

Lecture Notes in Computer Science 6644
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Grigoris Antoniou Marko Grobelnik
Elena Simperl Bijan Parsia
Dimitris Plexousakis Pieter De Leenheer
Jeff Pan (Eds.)

The Semanic Web:
Research
and Applications

8th Extended Semantic Web Conference, ESWC 2011
Heraklion, Crete, Greece, May 29 – June 2, 2011
Proceedings, Part II

13

Volume Editors

Grigoris Antoniou
FORTH-ICS and University of Crete, 71110 Heraklion, Crete, Greece
E-mail: antoniou@ics.forth.gr

Marko Grobelnik
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
E-mail: marko.grobelnik@ijs.si

Elena Simperl
Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
E-mail: elena.simperl@aifb.uni-karlsruhe.de

Bijan Parsia
University of Manchester, Manchester M13 9PL, UK
E-mail: bparsia@cs.man.ac.uk

Dimitris Plexousakis
FORTH-ICS and University of Crete, 70013 Heraklion, Crete, Greece
E-mail: dp@ics.forth.gr

Pieter De Leenheer
VU University of Amsterdam, 1012 ZA Amsterdam, The Netherlands
E-mail: pgm.de.leenheer@few.vu.nl

Jeff Pan
University of Aberdeen, Aberdeen AB24 3UE, UK
E-mail: jeff.z.pan@abdn.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21063-1 e-ISBN 978-3-642-21064-8
DOI 10.1007/978-3-642-21064-8

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926990

CR Subject Classification (1998): H.4, H.3.3, H.5, J.4, I.2.4, K.4.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web and HCI

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Every year ESWC brings together researchers and practitioners dealing with
different aspects of semantic technologies. Following a successful re-launch in
2010 as a multi-track conference, the 8th Extended Semantic Web Conference
built on the success of the ESWC conference series initiated in 2004. Through its
extended concept this series seeks to reach out to other communities and research
areas, in which Web semantics play an important role, within and outside ICT,
and in a truly international, not just ‘European’ context. This volume contains
the papers accepted for publication in key tracks of ESWC 2011: the technical
tracks including research tracks, an in-use track and two special tracks, as well
as the PhD symposium and the demo track.

Semantic technologies provide machine-understandable representations of
data, processes and resources — hardware, software and network infrastruc-
ture — as a foundation for the provisioning of a fundamentally new level of
functionality of IT systems across application scenarios and industry sectors.
Using automated reasoning services over ontologies and metadata, semantically
enabled systems will be able to better interpret and process the information
needs of their users, and to interact with other systems in an interoperable way.
Research on semantic technologies can benefit from ideas and cross-fertilization
with many other areas, including artificial intelligence, natural language pro-
cessing, database and information systems, information retrieval, multimedia,
distributed systems, social networks, Web engineering, and Web science. These
complementarities are reflected in the outline of the technical program of ESWC
2011; in addition to the research and in-use tracks, we furthermore introduced
two special tracks this year, putting particular emphasis on inter-disciplinary
research topics and areas that show the potential of exciting synergies for the
future. In 2011, these special tracks focused on data-driven, inductive and prob-
abilistic approaches to managing content, and on digital libraries, respectively.

The technical program of the conference received 247 submissions, which were
reviewed by the Program Committee of the corresponding tracks. Each track was
coordinated by Track Chairs and installed a dedicated Program Committee. The
review process included paper bidding, assessment by at least three Program
Committee members, and meta-reviewing for each of the submissions that were
subject to acceptance in the conference program and proceedings. In all, 57
papers were selected as a result of this process, following comparable evaluation
criteria devised for all technical tracks.

The PhD symposium received 25 submissions, which were reviewed by the
PhD Symposium Program Committee. Seven papers were selected for presenta-
tion at a separate track and for inclusion in the ESWC 2011 proceedings. The
demo track received 19 submissions, 14 of which were accepted for demonstration

VI Preface

in a dedicated session during the conference. Ten of the demo papers were also
selected for inclusion in the conference proceedings.

ESWC 2011 had the pleasure and honor to welcome seven renowned keynote
speakers from academia and industry, addressing a variety of exciting topics of
highest relevance for the research agenda of the semantic technologies community
and its impact on ICT:

– James Hendler, Tetherless World Professor of Computer and Cognitive Sci-
ence and Assistant Dean for Information Technology and Web Science at
Rensselaer Polytechnic Institute

– Abe Hsuan, founding partner of the law firm Irwin & Hsuan LLP
– Prasad Kantamneni, principal architect of the Eye-Tracking platform at

Yahoo!
– Andraž Tori, CTO and co-founder of Zemanta
– Lars Backstrom, data scientist at Facebook
– Jure Leskovec, assistant professor of Computer Science at Stanford University
– Chris Welty, Research Scientist at the IBM T.J. Watson Research Center in

New York

We would like to take the opportunity to express our gratitude to the Chairs,
Program Committee members and additional reviewers of all refereed tracks,
who ensured that ESWC 2011 maintained its highest standards of scientific qual-
ity. Our thanks should also reach the Organizing Committee of the conference,
for their dedication and hard work in selecting and coordinating the organiza-
tion of a wide array of interesting workshops, tutorials, posters and panels that
completed the program of the conference. Special thanks go to the various or-
ganizations who kindly support this year’s edition of the ESWC as sponsors, to
the Sponsorship Chair who coordinated these activities, and to the team around
STI International who provided an excellent service in all administrative and
logistic issues related to the organization of the event. Last, but not least, we
would like to say thank you to the Proceedings Chair, to the development team
of the Easychair conference management system and to our publisher, Springer,
for their support in the preparation of this volume and the publication of the
proceedings.

May 2011 Grigoris Antoniou
Marko Grobelnik

Elena Simperl
Bijan Parsia

Dimitris Plexousakis
Pieter de Leenheer

Jeff Pan

Organization

Organizing Committee

General Chair Grigoris Antoniou
(FORTH-ICS and University of Crete,
Greece)

Program Chairs Marko Grobelnik
(Jozef Stefan Institute, Slovenia)

Elena Simperl
(Karlsruhe Institute of Technology,
Germany)

News from Front Coordinators Lyndon Nixon (STI International, Austria)
Alexander Wahler (STI International, Austria)

Poster and Demo Chairs Bijan Parsia (University of Manchester, UK)
Dimitris Plexousakis

(FORTH-ICS and University of Crete,
Greece)

Workshop Chairs Dieter Fensel (University of Innsbruck, Austria)
Raúl Garćıa Castro (UPM, Spain)

Tutorials Chair Manolis Koubarakis
(University of Athens, Greece)

PhD Symposium Chairs Jeff Pan (University of Aberdeen, UK)
Pieter De Leenheer

(VU Amsterdam, The Netherlands)
Semantic Technologies
Coordinators Matthew Rowe (The Open University, UK)

Sofia Angelatou (The Open University, UK)
Proceedings Chair Antonis Bikakis

(University of Luxembourg, Luxembourg)
Sponsorship Chair Anna Fensel (FTW, Austria)
Publicity Chair Lejla Ibralic-Halilovic (STI, Austria)
Panel Chairs John Domingue (The Open University, UK)

Asuncion Gomez-Perez (UPM, Spain)
Treasurer Alexander Wahler (STI International, Austria)
Local Organization and
Conference Administration STI International, Austria

Program Committee - Digital Libraries Track

Track Chairs

Martin Doerr, Carlo Meghini and Allen Renear

VIII Organization

Members

Trond Aalberg
Bruno Bachimont
Donatella Castelli
Panos Constantopoulos
Stefan Gradmann
Jen-Shin Hong
Eero Hyvönen
Antoine Isaac
Traugott Koch

Dimitris Kotzinos
Marcia Leizeng
Eva Méndez
Alistair Miles
John Mylopoulos
Carole Palmer
Ingeborg Torvik Solvberg
Douglas Tudhope
Herbert Van De Sompel

Program Committee - Inductive and Probabilistic
Approaches Track

Track Chairs

Rayid Ghani and Agnieszka Lawrynowicz

Members

Sarabjot Anand
Mikhail Bilenko
Stephan Bloehdorn
Chad Cumby
Claudia D’Amato
Nicola Fanizzi
Blaz Fortuna
Eric Gaussier
Melanie Hilario
Luigi Iannone
Ivan Jelinek
Jörg-Uwe Kietz

Ross King
Jens Lehmann
Yan Liu
Matthias Nickles
Sebastian Rudolph
Dou Shen
Sergej Sizov
Umberto Straccia
Vojtech Svatek
Volker Tresp
Joaquin Vanschoren

Program Committee - Linked Open Data Track

Track Chairs

Mariano Consens, Paul Groth and Jens Lehmann

Members

José Luis Ambite
Sören Auer
Christian Bizer
Paolo Bouquet
Dan Brickley

Lin Clark
Richard Cyganiak
Christophe Gueret
Harry Halpin
Andreas Harth

Organization IX

Olaf Hartig
Oktie Hassanzadeh
Sebastian Hellmann
Rinke Hoekstra
Anja Jentzsch
Spyros Kotoulas
Yuzhong Qu

Yves Raimond
Juan F. Sequeda
Nigam Shah
York Sure
Thanh Tran
Mischa Tuffield
Jun Zhao

Program Committee - Mobile Web Track

Track Chairs

Ora Lassila and Alessandra Toninelli

Members

Paolo Bellavista
Cristian Borcea
Valerie Issarny
Deepali Khushraj
Mika Mannermaa
Enrico Motta

Massimo Paolucci
Terry Payne
David Provost
Anand Ranganathan
Bernhard Schandl
Matthias Wagner

Program Committee - Natural Language Processing Track

Track Chairs

Philipp Cimiano and Michael Witbrock

Members

Guadalupe Aguado-De-Cea
Enrique Alfonseca
Nathalie Aussenac Gilles
Roberto Basili
Kalina Bontcheva
Christopher Brewster
Peter Clark
Thierry Declerck
Blaz Fortuna
Aldo Gangemi
Claudio Giuliano
Gregory Grefenstette
Siegfried Handschuh
Laura Hollink
Andreas Hotho
José Iria

Vanessa Lopez
Diana Maynard
John Mccrae
Paola Monachesi
Roberto Navigli
Achim Rettinger
Marta Sabou
Sergej Sizov
Pavel Smrz
Dennis Spohr
Christina Unger
Victoria Uren
Johanna V”olker
René Witte
Fabio Massimo Zanzotto

X Organization

Program Committee - Ontologies Track

Track Chairs

Mathieu D’Aquin and Heiner Stuckenschmidt

Members

Nathalie Aussenac-Gilles
Eva Blomqvist
Ales Buh
Jean Charlet
Oscar Corcho
Isabel Cruz
Jesualdo Tomás Fernández-Breis
Chiara Ghidini
Asun Gomez-Perez
Pierre Grenon
Martin Hepp
Patrick Lambrix
Diana Maynard

Riichiro Mizoguchi
Viktoria Pammer
Hsofia Pinto
Dimitris Plexousakis
Chantal Reynaud
Marta Sabou
Ansgar Scherp
Guus Schreiber
Luciano Serafini
Michael Sintek
Robert Stevens
Vojtech Svatek
Johanna Voelker

Program Committee - Reasoning Track

Track Chairs

Emanuele Della Valle and Pascal Hitzler

Members

Jose Julio Alferes
Jie Bao
Andre Bolles
Daniele Braga
Diego Calvanese
Irene Celino
Oscar Corcho
Bernardo Cuenca Grau
Claudia D’Amato
Mathieu D’Aquin
Daniele Dell’Aglio
Michael Grossniklaus
Rinke Hoekstra
Zhisheng Huang
Markus Krötzsch
Thomas Lukasiewicz

Marko Luther
Frederick Maier
Jeff Z. Pan
Bijan Parsia
Guilin Qi
Dumitru Roman
Riccardo Rosati
Sebastian Rudolph
Stefan Schlobach
Michael Sintek
Evren Sirin
Annette Ten Teije
Kristin Tufte
Guido Vetere
Zhe Wu
Antoine Zimmermann

Organization XI

Program Committee - Semantic Data Management Track

Track Chairs

Vassilis Christophides and Axel Polleres

Members

Karl Aberer
Abraham Bernstein
Aidan Boran
Alessandro Bozzon
Stefano Ceri
Oscar Corcho
Orri Erling
George H. L. Fletcher
Irini Fundulaki
Claudio Gutierrez
Steve Harris
Andreas Harth
Aidan Hogan
Marcel Karnstedt
Panagiotis Karras
Greg Karvounarakis
Anastasios Kementsietsidis

Atanas Kiryakov
Dimitris Kotzinos
Manolis Koubarakis
Reto Krummenacher
Georg Lausen
Josiane Xavier Parreira
Sherif Sakr
Andy Seaborne
Amit Sheth
Umberto Straccia
Letizia Tanca
Thanh Tran
Giovanni Tummarello
Jacopo Urbani
Yannis Velegrakis
Maria Esther Vidal
Jesse Weaver

Program Committee - Semantic Web in Use Track

Track Chairs

Daniel Olmedilla Pavel Shvaiko

Members

Harith Alani
George Anadiotis
Giuseppe Angelini
SÃren Auer
Stefano Bertolo
Olivier Bodenreider
Paolo Bouquet
François Bry
Pablo Castells
John Davies
Mike Dean
Lee Feigenbaum
Aldo Gangemi

Fausto Giunchiglia
John Goodwin
Peter Haase
Bin He
Tom Heath
Nicola Henze
Ivan Herman
Geert-Jan Houben
Eero Hyvönen
Renato Iannella
Antoine Isaac
Alexander Ivanyukovich
Krzysztof Janowicz

XII Organization

Yannis Kalfoglou
Atanas Kiryakov
Birgitta König-Ries
Rubén Lara
Nico Lavarini
Alain Leger
Maurizio Lenzerini
Bernardo Magnini
Vincenzo Maltese
Massimo Marchiori
Peter Mika
Luca Mion
Andriy Nikolov
Lyndon Nixon
Leo Obrst
Massimo Paolucci

Yefei Peng
Erhard Rahm
Yves Raimond
Sebastian Schaffert
Hannes Schwetz
Kavitha Srinivas
Andrei Tamilin
Klaus-Dieter Thoben
Andraz Tori
Tania Tudorache
Lorenzino Vaccari
Michael Witbrock
Baoshi Yan
Ilya Zaihrayeu
Songmao Zhang

Program Committee - Sensor Web Track

Track Chairs

Harith Alani and Luca Mottola

Members

Philippe Bonnet
Ciro Cattuto
Oscar Corcho
David De Roure
Cory Henson
Krzysztof Janowicz
Yong Liu
Pedro Jose Marron
Kirk Martinez

Josiane Xavier Parreira
Eric Pauwels
Jamie Payton
Vinny Reynolds
Mark Roantree
Kay Roemer
Nenad Stojanovic
Kerry Taylor
Eiko Yoneki

Program Committee - Software, Services, Processes and
Cloud Computing Track

Track Chairs

Barry Norton and Michael Stollberg

Members

Sudhir Agarwal
Luciano Baresi
Irene Celino

Violeta Damjanovic
Pieter De Leenheer
Tommaso Di Noia

Organization XIII

Federico Facca
José Fiadeiro
Agata Filipowska
Dragan Gasevic
Stephan Grimm
Dimka Karastoyanova
Holger Kett
Reto Krummenacher
Dave Lambert
Florian Lautenbacher
Niels Lohmann

Jan Mendling
Andreas Metzger
Massimo Paolucci
Carlos Pedrinaci
Pierluigi Plebani
Dumitru Roman
Monika Solanki
Nenad Stojanovic
Ioan Toma
Jürgen Vogel

Program Committee - Social Web and Web Science Track

Track Chairs

Alexandre Passant and Denny Vrandecic

Members

Fabian Abel
Harith Alani
Sören Auer
Scott Bateman
Edward Benson
Shlomo Berkovsky
John Breslin
Ciro Cattuto
Federica Cena
Richard Cyganiak
Antonina Dattolo
Darina Dicheva
Ying Ding
Jon Dron
Guillaume Ereteo
Anna Fensel
Fabien Gandon
Cristina Gena
Steve Harris
Aidan Hogan
Ekaterini Ioannou
Neil Ireson

Robert Jaschke
Lalana Kagal
Pranam Kolari
Georgia Koutrika
Milos Kravcik
Juanzi Li
Meenakshi Nagarajan
Matthew Rowe
Ansgar Scherp
Juan F. Sequeda
Paul Smart
Sergey Sosnovsky
Steffen Staab
Markus Strohmaier
Christopher Thomas
Mischa Tuffield
Shenghui Wang
Katrin Weller
Mary-Anne Williams
Jie Zhang
Lina Zhou

XIV Organization

Program Committee - PhD Symposium

Track Chairs

Pieter Deleenheer and Jeff Z. Pan

Members

Diego Calvanese
Bernardo Cuenca Grau
Mathieu D’Aquin
Jianfeng Du
Giorgos Flouris
Tim Furche
Zhiqiang Gao
Pascal Hitzler
Laura Hollink
Zhisheng Huang
Juanzi Li
Diana Maynard
Jing Mei
Ralf Möller
Dimitris Plexousakis
Guilin Qi
Alan Ruttenberg

Manuel Salvadores
Kai-Uwe Sattler
Stefan Schlobach
Murat Sensoy
Luciano Serafini
Yi-Dong Shen
Kavitha Srinivas
Giorgos Stoilos
Heiner Stuckenschmidt
Vassilis Tzouvaras
Haofen Wang
Kewen Wang
Shenghui Wang
Benjamin Zapilko
Ming Zhang
Yuting Zhao

Referees

Sofia Angeletou
Darko Anicic
Fedor Bakalov
Jürgen Bock
Stefano Bortoli
Sebastian Brandt
Siarhei Bykau
Michele Caci
Elena Cardillo
Michele Catasta
Gong Cheng
Annamaria Chiasera
Catherine Comparot
Gianluca Correndo
Brian Davis
Evangelia Daskalaki
Renaud Delbru
Kathrin Dentler

Huyen Do
Vicky Dritsou
George Eadon
Angela Fogarolli
Anika Gross
Karl Hammar
Matthias Hert
Martin Homola
Matthew Horridge
Wei Hu
Prateek Jain
Mouna Kamel
Malte Kiesel
Szymon Klarman
Johannes Knopp
Matthias Knorr
Haridimos Kondylakis
Jacek Kopecky

Günter Ladwig
Feiyu Lin
Dong Liu
Christian Meilicke
Ivan Mikhailov
Rammohan Narendula
Axel-Cyrille Ngonga

Ngomo
Maximilian Nickel
Andriy Nikolov
Dusan Omercevic
Giorgio Orsi
Matteo Palmonari
Bastien Rance
Mariano Rodriguez

Muro
Marco Rospocher
Brigitte Safar

Organization XV

Fatiha Sais
Frank Sawitzki
Philipp Schaer
Anne Schlicht
Eric Schmieders
Michael Schmidt
Luigi Selmi
Gerardo Simari
Sergej Sizov

Dimitrios Skoutas
Philipp Sorg
Sebastian Speiser
Florian Steinke
Cosmin Stroe
Ondrej Svab-Zamazal
Stuart Taylor
Edward Thomas
Kateryna Thymoshenko

Alejandro Vaisman
Andreas Wagner
Claudia Wagner
Fang Wei
Pia-Ramona Wojtinnek
Gang Wu
Honghan Wu
Surender Reddy Yerva
Benjamin Zapilko

Steering Committee

Chair

John Domingue

Members

Lora Aroyo
Sean Bechhofer
Fabio Ciravegna
Enrico Franconi

Eero Hyvönen
Michael Kifer
Paolo Traverso

XVI Organization

Sponsoring Institutions

Platinum Sponsors

Gold Sponsors

Organization XVII

Silver Sponsors

Best Paper Award Sponsors

Video Recording Sponsors

Table of Contents – Part II

Semantic Data Management Track

Semantics and Optimization of the SPARQL 1.1 Federation
Extension . 1

Carlos Buil-Aranda, Marcelo Arenas, and Oscar Corcho

Grr: Generating Random RDF . 16
Daniel Blum and Sara Cohen

High-Performance Computing Applied to Semantic Databases 31
Eric L. Goodman, Edward Jimenez, David Mizell, Sinan al-Saffar,
Bob Adolf, and David Haglin

An Intermediate Algebra for Optimizing RDF Graph Pattern Matching
on MapReduce . 46

Padmashree Ravindra, HyeongSik Kim, and Kemafor Anyanwu

Query Relaxation for Entity-Relationship Search . 62
Shady Elbassuoni, Maya Ramanath, and Gerhard Weikum

Optimizing Query Shortcuts in RDF Databases . 77
Vicky Dritsou, Panos Constantopoulos, Antonios Deligiannakis, and
Yannis Kotidis

RDFS Update: From Theory to Practice . 93
Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman

Benchmarking Matching Applications on the Semantic Web 108
Alfio Ferrara, Stefano Montanelli, Jan Noessner, and
Heiner Stuckenschmidt

Efficiently Evaluating Skyline Queries on RDF Databases 123
Ling Chen, Sidan Gao, and Kemafor Anyanwu

The Design and Implementation of Minimal RDFS Backward Reasoning
in 4store . 139

Manuel Salvadores, Gianluca Correndo, Steve Harris,
Nick Gibbins, and Nigel Shadbolt

XX Table of Contents – Part II

Semantic Web in Use Track

miKrow: Semantic Intra-enterprise Micro-Knowledge Management
System . 154

Vı́ctor Penela, Guillermo Álvaro, Carlos Ruiz, Carmen Córdoba,
Francesco Carbone, Michelangelo Castagnone,
José Manuel Gómez-Pérez, and Jesús Contreras

A Faceted Ontology for a Semantic Geo-catalogue . 169
Feroz Farazi, Vincenzo Maltese, Fausto Giunchiglia, and
Alexander Ivanyukovich

SoKNOS – Using Semantic Technologies in Disaster Management
Software . 183

Grigori Babitski, Simon Bergweiler, Olaf Grebner, Daniel Oberle,
Heiko Paulheim, and Florian Probst

Semantic Technologies for Describing Measurement Data in
Databases . 198

Ulf Noyer, Dirk Beckmann, and Frank Köster

Ontology-Driven Guidance for Requirements Elicitation 212
Stefan Farfeleder, Thomas Moser, Andreas Krall, Tor St̊alhane,
Inah Omoronyia, and Herbert Zojer

The Semantic Public Service Portal (S-PSP) . 227
Nikolaos Loutas, Deirdre Lee, Fadi Maali, Vassilios Peristeras, and
Konstantinos Tarabanis

DataFinland—A Semantic Portal for Open and Linked Datasets 243
Matias Frosterus, Eero Hyvönen, and Joonas Laitio

Biological Names and Taxonomies on the Semantic Web – Managing
the Change in Scientific Conception . 255

Jouni Tuominen, Nina Laurenne, and Eero Hyvönen

An Approach for More Efficient Energy Consumption Based on
Real-Time Situational Awareness . 270

Yongchun Xu, Nenad Stojanovic, Ljiljana Stojanovic,
Darko Anicic, and Rudi Studer

Sensor Web Track

Ontology-Driven Complex Event Processing in Heterogeneous Sensor
Networks . 285

Kerry Taylor and Lucas Leidinger

Table of Contents – Part II XXI

A Semantically Enabled Service Architecture for Mashups over
Streaming and Stored Data . 300

Alasdair J.G. Gray, Raúl Garćıa-Castro, Kostis Kyzirakos,
Manos Karpathiotakis, Jean-Paul Calbimonte, Kevin Page,
Jason Sadler, Alex Frazer, Ixent Galpin, Alvaro A.A. Fernandes,
Norman W. Paton, Oscar Corcho, Manolis Koubarakis,
David De Roure, Kirk Martinez, and Asunción Gómez-Pérez

Software, Services, Processes and Cloud Computing
Track

Zhi# – OWL Aware Compilation . 315
Alexander Paar and Denny Vrandečić

Lightweight Semantic Annotation of Geospatial RESTful Services 330
Vı́ctor Saquicela, Luis.M. Vilches-Blazquez, and Oscar Corcho

Towards Custom Cloud Services: Using Semantic Technology to
Optimize Resource Configuration . 345

Steffen Haak and Stephan Grimm

Social Web and Web Science Track

One Tag to Bind Them All: Measuring Term Abstractness in Social
Metadata . 360

Dominik Benz, Christian Körner, Andreas Hotho,
Gerd Stumme, and Markus Strohmaier

Semantic Enrichment of Twitter Posts for User Profile Construction on
the Social Web . 375

Fabian Abel, Qi Gao, Geert-Jan Houben, and Ke Tao

Improving Categorisation in Social Media Using Hyperlinks to
Structured Data Sources . 390

Sheila Kinsella, Mengjiao Wang, John G. Breslin, and Conor Hayes

Predicting Discussions on the Social Semantic Web 405
Matthew Rowe, Sofia Angeletou, and Harith Alani

Mining for Reengineering: An Application to Semantic Wikis Using
Formal and Relational Concept Analysis . 421

Lian Shi, Yannick Toussaint, Amedeo Napoli, and
Alexandre Blansché

XXII Table of Contents – Part II

Demo Track

SmartLink: A Web-Based Editor and Search Environment for Linked
Services . 436

Stefan Dietze, Hong Qing Yu, Carlos Pedrinaci, Dong Liu, and
John Domingue

ViziQuer: A Tool to Explore and Query SPARQL Endpoints 441
Martins Zviedris and Guntis Barzdins

EasyApp: Goal-Driven Service Flow Generator with Semantic Web
Service Technologies . 446

Yoo-mi Park, Yuchul Jung, HyunKyung Yoo, Hyunjoo Bae, and
Hwa-Sung Kim

Who’s Who – A Linked Data Visualisation Tool for Mobile
Environments . 451

A. Elizabeth Cano, Aba-Sah Dadzie, and Melanie Hartmann

OntosFeeder – A Versatile Semantic Context Provider for Web Content
Authoring . 456

Alex Klebeck, Sebastian Hellmann, Christian Ehrlich, and Sören Auer

wayOU – Linked Data-Based Social Location Tracking in a Large,
Distributed Organisation . 461

Mathieu d’Aquin, Fouad Zablith, and Enrico Motta

SeaFish: A Game for Collaborative and Visual Image Annotation and
Interlinking . 466

Stefan Thaler, Katharina Siorpaes, David Mear, Elena Simperl, and
Carl Goodman

The Planetary System: Executable Science, Technology, Engineering
and Math Papers . 471

Christoph Lange, Michael Kohlhase, Catalin David,
Deyan Ginev, Andrea Kohlhase, Bogdan Matican, Stefan Mirea, and
Vyacheslav Zholudev

Semantic Annotation of Images on Flickr . 476
Pierre Andrews, Sergey Kanshin, Juan Pane, and Ilya Zaihrayeu

FedX: A Federation Layer for Distributed Query Processing on Linked
Open Data . 481

Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and
Michael Schmidt

Table of Contents – Part II XXIII

PhD Symposium

Reasoning in Expressive Extensions of the RDF Semantics 487
Michael Schneider

Personal Semantics: Personal Information Management in the Web
with Semantic Technologies . 492

Salman Elahi

Reasoning with Noisy Semantic Data . 497
Qiu Ji, Zhiqiang Gao, and Zhisheng Huang

Extracting and Modeling Historical Events to Enhance Searching and
Browsing of Digital Cultural Heritage Collections . 503

Roxane Segers

Enriching Ontologies by Learned Negation: Or How to Teach Ontologies
Vegetarianism . 508

Daniel Fleischhacker

Optimizing Query Answering over OWL Ontologies 513
Ilianna Kollia

Hybrid Search Ranking for Structured and Unstructured Data 518
Daniel M. Herzig

Author Index . 523

Table of Contents – Part I

Digital Libraries Track

Interactive Exploration of Fuzzy RDF Knowledge Bases 1
Nikos Manolis and Yannis Tzitzikas

A Structured Semantic Query Interface for Reasoning-Based Search
and Retrieval . 17

Dimitrios A. Koutsomitropoulos, Ricardo Borillo Domenech, and
Georgia D. Solomou

Distributed Human Computation Framework for Linked Data
Co-reference Resolution . 32

Yang Yang, Priyanka Singh, Jiadi Yao, Ching-man Au Yeung,
Amir Zareian, Xiaowei Wang, Zhonglun Cai, Manuel Salvadores,
Nicholas Gibbins, Wendy Hall, and Nigel Shadbolt

Inductive and Probabilistic Approaches Track

Relational Kernel Machines for Learning from Graph-Structured RDF
Data . 47

Veli Bicer, Thanh Tran, and Anna Gossen

AutoSPARQL: Let Users Query Your Knowledge Base 63
Jens Lehmann and Lorenz Bühmann

Contextual Ontology Alignment of LOD with an Upper Ontology:
A Case Study with Proton . 80

Prateek Jain, Peter Z. Yeh, Kunal Verma, Reymonrod G. Vasquez,
Mariana Damova, Pascal Hitzler, and Amit P. Sheth

Linked Open Data Track

Hide the Stack: Toward Usable Linked Data . 93
Aba-Sah Dadzie, Matthew Rowe, and Daniela Petrelli

Linked Data Metrics for Flexible Expert Search on the open Web 108
Milan Stankovic, Jelena Jovanovic, and Philippe Laublet

Statistical Schema Induction . 124
Johanna Völker and Mathias Niepert

XXVI Table of Contents – Part I

SIHJoin: Querying Remote and Local Linked Data 139
Günter Ladwig and Thanh Tran

Zero-Knowledge Query Planning for an Iterator Implementation of
Link Traversal Based Query Execution . 154

Olaf Hartig

Integrating Linked Data and Services with Linked Data Services 170
Sebastian Speiser and Andreas Harth

Mobile Web Track

OntoWiki Mobile – Knowledge Management in Your Pocket 185
Timofey Ermilov, Norman Heino, Sebastian Tramp, and Sören Auer

Weaving a Distributed, Semantic Social Network for Mobile Users 200
Sebastian Tramp, Philipp Frischmuth, Natanael Arndt,
Timofey Ermilov, and Sören Auer

Natural Language Processing Track

Automatic Semantic Subject Indexing of Web Documents in Highly
Inflected Languages . 215

Reetta Sinkkilä, Osma Suominen, and Eero Hyvönen

FootbOWL: Using a Generic Ontology of Football Competition for
Planning Match Summaries . 230

Nadjet Bouayad-Agha, Gerard Casamayor, Leo Wanner,
Fernando Dı́ez, and Sergio López Hernández

Linking Lexical Resources and Ontologies on the Semantic Web with
Lemon . 245

John McCrae, Dennis Spohr, and Philipp Cimiano

Ontologies Track

Elimination of Redundancy in Ontologies . 260
Stephan Grimm and Jens Wissmann

Evaluating the Stability and Credibility of Ontology Matching
Methods . 275

Xing Niu, Haofen Wang, Gang Wu, Guilin Qi, and Yong Yu

How Matchable Are Four Thousand Ontologies on the Semantic Web . . . 290
Wei Hu, Jianfeng Chen, Hang Zhang, and Yuzhong Qu

Understanding an Ontology through Divergent Exploration 305
Kouji Kozaki, Takeru Hirota, and Riichiro Mizoguchi

Table of Contents – Part I XXVII

The Use of Foundational Ontologies in Ontology Development:
An Empirical Assessment . 321

C. Maria Keet

Using Pseudo Feedback to Improve Cross-Lingual Ontology Mapping . . . 336
Bo Fu, Rob Brennan, and Declan O’Sullivan

Automatic Identification of Ontology Versions Using Machine Learning
Techniques . 352

Carlo Allocca

Reasoning Track

A Tableaux-Based Algorithm for SHIQ with Transitive Closure of
Roles in Concept and Role Inclusion Axioms . 367

Chan Le Duc, Myriam Lamolle, and Olivier Curé

SPARQL Query Answering over OWL Ontologies . 382
Ilianna Kollia, Birte Glimm, and Ian Horrocks

Epistemic Querying of OWL Knowledge Bases . 397
Anees Mehdi, Sebastian Rudolph, and Stephan Grimm

A Practical Approach for Computing Generalization Inferences
in EL . 410

Rafael Peñaloza and Anni-Yasmin Turhan

Author Index . 425

Semantics and Optimization of the SPARQL 1.1
Federation Extension

Carlos Buil-Aranda1, Marcelo Arenas2, and Oscar Corcho1

1 Ontology Engineering Group, Facultad de Informática, UPM, Spain
2 Department of Computer Science, PUC Chile

Abstract. The W3C SPARQL working group is defining the new SPARQL 1.1
query language. The current working draft of SPARQL 1.1 focuses mainly on the
description of the language. In this paper, we provide a formalization of the syntax
and semantics of the SPARQL 1.1 federation extension, an important fragment of
the language that has not yet received much attention. Besides, we propose opti-
mization techniques for this fragment, provide an implementation of the fragment
including these techniques, and carry out a series of experiments that show that
our optimization procedures significantly speed up the query evaluation process.

1 Introduction

The recent years have witnessed a constant growth in the amount of RDF data avail-
able, exposed by means of Linked Data-enabled URLs and SPARQL endpoints. Several
non-exhaustive, and sometimes out-of-date, lists of SPARQL endpoints or data catalogs
are available in different formats (from wiki-based HTML pages to SPARQL endpoints
using data catalog description vocabularies). Besides, most of these datasets are inter-
linked, what allows navigating through them and facilitates building complex queries
combining data from heterogeneous datasets.

These SPARQL endpoints accept queries written in SPARQL and adhere to the
SPARQL protocol, as defined by the W3C recommendation. However, the current
SPARQL recommendation has an important limitation in defining and executing queries
that span across distributed datasets, since it only considers the possibility of executing
these queries in isolated SPARQL endpoints. Hence users willing to federate queries
across a number of SPARQL endpoints have been forced to create ad-hoc extensions
of the query language or to include additional information about data sources in the
configuration of their SPARQL endpoint servers [14,15]. This has led to the inclusion
of query federation extensions in the current SPARQL 1.1 working draft [12] (together
with other extensions that are out of the scope of this paper), which are studied in detail
in order to generate a new W3C recommendation in the coming months.

The federation extension of SPARQL 1.1 includes two new operators in the query
language: SERVICE and BINDINGS. The former allows specifying, inside a SPARQL
query, the SPARQL query service in which a portion of the query will be executed. This
query service may be known at the time of building the query, and hence the SERVICE
operator will already specify the IRI of the SPARQL endpoint where it will be executed;
or may be retrieved at query execution time after executing an initial SPARQL query

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 C. Buil-Aranda, M. Arenas, and O. Corcho

fragment in one of the aforementioned RDF-enabled data catalogs, so that potential
SPARQL endpoints that can answer the rest of the query can be obtained and used. The
latter (BINDINGS) allows transferring results that are used to constrain a query, and
which will normally come from previous executions of other queries or from constraints
specified in user interfaces that then transform these into SPARQL queries.

Till now, most of the work done on federation extensions in the context of the W3C
working group has been focused on the description of the language grammar. In this
paper we complement this work with the formalization of the syntax and semantics of
these federation extensions of SPARQL 1.1, and with the definition of the constraints
that have to be considered in their use (which is currently not too restricted) in order to
be able to provide pragmatic implementations of query evaluators. As an extreme exam-
ple of bad performance, we may imagine a query that uses the SERVICE operator with
a free variable to specify the SPARQL endpoint where the rest of the query has to be
evaluated. We may imagine that a naı̈ve implementation may need to go through all ex-
isting SPARQL endpoints on the Web evaluating that query fragment before providing
a result, something that can be considered infeasible in practical terms. For our purpose,
we define the notions of service-boundedness and service-safeness, which ensure that
the SERVICE operator can be safely evaluated.

