
G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 123–138, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Efficiently Evaluating Skyline Queries on RDF Databases

Ling Chen, Sidan Gao, and Kemafor Anyanwu

Semantic Computing Research Lab, Department of Computer Science
North Carolina State University

{lchen10,sgao,kogan}@ncsu.edu

Abstract. Skyline queries are a class of preference queries that compute the
pareto-optimal tuples from a set of tuples and are valuable for multi-criteria
decision making scenarios. While this problem has received significant
attention in the context of single relational table, skyline queries over joins of
multiple tables that are typical of storage models for RDF data has received
much less attention. A naïve approach such as a join-first-skyline-later strategy
splits the join and skyline computation phases which limit opportunities for
optimization. Other existing techniques for multi-relational skyline queries
assume storage and indexing techniques that are not typically used with RDF
which would require a preprocessing step for data transformation. In this paper,
we present an approach for optimizing skyline queries over RDF data stored
using a vertically partitioned schema model. It is based on the concept of a
“Header Point” which maintains a concise summary of the already visited
regions of the data space. This summary allows some fraction of non-skyline
tuples to be pruned from advancing to the skyline processing phase, thus
reducing the overall cost of expensive dominance checks required in the skyline
phase. We further present more aggressive pruning rules that result in the
computation of near-complete skylines in significantly less time than the
complete algorithm. A comprehensive performance evaluation of different
algorithms is presented using datasets with different types of data distributions
generated by a benchmark data generator.

Keywords: Skyline Queries, RDF Databases, Join.

1 Introduction

The amount of RDF data available on the Web is growing more rapidly with
broadening adoption of Semantic Web tenets in industry, government and research
communities. With datasets increasing in diversity and size, there have been more and
more research efforts spent on supporting complex decision making over such data.
An important class of querying paradigm for this purpose is preference queries, and in
particular, skyline queries. Skyline queries are valuable for supporting multi-criteria
decision making and have been extensively investigated in the context of relational
databases [1][2][3][4][5][6][11][12] but in a very limited way for Semantic Web [8].
A skyline query over a data set S with D-dimension aims to return the subset of S
which contains the points in S that are not dominated by any other data point. For two
D-dimensional data points ݌ሺݑଵ, ,ଶݑ ,ଷݑ … , ,ଵݒሺݍ ௗሻ andݑ ,ଶݒ ,ଷݒ … , ௗሻ , point p isݒ

124 L. Chen, S. Gao, and K. Anyanwu

said to dominate point q if ݌. ≼ ௜ݑ .ݍ ௜ݒ for all ݅ ∈ ሾ1, ݀ሿ and in at least one
dimension ݌. ظ ௝ݑ .ݍ ∋ ௝ where jݒ ሾ1, ݀ሿ, ≽ denotes better than or equal with, ظ
denotes better than. For example, assume that a company wants to plan a sales
promotion targeting the likeliest buyers (customers that are young with a low amount
of debt). Consider three customers A (age 20, debt $150), B (age 28, debt $200) and C
(age 25, debt $100). Customer A is clearly a better target than B because A is younger
and has less debt. Therefore, we say that A dominates B. However, A does not
dominate C since A is younger than C but has more debt than C. Therefore, the
skyline result over the customer set {A, B, C} is {A, C}.

The dominant cost in computing the skyline of a set of n D-dimension tuples lies in
the number of comparisons that needs to be made to decide if a tuple is or isn’t part of
the skyline result. The reason is that for a tuple to be selected as being in the skyline,
it would need to be compared against all other tuples to ensure that no other tuples
dominate it. Further, each tuple pair comparison involves D comparisons comparing
their values in all D dimensions. Consequently, many of existing techniques
[1][2][3][4][5][6][11][12] for computing skylines on relational databases focus on
reducing the number of tuple pair comparisons. This is achieved using indexing
[4][5][6], or partitioning data into subsets [11] where some subsets would contain
points that can quickly be determined to be in or pruned from the skyline result.

It is also possible to have skyline queries involving attributes across multiple
relations that need to be joined, i.e. multi-relational skyline. This would be a very
natural scenario in the case of RDF data since such data is often stored as vertically
partitioning relations [7]. However, there are much fewer efforts [11][12][16] directed
at evaluating skylines over multiple relations. A common strategy, which was also
proposed in the context of preference queries on the Semantic Web [8], is to first join
all necessary tables in a single table and then use a single table skyline algorithm to
compute the skyline result, i.e. join-first-skyline-later (JFSL). A limitation of the
JFSL approach is that the join phase only focuses on identifying joined tuples on
which skyline computation can then be done. It does not exploit information about the
joined tuples to identify tuples that are clearly not in the skyline result. Identifying
such tuples would allow pruning them from advancing to the skyline phase and avoid
the expensive dominance checks needed for skyline computation on those tuples.
Alternative techniques to the JFSL approach [4][5][6][11][12][16] employ specialized
indexing and storage schemes which are not typical in RDF data and require
preprocessing or storage in multiple formats.

1.1 Contributions

This paper proposes an approach for efficient processing of skyline queries over RDF
data that is stored as vertically partitioned relations. Specifically, we propose

• The concept of a Header Point that maintains a concise summary of the already
visited region of the data space for pruning incoming non-skyline tuples during
join phase. This improves efficiency by reducing number of comparisons needed
during later skyline processing phase.

