., L(2n,2n) =
{p ∈ {a}∗∗ | |p|row = |p|col = 2h, h ≥ 0}.
Proposition 6. The language L(2n,2n) is not in RP2DCFL.

Proof. Let p2i be the square of size (2i, 2i), w2i the string word representing its
side and let α2i be the control word generating p2i . Obviously w2i = aa . . . a2i−1

.
Let LS = {w ∈ a+ | w = w2i} be the language of the sides. Let α2i be the
control word generating the picture of side w2i . Let us consider a subset of
L(2n,2n) such that each |α2k | ≤ nq, where nq is the number of states of the
minimal automaton recognizing the control language. By geometric construction,
the pictures of L(2n,2n) such that w2k+1 ∈ LS , . . . , w2k+h ∈ LS are recursively
derived by row/column concatenation of pictures whose sides are w1 . . . w2k . A
square of sides w2k+1 consists of four isometric squares of sides w2k such that
w2k+1 = w2kw2k ; each w2k is, in turn, a row/column concatenation of pictures
of sides w1 . . . w2k−1 . In general, a square of sides w2k+h consists of h2 isometric
squares such that w2k+h = (w2k)h(w2k )h. Then, to generate a generic picture
of side w2k+h = (w2k)h(w2k)h it is required a control word (α2k)n(α2k)n. Since
the control language is regular, from the Pumping lemma, this can be actually
done only for a finite interval of values of n. On the other hand, the Parikh map
of the control language is a semilinear set. Then, the length of sides of pictures
which result from the application of the rules of the grammar, led by a regular
control, is a linear combination p1|w1|+ · · ·+pk|w2k | with pi ≥ 0 for 1 ≤ i ≤ 2k,
of the length of sides of pictures defined by control words | α2i |≤ nq. Then, the
resulting set of pictures exceeds the language since any exponential function can
not be written as linear combination of terms. ��

In order to distinguish two classes of languages, it could be useful to analyze the
derivation process of pictures. In the case of RP2DCFG, the number of control
symbols involved in each picture results to be bounded. Let γ : Σ∗∗ → N be
the function which counts the number of control symbols involved in a picture.
Then, the following proposition holds:

Proposition 7. Let L be a language in RP2DCFL. If p ∈ L derived from S,
S

∗⇒ pi
∗⇒ p then there exists k ∈ N such that γ(pi) < k.

Proof. Let A be the subpicture generated by the application of the left part αi

of rules of a row/column production. By definition, A is finite and consists of
symbols of ΣT and symbols of ΣC . Each symbol of ΣC in A must be eventually
substituted by a symbol in ΣT , since the final picture p ∈ Σ∗∗ . Let nq be the
number of states of the minimal automaton recognizing the (regular) control
language. Consequently, since the control language is regular, the number of
rules involved in rewriting of all the control symbols, during the derivation of a
picture p, is finite. Let S ⇒ p1

∗⇒ pi
∗⇒ p be the derivation of p from the axiom

S; then, the number of substitutable control symbols at each step is bounded by
nq, i.e., γ(pi) ≤ nq. ��
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5 Conclusions

In this work, some two-dimensional formalisms were compared each other. The
goal the authors intended to do, was to refine the knowledge concerning their
relationships. Future works concern the study of the hierarchy of P2DCFG
endowed with a CF or a CS control language. It is still an open problem, also for
unary alphabet, if to the one-dimensional hierarchy of Chomsky may correspond
a P2DCFL hierarchy based on the expressiveness of the control language. The
membership algorithm recognizing pictures of a (R)P2DCFL should be studied
and the intersection of L(RTG) and RP2DCFL as well.

Acknowledgement. We would like to thank Stefano Crespi Reghizzi and Mat-
teo Pradella for the support and suggestions given us during the development of
this work.
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Abstract. A new model to generate hexagonal arrays using Petri net
structure has been defined. The catenation of an arrowhead to a b-
hexagon results in a similar b-hexagon. This concept has been used in
Hexagonal Array Token Petri Net Structure (HATPNS). A variation in
the position of catenation has been introduced in Adjunct Hexagonal
Array Token Petri Net Structure (AHATPNS). Comparisons with other
hexagonal array models have been made.

Keywords: Hexagonal picture languages, Petri nets, arrowhead
catenations, adjunct rules, array tokens.

1 Introduction

Hexagonal arrays and hexagonal patterns are found in the literature on picture
processing and scene analysis. Image generation can be done in many ways in
formal languages. Several grammars were introduced in the literature to gen-
erate various classes of hexagonal picture languages. The class of Hexagonal
Kolam Array Languages (HKAL) was introduced by Siromoneys [7]. The class
of Hexagonal Array Languages (HAL) was introduced by Subramanian [8]. The
class of local and recognizable hexagonal picture languages were introduced by
Dersanambika et al. [1].

On the other hand, a Petri net is an abstract formal model of information
flow [3]. Petri nets have been used for analysing systems that are concurrent,
asynchronous, distributed, parallel, non deterministic and / or stochastic. To-
kens are used in Petri nets to simulate dynamic and concurrent activities of
the system. A language can be associated with the execution of a Petri net.
By defining a labeling function for transitions over an alphabet, the set of all
firing sequences, starting from a specific initial marking leading to a finite set of
terminal markings, generates a language over the alphabet.

Petri net model to generate rectangular arrays has been introduced in [5].
Motivated by this concept we have introduced a Petri net model to generate
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hexagonal picture languages. In this model hexagonal arrays over a given al-
phabet are used as tokens in the places of the net. Labeling of transitions are
defined as arrowhead catenation rules. Firing a sequence of transitions starting
from a specific initial marking leading to a finite set of terminal markings would
catenate the arrowheads to the initial array and move the array to the final set
of places. The collection of such arrays is defined as the language generated by
the Petri net structure. We call the resulting model as Hexagonal Array Token
Petri Net Structure (HATPNS). The generative capacity of HATPNS is com-
pared with HKAG [7] and HAG [8]. Various positions of adjunction have been
defined to join the arrowhead into the hexagonal array of the input place. With
these adjunction rules as labels the firing sequence would move the input array
to the final place after joining the various arrowheads. This model is called Ad-
junct Hexagonal Array Token Petri Net Structure (AHATPNS). The generative
capacity of this model is compared with controlled table 0L/1L hexagonal array
grammars, extended 2D hexagonal context-free grammar and HATPNS.

One application for such a generation is in biomedical image processing [6]. A
programmable cellular automaton is used for processing biomedical images. The
cellular register is arranged in a hexagonal pattern produced by alternatively
switching the shift register stages selected from line to line. Other applications
are in the field of tiling patterns and generation of kolam patterns.

The paper is organized as follows: Section 2 recalls the notions of hexagonal
arrays and arrowheads. Section 3 introduces a new model HATPNS. Section 4
compares the generative powers of HATPNS with other existing models. Section
5 introduces another model AHATPNS and compares it with HATPNS.

2 Hexagonal Arrays and Arrowheads

Let Σ be a finite non empty set of symbols. The set of all hexagonal arrays
made up of elements of Σ is denoted by Σ∗∗H . The size of any hexagonal array
is defined by its parameters. For a hexagon the parameters are |H |LU , |H |RU ,
|H |R, |H |RL, |H |LL and |H |L where LU stands for left upper; RU , right upper;
R, right; RL, right lower; LL, left lower and L, lower. A hexagon of Σ∗∗H is
shown in Fig. 1(a) where Σ = {a} and the sides of the hexagon are shown in
Fig. 1(b).

For any hexagon three types of catenation with six arrowheads are possible.
For a hexagon H an arrowhead of type A1(A2) can be catenated in the di-

rection ↓ (↑) if and only if |H |LL = |A1|LU , |H |RL = |A1|RU (|H |LU = |A2|LL,
|H |RU = |A2|RL). Similarly the other two catenations are possible subject to
the corresponding conditions [2,7]. The arrowheads for the hexagon in Fig. 1(a)
are shown in Fig. 2. An arrowhead is written in the form {. . . 〈v〉 . . . } where 〈v〉
dentoes the vertex and the arrowhead is written in the clockwise direction.

Hexagon has 6 sides namely 1, 2, 3, 4, 5, 6 as shown in Fig. 1(a). Then A1

will be catenated with sides 4, 5; A2 with sides 1, 2; A3 with sides 2, 3; A4 with
sides 5, 6; A5 with sides 6, 1 and A6 with sides 3, 4.
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Fig. 2. Arrowheads for the hexagon in Fig. 1

3 Hexagonal Array Token Petri Net Structure

Definition 1. A Petri net structure is a four tuple C = (P, T, I, O) where P =
{p1, p2, . . . , pn} is a finite set of places n ≥ 0, T = {t1, t2, . . . , tm} is a finite
set of transitions m ≥ 0, P ∩ T = φ. I : T → P∞ is the input function from
transition to the bags of places and O : T → P∞ is the output function from the
transition to the bags of places.

Definition 2. A Petri net marking is an assignment of tokens to the places of
a Petri net. The tokens are used to define the execution of the Petri net. The
number and position of tokens may change during the execution of the Petri net.

Definition 3. If the tokens are arrays over a given alphabet Σ then the Petri
net is an array token Petri net [5].
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3.1 Firing Rules

A transition without any label will fire only if all the input places have the same
hexagonal array as a token. Then on firing the transition arrays from all the
input places are removed and put in all its output places. If all the input places
have different arrays then the transition without label cannot fire. If the input
places have different arrays then the label of the transition has to specify an
input place. When the transition fires the arrays in the input places are removed
and the array in the place specified in the label is put in all the output places.

3.2 Arrowhead Catenation Rules as Labels

Let a transition t have H ©∗ A as a label where©∗ is any one of the six directions

( , , , , , ), H is the hexagonal array in all the input places and
A a predefined arrowhead. Then firing the transition will catenate A with H in
the specified direction and put in all the output places subject to the condition
of catenation. If the condition for catenation is not satisfied then the transition
cannot fire.

Example 1.

Let H =

a
a a

a
a a

a

, A6 =
b
b

b
, H1 =

a
a a

a b
a a

a b
b

Before Firing

H

t

p p

Position of token

H A 6
1 2

Fig. 3.

After Firing
t

p p

H

Position of token

H A1 2
6

1

Fig. 4.

Definition 4. If C = (P, T, I, O) is a Petri net structure with hexagonal arrays
of Σ∗∗H as initial markings M0 : P → Σ∗∗H , labels of transitions being arrow-
head catenation rules and a finite set of final places F ⊆ P , then the Petri net
structure is defined as Hexagonal Array Token Petri Net Structure (HATPNS).

Definition 5. If C is a HATPNS then the language generated by the Petri net
C is defined as

L(C) = {H ∈ Σ∗∗H/H is in p for some p ∈ F}
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With hexagonal arrays of Σ in some places as initial marking all possible se-
quences of transitions are fired. The set of all arrays collected in the final places
F is called the language generated by C.

Example 2. Let Σ = {X, •};

B1 =

⎛⎝••
•

⎞⎠|H|LU −1 〈
X
X
X

〉
X X X
• • X
• • X

;

B2 =
X X X
X • •
X • •

〈X
X
X

〉⎛⎝••
•

⎞⎠|H|R −2
X
X
X

;

B3 =
X X X
X • •
X • •

〈X
X
X

〉⎛⎝X
•
•

⎞⎠|H|R −2
X
X
X

and

F = {p5}.

Consider S =

X
X X

X • X
X • • X

X • X
X X X •
• X •

X • • •
• X •

X • • X
X X X

X X
X

p

p p
S

S
t

H

H H

p
1

pt 11

2

2
t

3

3

4

4t 5
p

B

B

B1

2

3

Fig. 5. HATPNS
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When t1 fires the token from place p1 moves to p3. Derivation of the first
array of the language is shown below:

S
t1t2=⇒

X
• X

• X X
• • • X
• X •

• • • X
• X •

• X X X
X • X

X • • X
X • X

X X X •
• X •

X • • •
• X •

X • • X
X X X

X X
X

t4=⇒

X
X X

X • X
X • • X

• X • X
• X X X X

• • • X •
• X • • X

• • • X •
• X • • X

• X X X •
X • X • X

X • • X •
X • X • X

X X X • •
• X • • X

X • • • X
• X • X

X • • X
X X X

X X
X

The firing sequence t1(t2t3)n−1t2t4 gives the nth array of the language.
It should be noted that the sizes of the arrowheads B1, B2, B3 are not fixed,

but vary depending on the sizes of the hexagons in the input place of the tran-
sition, so that the condition for catenation is satisfied.

4 Comparison Results

In this section we recall the definition of hexagonal array languages [8], and
hexagonal kolam array languages [7] and compare the generative power of
HATPNS with (X : Y )HAL, (R : Y )HKAL where X, Y ∈ {R, CF, CS}.
Definition 6. A Hexagonal Array Grammar (HAG) is G = (N , I, T , P , S,
L) where N, I, T are finite sets of non terminals, intermediates and terminals
respectively; P = P1 ∪ P2 is a finite set of productions and S ∈ N is the start
symbol. For each A in I, LA is an intermediate language which is regular, CF or
CS string language written in the appropriate arrowhead form. An arrowhead is
written in the form {. . . 〈v〉 . . . } where 〈v〉 denotes the vertex and the arrowhead
is written in the clockwise direction L = {LA/A ∈ I}. G is called (X : R)HAG,
(X : CG)HAG or (X : CS)HAG depending on the rules of P2. X is R, CF or
CS according as all intermediate languages are regular, atleast one of them is
CF or atleast one of them is CS. The language generated by G is (X : Y )HAL.



Petri Net Generating Hexagonal Arrays 241

Definition 7. A Hexagonal Kolam Array Grammar (HKAG) is G is a 5-tuple
(V , I, P , S, L) where V = V1 ∪ V2, V1 is a finite sets of non terminals and
V2 is a finite set of intermediates; I is a finite set of terminals; P = P1 ∪ P2,

P1 is a finite set of non terminal rules of the form S → S1 a, S → S1 b,

S → S1 c where S, S1 ∈ V1, a, b, c ∈ V2 and P2 is a terminal rule of the form
S → H where S ∈ V1 and H is a hexagonal array over I; S is the start symbol; L
is a set of intermediate languages corresponding to each one of the intermediate
in V2. These intermediate languages are regular, CF or CS string languages
written in the appropriate arrowhead from. An arrowhead is written in the form
{. . . 〈v〉 . . . } where 〈v〉 denotes the vertex and the arrowhead is written in the
clockwise direction. A HKAG is called (R : R)HKAG, (R : CF )HKAG, (R :
CS)HKAG according as all the members of L is regular, atleast one of L is CF
or atleast one of L is CS.

Theorem 1. Every (R : X)HAL, for X ∈ {R, CF, CS} can be generated by
HATPNS.

Proof. Let G be the corresponding (R : X)HAG. Let S → H ©∗ S′ be the initial
rule in P1 and L = {LA/A ∈ I} be the set of intermediate languages. Define for
every LA an arrowhead of similar type from A1 to A6. The parameters of the
arrowhead will depend on the parameters of the hexagon in the input place. So
firing the transition with catenation rules as labels will catenate the arrowhead
to the hexagon. Let H ©∗ A1 ©∗ · · · ©∗ Ak ©∗ · · · ©∗ Al ©∗ · · · ©∗ An be the
string of arrowheads Ai and H , which derives the first array of the language. Let
Ak ©∗ · · · ©∗ Al be the substring which applied m times gives the mth array of the
language. The steps for constructing the HATPNS to generate the (R : X)HAL
would depend on the values of k, l, n. For k = 1 we have (i) k = l = n,
(ii) k = l < n, (iii) k < l = n and (iv) k < l < n. Similarly for k > 1, we have
(v) k = l = n, (vi) k = l < n, (vii) k < l = n and (viii) k < l < n. We give the
steps for construction of HATPNS when k < l < n, (k = 1). The other cases can
be dealt similarly.

Step 1. Let p, p′ be two places with H as a token, T is a transition with input
places p, p′ and output places p, p1. The label of T is p. Let i = 1.

Step 2. Let ti be a transition with input place pi and label H ©∗ Ai. If i < l,
then the output place is pi+1 and goto next step. If i = l, then the output
place is pk and goto step 4.

Step 3. Let i = i + 1 and repeat step 2.
Step 4. Let tl+1 be a transition with input place pk and label H ©∗ Al+1. If

l +1 = n, then the output places are p′, P and goto step 7. If l +1 < n, then
the output place is pl+1 and put i = l + 2.

Step 5. Let ti be a transition with input place pi−1 and label H ©∗ Ai. If i < n,
then the output place is pi and goto next step. If i = n, then the output
places are p′, P and goto step 7.
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Step 6. Let i = i + 1 and repeat step 5.
Step 7. F = {P}.
Step 8. END. ��

Corollary 1. Every language in (R, Y )HKAL with Y ∈ {R, CF, CS} can be
generated by a HATPNS.

Proof. It is known that (R, Y )HKAL � (R, Y )HAL [8]. By Theorem 1, any
(R, Y )HAL can be generated by a HATPNS. Thus every language in (R, Y )
HKAL can be generated by a HATPNS. ��
Theorem 2. For X ∈ {CF, CS}, Y ∈ {R, CF, CS} the family (X : Y )HAL
cannot be generated by HATPNS.

Proof. In (CF : Y )HAG the rules in P2 would have a sequence of catenation on
H a certain number of times and follow it by another sequence of catenations
the same number of times. If the Petri net structure has a subnet C1 for the
first sequence of catenations and another subnet C2 for the second sequence of
catenations then there would be no control on the number of times C1 and C2

get executed. Hence HATPNS cannot generate a (CF : Y )HAL. Since (CF :
Y )HAL � (CS : Y )HAL, HATPNS cannot generate a (CS : Y )HAL. ��

5 Adjunct Hexagonal Array Token Petri Net Structure

In this section we introduce a variation of the previous model to generate hexag-
onal pictures known as Adjunct Hexagonal Array Token Petri Net Structure
(AHATPNS) and compare its generative power with HATPNS, controlled table
0L/1L hexagonal array grammars [7] and E2DHCFG [9].

For any hexagon H , |H |LU arrowheads of thickness one with same param-
eters can be found in the direction ↗ (or its dual ↙). They are denoted by
lu1, lu2, . . . , lu|H|LU

. An A3 type arrowhead (A4 type) can be joined at any of
the |H |LU + 1 positions subject to the conditions of an arrowhead catenation.

The adjunction rule is a tuple (H A3/H A4, blui/aluj), 1 ≤ i, j ≤ |H |LU ,
joining A3(A4) into H either before lui or after luj.
|H |L arrowheads of thickness one with same parameters can be found in the

direction ↓ (or its dual ↑). They are denoted by l1, l2, . . . , l|H|L . An A1 type
arrowhead (A2 type) can be joined at any of the |H |L + 1 positions subject
to the conditions of an arrowhead catenation. The adjunction rule is a tuple

(H A1/H A2, bli/alj), 1 ≤ i, j ≤ |H |L, joining A1(A2) into H either before
lui or after luj.
|H |LL arrowheads of thickness one with same parameters can be found in

the direction ↖ (or its dual ↘). They are denoted by ll1, ll2, . . . ll|H|LL
. An

A5(A6) type arrowhead can be joined at any one of |H |LL + 1 positions sub-
ject to the conditions of arrowhead catenation. The adjunction rule is a tuple

(H A5/H A6, blli/allj), 1 ≤ i, j ≤ |H |LL, joining A5(A6) into H either
before lli or after llj. Refer to Figs. 6 and 7 for positions in a hexagon.



Petri Net Generating Hexagonal Arrays 243

a
a

a

a
a a

a
a

a

a
ll

ll 2
1

l2

1l

l u 3

l u 1
l u 2

Fig. 6. Positions of adjunction of a hexagon in the directions ↗, ↖ and ↓

l1

l2

a
a

a

a
a

a

a
a

a

ll
ll

alu3

lu1
lulu

1
2

2

Fig. 7. The corresponding dual positions ↙, ↘, ↑

Note. In Figs. 6 and 7, li is represented by dotted lines, lli is represented by
normal lines, lui is represented by thick lines.

5.1 Adjunction Rules as Labels

Let a transition t have (H ©∗ A, position) a tuple as a label, where H is the
hexagonal array in all its input places, A a predefined arrowhead, ©∗ is one of
the six directions and position being any one of the positions shown in Figs. 6
and 7. Then firing the transition will join A into H in the position given as the
second argument of the tuple and the resulting hexagon is put in the output
places. The conditions required for catenation should be satisfied, otherwise the
transition cannot fire. An example explaining the adjunction rule is given below.

Example 3.

Let H =

a
a a

a
a a

a

, A1 =

x x
x

x x
x

, H1 =

a
a a

a
x x

x
x x

x
a a

a
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Position of token

A  , a    )1 l1(H
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Fig. 8.

t

H

After Firing
Position of token

(H 1 1A  , a   )l
p

1

p
2

1

Fig. 9.

Definition 8. If C = (P, T, I, O) is a Petri net structure with hexagonal arrays
of Σ∗∗H as initial markings M0 : P → Σ∗∗H, labels of transitions being adjunct
rules and a finite set of final places F ⊆ P , then the Petri net structure is defined
as Adjunct Hexagonal Array Token Petri Net Structure (AHATPNS).

Definition 9. If C is a AHATPNS then the language generated by the Petri net
C is defined as

L(C) = {H ∈ Σ∗∗H/H is in p for some p ∈ F}

With hexagonal arrays of Σ in some places as initial marking all possible se-
quences of transitions are fired. The set of all arrays collected in the final places
F is called the language generated by C.

Example 4. Let C1 =
(

y
x

)3 〈
y
x

〉(
y
x

)3

and

F = {p2}.

t

H

(H

pp

1 lu

2

|H|     −1LU

2

C  , a                 )

1

Fig. 10. AHATPNS
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Firing t once yields

H =

b
a b

a a b
a a b

a a a
a a b

a a a
a a b

a a a
a a b

a a
a

t=⇒

b
y b

x y b
a x y b

a a x y
a a x b

a a a y
a a x b

a a a y
a a x b

a a a y
a a x

a a
a

The firing sequence t2 joins the arrowhead

⎛⎜⎜⎝
y
y
x
x

⎞⎟⎟⎠
3 〈 y

y
x
x

〉⎛⎜⎜⎝
y
y
x
x

⎞⎟⎟⎠
3

into H .

Theorem 3. HATPNS � AHATPNS.

Proof. Every arrowhead catenation rule is a special case of adjunction rule. The

catenation rule H A3 is equivalent to (H A3, blu1). Similarly all catenation
rules have an equivalent adjunction rule. Thus every HATPNL can be generated
by some AHATPNS. The picture language generated by Example 4 cannot be
generated by any HATPNS. Thus we have proper inclusion. ��
We are now ready to compare AHATPNS with other models. For this, we recall
the following definitions.

Definition 10. A controlled table 0L hexagonal array model is a 4-tuple
(V,P , H0, C) where V is a finite alphabet; P is a finite set of tables {P1, P2, . . . , Pk}
each table consisting of right up, left up, down (or the duals) rules of the form
a → bc, a, b, c ∈ V ; H0 is the axiom; C is a control language which may be
regular, context-free or context-sensitive.

By changing the rules in the tables to be context dependent we get hexagonal
1L array models with regular, CF or CS control.

Definition 11. An extended 2D hexagonal context-free grammar (E2DHCFG)
is G = (V, Σ, Pur, Pul, Pd, Pll, Plr, Pu, H0) where V is a finite set of symbols;
Σ ⊆ V is the set of terminal symbols; Pur = {tur(i)/1 ≤ i ≤ m}; Each tur(i)
(1 ≤ i ≤ m) called a UR table, is a set of CF rules of the form A→ α, A ∈ V \Σ,
α ∈ V ∗ such that for any two rules A→ α, B → β we have |α| = |β| where |α|
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denotes the length of α; Each of the other five components Pul, Pd, Pll, Plr, Pu

is similarly defined; H0 ⊆ Σh∗∗\{λ} is a finite set of axiom arrays that are
hexagonal arrays.

Proposition 1. The family AHATPNL is incomparable with the controlled table
0L/1L hexagonal array languages but not disjoint.

Proof. The set of all p hexagons with alternate sides equal and of order 1 be-
long to T1LHAL with regular control [7]. This family can be generated by a
AHATPNS. The set of all regular hexagons over a single letter with side 2n can
be generated by T0LHAG with CS control. This family cannot be generated by
AHATPNS because a control on a firing sequence cannot be imposed in this
model. Example 4 does not belong to T0LHAL since the development of the
array is not along the edges. Thus the two families are incomparable but not
disjoint. ��
Proposition 2. E2DHCFL and AHATPNL are not mutually disjoint.

Proof. Example 4 gives a picture language which belongs to both E2DHCFL [9]
and AHATPNL. ��

6 Conclusion

Two models for generating hexagonal arrays have been defined and compared
with some of the already existing models. These models are able to generate
certain families of HAL. If some sort of control is defined on the sequence of
firing, the other families of HAL can also be generated. It is worth examining
the possibilities of defining a control over the firing sequences and obtain further
results. It would also be interesting to define a general framework with arbitrary
angles dividing equally a circle. Comparisons of controlled table 0L/1L hexagonal
array models and E2DHCFG with HATPNS are kept for our future work.
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Abstract. Mateescu et al (2001) introduced the notion of Parikh matrix
of a word as an extension of the well-known concept of Parikh vector of
a word. The Parikh matrix provides more numerical information about
a word than given by the Parikh vector. Here we introduce the notion
of M−vector of a binary word which allows us to have a linear notation
in the form of a unique vector representation of the Parikh matrix of
the binary word. We then extend this notion of M−vector to a binary
image treating it as a binary array over a two-symbol alphabet. This
is done by considering the M−vectors of the words in the rows and
columns of the array. Among the properties associated with a Parikh
matrix, M−ambiguity or simply ambiguity of a word is one which has
been investigated extensively in the literature. Here M−ambiguity of a
binary array is defined in terms of its M−vector and we obtain conditions
for M−ambiguity of a binary array.

1 Introduction

The Parikh mapping or the Parikh vector [14] of a word w over an alphabet Σ
which enumerates the number of occurrences of the symbols of Σ in the word
w, is a well-known important notion in formal language theory [15]. But many
words can have the same Parikh vector and hence the Parikh mapping is not
injective and so much information about a word is lost in the transition from
words to vectors. Mateescu et al [13] introduced an extension of the Parikh
vector, known as Parikh matrix mapping or simply referred to as Parikh matrix,
based on a certain type of matrix, which gives more numerical information about
a word than a Parikh vector does. For instance, in the case of a word over a binary
alphabet Σ = {a, b} with an ordering a < b, the Parikh matrix gives information
on the number of a′s, the number of b′s (as in the Parikh vector), but also
gives information on the number of subwords (also called scattered-subwords
[7]) ab, which are subsequences a, b of length two. As an example, in the word
aabab, there are three a′s, two b′s and five subwords ab. Although the Parikh
matrix mapping is also not injective in general, two words with the same Parikh
vector have in many cases different Parikh matrices. After the introduction of

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 248–260, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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this interesting notion of a Parikh matrix, there has been a series of studies
[1,2,3,8,11,12,16,17,18,19,20,21,22] on this notion, especially on the injectivity
problem or the complement problem, known as M−ambiguity of words.

On the other hand binary images are binary arrays over a two-letter alphabet,
say, Σ = {a, b}. For example, interpreting a as a ‘white square’ and b as a ‘black
square’, the binary images of the chess-board patterns in Figure 1, are binary
arrays as shown in Figure 2.

Fig. 1. Chessboard patterns

b a b
a b a
b a b

b a b a b a b
a b a b a b a
b a b a b a b

b a b a b a b
a b a b a b a
b a b a b a b
a b a b a b a
b a b a b a b
a b a b a b a
b a b a b a b

Fig. 2. Binary arrays of binary images of Fig.1

There are many studies on various problems of interest related to binary
images such as combinatorial properties [5,6], connectedness results [9], thinning
methods [24], reconstruction problems [4,10] and many others.

Here we make a theoretical study by examining the notion of Parikh matrix
in the context of a binary image considered as a binary array A. For doing this,
we first introduce the notion of M−vector of a binary word. This enables us to
have a linear notation in the form of a unique vector representation of the Parikh
matrix of a binary word. The components of the M−vector of a binary word w
give the number of a′s, the number vof b′s and the number of subwords ab in w.
We then extend this notion of M−vector to a binary image treating it as a binary
array over a two-symbol alphabet. The M−vector of a binary array A gives the
number of a′s and the number of b′s in A and the number of ‘horizontal’ subwords

ab in the rows of A and the number of ‘vertical’ subwords
a
b

in the columns of A.

The notion of M−ambiguity or simply ambiguity of a word and in particular, of
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a binary word has been extensively investigated [1,2,3,8,11,13,17,21,22]. Here we
introduce the notion of M−ambiguity of a binary array and obtain conditions for
M−ambiguity of a binary array. Section 2 recalls the basic notions and results
needed in the subsequent sections. Section 3 introduces the notion of M−vector
of a binary image considered as a binary array. Section 4 introduces a notion of
ambiguity of a binary array and obtains conditions for M−ambiguity of a binary
array. The paper ends with a concluding section 5.

2 Preliminaries

Let Σ, called an alphabet, be a finite set of symbols. A word over Σ is a finite
sequence of symbols from Σ. We denote by Σ∗ the set of all words over Σ. The
empty word is denoted by λ. For a word w ∈ Σ∗, |w| denotes the length of w.

A word u is called a subword (also called scattered subword) of a word w,
if there exist words x1, · · · , xn and y0, · · · , yn, (some of them possibly empty),
such that u = x1 · · ·xn and w = y0x1y1 · · ·xnyn. For example if w = aabbaabab
is a word over the alphabet {a, b}, then ababa is a subword of w. The number
of occurrences of the word u as a subword of the word w is denoted by |w|u.
In particular, if u is a symbol in the alphabet, then |w|u equals the number of
occurrences of the symbol u in w. Two occurrences of a subword are considered
different if they differ by at least one position of some letter.

An ordered alphabet Σ = {a1 < a2 < · · · < ak} is an alphabet Σ =
{a1, · · · , ak} with the ordering a1 < a2 < · · · < ak. The Parikh vector of a
word w counts the number of occurrences of the symbols of the alphabet in the
word w. In fact if Σ = {a1, · · · , ak}, then the Parikh vector of w is the vector
(|w|a1 , · · · |w|ak

).
We now recall the definition of a Parik matrix mapping [13], which is a gen-

eralization of the Parikh mapping or Parikh vector [14]. A triangle matrix is a
square matrix M = (mi,j)1≤i,j≤k, such that mi,j are non-negative integers for
all 1 ≤ i, j ≤ k, mi,j = 0, for all 1 ≤ j < i ≤ k, and, moreover, mi,i = 1, for all
1 ≤ i ≤ k. The set Mk of all triangle matrices of dimension k ≥ 1 is a monoid
with respect to multiplication of matrices.

Definition 1. [13] Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet.
The Parikh matrix mapping is the monoid morphism Ψk : Σ∗ → Mk+1, de-
fined by the condition: Ψk(λ) = Ik+1, the (k + 1) × (k + 1) unit matrix, and if
Ψk(aq) = (mi,j)1≤i,j≤(k+1), then for each 1 ≤ i ≤ (k + 1), mi,i = 1, mq,q+1 = 1,
all other elements of the matrix Ψk(aq) are 0.

For a word w = ai1ai2 · · · aim , aij ∈ Σ for 1 ≤ j ≤ m, we have

Ψk(w) = Ψk(ai1 )Ψk(ai2) · · ·Ψk(aim).

In other words Ψk(w) is computed by multiplication of matrices and the triangle
matrix Ψk(w) is called the Parikh matrix of w.
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For example, if Σ = {a < b} and w = aabab, then

Ψ2(a) =

⎛⎝1 1 0
0 1 0
0 0 1

⎞⎠ , Ψ2(b) =

⎛⎝1 0 0
0 1 1
0 0 1

⎞⎠ ,

Ψ2(aabab) = Ψ2(a)Ψ2(a)Ψ2(b)Ψ2(a)Ψ2(b)

=

⎛⎝1 1 0
0 1 0
0 0 1

⎞⎠⎛⎝1 1 0
0 1 0
0 0 1

⎞⎠⎛⎝1 0 0
0 1 1
0 0 1

⎞⎠⎛⎝1 1 0
0 1 0
0 0 1

⎞⎠⎛⎝1 0 0
0 1 1
0 0 1

⎞⎠ =

⎛⎝1 3 5
0 1 2
0 0 1

⎞⎠
Note that Ψ2(w) is a 3× 3 triangle matrix.

We now recall some important facts about Parikh matrices.

Lemma 1. [13] Let Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗. The Parikh matrix
Ψk(w) = (mi,j)1≤i,j≤(k+1), has the following properties : i) mi,j = 0, for all 1 ≤
j < i ≤ (k+1), ii) mi,i = 1, for all 1 ≤ i ≤ (k+1), iii) mi,j+1 = |w|aiai+1···aj−1aj ,
for all 1 ≤ i ≤ j ≤ k.

The Parikh matrix mapping is not injective. For example, if the alphabet is
Σ = {a < b}, the words w1 = abbababbb and w2 = ababbbabb have the same
Parikh matrix, namely, ⎛⎝1 3 13

0 1 6
0 0 1

⎞⎠
The word w1 (or the word w2) is then called M−ambiguous or simply am-

biguous. Many of the studies (see for example, [1,2,3,20,21,8,11,17]) in this area
deal with this problem of M−ambiguity.

In the case of a binary alphabet Σ = {a < b}, characterizations of equality of
Parikh matrices are known [8]. We recall one such characterization here.

For words u, v ∈ Σ∗, with Σ = {a < b}, define u ≡ v if there exist words
x, y, z such that u = xabybaz, v = xbayabz, x, y, z ∈ Σ∗. The relation ≡ is an
equivalence relation [8].

Lemma 2. [1,8,11] For words u, v over Σ, the Parikh matrices Ψ2(u) and Ψ2(v)
are equal if and only if u ≡ v.

A word over Σ = {a < b} is said to be unambiguous if it is not ambiguous. A
characterization [11] of unambiguous words over Σ = {a < b} is known in terms
of regular expressions [15]. We recall this here.

Lemma 3. [11] A word over {a, b}, a < b is unambiguous if and only if it
belongs to the language denoted by the regular expression

a∗b∗ + b∗a∗ + a∗ba∗ + b∗ab∗ + a∗bab∗ + b∗aba∗
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3 M−Vector of a Binary Array

We restrict our attention to an ordered binary alphabet Σ = {a < b}. A binary
image or a binary m×n array A over the alphabet Σ is a rectangular arrangement
of symbols from Σ in m rows and n columns. We will write such an array as

A =

a11 · · · a1n

· · ·
· · ·

am1 · · · amn

, and the transpose of A, At =

a11 · · · am1

· · ·
· · ·

a1n · · · amn

,

aij ∈ Σ. We always consider a11 · · · a1n as the first row of A.

For example
a b a b b
a a b b a
b a a b a

is 3 × 5 binary array and its transpose is

a a b
b a a
a b a
b b b
b a a

. We

will call the words in the rows of a binary array as horizontal words or simply
words and the words in the columns of a binary array as vertical words over Σ.

Thus a vertical word w over Σ = {a < b} is of the form w =

⎛⎜⎜⎜⎝
a1

a2

...
am

⎞⎟⎟⎟⎠ , ai ∈ Σ for

i = 1, · · · , m. For a word x = b1b2 · · · bn, bi ∈ Σ for i = 1, · · · , n, we denote by

xt the vertical word

⎛⎜⎜⎜⎝
b1

b2

...
bn

⎞⎟⎟⎟⎠ . Also we define (xt)t = x. The notion of a subword

in a vertical word is analogous to the notion of a subword in a word except that
the subword itself is a vertical word.

The set of all binary arrays over Σ is denoted by Σ∗∗. We denote respectively
by ◦ and + the column concatenation and row concatenation of arrays in Σ∗∗.
In contrast to the case of strings, these operations are partially defined, namely,
for any A, B ∈ Σ∗∗, A ◦ B is defined if and only if A and B have the same
number of rows. Similarly A + B is defined if and only if A and B have the

same number of columns. For example, if A =
a b b a a
b a a b b
a b a b b

and B =
a a b
a b b
b b a

, then

A ◦B =
a b b a a a a b
b a a b b a b b
a b a b b b b a

, where as the row catenation A +B is not defined, since

the number of columns in A and B are not equal.
We now introduce the notion of a M−vector of a binary word (a horizontal

or a vertical word) that allows us to provide a linear notation in the form of a
unique vector representation of the Parikh matrix of a binary word. The linear
notation is an equivalent alternative form of the Parikh matrix of a binary word
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and is a concise notation as well. A result that involves the Parikh matrix of a
binary word can therefore be expressed in this notation.

Definition 2. Let Σ = {a < b}. A mapping M , called M-mapping, from Σ∗ to
N3, where N = {0, 1, 2, · · ·}, is defined recursively as follows:

M(λ) = (0, 0, 0), M(a) = (1, 0, 0), M(b) = (0, 1, 0)

For w1, w2 ∈ Σ∗,
M(w1w2) = M(w1)⊕M(w2)

where
M(w1)⊕M(w2) = (p1 + p2, q1 + q2, r1 + r2 + p1q2),

if
M(w1) = (p1, q1, r1), M(w2) = (p2, q2, r2).

M(w) is called the M−vector of the word w ∈ Σ∗.
The M−vector M(wt) of a vertical word wt is defined as M(wt) = M(w).
For two words w1, w2, we say that the M−vectors M(w1) and M(w2) commute
with respect to ⊕, if M(w1w2) = M(w2w1).

Remark
i) Note that the operator ⊕ is associative.
ii) The M−vector M(w) = (p, q, r), w ∈ Σ∗, if and only if the Parikh matrix of
w is

Ψ2(w) =

⎛⎝1 p r
0 1 q
0 0 1

⎞⎠
iii) Also the Parikh matrix

Ψ2(w1w2) = Ψ2(w1)Ψ2(w2)

=

⎛⎝1 p1 + p2 r1 + r2 + p1q2

0 1 q1 + q2

0 0 1

⎞⎠
if and only if the M−vector

M(w1w2) = M(w1)⊕M(w2) = (p1 + p2, q1 + q2, r1 + r2 + p1q2).

We now extend the notion of M−vector to a binary array.

Definition 3. Given a binary m × n array A over Σ = {a < b}, and denoting
the words in the m rows of A by x1, · · · , xm and the vertical words in the n
columns of A by y1, · · · , yn so that

A = x1 + x2 · · · + xm = y1 ◦ y2 · · · ◦ yn,
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let the M−vectors of the words in the rows and the vertical words in the
columns of A be respectively M(xi), 1 ≤ i ≤ m and M(yt

j), 1 ≤ j ≤ n. If
Σm

i=1M(xi) = (p, q, r) and Σn
j=1M(yt

j) = (p, q, s), (where the M−vectors are
added componentwise), then the M−vector M(A) of the binary array A is de-
fined as

M(A) = (p, q, r, s).

Remark. Note that the entries p, q in the M−vector M(A) of a binary array A
are respectively, the number of a′s and the number of b′s in the binary array A
whereas the entries r, s are respectively, the number of subwords ab in the rows

and the number of subwords
a
b

in the columns of the binary array A.

Example 1. Consider the binary array

A1 =

a b a a b
a a b b a
b a b a b
b b a b a
a a b a b

The M−vectors M(xi), 1 ≤ i ≤ 5 of the words

x1 = abaab, x2 = aabba, x3 = babab, x4 = bbaba, x5 = aabab

in the rows are respectively (3, 2, 4), (3, 2, 4), (2, 3, 3), (2, 3, 1), (3, 2, 5).
The M−vectors M(yt

j), 1 ≤ j ≤ 5 of the vertical words

y1 =

a
a
b
b
a

, y2 =

b
a
a
b
a

, y3 =

a
b
b
a
b

, y4 =

a
b
a
b
a

, y5 =

b
a
b
a
b

in the columns are respectively (3, 2, 4), (3, 2, 2), (2, 3, 4), (3, 2, 3), (2, 3, 3) so that

Σ5
i=1M(xi) = (13, 12, 17), Σ5

j=1M(yj) = (13, 12, 16).

Hence the M−vector of A1 is (13, 12, 17, 16).

4 Ambiguity of a Binary Array

Two m × n binary arrays A, B over Σ = {a < b} are said to be M−equivalent
if M(A) = M(B) and in this case we say that A (as well as B) is called
M−ambiguous or simply ambiguous. A binary array A is called unambiguous if
it is not ambiguous.
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Example 2. The binary array A1 in example 1 is M−ambiguous since M(A1) =
M(A2) = (13, 12, 17, 16) for

A2 =

a a b b a
a b a a b
b a b a b
b b b a a
a a a b b

Lemma 4. A binary array A may be ambiguous even if the words in all the rows
and the vertical words in all the columns of the binary array A are unambiguous.

Proof. Consider the binary array

A3 =

a a a b b
a b a b b
a a a b b
a a a a b
b a b a a

By Lemma 3, the words in the rows and the vertical words in the columns are
all unambiguous. But the binary array A3 is ambiguous since the M−vector of
A3 is (15, 10, 22, 9) which is also the M−vector of the binary array A4

A4 =

a a a b b
a a b b b
a a a b b
a a a a b
b b a a a

. ��

Given a binary array A =

a11 · · · a1n

· · ·
· · ·

am1 · · · amn

, over a binary alphabet Σ, a 2 × 2 sub-

array W of A is of the form W = aij aik

alj alk
, for some i, j, k, l, 1 ≤ i, l ≤ m, 1 ≤

k, j ≤ n, i < l, j < k. The subarray W is said to occur in A.

Lemma 5. In a binary array A, if the 2× 2 subarray W1 =
a b
b a

occurs and is

replaced by the 2×2 subarray W2 =
b a
a b

or vice versa, to obtain another binary

array B, then the M−vectors of A and B are the same.

Proof. If the 2 × 2 subarray W1 occurs in A, then there are two rows, say,
rows i and l in A, with the row i containing the letter a in column j and the
letter b in column k and with row l containing the letter b in column j and the
letter a in column k. Replacing in A the subarray W1 by W2, the number of
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subword ab in the M−vector of the word in row i of A, will decrease by k − j
and in row l will increase by k − j. Hence the number of subword ab does not
change in the sum of all the M−vectors of the words in all the rows of A. Also
the number of a′s and the number of b′s in A do not change by this replacement.
Similarly for the M−vectors of the vertical words in the columns of A. Hence
the M−vector of B is the same as that of A. ��
We now obtain a sufficient condition for M−ambiguity of a binary array.

Theorem 1. A binary array A is M−ambiguous, if either the 2 × 2 subarray
W1 or the 2× 2 subarray W2 as in Lemma 5, occurs in A.

The theorem follows from Lemma 5. ��
Remark. Theorem 1 provides a sufficient condition for the M−ambiguity of a
binary array. But this condition is not a necessary condition for M−ambiguity
of a binary array. In fact the binary array

A =
a a a
a b b
a b a

is M -ambiguous since the binary array A and the binary array

B =
a b a
a a b
b a a

have the same M−vector but neither W1 nor W2 as in Theorem 1 occurs in A.
Let w be a given binary word. Then for the M -vector of the word w, M(w) =

(p, q, r), define ρ(w) = (p, q).

Theorem 2. Let A1 and A2 be two m × n binary arrays and let x1i’s be the
words in the rows of A1 and x2i’s the words on the rows of A2 and similarly let
y1j ’s and y2j ’s be the vertical words in the columns of A1 and A2 respectively. Let
A1 and A2 be such that ρ(x1i) = ρ(x2i) and ρ(y1j

t) = ρ(y2j
t) for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n. Then A1 and A2 are M−equivalent if and only if atleast one of

the following holds: i) the subarray W1 =
a b
b a

occurs in A1 and A2 is obtained

from A1 by replacing W1 by the subarray W2 =
b a
a b

or ii) the subarray W1

occurs in A2 and A1 is obtained from A2 by replacing W1 by the subarray W2.
The theorem follows from Lemma 5. ��

The notion of a “weak ratio-property” of words has been considered in [22]. We
recall this notion for binary words and simply refer to it as ratio-property. Two
binary words w1, w2 over Σ = {a < b} are said to satisfy the ratio property,
if the M−vectors M(w1) = (p1, q1, r1), M(w2) = (p2, q2, r2), p2 �= 0 and q2 �= 0
satisfy the following equality of the ratios:
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p1

p2
=

q1

q2
.

We then write w1 ∼r w2. The relation ∼ is indeed an equivalence relation. A
result on Parikh matrices of words satisfying the ratio-property which has been
shown in [22], is expressed here for binary words in terms of the M−vectors.

Lemma 6. For any two binary words w1, w2 over Σ = {a < b} we have
i) M(w1w2) = M(w2w1) if and only if w1 ∼r w2. In other words w1 and w2

satisfy the ratio property if and only if the M−vectors M(w1) and M(w2) com-
mute with respect to ⊕.
ii) M(wn

1 wn
2 ) = M((w1w2)n), for n ≥ 1.

Proof. Let M(w1) = (p1, q1, r1), M(w2) = (p2, q2, r2). Then

M(w1w2) = M(w1)⊕M(w2) = (p1 + p2, q1 + q2, r1 + r2 + p1q2)

and

M(w2w1) = M(w2)⊕M(w1) = (p2 + p1, q2 + q1, r2 + r1 + p2q1).

Hence M(w1w2) = M(w2w1) if and only if the M−vectors satisfy p1q2 = p2q1.
This proves i). The statement ii) follows by repeatedly using i). ��
We now extend the notion of ratio-property to binary arrays.

Definition 5. Let A be a m × n binary array and B be another m × l binary
array both over the alphabet Σ = {a < b}. Let the words in the m rows of A in
order be xi, 1 ≤ i ≤ m and in the m rows of B in order be yi, 1 ≤ i ≤ m. Let
M(xi) = (pi1, qi1, ri1) and M(yi) = (pi2, qi2, ri2) for 1 ≤ i ≤ m. Let xi ∼r yi for
all i, 1 ≤ i ≤ m, so that

pi1

pi2
=

qi1

qi2
= ki, 1 ≤ i ≤ m,

where ki is a constant. Then the binary arrays A and B are said to satisfy row
ratio-property. We can analogously define a column ratio-property by consider-
ing the vertical words in the columns of A and B, but requiring A to be a m×n
binary array and B be another l × n binary array.

Lemma 7 If pi1 = kipi2 and qi1 = kiqi2 for 1 ≤ i ≤ m, as in Definition 5,
then ki = kj for all i,j, 1 ≤ i, j ≤ m.

In view of lemma 7, we can take in Definition 5, ki = k for all i, 1 ≤ i ≤ m,
where k is a constant.

Theorem 3. Let A be a m × n binary array and B be an m × l binary array
both over the alphabet Σ = {a < b}. Then

i) M(A ◦B) = M(B ◦A) if A and B satisfy row ratio-property.
ii) M(An ◦Bn) = M((A ◦B)n) where An = A ◦A ◦ · · · ◦A.
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Proof. The words in the rows of A ◦ B are xiyi, 1 ≤ i ≤ m and in the rows
of B ◦ A are yixi, 1 ≤ i ≤ m. Suppose A and B satisfy row ratio-property.
Then xi ∼r yi, and so we have by Lemma 6, M(xiyi) = M(yixi) for each
i, 1 ≤ i ≤ m so that the sum of the M−vectors of the words in the rows of A◦B
= Σm

i=1M(xiyi) = Σm
i=1M(yixi) = the sum of the M−vectors of the words in

the rows of B ◦A. Also the vertical words in the columns of A ◦B are the same
as the vertical words of the columns of B ◦ A although in a different order so
that the sum of the M−vectors of the vertical words in both A ◦ B and B ◦ A
is the same. Hence M(A ◦ B) = M(B ◦ A). The second statement follows by
repeated application of i). ��
Corollary. The binary array A ◦ B (as well as B ◦ A ) is M−ambiguous if A
and B satisfy the row ratio-property.

We could consider in Theorem 3, the column-ratio property in the vertical words
of the columns of A and B and formulate a corresponding result using the row
catenation + instead of the column catenation. We state this in the following
Theorem.

Theorem 4. Let A be a m × n binary array and B be an l × n binary array
both over the alphabet Σ = {a < b}. Then

i) M(A +B) = M(B +A), if A and B satisfy column ratio-property.
ii) M(An +Bn) = M((A +B)n) where An = A +A + · · · +A.

Corollary. The binary array A + B (as well as B + A ) is M−ambiguous if
A and B satisfy the row-ratio property.

Remark. Unlike the case of strings, row (respy. column) ratio-property for two
binary arrays with more than one row (respy. column), is only a sufficient condi-
tion for A◦B and B ◦A (respy. A+B and B +A) to be ambiguous. For example,
if

A =

a b a b
a b a a
b a b a
a a a b

and B =

a a b a b a b a
a a a b a b a a
a a b a b b b a
a a a b a b b a

then A and B do not satisfy row ratio-property but A ◦ B and B ◦ A have the
same M−vector (30, 18, 75, 16) and so are ambiguous. Likewise At and Bt do
not satisfy column ratio-property but A +B and B +A have the same M−vector
(30, 18, 16, 75) and so are ambiguous.

5 Conclusion

We have introduced here the notion of M−vector of a binary word which is
an equivalent linear representation of the Parikh matrix of the binary word.
We then extended this notion of M−vector to a binary image considered as a
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binary array. The notion of M−ambiguity of a binary array A is introduced
here by requiring the existence of another binary array B of the same size as
A and having the same M−vector as that of A. The notion of M−vector of a
binary array has been used in the problem of reconstruction of binary images
[23]. Possible extension of other properties of Parikh matrix of a word could be
examined in the context of the M−vector of a binary array.

Acknowledgement. The authors are grateful to the referees for their useful
comments.
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Abstract. Parallel composition of words and languages of words appear
as a fundamental operation in parallel computation and in the theory of
concurrency. Shuffle on trajectories provides a method to handle the
operation of parallel composition. In this paper we study the impact
of shuffle on trajectories on various finite arrays. We obtain interesting
results yielding new pictures and patterns. We compare this model with
the other existing models.

Keywords: Trajectories, shuffle, array languages.

1 Introduction

Theoretical models for generating 2-dimensional arrays were proposed in [3].
These models describe a wide variety of interesting classes of pictures. Recently
the interesting tool for the generation of languages of finite words is the shuffle
on trajectories [8]. The operation of parallel composition leads to new shuffle
like operations defined by syntactic constraints in the usual shuffle operation.
The approach is applicable to concurrency, providing a method to define paral-
lel composition. This operation is introduced using a uniform method based on
the notion of trajectory. A trajectory is a segment of a line in plane, starting
in the origin of axes and continuing parallel with the axis OX or OY. The line
can change its direction only in points of non-negative integer coordinates. A
trajectory defines how to skip from a word to another word during the shuffle
operation. Shuffle on trajectories provides a method of great flexibility to handle
the operation of parallel composition of processes from the catenation to the
usual shuffle of processes. A fundamental study of the shuffle operation on finite
words with trajectories has been made in [8]. The shuffle operation on finite
arrays with trajectories has been introduced in [4] to develop the study on par-
allel contextual array grammars [5]. Based on the studies for generating various
matrix array grammars [6] and on the notion of rewriting rules on various array
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grammars [7], we use the shuffle on trajectories in this paper as a tool for gener-
ating various array languages. We present some interesting properties of shuffle
on trajectories yielding nice patterns and pictures.

The paper is organized as follows: In section 2 we review necessary notions re-
lated to arrays, trajectories and shuffle on trajectories. In section 3, we introduce
an array grammar with shuffle on trajectories and compare its generative power
with that of other array grammars. We have made use of finite state matrix au-
tomata, pushdown matrix automata and online tessellation automata to obtain
the language theoretic aspect of L1��T L2 when L1, L2 are taken from different
classes of array languages and T is either a regular language or a context-free
language.

2 Preliminaries

In this section we recall some necessary notions and definitions for the study
from [3,4,5,6,7,8].

Definition 1. Let Σ be a finite alphabet of symbols. A picture A over Σ is a
rectangular m× n array of elements of the form

A =

am1 . . . amn

...
. . .

...
a11 . . . a1n

= [aij ]m×n

The set of all pictures or arrays over Σ is denoted by Σ∗∗. A picture or an array
language over Σ is a subset of Σ∗∗.

Definition 2. Let A = [aij ]m×p, B = [aij ]n×q. The column concatenation A©| B
of A and B is defined only when m = n and is given by

A©| B =

am1 . . . amp bn1 . . . bnq

...
. . .

...
...

. . .
...

a11 . . . a1p b11 . . . b1q

Similarly, the row concatenation A©−B of A and B is defined only when p = q
and is given by

A©−B =

bn1 . . . bnq

...
. . .

...
b11 . . . b1q

am1 . . . amp

...
. . .

...
a11 . . . a1p

The empty array is denoted by Λ, Λ©| P = P©| Λ = P and Λ©− P = P©− Λ = P
for any P ∈ Σ∗∗.
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Notations Σ∗ denotes the set of all horizontal sequences of letters from Σ and
Σ+ = Σ∗−{ε}, where ε is the identity element (of length zero). Σ∗ denotes the
set of all vertical sequences of letters over Σ and Σ+ = Σ∗ − {ε}.
Definition 3. The column shuffle operation on two arrays P and Q denoted by
P��cQ is defined recursively by

P��cQ = ((A©| X)��c(B©| Y ))
= A©| (X��c(B©| Y )) ∪B©| ((A©| X)��cY )

where P = A ©| X and Q = B ©| Y , P, Q ∈ Σ∗∗, A is the first column of P
and B is the first column of Q. The operation is defined only when the number
of rows in P and the number of rows in Q are equal. If A is empty then X = P .
Similarly if B is empty then Y = Q. Also P��cΛ = Λ��cP = P .

Definition 4. The row shuffle operation on two arrays P and Q denoted by
P��rQ is defined recursively by

P��rQ = ((A©−X)��r(B©−Y ))
= A©−(X��r(B©−Y )) ∪B©−((A©−X)��rY )

where P = A©−X and Q = B©− Y , P, Q ∈ Σ∗∗, A is the first row of P and B is
the first row of Q. The operation is defined only when the number of columns in
P and the number of columns in Q are equal. Also P��rΛ = Λ��rP = P .

Definition 5. Let V1 = {r, u}, V2 = {�, d} be the sets of versors in the plane
where �, r, u and d stands for the left, right, up and down directions respectively.
A trajectory is an element t ∈ V ∗

1 ∪ V ∗
2 .

Definition 6. The column shuffle of P with Q on the trajectory vt, v ∈ {r, u},
t ∈ V ∗

1 , is defined as

P��vt Q = (A ©| X)��vt(B ©| Y ) =

{
A©| (X��t(B©| Y )), if v = r

B©| ((A©| X)��tY ), if v = u

If P = Λ, Λ��vt(B ©| Y ) =

{
φ if v = r

B©| (Λ��tY ) if v = u

If Q = Λ, (A ©| X)��vtΛ =

{
A ©| (X��vtΛ) if v = r

φ if v = u

and Λ��vtΛ =

{
Λ if t = λ

φ otherwise.

If T ⊆ V ∗
1 , then P��T Q =

⋃
t∈T

P��tQ.

The row shuffle of P with Q on the trajectory vt, v ∈ {�, d}, t ∈ V ∗
2 is defined

in a similar way with r, u replaced by �, d. Also if |P |c �= |t|r or |Q|c �= |t|u then
P��tQ = φ. Similarly if |P |r �= |t|� or |Q|r �= |t|d then P��tQ = φ.
If T ⊆ V ∗

2 , then P��T Q =
⋃
t∈T

P��tQ.
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Example 1. Let P, Q and R ∈ Σ∗∗ be P =
a a a
a a a
a a a

, Q =
b b b
b b b
b b b

and R =
c c c
c c c
c c c

.

Then the shuffle on trajectory is given by

P��tQ =
a b b a b a
a b b a b a
a b b a b a

, where t = ru2rur. and

P��tR =

a a a
c c c
a a a
c c c
c c c
a a a

where t = �d2�d�.

We now recall the notions of Siromoney matrix grammars [6] and Siromoney
array grammars [7].

Definition 7. A Siromoney matrix grammar is a 2-tuple (G1, G2), where G1 =
(V1, I1, P1, S) is a regular or context-free or context-sensitive or phrase-structure
grammar where V1 is a finite set of horizontal non-terminals. I1 = {S1, . . . , Sk} a
finite set of intermediates, V1∩I1 = φ. P1 is a finite set of production rules called
horizontal production rules. S ∈ V1 is the start symbol. G2 = (G21, G22, . . . , G2k)
where G2i = (V2i, T, P2i, Si), 1 ≤ i ≤ k are regular grammars, V2i is a finite set
of vertical non-terminals, V2i ∩ V2j = φ, i �= j, T is a finite set of terminals, P2i

is a finite set of right linear production rules of the form X → aY or X → a
where X, Y ∈ V2i, a ∈ T , Si ∈ V2i, is the start symbol of G2i.

The grammar G is called regular, context-free, context-sensitive and phrase-
structure Siromoney matrix grammar if G1 is regular, context-free, context-
sensitive and phrase-structure respectively.

Derivations are defined as follows: First a string Si1Si2 . . . Sin ∈ I∗1 is gen-
erated horizontally using the horizontal production rules of P1 in G1. i.e., S ⇒
Si1Si2 . . . Sin ∈ I∗1 .

Vertical derivations proceed as follows: We write

Ai1 . . . Ain

⇓
Bi1 . . . Bin

ai1 . . . ain

if Aij → aijBij are rules in P2j , 1 ≤ j ≤ n. The derivation terminates if
Aij → amj are terminal rules in G2.
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The set L(G) of arrays generated by G consists of all m× n arrays [aij ] such
that 1 ≤ i ≤ m, 1 ≤ j ≤ n and S

∗⇒
G1

Si1Si2 . . . Sin
∗⇒

G2
[aij ].

L(G) is called a phrase-structure matrix language (PSML), context-sensitive
matrix language (CSML), context-free matrix language (CFML), regular matrix
language (RML) if G is PSMG, CSMG CFMG, RMG respectively.

Definition 8. Let G = (V, I, P, S) be an array (rewriting) grammar (AG),
where V = V1 ∪ V2, V1 is a finite set of non-terminals, V2 a finite set of in-
termediates, I a finite set of terminals, P = P1 ∪ P2 ∪ P3, P1 is the finite set of
non-terminal rules, P2 the finite set of intermediate rules and P3 the finite set
of terminal rules, S ∈ V1 is the start symbol, P1 is a finite set of ordered pairs
(u, v), u, v ∈ (V1 ∪ V2)+ or u, v ∈ (V1 ∪ V2)+.

