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Abstract. Skyline queries are a class of preference queries that compute the 
pareto-optimal tuples from a set of tuples and are valuable for multi-criteria 
decision making scenarios. While this problem has received significant 
attention in the context of single relational table, skyline queries over joins of 
multiple tables that are typical of storage models for RDF data has received 
much less attention. A naïve approach such as a join-first-skyline-later strategy 
splits the join and skyline computation phases which limit opportunities for 
optimization. Other existing techniques for multi-relational skyline queries 
assume storage and indexing techniques that are not typically used with RDF 
which would require a preprocessing step for data transformation. In this paper, 
we present an approach for optimizing skyline queries over RDF data stored 
using a vertically partitioned schema model. It is based on the concept of a 
“Header Point” which maintains a concise summary of the already visited 
regions of the data space. This summary allows some fraction of non-skyline 
tuples to be pruned from advancing to the skyline processing phase, thus 
reducing the overall cost of expensive dominance checks required in the skyline 
phase. We further present more aggressive pruning rules that result in the 
computation of near-complete skylines in significantly less time than the 
complete algorithm. A comprehensive performance evaluation of different 
algorithms is presented using datasets with different types of data distributions 
generated by a benchmark data generator.  
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1   Introduction 

The amount of RDF data available on the Web is growing more rapidly with 
broadening adoption of Semantic Web tenets in industry, government and research 
communities. With datasets increasing in diversity and size, there have been more and 
more research efforts spent on supporting complex decision making over such data.  
An important class of querying paradigm for this purpose is preference queries, and in 
particular, skyline queries. Skyline queries are valuable for supporting multi-criteria 
decision making and have been extensively investigated in the context of relational 
databases [1][2][3][4][5][6][11][12] but in a very limited way for Semantic Web [8]. 
A skyline query over a data set S with D-dimension aims to return the subset of S 
which contains the points in S that are not dominated by any other data point. For two 
D-dimensional data points ݌ሺݑଵ, ,ଶݑ ,ଷݑ … , ,ଵݒሺݍ  ௗሻ  andݑ ,ଶݒ ,ଷݒ … ,  ௗሻ , point p isݒ
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said to dominate point q if ݌. ≼ ௜ݑ .ݍ  ௜ݒ  for all ݅ ∈ ሾ1, ݀ሿ  and in at least one 
dimension ݌. ظ ௝ݑ .ݍ  ∋ ௝ where jݒ ሾ1, ݀ሿ, ≽ denotes better than or equal with, ظ 
denotes better than. For example, assume that a company wants to plan a sales 
promotion targeting the likeliest buyers (customers that are young with a low amount 
of debt). Consider three customers A (age 20, debt $150), B (age 28, debt $200) and C 
(age 25, debt $100). Customer A is clearly a better target than B because A is younger 
and has less debt. Therefore, we say that A dominates B. However, A does not 
dominate C since A is younger than C but has more debt than C. Therefore, the 
skyline result over the customer set {A, B, C} is {A, C}.   

The dominant cost in computing the skyline of a set of n D-dimension tuples lies in 
the number of comparisons that needs to be made to decide if a tuple is or isn’t part of 
the skyline result. The reason is that for a tuple to be selected as being in the skyline, 
it would need to be compared against all other tuples to ensure that no other tuples 
dominate it. Further, each tuple pair comparison involves D comparisons comparing 
their values in all D dimensions. Consequently, many of existing techniques 
[1][2][3][4][5][6][11][12] for computing skylines on relational databases focus on 
reducing the number of tuple pair comparisons. This is achieved using indexing 
[4][5][6], or partitioning data into subsets [11] where some subsets would contain 
points that can quickly be determined to be in or pruned from the skyline result.  

It is also possible to have skyline queries involving attributes across multiple 
relations that need to be joined, i.e. multi-relational skyline. This would be a very 
natural scenario in the case of RDF data since such data is often stored as vertically 
partitioning relations [7]. However, there are much fewer efforts [11][12][16] directed 
at evaluating skylines over multiple relations. A common strategy, which was also 
proposed in the context of preference queries on the Semantic Web [8], is to first join 
all necessary tables in a single table and then use a single table skyline algorithm to 
compute the skyline result, i.e. join-first-skyline-later (JFSL). A limitation of the 
JFSL approach is that the join phase only focuses on identifying joined tuples on 
which skyline computation can then be done. It does not exploit information about the 
joined tuples to identify tuples that are clearly not in the skyline result. Identifying 
such tuples would allow pruning them from advancing to the skyline phase and avoid 
the expensive dominance checks needed for skyline computation on those tuples. 
Alternative techniques to the JFSL approach [4][5][6][11][12][16] employ specialized 
indexing and storage schemes which are not typical in RDF data and require 
preprocessing or storage in multiple formats.   