 Efficiently Evaluating Skyline Queries on RDF Databases 125

• A complete algorithm and two near-complete algorithms based on an approach
that interleaves the join processing with some skyline computation to minimize
the number of tuples advancing into skyline computation phase. The near-
complete algorithms compute about 82% of skyline results in about 20% of the
time needed for the complete algorithm.

• A comprehensive performance evaluation of the algorithms using datasets with
different types of data distributions generated by a benchmark data generator.

2 Background and Problem Statement

Assume that we have a company’s data model represented in RDF containing
statements about Customers, Branches, Sales and relationships such as Age, Debt,
PurchasedBy etc. Figure 1 (a) shows a sample of such database using a graph
representation.

Fig. 1. Example RDF Graph Model and Skyline Queries

Consider again the example of sales promotion targeting the young customers with
less debt. Also assume that company would like to focus their campaigns on
customers that live close to some branch. We express such a query using an extended
SPARQL as shown in Figure 1 (b). The properties in front of MIN/MAX keywords
are the skyline properties (dimensions) to be considered during the skyline
computation. The MIN/MAX keyword specifies that we want the value in the
corresponding property to be minimized/maximized. We now formalize the concept
of a skyline graph pattern that builds on the formalization of SPARQL graph pattern
queries.

An RDF triple is 3-tuple ሺݏ, ,݌ ሻ where s is the subject, p is the predicate and o is݋
the object. Let I, L and B be the pairwise disjoint infinite set of IRIs, Blank nodes
and Literals. Also assume the existence of an infinite set V of variables disjoint from
the above sets. A triple pattern is a query pattern such that V can appear in subject,
predicate or object. A graph pattern is a combination of triple patterns by the binary
operators UNION, AND and OPT. Given an RDF database graph, a solution to a
graph pattern is a set of substitutions of the variables in the graph pattern that yields a
subgraph of the database graph and the solution to the graph pattern is the set of all
possible solutions.

126 L. Chen, S. Gao, and K. Anyanwu

Definition 1 (Skyline Graph Pattern). A Skyline Graph Pattern is defined as a tuple
(GP, SK) where GP is a graph pattern and SK is a set of skyline conditions
,ଵ݇ݏ} ,ଶ݇ݏ … , ௜݇ݏ .{௠݇ݏ is of the form ݂݊௜ሺ݌௜ሻ where ݂݊௜ is either min() or max()
function and ݌௜ is a property in one of the literal triple patterns in GP. The Solution
to (GP, SK) is an ordered subset ܴܵ ൌ ൣ ௜ܵ, ௝ܵ , … , ܵ௞൧ ك ܵ where ௜ܵ denotes the
solution to a basic graph pattern (an RDF graph with variables) and the following
conditions hold: (i) each solution ܵ௣ ∈ ܴܵ is not dominated by any solution in ܵ; (ii)
each solution ܵ௤ ∈ ሼܵ െ ܴܵሽ is dominated by some solution in ܵ.

3 Evaluating the Skyline over the Join of Multiple-Relations

Vertically partitioned tables (VPT) are a common storage model for RDF data. A
straightforward approach to compute the skyline over a set of vertically partitioned
tables ܸܲ ଵܶ, ܸܲ ଶܶ,…, ܸܲ ௗܶ is as follows: (i) join ܸܲ ଵܶ,ܸܲ ଶܶ,…,ܸܲ ௗܶ into a complete
single table T (the determination of dominance between two tuples cannot be made by
looking at only a subset of the skyline properties); (ii) compute skyline over this
single table T by using any single-table skyline algorithm, such as BNL (Block-
Nested-Loop). We call this approach as “Naive” algorithm. “Naive” algorithm
maintains only a subset of all already joined tuples (candidate list) against which each
newly joined tuple is compared to determine its candidacy in the skyline result.
However, this approach does not fully exploit the information about the joined tuples
and requires too many comparisons to determine one tuple’s candidacy in skyline
result. Our approach based on the concept of a Header Point improves upon this by
using information about already joined tuples to make determinations about (i)
whether a newly joined tuple could possibly be a member of the skyline and (ii)
whether there is a possibility of additional skyline tuples to be encountered in the
future. The former allows for pruning a tuple from advancing to the skyline (SL)
phase where it would incur additional cost of comparisons with several tuples in a
skyline candidate list. The latter allows for early termination.

3.1 Header Point and Its Prunability

Our approach is based on splitting the join phase into iterations where information
about earlier iterations is summarized and used to check skyline candidacy of tuples
joined in later iterations. In each join iteration, we need to join each 2-tuple in each
VPT to their corresponding matching 2-tuples in all of the other VPTs. Let ܬ௜ be the
table pointer pointing to the subject value (ݑݏ ௝ܾሻ of the jth triple ݎݐ௝ in ܸܲ ௜ܶ and a
join iteration would be: ራ join of ݎݐ௝ to matching tuples in ܸܲ ௞ܶሺ ݇ ് ݅୧ୀଵ ୲୭ ୢ ሻ

In other words, at the end of a join iteration we would have computed d tuples and
each tuple is based on the 2-tuple pointed to by table pointer in some dimension VPT.

A Header Point summarizes the region of data explored in earlier join iterations. It
enables a newly joined tuple in the subsequent join iteration to be compared against this
summary rather than multiple comparisons against the tuples in the skyline candidate list.