Besides, we implement the optimizations proposed in [11], using the notion of well-
designed patterns, which prove to be effective in the optimization of queries that contain
the OPTIONAL operator, the most costly operator in SPARQL [11,17]. This has also
important implications in the number of tuples being transferred and joined in federated
queries, and hence our implementation benefits from this.

As a result of our work, we have not only formalized these notions, but we have
also implemented a system that supports the current SPARQL 1.1 federation exten-
sions and makes use of these optimizations. This system, SPARQL-DQP (which stands
for SPARQL Distributed Query Processing), is built on top of the OGSA-DAI and
OGSA-DQP infrastructure [3,10], what provides additional robustness to deal with
large amounts of data in distributed settings, supporting for example an indirect ac-
cess mode that is normally used in the development of data-intensive workflows. We
have evaluated our system using a small benchmark of real SPARQL 1.1 queries from
the bioinformatics domain, and compared it with other similar systems, in some cases
adapting the queries to their own ad-hoc SPARQL extensions, so that the benefits of our
implementation can be illustrated.

With this work, we aim at advancing to the current state of the art hoping to include
it in the next versions of the SPARQL working drafts, and providing SPARQL-DQP as
one of the reference implementations of this part of the recommendation. We also hope
that the initial benchmark that we have defined can be extended and stabilized in order
to provide a good evaluation framework, complementing existing benchmarks.

Organization of the paper. In Section 2, we describe the syntax and semantics of the
SPARQL 1.1 federation extension. In Section 3, we introduce the notions of service-
safeness, which ensures that the SERVICE operator can be safely evaluated. In Section
4, we present some optimization techniques for the evaluation of the SPARQL 1.1 fed-
eration extension. Finally, in Section 5, we present our implementation as well as an
experimental evaluation of it.

Semantics and Optimization of the SPARQL 1.1 Federation Extension 3

2 Syntax and Semantics of the SPARQL 1.1 Federation Extension

In this section, we give an algebraic formalization of the SPARQL 1.1 federation ex-
tension over simple RDF, that is, RDF without RDFS vocabulary and literal rules. Our
starting point is the existing formalization of SPARQL described in [11], to which we
add the operators SERVICE and BINDINGS proposed in [12].

We introduce first the necessary notions about RDF (taken mainly from [11]). As-
sume there are pairwise disjoint infinite sets I , B, and L (IRIs [6], Blank nodes, and
Literals, respectively). Then a triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called
an RDF triple. In this tuple, s is the subject, p the predicate and o the object. An RDF
graph is a set of RDF triples. Moreover, assume the existence of an infinite set V of
variables disjoint from the above sets, and leave UNBOUND to be a reserve word that
does not belong to any of the sets mentioned previously.

2.1 Syntax of the Federation Extension

The official syntax of SPARQL [13] considers operators OPTIONAL, UNION,
FILTER, SELECT and concatenation via a point symbol (.), to construct graph pat-
tern expressions. Operators SERVICE and BINDINGS are introduced in the SPARQL
1.1 federation extension, the former for allowing users to direct a portion of a query
to a particular SPARQL endpoint, and the latter for transferring results that are used
to constrain a query. The syntax of the language also considers { } to group patterns,
and some implicit rules of precedence and association. In order to avoid ambiguities
in the parsing, we follow the approach proposed in [11], and we first present the syn-
tax of SPARQL graph patterns in a more traditional algebraic formalism, using op-
erators AND (.), UNION (UNION), OPT (OPTIONAL), FILTER (FILTER) and
SERVICE (SERVICE), then we introduce the syntax of BINDINGS queries, which
use the BINDINGS operator (BINDINGS), and we conclude by defining the syntax
of SELECT queries, which use the SELECT operator (SELECT). More precisely, a
SPARQL graph pattern expression is defined recursively as follows:

(1) A tuple from (I ∪ L ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is a graph pattern (a triple
pattern).

(2) If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),
and (P1 UNION P2) are graph patterns.

(3) If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern.

(4) If P is a graph pattern and a ∈ (I ∪ V), then (SERVICE a P) is a graph pattern.

Moreover, a SPARQL BINDINGS query is defined as follows:

(5) If P is a graph pattern, S is a nonempty list of pairwise distinct variables and
{A1, . . . , An} is a nonempty set of lists such that for every i ∈ {1, . . . , n}, it holds
that Ai and S have the same length and each element in Ai belongs to (I ∪ L ∪
{UNBOUND}), then (P BINDINGS S {A1, . . . , An}) is a BINDINGS query.

Finally, assuming that P is either a graph pattern or a BINDINGS query, let var(P) be
the set of variables mentioned in P . Then a SPARQL SELECT query is defined as:

4 C. Buil-Aranda, M. Arenas, and O. Corcho

(6) If P is either a graph pattern or a BINDINGS query, and W is a set of variables
such that W ⊆ var(P), then (SELECT W P) is a SELECT query.

It is important to notice that the rules (1)–(3) above were introduced in [11], while we
formalize in the rules (4)–(6) the federation extension of SPARQL proposed in [12].

In the previous definition, we use the notion of built-in condition for the filter opera-
tor. A SPARQL built-in condition is constructed using elements of the set (I ∪ L ∪ V)
and constants, logical connectives (¬, ∧, ∨), inequality symbols (<, ≤, ≥, >), the
equality symbol (=), unary predicates like bound, isBlank, and isIRI, plus other fea-
tures (see [13] for a complete list). Due to the lack of space, we restrict in this paper
to the fragment of SPARQL where the built-in condition is a Boolean combination of
terms constructed by using = and bound, that is: (1) if ?X, ?Y ∈ V and c ∈ (I ∪ L),
then bound(?X), ?X = c and ?X =?Y are built-in conditions, and (2) if R1 and R2

are built-in conditions, then (¬R1), (R1 ∨ R2) and (R1 ∧ R2) are built-in conditions.
It should be noticed that the results of the paper can be easily extended to the other
built-in predicates in SPARQL.

Let P be either a graph pattern or a BINDINGS query or a SELECT query. In the
rest of the paper, we use var(P) to denote the set of variables occurring in P . Similarly,
for a built-in condition R, we use var(R) to denote the set of variables occurring in R.

2.2 Semantics of the Federation Extension

To define the semantics of SPARQL queries, we need to introduce some extra ter-
minology from [11]. A mapping μ from V to (I ∪ B ∪ L) is a partial function
μ : V → (I ∪ B ∪ L). Abusing notation, for a triple pattern t we denote by μ(t) the
triple obtained by replacing the variables in t according to μ. The domain of μ, denoted
by dom(μ), is the subset of V where μ is defined. Two mappings μ1 and μ2 are com-
patible when for all ?X ∈ dom(μ1) ∩ dom(μ2), it is the case that μ1(?X) = μ2(?X),
i.e. when μ1 ∪ μ2 is also a mapping.

Let Ω1 and Ω2 be sets of mappings. Then the join of, the union of, the difference
between and the left outer-join between Ω1 and Ω2 are defined as follows [11]:

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2 and μ1, μ2 are compatible mappings},
Ω1 ∪Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2},
Ω1 � Ω2 = {μ ∈ Ω1 | for all μ′ ∈ Ω2, μ and μ′ are not compatible},
Ω1 Ω2 = (Ω1 �� Ω2) ∪ (Ω1 � Ω2).

Next we use the preceding operators to give semantics to graph pattern expressions,
BINDINGS queries and SELECT queries. More specifically, we define this semantics
as a function � · �G, which takes as input any of these types of queries and returns a
set of mappings. In this definition, we assume given a partial function ep from the set
I of IRIs such that for every c ∈ I , if ep(c) is defined, then ep(c) is an RDF graph.
Intuitively, function ep is defined for an element c ∈ I (c ∈ dom(ep)) if and only if c
is the IRI of a SPARQL endpoint, and ep(c) is the default RDF graph of that endpoint1.

1 For simplicity, we only assume a single (default) graph and no named graphs per remote
SPARQL endpoint.

Semantics and Optimization of the SPARQL 1.1 Federation Extension 5

Moreover, in this definition μ∅ represents the mapping with empty domain (which is
compatible with any other mapping).

The evaluation of a graph pattern P over an RDF graph G, denoted by �P �G, is de-
fined recursively as follows (due to the lack of space, we refer the reader to the extended
version of the paper for the definition of the semantics of the FILTER operator):

(1) If P is a triple pattern t, then �P �G = {μ | dom(μ) = var(t) and μ(t) ∈ G}.
(2) If P is (P1 AND P2), then �P �G = �P1�G �� �P2�G.
(3) If P is (P1 OPT P2), then �P �G = �P1�G �P2�G.
(4) If P is (P1 UNION P2), then �P �G = �P1�G ∪ �P2�G.
(5) If P is (SERVICE c P1) with c ∈ I , then

�P �G =

{
�P1�ep(c) if c ∈ dom(ep)
{μ∅} otherwise

(6) If P is (SERVICE ?X P1) with ?X ∈ V , then �P �G is equal to:

⋃
c∈I

{
μ | there exists μ′ ∈ �(SERVICE c P1)�G s.t. dom(μ) = (dom(μ′) ∪ {?X}),

μ(?X) = c and μ(?Y) = μ′(?Y) for every ?Y ∈ dom(μ′)
}

Moreover, the semantics of BINDINGS queries is defined as follows. Given a list S =
[?X1, . . . , ?X�] of pairwise distinct variables, where � ≥ 1, and a list A = [a1, . . . , a�]
of values from (I ∪ L ∪ {UNBOUND}), let μS,A be a mapping with domain {?Xi |
i ∈ {1, . . . , �} and ai ∈ (I ∪ L)} and such that μS,A(?Xi) = ai for every ?Xi ∈
dom(μS,A). Then

(7) If P = (P1 BINDINGS S {A1, . . . , An}) is a BINDINGS query:

�P �G = �P1�G �� {μS,A1, . . . , μS,An}.

Finally, the semantics of SELECT queries is defined as follows. Given a mapping μ :
V → (I ∪B ∪ L) and a set of variables W ⊆ V , the restriction of μ to W , denoted by
μ|W , is a mapping such that dom(μ|W) = (dom(μ) ∩W) and μ|W (?X) = μ(?X) for
every ?X ∈ (dom(μ) ∩W). Then

(8) If P = (SELECT W P1) is a SELECT query: �P �G = {μ|W | μ ∈ �P1�G}.

It is important to notice that the rules (1)–(4) above were introduced in [11], while we
propose in the rules (5)–(8) a semantics for the operators SERVICE and BINDINGS
introduced in [12]. Intuitively, if c ∈ I is the IRI of a SPARQL endpoint, then the idea
behind the definition of (SERVICE c P1) is to evaluate query P1 in the SPARQL end-
point specified by c. On the other hand, if c ∈ I is not the IRI of a SPARQL endpoint,
then (SERVICE c P1) leaves unbounded all the variables in P1, as this query cannot
be evaluated in this case. This idea is formalized by making μ∅ the only mapping in the
evaluation of (SERVICE c P1) if c �∈ dom(ep). In the same way, (SERVICE ?X P1)

6 C. Buil-Aranda, M. Arenas, and O. Corcho

is defined by considering all the possible IRIs for the variable ?X , that is, all the val-
ues c ∈ I . In fact, (SERVICE ?X P1) is defined as the union of the evaluation of the
graph patterns (SERVICE c P1) for the values c ∈ I , but also storing in ?X the IRIs
from where the values of the variables in P1 are coming from. Finally, the idea behind
the definition of (P1 BINDINGS S {A1, . . . , An}) is to constrain the values of the
variables in S to the values specified in A1, . . ., An.

Example 1. Assume that G is an RDF graph that uses triples of the form
(a, service address, b) to indicate that a SPARQL endpoint with name a is located at
the IRI b. Moreover, let P be the following SPARQL query:

[
SELECT {?X, ?N, ?E}((

(?X, service address, ?Y) AND (SERVICE ?Y (?N, email, ?E))

)

BINDINGS [?N] {[John], [Peter]}
)]

Query P is used to compute the list of names and email addresses that can be retrieved
from the SPARQL endpoints stored in an RDF graph. In fact, if μ ∈ �P �G, then μ(?X)
is the name of a SPARQL endpoint stored in G, μ(?N) is the name of a person stored
in that SPARQL endpoint and μ(?E) is the email address of that person. Moreover,
the operator BINDINGS in this query is used to filter the values of the variable ?N .
Specifically, if μ ∈ �P �G, then μ(?N) is either John or Peter. �

The goal of the rules (5)–(8) is to define in an unambiguous way what the result of
evaluating an expression containing the operators SERVICE and BINDINGS should
be. As such, these rules should not be considered as an implementation of the language.
In fact, a direct implementation of the rule (6), that defines the semantics of a pattern of
the form (SERVICE ?X P1), would involve evaluating a particular query in every pos-
sible SPARQL endpoint, which is obviously infeasible in practice. In the next section,
we face this issue and, in particular, we introduce a syntactic condition on SPARQL
queries that ensures that a pattern of the form (SERVICE ?X P1) can be evaluated by
only considering a finite set of SPARQL endpoints, whose IRIs are actually taken from
the RDF graph where the query is being evaluated.

3 On Evaluating the SERVICE Operator

As we pointed out in the previous section, the evaluation of a pattern of the form
(SERVICE ?X P) is infeasible unless the variable ?X is bound to a finite set of IRIs.
This notion of boundedness is one of the most significant and unclear concepts in the
SPARQL federation extension. In fact, the current version of the specification [12] only
specifies that a variable ?X in a pattern of the form (SERVICE ?X P) must be bound,
but without providing a formal definition of what that means. Here we provide a for-
malization of this concept, studying the complexity issues associated with it.

Semantics and Optimization of the SPARQL 1.1 Federation Extension 7

3.1 The Notion of Boundedness

In Example 1, we present a SPARQL query containing a pattern (SERVICE ?Y
(?N, email, ?E)). Given that variable ?Y is used to store the address of a remote
SPARQL endpoint to be queried, it is important to assign a value to ?Y prior to the eval-
uation of the SERVICE pattern. In the case of the query in Example 1, this needs of a
simple strategy: given an RDF graph G, first compute �(?X, service address, ?Y)�G,
and then for every μ in this set, compute �(SERVICE a (?N, email, ?E))�G with
a = μ(?Y). More generally, SPARQL pattern (SERVICE ?Y (?N, email, ?E)) can
be evaluated in this case as only a finite set of values from the domain of G need to be
considered as the possible values of ?Y . This idea naturally gives rise to the following
notion of boundedness for the variables of a SPARQL query. In the definition of this
notion, dom(G) refers to the domain of G, that is, the set of elements from (I ∪B ∪L)
that are mentioned in G, and dom(P) refers to the set of elements from (I ∪L) that are
mentioned in P .

Definition 1 (Boundedness). Let P be a SPARQL query and ?X ∈ var(P). Then ?X
is bound in P if one of the following conditions holds:

– P is either a graph pattern or a BINDINGS query, and for every RDF graph G
and mapping μ ∈ �P �G, it holds that ?X ∈ dom(μ) and μ(?X) ∈ (dom(G) ∪
dom(P)).

– P is a SELECT query (SELECT W P1) and ?X is bound in P1.

The BINDINGS operator can make a variable ?X in a query P to be bound by assign-
ing to it a fixed set of values. Given that these values are not necessarily mentioned in
the RDF graph G where P is being evaluated, the previous definition first imposes the
condition that ?X ∈ dom(μ), and then not only considers the case μ(?X) ∈ dom(G)
but also the case μ(?X) ∈ dom(P). As an example of the above definition, we note
that variable ?Y is bound in the graph pattern

P1 = ((?X, service address, ?Y) AND (SERVICE ?Y (?N, email, ?E))),

as for every RDF graph G and mapping μ ∈ �P1�G, we know that ?Y ∈ dom(μ)
and μ(?Y) ∈ dom(G). Moreover, we also have that variable ?Y is bound in
(SELECT {?X, ?N, ?E} P1) as ?Y is bound in graph pattern P1.

A natural way to ensure that a SPARQL query P can be evaluated in practice is by
imposing the restriction that for every sub-pattern (SERVICE ?X P1) of P , it holds
that ?X is bound in P . However, in the following theorem we show that such a condition
is undecidable and, thus, a SPARQL query engine would not be able to check it in order
to ensure that a query can be evaluated.

Theorem 1. The problem of verifying, given a SPARQL query P and a variable ?X ∈
var(P), whether ?X is bound in P is undecidable.

The fact that the notion of boundedness is undecidable prevents one from using it as
a restriction over the variables in SPARQL queries. To overcome this limitation, we
introduce here a syntactic condition that ensures that a variable is bound in a pattern
and that can be efficiently verified.

8 C. Buil-Aranda, M. Arenas, and O. Corcho

Definition 2 (Strong boundedness). Let P be a SPARQL query. Then the set of
strongly bound variables in P , denoted by SB(P), is recursively defined as follows:

– if P = t, where t is a triple pattern, then SB(P) = var(t);
– if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2);
– if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2);
– if P = (P1 OPT P2) or P = (P1 FILTER R), then SB(P) = SB(P1);
– if P = (SERVICE c P1), with c ∈ I , or P = (SERVICE ?X P1), with ?X ∈ V ,

then SB(P) = ∅;
– if P = (P1 BINDINGS S {A1, . . . , An}), then SB(P) = SB(P1) ∪ {?X |

?X is in S and for every i ∈ {1, . . . , n}, it holds that ?X ∈ dom(μS,Ai)}.
– if P = (SELECT W P1), then SB(P) = (W ∩ SB(P1)).

The previous definition recursively collects from a SPARQL query P a set of vari-
ables that are guaranteed to be bound in P . For example, if P is a triple pattern t, then
SB(P) = var(t) as one knows that for every variable ?X ∈ var(t) and for every RDF
graph G, if μ ∈ �t�G, then ?X ∈ dom(μ) and μ(?X) ∈ dom(G). In the same way,
if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2) as one knows that if ?X
is bound in P1 or in P2, then ?X is bound in P . As a final example, notice that if
P = (P1 BINDINGS S {A1, . . . , An}) and ?X is a variable mentioned in S such
that ?X ∈ dom(μS,Ai) for every i ∈ {1, . . . , n}, then ?X ∈ SB(P). In this case, one
knows that ?X is bound in P since �P �G = �P1�G �� {μS,A1 , . . . , μS,An} and ?X is in
the domain of each one of the mappings μS,Ai , which implies that μ(?X) ∈ dom(P)
for every μ ∈ �P �G. In the following proposition, we formally show that our intuition
about SB(P) is correct, in the sense that every variable in this set is bound in P .

Proposition 1. For every SPARQL query P and variable ?X ∈ var(P), if ?X ∈
SB(P), then ?X is bound in P .

Given a SPARQL query P and a variable ?X ∈ var(P), it can be efficiently verified
whether ?X is strongly bound in P . Thus, a natural and efficiently verifiable way to en-
sure that a SPARQL query P can be evaluated in practice is by imposing the restriction
that for every sub-pattern (SERVICE ?X P1) of P , it holds that ?X is strongly bound
in P . However, this notion still needs to be modified in order to be useful in practice, as
shown by the following examples.

Example 2. Assume first that P1 is the following graph pattern:

P1 = ((?X, service description, ?Z) UNION
((?X, service address, ?Y) AND (SERVICE ?Y (?N, email, ?E)))).

That is, either ?X and ?Z store the name of a SPARQL endpoint and a de-
scription of its functionalities, or ?X and ?Y store the name of a SPARQL end-
point and the IRI where it is located (together with a list of names and email
addresses retrieved from that location). Variable ?Y is neither bound nor strongly
bound in P1. However, there is a simple strategy that ensures that P1 can be
evaluated over an RDF graph G: first compute �(?X, service description, ?Z)�G,
then compute �(?X, service address, ?Y)�G, and finally for every μ in the set

Semantics and Optimization of the SPARQL 1.1 Federation Extension 9

�(?X, service address, ?Y)�G, compute �(SERVICE a (?N, email, ?E))�G with a =
μ(?Y). In fact, the reason why P1 can be evaluated in this case is that ?Y is
bound (and strongly bound) in the sub-pattern ((?X, service address, ?Y) AND
(SERVICE ?Y (?N, email, ?E))) of P1.

As a second example, assume that G is an RDF graph that uses triples of the form
(a1, related with, a2) to indicate that the SPARQL endpoints located at the IRIs a1 and
a2 store related data. Moreover, assume that P2 is the following graph pattern:

P2 = ((?U1, related with, ?U2) AND
(SERVICE ?U1 ((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F))))).

When this query is evaluated over the RDF graph G, it returns for every tuple
(a1, related with, a2) in G, the list of names and email addresses that that can be re-
trieved from the SPARQL endpoint located at a1, together with the phone number for
each person in this list for which this data can be retrieved from the SPARQL endpoint
located at a2 (recall that graph pattern (SERVICE ?U2 (?N, phone, ?F)) is nested in-
side the first SERVICE operator in P2). To evaluate this query over an RDF graph, first
it is necessary to determine the possible values for variable ?U1, and then to submit the
query ((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F))) to each one of the
endpoints located at the IRIs stored in ?U1. In this case, variable ?U2 is bound (and
also strongly bound) in P2. However, this variable is not bound in the graph pattern
((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F))), which has to be evaluated
in some of the SPARQL endpoints stored in the RDF graph where P2 is being evalu-
ated, something that is infeasible in practice. Notice that the difficulties in evaluating P2

are caused by the nesting of SERVICE operators (more precisely, by the fact that P2

has a sub-pattern of the form (SERVICE ?X1 Q1), where Q1 has in turn a sub-pattern
of the form (SERVICE ?X2 Q2) such that ?X2 is bound in P2 but not in Q1). �

In the following section, we use the concept of strongly boundedness to define a notion
that ensures that a SPARQL query containing the SERVICE operator can be evaluated
in practice, and which takes into consideration the ideas presented in Example 2.

3.2 The Notion of Service-Safeness: Considering Sub-patterns and Nested
Service Operators

The goal of this section is to provide a condition that ensures that a SPARQL query
containing the SERVICE operator can be safely evaluated . To this end, we first need
to introduce some terminology. Given a SPARQL query P , define T (P) as the parse
tree of P . In this tree, every node corresponds to a sub-pattern of P . An example of
a parse tree of a pattern Q is shown in Figure 1. In this figure, u1, u2, u3, u4, u5, u6

are the identifiers of the nodes of the tree, which are labeled with the sub-patterns of
Q. It is important to notice that in this tree we do not make any distinction between
the different operators in SPARQL, we just store the structure of the sub-patterns of a
SPARQL query.

Tree T (P) is used to define the notion of service-boundedness, which extends the
concept of boundedness, introduced in the previous section, to consider variables that

10 C. Buil-Aranda, M. Arenas, and O. Corcho

u6 : (?Y, a, ?Z)

u1 : ((?Y, a, ?Z) UNION ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z))))

u2 : (?Y, a, ?Z) u3 : ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z)))

u4 : (?X, b, c) u5 : (SERVICE ?X (?Y, a, ?Z))

Fig. 1. Parse tree T (Q) for the graph pattern Q = ((?Y, a, ?Z) UNION ((?X, b, c) AND
(SERVICE ?X (?Y, a, ?Z))))

are bound inside sub-patterns and nested SERVICE operators. It should be noticed that
these two features were identified in the previous section as important for the definition
of a notion of boundedness (see Example 2).

Definition 3 (Service-boundedness). A SPARQL query P is service-bound if for every
node u of T (P) with label (SERVICE ?X P1), it holds that: (1) there exists a node v
of T (P) with label P2 such that v is an ancestor of u in T (P) and ?X is bound in P2;
(2) P1 is service-bound.

For example, query Q in Figure 1 is service-bound. In fact, condition (1) of Def-
inition 3 is satisfied as u5 is the only node in T (Q) having as label a SERVICE
graph pattern, in this case (SERVICE ?X (?Y, a, ?Z)), and for the node u3, it holds
that: u3 is an ancestor of u5 in T (P), the label of u3 is P = ((?X, b, c)AND
(SERVICE ?X (?Y, a, ?Z))) and ?X is bound in P . Moreover, condition (2) of Defini-
tion 3 is satisfied as the sub-pattern (?Y, a, ?Z) of the label of u5 is also service-bound.

The notion of service-boundedness captures our intuition about the condition that a
SPARQL query containing the SERVICE operator should satisfy. Unfortunately, the
following theorem shows that such a condition is undecidable and, thus, a query engine
would not be able to check it in order to ensure that a query can be evaluated.

Theorem 2. The problem of verifying, given a SPARQL query P , whether P is service-
bound is undecidable.

As for the case of the notion of boundedness, the fact that the notion of service-
boundedness is undecidable prevents one from using it as a restriction over the variables
used in SERVICE calls. To overcome this limitation, we replace the restriction that the
variables used in SERVICE calls are bound by the decidable restriction that they are
strongly bound. In this way, we obtain a syntactic condition over SPARQL patterns that
ensures that they are service-bound, and which can be efficiently verified.

Definition 4 (Service-safeness). A SPARQL query P is service-safe if for every node
u of T (P) with label (SERVICE ?X P1), it holds that: (1) there exists a node v of
T (P) with label P2 such that v is an ancestor of u in T (P) and ?X ∈ SB(P2); (2) P1

is service-safe.

Proposition 2. If a SPARQL query P is service-safe, then P is service-bound.

Semantics and Optimization of the SPARQL 1.1 Federation Extension 11

The notion of service-safeness is used in our system to verify that a SPARQL pattern
can be evaluated in practice. We conclude this section by pointing out that it can be
efficiently verified whether a SPARQL query P is service-safe, by using a bottom-up
approach over the parse tree T (P) of P .

4 Optimizing the Evaluation of the OPTIONAL Operator in
SPARQL Federated Queries

If a SPARQL query Q including the SERVICE operator has to be evaluated in a
SPARQL endpoint A, then some of the sub-queries of Q may have to be evaluated
in some external SPARQL endpoints. Thus, the problem of optimizing the evaluation
of Q in A, and, in particular, the problem of reordering Q in A to optimize this evalu-
ation, becomes particularly relevant in this scenario, as in some cases one cannot rely
on the optimizers of the external SPARQL endpoints. Motivating by this, we present in
this section some optimization techniques that extend the techniques presented in [11]
to the case of SPARQL queries using the SERVICE operator, and which can be applied
to a considerable number of SPARQL federated queries.

4.1 Optimization via Well-Designed Patterns

In [11,17], the authors study the complexity of evaluating the fragment of SPARQL
consisting of the operators AND, UNION, OPT and FILTER. One of the conclusions
of these papers is that the main source of complexity in SPARQL comes from the use
of the OPT operator. In light of these results, it was introduced in [11] a fragment
of SPARQL that forbids a special form of interaction between variables appearing in
optional parts, which rarely occurs in practice. The patterns in this fragment, which are
called well-designed patterns [11], can be evaluated more efficiently and are suitable for
reordering and optimization. In this section, we extend the definition of the notion of
being well-designed to the case of SPARQL patterns using the SERVICE operator, and
prove that the reordering rules proposed in [11], for optimizing the evaluation of well-
designed patterns, also hold in this extension. The use of these rules allows to reduce
the number of tuples being transferred and joined in federated queries, and hence our
implementation benefits from this as shown in Section 5.

Let P be a graph pattern constructed by using the operators AND, OPT, FILTER
and SERVICE, and assume that P satisfies the safety condition that for every sub-
pattern (P1 FILTER R) of P , it holds that var(R) ⊆ var(P1). Then, by following [11],
we say that P is well-designed if for every sub-pattern P ′ = (P1 OPT P2) of P and
for every variable ?X occurring in P : If ?X occurs both inside P2 and outside P ′,
then it also occurs in P1. All the graph patterns given in the previous sections are well-
designed. On the other hand, the following pattern P is not well-designed:

((?X, nickname, ?Y) AND (SERVICE c ((?X, email, ?U) OPT (?Y, email, ?V)))),

as for the sub-pattern P ′ = (P1 OPT P2) of P with P1 = (?X, email, ?U) and
P2 = (?Y, email, ?V)), we have that ?Y occurs in P2 and outside P ′ in the triple

12 C. Buil-Aranda, M. Arenas, and O. Corcho

pattern (?X, nickname, ?Y), but it does not occur in P1. Given an RDF graph G,
graph pattern P retrieves from G a list of people with their nicknames, and retrieves
from the SPARQL endpoint located at the IRI c the email addresses of these people
and, optionally, the email addresses associated to their nicknames. What is unnatu-
ral about this graph pattern is the fact that (?Y, email, ?V) is giving optional infor-
mation for (?X, nickname, ?Y), but in P appears as giving optional information for
(?X, name, ?U). In fact, it could happen that some of the results retrieved by using the
triple pattern (?X, nickname, ?Y) are not included in the final answer of P , as the value
of variable ?Y in these intermediate results could be incompatible with the values for
this variable retrieved by using the triple pattern (?Y, email, ?V).

In the following proposition, we show that well-designed patterns including the
SERVICE operator are suitable for reordering and, thus, for optimization.

Proposition 3. Let P be a well-designed pattern and P ′ a pattern obtained from P by
using one of the following reordering rules:

((P1 OPT P2) FILTER R) −→ ((P1 FILTER R) OPT P2),
(P1 AND (P2 OPT P3)) −→ ((P1 AND P2) OPT P3),
((P1 OPT P2) AND P3) −→ ((P1 AND P3) OPT P2).

Then P ′ is a well-designed pattern equivalent to P .

The proof of this proposition is a simple extension of the proof of Proposition 4.10
in [11]. In the following section, we show that the use of these rules can have a consid-
erable impact in the cost of evaluating graph patterns.

5 Implementation of SPARQL-DQP and Well-Designed Patterns
Optimization

In this section, we describe how we implemented and evaluated the optimization tech-
niques presented in the previous section. In particular, we demonstrate that they effec-
tively decrease the processing time of SPARQL 1.1 federated queries.

5.1 Implementation: SPARQL-DQP

We have implemented the rewriting rules described in Section 4.1 in SPARQL-DQP
[5], together with a bottom up algorithm for checking the condition of being well-
designed. SPARQL-DQP is a query evaluation system built on top of OGSA-DAI [3]
and OGSA-DQP [10]. OGSA-DAI is a generic service-based data access, integration,
transformation and delivery framework that allows executing data-centric workflows
involving heterogeneous data resources. OGSA-DAI is integrated in Apache Tomcat
and within the Globus Toolkit, and is used in OMII-UK, the UK e-Science platform.
OGSA-DQP is the Distributed Query Processing extension of OGSA-DAI, which ac-
cess distributed OGSA-DAI data resources and provides parallelization mechanisms.
SPARQL-DQP [5] extends this framework with new SPARQL parsers, logical query
plan builders, operators and optimizers for distributed query processing. The main rea-
son for selecting this framework is that it provides built-in infrastructure to support DQP

Semantics and Optimization of the SPARQL 1.1 Federation Extension 13

and enables handling large datasets and tuple streams, which may result from the exe-
cution of queries in different query services and data sources. The low level technical
details of our implementation can be found in [5].

5.2 Evaluation

In our evaluation, we compare the results and performance of our system with
other similar systems that provide some support for SPARQL query federation. Cur-
rently, the engines supporting the official SPARQL 1.1 federation extension are:
DARQ [14], Networked Graphs [15] and ARQ, which is available via an on-
line web service (http://www.sparql.org/) as well as a library for Jena
(http://jena.sourceforge.net/). Other system that supports distributed
RDF querying is presented in [18]. We do not consider this system here as it uses the
query language SeRQL instead of SPARQL.

The objective of our evaluation is to show first that we can handle SPARQL queries
that comply with the federated extension, and second that the optimization techniques
proposed in Section 4.1 actually reduce the time needed to process queries. We have
checked for existing SPARQL benchmarks like the Berlin SPARQL Benchmark [4],
SP2Bench [16] and the benchmark proposed in [7]. Unfortunately for our purposes, the
first two are not designed for a distributed environment, while the third one is based
on a federated scenario but is not as comprehensive as the Berlin SPARQL Benchmark
and SP2Bench. Thus, we decided to base our evaluation on some queries from the life
sciences domain, similar to those in [7] but using a base query and increasing its com-
plexity like in [4]. These queries are real queries used by Bio2RDF experts.

Datasets description. The Bio2RDF datasets contains 2,3 billion triples organized
around 40 datasets with sometimes overlapping information. The Bio2RDF datasets
that we have used in our benchmark are: Entrez Gene (13 million triples, stored in the
local endpoint sparql-pubmed), Pubmed (797 million triples), HHPID (244,021 triples)
and MeSH (689,542 triples, stored in the local endpoint sparql-mesh). One of the prac-
tical problems that these benchmarks have is that public SPARQL endpoints normally
restrict the amount of results that they provide. To overcome this limitation we installed
Entrez Gene and MeSH in servers without these restrictions. We also divided them in
files of 300,000 triples, creating endpoints for each one of them.

Queries used in the evaluation. We used 7 queries in our evaluation. The query struc-
ture follows the following path: using the Pubmed references obtained from the Entrez
gene dataset, we access the Pubmed endpoint (queries Q1 and Q2). In these queries,
we retrieve information about genes and their references in the Pubmed dataset. From
Pubmed we access the information in the National Library of Medicine’s controlled
vocabulary thesaurus (queries Q3 and Q4), stored at MeSH endpoint, so we have more
complete information about such genes. Finally, to increase the data retrieved by our
queries we also access the HHPID endpoint (queries Q5, Q6 and Q7), which is the
knowledge base for the HIV-1 protein. The queries, in increasing order of complexity,
can be found at http://www.oeg-upm.net/files/sparql-dqp/. Next we
show query Q4 to give the reader an idea of the type of queries that we are considering:

14 C. Buil-Aranda, M. Arenas, and O. Corcho

SELECT ?pubmed ?gene1 ?mesh ?descriptor ?meshReference
WHERE
{

{SERVICE <http://127.0.0.1:2020/sparql-pubmed> {
?gene1 <http://bio2rdf.org/geneid_resource:pubmed_xref> ?pubmed .}}.

{SERVICE <http://pubmed.bio2rdf.org/sparql> {
?pubmed <http://bio2rdf.org/pubmed_resource:meshref> ?mesh .
?mesh <http://bio2rdf.org/pubmed_resource:descriptor> ?descriptor .}}.

OPTIONAL { SERVICE <http://127.0.0.1:2021/sparql-mesh> {
?meshReference <http://www.w3.org/2002/07/owl#sameAs> ?descriptor .}}.

}

Results. Our evaluation was done in an Amazon EC2 instance. The instance has 2
cores and 7.5 GB of memory run by Ubuntu 10.04. The data used in this evaluation,
together with the generated query plans and the original queries in Java formatting, can
be found at http://www.oeg-upm.net/files/sparql-dqp/. The results of
our evaluation are shown in the following table:

Query Not optimized Optimized DARQ NetworkedGraphs ARQ

SPARQL-DQP SPARQL-DQP

Q1 79,000ms. 79,000ms. 10+ min. 10+ min. 440,296ms.

Q2 64,179ms. 64,179ms. 10+ min. 10+ min. 10+ min.