1.1   Contributions 

This paper proposes an approach for efficient processing of skyline queries over RDF 
data that is stored as vertically partitioned relations. Specifically, we propose 

• The concept of a Header Point that maintains a concise summary of the already 
visited region of the data space for pruning incoming non-skyline tuples during 
join phase. This improves efficiency by reducing number of comparisons needed 
during later skyline processing phase. 
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• A complete algorithm and two near-complete algorithms based on an approach 
that interleaves the join processing with some skyline computation to minimize 
the number of tuples advancing into skyline computation phase. The near-
complete algorithms compute about 82% of skyline results in about 20% of the 
time needed for the complete algorithm. 

• A comprehensive performance evaluation of the algorithms using datasets with 
different types of data distributions generated by a benchmark data generator. 

2   Background and Problem Statement 

Assume that we have a company’s data model represented in RDF containing 
statements about Customers, Branches, Sales and relationships such as Age, Debt, 
PurchasedBy etc. Figure 1 (a) shows a sample of such database using a graph 
representation.  

 

Fig. 1. Example RDF Graph Model and Skyline Queries 

Consider again the example of sales promotion targeting the young customers with 
less debt. Also assume that company would like to focus their campaigns on 
customers that live close to some branch. We express such a query using an extended 
SPARQL as shown in Figure 1 (b). The properties in front of MIN/MAX keywords 
are the skyline properties (dimensions) to be considered during the skyline 
computation. The MIN/MAX keyword specifies that we want the value in the 
corresponding property to be minimized/maximized.  We now formalize the concept 
of a skyline graph pattern that builds on the formalization of SPARQL graph pattern 
queries.  

An RDF triple is 3-tuple ሺݏ, ,݌  ሻ where s is the subject, p is the predicate and o is݋
the object.  Let I, L and B be the pairwise disjoint infinite set of IRIs, Blank nodes 
and Literals. Also assume the existence of an infinite set V of variables disjoint from 
the above sets. A triple pattern is a query pattern such that V can appear in subject, 
predicate or object. A graph pattern is a combination of triple patterns by the binary 
operators UNION, AND and OPT. Given an RDF database graph, a solution to a 
graph pattern is a set of substitutions of the variables in the graph pattern that yields a 
subgraph of the database graph and the solution to the graph pattern is the set of all 
possible solutions. 
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Definition 1 (Skyline Graph Pattern). A Skyline Graph Pattern is defined as a tuple 
(GP, SK) where GP is a graph pattern and SK is a set of skyline conditions 
,ଵ݇ݏ} ,ଶ݇ݏ … , ௜݇ݏ .{௠݇ݏ  is of the form ݂݊௜ሺ݌௜ሻ where ݂݊௜  is either min() or max() 
function and ݌௜  is a property in one of the literal triple patterns in GP. The Solution 
to (GP, SK) is an ordered subset ܴܵ ൌ ൣ ௜ܵ, ௝ܵ , … , ܵ௞൧ ك ܵ  where ௜ܵ  denotes the 
solution to a basic graph pattern (an RDF graph with variables) and the following 
conditions hold: (i) each solution  ܵ௣ ∈ ܴܵ is not dominated by any solution in  ܵ; (ii) 
each solution  ܵ௤ ∈ ሼܵ െ ܴܵሽ is dominated by some solution in  ܵ. 

3   Evaluating the Skyline over the Join of Multiple-Relations 

Vertically partitioned tables (VPT) are a common storage model for RDF data. A 
straightforward approach to compute the skyline over a set of vertically partitioned 
tables ܸܲ ଵܶ, ܸܲ ଶܶ,…, ܸܲ ௗܶ   is as follows: (i) join ܸܲ ଵܶ,ܸܲ ଶܶ,…,ܸܲ ௗܶ  into a complete 
single table T (the determination of dominance between two tuples cannot be made by 
looking at only a subset of the skyline properties); (ii) compute skyline over this 
single table T by using any single-table skyline algorithm, such as BNL (Block-
Nested-Loop). We call this approach as “Naive” algorithm. “Naive” algorithm 
maintains only a subset of all already joined tuples (candidate list) against which each 
newly joined tuple is compared to determine its candidacy in the skyline result. 
However, this approach does not fully exploit the information about the joined tuples 
and requires too many comparisons to determine one tuple’s candidacy in skyline 
result. Our approach based on the concept of a Header Point improves upon this by 
using information about already joined tuples to make determinations about (i) 
whether a newly joined tuple could possibly be a member of the skyline and (ii) 
whether there is a possibility of additional skyline tuples to be encountered in the 
future. The former allows for pruning a tuple from advancing to the skyline (SL) 
phase where it would incur additional cost of comparisons with several tuples in a 
skyline candidate list. The latter allows for early termination.  