 Efficiently Evaluating Skyline Queries on RDF Databases 127

Definition 2 (Header Point). Let ሼݐଵ, ,ଶݐ … , ௗሽ be the set of tuples in the jth joinݐ
iteration. A Header Point of the computation is a tuple of ൏ ௡݂ೕሺሼݐ௜ሾ1ሿሽሻ,௡݂ೕሺሼݐ௜ሾ2ሿሽሻ, . . ., ௡݂ೕሺሼݐ௜ሾ݀ሿሽሻ ൐ where ௡݂ೕ is either min() or max() function. We call

the tuples that form the basis of the Header Point (i.e. the ݐ௜s), Header Tuples.

To illustrate the advantage of the header point concept, we will use a smaller version
of our motivating example considering only a graph sub pattern with skyline
properties, Age and Debt. We will assume that data is organized as VPT and indexed
by Subject (SO) and by Object (OS). Using the OS index, the triples can be accessed
in decreasing order of “goodness” when minimizing/maximizing skyline properties,
i.e. in increasing/decreasing order of object values. Let us consider the earliest join
iteration involving the first tuples of each relation. Figure 2 (a) shows the table
pointers (JAge and JDebt) for the two relations and the two red lines show the matching
tuples to be joined resulting in the tuples T1 (C1, 25, 2800) and T2 (C13, 32, 800)
shown in Figure 2 (b). Since these tuples are formed from the best tuples in each
dimension, they have the best values in their respective dimensions, therefore no other
tuples dominate them and they are part of the skyline result. We can create a header
point based on the worst values (here, the largest values) in each dimension (Age and
Debt) across all the currently joined tuples resulting in a tuple H (32, 2800). T1 and
T2 are called Header Tuples.

Fig. 2. Formation of Initial Header Point and its Prunability

Our goal with the header point is to use it to determine whether newly joined tuples
in subsequent iterations should be considered as candidate skyline tuples or be pruned
from advancing to the expensive skyline processing phase. For example, assume that
in the next join iteration we compute the next set of joined tuples by advancing the
table pointer to the next tuple in each VPT. Then, one of the resulting joined tuples is
(C12, 25, 3100). For the rest of the paper, we will use C12 to denote the tuple (C12,
25, 3100). However, the current candidate skyline list { (C1, 25, 2800), (C13, 32,
800) } contains a tuple (C1, 25, 2800) that clearly dominates C12, therefore C12
should not be considered as a candidate skyline tuple. Further, we should be able to

128 L. Chen, S. Gao, and K. Anyanwu

use the information from our header point to make this determination rather than
compare every newly joined tuple with tuples in the candidate skyline list. We
observe the following relationship between newly joined tuples and the header point
that can be exploited: If a newly joined tuple is worse than the header point in at least
one dimension, then that new tuple cannot be a skyline tuple and can be pruned.
Applying this rule to our previous example, we will find that the tuple C12 is worse
than our header point H in the Debt dimension. Therefore, it can be pruned. In
contrast, the other joined tuple (C6, 30, 1200) is not worse than H in at least one
dimension (in fact, it is better in two dimensions) and is not pruned. Figure 2 (b)
shows the relationships between these points in a 2-dimensional plane: any
subsequent joined tuple located in the regions of S, Q and T can be pruned by header
point H. We now make a more precise statement about the relationship between a
header point and tuples created after the creation of the header point.

Lemma 1. Given a D-dimensional header point ܪ ൌ ൏ ݄ଵ,݄ଶ, … , ݄஽ ൐ , any
“subsequent ” (i.e. a point constructed after the current header point) D-tuple whose
values are worse than H in at least D - 1 dimensions, are not skyline points.
Proof. Let ܲ ൌ ሺ݌ଵ, ,ଶ݌ … , ஽ሻ be a new tuple that is worse than the current header݌
point ܪ ൌ ሺ݄ଵ, ݄ଶ, … , ݄஽ሻ in at least D – 1 dimensions but is a candidate skyline
point. Let ܪ be the header point that was just formed during the construction of the
most recently computed set B = ሼ ܤଵ ൌ ሺܾ݊ݒଵ, ,ଶݍ … , ଶܤ , ஽ሻݍ ൌ ሺݐଵ, ,ଶݒܾ݊ … , ,஽ሻݐ
ௗܤ , ... ൌ ሺݏଵ, ,ଶݏ … , ௜ݒܾ݊ ஽ሻ } of candidate skyline points (header tuples), whereݒܾ݊
denotes the next best value in ܸܲ ௜ܶ . Recall that B consists of the last D tuples that
resulted from the join between best tuples in each dimension and a matching tuple in
each of the other dimensions.

Assume that the dimensions in which P has worse values than the header point H are
dimensions 2 to D. Then, H “partially dominates” P in dimensions 2 to D. Further,
since the header point is formed from the combination of the worst values in each
dimension across the current header tuples, P is also partially dominated by the
current header tuples which are also current candidate skyline tuples. Therefore, the
only way for P to remain in the skyline is that no candidate skyline tuples dominate it
in the only remaining dimension, dimension 1. However, the header point tuple ܤଵ ൌ ሺܾ݊ݒଵ, ,ଶݍ … , -ௗሻ which is currently a candidate skyline tuple has a dimensionݍ
1 value - ܾ݊ݒଵ that is better than ݌ଵ. This is because the values are sorted and visited
in decreasing order of “goodness” and the tuple ܤଵwas constructed before P, so the
value ܾ݊ݒଵ must be better than ݌ଵ . This means that ܤଵ is better than P in all
dimensions and therefore dominates P. Therefore, P cannot be a skyline tuple which
contradicts our assumption.