Q3 134,324ms. 134,324ms. 10+ min. 10+ min. 10+ min.

Q4 152,559ms. 136,482ms. 10+ min. 10+ min. 10+ min.

Q5 146,575ms. 146,575ms. 10+ min. 10+ min. 10+ min.

Q6 322,792ms. 79,178ms. 10+ min. 10+ min. 10+ min.

Q7 350,554ms. 83,153ms. 10+ min. 10+ min. 10+ min.

A first clear advantage of our implementation is the ability to use asynchronous calls
facilitated by the use of indirect access mode, what means that we do not get time out
in any of the queries. This time out happens when accessing an online distributed query
processing like in the case of ARQ (www.sparql.org/query). It is important to
note that the ability to handle this type of queries is essential for many types of data-
intensive applications, such as those based on Bio2RDF. Data transfer also plays a key
role in query response times. For example, in some queries the local query engine re-
ceived 150,000 results from Entrez gene, 10,000 results from Pubmed, 23,841 results
from MeSH and 10,000 results from HHPID. The implemented optimizations are less
noticeable when the amount of transferred data is fewer.

It is possible to observe three different sets of results from this preliminary evalua-
tion. The first set (Q1–Q3 and Q5) are those that are not optimized because the reorder-
ing rules in Section 4.1 are not applicable. The second query group (Q4) represents
the class of queries that can be optimized using our approach, but where the differ-
ence is not too relevant, because the less amount of transferred data. The last group
of queries (Q6–Q7) shows a clear optimization when using the well-designed patterns
rewriting rules. For example, in query 6 the amount of transferred data varies from a
join of 150, 000 × 10, 000 tuples to a join of 10, 000 × 23, 841 tuples (using Entrez,
Pubmed and MeSH endpoints), which highly reduces the global processing time of the
query. Regarding the comparison with other systems, they do not properly handle these
amounts of data. We represent as 10+ min. those queries that need more than 10 minutes
to be answered.

Semantics and Optimization of the SPARQL 1.1 Federation Extension 15

In summary, we have shown that our implementation provides better results than
other similar systems. Besides, we have also shown that our implementation, which ben-
efits from an indirect access mode, can be more appropriate to deal with large datasets.

Acknowledgments. We thank the anonymous referees, the OGSA-DAI team (spe-
cially Ally Hume), Marc-Alexandre Nolin, Jorge Pérez and Axel Polleres for their help
with this work. This research was supported by ADMIRE project FP7 ICT-215024 and
FONDECYT grant 1090565.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

2. Angles, R., Gutierrez, C.: The Expressive Power of SPARQL. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,
vol. 5318, pp. 114–129. Springer, Heidelberg (2008)

3. Antonioletti, M., et al.: OGSA-DAI 3.0 - The Whats and the Whys. UK e-Science All Hands
Meeting, pp. 158–165 (2007)

4. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. Int. J. Semantic Web Inf. Syst. 5(2),
1–24 (2009)

5. Buil, C., Corcho, O.: Federating Queries to RDF repositories. Technical Report (2010),
http://oa.upm.es/3302/

6. Durst, M,. Suignard, M.: Rfc 3987, Internationalized Resource Identifiers (IRIs),
http://www.ietf.org/rfc/rfc3987.txt

7. Haase, P., Mathäß, T., Ziller, M.: An evaluation of approaches to federated query processing
over linked data. In: I-SEMANTICS (2010)

8. Harris, S., Seaborne, A.: SPARQL 1.1 Query. W3C Working Draft (June 1, 2010),
http://www.w3.org/TR/sparql11-query/

9. Klyne, G., Carroll, J.J., McBride, B.: Resource description framework (RDF): Concepts and
abstract syntax. W3C Recommendation (February 10, 2004),
http://www.w3.org/TR/rdf-concepts/

10. Lynden, S., et al.: The design and implementation of OGSA-DQP: A service-based dis-
tributed query processor. Future Generation Computer Systems 25(3), 224–236 (2009)

11. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. TODS 34(3)
(2009)

12. Prud’hommeaux, E.: SPARQL 1.1 Federation Extensions. W3C Working Draft (June 1,
2010), http://www.w3.org/TR/sparql11-federated-query/

13. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommenda-
tion (January 15, 2008), http://www.w3.org/TR/rdf-sparql-query/

14. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In: Bechhofer,
S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp.
524–538. Springer, Heidelberg (2008)

15. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for SPARQL rules,
SPARQL views and RDF data integration on the Web. In: WWW, pp. 585–594 (2008)

16. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance
Benchmark. In: ICDE, pp. 222–233 (2009)

17. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization. In: ICDT,
pp. 4–33 (2010)

18. Stuckenschmidt, H., Vdovjak, R., Geert-Jan, H., Broekstra, J.: Index structures and algo-
rithms for querying distributed RDF repositories. In: WWW, pp. 631–639 (2004)

http://oa.upm.es/3302/
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/rdf-sparql-query/

Grr: Generating Random RDF�

Daniel Blum and Sara Cohen

School of Computer Science and Engineering
The Hebrew University of Jerusalem

{daniel.blum@mail,sara@cs}.huji.ac.il

Abstract. This paper presents GRR, a powerful system for generating random
RDF data, which can be used to test Semantic Web applications. GRR has a
SPARQL-like syntax, which allows the system to be both powerful and conve-
nient. It is shown that GRR can easily be used to produce intricate datasets, such
as the LUBM benchmark. Optimization techniques are employed, which make
the generation process efficient and scalable.

1 Introduction

Testing is one of most the critical steps of application development. For data-centric
applications, testing is a challenge both due to the large volume of input data needed,
and due to the intricate constraints that this data must satisfy. Thus, while finding or
generating input data for testing is pivotal in the development of data-centric applica-
tions, it is often a difficult undertaking. This is a significant stumbling block in system
development, since considerable resources must be expended to generate test data.

Automatic generation of data has been studied extensively for relational databases
(e.g., [4, 7, 11, 13]), and there has also been considerable progress on this problem for
XML databases [1, 3, 8]. This paper focuses on generating test data for RDF databases.
While some Semantic Web applications focus on varied and unexpected types of data,
there are also many others that target specific domains. For such applications, to be
useful, datasets used should have at least two properties. First, the data structure must
conform to the schema of the target application. Second, the data should match the
expected data distribution of the target application.

Currently, there are several distinct sources for RDF datasets. First, there are down-
loadable RDF datasets that can be found on the web, e.g., Barton libraries, UniProt
catalog sequence, and WordNet. RDF Benchmarks, which include both large datasets
and sample queries, have also been developed, e.g., the Lehigh University Benchmark
(LUBM) [10] (which generates data about universities), the SP2Bench Benchmark [14]
(which provides DBLP-style data) and the Berlin SPARQL Benchmark [5] (which is
built around an e-commerce use case). Such downloadable RDF datasets are usually an
excellent choice when testing the efficiency of an RDF database system. However, they
will not be suitable for experimentation and analysis of a particular RDF application.
Specifically, since these datasets are built for a single given scenario, they may not have
either of the two specified properties, for the application at hand.

� This work was partially supported by the GIF (Grant 2201-1880.6/2008) and the ISF (Grant
143/09).

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 16–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Grr: Generating Random RDF 17

Data generators are another source for datasets. A data generator is a program that
generates data according to user constraints. As such, data generators are usually more
flexible than benchmarks. Unfortunately, there are few data generators available for
RDF (SIMILE 1, RBench2) and none of these programs can produce data that conforms
to a specific given structure, and thus, again, will not have the specified properties.

In this paper, we present the GRR system for generating RDF that satisfies both desir-
able properties given above. Thus, GRR is not a benchmark system, but rather, a system
to use for Semantic Web application testing.3 GRR can produce data with a complex
graph structure, as well as draw the data values from desirable domains. As a motivat-
ing (and running) example, we will discuss the problem of generating the data described
in the LUBM Benchmark. However, GRR is not limited to creating benchmark data. For
example, we also demonstrate using GRR to create FOAF [9] data (Friend-of-a-friend,
social network data) in our experimentation.

Example 1. LUBM [10] is a collection of data describing university classes (i.e., enti-
ties), such as departments, faculty members, students, etc. These classes have a plethora
of properties (i.e., relations) between them, e.g., faculty members work for departments
and head departments, students take courses and are advised by faculty members.

In order to capture a real-world scenario, LUBM defines interdependencies of dif-
ferent types between the various entities. For example, the number of students in a de-
partment is a function of the number of faculty members. Specifically, LUBM requires
there to be a 1:8-14 ratio of faculty members to undergraduate students. As another
example, the cardinality of a property may be specified, such as each department must
have a single head of department (who must be a full professor). Properties may also
be required to satisfy additional constraints, e.g., courses, taught by faculty members,
must be pairwise disjoint. �

Our main challenge is to provide powerful generation capabilities, while still retaining
a simple enough user interface, to allow the system to be easily used. To demonstrate
the capabilities of GRR, we show that GRR can easily be used to reproduce the entire
LUBM benchmark. Actually, our textual commands are not much longer than the intu-
itive description of the LUBM benchmark! We are interested in generating very large
datasets. Thus, a second challenge is to ensure that the runtime remains reasonable,
and that data generation scales up well. Several optimization techniques have been em-
ployed to improve the runtime, which make GRR efficient and scalable. We note that a
short demo of this work appeared in [6].

2 Abstract Generation Language

In this section we present the abstract syntax and the semantics for our data generation
language. Our data generation commands are applied to a (possibly empty) label graph,

1 http://simile.mit.edu/
2 http://139.91.183.30:9090/RDF/RBench
3 Our focus is on batch generation of data for testing, and not on online testing, where data

generation is influenced by application responses.

http://simile.mit.edu/
http://139.91.183.30:9090/RDF/RBench

18 D. Blum and S. Cohen

to augment it with additional nodes and edges. There are four basic building blocks for
a data generation command. First, a composite query Q̄ finds portions of a label graph
to augment. Second, a construction command C defines new nodes and edges to create.
Third, a query result sampler defines which results of Q̄ should be used for input to C.
Fourth, a natural number sampler determines the number of times that C is applied.
Each of these components are explained below.

Label Graphs. This paper presents a method of generating random graphs of RDF
data. As such, graphs figure prominently in this paper, first as the target output, and
second, as an integral part of the generation commands.

A label graph L = (V, E) is a pair, where V is a set of labeled nodes and E is a
set of directed, labeled edges. We use a, b, . . . to denote nodes of a label graph. Note
that there can be multiple edges connecting a pair of nodes, each with a different label.
Label graphs can be seen as an abstract data model for RDF.

Queries. GRR uses queries as a means for specifying data generation commands. We
will apply queries to label graphs, to get sets of mappings for the output variables of
the queries. The precise syntax used for queries is not of importance, and thus we only
describe the abstract notation. In our implementation, queries are written in SPARQL4.

A query is denoted Q(x̄; ȳ) where x̄ and ȳ are tuples of distinct variables, called the
input variables and output variables, respectively. We use |x̄| to denote the size of the
tuple x̄, i.e., if x̄ = x1, . . . xk, then |x̄| = k. If x̄ is an empty tuple, then we write the
query as Q(; ȳ). When no confusion can arise, we will sometimes simply write Q to
denote a query.

Let L be a label graph and ā be a tuple of (possibly nondistinct) nodes from L, of
size equal to that of the input variables x̄. Then, applying Q(ā; ȳ) to L results in a
set Mā(Q, L) of mappings μ from the variables in ȳ to nodes in L. Intuitively, each
mapping represents a query answer, i.e., μ(ȳ) is a tuple in the result.

A composite query has the form Q̄ := Q1(; ȳ1), . . . , Qn(x̄n; ȳn), where

1. all queries have different output variables ȳi;
2. all input variables appear as output variables in an earlier query, i.e., for all 1 < i ≤

n, and for all x ∈ x̄i, there is a j < i such that x ∈ ȳj .

As a special case, we allow Q̄ to be an empty tuple of queries, also written as �.
Composite queries are used to find portions of a label graph that should be augmented

by the construction stage. Note that the second requirement ensures that Q1 will have no
input variables. As explained later, queries are evaluated in a nested-loop-like fashion,
where answers to Q1, . . . , Qi are used to provide the input to Qi+1.

Intuitively, there are two types of augmentation that will be performed using the re-
sults of a composite query, during the construction stage. First, the new structure (nodes
and edges) must be specified. Second, the labels of this new structure (subjects, predi-
cates, objects) must be defined. Both of these aspects of data generation are discussed
next. To ease the presentation, we start with the latter type of augmentation (randomly

4 SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query

http://www.w3.org/TR/rdf-sparql-query

Grr: Generating Random RDF 19

choosing labels, using value samplers), and then discuss the former augmentation (cre-
ating new structures, using construction patterns), later on.

Value Samplers. GRR uses user-specified sampling procedures to produce random
data. Value samplers, called v-samplers for short, are used to generate labels of an RDF
graph. Using GRR, users can provide two different types of v-samplers (data and class
value samplers), to guide the generation process.

A data value sampler returns a value from a space of values. For example, a data
value sampler can randomly choose a country from a dictionary (file) of country names.
In this fashion, a data value sampler can be used to provide the literal values associated
with the nodes of an RDF graph. A data value sampler can also be defined in a de-
terministic manner, e.g., so that is always returns the same value. This is particularly
useful for defining the predicates (edge labels) in an RDF graph.

When attempting to produce data conforming to a given schema, we will be familiar
with the literal properties expected to be present for each class. To allow the user to
succinctly request the generation of an instance, along with all its literal properties,
GRR uses class value samplers. Class value samplers can be seen as an extended type
of data value sampler. While a data value sampler returns a single value, a class value
sampler returns a value for each of the literal properties associated with a given class.

Example 2. In order to produce data conforming to the LUBM schema, many data
value samplers are needed. Each data value sampler will associate a different type of
node or edge with a value. For example, to produce the age of a faculty member, a data
value sampler choosing an age within a given range can be provided. To produce RDF
identifiers of faculty members, a data value sampler producing a specific string, ended
by a running number (e.g., http://www.Department.Univ/FullProf14)
can be provided. Finally, to produce the predicates of an RDF graph, constant data value
samplers can be used, e.g., to produce the edge label ub:worksFor, a data sampler
which always returns this value can be provided.

A class value sampler for faculty, provides methods of producing values for all of
the literal properties of faculty, e.g., age, email, officeNumber, telephone. �

Construction Patterns. Construction patterns are used to define the nodes and edges
that will be generated, and are denoted as C = (x̄, z̄, ē, Π), where:

– x̄ is a tuple of input variables;
– z̄ is a tuple of construction variables;
– ē ⊆ (x̄ � z̄)× (x̄ � z̄) is a tuple of construction edges;
– Π , called the sampler function, associates each construction variable and each con-

struction edge with a v-sampler.

We use x̄ � z̄ to denote the set of variables appearing in x̄ or in z̄.
Construction patterns are used to extend a given label graph. Specifically, let C =

(x̄, z̄, ē, Π) be a construction pattern, L = (V, E) be a label graph and μ : x̄→ V be a
mapping of x̄ to V . The result of applying C to L given μ, denoted C ⇓μ L, is the label
graph derived by the following two stage process:

http://www.Department.Univ/FullProf14

20 D. Blum and S. Cohen

dept1

ub:suborganizationOf

rdf:type

ub:University

ub:Department

rdf:type

dept2

prof1

ub:worksFor

pete@huji

ub:email lecturer1

prof2

ub:worksFor

ub:worksFor

stud1

ub:memberOf

sam@huji

ub:email

Sam

ub:name

stud2

ub:memberOf

sally@huji

ub:email

Sally

ub:name
rdf:type

univ1

Fig. 1. Partial RDF data graph

– Adding New Nodes: For each variable z ∈ z̄, we add a new node a to L. If Π(z) is
a data value sampler, then the label of a is randomly drawn from Π(z). If Π(z) is
a class value sampler, then we also choose and add all literal properties associated
with z by Π(z). Define μ′(z) = a.
When this stage is over, every node in z̄ is mapped to a new node via μ′. We define
μ′′ as the union of μ and μ′.

– Adding New Edges: For each edge (u, v) ∈ ē, we add a new edge (μ′′(u), μ′′(v))
to L. The label of (μ′′(u), μ′′(v)) is chosen to as a random sample drawn from
Π(u, v).

A construction pattern can be applied several times, given the same mapping μ. Each
application results in additional new nodes and edges.

Example 3. Consider5 C = ((?dept), (?stud), {(?stud, ?dept)}, Π), where Π as-
signs ?stud a class value sampler for students, and assigns the edge (?stud, ?dept)
with a data value sampler that returns the constant ub:memberOf. Furthermore, sup-
pose that the only literal values a student has are his name and email.

Figure 1 contains a partial label graph L of RDF data. Literal values appear in rect-
angles. To make the example smaller, we have omitted many of the literal properties, as
well as much of the typing information (e.g., prof1 is of type ub:FullProfessor,
but this does not appear).

Now, consider L−, the label graph L, without the parts appearing in the dotted cir-
cles. Let μ be the mapping which assigns input variable ?dept to the node labeled
dept1. Then each application of C ⇓μ L− can produce one of the circled struc-
tures. To see this, observe that each circled structure contains a new node, e.g., stud1,
whose literal properties are added by the class value structure. The connecting edge,
i.e., (stud1, dept1), will be added due to the presence of the corresponding con-
struction edge in C, and its label ub:memberOf is determined by the constant data
value sampler. �

5 We use the SPARQL convention and prepend variable names with ?.

Grr: Generating Random RDF 21

Algorithm Apply(Q̄, π̄q , C, πn, L, L∗, μ, j)

1: if j > |Q̄| then
2: choose n from πn

3: for i ← 1 to n do
4: L∗ ← C ⇓μ L∗

5: else
6: ā = μ(x̄j)
7: for all μ′ chosen by πj

q from Mā(Qj , L) do
8: L∗ ← Apply(Q̄, π̄q, C, πn, L, , L∗, μ ∪ μ′, j + 1)
9: return L∗

Fig. 2. Applying a data generation command to a label graph

Query Result Samplers. As stated earlier, there are four basic building blocks for
a data generation command: composite queries, construction commands, query result
samplers and natural number samplers. The first two items have been defined already.
The last item, a natural number sampler or n-sampler, for short, is simply a function
that returns a non-negative natural number. For example, the function πi that always
returns the number i, π[i,j] that uniformly returns a number between i and j, and πm,v

which returns a value using the normal distribution, given a mean and variance, are all
special types of natural number samplers.

We now define the final remaining component in our language, i.e., query result
samplers. A query, along with a label graph, and an assignment μ of values for the
input nodes, defines a set of assignments for the output nodes. As mentioned earlier, the
results of a query guide the generation process. However, we will sometimes desire to
choose a (random) subset of the results, to be used in data generation. A query result
sampler is provided precisely for this purpose.

Given (1) a label graph L, (2) a query Q and (3) a tuple of nodes ā for the input
variables of Q, a query result sampler, or q-sampler, chooses mappings inMā(Q, L).
Thus, applying a q-sampler πq toMā(Q, L) results in a series μ1, . . . , μk of mappings
from Mā(Q, L). A q-sampler determines both the length k of this series of samples
(i.e., how many mappings are returned) and whether the sampling is with, or without,
repetition.

Example 4. Consider a query Q1 (having no input values) that returns department nodes
from a label graph. Consider label graph L from Figure 1. Observe thatM(Q1, L) con-
tains two mappings: μ1 which maps ?dept to the node labeled dept1 and μ2 which
maps ?dept to the node labeled dept2.

A q-sampler πq is used to derive a series of mappings from M(Q1, L). The q-
sampler πq can be defined to return each mapping once (e.g., the series μ1, μ2 or
μ2, μ1), or to return a single random mapping (e.g., μ2 or μ1), or to return two ran-
dom choices of mappings (e.g., one of μ1, μ1 or μ1, μ2 or μ2, μ1 or μ2, μ2), or can be
defined in countless other ways. Note that regardless of how πq is defined, a q-sampler
always returns a series of mappings. The precise definition of πq defines properties of
this series (i.e., its length and repetitions). �

22 D. Blum and S. Cohen

rdf:type

univ1

HebrewU

ub:name

rdf:type

ub:University

univ2

TelAvivU

ub:name

(a)

dept1

ub:Department

rdf:type

dept2

rdf:type

ub:University

univ1

HebrewU

ub:name rdf:type

univ2

TelAvivU

ub:name

dept3

dept4

dept5

rdf:type rdf:type

rdf:type rdf:type

ub:suborganizationOf
ub:suborganizationOf

(b)

Fig. 3. (a) Possible result of application of C1 to the empty label graph. (b) Possible result of
application of C2 to (a).

Data Generation Commands. To generate data, the user provides a series of data
generation commands, each of which is a 4-tuple C = (Q̄, π̄q, C, πn), where

– Q̄ = Q1(x̄1; ȳ1), . . . , Qk(x̄k, ȳk) is a composite query;
– π̄q = (π1

q , . . . , πk
q) is a tuple of q-samplers;

– C = (x̄, z̄, ē, Π) is a construction pattern and
– πn is an n-sampler.

In addition, we require every input variable in tuple x̄ of the construction pattern C to
appear among the output variables in Q̄.

Algorithm Apply (Figure 2) applies a data generation command C to a (possibly
empty) label graph L. It is called with C, L, L∗ = L, the empty mapping μ∅ and j = 1.
Intuitively, Apply runs in a recursive fashion, described next.

We start with query Q1, which cannot have any input variables (by definition). There-
fore, Line 6 is well-defined and assigns ā the empty tuple (). Then, we choose mappings
from the result of applying Q1 to L, using the q-sampler π1

q . For each of these mappings
μ′, we recursively call Apply, now with the extended mapping μ∪μ′ and with the index
2, which will cause us to consider Q2 within the recursive application.

When we reach some 1 < j ≤ |Q̄|, the algorithm has a mapping μ which assigns
values for all output variables of Qi, for i < j. Therefore, μ assigns a value to each
of its input variables x̄j . Given this assignment for the input variables, we call Qj , and
choose some of the results in its output. This process continues recursively, until we
reach j = |Q̄|+ 1.

When j = |Q̄| + 1, the mapping μ must assign values for all of the input variables
of C. We then choose a number n using the n-sampler πn, and apply the construction
pattern C to L∗ a total of n times. Note that at this point, we recurse back, and may
eventually return to j = |Q̄|+ 1 with a different mapping μ.

We note that Apply takes two label graphs L and L∗ as parameters. Initially, these are
the same. Throughout the algorithm, we use L to evaluate queries, and actually apply the
construction patterns to L∗ (i.e., the actual changes are made to L∗). This is important

Grr: Generating Random RDF 23

from two aspects. First, use of L∗ allows us to make sure that all constructions are
made to the same graph, which eventually returns a graph containing all new additions.
Second, and more importantly, since we only apply queries to L, the end result is well-
defined. Specifically, this means that nodes constructed during the recursive calls where
j = |Q̄| + 1, cannot be returned from queries applied when j ≤ |Q̄|. This makes the
algorithm insensitive to the particular order in which we iterate over mappings in Line 7.
Maintaining a copy L∗ of L is costly. Hence, in practice, GRR avoids copying of L, by
deferring all updates until the processing of the data generation command has reached
the end. Only after no more queries will be issued are all updates performed.

Example 5. Let C1 be the construction pattern containing no input variables, a sin-
gle construction variable ?university, no construction edges, and Π associating
?university with the class value sampler for university. Let C1 be the data genera-
tion command containing the empty composite query�, the empty tuple of q-samplers,
the construction command C1 and an n-sampler π[1,5] which uniformly chooses a num-
ber between 1 and 5. Since C1 has no input variables (and Q̄ = �), the data generation
command C1 can be applied to an empty label graph. Assuming that universities have
a single literal property name, applying C1 to the empty graph can result in the label
graph appearing in Figure 3(a).

As a more complex example, let C2 be the construction pattern containing input
variable ?univ, a single construction variable ?dept, a construction edge (?dept,
?univ), and Π associating ?dept with the class value sampler for department. Let
C2 be the data generation command containing (1) a query selecting nodes of type uni-
versity (2) a q-sampler returning all mappings in the query result, (3) the construction
pattern C2 and (4) the n-sampler π[2,4]. Then, applying C2 to the label graph of Fig-
ure 3(a) can result in the label graph appearing in Figure 3(b). (Literal properties of
departments were omitted due to space limitations.)

Finally, the construction pattern described in Example 3, and the appropriately de-
fined data generation command using this construction pattern (e.g., which has a query
returning department mappings) could add the circled components of the graph in
Figure 1 to the label graph of Figure 3(b). �

3 Concrete Generation Language

The heart of the GRR system is a Java implementation of our abstract language, which
interacts with an RDF database for both evaluation of the SPARQL composite queries,
and for construction and storage of the RDF data. The user can provide the data gener-
ation commands (i.e., all details of the components of our abstract commands) within
an RDF file. Such files tend to be quite lengthy, and rather arduous to define.

To make data generation simple and intuitive, we provide the user with a simpler
textual language within which all components of data generation commands can be
defined. Our textual input is compiled into the RDF input format. Thus, the user has
the flexibility of using textual commands whenever they are expressive enough for his
needs, and augmenting the RDF file created with additional (more expressive) com-
mands, when needed. We note that the textual language is quite expressive, and

24 D. Blum and S. Cohen

therefore we believe that such augmentations will be rare. For example, commands
to recreate the entire LUBM benchmark were easily written in the textual interface.

The underlying assumption of the textual interface is that the user is interested in
creating instances of classes and connecting between these, as opposed to arbitrary
construction of nodes and edges. To further simplify the language, we allow users to
use class names instead of variables, for queries that do not have self-joins. This simpli-
fication allows many data generation commands to be written without the explicit use
of variables, which makes the syntax more succinct and readable. The general syntax
of a textual data generation command appears below.

1: (FOR query sampling method
2: [WITH (GLOBAL DISTINCT|LOCAL DISTINCT|REPEATABLE)]
3: {list of classes}
4: [WHERE {list of conditions}])*
5: [CREATE n-sampler {list of classes}]
6: [CONNECT {list of connections}]

Observe that a data generation command can contain three types of clauses: FOR,
CREATE and CONNECT. There can be any number (zero or more) FOR clauses. Each
FOR clause defines a q-sampler (Lines 1–2), and a query (Lines 3-4). The CREATE and
CONNECT clauses together determine the n-sampler (i.e., the number of times that the
construction pattern will be applied), and the construction pattern. Each of CREATE
and CONNECT is optional, but at least one among them must appear.

We present several example commands that demonstrate the capabilities of the lan-
guage. These examples were chosen from among the commands needed to recreate the
LUBM benchmark data.6

(C1) CREATE 1-5 {ub:Univ}
(C2) FOR EACH {ub:Univ}

CREATE 15-25 {ub:Dept}
CONNECT {ub:Dept ub:subOrg ub:Univ}

(C3) FOR EACH {ub:Faculty, ub:Dept}
WHERE {ub:Faculty ub:worksFor ub:Dept}
CREATE 8-14 {ub:Undergrad}
CONNECT {ub:Undergrad ub:memberOf ub:Dept}

(C4) FOR EACH {ub:Dept}
FOR 1 {ub:FullProf}
WHERE {ub:FullProf ub:worksFor ub:Dept}
CONNECT {ub:FullProf ub:headOf ub:Dept}

(C5) FOR 20%-20% {ub:Undergrad, ub:Dept}
WHERE {ub:Undergrad ub:memberOf ub:Dept}
FOR 1 {ub:Prof}
WHERE {ub:Prof ub:memberOf ub:Dept}
CONNECT {ub:Undergrad ub:advisor ub:Prof}

6 In our examples, we shorten the class and predicates names to make the presentation shorter,
e.g., using Dept instead of Department, and omit explicit namespace definition.

Grr: Generating Random RDF 25

(C6) FOR EACH {ub:Undergrad}
FOR 2-4 WITH LOCAL DISTINCT {ub:Course}
CONNECT {ub:Undergrad ub:takeCourse ub:Course}

We start with a simple example demonstrating a command with only a CREATE
clause. Command C1 generates instances of universities (precisely as C1 in Example 5
did). Note that C1 contains no FOR clause (and thus, it corresponds to a data generation
command with the � composite query, and can be applied to an empty graph) and
contains no CONNECT clause (and thus, it does not connect the instances created).

Next, we demonstrate commands containing all clauses, as well as the translation
process from the textual commands to SPARQL. Command C2 creates between 15 and
25 departments per university. Each of the departments created for a particular univer-
sity are connected to that university (precisely as with C2 in Example 5). Similarly,
C3 creates 8 to 14 undergraduate students per faculty member per department, thereby
ensuring a 1:8-14 ratio of faculty members to undergraduate students, as required in
LUBM (Example 1).

The FOR clause of a command implicitly defines a SPARQL query Q, as follows.
The select clause of Q contains a distinct variable ?vC, for each class name C in the
class list. The where clause of Q is created by taking the list of conditions provided and
performing two steps. First, any class names already appearing in the list of conditions
is replaced by its variable name. Second, the list of conditions is augmented by adding
a triple ?vC rdf:typeOf C for each class C appearing in the class list.

For C2 and C3, this translation process will result in the SPARQL queries Q2 and Q3,
respectively, which will be applied to the database to find mappings for our construction
patterns.

(Q2) SELECT ?univ
WHERE {?univ rdf:typeOf ub:University .}

(Q3) SELECT ?f, ?d
WHERE {?f ub:worksFor ?d. ?f rdf:typeOf ub:Faculty.

?d rdf:typeOf ub:Dept.}

So far, all examples have used a single FOR clause. We show now that larger com-
posite queries are useful. The LUBM benchmark specifies that, for each department,
there is a single full professor who is the head of the department. In C4 two FOR clauses
are used: the first, to loop over all departments, and the second, to choose one full
professor working for the current department. The CONNECT clause adds the desired
predicate (edge) between the department and full professor. Note that the output vari-
able of the first FOR clause is an input variable in the second (it is mentioned in the
where condition). In addition, the output variables of both clauses are input variables of
the construction pattern, as defined by the CONNECT clause.

As an additional example, a fifth of the undergraduate students should have a pro-
fessor as their advisor, and thus, the first FOR clause in C5 loops over 20% of the un-
dergraduates (with their department), and the second FOR clause chooses a professor in
the same department to serve as an advisor.

Next, we demonstrate the different repetition modes available, and how they influ-
ence the end result, i.e., the data graph created. As specified in the LUBM benchmark,

26 D. Blum and S. Cohen

each undergraduate student takes 2–4 undergraduate courses. In C6, the first FOR clause
loops over all undergraduate students. The second FOR clause chooses 2–4 undergrad-
uate courses for each student.

Our interface can be used to define query samplers with three different repetition
modes (Line 2). In repeatable mode, the same query results can be sampled multiple
times. Using this mode in C6 would allow the same course to be sampled multiple times
for a given student, yielding several connections of a student to the same course. In
global distinct mode, the same query result is never returned more than once, even
for different samples of query results in previous FOR clauses. Using global distinct in
C6 would ensure that the q-sampler of the second FOR clause never returns the same
course, even when called for different undergraduates returned by the first FOR clause.
Hence, no two students would take a common course. Finally, in local distinct mode,
the same query result can be repeatedly returned only for different results of previous
FOR clauses. However, given specific results of all previous FOR clauses, query results
will not be repeated. Thus, for each undergraduate student, we will sample 2–4 different
undergraduate courses. However for different undergraduate students we may sample
the same courses, i.e., several students may study the same course, as is natural.

As a final example, we show how variables can be used to express queries with self-
joins (i.e., using several instances of the same class). This example connects people
within a FOAF RDF dataset. Note the use of FILTER in the WHERE clause, which is
naturally included in our language, since our WHERE clause is immediately translated
into the WHERE clause of a SPARQL query.

FOR EACH {foaf:Person ?p1}
FOR 15-25 {foaf:Person ?p2}
WHERE {FILTER ?p1 != p2}
CONNECT {?p1 foaf:knows ?p2}

Finally, we must explain how the data value samplers and class value samplers are
defined. An optional class mappings input file provides a mapping of each class to the
literal properties that it has, e.g., the line

ub:GraduateStudent; ub:name; ub:email; ub:age;

associates GraduateStudents with three properties. An additional sampler function file
states which value samplers should be used for each literal property, e.g., the line

CounterDictSampler; GlobalDistinctMode; ub:Person; Person

states that the literals which identify a Person should never be repeated, and should be
created by appending Person with a running counter.

4 Optimization Techniques

Each evaluation of a data generation command requires two types of interactions with
an RDF database: query evaluation of the composite queries (possibly many times), and

Grr: Generating Random RDF 27

the addition of new triples to the RDF database, as the construction patterns are applied.
Thus, the OLTP speed of the RDF database used will greatly dictate the speed in which
our commands can be executed. Two strategies were used to decrease evaluation time.

Caching Query Results. A data generation command has a composite query Q̄ =
Q1(x̄1; ȳ1), . . . , Qk(x̄k; ȳk) and a tuple of q-samplers, π1

q , . . . , πk
q . During the execu-

tion of a data generation command, a specific query Qi may be called several times.
Specifically, a naive implementation will evaluate Qi once, for each sample chosen by
πj

q from the result of Qj , for all j < i. For example, the query determined by the sec-
ond FOR clause of C6 (Section 3), returning all undergraduate courses, will be called
repeatedly, once for each undergraduate student.

Sometimes, repeated evaluations of Qi cannot be avoided. This occurs if the input
parameters x̄i have been given new values. However, repeated computations with the
same input values can be avoided by using a caching technique. We use a hash-table
to store the output of a query, for each different instantiation of the input parameters.
Then, before evaluating Qi with input values ā for x̄i, we check whether the result of
this query already appears in the hash table. If so, we use the cached values. If not, we
evaluate Qi, and add its result to the hash-table.

Avoiding Unnecessary Caching. Caching is effective in reducing the number of times
queries will be applied. However, caching query results incurs a significant storage
overhead. In addition, there are cases in which caching does not bring any benefit, since
some queries will never be called repeatedly with the same input values.

To demonstrate, consider C4 (Section 3), which chooses a head for each department.
As the q-sampler for the query defined by the first FOR clause iterates over all de-
partments without repetition, the query defined by the second FOR clause will always
be called with different values for its input parameter ub:Dept. Hence, caching the
results of the second query is not useful.

In GRR, we avoid caching of results when caching is guaranteed to be useless. In
particular, we will not cache the results of Qi if, for all j < i we have (1) Qj runs in
global distinct mode and (2) all output parameters of Qj are input parameters of Qi.
As a special case, this also implies that caching is not employed in C4, but will be used
for C5 (as only Dept, and not Undergrad, is an input parameter to the query defined
by its second FOR clause). Note that our caching technique is in the spirit of result
memoization, a well-known query optimization technique (e.g., [12, 2]).

5 Experimentation

We implemented GRR within the Jena Semantic Web Framework for Java. 7 Our exper-
imentation uses Jena’s TDB database implementation (a high performance, pure-Java,
non-SQL storage system). All experiments were carried out on a personal computer
running Windows Vista (64 bit) with 4GB of RAM.