3.1   Header Point and Its Prunability 

Our approach is based on splitting the join phase into iterations where information 
about earlier iterations is summarized and used to check skyline candidacy of tuples 
joined in later iterations. In each join iteration, we need to join each 2-tuple in each 
VPT to their corresponding matching 2-tuples in all of the other VPTs. Let ܬ௜ be the 
table pointer pointing to the subject value (ݑݏ ௝ܾሻ of the jth triple ݎݐ௝ in ܸܲ ௜ܶ  and a 
join iteration would be: ራ join of ݎݐ௝ to matching tuples in ܸܲ ௞ܶሺ ݇ ് ݅୧ୀଵ ୲୭ ୢ ሻ 

In other words, at the end of a join iteration we would have computed d tuples and 
each tuple is based on the 2-tuple pointed to by table pointer in some dimension VPT.  

A Header Point summarizes the region of data explored in earlier join iterations. It 
enables a newly joined tuple in the subsequent join iteration to be compared against this 
summary rather than multiple comparisons against the tuples in the skyline candidate list.  
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Definition 2 (Header Point). Let ሼݐଵ, ,ଶݐ … ,  ௗሽ be the set of tuples in the jth joinݐ
iteration. A Header Point of the computation is a tuple of ൏ ௡݂ೕሺሼݐ௜ሾ1ሿሽሻ,௡݂ೕሺሼݐ௜ሾ2ሿሽሻ, . . ., ௡݂ೕሺሼݐ௜ሾ݀ሿሽሻ ൐ where ௡݂ೕ is either min() or max() function. We call 

the tuples that form the basis of the Header Point (i.e. the ݐ௜s), Header Tuples.   

To illustrate the advantage of the header point concept, we will use a smaller version 
of our motivating example considering only a graph sub pattern with skyline 
properties, Age and Debt. We will assume that data is organized as VPT and indexed 
by Subject (SO) and by Object (OS). Using the OS index, the triples can be accessed 
in decreasing order of “goodness” when minimizing/maximizing skyline properties, 
i.e. in increasing/decreasing order of object values. Let us consider the earliest join 
iteration involving the first tuples of each relation. Figure 2 (a) shows the table 
pointers (JAge and JDebt) for the two relations and the two red lines show the matching 
tuples to be joined resulting in the tuples T1 (C1, 25, 2800) and T2 (C13, 32, 800) 
shown in Figure 2 (b). Since these tuples are formed from the best tuples in each 
dimension, they have the best values in their respective dimensions, therefore no other 
tuples dominate them and they are part of the skyline result. We can create a header 
point based on the worst values (here, the largest values) in each dimension (Age and 
Debt) across all the currently joined tuples resulting in a tuple H (32, 2800).  T1 and 
T2 are called Header Tuples. 

 

Fig. 2. Formation of Initial Header Point and its Prunability 

Our goal with the header point is to use it to determine whether newly joined tuples 
in subsequent iterations should be considered as candidate skyline tuples or be pruned 
from advancing to the expensive skyline processing phase. For example, assume that 
in the next join iteration we compute the next set of joined tuples by advancing the 
table pointer to the next tuple in each VPT. Then, one of the resulting joined tuples is 
(C12, 25, 3100). For the rest of the paper, we will use C12 to denote the tuple (C12, 
25, 3100). However, the current candidate skyline list { (C1, 25, 2800), (C13, 32, 
800) } contains a tuple (C1, 25, 2800) that clearly dominates C12, therefore C12 
should not be considered as a candidate skyline tuple. Further, we should be able to 
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use the information from our header point to make this determination rather than 
compare every newly joined tuple with tuples in the candidate skyline list. We 
observe the following relationship between newly joined tuples and the header point 
that can be exploited: If a newly joined tuple is worse than the header point in at least 
one dimension, then that new tuple cannot be a skyline tuple and can be pruned. 
Applying this rule to our previous example, we will find that the tuple C12 is worse 
than our header point H in the Debt dimension. Therefore, it can be pruned. In 
contrast, the other joined tuple (C6, 30, 1200) is not worse than H in at least one 
dimension (in fact, it is better in two dimensions) and is not pruned. Figure 2 (b) 
shows the relationships between these points in a 2-dimensional plane: any 
subsequent joined tuple located in the regions of S, Q and T can be pruned by header 
point H. We now make a more precise statement about the relationship between a 
header point and tuples created after the creation of the header point. 