3.2 RDFSkyJoinWithFullHeader (RSJFH)

We now propose an algorithm RDFSkyJoinWithFullHeader (RSJFH) for computing
skylines using the Header Point concept. In the RSJFH algorithm, a join iteration
proceeds as follows: create a joined tuple based on the tuple pointed by the table
pointer for dimension i. If a resulting joined tuple is pruned, then advancing table i’s
pointer until it points to a tuple whose joined tuple is not pruned by the current
header point. This process is repeated for each dimension to create a set of d header

 Efficiently Evaluating Skyline Queries on RDF Databases 129

tuples. Since the header point is formed using the worst values in each dimension
among the joined tuples, it may represent very loose boundary conditions which will
significantly reduce its pruning power. This occurs when these worst values are
among the worst overall in the relations. In our example, this occurs in the first join
iteration with the construction of the initial header point H(32, 2800). To strengthen
the pruning power of the header point, we can update its values as we encounter new
tuples with better values i.e. the next set of D tuples whose set of worse values are
better than the worse values in the current header point. These tuples will become the
next iteration’s header tuples.

Figure 3 (a) shows the second join iteration where new header tuples are used to
update the Header Point. The next tuple in Age VPT is (C12, 25) and its joined tuple
is (C12, 25, 3100). Compared with H, C12 can be pruned since it is worse than H in at
least D-1 dimensions (D is 2). RSJFH advances the table pointer to the next tuple in
the Age table, (C2, 26) whose joined tuple is (C2, 26, 2000). Compared with H, C2 is
not pruned and this tuple is adopted as a header tuple. Then, RSJFH moves to the next
VPT Debt where the next tuple is (C6, 1200) and its joined tuple is (C6, 30, 1200).
Compared with H, C6 is not pruned. Now, there is one header tuple from each VPT
and the header point can be updated to H’ (30, 2000). Similarly, in the third join
iteration (Figure 3 (b)), RSJFH checks the subsequent joined tuples in tables Age and
Debt and finds (C5, 28, 1400) and (C5, 28, 1400) are the next header tuples in tables
Age and Debt respectively. Then, the header point is updated to H’’ (28, 1400) based
on these two header tuples.

Fig. 3. Updating Header Points

3.2.1 Termination Phase and Post Processing
The RSJFH terminates the search for additional candidate skyline tuples when either
(i) the header point is not updated or (ii) either one of the table pointers ܬ௜ advances
down to the end of ܸܲ ௜ܶ .
Lemma 2. Let ܪ ൌ൏ ݄ଵ, ݄ଶ, … , ݄஽ ൐ be the last D-dimensional header point
computed during the last join iteration i.e. the joining process that resulted in the
computation of the last D candidate skyline tuples. If during the current join iteration

130 L. Chen, S. Gao, and K. Anyanwu

the header point is not updated or either one of the table pointers ܬ௜ advances down
to the end of ܸܲ ௜ܶ , then the search for additional candidate skyline tuples can be
terminated losslessly.
Proof. Recall that during a join iteration, we pick the next best tuples that are not
pruned in each dimension and join with other dimensions to form the next D
candidate skyline tuples. So each resulting tuple should contain the next best value in
some dimension, i.e. ܤ ൌ ሼܤଵ ൌ ሺܾ݊ݒଵ, ,ଶݍ … , ,஽ሻݍ ଶܤ ൌ ሺݐଵ, ,ଶݒܾ݊ … , ,஽ሻݐ … , ௗܤ ൌሺݏଵ, ,ଶݏ … , ஽ሻሽ. If after computing the set B, the header point is not updated, itݒܾ݊
implies that each ܾ݊ݒ௜ is worse than the corresponding hi in H. It is clear that all
these tuples can be pruned because their best dimension values are worse than our
current worst seen values in our header tuple, resulting in that the other dimensions
are clearly also worse. Thus, the header tuple dominates all of them. Further, since the
tuples in each dimension are ordered in the decreasing order of “goodness”, the next
set of best values cannot be better than those currently considered. Therefore, no
better tuples can be found with further scanning of the tables. When either one of the
table pointers ܬ௜ advances down to the end of ܸܲ ௜ܶ then all the values for that
dimension have been explored. Therefore, no new D-tuples can be formed and the
search for additional candidate skyline tuples can be terminated losslessly.

Algorithm 1. RDFSkyJoinWithFullHeader (RSJFH)
INPUT: n VPTs which are sorted according to object value, VPTList.
OUTPUT: A set of skyline points.
1.Initialization // to get first header point
2. read first tuple in each VPT and hash join to get n complete tuple Ti.
3. take the worst value in each dimension among Ti (i=1, 2,.., n) to compute Header Point H
4.While H is updated or pointers ܬ௧ is not pointing to the end of ܸܲ ௧ܶ do
5. for each VPT t ∈ VPTList
6. read one tuple and hash join to get complete tuple T and compare T with H
7. if T is prunable by H
8. T is pruned
9. else
10. T is a Header Tuple for updating H and is inserted into Candidate List C
11. end for
12. update Header Point H by Header Tuples
13. end while
14.BNLCalculate(C). // use BNL skyline algorithm to compute skyline results

Discussion. Intuitively, the header point summarizes neighborhoods that have been
explored and guides the pruning of the tuples in neighborhood around it during each
iteration. However, since RSJFH uses the worse points in each dimension, and prunes
tuples that are really worse (worse in d-1 dimensions) than the header point, it only
allows conservative pruning decisions. Therefore, some non-skyline points can still be
inserted into the candidate skyline list. For example, assume that RSJFH has just
processed the following tuples into the candidate skyline list {(25, 4000), (28, 3500),
(30, 3000)} and computed the header point (30, 4000). Then, an incoming tuple (29,
3750) would be advanced to the next stage because it is better than the header point in

 Efficiently Evaluating Skyline Queries on RDF Databases 131

both dimensions. However, it is unnecessary to advance the tuple (29, 3750) into the
next stage of the computation because it would eventually be dropped from candidate
skyline list since the tuple (28, 3500) dominates this tuple.