We created two types of data sets using GRR. First, we recreated the LUBM bench-
mark, with various scaling factors. Second, we created simple RDF data conforming
to the FOAF (friend of a friend) schema [9]. The full input provided to GRR for these

7 Jena–A Semantic Web Framework for Java, http://jena.sourceforge.net

http://jena.sourceforge.net

28 D. Blum and S. Cohen

1000

10000

100000

1000000

10 20 30 40

Time (ms) for Departments

No Cache Always Cache Smart Cache

(a)

10

100

1000

10000

100000

10 20 30 40

Queries for Departments

No Cache Always Cache Smart Cache

(b)

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40

Cache (KB) for Departments

Always Cache Smart Cache

(c)

1000

10000

100000

N: 100 N: 1000 N: 100 N: 10000 N: 1000

M: 1000 M: 100 M: 10000 M:100 M:1000

Time (ms) for N People, M Projects

No Cache Always Cache Smart Cache

(d)

10

100

1000

10000

100000

N: 100 N: 1000 N: 100 N: 10000 N: 1000

M: 1000 M: 100 M: 10000 M:100 M:1000

Queries for N People, M Projects

No Cache Always Cache Smart Cache

(e)

1

10

100

1000

10000

N: 100 N: 1000 N: 100 N: 10000 N: 1000

M: 1000 M: 100 M: 10000 M:100 M:1000

Cache (KB) for N People, M Projects

Always Cache Smart Cache

(f)

Fig. 4. Time, number of queries and cache size for generating data

experiments, as well as working downloadable code for GRR, is available online.8 Our
goal is to determine the scalability of GRR in terms of runtime and memory, as well as
to (at least anecdotally) determine its ease of use.

LUBM Benchmark. In our first experiment we recreated the LUBM benchmark data.
All data could be created directly using the textual interface. In total, 24 data generation
commands were needed. These commands together consisted of only 284 words. This
is approximately 1.8 times the number of words used in the intuitive description of the
LUBM benchmark data (consisting of 158 words), which is provided in the LUBM
project for users to read. We found the data generation commands to be intuitive, as
demonstrated in the examples of Section 3. Thus, anecdotally, we found GRR to be
quite easy to use.

Together with the class mappings and sampler function files (details not discussed
in the LUBM intuitive description), 415 words were needed to recreate the LUBM
benchmark. This compares quite positively to the 2644 words needed to recreate LUBM
when writing these commands directly in RDF—i.e., the result of translating the textual
interface into a complete RDF specification.

We consider the performance of GRR. The number of instantiations of each class type
in LUBM is proportional to the number of departments.9 We used GRR to generate the
benchmark using different numbers of departments. We ran three versions of GRR to
determine the effect of our optimizations. In NoCache, no caching of query results was
performed. In AlwaysCache, all query results were cached. Finally, in SmartCache,
only query results that can potentially be reused (as described in Section 4) are stored.
Each experiment was run three times, and the average runtime was taken.

8 www.cs.huji.ac.il/˜danieb12
9 LUBM suggests 12-25 departments in a university.

www.cs.huji.ac.il/~danieb12

Grr: Generating Random RDF 29

The runtime appears in Figure 4(a). As can be seen in this figure, the runtime in-
creases linearly as the scaling factor grows. This is true for all three versions of GRR.
Both AlwaysCache and SmartCache significantly outperform NoCache, and both
have similar runtime. For the former two, the runtime is quite reasonable, with con-
struction taking approximately 1 minute for the 200,000 tuples generated when 40 de-
partments are created, while NoCache requires over 12 minutes to generate this data.

The runtime of Figure 4(a) is easily explained by the graph of Figure 4(b), which de-
picts the number of queries applied to the database. Since SmartCache takes a conser-
vative approach to caching, it always caches results that can potentially be useful. Thus,
AlwaysCache and SmartCache apply the same number of queries to the database.
NoCache does not store any query results, and hence, must make significantly more
calls to the database, which degrades its runtime.10

Finally, Figure 4(c) shows the size of the cache for GRR. NoCache is omitted, as
is does not use a cache at all. To measure the cache size, we serialized the cache af-
ter each data generation command, and measured the size of the resulting file. The
maximum cache size generated (among the 24 data generation commands) for each of
AlwaysCache and SmartCache, and for different numbers of departments, is shown
in the figure. Clearly, SmartCache significantly reduces the cache size.

FOAF Data. In this experiment we specifically chose data generation commands that
would allow us to measure the effectiveness of our optimizations. Therefore, we used
the following (rather contrived) data generation commands, with various values for M
and N .

(C1) CREATE N {foaf:Person}
(C2) CREATE M {foaf:Project}
(C3) FOR EACH {foaf:Person}

FOR EACH {foaf:Project}
CONNECT {foaf:Person foaf:currProject foaf:Project}

(C4) FOR EACH {foaf:Person}
FOR EACH {foaf:Project}
WHERE {foaf:Person foaf:currProject foaf:Project}
CONNECT {foaf:Person foaf:maker foaf:Project}

Commands C1 and C2 create N people and M projects. Command C3 connects all
people to all projects using the currProject predicate, and C4 adds an additional
edge maker between each person and each of his projects. Observe that caching is
useful for C3, as the inner query has no input parameters, but not for C4, as it always has
a different value for its input parameters.11

Figures 4(d) through 4(f) show the runtime, number of query applications to the
RDF database and memory size, for different parameters of N and M . Note that ap-
proximately 200,000 triples are created for the first two cases, and 2 million for the

10 This figure does not include the number of construction commands applied to the database,
which is equal, for all three versions.

11 This example is rather contrived, as a simpler method to achieve the same effect is to include
both CONNECT clauses within C3.

30 D. Blum and S. Cohen

last three cases. For the last three cases, statistics are missing for AlwaysCache, as
its large cache size caused it to crash due to lack of memory. Observe that our system
easily scales up to creating 2 million tuples in approximately 1.5 minutes. Interestingly,
SmartCache and NoCache perform similarly in this case, as the bulk of the time is
spent iterating over the instances and constructing new triples.

We conclude that SmartCache is an excellent choice for GRR, due to its speed and
reasonable cache memory requirements.

6 Conclusion

We presented the GRR system for generating random RDF data. GRR is unique in that
it can create data with arbitrary structure (as opposed to benchmarks, which provide
data with a single specific structure). Thus, GRR is useful for generating test data for
Semantic Web applications. By abstracting SPARQL queries, GRR presents a method to
create data that is both natural and powerful.

Future work includes extending GRR to allow for easy generation of other types
of data. For example, we are considering adding recursion to the language to add an
additional level of power. User testing, to prove the simplicity of use, is also of interest.

References

1. Aboulnaga, A., Naughton, J., Zhang, C.: Generating synthetic complex-structured XML data.
In: WebDB (2001)

2. Bancilhon, F., Ramakrishnan, R.: An amateur’s introduction to recursive query processing
strategies. In: SIGMOD, pp. 16–52 (1986)

3. Barbosa, D., Mendelzon, A., Keenleyside, J., Lyons, K.: ToXgene: an extensible template-
based data generator for XML. In: WebDB (2002)

4. Binnig, C., Kossman, D., Lo, E.: Testing database applications. In: SIGMOD (2006)
5. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. IJSWIS 5(2), 1–24 (2009)
6. Blum, D., Cohen, S.: Generating RDF for application testing. In: ISWC (2010)
7. Bruno, N., Chaudhuri, S.: Flexible database generators. In: VLDB (2005)
8. Cohen, S.: Generating XML structure using examples and constraints. PVLDB 1(1), 490–

501 (2008)
9. The friend of a friend (foaf) project, http://www.foaf-project.org

10. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
JWS 3(2-3), 158–182 (2005)

11. Houkjaer, K., Torp, K., Wind, R.: Simple and realistic data generation. In: VLDB (2006)
12. McKay, D.P., Shapiro, S.C.: Using active connection graphs for reasoning with recursive

rules. In: IJCAI, pp. 368–374 (1981)
13. Neufeld, A., Moerkotte, G., Lockemann, P.C.: Generating consistent test data for a variable

set of general consistency constraints. The VLDB Journal 2(2), 173–213 (1993)
14. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: a SPARQL performance bench-

mark. In: ICDE (March 2009)

http://www.foaf-project.org

High-Performance Computing Applied to

Semantic Databases

Eric L. Goodman1, Edward Jimenez1, David Mizell2,
Sinan al-Saffar3, Bob Adolf3, and David Haglin3

1 Sandia National Laboratories, Albuquerque, NM, USA
{elgoodm,esjimen}@sandia.gov
2 Cray, Inc., Seattle, WA, USA

dmizell@cray.com
3 Pacific Northwest National Laboratory, Richland, WA, USA
{sinan.al-saffar,robert.adolf,david.haglin}@pnl.gov

Abstract. To-date, the application of high-performance computing re-
sources to Semantic Web data has largely focused on commodity hard-
ware and distributed memory platforms. In this paper we make the case
that more specialized hardware can offer superior scaling and close to
an order of magnitude improvement in performance. In particular we
examine the Cray XMT. Its key characteristics, a large, global shared-
memory, and processors with a memory-latency tolerant design, offer
an environment conducive to programming for the Semantic Web and
have engendered results that far surpass current state of the art. We
examine three fundamental pieces requisite for a fully functioning se-
mantic database: dictionary encoding, RDFS inference, and query pro-
cessing. We show scaling up to 512 processors (the largest configuration
we had available), and the ability to process 20 billion triples completely
in-memory.

Keywords: Semantic Web, RDFS Inference, Cray XMT, Dictionary
Encoding, SPARQL, graph databases.

1 Introduction

The Semantic Web is a loosely defined notion, but generally includes such stan-
dards as the

– Resource Description Framework (RDF), a mechanism for describing entities
and relationships between entities,

– RDF Schema (RDFS) and the Web Ontology Language (OWL), which pro-
vide the ability to describe ontologies that can be applied to RDF data
stores,

– various data interchange formats such as RDF/XML and N-Triples, and
– SPARQL, a query language for retrieving results from RDF data sets.

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 31–45, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

32 E.L. Goodman et al.

An RDF statement consists of subject-predicate-object expressions known as
triples. RDFS and OWL can be applied to triple stores to infer new facts from
existing statements. This inferencing can be done at runtime for a particular
query, or it can be done in batch, essentially materializing the new triples all at
once in a process called closure.

There has been some work in taking these technologies and scaling them to
data sizes on the order of a billion triples or in some cases 100 billion triples. In
terms of RDFS and OWL inferencing, Urbani et al. [6] perform RDFS closure
on an RDF data set gathered from various sources on the web, and then later
expand to a fragment of OWL reasoning on data sets ranging up to 100 billion
triples [7]. They utilize a distributed cluster with MapReduce as the program-
ming paradigm. Weaver et al. [9] again use a distributed cluster, but develop
their algorithm using MPI. In terms of querying, Husain et al. [4] perform stan-
dard queries on the Lehigh University Benchmark (LUBM) [3] and SP2Bench
[5] on up to 1.1 billion triples with a cluster of 10 nodes.

A common thread to all these results is the use of commodity hardware and
distributed memory architectures. In this paper we utilize more specialized hard-
ware, specifically the Cray XMT, and present algorithms for the machine that
provide close to an order of magnitude better performance for three fundamental
tasks:

– Dictionary Encoding - This is the process of translating Semantic Web data
from a verbose string representation to a more concise integer format. We
show speedups ranging from 2.4 to 3.3.

– RDFS Closure - This step takes a set of triples and an associated ontology
and materializes all inferred triples. We show speedups of around 6-9.

– Query - We examine standard queries from LUBM, and for the more com-
plicated queries, we find between 2.12-28.0 times speedup.

All of these steps can be done almost entirely in memory. Once the raw data
is loaded in as the first step of the dictionary encoding, we no longer need to
touch disk until a user requests the results of a query to be sent to permanent
storage. In this paper we show processing of nearly 20 billion triples, completely
in memory.

The rest of the paper is organized as follows. Section 2 describes the Cray
XMT and the programming environment. Section 3 describes our approach to
dictionary encoding followed by Section 4 that relates our results on RDFS
closure. We take a moment in Section 5 to describe our data model. Section 6
presents our results on querying. We then conclude in Section 7.

2 Cray XMT

The Cray XMT is a unique shared-memory machine with multithreaded pro-
cessors especially designed to support fine-grained parallelism and perform well
despite memory and network latency. Each of the custom-designed compute
processors (called Threadstorm processors) comes equipped with 128 hardware

High-Performance Computing Applied to Semantic Databases 33

threads, called streams in XMT parlance, and the processor instead of the operat-
ing system has responsibility for scheduling the streams. To allow for single-cycle
context switching, each stream has a program counter, a status word, eight tar-
get registers, and thirty-two general purpose registers. At each instruction cycle,
an instruction issued by one stream is moved into the execution pipeline. The
large number of streams allows each processor to avoid stalls due to memory
requests to a much larger extent than commodity microprocessors. For exam-
ple, after a processor has processed an instruction for one stream, it can cycle
through the other streams before returning to the original one, by which time
some requests to memory may have completed. Each Threadstorm can currently
support 8 GB of memory, all of which is globally accessible. One system we use
in this study has 512 processors and 4 TB of shared memory.

Programming on the XMT consists of writing C/C++ code augmented with
non-standard language features including generics, intrinsics, futures, and per-
formance-tuning compiler directives such as pragmas. Generics are a set of func-
tions the Cray XMT compiler supports that operate atomically on scalar values,
performing either read, write, purge, touch, and int_fetch_add operations.
Each 8-byte word of memory is associated with a full-empty bit and the read and
write operations interact with these bits to provide light-weight synchronization
between threads. Here are some examples of the generics provided:

– readxx: Returns the value of a variable without checking the full-empty bit.
– readfe: Returns the value of a variable when the variable is in a full state,

and simultaneously sets the bit to be empty.
– writeef : Writes a value to a variable if the variable is in the empty state,

and simultaneously sets the bit to be full.
– int fetch add: Atomically adds an integer value to a variable.

Parallelism is achieved explicitly through the use of futures, or implicitly when
the compiler attempts to automatically parallelize for loops. Futures allow pro-
grammers to explicitly launch threads to perform some function. Besides explicit
parallelism through futures, the compiler attempts to automatically parallelize
for loops, enabling implicit parallelism. The programmer can also provide prag-
mas that give hints to the compiler on how to schedule iterations of the for
loop on to various threads, which can be by blocks, interleaved, or dynamic. In
addition, the programmer can supply hints on how many streams to use per
processor, etc. We extensively use the #pragma mta for all streams i of n
construct that allows programmers to be cognizant of the total number of streams
that the runtime has assigned to the loop, as well as providing an iteration index
that can be treated as the id of the stream assigned to each iteration.

2.1 Code Libraries for the XMT

Much of the results outlined below utilize the code from two open source libraries
that specifically target the Cray XMT: the MultiThreaded Graph Library
(MTGL)1 and the Semantic Processing Executed Efficiently and Dynamically
1 https://software.sandia.gov/trac/mtgl

34 E.L. Goodman et al.

(SPEED-MT)2 library. The first is a set of algorithms and data structures de-
signed to run scalably on shared-memory platforms such as the XMT. The sec-
ond is a novel scalable Semantic Web processing capability being developed for
the XMT.

3 Dictionary Encoding

The first aspect of semantic databases we examine is that of translating semantic
data from a string representation to an integer format. To simplify the discussion,
we consider only semantic web data represented in N-Triples. In this format,
semantic data is presented as a sequence of lines, each line containing three
elements, a subject, a predicate, and an object. An element can either be a
URI, a blank node (an anonymous resource), or a literal value (a string value
surrounded by quotes with optional language and datatype modifiers). In all
cases, an element is a string of arbitrary length. To speed up later processing
of the data and to also reduce the size of the semantic graph, a common tactic
is to create a dictionary encoding – a mapping from string to integers and vice
versa. On the data sets we explore in this paper, we were able to compress the
raw data by a factor of between 3.2 and 4.4.

The dictionary encoding algorithm, outlined in Figure 1, is described in more
detail below. The dictionary is encapsulated within a class, RDF Dictionary,
that has three important members: fmap, rmap, and carray. The fmap, or for-
ward map, is an instance of a hash table class that stores the mapping from
strings to integer ids. Similarly, rmap, or reverse map, stores the opposite map-
ping, from integers to strings. We use unsigned 64-bit integers in order to support
data sets with more than 4 billion unique strings. The hash table implementa-
tion is similar to the linear probing method described in Goodman et al. [1].
However, we made some modifications that significantly reduces the memory
footprint that will be described in the next section.

Both of fmap and rmap reference carray, which contains a single instance of
each string, separated by null terminators. Having a single character array store
the unique instances of each string reduces the memory footprint and allows for
easy reading and writing of the dictionary to and from disk; however, it does
add some complexity to the algorithm, as seen in Figure 1. Also, we support
iteratively adding to the dictionary, which introduces further complications.

The dictionary encoding algorithm is invoked with a call to parse file. The
variable ntriple file contains the location on disk of the file to be encoded.
As of now, we only support processing files in N-Triples or N-Quads3 format.
After reading in the raw data, the algorithm tokenizes the array into individual
elements (i.e. subjects, predicates, and objects) in lines 6-10. It does this by
inserting a null terminator at the conclusion of each element, and storing the
beginning of each element in the words array.

We allow for updates to an existing dictionary, so the next for loop on lines
11-15 extracts the subset of elements that are new this iteration. Line 11 checks
2 https://software.sandia.gov/trac/MapReduceXMT
3 http://sw.deri.org/2008/07/n-quads/

High-Performance Computing Applied to Semantic Databases 35

Procedure: RDF Dictionary.parse file(char* ntriple file)

Relevant class member variables:
hash table<char*, int>* fmap � Mapping from strings to ints
hash table<int, char*>* rmap � Mapping from ints to strings
char* carray � Contains single instance of each string

1: char* data ← read(ntriple file)

Initialize:
2: char** words
3: char** keys
4: hash table<char*, int>* tmap
5: unsigned long* output

6: for i ← 0...len(data) - 1 do
7: if data[i] == ‘\n’ then
8: process line(&data[i + 1])
9: end if
10: end for

11: for all w in words do
12: if fmap->member(w) then
13: tmap->insert(w,1)
14: end if
15: end for

16: start ← get max value(fmap) + 1
17: assign contiguous ids(tmap, start)
18: num new, keys ← get keys(tmap)

19: plen ← consolidate(num new, keys)
20: num keys ← num new + fmap->size()

21: if num keys
max load > fmap->capacity() then

22: exp ← �log2(num keys/max load)�
23: newsize ← 2exp+1

24: fmap->resize(newsize)
25: rmap->resize(newsize)
26: end if

27: for i ← plen...len(carray) - 1 do
28: if carray[i] == ‘\0’ then
29: id ← tmap->lookup(&carray [i + 1])
30: fmap->insert(&carray [i + 1], id)
31: rmap->insert(id, &carray [i + 1])
32: end if
33: end for

34: for i ← 0...len(words) - 1 do
35: output[i] ← fmap->lookup(words[i])
36: end for

Fig. 1. Overview of Dictionary Encoding Algorithm on the XMT

to see if the string is already stored in the fmap and inserts them into a function-
scoped instance of the map class, tmap. Notice that for each new word we insert
the value one. The actual ids that will be added to the dictionary are assigned
in the next block of code. Doing so allows us to avoid memory contention on a
counter variable and use efficient range iterators that come with the hash table
class.

The block of lines from 16 through 20 assigns ids to the new set of elements,
and then appends the new elements to the end of carray. Line 16 determines
the largest id contained within the dictionary and increments that value by one,
thus specifying the starting id for the new batch of strings. If the dictionary is
empty, the starting id is one, reserving zero as a special value required by the
hash table implementation. Line 17 calls the function assign contiguous ids
which iterates through the keys of the hash table and assigns them values
v ∈ [start, start + num new], thus ensuring that regardless of how many times
parse file is called, the ids are in the range [1, num keys], where num keys
is the total number of keys. Line 18 gathers the new elements into a contiguous
array, keys. Line 19 takes keys and copies the data to the end of carray, plac-
ing null terminators between each element. The function consolidate returns
the previous size of carray and assigns that value to plen. Line 20 updates the
total number of unique elements.

36 E.L. Goodman et al.

Once we’ve updated the number of keys, we can then test if the forward
and reverse maps need to be resized. On line 21, if the total number of keys
divided by the maximum load factor exceeds the current capacity of the ta-
ble (the total number of slots in the table, claimed or unclaimed), then we
resize both maps. The new size is set to be the smallest power of two such that
num keys/capacity < max load.

After the forward and reverse maps have been resized if necessary, they are
then updated with the new elements and new ids in lines 27 through 33. Since
the new elements have been added to the end of carray, we iterate through that
portion of the array. Each time we find a null terminator at position i, we know
that an element to be added starts at i + 1. We find the corresponding id from
tmap, and then add the pair to each map. With the forward and reverse maps
updated, we are finally ready to translate the elements listed in the words array
into integers and store the result in the output buffer in lines 34 through 36.

After the data has been encoded as integers, we are then ready to move on to
the next step, that of performing inferencing. An optional step is to write out
the translated data and the mapping between strings and integers to disk. This
is done by means of three files:

– <dataset>.translated : A binary file of 64-bit unsigned integers that contain
the triples encoded as integer values.

– <dataset>.chararr : This contains the contents of carray.
– <dataset>.intarr : Another binary file of 64-bit unsigned integers. The se-

quence of integers corresponds to the same sequence of words found in
<dataset>.chararr, thus preserving the mapping defined between strings and
integers.

3.1 Results

We examined four data sets: Uniprot4, DBPedia5, Billion Triple Challenge 2009 6

(BTC2009), and the Lehigh University Benchmark (LUBM(8000)). We also ran
the dictionary encoding on a LUBM data set consisting of 16.5 billion triples.
This is roughly equivalent to LUBM(120000), though we generated it using
several different concurrent runs of the generator using different random seeds
and different offsets. These sets represent a wide variety, ranging from the well-
behaved, synthetic triple set of LUBM, to real-world but curated sets such as
DBPedia and Uniprot, to the completely wild sources like BTC2009, which was
formed by crawling the web.

We evaluated the dictionary encoding code using two different-sized systems,
a 512-processor XMT and a 128-processor system. Each XMT comes equipped
with a service partition. On the service nodes a Linux process called a file service
worker (fsworker) coordinates the movement of data from disk to the compute
nodes. Multiple fsworkers can run on multiple service nodes, providing greater
4 http://www.uniprot.org
5 http://wiki.dbpedia.org
6 http://challenge.semanticweb.org

High-Performance Computing Applied to Semantic Databases 37

Table 1. The data sets and the compression achieved

Data set Size(GB) Compression Size Dictionary Size Dictionary
Ratio On Disk (GB) In-memory (GB)

BTC2009 247 4.34 31.1 44.8
DBPedia 36.5 3.2 5.65 9.15
LUBM 185 4.37 17.7 31.7
Uniprot 250 3.94 19.6 33.2

Table 2. Comparison to Urbani et al [8]

Data set MapReduce rate XMT rate Improvement
(MB/s) (MB/s)

DBPedia 36.4 120 3.29
LUBM 67.1 162 2.41
Uniprot 48.8 161 3.30

aggregate bandwidth. The 512 system has 16 service nodes and can run 16
fsworkers. However, our 128 system is limited to 2 service nodes and 2 fsworkers.
Since this is an artificial constraint of our smaller installation, we decided to
estimate the rate that would have been achieved had 16 fsworkers been available.
Since throughput degrades linearly as the number of fsworkers is reduced, we
compute I/O performance by multiplying the measured rate by a factor of eight
to characterize the behavior of a machine configuration more amenable to I/O.

Table 1 shows the raw sizes of the original data sets and the compression ratio
achieved. The compression ratio is calculated with

so

si + sc + st

where so is the size of the original data set, si is the size of the dictionary integer
array, sc is the size of the dictionary character array, and st is the size of the
encoded triples. The size of the dictionary on disk is si + sc while the size of the
dictionary in memory is the total memory footprint of the dictionary. Going from
disk to memory increases the size of the dictionary by about a factor between 1.5
and 2. This is due to the hash table implementation which requires load factors
lower than 0.7 to work efficiently.

Table 2 gives a comparison to a MapReduce dictionary encoding algorithm
presented by Urbani, et al. [8]. We compare rates achieved using 32 Threadstorm
processors versus a 32 quad-core cluster. We range from a 2.4 to a 3.3 times
improvement. Rate is calculated by dividing the size of the original data set
by the total time to read the data from disk to memory, perform the encoding
algorithm, and write the encoding and dictionary to disk. It should be noted that
the datasets are of similar variety, but of different sizes. DBPedia and Uniprot
have grown since the time when the Urbani paper was published to when we
examined them. Also, we used a larger LUBM dataset. Figure 2(a) displays the

38 E.L. Goodman et al.

1 2 4 8 16 32 64 128
10

1

10
2

10
3

10
4

10
5

Processors

T
im

e
(s

ec
on

ds
)

DBPedia
BTC2009
LUBM(8000)
Uniprot

20,521

3,359

69.6

433

(a) Times for Dictionary Encoding

1 2 4 8 16 32 64 128
10

1

10
2

10
3

Processors

R
at

e
(M

B
/s

)

DBPedia
BTC2009
LUBM(8000)
Uniprot

481

405

(b) Dictionary Encoding Rates

Fig. 2. (a) shows the compute times for the data sets and varying number of processors.
(b) displays the encoding rates achieved. The rate is defined as the original file size
divided by the time it takes to read the file into memory, perform the calculation, and
write the translated triples and dictionary to disk. The file I/O times were estimated
to what would be achieved using 16 fsworkers.

times obtained for the compute portion (i.e. excluding file I/O) of the dictionary
encoding process. Regardless of the nature of the data, we see nearly linear
speedup of 47-48x. Figure 2(b) presents the encoding rates. This includes an
estimated I/O time that would have been obtained with 16 fsworkers. The rates
fall within a relatively tight band except DBPedia, which is about 15% slower.
We are unsure if this is due to the nature of the data within DBPedia, or due to
the fact that file is significantly smaller than the other datasets.

We ran the 512 system on LUBM(120000). We ran once using all 512 pro-
cessors, iteratively processing a third of the data at a time. The times for each
chunk were 1412, 2011, and 1694 seconds. The times of the latter files are longer
than the first due to the need to check against the existing table, and also sec-
ond file required a resize of the forward and reverse hash tables. Overall the rate
achieved was 561 MB/s. Extrapolating from our LUBM(8000) 2-processor run,
ideally we would have achieved 2860 MB/s, representing an efficiency of about
.20. If we had run had concatenated all the data together, the rate of the 512
run would have been significantly better.

4 RDFS Closure

We presented an algorithm for RDFS closure in previous work [2]. In general the
process we described is to keep a large hash table, ht, in memory and also smaller
hash tables as queues for the RDFS rules, qi. We first iterate through all the
triples, adding the original set to ht, and any triples that match a given rule is
added to the appropriate qi. Then, upon invocation of a rule, we iterate through
its cue instead of the entire data set. The algorithm assumes the ontology does
not operate on RDFS properties. As such, a single pass through the RDFS rule
set is sufficient.

High-Performance Computing Applied to Semantic Databases 39

The algorithm we employed in this paper is largely the same. We did make
some modifications that resulted in a 50% decrease in the memory footprint,
namely with

– removal of the occupied array in the hash table and hash set implementa-
tions, and

– removal of the rule queues.

In our previous work on hashing for the Cray XMT [1], we outlined an open
addressing scheme with linear probing, the key contribution being a mechanism
for avoiding locking except for when a slot in the hash table is declared occupied
for a given key. The open addressing scheme makes use of two arrays, a key array
and an occupied array. The key array stores the keys assigned to various slots
in the hash table, while the occupied array handles hash collisions and thread
synchronization. The occupied array acts as a boolean, a 1 indicating that the
slot is taken and a 0 otherwise (this assumes we don’t care about deleting and
reclaiming values, else we need another bit). Despite the occupied array being a
boolean, each position in the array is a 64-bit integer. Threads need to be able to
interact with the full-empty bit for synchronization, and full-empty bits are only
associated with each 8-byte word. However, an important observation is that the
occupied array is only necessary for a general implementation that is agnostic
to the key distribution. In situations where there is a guarantee that a particular
key k will never occur, we can use the key array itself for thread synchronization
and use k as the value indicating a slot is empty. When we initialize the key
array, we set all the values to k. Since we control what values are assigned during
the dictionary encoding, we reserve k = 0 as the special value indicating a slot
is open.

The second change we employed is the removal of queues. In our previous
implementation, we made use of queues for RDFS rules. As we processed ex-
isting triples or added new triples through inference, we would check to see if
the triple under consideration matches a rule. If so, we would add it to the ap-
propriate queue. Then, when the rule was actually evaluated, we iterated over
the queue instead of the entire dataset, thus saving computation. To save on
space, we removed the queues. This change did result in a small increase in com-
putation time. We examined LUBM(8000) and found about a 33% increase in
computation time for small processor counts, but for 128 the increase in time
was only 11%.

4.1 Results

We examined performing closure on LUBM(8000) and BTC2009. For BTC2009,
we used the higher-level ontology described by Williams et al. [10]. BTC2009 is
a collection of data crawled from the web. As such, it is questionable whether the
ontological information procured from sundry sources should be applied to the

40 E.L. Goodman et al.

entire data set. For instance, some ontological triples specified superproperties
for rdf:type. While expansion of rdf and rdfs namespaces may be appropriate
for some portion of BTC2009, namely the source from which the ontological
information is taken, it doesn’t make sense for the rest of the data. Also, this
type of expansion violates the single-pass nature of our algorithm, and would
require multiple passes. As such, we removed all ontological triples (i.e. any triple
with rdfs or owl in the namespace of the predicate) from BTC2009 and added
the higher level ontology.

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

Processors

T
im

e
(s

ec
on

ds
)

BTC2009
LUBM(8000) old
LUBM(8000) current

32% increase

11% increase

Fig. 3. This figure shows the times ob-
tained by running RDFS closure on
LUBM(8000) and BTC2009

Table 3. This table shows the speedup
our RDFS closure algorithm achieved
against other approaches on LUBM
data sets

Query With I/O Without I/O

MPI 6.0 6.8
WebPIE 9.0 10.6

Figure 3 displays the results of running our RDFS closure algorithm on the
two different data sets. For comparison, we also include the times using the
previous approach on LUBM(8000). Table 3 provides comparison with other
approaches. We refer to the work of Weaver and Hendler [9] as MPI as they
use an MPI-based approach. WebPIE refers to the work of Urbani et al. [7].
We extract the WebPIE rate for RDFS out of a larger OWL computation. In
both cases we compare equal number of Threadstorm processors with quad-core
nodes (32 for MPI and 64 for WebPIE). We present the comparison with and
without I/O. As this part of our pipeline does not require I/O, it seems fair
to consider the comparison between our non I/O numbers with the previous
approaches, whose processing relies upon access to disk. Though to aid in an
apples-to-apples comparison, we include estimated rates that would be garnered
with I/O using 16 fsworkers.

We also ran RDFS closure on LUBM(120000) with 512 processors. The final
triple total came in at 20.1 billion unique triples. We achieved an inference
rate of 13.7 million inferences/second when we include I/O, and 21.7 million
inferences/second without I/O. Again using the 2 processor run on LUBM(8000)
as a baseline, ideally we would want to see 77.2 million inferences/second when
ignoring I/O. This gives an estimate on efficiency of 0.28.

High-Performance Computing Applied to Semantic Databases 41

5 Data Model: A Graph

Once we have the data encoded as integers, and all RDFS inferences have been
materialized, we are now ready to store the data within a data model. Previous
to this step, the triples had been stored in one large array. Instead of trying to
fit standard relational DBMS-style models to sets of triples, we opt to model
each triple as a directed edge in a graph. The subject of a triple is a vertex on
the graph, the predicate is a typed edge, with the head being the subject and
the tail being the object, another vertex.

We present some basic notation to facilitate discussions of the graph data
model. A graph is defined in terms of vertices, V , and edges E, i.e. G = (V, E).
The graphs we consider are directed, meaning that the edges point from a head
vertex to a tail vertex. We use E(v) to denote the edges incident on vertex v,
while E−(v) denotes only the incoming edges and E+(v) signifies the outgoing
edges. Similarly we define degree, the number of edges incident to vertex v as
deg(v), deg−(v), and deg+(v). We use source(e) and dest(e) to denote the head
and tail vertices for an edge e. Also, we enumerate the edges, and refer to the
ith edge incident with v using the notations E(v) [i], E(v)− [i], and E(v)+ [i].

6 Querying

Once we have the data in graph form, we can now utilize that information to
perform efficient SPARQL queries. LUBM [3] provides several standard queries.
For the purposes of discussion we list query 1:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE

{?X rdf:type ub:GraduateStudent .

?X ub:takesCourse

http://www.Department0.University0.edu/GraduateCourse0}

The WHERE clause contains a set of what are called basic graph patterns
(BGPs). They are triple patterns that are applied to the data set, and those
elements that fit the described constraints are returned as the result. The above
SPARQL query describes formally a request to retrieve all graduate students
that take a particular course. It is important to note that there are basically
only two possibilities for the number of variables within a BGP, one and two.
The other two cases are degenerate: a BGP with no variables has no effect on
the result set, and a BGP with all variables simply matches everything.

Here we present an algorithm we call Sprinkle SPARQL. The algorithm begins
by creating an array of size |V | for each variable specified in the query (see line 1
of Figure 4). Each array is called aw for every variable w. We then evaluate each
BGP by incrementing a counter in the array for a given variable each time a
node in the graph matches the BGP. For example, say we have a BGP, b, similar

42 E.L. Goodman et al.

to the two BGPs of LUBM query 1, where the subject b.s is a variable but b.p
and b.o are fixed terms (line 2 of Figure 5). In that case, we use the graph data
model (line 3 of Figure 5) and start at the object and iterate through all the
deg−(b.o) edges in E(b.o). If an edge matches b.p, we then increment the counter
for the subject at the source of the edge (source(E−(b.o) [i]) in the temporary
array t. We use a temporary array to prevent the possibility of the counter for
a node being incremented more than once during the application of a single
BGP. Once we have iterated through all the edges associated with b.o and found
matching subjects, we then increment positions within ab.s that have a non-zero
corresponding position in t. In the interest of space, we omit the a description
of the other cases. Note that the algorithm as currently defined excludes the
possibility of having a variable in the predicate position; we will leave that as
future work. It is this process of iterating through the BGPs and incrementing
counters that we liken to sprinkling the information from SPARQL BGPs across
the array data structures.

Algorithm: Querying via Sprinkle SPARQL

Let B be a set of Basic Graph Patterns and W be the set of variables
contained in B. For w ∈ W , let |w| denote the number of times the
variable appears in B. Also, for b ∈ B, let |b| denote the number of
variables in b. To query, perform the following:

1: ∀w ∈ W , create a set of arrays A such that ∀aw ∈ A : |aw| = |V | ∧ ∀i ∈
[0, |V | − 1] : aw [i] = 0

2: ∀b ∈ B, Sprinkle(b, A)

3: Select wmin ← minwi∈W

∑|V |
j=1 awi [j] = |wi|

4: Create result set R, initially populated with all v : awmin [v] = |wmin|
5: Let B(2) = {b|b ∈ B ∧ |b| = 2}
6: while B(2) �= ∅ do
7: Let Bmatch = {b|b ∈ B(2) ∧ ∃w ∈ b : w ∈ R}
8: Select bmin ← minb∈Bmatch

|GraphJoin(R, b)|
9: R ← GraphJoin(R, bmin)
10: B(2)← B(2)− bmin

11: end while

Fig. 4. This figure gives an overview of the Sprinkle SPARQL algorithm

Once we have applied each of the BGPs b ∈ B to A, if the counter associated
with node i in aw matches the number of times that w appears in B, then
that node is a candidate for inclusion. In essence, we have reduced the set of
possibilities for the result set.