Lemma 1. Given a D-dimensional header point ܪ ൌ ൏ ݄ଵ,݄ଶ, … , ݄஽ ൐ , any 
“subsequent ” (i.e. a point constructed after the current header point) D-tuple whose 
values are worse than H in at least D - 1 dimensions, are not skyline points. 
Proof. Let ܲ ൌ ሺ݌ଵ, ,ଶ݌ … ,  ஽ሻ be a new tuple that is worse than the current header݌
point ܪ ൌ  ሺ݄ଵ, ݄ଶ, … , ݄஽ሻ  in at least D – 1 dimensions but is a candidate skyline 
point. Let ܪ be the header point that was just formed during the construction of the 
most recently computed set B = ሼ ܤଵ ൌ  ሺܾ݊ݒଵ, ,ଶݍ … , ଶܤ , ஽ሻݍ ൌ  ሺݐଵ, ,ଶݒܾ݊ … ,  ,஽ሻݐ
ௗܤ , ... ൌ  ሺݏଵ, ,ଶݏ … ,  ௜ݒܾ݊ ஽ሻ } of candidate skyline points (header tuples), whereݒܾ݊
denotes the next best value in ܸܲ ௜ܶ . Recall that B consists of the last D tuples that 
resulted from the join between best tuples in each dimension and a matching tuple in 
each of the other dimensions. 

Assume that the dimensions in which P has worse values than the header point H are 
dimensions 2 to D. Then, H “partially dominates” P in dimensions 2 to D. Further, 
since the header point is formed from the combination of the worst values in each 
dimension across the current header tuples, P is also partially dominated by the 
current header tuples which are also current candidate skyline tuples. Therefore, the 
only way for P to remain in the skyline is that no candidate skyline tuples dominate it 
in the only remaining dimension, dimension 1. However, the header point tuple ܤଵ ൌ  ሺܾ݊ݒଵ, ,ଶݍ … , -ௗሻ which is currently a candidate skyline tuple has a dimensionݍ
1 value - ܾ݊ݒଵ that is better than ݌ଵ. This is because the values are sorted and visited 
in decreasing order of “goodness” and the tuple ܤଵwas constructed before P, so the 
value ܾ݊ݒଵ must be better than ݌ଵ . This means that ܤଵ  is better than P in all 
dimensions and therefore dominates P. Therefore, P cannot be a skyline tuple which 
contradicts our assumption. 

3.2   RDFSkyJoinWithFullHeader (RSJFH) 

We now propose an algorithm RDFSkyJoinWithFullHeader (RSJFH) for computing 
skylines using the Header Point concept. In the RSJFH algorithm, a join iteration 
proceeds as follows: create a joined tuple based on the tuple pointed by the table 
pointer for dimension i. If a resulting joined tuple is pruned, then advancing table i’s 
pointer until it points to a tuple whose joined tuple is not pruned by the current 
header point. This process is repeated for each dimension to create a set of d header 
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tuples. Since the header point is formed using the worst values in each dimension 
among the joined tuples, it may represent very loose boundary conditions which will 
significantly reduce its pruning power. This occurs when these worst values are 
among the worst overall in the relations. In our example, this occurs in the first join 
iteration with the construction of the initial header point H(32, 2800). To strengthen 
the pruning power of the header point, we can update its values as we encounter new 
tuples with better values i.e. the next set of D tuples whose set of worse values are 
better than the worse values in the current header point. These tuples will become the 
next iteration’s header tuples.  

Figure 3 (a) shows the second join iteration where new header tuples are used to 
update the Header Point. The next tuple in Age VPT is (C12, 25) and its joined tuple 
is (C12, 25, 3100). Compared with H, C12 can be pruned since it is worse than H in at 
least D-1 dimensions (D is 2). RSJFH advances the table pointer to the next tuple in 
the Age table, (C2, 26) whose joined tuple is (C2, 26, 2000). Compared with H, C2 is 
not pruned and this tuple is adopted as a header tuple. Then, RSJFH moves to the next 
VPT Debt where the next tuple is (C6, 1200) and its joined tuple is (C6, 30, 1200). 
Compared with H, C6 is not pruned. Now, there is one header tuple from each VPT 
and the header point can be updated to H’ (30, 2000). Similarly, in the third join 
iteration (Figure 3 (b)), RSJFH checks the subsequent joined tuples in tables Age and 
Debt and finds (C5, 28, 1400) and (C5, 28, 1400) are the next header tuples in tables 
Age and Debt respectively. Then, the header point is updated to H’’ (28, 1400) based 
on these two header tuples. 

 