4 Near-Complete Algorithms

We can try to improve the header point to allow for more aggressive pruning. We
may however risk pruning out correct skyline tuples. In the following section, we
propose a strategy that strikes a balance between two objectives: increasing the
aggressiveness of pruning power of the header point and minimizing the risk of
pruning correct skyline tuples. We posit that in the context of the Web, partial results
can be tolerated particularly if the result set is “near-complete” and can be generated
much faster than the “complete” set. The approach we take is based on performing
partial updates to the header point after each join iteration rather than updating all the
dimensions.

4.1 RDFSkyJoinWithPartialHeader (RSJPH)

Definition 3 (Partial Header Point Update). Let H be the header point generated in
the previous join iteration and ݐଵ, ,ଶݐ … , .௡ be the tuples in the current join iterationݐ
A partial update to the header point means that for the ith dimension of header point,
the value is updated only if the worst value of ݐଵ, ,ଶݐ … , ௡ in the ith dimension isݐ
better than the ith dimensional value in H.

This implies that if all values in the ith dimension are better than the ith dimensional
value of the header point, then the ith dimension of the header point is updated with
worst value as before; otherwise, the ith dimension is not updated. Thus, the header
point is aggressively updated by the improving (or advancing) dimension values of
the joined tuples in the current join iteration.

Fig. 4. Partially Update Header Points by Bitmap Computation and its Termination

132 L. Chen, S. Gao, and K. Anyanwu

We now propose an algorithm RDFSkyJoinWithPartialHeader (RSJPH) based on
the partial update. To efficiently perform a “partial update of header point”, RSJPH
uses bitmap representation for bitwise operations. Consider the skyline graph sub
pattern of Customer again. Figure 4 shows the partial update method applied after the
first join iteration. In the second iteration, there are two newly joined tuples (C13, 25,
3100) and (C6, 30, 1200) and a header point H1(32, 2800) generated in the previous
iteration. Since both the dimension-1 values of C13 and C6 are better than that of H1
and only the dimension-2 value of C6 is better than that of H1, header point is
partially updated by the worse dimension-1 values of C13 and C6, resulting in H2(30,
2800). This partial update method is implemented using Bitmap computation (bit “1”
denotes the dimension that has better value, bit “0” denotes a contrary case and a
resulting bit array indicates that in which dimension(s) the header point needs to be
updated). Iterations 3 to 6 perform the same way to partially update the header points.

Termination. RSJPH revises the termination condition based on the partial update
(Line 2 in Algorithm 2). RSJPH terminates when there is no update for header point
and all the dimensional values in the newly joined tuples are worse than that of
current header point. Iteration 7 in Figure 4 shows how RSJPH terminates.

Algorithm 2. RDFSkyJoinWithPartialHeader(RSJPH)
INPUT: n VPT which are sorted according to object value, VPTList.
OUTPUT: A set of skyline points.
Define Variables: in n newly-joined tuples ݐଵ, ,ଶݐ … , .௡ be ௡ܸݐ ଶ be ଶܸ, …, dimension-n value ofݐ ଵ be ଵܸ, dimension-2 value ofݐ ௡, let dimension-1 value ofݐ
1.Initialization // to get first header point H
2.While (H is updated) && (< ଵܸ, ଶܸ, … , ௡ܸ> is better than H) do
3. for each VPT t ∈ VPTListI do
4. read one tuple and hash join to get complete tuple T and compare T with H
5. use the bitmap representation to record T’s better value and worse value
6. if T is prunable by H then
7. T is pruned
8. else
9. T is inserted into Candidate List C
10. end for
11. read the bitmap as bit-slice and calculate bit-slice value by bitwise AND operation
12. for each bit-slice do // partially update H
13. if bit-slice value is 1 then
14. update the corresponding header point value
15. else
16. no update
17. end for
18.end while
19.BNLCalculate(C).

Discussion. In RSJFH, we always update the dimensions using the worse values from
the header tuples in that iteration regardless of whether those values are better or
worse than the current header point values. Essentially, a header point summarizes
only the iterations preceding it. In RSJPH, a header point may hold “good” pruning
values from earlier iterations and only update those dimensions whose values are

 Efficiently Evaluating Skyline Queries on RDF Databases 133

improving or advancing. This in a sense broadens the neighborhood that it represents
and also allows certain regions in the space to be considered for longer periods than
the previous approach. Consequently, we have a header point with more aggressive
pruning power. For example, assume that after our previous header point (30, 4000),
the next iteration would have worse values as (25, 4500). However, given our partial
update technique, only the first dimension would be updated to 25, resulting in the
header point (25, 4000). This header point would prune more tuples than the regular
header point (25, 4500). However, some of the pruned tuples that fall into the gap
between (25, 4500) and (25, 4000) may be skyline tuples, such as (25, 4250).