The next step is to iterate through all BGPs that have 2 variables, applying
those constraints to the set of possible matches defined by Line 2 of Figure
4. Line 3 of Figure 4 selects the variable with the smallest number of nodes
that match, beginning a greedy approach for dynamically selecting the order of
execution. We populate the initial result set with these matching nodes. At this

High-Performance Computing Applied to Semantic Databases 43

Procedure: Sprinkle(b, A)
Let B and W be the same as above. Let F be the set of fixed terms (not
variables) in B

1: Create a temporary array t of size |V | where ∀i ∈ [0, |V | − 1] : t [i] = 0
2: if b.s ∈ W ∧ b.p ∈ F ∧ b.o ∈ F then
3: for i ← 0...deg−(b.o)− 1 do
4: if E−(b.o) [i] = b.p then
5: s ← source(E−(b.o) [i])
6: t [s]++
7: end if
8: end for
9: for i ← 0...|V | − 1 do
10: if t [i] > 0 then
11: ab.s [i]++
12: end if
13: end for
14: else if b.s ∈ F ∧ b.p ∈ F ∧ b.o ∈ W then

...
15: else if b.s ∈ W ∧ b.p ∈ F ∧ b.o ∈ W then

...
16: end if

Fig. 5. This figure outlines the Sprinkle process

point, One can think of the result set as a relational table with one attribute.
We then iterate through all the 2-variable BGPs in lines 6 through 11, where for
each iteration we select the BGP that creates in the smallest result set. For lack
of a better term, we use the term join to denote the combination of the result
set R with a BGP b, and we use GraphJoin(R, b) to represent the operation.
Consider that GraphJoin(R, b) has two cases:

– A variable in R matches one variable in b, and the other variable in b is
unmatched.

– Two variables in R match both variables in b.

In the former case, the join adds in an additional attribute to R. In the latter case,
the join further constrains the existing set of results. Our current implementation
calculates the exact size of each join. An obvious improvement is to select a
random sample to estimate the size of the join.

6.1 Results

Here we present the results of running Sprinkle SPARQL on LUBM queries 1-5
and 9. Of the queries we tested, 4, 5, and 9 require inferencing, with 9 needing
owl:intersectionOf to infer that all graduate students are also students. Since we
do not yet support OWL, we added this information as a post-processing step
after caclucating RDFS closure. Figure 6 shows the times we obtained with the
method. We report the time to perform the calculation together with the time to

44 E.L. Goodman et al.

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

Processors

T
im

e
(s

ec
on

ds
)

1

2

3

4

5

9

Fig. 6. This figure shows the times of
running Sprinkle SPARQL on LUBM
queries 1-5 and 9

Table 4. This table shows the speedup
Sprinkle SPARQL achieved against
other approaches for queries 2 and 9

Query MapReduce BigOWLIM

2 13.6 2.12
9 28.0 2.82

either print the results to the console or to store the results on disks, whichever
is faster. For smaller queries, it makes sense to report the time to print to screen
as a human operator can easily digest small result sets. For the larger result sets,
more analysis is likely necessary, so we report the time to store the query on disk.

Queries 2 and 9 are the most complicated and they are where we see the
most improvement in comparison to other approaches. We compare against a
MapReduce approach by Husain et al. [4] and against the timings reported for
BigOWLIM on LUBM(8000)7 . This comparison is found in Table 4. For the
MapReduce work, we compare 10 Threadstorm processors to an equal number
of quad-core processors. For the comparison against BigOWLIM, we compare
against the quad-core system, ontosol, dividing the times of our two-processor
count runs by two to give a fair comparison. Ideally, we would like to compare
against larger processor counts, but we could find nothing in the literature.

Queries 1, 3, and 4 have similar performance curves. The majority of the time
is consumed during the Sprinkle phase, which down-selects so much that later
computation (if there is any) is inconsequential. For comparison we ran a simple
algorithm on query 1 that skips the Sprinkle phase, but instead executes each
BGP in a greedy selection process, picking the BGPs based upon how many
triples match the pattern. For query 1, this process chooses the second BGP,
which has 4 matches, followed by the first BGP, which evaluated by itself has
over 20 million matches. For this simple approach, we arrive at a time of 0.33
seconds for 2 processors as opposed to 29.28 with Sprinkle SPARQL, indicating
that Sprinkle SPARQL may be overkill for simple queries. Query 5 has similar
computational runtime to 1, 3, and 4, but because of a larger result set (719
versus 4, 6, and 34), takes longer to print to screen. For these simple queries,
Sprinkle SPARQL performs admirably in comparison to the MapReduce work,
ranging between 40 - 225 times faster, but comparing to the BigOWLIM results,
we don’t match their times of between 25 and 52 msec. As future work, we plan
to investigate how we can combine the strategies of Sprinkle SPARQL and a
simpler approach without Sprinkle (and perhaps other approaches) to achieve
good results on both simple and complex queries.

7 http://www.ontotext.com/owlim/benchmarking/lubm.html

High-Performance Computing Applied to Semantic Databases 45

7 Conclusions

In this paper we presented a unique supercomputer with architecturally-advanta-
geous features for housing a semantic database. We showed dramatic improvement
for three fundamental tasks: dictionary encoding, rdfs closure, and querying. We
have shown the performance value of holding large triple stores in shared memory.
We have also demonstrated scaling up to 512 processors.

Acknowledgments. This work was funded under the Center for Adaptive
Supercomputing Software - Multithreaded Architectures (CASS-MT) at the
Dept. of Energy’s Pacific Northwest National Laboratory. Pacific Northwest Na-
tional Laboratory is operated by Battelle Memorial Institute under Contract
DE-ACO6-76RL01830.

References

1. Goodman, E.L., Haglin, D.J., Scherrer, C., Chavarŕıa-Miranda, D., Mogill, J., Feo,
J.: Hashing Strategies for the Cray XMT. In: Proceedings of the IEEE Workshop
on Multi-Threaded Architectures and Applications, Atlanta, GA, USA (2010)

2. Goodman, E.L., Mizell, D.: Scalable In-memory RDFS Closure on Billions of
Triples. In: Proceedings of the 4th International Workshop on Scalable Seman-
tic Web Knowledge Base Systems, Shanghai, China (2010)

3. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Web Semantics: Science, Services and Agents on theWorld Wide Web 3(2-
3), 158–182 (2005)

4. Husain, M.F., Khan, L., Kantarcioglu, M., Thuraisingham, B.: Data Intensive
Query Processing for Large RDF Graphs Using Cloud Computing Tools. In: Pro-
ceedings of the 3rd International Conference on Cloud Computing, Maimi, Florida
(2010)

5. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: A SPARQL Performance Bench-
mark. In: Proceedings of the 25th International Conference on Data Engineering,
Shanghai, China (2009)

6. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reason-
ing Using MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 634–649. Springer, Heidelberg (2009)

7. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning
with WebPIE: calculating the closure of 100 billion triples. In: Proceedings of the
7th Extended Semantic Web Conference, Heraklion, Greece (2010)

8. Urbani, J., Maaseen, J., Bal, H.: Massive Semantic Web data compression with
MapReduce. In: Proceedings of the MapReduce Workshop at High Performance
Distributed Computing Symposium, Chicago, IL, USA (2010)

9. Weaver, J., Hendler, J.A.: Parallel materialization of the finite RDFS closure for
hundreds of millions of triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigen-
baum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS,
vol. 5823, pp. 682–697. Springer, Heidelberg (2009)

10. Williams, G.T., Weaver, J., Atre, M., Hendler, J.: Scalable Reduction of Large
Datasets to Interesting Subsets. In: Billion Triples Challenge, Washington D.C.,
USA (2009)

An Intermediate Algebra for Optimizing RDF Graph
Pattern Matching on MapReduce

Padmashree Ravindra, HyeongSik Kim, and Kemafor Anyanwu

Department of Computer Science, North Carolina State University, Raleigh, NC
{pravind2,hkim22,kogan}@ncsu.edu

Abstract. Existing MapReduce systems support relational style join operators
which translate multi-join query plans into several Map-Reduce cycles. This leads
to high I/O and communication costs due to the multiple data transfer steps be-
tween map and reduce phases. SPARQL graph pattern matching is dominated by
join operations, and is unlikely to be efficiently processed using existing tech-
niques. This cost is prohibitive for RDF graph pattern matching queries which
typically involve several join operations. In this paper, we propose an approach
for optimizing graph pattern matching by reinterpreting certain join tree struc-
tures as grouping operations. This enables a greater degree of parallelism in join
processing resulting in more “bushy” like query execution plans with fewer Map-
Reduce cycles. This approach requires that the intermediate results are man-
aged as sets of groups of triples or TripleGroups. We therefore propose a data
model and algebra - Nested TripleGroup Algebra for capturing and manipulating
TripleGroups. The relationship with the traditional relational style algebra used
in Apache Pig is discussed. A comparative performance evaluation of the tradi-
tional Pig approach and RAPID+ (Pig extended with NTGA) for graph pattern
matching queries on the BSBM benchmark dataset is presented. Results show up
to 60% performance improvement of our approach over traditional Pig for some
tasks.

Keywords: MapReduce, RDF graph pattern matching, optimization techniques.

1 Introduction

With the recent surge in the amount of RDF data, there is an increasing need for scalable
and cost-effective techniques to exploit this data in decision-making tasks. MapReduce-
based processing platforms are becoming the de facto standard for large scale analyt-
ical tasks. MapReduce-based systems have been explored for scalable graph pattern
matching [1][2], reasoning [3], and indexing [4] of RDF graphs. In the MapReduce [5]
programming model, users encode their tasks as map and reduce functions, which are
executed in parallel on the Mappers and Reducers respectively. This two-phase com-
putational model is associated with an inherent communication and I/O overhead due
to the data transfer between the Mappers and the Reducers. Hadoop1 based systems
like Pig [6] and Hive [7] provide high-level query languages that improve usability
and support automatic data flow optimization similar to database systems. However,

1 http://hadoop.apache.org/core/

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 46–61, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://hadoop.apache.org/core/

An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce 47

most of these systems are targeted at structured relational data processing workloads
that require relatively few numbers of join operations as stated in [6]. On the con-
trary, processing RDF query patterns typically require several join operations due to
the fine-grained nature of RDF data model. Currently, Hadoop supports only partition
parallelism in which a single operator executes on different partitions of data across
the nodes. As a result, the existing Hadoop-based systems with the relational style join
operators translate multi-join query plans into a linear execution plan with a sequence
of multiple Map-Reduce (MR) cycles. This significantly increases the overall commu-
nication and I/O overhead involved in RDF graph processing on MapReduce platforms.
Existing work [8][9] directed at uniprocessor architectures exploit the fact that joins
presented in RDF graph pattern queries are often organized into star patterns. In this
context, they prefer bushy query execution plans over linear ones for query process-
ing. However, supporting bushy query execution plans in Hadoop based systems would
require significant modification to the task scheduling infrastructure.

In this paper, we propose an approach for increasing the degree of parallelism by
enabling some form of inter-operator parallelism. This allows us to “sneak in” bushy
like query execution plans into Hadoop by interpreting star-joins as groups of triples
or TripleGroups. We provide the foundations for supporting TripleGroups as first class
citizens. We introduce an intermediate algebra called the Nested TripleGroup Algebra
(NTGA) that consists of TripleGroup operators as alternatives to relational style oper-
ators. We also present a data representation format called the RDFMap that allows for
a more easy-to-use and concise representation of intermediate query results than the
existing format targeted at relational tuples. RDFMap aids in efficient management of
schema-data associations, which is important while querying schema-last data models
like RDF. Specifically, we propose the following:

– A TripleGroup data model and an intermediate algebra called Nested TripleGroup
Algebra (NTGA), that leads to efficient representation and manipulation of RDF
graphs.

– A compact data representation format (RDFMap) that supports efficient
TripleGroup-based processing.

– An extension to Pig’s computational infrastructure to support NTGA operators,
and compilation of NTGA logical plans to MapReduce execution plans. Operator
implementation strategies are integrated into Pig to minimize costs involved in RDF
graph processing.

– A comparative performance evaluation of Pig and RAPID+ (Pig extended with
NTGA operators) for graph pattern queries on a benchmark dataset is presented.

This paper is organized as follows: In section 2, we review the basics of RDF graph
pattern matching, and the issues involved in processing such pattern queries in systems
like Pig. We also summarize the optimization strategies presented in our previous work,
which form a base for the algebra proposed in this paper. In section 3.1, we present the
TripleGroup data model and the supported operations. In 3.2, we discuss the integration
of NTGA operators into Pig. In section 4, we present the evaluation results comparing
the performance of RAPID+ with the existing Pig implementation.

48 P. Ravindra, H. Kim, K. Anyanwu

Fig. 1. Example pattern matching query in (a) SPARQL (b) Pig Latin (VP approach)

2 Background and Motivation

2.1 RDF Graph Pattern Matching

The standard query construct for RDF data models is a graph pattern which is equiva-
lent to the select-project-join (SPJ) construct in SQL. A graph pattern is a set of triple
patterns which are RDF triples with variables in either of the s, p, or o positions. Con-
sider an example query on the BSBM2 data graph to retrieve “the details of US-based
vendors who deliver products within three days, along with the review details for these
products”. Fig. 1 (a) shows the corresponding SPARQL query, whose graph pattern can
be factorized into two main components (i) three star-join structures (SJ1, SJ2, SJ3)
describing resources of type Vendor, Offer, and Review respectively, two chain-join
patterns (J1, J2) combining these star patterns and, (ii) the filter processing.

There are two main ways of processing RDF graph patterns depending on the storage
model used: (i) triple model, or (ii) vertically partitioned (VP) storage model in which
the triple relation is partitioned based on properties. In the former approach, RDF pat-
tern matching queries can be processed as series of relational style self-joins on a large
triple relation. Some systems use multi-indexing schemes [8] to counter this bottleneck.
The VP approach results in a series of join operations but on smaller property-based re-
lations. Another observation [8] is that graph pattern matching queries on RDF data
often consist of multiple star-structured graph sub patterns. For example, 50% of the
benchmark queries in BSBM have at least two or more star patterns. Existing work
[8][9] optimize pattern matching by exploiting these star-structures to generate bushy
query plans.

2 http://www4.wiwiss.fu-berlin.de/bizer/
BerlinSPARQLBenchmark/spec/

An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce 49

2.2 Graph Pattern Matching in Apache Pig

Graph Pattern Matching in Pig. Map Reduce data processing platforms like Pig fo-
cus on ad hoc data processing in the cloud environment where the existence of pre-
processed and suitably organized data cannot be presumed. Therefore, in the context
of RDF graph pattern processing which is done directly from input documents, the VP
approach with smaller relations is more suitable. To capture the VP storage model in
Pig, an input triple relation needs to be “split” into property-based partitions using Pig
Latin’s SPLIT command. Then, the star-structured joins are achieved using an m-way
JOIN operator, and chain joins are executed using th traditional binary JOIN operator.
Fig. 1(b) shows how the graph pattern query in Fig. 1(a) can be expressed and processed
in Pig Latin. Fig. 2 (a) shows the corresponding query plan for the VP approach. We
refer to this sort of query plan as Pig’s approach in the rest of the paper. Alternative
plans may change the order of star-joins based on cost-based optimizations. However,
that issue does not affect our discussion because the approaches compared in this pa-
per all benefit similarly from such optimizations. Pig Latin queries are compiled into
a sequence of Map-Reduce (MR) jobs that run over Hadoop. The Hadoop scheduling
supports partition parallelism such that in every stage, one operator is running on dif-
ferent partitions of data at different nodes. This leads to a linear style physical execution
plan. The above logical query plan will be compiled into a linear execution plan with
a sequence of five MR cycles as shown in Fig. 2 (b). Each join step is executed as a
separate MR job. However, Pig optimizes the multi-way join on the same column, and
compiles it into a single MR cycle.

Issues. (i) Each MR cycle involves communication and I/O costs due to the data transfer
between the Mappers and Reducers. Intermediate results are written to disk by Mappers
after the map phase, which are read by Reducers and processed in the reduce phase after
which the results are written to HDFS (Hadoop Distributed File System). These costs
are summarized in Fig. 2 (b). Using this style of execution where join operations are
executed in different MR cycles, join-intensive tasks like graph pattern matching will

Fig. 2. Pattern Matching using VP approach (a) Query plan (b) Map-Reduce execution flow

50 P. Ravindra, H. Kim, K. Anyanwu

result in significant I/O and communication overhead. There are other issues that con-
tribute I/O costs e.g. the SPLIT operator for creating VP relations generates concurrent
sub flows which compete for memory resources and is prone to disk spills. (ii) In im-
perative languages like Pig Latin, users need to explicitly manipulate the intermediate
results. In schema-last data models like RDF, there is an increased burden due to the
fact that users have to keep track of which columns of data are associated with which
schema items (properties) as well as their corresponding values. For example, for the
computation of join J2, the user needs to specify the join between intermediate relation
J1 on the value of property type “product”, and relation SJ3 on the value of property
type “reviewFor”. It is not straightforward for the user to determine that the value cor-
responding to property “product” is in column 20 of relation J1. In schema-first data
models, users simply reference desired columns by attribute names.

TripleGroup-based Pattern Matching. In our previous work [10], we proposed an
approach to exploit star sub patterns by re-interpreting star-joins using a grouping-based
join algorithm. It can be observed that performing a group by Subject yields groups of
tuples or TripleGroups that represent all the star sub graphs in the database. We can
obtain all these star sub graphs using the relational style GROUP BY which executes
in a single MR cycle, thus minimizing the overall I/O and communication overhead in
RDF graph processing. Additionally, repeated data processing costs can be improved by
coalescing operators in a manner analogous to “pushing select into cartesian product”
in relational algebra to produce a more efficient operator. The empirical study in our
previous work showed significant savings using this TripleGroup computational style,
suggesting that it was worth further consideration.

In this paper, we present a generalization of this strategy by proposing an interme-
diate algebra based on the notion of TripleGroups. This provides a formal foundation
to develop first-class operators with more precise semantics, to enable tighter integra-
tion into existing systems to support automatic optimization opportunities. Additionally,
we propose a more suitable data representation format that aids in efficient and user-
friendly management of intermediate results of operators in this algebra. We also show
how this representation scheme can be used to implement our proposed operators.

3 Foundations

3.1 Data Model and Algebra

Nested TripleGroup Algebra (NTGA) is based on the notion of the TripleGroup data
model which is formalized as follows:

Definition 1. (TripleGroup) A TripleGroup tg is a relation of triples t1,t2,...tk, whose
schema is defined as (S, P , O). Further, any two triples ti, tj ∈ tg have overlapping
components i.e. ti [coli] = tj[colj] where coli, colj refer to subject or object com-
ponent. When all triples agree on their subject (object) values, we call them subject
(object) TripleGroups respectively. Fig. 3 (a) is an example of a subject TripleGroup
which corresponds to a star sub graph. Our data model allows TripleGroups to be nested
at the object component.

An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce 51

Fig. 3. (a) Subject TripleGroup tg (b) Nested TripleGroup ntg

Fig. 4. (a) ntg.unnest() (b) n-tuple after tg.flatten()

Definition 2. (Nested TripleGroup) A nested TripleGroup ntg consists of a root Triple-
Group ntg.root and one or more child TripleGroups returned by the function ntg.
child() such that:
For each child TripleGroup ctg ∈ ntg. child(),

– ∃ t1 ∈ ntg.root, t2 ∈ ctg such that t1.Object = t2.

Nested TripleGroups capture the graph structure in an RDF model in a more natural man-
ner. An example of a nested TripleGroup is shown in Fig. 3 (b). A nested TripleGroup
can be “unnested” into a flat TripleGroup using the unnest operator. The definition is
shown in Fig. 5. Fig. 4 (a) shows the TripleGroup resulting from the unnest operation
on the nested TripleGroup in Fig. 3 (b). In addition, we define the flatten operation
to generate an “equivalent” n-tuple for a given TripleGroup. For example, if tg = t1,
t2,..., then the n-tuple tu has triple t1= (s1, p1, o1) stored in the first three columns of
tu, triple t2 = (s2, p2, o2) is stored in the fourth through sixth column, and so on. For
convenience, we define the function triples() to extract the triples in a TripleGroup.
For the TripleGroup in Fig. 3 (a), the flatten is computed as tg.triples(label) ��

tg.triples(country) �� tg.triples(homepage), resulting in an n-tuple as shown in
Fig. 4 (b). It is easy to observe that the information content in both formats is equivalent.
We refer to this kind of equivalence as content equivalence which we will denote as ∼=.
Consequently, computing query results in terms of TripleGroups is lossless in terms of
information. This is specifically important in scenarios where TripleGroup-based pro-
cessing is more efficient.

We define other TripleGroup functions as shown in Fig.5 (b). The structure-labeling
function λ assigns each TripleGroup tg, with a label that is constructed as some func-
tion of tg.props(). Further, for two TripleGroups tg1, tg2 such that tg1.props() ⊆
tg2.props(), λ assigns labels such that tg1.λ() ⊆ tg2.λ(). The labeling function λ in-
duces a partition on a set of TripleGroups based on the structure represented by the
property types present in that TripleGroup. Each equivalence class in the partition con-
sists of TripleGroups that have the exact same set of property types.

Next, we discuss some of the TripleGroup operators proj, filter, groupfilter,
and join, which are formally defined in Fig.5 (c).

52 P. Ravindra, H. Kim, K. Anyanwu

Symbol Description
tg TripleGroup
TG Set of TripleGroups
tp Triple pattern
ntg.root Root of the nested TripleGroup
ntg.child() Children of the nested TripleGroup
?vtp A variable in the triple pattern tp

(a)

Function Returns
tg.props() Union of all property types in tg
tg.triples() Union of all triples in tg
tg.triples(pi) Triples in tg with property type pi

tg.λ() Structure label for tg based on tg.props()
δ(tp) A triple matching the triple pattern tp
δ(?vtp) A variable substituion in the triple matching tp

(b)

Operator Definition
load({ti}) { tgi | tgi = ti, and ti is an input triple}
proj?vtp(TG) {δi(?vtp) | δi(tp) ∈ tgi, tgi ∈ TG and tp.λ() ⊆ tgi.λ()}

filterΘ(?vtp)(TG)
{ tgi | tgi ∈ TG and ∃ δi(tp) ∈ tgi such that
δi(?vtp) satisfies the filter condition Θ(?vtp)}

groupfilter(TG, P) { tgi | tgi ∈ TG and tgi.props() = P }
Assume tgx ∈ TGx, tgy ∈ TGy, ∃ δ1(tpx) ∈ tgx, δ2(tpy) ∈ tgy,
and δ1(?vtpx) = δ2(?vtpy)

join(?vtpx :TGx, if O-S join, then {ntgi | ntgi.root= tgx, δ1(tpx).Object = tgy}
?vtpy :TGy) else { tgx ∪ tgy}

tg.flatten()
{tg.triples(p1) �� tg.triples(p2)...�� tg.triples(pn) where
pi ∈ tg.props()}

ntg.unnest()
{ ti | ti is a non-nested triple in tg.root }
∪ { (s, p, s′) | t′ = (s, p, (s′, p′, o′)) is a nested triple in tg.root}
∪ { ctgi.unnest() | ctgi ∈ tg.child() }

(c)

Fig. 5. NTGA Quick Reference (a) Symbols (b) Functions (c) Operators

(proj) The proj operator extracts from each TripleGroup, the required triple com-
ponent from the triple matching the triple pattern. From our example data,
proj?hpage(TG) ={www.vendors.org/V 1}.

(filter) The filter operator is used for value-based filtering i.e. to check if the
TripleGroups satisfy the given filter condition. For our example data, filterprice>500

(TG) would eliminate the TripleGroup ntg in Fig. 3 (b) since the triple (&Offer1,
price, 108) does not satisfy the filter condition.

(groupfilter) The groupfilter operation is used for structure-based filtering
i.e. to retain only those TripleGroups that satisfy the required query sub structure.
For example, the groupfilter operator can be used to eliminate TripleGroups like
tg in Fig. 3 (a), that are structurally incomplete with respect to the equivalence class
TG{label,country,homepage,mbox}.

(join) The join expressionjoin(?vtpx :TGx,?vtpy :TGy) computes the join between
a TripleGroup tgx in equivalence class TGx with a TripleGroup tgy in equivalence class
TGy based on the given triple patterns. The triple patterns tpx and tpy share a common
variable ?v at O or S component. The result of an object-subject (O-S) join is a nested
TripleGroup in which tgy is nested at the O component of the join triple in tgx. For ex-
ample, Fig. 6 shows the nested TripleGroup resulting from the join operation between
equivalence classes TG{price,validTo,vendor,product} and TG{label,country,homepage}
that join based on triple patterns {?o vendor ?v} and {?v country ?vcountry}
respectively. For object-object (O-O) joins, the join operator computes a TripleGroup
by union of triples in the individual TripleGroups.

An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce 53

Fig. 6. Example join operation in NTGA

Execution plan using NTGA and its mapping to Relational Algebra. TripleGroup-
based pattern matching for a query with n star sub patterns, compiles into a MapRe-
duce flow with n MR cycles as shown in Fig. 7. The same query executes in double
the number of MR cycles (2n − 1) using Pig approach. Fig. 7 shows the equivalence
between NTGA and relational algebra operators based on our notion of content equiva-
lence. This mapping suggests rules for lossless transformation between queries written
in relational algebra and NTGA. First, the input triples are loaded and the triples that
are not part of the query pattern are filtered out. Pig load and filter operators are
coalesced into a loadFilter operator to minimize costs of repeated data handling.
The graph patterns are then evaluated using the NTGA operators, (i) star-joins using
Pig’s GROUP BY operator, which is coalesced with the NTGA groupFilter operator
to enable structure-based filtering (represented as StarGroupFilter) and, (ii) chain
joins on TripleGroups using the NTGA join operator (represented as RDFJoin). The
final result can be converted back to n-tuples using the NTGA flatten operator. In
general, TripleGroups resulting from any of the NTGA operations can be mapped to
Pig’s tupled results using the flatten operator. For example, the StarGroupFilter
operation results in a set of TripleGroups. Each TripleGroup can be transformed to an
equivalent n-tuple resulting from relational star-joins SJ1, SJ2, or SJ3.

Fig. 7. NTGA execution plan and mapping to Relation Algebra

54 P. Ravindra, H. Kim, K. Anyanwu

3.2 RAPID+: Integrating NTGA Operators into Pig

Data Structure for TripleGroups - RDFMap. Pig Latin data model supports a bag
data structure that can be used to capture a TripleGroup. The Pig data bag is imple-
mented as an array list of tuples and provides an iterator to process them. Consequently,
implementing NTGA operators such as filter, groupfilter, join etc. using this
data structure requires an iteration through the data bag which is expensive. For exam-
ple, given a graph pattern with a set of triple patterns TP and a data graph represented
as a set of TripleGroups TG, the groupfilter operator requires matching each triple
pattern in TP with each tuple t in each TripleGroup tg ∈ TG. This results in the cost
of the groupfilter operation being O(|TP |*|tg|*|TG|). In addition, representing
triples as 3-tuple (s, p, o) results in redundant s(o) components for subject (object)
TripleGroups. We propose a specialized data structure called RDFMap targeted at ef-
ficient implementation of NTGA operators. Specifically it enables, (i) efficient look-
up of triples matching a given triple pattern, (ii) compact representation of intermedi-
ate results, and (iii) ability to represent structure-label information for TripleGroups.
RDFMap is an extended HashMap that stores a mapping from property to object val-
ues. Since subject of triples in a TripleGroup are often repeated, RDFMap avoids this
redundancy by using a single field Sub to represent the subject component. The field
EC captures the structure-label (equivalence class mapped to numbers). Fig. 8. shows
the RDFMap corresponding to the Subject TripleGroup in Fig. 3 (a). Using this rep-
resentation model, a nested TripleGroup can be supported using a nested propMap
which contains another RDFMap as a value. The propMap provides a property-based
indexed structure that eliminates the need to iterate through the tuples in each bag. Since
propMap is hashed on the P component of the triples, matching a triple pattern inside
a TripleGroup can now be computed in time O(1). Hence, the cost of the groupfilter
operation is reduced to O(|P |*|TG|).

Fig. 8. RDFMap representing a subject TripleGroup

Implementing NTGA operators using RDFMap. In this section, we show how the
property-based indexing scheme of an RDFMap can be exploited for efficient imple-
mentation of the NTGA operations. We then discuss the integration of NTGA operators
into Pig.
StarGroupFilter. A common theme in our implementation is to coalesce operators
where possible in order to minimize the costs of parameter passing, and context switch-
ing between methods. The starGroupFilter is one such operator, which coalesces

An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce 55

the NTGA groupfilter operator into Pig’s relational GROUP BY operator. Creating
subject TripleGroups using this operator can be expressed as:

TG = StarGroupFilter triples by S

The corresponding map and reduce functions for the StarGroupFilter operator are
shown in Algorithm 1. In the map phase, the tuples are annotated based on the S compo-
nent analogous to the map of a GROUP BY operator. In the reduce function, the different
tuples sharing the same S component are packaged into an RDFMap that corresponds
to a subject TripleGroup. The groupfilter operator is integrated for structure-based
filtering based on the query sub structures (equivalence classes). This is achieved us-
ing global bit patterns (stored as BitSet) that concisely represent the property types
in each equivalence class. As the tuples are processed in the reduce function, the lo-
cal BitSet keeps track of the property types processed (line 6). After processing all
tuples in a group, if the local BitSet (locBitSet) does not match the global BitSet
(ECBitSet), the structure is incomplete and the group of tuples is eliminated (lines 10-
11). Fig. 9 shows the mismatch between the locBitSet and ECBitSet in the sixth po-
sition that represents the missing property “product” belonging to the equivalence class
TG{price,validTo,delivDays,vendor,product}. If the bit patterns match, a labeled RDFMap
is generated (line 13) whose propMap contains all the (p,o) pairs representing the edges
of the star sub graph. The output of StarGroupFilter is a single relation containing
a list of RDFMaps corresponding to the different star sub graphs in the input data.

Algorithm 1. StarGroupFilter
1 Map (Tuple tup(s,p,o))
2 return (s,tup)

3 Reduce (Key, List of tuples T)
4 foreach tup(s,p,o) in T do
5 Initialize: Sub ← s; EC ← findEC(p)
6 locBitset.set(p)
7 propMap.put(p,o)
8 end foreach
9 ECBitSet ← global BitSet for EC

10 if locBitset != ECBitSet then
11 return null
12 else
13 return new RDFMap(Sub, EC, propMap)
14 end if

Fig. 9. Structure-based filtering of TripleGroups

Algorithm 2. RDFJoin
1 Map (RDFMap rMap)
2 if joinKey == * then
3 return (rMap.Sub, rMap)
4 else
5 key ← rMap.propMap.get(joinKey)
6 return (key, rMap)
7 end if

8 Reduce (Key, List of RDFMaps R)
9 foreach rMap in R do

10 if rMap.EC == EC1 then
11 list1.add(rMap)
12 else if rMap.EC == EC2 then
13 list2.add(rMap)
14 end if
15 end foreach
16 foreach outer in list1 do
17 foreach inner in list2 do
18 propMapNew ←

joinProp(outer.propMap,
inner.propMap)

19 ECNew ← joinSub(outer.EC,
inner.EC)

20 SubNew ← joinSub(outer.Sub,
inner.Sub)

21 rMapNew ← new
RDFMap(SubNew, ECNew,
propMapNew)

22 resultList.add(rMapNew)
23 end foreach
24 end foreach
25 return resultList

56 P. Ravindra, H. Kim, K. Anyanwu

RDFJoin: The RDFJoin operator takes as input a single relation containing
RDFMaps, and computes the NTGA join between star patterns as described by Al-
gorithm 2. The O-S join J1 between the star patterns in Fig. 1 can be expressed as
follows:

J1 = RDFJoin TG on (1:’vendor’, 0:*);

where joins on O are specified using the property types, and joins on S are specified as a
’*’. In the map phase, the RDFMaps are annotated based on the join key corresponding
to their equivalence class (lines 2-8). In the reduce phase, the RDFMaps that join are
packaged into a new RDFMap which corresponds to a nested TripleGroup. The EC of
the new joined RDFMap is a function of the EC of the individual RDFMaps. For exam-
ple, the RDFJoin between TripleGroups shown in Fig. 6, results in an RDFMap whose
propMap contains the union of triples from the individual TripleGroups as shown in
Fig. 10. In our implementation, the Sub field is a concatenation of the Sub fields of the
individual TripleGroups e.g. &Offer1.&V 1. The join result is optimized by eliminat-
ing the (p, o) pair corresponding to the join triple if it is no longer required. This reduces
the size of the intermediate RDFMaps after each MR cycle. Our join result corresponds
to an unnested joined TripleGroup, as shown in Fig. 4 (a).

Fig. 10. Example RDFMap after RDFJoin operation

4 Evaluation

Our goal was to empirically evaluate the performance of NTGA operators with re-
spect to pattern matching queries involving combinations of star and chain joins. We
compared the performance of RAPID+ with two implementations of Pig, (i) the naive
Pig with the VP storage model, and (ii) an optimized implementation of Pig (Pigopt),
in which we introduced additional project operations to eliminate the redundant join
columns. Our evaluation tasks included, (i) Task1 - Scalability of TripleGroup-based
approach with size of RDF graphs, (ii) Task2 - Scalability of TripleGroup-based pat-
tern matching with denser star patterns, and (iii) Task3 - Scalability of NTGA operators
with increasing cluster sizes.

An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce 57

Table 1. Testbed queries and performance gain of RAPID+ over Pig (10-node cluster / 32GB)

Query #Triple Pattern #Edges in Stars %gain Query #Triple Pattern #Edges in Stars %gain
Q1 3 1:2 56.8 Q6 8 4:4 58.4
Q2 4 2:2 46.7 Q7 9 5:4 58.6
Q3 5 2:3 47.8 Q8 10 6:4 57.3
Q4 6 3:3 51.6 2S1C 6 2:4 65.4
Q5 7 3:4 57.4 3S2C 10 2:4:4 61.5

4.1 Setup

Environment: The experiments were conducted on VCL3, an on-demand computing
and service-oriented technology that provides remote access to virtualized resources.
Nodes in the clusters had minimum specifications of single or duo core Intel X86 ma-
chines with 2.33 GHz processor speed, 4G memory and running Red Hat Linux. The
experiments were conducted on 5-node clusters with block size set to 256MB. Scala-
bility testing was done on clusters with 10, 15, 20, and 25 nodes. Pig release 0.7.0 and
Hadoop 0.20 were used. All results recorded were averaged over three trials.

Testbed - Dataset and Queries: Synthetic datasets (n-triple format) generated using
the BSBM tool were used. A comparative evaluation was carried out based on size of
data ranging from 8.6GB (approx. 35 million triples) at the lower end, to a data size
of 40GB (approx. 175 million triples). 10 queries (shown in Table 1) adapted from the
BSBM benchmark (Explore use case) with at least a star and chain join were used.
The evaluation tested the effect of query structure on performance with, (i) Q1 to Q8
consisting of two star patterns with varying cardinality, (ii) 2S1C consisting of two star
patterns, a chain join, and a filter component (6 triple patterns), and (ii) 3S2C consisting
of three star patterns, two chain joins, and a filter component (10 triple patterns). Query
details and additional experiment results are available on the project website4.