Fig. 3. Updating Header Points 

3.2.1   Termination Phase and Post Processing 
The RSJFH terminates the search for additional candidate skyline tuples when either 
(i) the header point is not updated or (ii) either one of the table pointers ܬ௜ advances 
down to the end of  ܸܲ ௜ܶ . 
Lemma 2. Let ܪ ൌ൏ ݄ଵ, ݄ଶ, … , ݄஽ ൐  be the last D-dimensional header point 
computed during the last join iteration i.e. the joining process that resulted in the 
computation of the last D candidate skyline tuples. If during the current join iteration 
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the header point is not updated or either one of the table pointers ܬ௜ advances down 
to the end of  ܸܲ ௜ܶ , then the search for additional candidate skyline tuples can be 
terminated losslessly.  
Proof. Recall that during a join iteration, we pick the next best tuples that are not 
pruned in each dimension and join with other dimensions to form the next D 
candidate skyline tuples. So each resulting tuple should contain the next best value in 
some dimension, i.e. ܤ ൌ ሼܤଵ ൌ ሺܾ݊ݒଵ, ,ଶݍ … , ,஽ሻݍ ଶܤ ൌ ሺݐଵ, ,ଶݒܾ݊ … , ,஽ሻݐ … , ௗܤ ൌሺݏଵ, ,ଶݏ … ,  ஽ሻሽ. If after computing the set B, the header point is not updated, itݒܾ݊
implies that each ܾ݊ݒ௜ is worse than the corresponding hi in H. It is clear that all 
these tuples can be pruned because their best dimension values are worse than our 
current worst seen values in our header tuple, resulting in that the other dimensions 
are clearly also worse. Thus, the header tuple dominates all of them. Further, since the 
tuples in each dimension are ordered in the decreasing order of “goodness”, the next 
set of best values cannot be better than those currently considered. Therefore, no 
better tuples can be found with further scanning of the tables. When either one of the 
table pointers ܬ௜  advances down to the end of  ܸܲ ௜ܶ  then all the values for that 
dimension have been explored. Therefore, no new D-tuples can be formed and the 
search for additional candidate skyline tuples can be terminated losslessly. 

 
Algorithm 1. RDFSkyJoinWithFullHeader (RSJFH) 
INPUT:  n VPTs  which are sorted according to object value, VPTList. 
OUTPUT: A set of skyline points. 
1.Initialization // to get first header point 
2.    read first tuple in each VPT and hash join to get n complete tuple Ti. 
3.  take the worst value in each dimension among Ti (i=1, 2,.., n) to compute Header Point H 
4.While  H is updated  or  pointers ܬ௧ is not pointing to the end of  ܸܲ ௧ܶ  do  
5.      for each VPT t ∈ VPTList 
6.                 read one tuple and hash join to get complete tuple T and compare T with H 
7.                 if T is prunable by H 
8.                          T is pruned 
9.                else  
10.                 T is a Header Tuple for updating H and is inserted into Candidate List C 
11.       end for 
12.      update Header Point H by Header Tuples 
13. end while      
14.BNLCalculate(C). // use BNL skyline algorithm to compute skyline results  

 
Discussion. Intuitively, the header point summarizes neighborhoods that have been 
explored and guides the pruning of the tuples in neighborhood around it during each 
iteration. However, since RSJFH uses the worse points in each dimension, and prunes 
tuples that are really worse (worse in d-1 dimensions) than the header point, it only 
allows conservative pruning decisions. Therefore, some non-skyline points can still be 
inserted into the candidate skyline list. For example, assume that RSJFH has just 
processed the following tuples into the candidate skyline list {(25, 4000), (28, 3500), 
(30, 3000)} and computed the header point (30, 4000). Then, an incoming tuple (29, 
3750) would be advanced to the next stage because it is better than the header point in  
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both dimensions. However, it is unnecessary to advance the tuple (29, 3750) into the 
next stage of the computation because it would eventually be dropped from candidate 
skyline list since the tuple (28, 3500) dominates this tuple.  

4   Near-Complete Algorithms 

We can try to improve the header point to allow for more aggressive pruning. We 
may however risk pruning out correct skyline tuples. In the following section, we 
propose a strategy that strikes a balance between two objectives: increasing the 
aggressiveness of pruning power of the header point and minimizing the risk of 
pruning correct skyline tuples. We posit that in the context of the Web, partial results 
can be tolerated particularly if the result set is “near-complete” and can be generated 
much faster than the “complete” set. The approach we take is based on performing 
partial updates to the header point after each join iteration rather than updating all the 
dimensions. 

4.1   RDFSkyJoinWithPartialHeader (RSJPH) 

Definition 3 (Partial Header Point Update). Let H be the header point generated in 
the previous join iteration and ݐଵ, ,ଶݐ … ,  .௡ be the tuples in the current join iterationݐ
A partial update to the header point means that for the ith dimension of header point, 
the value is updated only if the worst value of ݐଵ, ,ଶݐ … ,  ௡ in the ith dimension isݐ
better than the ith dimensional value in H.   

This implies that if all values in the ith dimension are better than the ith dimensional 
value of the header point, then the ith dimension of the header point is updated with 
worst value as before; otherwise, the ith dimension is not updated. Thus, the header 
point is aggressively updated by the improving (or advancing) dimension values of 
the joined tuples in the current join iteration. 