Proposition 1. Let ܪଵ௙, ,ଶ௙ܪ … , ௠௙ܪ be the header points generated in RSJFH and A be
the set of pruned tuples by all the header points. Similarly, let ܪଵ௣, ,ଶ௣ܪ … , ௡௣ be theܪ
header points generated in RSJPH and B be the set of pruned tuples by all the header

points. ܪ௜௣ is stronger than ܪ௜௙ , which means ܪ௜௣ may wrongly prune some skyline

points ܹ ௜ܲ falling into the interval <ܪ௜௙, ܣ ,௜௣>. Thenܪ ؿ and the difference set B ܤ െ ܣ ൌ ڂ ܹ ௜ܲ௡௜ୀଵ .

To avoid this we can relax the pruning check. Rather than generalizing the checking
based on number of dimensions, we do checking based on which dimensions were
updated and which were not updated.

4.2 Relaxing Prunability of Partially Updated Header Point

Given a header point, if the ith dimension is updated in the last iteration, we regard it
as an “updated dimension”; otherwise, we regard it as “non-updated dimension”.
Given a tuple p, if p has n dimensions whose values are better than that of the header
point h, we say that p has n better dimensions. From Lemma 1, we can infer that a
tuple p needs to have at least two better dimensions to survive the pruning check.
Assume that we have: (1) ܪଶሺ݀ଵᇱ , ݀ଶᇱ ሻ is a header point partially updated from a full
updated header point ,ଵሺ݀ଵܪ ݀ଶሻ , where ݀ଵᇱ ظ ݀ଵ and ݀ଶᇱ ൌ ݀ଶ , where denotes
better; Thus, ݀ଵᇱ is the “updated” dimension of ܪଶ and ݀ଶᇱ is the “non-updated”
dimension of ܪଶ ; (2) a tuple ݌ሺ݌ଵ, ଶሻ݌ , where ݀ଵᇱ ظ ଵ݌ ଵ݌ , ظ ݀ଵ and ݌ଶ ظ ݀ଶᇱ .
Compared to ܪଶ, p can be pruned because p has only one better dimension. However,
when compared to ଵܪ , p will survive the pruning check since p has two better
dimensions (݌ଵ ظ ݀ଵ and ଶ݌ ظ ݀ଶ). Since the partial update approach makes the
“updated” dimensions of ܪଶ too good, the tuples that may survive given the fully
updated header point ܪଵ, such as p, are mistakenly pruned. To alleviate this situation,
we relax the pruning condition with the following crosscheck constraint.

Crosscheck. If an incoming tuple has some dimensional values better than "non-
updated" dimension and some dimensional values worse than "updated” dimension,
we add this tuple into candidate list. To implement this algorithm, we basically add
this additional condition check between Lines 6 and 7 in Algorithm 2. The resulting
algorithm is called RDFSkyJoinWithPartialHeader+ (RSJPH+).

Proposition 2. Let ܪ௜௣ be a header point in RSJPH with the “updated” dimension ݀௚
that has been updated in iteration i-1 and the “non-updated” dimension ݀௕ that has
not been updated in iteration i-1. Let p be a new tuple that has failed the pruning

134 L. Chen, S. Gao, and K. Anyanwu

check by ܪ௜௣ . If p survives the crosscheck condition, i.e., ܪ௜௣. ݀௚ ≽ .݌ ݀௚ but ݌. ݀௕ ≽ .௜௣ܪ ݀௕ , p is saved and added into candidate list. We regard the saved tuples
by crosscheck in iteration i as the set ܥܥ௜. ܥܥ௜ ك ܹ ௜ܲ . Assume C denotes the set of
pruned tuples in RSJPH+. Then, ܥ ൌ ܤ െ ڂ ௜௡௜ୀଵܥܥ and ܣ ؿ ك ܥ .ܤ

5 Experimental Evaluation

Experimental Setup and Datasets. In this section, we present an experimental
evaluation of the three algorithms presented in above sections in terms of scalability,
dimensionality, average completeness coverage and prunability. We use the synthetic
datasets with independent, correlated and anti-correlated data distributions generated
by a benchmark data generator [1]. Independent data points follow the uniform
distribution. Correlated data points are not only good in one dimension but also good
in other dimensions. Anti-correlated data points are good in one dimension but bad in
one or all of the other dimensions. All the data generated by the data generator is
converted into RDF format using JENA API and is stored as VPT using BerkeleyDB.
All the algorithms are implemented in Java and the experiments are executed on a
Linux machine of 2.6.18 kernel with 2.33GHz Intel Xeon and 16GB memory. The
detailed experimental results can be found at sites.google.com/site/chenlingshome.