An array grammar (AG) is called (CS : CS)AG if the non-terminal rules are
CS and at least one intermediate language is CS. An array grammar is called
(CS : CF)AG if the non-terminal rules are CS and none of the intermediate
language is CS. A grammar is called (CS : R)AG if the non-terminal rules are
CS and all the intermediate languages are regular. Similarly for all the other six,
combinations namely, (CF : CS)AG, (CF : CF)AG, (CF : R)AG, (R : CS)AG,
(R : CF)AG, (R : R)AG. The language generated by the above grammars are
respectively called as (CF : CS)AL, (CF : CF)AL, (CF : R)AL, (R : CS)AL,
(R : CF)AL, (R : R)AL.

Definition 9. [3] A non-deterministic (deterministic) two-dimensional online
tessellation automaton, referred as 2OTA (2-DOTA) is defined as A = (Σ, Q,
δ, q0, F ) where Σ is the input alphabet, Q is a finite set of states, q0 ∈ Q is the
initial state, F ⊆ Q is the set of final or accepting states. δ : Q× Q×Σ → 2Q

(δ : Q×Q×Σ → Q) is the transition function.
A run of A on a picture p ∈ Σ∗∗ consists of associating a state to each position

(i, j) of p. Such state is given by the transition function δ and depends on the
states already associated to the positions (i − 1, j), (i, j − 1) and on the symbol
p(i, j).

At time t = 0, an initial state q0 is associated to all the positions in the
border of (p̂). The computation consists of �1(p) + �2(p) − 1 steps. It starts at
time t = 1 by reading p(1, 1) and associating the state δ(q0, q0, p(1, 1)) to position
(1, 1). At time t = 2 states are simultaneously associated to positions (1, 2) and
(2, 1), and so on, to the next diagonals. At time t = k, states are simultaneously
associated to each positions (i, j) such that i+ j−1 = k. A 2OTA A recognizes a
picture p if there exists a run of A on p such that the state associated to position
(�1(p), �2(p)) is a final state.

The language accepted by A is L(A) = {p ∈ Σ∗∗ / there is a run of A on p
such that the state corresponding to the cell p(m, n) ∈ F and p is an array of
size (m, n)}.
Definition 10. [6] A finite state matrix automaton (FMA) is a 9-tuple
A = (Q, Σ, Γ, δ, δ′, S, F, F ′, $) where Q = Q̄ ∪ Q1 ∪ · · · ∪ Qk, Qi ∩ Qj = φ,
i �= j, is a finite set of states, Σ is a finite set of input symbols, Γ is a finite
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set of stack symbols, #(Γ ) = k and each stack symbol corresponds to one and
only one Qi. Each Qi has an initial state qi and a final state fi, i = 1, . . . , k.
S =

⋃k
i=1{qi} is the set of start states and F ′ =

⋃k
i=1{fi} is the set of transition

states. Q̄ has an initial state q0 and F ⊆ Q̄ is the set of final states. $ �∈ Σ is
the end marker. δ is a mapping from Qi ×Σ into the finite subsets of Qi × {ε},
i = 1, . . . , k and from fi × $ into the finite subsets of (S ∪ {q0})× si where si is
the stack symbol corresponding to Qi, i = 1, . . . , k, δ′ is the mapping from Q̄×Γ
into the finite subsets of Q̄.

The movement of the automaton is as follows: First the input matrix is placed
with endmarkers.

$ . . . $
am1 . . . amn

. . . . . . . . .
a11 . . . a1n

The automaton first reads the first column from bottom to top according to δ
and when it reaches the first $ it prints a symbol from Γ on the storage (only
one storage) and goes to the bottom of the second column and starts from the
second column. Similarly it acts on the other columns. If the input matrix is
of size m × n at the end of the δ move, when the input pointer has read the
(m, n)th element, the storage will contain n symbols. The automaton then acts
on the storage. It starts moving from left to right according to δ′ and when it
reaches the last letter and after reading it, it must reach a final state; otherwise
the automaton rejects the matrix. If it reaches a final state at the end of δ′ move,
it accepts the input. If the automaton encounters a blank in the middle it stops,
rejecting the input.

A configuration is a 4-tuple (q, (i, j), y, r) where q is the current state, (i, j)
denotes the position of the input pointer, y is the string of the storage tape
and r is the number of cells from the left end of the position of the storage
pointer. If (p, (i, j), y, j) is a configuration, ′a′ the (i, j)th element and (p′, ε)
is in δ(p, a), then (p, (i, j), y, j) -

δ
(p′, (i + 1, j), y, j), i = 1, . . . , m. But if $

is the (i, j)th element and (p′, z) is in δ(p, $), p in F ′, p′ in S then (p, (m +
1, j), y, j) -

δ
(p′, (1, j + 1), yz, j + 1) for all j ≤ n − 1 but if j = n and p′ = q0,

then (p, (m + 1, n), y, n) -
δ

(q0, (m + 1, n), yz, 1).

If (p, (m + 1, n), y, r) is a configuration and δ′(p, z) contains p′ then
(p, (m + 1, n), y, r) -

δ′
(p′, (m + 1, n), y, r + 1). -∗ is the transitive closure of -.

The set of matrices accepted by the FMA is defined to be

L(A) ={[aij ], i = 1, 2, . . . , m; j = 1, 2, . . . , n; m, n ≥ 1/aij ∈ Σ,

(q, (1, 1), ε, 1)
∗�
δ
(q0, (m + 1, n), y, 1)

∗�
δ′(q

′, (m + 1, n), y, n) with q in S,

q′ in F and y in Γ+}.
Definition 11. [6] A pushdown matrix automaton is a 11-tuple A = (Σ, Γ1, Γ2,
Q, δ, δ′, S, F , F ′, Z0, $), where Q is a finite set of states Q = Q∪Q1∪· · ·∪Qk,
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Qi ∩ Qj = φ if i �= j. Each Qi has an initial state qi and a final state fi.

F ′ =
k⋃

i=1

{fi}, S =
k⋃

i=1

{qi}, Q has an initial state q0. F ⊆ Q is the set of final

states. Γ1 is the finite set of storage symbols. #(Γ1) = k and each member of
Γ1 corresponds to one and only one Qi. Γ2 is the finite set of second storage
symbols. Z0 ∈ Γ2 is the initial symbol of the second storage. $ is not in Σ and
is the end marker. S is the set of start states. F ′ is the set of transition states.
δ is the mapping from Qi × Σ into finite subsets of Qi × {ε}, i = 1, . . . , k and
from fi× $ into the finite subsets of (S ∪{q0})× si, i = 1, 2, . . . , k where si ∈ Γ1

corresponds to Qi. δ′ is the mapping from Q× (Γ1 ∪{ε})×Γ2 into finite subsets
of Q× Γ ∗

2 . Other things are similar to FMA.
The movement of the automaton is as follows. First the automaton reads each

column from the bottom to the top and prints a symbol on the first storage after
reading each column. Second it takes this string as the input string and uses the
second storage as a pushdown store and sees whether this string is accepted by
δ′. If so the automaton enters the final state after reading the string in the first
storage. Otherwise it rejects. If the automaton encounters a blank in the middle
it stops, rejecting the input.

3 Shuffle on Trajectories

In this section we define an array grammar with shuffle on trajectories and obtain
some interesting results. We compare this model with the other existing models
for their generative power. We provide results concerning shuffle on trajectories
relating to matrix languages.

Definition 12. We define a column shuffle array language over Σ as the set

C =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

u1

u2

...
um

⎤⎥⎥⎥⎦ /r, k ≥ 1, ui ∈ Σr×k, 1 ≤ i ≤ m

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

Similarly, a row shuffle array language over Σ as the set
R =

{[
u1 u2 . . . um

]
/c, k ≥ 1, ui ∈ Σk×c, 1 ≤ i ≤ m

}
.

Definition 13. An array grammar with shuffle on trajectories (AGST) is a
construct G = (Σ, B, C, R, TC , TR) where Σ is an alphabet, B is a finite subset
of Σ∗∗ called the base of G, C and R are called column and row shuffle array
languages over Σ respectively. TC and TR are sets of trajectories over the column
and row shuffle arrays of C and R respectively.

The direct derivation with respect to G is a binary relation ⇒��T on Σ∗∗

and is defined as X ⇒��T Y , where X, Y ∈ Σ∗∗ if and only if Y = X��TC U
or Y = X��TRU where U ∈ R ∪ C. ⇒∗

��T
is the reflexive transitive closure of

⇒��T .
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The language generated by G, denoted as L(G) is defined as follows:

L(G) = {Y ∈ Σ∗∗/∃X ∈ B such that X ⇒∗
��T

Y }.

The family of all languages generated by AGST is denoted by AGST .
AGST REG, AGST CF , AGST CS denote the family of all languages generated

by AGST grammars with regular, context-free and context-sensitive languages of
trajectories respectively.

Example 2. Let Σ = {X, ·}. Let L be the language of L-tokens. L is generated
by the following AGST REG.

G = (Σ, B, C, R, TC , TR) where B =
{

X ·
X X

}
,

R = {X(·)n/n ≥ 0}, C = { (·)n

X /n ≥ 1},
TR = {�nd/n ≥ 2}, TC = {rnu/n ≥ 2}.
The derivation is shown below:

X ·
X X

��TR
=⇒
�2d

X ·
X ·
X X

��TC
=⇒
r2u

X · ·
X · ·
X X X

��TC⇒
r3u

X · · ·
X · · ·
X X X X

��TR⇒
�3d

X · · ·
X · · ·
X · · ·
X X X X

Example 3. Let Σ = {X, ·}, L the language which includes staircases of X ’s. L
is generated by the following AGST REG, G = (Σ, B, C, R, TC , TR) where

B =

⎧⎨⎩
· · · X
· · · X
X X X X

⎫⎬⎭, R =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
· · ·
· · ·
· · ·
· · ·

⎞⎟⎟⎠
n ·
·
·
·
/n ≥ 1

⎫⎪⎪⎬⎪⎪⎭,

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( · · ·
· · ·

)
n⎛⎝ · · X

· · X
X X X

⎞⎠( · · ·
· · ·

)
m

/m, n ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, TR = {�mdn/m, n ≥ 1},

TC = {riuj/i, j ≥ 1}.
The sample derivation is given below

· · · X
· · · X
X X X X

��TR
=⇒
�3d4

· · · ·
· · · ·
· · · ·
· · · ·
· · · X
· · · X
X X X X

��TC
=⇒
r4u3

· · · · · · ·
· · · · · · ·
· · · · · · X
· · · · · · X
· · · X X X X
· · · X · · ·
X X X X · · ·

��TC−→
r7u3
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· · · · · · · · · X
· · · · · · · · · X
· · · · · · X X X X
· · · · · · X · · ·
· · · X X X X · · ·
· · · X · · · · · ·
X X X X · · · · · ·

Staircase

Theorem 1. The AGST REG intersects (R : R)AG.

Proof. The L token of all sizes of a fixed proportion is generated by (R : R)AG,
given by G = (V, I, P, S) where V = V1 ∪V2, V1 = {S}, V2 = {A, B}, I = {·, X}
and P = P1∪P2 generates L of token of all sizes, the ratio between the two arms
of L is 1. P1 = {S → (S©− A)©| B}, LA = {X(·)n/n ≥ 0}, LB = { (·)n

X |n ≥ 1}

and P2 =

{
S → X ·

X X

}
.

The grammar generates L of all sizes, the ratio between the two arms of L is 1.
The derivation is shown below:

X ·
X X

⇒
X · ·
X · ·
X X X

⇒
X · · ·
X · · ·
X · · ·
X X X X

⇒

X · · · ·
X · · · ·
X · · · ·
X · · · ·
X X X X X

The language is also generated by AGST REG (Example 2). Hence the proof. ��
Let L1 and L2 be two array languages and T be a set of trajectories. Then
L1��T L2 = {α��tβ|α ∈ L1, β ∈ L2, t ∈ T }.

We now give an example to illustrate the notion of shuffle of two languages
on a set of trajectories.

Example 4. Right-angled isosceles triangles of X ’s is generated by the following
(R : R)AG. Let G1 = (V, I, P, S) where V = V1 ∪ V2, V1 = {S1}, V2 = {A1, B1},
I = {X, ·}, P 1

1 = {S1 → (S1©−A1)©| B1}, P 1
2 is the set of intermediate rules

given by LA1 and LB1 , P 1
3 =

{
S1 → · X

X X

}
. LA1 = {(·)n/n > 1}, LB1 =

{(X)n/n ≥ 1}.
The language L1 = L(G1) generated is given below

L1 =

⎧⎪⎪⎨⎪⎪⎩
· X
X X

,
· · X
· X X
X X X

,

· · · X
· · X X
· X X X
X X X X

, . . .

⎫⎪⎪⎬⎪⎪⎭
Consider another language L2, consisting of token L of all sizes and of all

proportions generated by the following (R : R)AG. Let G2 = (V, I, P, S) where
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V = V1 ∪V2, V1 = {S}, V2 = {A2, B2}, I = {X, ·}, P 2
1 = {S2 → (S2©−A2)©| B2},

P 2
2 is the set of intermediate rules given by LA2 and LB2 , P 2

3 =
{

S2 → X ·
X X

}
.

LA2 = {X (·)n/n ≥ 0}, LB2 =
{

(·)n

X
/n ≥ 1

}
.

The language thus generated is

L2 = L(G2) =

⎧⎨⎩X ·
X X

,
X · ·
X · ·
X X X

, . . .

⎫⎬⎭,

L1��TC L2 =

⎧⎨⎩ · X X ·
X X X X

,
· X · · X ·
· X X · X ·
X X X X X X

, . . .

⎫⎬⎭, TC = {(ru)i, i ≥ 1}

L1��TRL2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
X ·
· X
X X
X X

,

X · ·
· · X
X · ·
· X X
X X X
X X X

, . . .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, TR = {(�d)j , j ≥ 1}

L1��TC L2, L1��TRL2 are (R : R)AL, and are generated by G3 and G4 respec-
tively, where G3 = (V, I, P, S3), V = V1 ∪ V2, V1 = {S3}, V2 = {A3, B3}, I =
{X, ·},
P 3

1 = {S3 → (S3©−A3)©| B3}, P 3
2 is the set of intermediate rules given by LA3

and LB3 , P 3
3 =

{
S3 → · X X ·

X X X X

}
. LA3 = {· X (· ·)n/n ≥ 1},

LB3 =
{

(X ·)n

X X
/n ≥ 1

}
and G4 = (V, I, P, S4), V = V1 ∪ V2, V1 = {S4},

V2 = {A4, B4}, I = {X, ·}, P 4
1 = {S4 → (S4©−A4)©| B4},

P 4
2 is the set of intermediate rules given by LA4 and LB4 ,

P 4
3 =

⎧⎪⎪⎨⎪⎪⎩S4 →
X ·
· X
X X
X X

⎫⎪⎪⎬⎪⎪⎭, LA4 =
{

X ·
· ·

( ·
·
)n

/n ≥ 0
}

.

LB4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ·
X

)
n·

X
·
X
X
X

/n ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

The following theorem is with respect to RMLs and a regular language.

Theorem 2. Let T ⊆ {r, u}∗ ∪ {�, d}∗ be a set of trajectories. If T is a regular
language and L1, L2 are all regular matrix languages (RML), then L1 ��T L2 is
a regular matrix language.
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Proof. Let T be a regular language. L1, L2 are two regular matrix languages
over the same alphabet Σ. Let A1 = (Σ, Γ1, Q1, δ1, δ

′
1, S1, F1, F

′
1, $) and A2 =

(Σ, Γ2, Q2, δ2, δ
′
2, S2, F2, F

′
2, $) are finite state matrix automata such that L(A1)=

L1 and L(A2) = L2, where Q1 = K1∪K11∪K12∪ . . . K1k, K1i �= K1j for i �= j is
a finite set of states and Q2 = K2∪K21∪K22∪· · ·∪K2k, where Σ is a finite set of
input symbols. Γ1 and Γ2 are stack symbols correspond to one and only one K1i

and K2i respectively. Each K1i and K2i has an initial state q1i and q2i. The final

states are f1i and f2i for i = 1, 2, . . . , k. S1 =
k⋃

i=1

{q1i} and S2 =
k⋃

i=1

{q2i} are the

sets of start states. F ′
1 =

k⋃
i=1

{f1i} and F ′
2 =

k⋃
i=1

{f2i} are the sets of transition

states. K1 and K2 have initial state q10 and q20 respectively. F1 ⊆ K1, F2 ⊆ K2

are the set of final states. $ �∈ Σ is the endmarker, δ1 is a mapping from K1i×Σ
into the finite subsets of K1i × {ξ}, i = 1 . . . k and from f1i × $ into the finite
subsets of (S1∪{q10})×S1i where S1i is the stack symbol corresponding to K1i,
similarly δ2 can be defined. δ′1 is the mapping from K1×Γ into the finite subsets
of K1. Similarly we define δ′2. Let AT = ({r, u, �, d}, QT , δT , qT

0 , FT ) be a finite
deterministic automaton such that L(AT ) = T .

We define a finite state matrix automaton as a 9-tuple
A = (Σ, Γ, Q, δ, δ′, S, F, F ′, $) such that L(A) = L1��T L2, where Q is a finite
set of states, Q = R ∪ R1 ∪ · · · ∪ Rk, Ri ∩ Rj = φ, if i �= j. Each Ri has an

initial state qi and a final state fi, i = 1 . . . k. S =
k⋃

i=1

{qi}, R has an initial

state q0, F ⊆ R is the set of final states. $ �∈ Σ is the end marker. Formally
Q = Q1 × QT × Q2, R = {(q1

0 , qT
0 , q2

0)}, F = F1 × FT × F2 and F ′ = F ′
1 × F ′

2.
Informally A on an input p ∈ Σ∗∗ simulates non deterministically A1 or A2

and from time to time changes the simulation from A1 to A2 or from A2 to A1.
Each change determines a transition in AT as follows: a change from A1 to A2

is interpreted as u or d and a change from A2 to A1 is interpreted as r or �
respectively. The input p is accepted by A if and only if each of A1,A2 and AT

accepts L1, L2 and T respectively.
The transition δ is defined as

δ((q1, qT , q2), a) ={(δ1(q1, a), δT (qT , r), q2), (q1, δT (qT , u), δ2(q2, a)),
(δ1(q1, a), δT (qT , �), q2), (q1, δT (qT , d), δ2(q2, a))}

where q1 ∈ Q1, q2 ∈ Q2, a ∈ Σ, qT ∈ QT . δ′ is a mapping from R × Γ into the
finite subsets of R.
We can easily verify that L(A) = L1��T L2 and hence L1��T L2 is a regular
matrix language. ��

The next theorem is with respect to RMLs and a CFL.
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Theorem 3. Let T ⊆ {r, u}∗ ∪{�, d}∗ be a set of trajectories. If T is a context-
free language and L1, L2 are all regular matrix languages (RML), then L1��T L2

is a context-free matrix language.

Proof. Let T the set of trajectories be a context-free language. Consider two
regular matrix array languages L1, L2. Without loss of generality, we may assume
that L1 and L2 are over the same alphabet. Let Ai = (Σ, Γi, Qi, δi, δ′i, Si,
Fi, F ′

i , $) be a finite state matrix automata such that L(Ai) = Li, for i =
1, 2. Let Ap = ({r, u, �, d}, ΓT , QT , qT

0 , ZT
0 , FT , δT ) be the pushdown automaton

such that L(Ap) = T , where QT is the finite set of states, ΓT is the stack
alphabet, qT

0 ∈ QT is the initial state, ZT
0 ∈ ΓT is the initial stack symbol,

FT ⊆ QT is the set of final states and δT is the transition mapping defined as
δT : QT × ({r, u, �, d} ∪ {λ})× ΓT → 2QT ×ΓT .

We construct a pushdown matrix automaton A = (Σ, Γ1, Γ2, Q, δ, δ′, S,
F , F ′, Z0, $) such that L(A) = L1��T L2, where Q is a finite set of states
Q = Q ∪ Q1 ∪ · · · ∪ Qk, Qi ∩ Qj = φ if i �= j. Each Qi has an initial state qi

and a final state fi. F ′ =
k⋃

i=1

{fi}, S =
k⋃

i=1

{qi}, Q has an initial state q0. F ⊆ Q

is the set of final states. Γ1 is the finite set of storage symbols. #(Γ1) = k and
each member of Γ1 corresponds to one and only one Qi. Γ2 is the finite set of
second storage symbols. Z0 ∈ Γ2 is the initial symbol of the second storage. $
is not in Σ and is the end marker. Informally A on an input p ∈ Σ∗∗ simulates
non-deterministically A1 or A2 and from time to time changes the simulation
from A1 to A2 or from A2 to A1. Each change determines a transition in AT as
follows:

A change from A1 to A2 is interpreted as u or d and a change from A2 to A1

is interpreted as r or � respectively. The input p is accepted by A if and only if
each of A1, A2 and Ap accepts L1, L2 and LT respectively.

Formally Q = Q1 × QT × Q2. Q = {(q1
0 , q

T
0 , q2

0)}, F = F1 × FT × F2 and
F ′ = F ′

1 × F ′
2. The transition function δ is defined as δ : Q×Q×Σ → 2Q.

The transition δ is given as

δ((q1
1 , qT , q2

1), (q
1
2 , qT , q2

2), a, X) =
⋃

(s,α)∈δT (qT ,r,X)

{((δ1(q1
1 , q1

2 , a), s, q2
1), α)} ∪

⋃
(s′,α′)∈δT (qT ,u,X)

{((q1
1 , s

′, δ2(q2
1 , q2

2 , a)), α′)}

and

δ((q1
1 , qT , q2

1), (q
1
2 , qT , q2

2), λ, X) =
⋃

(s,α)∈δT (qT ,λ,X)

{((δ1(q1
1 , q1

2 , λ), s, q2
1), α)}

where q1
1 , q

1
2 ∈ Q1, qT ∈ QT , q2

1 , q
2
2 ∈ Q2, X ∈ Γ , α, α′ ∈ Γ ∗, λ ∈ T . Additionally,
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δ((q1
1 , qT , q2

1), (q
1
2 , qT , q2

2), a, X) =
⋃

(s,α)∈δT (qT ,�,X)

{((δ1(q1
1 , q1

2 , a), s, q2
1), α)} ∪

⋃
(s′,α′)∈δT (qT ,d,X)

{((q1
1 , s

′, δ2(q2
1 , q2

2 , a)), α′)}

and

δ((q1
1 , qT , q2

1), (q
1
2 , qT , q2

2), λ, X) =
⋃

(s,α)∈δT (qT ,λ,X)

{((δ1(q1
1 , q1

2 , λ), s, q2
1), α)}

where q1
1 , q

1
2 ∈ Q1, qT ∈ QT , q2

1 , q
2
2 ∈ Q2, X ∈ Γ , α, α′ ∈ Γ ∗.

δ′ is the mapping from Q× (Γ1 ∪{ε})×Γ2 into finite subsets of Q×Γ ∗
2 . Clearly

L1��T L2 is a context-free matrix language. ��

Now we have a result with respect to two recognizable languages L1 and L2 and
a regular language T .

Theorem 4. Let T ⊆ {r, u}∗∪{�, d}∗ be a set of trajectories. For all recognizable
array languages L1, L2, L1��T L2 is a recognizable array language, if T is regular.

Proof. Let T be a regular language. L1, L2 are two recognizable array languages
over the same alphabet Σ. Let Ai = (Σ, Qi, δi, q

i
0, Fi) be a deterministic two

dimensional online tessellation automaton such that L(Ai) = Li for i = 1, 2.
Also AT = ({r, u, �, d}, QT , δT , qT

0 , FT ) be a deterministic finite state automaton
such that L(AT ) = T .

We define a finite non-deterministic online tessellation automaton
A = (Σ, Q, δ, Q0, F ) such that L(A) = L1��T L2. Informally A on an input
p ∈ Σ∗∗ simulates non-deterministically A1 or A2 and from time to time changes
the simulation from A1 to A2 or from A2 to A1. Each change determines a tran-
sition in AT as follows: a change from A1 to A2 is interpreted as u or d and a
change fromA2 toA1 is interpreted as r or � respectively. The input p is accepted
by A if and only if each of A1, A2 and AT accepts L1, L2 and T respectively.

Formally Q = Q1 × QT × Q2, Q0 = {(q1
0 , q

T
0 , q2

0)}, F = F1 × FT × F2. The
transition δ is defined as follows:
δ : Q×Q×Σ → 2Q.
The transition δ is defined as follows:

δ((q1
1 , qT , q2

1), (q1
2 , qT , q2

2), a)

= {(δ1(q1
1 , q1

2 , a), δT (qT , r), q2
1), (q1

1 , δT (qT , u), δ2(q2
1 , q2

2 , a)),

(δ1(q1
1 , q1

2 , a), δT (qT , �), q2
1), (q

1
1 , δT (qT , d), δ2(q2

1 , q
2
2 , a))}

where q1
1 , q

1
2 ∈ Q1, qT ∈ QT , q2

1 , q
2
2 ∈ Q2, a ∈ Σ. It can be easily verified that

L(A) = L1��T L2 and hence L1��T L2 is a recognizable language. ��
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4 Conclusion

The use of shuffle operation in the theory of concurrency and parallel composition
is well known. This operation is used to yield formal languages. The shuffle on
finite and infinite words have been investigated extensively. But the study of
the shuffle operation on finite arrays is in the initial stage. So in this paper,
we have made an attempt to study in depth the use of shuffle operation on
different languages of finite arrays to provide new classes of languages of arrays
and images. We have defined an array grammar with shuffle on trajectories over
finite arrays and obtained interesting results. Based on the studies in [1,2] the
results shown in section 3 can be extended to ωω-array languages.
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Abstract. An unknown planar discrete set of points A can be inspected
by means of a probe P of generic shape that moves around it, and reveals,
for each position, the number of its elements as a magnifying glass. All
the data collected during this process can be naturally arranged in an
integer matrix that we call the scan of the starting set A w.r.t. the
probe P .

When the probe is a rectangle, a set A whose scan is homogeneous
shows a strong periodical behavior, and can be decomposed into smaller
homogeneous subsets. Here we extend this result, which has been con-
jectured true for all the exact polyominoes, to the class of diamonds,
and we furnish experimental evidence of the decomposition theorem for
exact polyominoes of small dimension, using the mathematical software
Sage.

1 Introduction

The aim of discrete tomography is the retrieval of geometrical information about
a physical structure, regarded as a finite set of points, i.e. its primary con-
stituents, from measurements, generically known as projections, of the number
of the structure’s constituents that lie on (discrete) lines with fixed scopes. A
common simplification is to represent a finite physical structure A as a binary
matrix, where an entry is 1 or 0 according to the presence or the absence of
material at the corresponding point of the lattice (see [6] for a survey).

Following [7], here we consider a model where data from a structure are col-
lected not with respect to lines of fixed scope, but using of a probe P , much
as we might examine a specimen under a microscope or magnifying glass. For
each possible position of the probe, we count the number of visible points, or
equivalently, in the binary matrix model, the number of the 1s inside the probe.

The collected data can be naturally arranged as an integer matrix, say the
scan of A with respect to the probe P , whose values range from 0, when no 1s lie
inside P , to the dimension of the probe itself, regarded as the maximum number
of elements of the matrix that may lie inside it.

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 275–283, 2011.
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In [7], planar binary configurations are considered, i.e. infinite discrete sets,
setting aside the problems concerning border phenomena that may eventually
arise in finite configurations; such a simplification is possible thanks to the very
local behavior of the notion of scan. These infinite sets are inspected by means of
rectangular probes called windows due to their shapes: if the obtained scans have
a constant value, i.e. they are homogeneous, then the related sets show strong
periodical behaviors. Furthermore, in this setting, a decomposition theorem, that
allows to split each set having homogeneous scan into minimal homogeneous
subsets, holds.

The two highlighted results lead to the definition of a reconstruction strategy
for finite discrete sets from rectangular scans obtained in [4] and [5].

The present work constitutes a step towards the generalization of the decom-
position theorem given in [7] to exact probes i.e. those connected sets that tile
the plane by translation: an expected result since that very first paper.

So, our studies start by considering homogeneous scans obtained from a class
of exact probes called diamonds, and we give some properties of the related
discrete sets, again including the periodicity of their elements; using these results
we hit the goal of a new decomposition theorem.

Finally, we move to generic exact probes of small dimension, and we give
experimental evidence of the possible decompositions of infinite sets having ho-
mogeneous scans into minimal homogeneous subsets, by using the mathematical
software system Sage.

2 Definitions and Results

Borrowing the notation from [7], let us consider a set of points A in the lattice
ZZ2 and let UA be its characteristic function, i.e. for all z ∈ ZZ2

UA(z) = 1 if z ∈ A
UA(z) = 0 if z �∈ A.

Let us define the probe P = {p0 = (0, 0), p1, p2, . . . , pn} to be a finite set of points
of ZZ2 including the origin, and that we will use to collect information about the
set A, as a sort of window that moves along it, and reveals, position by position,
the total number of elements of A that lie inside P . The A set is represented
using a binary matrix, where every point of A corresponds to an (i, j) position
wich is set to 1, while the probe P is represent throught a union of unitary cells.
The center of this cells corresponds to a point of P , (see Fig.1).

The collected data can be arranged in a two dimensional infinite array PA

called the scan of A with respect to P , briefly P -scan of A, and whose generic
element is defined as follows:

PA(i, j) = card{p ∈ (i, j) + P : UA(p) = 1},

where (i, j) + P means the translation of the the probe P by the vector (i, j)
(see Fig.2, (a) and (b)).
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Fig. 1. (a): a finite set of points of ZZ2, A; (b): (the contour of) a finite set of points
used as a probe, P ; (c): some elements of the infinite scan related to the set in (a) and
the probe in (b) translated by the vector (2, 1)

(i,j)

11

1

1

1

1 1 1 1
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1
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(i,j)
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2 1
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2

2

1

(a) (b)

Fig. 2. (a): an infinite binary matrix representing a discrete set of points. The high-
lighted probe is translated by the vector (i, j); (b): some elements of the infinite scan
related to the set and the probe in (a).

The set A is homogeneous of degree k, say k-homogeneous, with respect to
P if all the elements of the scan PA have constant value k, that is for every
translations of P over ZZ2 the same number k of points of A appears in the
probe.

A set A constitutes a coverage of the plane with respect to the probe P if and
only if

ZZ2 = A + P,

where + stand for the Minkowski sum, i.e. for each z ∈ ZZ2 there exist one
element a ∈ A and one element p ∈ P such that z = a + p.
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If the Minkowski sum is non ambiguous, i.e. each element z ∈ ZZ2 can be
obtained in only one way from the elements of A and the elements of P , then
we say that A is a tiling of the plane, and we indicate the Minkowski operator
with ⊕.

Finally, the set A is periodic with respect to the (integer) vector (i, j) if it
holds that a ∈ A if and only if (i, j) + a ∈ A.

The following result, given in [7], strictly relates homogeneous scans with the
shape of the used probe:

Theorem 1. There is a subset of ZZ2, A, homogeneous of degree 1 for P if and
only if the probe P tiles the plane by translation.

The notion of exact set has been defined by Beauquier and Nivat in [1], and it
characterizes all those connected sets P , say polyominoes, that tile the plane by
translation, i.e. for which there exists an infinite set A such that ZZ2 = P ⊕A.

In the same paper it has also been proved that each 1-homogeneous set is
periodic with respect to one or two directions according to the characteristics of
the related tile (see Fig. 3).

(b)(a)
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1

1
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1

1

1

1

1

1
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1

1
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1

Fig. 3. Different probes that tile the plane by translation: in (a) a 1-homogeneous
set having periodicity along the two directions (2, 3) and (2,−1), while in (b) a 1-
homogeneous set having periodicity only along the direction (4, 0)

Exact sets have been widely studied from different points of view: they can
be detected and generated quickly [3], those having convexity properties are
enumerated [2], and the number of different tilings of the plane that are related
to a given one is conjectured [8].

Furthermore, in [7], Nivat studies the configurations of the plane that are ho-
mogeneous with respect to probes with rectangular shape, the simplest subclass
of exact polyominoes, and proves a theorem that constitutes the basis of our
studies:
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Theorem 2. Let P be a rectangular probe of dimension p× q, with p, q ∈ IN. If
the P -scan of a discrete set A is k-homogeneous, then A can be decomposed into
k subsets that are 1-homogeneous with respect to P .

Here, we extend this result to the the class of diamonds polyominoes, simply
diamond, and successively we furnish experimental evidence for its full general-
ization to each exact polyominoes. The technique we use in this paper is different
from those in [7].

3 Probing the Plane with Diamond Polyominoes

For each integer n ≥ 1, we define diamond of dimension n, say Dn, the set of
points of ZZ2 whose L1 distance from (n

2 , n
2 ) is less than or equal to /n

2 0.
For each n, we indicate the point (n

2 , n
2 ) as center of the diamond Dn; note

that, for n odd, the center of Dn has no integer coordinates (see Fig. 4).
The elements Dn, with n odd, are known as aztec diamonds, and constitute

one of the most interesting and widely studied class of discrete sets in the fields of
combinatorics. Since we want to use the diamonds to probe planar configurations
of points we have to translate them in order to include the point (0, 0) in their
interiors.

The following properties directly lead to the generalization of Theorem 2 to
the class of diamonds:

Property 1. Each diamond Dn is an exact polyomino (see Fig. 5 for an example).

Property 2. Let A be a 2-homogeneous set with respect to Dn. For each point z ∈
ZZ2, there exist exactly two points a1, a2 ∈ A such that z ∈ (a1+Dn)∩(a2 +Dn)
(i.e. we say that A is a 2-coverage of z).

Proof. Let us proceed by contradiction assuming that there exist at least three
points a1, a2, a3 ∈ A such that z ∈ (a1+Dn)∩(a2+Dn)∩(a3+Dn) (if we assume
the existence of at most one point of A covering z, the proof is analogous).

D_1 D_2 D_3 D_4 D_5

Fig. 4. The first five diamonds polyominoes whose centers are highlighted



280 D. Battaglino, A. Frosini, and S. Rinaldi

Let c be the center of Dn, and, for each i ∈ {1, 2, 3}, ci be the center of
(ai + Dn). Since it holds ai + c = ci then⌈n

2

⌉
≥ L1(z, ci) = L1(z, ai + c) = L1(z − c, ai).

So, the translated probe (z − c) + Dn contains the three points a1, a2, and a3

against the assumption of the 2-homogeneity of A. ��

Property 3. If a discrete set A is a 2-coverage with respect to the diamond Dn

in each point z ∈ ZZ2, then A can be decomposed into two sets A1 and A2 that
are 1-homogeneous with respect to Dn.

The proof is straightforward: we start by randomly choosing a point a ∈ A and
we move it into A1. Now, we move in A1 each point a′ that is 2-covered by A
and such that a + Dn and a′ + Dn have a common edge. Repeating this process
we obtain a set A1 that is a full coverage of ZZ2, since Dn is exact; what remains
in A is the set A2. Since this process can be applied up to translations of the
probe Dn, then the result follows.

Theorem 3. Each 2-homogeneous set A with respect to the diamond Dn admits
a decomposition into two sets that are 1-homogeneous respect Dn.

The proof directly follows from Properties 2 and 3.

Corollary 1. Each k-homogeneous set with respect to Dn can be decomposed
into k sets that are 1-homogeneous.

We can suppose to proceed in the same way as used in the case of 2-homogeneity,
repeating the procedure k times. At every generic step t we have t sets 1-
homogeneous and a set k − t-homogeneous.

This last corollary completes the generalization of Theorem 2 to the class of
diamonds polyominoes. Some further simple properties of k-homogeneous sets
can be highlighted:

Property 4. For each diamond Dn, there exist two different sets of points A and
A′ that are 1-homogeneous with respect to it. If n is even, then the two sets
are periodic with respect to the couple of vectors (n

2 + 1, n
2 ) and (n

2 + 1,−n
2 ) or

(n
2 , n

2 +1) and (n
2 ,−n

2 −1), while if n is odd, then they are periodic with respect
to the couple of vectors (1n

2 2+1, 1n
2 2) and (1n

2 2,−1n
2 2−1) or (1n

2 2, 1n
2 2+1) and

(1n
2 2+ 1,−1n

2 2).

Figure 5 shows the two different 1-homogeneous sets related to the diamond D4

and their periodicity.

Property 5. If A is k-homogeneous with respect to Dn, then A is periodic with
respect to exactly one couple of vectors listed in Property 4 related to the parity
of n.
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Fig. 5. The two 1-homogeneous sets with respect to D4: the elements of (a) have
periodicity (2, 3) and (3,−2), while the elements of (b) have periodicity (3, 2) and
(2,−3)

The proof immediately follows after observing that, for each n, directions of
periodicity are coprime coordinate by coordinate.

Further studies will concern the possibility of extending the results in Theo-
rem 3 to a more general class of diamonds, say pseudo-diamonds, whose staircase
edges may vary in slope.

Such a steps will proceed in the direction of a final decomposition theorem
that will hold for the whole class of exact polyominoes, as expected since the
very first approach to the problem in [7].

In the next paragraph, we furnish experimental evidence to this result by a
computer program that generates all the exact polyominoes of a given dimension
and, for each of them, inspects all its possible k-homogeneous discrete sets,
finding a decomposition into 1-homogeneous sets. All the experimental results
have been obtained using the mathematical software SAGE.

4 Experimental Results Obtained with Sage

We know that the properties of periodicity hold also for windows with a shape
of a pseudo-square or a pseudo-hexagon. Thus, it is natural to check, in an
experimental way, the validity of the theorem of decomposition for these types
of windows.

So, we wrote a program which takes as input all pseudo-square or pseudo-
hexagon polyominoes of dimension n and an integer k (k ≤ (dimP )/2), and
returns all the {0, 1}-configurations which are k-homogeneous with respect to
the considered polyomino.
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To write our program we used Sage, which is a free open-source mathematics
software system licensed under the GPL. It combines the power of many existing
open-source packages into a common Python-based interface. The reader can find
all useful information concerning Sage on the web site http://www.sagemath.org.

Since we can consider all possible configurations as the sum of 1-homogeneous
configurations and since these are periodic with period determined by the exam-
ined polyomino, we have only a fixed number of final configurations. These config-
urations are exactly the ones obtained from the combinations of 1-homogeneous
configurations.

Then, if we consider the theorem valid with this new set of windows, the
program output should return a few possible configurations accordingly to the
periodicity induced by the tiling of the plane by the polyomino and from the
degree of homogeneity.

The general idea of the algorithm is based on the fact that the theorem can
be not true. In this case the number of possible configurations can be very high.

We posted the work calculating step by step all possible positions combina-
tions, in which we can insert the value 1. For every possible resulting combination
the described procedure will then be recursively applied.

Our work can be divided in three steps:

step 1. At first, we generate a list of pseudo-squares or pseudo-hexagons of fixed
semi-perimeter n, with n ≤ 12.

step 2. After that, every generated polyomino P is represented in the center of a
matrix of dimensions [p]×[q], where p and q are the triple of the length of the
basis and of the height of the minimal bounding rectangle of P , respectively.

At this point P is translated, by one step, following a spiral direction
in the eight directions surrounding it. This operation is repeated for every
new obtained copy of P , deleting the translations already considered, thus
obtaining a “spirally-oriented ”list of copies of P .

At the end, for every element of our list, where the first is the one which
is in the center of M , we recursively place the k points in every possible way.

step 3. Finally, the last part consists in checking the periodicity of the obtained
configurations and the link between them and the periodicity induced by the
tested polyomino.

What we have observed by using this program to look at the pseudo-square and
the pseudo-hexagon of semi-perimeter ≤ 12, is that the results are exactly that
which we were expecting. In fact, the k-homogeneous configurations obtained
are in agreement to the conditions of periodicity under described.

5 Conclusions

In this paper we have proved that the Decomposition Theorem (Theorem 2)
holds for the diamonds class, and we have provided experimental confirmation
that such a Theorem holds to pseudo-square and pseudo-hexagon polyominoes.
We are then led to conjecture that such a Theorem can be extended to the whole
class of exact polyominoes.
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In the future we would also like to analyze the problem of reconstruction of
homogenous configurations from their diamond-scan and then for every exact
polyominoes-scan.
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Abstract. This paper addresses the problem of extracting qualitative and
quantitative information from few tomographic projections without object recon-
struction. It focuses on the extraction of quantitative information, precisely the
border perimeter estimation for a convex set from horizontal and vertical projec-
tions. In the case of a unique reconstruction, we give conditions and a method
for constructing an inscribed polygon in a convex set only from the convex-set
projections. An inequality on border perimeter is proved when a convex set in
included in another one. The convergence of the polygon perimeter when the ver-
tice number increases is established for such polygons. In the case of a multiple
reconstruction, lower and upper bounds for the perimeter are exhibited.

Keywords: perimeter estimation, convex set, tomography, two projections,
polygonal reconstruction.

1 Introduction

This paper addresses geometrical property estimation from convex-set projections with-
out reconstructing the convex set. It is known that a convex set can be reconstructed
from seven projections and from four projections with conditions on the angles [1]. So
information of four projections is sufficient to geometrical property estimation. As the
projection preserves the area, one projection is sufficient for the area estimation. On
the contrary, the perimeter cannot be estimated from only one projection: Let P be a
parallelogram with two sides parallel to Oy and with abscissa a for the first side and b
for the second. It will have the same projection against Ox (a rectangle) and have an
perimeter arbitrarily large, depending on the shearing of the parallelogram.

Thus we focus on the perimeter estimation from two projections in this paper. There
are two cases whether the reconstruction is unique or not. If the reconstruction is unique,
we propose a perimeter estimation from a polygon approximating the convex set with
a small complexity. For this purpose, we first prove that the inclusion of convex sets
implies the inferiority of their perimeters. Then, in a second section, the conditions
on the projections that imply the convex-set inclusion are detailed. In a third part, the
polygon reconstruction is studied. In a last part, the convex-set perimeter estimation
based on a polygon is studied (construction and convergence) and bounds are computed
where reconstruction is not unique.
� This work was supported by the Agence Nationale de la Recherche through contract ANR-

2010-BLAN-0205-01.

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 284–297, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Convex-Set Perimeter Estimation from Its Two Projections 285

1.1 State of the Art

The perimeter estimation from two projections without reconstruction is not studied in
the literature according to the authors. The characterization of unique reconstruction
has been studied theoretically in [3,2] and with a statistical point of view in [4].

In all the paper, the sets, equalities and inequalities are defined modulo a set of mea-
sure zero (in the sens of the measure of Lebesgue) and all the functions are measurable.

The following notions are used in the sequel.

Definition 1 (Hypograph, epigraph). For a function with value in R, its hypograph is
the set HG( f ) = {(x,y) | x∈ supp( f ) and y � f (x)} and its epigraph is the set EG( f ) =
{(x,y) | x ∈ supp( f ) and y � f (x)}.

Definition 2 (Convexity). Let C be a set in a real vector space. C is said to be convex
if

∀x,y ∈C,∀t ∈ [0,1],(1− t)x + ty∈C.

A function f is convex if EG( f ) is a convex set.
A function f is concave if − f is convex, which is equivalent to EG( f ) is a concave set.

Remark 1. It is noticeable that the projections of a convex set along horizontal and
vertical directions are concave functions, which is equivalent to: the hypographs of
these projections are convex sets.

Definition 3 (Function comparison). Let f : D f →R+ and g : Dg →R+ be two func-
tions, we denote f 3 g if D f ⊆ Dg and ∀x ∈ D f , f (x) � g(x).

Our work exploits in sec. 3 the theorems of characterization and reconstruction pro-
posed in [2]. Let introduce notations and recall the main characterization theorems
quoted from [2].

Let C⊆R2 be a set such that λ2(C)< ∞, where λ2 is the two-dimensional Lebesgue’s
measure. Let χC(x,y) be the characteristic function of C. Let λ1 be the one-dimensional
Lebesgue’s measure. From the Fubini’s theorem, the projections of χC(x,y) along hor-
izontal direction:

fC
X (y) =

∫ ∞

−∞
χC(x,y)dx = λ1({x | (x,y) ∈C})

and vertical direction:

fC
Y (x) =

∫ ∞

−∞
χC(x,y)dy = λ1({x | (x,y) ∈C})

exist almost everywhere on R and are integrable. Let CX = {y | fC
X (y) > 0} and CY =

{x | fC
Y (x) > 0} be the supports of fC

X and fC
Y respectively. As the sets {y∈CY | fC

X (y) �
x} and {x ∈CX | fC

Y (x) � y} are measurable sets, the functions

fC
XY (x) = λ1({y ∈CY | fC

X (y) � x})
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and
fC
Y X(y) = λ1({x ∈CX | fC

Y (x) � y})
exist for almost all x and y.

Remark 2. – fC
X ,Y = f

HG( fC
X )

Y .

– fC
Y,X = f

HG( fC
Y )

X .

Similarly, one can define

fC
Y XY (x) = λ1({y | fC

Y X(y) � x})

Definition 4. A pair of functions g : I1→R+,h : I2→R+ is called unique, (respectively
non-unique (respectively inconsistent)) if there exists an unique set D (respectively dif-
ferent sets D (respectively no set D)) such that D⊆ I1× I2, f D

X = g and f D
Y = h

We then have the following theorem (detail and proofs can be found in [2]):

Theorem 1 (Characterization of unique, non unique and inconsistent projections).
Let fC

X and fC
Y be two integrable positive functions such that∫ ∞

−∞
fC
X (y)dy =

∫ ∞

−∞
fC
Y (x)dx

1. fC
X et fC

Y are unique if and only if

∀z > 0,

∫ z

0
fC
XY (x)dx =

∫ z

0
fC
Y XY (x)dx

2. fC
X and fC

Y are non-unique if and only if

∀z > 0,

∫ z

0
fC
XY (x)dx �

∫ z

0
fC
Y XY (x)dx

and there exists a z for which strict inequality holds
3. fC

X and fC
Y are inconsistent if and only if

∃z > 0,

∫ z

0
fC
XY (x)dx <

∫ z

0
fC
Y XY (x)dx

Another unique characterization which will be useful is given in [3]:

Theorem 2 (Characterization with inverse). The set C is determined uniquely mod-
ulo null sets by its projections if and only if fC

XY and fC
Y XY are inverses of each other

(i.e. ( fC
XY )−1 = fC

Y XY ).

Example 1. Let aX ,aY ∈ R+ and a,b,c,d ∈ R such that a≤ b and c≤ d. Consider the
functions gX = aX χ[a,b] and hY = aY χ[c,d] then

gXY = (b−a)χ[0,aX ],
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and
h−1

YXY = aY χ[0,d−c].

So, Theorem 2 implies that gX ,hY are unique if and only if b−a = aY and d− c = aX

and in this case, gX = f R
X and hY = f R

Y where R is the rectangle = [c,d]× [a,b].

A theorem allowing the set C to be reconstructed is found in [2]

Theorem 3 (Convex-set reconstruction). If C is uniquely determined by its projec-
tions fC

X , fC
Y then

C = {(x,y) | fC
Y (x) � fC

XY ( fC
X (y))} (1)

In all the following, a planar curve is considered as a function γ : [0,1] �→ R2.

Definition 5 (Planar curve length). Let γ : [0,1] �→ R2 be a planar curve. The length
of γ , l(γ), is defined by

l(γ) = sup({
n−1

∑
i=0

d(γ(ti),γ(ti−1)) | n ∈N and

0 = t0 < t1 < t2 < ... < tn−1 < tn = 1}). (2)

where d is the euclidean distance.

The perimeter of a convex set is then defined as follows:

Definition 6 (Perimeter of a convex set). Let C a planar convex set, then there exists
γC : [0,1]→R2 with ∂ (C) = γC([0,1]) (i.e. γC is a parametrization of the boundary ∂ (C)
of C). The perimeter of C is noted l(C) and is defined as l(C) = l(γC).

2 Convex Inclusion and Perimetric Inequality

In the following, straight lines are described by using two parameters (r,θ ) ∈ P = R+×
[0,2π).

So, let D be a straight line, D′ be the straight line through the origin and perpendic-
ular to D and M = D∩D′. Then, the parameter r (respectively θ ) is d2((0,0),M), the
distance of the origin to D (respectively the angle between D′ and the X-axis). So, D
will be denoted in the following by D(r,θ ) (see Fig. 1 for illustration).

Theorem 4 (Crofton’s formula). Let γ : [0,1] �→ R2 be a planar curve. Then,

l(γ) =
1
4

∫
P

nγ(r,θ )drdθ .

where P = R
+× [0,2π) and for all (r,θ ) ∈ P, nγ(r,θ ) = card(γ([0,1])∩D(r,θ )) ∈

N∪ {∞} which is the number of intersection points of curve γ with the straight line
D(r,θ ).
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θ
r

D(r,θ )

Fig. 1. Representation of a random straight
line

D

K
C

Fig. 2. Number of intersections of a random
line D with the border of the sets C and K

Corollary 1 (Perimetric inequality). Let K be a compact subset of R2 and C be a
convex subset in R2 such that C ⊆ K. Then,

l(C)) ≤ l(K)).

Proof. For any straight line D(r,θ ), as C is a convex set, nγC(r,θ )= 0,1,2,∞. nγC(r,θ )=
∞ means that C∩D(r,θ ) is a segment of positive length. As C has a finite border perime-
ter, this situation occurs at most a countable number of times. Thus this situation has
measure zero in P.

In the other cases, we have nγC(r,θ )≤ 2≤ nγK (r,θ ) (See Fig. 2 for illustration). So,
the Crofton’s formula (Theorem 4) implies the result.

3 Projection Inclusion and Convex-Set Inclusion

The question addressed here is to know whether there is a link between the inferiority
of horizontal and vertical projections on the one hand and the inclusion of convex sets
themselves on the other. One implication is immediate:

Proposition 1 (inclusion, forward direction). Let C and D be two measurable convex
sets of R2. Then,

D⊆C =⇒ ( f D
X 3 fC

X ∧ f D
Y 3 fC

Y ).

The converse of Prop. 1 is not true in general. If we also assume that one has concave
projections verifying f D

X 3 fC
X and f D

Y 3 fC
Y , one cannot deduce that C and D are convex

and D⊂C. Fig. 3 gives a counterexample. Although projections are concave and verify
f D
X 3 fC

X and f D
Y 3 fC

Y , the reconstructed set C is not convex and D is not included in C.
In the following, we prove that the converse is true under certain conditions i.e. those

of Theo. 5.
To prove this theorem, we will first consider the case where the convex set D is a

rectangle with one of its projections included in that of C. In a second step, we will
prove the result in the case where C and D are both rectangles. In a third step, we use
a decomposition of D in union of rectangles in order to prove the last result. Let first
define an inscribed polygon.
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f D
X

fC
X

f D
Y

Fig. 3. Counterexample showing that in-
equalities on projections do not imply the
convex-set inclusion
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C

b

a

x

O

O D
f D
X

fC
X

fC
XY

aX

fXY (aX ) = aY

aY

aX

Fig. 4. Example of a rectangle inscribed in a
convex set

Definition 7 (Inscribed polygon). A polygon P is said inscribed in a set F if its vertices
belong to ∂ (F). A piecewise affine function f is said inscribed in a function g if HG( f ),
which is a polygon, is inscribed in HG(g).

Proposition 2 (Case of the rectangle with an included projection). Let C and D be
two measurable convex sets of R2 and D be a rectangle whose sides are parallel to the
directions of projection. Then,

f D
X 3 fC

X =⇒D⊆C.

The proof of Prop. 2 uses the following lemma:

Lemma 1. Let fC
X , fC

Y be unique projections of a convex set C and g = aX χ[a,b] be an
inscribed function in the function fC

X . Then there exists a rectangle D whose sides are
parallel to the projection directions such that f D

X = g and f D
Y is inscribed in fC

Y . More-
over the rectangle D is inscribed in C.

Proof (Lem. 1). The conditions of Lem. 1 are equivalent to

– fC
X , fC

Y are unique
– g3 fC

X
– ∃a,b ∈CX ,a < b and g(a) = fC

X (a) = g(b) = fC
X (b) = aX > 0

As projections are unique, according to Theorem 2, we must have:

fC
XY = ( fC

Y XY )−1.
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By definition,
fC
XY (aX) = λ1({y | fC

X (y) � aX}),
so fC

XY (aX ) = aY and so fC
Y XY (aY ) = aX . This means that

λ1({y | fC
Y X (y) � aY}) = aX

and as fC
Y X is decreasing, it means

fC
Y X(aX) = aY

i.e.
λ1({x ∈CX | fC

Y (x) � aX}) = aY (3)

As fC
Y is concave, ∃c,d ∈CY | c � d and fC

Y (c) = fC
Y (d) = aY . By (3), d−c = aX . There-

fore the rectangular function h : x �→ aY χ[c,d](x) is inscribed in fC
Y . Thus, the rectangle

D = [a,b]× [c,d] is inscribed in C and its projections are f D
X = g and f D

Y = h. Moreover
f D
Y is inscribed in fC

Y . �

We can see that (under the hypothesis of the lemma 1, f D
Y is inscribed into fC

Y by con-
struction. We introduce a definition reflecting this property:

Definition 8 (P-inscribed). Let fC
X , fC

Y and f D
X , f D

Y be projections respectively of a mea-
surable convex set C and a rectangle D whose sides are parallel to the directions of
projection. We say that D is p-inscribed in C if f D

X (resp. f D
Y ) is inscribed in fC

X (resp.
fC
Y ).

We can now prove the proposition 2

Proof. As their projections are unique, C and D are characterized by Eq. (1). Let (x,y)
be such that

f D
X (y) � f D

XY ◦ f D
Y (x),

show that this implies that
fC
X (y) � fC

XY ◦ fC
Y (x),

By hypothesis, one has
fC
X (y) � f D

X (y). (4)

Show that f D
XY ◦ f D

Y (x) � fC
XY ◦ fC

Y (x). Recall that f D
Y is a rectangular function whose

support is the interval [a,b]. In addition, projections are concave and, by definition, the
projections fXY are decreasing. So for the composition, functions ψC = fC

XY ◦ fC
Y ,ψD =

f D
XY ◦ f D

Y (x) are concave. Distinguish cases according to the membership of x to [a,b]:

1. x ∈ [a,b]:
fC
Y (a) = fC

Y (b)

so
ψC(a) = ψC(b).

By concavity, one has therefore

ψC(x) � ψC(a) (5)
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On the other hand, as fC
Y (a) = f D

Y (a) and fC
Y (b) = f D

Y (b) and as these projections
are concave on their support, one has

ψC(a) = ψD(a) (6)

From (5) and (6), we deduce

ψC(x) � ψD(a) (7)

now f D
Y is constant on [a,b] so

ψD(a) = ψD(x)

and replacing in 7, we obtain

ψC(x) � ψD(x) (8)

2. x /∈ [a,b]: f D
Y (x) = 0 so ψD(x) = 2 so ψC(x) � ψD(x)

Thus
∀x ∈ [−1,1], f D

XY ◦ f D
Y (x) � fC

XY ◦ fC
Y (x) (9)

By combining (4) and (9), we obtain that

fC
X (y) � fC

XY ◦ fC
Y (x),

so
(x,y) ∈C

thus

D⊆C. �

A consequence of Lem. 1 concerns the projection support length:

Corollary 2. Let fC
X , fC

Y be unique projections of a convex set C, then
λ1(supp( fC

X )) = sup( fC
Y ) and reciprocally.

Proof. Let define a sequence of rectangular functions gn
X inscribed in fC

X with a height
1
n then

lim
n→∞

λ1(supp(gn
X)) = λ1(supp( fC

X )) (10)

From Lem. 1, each gn
X corresponds to a rectangle Dn such that f Dn

Y is inscribed in fC
Y .

Now λ1(supp( f Dn
Y )) = 1

n tends to zero when n→ ∞, then max( f Dn
Y ) tends to max( fC

Y ).
With (10), we deduce that λ1(supp( fC

X )) = sup( fC
Y ). The result holds if fC

X and fC
Y are

switched. �

We can now extend prop. 2 to the case where D is a subset of a rectangle inscribed in
C. For this, introduce the following definition

Definition 9 (P-subinscribed). D is called p-subinscribed in C if there is a rectangle
D′ such that D⊆ D′ and D′ is p-inscribed in C
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This definition implies (Prop. 1) that the projection of D is less than those of D′.

Proposition 3 (Inclusion by p-subinscribed). Let fC
X , fC

Y , f D
X , f D

Y be unique projec-
tions such as D is p-subinscribed in C then

D⊆C

Proof (Prop. 3). From Def. 9, there is D′ such that

f D
X 3 f D′

X 3 fC
X , f D

Y 3 f D′
Y 3 fC

Y

Thus, by prop. 2, we know that D′ ⊂ C. On the other hand, as projections of D′ are
rectangular functions verifying

f D
X 3 f D′

X , f D
Y 3 f D′

Y ,

one has D⊆ D′ so D⊆C �

It is now possible to write a general theorem by decomposing D

Theorem 5 (Reciprocal inclusion). Let fC
X , fC

Y , f D
X , f D

Y be unique projections such as
the set D is the convex hull of union of sets (Di)i∈I p-subinscribed in C, then

D⊆C.

Proof (thm 5).
∀i ∈ I,∃Di| f Di

X 3 f Di
x , f Di

Y 3 f Di
y ,

now the Di are inscribed rectangles, so

∀i ∈ I,Di ⊆ Di and ∀i ∈ I,Di ⊆C

so ⋃
i∈I

Di ⊆C

thus, if CH(g) denotes the convex hull of g on its support,

D = CH

(⋃
i∈I

Di

)
⊂CH(C) = C �

Corollary 3 (Inscribed polygon). Let D1, . . . ,Dn be rectangles p-inscribed in a mea-
surable convex set C and fX = CH(max

i
f Di
x , fY ) = CH(max

i
f Di
y ), these projections are

unique and reconstruct a polygon inscribed in C

4 Estimation of Convex-Set Perimeter

Let C be a convex set such that fC
X , fC

Y are unique projections and P be convex polygon
which is inscribed in C. Considers V(P) = {p0, . . . , pn−1} be the set of ordered vertices
of P with pn = p0.
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4.1 Unique Reconstruction

We first give an upper bound of the difference between the perimeters of C and P then
we present a limit for the perimeter of P when the number of vertices tends to infinity.
Let introduce the following notations: let γK : [0,1]→R

2 a parametrization of ∂K where
K = C,P. As P is inscribed in C we can define 0 = t0 < t1 < .. . < tn = 1 such that
γK(t0) = p0, . . . ,γK(tn) = pn for K = C,P. We define

– Iaxe = {i | γ([ti,ti+1]) ‖Oaxe} where axe = X ,Y . These sets are defined to deal with
the edges parallel to the axes Ox and Oy

– I = �1,n�\(IX ∩ IY )

Let i ∈ (I∩ IX), we define

– FK
X ,i = {(y, f K

X (y)) | y ∈ [ypi ,ypi+1 ]} where K = C,P
– the affine transformation AX ,i determined by A (FP

X ,i) = Pi.
– the convex set Di = CH(Pi∪Ci)
– the convex set MX ,i = CH(Pi∪A (FC

X ,i)

In the same way, we also define for i ∈ (I∩ IY ), FK
Y,i,Ki,AY,i,MY,i,Di.