 

 

Fig. 4. Partially Update Header Points by Bitmap Computation and its Termination 
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We now propose an algorithm RDFSkyJoinWithPartialHeader (RSJPH) based on 
the partial update. To efficiently perform a “partial update of header point”, RSJPH 
uses bitmap representation for bitwise operations. Consider the skyline graph sub 
pattern of Customer again. Figure 4 shows the partial update method applied after the 
first join iteration. In the second iteration, there are two newly joined tuples (C13, 25, 
3100) and (C6, 30, 1200) and a header point H1(32, 2800) generated in the previous 
iteration. Since both the dimension-1 values of C13 and C6 are better than that of H1 
and only the dimension-2 value of C6 is better than that of H1, header point is 
partially updated by the worse dimension-1 values of C13 and C6, resulting in H2(30, 
2800). This partial update method is implemented using Bitmap computation (bit “1” 
denotes the dimension that has better value, bit “0” denotes a contrary case and a 
resulting bit array indicates that in which dimension(s) the header point needs to be 
updated). Iterations 3 to 6 perform the same way to partially update the header points.  

Termination. RSJPH revises the termination condition based on the partial update 
(Line 2 in Algorithm 2). RSJPH terminates when there is no update for header point 
and all the dimensional values in the newly joined tuples are worse than that of 
current header point. Iteration 7 in Figure 4 shows how RSJPH terminates. 

 
Algorithm 2. RDFSkyJoinWithPartialHeader(RSJPH) 
INPUT:  n VPT which are sorted according to object value, VPTList. 
OUTPUT: A set of skyline points. 
Define Variables: in n newly-joined tuples ݐଵ, ,ଶݐ … ,  .௡ be ௡ܸݐ  ଶ be ଶܸ, …, dimension-n value ofݐ  ଵ be ଵܸ, dimension-2 value ofݐ  ௡, let dimension-1 value ofݐ
1.Initialization // to get first header point H 
2.While  (H is updated)  && (< ଵܸ, ଶܸ, … , ௡ܸ>  is better than H) do  
3.      for each VPT t ∈ VPTListI do 
4.               read one tuple and hash join to get complete tuple T and compare T with H   
5.               use the bitmap representation to record T’s better value and worse value 
6.                if T is prunable by H then 
7.                         T is pruned 
8.               else  
9.                        T is inserted into Candidate List C 
10.     end for 
11.     read the bitmap as bit-slice and calculate bit-slice value  by bitwise AND operation 
12.     for each bit-slice do // partially update H 
13.                 if bit-slice value is 1 then 
14.                         update the corresponding header point value 
15.                 else  
16.                         no update 
17.     end for 
18.end while      
19.BNLCalculate(C).   

 
Discussion. In RSJFH, we always update the dimensions using the worse values from 
the header tuples in that iteration regardless of whether those values are better or 
worse than the current header point values. Essentially, a header point summarizes 
only the iterations preceding it. In RSJPH, a header point may hold “good” pruning 
values from earlier iterations and only update those dimensions whose values are 



 Efficiently Evaluating Skyline Queries on RDF Databases 133 

improving or advancing. This in a sense broadens the neighborhood that it represents 
and also allows certain regions in the space to be considered for longer periods than 
the previous approach. Consequently, we have a header point with more aggressive 
pruning power. For example, assume that after our previous header point (30, 4000), 
the next iteration would have worse values as (25, 4500). However, given our partial 
update technique, only the first dimension would be updated to 25, resulting in the 
header point (25, 4000). This header point would prune more tuples than the regular 
header point (25, 4500). However, some of the pruned tuples that fall into the gap 
between (25, 4500) and (25, 4000) may be skyline tuples, such as (25, 4250).  

Proposition 1. Let ܪଵ௙, ,ଶ௙ܪ … , ௠௙ܪ  be the header points generated in RSJFH and A be 
the set of pruned tuples by all the header points. Similarly, let ܪଵ௣, ,ଶ௣ܪ … ,  ௡௣ be theܪ
header points generated in RSJPH and B be the set of pruned tuples by all the header 

points. ܪ௜௣ is stronger than ܪ௜௙ , which means ܪ௜௣ may wrongly prune some skyline 

points ܹ ௜ܲ  falling into the interval <ܪ௜௙, ܣ ,௜௣>. Thenܪ ؿ and the difference set B ܤ െ ܣ ൌ ڂ  ܹ ௜ܲ௡௜ୀଵ  . 

To avoid this we can relax the pruning check. Rather than generalizing the checking 
based on number of dimensions, we do checking based on which dimensions were 
updated and which were not updated. 