Scalability. Figure 5 (A), (B) and (C) show the scalability evaluation of RSJFH,
RSJPH, RSJPH+ and Naïve for independent, correlated and anti-correlated datasets (1
million to 4 million triples). In all data distributions, RSJPH and RSJPH+ are superior
to RSJFH and Naïve. The difference in execution time between RSJPH, RSJPH+ and
RSJFH comes from the fact that partial update method makes the header point
stronger (i.e. the header point has better value in each dimension and could dominate
more non-skyline tuples resulting in stronger prunability) earlier, which terminates the
algorithm earlier. For independent data (Figure 5 (A)), RSJPH and RSJPH+ use only
about 20% of the execution time needed in RSJFH and Naïve. The execution time of
RSJFH increases quickly in the independent dataset with size 4M of triples. The
reason for this increase is that the conservativeness of the full header point update
technique leads to limited effectiveness in prunability. This results in an increased
size for the candidate skyline set and consequently total number of comparisons with
Header Point. RSJPH+ relaxes the check condition in RSJPH and so allows more
tuples to be inserted into the candidate list explaining the slight increase in the
execution time in Figure 5(A). Figure 5 (B) shows that RSJFH, RSJPH and RSJPH+
perform better in correlated datasets than in independent datasets. In the correlated
data distribution, the header points tend to become stronger earlier than in the case of
independent datasets especially when the data is accessed in the decreasing order of
“goodness”. The reason for this is that the early join iterations produce tuples that are
made of the best values in each dimension. Stronger header points make the algorithm
terminate earlier and reduce the number of tuples joined and checked against the
header point and the size of candidate skyline set. Figure 5 (C) shows particularly bad
performance for the anti-correlated datasets which often have the best value in one
dimension but the worst value in one or all of the other dimensions. This leads to very
weak header points because header points are constructed from worst values of joined

 Efficiently Evaluating Skyline Queries on RDF Databases 135

tuples. RSJFH have to explore almost the entire search space, resulting in the poor
performance shown in Figure 5 (C). Although RSJPH seems to outperform the other
algorithms, this advantage is attributed to the fact that it computes only 32% of
complete skyline result set.

Fig. 5. Experimental Evaluation

0

20

40

60

80

100

120

1m 2m 3m 4m

E
xe

cu
tio

n
T

im
e(

Se
c)

Triple Size (million)

Independent
Naïve
RSJFH
RSJPH
RSJPH+

5(A)

0.5
1
2
4
8
16
32
64
128
256

1m 2m 3m 4m
E

xe
cu

tio
n

T
im

e(
Se

c)
Triple Size (million)

Correlated
Naïve
RSJFH
RSJPH
RSJPH+

5(B)

0

200

400

600

800

1000

1200

1m 2m 3m 4m

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Triple Size (million)

Anti-Correlated
Naïve
RSJFH
RSJPH
RSJPH+

5(C)

0

35

70

105

140

175

210

245

2 3 4 5

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Number of Dimensions

Independent
Naïve
RSJFH
RSJPH
RSJPH+

5(D)

0
6
12
18
24
30
36
42
48

2 3 4 5

E
xe

cu
tio

n
T

im
e(

se
c)

Number of Dimensions

Correlated
Naïve
RSJFH
RSJPH
RSJPH+

5(E)

1

4

16

64

256

1024

4096

16384

2 3 4 5

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Number of Dimensions

Anti-Correlated
Naïve
RSJFH
RSJPH
RSJPH+

5(F)

0
10
20
30
40
50
60
70
80
90

100

Independent Correlated Anti-Correlated

Pe
rc

en
ta

ge
(%

)

Data Distribution

Average Completeness Coverage

RSJFH

RSJPH

RSJPH+

5(G)

0
10
20
30
40
50
60
70
80
90

100

Independent Correlated Anti-Correlated

Pe
rc

en
ta

ge
(%

)

Data Distribution

Average Prunability

RSJFH

RSJPH

RSJPH+

5(H)

136 L. Chen, S. Gao, and K. Anyanwu

Dimensionality. Figure 5 (D), (E) and (F) show the effect of increasing the
dimensionality (2-5) on the performance of the four algorithms for different data
distributions. As in previous experiments, RSJPH and RSJPH+ consistently
outperform RSJFH and Naïve. The execution time of RSJFH starts to increase with
number of dimensions greater than 3. The reason is that the conservative way of
updating header point makes the header points greatly reduce the pruning power in
high dimensional data and the extra comparisons almost double the total execution
time. For RSJPH+, with the increase in number of dimensions, the size of the saved
tuples by the crosscheck condition increases, therefore, the size of candidate skyline
set increases and the execution time increases as well.

Average Completeness Coverage and Average Prunability. Figure 5 (G) and (H)
show the average completeness coverage (ACC) and average prunability (AP) of RSJFH,
RSJPH and RSJPH+. ACC and AP are the averages for completeness coverage and the
number of pruned triples across all the experiments shown in Figure 5 (A) to (F)
respectively. The pruned triples include the ones pruned by header points as well as the
ones pruned by early termination. Figure 5 (E) shows that RSJFH has 100% of ACC in
all data distributions. For the correlated datasets, the data distribution is advantageous in
forming a strong header point without harming the completeness of skyline results when
the data is sorted from “best” to “worst”. Thus, RSJFH, RSJPH and RSJPH+ have 100%
of ACC and 99% of AP in correlated datasets. For independent datasets, RSJPH
aggressively updates the header points to increase AP with the cost of decreasing ACC.
RSJPH+ improves the ACC by using crosscheck while only sacrificing 2.7% of the AP
compared with RSJPH. For anti-correlated datasets, the data distribution makes all the
algorithms perform poorly. Although RSJFH achieves 100% of ACC, the AP decreases
to 7%. RSJPH still maintains 99% for AP but its ACC is only 32%.

RSJPH+ achieves a good tradeoff between completeness coverage and prunability.
RSJPH+ computes about 80% of skyline results when it scans about the first 35% of
sorted datasets.