Fig. 5 illustrates the notations introduced above.

Theorem 6. We have the following inequality:

l(C) � ∑
i∈I

min
(
l(A (FC

X ,i)), l(A (FC
Y,i))

)
+ ∑

i∈IX

l(FC
X ,i)+ ∑

i∈IY

l(FC
Y,i)

Remark 3. This upper bound does not depend on the convex set C reconstruction

Lemma 2. ∀i ∈ I∪ Iaxe,Di ⊆Maxe,i with axe = X ,Y

Proof (Lem.2). To simplify the notation, we take axe = Y . Let i ∈ I ∪ IY and x0 ∈
supp( f P

Y ). As P ⊆ C and C is convex, (C\P)∩{x = x0} is composed of at most two
segments (which can be empty) that we note du

0 and dl
0: (C\P)∩{x = x0}= du

0 ∪dl
0; u
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Di

MX ,i
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Fig. 5. The notations for Theo. 6 are presented on a part of the convex set C and the convex P
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(resp. l) denotes the upper (resp. lower) segment position. Then the projection can be
decomposed as follows:

fC
Y (x0) = f P

Y (x0)+ l(du
0)+ l(dl

0)

For sake of simplicity, we suppose that the vertical position of the polygon edge Pi is
on the upper side of the polygon. By construction,

(Di∩{x = x0}) = {(x0,y) | y ∈ (du
0 +A ( f P

X (x0)))}
and

(MY,i∩{x = x0}) = {(x0,y) | y ∈ (du
0 ∪dl

0 +A ( f P
X (x0)))}

then
∀x0 ∈ supp( f P

Y ),Di∩{x = x0} ⊆MY,i ∩{x = x0}
so

Di ⊆MY,i �

Let prove the theorem:

Proof (Theo. 6). Let i ∈ I∪ IY . Lem. 2 implies Di ⊆MY,i. Then by Cor. 1,

l(Di) � l(MY,i)

i.e.
l(Ci)+ l(Pi) � l(A (FY,i))+ l(Pi)

then
l(Ci) � l(A (FY,i))

Thus if i ∈ I, this inequality holds with axe = X and so

l(γC([ti,ti+1]) � min(l(A (FY,i)), l(A (FX ,i)))

For i /∈ I, the edge γP([ti,ti+1]) is parallel to an axis, e.g. Ox. Then the transformation
A comes down to a translation that conserves the length. Thus l(A (FY,i)) = l(FY,i) �
To demonstrate the polygon perimeter convergence toward the convex-set perimeter,
we have to establish the following lemma.

Lemma 3. Let fC
X , fC

Y be two unique projections of a convex set C and let f P
X , f P

Y be the
unique projections of polygon P included in C. Then we can construct a polygon Q such
that P⊆ Q⊆C.

Proof (Lem. 3). Let px, py be the coordinates of a breakpoint p of the piecewise lin-
ear function f P

X . As P is included in C, f P
X 3 fC

X . Let define fX a rectangular function
inscribed in fC

X such that fX (px) = fC
X (px). From Lem. 1, there exists an inscribed rect-

angle Rp in C such that f
Rp
X = fX . As Rp is inscribed in C, it contains all the points of C

whose abscissa is px and in particular, Rp contains the point p.
Let define Q = CH(∪pRp) where p are the breakpoints of P. Then Q is a convex

polygon inscribed in C containing all the breakpoints of P. As Q is convex, it contains
also P. �
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Theorem 7 (Perimeter convergence). Let fC
X , fC

Y be two unique projections of a con-
vex set C then ∃(Pn)n∈N a sequence of inscribed polygons in C such that
limn→∞ l(Pn) = l(C).

The proof of Theo. 7 cannot be detailed in this paper due to the lack of space.
Thus, in the case of unique reconstruction, an estimation of the convex-set perime-

ter is made thanks to a polygonal approximation. The polygon construction exploits
the reconstruction formula available for the unique projections. So, the method can-
not be extended to the multiple reconstruction case. We propose for this case rough
approximations.

A naive upper bound is given by the projection supports: C ⊆ supp( fC
Y )× supp( fC

X )
then, by Cor. 1, l(C). � 2(l(supp( fC

Y ))+ l(supp( fC
X )). The upper bound proposed be-

low is better than the naive bound only in the case of multiple reconstructions.

4.2 Multiple Reconstruction

Lower Bound

Definition 10 (Steiner’s symmetrized set). Let C be a plane measurable convex set
and fY its vertical projection. The Steiner’s symmetrized set symY (C) against Ox is
defined by:

∀α, symY (C)∩ (x = α) = {(α,y) | − 1
2

fY (α) � y � 1
2

fY (α)}

Theorem 8 (Perimeter lower bound). Let C be a measurable convex set C 1
m and

symY (C) be its Steiner’s symmetrized set, thus one has:

l(symY (C)) � l(C)

Proof. One can parametrize C with two concave functions x �→ f1 and x �→ f2. As C
belongs to the class C 1

m, f1 and f2 are concave and C 1
m, and thus, the perimeter of C can

be defined as ∫ 1

−1
||C′||=

∫ 1

0

√
1 + f ′21 +

√
1 + f ′22

For the symmetrized set, its two concave functions are equal and equal to f3 = ( f1 +
f2)/2 ∈ C 1

m. So its perimeter is

l(symY (C)) = 2
∫ 1

0

√
1 + f ′23 (11)

=
∫ 1

0

√
4 +( f ′1 + f ′2)2 (12)

The following result is well-known:√
4 +(a + b)2 �

√
1 + a2 +

√
1 + b2,

which concludes the proof. �
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Upper Bound. Assume that fC
X , fC

Y belong to the class C 1
m on their support Dx,Dy.

As fC
Y is null out of Dy and with positive value, there exists x0 ∈ Dy | f ′CY (x0) = 0.

With a parametrization of C with two concave functions f1 et f2, one has fC
Y = f1− f2

and as fC
Y
′(x0) = 0, one has f ′1(x0) = f ′2(x0). Moreover, as f1 and f2 are concave, their

hypographs are under their tangents. It implies that C is between two straight lines

D1 : y = f1(x0)+ f ′1(x0)(x− x0)

and
D2 : y = f2(x0)+ f ′2(x0)(x− x0).

We note d = fC
Y (x0), c = f ′1(x0) = f ′2(x0), a = l(Dy), b = l(Dx) and we define a par-

allelogram
P = {(x,y) | y ∈Dx and D1(x) � y � D2(x)}.

Then l(P) = 2
(

d +
√

a2 +(ac)2
)

, where c is the only unknown value. By construction

of the parallelogram P, there is necessarily a point of C belonging to both of the vertical
sides of P. So the slope c verifies |c|� (b + d)/a. The function

g : c �→ 2

(
d +

√
a2 +(ac)2

)
is even and growing on [0, b+d

a ], thus the maximum perimeter is

l(P) = 2

(
d +

√
a2 +(b + d)2

)
.

As C ⊆ P, l(C) � l(P), so one has the following proposition:

Proposition 4 (Perimeter upper bound). For a measurable convex set C whose fron-
tier is C 1

m, the perimeter has an upper bound

l(C) � 2(d +
√

a2 +(b + d)2) (13)

where d = max( fC
Y ),a = l(supp( fC

Y )),b = l(supp( fC
X )).

One can easily see that the inequality comes down to the circumscribed rectangle
perimeter when d = l(Dx) (and the slope c = 0) thus this upper bound is interesting
only when d < l(Dx). Now a unique reconstruction implies that d = l(Dx) so Prop. 4 is
interesting only in the case of a multiple reconstruction.

5 Conclusion

In this paper, we present results regarding perimeter inequality and convex-set inclu-
sion. In the case of unique reconstruction, we find conditions on the projections to
construct an inscribed polygon. This has led to an algorithm that constructs polygon
projection such as the polygon is included in the convex set. An upper bound is ex-
hibited for the difference between the perimeter of the convex set and the polygon.
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Moreover, the convergence toward the convex set perimeter has been proved. The case
of multiple reconstruction is more difficult to tackle with because no reconstruction for-
mula is available. Nevertheless we propose lower and upper bounds for the perimeter
in this case. A perspective is to answer the question: if there is multiple reconstructions
for a given pair of projections, do the reconstructions have the same perimeter ?

Acknowledgements. Alain Daurat, co-author of this article, died on June the 25th,
2010. This article is dedicated to his memory.
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Abstract. The 2-color problem in discrete tomography requires to con-
struct a 2-colored matrix consistent with a given set of projections rep-
resenting the number of elements of each color in each one of its rows
and columns.

In this paper, we describe an heuristic algorithm to find a solution of
the 2-color problem, that has been recently proved to be NP-complete.
The algorithm starts by computing a solution where elements of different
colors may overlap, and then it proceeds in searching for switches that
leave unaltered the projections but remove the overlaps. Experimental
results show that this heuristic approach finds a solution in a short com-
putational time to almost all the randomly generated 2-color instances,
and it provides for the remaining ones a high quality approximation.

Keywords: Discrete tomography, reconstruction algorithm, color
problem.

1 Introduction and Definitions

Let us consider a matrix where each non-zero element can be chosen from a set
of k different ones, that we choose to represent as if painted with k different
colors. Such a matrix is called k-color matrix, and it is commonly used to model
structures that can be thought as discrete sets whose minimal constituents are
of k different types, such as crystals or computer images.

One of the most intriguing problems concerning colored matrices is the k-color
that asks to perform in polynomial time a faithful reconstruction of a k-color
matrix compatible with a given set of horizontal and vertical projections, i.e.
from vectors containing the number of elements of each color, for each row and
column.

The simplest case is the 1-color problem that can be solved in linear time
(with respect to the dimension of the solution) by using a greedy strategy. Ryser
proved that a necessary and sufficient condition for a solution to exist is, said H
and V the horizontal and vertical projections, and defining H as

hj = |{ hi ∈ H : hi ≥ j }| .
then the problem has a solution if and only if

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 298–310, 2011.
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n∑
j=l

vj ≥
n∑

j=l

hj, with 1 ≤ l ≤ n.

Thanks to this property, the consistency of the one color problem can be
verified even without attempting the reconstruction. Unfortunately in the formal
theory of the problem there is no similar formula for the multiple color problems,
not even relatively only to the sufficiency or to the necessity of a condition, apart
few exceptions that assure consistency for a limited family of instances as in [6]
or to applying Ryser’s condition to all of the colors individually to eventually
prove the absence of a solution (as described in the following).

In [11], the authors furnished a proof of the NP-hardness of the k-color prob-
lem, with k ≥ 6, with two projections. Later and with different techniques, in
[7], it was shown that the presence of three different types of atoms is sufficient
to maintain the k-color problem NP-hard. Only recently, this result has been
definitively extended to k = 2 in [9], by proving its equivalence with Vertex
Cover.

However, the space of solutions of an instance of the reconstruction problem is,
in general, really huge and quite impossible to control. Furthermore, two of these
solutions may also share no points, as one can immediately realize if considers
that all the permutation matrices of the same size have the same horizontal and
vertical projections. This problem, called uniqueness problem, is of primary rele-
vance, since practical applications usually require a faithful reconstruction of an
unknown object. So, many different ideas has been carried on and, among them,
one of the most promising is that of taking advantage of some a priori knowledge,
to guide the reconstruction process towards a specific subclass of the solutions.
Usually this knowledge is expressed in terms of geometric constraints that the
final solution has to fulfill, such as connectiveness, convexity or adjacency of its
elements (see for instance the uniqueness result in [10] for the subclass of convex
binary matrices), but it can also be required, as an example, to be a typical
member of a class of binary matrices having a certain Gibbs distribution [15].

These and similar problems that concern the retrieval of geometric information
about an object, represented by an integer values matrix, fits in the area of
the Discrete Tomography and are widely studied not only for their theoretical
interests, but also for many practical applications: most of the mathematical
techniques developed have applications in other fields such as image processing
[18], statistical data security [14], biplane angiography [16], graph theory [1] and
so on. As a survey of the state of the art of Discrete Tomography we can suggest
the books [12] and [13] .

Our studies focus on the problem 2-color, i.e. that of reconstructing, when
possible, a 2-color matrix from its horizontal and vertical projections.

Even a so simple paradigm allows several applications that concern, as an
example, all that cases where in a background environment there lies a main
material pattern, and some impurities or void bubbles have to be detected; in
particular, we mention techniques for colon’s polyps detection, which needs the
colon to be digitally straightened and then flattened in order to reveal polyps
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that may be hidden from view behind the folds [2], algorithms for an efficient
crystal detection such as DART [3] that has been applied to the detection of
the shapes of nanocrystals consisting of few atoms of ErSi2 that are artificially
inserted on a narrow band of a semiconducting homogeneous matrix of SiC, or
typical VLSI quality control, where quality means homogeneousness of the silicon
layers of an integrated circuit on which a complex of electronic components and
their interconnections are set.

From a theoretical point of view, 2-color has strong connections with problems
concerning bipartite graphs as underlined in [6] [4] [8] [5] where reconstruction
techniques based on a ‘divide et impera’ approach for subclasses of 2-color’s
instances rely on results about flow charts or dynamic programming applied
to graph theory. Unfortunately, these schemes restrict their usability only to
some very specific subsets of instance of 2-color, and, sometimes, they act in
pseudo polynomial time in one of the dimensions of the problem, being, at least,
computationally unacceptable. The method we propose hereafter has an heuristic
approach, but it has the advantage to be applicable to any instance of 2-color
and to furnish an answer in short computational time.

More precisely, let M be a 2-color matrix of dimension m × n and whose
elements are in Σ = {b, r, 0}, where b and r stand for the colors blue and red.
We define the horizontal projections Hb = (hb

1, . . . , h
b
m) of M such that:

hb
i = |{Mi,j : Mi,j = b}| with j ≤ n.

Analogously, we defined the vector of horizontal projections Hr =(hr
1, . . . , h

r
m),

and the two vectors V b = (vb
1, . . . , v

b
n), and V r = (vr

1 , . . . , vr
n) of the vertical pro-

jections of A.
In the sequel we choose to visualize each 2-color matrix as a set of cells of two

different colors on a squared surface. The element 0 of the matrix will correspond
to the void cell.

Figure 1 shows a two colored matrix and its projections.
So, an instance of 2-color turns out to be a set of four vectors of horizontal

and vertical projections, while a solution is a 2-color matrix compatible with all
of them, if it exists.

The heuristic we present can be applied to a generic instance I = (Hb, Hr, V b,
V r) of the problem 2-color, and it starts by computing a 2-color matrix M that
satisfies the projections of I, but having some positions where the two colors b
and r may overlap. Such a matrix can be obtained by merging the solutions of
the two related 1-color problems.

Then, for each positions where colors overlap, the algorithm scans the matrix
M searching for an adequate configuration of elements that can be used to
solve the conflict without changing the projections of M . Such configurations
are commonly known in discrete tomography as switching components, while
the action of changing the elements is called switching operation. Figure 2 shows
two switching components involving a different number of elements, and the
related switching operations that allow to move back and forth from one to the
other. Note that each switching operation performed inside a matrix does not
change its horizontal and vertical projections, as desired.
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Fig. 1. A two colored matrix and its projections

Fig. 2. Two switching components: (a) the simplest one involving four elements; (b) a
more complex one that involves six elements

An exhaustive search for all the possible switching components would always
furnish a solution to the problem, if possible, but it would require exponential
time. In our algorithm, the search of the switching components is limited to some
simple ones that can be determined efficiently. In the following we discuss how,
assuming an uniform distribution of the colors in the matrix, it is very unlikely
that such a component cannot be found; our experimentation proves that, even
without considering this assumption, during the reconstruction process it is a
rare case to find a matrix matching this configuration.

A simple property that is strongly used during the reconstruction process to
keep the description of the algorithm simple, is the invariance of 2-color with
respect to permutations of the rows and columns of the solution, and conse-
quently of the related elements of the projections. So, we assume without loss of
generality that rows and columns having specific properties lie in given positions.

2 The Heuristic Algorithm

Now, we first give an overview of the behavior of our algorithm, then we furnish
the details.
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As a first step, Ryser’s necessary conditions, given in [17], are checked to
guarantee that there is a solution for the 1-color instances I1 = (Hb, V b) and
I2 = (Hr, V r) related to the elements b and r of M , separately. This check is
also done for the one color problem obtained by summing the projections of the
two colors; this is useful to detect some additional instances that cannot have
a solution, for example because the sum of two horizontal projections of a row
exceeds the matrix’ width, even if the 1-color instances I1 and I2 would have a
solution. If any of these instances is not satisfied, then we can state that also the
instance I can not be satisfied as well. This is the only case where the algorithm
is able to prove the non existence of a solution.

Otherwise, the algorithm computes a solution for the color blue (element b),
say M1, and for color red (element r), say M2. The matrices are then merged
in a matrix called M , that is not, in general, a 2-color matrix since in some
positions the two colors may overlap. The matrix M can be easily obtained by
starting from the void matrix and coloring each cell according to the presence, in
the same position, of one of the two colors in M1 or M2. If both colors appear in
the same position, then we insert a new element in M that stands for the double
color, say a conflict. This operation creates a matrix whose elements estimate
those of a possible solution; to our knowledge, there is no other well known
approach to compute a better estimation for this starting point.

Notice that, considering each conflict both as a blue and a red element, then
M satisfies the instance I. Our goal is to find switches in M that remove the
conflicts leaving unchanged the projections.

The algorithm at this point iterates through the conflicts, and for each one it
searches for switching components of three different types described below. We
show in the following how there is an efficient method to determine if a switch
of these three types can be applied. If the procedure finds an applicable switch
of type 1 or 2, then this is used to create a matrix with the same projections
but with less conflicts. If the algorithm determines that switches of type 1 and
2 cannot be applied, but a switch of type 3 exists, then it applies the latter
to obtain a matrix with equal projections and the same number of conflicts,
but with a conflict in a different position. In this case, the procedure selects a
submatrix of M and searches recursively switches of type 1 − 3 in this reduced
structure.

If all of the switching operations are not sufficient to obtain a solution with
no overlaps, the algorithm start over by computing a different solution for the
1-color problems and hence generating another initial matrix M . This is often
sufficient to find a solution if the first iteration fails. The number of maximum
iterations of this step can be tuned depending on the available time. In our tests,
we have verified that increasing the number of iterations to more than 4 or 5
increases only very lightly the percentage of solved instances, at the cost of a
slower computational process. Hence, we considered the limit of 5 iterations to
be a suitable choice for the experimentation.
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Algorithm. RECONSTRUCTION

1 Check if the 1-color instances I1 = (Hb, V b), I2 = (Hr, V r) and I3 =
(Hb + Hr, V b + V r) are consistent; this can be done by applying Ryser’s
condition and assuring that every horizontal and vertical projection is not
greater that the width or the height, respectively, of the output matrix. If the
projections of any of these instances are inconsistent, then give FAILURE
and halt.

2 Solve 1-color on the instances I1 and I2, using a standard greedy strategy,
as described in [17], obtaining the matrices M1 and M2, respectively. Then
merge the two solutions into the matrix M : the merging process initializes all
the elements of M to 0, and then changes its value according to the presence
of a color in the same position of M1 or M2. If some colors overlap in a
position, then this position is marked with an extra symbol that indicates a
conflict of colors.

3 For each element c having a conflict
3a Attempt to execute a switching operation of type 1 involving one color

of c, as explained in Paragraph 2.1; if it exists, goto step 3;
3b Attempt to execute a switching operation of type 2 involving one color

of c, as explained in Paragraph 2.2; if it exists, goto step 3;
3c Attempt to execute a switching operation S of type 3 involving one color

of c in order to move the conflict in another position, as explained in
Paragraph 2.3. As described in the following, this operation may involve
the recursive application of steps 3a and 3b on a particular submatrix
of M .

3d If no switches of type 1, 2 or 3 can be executed, then exit loop in step 3.
4 If a matrix without conflicts has not been computed, then

4a If this step has been executed less than p times, goto step 2 and generate
different solutions M1 and M2 for the 1-color instances I1 and I2; these
can be created by applying Ryser’s algorithm to a random permutation
of the arrays Hk and V k, and by reorganizing the columns and rows of
the output matrix Mk accordingly.

5 If an exact solution was found, return it, otherwise return, of the computed
matrices, the one containing less conflicts.

2.1 Type 1 Switching Components

Assume without loss of generality that the element in (1, 1) is a conflict. Assume
that, for some k1, there are k1−1 columns with a 0 in row 1, and without loss of
generality consider that the indexes of these columns are in the interval 2 . . . k1.
Notice that, since the projections are consistent, k1 > 2. Symmetrically, consider
the rows 2 . . . h1 to be the only ones with the first element equal to 0.

If any element (i, j) in the rectangle (2, 2) . . . (h1, k1) is different from 0,
then the procedure can solve the conflict by applying the switching operator
on {(1, 1), (1, j), (i, 1), (i, j)} and on color mi,j .

We can observe that, if k1, h1 are proportional to m, n, and assuming uni-
formity in M , the probability to have a switch of this kind is proportional to
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P (0)mn. The experimental results show that in most of the cases this switching
operation is sufficient to solve the conflict.

2.2 Type 2 Switching Components

If there are no switching components of type 1, then the algorithm proceeds by
searching switching components of type 2, and that involve involve six or eight
elements at a time. A further preprocessing stage on M is now needed, where
rows and columns are organized in different groups, in order to easily define the
procedure.

Let us consider the columns of index greater than k1 such that at least one
element in row i > h1 is in position before a given index k6. Symmetrically, say
that every row containing at least a zero in index h > k1 is in position less than
an index h6.

Now create a partition on all columns of index k, with k1 < k < k6, in four
different groups. Each column is assigned to a different group depending on the
colors found in positions 1...h1 as described in the following points:

– Group 1: all the columns that contain only the value 0 in positions 2...h1

– Group 2: all the columns that contain in positions 2...h1 at least an element
b but no r, and an element b in position 1

– Group 3: all the columns that contain in positions 2...h1 at least an element
r, but no bs, and an element r in position 1

– Group 4: all the other columns, i.e. all of those containing both an element
b and an element r in positions 1...h1

Assume without loss of generality that the columns of group g are in indexes j
such that kg+1 ≤ j < kg+2, for some apposite k2, k3, k4, k5. Execute the same
grouping on rows, considering the elements in columns 1...k1, and define conse-
quently the indexes h2, h3, h4, h5. Such representation is depicted in an example
in figure 3.

Define as X(a, b) the submatrix of M that is obtained by intersecting columns
of indexes ka...ka+1 − 1 with the rows of indexes hb...hb+1 − 1. The algorithm
is able to determine a switch of type 2 if any of the following zones contains at
least one 0:

X(3, 3), X(4, 4), X(5, 3), X(5, 4), X(5, 5), X(3, 5), X(4, 5)

We describe the case where there exists an element 0 in position (i, j) of zone
X(5, 5); the other cases are symmetric or trivial. So, we search for two elements
(i2, j) and (i, j2) of the same color, w.l.g. say b, such that i2 ≤ h1 and j2 ≤ k1.
We distinguish two cases:

1. i2 > 1 and j2 > 1. In this case, a switching component for the element b
that solve the conflict is {(1, 1), (1, j2), (i, j2), (i, j), (i2, j), (i2, 1)}.

2. i2 = 1 and j2 > 1 (a symmetrical case is j2 = 1). Here, a switch-
ing component for b involves the elements {(1, j2), (i, j2), (i, j), (1, j)}.
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Then we can surely find an element in position (i3, j) having value r or
a conflict, and execute the switching operation on color r in the elements
{(1, 1), (i3, 1), (i3, j), (1, j)}

Note that thanks to the definition of X5, there is always at least an element that
satisfies the cases 1 or 2.

Assuming uniformity, the probability to be unable to find a switch are pro-
portional to (P (0))mn if k6−k2 and h6−h2 are proportional to m and n. While
in the previous switch type this chance quickly goes to 0 if the matrix contains
many zero elements, in this case it tends to 0 if the red and blue elements are
dense.

Hence we guarantee a high probability of solving the problem in each case
where the elements of the matrix are uniformly distributed.
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Fig. 3. Indexes k and h

2.3 Type 3 Switching Components

If a switch of type 2 is not found, we consider the grouping of rows and columns
described in the previous section, and we search for a third type of switching
components that does not solve the conflict but that moves it in a different
position; then the algorithm attempts to remove the new conflict with type 1
and type 2 switching operations, using only a submatrix of M where these two
types of switching components may lie. Since at least one row and one column
are removed, this is sufficient to avoid infinite loops.

The procedure chooses, if available, one element from any of the following:

– An element r in the matrix X(3, 3)
– An element b in the matrix X(4, 4)
– Any element in one of the matrices X(5, 3), X(5, 4), X(5, 5), X(3, 5), X(4, 5)
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We describe the case where an element in X(5, 5) is selected, as all other result
can be inferred by symmetry.

Let the selected element be in position (i, j), with k5 ≤ j < k6 and h5 ≤ i <
h6. Search for two cells (i2, j) and (i, j2) both of color b such that 0 < i2 ≤ h1

and 0 < j2 ≤ k1. At this point execute a switching operation for color b involving
the elements {(1, 1), (1, j2), (i, j2), (i, j), (i2, j), (i2, 1)}. It is easy to see that this
operation moves the conflict from position (1, 1) to position (i, j).

Now, we consider the submatrix formed by the intersection of columns k2, . . . ,
k6−1 and of rows j2, . . . , j6−1, and attempt to resolve the conflict of the element
(i, j) throughout the three types of switching operations in this submatrix.

We have already pointed out that a matrix must have a very particular
structure to avoid switching components of types 1 and 2; furthermore, if a
switch of type 3 is applied, in order to be unable to solve the conflict, also
the computed submatrix must have the same structure, and so the probabil-
ity not to find a solution strongly decreases. The switching research operation
also fails if no elements for the switching operation is found, i.e. there is no
r element in matrix X(3, 3), no b element in matrix X(4, 4) and the matri-
ces X(5, 3), X(5, 4), X(5, 5), X(3, 5), X(4, 5) are all empty. Notice that matrices
X(3, 3) and X(4, 4) cannot either contain the element 0, otherwise a switch of
type 2 would have been applied. Also this case does not seem common as, again,
this is a very peculiar configuration.

3 Generating Instances of 2-Color

To verify the performances of Reconstruction, we tested it on a large number
of randomly generated instances of 2-color. Up to our knowledge there are no
algorithms to generate them uniformly, hence we chose four different methods,
each one related to a different aspect we desired to analyze. Our algorithm
behaves extremely well for all the generated instances, even if some remarkable
differences can be found for different generation methods.

Since we have no reason to give priority to problems with specifical properties,
the instances are generated with uniform probability on all the possible problems.
The method Gen1 aims to obtain an uniform probability distribution for the
input projections, while the methods Gen3 and Gen4 instead create instances
that have an uniform distribution of colors in an eventual solution matrix. The
method Gen2 is similar to Gen1, but in this case the uniformity assumptions are
not considered in order to generate more problems with a solution, as described
hereafter.

The generation procedures are simple to implement, and hence the experi-
ments can be easily repeated and the results verified. By applying the algorithm
to a very high number of problems, it is very unlikely that another run of the
experimentation could furnish some significantly different results.

The first method, say Gen1, generates instances that are at most uniform in
the domain of the integer vectors: at first we randomly generate Hb and Hr

[resp. V b and V r] such that for each i ≤ n [resp. j ≤ m] it holds hb
i + hr

i ≤ n
[resp. vb

j + vr
j ≤ m].
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If after this operation the sums of the elements in the two arrays do not match,
then a series of balancing operations is done. Assume without loss of generality
that V b has an element sum greater than Hr. In this case the algorithm select
randomly an element V b

i > 0 or an element Hb
i < n. In the first case, the element

is decreased by one, otherwise it is increased of one. The procedure is iterated
until the array sums become consistent.

A problem with Gen1 is that it creates many instances that are provably un-
solvable thanks to Ryser’s condition, hence the solving algorithm can be applied
only to a very limited portion of the generated problems. In Gen2 the gener-
ation procedure avoids this problem by initializing the arrays with values that
are the average of two integers randomly chosen with uniform distribution on
the domain.

With this approach the distribution of the generated projections has a smaller
variance, and, as discussed in related works as [6], this enhances the possibility
of the existence of a solution.

The third method Gen3 consists in generating a 2-colored matrix where each
element is colored randomly; each color is chosen with equal probability, as the
experimentation also proved that there are no significative changes in the results
by altering the color ratio of red and blue. The projections extracted from this
matrix represent the arrays on which the reconstruction will be attempted. This
generation method has the important property to guarantee that each input set
of arrays actually corresponds to a colored matrix; hence, if the algorithm fails
to solve the problem, this cannot be caused by the lack of a solution.

Finally, the method Gen4 extracts the projections from a 2-colored matrix
obtained through a merging operation of two randomly generated 1-colored ma-
trices relative to colors blue and red. The approach is similar to the one in
Gen3, but since the matrix from where the projections are taken may contain
some conflicts, then also problems with no solution can be generated.

4 Results

We have tested our algorithm on instances generated with the four described
methods. The size of the instances has been varied in order to better understand
its relation with the number of instances that can be solved, and to have some
hints on how Reconstruction asymptotically behaves for large size matrices. The
number of tests vary from 106 for 5 × 5 and 10 × 10 matrices, to 5000 for
100× 100 problems. The instances are grouped in three categories: those where
the algorithm is not able to find an exact solution, say unsolved instances, those
where the algorithm proves the non satisfiability thanks to Ryser’s conditions,
say provably unsolvable instances, and those for which an exact solution has been
computed, say solved ones.

In table 1 A we can see the percentage of problems that the algorithm was not
able to solve, but for which it furnished only an approximation. The probability
of this case goes to 0 very quickly with the size of the matrix, and for generation
methods 3 and 4 even in the 10 × 10 problems an unsolvable instance was not
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Table 1. Result table

A. Unsolved problems

G. method 5 × 5 10 × 10 20 × 20 50 × 50 100 × 100

1 0.60% 0.69% 0.64% 0.59% 0.43%

2 0.24% 0.01% 0.005% 0 0

4 0.04% 0 0 0 0

3 0.001% 0 0 0 0

B. Average relative errors

G. method 5 × 5 10 × 10 20 × 20 50 × 50 100 × 100

1 0.23% 0.17% 0.10% 0.09% 0.08%

2 0.03% 0.002% 3 × 10−6 0 0

4 0.007% 0 0 0 0

3 0.001% 0 0 0 0

C. Provably unsolvable problems

G. method 5 × 5 10 × 10 20 × 20 50 × 50 100 × 100

1 77.99% 91.00% 95.42% 97.82% 98.69%

2 19.98% 10.19% 4.27% 2.07% 1.52%

4 50.27% 44.97% 24.72% 0.90% 0

3 0 0 0 0 0

found in one million problems. Gen1 seems to create the instances that are harder
to solve. For a large subset of this family of instances, the algorithm proves that
no solution exists thanks to Ryser’s conditions. Probably, also good part of the
instances for which the algorithm is unable to give an answer have to solution
at all.

The average error of the solutions furnished by the algorithm is shown in
Table 1 B. These ratios are obtaining by dividing the total number of over-
lapping cells by the global number of cells placed in all output solutions. In
this computation only solved and unsolved problems are considered, as for the
provably unsolvable problems no reconstruction is attempted. The average error
seems to tend to zero with the growth of the problem size, even in Gen1, where
the number of unsolved problems is very high.

Since the proposed algorithm obtains a very low number of unsolved instances,
it is possible to use it to make statistics on how many problems with given prop-
erties do not have an existing solution. In Table 1 C we can see the percentage
of problems that are provably unsolvable. With Gen1, this tends to be very high
for big matrices; on the other hand, for Gen2 and Gen4, this quantity quickly
tends to 0. For instances generated with Gen3 this number is clearly 0, as in this
case a solution always exists.
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A few words should be spent about time complexity. Even if the worst case
complexity of the algorithm is higher, the experimental average complexity re-
sults to be approximately O(mn)2; by tuning the parameters of the algorithm
and settling for a weaker approximation, we could bound the worst case com-
plexity of the procedure to this function, or we could greatly improve the average
execution time.

Anyway, at the moment the processing time seems to be more than acceptable:
even for a 100×100 matrix, and using an old Athlon 2600 processor, the problem
can be solved in times ranging from 0.5 to 1 seconds.

5 Conclusions

Even if 2-color is an NP-hard problem, the algorithm we furnish gives excellent
results: for several generation methods the number of solved instances is very
close to the totality. We could suppose that the set of NP-hard instances are
only a small subset of all the instances and have very peculiar properties. The
results described in this paper suggest that the search of theoretical results about
properties of the problem, regarding both necessary or sufficient conditions for a
solution to exist, could be an interesting development. We suppose that by such
conditions, most of the problems could be easily identified either as instances
that admit a solution or as instances having no solution.

Many further research lines arise from this work. As a first idea, we could work
on what is the ’weak point’ of the algorithm: there is no non-trivial method to
prove that a given problem has no solution. In fact, we suppose that many of
the unsolved problems actually do not have a solution, as the greatest number
of these instances appear in a generation method that creates many provably
unsolvable problems. By finding some heuristic that allows us to prove for many
cases that a solution doesn’t exist, we could decrease the number of unsolved
instances, and reduce to a minimum the NP-hard core of the problem.

Another possible development could be to extend the used techniques to prob-
lems with more than two colors. In this case, probably several major modifica-
tions of the algorithm will be necessary.

In order to allow an easy comprehension of the procedure and an easy testing
of the algorithm, the procedure has been implemented in Javascript and can be
found online at
www.researchandtechnology.net/discretetomography/3colorproblem/
3colorsolver.html
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9. Dürr, C., Guiñez, F., Matamala, M.: Reconstructing 3-colored grids from horizontal
and vertical projections is NP-hard. In: Fiat, A., Sanders, P. (eds.) ESA 2009.
LNCS, vol. 5757, pp. 776–787. Springer, Heidelberg (2009)

10. Gardner, R.J., Gritzmann, P.: Discrete tomography: determination of finite sets
by X-rays. Trans. Amer. Math. Soc. 349, 2271–2295 (1997)

11. Gardner, R.J., Gritzmann, P., Pranenberg, D.: On the computational complexity of
determining polyatomic structures by X-rays. Theoretical Computer Science 233,
91–106 (2000)

12. Herman, G.T., Kuba, A.: Discrete tomography: Foundations algorithms and ap-
plications. Birkhauser, Boston (1999)

13. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications.
Birkhauser, Boston (2007)

14. Irving, R.W., Jerrum, M.R.: Three-dimensional statistical data security problems.
SIAM Journal of Computing 23, 170–184 (1994)

15. Matej, S., Vardi, A., Hermann, G.T., Vardi, E.: Binary tomography using Gibbs
priors. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography: Foundations, Al-
gorithms and Applications, pp. 191–212. Birkhauser, Boston (1999)

16. Prause, G.P.M., Onnasch, D.G.W.: Binary reconstruction of the heart chambers
from biplane angiographic image sequence. IEEE Transactions Medical Imaging 15,
532–559 (1996)

17. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canadian
Journal of Mathematics 9, 371–377 (1957)

18. Shliferstein, A.R., Chien, Y.T.: Switching components and the ambiguity problem
in the reconstruction of pictures from their projections. Pattern Recognition 10,
327–340 (1978)



Approximating Bicolored Images from Discrete

Projections

Fethi Jarray� and Ghassen Tlig

1 Laboratoire CEDRIC, 292 rue Saint-Martin, 75003 Paris, France
2 Al-Imam University, Riyadh, Kingdom of Saudi Arabia

fethi.jarray@cnam.fr, tlik@yahoo.fr

Abstract. We study the problem of reconstructing bicolored images
from their discrete projections that is the number of pixels of each color
lying on each row and column. The problem is well known to be NP-
complete so, we study a restricted case (with bounded projections) and
present an approximating algorithm based on a max-flow technique for
the general case.

Keywords: Discrete Tomography, Image Reconstruction, Heuristics.

1 Introduction

Discrete Tomography (DT) deals with the reconstruction of digital image from its
horizontal and vertical line sums. Digital images are most commonly represented
by integer matrices. Let A be a binary matrix of size m × n, we denote by
hi =

∑n
j=1 Aij the number of ones on row i and by vj =

∑m
i=1 Aij the number

of ones on column j. The vectors H = (h1, . . . , hm) and V = (v1, . . . , vn) are
respectively called the horizontal and the vertical projections. The problem of
reconstructing a binary matrix from orthogonal projections, denoted MB(H, V ),
is defined as follows: Given two vectors H and V , we search to reconstruct
a binary matrix consistent with these projections. It is well known that this
problem is polynomial [25].

A k-colored image is an image where each pixel (or cell) is either uncolored
or colored by one from a given set of k colors [8,15]. The projections of such an
image consist of the number of pixels of each color on each line. The problem
of reconstructing a k-colored image is defined as follows: Given the orthogonal
projections of each color, we search to reconstruct a k-colored image consistent
with these projections. For k = 1, the problem is equivalent to the binary ma-
trix reconstructing problem. In general, the reconstruction of k-colored images
is equivalent to k binary matrix reconstructing subproblems coupled by the ex-
clusiveness constraint: A cell takes value 1 at the most in one subproblem.

The problem of reconstructing k-colored images arises on a number of applica-
tions, including industrial nondestructive testing [6], medical imaging [18,26,24]
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and workforce scheduling [21,20]. Gardner et al. [14] proved that the recon-
struction of k-colored images is NP-complete for k > 3. Chrobak and Dürr [8]
proved that the problem is NP-complete even for k = 3. Recently, Dürr et al.
[12] proved that the reconstruction of two colors image is also NP-complete.
Jarray[22] provided a lagrangean approach to reconstruct bicolored images from
discrete orthogonal projections.

Several problems are at least as difficult as the reconstruction of bicolored
images [5,9]. We will mainly focus in this paper on approximating bicolored
images. The results can be easily extended to the k-colored images.

The remainder of this paper is organized as follows. In Section 2, we introduce
some definitions and notations. In Section 3, we show that the binary images
reconstruction problem can be solved using a network flow model, by solving a
max flow problem. In Section 4, a special case of bicolored images is described.
In this case the projection data are bounded and a polynomial time algorithm
is given. In Section 5, we provide a heuristic algorithm for the general case
based on a min-cost max-flow model. Finally, numerical results are presented
and discussed in the last section.

2 Definitions and Notations

We suppose that for a bicolored image, the set of pixel values consists of only
three elements: 0 (or ”colorless”), 1 (or ”color a”) and 2 (or ”color b”). The
related consistency problem to bicolored image is defined as follows:

Instance: Integral vectors: Ha ∈ Nm, V a ∈ Nn, Hb ∈ Nm and V b ∈ Nn.
Question: Is there a bicolored image respecting the projections (Ha, V a) for
color a and (Hb, V b) for color b?

Definition 1. Let x and y be two m × n matrices. We define the conflict
conf(x, y) between x and y as conf(x, y) =

∑m
i=1

∑n
j=1 xijyij.

If x and y are binary, conf(x, y) is the number of cells with value 1 on both
matrices (overlapping 1’s).

We introduce the operator ⊕ between two binary matrices to build a bicolored
image where color ′a′ is associated with the 1′s of one matrix and color ′b′ with
the 1′s of the other.

Definition 2. Let x and y be two binary matrices, S = x ⊕ y is a bicolored
image such that the cell (i, j) has the color ’a’ (resp. ’b’) if x(i, j) = 1 ( resp.
y(i, j) = 1).

Two bicolored images are equivalent if they have the same projections. Simi-
larly to the switching operations in binary matrix [25], we define the following
interchange operations to pass from an image to an equivalent image having

less number of conflicts:
ab

ab
=⇒ a b

b a
,

a
ab

=⇒ a
b a

. Clearly, carrying out an

interchange operation does not modify the row and column sums and leads to
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an equivalent image. Unlike the binary matrix reconstruction problem, it is not
obvious that if two images are equivalent then one image can be transformed
into the other by a finite sequence of interchange operations. The interchange
operations will be used to solve the polynomial particular case.

We call a colored cell as a cell colored by ′a′ or ′b′ and a conflict cell as a cell
colored by both ′a′ and ′b′.

3 Flow Models to MB(H, V )

We recall two flow models for MB(H, V ) and in particular for both MB(Ha, V a)
and MB(Hb, V b) to use later in the heuristics.

3.1 Max-flow Associated Problem

The fact that the binary reconstruction problem can be solved as a max flow
problem was already demonstrated by Gale [13] and later used by Anstee[1],
Slump et al.[28] and Salzberg et al. [27].

We will assign a max-flow problem to the binary matrix reconstruction prob-
lem MB(H, V ). We reconstruct a bipartite graph G(R, C, E) where R = {ri, i =
1, . . . , m} represents the rows and C = {cj , j = 1, . . . , n} represents the columns
(see Figure 2). We add to G(R, C, E) two nodes: a source s and a sink t. There
is an arc from s to every row node ri with capacity hi which is the horizontal
projection of row i. By symmetry, there is an arc from every column node cj

to t with capacity vj which is the vertical projection of column j. There is an
arc from every pair of row node ri and column node cj . These arcs have a unit
capacity and correspond to the cells of the matrix to reconstruct. Thus the prob-
lem MB(H, V ) is equivalent to the max-flow problem in G. MB(H, V ) admits a
solution if and only if the maximum flow from the source to the sink is of value∑m

i=1 hi =
∑n

j=1 vj . Since the capacities are integers, there exists an optimal
integer flow. A solution to MB(H, V ) is computed by affecting to each cell (i, j)
the flow on the corresponding arc (ri, cj).

3.2 Min-cost Max-flow Associated Problem

As mentioned by Wang and Zhang [29] and Barcucci et al. [2], the problem of re-
constructing binary matrices has an exponential number of admissible solutions.
The best solution is chosen by adding an objective function to the reconstruct-
ing problem. In several practical applications, we have some a priori information
about the matrix to reconstruct. For example, we search a solution to be as dif-
ferent as possible from a given binary matrix w. w is called the cost matrix. In
such case, the objective is to minimize the conflict between w and the solution
to MB(H, V ) (see Definition 1). The reconstruction problem is equivalent to a
min-cost max-flow problem in the associated graph G(R, C, E) where the arc
(ri, cj) is with cost wij .
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Fig. 1. MB(H,V ) and the associated max-flow in G(R, C, E)

Suppose that we have a solution y to the problem MB(Hb, V b), i.e. respecting
the orthogonal projections of color b. If we set wij = yij , the min-cost max-flow
problem associated to MB(Ha, V a) gives a solution to MB(Ha, V a) minimizing
the conflict with y.

The use of a minimum cost flow algorithm for finding a solution which min-
imizes the number of conflicting ones with a second image was described by
Batenburg [3,4]. For a bicolored image of size m × n (n ≥ m), the complex-
ity of the max-flow problem is O(n8/3logn) and the complexity of the min-cost
max-flow problem is O(n3logn)[3].

4 Polynomial Case

The reconstruction of bicolored images is a very challenging task in that several
authors [21,10,11,7] studied the reconstruction of subproblems.

Fortunately, in practical applications, the projection data are often bounded.
In this way, we will study another particular case of bicolored images by assuming
that all the projections are bounded i.e., ha

i ≤ c, hb
i ≤ c, va

j ≤ c, vb
j ≤ c for a

given integer c. We also assume that in each line there is at least a colored cell
i.e., ha

i +hb
i ≥ 1, va

j +vb
j ≥ 1. We denote by Ci the set of columns intersecting row

i in a colored cell and by Rj the set of rows intersecting column j in a colored
cell. We propose the algorithm A-Bounded. It starts with computing a 2-colored
image respecting the projections of ′a′ and ′b′ with conflict, i.e. some cells can
be colored by both colors. At each step, if possible, an interchange operation is
carried out to reduce the number of conflicts.

Algorithm A-Bounded
Input:Integral vectors: Ha ∈ Nm, V a ∈ Nn, Hb ∈ Nm and V b ∈ Nn.
Output: An approximate bicolored image
Compute x and y solution to MB(Ha, V a) and MB(Hb, V b) respectively.
Compute S = x⊕ y.
While there is a conflict and an interchange do
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1. Select a conflict (i, j) in S.
2. If there is a colored cell (i′, j′) and the cells (i, j′) and (i′, j) are uncolored
then carry out the interchange (i, i), (i, j′), (i′, j), (i′, j′)

end do
3. else solve by enumeration the reconstruction problem

Proposition 1. The algorithm A-Bounded solves in polynomial the particular
instance.

Proof. On Step 2, the number of conflicts decrease at least by one. We will
prove that if the algorithm executes Step 3 then m ≤ 2c(2c − 1) and n ≤
2c(2c − 1) (see Figure 2). By Step 1, there is a conflict cell (i, j) and indeed
|Rj | ≤ va

j + vb
j − 1 ≤ 2c − 1. The number of colored cells in set Rj is not

greater than 2c(2c − 1) because a row contains at most 2c colored cells and
|Rj | ≤ 2c − 1. Thus n ≤ 2c(2c − 1) since each column has at least a colored
cell in set Rj , otherwise, there is another interchange to carry out. Suppose that
column l �∈ Ci does not intersect set Rj in a colored cell. Then there exists a
colored cell (k, l) such that the row k �∈ Rj . Thus the cell (i, l) is not colored
because l �∈ Ci and the cell (k, j) is also not colored because k �∈ Rj . So the four
cells (i, j), (i, l), (k, j), (k, l) constitute an interchange operation. By the same
way, we prove that m ≤ 2c(2c− 1).

So the size of the problem to solve in the worst case at Step 3 is independent
of m and n.

b

a

ba

a

b

a

b

a

a

ai

j

ab

b

Rj

Ci

Fig. 2. Bicolored images with bounded projections: step 3
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5 Heuristics

We provide the iterative algorithm A-bicolored based on an iterated monocol-
ored min-cost max-flow model to compute an approximate solution to the bi-
colored images. The aim is to minimize the conflict between the solutions to
MB(Ha, V a) and MB(Hb, V b). Every iteration consists of solving MB(Ha, V a)
or MB(Hb, V b) with an objective function depending on the previous iteration.
A min-cost max-flow model is used to solve the binary matrix reconstruction
problem (see Section 3.2). The costs are chosen in such a way that the new
reconstruction has the minimal conflict with the previous one.

Firstly, we compute a solution y0 to MB(Hb, V b) by solving the associated
max-flow problem. Then, we determine x1 solution to MB(Ha, V a) by solving
the associated min-cost max-flow problem where the cost matrix w = y0, i.e.
a solution that minimizes the conflict with y0. Subsequently, x1 is used as a
cost to determine a solution to MB(Hb, V b). This procedure is repeated until
the conflict between the solutions to MB(Ha, V a) and MB(Hb, V b) becomes
null or constant. As a summary, we can describe the reconstruction algorithm
as follows:

Algorithm A-bicolored
Compute y0 solution to MB(Hb, V b) by solving the max-flow problem
i = 0, f−1 = mn + 1, f0 = mn,
While 0 ¡ f i < f i−1 do

Compute xi+1 solution to MB(Ha, V a) minimizing the conflict with yi.
Compute yi+1 solution to MB(Hb, V b) minimizing the conflict with xi+1.
f i+1 = conf(xi+1, yi+1) and i = i + 1.

We will give some properties of this polynomial time algorithm.

Claim. i) The conflict is not increasing from iteration to iteration, i.e. f i+1 ≤ f i.
ii) If conf(xi, yi) > conf(xi+1, yi+1) then xi+1 �= xj for j = 1, . . . , i.

Proof. i) conf(xi+1, yi+1) ≤ conf(xi, yi) because conf(xi+1, yi) ≤ conf(xi, yi)
and conf(xi+1, yi+1) ≤ conf(xi+1, yi).

ii) Suppose that xi+1 = xj for some j in the range 1 ≤ j ≤ i. By i),
conf(xj , yj) ≥ conf(xi, yi) and by the algorithm conf(xj , y) ≥ conf(xj , yj)
for all solutions y to MB(Hb, V b). Hence conf(xj , y) ≥ conf(xj , yj) ≥
conf(xi, yi) > conf(xi+1, yi+1) for all y. In particular for y = yi+1, we get
conf(xj , yi+1) > conf(xi+1, yi+1), a contradiction since xi+1 = xj . ��
When the algorithm terminates, the conflict is either null or positive. On the
former S = xi⊕ yi is a bicolored images satisfying the projections. On the later,
an approximate image is computed by arbitrary assigning color ′a′ to the half
of cells with a conflict and color ′b′ to the other half. There is a conflict in a cell
if it has value 1 on both matrices xi and yi.



Approximating Bicolored Images from Discrete Projections 317

6 Results

The main criterion to evaluate the performance of our algorithm is the ability
to reconstruct bicolored images. We will try to describe the properties of the
heuristic by considering the number of conflicts in the approximate solution.

To test our algorithm, we have used two sets of images. The first set consists of
random images of various sizes. The second one consists of some squares shaped
images. For each problem, the algorithm either converges to an equivalent image
or provides an approximate image. The min-cost max-flow models used by the
algorithm are solved by the CS2 network flow library[16]. Using a Pentium M PC
with 2.00 GHz CPU, the run times ranged between 0.5s and 2s for all instances.

6.1 Random Images

We have implemented a program that randomly generates bicolored images.
Each pixel has a uniform probability to be colored and if it is colored it has also
a uniform probability to be colored by color ′a′. For the first set, the algorithm
converges to an equivalent image for all the tested instances and for the most
of them it converges rapidly. The second row of Table 1 shows the number of
the test instances for each size of images. The third row gives the number of in-
stances where the algorithm converges in two iterations. For the other instances,
the algorithm converges in only one iteration. For example, for the images of
size (10, 10): Among 235353 test instances, in only 6 instances, the algorithm
converges in the second iteration. So for the random images, if a set of cells
respecting the projections of ′a′ is selected, another set from the remaining ones
respecting the projections of ′b′ can also be selected. One possible explanation of
this fact is that the random images often contain several interchange operations
and the solution is not unique.

Table 1. Reconstruction of random images

Size (5,5) (5,10) (10,10) (10,15) (20,20) (50,50) (100,100) (160,160)

N. ins. 56000 127470 235353 200000 600000 20000 2000 2000

2sd iter. 7 9 6 1 0 0 0 0

6.2 Squares Shaped Images

For the second set of images, the algorithm converges to an equivalent images
in two iterations. Table 2 indicates the conflict between the matrices after the
first and the second iterations. We note that whenever the test instance has no
interchange operation (cases (c) and (d)), the algorithm exactly reconstructs it.
Notice that the higher the number of interchange operations, the smaller the
conflict in the first iteration becomes. For the reconstructed image (a), we find
both colors in the four blocks. That is because the blocks constitute interchange
operations.
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Table 2. Reconstruction of square shaped images

Size Test image Reconstructed image conf(x1, y1) conf(x2, y2)

(a) (80,80) 0 0

(c) (80,80) 327 0

(d) (175,80) 114 0

(e) (175,80) 91 0

(f) (175,80) 67 0

7 Conclusion

In this paper, we have studied the complexity of reconstructing bicolored images.
We have solved a polynomial particular case and provided an iterative algorithm
to approximate bicolored images from projections. For evaluation, we have con-
sidered two types of images: square shaped and random. The results show that
the algorithm gives equivalent images in few iterations.

In general, there is not a unique solution to the problem of reconstructing
bicolored images from orthogonal projections. One way to resolve this ambigu-
ity is to increase the number of projections. We are working in extending the
algorithm A-bicolored to consider other directions such as diagonal sums and
anti-diagonal sums.
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Abstract. The problem of reconstructing sets from their point X-rays is
considered. We study the problem for Q-convex sets which are sets having
special convexity properties. These properties allow the reconstruction
with few projections. In this paper we introduce the filling operations
adapted to the considered context and we provide an algorithm for re-
constructing Q-convex sets from their point X-rays for two source points.
The reconstruction of Q-convex sets would be an intermediate step for
reconstructing convex sets from their point X-rays.
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1 Introduction

Tomography deals with the inverse problem of reconstructing an object from
its projections. From a mathematical point of view, this problem is equivalent
to determining an unknown function, from its integrals (continuous case) or
its weighted sums (discrete case) over subspaces of its domain [14]. In discrete
tomography, the range of this function is a given discrete set.

The particularity of discrete tomography is that only few number of pro-
jections are needed to resolve the inverse problem. These projections may be
collected from parallel X-rays or from point X-rays. The point X-rays frame-
work can be seen as the generalization of the parallel X-rays framework. Indeed,
Parallel X-rays is an approximation of a point X-rays where the light source
point is placed at an infinite distance from the object.

In this work, we study the reconstruction of discrete objects from their dis-
crete projections. Many results are available for discrete parallel X-rays. R. J.
Gardner and P. Gritzmann showed in [12] that any set of seven mutually non
parallel lattice directions determine convex subsets of Z2. In [13], the authors
show that it is possible to find four projections that will uniquely determine all
planar convex bodies. In [5], the authors prove the stability of the reconstruction
problem for convex sets. Furthermore, in paper [2] a polynomial-time algorithm
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for reconstructing a discrete set whith special connectivity and convexity prop-
erties in directions (1, 0), (0, 1), and (1, 1) is provided. A similar idea is employed
by A. Daurat in his Ph.D thesis [8] where he defines a new class of subsets of
Z2 called ‘Q-convex’ and studies the reconstruction problem for these subsets.
Several works have been devoted to the study of this class of sets [5,6,9,7,10].
S. Brunetti and A. Daurat present in [6] and [9] a study of the ‘Q-convex’ sets.
They also provide two random generator for these subsets in [7]. In [4], they pro-
vide a-polynomial algorithm that enables the reconstruction of this kind of sets
for two directions and that can be used for reconstructing any convex subsets
of Z2 for some suitable four directions or for any seven mututally nonparallel
directions.

However, there are less results for the discrete point X-rays. An initialization
of studies of discrete point X-rays is made by P. Dulio, R. J. Gardner and C.
Peri in [11] where they show that the problem is solved for some sets of four
collinear source points and for any set of at least seven collinear points where six
collinear points are generally not enough. They also show that for a set of four
source points, no three of them are collinear, convex lattice sets not meeting any
line joining two of these points are not determined by discrete point X-rays from
this set.

In the present paper, we study the reconstruction problem for a similar class
of sets as the class introduced by A. Daurat, the Q-convex sets for point sources.
A more detailed study of this class of sets is realized in [1].

The second section of this paper is dedicated to the introduction of contin-
uous and discrete Q-convex sets for point sources. The third section presents
adapted filling operation that we use in an algorithm for solving the reconstruc-
tion problem discrete Q-convex sets for a couple of point sources. In the last
section, we apply the algorithm on a set for which we compute the projections.
These projections are then our data for the reconstruction task.

2 Definition and Notations

In this section, we introduce the notions that constitute the basic ingredients of
our work.

2.1 Classical Definitions and Notations

Definition 1. A set E ⊂ R2 is convex (or R-convex) if for every A, B ∈ E we
have [A, B] ⊆ E where [A, B] = {λA + (1 − λ)B | 0 ≤ λ ≤ 1} is called the line
segment between A and B.

In all the following, S denotes R or Z.
Let E be a subset of R

2 and A and B be two distinct points of R
2. In this

paper, we use the following notations:

– C(R2) is the set of all convex subsets of R2.
– CE(R2, E) =

{
E′ ∈ C(R2) | E ⊆ E′} is the set of all convex subsets of R2

containing the set E.
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– CH(E) =
⋂

E′∈CE(R2,E)

E′ is the convex hull of E.

– (AB) is the straight line joining A and B.
– A ray or a half-line RS,θ from a point S = (x0, y0) in the direction uθ =

(u1, u2) where
√

u2
1 + u2

2 = 1, and cos θ = u1 and sin θ = u2 can be defined
in different ways:

RS,θ =
{
(x, y) ∈ R

2 | u2(x− x0)− u1(y − y0) = 0 and x ≥ x0

}
;

= {(x0, y0) + λuθ | λ ≥ 0} ;

=
{
M ∈ R

2 | P̂ SM = θ
}

;

where P̂ SM denotes the angle between (SP ) and (SM) with P = S +(1, 0)
(see Fig.1.). In all the following, the angle P̂ SM is denoted θSM .
We also introduce:

– For a point S ∈ R2, we define the set of all the angles of all the rays issuing
from S and passing through all the points of S2 relatively to the horizontal
line passing through P = S + (1, 0):

A(S, S2) =
{
θSM | M ∈ S

2
}

.

– If E is a finite subset, then |E| is the cardinality of E indicating the number
of elements of E.

– Let A be a set. We denote by P(A) the powerset of A (P(A) = {B|B ⊆ A}).

Remark 1. Let S ∈ R2:

– A(S, R2) = [0, 2π[.
– A(S, Z2) is an infinite countable set.
– A(S, Z2) = [0, 2π]; where F is the closure of the set F in R relatively to the

usual topology.

Fig. 1. The ray R is defined by the initial point S and the angle θSM

For the discrete sets, convexity can be defined as follows :

Definition 2. Let D ⊂ Z
2. D is Z-convex if D = CH(D) ∩ Z

2.
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Let E ⊆ R2 and a point S in R2. We define the projection of E from the source
point S denoted XS(E, .): R �→ R by:

XS(E, θ) =
∫ +∞

0

χE∩RS,θ
(S + tuθSM )dt.

Where uθSM = (cos θ, sin θ) and

χE(x) =

⎧⎪⎨⎪⎩
1 if x ∈ E

0 otherwise.

Then, XS(E, θ) = μ(E ∩RS,θ) where μ is the usual measurementf on R.