4.2 Experiment Results

Task1: Fig. 11 (a) shows the execution times of the three approaches on a 5-node clus-
ter for 2S1C. For all the four data sizes, we see a good percentage improvement in
the execution times for RAPID+. The two star patterns in 2S1C are computed in two
separate MR cycles in both the Pig approaches, resulting in the query compiling into
a total of three MR cycles. However, RAPID+ benefits by the grouping-based join al-
gorithm (StarGroupFilter operator) that computes the star patterns in a single MR
cycle, thus reducing one MR cycle in total. We also observe cost savings due to the
integration of loadFilter operator in RAPID+ that coalesces the LOAD and FILTER

phases. As expected, the Pigopt performs better than the naive Pig approach due to the
decrease in the size of the intermediate results.

3 https://vcl.ncsu.edu/
4 http://research.csc.ncsu.edu/coul/RAPID/ESWC_exp.htm

https://vcl.ncsu.edu/
http://research.csc.ncsu.edu/coul/RAPID/ESWC_exp.htm

58 P. Ravindra, H. Kim, K. Anyanwu

Fig. 11. Cost analysis on 5-node cluster for (a) 2SIC (b) 3S2C

Fig. 11 (b) shows the performance comparison of the three approaches on a 5-node
cluster for 3S2C. This query compiles into three MR cycles in RAPID+ and five MR
cycles in Pig / Pigopt. We see similar results with RAPID+ outperformed the Pig based
approaches, achieving up to 60% performance gain with the 32GB dataset. The Pig
based approaches did not complete execution for the input data size of 40GB. We sus-
pect that this was due to the large sizes of intermediate results. In this situation, the
compact representation format offered by the RDFMap proved advantageous to the
RAPID+ approach. In the current implementation, RAPID+ has the overhead that the
computation of the star patterns results in a single relation containing TripleGroups
belonging to different equivalence classes. In our future work, we will investigate tech-
niques for delineating different types of intermediate results.

Task2: Table 1 summarizes the performance of RAPID+ and Pig for star-join queries
with varying edges in each star sub graph. NTGA operators achieve a performance gain
of 47% with Q2 (2:2 cardinality) which increases with denser star patterns, reaching
59% with Q8 (6:4 cardinality). In addition to the savings in MR cycle in RAPID+, this
demonstrates the cost savings due to smaller intermediate relations achieved by elimi-
nating redundant subject values and join triples that are no longer required. Fig. 12 (b)
shows a comparison on a 5-node cluster (20GB data size) with Pigopt which eliminates
join column redundancy in Pig, similar to RDFMap’s concise representation of subjects
within a TripleGroup. RAPID+ maintains a consistent performance gain of 50% across
the varying density of the two star patterns.

Task3: Fig. 12(a) shows the scalability study of 3S2C on different sized clusters, for
32GB data. RAPID+ starts with a performance gain of about 56% with the 10-node
cluster, but its advantage over Pig and Pigopt reduces with increasing number of nodes.
The increase in the number of nodes, decreases the size of data processed by each node,
therefore reducing the probability of disk spills with the SPLIT operator in the Pig based
approaches. However, RAPID+ still consistently outperforms the Pig based approaches
with at least 45% performance gain in all experiments.

An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce 59

Fig. 12. Scalability study for (a) 3S2C varying cluster sizes (b) two stars with varying cardinality

5 Related Work

Data Models and High-Level Languages for cluster-based environment. There has
been a recent proliferation of data flow language such as Sawzall [11], DryadLINQ [12],
HiveQL [7], and Pig Latin [6] for processing structured data on parallel data processing
systems such as Hadoop. Another such query language, JAQL5 is designed for semi-
structure data analytics, and uses the (key, value) JSON model. However, this model
splits RDF sub graphs into different bags, and may not be efficient to execute bushy
plans. Our previous work, RAPID [13] focused on optimizing analytical processing of
RDF data on Pig. RAPID+ [10] extended Pig with UDFs to enable TripleGroup-based
processing. In this work, we provide formal semantics to integrate TripleGroups as
first-class citizens, and present operators for graph pattern matching.

RDF Data processing on MapReduce Platforms. MapReduce framework has been
explored for scalable processing of Semantic Web data. For reasoning tasks, specialized
map and reduce functions have been defined based on RDFS rules [3] and the OWL
Horst rules [14], for materializing the closure of RDF graphs. Yet another work [15]
extends Pig by integrating schema-aware RDF data loader and embedding reasoning
support into the existing framework. For scalable pattern matching queries, there have
been MapReduce-based storage and query systems [2],[1] that process RDFMolecules.
Also, [16] uses HadoopDB [17] with a column-oriented database to support a scal-
able Semantic Web application. This framework enables parallel computation of star-
joins if the data is partitioned based on the Subject component. However, graph pattern
queries with multiple star patterns and chain join may not benefit much. Another re-
cent framework [4] pre-processes RDF triples to enable efficient querying of billions of
triples over HDFS. We focus on ad hoc processing of RDF graphs that cannot presume
pre-processed or indexed data.

Optimizing Multi-way Joins. RDF graph pattern matching typically involves sev-
eral join operations. There have been optimization techniques [9] to re-write SPARQL
queries into small-sized star-shaped groups and generate bushy plans using two phys-
ical join operators called njoin and gjoin. It is similar in spirit to the work presented

5 http://code.google.com/p/jaql

 http://code.google.com/p/jaql

60 P. Ravindra, H. Kim, K. Anyanwu

here since both exploit star-shaped sub patterns. However, our work focuses on parallel
platforms and uses a grouping-based algorithm to evaluate star-joins. There has been
work on optimizing m-way joins on structured relations like slice join [18]. However,
we focus on joins involving RDF triples for semi-structured data. Another approach
[19] efficiently partitions and replicates of tuples on reducer processes in a way that
minimizes the communication cost. This is complementary to our approach and the
partitioning schemes could further improve the performance of join operations. [20], in-
vestigates several join algorithms which leverage pre-processing techniques on Hadoop,
but mainly focus on log processing. RDFBroker [21] is a RDF store that is based on the
concept of a signature (set of properties of a resource), similar to NTGA’s structure-
labeling function λ. However, the focus of [21] is to provide a natural way to map RDF
data to database tables, without presuming schema knowledge. Pregel [22] and Sig-
nal/Collect [23] provide graph-oriented primitives as opposed to relational algebra type
operators, and also target parallel platforms. The latter is still in a preliminary stage and
has not completely demonstrated its advantages across parallel platforms.

6 Conclusion

In this paper, we presented an intermediate algebra (NTGA) that enables more natural
and efficient processing for graph pattern queries on RDF data. We proposed a new data
representation format (RDFMap) that supports NTGA operations in a more efficient
manner. We integrated these NTGA operators into Pig, and presented a comparative
performance evaluation with the existing Pig implementation. For certain classes of
queries, we saw a performance gain of up to 60%. However, there might be certain
scenarios in which it may be preferable not to compute all star patterns. In such cases,
we need a hybrid approach that utilizes cost-based optimization techniques to determine
when the NTGA approach is the best. We will also investigate a more efficient method
for dealing with heterogeneous TripleGroups resulting from join operations.

References

1. Newman, A., Li, Y.F., Hunter, J.: Scalable Semantics: The Silver Lining of Cloud Computing.
In: IEEE International Conference on eScience (2008)

2. Newman, A., Hunter, J., Li, Y., Bouton, C., Davis, M.: A Scale-Out Rdf Molecule Store
for Distributed Processing of Biomedical Data. In: Semantic Web for Health Care and Life
Sciences Workshop (2008)

3. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reasoning Using
MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg
(2009)

4. Husain, M., Khan, L., Kantarcioglu, M., Thuraisingham, B.: Data Intensive Query Processing
for Large Rdf Graphs Using Cloud Computing Tools. In: IEEE International Conference on
Cloud Computing, CLOUD (2010)

5. Dean, J., Ghemawat, S.: Simplified Data Processing on Large Clusters. ACM Commun. 51,
107–113 (2008)

6. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-So-Foreign
Language for Data Processing. In: Proc. International Conference on Management of data
(2008)

An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce 61

7. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P.,
Murthy, R.: Hive: A Warehousing Solution over a Map-Reduce Framework. Proc. VLDB
Endow. 2, 1626–1629 (2009)

8. Neumann, T., Weikum, G.: The Rdf-3X Engine for Scalable Management of Rdf Data. The
VLDB Journal 19, 91–113 (2010)

9. Vidal, M.-E., Ruckhaus, E., Lampo, T., Martı́nez, A., Sierra, J., Polleres, A.: Efficiently Join-
ing Group Patterns in SPARQL Queries. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije,
A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp.
228–242. Springer, Heidelberg (2010)

10. Ravindra, P., Deshpande, V.V., Anyanwu, K.: Towards Scalable Rdf Graph Analytics on
Mapreduce. In: Proc. Workshop on Massive Data Analytics on the Cloud (2010)

11. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the Data: Parallel Analysis
with Sawzall. Sci. Program. 13, 277–298 (2005)

12. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P.K., Currey, J.: Dryadlinq:
A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level
Language. In: Proc. USENIX Conference on Operating Systems Design and Implementa-
tion (2008)

13. Sridhar, R., Ravindra, P., Anyanwu, K.: RAPID: Enabling Scalable Ad-Hoc Analytics on
the Semantic Web. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D.,
Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 715–730. Springer,
Heidelberg (2009)

14. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL Reasoning with
Webpie: Calculating the Closure of 100 Billion Triples. In: Aroyo, L., Antoniou, G.,
Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010.
LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

15. Tanimura, Y., Matono, A., Lynden, S., Kojima, I.: Extensions to the Pig Data Processing
Platform for Scalable Rdf Data Processing using Hadoop. In: IEEE International Conference
on Data Engineering Workshops (2010)

16. Abouzied, A., Bajda-Pawlikowski, K., Huang, J., Abadi, D.J., Silberschatz, A.: Hadoopdb in
Action: Building Real World Applications. In: Proc. International Conference on Manage-
ment of data (2010)

17. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.: Hadoopdb: an
Architectural Hybrid of Mapreduce and Dbms Technologies for Analytical Workloads. Proc.
VLDB Endow. 2, 922–933 (2009)

18. Lawrence, R.: Using Slice Join for Efficient Evaluation of Multi-Way Joins. Data Knowl.
Eng. 67, 118–139 (2008)

19. Afrati, F.N., Ullman, J.D.: Optimizing Joins in a Map-Reduce Environment. In: Proc. Inter-
national Conference on Extending Database Technology (2010)

20. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A Comparison of Join
Algorithms for Log Processing in Mapreduce. In: Proc. International Conference on Man-
agement of data (2010)

21. Sintek, M., Kiesel, M.: RDFBroker: A Signature-Based High-Performance RDF Store. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 363–377. Springer, Heidel-
berg (2006)

22. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: A System for Large-Scale Graph Processing. In: Proc. International Conference on
Management of data (2010)

23. Stutz, P., Bernstein, A., Cohen, W.: Signal/Collect: Graph Algorithms for the (Semantic)
Web. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 764–780. Springer, Heidelberg
(2010)

Query Relaxation for Entity-Relationship Search

Shady Elbassuoni, Maya Ramanath, and Gerhard Weikum

Max-Planck Institute for Informatics
{elbass,ramanath,weikum}@mpii.de

Abstract. Entity-relationship-structured data is becoming more important on the
Web. For example, large knowledge bases have been automatically constructed
by information extraction from Wikipedia and other Web sources. Entities and
relationships can be represented by subject-property-object triples in the RDF
model, and can then be precisely searched by structured query languages like
SPARQL. Because of their Boolean-match semantics, such queries often return
too few or even no results. To improve recall, it is thus desirable to support users
by automatically relaxing or reformulating queries in such a way that the inten-
tion of the original user query is preserved while returning a sufficient number of
ranked results.

In this paper we describe comprehensive methods to relax SPARQL-like triple-
pattern queries in a fully automated manner. Our framework produces a set of
relaxations by means of statistical language models for structured RDF data and
queries. The query processing algorithms merge the results of different relax-
ations into a unified result list, with ranking based on any ranking function for
structured queries over RDF-data. Our experimental evaluation, with two differ-
ent datasets about movies and books, shows the effectiveness of the automatically
generated relaxations and the improved quality of query results based on assess-
ments collected on the Amazon Mechanical Turk platform.

1 Introduction

1.1 Motivation

There is a trend towards viewing Web or digital-library information in an entity-centric
manner: what is the relevant information about a given sports club, a movie star, a politi-
cian, a company, a city, a poem, etc. Moreover, when querying the Web, news, or blogs,
we like the search results to be organized on a per-entity basis. Prominent examples of
this kind of search are entitycube.research.microsoft.com or google.com/squared/. Ad-
ditionally, services that contribute towards more semantic search are large knowledge
repositories, including both handcrafted ones such as freebase.com as well as automat-
ically constructed ones such as trueknowledge.com or dbpedia.org. These have been
enabled by knowledge-sharing communities such as Wikipedia and by advances in in-
formation extraction (e.g., [2, 6, 17, 23, 20]).

One way of representing entity-centric information, along with structured relation-
ships between entities, is the Semantic-Web data model RDF. An RDF collection con-
sists of a set of subject-property-object (SPO) triples. Each triple is a pair of entities
with a named relationship. A small example about books is shown in Table 1.

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 62–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Query Relaxation for Entity-Relationship Search 63

Table 1. RDF triples

Subject (S) Property (P) Object (O)
Carl Sagan wrote Contact
Carl Sagan type American Writer
Carl Sagan type Astronomer
Carl Sagan bornIn USA
Carl Sagan wonAward Pulitzer Prize
Contact type novel
Contact hasGenre Science Fiction
Contact hasTag aliens
Contact hasTag philosopy
Jon Krakauer wrote Into the Wild
Into the Wild type biography
Into the Wild hasTag adventure
Into the Wild hasTag wilderness
Jon Krakauer hasBestseller Into Thin Air
Jon Krakauer citizenOf USA

RDF data of this kind can be queried using a conjunction of triple patterns – the
core of SPARQL – where a triple pattern is a triple with variables and the same variable
in different patterns denotes a join condition. For example, searching for Pulitzer-prize
winning science fiction authors from the USA could be phrased as:

?a wrote ?b ; ?b hasGenre Science Fiction ;
?a wonAward Pulitzer Prize ; ?a bornIn USA

This query contains a conjunction (denoted by “;”) of four triple patterns where ?a
and ?b denote variables that should match authors and their books respectively.

While the use of triple patterns enables users to formulate their queries in a precise
manner, it is possible that the queries are overly constrained and lead to unsatisfactory
recall. For example, this query would return very few results even on large book collec-
tions, and only one - Carl Sagan - for our example data. However, if the system were
able to automatically reformulate one or more conditions in the query, say, replacing
bornIn with citizenOf, the system would potentially return a larger number of results.

1.2 Query Relaxation Problem

This paper addresses the query relaxation problem: automatically broadening or refor-
mulating triple-pattern queries to retrieve more results without unduly sacrificing preci-
sion. We can view this problem as the entity-relationship-oriented counterpart of query
expansion in the traditional keyword-search setting. Automatically expanding queries
in a robust way so that they would not suffer from topic drifts (e.g., overly broad gener-
alizations) is a difficult problem [3].

The problem of query relaxation for triple-pattern queries has been considered in lim-
ited form in [22, 11, 7, 10] and our previous work [8]. Each of these prior approaches

64 S. Elbassuoni, M. Ramanath, and G. Weikum

focused on very specific aspects of the problem, and only two of them [22, 8] con-
ducted experimental studies on the effectiveness of their proposals. These techniques
are discussed in more detail in Sect. 5.

1.3 Our Approach

This paper develops a comprehensive set of query relaxation techniques, where the
relaxation candidates can be derived from both the RDF data itself as well as from
external ontological and textual sources. Our framework is based on statistical language
models (LMs) and provides a principled basis for generating relaxed query candidates.
Moreover, we develop a model for holistically ranking results of both the original query
and different relaxations into a unified result list.

Our query relaxation framework consists of the following three types of relaxations:

– Entities (subject, object) and relations (property) specified in a triple pattern are
relaxed by substituting with related entities and relations. For example, bornIn
could be substituted with citizenOf or livesIn and Pulitzer Prize could be replaced
by Hugo Award or Booker Prize.

– Entities and relations specified in a triple pattern could be substituted with variables.
For example, Pulitzer Prize could be replaced by ?p to cover arbitrary awards or
wonAward could be replaced by ?r, allowing for matches such as nominatedFor and
shortlistedFor.

– Triple patterns from the entire query could be either removed or made optional. For
example, the triple pattern ?b hasGenre Science Fiction could be removed entirely,
thus increasing the number of authors returned.

The technical contributions of this paper are the following:

– We develop a novel, comprehensive framework for different kinds of query relax-
ation, in an RDF setting, based on language modeling techniques. Our framework
can incorporate external sources such as ontologies and text documents to generate
candidate relaxations. Our relaxation framework is described in Sect. 2.

– We develop a general ranking model that combines the results of the original and
relaxed queries and utilizes relaxation weights for computing, in a principled man-
ner, query-result rankings. The ranking model is described in Sect. 3.

– We evaluate our model and techniques with two datasets – movie data from
imdb.com and book information from the online community librarything.com, and
show that our methods provide very good results in terms of NDCG. The results of
our user study are reported in Sect. 4.

2 Relaxation Framework

We start by describing the basic setting and some of the terminology used in the rest of
this paper.

Knowledge Base. A knowledge base KB of entities and relations is a set of triples,
where a triple is of the form 〈e1, r, e2〉 with entities e1, e2 and relation r (or 〈s, p, o〉

Query Relaxation for Entity-Relationship Search 65

with subject s, object o, and property p in RDF terminology). An example of such a
triple is: Carl Sagan wrote Contact.

Queries. A query consists of triple patterns where a triple pattern is a triple with at
least 1 variable. For example, the query ”science-fiction books written by Carl Sagan”
can be expressed as: Carl Sagan wrote ?b; ?b hasGenre Science Fiction consisting of
2 triple patterns.

Given a query with k triple patterns, the result of the query is the set of all k-tuples
that are isomorphic to the query when binding the query variables with matching entities
and relations in KB. For example, the results for the example query includes the 2-tuple
Carl Sagan wrote Contact;Contact hasGenre Science Fiction.

2.1 Relaxation Strategy

As mentioned in the introduction, we are interested in three types of relaxations: i)
replacing a constant (corresponding to an entity or a relation) in one or more triple
patterns of the query with another constant which still reflects the user’s intention, ii)
replacing a constant in one or more triple patterns with a variable, and iii) removing
a triple pattern altogether. In the rest of this section, we describe a framework which
incorporates all three relaxations in a holistic manner. Specific details about how the
knowledge-base is utilized in the framework are described in Sect. 2.2.

Finding Similar Entities1. For each entity Ei in the knowledge base KB, we construct
a document D(Ei) (the exact method of doing so will be described in Sect. 2.2). For
each document D(Ei), let LM(Ei) be its language model. The similarity between two
entities Ei and Ej is now computed as the distance between the LMs of the corresponding
documents. Specifically, we use the square-root of the Jensen-Shannon divergence (JS-
divergence) between two probability distributions (that is, LM(Ei) and LM(Ej), in this
case), which is a metric. And so, for an entity of interest E, we can compute a ranked
list of similar entities.

Replacing Entities with Variables. We interpret replacing an entity in a triple pat-
tern with a variable as being equivalent to replacing that entity with any entity in the
knowledge base.

We first construct a special document for the entire knowledge base, D(KB). Let
E be the entity of interest (i.e., the entity in the triple pattern to be replaced with a
variable). Let D(E) be its document. Now, we construct a document corresponding to
“any” entity other than E as: D(ANY) = D(KB) − D(E) (i.e., remove the contents
of D(E) from D(KB)). The similarity between the entity E and “any” entity ANY is
computed as the distance between the LMs of their corresponding documents.

In the ranked list of potential replacements for entity E, a variable replacement is
now simply another candidate. In other words, the candidates beyond a certain rank are
so dissimilar from the given entity, that they may as well be ignored and represented by
a single variable.

1 Note that, even though we refer only to entities in the following, the same applies to relations
as well.

66 S. Elbassuoni, M. Ramanath, and G. Weikum

Removing Triple Patterns. So far, we gave a high-level description of our relaxation
technique for individual entities (or relations) in a triple pattern, without treating the
triple pattern holistically. In a given query containing multiple triple patterns, a large
number of relaxed queries can be generated by systematically substituting each constant
with other constants or variables. We now consider the case when a triple pattern in
the query contains only variables. In a post-processing step, we can now choose one
of the following options. First, the triple pattern can be made optional. Second, the
triple pattern can be removed from the query. To illustrate the two cases, consider the
following examples.

Example 1: Consider the query asking for married couples who have acted in the
same movie: ?a1 actedIn ?m; ?a2 actedIn ?m; ?a1 marriedTo ?a2 and a relaxation:
?a1 actedIn ?m; ?a2 ?r ?m; ?a1 marriedTo ?a2. Even though the second triple pattern
contains only variables, retaining this pattern in the query still gives the user potentially
valuable information – that ?a2 was related some how to the movie ?m. Hence, instead
of removing this triple pattern from the query, it is only made optional – that is, a result
may or may not have a triple which matches this triple pattern.

Example 2: Consider the query asking for movies which James Cameron produced,
directed as well as acted in: James Cameron produced ?m; James Cameron directed
?m; James Cameron actedIn ?m and a relaxation: ?x ?r ?m; James Cameron directed
?m; James Cameron actedIn ?m. In this case, the first triple pattern matches any ran-
dom fact about the movie ?m. This does not give any valuable information to the user
as in the previous case and can be removed.

2.2 Constructing Documents and LMs

We now describe how to construct documents for entities and relations and how to
estimate their corresponding LMs.

Sources of Information. The document for an entity should “describe” the entity. There
are at least three different sources of information which we can leverage in order to
construct such a document. First, we have the knowledge base itself – this is also the
primary source of information in our case since we are processing our queries on the
knowledge base. Second, we could make use of external textual sources – for exam-
ple, we could extract contextual snippets or keywords from text/web documents from
which the triples were extracted. Third, we could also utilize external ontologies such
as Wordnet, in order to find terms which are semantically close to the entity.

In this paper, our main focus is on utilizing the knowledge base as the information
source and hence, we describe our techniques in this context and perform experiments
using these techniques. But, our framework can be easily extended to incorporate other
information sources and we briefly describe how this can be done at the end of this
section.

Documents and LMs for entities. Let E be the entity of interest and D(E) be its docu-
ment, which is constructed as the set of all triples in which E occurs either as a subject
or an object. That is,

D(E) = {〈E r o〉 : 〈E r o〉 ∈ KB} ∪ {〈s r E〉 : 〈s r E〉 ∈ KB}

Query Relaxation for Entity-Relationship Search 67

We now need to define the set of terms over which the LM is estimated. We de-
fine two kinds of terms: i) “unigrams” U , corresponding to all entities in KB, and, ii)
“bigrams” B, corresponding to all entity-relation pairs. That is,

U = {e : 〈e r o〉 ∈ KB||〈s r e〉 ∈ KB}

B = {(er) : 〈e r o〉 ∈ KB} ∪ {(re) : 〈s r e〉 ∈ KB}

Example: The entity Woody Allen would have a document consisting of triples
Woody Allen directed Manhattan, Woody Allen directed Match Point, Woody Allen acte-
dIn Scoop, Woody Allen type Director, Federico Fellini influences Woody Allen, etc.
The terms in the document would include Scoop, Match Point, (type,Director), (Fed-
erico Fellini,influences), etc.

Note that the bi-grams usually occur exactly once per entity, but it is still important
to capture this information. When we compare the LMs of two entities, we would like
identical relationships to be recognized. For example, if for a given entity, we have the
bigram (hasWonAward, Academy Award), we can then distinguish the case where a can-
didate entity has the term (hasWonAward, Academy Award) and the term (nominated-
For, Academy Award). This distinction cannot be made if only unigrams are considered.

Estimating the LM. The LM corresponding to document D(E) is now a mixture model
of two LMs: PU , corresponding to the unigram LM and PB , the bigram LM. That is,

PE(w) = μPU (w) + (1− μ)PB(w)

where μ controls the influence of each component. The unigram and bigram LMs are
estimated in the standard way with linear interpolation smoothing from the corpus. That
is,

PU (w) = α
c(w; D(E))

Σw′∈Uc(w′; D(E))
+ (1− α)

c(w; D(KB))
Σw′∈Uc(w′; D(KB))

where w ∈ U , c(w; D(E)) and c(w; D(KB)) are the frequencies of occurrences of w
in D(E) and D(KB) respectively and α is the smoothing parameter. The bigram LM is
estimated in an analogous manner.

Documents and LMs for relations. Let R be the relation of interest and let D(R) be
its document, which is constructed as the set of all triples in which R occurs. That is,

D(R) = {〈s′ R o′〉 : 〈s′ R o′〉 ∈ KB}

As with the case of entities, we again define two kinds of terms – “unigrams” and
“bigrams”. Unigrams correspond to the set of all entities in KB. But, we make a distinc-
tion here between entities that occur as subjects and those that occur as objects, since
the relation is directional (note that there could be entities that occur as both). That is,

S = {s : 〈s r o〉 ∈ KB}

O = {o : 〈s r o〉 ∈ KB}

B = {(so) : 〈s r o〉 ∈ KB}

68 S. Elbassuoni, M. Ramanath, and G. Weikum

Example: Given the relation directed, D(directed) would consist of all triples
containing that relation, including, James Cameron directed Aliens, Woody Allen di-
rected Manhattan, Woody Allen directed Match Point, Sam Mendes directed Ameri-
can Beauty, etc. The terms in the document would include James Cameron, Manhattan,
Woody Allen, (James Cameron, Aliens), (Sam Mendes, American Beauty), etc.

Estimating the LM. The LM of D(R) is a mixture model of three LMs: PS , corre-
sponding to the unigram LM of terms in S, PO , corresponding to the unigram LM of
terms in O and PB , corresponding to the bigram LM. That is,

PR(w) = μsPS(w) + μoPO(w) + (1− μs − μo)PB(w)

where μs, μo control the influence of each component. The unigram and bigram LMs
are estimated in the standard way with linear interpolation smoothing from the corpus.
That is,

PS(w) = α
c(w; D(R))

Σw′∈Sc(w′; D(R))
+ (1− α)

c(w; D(KB))
Σw′∈Sc(w′; D(KB))

where w ∈ S, c(w; D(R)) and c(w; D(KB)) are the frequencies of occurrences of w in
D(R) and D(KB) respectively, and α is a smoothing parameter. The other unigram LM
and the bigram LM are estimated in an analogous manner.

Generating the Candidate List of Relaxations. As previously mentioned, we make
use of the square root of the JS-divergence as the similarity score between two entities
(or relations). Given probability distributions P and Q, the JS-divergence between them
is defined as follows,

JS(P ||Q) = KL(P ||M) + KL(Q||M)

where, given two probability distributions R and S, the KL-divergence is defined as,

KL(R||S) = ΣjR(j) log
R(j)
S(j)

and

M =
1
2
(P + Q)

2.3 Examples

Table 2 shows example entities and relations from the IMDB and LibraryThing datasets
and their top-5 relaxations derived from these datasets, using the techniques described
above. The entry var represents the variable candidate. As previously explained, a vari-
able substitution indicates that there were no other specific candidates which had a high
similarity to the given entity or relation. For example, the commentedOn relation has
only one specific candidate relaxation above the variable relaxation – hasFriend. Note
that the two relations are relations between people - a person X could comment on
something a person Y wrote, or a person X could have a friend Y - whereas the remain-
ing relations are not relations between people. When generating relaxed queries using
these individual relaxations, we ignore all candidates which occur after the variable.
The process of generating relaxed queries will be explained in Sect. 3.

Query Relaxation for Entity-Relationship Search 69

Table 2. Example entities and relations and their top-5 relaxations

LibraryThing IMDB

Egypt Non-fiction Academy Award for Best Actor Thriller

Ancient Egypt Politics BAFTA Award for Best Actor Crime
Mummies American History Golden Globe Award Horror

for Best Actor Drama
Egyptian Sociology var Action
Cairo Essays Golden Globe Award Mystery

for Best Actor Musical or Comedy
Egyptology History New York Film Critics Circle var

Award for Best Actor

wrote commentedOn directed bornIn

hasBook hasFriend actedIn livesIn
hasTagged var created originatesFrom
var hasBook produced var
hasTag hasTag var diedIn
hasLibraryThingPage hasTagged type isCitizenOf

2.4 Using Other Information Sources

The core of our technique lies in constructing the document for an entity E or relation R
and estimating its LM. And so, given an information source, it is sufficient to describe:
i) how the document is constructed, ii) what the terms are, and, iii) how the LM is esti-
mated. In this paper, we have described these three steps when the information source
is the knowledge base of RDF triples. It is easy to extend the same method for other
sources. For example, for the case of entities, we could make use of a keyword context
or the text documents from which an entity or a triple was extracted. Then a document
for an entity will be the set of all keywords or a union of all text snippets associated
with it. The terms can be any combination of n-grams and the LM is computed using
well-known techniques from the IR literature (see for example, entity LM estimation in
[16, 18, 15, 9, 21], in the context of entity ranking).

Once individual LMs have been estimated for an entity or a relation from each infor-
mation source, a straight-forward method to combine them into a single LM is to use
a mixture model of all LMs. The parameters of the mixture model can be set based on
the importance of each source. Note that this method does not preclude having different
subsets of sources for different entities or relations.

3 Relaxing Queries and Ranking Results

We have so far described techniques to construct candidate lists of relaxations for enti-
ties and relations. In this section we describe how we generate relaxed queries and how
results for the original and relaxed queries are ranked.

70 S. Elbassuoni, M. Ramanath, and G. Weikum

3.1 Generating Relaxed Queries

Let Q0 = {q1, q2, ..., qn} be the query, where qi is a triple pattern. Let the set of relaxed
queries be R = {Q1, Q2, ..., Qr}, where Qj is a query with one or more of its triple
patterns relaxed. A triple pattern qi is relaxed by relaxing at least one of its constants.
Let sj be the relaxation score of Qj , computed by adding up the scores of all entity
and relation relaxations in Qj . Recall that an individual entity or relation score is the
square root of the JS-divergence between the LMs of the relaxed entity/relation and
the original entity/relation. Clearly, the score s0 for the original query Q0 is 0 and the
queries can be ordered in ascending order of sjs.

Example: Consider the query asking for Academy award winning action movies and
their directors. Table 3 shows the lists L1, L2 and L3 containing the top-3 closest re-
laxations for each triple pattern along with their scores. Table 4 shows the top-5 relaxed
queries and their scores.

Table 3. Top-3 relaxation lists for the triple patterns for an example query

Q: ?x directed ?m; ?m won Academy Award; ?m hasGenre Action
L1 L2 L3

?x directed ?m : 0.0 ?m won Academy Award : 0.0 ?m hasGenre Action : 0.0
?x actedIn ?m : 0.643 ?m won Golden Globe : 0.624 ?m hasGenre Adventure : 0.602
?x created ?m : 0.647 ?m won BAFTA Award : 0.659 ?m hasGenre Thriller : 0.612
?x produced ?m : 0.662 ?m ?r Academy Award : 0.778 ?m hasGenre Crime : 0.653

Table 4. Top-5 relaxed queries for an example query. The relaxed entities/relations are underlined.

Q: ?x directed ?m; ?m won Academy Award; ?m hasGenre Action
Relaxed Queries score
?x directed ?m;?m won Academy Award;?m hasGenre Adventure 0.602
?x directed ?m;?m won Academy Award;?m hasGenre Thriller 0.612
?x directed ?m;?m won Golden Globe;?m hasGenre Action 0.624
?x actedIn ?m;?m won Academy Award;?m hasGenre Action 0.643
?x created ?m;?m won Academy Award;?m hasGenre Action 0.647

Now, we describe how results of the original and relaxed queries can be merged and
ranked before representing them to the user.

3.2 Result Ranking

Let Q0 be the original query and let the set of its relaxations be R = {Q1, Q2, ..., Qr}.
Moreover, let the results of the query Q0 and all its relaxations be the set {T1, T2, ..., Tn}
where Ti is a result matching one (or more) of the queries Qj . Note that a result Ti can
be a match to more than one query. For example, consider the query Q0 = ?m hasGenre
Action and a relaxation Qj = ?m hasGenre ?x. The result Batman Begins hasGenre
Action matches both Q0 and Qj .

Query Relaxation for Entity-Relationship Search 71

To be able to rank the results of the original and relaxed queries, we assume that a
result T matching query Qj is scored using some score function f . The scoring function
can be any ranking function for structured triple-pattern queries over RDF-data. In this
paper, we make use of the language-model based ranking function described in [8]. Let
the score of each result T with respect to query Qj be f(T, Qj) and let the score of each
relaxed query Qj be sj where the score of a relaxed query is computed as described in
the previous subsection. In order to merge the results of the original and relaxed queires
into a unified result set, we utilize the following scoring function for computing the
score of a result T :

S(T) = Σr
j=0λjf(T, Qj)

We next describe two techniques to set the values of the different λ’s.

Adaptive Weighting. In this weighting scheme, we assume that the user is interested
in seeing the results in a holistic manner. That is, a match to a lower ranked (relaxed)
query can appear before a match to a higher ranked query. For example, consider the
query Q0 = ?m hasGenre Action and a relaxation Qj = ?m hasGenre Thriller. The
assumption now is that the user would rather see a “famous” movie of genre thriller,
rather than an obscure movie of genre action. And so, a “mixing” of results is allowed.
To this end, we set the λj ’s as a function of the scores of the relaxed queries sj’s as
follows:

λj =
1− sj

Σr
i=0(1− si)

Recall that the smaller the sj is, the closer Qj is to the original query Q0. Also
recall that s0 is equal to 0. This weighting scheme basically gives higher weights to the
matches to relaxed queries which are closer to the original query. However, matches for
a lower ranked query with sufficiently high scores can be ranked above matches for a
higher ranked query.

Incremental Weighting. In this weighting scheme, we assume that the user is interested
in seeing results in order. That is, all ranked matches of the original query first, followed
by all ranked matches of the first relaxed query, then those of the second relaxed query,
etc. That is, the results are presented “block-wise”.

In order to do this, we need to set the λj’s by examining the scores of the highest
scoring and lowest scoring result to a given query. For example, consider our example
query : ?m hasGenre Action. Suppose a relaxation to this query is ?x hasGenre Thriller.
If we want to ensure that all matches of the original query are displayed before the first
match of the relaxed query, we first examine the result with the lowest score for the
original query and the highest score for the relaxed query. Let these results be T low

0 and
T high

1 , respectively. We now need to ensure that λ0∗f(T low
0 , Q0) > λ1 ∗f(T high

1 , Q1).
Note that both incremental as well as adaptive weighting are only two ways in which

we can present results to the user. Additional schemes can include a mixture of both
schemes for instance, or any other variations. Our ranking model is general enough and
can support any number of such fine-grained result presentation schemes.