6 Related Work

In recent years, much effort has been spent on evaluating skyline over single relation.
[1] first introduced the skyline operator and proposed BNL and D&C and an
algorithm using B-trees that adopted the first step of Fagin’s ܣ଴. [2][3][9] proposed
algorithms that could terminate earlier based on sorting functions. [4][5][6] proposed
index algorithms that could progressively report results. Since these approaches focus
on single relation, they consider skyline computation independent from join phase,
which renders the query execution to be blocking.

Some techniques have been proposed for skyline-join over multiple relations. [11]
proposed a partitioning method that classified tuples into three types: general, local
and non-local skyline tuples. The first two types are joined to generate a subset of the
final results. However, this approach isn’t suitable for single dimension tables like
VPT [7] in RDF databases because each VPT can only be divided into general and
local skyline tuples, neither of which can be pruned, requiring a complete join of all
relevant tables. [16] proposed a framework SkyDB to partition the skyline-join

 Efficiently Evaluating Skyline Queries on RDF Databases 137

process into macro and micro level. Macro level generates abstractions while micro
level populates regions that are not pruned by macro level. Since RDF databases only
involve single dimension tables, SkyDB is not suitable for RDF databases.

In addition, there are some techniques proposed for skyline computation for
Semantic Web data and services. [8] focused on extending SPARQL with support of
expression of preference queries but it does not address the optimization of query
processing. [13] formulated the problem of semantic web services selection using the
notion of skyline query and proposed a solution for efficiently identifying the best
match between requesters and providers. [14] computed the skyline QoS-based web
service and [15] proposed several algorithms to retrieve the top-k dominating
advertised web services. [17] presented methods for automatically relaxing over-
constrained queries based on domain knowledge and user preferences.

7 Conclusion and Future Work

In this paper, we have addressed the problem of skyline queries over RDF databases.
We presented the concept of Header Point and Early Termination to prune non-
skyline tuples. We have proposed a complete algorithm RSJFH that utilized the
prunability of Header Point and Early Termination. Then, we proposed two near-
complete algorithms, RSJPH and RSJPH+, for achieving the tradeoffs between quick
response time and completeness of skyline queries over RDF databases. In future, we
will integrate cost-based techniques for further optimization. We will also address the
issue of incomplete skyline computation over RDF databases.

Acknowledgement. The work presented in this paper is partially funded by NSF
grant IIS- 0915865. Thanks to Mridu B. Narang for the draft comments and to Jigisha
Dhawan, Vikas V. Deshpande, Amrita Paul and Gurleen Kaur for the discussions.

References

[1] Borzsonyi, S., Kossmann, D., Stocker, K., Passau, U.: The Skyline Operator. In: ICDE
(2001)

[2] Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: ICDE (2003)
[3] Bartolini, I., Ciaccia, P., Patella, M.: SaLSa: computing the skyline without scanning the

whole sky. In: CIKM, Arlington, Virginia, USA, pp. 405–414 (2006)
[4] Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: VLDB,

San Francisco, CA, USA, pp. 301–310 (2001)
[5] Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for

skyline queries. In: VLDB, HK, China, pp. 275–286 (2002)
[6] Papadias, D., Fu, G., Morgan Chase, J.P., Seeger, B.: Progressive Skyline Computation in

Database Systems. ACM Trans. Database Syst (2005)
[7] Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data

management using vertical partitioning. In: VLDB, Vienna, Austria, pp. 411–422 (2007)
[8] Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences. In:

Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 612–624. Springer, Heidelberg (2006)

138 L. Chen, S. Gao, and K. Anyanwu

[9] Godfrey, P., Shipley, R., Gryz, J.: Maximal Vector Computation in Large Data Sets. In:
VLDB, Norway (2005)

[10] Raghavan, V., Rundensteiner, E.A.: Progressive Result Generation for Multi-Criteria
Decision Support Queries. In: ICDE (2010)

[11] Jin, W., Ester, M., Hu, Z., Han, J.: The Multi-Relational Skyline Operator. In: ICDE
(2007)

[12] Sun, D., Wu, S., Li,J.,Tung, A.K.H.: Skyline-join in Distributed Databases. In: ICDE
Workshops, pp. 176–181 (2008)

[13] Skoutas, D., Sacharidis, D., Simitsis, A., Sellis, T.: Serving the Sky: Discovering and
Selecting Semantic Web Services through Dynamic Skyline Queries. In: ICSC, USA
(2008)

[14] Alrifai, M., Skoutas, D., Risse, T.: Selecting Skyline Services for QoS-based Web Service
Composition. In: WWW, Raleigh, NC, USA (2010)

[15] Skoutas, D., Sacharidis, D., Simitsis, A., Kantere, V., Sellis, T.: Top-k Dominant Web
Services Under Multi-Criteria Matching. In: EDBT, Russia, pp. 898–909 (2009)

[16] Raghavan, V., Rundensteiner, E.: SkyDB: Skyline Aware Query Evaluation Framework.
In: IDAR (2009)

[17] Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing RDF Queries based on
User and Domain Preferences. JIIS 33(3) (2009)

	Efficiently Evaluating Skyline Queries on RDF Databases
	Introduction
	Contributions

	Background and Problem Statement
	Evaluating the Skyline over the Join of Multiple-Relations
	Header Point and Its Prunability
	RDFSkyJoinWithFullHeader (RSJFH)

	Near-Complete Algorithms
	RDFSkyJoinWithPartialHeader (RSJPH)
	Relaxing Prunability of Partially Updated Header Point

	Experimental Evaluation
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