Fig. 2. Continuous (left) and discrete(right) point X-rays

Now, let us consider a source point S and a finite subset D ⊂ Z
2. We have a

finite number of rays issuing from S and passing through all the points of D and
each of these rays passes through a finite number of points of D. The projection
of D from the source point S is the function XS(D, .): R �→ N such that:

XS(D, θ) = |RS,θ ∩D| .

Definition 3. Let E ⊂ S
2. The support of E for the source point S is the set:

SuppS(E, S) =
{
θ ∈ A(S, S2) | XS(E, θ) �= 0

}
.

For the reconstructing problem in both the continuous and discrete cases, we
aim to reconstruct the subset E of R2 or the finite subset D of Z2 having the
position of the source point and a set of angles and their projections (which is
infinite for the continuous case and finite for the discrete one). Only the rays
RS,θ such that θ ∈ SuppS(E, S) are considered.

2.2 Q-Convexity

In this part, we introduce both continuous and discrete Q-convex sets for two
source points. This notion was first introduced by A. Daurat [8] for discrete
parallel rays.
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Considering a ray RS,θ from a point S, we define:

– L(RS,θ) =
{
M ∈ S2 | 0 ≤ θSM − θ ≤ π

}
the set of points that are on the

left of the straight line containing RS,θ;
– R(RS,θ) =

{
M ∈ S2 | − 2π ≤ θSM − θ ≤ π

}
the set of points that are on

the right of the straight line containing RS,θ.

Fig. 3. Linear separation of the plane by the straight line containing the ray RS,θ

We consider two distinct source points S and S′ ∈ R
2, a set E ⊂ S

2, two rays
RS,θSM and RS′,θ′

S′M
such that RS,θSM ∩ RS′,θ′

S′M
= {M}. This intersection

defines the following four zones (called quadrants):

Z0
{S,S′}(M) = R(RS,θSM ) ∩ L(RS′,θ′

S′M
),

Z1
{S,S′}(M) = R(RS,θSM ) ∩R(RS′,θ′

S′M
),

Z2
{S,S′}(M) = L(RS,θSM ) ∩R(RS′,θ′

S′M
),

Z3
{S,S′}(M) = L(RS,θSM ) ∩ L(RS′,θ′

S′M
).

Definition 4. A set E ⊂ S2 is S-Q-convex (quadrant-convex) for two source
points S and S′ if, for all M ∈ S2, we have :

∀t ∈ {0, 1, 2, 3} , Zt
{S,S′}(M) ∩ E �= ∅ =⇒M ∈ E

Fig. 4. Four zones resulting from the intersection between two rays in a point M
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Definition 5. Let P be a set of at least two source points. We say that a set
E ⊂ S2 is S-Q-convex for P if it is S-Q-convex for any two points of P.

We denote the class of sets which are S-Q-convex for a set of source points P by
QCS(P).

The reader might want to refer to [1] where we present a deeper study of the
Q-convex sets for point sources.

3 Reconstruction Algorithm for Two Source Points

This section is dedicated to the reconstruction problem of the Q-convex sets
introduced in the last section.

3.1 Problem Presentation

Let us introduce the reconstruction problem for a set P = {S, S′} of source
points. The aim is to reconstruct a finite Z-Q-convex set D from its projections
relatively to S and S′. We denote by j the index of the ray RS,θj issued from S
and by i the index of the ray RS′,θ′

i
issued from S′.

Then, the data available for the reconstruction is the position of the two points
S and S′, their respective supports SuppZ(D, S) = {θ1, ..., θj , ..., θn} where an-
gles are sorted in an ascending order and SuppZ(D, S′) = {θ′1, ..., θ′i, ..., θ′m}
where angles are sorted in an descending order, and two vectors PS(D) =
(s1, ..., sj , ..., sn) and PS′(D) = (s′1, ..., s

′
i, ..., s

′
m) of nonnegative integers where

sj is the number of points of D along jth ray from S and s′i is the number of
points of D along the ith ray from S′.

Hence, the reconstructed set D ∈ QCZ({S, S′}) should satisfy XS(D, θj) = sj

and XS′(D, θ′i) = s′i for all j ∈ �1, n� and i ∈ �1, m�.

Fig. 5. (a) Grill obtained by parallel rays - (b) Deformed grill obtained by rays from
two point sources
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We denote by I(i, j), the point such that I(i, j) = RS,θj ∩ RS′,θi. Note that
I(i, j) is not always in Z2. Hence, we obtain a deformed grill as shown in Fig.5.
We define:

– Δ =
{I(i, j) ∈ Z2 : 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
;

– A(S, PS(D)) =
n∑

j=1

sj .

A solution of the problem D should necessarily satisfy the following conditions:

1. D ⊆ Δ (convex constraint).
2. |D| = A(S, PS(D)) = A(S′, PS′(D)) (conservation constraint).
3. Given the jth ray RS,θj from S and two points M1, M2 ∈ D∩RS,θj . All points

of RS,θj ∩Z2 lying between M1 and M2 are point of D and there exists a ray
from S′ passing through each of these points. The same property is satisfied
for the rays from S′ (see Fig.6) (closure of the support constraint).

Hence, if these conditions are not fulfilled, we can directly deduce that there is
no solution to the considered problem.

In order to reconstruct the Q-convexes, we will consider a lower bound called
“kernel” α and an upper bound called “feedstock” β of the solutions D such
that we have:

α ⊆ D ⊆ β.

Then, for any i and j we have:

|RS,θj ∩ α| ≤ sj ; |RS′,θ′
i
∩ α | ≤ s′i;

|RS,θj ∩ β| ≥ sj ; |RS′,θ′
i
∩ β | ≥ s′i.

The algorithm aims to approach D by increasing α and decreasing β.

Fig. 6. All points between M1 and M2 are in D and there exists a ray from S passing
through each of them
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3.2 Filling Operations

In this subsection, we consider two sets α and β of Z
2 such that for all solutions

D ∈ QCZ(S, S′) having the projections (s′i) and (sj) we have:

α ⊆ D ⊆ β.

A filling operation gives new subsets α′ and β′ such that for D ∈ QCZ(S, S′)
having the projections (sj)j∈�1,n� and (s′i)i∈�1,m� we have:

α ⊆ α′ ⊆ D ⊆ β′ ⊆ β.

Then, we have:

|RS,θj ∩ α| ≤ |RS,θj ∩ α′| ≤ sj ; |RS′,θ′
i
∩ α | ≤ |RS′,θ′

i
∩ α′ | ≤ s′i;

|RS,θj ∩ β| ≥ |RS,θj ∩ β′| ≥ sj ; |RS′,θ′
i
∩ β | ≥ |RS′,θ′

i
∩ β′ | ≥ s′i.

Notations. We introduce some notations that will be of use in the sequel.
Let A ⊂ Z2. We denote by Ai(S′) the intersection between A and the ith ray

from S′ and by Aj(S) the intersection between α and the jth ray from S.
For a given ray RS,θj , we introduce the following notations:

– r(Aj(S))=max
{
i | I(i, j)∈Aj(S)

}
, l(Aj(S))=min

{
i | I(i, j) ∈ Aj(S)

}
;

– σA
r (i, sj) = i1 − i where i1 is such that |( ⋃

i≤i′≤i1

RS,θi′ ) ∩Aj(S)| = sj ;

– σA
l (i, sj) = i− i2 where i2 is such that |( ⋃

i2≤i′≤i

RS,θi′ ) ∩Aj(S)| = sj .

σA
r (i, sj) (respectively σA

l (i, sj)) gives the number of rays seperating the point
I(i, j) and sth

j points of Z2 on the right (respectively on the left) of I(i, j).

Operations on Rays. We first present the four operations ⊕, ⊗, $ and 5 that
treat each ray seperately. These operations were first introduced for the parallel
X-ray case in [3] for the horizontal and vertical directions and adapted in [4] for
any direction.

– If αj(S) �= ∅, then ⊕αj(S) =
{I(i, j) ∈ Z2 | l(αj(S) ≤ i ≤ r(αj(S))

}
(see

Fig.7-(a)).
– ⊗αj(S) =

{
I(i, j) ∈ Z

2 | r(βj(S)) − σβ
l (r(βj(S)), sj) ≤ i ≤ l(βj(S)) + σβ

r (l(βj(S)), sj)
}

(see Fig.7-(b)). This operation adds no points to αj(S) if r(βj(S))−σl(r(βj(S)), sj) >

l(βj(S)) + σr(l(βj(S)), sj).

– • If αj(S) �= ∅, I(i′, j) /∈ βj(S) with i′ ≤ l(αj(S)), then:

$βj(S) =
{I(i, j) ∈ βj(S) | i > i′

}
.

• If αj(S) �= ∅, I(i′, j) /∈ βj(S) with i′ ≥ r(αj(S)), then:

$βj(S) =
{I(i, j) ∈ βj(S) | i < i′

}
(see Fig.7-(c)).
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– If αj(S) �= ∅, then:

�βj(S) =
{
I(i, j) ∈ βj(S) | r(αj(S)) − σα

l (r(αj(S)), sj) < i < l(αj) + σα
r (l(αj), sj)

}
.

(see Fig.7-(d))

Remark 2. For a given ray RS,θj , if I(l(βj(S)), j) = (x1, y1) and I(r(βj(S)), j) =
(x2, y2). The number of points in RS,θj ∩ Z2 lying between I(l(βj(S)), j) and

I(r(βj(S)), j) is equal to: �x2−x1
b

� where y2−y1
x2−x1

= a
b

with gcd(a, b) = 1. So, if we have

�x2−x1
b

� > 2sj , then operation ⊗ adds no points to αj(S).

We also define two other operations 5′ and 5′′ that are called coherence opera-
tions on βj(S):

– If sj = 0, then 5′βj(S) = ∅.
– If I(i′, j), I(i′′, j) /∈ β and there is less than sj points of Z

2 separating I(i′, j)
and I(i′′, j), then 5′′βj(S) =

{I(i, j) ∈ βj(S) | i < i′ or i > i′′
}
. This oper-

ation eliminates all sequences of βj(S) that are less than sj (see Fig.7-(e)).

Remark 3. For any 61 ∈ {⊕,⊗}, 62 ∈ {$,5,5′,5′′}, we have:

α′ = (α \ αj(S)) ∪61α
j(S),

β′ = (β \ βj(S)) ∪61β
j(S).

The same operations are defined as well for αi(S′) and βi(S′).

Global Operations. The filling operations described below only depend on
the projection vectors PS′(D) and PS′(D). To define it, we first introduce four
partial sums :

S0(I(i, j)) = S0(i) = PS′(L(RS′,θ′
i
)), S2(I(i, j)) = S2(i) = PS′(R(RS′,θ′

i
)),(1)

S1(I(i, j)) = S1(j) = PS(R(RS,θj )), S3(I(i, j)) = S3(j) = PS(L(RS,θj)). (2)

The following property puts emphasis on the relation between the zones and the
partial sums.

Proposition 1. If St(M) + St+1(M) > |D|, then Zt(M) ∩D �= ∅.
If St(M)+St+1(M) ≥ |D| and Zt(M)∩D = ∅, then D ⊂ Zt−1(M)∩Zt+1(M).

Proof. Let us assume that Zt(M) ∩ D = ∅. In this case, we necessarily have
St(M)+St+1(M) = |D|. But this would be impossible if St(M)+St+1(M) > |D|
and we naturally have D = D∩(Zt−1(M)∩Zt+1(M)) if St(M)+St+1(M) = |D|.
We now come to the global filling operations ⊕′ and $′.

Let M = I(iM , jM ) be such that, for all t, we have: Zt(M) ∩ α �= ∅ or
St(M) + St+1(M) > A(S, PS(D)).
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Fig. 7. Filling operations on each ray

– If M ∈ Z2, then ⊕′α = α ∪ {M}.
– If M /∈ Z2, then :

• $′βiM (S′) =
{
jM − σr(jM , s′iM

) < j < jM + σl(jM , s′iM
)
}

• $′βjM (S) = {iM − σr(iM , sjM ) < i < iM + σl(iM , sjM )}

Remark 4. Applying operations ⊕′ to α and $′ to β gives:

α′ = ⊕′α

and
β = (β \ (βi(S′) ∪ βj(S)) ∪ {$′βiM (S) ∪ $′βjM (S)

}
.

We will now prove that the presented filling operations are valid.

Proposition 2. For any 61 ∈ {⊕,⊗,⊕′}, 62 ∈ {$,5,5′,5′′,$′} we have :

For any solution D, α ⊆ 61α ⊆ D ⊆ 62β ⊆ β.

Proof. For all operations other than ⊕′ and $′, the convexity is sufficient to
prove the proposition. For the ⊕′ and $′ operations, we consider a solution D
such that α ⊆ D ⊆ β and a point M = I(iM , jM ) such that Zt(M) ∩ α �= ∅ or
St(M) + St+1(M) > |D|, for all t.

Proposition 1 says that for all t we have Zt(M)∩D �= ∅. Then if M ∈ Z2, we
can deduce by Q-convexity that M ∈ D. Then ⊕′ is a valid operation.

Now let us assume that M /∈ Z2. Let A = I(iA, jM ), B = I(iB, jM ) ∈ Z2 be
the two points of ray jM surrounding M such that iB < iM < iA. We assume
that sjM �= 0, then there must be a point N ∈ D such that N = I(iN , jM ) ∈ D.
If iN < iM , then we have iN ≤ iB which means that N ∈ Z0(B) and N ∈
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Z3(B). However, we have Z1(B) ∩ D �= ∅ since Z1(M) ⊂ Z1(B) and equally
Z2(B) ∩D �= ∅. Since D is Q-convex we have B ∈ D. Likewise, if iN > iM we
can deduce that A ∈ D. Hence {A, B} ∩ D �= ∅. We can then see that for any
point N = I(iN , jM ) of D we have iB−σr(iM , s′jM

) ≤ iN ≤ iMσl(iA, s′jM
) which

proves that D ⊂ $′β.

We recall that the reconstruction problem consists in determining if the set of
solutions D such that ∅ ⊆ D ⊆ Z2 is empty and in reconstructing a solution of
one exists. We can clearly see that for such solution D we have: ∅ ⊆ D ⊆ Δ ⊆ Z

2

where Δ is described above. To initialize α, we can choose candidate points. For
example, we can fix U1 = I(1, j1) and U2 = I(m, jn) from Δ. U1 and U2 are
called s-bases.

The filling operations are applied on the rays from S and S′ and repeated
until we have α �⊂ β or no further changes in α and β. In the first case, we
conclude that there is no solution for such α and β. We choose then different
s-bases and try again.

The second case can occur for α = β and for α ⊂ β where β \ α �= ∅. If we
obtain α = β, then we just have to check that α is Q-convex. The solution to
our problem would then be α. If we have β \ α �= ∅, then we need to find a
solution by adding to α a set of points from β \α �= ∅ and verifying if we obtain
a solution of the problem.

The algorithm is:

Algorithm 1.
Initialize α = {U1, U2}, β = Δ
repeat

Choose 61 ∈ {⊕,⊗,⊕′}, 62 ∈ {$,5,5′,5′′,$′}
for j = 1 to n do

α← (α\αj(S)) ∪ 61α
j(S)

β ← (β\βj(S)) ∪ 62β
j(S)

end for
for i = 1 to m do

α← (α\αi(S′)) ∪ 61αi(S′)
β ← (β\βi(S′)) ∪ 62βi(S′)

end for
until stability or α �⊂ β
if α �⊂ β then

return “no solution for such α, β”
end if
if α = β then

return α
end if
find a set D ∈ QC(P) solution of the problem verifying α ⊆ D ⊆ β
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4 Example

This section shows an example where we apply the algorithm provided in the
previous section. For collecting data, we consider two point sources S and S′

and we randomly generate a Z-Q-convex set for {S, S′} D (The reader can refer
to [1] for random generation of Z-Q-convex sets). The set obtained is illustrated
in Fig.8. Then, the data we have for the reconstruction task, is:

– The support of D for the source point S is SuppZ(D, S) = {θ1, ..θ6} with
PS(D) = (1, 1, 1, 1, 1, 3),

– The support of D for the source point S′ is SuppZ(D, S′) = {θ′1, ..θ′6} with
PS′(D) = (1, 3, 1, 1, 1, 1).

The set Δ is illustrated in Fig. 9. We initialize the kernel α = ∅ and the feedstock
β = Δ. By applying the gobal operation ⊕′ on the rays of S and the operation
⊗ on the ray RS,θ6 gives new sets α and β illustrated in Fig. 10. The remaining

Fig. 8. Q-convex set D Fig. 9. The set Δ

Fig. 10. α and β obtained after filling op-
erations on rays of S

Fig. 11. β obtained after filling operations
on rays of S′
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undetermined points will be determined after applying the filling operations on
the rays of S′. Indeed, the global operation on the rays of S′ adds the point
I(1, 6) to α and the operation $ applied on the ray RS′,θ′

6
removes the point

I(6, 6) from beta. We then obtain the sets α and β illustrated in Fig. 11.
The application of any other filling operation will bring no more changes to

the obtained sets α and β and we still have α ⊆ β. Then, we are in the stability
case. Following the algorithm steps, we check that α = β. Hence the solution of
this reconstruction problem is the obtained set α.

5 Conclusion

We have presented in this paper the reconstruction problem for a new class of
sets that is the Q-convex sets for point X-rays. In the second section we defined
the continuous and discrete Q-convex sets for point X-rays. This may allow
us to study more connections between discrete and continuous reconstruction
problem. Meanwhile, we dedicated the third section to resolving this problem in
the discrete case. We adapted the existing filling operations to our case and used
it in an algorithm, showing that the same results obtained on discrete Q-convex
sets for parallel X-rays can be obtained with the point rays. We aim to study
this algorithm more deeply and to see if it can be optimized for a unique and
’fast’ solution of the reconstruction problem of such sets.

In the last section, we illustrated an example for the application of the al-
gorithm where, after considering a Q-convex set, we computed its projection,
and starting from these projection we could reconstruct the set. In the example,
the algorithm converged immediately. In some other cases, we could have had
to choose a solution set using a 2-SAT formula [8]. Another perpective that we
have is to study and optimize the resolution of such cases.

Acknowledgements. Alain Daurat, co-author of this article, died on June the
25th, 2010. This article is dedicated to his memory.
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Abstract. In this paper we present a new discrete tomography recon-
struction algorithm developed for reconstruction of images that consist of
a small number of gray levels. The proposed algorithm, called DTMWP
is based on the minimization of the objective function which combines
the regularized squared projection error with the multi-well potential
function. The minimization is done by a gradient based method. We
present experimental results obtained by application of the proposed al-
gorithm for reconstruction of images that consist from three gray levels
using small number of projections.

Keywords: Discrete tomography, multi-well potential function, image
reconstruction, gradient based optimization.

1 Introduction

Tomography deals with recovering images from a number of projections. From
the mathematical point of view, the object corresponds to a function and the
problem posed is to reconstruct this function from its integrals or sums over
subsets of its domain. In general, the tomographic reconstruction problem may
be continuous or discrete. In Discrete Tomography (DT) [8,9] the range of the
function is a finite set, in practise, DT often deals with reconstructions of images
that consist of only few number of gray levels. In addition to other DT has a wide
range of application in medical imaging, for example within Computer Tomog-
raphy (CT), Positron Emission Tomography (PET) and Electron Tomography
(ET). A special case of DT, which is called Binary Tomography (BT), deals with
the problem of the reconstruction of a binary image.

In literature there are a variety of algebraic reconstruction methods for contin-
uous tomography: ART, SART, SIRT, etc. For the overview of such methods we
refer to [10]. Several reconstruction algorithms have been introduced for solving
the DT reconstruction problem. Most of them are restricted to the BT problem
only. See for example the convex-concave regularized reconstruction algorithm
based on the DC approach [12] introduced by Schüle et al. [14], the Network
Flow algorithm introduced by Batenburg [5], the Simulated Annealing based al-
gorithm proposed by Nagy et al. [16], and the algorithms based on the Genetic
and Branch and Bound optimization strategies proposed by Balázs et al. [2,3].

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 335–345, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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0

Fig. 1. Typical shape of the three-well potential function

For general DT reconstruction problem, which deals with a multi level gray
image reconstructions, for best our knowledge, the heuristic Discrete Algebraic
Reconstruction Technique (DART), introduced by Batenburg and Sijbers [6], is
the only algorithm for this purpose. This algorithm combines an iterative Alge-
braic Reconstruction Method (ARM) for continuous tomography with the classi-
cal thresholding technique. The algorithm is based on the heuristic observation
that after the ARM reconstruction the obtained continuous approximation of the
solution approximates well enough the pixels inside the object of reconstruction,
as well those one belonging to the background. The initial solution for DART
algorithm is the ARM continuous solution. The DART iteration cycle consists
from the following. The object boundary is determined based on the threshold-
ing of the current solution. This thresholding is based on the given gray level
values of the original image, the algorithm requires these values as an input. In
the next step the ARM algorithm is performed but only on the boundary pix-
els, updating in this way the object boundary only. This cycle is repeated, but
this time staring from the solution with previously updated object boundary,
until the stop criterion is satisfied. Hence, during the reconstruction process the
DART algorithm deals with the object boundary only, leaving the pixels inside
and outside of the object boundary always unchanged, relying on the thresh-
olding of the continuous ARM solution. However, thresholding is a very radical
segmentation technique and its application can lead to the wrong assignments,
especially in reconstructions from small number of projections when some pixel’s
intensities can be wrongly determined by the ARM algorithm.

We propose a new algorithm for DT reconstruction problem based on the Multi-
Well Potential (MWP) function, see Figure 1. We minimize the objective function
which is collected from the regularized squared projection error and the multi-well
potential function. We use the smooth regularization whose application is based
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on the a priori knowledge about the solution, that it is collected from compact
regions of zeros and ones. This type of regularized projection error is often used in
BT reconstruction algorithms, we refer to the D.C. based algorithms [14,15,17] or
to the Simulated Annealing approach [16]. The reason for its “popularity” lies
in the fact that its application often significantly reduces the number of needed
projections. Similarly as in DART algorithm, our approach also requires as input
the set of gray level values of the reconstruction. The MWP is designed to has
minimums in these gray level values. Our strategy is that during the optimization
process the influence of MWP term is gradually increased providing gradually
stratification of the image pixel’s intensities around the given grey levels. By this
approach, unlike the DART algorithm, we avoid the radical threshold technique
and all pixels are affected during the hole process of the reconstruction.

The paper is organized as follows. In Section 2 we describe the DT reconstruc-
tion problem and give basic notations. In Section 3 we introduce a new method,
based on the MWP function. Section 4 contains experimental results and finally,
Section 5 is for conclusion remarks.

2 Reconstruction Problem

We assume a two-dimensional parallel beam projection geometry [8]. The recon-
struction problem can be represented by the following linear system of equations

Ax = b, A ∈ Rm×n, x ∈ Λn
k , b ∈ Rm, (1)

where the set Λk = {μ1, μ2, ..., μk} and the natural number k represents a num-
ber of solution’s gray levels given by the array of values μ1, μ2, ..., μk. The matrix
A is a so called projection matrix, whose each row corresponds to one projection
ray. The corresponding components of vector b contain the detected projection
values, while vector x represents the unknown image to be reconstructed. The
row entries ai of A represent the length of the intersection of pixels of the dis-
cretized volume and the corresponding projection ray, see Figure 2. Components
of the vector x are discrete variables from the given level set Λk. In a real
applications, especially for small number of projections, the system (1) is under-
determined (m < n) and has no unique solution. Therefore, the minimization of
the squared projection error

min
x∈Λn

k

‖Ax− b‖2,

where by ‖ ·‖ we denote the Euclidean vector norm, can not lead to the satisfac-
tory result. To avoid this problem an appropriate regularization is needed. We
consider an often used smooth regularization defined by∑

i

∑
j∈N (i)

(xi − xj)2, (2)

where N (i) represents a set of indices of image neighbour pixels right and below
from xi. This regularization term is quadratic and convex and its role is to
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Fig. 2. The discretization model. The corresponding reconstruction problem is repre-
sented in a form of a linear system of equations, see (1).

enforce the spatial coherency of the solution. In this paper we focus on the DT
problem given by

min
x∈Λn

k

Φα(x), (3)

where the objective function is defined by

Φα(x) =
1
2

⎛⎝‖Ax− b‖2 + α
∑

i

∑
j∈N (i)

(xi − xj)2

⎞⎠ , (4)

parameter α > 0 is the balancing parameter between projection error and the
smoothing term. For suitable choice of α, minimization of (4) ensures both accor-
dance of a solution with the projection data and the coherency of the solution.

From optimization point of view problem (3) represents a constrained min-
imization problem with discrete feasible set Λk which is very hard to solve.
Therefore, in the next section we reformulate this problem, incorporating the
MWP function, to an unconstrained problem which will be able to treat by
gradient based methods.

3 Proposed Method

We transform the constrained DT problem (3) into an unconstrained optimiza-
tion problem defined by

min
x

[
Φα(x) + γ ·

∑
i

W (xi)

]
, γ > 0. (5)

The considered MWP function W is defined by

W (t) =

⎧⎪⎪⎨⎪⎪⎩
(t− μ1)2, t ≤ α1

(t− μk)2, t ≥ βk−1

(t− μi)2, βi−1 ≤ t ≤ αi

hi − (t− pi)2, αi < t < βi

, (6)
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where for the given parameters li we set

pi =
μi + μi+1

2
, αi = pi − li, βi = pi + li, ci =

μi+1 − μi

2li
− 1, and

hi =
1
4
(μi+1 − μi − 2li) · (μi+1 − μi) for i = 1, . . . , k − 1.

Function W has k minima on the given gray level values μi ∈ Λk, such that
W (μi) = 0. It is constructed to be piecewise quadratic-parabolic and smooth
function, see Figure 3. Around μi, W is of the form Pi(t) = (t − μi)2 which
determines a convex parabolic well. The concave parabolic junctions Qi(t) =
hi − (t − pi)2 piecewise joins Pi and Pi+1, respectively at the points αi and βi.
In order to the optimization process equally enforces neighbour gray levels, μi

and μi+1, pi is set to be the mean of the interval [μi, μi+1] and αi and βi are set
to be at the same distance, determined by li, from pi. Values of hi and ci are
determined in a such way that junctions at points αi and βi do not disturb the
continuity and differentiability of W .

Fig. 3. Construction of the piecewise parabolic potential function

Parameters li ∈ (0, pi − μi), where i = 1, . . . , k − 1, have to be appropriately
set by the user. Two graphs of a three-well potential W for different values of
li are presented in Figure 4. Small values of li make the convex parabolic wells
predominant in compare with the concave parabolic junctions. However, their
to small values, close to zero, can lead the optimization process, practically, to
the undesirable thresholding effect. On the other hand, to large values of li can
nullify the gray level enforcing property of the potential W . In our experimental
work we set li as the half of the distance between μi and pi.
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Fig. 4. Two graphs of the potential function, W for different chosen values of the
parameters li

We note that similarly defined MWP functions such as (6) have been also
proposed within other applications, we refer to the Van der Waals-Cahn-Hilliard
theory of phase transitions in mechanics, see [1,4] or to the image classification
model introduced by Samson et al. [13].

Our strategy is to solve a sequence of optimization problems (5) with gradu-
ally increasing the factor γ, which will lead to a solution consist from the gray
levels according to the given set Λk. More precisely, we propose the Discrete
Tomography based on the MWP (DTMWP) optimization algorithm, described
below.
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DTMWP Algorithm

For the given initial solution x0 and nonnegative numbers α, γ0 and εout:

γ = γ0; xinit = x0;

repeat

xnew = argmin
x

[
Φα(x) + γ ·

∑
i

W (xi)

]
; (7)

xinit = xnew;

increase γ;

until W (xnew
i ) < εout, i = 1, . . . , n.

The algorithm’s initial solution x0 is the image with all pixel values equally to
a value between μ1 and μk. We recommend the mean value (μ1 +μk)/2, but also
note that this choice does not affect significantly the algorithm’s performance.
Namely, in the beginning of the process, for small γ, the algorithm compute a
continuous solution which after becomes an initial solution for new minimization
with larger γ. In each repeat -until cycle we solve an optimization problem (7) for
a fixed factor γ. The objective function of this problem is smooth and bounded
below with zero, therefore there are several globally convergent line search based
gradient methods which can be used for this minimization. For more details we
refer to [11]. Based on our experiments we suggest the Spectral Conjugate Gra-
dient (SCG) optimization algorithm introduced by Birgin and Mart́ınez [7]. The
solution, xnew which is obtained by this minimization process becomes the initial
solution, xinit for minimization in next repeat -until cycle with increased γ. The
increasing rule must be set in appropriate way: to fast increase rule can give to
much significance to the stratification process and can increase the projection
error; on the other hand, to slow increase rule can unnecessarily slow the con-
vergence. The termination criterion for the repeat -until cycle, εout regulates the
tolerance for the finally accepted (almost) gray level decomposed solution.

In the previous section we saw that Φα is a convex function. On the other hand,
it is easy to see that W is a non-convex function. Therefore, in the beginning
of the process for small γ the minimization (7) provides global minimums, but
latter for larger γ the objective function in (7) becomes non-convex and we can
not guaranty that DTMWP always end up in the global minimum. However,
experimental results confirm its good performance.

4 Experimental Results

The proposed DTMWP algorithm is experimentally tested on the three test
images (phantoms) presented in Figure 5. Reconstruction problems are composed
by taking projections from different directions. We take 256 parallel rays for
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PH1 PH2 PH3

Fig. 5. Phantom images used in experiments. All images have same resolution: 256 ×
256. The set of gray levels, Λ3 = {0, 0.5, 1}.

each projection. We distinguish reconstructions from 3, 5 and 8 projections. For
3 and 5 projections the directions are uniformly chosen within [00, 900] and for
8 projections within [00, 157.50].

The quality of a reconstruction is expressed by the following two error measure
functions

E1(xr) = ‖Axr − b‖,
E2(xr) =

∑
i

|xr
i − x∗

i |,

where xr is the reconstructed image. Function E1 measures the accordance with
the projection data (projection error), while E2 shows the distance from the
original image x∗ in a relation to the vector norm one.

Parameters used for the DTMWP algorithm are empirically derived and set
as follows: γ0 = 0, α = 100 and εout = 10−2. The increasing rule for the γ factor
is defined by the following quadratic type formula: γ = γ0 + γc · i2, where i is an
iteration counter within the repeat -until cycle and γc = 10−2. For the potential
function, W we set l1 = l2 = 0.125. The optimization problem (7) is solved by
the SCG algorithm, which is fully described in [7].

The algorithm is implemented in the Matlab environment and the running
time per one reconstruction is about 5 min. The obtained error measure values
are reported in Table 1 and the visual look of the reconstructed images are
presented in Figure 6. The method is able to provide good reconstructions of
Phantoms 1 and 2 from 8 projections and reasonable ones from 5 and more

Table 1. The measured error values E1 and E2 of the reconstructed images

PH1 PH2 PH3
Proj. E1(x

r) E2(x
r) E1(x

r) E2(x
r) E1(x

r) E2(x
r)

3 119.766 6018.449 90.628 4904.557 126.095 9594.396
5 55.564 1389.369 69.731 1484.481 154.343 6163.626
8 64.173 1010.670 64.253 786.524 119.017 2675.236
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Proj. PH1 PH2 PH3

3

5

8

Fig. 6. Reconstructions of the phantom images presented in Figure 5. They are ob-
tained from 3, 5 and 8 projections.

projections. The Phantom 3 is more difficult and it is obvious that for precise
reconstruction more than 8 projection is needed. In general, we observe that for
all test images, the quality of the reconstruction rapidly increases with number
of projections.

5 Concluding Remarks

We have represented a new discrete tomography reconstruction algorithm, called
DTMWP. The algorithm is based on the minimization of the objective function
consists from the regularized squared projection error and the multi-well poten-
tial function. The algorithm is applicable for a reconstruction of images with multi
gray levels. Our experimental results confirm the capability of the proposed
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method for reconstruction of the images consist from three gray levels using a very
small number of projections.

Further work can be related with inclusion an additional regularization, beside
the used smooth one, with aim to accelerate the convergence and to further
reduce the number of projections needed for the reconstruction process.

Acknowledgments. The author acknowledges the Ministry of Science of the
Republic of Serbia for support through the Projects OI-174008 and III-44006.
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13. Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A Variational Model for Im-

age Classification and Restoration. IEEE Trans. on Pattern Analysis and Machine
Intelligence 22, 460–472 (2000)
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Abstract. Recent works show that the determination of singularity ex-
ponents in images can be useful to assess their information content, and
in some cases they can cast additional information about underlying
physical processes. However, the concept of singularity exponent is asso-
ciated to differential calculus and thus cannot be easily translated to a
digital context, even using wavelets. In this work we show that a recently
patented algorithm allows obtaining precise, meaningful values of singu-
larity exponents at every point in the image by the use of a discretized
combinatorial mask, which is an extension of a particular wavelet basis.
This mask is defined under the hypothesis that singularity exponents are
a measure not only of the degree of regularity of the image, but also of
the reconstructibility of a signal from their points.

1 Introduction

Since the introduction of wavelet theory, it has been recognized that the calcu-
lation of local singularity exponents from digital signals can be used to codify
them in a more compact way [10,9]. The early studies carried out over turbu-
lent flows and other systems proved that the singularity exponents at the top
points in a Wavelet Transform Modulus Maxima (WTMM) line can be easily
calculated [11,12,13]. However, the extension of this methodology to any point
at resolution scale was far from simple, and for those points the WTMM method
become convoluted and rather imprecise [20], even for the mere assessment of
the statistical properties of the signal [29].

A different approach using numerical determinations of the local gradient
modulus convolved with wavelets, even with positive multiscaling bases, showed
more stable results over discretized signals [25,27], leading to accurate exponents
values and fine spatial resolution [21]. This new approach to singularity analysis
is in the basis of the so-called Microcanonical Multiscale Formalism (MMF) [32],
which has been shown to be useful to assess physical properties of turbulent
flows and other multiscale systems [24,6,31,32,28,15,17,16]. It has been hence
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demonstrated that obtaining the singularity exponents at each point of a signal
can reveal many useful information not only about the image, but also about
the physical processes giving raise to it.

However, the performance of MMF-based singularity analysis (namely, the
quality of the exponents calculated with this approach) depends on the proper-
ties of the multiscaling function used [32], the best multiscaling functions being
positive functions with fast enough decay [21]. Although for statistical analysis
almost any scaling function gives the same results [29], a precise geometrical de-
termination of the underlying patterns, edges and textures requires a very fine
tuning of the multiscaling function.

In this paper we discuss a method for singularity analysis introduced in a
recent patent [22]. This method allows high-performance determination of the
singularity exponents, with a method which is fast, computationally cheap, sta-
ble, accurate and provides fine resolution. Its definition relies in the connection
of singularity exponents with the concept of image reconstruction from the Most
Singular Component (MSC), as presented in [30]. The paper is structured as fol-
lows: in the next Section we introduce the basics of singularity analysis, while
Section 3 explains the key concept of reconstruction from the MSC. In Section 4
the conditions to define a UPM-based measure are discussed, while Section 5
gives the settings for the calculus on reduced neighborhoods. Finally, in Section 6
our method is presented and some results shown. The last Section, Section 7,
presents the conclusions of our work.

2 Definition of Singularity Analysis

Singularity analysis is a term referring to different meanings in mathematical
analysis (e.g. the studies of singularities of differentiable functions); in the present
work we focus on its meaning in the theory of complex systems. Using singularity
analysis we intend to describe and characterize the local behavior of a Rm-valued
function f(x) defined on Rd around each one of its domain points x according to
the so-called singularity exponent, Hölder exponent [7] or Hurst expo-
nent [19,8]. If the signal behaves at point x according to the following limiting
behavior:

‖ f(x + r)− f(x) ‖ = α(x)rh(x) + o(rh(x)) (r→ 0) (1)

then h(x) is the singularity exponent at x: small displacements around x lead
to function increment which scale as powers of the displacement modulus r =
‖r‖. A strictly n-times derivable function obviously leads to a Hölder exponent
h(x) = n, and so this formulation allows to generalize the concept of integer
differentiability to real differentiability. To complete the transposition, a slightly
more exigent formulation of eq. (1) is required, namely we should assume that
there exists a (1, 1) continuous tensor from Rd to Rm, α(x), such that

f(x + r)− f(x) = 〈α(x)|r〉 rh(x)−1 + o(rh(x)) (r→ 0) (2)
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(denoting 〈α(x)|r〉 the standard duality bracket for (1, 1) tensors). When such
representation is possible, the exponent h(x) is called the Hurst exponent of the
function; if only eq. (1) can be applied we will prefer to speak about Hölder
exponents.

Assessment based on Hölder exponents can only be applied to very specific
signals; in general, the presence of long range correlations and the effects of noise
and discretization would preclude a direct evaluation of the scaling exponent
[27,32].

A more general framework is given by singularity exponents, which are defined
using gradient-based measures [27]. Given a signal s(x), defined in Rd and with
values in R, we can define its associated gradient measure μ by its density dμ(x),
which is given by:

dμ(x) = ‖∇s‖(x) dx (3)

This measure is by definition absolutely continuous with respect to Lebesgue
measure. Hence, the measure of any Borelian A is given by:

μ(A) =
∫
A

dx ‖∇s‖(x) (4)

Gradient measures also allow to characterize the local singularity of any point,
and in a direction-independent manner. Following eq. (1), let us consider a func-
tion f(x) with a Hölder exponent h(x) + 1 at a point x (notice the shift +1
introduced for later convenience). Let Br(x) be the ball (using an arbitrary
norm in Rd) of radius r centered around x. So, we obtain [27]:

μ (Br(x)) = α(x) rd+h(x) + o
(
rd+h(x)

)
(r → 0) (5)

where d is the dimension of the domain space (d = 2 in images). The introduction
of gradient measures is convenient, as measures can also be wavelet-projected
to obtain smooth interpolations from discretized data. Given a wavelet Ψ , we
define [3,12] the wavelet projection of the measure μ at the point x and scale r,
denoted by TΨμ(x, r), as:

TΨμ(x, r) =
∫

Rd

dμ(x′)
1
rd

Ψ

(
x− x′

r

)
(6)

i.e. operator TΨ is a map from the set M of σ-finite measures on Rd to the set
of functions Rd × R+ → R. If the signal possesses a singularity exponent at the
point x according to eq. (5), then the wavelet projections allow to infer this same
exponent, as they verify [3,27]:

TΨμ(x, r) = αΨ (x) rh(x) + o
(
rh(x)

)
(r → 0) (7)

The main advantage of using measures over discretized data is that any func-
tion Ψ can be used to evaluate singularity exponents using eq. (7), even positive
functions [32]. As discussed in [29], the resolution capability of a wavelet de-
pends on the number of zero-crossings it has, which is increased in higher-order
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wavelets but is minimum for positive wavelets. So, gradient measures improve
the spatial resolution of singularity exponents [21].

3 MSC and Its Connection with Reconstruction

An important ingredient in the construction of wavelets with optimized reso-
lution capability is the concept of reconstruction of signals from partial infor-
mation about its gradient. The theoretical and practical implementation of this
reconstruction algorithm was first introduced in [30] (see discussion there).

We consider signals having a singularity exponent h(x) at each point [14,5] and
for which these exponents are organized forming sets with a particular multiscale
structure [4]. That is, the values of the singularity exponents do not take arbi-
trary values but must be organized so that they define a hierarchy of multiscale
geometrical structures “matching” and realizing closely the cascading properties
of some random variables associated to the macroscopic description of the sys-
tem under study [18]. Due to the difficulties of classical methodologies to assign a
precise value of singularity exponent h(x) to each point, all the characterizations
of this hierarchy that have been tried up to now are merely statistical. In [30] a
new question was posed: if the hierarchy truly exists in complex signals, can they
be reconstructed starting from the vertex of this hierarchy? For multifractals,
the set associated to the vertex is well-known, at least from the theoretical point
of view: it is the so-called Most Singular Component (MSC), which is the
set comprising the points with most singular (i.e., most negative) values of h(x)
[27,32].

The thesis in [30] is that the MSC contains enough information to fully re-
construct the signal (in that reference, the reconstruction of images is analyzed,
although the formulas are valid for any number of dimensions). As we are working
with gradient measures, the data to be retained at the MSC is the gradient of the
signal. So, it was hypothesized that there exists an universal operator to recon-
struct signals starting from the values of the signal, and leading to a reconstruc-
tion algorithm consistent with the known statistical invariances of turbulence
and multiscale signals [5].The algorithm was required to be deterministic, lin-
ear, translational invariant, isotropic and leading to the known power-spectrum
shape. Under these requirements, it turned out that there exists, if any, only one
possible operator to reconstruct signals from the gradient on the MSC. Let us
first define a convenient notation for the starting data. For a given multiscale
signal s let us denote by F∞ the MSC, that is to say F∞ is the set of points
x such that h(x) ∈]h∞ −Δ, h∞ + Δ[ with h∞ being the minimum value of all
h(x) over the finite domain of the discrete signal, and Δ a threshold parameter;
we will define the essential gradient of s, ∇

F∞
s, as follows:

∇
F∞

s(x) = ∇s(x) δF∞
(x) (8)

where δF∞
is a delta distribution associated to the continuum of the F∞, ho-

mogeneous in (Hausdorff) topological dimension to a repartition in between
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dimensions d− 1 and d: it assigns uniform weight to the points on the MSC F∞
and vanishes outside the MSC. According to this notation, the reconstruction
formula [30] reads:

s(x) = (g · ∇
F∞

s)(x) (9)

where the symbol · means convolution dot-product of vectors and the vector
field g is the universal reconstruction kernel, which can be easily expressed in
Fourier space, namely:

ĝ(k) = i
k
‖k‖2 (10)

and i =
√−1 is the imaginary unit. So defined, the reconstruction kernel g is a

kind of inverse gradient operator. There is always a set F∞ from which recon-
struction is perfect, the whole domain: If F∞ = Rd, then eq. (9) reduces to the
trivial identity ∇

F∞
s = ∇s. But from eq. (9) is not evident if there exists a smaller

set F∞ ⊂ Rd such that reconstruction is also perfect. Following the derivation
in [30], we can conclude that any set F leading to a perfect reconstruction must
verify:

div
(
∇

Fc
s
)

= 0 (11)

where Fc is the complementary set of F . As the divergence operator is local
and the formula above is linear, the decision to include or not a point can be
taken on the basis of any neighborhood around that point. The points that
must always be included to obtain a perfect reconstruction are hence those with
values that cannot be predicted just knowing the values in their surroundings;
they are hence called unpredictable points (in opposition to the other points,
which are predictable). Predictability is a subject at the core of the analysis
of complex systems and signals [2,1], where for instance Lyapunov exponents
and Kolmogorov-Sinai entropy are known measures of information growth in a
dynamical system. The set Fu formed by the collection of all the unpredictable
points is what we will call the Unpredictable Points Manifold (UPM) and it is,
by definition, the smallest set for which eq. (9) lead to a perfect reconstruction.
The hypothesis in [30] is that Fu = F∞, a conjecture which is at the base of the
framework of reconstructible systems. What is evident from experiences is that
the MSC leads to good reconstructions (see discussion in [32]).

4 General Conditions to Define UPM-Measures

We now step forward to generalize the concept of gradient measure introduced
in the previous sections to the novel concept of UPM-measure. The basic re-
quirements to define a singular positive UPM-measure μ are:

i) It is concerned with the local singular behavior of functions.
ii) It leads to a MSC as close to the UPM as possible.
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In some sense, UPM-measures are gradient measures which also take into account
the degree of predictability of points according to eq. (11). So that, they take
the form of a gradient (in the sense of finite difference over discretized signals)
but with penalty terms associated to the lack of predictability. The best way
to keep on working around singularities is to define UPM-measures as vectorial
wavelet projections of standard gradient measures. So, the UPM-measure is a
carefully designed vectorial wavelet projection of the gradient measure so that
it penalizes unpredictability.

In our method, in contrast with standard singularity analysis, we will not
perform many wavelet projections of the UPM measure in order to extract the
singularity exponents by means of a log-log regression applied to eq. (7). Wavelet-
projecting the measure at several scales is costly in computer time and only serves
to enhance the resolution of less singular structures at the cost of coarsening most
singular ones (see a discussion on this in [29]). But as we are mainly interested
in the most singular structures, it is hence harmful to our interests to project
across multiple scales. Instead, we will make use of point estimates [29,15] of the
singularity exponents, namely:

h(x) =
log (TΨμ(x, r0)/〈TΨμ(·, r0)〉)

log r0
+ o

(
1

log r0

)
(12)

where 〈TΨμ(·, r0)〉 is the average value of the wavelet projection over the whole
signal and serves to diminish the relative amplitude of the o

(
1

log r0

)
correction.

When applying eq. (12) we will need that r0 is small enough to neglect this
correction. The scale r0 will be defined as the smallest accessible one, that is,
the pixel scale. We conventionally assign a Lebesgue measure of 1 to the whole
space domain, so for a N ×M image the value of r0 is fixed to r0 = 1√

NM
, so

in general we need that images are large enough to make the first term in the
right hand side of eq. (12) a good approximation of the singularity exponent. In
practical terms, this implies a resolution around 100× 100 pixels or larger.

5 Calculus on Reduced Neighborhoods: Cross Fourier
Transform

In order to assess the degree of predictability of a given point, we will apply
the reconstruction formula, eq. (9), for the smallest possible neighbor of a point,
namely its 2d nearest neighbors in 2d connexity neighborhoods. In 2D (d = 2)
this consists of 4 neighbors, that with the point altogether form a cross. For
any quantity p(x) we will represent the neighborhood of any point x0 by a 5-
component vector comprising this point and its 4 nearest neighbors, following
the indexing convention established in Figure 1. So, the central point will be
assigned the index 0, the point at its right will be indexed 1, the one on the left
is indexed 2, that on top is indexed as 3 and the one on the bottom is indexed
4. So, we convert the neighbor in the vector (p0, p1, p2, p3, p4). The notion of
predictable point easily extends to any number of dimensions, regardless of the
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Fig. 1. Schematic representation of the indexing of the points in the 2D cross

number of components of the neighbor vector, which grows as the dimension d
increases.

We could apply the harmonics of the standard Fourier Transform on the
discrete signal (p0, p1, p2, p3, p4), but this is not a good idea. The harmonics
of the standard Fourier Transform (i.e., (e2ikπ/n)k) depend on the size of the
embedding space, so they would lead to a dimension-dependent measure of the
predictability . To overcome this problem, we note that relative to the center of
the cross, the position of the other points correspond to displacements of ±1 (in
pixel units) either in the x-direction or in the y-direction. So that, to define a
special type of Fourier transform specialized to this cross formation, the basic
Nyquist frequency in each direction is 2π/3. Consequently we introduce

j = e2πi/3 = cos(2π/3) + i sin(2π/3) = −1
2

+ i

√
3

2
, j̄ = j2 (13)

We define the direct Cross Fourier Transform of any 5-vector p=(p0, p1, p2, p3, p4)
as the complex 5-vector p̂ = (p̂0, p̂1, p̂2, p̂3, p̂4) obtained according to the follow-
ing formula:

p̂ = F p (14)

where F is the following 5× 5 complex matrix:

F =
1
3

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 j j̄ 1 1
1 j̄ j 1 1
1 1 1 j j̄
1 1 1 j̄ j

⎤⎥⎥⎥⎥⎦ (15)

This matrix represents the linear combination of the harmonics associated to
the displacements in the cross and is designed to represent with the maximum
fidelity the composition at the center of the cross, starting from the nearest
points. The inverse of this matrix is:
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F
−1 =

⎡⎢⎢⎢⎢⎣
−1 1 1 1 1
1 j̄ j 0 0
1 j j̄ 0 0
1 0 0 j̄ j
1 0 0 j j̄

⎤⎥⎥⎥⎥⎦ (16)

We need to define surrogates of the gradient and the reconstruction formula
restricted to the cross neighborhood, in order to evaluate in a fast way the
degree of predictability of the central point. For that reason, we will construct
appropriate implementations of the gradient and of the gradient reconstruction
formula, based on the Cross Fourier Transform.

The Cross Gradient Operator is the operator (∂x, ∂y) = F
−1 · (∂̂x, ∂̂y) · F.

In Fourier space the operator acts by simply multiplying any function by the
functions ∂̂x and ∂̂y to obtain the x and the y coordinate, respectively. The
function ∂̂x is defined as:

∂̂x = (0, i
√

3,−i
√

3, 0, 0) (17)

and analogously we have:

∂̂y = (0, 0, 0, i
√

3,−i
√

3) (18)

The Cross Reconstruction Operator is one of the inverses of the Cross
Gradient Operator. As the gradient operator eliminates any constant summed
up to each component of the 5-vector representing the neighborhood, the re-
construction is defined up to a constant shift; our implementation of the cross
reconstruction operator is such that the 5-vector has zero mean,

∑5
i=1 si = 0.

For that reason, signals should have the mean subtracted before applying these
two operators (see below).

The Cross Reconstruction is the operator R = F−1 · R̂ · F. In Fourier space R̂
has two functional components, R̂ = (R̂x, R̂y); the operator acts as the sum of
the product of each component with the corresponding component (x and y) of
the gradient on which it is operated. The component R̂x is defined as:

R̂x = (0,−i/
√

3, i/
√

3, 0, 0) (19)

and analogously for R̂y,

R̂y = (0, 0, 0,−i/
√

3, i/
√

3) (20)

The Cross Gradient and the Cross Reconstruction are the two basic algorithms
for the design of the UPM-measures. They can be simplified to a 5× 5 matricial
form, for faster numeric implementation.

6 Local Correlation Singularity Measure

The Local Correlation Singularity Measure is designed to measure the
unpredictability of a given point, just quantifying the difference on the actual
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value of the detrended (i.e., after subtracting the mean) signal at a given point
and the inferred one from their four neighbors. It is defined algorithmically as
follows:

Goal: To evaluate TΨlcsm
μ(x0, r0) at a given point x0.

Algorithm

1. The neighborhood of x0 is converted into a 5-vector s = (s0, s1, s2, s3, s4)
according to the scheme in Figure 1.

2. The vector is conveniently detrended: we first obtain S̄ = 1
3

∑5
i=1 si, and we

define the detrended vector, p = (p0, p1, p2, p3, p4) as:

p0 = s0 + S̄ ; pi = s0 − S̄ , i = 1, . . . , 4

3. We apply the Cross Gradient Operator to p, so we obtain the vector gx

and gy.

Fig. 2. Top: Left: Original Lena image; Right: Singularity exponents estimated us-
ing the Local Correlation Singularity Measure; they are represented using a inverse
grayscale palette (the brightest the smaller, so more singular). Bottom: Left: MSC,
defined as {h < −0.5}; it comprises 30% of the points of the image ; Right: Reconstruc-
tion. Some details are missing due to the lack of capability of the method to capture
every UPM point; however, the reconstruction is of high quality (24.5 dB).



Algorithm for Local Singularity Exponents in Digital Signals 355

4. We keep the value of the first components of these two vectors for a later
use, Ax = gx,0, Ay = gy,0.

5. We set these two components to zero, gx,0 = gy,0 = 0.
6. We apply the Cross Reconstruction Operator to the resulting vectors gx and

gy, to obtain the reconstructed signal r.
7. We apply once more the Cross Gradient Operator onto r to obtain ρx and

ρy.
8. We define the Local Correlation Singularity Measure as the modulus of the

difference of the cross gradients at the center of the cross, namely:

TΨlcsm
μ(x0, r0) =

√
(Ax − ρx,0)2 + (Ay − ρy,0)2

In fact, this last step means to keep the modulus of a vector-valued wavelet
projection, but to simplify notation we leave it as is.

9. The singularity exponent h(x0) is then obtained in application of eq. (12).

In Figure 2 we show an example of the application of the singularity analysis
based on the Local Correlation Singularity Measure.

7 Conclusions

The accurate estimation of singularity exponents in multiscale systems allows
characterizing their relevant features and identifying their information content.
This is particularly important for the case of digital images, where the degree
of singularity is directly related to the distribution of information, and so its
knowledge can be used for compact coding or reconstructing from the Most
Singular Component (MSC). However, digital images are discretized and this
fact is an important obstacle for precisely retrieving its singularity exponents:
even when using wavelet projections, most standard wavelet bases only give
average results.

In this article, we have presented a recent algorithm that allows obtaining the
singularity exponents of an image at every point. The singularity exponents are
extracted in a precise and meaningful way, by means of a discretized combinato-
rial mask. This mask is constructed by considering the singularity exponent of
a given point as both a measure of the singularity/regularity degree and a mea-
sure of the unpredictability of that point. The result is a discretized, numerical
extension of a particular wavelet basis.

We have presented and discussed the method for singularity analysis noted as
“Local Correlation Singularity Measure” in patent [22]. This method attains at
the same time good quality and spatial resolution in the estimation of singularity
exponents. Additionally, the reconstruction from the MSC is of high quality. As
an illustration, we have shown the singularity exponents from the Local Cor-
relation Singularity Measure and the reconstruction from their MSC for Lena’s
image, for which the reconstruction quality is of 24.5 dB. The prospects of this
method includes image compression [30], assessment of streamlines in turbulent
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flows [31,26], detection of convection meteorological systems [23] or detection of
investment cycles in stock market series [28], among others.

The presented methodology for 2D images can be easily generalized to any
dimensionality. In addition, it is possible to define other UPM-measures other
than the Local Correlation Singularity Measure, that can give better perfor-
mance in certain cases. All these additional developments and their respective
applications will be the object of future communications.
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Abstract. In this paper, we present a new graph-based technique to
detect segments or contours of objects in a given picture. Our algorithm
is designed as an approximation of the Louvain method that unfolds the
community structures in a large graph. Without any a priori knowledge
on the input picture, relevant regions are extracted while the optimal
definition of a contour, depending on the user or the application, can
be tuned using parameters. The communities found are also hierarchical
allowing to find subregions inside an object. We present experimental
results of our method on real images.

Keywords: Image segmentation, community detection, modularity
optimization.

1 Introduction

How many objects are present in a picture? This simple question from a percep-
tion point of view (depending on what one considers to be an object) has raised
a lot of research for the last decades and remains a very challenging problem for
a computer. There are many applications where this consideration takes place:
discovering abnormal shadows on a CT or PET scan for tumor detection, detec-
tion of people and objects from images of surveillance cameras or from a camera
at the front of a car in the context of collision detection, etc.

The answer is never unique in image segmentation because defining the ob-
jects of interest is user or application dependent. However, we want to address
the question of image segmentation without any a priori knowledge about the
shape, the position or the number of objects displayed in the input picture. Nev-
ertheless, we will keep a number of tuning parameters to optimize the method
depending on some properties of the picture, like the number of pixels or their
range. Based on a graph built from the image, we will show that finding the rel-
evant structure of objects is possible using the optimization of a scalar function
called the modularity. This measure was introduced by Newman and Girvan
[16] and represents the quality of clusters defined on the nodes of the graph.
Unfortunately, like the definition of clusters, this measure is combinatorial and
the optimization of this criterion cannot be done in polynomial time. We will
present a greedy algorithm that provides a good approximation of the optimal
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modularity. This algorithm will allow us to define communities of nodes in the
graph which lead to coherent groups or subgroups of pixels in the image.

The paper is organized as follows: in section 2 we review some classical graph-
based techniques for image segmentation and introduce our notations. Then in
section 3 we review the concept of modularity for community detection in large
graphs and describe our algorithm to approximate the optimal modularity. In
section 4 we show some experimental results on real images. Finally, section 5
concludes with the main results of this paper and proposes future work.

2 Related Work

Since the number of techniques in computer vision is quite large, each one com-
ing from various fields (histograms metric [21], watershed techniques [3], active
contours [13,14], manifold learning [12,19], etc), we will restrict our review to
graph-based techniques. Those procedures generally build a graph G where each
node represents a pixel in the input picture. Since the number of pixels is very
large, even for low resolution pictures, ideas have been proposed to reduce the
number of nodes in the graph to a representative subsample of pixels or regions,
for example in [2] or see other references therein.

Each weighted edge of the graph G represents the similarity between a pair
of pixels and is stored in the weighted adjacency matrix W . Without a priori
knowledge about the components of the input image, a classical way to define
an edge weight is

wij =

{
e

d(i,j)2

σ2
x e

|F (i)−F (j)|2
σ2

i if d(i, j) < dmax,
0 otherwise,

(1)

where d(i, j) is the distance between pixels i and j (e.g. the Euclidean or the
Chebyshev distance) and F (i) is a feature vector evaluated at pixel i. This feature
vector can be for example the scalar intensity value for gray scaled images or
the HSV transform for color images. The edge weight is controlled by the user
defined parameters σx, σi and dmax.

Based on this undirected weighted graph, classical methods [5,18,20,22] try
to find a selection of edges, called a cut, to optimize a criterion. A cut is defined
as a set of edges that creates disconnected components when removed from the
graph. The cost function is in general the total weight of the removed edges with
an additional scaling that penalizes the creation of very small components: in
the ratio cut the scale is the dimension of the components (Cox et al.[5]), in the
minimum mean cut the scale is the number of cut edges (Wang & Siskind [20])
and in the normalized cut the scale is the internal similarity of the components
(Shi & Malik [18]). Another efficient method has been proposed by Felzenszwalb
and Huttenlocher [7] that extracts regions in the graph minimizing what they call
internal difference of regions while maximizing the external difference between
regions. Unfortunately, in general these methods need to know the number of
objects of interest in the input picture or they have to set an arbitrary threshold
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on the minimum value of the cut criterion and this may lead to an inappropriate
segmentation. In particular, optimizing the normalized cut criterion is known
to be NP-hard [18] but a continuous relaxation can be solved in polynomial
time using spectral graph theory. Some recent works [1,9] propose to reduce
the computational cost of such methods by computing an approximation of the
optimal cut criterion using the incomplete Cholesky decomposition.