4.2   Relaxing Prunability of Partially Updated Header Point 

Given a header point, if the ith dimension is updated in the last iteration, we regard it 
as an “updated dimension”; otherwise, we regard it as “non-updated dimension”. 
Given a tuple p, if p has n dimensions whose values are better than that of the header 
point h, we say that p has n better dimensions.  From Lemma 1, we can infer that a 
tuple p needs to have at least two better dimensions to survive the pruning check. 
Assume that we have: (1) ܪଶሺ݀ଵᇱ , ݀ଶᇱ ሻ is a header point partially updated from a full 
updated header point ,ଵሺ݀ଵܪ   ݀ଶሻ , where ݀ଵᇱ ظ ݀ଵ and  ݀ଶᇱ ൌ ݀ଶ , where  denotes 
better; Thus, ݀ଵᇱ   is the “updated” dimension of ܪଶ  and ݀ଶᇱ   is the “non-updated” 
dimension of ܪଶ ; (2) a tuple ݌ሺ݌ଵ, ଶሻ݌  , where ݀ଵᇱ ظ ଵ݌ ଵ݌ , ظ ݀ଵ  and ݌ଶ ظ ݀ଶᇱ  . 
Compared to  ܪଶ, p can be pruned because p has only one better dimension. However, 
when compared to ଵܪ   , p will survive the pruning check since p has two better 
dimensions (݌ଵ ظ ݀ଵ  and ଶ݌   ظ ݀ଶ ). Since the partial update approach makes the 
“updated” dimensions of  ܪଶ too good, the tuples that may survive given the fully 
updated header point  ܪଵ, such as p, are mistakenly pruned. To alleviate this situation, 
we relax the pruning condition with the following crosscheck constraint. 

Crosscheck. If an incoming tuple has some dimensional values better than "non-
updated" dimension and some dimensional values worse than "updated” dimension, 
we add this tuple into candidate list. To implement this algorithm, we basically add 
this additional condition check between Lines 6 and 7 in Algorithm 2. The resulting 
algorithm is called RDFSkyJoinWithPartialHeader+ (RSJPH+). 

Proposition 2. Let ܪ௜௣ be a header point in RSJPH with the “updated” dimension ݀௚ 
that has been updated in iteration i-1 and the “non-updated” dimension ݀௕ that has 
not been updated in iteration i-1. Let p be a new tuple that has failed the pruning 
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check by ܪ௜௣ . If p survives the crosscheck condition, i.e., ܪ௜௣. ݀௚ ≽ .݌ ݀௚  but ݌. ݀௕ ≽ .௜௣ܪ ݀௕ , p is saved and added into candidate list. We regard the saved tuples 
by crosscheck in iteration i as the set  ܥܥ௜. ܥܥ௜ ك  ܹ ௜ܲ . Assume C denotes the set of 
pruned tuples in RSJPH+. Then, ܥ ൌ ܤ െ ڂ ௜௡௜ୀଵܥܥ  and ܣ ؿ ك ܥ   .ܤ

5   Experimental Evaluation 

Experimental Setup and Datasets. In this section, we present an experimental 
evaluation of the three algorithms presented in above sections in terms of scalability, 
dimensionality, average completeness coverage and prunability. We use the synthetic 
datasets with independent, correlated and anti-correlated data distributions generated 
by a benchmark data generator [1]. Independent data points follow the uniform 
distribution. Correlated data points are not only good in one dimension but also good 
in other dimensions. Anti-correlated data points are good in one dimension but bad in 
one or all of the other dimensions. All the data generated by the data generator is 
converted into RDF format using JENA API and is stored as VPT using BerkeleyDB. 
All the algorithms are implemented in Java and the experiments are executed on a 
Linux machine of 2.6.18 kernel with 2.33GHz Intel Xeon and 16GB memory. The 
detailed experimental results can be found at sites.google.com/site/chenlingshome. 

Scalability. Figure 5 (A), (B) and (C) show the scalability evaluation of RSJFH, 
RSJPH, RSJPH+ and Naïve for independent, correlated and anti-correlated datasets (1 
million to 4 million triples). In all data distributions, RSJPH and RSJPH+ are superior 
to RSJFH and Naïve. The difference in execution time between RSJPH, RSJPH+ and 
RSJFH comes from the fact that partial update method makes the header point 
stronger (i.e. the header point has better value in each dimension and could dominate 
more non-skyline tuples resulting in stronger prunability) earlier, which terminates the 
algorithm earlier. For independent data (Figure 5 (A)), RSJPH and RSJPH+ use only 
about 20% of the execution time needed in RSJFH and Naïve. The execution time of 
RSJFH increases quickly in the independent dataset with size 4M of triples. The 
reason for this increase is that the conservativeness of the full header point update 
technique leads to limited effectiveness in prunability. This results in an increased 
size for the candidate skyline set and consequently total number of comparisons with 
Header Point. RSJPH+ relaxes the check condition in RSJPH and so allows more 
tuples to be inserted into the candidate list explaining the slight increase in the 
execution time in Figure 5(A). Figure 5 (B) shows that RSJFH, RSJPH and RSJPH+ 
perform better in correlated datasets than in independent datasets. In the correlated 
data distribution, the header points tend to become stronger earlier than in the case of 
independent datasets especially when the data is accessed in the decreasing order of 
“goodness”. The reason for this is that the early join iterations produce tuples that are 
made of the best values in each dimension. Stronger header points make the algorithm 
terminate earlier and reduce the number of tuples joined and checked against the 
header point and the size of candidate skyline set. Figure 5 (C) shows particularly bad 
performance for the anti-correlated datasets which often have the best value in one 
dimension but the worst value in one or all of the other dimensions. This leads to very 
weak header points because header points are constructed from worst values of joined 
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tuples. RSJFH have to explore almost the entire search space, resulting in the poor 
performance shown in Figure 5 (C). Although RSJPH seems to outperform the other 
algorithms, this advantage is attributed to the fact that it computes only 32% of 
complete skyline result set.  
 