72 S. Elbassuoni, M. Ramanath, and G. Weikum

4 Experimental Evaluation

We evaluated the effectiveness of our relaxation techniques in 2 experiments. The first
one evaluated the quality of individual entity and relation relaxations. It also evaluated
the quality of the relaxed queries overall. The second experiment evaluated the quality
of the final query results obtained from both original and relaxed queries. The complete
set of evaluation queries used, relevance assessments collected and an online demo can
be found at http://www.mpii.de/˜elbass/demo/demo.html.

4.1 Setup

All experiments were conducted over two datasets using the Amazon Mechanical Turk
service2. The first dataset was derived from the LibaryThing community, which is an
online catalog and forum about books. The second dataset was derived from a subset
of the Internet Movie Database (IMDB). The data from both sources was automatically
parsed and converted into RDF triples. Overall, the number of unique entities was over
48,000 for LibraryThing and 59,000 for IMDB. The number of triples was over 700,000
and 600,000 for LibraryThing and IMDB, respectively.

Due to the lack of an RDF query benchmark, we constructed 40 evaluation queries
for each dataset and converted them into structured triple-pattern queries. The number
of triple patterns in the constructed queries ranged from 1 to 4. Some example queries
include: “People who both acted as well as directed an Academy Award winning movie”
(3 triple patterns), “Children’s book writers who have won the Booker prize” (3 triple
patterns), etc.

4.2 Quality of Relaxations

To evaluate the quality of individual entity and relation relaxations, we extracted all
unique entities and relations occurring in all evaluation queries. The total numbers of
entities and relations are given in Table 5. For each entity, the top-5 relaxations were re-
trieved, excluding the variable relaxation. We presented the entity and each relaxation to
6 evaluators and asked them to assess how closely related the two are on a 3-point scale:
2 corresponding to ”closely related”, 1 corresponding to ”related” and 0 corresponding
to ”unrelated”. The same was done for each relation.

To evaluate the quality of relaxed queries overall, we generated the top-5 relaxed
queries for each evaluation query. The relaxed queries were ranked in ascending order
of their scores, which were computed as described in Sect. 3.1. We asked 6 evaluators
to assess how close a relaxed query is to the original one on a 4-point scale: 3 cor-
responding to ”very-close”, 2 to ”close”, 1 to ”not so close” and 0 corresponding to
”unrelated”.

Table 5 shows the results obtained for entity, relation and query relaxations. For a
given entity, the average rating for each relaxation was first computed and then this
rating was averaged over the top-5 relaxations for that entity. A similar computation
was performed for relations and query relaxations. The second row shows the average
rating over all relaxed entities, relations and queries. The third row shows the Pearson

2 http://aws.amazon.com/mturk/

http://www.mpii.de/~elbass/demo/demo.html

Query Relaxation for Entity-Relationship Search 73

correlation between the average rating and the JS-divergence. We achieved a strong
negative correlation for all relaxations which shows that the smaller the score of the
relaxation (closer the relaxation is to the original), the higher the rating assigned by the
evaluators. The fourth row shows the average rating for the top relaxation.

The fifth and sixth rows in Table 5 show the average rating for relaxations that ranked
above and below the variable relaxation respectively. Recall that, for each entity or
relation, a possible entry in the relaxation candidate-list is a variable as described in
Section 2. For those relaxations that ranked above a variable (i.e., whose JS-divergence
is less than that of a variable), the average rating was more than 1.29 for both entities
and relations, indicating how close these relaxations are to the original entity or relation.
For those relaxations that ranked below a variable, the average rating was less than 1.1
for entities and 0.8 for relations. This shows that the evaluators, in effect, agreed with
the ranking of the variable relaxation.

Table 5. Results for entity, relation and
query relaxations

Row Metric Entities Relations Queries
(0-2) (0-2) (0-3)

1 No. of
items

87 15 80

2 Avg. rating 1.228 0.863 1.89
3 Correlation-0.251 -0.431 -0.119
4 Avg. rating

for top re-
laxation

1.323 1.058 1.94

5 Avg. rating
above vari-
able

1.295 1.292 -

6 Avg. rating
below vari-
able

1.007 0.781 -

Table 6. Average NDCG and rating for all
evaluation queries for both datasets

Librarything
Adaptive Incremental Baseline

NDCG 0.868 0.920 0.799
Avg. Rating 2.062 2.192 1.827

IMDB
Adaptive Incremental Baseline

NDCG 0.880 0.900 0.838
Avg. Rating 1.874 1.928 1.792

4.3 Quality of Query Results

We compared our relaxation framework, with its two weighting scheme variants, Adap-
tive and Incremental (see Sect. 3.2), against a baseline approach outlined in [8]. The
latter simply replaces a constant in the original query with a variable to generate a re-
laxed query. The weight of the relaxed triple pattern is determined based on the number
of constants replaced. For all 3 methods, we set the weight of an original triple pattern
to the same value, to ensure that exact matches would rank on top, and thus make the
differences rely solely on the quality and weights of the relaxations. We used the same
ranking function f to rank the results with respect to a query Qj for all 3 techniques.
The ranking function was based on the LM-based ranking model in [8].

We pooled the top-10 results from all 3 approaches and presented them to 6 evalu-
ators in no particular order. The evaluators were required to assess the results on a 4

74 S. Elbassuoni, M. Ramanath, and G. Weikum

point scale: 3 corresponding to ”highly relevant”, 2 corresponding to ”relevant”, 1 cor-
responding to ”somewhat relevant”, and 0 corresponding to ”irrelevant”. To measure
the ranking quality of each technique, we used the Normalized Discounted Cumula-
tive Gain (DCG) [12], a standard IR measure that takes into consideration the rank of
relevant results and allows the incorporation of different relevance levels.

The results of our user evaluation are shown in Table 6. The reported NDCG val-
ues were averaged over all evaluation queries. Both variations of our framework (the
first two columns) significantly outperformed the baseline approach, with a one-tailed
paired t-test (p-value ≤ 0.01). The Adaptive approach had over 8% improvement in
NDCG over the baseline for Librarything and over 5% for IMDB. The Incremental ap-
proach had improvements over 15% for Librarything and 7% for IMDB. Furthermore,
we computed the average rating over all results for each technique as shown in the
second and fourth rows (Avg. Rating) in Table 6.

Finally, in Table 7 we show an example evaluation query and the top-3 results re-
turned by each relaxation approach. Next to each result, we show the average rating
given by the evaluators. The relaxed constants are underlined.

The example query in Table 7 asks for science fiction books that have tag Film.
There is only one one such result which is ranked as the top result by all 3 approaches.
Since the Adaptive approach ranks the whole set of approximate results, it allows
for more diversity in terms of relaxations. And so, the Adaptive approach returns the
more famous and iconic movies, Blade and Star Wars as the top results compared to
The Last Unicorn and The Mists Of Avalon returned by the Incremental scheme.

Table 7. Top-ranked results for the example query ”A science-fiction book that has tag Film”

Result Rating
Q: ?b type Science Fiction; ?b hasTag Film

Adaptive
Star Trek Insurrection type Science Fiction; Star Trek Insurrection hasTag Film 2.50
Blade type Science Fiction; Blade hasTag Movies 2.83
Star Wars type Science Fiction; Star Wars hasTag Made Into Movie 2.00

Incremental
Star Trek Insurrection type Science Fiction; Star Trek Insurrection hasTag Film 2.50
The Last Unicorn type Science Fiction; The Last Unicorn hasTag Movie/tv 2.50
The Mists of Avalon type Science Fiction; The Mists of Avalon hasTag Movie/tv 2.17

Baseline
Star Trek Insurrection type Science Fiction; Star Trek Insurrection hasTag Film 2.50
Helter Skelter type History; Helter Skelter hasTag Film 0.83
Fear & Loathing in Vegas type History; Fear & Loathing in Vegas hasTag Film 1.83

5 Related Work

One of the problems addressed in this paper is that of relaxing entities and relations with
similar ones. This is somewhat related to both record linkage [14], and ontology match-
ing [19]. But a key difference is that we are merely trying to find candidates which are

Query Relaxation for Entity-Relationship Search 75

close in spirit to an entity or relation, and not trying to solve the entity disambiguation
problem. Other kinds of reformulations such as spelling correction, etc. directly benefit
from techniques for record linkage, but are beyond the scope of our work.

Query reformulation in general has been studied in other contexts such as keyword
queries [5] (more generally called query expansion), XML [1, 13], SQL [4, 22] as well
as RDF [11, 7, 10]. Our setting of RDF and triple patterns is different in being schema-
less (as opposed to relational data) and graph-structured (as opposed to XML which is
mainly tree-structured and supports navigational predicates).

For RDF triple-pattern queries, relaxation has been addressed to some extent in [22,
11, 7, 10, 8]. This prior work can be classified based on several criteria as described
below. Note that except for [22] and our previous work in [8], none of the other papers
report on experimental studies.

Scope of Relaxations. With the exception of [7, 11], the types of relaxations considered
in previous papers are limited. For example, [22] considers relaxations of relations only,
while [10, 8] consider both entity and relation relaxations. The work in [8], in particular,
considers a very limited form of relaxation – replacing entities or relations specified in
the triple patterns with variables. Our approach, on the other hand, considers a compre-
hensive set of relaxations and in contrast to most other previous approaches, weights
the relaxed query in terms of the quality of the relaxation, rather than the number of
relaxations that the query contains.

Relaxation Framework. While each of the proposals mentioned generates multiple
relaxed query candidates, the method in which they do so differ. While [7, 11, 10]
make use of rule-based rewriting, the work in [22] and our own work make use of the
data itself to determine appropriate relaxation candidates. Note that rule-based rewriting
requires human input, while our approach is completely automatic.

Result Ranking. Our approach towards result ranking is the only one that takes a holis-
tic view of both the original and relaxed query results. This allows us to rank results
based on both the relevance of the result itself, as well as the closeness of the relaxed
query to the original query. The “block-wise” ranking adopted by previous work – that
is, results for the original query are listed first, followed by results of the first relaxation
and so on – is only one strategy for ranking, among others, that can be supported by our
ranking model.

6 Conclusion

We proposed a comprehensive and extensible framework for query relaxation for entity-
relationship search. Our framework makes use of language models as its foundation and
can incorporate a variety of information sources on entities and relations. We showed
how to use an RDF knowledge base to generate high quality relaxations. Furthermore,
we showed how different weighting schemes can be used to rank results. Finally, we
showed the effectiveness of our techniques through a comprehensive user evaluation.
We believe that our contributions are of great importance for an extended-SPARQL API
that could underlie the emerging “Web-of-Data” applications such as Linking-Open-
Data across heterogeneous RDF sources.

76 S. Elbassuoni, M. Ramanath, and G. Weikum

References

[1] Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: Flexpath: Flexible structure and full-text
querying for xml. In: SIGMOD (2004)

[2] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nu-
cleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer,
Heidelberg (2007)

[3] Billerbeck, B., Zobel, J.: When query expansion fails. In: SIGIR (2003)
[4] Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic information retrieval ap-

proach for ranking of database query results. ACM Trans. on Database Syst. 31(3) (2006)
[5] Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice.

Pearson Education, London (2009)
[6] Doan, A., Gravano, L., Ramakrishnan, R., Vaithyanathan, S. (eds.): Special issue on man-

aging information extraction. ACM SIGMOD Record 37(4) (2008)
[7] Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing rdf queries based on user

and domain preferences. Journal of Intell. Inf. Sys. (2008)
[8] Elbassuoni, S., Ramanath, M., Schenkel, R., Sydow, M., Weikum, G.: Language-model-

based ranking for queries on RDF-graphs. In: CIKM (2009)
[9] Fang, H., Zhai, C.: Probabilistic models for expert finding. In: Amati, G., Carpineto, C.,

Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 418–430. Springer, Heidelberg (2007)
[10] Huang, H., Liu, C., Zhou, X.: Computing relaxed answers on RDF databases. In: Bailey, J.,

Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175,
pp. 163–175. Springer, Heidelberg (2008)

[11] Hurtado, C., Poulovassilis, A., Wood, P.: Query relaxation in rdf. Journal on Data Semantics
(2008)

[12] Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant documents.
In: SIGIR (2000)

[13] Lee, D.: Query Relaxation for XML Model. Ph.D. thesis, UCLA (2002)
[14] Naumann, F., Herschel, M.: An Introduction to Duplicate Detection. Morgan & Claypool,

San Francisco (2010)
[15] Nie, Z., Ma, Y., Shi, S., Wen, J.-R., Ma, W.Y.: Web object retrieval. In: WWW (2007)
[16] Petkova, D., Croft, W.: Hierarchical language models for expert finding in enterprise cor-

pora. Int. J. on AI Tools 17(1) (2008)
[17] Sarawagi, S.: Information extraction. Foundations and Trends in Databases 2(1) (2008)
[18] Serdyukov, P., Hiemstra, D.: Modeling documents as mixtures of persons for expert finding.

In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008.
LNCS, vol. 4956, pp. 309–320. Springer, Heidelberg (2008)

[19] Staab, S., Studer, R.: Handbook on Ontologies (International Handbooks on Information
Systems). Springer, Heidelberg (2004)

[20] Suchanek, F., Sozio, M., Weikum, G.: SOFIE: A self-organizing framework for information
extraction. In: WWW (2009)

[21] Vallet, D., Zaragoza, H.: Inferring the most important types of a query: a semantic approach.
In: SIGIR (2008)

[22] Zhou, X., Gaugaz, J., Balke, W.T., Nejdl, W.: Query relaxation using malleable schemas.
In: SIGMOD (2007)

[23] Zhu, J., Nie, Z., Liu, X., Zhang, B., Wen, J.R.: Statsnowball: a statistical approach to ex-
tracting entity relationships. In: WWW (2009)

Optimizing Query Shortcuts in RDF Databases

Vicky Dritsou1,3, Panos Constantopoulos1,3,
Antonios Deligiannakis2,3, and Yannis Kotidis1,3

1 Athens University of Economics and Business, Athens, Greece
2 Technical University of Crete, Crete, Greece

3 Digital Curation Unit, IMIS, Athena Research Centre, Greece
{vdritsou,panosc,kotidis}@aueb.gr, adeli@softnet.tuc.gr

Abstract. The emergence of the Semantic Web has led to the creation of large
semantic knowledge bases, often in the form of RDF databases. Improving the
performance of RDF databases necessitates the development of specialized data
management techniques, such as the use of shortcuts in the place of path queries.
In this paper we deal with the problem of selecting the most beneficial shortcuts
that reduce the execution cost of path queries in RDF databases given a space
constraint. We first demonstrate that this problem is an instance of the quadratic
knapsack problem. Given the computational complexity of solving such prob-
lems, we then develop an alternative formulation based on a bi-criterion linear
relaxation, which essentially seeks to minimize a weighted sum of the query cost
and of the required space consumption. As we demonstrate in this paper, this
relaxation leads to very efficient classes of linear programming solutions. We
utilize this bi-criterion linear relaxation in an algorithm that selects a subset of
shortcuts to materialize. This shortcut selection algorithm is extensively evalu-
ated and compared with a greedy algorithm that we developed in prior work. The
reported experiments show that the linear relaxation algorithm manages to sig-
nificantly reduce the query execution times, while also outperforming the greedy
solution.

1 Introduction

The Semantic Web involves, among other things, the development of semantic reposito-
ries in which structured data is expressed in RDF(S) or OWL. The structure of this data -
and of its underlying ontologies - is commonly seen as a directed graph, with nodes
representing concepts and edges representing relationships between concepts. A basic
issue that semantic repositories need to address is the formulation of ontology-based
queries, often by repeatedly traversing particular paths [11] of large data graphs. Re-
gardless of the specific model used to store these data graphs (RDF/OWL files, relational
databases, etc.), path expressions require substantial processing; for instance, when us-
ing relational databases, multiple join expressions are often involved [3,20,22,28].

By analogy to materialized views in relational databases, a shortcut construct can be
used in RDF repositories to achieve better performance in formulating and executing
frequent path queries. In this paper we elaborate on the creation of shortcuts that corre-
spond to frequently accessed paths by augmenting the schema and the data graph of an

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 77–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

78 V. Dritsou et al.

Author Paperwrites acceptedBy

Title

CitytakesPlace

hasTitle
ConferencefundsInstitute

Fig. 1. Sample Schema Graph

RDF repository with additional triples, effectively substituting the execution of the cor-
responding path queries. Considering all possible shortcuts in a large RDF repository
gives rise to an optimization problem in which we seek to select shortcuts that maximize
the reduction of query processing cost subject to a given space allocation for storing the
shortcuts. For this problem, which turns out to be a knapsack problem, known to be
NP-hard, we have previously developed a greedy algorithm [13] which, however, leans
on the side of wasting space whenever it comes to dealing with particular types of query
workloads, especially correlated ones. We thus consider an alternative formulation in
this paper, which leads to the development of a more efficient linear algorithm.

The contributions of this work are: (i) we elaborate on the notion of shortcuts and
the decomposition of a set of user queries that describe popular user requests into a
set of simple path expressions in the RDF schema graph of an RDF repository, which
are then combined in order to form a set of candidate shortcuts that can help during
the evaluation of the original queries; (ii) we formally define the shortcut selection
problem as one of maximizing the expected benefit of reducing query processing cost
by materializing shortcuts in the knowledge base, under a given space constraint; (iii)
we provide an alternative formulation of the shortcut selection problem that trades off
the benefit of a shortcut with the space required for storing its instances in the RDF
database: the constraint matrix of the resulting bi-criterion optimization problem enjoys
the property of total unimodularity, by virtue of which we obtain very efficient classes
of linear programming solutions; and (iv) through extensive experimental evaluation we
demonstrate that the linear algorithm outperforms our greedy solution in most cases.

2 Problem Formulation

In this section we provide the underlying concepts that are required in order to formulate
our problem. Sections 2.1 and 2.2 describe these preliminary concepts, which have been
introduced in [13].

Author Paperwrites acceptedBy hasTitleConference Titleq1

q2 Author Paperwrites acceptedBy takesPlaceConference City

Paper acceptedBy hasTitleConference Titleq3

fundsInstitute

fundsInstitute

Fig. 2. Sample Queries

Optimizing Query Shortcuts in RDF Databases 79

sh1

Author Paperwrites acceptedBy

Title

CitytakesPlace

hasTitle
ConferencefundsInstitute

sh2

sh3sh4

sh5 sh6

Fig. 3. Candidate Shortcuts

GQ1

qf1

qf5qf3

qf4

Fig. 4. Graph GQ1

2.1 Preliminary Concepts

Assume an RDF database G containing two parts: (i) a schema graph, GS(VS , ES),
where VS is a set of nodes that represent entity classes (or, concepts) and a set of edges
ES , representing relationship classes (or, properties); and (ii) a data graph, GD(VD, ED),
consisting of a set of nodes, VD , that are instances of nodes in VS and a set of edges, ED ,
that are instances of edges in ES . More generally, G could be any graph-structured se-
mantic database. A sample schema graph of an RDF database is presented in Figure 1.
Assume now a query workload Q = {q1, q2, q3, . . . , qm} of m queries. Each qi is asso-
ciated with a frequency fi and comprises a data-level query (querying the schema graph
is out of scope in this paper). Moreover, it is represented as a weakly connected subgraph
Gq of the schema graph GS . For example, consider the schema graph of Figure 1 and the
three related queries: q1: “For each institute, find the titles of the conferences in which
the papers of the authors it funds have been accepted”; q2: “For each institute, find the
cities where the conferences in which the papers of the authors it funds have been ac-
cepted are taking place”; and q3: “For each paper, find the title of the conference in which
it has been accepted”. The subgraphs of these queries are shown in Figure 2. Regardless
of the query language used, to evaluate the queries and retrieve their matching instances
we need to traverse the corresponding paths.

In this paper we deal only with path queries, like the three examples presented above.
More complex queries can also be formulated, requiring more than one paths in order to
be expressed, e.g. in our sample graph a query that relates Institutes with conference
T itles together with the City each one is located. Although this query cannot be part
of our assumed workload, we can retrieve its matching instances by joining the results
of the path queries it contains (namely q1 and q2).

Query fragments and candidate shortcuts. Each path query qi in Q has a length li
expressing the number of relationships its path contains. We call query fragment any
subpath containing more than one edge. In our framework, a shortcut matches exactly one
such query fragment. Given a query workload Q, containing |Q| queries, and L the length
of the query having the longest path among all queries in Q, there are O(|Q|×L2) query
fragments (and shortcuts). This large number is reduced when we define as candidate
shortcuts only those that originate from or terminate to nodes that we consider to be
“interesting”: a node u ∈ GS is considered to be a candidate shortcut node iff (i) u is a
starting node or an ending node of a query q ∈ Q; or (ii) u is a starting node or an ending
node of two different edges ei, ej of GS, each being traversed by at least one query q ∈ Q.
Having defined the set of candidate nodes, we develop the set SH of candidate shortcuts
by considering all valid combinations between candidate shortcut nodes, so that these
are connected through an existing path of GS and this path is traversed by at least one

80 V. Dritsou et al.

query q ∈ Q. For example, consider again the sample graph of Figure 1 and the queries
of Figure 2 constituting the workload Q. Given Q, the candidate shortcut nodes are: (i)
Institute, as starting node of q1 and q2; (ii) Paper, as starting node of q3; (iii) Conference,
since two edges belonging to two different queries originate from it; (iv) Title, as ending
node of q1 and q3; and (v) City, as ending node of q2. Starting from these, we generate
the set of candidate shortcuts presented in Figure 31.

Each candidate shortcut shi maps to exactly one query fragment qfi, which may be
contained in more than one queries of Q. The set of queries in which qfi is contained
is called related queries of shi and is denoted as RQi. For instance, the set of related
queries of sh4 in Figure 3 is RQ4 = {q1, q2}. Regarding the relationships between
shortcuts, we distinguish the following three cases: (i) a shortcut shi is disjoint to shj

if the query fragments they map to do not share any common edge; (ii) a shortcut shi

is fully contained in shj iff the query fragment that shi maps to is a subpath of the
corresponding query fragment of shj , denoted hereafter as shi ≺ shj; and (iii) a short-
cut shi overlaps shj if they are not disjoint, and none of them fully contains the other.
Finally, for each shortcut shi we denote the set SFi = {qfj | qfj ≺ qfi}.

2.2 Estimating Shortcut Benefit

We now turn to defining the benefit of introducing a shortcut and formulating shortcut
selection as a benefit maximization problem. Assume a candidate shortcut shi with un-
derlying query fragment qfi and its set of related queries RQi. An estimate of the cost
of retrieving the answer to qfi may be given by (i) the number of edges that need to be
traversed in the data graph GD; (ii) the actual query time of qfi; (iii) an estimate by a
query optimizer. For the formulation of our problem we assume that this cost is given
by the number of edges, tri, that need to be traversed in the data graph GD (however
in Section 4 we present a comparison of the results obtained when considering as cost
the number of traversals on one hand and the actual query times on the other). Note
that not all edges traversed necessarily lead to an answer, however they do contribute
to the counting of tri. Now suppose that we augment the database by shortcut shi.
This involves inserting one edge in the schema graph GS , while in the data graph GD

one edge is inserted for each result of qfi, a total of ri edges between the correspond-
ing nodes. Hence, by inserting one instance of shi for each result of qfi using RDF
Bags2, thus allowing duplicate instances of shortcuts (triples) to be inserted, we retain
the result cardinalities and obtain exactly the same query results. Then the new cost of
answering qfi is equal to the new number of traversals required, i.e. the number ri of
results of qfi. Therefore, the benefit obtained by introducing a shortcut shi in order
to answer qfi is equal to the difference between the initial cost minus the new cost,
tri − ri. Since qfi is used in answering each of its related queries, the benefit for query
qk ∈ RQi can be estimated by multiplying the fragment benefit by the frequency of the
query, i.e. fk(tri − ri). The total benefit obtained by introducing shortcut shi is then
equal to the sum of the benefits obtained for each related query. If the query fragments

1 Due to readability issues, the number contained in the label of shortcuts is not presented in the
figure as subscript.

2 http://www.w3.org/TR/rdf-schema/

Optimizing Query Shortcuts in RDF Databases 81

underlying the candidate shortcuts are disjoint then the aggregate benefit is the sum of
the benefits of all candidate shortcuts. If, however, there are containment relationships
between fragments, things get more complicated. For example, take the above men-
tioned queries q1 and q3 described in Figure 2. According to the definition of candidate
shortcuts, there are four candidates beneficial for these queries, namely sh1, sh3, sh4

and sh5. Assume now that shortcut sh5 has been implemented first and that adding sh1

is being considered. The benefit of adding sh1 with regard to query q1 will be smaller
than what it would have been without sh5 in place. Indeed, sh1 is not going to elim-

inate the traversals initially required for the fragment qf1 = Institute
funds→ Author

writes→ Paper
acceptedBy→ Conference

hasTitle→ T itle but, rather, the traversals of edges
of type sh5. We denote as dij the difference in the number of traversals required to
answer qfi due to the existence of a shortcut induced by qfj . This difference is positive
for all qfj ≺ qfi, i.e. for each qfj ∈ SFi. Finally, shortcuts induced by overlapping
query fragments do not interfere in the above sense: since the starting node of one of
them is internal to the other, they cannot have common related queries.

Let us now turn to the space consumption of shortcuts. Regardless of how many
queries are related to a query fragment qfi, the space consumption that results from
introducing the corresponding shortcut shi is ri as above. The total space consumption
of all shortcuts actually introduced should not exceed some given space budget b.

2.3 Space-Constrained Benefit Maximization

We are now ready to formulate the problem of selecting beneficial shortcuts as a benefit
maximization problem. Assume an RDF graph G, a finite set of m path queries Q =
{qi | i = 1, . . . , m}, m ∈ N, each with a frequency fi, a set QF = {qfi | i =
1, . . . , n} of n query fragments, n � m, n ∈ N deriving from the set Q and a space
budget b > 0. Our problem is then defined as:

max

n∑
i=1

∑
qk∈RQi

{fk(tri − ri)xi − fk

∑
qfj∈SFi

dijxixj}

subject to
n∑

i=1

rixi � b

xi =
{

1 if shortcut shi is established
0 otherwise

SFi = {qfj | qfj ≺ qfi, qfj ∈ QF}
RQi = {qj | qfi ≺ qj , qj ∈ Q}.

This is a 0-1 quadratic knapsack problem, known to be NP-hard [15]. Several sys-
tematic and heuristic methods have been proposed in the literature [27] to obtain ap-
proximate solutions to this problem. All computationally reasonable methods assume
non-negative terms in the objective function. This is obviously not the case of our prob-
lem, since the reductions dij of the traversals are non-negative integers thus resulting in
non-positive quadratic terms.

82 V. Dritsou et al.

To address this problem, we have previously developed a greedy algorithm [13] that
seeks to maximize the overall benefit by selecting a subset of candidate shortcuts to
materialize given a space budget. The algorithm takes as input the schema and data
graph, together with the query workload, finds the candidate shortcuts and then com-
putes the benefit of each one, considering as cost the number of edge traversals. It then
incrementally selects the candidate with the maximum per-unit of space benefit that fits
into the remaining budget, until it reaches the defined space consumption. This algo-
rithm succeeds in identifying beneficial shortcuts, yet it wastes space, especially when
the queries of the workload are correlated. This led us to consider an alternative formu-
lation and develop a new algorithm, as described in the following Section. A detailed
comparison of the two approaches is presented in Section 4.

3 Bi-criterion Optimization

One established class of solution methods for the 0-1 quadratic knapsack problem are
Lagrangean methods, including the traditional Lagrangean relaxation of the capacity
constraint and a more sophisticated variant, Lagrangean decomposition [8,10,25,27].
As explained in Section 2, such techniques are inapplicable to our problem, due to
the negative quadratic terms in the objective function. However, the techniques cited
above, provided the inspiration for an alternative modelling approach that would avoid
the combined presence of binary decision variables and a capacity constraint.

Instead of stating a space constraint, we employ a cost term for space consumption
in the objective function. This means that the utility of each calculated solution will, on
one hand, increase based on the benefit of the selected shortcuts but, on the other hand,
it will decrease proportionally to the solution’s space consumption. The factor that de-
termines the exact penalty incurred in our objective function per space unit significantly
influences the final space required by the solution of our algorithm. A small penalty per
space unit used typically leads to solutions that select many shortcuts, thus consuming a
lot of space. On the contrary, a large penalty per space unit used typically leads to select-
ing fewer shortcuts of high benefit for materialization. As we describe at the end of this
section, a binary search process will help determine the right value of this parameter,
so as to select a solution that respects a space budget. Unlike Lagrangean methods that
penalize consumption in excess of the budget, in our formulation space consumption is
penalized from the first byte. As explained below, this formulation yields an efficiently
solvable linear program.

We will now describe how the constraints are derived for three important cases:

– Specifying that a candidate shortcut may be useful (or not) for evaluating specific
queries that contain its corresponding query fragment.

– Specifying how to prevent containment relations for the same query. For the same
query, whenever we consider two materialized shortcuts such that one fully con-
tains the other, then only one of them can be used for the evaluation of the query.3

Expressing such constraints is crucial for the quality of the obtained solution. The

3 In this case, it is not true that the larger of the two shortcuts will always be used, as the presence
of additional materialized shortcuts for the same query may result in utilizing the smaller one.

Optimizing Query Shortcuts in RDF Databases 83

greedy algorithm may select a smaller shortcut for materialization, and then select
a shortcut that fully contains the first one.

– Specifying that two overlapping shortcuts (but none of them is fully contained in
the other) cannot be useful at the same time for the same query.

In the model of Section 2, the resource-oriented treatment of space employs the space
budget as a parameter for controlling system behavior. In the alternative, price-oriented
model presented in this section, a price coefficient on space consumption is the control
parameter. A small price on space consumption has an analogous effect to setting a high
space budget. By iteratively solving the price-oriented model over a range of prices we
effectively determine pairs of space consumption and corresponding solutions (sets of
shortcuts). So, both the resource-oriented and the price-oriented approach yield shortcut
selection policies the outcomes of which will be compared in terms of query evaluation
cost and space consumption in Section 4.

Another important feature of the alternative model is the explicit representation of the
usage of shortcuts in evaluating queries. In the model of Section 2, decision variables xi

express whether shortcut shi is inserted or not. The actual usage of selected shortcuts
regarding each query is not captured by these variables. In fact, the set of shortcuts that
serve a given query in an optimal solution as determined by the greedy algorithm has
no containment relationships among shortcuts and no overlapping shortcuts. Of course,
containment and overlapping can occur between shortcuts serving different queries.
For example, consider again the queries q1, q2 and q3 mentioned above. The greedy
algorithm will not propose to use both shortcuts sh1 and sh3, which have a containment
relationship, to serve q1. Even if sh3 is selected in one step and sh1 in a subsequent step,
only sh1 will finally be used for the execution of q1. Similarly, sh5 and sh3 will not
be proposed by greedy for q1, since their query fragments overlap. If we use sh5 then

the part of q1 that corresponds to the subgraph Paper
acceptedBy→ Conference will be

“hidden” under the new edge sh5 and therefore shortcut sh3 cannot be applied.

Specifying that a shortcut is useful for a specific query. We introduce additional
decision variables that express the usage of a given shortcut to serve a given query. In
particular, xik denotes whether shortcut shi is useful for the query qk, where xik =
{0, 1} and qk ∈ RQi.

The xik variables depend on each other and on xi in various ways. Note that if a
shortcut shi is selected to serve any query qk (specified by xik = 1), then this shortcut
is also selected by our algorithm for materialization (specified by xi = 1). Thus:

xik � xi, i = 1, ..., n; k ∈ RQi (1)

Moreover, if a shortcut has been selected for materialization, then this shortcut is useful
for at least one query. Thus:

xi �
∑

k∈RQi

xik, i = 1, ..., n (2)

Avoiding containment. For each query qk we construct an auxiliary directed graph
GQk as follows: The nodes of GQk represent the query fragments related to qk. If (i)
a query fragment qfi is fully contained in another fragment qfj , and (ii) there does not

84 V. Dritsou et al.

exist any qfk (k �= i, j) such that qfi ≺ qfk and qfk ≺ qfj , then an edge is inserted in
GQk starting from the bigger fragment qfj and ending at the smaller fragment qfi. Note
that we connect each such node with its children only and not with all of its descendants.
An example illustrating such a graph is shown in Figure 4, where the graph of query q1

is presented. This graph is constructed with the help of Figure 3, and by recalling that
each candidate shortcut shi matches the query fragment qfi.

Using GQk we generate the containment constraints by the following procedure:

1. For each root node of the graph (i.e., each node with no incoming edges) of query
qk, find all possible paths pk

t leading to leaf nodes of the graph (i.e., to nodes with
no outgoing edges) and store them in a set of paths P k.

2. For each path pk
t ∈ P k, create a containment constraint by restricting the sum of

all variables xik whose fragment is present in the path to be less than or equal to 1.

The second step enforces that among all the candidate shortcuts participating in each
path pk

t , at most one can be selected. Continuing our previous example based on Fig-
ure 4, there exist two paths in P 1 for query q1, namely p1

1 = {qf1, qf3} and p1
2 =

{qf1, qf5, qf4}. These paths generate two containment constraints, namely x11+x31 �
1 and x11 + x51 + x41 � 1.

Avoiding overlaps. Overlapping candidates are treated in a similar way. In graph GQk

we compare each node with all other nodes on different paths of the graph. For each
pair of compared nodes, if the corresponding query fragments of the nodes under com-
parison have edges in common, then we insert this pair of nodes in a set OFk which
stores the pairs of overlapping fragments with respect to query qk. For each pair in
OFk we create a constraint specifying that the sum of its decision variables be less
than or equal to 1, indicating that only one of the candidate shortcuts in the pair can be
selected to serve the query qk. In the previous example of query q1, we would check
the two pairs (qf5, qf3) and (qf4, qf3). Only the first of these pairs contains fragments

that have edges in common, as qf5 and qf3 both contain the edge Paper
acceptedBy→

Conference. In order to specify that the shortcuts of these two query fragments can-
not be useful for the same query q1, we generate the constraint: x51 + x31 � 1.

In conclusion, given a parameter c (called price coefficient) that specifies the per
space penalty of the chosen solution, we obtain the following bi-criterion 0-1 integer
linear programming formulation for the shortcut selection problem:

max

n∑
i=1

∑
qk∈RQi

fk(tri − ri)xik − c

n∑
i=1

rixi (3)

subject to
xik − xi � 0, i = 1, ..., n; k ∈ RQi (4)

−
∑

k∈RQi

xik + xi � 0, i = 1, ..., n (5)

∑
i∈pk

u

xik � 1, k = 1, ..., m; pk
u ∈ P k (6)

Optimizing Query Shortcuts in RDF Databases 85

xik + xjk � 1, k = 1, ..., m; (qfi, qfj) ∈ OFk (7)

xik =
{

1 if shortcut shi is selected for query qk

0 otherwise

xi ∈ {0, 1}

3.1 Linear Relaxation

In the general case (i.e., unless particular conditions are satisfied), integer linear pro-
grams are NP-hard. In our problem though, a particular linear relaxation allows us to
obtain fast solutions. Constraint (5) ensures that if all xik = 0, then also xi = 0. If we
remove this constraint, then it is possible to have xi = 1 (i.e., to consume space) with-
out using the shortcut in any query qk. However, since this is a maximization problem
and xi has a negative coefficient in the objective function (3), a solution with xi = 1
and all corresponding xik = 0 can be improved by setting xi = 0. We can therefore
drop the constraint from the problem, since it is never violated by optimal solutions.