Those methods try to split the large pixel graph into salient regions by defin-
ing boundaries between the regions. On the other hand, one can consider the
opposite way of grouping adjacent connected nodes, defining the salient regions
and letting the boundaries appear by themselves. We propose to analyze this
idea by considering the previously constructed graph as a large (social) network
divided in communities. Communities as introduced by Newman and Girvan [10]
are defined as sets of highly connected nodes with only a few or light connections
between distinct groups. This informal definition is obviously not sufficient to
identify the community structure in a graph. Therefore Newman and Girvan [16]
introduce a scalar function Q called the modularity to evaluate the quality of a
community structure in a graph:

Q =
1

2m

n∑
i,j=1

(wij −Nij) δ(Ci, Cj) , (2)

where n is the number of nodes in the graph, wij is the edge weight as previously
defined in (1), Nij is a null model between nodes i and j, Ci is the community
of node i and δ(Ci, Cj) = 1 if nodes i and j are in the same community and 0
otherwise. Here m is the sum of the weights of all the edges in the graph and is
a scaling parameter ensuring that Q ∈ [−1, 1]. The null model Nij is designed
to assess the strength of an edge and can be defined as the expected weight of
the edge between nodes i and j, given that the degree of each node is known:

Nij =
kikj

2m
. (3)

Here ki is the weighted degree of node i i.e. ki =
n∑

j=1

wij . The null model pre-

sented here is just a straightforward extension from an unweighted framework.
If one considers the selection of stubs (half-edges), the probability to pick up a
stub from node i is pi = ki/2m since there are ki outgoing stubs from node i out
of 2m stubs in total. The probability to have an edge between i and j is then
defined as the probability to select a stub from node i and a stub from node j,
so it is proportional to pipj as presented. For a more elaborate development of
the null model, see [8].

It follows that if the actual edge weight wij is larger than the expected edge
weight Nij , nodes i and j are strongly connected and assigning them to the same
community will lead to a positive modularity gain.
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One can see that maximizing the modularity over all possible community
partitions (including the number of communities) is a combinatorial problem
and cannot be solved in polynomial time, hence the interest for fast algorithms
that build an approximation of the optimal modularity.

In the next section, we first review a greedy algorithm, called the Louvain
method, to approximate the optimal modularity of a graph and then we will
explain the refinements that we brought to this method to segment an input
picture.

3 Optimizing the Modularity

There exist different techniques to uncover the community structure in a graph
using modularity maximization (a very detailed review has been made by For-
tunato [8]). We choose to use a modification of the Louvain method because
this method is very successful in terms of computational cost and quality of the
detected communities.

3.1 The Louvain Method

The Louvain method introduced by Blondel et al. [4] is a greedy algorithm
to uncover community structures in a weighted graph using a local decision
for each node. This algorithm produces hierarchical communities by recursively
aggregating smaller communities.

At the initialization, each node of the graph, i.e. each pixel, defines its own
community. At this step, Q < 0 since we choose wii = 0 by definition so the
modularity is smaller than in the situation where all the nodes are in the same
community (Q = 0). Then, a node is randomly chosen and each gain of modu-
larity of grouping this node to any of its neighboring communities is computed.
The node is finally assigned to the community with the maximal (positive) gain.
The procedure iterates over randomly chosen nodes until no positive gain can be
found (each node can be selected more than once since a node can be taken out
of its pre-assigned community to check if no other community assignment can
produce a larger modularity gain). After convergence, all the communities found
are aggregated to form a new graph: each community becomes a single node,
with a self-loop computed as the sum of the weights of all the internal edges,
while the edges between the new nodes are computed as the sum of the old ex-
ternal edges. This two-steps procedure is then recursively applied to each of the
aggregated graphs produced until no positive gain can be found for any isolated
node (figure 1 illustrates the algorithm on a synthetic graph). Note that optimiz-
ing the modularity on each aggregated graph is equivalent to an optimization
of the modularity based on the initial graph i.e. the modularity of a community
structure on the aggregated graph has exactly the same value as the modularity
of the induced underlying communities on the initial graph. This property is
very valuable since we want to optimize the community structure of the initial
picture-based graph without losing information during the aggregation step.
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Initial graph

Optimization

Optimization

Aggregation

Aggregation

Fig. 1. Representation of the steps applied by the Louvain method on a synthetic
graph. At each loop, the algorithm first computes an optimization of the modularity
on a graph; then it aggregates the graph according to the communities found.

3.2 A Modified Louvain Method

The Louvain method works well in practical situations but is time consuming
at the first iteration (considering the problem of real time video tracking for
example) because of the loop over all node. We propose a modification of this
algorithm to allow faster computation.

We describe here what we call a basic iteration of the algorithm. First, we
compute a gain matrix G that contains the gain of assigning each node with one
of its neighbor. This gain matrix is easily computed by

G =
1

2m

(
2 W − 1

m
kkT

)
, (4)

where k is the vector of degrees. This formulation is very simple because at the
beginning of each iteration the communities contain only a single node. Note that
the computation of kkT can be restricted to the indices of non zero elements of
W since we are only interested in positive gains.

For each node, we derive an assignment with its best neighbor, defined by the
maximum value on each row of the gain matrix G. Then, we consider a directed
graph defined by these assignments and we construct the communities as the
connected components of this graph. Since the best neighbor assignment can
obviously be non-symmetric, the connected components may become very large.
This leads to the creation of large communities but it can have the side effect
that the negative contribution of the null model becomes larger than the positive
contribution of the edge weight, leading to a negative modularity gain. We will
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(a) Input picture (b) Segmentation using
classical modularity

(c) Segmentation using
weighted modularity

Fig. 2. Segmentation of a baby face (130 × 132 pixels) using classical and weighted
modularity: σx = 1.2, σi = 10, dmax = 3 and dΛ = 15. There are 34 regions segmented
by the classical modularity and 8 regions segmented by the weighted modularity.

illustrate this phenomenon afterward. In this situation, we recursively remove,
from its community, the node with the smallest (negative) gain until the total
gain becomes positive.

Finally, once the communities have been defined, they are aggregated to create
a new smaller graph.

We iterate this basic iteration until the gain matrix does not contain any
positive entry anymore. This algorithm is deterministic and allows, at each step,
to assign all the nodes at the same time to a community, leading to a clear
improvement in term of computing time.

Fig.2(a) and 2(b) show the results of the segmentation on a real image using
our community detection algorithm. The results of Fig.2(c) will be discussed
later.

One can see that all the regions segmented by the algorithm are coherent
but also that the objects of interest are oversegmented (6 regions for the shirt
and 7 for the face). This oversegmentation comes from the fact that modularity
maximization algorithms cannot yield communities with long chains of nodes. In
this context, large regions in the picture (including the background), even with
similar intensity levels, cannot be merged together: the distance dmax in (1) is
small compared to the size of the picture (due to memory limitation), leading
to a huge number of disconnected pairs of pixels. Defining a community that
contains a large distance between pixels will lead to a smaller (or even negative)
modularity because of these disconnected pixels. To illustrate this, suppose that
we split the background of an image into 2 adjacent non-overlapping regions
r1 and r2 and that we denote by ∂ri the border of width dmax of the region i
adjacent to region j as depicted in Fig.3. If we denote by Qr the contribution in
the modularity of a community defined by the region r

Qr =
1

2m

∑
i,j∈r

(
wij − kikj

2m

)
,
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Fig. 3. Representation of 2 adjacent non-overlapping regions with their respective ad-
jacent border

then one can see that

Qr1∪r2 = Qr1 + Qr2 +
1
m

∑
i∈r1
j∈r2

(
wij − kikj

2m

)
. (5)

The gain of modularity ΔQr1↔r2 of grouping r1 and r2 together is then given
by

ΔQr1↔r2 = Qr1∪r2 −Qr1 −Qr2

= Q∂r1∪∂r2 −Q∂r1 −Q∂r2

− 1
m

∑
i∈r1\∂r1

j∈r2

kikj

2m
− 1

m

∑
i∈∂r1

j∈r2\∂r2

kikj

2m
, (6)

and if the number of pixels in both regions is large, the last two negative terms
of this equation dominate, leading to a smaller global modularity.

There are at least two ways to tackle this problem of resolution. First, one
can increase the distance dmax which in turn increases the size of the border
∂ri and therefore reduces the number of nodes in ri\∂ri. While this is a good
theoretical solution that may work on very small images, it is not suitable for
typical images; one can check that the number of neighbors for each pixel grows
as O(d2

max), making this solution impossible in practice, due to the amount
of memory needed to compute W . Another possible solution is to modify the
null model (3) in such a way that it takes into account the distance inside a
community, defining a weighted version of the modularity. We pursue this idea
in the next section.

3.3 The Weighted Modularity

To avoid oversegmentation, the null model should be defined such that it takes
into account the fact that an object can be spread over a large area of the picture
i.e. the computation of the modularity in (2) should be mainly local. In their
paper, Reichardt and Bornholdt [17] introduce a constant weighting parameter
λ < 1 in the null model
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Nij = λ
kikj

2m
,

and show that it produces larger communities. Some other scalings have also been
proposed by Delvenne, Yaliraki and Barahona [6]. Based on these observations,
we proposed to define the null model as

Nij = Λij
kikj

2m
, (7)

where the matrix Λ is defined as

Λij =
{

1 if d(i, j) ≤ dΛ ,
0 otherwise ,

(8)

where dΛ is a parameter depending on the size of the picture and the size of the
objects.

The computation of the aggregation step of the algorithm is straightforward
in the context of the classical modularity but it requires some basic matrix
computations for the weighted modularity. Let us suppose that the communities
are defined by a matrix

C ∈ {0, 1}p×n : Cij = 1 if community i contains node j ,

where p is the number of communities and n the number of pixels. The aggre-
gated graph G̃ is defined by

W̃ = C W CT ,

k̃ = W̃ 1lp = C W 1ln = C k,

since we assumed non overlapping regions, thus CT 1lp = 1ln, where 1lp is the
vector of size p of all ones.

In the framework of weighted modularity, we still want to keep the property
that optimizing the modularity on the initial graph is equivalent to optimizing
to modularity of any aggregated graph (up to a constraint). This can still be
done if the weight matrix Λ in the aggregated graph is defined by

Λ̃ = (K̃)−1
(
C K Λ K CT

)
(K̃)−1, (9)

where K is the diagonal matrix defined by K = diag(k).

Table 1. Parameters used for the segmentation presented in Fig.4

row 1 σx =
√

2 , σi = 5 , dmax = 3 , dΛ = 20

row 2 σx =
√

2 , σi = 3 , dmax = 2 , dΛ = 20

row 3 σx =
√

2 , σi = 2 , dmax = 2 , dΛ = 25

row 4 σx =
√

2 , σi = 4 , dmax = 3 , dΛ = 20

row 5 σx = 2 , σi = 2 , dmax = 4 , dΛ = 30



366 A. Browet, P.-A. Absil, and P. Van Dooren

One can observe that this definition is consistent with the classical modularity:
if we define Λ = 1ln1lTn then Λ̃ = 1lp1lTp .

The result of the weighted modularity applied to our test picture of the baby
face is represented in Fig.2(c) for dΛ = 15. There are 8 regions defined by the
algorithm and they have very good visual relevance.

4 Experimental Results

We ran our algorithm on a set of pictures taken from the Berkeley image segmen-
tation database [15] and found relevant contours of objects when the parameter
of the method were correctly defined. Some results are displayed in Fig.4 along
with the initial pictures and human segmentation benchmarks. The different
pictures are presented in increasing level of complexity according to the bench-
mark, and the parameters used for each segmentation are presented in table 1.
One can see that our algorithm is able to correctly identify the general con-
tour of the objects in each picture but tends to have some difficulties when
defining a boundary in low gradient regions like the neck of the camel in row
3. There is also more merging of communities that might be considered, for
example in row 4 in the background behind the violinist or in row 5 for the
large rock at the right side. Those mergings are not allowed by the algorithm
because the communities do not have enough edges between each other but we
plan to investigate this question by adding a penalty for the smoothness of the
contours.

Fig.5 shows the result on a picture of elephants. One can see that the algo-
rithm found 7 main regions, uncovering the 2 elephants, and some minor com-
munities with less than 10 nodes due to image quality and artefacts, as shown
in Fig.5(a). Those small communities can be easily postprocessed and merged
with the surrounding communities.

The algorithm requires about 2 seconds to segment the 320× 480 pictures on
a Intel Core 2 Quad, 2.5 GHz with 4 Go ram, using Matlab.

Another important feature of our method is that the detected communities
are hierarchical, meaning that each community is only the aggregation of smaller
communities. This allows us to extract smaller parts of objects contained in
larger areas of the picture. As an example, Fig.5(b) shows the communities
found at the penultimate aggregation step. This step discovers finer boundaries
between relevant parts of the picture such as a distinction between the two
animals.

The decrease of the number of communities is exponential in the number of
basic iterations as shown in Fig.6, independently of the figure or the number of
pixels. Knowing that the assignment on each step is done in O(E) where E is
the number of edges in the graph G̃, this allows the segmentation of the input
image to be done in a reasonable amount of time.

While we observe good segmentation results, we also notice that the com-
munities found can change dramatically with a minor modification of the pa-
rameters (σx, σi, dmax or dΛ). This sensitivity to the parameters is observed
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(a) Input picture (b) Human benchmark (c) Our segmentation

(d) Input picture (e) Human benchmark (f) Our segmentation

(g) Input picture (h) Human benchmark (i) Our segmentation

(j) Input picture (k) Human benchmark (l) Our segmentation

(m) Input picture (n) Human benchmark (o) Our segmentation

Fig. 4. Segmentation results on some pictures from the Berkeley image segmentation
database. Each row presents the initial picture, the human segmentation and the result
found by our algorithm.
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(a) Segmentation using weighted
modularity

(b) Segmentation 1 step before the
final aggregation step

Fig. 5. Segmentation of 2 elephants (320 × 480 pixels) using weighted modularity:
σx = 5, σi = 9, dmax = 3 and dΛ = 25. In 5(a), there are 7 main regions segmented (and
some small communities, less than 10 pixels, due to imaging artefact) representing the
background and the animals. In 5(b), the segmentation at the penultimate aggregation
step is displayed showing that there are in fact 2 distinct elephants.
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Fig. 6. Evolution of the number of communities showing the exponential decrease in
the number of basic iterations

in most segmentation methods but it seems to affect strongly our results. One
can then ask if our method is able to derive good parameters based on the
modularity value. Unfortunately, it has already been shown by Good et al. [11]
that the modularity cannot be compared across different graphs. We also ob-
served that the “optimal”1 modularity value exhibits the shape of a plateau
when the parameters vary as represented in Fig.7. It is not possible to de-
fine good parameters leading to a well clustered graph based on this criterion.
Because of the high sensitivity of the method to parameters selection, one needs
to further investigate this question to better understand the dependencies be-
tween parameters and derive good selection rules. This is a topic for future
paper.

1 Optimal in the sense of the best community definition found by the method.



Community Detection for Hierarchical Image Segmentation 369

Fig. 7. Modularity, weighted by the number of communities, for different values of the
parameters σx and σi. Since changing the parameters leads to different graphs, the
values of modularity cannot be compared.

5 Conclusion

Image segmentation is a difficult problem but we show that when a graph is
constructed from a given image using well chosen parameters, extracting com-
munities from this graph can produce salient contour detection of the objects
inside the picture. The community definition can be quickly computed by consid-
ering an approximation of the Louvain method. This greedy algorithm optimizes
a criterion called the modularity that produces relevant community structures.

Classical modularity suffers from a problem of resolution imposing that the
radius of communities should stay small. This limitation generally results in
oversegmentation of the input picture. We proposed an alternative definition,
called weighted modularity, to tackle this problem by weighting the null model
according to a smaller radius. Based on this new criterion, we showed that good
segmentation can be achieved in a reasonable amount of time. The communities
defined are also hierarchical, allowing to uncover smaller entities inside larger
objects or shapes.

Parameters selection for the edge weight is a crucial problem and unfortu-
nately, modularity optimization is not able to define the parameters leading to
a good pixel clustering, since modularity exhibits the shape of a plateau when
it is compared across different weight matrices W for the same image. Another
parameter selection can be discussed: as mentioned, a reduction of the overseg-
mentation can be achieved by using a larger distance radius dmax or by consider-
ing weighted modularity with a radius dΛ. These parameters do not seem to be
independent and some work has to be done in this direction to better understand
the relationship between them.

An interesting topic for future research is the possibility to use an approxi-
mation of the matrix Λ. At the early step of the method, computing this matrix
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can be time consuming. This can be greatly improved by considering a low rank
approximation of Λ if the segmentation results stay accurate.

Finally, we also plan to extend the method to video tracking allowing to track
multiple objects on consecutive video frames.
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Abstract. In this paper we present an algorithm for the lossless com-
pression of true color images. Our aim was to develop a practical algo-
rithm with a fast decompression phase. The algorithm executes a block
adaptive predictive filtering phase, followed by a color filtering phase
that exploits color correlation, and finally compresses the prediction er-
rors through context assignment and Huffman coding. Comparing the
proposed algorithm with competing standards as Jpeg2000 and Jpeg-
LS, we show how our method yields better compression ratios without
having a slower decompression speed.

Keywords: Lossless compression, predictive coding, Huffman codes.

1 Introduction

Much recent effort has been spent to develop methods for efficient lossless image
encoding. Even if in many contexts a lossy compression is a reasonable choice,
there are many cases where it would be inappropriate, as for example in biomed-
ical imaging.

Of the many existing lossless compressed image formats, the most used is
the Portable Network Graphics (PNG) standard [9]. In spite of its diffusion,
the underlying algorithm has been outperformed by many more recent methods,
able to obtain a greater compression ratio using fewer resources.

Many developed algorithms aim to obtain the highest possible level of com-
pression without sparing on resources. Even achieving impressive compression
ratios, their very large time requirements represent a very heavy limitation to
their practical use; some notorious algorithms in this family are MRP ([3], [2]),
TMW ([4]) and CALIC-A ([8]).

On the other hand, there is another family of algorithms that obtain a good
compression ratio while maintaining a low complexity. Two of the most popular
and efficient are the LOCO algorithm, evolved in the Jpeg-LS standard [7], and
the Jpeg 2000 standard [10]. Both built for lossy and lossless compression, these
techniques allow the generation of files in average a 15% bigger than the state
of art technique MRP (see benchmarks in [3]) while being hundreds of times
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faster during encoding. Other highly effective algorithms have a better trade-off
between time and compression ratio than MRP, but the Jpeg standards are still
considered the ones obtaining the best compromise between these two factors.

In this work we propose a new lossless image compression method, special-
ized for true color images. The procedure is optimized for contexts where the
decompression process is applied many more times than the compression one;
this covers a huge part of the usage cases, as typically an image is encoded once,
and after its storage on a disk it must be decompressed every time a user wants
to visualize it. We created an algorithm with a superior compression ratio to
the Jpeg standards, and with a decompression phase fast as Jpeg-LS and faster
than Jpeg-2000. Being an asymmetrical algorithm, the compression phase is sev-
eral times slower than the decoding one, but it is still contained in acceptable
bounds, making the proposed algorithm superior in the considered context.

Finally, the algorithm is released as free software, making it a good alternative
to patented software.

2 The Algorithm

The proposed algorithm is an evolution of the PCIF algorithm described in [1].
The first two stages involving filtering and color filtering are applied similarly,
but their efficiency has been improved thanks to the usage of new color filters
and to a more complex filter selection heuristic. With this new approach, the
complexity of the filter determination phase is higher, but there is an improve-
ment of the compression ratios that does not alter the decompression speed. The
compression procedure represents instead the main difference between the pro-
posed algorithm and the previous PCIF method, that at this point decomposed
the image in bitplanes in order to compress them independently. By compressing
the prediction errors without this decomposition, this new method allows both
a faster and a more effective compression, even if it does not allow a simple
parallelization as in PCIF.

The current description and implementation of the proposed algorithm focus
on 24 bit depth color images (8 bits for each one of the RGB components), but
the algorithm could be easily extended to color images with different bit depths.

In its first stage, the algorithm applies a block adaptive spatial filtering pro-
cess. Every 8× 8 zone of the image is object of a filtering function selected for
that particular zone, chosen from a set of 13 predictive functions; the value of
each sample is replaced with its difference from the prediction for that point,
module 256. In order to maintain a low complexity, only adjacent pixels are
chosen to predict a given sample, and the operations involved in the filtering
functions are mainly sums and bit shifts. As usual in predictive image filtering,
the predictive functions are built upon assumptions of smoothness of the image.

In the second stage the algorithm applies a block adaptive color filtering phase.
Again every sample is replaced with its difference with a predicted value, but
such predictions are computed in function of values relative to the same pixel,
but to different color planes. By executing color decorrelation after the spatial
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filtering phase, the algorithm is able to apply to the image a block adaptive
color transform without compromising the assumptions of smoothness necessary
in the previous stage; as discussed in [1], this is an innovative approach that yields
better results in comparison to the standard solution of applying an unique color
transform as a preprocessing stage, as in the Jpeg algorithms.

In the third stage the algorithm proceeds in compressing the prediction errors
through the assignment of a context to every different point, each of them asso-
ciated to a different set of Huffman codes. The context of a point is determined
in function of the adjacent prediction errors and of a parameter k, computed
recursively, related to the estimated variance of the values in the given context.
Since there is a need to use a different Huffman tree for every context, we defined
an efficient encoding of the Huffman trees themselves, allowing the compression
of these structures in very few bits.

In figure 1 there is depicted a flow diagram representing the whole algorithm
in its encoding and decoding phases. While the compression procedure is actually
implemented in separate phases, the operations necessary for decompression are
done during an unique pass on the image, allowing a fast decoding procedure
and the streaming of the image while the decoding process is being executed.

Spatial filter 
determination

Spatial filter 
application

Color filter 
determination

Color filter 
application

Context-based
Huffman coding

Image

Compressed 
bitstream

Encoding process

Decoding process

Compressed 
bitstream Image

Huffman code decoding

Color filter removal

Spatial filter removal

Fig. 1. Flow diagram of the encoding and decoding procedure

3 Filtering

In this first filtering phase the image is scanned starting from the upper rightmost
pixel and proceeding from right to left and then from high to low. The predictions
are computed for a given sample x in function of the adjacent values a, b, c and
d depicted in figure 2. For each 8 × 8 zone of the image, a different predictive
function is selected between the following:
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XA

C B D

Fig. 2. Samples used for filtering

1. f(x) = 0
2. f(x) = a
3. f(x) = b
4. f(x) = c
5. f(x) = d
6. f(x) = a + (b− c)/2
7. f(x) = b + (a− c)/2
8. f(x) = (a + b)/2
9. f(x) = (a + b + c + d + 1)/4

10. f(x) = (a + d)/2
11. f(x) = a + b− c if 0 ≤ a + b− c < 256

f(x) = 0 if a + b− c < 0
f(x) = 255 if a + b− c > 255

12. f(x) defined by the following:

If a ≤ c ≤ b, f(x) = a + b− c,
otherwise f(x) is equal to the Paeth filter, defined as follows:

p = a + b - c;
pa = abs(p - a);
pb = abs(p - b);
pc = abs(p - c);
if pa <= pb and pa <= pc then f(x) = a

else if pb <= pc then f(x) = b
else f(x) = c;

All divisions are intended as integer divisions, allowing them to be computed as
inexpensive bit shifts. The functions are the same of those used in [1], except for
functions 5, 9 and 10 that use the point d instead of the point to the upper left
of x, allowing the streaming of the image per rows during decompression.

4 Color Filtering

After the spatial filtering, the algorithm applies a color filtering phase where
there is an attempt to reduce the prediction errors by applying a further filtering
phase that exploits the correlation between color planes. This has a strong impact
on the compression ratio as zones with sharp edges usually cause high prediction
errors in all three color planes. In these cases, one of the high prediction errors
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will be used to predict the others, and if the three values are similar then two of
them will result near to zero after this operation.

In order to maintain a low complexity, to estimate a prediction error only
values relative to the same pixel are used; for the same reason, there are only 6
possible color filtering functions. Said r, g and b the color components of a pixel
(respectively: red, green and blue), the predictive functions are the following:

1. No filter
2. g = g − b;

r = r − g;
3. g = g − b;

r = r − b;
4. g = g − r;

b = b− r;
5. g = g − r;

b = b− g;
6. b = b− g;

r = r − g;

We can observe that for every color filtering function h, h(r, g, b) can be easily
inverted in order to rebuilt the original triplet of values. As for spatial filters,
the selected functions are encoded in the compressed bitstream using Huffman
codes.

We have depicted in figure 3 the statistics about the filters chosen for the
Kodak and Waterloo test image sets described hereafter. For each filter, it is
shown how many times it was selected as optimal for a zone, in proportion
to the total number of zones. These ratios vary greatly from image to image,
hence even filters that are applied a limited number of times may have given a
significative contribution to some specific images.

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6

Spatial filters Color filters

Fig. 3. Statistics on the selected filters and color filters
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5 The Filter Selection Model

In order to select the optimal predictive function for every zone, the algorithm
estimates the encoding cost of the possible resulting prediction errors. Such cost
is computed by considering a first order entropy model based on the frequency of
the prediction errors in the previously filtered areas of the image. The algorithm
computes a better estimation for the first zones of the image, and further on,
having gathered more data about the prediction errors, it settles for a faster
procedure. The described heuristics are applied both for spatial filters and for
color filtering functions.

We chose to use as a metric the first order entropy of the prediction errors
mainly for two reasons; as a first one, this keeps the encoding complexity low
allowing a good compression time. As a second motivation, since several non
trivial operations are done on the image before encoding, it is not easy to de-
termine a more complex model that correctly determines optimality. In fact, we
did some experiments using also more complex models, but this did not improve
the performances. Anyway increasing compression complexity to improve the
compression ratio without compromising the decompression speed could be an
interesting development, and studies about a better heuristic for filter selection
may be an interesting object for future work.

For a generic zone i in the first 10 zones of the image, the algorithm computes
for every coding function f the first order entropy of the samples in 1 . . . i−1 to-
gether with f(i); the function that gives the minor coding cost is chosen. Starting
from zone 11, the cost of every prediction error is estimated as its encoding cost,
in bits, in a first order entropy model relative to the previous zones. Such costs
are updated at zones of index 10, 20, 40, 80, . . . , 1280, and beyond 1280 every
1000 zones.

The goal of this technique is to take into account, in the initial areas of the
image, the prediction errors in all the previous zones together with the newly
generated ones in the considered zone. With this method, the algorithm obtains
very good estimations at the beginning of the encoding. On the other hand,
when the compression process has advanced and many statistics on the image
have already been gathered, the procedure settles for a weaker approximation in
order to improve the encoding speed.

The information about which filters have been chosen are compressed through
Huffman codes and are encoded in the compressed file.

6 Compression

After the two filtering phases, the resulting prediction errors have a reduced
correlation between adjacent values; hence to obtain a compression ratio notice-
ably better than the first order entropy, it is necessary to consider information
deriving from a large number of samples. A straightforward method would be
to use a high order arithmetic coding, possibly on the style of PPM methods
(see for example [6]), but this would compromise time performances, in contrast
with our goal to create a fast decompressing algorithm.
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We propose a solution to this problem that allows a good compression ratio
maintaining a fast decompression phase. The samples are encoded in function of
an assigned context, each one of them having a different set of Huffman codes.
This operation aims to create some contexts with high entropy and others with
a very small variance and lots of values close to 0; this exploits at most the
advantage of having different Huffman codes for each context.

In order to determine the context of a prediction error, the algorithm assigns
to each one of these a value I(x, y, c) related to the estimated variance of the
current context; the parameters x and y represent the horizontal and vertical
coordinates of the sample, while c is the color band. Such parameter is computed
recursively in function of the previous values of I, in order to consider information
deriving from many previous samples with only a limited number of operations.
The assignment of a context is then done in function of such values.

The image is encoded starting from the lower left (point (0, 0, 0)) and pro-
ceeding from left to right and then from low to high. The following function
defines the pseudo code for the computation of I(x, y, c), i.e. the context of the
point of coordinates (x, y, c). The matrix M represents the prediction errors ob-
tained after the color filtering phase, and I contains the contexts assigned to the
samples to be encoded. Note that the procedure must use, for the computation
of I(x, y, c), only the values of I that proceed (x, y, c) in the scan order.

FUNCTION assign_context(x, y, c)
sum = abs(M[x - 1][y][c]) + abs(M[x][y - 1][c]);
if (sum == 0) {
chaos = 0;

} else {
chaos = min(log2(sum * 2) + 1, 7);

}
isum = I[x - 1][y][c] + I[x][y - 1][c];
if (c > 0) {
chaos2 = I[x][y][c - 1];

} else {
chaos2 = isum / 2;

}
curChaos = chaos + (isum + chaos + chaos2) / 4;
I[x][y][c] = (curChaos / 2);
return curChaos + c * 16;

Every division is intended as an integer division and can hence be computed
as a bit shift; the log2 function returns the integer part of the base-2 logarithm
of the argument. The function abs is the absolute value function, and it is used
as the prediction errors are represented in the interval [−128, 127]. We do not
describe the special behaviors defined for the various border cases.

To obtain an efficient implementation, the matrices M and I are never entirely
represented: since the encoding and decoding procedures always require only
rows x and x− 1, only the arrays representing these two lines are actually kept
in memory.
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Many factors have been considered for the creation of this function, not last an
extensive sperimentation. The adjacent values weight strongly on the definition
of a context, and since variations on the sum of their absolute values seem to be
much more significative near 0, we considered their logarithm. The values in I
represent an information that derives from a larger context, where, thanks to the
definition of I, the samples are considered exponentially less with the growth of
their manhattan distance from the point to be encoded. Finally, note that since
for every point curChaos < 16, thanks to the last instruction values in different
color planes are always designed to different contexts.

Several other refinements have been considered to improve the compression
ratio:

– In contexts where the frequency of zeros is higher than 30%, the zeros are run
length encoded before compression. With this method we avoid the negative
consequences of using an integer number of bits per symbol.

– In this case the values immediately after the symbol 0 are encoded with
another ’auxiliary’ Huffman tree, allowing the usage of a higher order entropy
model for these special cases.

7 Huffman Tree Coding

Since the algorithm requires a noticeable number of Huffman trees that must
be embedded in the compressed file, we have developed an efficient encoding
for the these structures. This technique is based on the observation that the
only information required to build the optimal codes for a set of symbols is the
lengths of the codes themselves; being able to encode only this information in
the encoded bitstream instead of the entire tree structure yields a noticeable
improvement in the compression ratio. We now describe how an Huffman tree
can be built starting from the bit lengths of the encoded symbols; in the following
we show how to assure that the codes used during the encoding and decoding
phases match.

Let’s suppose to have as input a set of positive integers representing the
length, in bits, of the optimal codes for considered alphabet. Wanting to rebuilt
a corresponding tree, we can use an algorithm that mirrors the classical one
to construct Huffman trees from the frequencies of the symbols; as a first step,
consider a set of trees having only one terminal node, each one of weight equal
to the bit length of a different symbol. At each step, merge the two trees with
the maximal weight w, and assigns to the resulting tree weight w− 1. It is easy
to verify that for initial weights corresponding to Huffman codes, at each step
there are always two trees with equal maximal length. Iterating the procedure
until there is only one tree left, we obtain an Huffman tree where each symbol
has a code with the desired length.

Being able to rebuild an Huffman tree from an array of bit lengths, we could
encode the tree very efficiently in a compressed bitstream by simply storing this
array, containing only small positive integers. There is no guarantee anyway that
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the decompression procedure could be able to rebuild exactly the original tree,
and not another one with a similar structure but with different codes for the
symbols. To solve this problem, the algorithm executes the following steps:

– During encoding, in a first pass compute the frequencies of the symbols
– Use these frequencies to build an Huffman tree defining the optimal bit

length of every symbol
– Extract the bit lengths of every symbol, and use the described reconstruction

procedure to build another optimal Huffman tree from these values
– Encode the symbols in the compressed bitstream using this new tree
– Encode in the compressed file the array of bit lengths

The compressor will then be able to rebuild exactly the same Huffman tree
during decompression, assuming the reconstruction algorithm is deterministic
(i.e. solves in any deterministic way a tie between weights in more than two
nodes). This property has no impact on the compression ratio, as any fixed
criteria to select which two trees with equal weight are merged will construct a
structure that is optimal in respect to the initial frequencies.

Considering further assumptions on the frequency of the symbols, the algo-
rithm is able to optimize even more the encoding of the array. Since the difference
in frequency of two consecutive values is usually small, we expect the bit lengths
of their codes to be very close; for this reason, the algorithm encodes for each
value only its difference from the previous one. For such differences, the algo-
rithm makes use of Golomb-Rice style codes preceded by a sign bit. Thanks to
such differential coding, the compressed filesize is decreased by approximately
10-15 KB for a generic image, which can be a noticeable amount if the image is
small.

8 Benchmarks

The compression ratios of the algorithm have been compared to four other loss-
less formats: the pcif format1 [1], the png format [9], the lossless mode of the
Jpeg2000 standard2 [10] and the loco algorithm used in the Jpeg-LS standard3

[7]. The results can be seen in figure 4; we have named the proposed algorithm
bcif. Details about the performances on the single images of the first two clas-
sical image sets are in table 1, where the column labeled bmp represents the
uncompressed file sizes. All benchmarks are also available online4.

Two classical image sets used for benchmarking are the well known Kodak im-
age set5, containing 24 photographical images of size 768×512 or 512×768, and
1 The implementation is available at www.researchandtechnology.net/pcif/
2 As implemented on www.kakadusoftware.com
3 As available at the reference implementation at http://www.hpl.hp.com/loco/; since

it does not include a color transform, we implemented the one suggested in the
original paper [7] to allow the loco algorithm to be competitive.

4 http://www.researchandtechnology.net/bcif/benchmarks.php
5 Available at http://www.r0k.us/graphics/kodak/
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the Waterloo image set6, with images ranging from dimensions of 512× 512 to
1118×1105 and containing both photographical images (lena, monarch, peppers,
sail, tulips) and artificial computer generated images (clegg, frymire, serrano).
We have also considered a recently proposed image set7 containing several high
resolution images, in order to experiment the efficacy of the algorithm on large
amounts of data. We find that this last image is interesting as it may also be sim-
ilar, for what regards size and properties, to typical images that photographical
experts may have to handle. We call this set the imagecompression.info image
set, or I.C.I. image set for short.

We can observe from the tables that the bcif algorithm is an optimal evolution
of the pcif algorithm, since it is both superior in compression ratio and faster
thanks to its simpler coding procedure. In comparison to the Jpeg standards,
the bcif algorithm obtains similar compression ratios for photographical images
and yields much better results for artificial ones. The bcif compression ratio is
superior in comparison to both of these standards, producing an overall filesize
noticeably smaller than both Jpeg-LS and Jpeg2000.

The decompression time of the proposed algorithm has been measured and
compared to the one of Jpeg-LS; each time has been computed as an average
of 5 decompressions executed on an AMD Athlon 2600 processor. As shown
in table 2, the sums of the decompression times on the Waterloo and Kodak
benchmark images results to be very similar. The only images where the BCIF
algorithm takes noticeably more than the LOCO algorithm are those where the
compression ratio of the first is much greater than the one of the latter.

6 Available at http://links.uwaterloo.ca/Repository.html
7 Available at http://www.imagecompression.info/test images/
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Table 1. Compression results

Filename \ size (KB) bmp bcif pcif loco jp2 png

Kodak 01 1152 506 516 511 498 719

Kodak 02 1152 452 467 450 439 603

Kodak 03 1152 380 398 374 388 491

Kodak 04 1152 453 463 456 437 622

Kodak 05 1152 535 559 547 519 767

Kodak 06 1152 462 477 465 460 604

Kodak 07 1152 404 426 404 408 553

Kodak 08 1152 534 553 554 534 769

Kodak 09 1152 431 443 437 427 569

Kodak 10 1152 438 450 441 434 579

Kodak 11 1152 452 464 448 446 606

Kodak 12 1152 412 420 402 415 518

Kodak 13 1152 591 604 601 569 803

Kodak 14 1152 506 520 501 487 675

Kodak 15 1152 424 443 426 431 598

Kodak 16 1152 421 432 416 421 521

Kodak 17 1152 442 454 437 435 587

Kodak 18 1152 558 565 562 516 762

Kodak 19 1152 479 490 482 463 655

Kodak 20 1152 350 375 362 387 480

Kodak 21 1152 484 495 481 468 622

Kodak 22 1152 513 524 517 483 685

Kodak 23 1152 419 434 417 407 544

Kodak 24 1152 483 508 493 488 689

clegg 2100 378 571 646 1369 490

frymire 3621 413 641 806 1560 361

lena 768 414 431 442 434 500

monarch 1152 450 468 448 431 621

peppers 768 331 343 327 327 441

sail 1152 541 554 544 511 777

serrano 1463 152 242 282 623 147

tulips 1152 500 527 508 477 691

Total 39827 14324 15274 15201 16706 19064

Since the proposed algorithm obtains greater compression ratios than Jpeg-
LS and has approximately the same decoding speed, it should be preferable in
every case where the decompression phase is executed most often. The Jpeg 2000
format has not been benchmarked as it is known that it results to be several
times slower than Jpeg-LS as reported in [5], and hence we do not expect it to
be competitive.

On the other hand, the compression time of the proposed algorithm is actu-
ally about 5 times greater than the decompression time, while Jpeg-LS, being
symmetrical, requires approximately the same time than in decoding. Even if the
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Table 2. Decompression time

Filename \ time (ms) LOCO decode BCIF decode LOCO encode BCIF encode

Kodak 01 166 156 148 797

Kodak 02 160 148 148 783

Kodak 03 146 168 134 776

Kodak 04 162 156 142 793

Kodak 05 170 152 150 797

Kodak 06 158 158 142 793

Kodak 07 154 154 136 793

Kodak 08 174 154 154 803

Kodak 09 160 154 144 797

Kodak 10 158 156 146 799

Kodak 11 154 150 140 781

Kodak 12 154 150 138 791

Kodak 13 172 160 154 795

Kodak 14 168 152 148 799

Kodak 15 156 152 138 785

Kodak 16 154 148 138 789

Kodak 17 154 146 144 783

Kodak 18 172 140 154 779

Kodak 19 162 144 148 781

Kodak 20 130 138 114 753

Kodak 21 168 150 148 803

Kodak 22 170 154 154 783

Kodak 23 160 158 142 793

Kodak 24 160 172 148 795

clegg 264 284 224 1317

frymire 280 456 198 2135

lena 124 94 104 542

monarch 164 154 144 797

peppers 106 96 100 532

sail 176 144 158 781

serrano 96 194 82 905

tulips 172 146 150 787

Total 5224 5238 4612 26723

bcif compression time is still acceptable, this makes Jpeg-LS be a more feasible
algorithm for cases where the encoding must be executed a number of times
comparable to those when decoding is needed.

9 Conclusions

Making use of the combination of several different methods, the proposed al-
gorithm obtained a competitive decompression time and bested in compression
ratio the practical algorithms that have actually become a standard. While some
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of the used techniques as spatial filtering are well known, other stages of the en-
coding procedure are new and deserve further studies, as the method for color
decorrelation and the approach for context modeling and encoding.

The implementation of the algorithm along with its source code is available
at www.researchandtechnology.net/bcif/
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Abstract. We present two different extensions of the Sum of minimal
distances and the Complement weighted sum of minimal distances to
distances between fuzzy sets. We evaluate to what extent the proposed
distances show monotonic behavior with respect to increasing translation
and rotation of digital objects, in noise free, as well as in noisy conditions.
Tests show that one of the extension approaches leads to distances ex-
hibiting very good performance. Furthermore, we evaluate distance based
classification of crisp and fuzzy representations of objects at a range of
resolutions. We conclude that the proposed distances are able to utilize
the additional information available in a fuzzy representation, thereby
leading to improved performance of related image processing tasks.

Keywords: Fuzzy sets, set distance, registration, classification.

1 Introduction

Distances between sets are useful for many different applications in image pro-
cessing, for instance, object matching [3, 8], image registration [12] and image
retrieval [11]. However, it is a challenging task to differentiate between crisp
discrete representations of similar objects if the spatial resolution is insufficient.
An example of such a situation can be seen in Fig. 1, where a crisp discrete
representation of a disk, Fig. 1B, a crisp discrete representation of an octagon,
Fig. 1E, are difficult to visually associate with the correct type of continuous
shape (disk and octagon).

In recent years, fuzzy approaches have gained increased popularity in image
processing. In [16,17,18] it is shown that a fuzzy representation provides higher
precision and accuracy of different feature estimates than a crisp one. Keeping
this fact in mind, it can be assumed that distances between fuzzy objects rep-
resentations provide better discriminatory power than distances between crisp

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 385–397, 2011.
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A B C D E F

Fig. 1. A: Continuous crisp disk, B: Crisp discrete representation of a continuous disk
(obtained by Gauss centre point digitization), C: Fuzzy discrete representation of a
continuous disk (obtained by coverage digitization), D: Continuous crisp octagon, E:
Crisp discrete representation of a continuous octagon, F: Fuzzy discrete representation
of a continuous octagon

representations at the same resolution. This assumption is supported by the fact
that a fuzzy discrete representation of an object (see Fig. 1C and Fig. 1F) of-
ten appears visually more similar to the corresponding continuous object, than
a crisp representation at the same resolution. These observations motivate the
study on distance measures between fuzzy sets presented in this paper.

It is recently shown that the Sum of minimal distances and the Complement
weighted sum of minimal distances have good performances for binary image
registration [12,7]. We extend these distances to distances between fuzzy sets by
following two different approaches. Having on mind matching and registration
as possible applications, we evaluate distance measures with respect to several
criteria of importance for such applications. We study whether the distances
are monotonically increasing with respect to increasing translation and rotation
of the object. Additionally, we investigate noise sensitivity of the observed dis-
tances. To further evaluate the proposed approach, we compare the correct clas-
sification rates, when utilizing the best performing fuzzy and crisp set distances
for discriminating discrete representations of disks and octagons at a range of
resolutions.

2 Background

2.1 Basic Notions

A fuzzy set S on a reference set X , is a set of ordered pairs S = {(x, μS(x)) : x ∈
X}, where μS : X → [0, 1] is the membership function of the fuzzy set S, [19].
Many concepts of fuzzy sets are based on α−cuts. An α−cut of a fuzzy set S, is
the set αS = {x ∈ X : μS(x) ≥ α}, α ∈ (0, 1]. Height of a fuzzy set S is h(S) =
max
x∈X

μS(x), while the support of S is defined as Supp(S) = {x ∈ X : μS(x) > 0}.
The complement S of a fuzzy set S, is S = {(x, 1− μS(x)) : x ∈ X}.

The fuzzy representation of objects used in this paper is pixel coverage rep-
resentation [16], where membership of a pixel is equal to the relative area of the
pixel that is covered by the object. More formally, for a given continuous object
O ⊂ R2, inscribed into an integer grid with pixels p(i,j), the n−level quantized
pixel coverage digitization of the object O is
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(i, j),

1
n

⌊
n

A(p(i,j) ∩O)
A(p(i,j))

+
1
2

⌋)
: (i, j) ∈ Z

2

}
, (1)

where A(X) denotes the area of the set X, and 1x2 denotes the largest integer
which is not greater than x. The set {0, 1

n , ..., n−1
n , 1} represents the pixel cover-

age values for n−level quantized pixel coverage digitization. This set corresponds
to the set of non-zero membership levels, e.g., n = 1 for a binary images, while
n = 255 provides the set of membership levels for an 8-bit image. We use this
representation since it has been shown to provide higher precision and accuracy
of different feature estimates than the crisp object representation [16, 17]. It is
also corresponds well with the outcome of many imaging situations. However,
the applicability of the methods presented in this study is not restricted to this
type of fuzzy representations.

2.2 Related Work on Distances between Crisp Sets

Distances between two crisp sets of points A, B ⊂ Zn, A, B �= ∅, are mostly
based on the point-to-set distance; the point-to-set distance between point a
and set B is defined as

d(a, B) = inf
b∈B

d(a, b). (2)

For the underlying point-to-point distance d(a, b), we use the Euclidean distance,
i.e., d(a, b) = ‖a− b‖2.

The first proposed distance between two sets A and B, and widely used in
different applications, is the Hausdorff distance, dH , defined as

dH(A, B) = max(sup
a∈A

d(a, B), sup
b∈B

d(b, A)). (3)

The Hausdorff distance is highly dependent on two points from the observed sets
and, hence, sensitive to outliers. Several modifications of the Hausdorff distance
are introduced to reduce the influence of outliers to the distance measure [8].

In [12] it is suggested that a distance measure applicable for image registration
related problems should simultaneously: (i) utilize all points from the set; (ii)
consider spatial position of the points and the sets. One distance that fulfills
these conditions is the Sum of minimal distances, proposed in [9],

dSMD(A, B) =
1
2

(∑
a∈A

d(a, B) +
∑
b∈B

d(b, A)

)
. (4)

This distance has good performance for image registration [12]. The Sum of
minimal distances is investigated further and the Complement weighted sum
of minimal distances, dCW , is proposed in [7]. In dCW each point in the set is
weighted by the distance to the complement of the set

dCW (A, B) =
1
2

⎛⎜⎝
∑

a∈A

d(a, B) · d(a, A)∑
a∈A

d(a, A)
+

∑
b∈B

d(b, A) · d(b, B)∑
b∈B

d(b, B)

⎞⎟⎠ . (5)
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Based on the empirical evaluation in [7], it is concluded that the Complement
weighted sum of minimal distances, among the considered distance measures,
has the best performance for binary image registration.

2.3 Related Work on Distances between Fuzzy Sets

There exist a number of different distances defined for fuzzy sets. A good overview
on distance measures between fuzzy sets can be found in [2]. Some of the mea-
sures provide a fuzzy number as output [15]. However, we consider only distances
between fuzzy sets that provide crisp distance values; for the observed applica-
tion (object matching) it is not obvious how to use distance values represented
by fuzzy numbers.

There exist several different possibilities how to extend a crisp distance to a
fuzzy one [1]. The most common approach is to use integration over α−cuts [14].
Integration over α−cuts is a general principle for extension of properties and
relations on crisp sets to corresponding ones on fuzzy sets. A distance measure
between two fuzzy sets A and B can be defined by integration over all α−cuts,

dα(A,B) =
∫ 1

0

d(αA,αB) dα, (6)

where d is a crisp set distance. For example, the Hausdorff distance between two
fuzzy sets A and B is defined as, [14]

dα
H(A,B) =

∫ 1

0

dH(αA,αB) dα. (7)

A main drawback with this approach is that dα
H(A,B) =∞ if the heights of the

two observed fuzzy sets are not the same. Several variations have been proposed
to solve this problem [4, 6, 15, 10]. However, a perfect solution for this problem
is not found yet [5].

Even if most of the distances between crisp sets of points rely on the point-
to-set distance, the distances between two fuzzy sets are usually not defined
using the point-to-set distance for fuzzy sets. Two definitions of the point-to-
set distance for fuzzy sets are proposed in [1]. The first definition is based on
integration over α−cuts, where the distance between point a and fuzzy set B is
defined as

d(a,B) =
∫ 1

0

d(a,αB) dα =
∫ 1

0

min
b∈αB

d(a, b) dα. (8)

The second definition is based on weighting of the points from the support,
Supp(B), of the fuzzy set B with their membership values,

d(a,B) = min
b∈Supp(B)

(d(a, b) · F (μB(b)), (9)

where F (t) is a decreasing function of t. The point-to-point distance d(a, b) is
the spatial distance between two points and is independent on their membership
values.

A point-to-set distance can also be defined using fuzzy morphology, but a
value of such distance is in general represented by a fuzzy number [1].
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3 The Sum of Minimal Distances and Complement
Weighted Sum of Minimal Distances for Fuzzy Sets

In this section we extend the Sum of minimal distances and the Complement
weighted sum of minimal distances to distances between fuzzy sets. For that
purpose we use (6) and (8). A requirement imposed by both (6) and (8) is
that observed fuzzy sets have the same height, since, otherwise, integration over
α−cuts leads to that the distance is equal to infinity (similar as for the Hausdorff
distance on fuzzy sets).

Sum of minimal distances and Complement weighted sum of minimal distances
for fuzzy sets can be defined using (6) as

dα
SMD(A,B) =

∫ 1

0

dSMD(αA,αB) dα, (10)

dα
CW (A,B) =

∫ 1

0

dCW (αA,αB) dα. (11)

Instead, using (8), Sum of minimal distances and Complement weighted sum of
minimal distances for fuzzy sets are defined as

dps
SMD(A,B) =

1
2

⎛⎝ ∑
a∈Supp(A)

d(a,B) +
∑

b∈Supp(B)

d(b,A)

⎞⎠ , (12)

dps
CW (A,B) =

1
2

⎛⎜⎝
∑

a∈Supp(A)

d(a,B) · d(a,A)∑
a∈Supp(A)

d(a,A)
+

∑
b∈Supp(B)

d(b,A) · d(b,B)∑
b∈Supp(B)

d(b,B)

⎞⎟⎠ .

(13)
Similarly, the Hausdorff distance using (8) has the form

dps
H (A,B) = max

(
sup

a∈Supp(A)

d(a,B), sup
b∈Supp(B)

d(b,A)

)
. (14)

We do not use point-to-set distance (9) since it is not clear which function F
to use. We performed test with different decreasing functions, but we did not
observe any good performance. Furthermore, if a ∈ Supp(B), then for b = a

d(a, b) = 0⇒ d(a, b) · F (μ(b)) = 0⇒ d(a,B) = 0,

which, we feel, further reduces the discriminative power, and thereby the useful-
ness of this distance definition.

4 Evaluation

This section presents the results of an empirical study of the observed distances.
The distances are studied with respect to monotonicity, as well as with respect
to noise sensitivity. In addition we compare classification performance of the best
of the proposed distances for fuzzy sets, with the best performing one for crisp
sets, on fuzzy and crisp discrete representations of objects, respectively.
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A B C D

Fig. 2. Examples of tested fuzzy objects

4.1 Evaluation of Monotonicity in Noise Free and Noisy Conditions

For a good matching or registration performance it is desirable that the distance
monotonically increases with increasing translation and rotation of the object.
Therefore, we study how the distance changes when an object is translated and
rotated with respect to the non-transformed object. We say that monotonicity
of a distance measure, w.r.t. translation (rotation) is fulfilled for a particular
object, if the distance between the object and a translated (rotated) version of
the same object does not decrease with increasing translation (rotation).

Translation is performed in steps of one pixel horizontally, up to the width
of the considered object. Rotation is performed in positive direction around
the center of mass of the object, in steps of one degree, up to 23, and up 45
degrees, in two separate tests. At each step the distance is computed between the
transformed and the non-transformed image. This is similar to tests performed in
[12] for crisp set distances. Rotation of the discrete objects requires interpolation.
We tested linear and nearest neighbor interpolation and we selected nearest
neighbor interpolation since it provided better performance.

The tests are performed on fuzzy objects obtained from 100 binary images
taken from [13]. To obtain fuzzy objects we perform pixel coverage digitization
using sub-sampling by a factor 6, which provides 36 different membership levels.
Some of the observed fuzzy objects can be seen in Fig. 2. Since some of the
objects are rotationally symmetric (see Fig. 2C), monotonicity of the distance
with respect to rotation of such objects can not be expected.

Since the membership functions of all the observed objects are of the same
height (equal to one), the requirement for set distances based on integration over
α-cuts is satisfied.

For any real application it is important that the distance measure is not too
sensitive to noise present in the images. We perform tests with two types of noise
perturbing the membership values of the observed objects:

1. Additive noise – pixel values are perturbed by Gaussian noise with zero mean
and 0.01 variance.

2. Multiplicative noise – pixel values are perturbed by multiplicative uniformly
distributed noise with zero mean and variance 0.04.
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A B C

Fig. 3. Different noise conditions. A: Noise free image, B: Image with Additive noise,
C: Image with Multiplicative noise
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Fig. 4. Percentage of images where monotonicity is fulfilled in noise free case, for each
distance and each of the observed rigid transformations

We assume that the pixels with membership value 1 are correctly classified as
inner pixels of the object and we, therefore, only apply noise on the boundary
of the fuzzy objects. Fig. 3 illustrates the different types of noise.

The proposed distances for fuzzy sets are computed for the fuzzy objects, while
corresponding crisp set distances are computed for crisp objects obtained from
the considered fuzzy objects using α-cuts at α = 0.5. In Fig. 4 we present, for
each of the observed distance measures, the percentage of images from the test
set for which the distance measure shows monotonic behavior with increasing
translation and rotation. In Fig. 5–6 we present, similarly, percentage of images
where distances show monotonicity w.r.t. translation and rotation, for the two
observed types of noise, and each of the observed distance measures.

We notice that for the noise free case, all the observed distances perform
well for the considered test with respect to translation. For the performed ro-
tation tests, the proposed distance measures dα

CW and dα
SMD perform better,

while distances dps
CW and dps

SMD perform worse than the corresponding crisp sets
distances. The Hausdorff style distances, in general, perform significantly worse
than the distances based on all the points of the sets. We conclude that dα

CW

exhibits the best overall performance.
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Fig. 5. Percentage of images where monotonicity is fulfilled when Additive noise is
applied, for each distance and each of the observed rigid transformations
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Fig. 6. Percentage of images where monotonicity is fulfilled when Multiplicative noise
is applied, for each distance and each of the observed rigid transformations

For both Additive and Multiplicative noise, we observe that the noise has a
strong negative effect on monotonicity w.r.t. larger rotations, see Fig. 5–6. Also,
we observe that the crisp set distances have significantly better performance than
the fuzzy sets distances in the test on monotonicity with respect to rotation up
to 45 degrees. Based on these observations, we form the hypothesis that using a
reduced number of membership levels can improve performance of the observed
distances in noisy conditions. Therefore, we perform tests for monotonicity of the
observed distances where the membership levels in the noisy images are quan-
tized to n non-zero levels, where n takes a number of values between 1 (binary
case) and 36 (the original number of levels given by the subsampling). Mono-
tonicity of the proposed distances with respect to different number of quantiza-
tion levels, for both observed types of noise, is presented in Fig. 7–8. We consider
only distances defined by (6), since they have the best performance for the noise
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Fig. 7. Percentage of images where distance is non-decreasing with increasing rotation
up to 23 degrees, with respect to different number of membership levels for Additive
(left) and Multiplicative (right) noise
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up to 45 degrees, with respect to different number of membership levels for Additive
(left) and Multiplicative (right) noise

free case. Using different numbers of quantizations levels has essentially no influ-
ence on the monotonicity with respect to translation and we do not present this
result graphically. We conclude that dα

CW and dα
SMD, for the given conditions,

perform best for membership values quantized to approximately 9 levels. For
that case, the distances clearly outperform the corresponding crisp cases (only
one non-zero membership level), as can be seen in Fig. 9. Interestingly, dα

H does
not follow the same pattern; monotonicity of dα

H decreases drastically if more
than one membership level is used, and the crisp version performs clearly best.

Fig. 10 shows distance as a function of increasing rotation for one test object
with Additive noise, when non-quantized membership levels and memberships
quantized to 9 levels, respectively, are used. For this example monotonicity w.r.t.
rotation up to 45 degrees is not fulfilled for the non-quantized case, whereas the
quantized case does provide monotonicity.
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Fig. 9. Percentage of images where monotonicity is fulfilled when Additive (left) and
Multiplicative (right) noise is applied and membership values are quantized to one
(crisp case) and nine levels, respectively

Observing that the size of the quantization step for the 9-level case is roughly
of the same size as the standard deviation of the tested noise, we form the
hypothesis that the optimal quantization should essentially hide most of the noise
but not more than that. In other words, keeping more membership levels gives
the distance measure more information, but only reasonably reliable information
leads to corresponding improved performance. Noticing that the membership
quantization has a large impact on the performance (compare Fig. 5–6 with
Fig. 9), we feel that this issue deserves further studies, and therefore is placed
high on our list of future work.

4.2 Comparative Evaluation on Matching Crisp and Fuzzy Objects

In this section we evaluate the performance of the observed distances for object
matching. We compare, for a given spatial resolution, classification performance
based on fuzzy discrete object representations with classification performance
based on crisp discrete object representations. Fuzzy representations of disks
and octagons are generated using pixel coverage digitization of continuous crisp
disks and octagons, respectively. The corresponding crisp object representations
are obtained by taking the α-cut at α = 0.5, of the fuzzy object representations
(see Fig. 11).

The same procedure is performed for: (i) crisp object representations and (ii)
fuzzy object representations, for each studied object size: Five discrete represen-
tations of each object type (disk and octagon) are generated as template objects
(discretized at random position in Z2). 1000 discrete representations of each
object type, observations, are generated in the same way. Each observation is
then classified as either disk or octagon depending on to which template object
an aligned version of the observation has the smallest set distance. In this test
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Fig. 10. Rotation of Butterfly image (Fig. 2A) with Additive noise, for different quan-
tization levels. Distance measure for this test is dα

CW (distance values are scaled to the
range [0, 1]). The quantized version (dashed line) exhibits monotonic behavior for this
image, whereas the non-quantized (solid line) does not.

A B C D

Fig. 11. Classification example. A: Fuzzy discrete representation of a disk, B: Crisp
discrete representation of a disk, C: Fuzzy discrete representation of an octagon, D:
Crisp discrete representation of an octagon. Objects A, C, and D are correctly classified,
while the crisp representation of a disk, B, is incorrectly classified as an octagon.

we use set distances dCW and dα
CW , since they show the best performances in

the evaluation of monotonicity (see also [7]). The alignment is performed using
greedy search, where monotonicity of the distance measure is essential for suc-
cess of the procedure. An object is correctly classified if the template object at
minimal distance is of the same type (disk or octagon) as the observation.

The number of correctly classified objects, for crisp and fuzzy discrete object
representations of a number of sizes, is presented in Fig. 12. We see that the
combination of a fuzzy object representation with the proposed distance between
fuzzy sets, provides significantly better object discrimination; a higher correct
classification ratio, reaching more than 10% of improvement for objects smaller
than 10 pixels in diameter, is achieved when using a fuzzy approach than when
using the corresponding crisp representation and set distance, at the same spatial
resolution. In Fig. 11 an example is shown where, in the presented matching
process, fuzzy representations of a disk and an octagon (Fig. 11A and Fig. 11C),
as well as a crisp representation of an octagon (Fig. 11D), are correctly classified,
whereas a crisp representation of a disk (Fig. 11B) is incorrectly classified as an
octagon.
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Fig. 12. Correct classification ratios for distance based object classification utilizing
fuzzy and crisp discrete object representations, for a range of spatial resolutions

5 Summary and Conclusions

We have presented two different extensions of Sum of minimal distances and
Complement weighted sum of minimal distances to fuzzy sets and we have per-
formed an empirical evaluation of the monotonicity of the distance measures with
respect to translation and rotation of discrete objects, as well as evaluation of
noise sensitivity. The proposed distances, dα

CW and dα
SMD perform better, while

distances dps
CW and dps

SMD perform worse than corresponding crisp sets distances.
We conclude that the proposed distance dα

CW has the best overall performance.
Based on the observed performance for noisy conditions, we hypothesize that

additional quantization of the membership levels may actually lead to improved
performance for noisy data. Therefore, we have performed test on noise sen-
sitivity using a reduced number of membership levels. Tests showed that the
performance of the observed distance measures depend on the used number of
membership levels and that it seems that a quantization step roughly of the same
size as the standard deviation of the noise gives best performance. As part of fu-
ture work, we intend to explore the relationship between the noise level and the
appropriate number of quantization levels used in a fuzzy object representation.