 

Fig. 5. Experimental Evaluation 
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Dimensionality. Figure 5 (D), (E) and (F) show the effect of increasing the 
dimensionality (2-5) on the performance of the four algorithms for different data 
distributions. As in previous experiments, RSJPH and RSJPH+ consistently 
outperform RSJFH and Naïve. The execution time of RSJFH starts to increase with 
number of dimensions greater than 3. The reason is that the conservative way of 
updating header point makes the header points greatly reduce the pruning power in 
high dimensional data and the extra comparisons almost double the total execution 
time. For RSJPH+, with the increase in number of dimensions, the size of the saved 
tuples by the crosscheck condition increases, therefore, the size of candidate skyline 
set increases and the execution time increases as well. 

Average Completeness Coverage and Average Prunability. Figure 5 (G) and (H) 
show the average completeness coverage (ACC) and average prunability (AP) of RSJFH, 
RSJPH and RSJPH+. ACC and AP are the averages for completeness coverage and the 
number of pruned triples across all the experiments shown in Figure 5 (A) to (F) 
respectively. The pruned triples include the ones pruned by header points as well as the 
ones pruned by early termination. Figure 5 (E) shows that RSJFH has 100% of ACC in 
all data distributions. For the correlated datasets, the data distribution is advantageous in 
forming a strong header point without harming the completeness of skyline results when 
the data is sorted from “best” to “worst”. Thus, RSJFH, RSJPH and RSJPH+ have 100% 
of ACC and 99% of AP in correlated datasets. For independent datasets, RSJPH 
aggressively updates the header points to increase AP with the cost of decreasing ACC. 
RSJPH+ improves the ACC by using crosscheck while only sacrificing 2.7% of the AP 
compared with RSJPH. For anti-correlated datasets, the data distribution makes all the 
algorithms perform poorly. Although RSJFH achieves 100% of ACC, the AP decreases 
to 7%. RSJPH still maintains 99% for AP but its ACC is only 32%.  

RSJPH+ achieves a good tradeoff between completeness coverage and prunability. 
RSJPH+ computes about 80% of skyline results when it scans about the first 35% of 
sorted datasets. 

6   Related Work 

In recent years, much effort has been spent on evaluating skyline over single relation. 
[1] first introduced the skyline operator and proposed BNL and D&C and an 
algorithm using B-trees that adopted the first step of Fagin’s ܣ଴. [2][3][9] proposed 
algorithms that could terminate earlier based on sorting functions. [4][5][6] proposed 
index algorithms that could progressively report results. Since these approaches focus 
on single relation, they consider skyline computation independent from join phase, 
which renders the query execution to be blocking.  

Some techniques have been proposed for skyline-join over multiple relations. [11] 
proposed a partitioning method that classified tuples into three types: general, local 
and non-local skyline tuples. The first two types are joined to generate a subset of the 
final results. However, this approach isn’t suitable for single dimension tables like 
VPT [7] in RDF databases because each VPT can only be divided into general and 
local skyline tuples, neither of which can be pruned, requiring a complete join of all 
relevant tables. [16] proposed a framework SkyDB to partition the skyline-join 
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process into macro and micro level. Macro level generates abstractions while micro 
level populates regions that are not pruned by macro level. Since RDF databases only 
involve single dimension tables, SkyDB is not suitable for RDF databases. 

In addition, there are some techniques proposed for skyline computation for 
Semantic Web data and services. [8] focused on extending SPARQL with support of 
expression of preference queries but it does not address the optimization of query 
processing. [13] formulated the problem of semantic web services selection using the 
notion of skyline query and proposed a solution for efficiently identifying the best 
match between requesters and providers. [14] computed the skyline QoS-based web 
service and [15] proposed several algorithms to retrieve the top-k dominating 
advertised web services. [17] presented methods for automatically relaxing over-
constrained queries based on domain knowledge and user preferences. 

7   Conclusion and Future Work 

In this paper, we have addressed the problem of skyline queries over RDF databases.  
We presented the concept of Header Point and Early Termination to prune non-
skyline tuples. We have proposed a complete algorithm RSJFH that utilized the 
prunability of Header Point and Early Termination. Then, we proposed two near-
complete algorithms, RSJPH and RSJPH+, for achieving the tradeoffs between quick 
response time and completeness of skyline queries over RDF databases. In future, we 
will integrate cost-based techniques for further optimization. We will also address the 
issue of incomplete skyline computation over RDF databases. 
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