We have performed distance based object classification for crisp and fuzzy
discrete object representations. We conclude that the combined utilization of a
fuzzy object representation and the proposed distance measure, dα

CW , leads to
significantly improved performance compared to a corresponding classification
based on a crisp object representation. This demonstrates that the proposed
distances are capable of utilizing the additional information that a fuzzy object
representation provides and that this information can provide improved perfor-
mance for different related applications in image processing.
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Abstract. In this paper, we present an original algorithm to build a
polygonal reconstruction of noisy digital contours. For this purpose, we
first improve an algorithm devoted to the vectorization of discrete ir-
regular isothetic objects. Afterwards we propose to use it to define a
reconstruction process of noisy digital contours. More precisely, we use
a local noise detector, introduced by Kerautret and Lachaud in IW-
CIA 2009, that builds a multi-scale representation of the digital contour,
which is composed of pixels of various size depending of the local amount
of noise. Finally, we compare our approach with previous works, by con-
sidering the Hausdorff distance and the error on tangent orientations of
the computed line segments to the original perfect contour. Thanks to
both synthetic and real noisy objects, we show that our approach has
interesting performance, and could be integrated into document analysis
systems.

1 Introduction

The representation of graphical objects (such as symbols, line drawings, char-
acters, etc.) with line segments is an important task for various document and
image analysis applications. This vectorization stage has been widely studied
since the 90’s, and many algorithms have been designed [4,6,18]. Discrete or
digital contours are natural outputs of image segmentation algorithms or digi-
tization processes (e.g. document scanning). In most cases, digital contours are
not perfect digitizations of ideal shapes but present noise and irregularities. In
this case, classical approaches of contour detection generally need a parameter,
and the output has to be filtered and post-processed (see Fig. 1 for an example
with the Canny edge detector).
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(a)

(b)

Fig. 1. The Canny edge detector applied on two images with two sets of parameters.
For image (a), even if we could obtain an interesting result, a post-process is necessary
to filter the output of the detector in order to compute a linear contour. A very noisy
image (b) cannot be efficiently handled by this detector, even with various parameters.

Lately, two different approaches have been proposed in the digital geometry
community. (i) The noisy digital contour (or a thick digital curve around it) is
partitioned into thick (or blurred) segments [13,5]. This last approach requires a
global thickness parameter and thus cannot handle noises that are not uniform.
(ii) To cope with this problem an adaptive pixel resizing method has been pro-
posed in [12]. The idea is interesting but its implementation (as described in [12])
has several drawbacks. Firstly, the resizing function (which is not explicitly given)
is based on the length of the symmetric tangents computed on the digital contour
at the initial scale. Second, the resized pixels overlap so that the polygonalization
is performed by a complex generalized preimage algorithm. Finally, the set of re-
sized pixels may not be homotopic to the input digital contour and the topological
control process proposed by the authors requires a skeleton computation.

In this paper, we propose a novel approach to compute a polygonal recon-
struction from a noisy digital contour. For this purpose, we compute a set of
resized pixels from a noisy digital contour thanks to a local noise detector [7].
The idea is to locally look at the length of the maximal digital straight segments
lying on the input digital contour at decreasing resolutions. The resolution be-
yond which we observe that the evolution of the length of the maximal segments
is similar to the theoretical behavior for digitizations of smooth shapes does not
contain any noise. The pixels at this resolution corresponds to bigger pixels at
the initial resolution so that the higher the amount of noise is, the biggest the
pixels are.

This set of resized pixels is transformed into an irregular isothetic object com-
posed of rectangular cells and whose topology is stored into a Reeb graph [15].
For the reconstruction, each arc is vectorized into a polygonal line. The polygonal
lines are then linked together so that the resulting polygonal structure reflects
the topology of the irregular isothetic object.
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In [15], arcs are vectorized following a visibility cone approach. Even if this
reconstruction method has a linear-time complexity, it is a greedy approach that
may induce an increasing error that leads to some very short segments and very
acute turn angles. In this paper, we segment each arc into straight parts in linear-
time using O’Rourke’s algorithm [10], which is much simpler than the generalized
preimage approach of [12]. We then propose two different reconstructions: (i) the
first one takes into account the shape of the preimage of each straight part so that
the resulting polygon lies within the irregular isothetic object, (ii) the second
one is a simpler method, more convenient for objects that contain straight parts,
but the resulting polygon may not completely lie within the irregular isothetic
object.

In the next section, we recall definitions about irregular isothetic objects, and
the previous work of [15]. We then describe our polygonalization methods and
use it in order to reconstruct a noisy digital contour. Finally, we present several
experiments and comparisons.

2 Preamble and Previous Work

2.1 Definitions

In this section, we first recall the concept of irregular isothetic grids (I-grids) in
2-D, with the following definition [3,17].

Definition 1 (2-D I-grid). Let R be a closed rectangular subset of R
2. A 2-D

I-grid G is a tiling of R with non overlapping rectangular cells whose edges are
parallel to the X and Y axes. The position of each cell R is given by its center
point (xR, yR) ∈ R2 and its length along X and Y axes by (lxR, lyR) ∈ R∗

+
2.

We say that two cells R1 and R2 are ve-adjacent if they share either a vertex or
an edge, and e-adjacent if they share an edge. In a more general way, we say that
R1 and R2 are k-adjacent, and k may be interpreted as e or ve in the following
definitions. A set of cells E is a k−arc iff for each element of E = {Ri}1≤i≤n, Ri

has exactly two k−adjacent cells, except R1 and Rn. A set of cells E is a k−object
iff for each couple of cells (R1, R2) ∈ E ×E , there exists a k−arc between R1 and
R2 in E (Fig. 2, left)).

We consider an order relation based on the cells borders. We denote the left,
right, top and bottom borders of a cell R respectively RL, RR, RT and RB. The
abscissa of RL, for example, is equal to xR − (lxR/2) and for sake of clarity we
write it RL = xR − (lxR/2).

Definition 2 (Order relation on an I-grid). Let R1 and R2 be two cells of
an I-grid G. We define the total order relation 3L, based on the cells borders:

∀R1, R2 ∈ G, R1 3L R2 ⇔ RL
1 < RL

2 ∨
(
RL

1 = RL
2 ∧RT

1 ≤ RT
2

)
.

This order relation is of great importance either for the Reeb graph computa-
tion or for the segmentation of each k-arc into straight parts using O’Rourke
algorithm, which requires that the input ranges have increasing x-coordinate.
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2.2 Previous Algorithm for Irregular Object Vectorization

The work of Vacavant et al. [15] aimed to develop an algorithm that vectorizes
a k-object with line segments. This method is divided into two main steps.

Representation of the Topology of an Irregular Object. The Reeb
graph [11] of the input irregular k-object E is a way of representing the topology
of E . The k-object E is scanned from left to right according to the order induced
by 3L, given in Definition 2 (see Fig. 2 for an example).

At the beginning, the intersection between E and the scanning vertical line has
only one connected part and the Reeb graph is created with one edge between
two nodes (b for begin and e for end). If a connected part splits into several
parts, we add a node (s for split) from which start as many edges as there are
parts. Conversely, if two connected parts merge, we link the corresponding edges
to a node (m for merge) (see Fig. 2).

Moreover, the initial set of cells is recoded into a new one (without changing
the shape of the object however) so that each edge of the Reeb graph corresponds
to a k-arc having cells of increasing left border. This is done during the scan.
We merge with the cell having the smallest left border, all its k-adjacent cells
by using the following update procedure.

Update procedure. Let A be a k−arc, and R1 and R2 two adjacent cells of E
such that R1 ∈ A, RL

1 < RL
2 , and R2 adjacent to A (and thus should be added

to A). If RL
2 = RR

1 , one just add R2 to A, else the procedure updates the k−arc
A with R2, and may recode A. For that, it first builds the greatest common
rectangle (GCR) F2 of R1 and R2. This GCR is the greatest rectangle that can
be contained in R1∪R2 [15]. Then, Vacavant et al. consider the rectangles R1−F2

and R2 − F2. If RR
1 < RR

2 , they denote R1 − F2 = F1 and R2 − F2 = F3. The
k-arc A is finally updated with respect to five main configurations (see Fig. 3).

(a)

�L

(b)

Fig. 2. (a) An example of an irregular object E (left), the final recoded structure with
arcs, the obtained polygonalization (right) and the Reeb graph associated to the order
defined on E (bottom) [16]. In (b), we show the recognized k−arcs and the associated
Reeb graph for some iterations of this algorithm, in respect to the �L order.
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(a) (b) (c) (d) (e)

Fig. 3. Description of rectangles F1, F2 and F3 in the update procedure. When RR
1 <

RR
2 (a and b), R1 − F2 = F1 and R2 − F2 = F3, else R1 − F2 = {F1, F3} (c, d and e).

If RR
1 = RL

2 , F2 = ∅, when RR
1 = RR

2 , F3 = ∅ and finally F1 = ∅ in the case RL
1 = RL

2 .

Polygonal Reconstruction of an Irregular Object. The construction of the
polygonal structure of E is performed by reconstructing each k-arc that recodes
E . This stage is driven thanks to a visibility cone approach inspired from [14]
(see also Fig. 4). Even if this algorithm is linear-time, it is a greedy approach
that could leads to some very short segments and acute angles.

Fig. 4. The visibility cone approach incrementally produces a polygonal reconstruction
with a partial preimage (left). In our contribution, we use the O’Rourke’s algorithm in
order to obtain a complete preimage representation (right). We also show an example
of reconstruction that we describe in the section 3.

3 Unsupervised Polygonalization of Noisy Digital
Contours

3.1 A Novel Approach to Vectorize Irregular Isothetic Objects

The polygonal reconstruction of E is again performed by reconstructing each k-
arc that recodes E . Though, instead of decomposing a given k-arc A into segments
lying into a visibility cone like in [15], we decompose it into straight k-arcs, i.e.
sets of k-adjacent cells that can cover a straight line and whose preimage is thus
not empty. In Fig. 4 (right), we present the result of this kind of process on a
simple k-arc decomposed into four straight parts.

Originally, O’Rourke’s algorithm [10] aimed to solve a linear inequality sys-
tem. Given n ranges {[αk, ωk]}k=1,n ordered by time tk, with t1 < . . . < tn,
this approach computes all the lines u = mt + b that pass through each range,
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i.e. all pairs (m, b) such that αk ≤ mtk + b ≤ ωk. In our case, the input ranges
are the intersections between two successive cells of A. These intersections are
vertical straight segments (possibly degenerated as a point) whose the extrem-
ity of greatest (resp. smallest) y-coordinate is called upper (resp. lower) input
point. Due to the construction of the k-arc, the vertical straight segments are of
increasing x-coordinate and O’Rourke’s algorithm can thus be applied in order
to compute the preimage of each straight part of A.

Even if O’Rourke originally explains its algorithm in the dual plane (m, b)
[10], we can avoid explicit transformations and only work in the primal plane
(u, t). The preimage is implicitly described by some consecutive vertices of the
lower (denoted by L) and upper (denoted by U) convex hull of respectively the
upper and lower input points.

We now describe a first algorithm that takes into account the shape of the
preimage of each straight parts (Algorithm 1-C2, lines 7-25). It computes a
polygonal line that completely lies within the k-arc.

In Fig. 5, we depict several iterations of this algorithm on a straight part.
Points pa and pc are initialized as the first two points of U , while pb and pd as
the ones of L (Fig. 5-(a)). If pc.x > pd.x (i), we move forward pb and pd, whereas
if pc.x < pd.x (ii), we move forward pa and pc. If pc.x = pd.x (ii), we move both
pairs of points. In either case, the middle of the intersection between a vertical
line passing by pc.x in case (i) (Fig. 5-(c)) or pd.x in case (ii) (Fig. 5-(b)) and
the preimage is the new vertex of the polygonal reconstruction. The process is
linear-time and the resulting polygonal line lies inside the k-arc.

(a) (b) (c) (d)

Fig. 5. Illustration of Algorithm 1-C2 on a preimage obtained from O’Rourke process.
(a) is the initialization step, (b) is an update step of the reconstruction implying a
lower input point, (c) a upper one, and (d) is the obtained polygonal reconstruction of
the underlying straight k-arc. Algorithm 1-S2 consists in joining the first and the last
point of this reconstruction.

We also develop an other algorithm (Algorithm 1-S2, lines 4-6) that constructs
one straight line per k-arc passing through the middle of the first and last input
range. Even if the resulting polygonal line may be partly out of the k-object, this
is an interesting way of decomposing an irregular object into a few line segments.

We show in Fig. 6 an example of the use of our contribution (computa-
tion of the complete preimage and reconstruction into line segments with
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Algorithm 1. Polygonal reconstruction of a straight k-arc based on its preimage

input : a preimage P computed from a straight k-arc A, represented with its upper convex
hull points U of size nU and the lower convex hull points L of size nL, and the
version selected

output: a polygonal structure computed inside P, stored in the list of points R
u ← 0, l ← 0 ;1
pa ← U [u], pc ← U [u + 1], pb ← L[l], pd ← L[l + 1] ;2
d ← pc.x − pd.x ;3
if version = S2 then {Version S2: Simple and Straight reconstruction}4

p1 ← middle(L[0],U [0]) ;5
p2 ← middle(L[nL − 1],U [nU − 1]) ;6
R ← {p1, p2} ;7

if version = C2 then {Version C2: Complete and Curved reconstruction}8
do9

while d < 0 ∧ u < nU do {Update R from upper convex hull}10
Δ: line of equation x = pc.x, pI ← Δ ∩ [pb, pd] ;11
R ← R ∪ middle(pI , pc) ;12
u ← u + 1 ;13
pa ← pc, pc ← U [u] ;14
d ← pc.x − pd.x ;15

while d > 0 ∧ l < nL do {Update R from lower convex hull}16
Δ: line of equation x = pd.x, pI ← Δ ∩ [pa, pc] ;17
R ← R ∪ middle(pI , pd) ;18
l ← l + 1 ;19
pb ← pd, pd ← L[l] ;20
d ← pc.x − pd.x ;21

while d = 0∧u < nU ∧ l < nL do {Update R from upper and lower convex hulls}22
R ← R ∪ middle(pc, pd) ;23
u ← u + 1, l ← l + 1 ;24
pa ← pc, pc ← U [u], pb ← pd, pd ← L[l] ;25
d ← pc.x − pd.x ;26

while u < nU ∨ l < nL ;27

return R ;28

Algorithm 1-C2) on an irregular object, result of a quadtree decomposition.
In the following, we show how to use these algorithms to vectorize noisy digital
contours.

(a) (b) (c) (d) (e)

Fig. 6. Illustration of our contribution on an object digitized with a quadtree (a). (b)
is the complete preimage computed on each k-arc encoding the object. One could note
that the k-arc at the bottom is decomposed into two straight k-arcs. In (c), we present
the reconstruction of a single k-arc, and the associated preimage and upper/lower
convex hull points. We also depict the complete polygonal reconstruction of the object,
constructed inside the preimage (d), and the final contour obtained with our filtering
procedure explained in Section 3.2.
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3.2 Polygonalization of Noisy Contours by an Irregular Discrete
Approach

We now propose to analyze noisy digital contour by using Kerautret and
Lachaud’s local noise detector [7]. This a method for estimating locally if the
digital contour is damaged, what is the amount of noise and what are the high-
est resolution at which a part of the contour should be considered as noise-free.
Depending on the selected resolution, a part of the contour is covered by a pixel
of a given size at the initial resolution. The higher the amount of noise is, the
biggest the pixels are.

In Fig. 7-(b), we show an example of the output of this parameter-free algo-
rithm applied to the noisy digital object depicted in Fig. 7-(a).

As shown in Fig. 7-(b), the resized pixels overlap and thus cannot be viewed
as an irregular isothetic object (Definition 1). However each resized pixel con-
tain a given number of pixels (at the initial resolution) so that the set of resized
pixels cover a subset of the input image. This subset, which is an irregular iso-
thetic object, is the input of our reconstruction method described in the previous
sections.

The input digital contour is always homotopic to a ring (one connected com-
ponent and one hole). However, as in [12], the set of resized pixels may not be
homotopic to the input digital contour. We can imagine that the set of resized
pixels may not contain any hole or may contain more than one hole.

Thanks to the Reeb graph, which encodes the topology of the input object,
we can decide whether we are in a general case (one cycle) or not (none or more
than one cycle).

Moreover, in the general case, we can choose to not process the k-arcs that do
not belong to the cycle so that the polygonal reconstruction is a simple polygon
(Algorithm 2). For instance, only reconstructing the cycle linking nodes s, m,
m, m in Fig. 7-(d) is a way of avoiding extra polygonal lines pointed by arrows
in Fig. 7-(c).

(a) (b) (c) (d)

Fig. 7. From a noisy contour (a), we build a set of resized pixels (b). Then, we filter
the result of our vectorization algorithm by removing k-arcs that do not belong to the
polygonal minimal contour (the ones pointed by arrows). To do so, we remove their
associated edges in the Reeb graph (d).
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Algorithm 2. Filtering of the k-arcs and the Reeb graph encoding a noisy object

input : the set of k-arcs recoding it A and its associated Reeb graph G
output: the sets A,G are filtered in order to obtain a polygonal contour
foreach k-arc a ∈ A do1

x: the associated edge of a in G ;2

if x = b − m ∨ x = b − s ∨ x = s − e ∨ x = m − e then
3

remove x from G ;4
remove a from A ;5

return A,G ;6

4 Experimental Results

To experiment the quality of the proposed approach, we first consider a polygonal
shape that was perturbed by a Gaussian noise, with different standard deviations

(a) source, h = 1 (b) multi-scale levels (c) source, h = 0.5 (d) multi-scale levels

sc
a
le

h
=

1

(e) noisy contour (f) Alg-VC, n = 33 (g) Alg1-C2, n = 60 (h) Alg1-S2, n = 9
n = 544 Ed = 0.80, θ2

err = 0.12 Ed = 0.83, θ2
err = 0.06 Ed = 2.73, θ2

err = 0.07

sc
a
le

h
=

0
.5

(i) noisy contour (j) Alg-VC, n = 69 (k) Alg1-C2, n = 91 (l) Alg1-S2, n = 12
n = 1004 Ed = 0.74, θ2

err = 0.12 Ed = 0.65, θ2
err = 0.04 Ed = 2.99, θ2

err = 0.05

Fig. 8. Illustration of the reconstruction algorithms. The first row shows the multi-scale
levels obtained from the source contours (e,i). The second and third rows show error mea-
sures for algorithms Alg-VC (that uses previous work), Alg1-C2 and Alg1-S2 described
in this article. These results were obtained with resp. the scale h = 1 and 0.5.
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(σ0 = 0, σ1 = 75, σ2 = 125, σ3 = 175). These images were generated with two
different grid sizes h = 1 and 0.5 (Fig. 8 (a,c)). The resized pixels (illustrated
on images of Fig. 8 (b,d)) were obtained from the digital contours extracted by
using a simple threshold (set to 128) (images (e,i)). The quality measures were
given by the total number of points (n), the mean minimal euclidean distance
(Ed) between the source contour points Pi to the resulting polygon, and the
error on tangent orientations (θ2

err). The measure Ed was obtained after asso-
ciating each contour points Pi of the initial shape (non noisy) to the nearest
consecutive vertex pair Vk, Vk+1. These associations were also used to determine
the tangent error θ2

err where θerr is the angle between the tangent vector defined
from Vk, Vk+1 and the tangent provided by the λ −MST estimator [8] applied
on the source discrete contour.

The experiments confirm the awaited improvements provided by the Algo-
rithm 1-C2 (Alg1-C2 in short) in comparison with the use of the algorithm
based on visibility cone [15] (denoted as Alg-VC). It is visible especially for the
tangent error measure θ2

err but also for the distance error Ed. The second vari-
ant Algorithm 1-S2 (Alg1-S2 in short) produces a more compact representation
while preserving a moderate tangent error θ2

err. However this last algorithm is
less convenient on the point of view of the Ed error.

The Algorithm 1-C2 was also experimented on real images of characters, ac-
quired from a photographed document. A given threshold was used to extract
the digital contours on which the resized pixels were computed (as illustrated
on the second row Fig. 9). We thus show that our vectorization algorithm could
be applied in document analysis systems.

Finally, we compare our methods with algorithms developed by Nguyen and
Rennesson [9] which are based on a global optimization scheme in association

Fig. 9. The meaningful boxes extracted from scanned characters (center), and the final
reconstruction we propose with Alg1-C2 (bottom)
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(a) source δH = 11.40 (b) Alg-VC δH = 6 (c) Alg1-C2 δH = 6.07
Ed = 0.757, θ2

err = 0.130 Ed = 0.713, θ2
err = 0.076

(d) Alg1-S2 δH = 8.92 (e)Nguyen Criteria δH = 10.81 (f)Marji Criteria δH = 10.63
Ed = 1.236, θ2

err = 0.071 Ed = 1.221, θ2
err = 0.062 Ed = 2.878, θ2

err = 0.131

Fig. 10. Comparisons of the proposed approaches with others recent parameter free
approaches [9]

with the Marji’s criteria (MC) or another one proposed by the authors (NC). In
Fig. 10, we present the polygonal contour obtained from our methods, and from
the NC and MC algorithms which are both parameter free approaches. For each
experiment, we measure the Hausdorff error (δH) and the previously described
errors. The comparisons show that the proposed approaches are less compact
than both the NC or MC but provide better precision for the δH and Ed errors.
On the point of view of the tangent orientation error θ2

err our approaches with
Alg1-C2 or Alg1-S2 are comparable with the one of the NC algorithm.

5 Conclusion and Future Works

In this paper, we address the problem of reconstruction of noisy digital con-
tours. We transform the resized pixels obtained by Kerautret and Lachaud’s
algorithm [7] into an irregular isothetic object recoded in a set of k-arcs whose
topology is stored into a Reeb graph. We then vectorize it with two different
linear-time methods that improve a previous work of Vacavant et al. [15].

As a future work, we plan to use the Reeb graph to deal with degenerate
cases. We also want to consider the possibility to improve the reconstruction by
using information of flat and curved parts of the processed noisy objects, since
this information can be extracted from the meaningful scale detection [7].
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12. Rodŕıguez, M., Largeteau-Skapin, G., Andres, E.: Adaptive Pixel Resizing for Mul-
tiscale Recognition and Reconstruction. In: Wiederhold, P., Barneva, R.P. (eds.)
IWCIA 2009. LNCS, vol. 5852, pp. 252–265. Springer, Heidelberg (2009)

13. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal Blurred Segments
Decomposition of Noisy Shapes in Linear Time. Comp.& Graphics 30, 30–36 (2006)

14. Sivignon, I., Breton, R., Dupont, F., Andres, E.: Discrete Analytical Curve Recon-
struction without Patches. IVC 23(2), 191–202 (2005)

15. Vacavant, A., Coeurjolly, D., Tougne, L.: Topological and Geometrical Reconstruc-
tion of Complex Objects on Irregular Isothetic Grids. In: Kuba, A., Nyúl, L.G.,
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Abstract. A new textural descriptor, named Longitudinal and Transver-
sal Profiles (LTP), has been proposed. This descriptor was used to clas-
sify 376 images of dead spermatozoa heads and 472 images of alive ones.
The result obtained with this descriptor has been compared with the
Pattern spectrum, Flusser, Hu, and a descriptor based on statistical
values of the histogram. The features vectors computed have been clas-
sified using a back-propagation Neural Network and the kNN (k Near-
est Neighbours) algorithm. Classification error obtained with LTP was
30.58% outperforming the other descriptors. The area under the ROC
curve (AUC) has also been calculated confirming that the performance
of the proposed descriptor is better that of the other texture descriptors.

Keywords: texture descriptors, boar semen assessment, classification,
digital image analysis.

1 Introduction

In this work we have proposed a new texture descriptor in order to assess the
vitality of boar semen classifying each spermatozoon head present in the samples
as dead or alive. Currently, this task is accomplished using stains with fluores-
cence microscopy and it is impossible to fulfil the vitality assessment without
this expensive equipment [13,7]. A method using phase contrast microscopes
and without using stains would be very useful saving cost and time, and for that
reason, we present a proposal that works with grey levels images.

The sperm assessment is a very important problem for the porcine industry.
In most of the countries there is a big demand of alimentary products obtained
from pig’s meat, thus there are many companies trying to obtain the best pork
meat at a lower price. The way to do it is by selecting the semen used in artificial
insemination (AI). The AI Centres pick up only the best boar specimens and
they use them in the fertilization process.

For several years the Computer-Assisted Semen Analysis (CASA) systems
have been used for assessing the seminal quality [5]. Currently these systems
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analyse the motility, concentration and provide some simple geometric measures
of the spermatozoa’s head to characterize abnormal head shapes, obtaining an
assessment of the studied sample based on these values. However, there are
three valuable criteria, used by veterinary experts, that these systems do not
measure automatically. Those are the number and presence of proximal and
distal droplets, the vitality of the sample based on the presence of dead or alive
spermatozoa and the integrity of the acrosome membrane.

A number of works have addressed some of these seminal analysis problems
using digital image processing. Most of them use CASA system for evaluating the
relationship among the motility patterns of the sperm cells [10,4], morphology
and boar fertility or for studying the sperm motility [3,5,16]. Others researches
have developed new methods to characterize the sperm shape by using spectral
approaches [2], or they have been looking for subpopulations [17] using shape
descriptors of the spermatozoa head. There is very little work addressing the
evaluation of the membrane integrity using texture descriptors [8,1], and, as far
as we know, there is no work published that assess the vitality of a sample for
classifying the spermatozoa heads as dead or alive.

The rest of the paper is organized as follows: section 2 explains the images
acquisition followed by a brief description of the image preprocessing and seg-
mentation. In section 3 the features vectors of classical texture descriptors used
are detailed and the new proposed descriptor is explained. Section 4 indicates
the classifiers being used. The obtained results for the proposed and the classical
descriptors are shown in section 5, following by concluding remarks in section 6.

2 Dataset

2.1 Image Acquisition

The boar sperm images have been captured in an University of Leon spin-off
called CENTROTEC. The semen samples were obtained from three different
boar races-Piyorker, Large White and Landrace. Using a Nikon Eclipse micro-
scope and a Baster A312f progressive scan camera, 450 pairs of images have
been acquired. Each pair contains an image in positive phase contrast and an-
other with two different fluorescent stains, propidium iodide (PI) that dyes dead
spermatozoa as red and dichlorofluorescin (DCF) for turning green the alive
spermatozoa - see figure 1. More details about the sample preparation can been
found in [15].

These pairs of images have been captured in order to develop the proposed
method and to test the other texture descriptors evaluated. For purpose of val-
idation, the ground truth has been obtained using the red and green colours of
the fluorescent images and later that information has been used for labelling the
grey level images.

2.2 Segmentation and Preprocessing

Every spermatozoa head from the phase contrast images have been automatically
segmented. First, the image regions containing the heads have been detected by
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Fig. 1. Stained images using propidium iodide and dichlorofluorescin and the phase
contrast one. Alive spermatozoon are coloured in red and dead ones in green. Image
best viewed in color.

Fig. 2. Spermatozoa registered images. In the first row the alive ones and in the second
row the dead ones.
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thresholding and later head regions are cropped. Then, the heads have been
segmented using the method explained in [9].

Later, all the spermatozoa heads have been cropped using its bounding box.
The images were resized to 108×63 pixels and rotated placing the longest side in
horizontal. The apical part has been placed at the right side using the location of
the tail. Finally, 376 images of dead’s heads and 472 images of alive’s heads have
been obtained. In Figure 2 we can see four registered images of alive spermatozoa
in the first row and four of dead ones in the second.

3 Image Descriptors

3.1 Previous Work

Our first approach has been to try a number of classical descriptors for classifying
the spermatozoa as dead or alive using the different texture distributions present
in their heads. We have proposed a new descriptor, called LTP that will be
explained in next section. The descriptors evaluated have been Hu, Flusser,
several statistical descriptors and some variations of the Pattern Spectrum. Hu
and Flusser has been tested with grey level images and with binary images. In the
last case, the objective was to study if the external shape and the big dark inner
regions could give enough information for distinguishing between both classes.

The following feature vectors have been used. The Hu descriptor used have
been the seven normalized moments proposed by Hu [11] that are invariant to
rotation, translation and scale. Furthermore, the six invariant affine moments
defined by Flusser [6] have been computed. For the histogram of the cropped
images we have computed four statistical features: average gray level, average
contrast,measure of uniformity and entropy. All together make up the statistical
feature vector used.

The Pattern Spectrum gives a histogram capturing the distribution of size of
the different objects or regions present in an image. We also have computed four
different Pattern Spectrum vectors using the Maragos’s proposal [12], with 10
and 20 elements, both with and without normalizing the vectors.

Fig. 3. A dead spermatozoa image
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3.2 Our Approach: Longitudinal and Transversal Profiles (LTP)
Descriptor

As can be seen in figure 2 the texture distribution in the spematozoa alive heads
is different to the dead ones. The alive ones present, in general, a smoother
grey levels without big dark spots and it is possible to distinguish the acrosome
membrane as an oval shape shadow in the middle of each head. We have observed
the grey levels distribution along the longitudinal axis is more homogeneous in
the alive ones than in dead ones. In figure 4 it is possible to see the average value
of the grey level profile along the head longitudinal axis both alive spermatozoa
and dead ones. Although they are similar it is possible to notice that the alive
profile has two minimums, close to columns 10 and 100, with a lower grey level
than the dead one. As that is not a big difference we also have considered the
presence of dark spots in the spermatozoa heads as one of the main features in
the dead spermatozoa heads (see fig.2). Our proposed method tries to collect
that information and use it for obtaining a descriptor that provides a better
classification that the others descriptors evaluated.

Fig. 4. In the left, the average vector of longitudinal gray scale profiles of alive sper-
matozoa. In the right, the same vector for dead ones.

The proposed descriptor, named LTP (Longitudinal and Transversal Profiles),
gathers the grey levels along the longitudinal axis in the image middle and
four transversal images profiles placed at the minimum values of the previous
longitudinal profile. As we have explained in section 2.2 we are working with
registered images that have been rotated and resized like the image in figure 3.

For obtaining the descriptor we do the following. First, we compute the grey
level profile along the longitudinal axis, see figure 5. Then the four first minimum
values of that vector are detected and the corresponding coordinates of those
columns are obtained. The minimum columns are extracted as profile vectors
that contain all the grey levels in each column. The four columns associated with
these minimum values are concatenated as a unique row vector starting with the
column with the minimum value. Later, the longitudinal profile is linked together
with these row vector for making up the proposed descriptor.
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Fig. 5. An alive spermatozoa image and a dead one with their longitudinal profile and
the whole features vector

The descriptor has a length of NCols × 4 + NRows where NCols is the
number of the columns and NRows is the number of rows in the images. The
first column in figure 5 shows an alive image and a dead one in the second column
with, in both cases, their longitudinal profile and their features vector in second
and third rows.

4 Classification

First, a kNN classification with k values 1, 3, 5, 7, 9 and 11 was carried out. The
best hit rate in the most cases have been obtained with values of k greater than 7.
Later, we have also classified the data using a back-propagation Neural Network
with one hidden layer and a logistic sigmoid transfer function for the hidden
and the output layer. Learning was carried out with a momentum and adaptive
learning rate algorithm.

Data was normalized with zero mean and standard deviation equal to one.
Classification was carried out by means of 10-fold cross validation with several
different combinations of neurons in the hidden layer and training cycles in order
to find out the optimal configuration in terms of accuracy. Some people in the
machine learning community have been claiming for some years that using the
hit rate to illustrate the performance of the classifier is not the most suitable
option, but the ROC analysis is a more powerful tool [14]. Therefore, ROC curves
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have been obtained, and so the area under them (AUC) has bee calculated to
perform a more powerful comparison.

5 Results

Table 1 shows the errors obtained using a kNN classifier. The table is arranged
in ascending order from the global error rate. Likewise, the table 2 sums up the
errors obtained using Neural network and the values of the Area Under the Curve
(AUC) ROC. The table is arranged in ascending order from the global error. It
is possible to observe that the errors provide by kNN do not correspond exactly
with the NN results, but, in both cases, the proposed descriptor outperforms
to the rest. It is also interesting to notice that with the NN classifier the errors
obtained with LTP are pretty balanced between classes. In general, the errors of
the dead class are much bigger than the alive class. From our point of view, the
reason is that the alive class images are much more homogeneous whereas the
visual structure of the dead images are more scattered, harder to describe and
more difficult to classify.

Table 1. Classification errors using kNN

Descriptors Global error Dead error Alive error

LTP 31.94% 58.76% 11.16%
PS20 32.92% 57.06% 14.22%
PS10 33.05% 55.65% 15.54%

PS20Norm 35.64% 55.37% 20.35%
PS10Norm 36.62% 54.24% 22.98%

HuBW 37.48% 53.39% 25.16%
FlusserBW 39.33% 50.00% 31.07%
Statistical 40.00% 50.00% 33.04%

HuGray 43.03% 48.31% 38.95%
FlusserGray 44.39% 57.34% 34.35%

Table 2. Errors using neural network classifier for 200 cycles and two neurons in the
hidden layer

Descriptors AUC Error Error 0 Error 1 Std Std 0 Std 1

LTP 0.7441 30.58% 39.90% 23.35% 0.8009 2.5079 1.6380
Statistical 0.7097 32.45% 47.26% 20.98% 1.3107 3.0408 1.6478
PS20 0.6836 33.43% 53.24% 18.07% 1.0678 1.5124 1.6022
PS10 0.6642 33.82% 56.51% 16.27% 0.6394 1.7614 1.4385
HuGray 0.6866 35.57% 58.88% 17.56% 1.5455 5.3074 3.0494
PS10Norm 0.6474 35.57% 57.97% 18.20% 0.4679 2.0447 1.4808
PS20Norm 0.6796 35.76% 53.58% 21.94% 1.1498 2.6397 1.4206
FlusserGray 0.6509 37.23% 67.11% 14.13% 1.7222 5.4496 1.4896
HuBW 0.5786 43.12% 87.43% 8.79% 0.5412 3.0200 2.7800
FlusserBW 0.5304 43.87% 95.19% 4.11% 0.5513 1.2854 0.6837
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Fig. 6. ROC curve describing all the descriptors results. Image best viewed in color

The same behaviour can be seen in the ROC (Receiver Operating Charac-
teristic) curve 6. Although there are some descriptors with a high accuracy, as
PS20, Statistical or PS10, the proposed descriptor surpasses the other ones in
the interval of specifity [0.0,0.6], been slightly lower to PS20 at the end of the
curve.

This results, jointly with the error rates obtained with kNN and NN, allow
us to say that the proposed descriptor has a better performance than the others
in this context.

6 Conclusions

A new method for describing the texture present in the images of boar sper-
matozoa heads has been proposed. We have computed this descriptor and we
have used it for classify the spermatozoa heads as dead or alive. The results ob-
tained have been compared with several classical texture descriptor as Flusser,
Hu, some variations of Pattern Spectrum and statistical descriptor composed by
some statistical features, using both kNN and a back-propagation Neural Net-
work. The results shown that the proposed descriptor outperforms the others
using the error rate criteria and the accuracy seen at the ROC curve. Furthe-
more, the proposed descriptor has a low computational cost in front of the lot
of computation required by the other evaluated techniques. An error rate of
30.58% is not enough good for presenting this method as a replacement for the
manual process used currently but it do point that it is possible to assess the
semen vitality with grey level images so better descriptors can be proposed in
the future.
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Abstract. In this work we propose a topology-preserving registration
method based on a discrete Markov random field of deformations and
a block-matching procedure. For that purpose, the fidelity of a given
deformation to the data is established by a block-matching strategy,
the smoothness of the transformation is favored by an appropriate prior
on the field and topology preservation is guaranteed by imposing some
hard-constraints on the local configurations of the field. The resulting
deformation is defined as the maximum a posteriori of the field and it
is estimated via graph cuts. Results on medical images show the effi-
ciency of using graph cuts based fusion moves for the optimization of the
field even though its potentials are neither sparse nor separable and the
reduced fused problem turns to be non-submodular.

Keywords: image registration, topology preservation, Markov random
fields, combinatorial optimization, graph cuts.

1 Introduction

Image registration is concerned with the search of an optimal transformation
for the alignment between objects in two images. Let I0 and I1 be such a pair
of images. The registration problem is mathematically defined as the compu-
tation of a spatial transformation ϕ so that every point in I0 is matched to a
point in I1. Image registration is formulated as the minimization in the space of
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possible transformations of an energy function which involves the intensities of
the deformed and target images. That is, the registration looks for the optimal
transformation ϕ∗ that satisfies ϕ∗ = argmin

ϕ
H(ϕ). Usually, the energy function

H takes on the form

H(ϕ) =
∫

Ω

[f(I0(r), I1(ϕ(r))) + g(ϕ(r))] dr, (1)

where r denotes a spatial location and Ω is the integration domain of the prob-
lem. The functions f(·, ·) and g(·) refer respectively to a data fidelity term that
accounts for the similarity between the two images for a given transformation
and to a regularization term that favors the smoothness of the deformation.
Generally speaking, different registration problems entail different choices for f
and g and different assumptions on the transformation ϕ.

However, without any further requirements on the deformation field, the so-
lution of (1) can result in unrealistic transformations. In order to improve the
registration performance or to enable its use in certain applications, a proper set
of constraints should be introduced in the problem. For instance, it could be in-
teresting to obtain continuous or differentiable deformation fields. Additionally,
it could be desirable to ensure the topology preservation of the transforma-
tion, which is related to its invertibility and the conservation of the connectivity
and neighborhood relationships of the image objects. Finally, an unbiased reg-
istration could be guaranteed by a symmetrical energy function with respect to
changes in the image roles.

Although many of the so far proposed registration methods are deterministic
(i.e., no probabilistic assumptions about the energy functions are considered
when posing the optimization problem), a great effort has been described in the
literature on stochastic optimization procedures which, additionally, have been
recently fostered by the proposal of new optimization techniques such as graph
cuts (GC) or loopy belief propagation (LBP) [25]. Specifically, global solutions
have been proposed very recently for the registration problem in [5].

This paper is focused on the insertion of the topology preservation constraint
in a discrete stochastic formulation based on a Markov random field (MRF)
of deformations and a block-matching procedure. The constraints of continuity
and differentiability are also considered. As we further discuss in Section 2,
our stochastic formulation of the registration problem presents some advantages
with respect to other topology-preserving probabilistic approaches. Specifically,
the topology preservation proposed in [1] introduces a bias in the registration
solution, whereas the topology-preserving constraint established in the MRF-
based approach in [8] imposes substantial restrictions to the structure of feasible
configurations of the field.

As an important additional contribution of this paper, we show the viability
of implementing a GC-based optimization scheme for this problem, in which the
variable of the field to be optimized is vectorial, it is neither sparse nor separable
and the field contains ternary potentials. We show that a fusion move [16] based
on the α-expansion strategy [4] combined with the clique reduction technique
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introduced in [14] and the quadratic pseudo-boolean optimization (QPBO) in
[13] has been able to improve the minimum obtained by the iterated conditional
modes (ICM) algorithm [3], although at the expense of a larger computational
load.

In Section 2, we review the proposals that impose some of the aforemen-
tioned constraints in the registration problem. The registration methodology
is described in Section 3 as well as the adopted optimization strategies. In
Section 4, we present a comparative of different variants for the optimizer to-
gether with some snapshots to illustrate about the compliance of the results with
the topology preservation constraint. Finally, some conclusions are presented in
Section 5, together with possible extensions of the work.

2 Background

A seminal work which defines the registration problem as such of finding a home-
omorphic map, i.e., a continuous bijective transformation whose inverse is also
continuous, is proposed in [6]. The registration is defined as the solution of
a viscous-fluid Partial Differential Equation (PDE). This formulation can deal
with large deformations while simultaneously preserving the topology. The solu-
tion of the PDE is implemented by a Finite Element (FE) method, which involve
a large computational load, mainly due to the successive spatial over-relaxation
steps. Additionally, it is necessary to reinitialize the discretization grid to prevent
for singularities in the transformation.

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
work, reviewed in [18], poses the registration problem as the computation of
a geodesic path on the manifold of diffeomorphisms connecting the images. A
diffeomorphism is defined as a differentiable bijective transformation with dif-
ferentiable inverse. This method is formulated by a global variational problem
similar to (1), but instead of regularizing the deformation field, it regularizes
the temporal flow of a velocity field, which is integrated to provide the solu-
tion. One advantage of this method in comparison with [6] is that the velocity
fields are smooth not only in space, but also in time. Some interesting features
of this algorithm are that the solution is not only the deformation but also the
path connecting the images and that it implicitly provides a measure of the
distance between two images connected by a diffeomorphic map. Extensions of
the basic LDDMM framework have been developed to include an affine trans-
formation component [27], to obtain symmetric or unbiased transformations [2]
or to reduce the computation requirements [11]. Diffeomorphic extensions have
also been proposed for the popular Demons algorithm, with an advantage in
computational efficiency [26].

On the other hand, some methods are not based on a physical process of de-
formation, but on its parametric representation. For instance, simple approaches
based on B-splines preserve the topology by restricting the maximum deforma-
tion taking into account the spacing of the grid [23], whereas more sophisticated
methods impose restrictions on the coefficients of the transformation [7].
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Our proposal differs from the previous approaches in that it embodies the
registration problem in a stochastic framework. Hence, our method has more in
common with methodologies such as [1], where the registration solution is ob-
tained as the maximum a posteriori (MAP) of a field of deformations whose prior
favors the smoothness of the solution simultaneously ensuring one-to-one map-
pings and whose likelihood tends to improve the fidelity of the solution to the
data. The major drawback in [1] is that the smoothness is biased with respect
to the chosen diagonal direction of the triangulation [12,9]. Another stochas-
tic approach for the registration problem is presented in [8], which formulates
the registration in a discrete Bayesian framework by a MRF of deformations.
However, this work establishes a simple diffeomorphic constraint by limiting the
relation between the grid spacing and the maximum deformation, the same as
in [23]. Specifically, diffeomorphisms are guaranteed by limiting the maximum
deformation to be 0.4 times the grid spacing, which imposes an important re-
striction to the resolution of the field or to the range of allowed displacements.
In contrast to this approach, the range of allowed displacements of our method is
not restricted by the grid spacing, but by the configurations in the neighborhood
of the site under consideration.

3 Registration Method

We are given a pair of zero-origin 2D discrete-space images Ii[m] = Ii(mΔm),
with i ∈ {0, 1} denoting each of the images and Δm the pixel resolution. The
registration objective is to estimate a transformation ϕ : Ω → Ω that maps the
domain of I0 onto the domain of I1. The transformation can be related with
the displacement map u by ϕ(r) = r + u(r). In our discrete formulation, the
estimation is performed in a discrete set of spatial positions or sites s, ϕ[s] =
ϕ(sΔs), with Δs the transformation grid resolution. The reconstruction of the
continuous transformation is obtained by bilinear interpolation of the values
of the transformation in the sites. Moreover, the feasible displacements take
on values in the space of quantized transformations uk = kΔk, with Δk the
quantization step. The key idea of these discretizations is represented in Fig. 1.

Therefore, we search for a continuous transformation ϕ : Ω → Ω, such that
it maps the boundary of Ω onto itself and that is locally injective, that is to say

J(r) =
∣∣∣∣∂ϕ(r)

∂r

∣∣∣∣ > 0 ∀r ∈ Ω, (2)

so it is a topology-preserving or homeomorphic map [19]. The continuity of the
transformation is ensured by the bilinear interpolation scheme of the deforma-
tions in the grid of sites whereas the identical mapping of the boundary is ensured
by establishing a zero-deformation Dirichlet boundary condition on the defor-
mation field. The positivity of the Jacobian is somewhat more subtle and it is
treated later on.

A MRF [17] is built by defining a field of discrete random variables Xs over the
grid sites s ∈ S which take on values in the space of quantized deformations k ∈
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Δs

Δk

k
s

Δm

m

Fig. 1. Discretization of the model. Image pixels are represented as line intersections,
transformation sites as circles, and transformation values for the site s as crosses.

K such that uk ≤ umax, with umax denoting the maximum allowed deformation.
The MRF is built from the definition of a system of contextual dependencies
over the geometry of the sites. These dependencies are encoded in the form of a
neighborhood system δ(s).

The Hammersley-Clifford theorem [10] states that if a Random Field is a
MRF for the neighborhood δ, it is also a Gibbs Random Field (GRF) for that
neighborhood and vice versa. In a GRF we have the relationship

Π(x) =
1
Z

exp(−H(x)), (3)

which models the probability of occurrence of a configuration of the field Π(x)
as the negative exponential of the energy of that configuration H(x) normalized
by Z, the so-called partition function.

From a Bayesian perspective, given the image pair (I0, I1), one has to consider
the posterior field

Π(x | I0, I1) ∝ Π(x)f(I0, I1 | x). (4)

which is also Markovian and where f(I0, I1 | x) is known as the likelihood
function of the data given a configuration of the field. The definition of the
posterior field is thus reduced to design a functional form for its energy function
H(x; I0, I1), which is now developed.

3.1 Design of the Field

The energy function H(x; I0, I1) for the posterior field is obtained, according to
(3) and (4) [17], as the sum of three potential terms which are explained below:
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H(x; I0, I1) =
∑
s∈C1

V1(xs; I0, I1) +
∑

(s1,s2)∈C2

V2(xs1 , xs2)+

∑
(s1,s2,s3)∈C3

V3(xs1 , xs2 , xs3).
(5)

These terms correspond respectively to the likelihood of the data, the prior for
deformation smoothness and the prior for topology preservation. The first two
terms are in the spirit of (1) and the work in [8], whereas the third term is
one of the contributions of our work. Note that the potential terms are defined
over the clique categories C1, C2 and C3. A clique C is defined as a subset of the
neighborhood system δ either with a single element or in which every pair of
different elements are neighbors [20], with Cn denoting n-element cliques. The
cliques belonging to each clique category are plotted in Fig. 2.

�� C3

C1
3

C3
3

C2
3

C4
3

C1
1 C2

2

C1
2

s3 s3

s3

s1

s1

s3

s1

s1s2 s2

s2 s2

e1

e2

�� C1 �� C2

Fig. 2. Clique categories of the MRF. Note the orientation of the coordinate system
{e1, e2} such that r = r1e1 + r2e2.

Henceforward we present a description of the potential terms and clarify the
meaning of the cliques in Fig. 2. For that purpose, let rm denote the location of
the pixel m, rs the location of the site s and rk

s

the transformed location that
corresponds to the local configuration xs = k:

rk
s

= ϕks

= sΔs + kΔk rs = sΔs rm = mΔm. (6)

Finally, let continuous image values be obtained by bilinear interpolation.

Likelihood Term. For intramodality registration, the potential function V1

could be the sum of squared differences:

V1(xs; I0, I1) =
∑

|m|≤ρ

N [m](I0(rs + rm)− I1(rk
s

+ rm))2, (7)

where ρ is the maximum radius of a ball that defines the block from which
the image information is extracted and N is a Gaussian kernel with standard

deviation σN =
ρ− 1

2
, so the influence of pixels with |m| > ρ is negligible and

the contribution of those pixels closer to positions rs and rk
s

is improved. The
fidelity is encoded into 1-element cliques (see Fig. 2.a), since it only depends on
the local transformation as given by xs.
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Smoothness Term. The smoothness term is encoded into 2-element cliques,
as shown in Fig. 2.b, in order to approximate the deformation gradient by finite
differences of first order in both directions of the grid. The prior penalizes those

deformations in which
∣∣∣∣ ∂ϕ

∂r1

∣∣∣∣ or
∣∣∣∣ ∂ϕ

∂r2

∣∣∣∣ are large, with r1 and r2 denoting the

spatial coordinates (r1, r2) = r:

V2(xs1 , xs2) = λ
|rks2 − rk

s1 |
|rs2 − rs1 | , (8)

with λ a parameter to balance the contribution of the likelihood and the prior
in the field energy.

Topology-Preserving Term. As pointed out in Section 2, in contrast to [8],
the topology preservation is guaranteed by an appropriate potential term in the
local configurations of the field. Specifically, this term is built upon 3-element
cliques, as shown in Fig. 2.c. Note that the four 3-element cliques defined in
Fig. 2.c are analogous to the four corners from which the Jacobian is computed
in [12].

In this case, the relative spatial locations of the clique elements influence the
definition of the potential. Let s2 be the element in the vertex that subtends the
right angle of the triangle formed by the locations of the clique elements, s1 the
vertex where the non-diagonal side is along the direction e1 and s3 the vertex
where the non-diagonal side is along the direction e2 (see Fig. 2.c). Then, the
potential term is constructed by restricting the Jacobian of the deformation in
the triangle as follows

V (xs1 , xs2 , xs3)=βU

(
(rks2

1 − rks1

1 )(rks2

2 − rks3

2 )− (rks2

2 − rks1

2 )(rks2

1 − rks3

1 )
(rs2

1 − rs1
1 )(rs2

2 − rs3
2 )

)
,

(9)
where U is a step function such that U(x) = 0 if x > 0 and U(x) = 1 otherwise.
Therefore, if β is large enough, the topology will be preserved. This preserva-
tion is ensured by the bilinear interpolation scheme adopted. Nevertheless, this
scheme only guarantees the continuity of the transformation and its inverse.
For ensuring the differentiability of the transformation, a second-order interpo-
lation scheme is required, in which case, a larger neighborhood system would
be required to simultaneously preserve the topology, with larger computational
load [12].

3.2 Optimization Procedure

Once the field is completely designed, the remaining task is to establish a pro-
cedure for searching the optimal solution. This is not straightforward due to the
high complexity of the field at hand. Specifically,

– The variable to be optimized is not binary, but it is vector-valued and non-
separable.
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– The field includes high order interactions as given by the 3-element cliques
which are not sparse.

In [25], a comparison is established among the main methodologies for the opti-
mization of MRF with smoothness-based priors. The results obtained suggest a
large improvement in performance when using modern optimization techniques
such as GC or LBP with respect to classical techniques. Nevertheless, the en-
ergy functions analyzed are based only on pairwise interactions between the
variables of the field, so ternary interactions are not considered. Unfortunately,
when dealing with ternary interactions, there are many cases in which the recent
optimization techniques are not directly applicable.

Regarding LBP techniques, ternary interactions involve the introduction of a
variable encoding the |K|3 possible configurations of the three variables, which is
feasible only in those cases in which |K| has a small value, the ternary potentials
are sparse [15] or they are separable [24]. However, our design contains vector
valued non-separable ternary potentials and the condition of positivity of the
Jacobian is not sparse enough, as only approximately half of the possible labels
turn out to be null.

In the case of GC techniques, the problem is also intricate. The main limi-
tation is that the reduction of the multilabel problem to a binary one by using
a fusion move strategy [16] such as α-expansions [4] combined with the clique
reduction technique introduced in [14] leads to a non-submodular transformed
energy function. Submodularity is essential in order to obtain the respective GC
optimizers in linear time and, in order to comply with it, the projections on
two variables of any of the respective moves must be submodular [14], which is
not our case. Nevertheless, one can still resort to the recently introduced QPBO
technique [13] and trust in its ability to solve the non-submodular problem.
The general procedure is illustrated in Fig. 3 and described in the subsequent
paragraphs.

The α-expansion method starts with an arbitrary labeling x and for each pos-
sible label α ∈ K it iteratively combines two configurations x0 and x1 such that
xs

0 = xs is the actual configuration and xs
1 = α. The combination is performed

by finding the minimum cut on a graph built by encoding the original energy
over a binary variable which indicates if the label for each node is taken either
from x0 or from x1. Additionally, once this binarization is performed, one can
reduce the 3-element potentials to a set of 2-element and 1-element potentials
by introducing an auxiliary variable for each 3-element clique without affecting
the energetic behavior of the field. Details on this reduction operation can be
consulted in [14].

α��������	� C3 → C2 + C1 
�� x∗H(x; I0, I1)

Fig. 3. Flux diagram of the GC optimization procedure
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The QPBO technique is based on the reparameterization of the energy to be
minimized in order to construct an equivalent graph in which the cut provides
three possible states for each site {0, 1, ∅}, respectively for the 0-labeled, the
1-labeled and the unlabeled sites. The most important property of the label x
obtained by the QPBO algorithm is the weak autarky, that states that if y is a
complete labeling of the field and z the label obtained by zs = xs if xs = {0, 1}
and zs = ys otherwise, then H(z) ≤ H(y). Taking y as the global minimum of
the field, this property results in the fact that the labeled pixels in x are part of
the global solution.

It is obvious that the QPBO algorithm will perform better if the number of
unlabeled sites is small or null, which happens to be the case if the energy func-
tion is approximately or completely submodular (i.e., if it contains a small or null
number of non-submodular terms). Unlabeled sites can be set to a prespecified
value (in the α-expansion algorithm it is reasonable to set them to 0 in order
to maintain the previous label of the site, so the energy is guaranteed not to
increase with the move) or tentative labelings can be generated by suitable pro-
cedures. Specifically, in [22] two methods are proposed which extend the QPBO
algorithm to cope with the unlabeled sites. The first one is the probe method,
which pursues the exact optimum by contracting and fixing nodes on the graph
and running the QPBO algorithm on the simplified graph. The second one is
the improve method, which seeks to improve the energy of an input solution by
fixing some nodes to the input solution and also running the QPBO algorithm.

4 Results

The registration algorithm has been applied to the detection of cardiac motion
in a mid-cavity short axis image of the heart. The image was obtained by a cine
echo-like steady-state free precession Magnetic Resonance acquisition and the
end-diastolic and end-systolic phases have been extracted in order to detect the
maximum cardiac motion. The parameters of the algorithm for this experiment
are set to Δs = 5Δm, Δk = 2Δm, umax = 8Δm and ρ = 5Δm.

Eight optimizers based on the strategies introduced in Section 3.2 are com-
pared against the reference given by the ICM. They are configured with regard
to the following features:

1. Taking the null deformation as the starting configuration (NULL) versus
taking the ICM output as the starting configuration (ICM).

2. Using (P ) or not using (P ) the probe method.
3. Using (I) or not using (I) the improve method.

The results of this experiment for different values of the regularization parameter
λ are included in Table 1. They show that the GC-based method improves the
minimum of energy obtained by ICM . Moreover, the insertion of the improve or
probe methods tends to further improve this minimum, although they introduce
a significant computational overload for small rates of energy decrease. Finally,
it is not clear which starting configuration performs better, but for small values
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Fig. 4. Snapshots of the resulting deformation of the algorithm for λ = 0.5. Left col-
umn: ICM . Right column: ICM/P/I. Upper row: with the topology-preserving con-
straint. Lower row: without the topology-preserving constraint. A blue dashed circle
encloses a zone in which the topology is only maintained when the constraint is intro-
duced whereas a magenta solid circle encloses a zone in which GC-based optimization
better escapes from the local minimum given by the null displacement field.

Table 1. Energy of the registration result for different optimization strategies. Compu-
tation times (in s.) are shown in parenthesis and best results for each λ are boldfaced.

Optimizer λ = 0 λ = 0.5 λ = 1 λ = 2 λ = 5

ICM 327.2 (0.1) 388.2 (0.1) 435.2 (0.1) 522.5 (0.1) 812.6 (0.1)

NULL/P/I 352.2 (7.7) 405.1 (8.8) 430.2 (8.1) 509.3 (6.5) 732.0 (6.8)

NULL/P/I 328.5 (15.2) 388.1 (15.0) 429.2 (19.1) 500.9 (19.1) 729.7 (21.0)

NULL/P/I 331.3 (199.3) 394.0 (95.9) 430.4 (134.0) 498.9 (165.1) 729.7 (81.9)

NULL/P/I 328.7 (255.7) 384.2 (173.5) 429.1 (127.6) 501.0 (200.2) 729.7 (80.9)

ICM/P/I 326.1 (6.0) 385.6 (4.7) 432.6 (4.4) 500.3 (8.9) 729.4 (7.0)

ICM/P/I 325.8 (20.3) 385.5 (15.2) 432.1 (7.9) 499.3 (15.2) 729.4 (11.5)

ICM/P/I 325.9 (150.1) 385.5 (106.0) 428.6 (67.5) 499.3 (97.2) 729.4 (85.4)

ICM/P/I 325.4 (201.6) 385.5 (104.4) 428.2 (100.7) 499.3 (99.8) 729.4 (86.2)

of λ, using the ICM output as the starting configuration seems to improve the
stability. For all these reasons, the ICM/P/I seems to be the best compromise
between quality of the solution and computational burden.

The capability of our method to maintain the topology of the resulting
deformation is illustrated in Fig. 4, which compares the behavior of the ICM
algorithm with the GC-based ICM/P/I algorithm for λ = 0.5 both with and
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without the topology-preserving constraint. When the constraint is removed
some crosses and concavities appear in the transformation grid, which disappear
when the constraint is introduced. Moreover, the GC-based optimizer seems to
better escape from the local minimum given by the null displacement as noted
by the large number of non-null displacements observed in this case.

5 Conclusion

This paper proposes a method to perform physically realistic registration of
medical images in a stochastic discrete setting. For that purpose, we have en-
coded a topology preservation condition for bilinear interpolation of deformation
fields into 3-element cliques. Additionally, GC techniques have been applied to
effectively optimize the energy of the designed field.

Current research efforts are intended to apply the registration method to the
interpolation of largely spaced tomographic images [21], to include a procedure
to estimate the regularization parameter λ and to compare this new methodology
for topology-preserving registration with established methods. Additionally, we
plan to extend the registration method to the 3D case, which is a nontrivial
task [12].
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Abstract. This article presents the use of Support Vector Machines
(SVM) to diagnose the ischemic heart disease using heart images ob-
tained from Single Proton Emission Computed Tomography (SPECT).
The data set came from 267 different patients and was divided into sev-
eral sub-sets containing training and validation data. The study consisted
in comparing results of classifying cardiac SPECT images using SVMs
with those obtained using another method of machine learning CLIP3
which is a combination of the decision tree algorithm and the rule induc-
tion algorithm. Validations carried out using a SPECT image database
have shown that SVMs are good in generalising knowledge gained about
multi-dimensional data with relatively little training data.

Keywords: Support vector machine classification, cardiac SPECT
imaging, medical image analysis.

1 Introduction

Every year, cardiovascular diseases kill 4.3 million people in Europe and over
2m in the European Union [1, 11]. The mortality of heart diseases is greater in
Central and Eastern European countries than in Western European ones [1, 11].
Globally, the number of deaths due to cardiovascular diseases is 17.5 million,
which represents 30% of all deaths every year [11]. Early detection of cardiovas-
cular diseases plays a huge role in improving the efficiency of their treatment.
If lesions are detected at an early development stage, then disease progress can
be stopped, making further treatment easier. Consequently, there are more and
more efforts to develop software supporting medical image analysis and helping
in medical diagnostics.

Single Photon Emission Computed Tomography (SPECT) is a modern method
for the non-invasive diagnostics of ischemic heart disease. The most frequent
cause of this disease is atherosclerosis, caused by lipid deposits building up in-
side arteries, including coronary ones. The narrowed lumen of coronary arteries
then causes insufficient blood flow to the heart muscle. These stenoses can be
identified precisely during coronarography, while SPECT supports the assess-
ment of the degree to which they impair blood supply to the heart muscle. If a
SPECT examination shows regular blood supply, ischemic heart disease can be
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ruled out with a high probability and the invasive coronarography examination
can be avoided. SPECT imaging can also help in selecting the artery in which
patency can be restored with a balloon or in which a bypass should be grafted.
The examination is performed twice: one time at rest, and the second time after a
workload stress or a pharmacological stress. After a radioactive agent is injected
intravenously, a series of images is acquired using detectors moving around the
patient and collecting photons emitted in different directions by that tracer. A
3D image of the heart muscle can be reconstructed from the acquired images
using the right algorithms. However, cardiologists most frequently assess the
images of 2D slices (cross-sections) along several different planes, like in Fig. 1.

The bright areas in these images correspond to parts of the heart muscle
well supplied with blood, while if an area corresponding to a given fragment of
the heart muscle is dark, it is ischemic, see Fig 2. Individual images of slices
can be split into regions (Fig. 3). A cardiologist assesses every one of the 22
regions based on his/her knowledge of the appearance of a SPECT image of a
healthy human heart and compares the appearance of regions in the rest state
and under stress. Based on these partial diagnoses for particular regions, the final
diagnosis is made. The purpose of this study was to develop an application based
on Support Vector Machines (SVM) [17, 18] to classify SPECT heart images.

Fig. 1. Series of SPECT heart images in various cross-sections: (a) short axis of the
heart (perpendicular to the long axis), (b) vertical long axis, (c) horizontal long axis
of the heart
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Fig. 2. Perfusion on cardiac SPECT images, (a) normal perfusion, (b) abnormal
perfusion

Fig. 3. Heart cross-section regions and their corresponding SPECT images of
cross-sections

The particular purpose of this study was to compare the results of classifying
cardiac SPECT images using SVMs with results obtained in [12] using other
methods. SVM was already used for classifying SPECT images to differentiate
between images from healthy subjects and images from Alzheimers disease (AD)
patients. The proposed methodology yielded the accuracy greater than 90% in
the diagnosis of the AD [16] and achieved the sensitivity of 84.4% at 90.9%
specificity [9]. Results described in paper [16] were obtained using a linear kernel
function and a contigous linear SVM [9], respectively. In this work, the Gaussian
kernel function (see tab. 2) provided the best results, i.e. 92.31% accuracy.

The traditional approach, where artificial neural networks are used for clas-
sifying, can frequently yield results not good enough, due to overtaining, which
has a negative impact on the ability of the learning machine to generalise the
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knowledge gained [10]. It is precisely due to the very good knowledge generali-
sation capability that Support Vector Machines (SVMs) is used more and more
frequently [17, 18]. SVMs are good in generalising the knowledge gained, even
for multi-dimensional data with relatively little training data. In addition, SVM
performance is good even without any a priori knowledge of the problem under
consideration: for instance, in many applications of learning machines to recog-
nising images, the same unrestricted permutation of pixels in all images does not
change the training results for SVMs, but it does for neural networks, however
well they had worked previously [2].

Publication [12] deals with classifying cardiac SPECT images using a CLIP3
algorithm, which is a combination of the decision tree algorithm C4.5 [15] and
rule induction algorithm CN2 [7]. The CLIP3 algorithm has already been used
to classify cardiac SPECT images and its performance was comparable to that
of learning algorithms C4.5 and CN2 [6].

The application under development, which uses SVMs, has been validated
on the same database of cardiac SPECT images [8] as the CLIP3 method [12].
The data set came from 267 different patients. The experiments conducted have
shown that the use of SVMs yielded better classification results than the CLIP3
method. The content of this paper is laid out as follows: section 1 gives the
method of classification using support vectors, section 2 presents the analyzed
data, section 3 discusses the experiments conducted and selected research results.
And finally, the conclusions are drawn in section 4.

2 Support Vector Classification

Lets consider data in the form of vectors from space Rn belonging to two classes,
to which we respectively assign numbers from set {−1, 1}:

D = {(x1, y1), . . . , (xn, yn), xi ∈ Rn, yi ∈ {−1, 1}, i = 1 . . .m} (1)

The support vector machine algorithm separates classes of input patterns with
the hyperplane for which the distance between the nearest vectors of these two
classes given by relationship (1) is the greatest. This hyperplane is called the
optimal separating hyperplane. It is defined as follows:

H : f(x) =< w, x > +b (2)

where x is a vector from the Rn space, w is the vector perpendicular to hy-
perplane H , and the value b

‖w‖ determines the offset from the beginning of the
coordinate system. Fig. 4 shows an example of two different vector classes and
a hyperplane separating them.

Finding the optimal hyperplane for which the distance of the nearest vectors
from two different classes is the greatest is equivalent to minimising the square
of the following norm [10]: 1

2‖w‖2. The case of linear data separation can be
generalised to data separation with a non-linear function. For this purpose, data
vectors from the Rn space are mapped to a new Hilbert space H using a certain
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mapping function φ : Rn → H . As the data appears only in the form of scalar
products, the form of the φ function does not have to be given explicitly, the
following K kernel function can be used

K(xi, xj) = φ(xi) · φ(xi) (3)

Points belonging to two classes (1) cannot be linearly separable, as shown in
Fig. 4. In such cases, one of the solutions may be to slacken the condition that
there must be no points between pattern classes. For this purpose, slack variables
ξ ≥ 0 are introduced. The constraining conditions will then take the following
form:

yi · [< w, xi > +b ≥ 1− ξi], ξi ≥ 0, i = 1 . . . n (4)

where yi ∈ {−1, 1} denotes the appropriate labels of classes of input patterns
xi in accordance with the relationship (1). As a result, the SVC classification is
equivalent to a minimisation problem with the following objective function:

1
2
‖w‖2 + C

[ n∑
i=1

ξi

]m

(5)

where m = 1 is usually assumed. Constant C valuates the amount of the penalty
for the wrong classification of training data.

Fig. 4. The optimal hyperplane separating two vector classes. In dot-product space
the hyperplane can be specified as a set of vectors x that satisfisfies < w, x > +b = 0.
Vector w is perpendicular to the plane, while the scalar value b

‖w‖ represents the shift
relative to the beginning of the coordinate system.
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Using the Lagrange multipliers technique the optimisation problem formu-
lated above can be transformed as follows:

LD(α) =
n∑

i=1

αi − 1
2

n∑
i,j=1

αiαjyiyjK(xi, xj) and LD(α)→ min

under the conditions: 0 ≤ αi ≤ C and
n∑

i=1

αiyi = 0

(6)

In the above relationship, vector α = [α1, α2, . . . αn] defines non-negative La-
grange coefficients. It should be noted that separating the pattern classes makes
it possible to use the kernel function K(., .). This is possible, because mapping
φ satisfies equation (3).

Non-negative Lagrange coefficients which constitute solutions to equation (6)
may be used in the following decision-making function:

f(x) =
n∑

i=1

αiyiK(xi, x) + b (7)

whereas:

b = yi −
n∑

j=1

αjyjK(xj , xi) (8)

The solution to equation (4) can be determined using general quadratic pro-
gramming methods. In addition, dedicated heuristic methods [13, 14] have been
developed which effectively solve many classes of problems.

The optimisation problem given by relationship (6) is a Convex Quadratic
Programming Problem [3]. Consequently, the use of the SVC method has an
advantage over neural networks for which the occurrence of many local minima
may make the learning process complex, frequently leading to poor classification.

3 Analyzed Data

Specially processed images from SPECT examinations of 267 patients were used
for the analysis. Every examination consisted of images of five heart slices for the
rest study and five for the stress study. This yields the total number of 44 regions
for every examination - 22 for each study. For every region Ω the following value
was calculated:

fi =

∑
(m,n)∈Ω

J(m, n)

N(Ω)
· 100%

M
(9)

where J(m, n) denotes the brightness of the point with the coordinates (m, n),
N(Ω) denotes the number of points belonging to Ω, and M is the greatest
brightness of a point from the Ω area during the rest and stress studies. Thus,
the database used [8] contained 267 sets of 44 values calculated based on (9).
Every set of these 44 values had a corresponding cardiologists diagnosis a healthy
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or pathological perfusion of the heart muscle. In addition, a database of partial
diagnoses was also used. It contained 267 sets of 22 partial diagnoses each and
the appropriate final diagnosis as in the previous case:

data sets DF1 and DF2 : DF, f1, f2, . . . , f44

data sets DPD1 and DPD2 : DF, DPart1, DPart2, . . . , DPart22

where DF - final diagnosis, DParti - ith partial diagnosis
Every set contained 55 cases diagnosed as healthy heart muscle perfusions

(positive patterns) and 212 cases diagnosed as pathological perfusions (negative
patterns). The data was divided into training and validation sets in accordance
with the table below.

Table 1. Division of data into training and validation sets

Training data set Validation data set
Num. of pos.
examples

Num. of neg.
examples

Num. of pos.
examples

Num. of neg.
examples

Total

DPD1 40 40 15 172 267

DPD2 40 162 15 50 267

DF1 40 40 15 172 267

DF2 40 162 15 50 267

4 Completed Experiments and Selected Research Results

SVMs analyzed patterns from the training set, one after another for the bases
shown in table 1. Then, the patterns not previously used from the validation
set were employed to validate the ability of the SVMs to generalise. As finding
a lesion is treated as a negative diagnosis, while the lack of lesions as a posi-
tive one, four possible values determine the classifiers behaviour. These are as
follows: (TN) true negative, (FP) false positive, (FN) false negative and (TP)
true positive. For each validation set and specific parameters of the SVM, the
specificity, sensitivity and accuracy were calculated according to the formulas
below:

Sensitivity =
TP

TP + FN
· 100% (10)

Specificity =
TN

TN + FP
· 100% (11)

Accuracy =
TP + TN

TP + TN + FP + FN
· 100% (12)

Sensitivity is the measure of the number of correctly classified positive patterns
from the validation set. Specificity is the measure of the number of correctly
classified negative patterns from the validation set. Accuracy is the measure of
the number of correctly classified patters in the entire validation set.
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Table 2. Selected kernel functions

Kernel function Formula

Polynomial K(x, y) = (x · y)d

Modified polynomial K(x, y) = (x · y + 1)d

Sigmoid K(x, y) = tanh(ρx · y + η)

RBF - radial base function K(x, y) = exp
(
− ‖x−y‖

2σ2

)
GRBF - Gaussian function K(x, y) = exp

(
− ‖x−y‖2

2σ2

)

Table 3. Specificity, sensitivity and accuracy of various data sets

Data Set Specificity Sensitivity Accuracy

DF2 60.00% 9/15 94.00% 47/50 86.15% 56/65

DF1 73.33% 11/15 77.91% 134/172 77.54% 145/187

DPD2 73.33% 11/15 98.00% 49/50 92.31% 60/65

DPD1 80.00% 12/15 80.81% 139/172 80.75% 151/187

After trial validations of kernel functions presented in Table 2, including poly-
nomial functions of various degrees, SVMs with a Gaussian kernel function were
selected due to their better learning results.

For every base from Table 1, validations were conducted and parameters de-
fined by equations 10–12 were calculated for various values of the σ variable of
the Gaussian kernel function. The results are presented in Table 3 and graphs
Fig. 5 - Fig. 8. Parameter C of the SVM was in every case selected so as to
optimise the training results. Figures Fig. 5 - Fig. 8 show the dependence of

Fig. 5. The dependence of the specificity and sensitivity on the σ2 parameter of the
SVM. Results for the validation set DPD1 and parameter C = 940.
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Fig. 6. The dependence of the specificity and sensitivity on the σ2 parameter of the
SVM. Results for the validation set DPD2 and parameter C = 10000.

Fig. 7. The dependence of the specificity and sensitivity on the σ2 parameter of the
SVM. Results for the validation set DF1 and parameter C = 10000.

sensitivity and specificity on the σ parameter value. Table 3 compiles the values
of sensitivity, specificity and accuracy for optimum values of parameters of the
SVM. It should be noted that due to a large difference between the number of
positive and negative validating patterns, accuracy is not the value which should
determine the choice of SVM parameters as optimum. A better criterion would,
for instance, be the mean of sensitivity and specificity. Consequently, the values
in Table 3 correspond to the maximum mean value of sensitivity and specificity.
Obtaining a high value of sensitivity only or specificity only is obviously not a
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Fig. 8. The dependence of the specificity and sensitivity on the σ2 parameter of the
SVM. Results for the validation set DF2 and parameter C = 10000.

Table 4. A comparison of results for SVM and CLIP3

Specificity Sensitivity Accuracy
Data Set SVM CLIP3 SVM CLIP3 SVM CLIP3

DF2 60.00% 66.67% 94.00% 88.00% 86.15% 83.08%

DF1 73.33% 73.33% 77.91% 77.32% 77.54% 77.00%

DPD2 73.33% 66.67% 98.00% 74.00% 92.31% 72.31%

DPD1 80.00% 73.33% 80.81% 80.23% 80.75% 79.68%

Table 5. A comparison of best results

Specificity Sensitivity Accuracy

SVM CLIP3 SVM CLIP3 SVM CLIP3

73.33% 80.00% 98.00% 84.30% 92.31% 83.96%

good indicator of the effectiveness of the training machine, so the values of both
these variables should be taken into account.

5 Conclusion

Both for training data in the form of partial diagnoses (data sets DPD1 and
DPD2) and for data in the form of a set of SPECT image parameters (set DF2),
the diagnosis using SVMs is obviously highly accurate (>80%). In the case of set
DF1, accuracy is only slightly below 80%. Diagnosis sensitivity and specificity



442 M. Ciecholewski

are also high, only for set DF2 does the specificity not exceed 70%. Sensitivity
is particularly high (>90%) for sets DF2 and DPD2, for which there is a large
set of positive training patterns (172 patterns). The difference in sensitivity for
sets DF1 and DF2 as well as DPD1 and DPD2 is significant: over 16%. This
suggests that the number of positive training patterns (40 patterns) in the case
of DF1 and DPD1 bases is too small to fully utilise the capabilities of SVMs. A
similar conclusion comes to mind for the number of negative training patterns
(40 patterns) for all bases. The significant difference between the specificity
and sensitivity for bases DF2 (34%) and DPD2 (∼25%) is the consequence of
a significant difference between the number of positive and negative training
patterns. In addition, the small number of negative validation patterns means
that it is difficult to assess the specificity of SVM-based diagnosis well, as a
difference in the correct classification of one validating pattern produces a change
in specificity exceeding 6%.

Table 4 compares results of SPECT image classification with the use of SVMs
and of the CLIP3 algorithm, which is a combination of the decision tree algorithm
and the rule induction algorithm. Values of validations which are higher for
SVMs than for CLIP3 have been printed in bold font in table 4. It is clear that
only in one case is the value lower for SVMs than for CLIP3 (specificity for
DF2, difference in only one pattern). Also in only one case (specificity for DF1)
were the values obtained for SVM and CLIP3 equal. In all other cases, SVMs
performed better. The greatest difference is visible for the DPD2 set, where the
difference between SVMs and CLIP3 is 24% for sensitivity and 20% for accuracy.
In [12] the authors have presented an improved version of the CLIP3 algorithm.
They obtained better results, but only for the DPD1 data set (80% specificity,
84.30% sensitivity and 83.96% accuracy). The results are presented in table 5
together with the best result for SVMs (for the DPD2 set). Here, the specificity
is lower for SVM, but this is due to a difference in the classification of just one
pattern. This is why, taking into account the significantly better sensitivity and
accuracy results of SVMs, the best result for the support vector machines seems
to be better than the best result obtained using the CLIP3 algorithm. It should
be noted that the results obtained were influenced by the correct interpretation of
SPECT images by physicians [12]. The diagnoses made using 41 SPECT images
which were taken to create base [8] were formulated by various cardiologists, and
depending, inter alia, on their experience, the diagnoses may have been more
or less correct. Regardless of these potential errors, cardiologists diagnoses were
used as the point of reference both in [12] and in this publication.

Acknowledgements

This research was financed with state budget funds for science for 2009-2012
as research project of the Ministry of Science and Higher Education: N N519
406837.



Support Vector Machine Approach to Cardiac SPECT Diagnosis 443

References

1. Allender, S., et al.: European Cardiovascular Disease Statistics 2008 edition, Eu-
ropean Heart Network (2008)

2. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery 2(2), 955–974 (1998)

3. Burges, C.J.C., Crisp, D.: Uniqueness of the SVM solution. In: Advances in Neu-
ral Information Processing Systems, vol. 12, pp. 223–229. MIT Press, Cambridge
(1999)

4. Ciecholewski, M.: Gallbladder Segmentation in 2-D Ultrasound Images Using
Deformable Contour Methods. In: Torra, V., Narukawa, Y., Daumas, M. (eds.)
MDAI 2010. LNCS (LNAI), vol. 6408, pp. 163–174. Springer, Heidelberg (2010)

5. Ciecholewski, M.: Gallbladder Boundary Segmentation from Ultrasound Images
Using Active Contour Model. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio,
C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp. 63–69. Springer, Heidelberg
(2010)

6. Cios, K.J., Pedrycz, W., Swiniarski, R.: Data Mining Methods for Knowledge Dis-
covery. Kluwer, Dordrecht (1998)

7. Clark, P., Niblett, T.: The CN2 algorithm. Machine Learning 3, 261–283 (1989)
8. Data Bases SPECT i SPECTF from UCI Machine Learning Repository, on-line

http://www.ics.uci.edu/~mlearn/MLRepository.html

9. Fung, G., Stoeckel, J.: SVM feature selection for classification of SPECT images
of Alzheimer’s disease using spatial information. Knowledge and Information Sys-
tems 11(2), 243–258 (2007)

10. Gunn, S.: Support vector machines for classification and regression. Technical Re-
port, Dept. of Electronics and Computer Science, University of Southampton,
Southampton, U.K (1998)

11. International Cardiovascular Disease Statistics 2009, Statistical Fact Sheet – Pop-
ulations, American Heart Association (2009)

12. Kurgan, L.A., Cios, K.J., et al.: Knowledge discovery approach to automated car-
diac SPECT diagnosis. Artificial Intelligence in Medicine 23(2), 149–169 (2001)

13. Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for support
vector machines. In: Principe, J., Gile, L., Morgan, N., Wilson, E. (eds.) Neural
Networks for Signal Processing VII, pp. 276–285. IEEE, New York (1998)

14. Platt, J.: Fast training of support vector machines using sequential minimal opti-
mization. In: Schölkopf, B., Burges, C.J., Smola, A.J. (eds.) Advances in Kernel
Methods – Support Vector Learning, pp. 185–220. MIT Press, Cambridge (1999)

15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)
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Abstract. In this paper, we propose a nonrigid image registration
technique by minimizing an information-theoretic measure using the
quasi-Newton method as an optimization scheme and a cubic B-spline
for modeling the nonrigid deformation field between the reference and
target 3D image pairs. Experimental results are provided to demonstrate
the registration accuracy of the proposed approach. The feasibility of our
method is demonstrated on a 3D magnetic resonance data volume.

Keywords: Image registration, entropy, nonrigid.

1 Introduction

In recent years, a number of intensity-based techniques have been proposed to
tackle the nonrigid image registration problem [6]. A general framework for these
methods relies on entropic measures. One such similarity measure is the mu-
tual information (MI), proposed independently by Viola and Wells [17] and by
Maes et al. [9], which has been effective in the development of the intensity-
based image registration because of its ability to register images from different
modalities [10,1]. Registration algorithms that maximize MI over rigid and affine
transformations have reported impressive registration results. Rueckert et al. [14]
presented MI-based schemes for matching multimodal image pairs using B-
splines by representing the deformation field on a regular grid. Most accurate
methods for nonrigid image registration are inspired by models from physics,
either from elasticity [4,5], or fluid mechanics [2,3] but they are considered com-
putationally expensive. Hence, several methods have been proposed based on
various heuristics to approximate the underlying physical reality by alternative
mathematical models [1]. Likar and Pernus [7] proposed a hierarchical image
subdivision strategy by decomposing the nonrigid matching problem into an
elastic interpolation of various local rigid registrations of sub-images of decreas-
ing size. This algorithm is applicable to both intra- and inter-modal cases as it
maximizes the local MI among sub-images. Although MI has been successfully
applied to nonrigid image registration, it is worth noting that the MI-based
registration methods might have a limited performance, once the initial mis-
alignment of the two images is large or equally the overlay region of the two
images is relatively small. Moreover, MI is sensitive to the changes that occur in
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the distributions (overlap statistics) as a result of changes in the region of over-
lap. To circumvent these limitations, various approaches have been proposed to
improve the robustness of MI-based registration, including normalized mutual
information (NMI) [15]. The NMI approach is a robust similarity measure that
allows for fully automated intermodal image registration algorithms. Moreover,
the NMI-based registration is less sensitive to the changes in the overlap of two
images. Wang and Vemuri [19] introduced the cross-cumulative residual entropy
(CCRE), which is a measure of entropy defined using cumulative distributions.
In this approach, CCRE between two images to be registered is maximized over
the space of smooth and unknown nonrigid transformations. The reported results
showed a better performance than MI-based methods. In [8], Loeckx et al. pro-
posed the conditional mutual information (cMI) as a new similarity measure for
nonrigid image registration. This measure was calculated as the expected value
of the cMI between the image intensities given the spatial distribution. Recently,
Myronenko et al. [13] proposed to minimize a residual complexity (RC) instead
of mutual information. This approach deals with complex spatially-varying in-
tensity distortions and produces accurate registration results.

In this paper, we propose a nonrigid image registration approach by optimizing
the Jensen-Tsallis (JT) similarity measure using the quasi-Newton method as an
optimization scheme and a cubic B-spline for modeling the nonrigid deformation
field between the reference and target 3D image pairs. The analytical gradient
of the JT similarity is derived so that we can achieve an efficient and accurate
nonrigid registration.

The rest of the paper is organized as follows. In Section 2, we describe in
detail the proposed method. Section 3 provides experimental results on a medical
imaging dataset that demonstrate the effectiveness and superior performance of
our method compared to RC and NMI approaches. And finally, in Section 4, we
conclude and point out future work directions.

2 Proposed Method

2.1 Jensen-Tsallis (JT) Similarity

Shannon’s entropy of a probability distribution p = (p1, p2, . . . , pk) is defined
as H(p) = −∑k

j=1 pj log(pj). A generalization of Shannon entropy is Tsallis
entropy given by

Hα(p) =
1

1− α

( k∑
j=1

pα
j − 1

)
= −

k∑
j=1

pα
j logα(pj), (1)

where logα is the α-logarithm function defined as logα(x) = (1−α)−1(x1−α−1)
for x > 0, and α ∈ (0, 1) ∪ (1,∞) is the entopic index. This generalized entropy
is widely used in statistical physics applications [16].
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Definition 1. Let p1, p2, . . . , pn be n probability distributions. The
Jensen-Tsallis (JT) divergence is defined as

Dω
α (p1, . . . , pn) = Hα

(
n∑

i=1

ωipi

)
−

n∑
i=1

ωiHα(pi). (2)

where Hα(p) is Tsallis entropy, and ω = (ω1, ω2, . . . , ωn) is a weight vector such
that

∑n
i=1 ωi = 1 and ωi ≥ 0.

Using the Jensen inequality, it is easy to check that if α > 0 then the JT diver-
gence is nonnegative, symmetric and vanishes if and only if all the probability
distributions are equal. Moreover, if α ∈ [1, 2] then the JT divergence Dω

α is a
convex function [12]. In the sequel, we will restrict α ∈ [1, 2], unless specified
otherwise. In addition to its convexity property, the JT divergence is an adapted
measure of disparity among n probability distributions as shown in the next
result [12].

Proposition 1. The JT divergence achieves its maximum value when the prob-
ability distributions p1, . . . , pn are distributions, that is pi = (δij), where δij = 1
if i = j and 0 otherwise.

Proposition 2. The upper-bound of Dω
α is given by Dω

α(p1, . . . , pn) ≤ Hα(ω).

Since Hα(ω) attains its maximum value when the weights are uniformly dis-
tributed (i.e. ωi = 1/n, ∀i), it follows that a tight upper bound of the JT diver-
gence is given by

Dω
α(p1, . . . , pn) ≤ Hα(1/n, . . . , 1/n) = logα n (3)

If we are measuring the similarity, Sω
α (p1, . . . , pn), between probability distri-

butions, then using Eq. (3) we may define the JT similarity measure as follows:

Sω
α (p1, . . . , pn) = 1− Dω

α (p1, . . . , pn)
logα n

. (4)

Fig. 1 illusrates the JT similarity between two Bernoulli distributions p = (p, 1−
p) and q = (1−p, p) for different values of the entropic index. As shown in Fig. 1,
the highest similarity corresponds to the entropic index α = 2.

2.2 Problem Statement

In the sequel, we will use the JT similarity measure as a matching criterion to
solve the image alignment problem. Let I and J be two misaligned images to be
registered, where I is the reference image and J is the target image. The target
image J is obtained by applying a deformation field Φ to the reference image I,
as depicted in Fig. 2. This deformation field Φ is described by a transformation
function g(x; μ) : VJ → VI , where VJ and VI are continuous domains on which J
and I are defined, and μ is a set of transformation parameters to be determined.
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Fig. 1. JT similarity Sα(p, q) between two Bernoulli distributions p = (p, 1 − p) and
q = (1 − p, p) for different values of α
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Fig. 2. (a) Reference image I ; (b) target image J ; (c) deformation field Φ

Then, the image registration problem may be formulated as an optimization
problem

μ̂ = argmin
μ

Sω
α

(
I(x), J(g(x; μ))

)
. (5)

To align the transformed target image J(g(x; μ)) to the reference image I, we
seek the set of transformation parameters μ that minimize the image cost func-
tion Sω

α

(
I(x), J(g(x; μ))

)
.
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2.3 Transformation Model

Several transformation models have been proposed over the years to represent a
nonrigid deformation field. In this paper, we model the transformation g(x; μ)
using the free form deformation [11], which is based on cubic B-splines [18]. Let
Φ denote a nx × ny × nz mesh of control points ϕi,j,k with a uniform spacing
Δ. Then, the 3D transformation at any point x = [x, y, z]T in the target image
is interpolated using a linear combination of a cubic B-spline convolution kernel
as follows

g(x; μ) =
∑
ijk

ηijkβ(3)

(
x− ϕijk

Δ

)
, (6)

where β(3)(x) = β(3)(x)β(3)(y)β(3)(z) is a separable cubic B-spline convolution
kernel, and ηijk are the deformation coefficients associated to the control points
ϕijk. The degree of nonrigidity can be adopted to a specific registration problem
by varying the mesh spacing or the resolution of the mesh Φ.

2.4 Optimization of the JT Similarity

We adopt a limited memory quasi-Newton method for solving the optimization
problem given by Eq. (5). The calculation of the analytical gradient of the objec-
tive (JT similarity) function is necessary to not only avoid discretization errors
and also to achieve an efficient and robust optimization scheme.

Denote by X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} the sets of pixel
intensity values of the reference image I(x) and the deformed target image
J(g(x; μ)), respectively. Let X and Y be two random variables taking values
in X and Y. Then, we define the conditional intensity probability distributions
pi as

pi = pi

(
J(g(x; μ))|I(x)

)
= (pij)j=1,...,n, ∀i = 1, . . . , n,

where pij = P (Y = yj |X = xi) = p (j|i; μ) , j = 1, . . . , n. Note that in pij

the parameter vector μ is omitted for notational simplicity. It is worth pointing
out that if the images I and J are exactly matched, then pi = (δij) and by
Proposition 1, the JT divergence is therefore maximized and consequently the
JT similarity measure is minimized.

2.5 Derivative of the JT Similarity

In a typical registration problem, direct access to the marginal and joint proba-
bility densities is not available and hence the densities must be estimated from
the image data. Parzen windows can be used for this purpose. That is, the
densities are constructed by taking intensity samples from the image and super-
positioning kernel functions centered on the elements of these samples. We pro-
pose to use the B-spline Parzen window to estimate the conditional intensity
probability of the interpolated target image given the reference image. Let β(0)

be a zero-order spline Parzen window and β(3) be a cubic spline Parzen window,
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then the smoothed conditional probability of J(g(x; μ)) given I(x) is expressed
as:

p(j|i; μ) =
p (j, i; μ)

pI (i)
, (7)

where

p (j, i; μ) = ξ
∑
x∈V

β(0)

(
i− I(x)− f0

I

ΔbI

)
β(3)

(
j − J(g(x; μ))− f0

J

ΔbJ

)
, (8)

and

pI(i) = ξ
∑
x∈V

β(0)

(
i− I(x)− f0

I

ΔbI

)
. (9)

The normalization factor ξ ensures sum to one of the probabilities, and I(x) and
J(g(x; μ)) are samples of the reference and interpolated target images respec-
tively. These samples are normalized by the minimum intensity value, f0

I , f0
J , and

intensity range of each bin, ΔbI and ΔbJ respectively. The marginal probability
pI(i) is independent of the transformation parameters, and does not contribute
to the cost function derivative. Thus, it does not need to be smooth. Hence, a
zero order B-spline kernel is used. By taking the derivative of the conditional
probability with respect to μ, we get

∂p(j|i; μ)
∂μ

=
γ

pI(i)ΔbJ

∑
x∈V

β(0)

(
i− I(x)− f0

I

ΔbI

)
β

′(3)
(

j − J(g(x; μ)) − f0
J

ΔbJ

)

·
(

∂J(t)
∂t

∣∣∣∣
t=g(x;μ)

)
∂g(x; μ)

∂μ
,

(10)

where β
′(3) is the derivative of the cubic spline kernel:

β
′(3)(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.0 u ≤ −2
2u + 2 + 1

2u2 −2 < u ≤ −1
−2u− 3

2u2 −1 < u ≤ 0
−2u + 3

2u2 0 < u ≤ 1
2u− 2− 1

2u2 1 < u ≤ 2
0.0 u > 2

(11)

The JT similarity and its derivative are given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Sω

α (p1, . . . , pn) = 1− Dω
α (p1, . . . , pn)

logα n

∂Sω
α (p1, . . . , pn)

∂μ
= −∂Dω

α (p1, . . . , pn)
∂μ

× 1
logα n

(12)
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2.6 Summary of the Proposed Algorithm

The proposed algorithm is implemented by changing the deformation in the tar-
get image until the discrepancy between the target and reference images is min-
imized. The main algorithmic steps of our nonrigid image registration approach
are summarized in Algorithm 1. First, the algorithm initializes the deformation
field Φ by creating a uniform B-spline control grid with predefined spacing knots.
Next, a 3-level hierarchical multi-resolution scheme is used to achieve the best
compromise between the registration accuracy and the associated computational
cost. As the hierarchical level increases the resolution of the control mesh is in-
creased, along with the image resolution, in a coarse to fine fashion. In each
hierarchical level, a limited-memory, quasi-Newton minimization scheme is used
to find the optimum set of transformation parameters that reduce the JT cost
function until the difference between the cost function values in two consecutive
iterations is less than ε = 0.01. The resolution of the optimum set of transfor-
mation parameters, at a courser level, is increased to be used as starting point
for the next hierarchical level.

Algorithm 1. Proposed nonrigid registration approach
1: Initialize the deformation field Φ
2: for hierarchical level = 1 to 3 do
3: Calculate the cost function and its gradient as given by Eq. (12)
4: repeat
5: Use the quasi-Newton method to solve the optimization problem given by

Eq. (5)
6: Update the deformation field
7: Recalculate the cost function and its gradient
8: until the difference in consecutive iterates is less than ε = 0.01
9: Increase the resolution of both the deformation field and the image.

10: end for

3 Experimental Results

We tested the performance of the proposed approach on a medical imaging
dataset that was obtained from the brainweb database at the Montreal Neuro-
logical Institute [20]. This dataset contains a full 3D simulated brain MR data
volumes from several protocols, including T1-weighted (MR-T1), T2-weighted
(MR-T2), and proton density (MR-PD) with a variety of slice thicknesses, noise
levels, and levels of intensity non-uniformity. All the corresponding slices from
different protocols are originally aligned with each other. The images used in
our experiments have 181× 217× 181 voxels with a 1 mm voxel size in each di-
mension. To validate the nonrigid registration accuracy of the proposed method,
we first applied both geometric and intensity distortions to the reference im-
age in order to generate the target image. Then, we aligned the target image
with the reference image. We also compared the image registration results of our
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Table 1. Mean square error (MSE) statistics of the estimated nonrigid deformation

our method RC NMI
μg μ̂MSE σ̂MSE μ̂MSE σ̂MSE μ̂MSE σ̂MSE

2.1 0.4982 0.0325 0.5013 0.0251 0.7133 0.0436

3.0 0.5971 0.0843 0.5994 0.0413 0.8936 0.0362

4.6 0.7002 0.0157 0.7342 0.0321 1.0933 0.0733

5.1 0.7621 0.0241 0.7998 0.0379 1.4992 0.0536

5.7 0.7922 0.0252 0.8213 0.0317 1.6916 0.0837

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Geometric distortion experiment : (a) MR-T1 image; (b) distorted MR-T1
image with geometric distortion; (c) ground truth deformation field; (d)-(f) registered
images using our approach, RC, and NMI, respectively; (g)-(i) estimated deformation
fields using our approach, RC, and NMI, respectively

approach to RC and NMI approaches, which are implemented in the Medical
Image Registration Toolbox (MIRT) [13] and in the Image Registration Toolkit
(ITK) [14], respectively. In all the experiments we used an entropic index α = 2
and the normalized histogram of the reference image as the weight vector ω
for the JT similarity measure. In the first experiment, we distorted the refer-
ence image MR-T1 with a known nonrigid transformation field, or the so-called
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Geometric and intensity distortion experiment : (a) MR-T1 image; (b) distorted
MR-T1 image with geometric and intensity distortion; (c) ground truth deformation
field; (d)-(f) registered images using our approach, RC, and NMI, respectively; (g)-(i)
estimated deformation fields using our approach, RC, and NMI, respectively

ground truth deformation. Then, we applied the proposed registration approach,
RC and NMI algorithms. And finally, we compared the obtained deformations
fields with the ground truth. Fig. 3 depicts the results obtained from this ex-
periment. Note that the registered target images obtained using the proposed
approach and RC approach are visually more similar in shape to the target im-
age than the image produced by the NMI approach. Moreover, the estimated
transformation field resulted from our algorithm is more similar to the ground
truth than of the field deformations obtained using RC and NMI approaches.
To measure the registration accuracy of the proposed method, we computed the
mean (μ̂MSE) and standard deviation (σ̂MSE) of the mean squared error (MSE)
between the ground truth and estimated displacement vectors. Table 1 displays
the MSE statistics of the estimated nonrigid deformation, when compared to the
ground truth. The first column shows the mean ground truth deformation, which
represents the magnitude of the displacement vector that is used to generate the
target images in each experiment. For each row twenty different transformation
fields with this mean are generated and applied to the reference image in order to
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Multimodality experiment: (a) MR-T2 image; (b) distorted MR-T1 image with
geometric distortion; (c) ground truth deformation field; (d) and (e) registered images
using our approach, and NMI, respectively; (f) the estimated transformation using our
approach

generate the corresponding target images. The second and third columns display
the average and standard deviation of MSE for the generated twenty pairs of
reference-target images. The results obtained using the proposed approach are
considerably small compared to those of RC and NMI methods.

In the second experiment, we used similar steps as in the first experiment, but
this time we generated the target image by distorting the reference image with
both intensity and geometric distortions. The intensity distortion is generated
by corrupting the reference image as follows [13]:

– I(x, y) = Iγ(x, y) + υ
xy

MN
+

1
K

K∑
k=1

exp
(
−‖ [x; y]− ΨK ‖2

2σ2

)
– Rescale I to [0, 1],

where the first term represents the gamma correction on I after geometric dis-
tortion, the second term models a smoothly varying global intensity field and the
third term models locally-varying intensity field with a mixture of K Gaussian
densities. In this experiment, we chose a distortion level 2 with parameters as
follows: υ = 0.4, K = 1, ΨK were randomly selected from the interval [1, ν] (ν is
the size of the image domain), σ = 30, and γ is selected randomly from [0.9, 1.2].
The registered images shown in Fig. 4 demonstrate that the proposed algorithm
outperforms the RC approach, in the presence of spatially-varying intensity dis-
tortion. The result obtained by the NMI approach shows a poor performance.
Moreover, the estimated deformation field obtained by our approach shows su-
perior accuracy in comparison to RC and NMI methods.
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3.1 Multimodality Test

The images used in this experiment are corresponding slices from MR-T1 and
MR-T2 image pair, and they are originally aligned with each other. In this
experiment we registered the geometrically deformed MR-T1 image onto MR-
T2 image using our approach and the NMI method. We omitted the result of the
RC approach because it is not applicable to multimodal images. Fig. 5 shows the
accuracy of our method in registering images from different modalities. As can
be seen, the registered image using the NMI approach still has a considerable
amount of misregistration. However, most of the visible amount of misalignment
in the target image has been removed after applying the proposed approach. In
addition, the nonrigid transformation estimated by the proposed method looks
very similar to the ground truth, indicating a much better performance of our
approach.

4 Conclusions

An information-theoretic framework for nonrigid image registration was pro-
posed. The experimental results on a medical imaging dataset indicate the feasi-
bility of the proposed approach and a much better performance compared to RC
and NMI methods in terms of registration accuracy in the presence of intensity
and geometric distortions. Future work will focus on extending our approach to
nonrigid multimodal image registration.
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Abstract. The presence of precipitates in metallic materials affects its
durability, resistance and mechanical properties. Hence, its automatic
identification by image processing and machine learning techniques may
lead to reliable and efficient assessments on the materials. In this paper,
we introduce four widely used supervised pattern recognition techniques
to accomplish metallic precipitates segmentation in scanning electron
microscope images from dissimilar welding on a Hastelloy C-276 alloy:
Support Vector Machines, Optimum-Path Forest, Self Organizing Maps
and a Bayesian classifier. Experimental results demonstrated that all
classifiers achieved similar recognition rates with good results validated
by an expert in metallographic image analysis.

Keywords: Support Vector Machines, Optimum-Path Forest, Scanning
Electron Microscope, Metallic Precipitates Segmentation, Hastelloy
C-276.

1 Introduction

Nickel based alloys are an important class of metallic materials especially em-
ployed under severe operational conditions, mainly because of its high temper-
ature strength and resistance to corrosion/oxidation. In this context, Hastelloy
C276 alloy has been notably used as protective coating against corrosion on in-
ner surface in equipments from petroleum and petrochemical industries due to
the high contents of chromium, molybdenum, and tungsten.
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Among many manufacturing process used to deposit the coating, the arc weld-
ing process is one of the most important. During the solidification of the liquid
metal in the weld pool, a phenomenon of microsegregation from solid dendrite
to liquid interdendritic is observed for some elements as molybdenum and tung-
sten [14].

In the final stage of solidification, the liquid enriched in Mo (molybdenum)
and W (tungsten) originates a new phase, known as topologically closed packed
(TCP) phase [14], which is detrimental to mechanical properties due to its hard
and brittle nature [1]. Besides that, the resistance to corrosion of these type
of alloys can be decreased by the precipitation of the Mo-rich TCP phase. In
addition, the formation of TCP phases are responsible for the weld metal hot
cracks in Hastelloy C-276 [5]. In order to avoid or minimize these deleterious
phases, it has a consensus about choosing the welding parameters in a properly
manner.

Nonetheless, to verify the effect of welding parameters on the formation of
TCP phases it is often necessary to accurately identify the amount of precip-
itates, which are responsible to decrease the mechanical properties of metallic
materials. Thus, it is very important to have an effective tool to identify and
further quantity the material precipitates and microstrutures, in order to assess
the quality of metallic materials as a whole.

Albuquerque et al. [2] have addressed this problem using image processing
techniques together with machine learning ones in order to speed up the pro-
cess and to make it less prone to errors inherent to human inspection. In that
work, it was presented and evaluated computational solutions for segmentation
and quantification of different types of cast iron microstructures from optical
microscopy images based on Artificial Neuronal Networks with Multilayer Per-
ceptron (ANN-MLP)and Self-Organizing Maps (SOM), which were compared
against a commercial system. As far as we know, only Albuquerque et al. [4]
tackled the problem of material precipitates segmentation using images obtained
from scanning electron microscope (SEM).

Hence, we propose in this work to apply machine learning techniques that
have not been applied to this context up to date, such as: Optimum-Path Forest
(OPF), two different implementations of Support Vector Machines (SVMs), SOM
and a Bayesian classifier. The remainder of the paper is organized as follows. As
the OPF classifier was recently introduced, we dedicated a Section to introduce
its fundaments and learning algorithm (Section 2). Section 3 addresses the
methodology and the used dataset. The experimental results are addressed in
Section 4 and the conclusions are stated in Section 5.

2 Pattern Recognition by Optimum-Path Forest

The Optimum-Path Forest is a framework to assist the development of pattern
recognition techniques based on optimum-path forest [12]. An OPF-based clas-
sifier models the problem of pattern recognition as a graph partition in a feature
space induced by the dataset. Each sample is represented by a set of features
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and a distance function measures their dissimilarity in the feature space. The
training samples are then interpreted as the nodes of a graph, whose arcs are
defined by a given adjacency relation and weighted by the distance function. It
is expected that samples from a same class/cluster are connected by a path of
nearby samples. Therefore, the degree of connectedness for any given path is
measured by a connectivity (path-value) function, which exploits the distances
along the path.

In supervised learning, the true label of the training samples is known and
so it is exploited to identify key samples (prototypes) in each class. Optimum
paths are computed from the prototypes to each training sample, such that each
prototype becomes root of an optimum-path tree composed by its most strongly
connected samples. The labels of these samples are assumed to be the same of
their root. In unsupervised learning, each cluster is represented by an optimum-
path tree rooted at a single prototype but we do not know the class label of the
training samples. Therefore, we expect that each cluster contains only samples
of a same class and some other information about the application is needed to
complete classification.

The basic idea is then to specify an adjacency relation and a path-value func-
tion, compute prototypes and reduce the problem into an optimum-path forest
computation in the underlying graph. The training forest becomes a classifier
which can assign to any new sample the label of its most strongly connected
root. Essentially, this methodology extends a previous approach, called Image
Foresting Transform [8], for the design of image processing operators from the
image domain to the feature space.

Papa et al. [11] presented a first method for supervised classification using
a complete graph (implicit representation) and the maximum arc weight along
a path as connectivity function. The prototypes were chosen as samples that
share an arc between distinct classes in a minimum spanning tree of the training
set [7].

Another supervised learning method was proposed in [10]. In this case, the
arcs connect k-nearest neighbors (k-nn) in the feature space. The distances be-
tween adjacent nodes are used to estimate a probability density value of each
node and optimum paths are computed from the maxima of this probability
density function (pdf). For large datasets, we usually use a smaller training set
and a much larger evaluation set to learn the most representative samples from
the classification errors in the evaluation set. This considerably improves classi-
fication accuracy of new samples. This strategy was assessed with k-nn graphs
in [13]. The accuracy results can be better than using similar strategy with com-
plete graph [11] for some situations, but the latter is still preferred because it is
faster and does not require the optimization of the parameter k.

An unsupervised version of OPF was presented by Rocha et al. [15], which is
quite similar to the supervised one with k-nn graph. The main difference rely on
the estimation of the best k value: in this case, as we do not have information
about labels, the k value chosen is the one that minimizes the minimum cut
over the whole graph. In this paper, we adopted the OPF with complete graph,
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since that this version is the most used. For sake of simplicity, any further refer-
ence to OPF will mean this version. The next sections will details the training,
classification and the learning with pruning procedures for OPF.

2.1 Training

In large datasets, the number of labeled samples for training is usually large.
Therefore, a first strategy to make a classifier more efficient is the use of two
labeled and disjoint sets, Z1 and Z2, |Z1| : |Z2|, being the first the actual
training set and the second an evaluation set. The purpose of the evaluation set
is to improve the quality of the samples in the training set, without increasing its
size, by replacing classification errors in Z2 by non-prototype samples of Z1 [11].
After this learning process, the classifier is ready to be tested on any unseen
dataset Z3. For validation purpose, this process must also be repeated several
times, with different random and disjoint sets Z1, Z2, and Z3, in order to obtain
the average accuracy results.

Let (Z1, A) be a complete graph whose nodes are the samples in Z1 and
any pair of samples defines an arc in A = Z1 × Z1. The arcs do not need to
be stored and so the graph representation is implicit. A path is a sequence of
distinct samples πt = 〈s1, s2, . . . , sk−1, t〉 with terminus t, where (si, si+1) ∈ A
for 1 ≤ i ≤ k − 1. A path is said trivial if πt = 〈t〉. We assign to each path πt

a cost f(πt) given by a path-value function f . A path πt is considered optimum
if f(πt) ≤ f(τt) for any other path τt with the same terminus t. We also denote
by πs · 〈s, t〉 the concatenation of a path πs and arc (s, t).

Training essentially consists of finding an optimum-path forest in (Z1, A),
which is rooted in a special set S ⊂ Z1 of prototypes. As proposed in [11],
the set S is represented by samples that share arcs between distinct classes in
a minimum-spanning tree (MST) of (Z1, A) [7]. For path-value function fmax,
these prototypes (roots of the forest) tend to minimize the classification errors
in Z1, when their labels are propagated to the nodes of their trees:

fmax(〈s〉) =
{

0 if s ∈ S
+∞ otherwise,

fmax(πs · 〈s, t〉) = max{fmax(πs), d(s, t)}, (1)

such that fmax(πs) computes the maximum distance between adjacent samples
in a non-trivial path πs.

The training algorithm for the OPF classifier [11] assigns one optimum path
P ∗

1 (s) from S to every sample s ∈ Z1, forming an optimum path forest P1 (a
function with no cycles which assigns to each s ∈ Z1\S its predecessor P1(s) in
P ∗

1 (s) or a marker nil when s ∈ S). Let R1(s) ∈ S be the root of P ∗
1 (s) (which

can be reached from P1(s)), the OPF algorithm computes for each s ∈ Z1,
the minimum cost C1(s) of P ∗

1 (s), the class label L1(s) = λ(R1(s)), and the
predecessor P1(s). Algorithm 1 implements this training procedure.
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Algorithm 1 – Training Algorithm

Input: A λ-labeled training set Z1 and the pair (v, d) for feature vector and
distance computations.

Output: Optimum-path forest P1, cost map C1, label map L1, and ordered set
Z′

1.
Auxiliary: Priority queue Q, set S of prototypes, and cost variable cst.

1. Set Z′
1 ← ∅ and compute by MST the prototype set S ⊂ Z1.

2. For each s ∈ Z1\S, set C1(s) ← +∞.
3. For each s ∈ S, do
4. C1(s) ← 0, P1(s) ← nil, L1(s) ← λ(s), and insert s in Q.
5. While Q is not empty, do
6. Remove from Q a sample s such that C1(s) is minimum.
7. Insert s in Z′

1.
8. For each t ∈ Z1 such that t �= s and C1(t) > C1(s), do
9. Compute cst ← max{C1(s), d(s, t)}.
10. If cst < C1(t), then
11. If C1(t) �= +∞, then remove t from Q.
12. P1(t) ← s, L1(t) ← L1(s), C1(t) ← cst.
13. Insert t in Q.
14. Return a classifier [P1, C1, L1, Z

′
1].

2.2 Classification

In [11], the classification of each new sample t ∈ Z2 (or Z3) is done based on the
distance d(s, t) between t and each training node s ∈ Z1 and on the evaluation
of the following equation:

C2(t) = min{max{C1(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let s∗ ∈ Z ′
1 be the node s that satisfies Equation (2). It essentially considers

all possible paths πs from S in (Z1, A) extended to t by an arc (s, t), finds the
optimum path P ∗

1 (s∗) · 〈s∗, t〉, and label t with the class λ(R1(s∗)) of its most
strongly connected prototype R1(s∗) ∈ S (i.e., L2(t)← L1(s∗) = λ(R1(s∗))).

Note that Z1 can be replaced by Z ′
1 in Equation (2) and its evaluation can halt

when max{C1(s), d(s, t)} < C1(s′) for a node s′ whose position in Z ′
1 succeeds the

position of s. This avoids to visit all nodes in Z ′
1 in many cases and the efficiency

gain increases with the time complexity of d(s, t). Algorithm 2 implements this
scheme for classification procedure.

In Algorithm 2, the main loop (Lines 1−9) performs classification of all nodes
in Z2. The inner loop (Lines 4− 9) visits each node ki+1 ∈ Z ′

1, i = 1, 2, . . . , |Z ′
1|

until an optimum path πki+1 · 〈ki+1, t〉 be found. In the worst scenario, it visits
all nodes in Z ′

1 (Line 4). Line 5 evaluates fmax(πki+1 · 〈ki+1, t〉) and Lines 7− 8
updates cost, label and predecessor of t whenever πki+1 · 〈ki+1, t〉 is better than
the current path πt (Line 6).
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Algorithm 2 – OPF classification

Input: Classifier [P1, C1, L1, Z
′
1], evaluation set Z2 (or test set Z3), and the

pair (v, d) for feature vector and distance computations.
Output: Label L2 and predecessor P2 maps defined for Z2.
Auxiliary: Cost variables tmp and mincost.

1. For each t ∈ Z2, do
2. i ← 1, mincost ← max{C1(ki), d(ki, t)}.
3. L2(t) ← L1(ki) and P2(t) ← ki.
4. While i < |Z′

1| and mincost > C1(ki+1), do
5. Compute tmp ← max{C1(ki+1, d(ki+1, t)}.
6. If tmp < mincost, then
7. mincost ← tmp.
8. L2(t) ← L(ki+1) and P2(t) ← ki+1.
9. i ← i + 1.
10. Return [L2, P2].

2.3 Pruning Irrelevant Patterns

Large datasets usually present redundancy, so at least in theory it should be
possible to estimate a reduced training set with the most relevant patterns for
classification. The use of a training set Z1 and an evaluation set Z2 has al-
lowed us to learn relevant samples for Z1 from the classification errors in Z2, by
swapping misclassified samples of Z2 and non-prototype samples of Z1 during a
few iterations [11]. In this learning strategy, Z1 remains with the same size and
the classifier instance with the highest accuracy is selected to be tested in the
unseen set Z3. In this section, we use this learning procedure (as described in
Algorithm 3) within a method (Algorithm 4) to reduce the training set size by
identifying and eliminating irrelevant samples from Z1.

Algorithm 3 – OPF Learning Algorithm

Input: A λ-labeled training and evaluating sets Z1 and Z2, respectively, num-
ber T of iterations, and the pair (v, d) for feature vector and distance
computations.

Output: Optimum-path forest P1, cost map C1, label map L1, and ordered set
Z′

1.
Auxiliary: Arrays FP and FN of sizes c for false positives and false negatives,

set S of prototypes, and list LM of misclassified samples.

1. Set MaxAcc ← −1.
2. For each iteration I = 1, 2, . . . , T , do
3. LM ← ∅ and compute the set S ⊂ Z1 of prototypes.
4. [P1, C1, L1, Z

′
1] ← Algorithm 1 (Z1, S, (v, d)).

5. For each class i = 1, 2, . . . , c, do
6. FP (i) ← 0 and FN(i) ← 0.
7. [L2, P2] ← Algorithm 2 (Z′

1, Z2, (v, d))
8. For each sample t ∈ Z2, do
9. If L2(t) �= λ(t), then
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10. FP (L2(t)) ← FP (L2(t)) + 1.
11. FN(λ(t)) ← FN(λ(t)) + 1.
12. LM ← LM ∪ t.
13. Compute accuracy Acc according to [11].
14. If Acc > MaxAcc then save the current instance [P1, C1, L1, Z

′
1]

15. of the classifier and set MaxAcc ← Acc.
16. While LM �= ∅
17. LM ← LM\t.
18. Replace t by a non-prototype sample, randomly selected from Z1.
19. Return the classifier instance [P1, C1, L1, Z

′
1] with the highest accuracy in Z2.

The efficacy of Algorithm 3 increases with the size of Z1, because more non-
prototype samples can be swapped by misclassified samples of Z2. However, for
sake of efficiency, we need to choose some reasonable maximum size for Z1. After
learning the best training samples for Z1, we may also mark paths in P1 used to
classify samples in Z2 and define their nodes as relevant samples in a set R. The
“irrelevant” training samples in Z1\R can then be moved to Z2. Algorithm 4
applies this idea repetitively, while the loss in accuracy on Z2 with respect to
the highest accuracy obtained by Algorithm 3 (using the initial training set size)
is less or equal to a maximum value MLoss specified by the user.

Algorithm 4 – Learning-with-Pruning Algorithm

Input: Training and evaluation sets, Z1 and Z2, labeled by λ, the pair (v, d)
for feature vector and distance computations, maximum loss MLoss
in accuracy on Z2, and number T of iterations.

Output: EOPF classifier [P1, C1, L1, Z
′
1] with reduced training set.

Auxiliary: Set R of relevant samples, and variables Acc and tmp.

1. [P1, C1, L1, Z
′
1] ← Algorithm 3 (Z1, Z2, T, (v, d)).

2. [L2, P2] ← Algorithm 2(Z′
1, Z2, (v, d)) and store accuracy in Acc.

3. tmp ← Acc and R ← ∅.
4. While |Acc − tmp| ≤ MLoss and R �= Z1 do
5. R ← ∅.
6. For each sample t ∈ Z2, do
7. s ← P2(t) ∈ Z1.
8. While s �= nil, do
9. R ← R∪ s.
10. s ← P1(s).
11. Move samples from Z1\R to Z2.
12. [P1, C1, L1, Z

′
1] ← Algorithm 3 (Z1, Z2, T, (v, d)).

13. [L2, P2] ← Algorithm 2 (Z′
1, Z2, (v, d)) and store accuracy in tmp.

14. Return [P1, C1, L1, Z
′
1].

In Algorithm 4, Lines 1 − 3 compute learning and classification using the
highest accuracy classifier obtained for an initial training set size. Its accuracy
is stored in Acc and used as reference value Acc in order to stop the pruning
process, when the loss in accuracy is greater than an user-specified value MLoss
or all training samples are considered relevant. The main loop in Lines 4 − 13
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essentially marks the relevant samples in Z1 by following backwards the optimum
paths used for classification (Lines 5− 10), moves irrelevant samples to Z2, and
repeats learning and classification from a reduced training set until it reaches
the above stopping criterion.

3 Methodology

The material used to evaluate classifiers was a dissimilar metal weld of Hastelloy
C276 alloy on a C-Mn steel substrate. The testing samples were extracted from
the welded plates and subsequently went through a metallographic processing,
which consists in sanding, polishing and electrolytic etching. All samples were
etched using 10% chromic acid, and a 2V tension applied during 15 seconds.

The SEM images were obtained in secondary electron (SE) mode, which
presents an adequate contrast between the precipitates and the matrix, due to
the enrichment of the precipitates by elements with higher atomic weight such
as Mo and W. After the imaging acquisition process, the images were submitted
to the analysis of the machine learning solutions under evaluation.

Regarding machine learning techniques, we used here five implementations:
Self Organizing Maps (SOM), Optimum-Path Forest (OPF), SVM without ker-
nel mapping (SVM-nokernel), SVM with RBF (Radial Basis Function) as kernel
mapping (SVM-RBF) and a Bayesian classifier. For SOM, we used our own im-
plementation with a 5 × 5 neuronal lattice and 10 iterations for learning. The
OPF implementation we used was the one from LibOPF [12], which is a free li-
brary of optimum-path forest-based classifiers. For OPF learning algorithm, we
used the pruning procedure described in Section 2.3. Regarding SVM-nokernel
we adopted LibLINEAR [9] with parameters optimized by cross-validation, and
for SVM-RBF we used SVMTorch [6]. Finally, for Bayesian classifier we used
our implementation.

As we are working with supervised pattern recognition techniques, it is neces-
sary to have labeled data for the learning process. Thus, we asked for an expert
in metallographic image analysis to label an entire image in two classes: fore-
ground (precipitates) and background (matrix). Figure 1 displays the image used
to train the classifiers (a) and its respective labeled image (b), in which the red
pixels mean the precipitates. In this work, each pixel is considered as a sample
to build the dataset, and the feature vector used as input is composed by the
gray value of each pixel.

4 Experimental Results

In this section, we present the experiments realized in order to asses the ro-
bustness of the classifiers, which were conducted in two phases: in the former
(Section 4.1) we used 1% for training and the remaining 99% for classification.
The samples were obtained through the whole image shown in Figure 1. In the
latter round of experiments (Section 4.2), we used the same 1% above to train
the classifiers and further to label another image of the dataset. We conducted



464 J.P. Papa et al.

(a) (b)

Fig. 1. (a) SEM image used in the first round of experiments (Section 4.1) and (b)
after be labeled by an expert

an extra experiment in Section 4.1 in order to assess the performance of OPF
learning with pruning algorithm described in Section 2.3. For that experiment,
we divided the above 1% in 10% for training and 90% for the evaluating set.
The MLoss variable in Algorithm 4 was set to 0.3. Notice that all these values
were empirically chosen based on our previous experience.

The accuracies are measured by taking into account that the classes may have
different sizes in Z2 (similar definition is applied for Z3). If there are two classes,
for example, with very different sizes and a classifier always assigns the label of
the largest class, its accuracy will fall drastically due to the high error rate on
the smallest class.

Let NZ2(i), i = 1, 2, . . . , c, be the number of samples in Z2 from each class i.
We define the errors ei,1 and ei,2:

ei,1 =
FP (i)

|Z2| − |NZ2(i)| and ei,2 =
FN(i)
|NZ2(i)| , i = 1, . . . , c, (3)

where FP (i) and FN(i) are the false positives and false negatives, respectively.
That is, FP (i) is the number of samples from other classes that were classified
as being from the class i in Z2, and FN(i) is the number of samples from the
class i that were incorrectly classified as being from other classes in Z2. The
errors ei,1 and ei,2 are then used to define:

E(i) = ei,1 + ei,2, (4)

where E(i) is the partial sum error of class i. Finally, the accuracy Acc, are
defined as:

Acc =
2c−∑c

i=1 E(i)
2c

= 1−
∑c

i=1 E(i)
2c

. (5)

4.1 Robustness of Classifiers

Table 1 display the mean results using 1% for training and 99% for classification
after 10 rounds with randomly chosen sets. These experiments were performed
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Table 1. Mean accuracy and mean training and classification times for OPF, SVM-
RBF, SVM-noKernel and SOM

Classifier Accuracy % Training time [s] Classification Time [s]

OPF 89.86±5.08 0.314 0.594

SVM-RBF 90.84±1.71 0.149 1.672

SVM-noKernel 94.56±2.86 9.965 0.140

SOM 88.87±3.21 0.045 0.065

Bayesian 87.47±1.28 0.025 49.89

(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) SEM image used in the second round of experiments and its respectively
classified images by (b) OPF, (c) SVM-noKernel, (d) SVM-RBF, (e) SOM and (f)
Bayesian
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using a PC with Intel R© Core I5 processor and 4Gb RAM and Linux Ubuntu
10.04 as the operational system.

Although SVM-noKernel achieved the best results, OPF, SVM-RBF, SOM
and Bayesian were also similar if we consider the standard deviation. The fastest
classifier for training was Bayesian one, and for classification was SOM, and the
best trade-off between efficiency and effectiveness was achieved by OPF, which
was the second faster classifier and 11.129 times faster than SVM-noKernel if
we take into account the whole execution time, i.e., training plus classification.

Concerning the extra experiment, i.e., the one using OPF learning with prun-
ing algorithm, OPF achieved 91.23% of recognition rate and pruned 97.38% of
the training set. Now, the OPF testing time decreased to 0.171 seconds, which
turn OPF with training set pruning 3.45 faster than traditional OPF for classi-
fication. Note that the accuracy also increased, even reducing the training set.

4.2 Automatic Labeling Images

In this second round of experiments, we applied the same 1% training set used
in the previous section to train the classifiers for further labeling another SEM
image of the dataset, as illustrated in Figure 2a.

It is possible to observe, from visual assessment, that all approaches achieved
reasonable results regarding the quality of the segmentation (Figures 2(b)-(e)).
Thus, it feasible to make the Hastelloy C-276 alloy automatic characterization in
a precisely and efficiently manner, since that the human inspection may be prone
to errors due to the subjectivity of this process, as addressed by Albuquerque
et al. [3]. Hence, this work may contribute with a comparison among supervised
pattern recognition techniques in order to obtain fast and reliable results to this
urged and demanded task.

5 Conclusions

In this paper, we addressed the problem of metallic precipitates segmentation
in SEM images, which may affect the material durability and resistance. As
there are very few works in this context, the present one assumes a significantly
contribution by performing a comparison among the state-of-the-art supervised
pattern recognition to accomplish this task.

We conducted two rounds of experiments: (i) in the former, the accuracy of
two different implementations of SVMs, SOM and OPF were compared in terms
of effectiveness and efficiency for training and classification, and (ii) in the latter
experiment we used the classifiers trained in the previous one to label a another
image of the dataset. Regarding accuracy over the classification set, all classi-
fiers were similar if we consider the standard deviation, been SOM the fastest
one. Additionally, OPF achieved the best trade-off between effectiveness and
efficiency. Finally, in the second round, we attested that all classifiers produced
similar results to label an image that did not belong to the training set. In ad-
diction, these segmentation results were considered feasible by an expert in in
metallographic image analysis.
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Abstract. Nuclear Magnetic Resonance (NMR) Spectroscopy is a
rapidly developing technique that measures chemicals within the brain
without removing tissue or blood samples. Furthermore, it is an impor-
tant tool for performing non-invasive quantitative assessments of brain tu-
mour glucose metabolism. The principles underlying this technique have
been successfully used to produce high quality images of neuroanatomy
and disease processes. Unfortunately, current diagnosis techniques ignore
the dynamic aspects of these signals. It is largely believed that temporal
variations of NMR Spectra are simply due to noise or do not carry enough
information to be exploited by any reliable diagnosis procedure. In this
paper, we investigate the underlying characteristics of these signals us-
ing some complexity measures in combination with information theoretic
concepts. The dynamics of these signals are further analyzed using ele-
ments from the theory of nonlinear dynamical systems. Furthermore, we
show that they exhibit rich chaotic dynamics suggesting the encoding of
metabolic pathway information.

Keywords: NMR Spectroscopy, medical diagnosis, nonlinear dynamics,
information theory.

1 Introduction

The last decade has seen a rise in the application of proton NMR spectroscopy
techniques, fundamentally in fields such as biological research [21], [23] and clin-
ical diagnosis [22], [24]. The main goal within the biological research field is to
achieve a deep understanding of metabolic processes that may lead to advances
in many areas including clinical diagnosis, functional genomics, therapeutics and
toxicology. From a clinical diagnosis point of view, a large number of proton NMR
spectroscopy applications have targeted the human brain. This is mainly due to
the fact that proton NMR spectroscopy is a non-invasive technique, which is
particularly important in this part of the body where clinical surgery or biopsy
is more delicate than in other areas. In this paper, the focus is on proton NMR
brain spectroscopy. The process of clinical diagnosis involves the analysis of
spectroscopy signals obtained from a well-defined cubic volume of interest (sin-
gle voxel experiment) in a specific region of the brain during a pre-defined time
frame (acquisition time). Two acquisition methods are commonly used, namely

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 469–482, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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point resolved spectroscopy (PRESS) [5] or stimulated echo acquisition mode
(STEAM) [20]. The clinical researcher has a strong interest in understanding
the role of metabolites under normal and pathological conditions, which is not
possible without a deep knowledge of the interactions between them. These in-
teractions are based on a wide set of chemical reactions which are organized
into metabolic pathways. Specifically, the chemical reactions involve the trans-
formation of one metabolite into another through a series of steps catalysed by a
sequence of enzymes. Surprisingly, the most relevant characteristic of metabolic
pathways [9], [15] is their universality, i.e. the fact that metabolic pathways are
very similar even across quite different species. It is noteworthy that the concept
of metabolic pathways is inherently associated with a dynamic context [4], [8].
Therefore, extracting information about metabolic pathways from complex bio-
logical data sets like those generated through NMR spectroscopy is a challenging
research task that requires consideration of the dynamic aspects of these signals.

However, current diagnosis techniques ignore the dynamic aspects of these
signals. It is largely believed that the information content of temporal variations
of NMR Spectra is minimal. Thus, current diagnosis procedures are constrained
to empirical observations extracted from a single averaged spectrum.

The rest of this paper is organized as follows: In the next section, the problems
and difficulties associated with the processing of NMR signals are presented. In
section 3 a formal characterization of NMR-based data using complexity mea-
sures and information theoretic concepts is introduced. Section 4 focuses on the
dynamic aspects of NMR spectral signals. Finally, section 5 provides a summary
of the present study and some concluding remarks.

2 Problems Associated with NMR Data

Generally speaking, the spectral signals associated with brain metabolites are
characterized by one or more peaks at certain resonance frequencies. Further-
more, the molecular structure of a particular metabolite is reflected by a typical
peak pattern. In addition, it is also important to note that the area (amplitude)
of a peak is proportional to the number of nuclei that contribute to it and there-
fore to the concentration of the metabolite to which the nuclei belong. Most of
the metabolites have multiple resonances many of which are split into multiplets
as a result of homonuclear proton scalar coupling. This fact is particularly true
of proton NMR spectroscopy at clinical field strengths (from 1.5 up to 3 Teslas),
where the whole spectrum occupies a narrow frequency range, normally from
-0.8 up to 4.3 parts per million (ppm hereafter) in brain NMR spectroscopy,
resulting in significant overlap of peaks from different metabolites. In addition,
the response of coupled spins is strongly affected by the acquisition parame-
ters of the NMR sequence (e.g. radio frequency pulses employed and the time
intervals set between them [3]. Furthermore, additional difficulties are caused
by the presence of uncharacterized resonances from macromolecules or lipids.
Specifically, in a typical NMR profile a large number of the resonances may be
unassigned, particularly for low level or partially resolved signals. This is further
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complicated by small but significant sample to sample variations in the chem-
ical shift position of signals, produced by effects such as differences in pH and
ionic strength. This kind of positional noise remains a problem as information
coming from a given metabolite contaminates the spectral dimensions contain-
ing information from other metabolites. In other words, due to this phenomenon
the resonance frequency of certain metabolites can suffer slight variations from
sample to sample.

However, the common factor to all the abovementioned techniques is that
they completely ignore the inherent dynamics of NMR spectroscopy signals.
Unfortunately, it is largely believed that temporal variations of NMR Spectra
are simply noise or do not carry enough information to be exploited by any
reliable diagnosis procedure.

3 Complexity Measures and Information Theory

In the following sections, we are mainly concerned with the analysis of time
series of spectra. Specifically, as opposed to standard single-voxel spectroscopy
experiments where the resulting spectral signals are averaged in what follows we
consider the entire set of frames obtained after the NMR acquisition process.
Accordingly, for experimental purposes we used data collected from 11 healthy
patients of ages ranging from 25 up to 45, with a mean of 31.45 years. The data
was collected from different brain regions and with approximately equal voxel
sizes. The acquisition time was approximately equal to 5 minutes for all patients,
using a total echo time (TE) equal to 23ms and a repetition time (TR) of 1070ms.
Furthermore, the data was pre-processed using the whitening transformation [1].

For a given nucleus, the amplitude and frequency are the most specific pa-
rameters of individual resonances in NMR spectra. In the case of scalar coupled
spins, the resonances are split into several smaller resonances according to a well-
defined pattern which is dependent on the other coupled spins. A detailed compi-
lation of proton chemical shifts of the groups (i.e. methyl, methylene, amines etc)
which compose brain metabolites is presented in table 1. This table was built by
decomposing the chemical shift range associated with the 35 brain metabolites
presented in [7] into bins of 0.1 ppm resolution width. From inspection of the
table, it can be observed that there are regions which are more populated with
molecular group contributions than others. In particular, the interval [3.0, 4.0]
supports the biggest amount of group contributions when compared to the rest
of the intervals. Furthermore, we can appreciate certain intervals where appar-
ently there is no contribution at all of any of the molecular groups. For instance,
the interval [-0.8, 0.9] constitutes a clear example of this. Taking into account
these observations, it is reasonable to think that increased complexity should be
observed in metabolic signals associated with the intervals where there are more
contributions of molecular groups. In addition, it would be desirable to quantify
the complexity of any such increment. A natural way of assessing the complex-
ity associated with metabolic signals is to use a complexity measure such as the
fractal dimension [2], [17].
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Table 1. Contributions of molecular groups associated with the 35 brain metabolites
within the chemical shift interval [-0.8, 4.4]

[-0.9,-0.8] [-0.8,-0.7] [-0.7,-0.6] [-0.6,-0.5] [-0.5,-0.4] [ -0.4,0.3] [-0.3,-0.2] [-0.2,-0.1] [-0.1,0.0]

[0.0,0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1.0]
CH3

[1.0,1.1] [1.1,1.2] [1.2,1.3] [1.3,1.4] [1.4,1.5] [1.5,1.6] [1.6,1.7] [1.7,1.8] [1.8,1.9] [1.9,2.0]
CH3 CH3 CH3 CH2 CH3

CH3 CH2
[2.0,2.1] [2.1,2.2] [2.2,2.3] [2.3,2.4] [2.4,2.5] [2.5,2.6] [2.6,2.7] [2.7,2.8] [2.8,2.9] [2.9,3.0]

CH3 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2
CH3 CH2 CH CH2 CH2 CH2 CH2 CH2

CH2 CH2 CH2 CH2
CH2 CH2 CH2
CH2 CH3 CH2

CH2
[3.0,3.1] [3.1,3.2] [3.2,3.3] [3.3,3.4] [3.4,3.5] [3.5,3.6] [3.6,3.7] [3.7,3.8] [3.8,3.9] [3.9,4.0]

CH2 N(CH3)3 N(CH3)3 CH CH2 CH2 CH2 CH CH CH2
N(CH3) CH2 CH CH2 CH2 CH2 CH CH2 CH

CH2 CH2 CH2 CH2 CH2 CH CH2 CH2
N(CH3) CH2 CH CH2 CH2 CH2 CH CH

CH2 CH2 CH2 CH CH2 CH CH
CH2 N(CH3) CH CH CH CH2

CH2 CH CH CH2
CH2 CH CH2 CH2
CH2 CH2

CH
[4.0,4.1] [4.1,4.2] [4.2,4.3] [4.3,4.4]

CH2 CH2 CH
CH CH CH2
CH

The fractal dimension is a parameter which measures the intrinsic dimension
or degrees of freedom of a data set. Furthermore, it can be defined as the di-
mension of the sub-manifold structure of the data. More specifically, it can be
considered as a similarity dimension, in other words, how a data set object re-
mains statistically similar independently of the scale of observation. To this end,
we conducted a series of experiments. Firstly, we computed the fractal dimen-
sion of the data set object associated with the interval [0.3, 0.4]. This meant
working in a space of about 20 dimensions (0.1 ppm resolution width). Figure
1 consists of the graph obtained when applying the algorithm presented in [2]
to the data set object associated with the interval [0.3, 0.4]. The vertical axe
represents the logarithm of the number of hypercubes of size equal to r. By in-
spection of the graph, we can observe two regions which can be differentiated
by the slope of the graph. The first region is the smallest one and goes from
log(1/r) = 0 (hypercube size equal to 1) up to log(1/r) ≈ 3. For this interval the
slope is approximately 1.6. Finally, the last interval has a slope of approximately
1. Therefore, the fractal dimension is approximately 1.6. It is important to note
that we have adopted a conservative approach, instead of averaging the slopes
of the graph we take the worst case behaviour of the data set object measured
in terms of complexity. Therefore, the samples would be in a volume of about
2 dimensions. That is, two degrees of freedom are responsible for the observed
complexity.
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Fig. 1. Fractal dimension computation for the interval [0.3, 0.4] ppm using bins of 0.1
ppm width and computed for the experimental data set

If we proceed in a similar way but now taking as a reference for the compu-
tation the interval [3.9, 4.0] we obtain fractal dimension is approximately 4.5,
which means that the samples would fit in a volume of about 5 dimensions. Fur-
thermore, the fact that the region has the highest amount of molecular group
contributions does not lead to an explosion in the complexity associated with
this region but rather a slight increase in complexity - there are five degrees of
freedom. At this point, it is important to emphasize the fact that the fractal
dimension of a random process is infinite. Therefore, we would observe regions
of the curve with an infinite slope. Additionally, we performed the same compu-
tation for each of the bins associated with the interval [-0.8, 4.3], and we found
that complexity is bounded within the integer interval [2,5]. In turn, we per-
formed a PCA [10] analysis of each of the bins composing the range of interest
of [-0.8, 4.3] ppm associated with brain metabolites using bins of 0.1 ppm reso-
lution width. Furthermore, we performed the PCA transformation keeping 98%
inertia. In other words, allowing only 2% information loss.

Figure 2 depicts the results of the transformation. The horizontal axis repre-
sents the chemical shift scale in parts per million (ppm) while the vertical axis
represents the dimensionality reduction achieved (number of dimensions needed
for the above PCA parameterization). From inspection of the graph we can ac-
count for three different behaviours.
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Fig. 2. Principal component analysis for the interval [-0.8, 4.3] ppm using bins of 0.1
ppm width and computed from data set

Firstly, regions where contributions of molecular groups are either minimal (i.e.,
one or two group contributions) or inexistent and the PCA needs a considerable
number of dimensions (8 to 9 dimensions) to explain the variance of the data (i.e.
the interval [-0.8, 0.3] and the interval [4.0, 4.4]). This behaviour might suggest the
existence of noise in these bands. Indeed, the PCA transform cannot reduce the
dimensionality of a random process. However, this hypothesis is in contradiction
with the analysis of complexity obtained before that indicated the presence of an
underlying dynamical system with few degrees of freedom. The PCA transform
is limited by virtue of being a linear technique. Therefore, a plausible hypothesis
for explaining the results is to consider the existence of non-linear correlations
between the metabolic signals associated with these regions.

Secondly, regions where the contributions of molecular groups are minimal
or inexistent but the PCA achieves a considerable reduction in dimensionality
(i.e. the interval [0.8, 1.8]). For this region we can observe a certain discrepancy
between the degrees of freedom obtained with the PCA and the with the fractal
dimension computation. This fact seems to justify again the hypothesis for the
existence of non-linear correlations since the PCA seems to be overestimating
the true dimensionality of the data sets. Finally, regions where there is a large
amount of molecular group contributions (around 7 contributions on average)
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and the PCA achieves a considerable dimensionality reduction (4 to 5 dimen-
sions). For instance, the intervals [3.5, 4.0] and [2.9, 3.2]. Again, the hypothesis
of non-linear correlations would also fit the description of results presented for
the third observation.

In order to shed some light on the previous results, we computed the entropy
[19] associated with each of the metabolic signals throughout the range [-0.8, 4.3].
The idea was to consider each metabolic signal as a realization of an unknown
stochastic process. It is important to remember that each metabolic signal here
is a time series composed of spectral amplitudes.

Figure 3 illustrates the results of the entropy computation. The horizontal axis
represents the chemical shift scale in parts per million (ppm) while the vertical
axis represents entropy in nats. From inspection of the graph, it is easy to deduce
that the values of entropy present strong oscillations, even for metabolic signals
whose associated resonance frequencies are contiguous or very close in the spec-
trum. These oscillations account for the complexity of the information distribu-
tion. Moreover, by analyzing the values of entropy reached, we can sub-divide the
graph into three logical regions. Firstly, the region from [2.0, 4.0] ppm is the re-
gion where average entropy is higher compared to the rest of the intervals under
consideration. Furthermore, this region is characterized by the fact that it has the
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Fig. 3. Entropy of the set of metabolic signals (stochastic processes) associated with
the interval [-0.8, 4.3] ppm computed for data set
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highest amount of group contributions (see table 1 for details). Therefore, as may
be expected, the degree of randomness (i.e. disorder) or uncertainty associated
with such stochastic processes is on average higher than that of other regions of
the spectra. However, it is important to note that having higher entropy values
also means that on average whenever we observe such processes, the amount of
information conveyed by each realization of the processes is also higher.

Secondly, the region from [-0.8, 1.5] is the region where average entropy reaches
lower values than in other regions of the spectrum. Indeed, global minimum en-
tropy is reached within this interval. In addition, as opposed to region (1), this
region is characterized by the absence of molecular group contributions. Follow-
ing similar reasoning to that sketched above, whenever we observe any of the
stochastic processes associated with this region, the average information con-
veyed per observation is lower as compared to those of region (1). Therefore,
these processes (i.e. time series) are more predictable. Finally, the regions [1.5,
2.0] and [4.0, 4.3] constitute a special case as they correspond to regions also
characterized by the complete absence of, or the presence of very few molecu-
lar group contributions but the values of entropy reached in these regions are
comparable on average to those of region (1).

Concerning interval [1.5, 2.0], it is important to note that the values of en-
tropy show an increasing tendency throughout this interval. Indeed, the global
maximum entropy is reached in sub-interval [2.0, 2.1] corresponding to the N-
Acetyl aspartate (NAA) resonance. This is particularly interesting as we have
a region where, firstly the degree of randomness is the highest compared to the
rest of the regions associated stochastic processes which are information-rich,
but at the same time we have an underlying system which has few degrees of
freedom (only three).

4 Nonlinear Dynamical Analysis

The analysis performed in section 3 shown that the highest entropy values cor-
respond in general to regions where there is a significant amount of molecular
group contributions. Conversely, regions with little or no molecular group contri-
butions are characterized by lower entropy values. However, this empirical rule
is only partially true as it shows certain exceptions. Specifically, the unusual
relationship observed between information distribution, degree of randomness
and the underlying complexity shown by the data. This puzzle is solved, as it
is demonstrated shortly, if we think in terms of a chaotic system. A chaotic
system is a deterministic system in the sense that its operation is governed by
fixed rules, yet such a system with only a few degrees of freedom can exhibit
behaviour so complex that it looks random.

In order to visualize the nonlinear properties of the temporal NMR data, we
used Poincaré plots [9], [18] to draw the phase space of metabolic signals. In par-
ticular, in order to simplify the problem we worked for representational purposes
with uni-dimensional stochastic processes. Specifically, from the matrix associated
with our experimental data set, we drew the phase space of the metabolic signal
(dimension) associated with a given metabolite having the highest entropy value.
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Fig. 4. Phase Space representation associated with the NAAG time series

Figures 4 and 5 represent the phase space of the time series associated with
the excitatory neurotransmitters N-Acetylaspartylglutamate and glutamate, re-
spectively, for a unitary delay. N-Acetylaspartylglutamate (NAAG hereafter) is
a dipeptide of N-substituted aspartate and glutamate. It has been suggested
that it is involved in excitatory neurotransmission as well as being a source of
glutamate, although its function remains to be clearly established. For represen-
tation purposes we chose the singlet resonance at 2.04 ppm of the acetyl−CH3

protons. In addition, glutamate is an amino acid with an acidic side chain. It is
the most abundant amino acid found in the human brain. It is known to act as
an excitatory neurotransmitter, although it is believed to have other functions
too. It has two methylene groups and a methine group which are strongly cou-
pled. In this case, we again opted for phase space representation, the resonance
having maximum entropy value which occurs at 3.7433 ppm. The structure of
the graphs seems to confirm the hypothesis that we are in the presence of a
chaotic system. The most important point to note is that the processes repre-
sented are not random. In fact, they present the typical aspect of the phase space
of a chaotic attractor. Random processes are characterized by a randomly dis-
tributed phase space (e.g. points uniformly distributed around the phase space)
with uncorrelated data points. However, we observe here a specific structure that
reflects the ergodicity of the underlying stochastic process. It is important to re-
member that the standard deviation of the data points perpendicular to the line
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Fig. 5. Phase Space representation associated with glutamate time series

of identity describes short-term variability of the stochastic process. Conversely,
the standard deviation along the line of identity describes long term variability.
Therefore, it is easy to deduce that the short-term and long-term variability of
NAAG process are higher when compared to those of glutamate. Furthermore,
its phase diagram suggests the existence of four attracting regions of phase space
trajectories as compared to the two regions that can be observed in the gluta-
mate phase space, showing that the former is apparently more complex or at
least information-rich.

On the other hand, it is important to note that we are dealing with finite
amounts of data. Therefore, in order to better exploit the available informa-
tion, using a unitary delay for computing the phase space diagrams can hide
important information about the structure of the chaotic process under consid-
eration. Unitary delays lead to delay vectors which are all concentrated around
the diagonal (because of the correlations) in the embedding space and thus the
structure perpendicular to the diagonal may not be visible. Let us denote by y(t)
the time series associated with any of the metabolites resonances. The optimal
choice for the embedding delay τ is that value of t that makes y(t) and y(t− τ)
independent, i.e. having no correlation with each other.

As stated in [6] this requirement is best satisfied by using the particular t for
which the mutual information between y(t) and y(t−τ) attains its first minimum.
Taking these considerations into account we computed the optimal embedding
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Fig. 6. Phase Space representation of the NAAG time series using the optimal embed-
ding delay computed with the mutual information procedure [6]

delay for the time series associated with NAAG obtaining an embedding delay
value of 821.

Figure 6 displays the phase diagram of NAAG but using the delay coordinates
computed with the method described above based on mutual information. As
can be observed, the shape of the phase space changes substantially when using
the appropriate delay coordinates. In particular, we observe three completely
differentiated attracting regions. Moreover, in order to give formal proof of the
chaotic behaviour we computed the maximum Lyapunov exponent of the NAAG
time series using the method proposed in [12], and obtaining a value of λmax ≈
0.014 , thereby confirming the hypothesis of chaos. Although not shown here,
similar proofs can be provided using the time series associated with the other
metabolites. It is important to remember that a chaotic process is defined as a
process generated by a nonlinear deterministic system with at least one positive
Lyapunov exponent.

To summarize, we have proved that temporal variations of NMR metabolic sig-
nals are information-rich, by revealing their chaotic structure. Furthermore, we
have also seen that the amplitude of the spectrum signal associated with a given
metabolite is proportional to the concentration of that metabolite. Trajectories
induced by the attractors depicted in figures 4 and 5, in fact reflect concentra-
tion changes. Furthermore, such concentration changes are not random but they
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follow a pattern which is specific to the metabolite under consideration. In ad-
dition, the dataset used throughout the previous analysis corresponds to NMR
data coming from different individuals using an acquisition time big enough to
observe inhibitory and excitatory neurotransmission processes. Taking these con-
siderations into account together with the fact that the set of chemical reactions
that happen in living organisms are universal, in particular metabolic pathways,
it is a plausible hypothesis to state that the observed chaotic behavior inherent
to metabolic signals is in fact encoding metabolic pathway information. At this
point, it is important to remember that chaos is present in many human physi-
ological processes [13] such as the cardio-respiratory system, the perception and
motor control system, and voice, amongst others.

However, in order to extract such information we have to exploit the full mul-
tidimensional information associated with each metabolite and to use nonlinear
filter techniques [14], [16]. Nonlinear noise reduction consists of phase space re-
construction techniques that do not rely on frequency information in order to
define the distinction between signal and noise. Instead, structure in the recon-
structed phase space will be exploited. It is important to remember that chaotic
trajectories display wide-band spectra where power decreases with the inverse
of frequency. These spectra differentiate chaos from noise: white noise displays a
uniform distribution of frequencies across the spectrum. Nonlinear noise reduc-
tion takes into account that nonlinear signals will form curved structures in delay
space. In particular, noisy deterministic signals form blurred-out lower dimen-
sional manifolds. Nonlinear phase space filtering tries to identify such structures
and project onto them in order to reduce noise. Although further research must
be carried out, these preliminary results have shown the possibility of mapping
empirical NMR spectroscopy data to metabolic pathways. This fact would con-
tribute not only to the development of early tumour detection techniques but
to clarifying the high degree of information that is missing from our current
understanding of complex biological systems.

5 Conclusions

In this paper we have investigated the application of machine learning tech-
niques and chaos theory to characterize magnetic resonance spectroscopy data.
Throughout this paper we have focused explicitly on the characterization of dy-
namic brain NMR data. We have presented a formal description of the problems
associated with NMR-based data in terms of its application context in the field of
clinical diagnosis research. Specifically, we reviewed the most common problems
derived from proton scalar coupling effects, as well as those derived from differ-
ences in pH and ionic strength. Furthermore, we put especial emphasis on the fact
that despite considerable progress in clinical diagnosis methodologies, current di-
agnosis techniques make the assumption that temporal correlations from sample
to sample between metabolic signals do not carry information at all. Moreover,
in order to understand the underlying structure of dynamic NMR-based data
we have performed an analysis based on information theoretic concepts and
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nonlinear dynamical systems theory. The results revealed an information-rich
structure as shown by the chaotic nature of dynamic NMR data. Furthermore,
we argued that they actually encode metabolic pathway information The main
contribution of the present study is to invalidate the traditional view that dis-
regards the dynamic aspects of NMR data as being devoid of information. We
can conclude, firstly that a deep understanding of the complex relationships
between metabolites under normal and pathological conditions cannot be con-
ceived without taking into account their dynamical interactions. Furthermore,
the framework presented here opens the possibility for efficiently modelling the
dynamics of deep molecular pathways with high levels of noise and relatively
small experimental data sizes.
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Abstract. Gesture sequences typically have a common set of distinct
internal sub-structures which can be shared across the gestures. In this
paper, we propose a method using a generative model to learn these
common actions which we refer to as sub-gestures, and in-turn perform
recognition. Our proposed model learns sub-gestures by sharing param-
eters between gesture models. We evaluated our method on the Palm
Graffiti digits-gesture dataset and showed that the model with shared
parameters outperformed the same model without the shared parame-
ters. Also, we labeled different observation sequences thereby intuitively
showing how sub-gestures are related to complete gestures.

1 Introduction

Recent advances in computer vision and machine learning have led to a new mod-
eling paradigm where high-level problems can be modeled using combinations
of lower-level segmental units. Such units can be learned from large datasets
and represent the universal set of alphabets to fully describe a vocabulary. For
example, in a high-level problem such as speech recognition, a phoneme is de-
fined as smallest segmental unit employed to form an utterance (speech vector).
Similarly in handwriting recognition, a word can be represented as a sequence of
strokes, where each stroke is the smallest segmental unit. Also, in object labeling
in images, the bag-of-word (or bag-of-features) technique learns the set of small
units required to segment and label the object parts in an image.

Motivated by the successes of this modeling technique in solving general high-
level problems in computer vision, we define a gesture as a sequence of contiguous
sub-gestures, where the sub-gesture is a discrete unit that can be identified in a
gesture stream. Sub-gestures are separate and individual, and occur in temporal
order. For example, in a natural setting, when a person waves goodbye, the sub-
gestures involved could be (i) raising a hand from rest position to a vertical
upright position; (ii) moving the arm from right to left; and (iii) moving the
arm from left to right. The entire gesture therefore consists of the first sub-
gesture occurring once and the second and third sub-gestures occurring multiple
times.

J.K. Aggarwal et al. (Eds.): IWCIA 2011, LNCS 6636, pp. 483–493, 2011.
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In this paper, we present a generative shared parameter model for learning
the underlying latent structure that is common to a series of gestures. We quan-
titatively demonstrate how the use of shared parameters outperforms a similar,
generative but non-shared model, and also show how the learned latent struc-
ture of the sub-gesture correspond to discrete, consistent actions performed by
the user. It is important to note that the goal of our study is not primarily to
perform gesture classification, but rather to develop a framework for identifying
the relevant sub-gestures, given a large gesture data corpus. This type of anal-
ysis can be very useful in analyzing gestures in a natural (or other unfamiliar)
setting where the true number of gestures is not necessarily known beforehand.
Hence, we present our framework using a generative shared parameters model.

The main contribution of this paper is the presentation of a generative tech-
nique to learn about the implicit nature of sub-gestures, which will in turn help
in understanding gestures more intuitively. This becomes more important as the
field begins to perform more analysis on gestures in natural rather than experi-
mental settings.

1.1 Related Work

Gesture modeling, spotting and classification have been studied extensively and
there is a wide range of related work in the literature. Some related reviews and
surveys include [4][11][15] of which the most recent was published in 1999.

More recently, the use of discriminative classifiers such as Hidden Conditional
Random Field model(HCRF), Latent-Dynamic Conditional Random Field (LD-
CRF) [10]have proven quite successful for modeling gestures, when classification
is the primary task at hand. Although in this paper, we focus our attention
more on better understanding the relationship between gestures and their un-
derlying representative sub-gestures, as a first step towards large-scale gesture
understanding in natural settings.

Similar generative models used in gesture analysis include a technique to rec-
ognize head nods and head shakes using two Hidden Markov Models (HMMs)
whose features are 2D coordinate points obtained results from an eye gaze tracker
[6]. Sign language gesture analysis [2][13] as well as arm gesture recognition [3]
also use HMMs and related models. Many of these earlier studies of gesture
recognition were based on the one–versus-all models, where a separate model is
trained for each gesture class e.g. HMMs and its variants [2][8][16]. Recent ad-
vances in gesture recognition research suggest that multiclass (one model for all
gesture classes) models as in [14] jointly learn the best discriminative structure
among gestures. As the authors in [14] showed, Hidden Conditional Random
Fields (HCRF) provide a good framework for modeling a gestures as a com-
bination of sub-gestures by sharing hidden states among the multiple gesture
classes. However, this sharing is implicit and there is no way to explicitly define
a sub-gesture sequence for a given gesture which might be useful for continuous
gesture recognition. Moreover, HCRF training algorithms are computationally
very expensive when compared to HMMs. We therefore propose a novel variant
of HMM which combines the advantages of HCRF with the generative modeling
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power of HMMS. The proposed approach models each gestures using one HMM,
but shares the state parameters across all the HMMs, similar to the multiclass
paradigm. This results in a computationally efficient framework for explicit ges-
ture modeling and implicit sub-gesture modeling.

In many dynamic gesture recognition systems such as in [3], lower-level mod-
ules are employed to perform explicit spatial segmentation to extract the appear-
ance features of the body parts to be tracked. Those features are then passed
into the recognition module, which classifies the gesture (Pavlovic et al. provide
a detailed review of such dynamic systems in [11]). These bottom-up methods
rely heavily on the segmentation results, and in spite of the advances in person
and body-parts detection (including hand and head detection), it is still a very
challenging task in many real-life settings. Rather than requiring a perfect hand
detection, in our approach, we assume that crude but fast existing hand detec-
tion methods can produce a relatively short list of candidate hand locations for
every frame of the input sequence. We also assume that each short list always
contains the true location of the gesturing hand. A similar assumption has been
made by Sato et al. [12] as well as Alon et al. [1]. The differentiating factor
between our employed method and those of [12] and [1] is the probabilistic selec-
tion of the most likely candidate. The main advantage of this paradigm is that
it doe away with the assumption that the gesturing hand has been well localized
before testing is done, and it also achieves significant speed-ups by eliminating
a large numbers of implausible hypotheses from consideration.

2 Feature Extraction

From each frame in a video, we extract multiple candidate hand locations using
skin color and optical flow information. A face detector is run initially, followed
by a skin detector which calculates the likelihood of each image pixel belong to
skin. For the first few frames, if a face is not detected, we use the skin color
model proposed by [5] to generate candidates. Once a face is detected [7], we
calculate the mean and variance of the face pixels in normalized rg space and
use them to calculate a skin likelihood image. A motion mask of the image is
obtained by frame differencing. The skin likelihood image is multiplied with the
motion mask to obtain hand likelihood image.

We obtain top K candidate hand locations by convolving a 40 rows x 30
columns mask with the hand likelihood image(similar to the mask size used in
[1]). In this manner for every frame j we extract K candidate hand locations and
for each hand location, we extract a 4D feature vector Oj,k = (xj,k, yj,k, uj,k, vj,k)
comprising of location information (x, y) and the optical flow (u, v) averaged over
the region K [9].

3 Model Description and Parameter Learning

We model gestures as a generative process. Rather than learning an HMM
for each gesture, with each HMM having different state transition probability
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distributions and observation densities, our proposed method learns a genera-
tive model such that the observation densities are shared among all the ges-
tures and only the state transition probabilities are different for each gesture.

Fig. 1. Plates diagram for a
shared state parameter model

Let G be the number of gesture classes in the
dataset and N be the number of hidden states
in the model. An observation sequence is rep-
resented by O = {O1, O2, ..Ot, ...., OT }, where
Ot represents an observation at time t. Let S =
{S1, S2, ..., SN} be the set of all states and we
denote the state at time t as qt. The state tran-
sition probability distribution for gesture g is
A(g) = {a(g)

ij } where

a
(g)
ij = P (qt+1 = Sj |qt = Si, g), 1 ≤ i, j ≤ N

1 ≤ g ≤ G.(1)

The observation probability distributions is given
by B = {bj} where

bj(Ot) = N (ot|μj , Σj), 1 ≤ j ≤ N. (2)

Initial state probabilities for a gesture g is given by π(g) = {π(g)
i } where

π
(g)
i = P (q1 = Si|g), 1 ≤ i ≤ N. (3)

The complete parameter set of the model is

λ = {A(1), A(2), ..., A(G), B, π(1), π(2), ..., π(G), } (4)

3.1 Inference

The main objective of the problem is to find the label of the observation se-
quence. The probability of observation sequence O = {O1, O2, ..., OT } belonging
to gesture g i.e P (O|λ, g) can be computed using forward-backward recursion
algorithm. Lets consider a forward variable for gesture g defined as

α
(g)
t (i) = P (O1, O2, ..., Ot, qt = Si|λ, g) (5)

the probability of observing sequence O1, ..., Ot and qt = Si given the model
parameters. We can recursively find α

(g)
t (i) using the following equations

α
(g)
1 (i) = π

(g)
i bi(O1), 1 ≤ i ≤ N. (6)

α
(g)
t (j) =

[
N∑

i=1

α
(g)
t−1(i)a

(g)
ij

]
bj(Ot), 1 ≤ j ≤ N.

2 ≤ t ≤ T. (7)
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P (O|λ, g) =
N∑

i=1

αT (i) (8)

Similar to forward variable, lets define a backward variable for gesture g as

βt(i)(g) = P (Ot+1, Ot+2, ..., OT |qt = Si, λ, g) (9)

is the probability of observation sequence Ot+1 to OT given the state at time
= Si and λ. We can again solve for this variable using recursion as follows

β
(g)
T (i) = 1, 1 ≤ i ≤ N. (10)

β
(g)
t (i) =

N∑
j=1

a
(g)
ij bj(Ot+1)β

(g)
t+1(j), 1 ≤ i ≤ N.

t = T − 1, T − 2, ...1. (11)

Fromthe above equationswe canfine single best state sequenceQ = q1, q2, ..., qT

for a given observation sequence O = O1, O2, ..., OT given the model parameters
and gesture g using Viterbi algorithm.

P ∗(g) = max
q1,q2,...,qT

P (q1, q2, ..., qT , O1, O2, .., OT |λ, g). (12)

We assign an observation sequence a gesture label g which maximizes
argmaxg P ∗(g).

3.2 Parameter Estimation

To estimate the maximum likelihood parameters of the model, we use the stan-
dard Baum-Welch iterative procedure, paying special attention to the shared
states.

Let there be R observation sequences in the dataset with their corresponding
labels. Let η be a variable such that

η(g, rc) = 1 if g = rc

= 0 otherwise, (13)

where rc is the label for sample r and 1 ≤ rc, g ≤ G.

1. Estimation of initial state probabilities

π
(g)
i =

R∑
r=1

η(g, rc)

[
α

(g)r
1 (i)β(g)r

1 (i)

P
(g)
r

]
(14)

where P
(g)
r = P (Or|λ, g) is the probability of observation sample r given gesture

g and the parameters.
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2. Estimation of Transition probabilities

a
(g)
ij =∑R

r=1 η(g, rc)
[

1

P
(g)
r

∑Tr−1
t=1 α

(g)r
t (i)a(g)

ij bj(Or
t+1)β

(g)r
t+1 (j)

]
∑R

r=1 η(g, rc)
[

1

P
(g)
r

∑Tr

t=1 α
(g)r
t (i)β(g)r

t (i)
] (15)

3. Estimation of observation density parameters

μj =

∑R
r=1

1
P rc

r

∑Tr

t=1 αrc
t (j)βrc

t (j)Or
t∑R

r=1
1

P rc
r

∑Tr

t=1 αrc
t (j)βrc

t (j)
(16)

Σj =

∑R
r=1

1
P rc

r

∑Tr

t=1 αrc
t (j)βrc

t (j)(Or
t − μj)(Or

t − μj)∑R
r=1

1
P rc

r

∑Tr

t=1 αrc
t (j)βrc

t (j)
(17)

3.3 Inference with Multiple Hand Locations

If we had just one observation for each frame, we could use the conventional
Viterbi algorithm to calculate P ∗(g). But because we have multiple hand loca-
tions at each frame, we need to maximize one more term in the Viterbi algorithm
which will give the best hand location sequence. It is important to note that we
do not have multiple hand locations in the training data. In the training data
users have worn colored gloves so that the hand location can be extracted easily
and the model is trained on these hand locations. Since we cannot find exact
hand location during testing, we find multiple hand location hypothesis for each
frame. We present a decoding algorithm similar to Viterbi which will not only
give the best state sequence but also gives the best hand location sequence
h1, h2, ..., hT . To do this, we will define a quantity δ

(g)
t (i, k):

δ
(g)
t (i, k) = max

q1,q2,...,qt−1
h1,h2,...ht−1

P (q1, q2, ..., qt = i, h1, h2, ...,

ht = k, O1, O2, ...Ot|λ, g). (18)

i.e., δt(i, k) is the best score along a single path at time t, which takes into
account the first t observations and ends in state Si and hand location Hk. We
can recursively define δt+1(j, k) as

δ
(g)
t+1(j, l) = [max

i
max

k
δt−1(i, k)a(g)

ij ]bj(Ot+1,l),1 ≤ i, j ≤ N

1 ≤ l, k ≤ K. (19)

To find the best state sequence and best hand location sequence we need to keep
track of the arguments which maximized equation 19. We can do this using ma-
trices ψt(j) and ϕt(l). The algorithm to find the best state sequence and hand
location sequence can be found using the following procedure:
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1. Initialization:

δ
(g)
1 (i, k) = π

(g)
i bi(O1k), 1 ≤ i ≤ N. (20)

ψ1(i) = 0. (21)
ϕ1(k) = 0. (22)

2. Recursion:

δ
(g)
t (j, l) = [max

i
max

k
δt−1(i, k)a(g)

ij ]bj(Ot+1,l),2 ≤ t ≤ T

1 ≤ i, j ≤ N.

1 ≤ k, l ≤ K. (23)

ψt(j) = arg max
1≤i≤N

[δt−1(i, k)a(g)
ij ], 1 ≤ k ≤ K. (24)

ϕt(l) = argmax
1≤k≤K

[δt−1(i, k)a(g)
ij ], 1 ≤ i ≤ N. (25)

3. Termination:

P ∗(g) = max
1≤i≤N

max
1≤k≤K

[δT (i, k)] (26)

q
∗(g)
T = arg max

1≤i≤N
[δT (i, k)a(g)

ij ], 1 ≤ k ≤ K. (27)

h
∗(g)
T = arg max

1≤k≤K
[δT (i, k)a(g)

ij ], 1 ≤ i ≤ N. (28)

4. state sequence and hand location sequence:

q
∗(g)
t = ψt+1(q

∗(g)
t+1 ), t = T − 1, T − 2, ..., 1. (29)

h∗(g)t = ϕt+1(h
∗(g)
t+1 ), t = T − 1, T − 2, ..., 1. (30)

4 Experiments and Results

The experiment involved having subjects create gestures by writing the ten Palm
Graffiti Digits in the air, as shown in Figure 2. The goal of the experiment
as conducted by Alon et al. in [1] was to evaluate the performance of gesture
recognition systems. In our work, we extend this to also investigate the nature
of sub-gestures. Each video clip depicts a user writing each of the ten digits in
sequence. A total of 30 training and 30 testing sequences were produced for each
of the gestures, resulting in a total of 600 sequences. Half was used for training
and validation, and the other half for testing.

During training and validation, we varied the number of hidden states from
8 to 16 and found the optimal number of states to be 10. This is a coincidence
and is not related to the fact that there are ten gestures being analyzed. We
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Fig. 2. Palm’s Graffiti Digits on which users were asked to create gestures

Table 1. Recognition results (% accuracy)

Model 4D features only optical flow features

Proposed Method 93.33 81.67

HMM (non shared) 88.8 48

Table 2. Hand location Results

Candidate locations Accuracy

1 84.00

2 85.67

3 87.33

4 89.00

5 90.00

6 92.00

7 93.33

8 92.33

9 91.33

10 91.00

Table 3. Confusion matrix generated from classifying Palm Graffiti digits

0 1 2 3 4 5 6 7 8 9

0.7 0 0 0 0 0 0.2 0 0.07 0.03

0 0.8 0 0.03 0 0 0.1 0.07 0 0

0 0 0.97 0 0 0 0 0 0 0.03

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0.97 0 0 0 0.03 0

0 0 0 0 0 0.97 0 0 0 0.03

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0.03 0 0 0.94 0 0.03

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

performed the same experiments using (i) our proposed shared parameter model
using the complete 4D feature set (ii) the non-shared parameter model using
the complete 4D feature set (iii) our proposed shared parameter model using
only the temporal features and (iv) the non-shared parameter model using only
the temporal features. The accuracy results are presented in Table 1. Table 2
shows how the accuracy of the proposed method varies with change in number
of candidate hand locations.
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Fig. 3. Left image: a user performing the gesture for Palm’s Graffiti Digit ’3’; right
image: the set of 10 sub-gestures learned by the shared parameters HMM, from train-
ing data. The static point in the middle of the image represents the “no-motion”
sub-gesture.

Fig. 4. Examples of labeling different observation sequences with their underlying
shared sub-gesture states. In this illustration, the shown sequence for ‘0’ was mis-
classified as ’6’ and also, the shown sequence for ‘4’ was misclassified as ’7’. All other
classifications are correct. The color representation of the sub-gesture labels is shown
in Figure 3 above.

To demonstrate the performance of our model, we performed gesture recog-
nition on the dataset, classifying each gesture into one of the 10 digit classes.
The overall accuracy was 93.3% and the resulting confusion matrix is shown in
Figure 3.

5 Conclusion and Future Work

We have presented a computationally efficient framework for explicit gesture and
implicit sub-gesture modeling. We have shown that there is an improvement
in the accuracy rate when the HMM parameters are shared across gestures,
resulting in a set of learned sub-gestures.

The main drawback of the proposed approach is inherited from the fact that
it is generative in nature, and generative models in general are more error prone
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than their discriminative counterparts. As a next step, we intend to compare
the performance of our approach with the state-of-the-art discriminative models
described in [10].

Although generative models such as ours generally require a large amount of
training data, by sharing the parameters across multiple HMMs, we require less
training data.

Going forward, we intend to extend our technique to gesture spotting and
perform more testing on significantly larger datasets.
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Slapal, Josef 120

Subramanian, K.G. 248

Tajine, Mohamed 284, 321
Tavares, João Manuel R.S. 456
Thomas, D.G. 235, 261
Tlig, Ghassen 311
Turiel, Antonio 346

Umble, Ronald 107

Vacavant, Antoine 398
Van Dooren, Paul 358
Veelaert, Peter 182
Vegas-Sánchez-Ferrero, Gonzalo 420

Yahia, Hussein 346


	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers
	Recognition of Human Activities
	References

	Complexity and Approximability Issues in Combinatorial Image Analysis
	Combinatorial Image Analysis and Discrete Geometry
	Theoretical vs. Practical Performance: An Example
	Guarding a Set of Segments, Set Cover, and Vertex Cover
	GSS: Complexity, Polynomial Classes, Approximate Algorithms and Their Theoretical and Experimental Performance
	Still Open: What Is GSS Approximability?

	References

	Intelligent Image Analysis of Diffusion Weighted Data Sets: A New Tool for Functional Imaging
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusion
	References

	Computational Methods for the Prediction of Protein-Protein Interactions
	Recognition of Proteins Binding Sites
	Protein-Protein Interaction Networks: Analysis and Comparison
	References


	Digital Geometry and Topology, Combinatorics in Digital Spaces
	A Family of Topology–Preserving 3D Parallel 6–Subiteration Thinning Algorithms
	Introduction
	Basic Notions and Results
	New Sufficient Conditions for Topology Preserving Parallel Reductions
	The New 6-Subiteration Thinning Algorithms
	Examples of the New 6-Subiteration Thinning Algorithms
	Conclusions
	References

	On Topology Preservation for Hexagonal Parallel Thinning Algorithms
	Introduction
	Basic Notions
	Sufficient Conditions for Topology Preserving Parallel Reductions
	A New Topology Preserving Thinning Algorithm
	Conclusions
	References

	Accurate Curvature Estimation along Digital Contours with Maximal Digital Circular Arcs
	Introduction
	Curvature Estimation Based on the Set of Maximal Digital Circular Arcs
	On the Multigrid Convergence of the MDCA Estimator
	Multigrid Convergence Definition for a Curvature Estimator
	Relation with Growth of MDCAs

	Experimental Evaluation
	Comparisons
	Implementation Issues
	Accuracy and Running Time

	Conclusion and Perspectives
	References

	Combining Topological Maps, Multi-Label Simple Points, and Minimum-Length Polygons for Efficient Digital Partition Model
	Introduction
	Preliminaries Notions
	Pixels, Image and Regions
	Interpixel Topology and Cubical Complexes
	Multi-label Simple Points
	Minimum Length Polygon
	Topological Map

	Deformable Model Process
	Energies
	Operations
	Update Energies for Flip
	Energy Minimization Algorithm

	Experiments
	Conclusion
	References

	Construction of 3D Orthogonal Cover of a Digital Object
	Introduction
	Definitions and Preliminaries
	Proposed Algorithm
	DCEL Construction
	Face Merging
	Time Complexity

	Results and Conclusion
	References

	Skeleton Path Based Approach for Nonrigid 3D Shape Analysis and Retrieval
	Introduction
	Proposed Approach
	Skeleton Path
	Endpoints Matching

	Experimental Results
	Symmetric Components Discovery
	Matching Skeletons with Different Graph Structures
	Retrieval on McGill 3D Articulated Shape Database

	Conclusions
	References

	The Number of Khalimsky-Continuous Functions between Two Points
	Introduction
	The Khalimsky Topology and Khalimsky-Continuous Functions
	Khalimsky-Continuous Functions with Two Fixed Endpoints
	Conclusion
	References

	Cup Products on Polyhedral Approximations of 3D Digital Images
	Introduction
	3D Digital Pictures and Cellular Complexes
	Computing the Cohomology Ring of P(I)
	Conclusions and Plans for Future Work
	References


	Digital Geometry of Curves and Surfaces
	A Jordan Curve Theorem in the Digital Plane
	Introduction
	Preliminaries
	Topology $w$
	Conclusion
	References

	Maximal Planes and Multiscale Tangential Cover of 3D Digital Objects
	Introduction
	Definition of Maximal Hyperplanes
	Digital Surface and Tightiest Hyperplane
	Neighborhood, -Thick Disk and Extension
	Maximal Disks and Hierarchy of Active Vertices

	Computation and Time Complexity
	Algorithm Design
	Time Complexity Analysis

	Application
	Conclusion and Perspectives
	References

	Recognition of Digital Hyperplanes and Level Layers with Forbidden Points
	Problem Statement
	Why a New Problem of Recognition?
	Exact Formulation

	From Arbitrary Functions to Affine Separation
	Computation by Linear Programming
	Rewriting the Problem in Terms of Computational Geometry

	The GJK Algorithm and Our Variant
	The Classical GJK Algorithm
	Our GJK Variant

	Experimental Results and Potential Applications
	Experimental Results
	Potential Applications

	Conclusion
	References

	A Simple and Flexible Mesh Parameterization Method
	Minimizing Angle Distortion
	Main Problem
	A Differentiable Measure of Angle Distortion

	Minimization Algorithm
	The Algorithm
	Necessity of Additional Constraints

	Stabilizing the Boundary
	Main Idea
	Preserving Metric Boundary
	Preserving Boundary Angles
	Finding a Natural Boundary

	Introduction of New Constraints
	Adding Energies: Areas, Lengths Preservation
	Constrained Texture Mapping

	Conclusion
	References

	Ellipse Constraints for Improved Wide-Baseline Feature Matching and Reconstruction
	Introduction
	Previous Work

	Background
	Parametrization

	Application to Feature Matching
	Descriptors
	Matching
	Non-linear Optimization
	Reconstruction

	Results and Experiments
	Outdoor Data Set

	Conclusion and Outlook
	References

	Reconstruction of Concurrent Lines from Leaning Points
	Introduction
	Domains and Leaning Points
	Geometric Figure Recognition
	Constructions with Leaning Points and Leaning Lines
	Concluding Remarks
	References

	Isoperimetrically Optimal Polygons in the Triangular Grid
	Introduction
	Preliminary Results: The Square Grid
	Square Grid with 4-Neighborhood
	Square Grid with 8-Neighborhood

	Definitions and Notions for the Triangular Grid
	Digital Circles
	The Shape of Optimal Circles
	The Side-Lengths of Optimal Polygons

	Conclusions and Future Work
	References

	Dynamic Minimum Length Polygon
	Introduction
	Preliminaries
	Minimum Length Polygon

	Algebra on Reversible Polygonal Representations
	Grid-Vector, Grid-Curve
	Christoffel Words, Interpixel Path, RPR

	Simplification Rules
	Grid-Vectors Fusion Rules
	Merging Grid-Vectors
	Split and Merge Formulae
	Simplification Rules for Operators

	Concluding Remarks
	References


	Grammars and Models for Image Analysis. Tilings and Patterns
	On Some Classes of 2D Languages and Their Relations
	Introduction
	Preliminaries
	Closure Properties and Hierarchy
	Comparisons
	Conclusions
	References

	Petri Net Generating Hexagonal Arrays
	Introduction
	Hexagonal Arrays and Arrowheads
	Hexagonal Array Token Petri Net Structure
	Firing Rules
	Arrowhead Catenation Rules as Labels

	Comparison Results
	Adjunct Hexagonal Array Token Petri Net Structure
	Adjunction Rules as Labels

	Conclusion
	References

	Binary Images, $M$−Vectors, and Ambiguity
	Introduction
	Preliminaries
	$M$-Vector of a Binary Array
	Ambiguity of a Binary Array 
	Conclusion
	References

	Shuffle on Trajectories over Finite Array Languages
	Introduction
	Preliminaries
	Shuffle on Trajectories
	Conclusion
	References

	Planar Configurations Induced by Exact Polyominoes
	Introduction
	Definitions and Results
	Probing the Plane with Diamond Polyominoes
	Experimental Results Obtained with Sage
	Conclusions
	References


	Discrete Tomography
	Convex-Set Perimeter Estimation from Its Two Projections
	Introduction
	State of the Art

	Convex Inclusion and Perimetric Inequality
	Projection Inclusion and Convex-Set Inclusion
	Estimation of Convex-Set Perimeter
	Unique Reconstruction
	Multiple Reconstruction

	Conclusion
	References

	Solving the Two Color Problem: An Heuristic Algorithm
	Introduction and Definitions
	The Heuristic Algorithm
	Type 1 Switching Components
	Type 2 Switching Components
	Type 3 Switching Components

	Generating Instances of 2-Color
	Results
	Conclusions
	References

	Approximating Bicolored Images from Discrete Projections
	Introduction
	Definitions and Notations
	Flow Models to $MB(H, V )$
	Max-flow Associated Problem
	Min-cost Max-flow Associated Problem

	Polynomial Case
	Heuristics
	Results
	Random Images
	Squares Shaped Images

	Conclusion
	References

	Discrete Q-Convex Sets Reconstruction from Discrete Point X-Rays
	Introduction
	Definition and Notations
	Classical Definitions and Notations
	Q-Convexity

	Reconstruction Algorithm for Two Source Points
	Problem Presentation
	Filling Operations

	Example
	Conclusion
	References

	Discrete Tomography Reconstruction Based on the Multi-well Potential
	Introduction
	Reconstruction Problem
	Proposed Method
	Experimental Results
	Concluding Remarks
	References


	Image Segmentation, Representation, Reconstruction, and Compression. Fuzzy and Stochastic Image Analysis
	An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals
	Introduction
	Definition of Singularity Analysis
	MSC and Its Connection with Reconstruction
	General Conditions to Define UPM-Measures
	Calculus on Reduced Neighborhoods: Cross Fourier Transform
	Local Correlation Singularity Measure
	Conclusions
	References

	Community Detection for Hierarchical Image Segmentation
	Introduction
	Related Work
	Optimizing the Modularity
	The Louvain Method
	A Modified Louvain Method
	The Weighted Modularity

	Experimental Results
	Conclusion
	References

	BCIF: Another Algorithm for Lossless True Color Image Compression
	Introduction
	The Algorithm
	Filtering
	Color Filtering
	The Filter Selection Model
	Compression
	Huffman Tree Coding
	Benchmarks
	Conclusions
	References

	Distance Measures between Digital Fuzzy Objects and Their Applicability in Image Processing
	Introduction
	Background
	Basic Notions
	Related Work on Distances between Crisp Sets
	Related Work on Distances between Fuzzy Sets

	The Sum of Minimal Distances and Complement Weighted Sum of Minimal Distances for Fuzzy Sets
	Evaluation
	Evaluation of Monotonicity in Noise Free and Noisy Conditions
	Comparative Evaluation on Matching Crisp and Fuzzy Objects

	Summary and Conclusions
	References

	Unsupervised Polygonal Reconstruction of Noisy Contours by a Discrete Irregular Approach
	Introduction
	Preamble and Previous Work
	Definitions
	Previous Algorithm for Irregular Object Vectorization

	Unsupervised Polygonalization of Noisy Digital Contours
	A Novel Approach to Vectorize Irregular Isothetic Objects
	Polygonalization of Noisy Contours by an Irregular Discrete Approach

	Experimental Results
	Conclusion and Future Works
	References


	Applications to Medical Imaging and Biometrics
	Boar Spermatozoa Classification Using Longitudinal and Transversal Profiles (LTP) Descriptor in Digital Images
	Introduction
	Dataset
	Image Acquisition
	Segmentation and Preprocessing

	Image Descriptors
	Previous Work
	Our Approach: Longitudinal and Transversal Profiles (LTP) Descriptor

	Classification
	Results
	Conclusions
	References

	Topology-Preserving Registration: A Solution via Graph Cuts
	Introduction
	Background
	Registration Method
	Design of the Field
	Optimization Procedure

	Results
	Conclusion
	References

	Support Vector Machine Approach to Cardiac SPECT Diagnosis
	Introduction
	Support Vector Classification
	Analyzed Data
	Completed Experiments and Selected Research Results
	Conclusion
	References

	An Entropy-Based Technique for Nonrigid Medical Image Alignment
	Introduction
	Proposed Method
	Jensen-Tsallis (JT) Similarity
	Problem Statement
	Transformation Model
	Optimization of the JT Similarity
	Derivative of the JT Similarity
	Summary of the Proposed Algorithm

	Experimental Results
	Multimodality Test

	Conclusions
	References

	Precipitates Segmentation from Scanning Electron Microscope Images through Machine Learning Techniques
	Introduction
	Pattern Recognition by Optimum-Path Forest
	Training
	Classification
	Pruning Irrelevant Patterns

	Methodology
	Experimental Results
	Robustness of Classifiers
	Automatic Labeling Images

	Conclusions
	References

	Nonlinear Dynamical Analysis of Magnetic Resonance Spectroscopy Data
	Introduction
	Problems Associated with NMR Data
	Complexity Measures and Information Theory
	Nonlinear Dynamical Analysis
	Conclusions
	References

	A Shared Parameter Model for Gesture and Sub-gesture Analysis
	Introduction
	Related Work

	Feature Extraction
	Model Description and Parameter Learning
	Inference
	Parameter Estimation
	Inference with Multiple Hand Locations

	Experiments and Results
	Conclusion and Future Work
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