For a reason that will shortly become clear, we also drop the overlap constraint(7).
Contrary to constraint (5), this one can be violated by an optimal solution of the linear
program. Then, a cutting plane method is used to restore feasibility with two alternative
heuristics for cut selection, that will be presented in the sequel.

Consider now a relaxed linear program comprising the remaining constraints and
with the 0-1 variables replaced by real variables in the interval [0, 1]:

max

n∑
i=1

∑
qk∈RQi

fk(tri − ri)xik − c

n∑
i=1

rixi (8)

subject to
xik − xi � 0, i = 1, ..., n; k ∈ RQi (9)

∑
i∈pk

u

xik � 1, k = 1, ..., m; pk
u ∈ P k (10)

0 � xik � 1, 0 � xi � 1

The constraint matrix of the above linear program can be proven to fulfill the suffi-
cient conditions of total unimodularity given in [31]. The proof is omitted due to space
limitations. By virtue of this property, the linear program is guaranteed to have integer
solutions (thus each xik and xi will either be equal 0 or 1). Furthermore, the relax-
ation enables much more efficient solution since the empirical average performance of
simplex-based linear program solvers is polynomial, in fact almost linear [4,7].

Satisfying the overlap constraints. The solution of the relaxed problem may violate
constraint (9) that we have ignored in the relaxation. Here we propose a cutting plane
method with two alternative heuristics for restoring constraint satisfaction. After solv-
ing the relaxed problem, we check whether the solution violates any of the omitted
overlap constraints. Recall that these constraints contain two variables (representing

86 V. Dritsou et al.

two shortcuts used for the same query) that are not both allowed to be equal to 1. For
each such violation we set the value of one of the variables equal to 0 (i.e., we exclude
the respective shortcut) and insert this as an additional constraint into the initial prob-
lem. It can be proven that adding such constraints in the problem does not affect total
unimodularity. The problem is solved again and new cuts are introduced as needed until
we reach a solution that does not violate any overlap constraint.

But how do we choose which of the two variables to set equal to zero? We explore
two alternative heuristics. The first heuristic (LRb) selects to prohibit the shortcut with
the smallest benefit for the given query qk. The second heuristic (LRl) chooses to pro-
hibit the shortcut with the shortest corresponding query fragment. Both heuristics have
been developed in evaluation tests and are discussed in Section 4.

Selecting the Value of the Price Coefficient c. In order to find a solution that is ap-
propriate for a given space budget, we perform a binary search on the value of c. Both
linear algorithms (i.e., heuristics) developed here take as input the space budget and
then create linear models based on different values of c until they reach a solution the
space consumption of which is close to (or, even better, equal to) the given budget.

4 Evaluation

In this section we present an experimental study of the two variations of the linear
algorithm. We implemented LRb and LRl in C++ and compared their results with our
previously developed greedy algorithm (GR) described in [13]. Our goal is to evaluate
the reduction in query costs w.r.t. different RDF stores and data sets, to compare the
performance of LRb/LRl with GR in general and more specifically to check whether
LRb/LRl can capture the dependencies produced by strongly correlated workloads in
a more effective way than GR. By strongly correlated we mean workloads containing
path queries with containment relationships among the majority of them. In this spirit,
we report on the reduction of the total execution time of the given query workloads
after augmenting the database by the proposed shortcuts, vis-a-vis the allocated space
budget. We used four different systems for our experiments, each of them following
a different type of RDF store approach: (i) the SWKM4 management system, which
relies on a relational DBMS, (ii) the native Sesame5 repository, (iii) the in-memory
Sesame repository and (iv) the native RDF3X6 system. In the following experiments,
unless otherwise stated, we present in the graphs the percentage of reduction achieved
in the query time of the entire workload after augmenting the system by the proposed
shortcuts (y-axis) with regard to the space consumed for this augmentation, expressed
as a fraction of the database size (x-axis). All reported experiments were executed on
a Intel Core 2 Duo 2.33GHz PC with 4GB RAM running 32bit Windows Vista. In the
reported experiments we used Lingo 9.07 as linear solver for LRb and LRl.

Before discussing the results obtained with strongly correlated queries, we examine
the dependence of performance on the query cost metrics used. Recall from Section 2.2

4 Available at http://139.91.183.30:9090/SWKM/
5 Available at http://www.openrdf.org/
6 Available at http://www.mpi-inf.mpg.de/ neumann/rdf3x/
7 LINDO Systems, http://www.lindo.com

Optimizing Query Shortcuts in RDF Databases 87

80

100

tim
e

60

in
 q

ue
ry

40

ed
uc

tio
n

Input cost: actual times [LR]
I t t t l ti [GR]

0

20

%
 o

f r
e Input cost: actual times [GR]

Input cost: traversals [LR]
Input cost: traversals [GR]

0 5 10 15 20
% of data space consumed

Fig. 5. Yago in Sesame Native

470
LR GR

450

460

m
e

(s
ec

)

420

430

440

nn
in

g
tim

410

420ru
n

% of data space consumed

Fig. 6. Running Times of Algorithms

100

LRl [Sesame] LRb [Sesame] GR [Sesame]
LRl [RDF3X] LRb [RDF3X] GR [RDF3X]

60

80

ue
ry

tim
e

40

60

ct
io
n
in
qu

0

20

%
re
du

c

0 5 10 15
% of data space consumed

Fig. 7. Experiment with Correlated Queries

that computing the benefit of candidate shortcuts requires a cost metric of the query
fragments. Our theoretical formulation employs the number of traversals required to
answer the query, while the actual query times must also be considered. In [13] we have
shown that both cost metrics give qualitatively similar results for the greedy algorithm.
To confirm that this stands true for LRb/LRl too, we used the Yago data set [34] that
contains 1.62 million real data triples. We considered as query workload the 233 distinct
query paths of length 3 contained in the schema graph of Yago and used as RDF store
the Sesame native repository. In Figure 5 we present the percentage of reduction in
query time achieved for the entire workload (y-axis) after augmenting the system by
the selected shortcuts w.r.t. the fraction of data space required to be consumed by the
shortcut edges. In this experiment LRb and LRl give the same solutions, due to the
small length of queries (presented as LR in Figure 5).

It is obvious that our approach significantly reduces the overall query execution time
without consuming large amounts of space. Moreover, LR achieves a bigger reduction
compared to greedy (GR): when using traversals as cost metric, LR reduces the query
time by 55% by consuming only 6% of the data space, while GR reaches a reduction
of 33% for the same consumption. LR reaches the maximum reduction of 86% of the
initial query time with GR stopping at a maximum reduction of 66%. The reported
results confirm that the two cost metrics used give qualitatively similar results. We

88 V. Dritsou et al.

Table 1. Relative Improvement of Query Times in Sesame (over Greedy)

Space tGR−tLRb
tGR

tGR−tLRl
tGR

2.5% −2% 5%
5.0% 32% 34%
7.5% 32% 34%
10.0% 33% 40%
12.5% 36% 42%
15.0% 49% 52%
17.5% 61% 83%

will therefore continue in the following experiments by considering the traversals as
input cost metric for our algorithms. Regarding the running times of the algorithms,
we present in Figure 6 the time in seconds required by each algorithm to choose the
appropriate shortcuts for the experiment described with the Yago data set. The graph
shows the running time of the algorithms for each given budget. GR runs faster than
LR in all cases, since LR must iterate through the binary search, with LR being from 2
to 13 seconds slower. On the other hand, running times are a secondary consideration,
since shortcut selection is an offline procedure.

To evaluate the performance of the algorithms with strongly correlated queries, we
generated a synthetic schema graph comprising 143 nodes and 117 edges and then used
a Perl script to generate synthetic data. This script randomly picks a schema node at
the beginning and generates one data node from it. It then produces all the data edges
emanating from the latter according to the schema graph. This process is repeated on
the newly created ending data nodes of the produced edges. A parameter p defining
the probability of breaking a path (stop following the edges of the current node and
continue with a new one) is also used, which in this experiment is set to 0.4. The data
set generated for this experiment contains 1 million triples. For the correlated workload
we used 31 path queries of length from 5 to 15 with 29 of them being fully contained
in at least one other query of the workload; the smallest having length equal to 5 are
fully contained in 10 longer queries. We used Sesame native repository and RDF3X
for this experiment and the results obtained are presented in Figure 7. All algorithms
show significant reduction in query time: by consuming just 2.5% of the data space
they all reduce the query time by 65% in Sesame, while in RDF3X they all reach a
reduction of 43% for the same space consumption. Moreover, LRb and LRl show much
better results than GR in Sesame, while in RDF3X LRl outperforms the two remaining
algorithms. We can thus confirm that the linear approach, and mostly LRl, captures the
dependencies that exist in correlated workloads in a more effective way: LRl manages to
reduce the query time by 96% when consuming only 17.5% of the data space in Sesame,
while for the same consumption it achieves a reduction of 68% in RDF3X. Table 1
shows the relative improvement in query time reduction achieved in Sesame by the two
variants of LR over GR for various space budgets. Both LRb and LRl show better results
in most cases (LRb is by 2% worse than GR in one case of very small budget), while
LRl yields 83% more efficient shortcuts than GR for the maximum budget.

Optimizing Query Shortcuts in RDF Databases 89

100

e

LRl [Sesame] LRb [Sesame] GR [Sesame]
LRl [SWKM] LRb [SWKM] GR [SWKM]

60

80

qu
er
y
tim

e

40

60

uc
tio

n
in
q

0

20

%
of

re
du

0
0 10 20 30

% of data space consumption

Fig. 8. Experiment with CIDOC Ontology

90

LRb [Sesame] LRl [Sesame] GR [Sesame]
LRb [RDF3X] LRl [RDF3X] GR [RDF3X]

60

75

ue
ry

tim
e

30

45

ct
io
n
in
qu

0

15

%
of

re
du

0 2 4 6 8
% of data space consumption

Fig. 9. Using Long Path Queries

In Figure 8 we present the results obtained by a different type of ontology, namely
the CIDOC CRM8, which is characterized by a schema graph forming a “constella-
tion graph” structure with non-uniform density. This contains a small number of “star”
nodes, each connected with a large number of “planet” nodes and sparsely connected
with other star nodes. Our goal here is to evaluate the performance of LR algorithms
with these schema graphs. We generated 1 million synthetic triples with the aforemen-
tioned Perl script and used as query workload 65 queries of length 2 to 4. We tested the
algorithms using both the Sesame in-memory repository and the SWKM system. The
reduction achieved is much bigger with Sesame than SWKM. Moreover, LRb and LRl
perform better than GR when using Sesame, while this is not the case with SWKM:
although in the majority of cases the three algorithms show similar results, in 3 cases
GR achieves a bigger reduction by 5− 7%.

To examine the performance of the algorithms with longer path queries, we generated
a synthetic schema graph containing 189 nodes and 467 edges and populated it using
the Perl script with 4 million of synthetic triples. The query workload here comprises
26 queries with length from 10 to 15. For this experiment we used the Sesame native
repository and RDF3X, and obtained the results presented in Figure 9. The reduction
achieved in both systems is similar in this case: all algorithms achieve a reduction of
at least 40% by consuming only 5% of the data space. Moreover, LRb and LRl still
give better results when compared to GR. E.g., for the maximum budget given in the
experiment, the execution of the workload after augmenting the RDF3X system by the
shortcuts proposed by LRl is by 39% faster than after inserting those proposed by GR.

5 Related Work

The emerging Semantic Web necessitates the development of methods to efficiently
manage semantic data, often expressed in OWL and/or RDF. To this end, a variety
of systems have been developed to handle RDF data including, among others, Jena9,
Sesame, RDF3X, SWKM. For the efficient querying of semantic data, several RDF

8 Available at http://www.cidoc-crm.org/rdfs/cidoc crm v5.0.2 english label.rdfs
9 Available at http://jena.sourceforge.net/

90 V. Dritsou et al.

languages have been proposed, with SPARQL [2], RQL [19] and RDQL [1] standing
as main representatives.

In the relational world, views have long been explored in database management sys-
tems [30], either as pure programs [32,33], derived data that can be further queried [23],
pure data (detached from the view query) or pure index [29]. The selection of shortcuts
in RDF databases is similar to materialized views in relational systems, which has long
been studied: selecting and materializing a proper set of views with respect to the query
workload and the available system resources optimizes frequent computations [18,21].
Moreover, restricting the solution space into a set of views with containment properties
has been proposed in the Data Cube [16] framework.

Indexing RDF data is similar in concept (due to the hierarchical nature of path
queries) to indexing data in object oriented (OO) and XML Databases. An overview
of indexing techniques for OO databases is presented in [5]. In [17] a uniform index-
ing scheme, termed U-index, for OO databases is presented, while in [6] the authors
present techniques for selecting the optimal index configuration in OO databases when
only a single path is considered and without taking into account overlaps of subpaths.
The work of [12] targets building indices over XML data. Unlike XML data, RDF data
is not rooted at a single node. Moreover, the above techniques target the creation of
indices over paths, thus not tackling the problem of this paper, which is the selection of
shortcuts to materialize given a workload of overlapping queries.

Following the experience from relational databases, indexing techniques for RDF
databases have already been explored [14,24,35]. A technique for selecting which (out
of all available) indices can help accelerate a given SPARQL query is proposed in [9].
In [3] the authors propose a vertically partitioned approach to storing RDF triples and
consider materialized path expression joins for improving performance. While their ap-
proach is similar in spirit to the notion of shortcuts we introduce, the path expression
joins they consider are hand-crafted (thus, there is no automated way to generate them in
an arbitrary graph). Moreover the proposed solutions are tailored to relational backends
(and more precisely column stores), while in our work we do not assume a particular
storage model for the RDF database. Our technique can be applied in conjunction with
these approaches to accelerate query processing, since it targets the problem of deter-
mining the proper set of shortcuts to materialize without assuming a particular RDF
storage model. In [26] the authors propose a novel architecture for indexing and query-
ing RDF data. While their system (RDF3X) efficiently handles large data sets using
indices and optimizes the execution cost of small path queries, our evaluation shows
that our technique further reduces the execution cost of long path queries in RDF3X.

6 Conclusions

Shortcuts are introduced as a device for facilitating the expression and accelerating the
execution of frequent RDF path queries, much like materialized database views, but
with distinctive traits and novel features. Shortcut selection is initially formulated as
a benefit maximization problem under a space budget constraint. In order to overcome
the shortcomings of a previous greedy algorithm solution to this problem, we developed
an alternative bi-criterion optimization model and a linear solution method.

Optimizing Query Shortcuts in RDF Databases 91

We have shown through an extensive experimental study that the augmentation of
RDF databases with shortcuts reduces significantly the query time of the workload,
while in the majority of cases the two variations of our algorithm outperform our previ-
ous greedy solution. This reduction was obtained using different types of RDF stores,
uniform and non-uniform schema graphs, real as well as synthetic ontologies, different
database sizes and different types of query workloads. In the case of strongly correlated
query workloads, where the greedy solution tends to waste space, we have seen that
our two variations (LRl and LRb) better capture the dependencies among queries and
achieve a bigger reduction in query execution time.

References

1. RDQL - A Query language for RDF. W3C Member,
http://www.w3.org/Submission/RDQL/

2. SPARQL Query Language for RDF. W3C Recommendation,
http://www.w3.org/TR/rdf-sparql-query/

3. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data Man-
agement Using Vertical Partitioning. In: VLDB (2007)

4. Beasley, J.E.: Advances in Linear and Integer Programming. Oxford Science (1996)
5. Bertino, E.: A Survey of Indexing Techniques for Object-Oriented Database Management

Systems. Query Processing for Advanced Database Systems (1994)
6. Bertino, E.: Index Configuration in Object-Oriented Databases. The VLDB Journal 3(3)

(1994)
7. Borgwardt, K.H.: The average number of pivot steps required by the simplex-method is poly-

nomial. Mathematical Methods of Operations Research 26(1), 157–177 (1982)
8. Caprara, A., Pisinger, D., Toth, P.: Exact Solution of the Quadratic Knapsack Problem. IN-

FORMS J. on Computing 11(2), 125–137 (1999)
9. Castillo, R., Leser, U., Rothe, C.: RDFMatView: Indexing RDF Data for SPARQL Queries.

Tech. rep., Humboldt University (2010)
10. Chaillou, P., Hansen, P., Mahieu, Y.: Best network flow bounds for the quadratic knapsack

problem. Lecture Notes in Mathematics, vol. 1403, pp. 225–235 (2006)
11. Constantopoulos, P., Dritsou, V., Foustoucos, E.: Developing query patterns. In: Agosti, M.,

Borbinha, J., Kapidakis, S., Papatheodorou, C., Tsakonas, G. (eds.) ECDL 2009. LNCS,
vol. 5714, pp. 119–124. Springer, Heidelberg (2009)

12. Cooper, B.F., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A Fast Index for
Semistructured Data. In: VLDB (2001)

13. Dritsou, V., Constantopoulos, P., Deligiannakis, A., Kotidis, Y.: Shortcut selection in RDF
databases. In: ICDE Workshops. IEEE Computer Society, Los Alamitos (2011)

14. Fletcher, G.H.L., Beck, P.W.: Indexing social semantic data. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,
vol. 5318, Springer, Heidelberg (2008)

15. Gallo, G., Hammer, P., Simeone, B.: Quadratic knapsack problems. Mathematical Program-
ming 12, 132–149 (1980)

16. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In: ICDE (1996)

17. Gudes, E.: A Uniform Indexing Scheme for Object-Oriented Databases. Information Sys-
tems 22(4) (1997)

18. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Efficiently. In: SIG-
MOD Conference (1996)

http://www.w3.org/Submission/RDQL/
http://www.w3.org/TR/rdf-sparql-query/

92 V. Dritsou et al.

19. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: A
declarative query language for RDF. In: WWW (2002)

20. Kotidis, Y.: Extending the Data Warehouse for Service Provisioning Data. Data Knowl.
Eng. 59(3) (2006)

21. Kotidis, Y., Roussopoulos, N.: A Case for Dynamic View Management. ACM Trans.
Database Syst. 26(4) (2001)

22. Larson, P., Deshpande, V.: A File Structure Supporting Traversal Recursion. In: SIGMOD
Conference (1989)

23. Larson, P., Yang, H.Z.: Computing Queries from Derived Relations. In: VLDB (1985)
24. Liu, B., Hu, B.: Path Queries Based RDF Index. In: SKG, Washington, DC, USA (2005)
25. Michelon, P., Veilleux, L.: Lagrangean methods for the 0-1 Quadratic Knapsack Problem.

European Journal of Operational Research 92(2), 326–341 (1996)
26. Neumann, T., Weikum, G.: The rdf-3x engine for scalable management of rdf data. VLDB

J. 19(1) (2010)
27. Pisinger, D.: The quadratic knapsack problem - a survey. Discrete Applied Mathemat-

ics 155(5), 623–648 (2007)
28. Rosenthal, A., Heiler, S., Dayal, U., Manola, F.: Traversal Recursion: A Practical Approach

to Supporting Recursive Applications. In: SIGMOD Conference (1986)
29. Roussopoulos, N., Chen, C.M., Kelley, S., Delis, A., Papakonstantinou, Y.: The ADMS

Project: View R Us. IEEE Data Eng. Bull. 18(2) (1995)
30. Roussopoulos, N.: Materialized Views and Data Warehouses. SIGMOD Record 27 (1997)
31. Schrijver, A.: Theory of linear and integer programming. John Wiley, Chichester (1998)
32. Sellis, T.K.: Efficiently Supporting Procedures in Relational Database Systems. In: SIGMOD

Conference (1987)
33. Stonebraker, M.: Implementation of Integrity Constraints and Views by Query Modification.

In: SIGMOD Conference (1975)
34. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In: WWW.

ACM Press, New York (2007)
35. Udrea, O., Pugliese, A., Subrahmanian, V.S.: GRIN: A Graph Based RDF Index. In: AAAI

(2007)

RDFS Update: From Theory to Practice

Claudio Gutierrez1, Carlos Hurtado2, and Alejandro Vaisman3

1 Computer Science Department, Universidad de Chile
2 Universidad Adolfo Ibañez, Chile

3 Universidad de la República, Uruguay

Abstract. There is a comprehensive body of theory studying updates
and schema evolution of knowledge bases, ontologies, and in particular
of RDFS. In this paper we turn these ideas into practice by presenting
a feasible and practical procedure for updating RDFS. Along the lines
of ontology evolution, we treat schema and instance updates separately,
showing that RDFS instance updates are not only feasible, but also de-
terministic. For RDFS schema update, known to be intractable in the
general abstract case, we show that it becomes feasible in real world
datasets. We present for both, instance and schema update, simple and
feasible algorithms.

1 Introduction

RDF has become one of the prime languages for publishing data on the Web,
thanks to initiatives like Linked Data, Open Data, Datagovs, etc. The next
step is to work on the evolution of such data, thus, facing the issue of informa-
tion update. If one analyzes the data that is being published, the vocabulary
used includes the core fragment of RDFS plus some OWL features. This poses
strong challenges to the goal of updating such information. It is well-known
that the problem of updating and schema evolution in Knowledge Bases is both,
intractable and non-deterministic in the general case. For example, erasing a
statement ϕ (that is, updating the knowledge base so that the statement ϕ can
not be deduced from it) not only could take exponential time, but, there could be
many different and equally reasonable solutions. Thus, there is no global solution
and the problem has to be attacked by parts.

In this paper we study the problem of updating data under the RDFS vo-
cabulary, considering the rest of the vocabulary as constant. Many proposals
on updates in RDFS and light knowledge bases (e.g. DL-lite ontologies) have
been presented and we discuss them in detail in Section 5. Nevertheless, such
proposals have addressed the problem from a strictly theoretical point of view,
making them –due to the inherent complexity of the general problem– hard or
impossible to be used in practice.

Using the Katsuno-Mendelzon theoretical approach (from now on, K-M ap-
proach) for update and erasure [8], which has been investigated and proved
fruitful for RDFS (see [3,4,6]), we show that updates in RDFS can be made
practical. We are able to get this result by (a) following the approach typical in

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 93–107, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

94 C. Gutierrez, C. Hurtado, and A. Vaisman

ontology evolution, where schema and instance updates are treated separately;
(b) focusing on the particular form of the deductive rules of RDFS; and (c) con-
sidering blank nodes as constants (which for current big data sets is a rather safe
assumption) [1]. In this paper we concentrate in the erasure operation (‘deleting’
a statement), because update (adding information) in RDFS, due to the positive
logic nature of it, turns out to be almost trivial [6]. Our two main results are,
a deterministic and efficient algorithm for updating instances, and a reduction
of the update problem for schema to a graph theoretical problem in very small
graphs.

Regarding instance update, we show that due to the particular form of the
rules involved in RDFS [13], and using a case by case analysis, instance erasure
(i.e., erasing data without touching the schema) is a deterministic process for
RDFS, that is, it can be uniquely defined, hence opening the door to automate it.
Then, we show that this process can be done efficiently, and reduces essentially to
compute reachability in small graphs. We present pseudo-code of the algorithms
that implement this procedure.

As for schema erasure, the problem is intrinsically non-deterministic, and worst,
intractable in general. A trivial example is a chain of subclases (ai, sc, ai+1) from
where one would like to erase the triple (a1, sc, an). The minimal solutions consist
in deleting one of the triples. In fact, we show that in general, each solution corre-
sponds bi-univocally to the well-known problem of finding minimal cuts for certain
graphs constructed from the original RDF graph to be updated. This problem is
known to be intractable. The good news here is that the graphs where the cuts
have to be performed are very small (for the data we have, it is almost of constant
size: see Table 1). They correspond essentially to the subgraphs containing triples
with predicates subClassOf and subPropertyOf. Even better, the cuts have to be
performed over each connected component of these graphs (one can avoid cuts be-
tween different connected components), whose size is proportional to the length
of subClassOf (respectively subPropertyOf) chains in the original graph. We also
present pseudo-code for this procedure.

The remainder of the paper is organized as follows. Section 2 reviews RDF
notions and notations and the basics of the K-M approach to erasure. Section 3
studies the theoretical basis of the erasure operations proposed, and Section 4
puts to practice the ideas presenting algorithms for efficiently computing erasure
in practice. Section 5 discusses related work. We conclude in Section 6.

2 Preliminaries

To make this paper self-contained we present in this section a brief review of
basic notions on RDF, and theory of the K-M approach to update in RDFS.
Most of the material in this section can be found in [5,6,13] with more detail.

Definition 1 (RDF Graph). Consider infinite sets U (URI references); B =
{Nj : j ∈ N} (Blank nodes); and L (RDF literals). A triple (v1, v2, v3) ∈ (U ∪
B) × U × (U ∪ B ∪ L) is called an RDF triple. The union of U, B, L will be
denoted by UBL.

RDFS Update: From Theory to Practice 95

Table 1. Statistics of triples in schema, instances and sc, sp chains of some RDF
datasets. (The difference between # triples and #(schema + instances) is due the
predicates sameAs, sameClass, which being schema, do not have semantics in RDFS.)

Dataset # Triples # Schema #Instances {sc, sp}-Chain-length Most used voc.
bio2rdf (1) 2,024,177 685 1,963,738 3 type, label
data.gov.uk 22,504,895 16 22,503,962 1 type, value
bibsonomy 13,010,898 0 12,380,306 0 type, value
dbtune 58,920,361 418 58,248,647 7 type, label
geonames 9,415,253 0 9409247 0 type
uniprot 72,460,981 12295 72458497 4 type, reif.

An RDF graph (just graph from now on) is a set of RDF triples. A subgraph
is a subset of a graph. A graph is ground if it has no blank nodes. �

A set of reserved words defined in RDF Schema (called the rdfs-vocabulary)
can be used to describe properties like attributes of resources, and to represent
relationships between resources. In this paper we restrict to a fragment of this
vocabulary which represents the essential features of RDF and that contains the
essential semantics (see [13]): [range], rdfs:domain [dom], rdf:type [type], rdfs:
subClassOf [sc] and rdfs:subPropertyOf [sp]. The following set of rule schemas
captures the semantics of this fragment [13]. In each rule schema, capital letters
A, B, C, D, X, Y,... represent variables to be instantiated by elements of UBL.

GROUP A (Subproperty)

(A, sp, B) (B, sp, C)

(A,sp, C)
(1)

(A, sp, B) (X, A, Y)

(X, B, Y)
(2)

GROUP B (Subclass)

(A, sc, B) (B, sc, C)

(A,sc, C)
(3)

(A,sc, B) (X, type, A)

(X, type, B)
(4)

GROUP C (Typing)

(A,dom, C) (X, A,Y)

(X, type, C)
(5)

(A,range, D) (X, A,Y)

(Y, type, D)
(6)

Definition 2 (Proof Tree, Deduction). Let G, H be RDF graphs, and t a
triple. Then a proof tree of t from G is a tree constructed as follows: (1) The
root is t; (2) The leaves are elements of G; (3) If t is a node, then t has children
t1, t2 iff t1 t2

t is the instantiation of a rule (see rules above). If t has a proof tree
from G we will write G � t.

96 C. Gutierrez, C. Hurtado, and A. Vaisman

A deduction of H from G is a set of proof trees from G, one for each t ∈ H.
�

Definition 3 (Closure). Let G be an RDF graph. The closure of G, denoted
cl(G), is the set of triples that can be deduced from G (under Definition 2), that
is, cl(G) = {t : G � t}. �

The formalization of the K-M approach is based on the models of a theory. Thus
we need the logical notion of a model of a formula (of an RDF graph). The
model theory of RDF (given in [7]) follows standard classical treatment in logic
with the notions of model, interpretation, and entailment, denoted |= (see [5]
for details). Also, throughout this paper we work with Herbrand models, which
turn out to be special types of RDF graphs themselves. For a ground graph G,
a Herbrand model of G is any RDF graph that contains cl(G) (in particular,
cl(G) is a minimal model). Mod(G) will denote the set of such models of G. The
deductive system presented is a faithful counterpart of these model-theoretic
notions:

Proposition 1 (See [5,13]). (1) G |= H iff cl(H) ⊆ cl(G); (2) The deduc-
tive system of Definition 2 is sound and complete for |= (modulo reflexivity of
sc and sp).1

2.1 Semantics of Erase in RDF

From a model-theoretic point of view, the K-M approach can be characterized
as follows: for each model M of the theory to be changed, find the set of models
of the sentence to be inserted that are ‘closest’ to M . The set of all models
obtained in this way is the result of the change operation. Choosing an update
operator then reduces to choosing a notion of closeness of models.

Working with positive theories like RDFS, the problem of adding positive
knowledge (e.g. a triple, a graph H) to a given graph G is fairly straightforward.
In fact, for ground graphs it corresponds to the union of the graphs. (See [6]).
Thus, in what follows we concentrate in the ‘erase’ operation, that is, ‘deleting’
a triple t (or a graph H) from a given graph G. A standard approach in KB
is to ensure that, after deletion, the statement t should not be derivable from
G, and that the deletion should be minimal. The result should be expressed by
another formula, usually in a more expressive language. We next characterize the
erase operation using the K-M approach, which essentially states that, erasing
statements from G means adding models to Mod(G), the set of models of G.

Definition 4 (Erase Operator). The operator •, representing the erasure, is
defined as follows: for graphs G and H, the semantics of G •H is given by:

Mod(G •H) = Mod(G) ∪
⋃

m∈Mod(G)

min(((Mod(H))c,≤m) (7)

1 As in [13], we are avoiding triples of the form (a, sc, a) and (b, sp, b), because this
causes no harm to the core of the deductive system (see [13]).

RDFS Update: From Theory to Practice 97

where ()c denotes complement. In words, the models of (G •H) are those of G
plus the collection of models mH �|= H such that there is a model m |= G for
which mH is ≤m-minimal among the elements of Mod(H)c. �

The following standard notion of distance between models gives an order which
is the one we will use in this paper. Recall that the the symmetric difference
between two sets S1 and S2, denoted as S1 ⊕ S2, is (S1 \ S2) ∪ (S2 \ S1).

Definition 5 (Order ≤m). Let G, G1, G2 be models of RDF graphs, and let G
be a set of models of RDF graphs. Then : (1) G1 ≤G G2 (G1 is ‘closer’ to G
than G2) if and only if G1⊕G ⊆ G2⊕G; (2) G1 is ≤G-minimal in G if G1 ∈ G,
and for all G2 ∈ G, if G2 ≤G G1 then G2 = G1. �

Representing faithfully in RDF the notions of erase defined above is not possible
in the general case, given its lack of negation and disjunction. The next example
illustrates the problems.

Example 1. Let us consider the graphs G = {(a, sc, b), (b, sc, c)}, and H =
{(a, sc, c)}. Any graph G′ representing the result of this update cannot contain
both (a, sc, b), and (b, sc, c), since this would derive (a, sc, c). Then, the result of
the update should be {(a, sc, b)}∨{(b, sc, c)}. Elaborating on this a little further,
in Equation 7, Mod(H)c are the models that cannot derive (a, sc, c). From these
models, min((Mod(H))c,≤m) contains the ones at distance ‘1’ from Mod(G),
namely {{(a, sc, b)}, {(b, sc, c)}}. Any model that does not include (a, sc, b) or
(b, sc, c) is at distance ≥ 2 from Mod(G). Moreover, any model including both
triples would not be in (Mod(H))c since it would derive (b, sc, c). �

2.2 Approximating Erase in RDF

Knowing that it is not possible in general to find RDF graphs representing the
new state after erasure, we study the ‘closest’ RDF formulas that express it. In
this direction, we introduce the notion of erase candidate, which gives a workable
characterization of erase (expressed previously only in terms of sets of models).

Definition 6 (Erase Candidate). Let G and H be RDF graphs. An erase
candidate of G • H is a maximal subgraph G′ of cl(G) such that G′ �|= H. We
denote ecand(G, H) the set of erase candidates of G •H. �

Example 2. For the RDF graph G of Figure 1 (a), the set ecand(G, {(a, sc, d)})
is shown in Figure 2 (a). �

The importance of ecand(G, H) resides in that it defines a partition of the set
of models of G •H , and a set of formulas whose disjunction represents erase:

Theorem 1 (See [6]). Let G, H be RDF graphs.

1. If E ∈ ecand(G, H), then E ∈Mod(G •H).
2. If m ∈Mod(G•H) and m �∈ Mod(G), then there is a unique E ∈ ecand(G, H)

such that m |= E.

98 C. Gutierrez, C. Hurtado, and A. Vaisman

b

sc

a

sc

scsc

d
sc

e

c

sc

b

sc sc

a
sc

sc

sc

sc

sc

d
sc

e

c

sc sc

(a) (b)

Fig. 1. (a) An RDF Graph G. (b) The closure of G.

b

sc sc

a

sc

d
sc

e

c

scsc

b

sc sc

a

scsc

sc

d
sc

e

c

sc

b

sc

a

sc

sc

d
sc

e

c

scsc

b

sc

a

sc

scsc

sc

d
sc

e

c

sc

b

sc

a

sc

d

a

sc

d

c

sc

a
sc

d

(a) (b)

Fig. 2. (a) The set of erase candidates ecand(G, {(a, sc, d)}). (b) The set of minimal
bases minbases(cl(G), {(a, sc, d)}).

3. For all formulas F of RDF, (
⋂

E∈ecand(G,H) E) |= F if and only if Mod(G •
H) ⊆ Mod(F).

Items (1) and (2) in Theorem 1 state that if we had disjunction in RDF, erasure
could be expressed by the following finite disjunction of RDF graphs:

G •H “=” G ∨ E1 ∨ · · · ∨ En,

where Ej are the erase candidates of G •H . Item (3) states the fact that all the
statements entailed by G •H expressible in RDF are exactly represented by the
RDF graph defined by the intersection of all the erase candidates graphs.

Note that the smaller the size of ecand(G, H), the better the approximation
to G •H , being the limit the case when it is a singleton:

Corollary 1. If ecand(G, H) = {E}, then (G •H) ≡ E. �

RDFS Update: From Theory to Practice 99

3 Computing the Erase in RDF

From the discussion above, it follows that approximating G •H reduces to find
the erase candidates of this operation. For working purposes, it is easier to work
with the ‘complement’ of them in cl(G), that we will call delta candidates :

Definition 7 (Delta Candidates dcand(G, H)). The set of delta candidates,
denoted dcand(G, H), is the set of minimal graphs D ⊆ cl(G) such that (cl(G) \
D) �|= H. �

Thus, the relationship between delta and erase candidates is the following:

dcand(G, H) = {(cl(G) \ E) : E ∈ ecand(G, H)}. (8)

The remainder of this section provides a characterization of delta candidates,
based in the notion of proof tree (Definition 2).

Definition 8 (Bases and Minimal Bases). (1) The set of leaves of a proof
tree (of H from G) is called the base of such proof.

(2) A base B of H from G, is a minimal base iff it is minimal under set-
inclusion among all the bases of proofs of H from G (that is, for every base B′

of H from G, it holds B ⊆ B′). We denote minbases(G, H) the set of minimal
bases of G, H. �

Example 3. For the graph G given in Figure 1 (a), the set minbases(cl(G),
{(a, sc, d)}) contains the graphs given in Figure 2 (b). �

We now need to define the notion of a hitting set.

Definition 9 (Hitting Set). A hitting set for a collection of sets C1, . . . , Cn

is a set C such that C ∩Ci is non-empty for every Ci. C is called minimal if it
is a minimal under set-inclusion. �

Theorem 2. Let G, H, C be RDF graphs. Then, C is a hitting set for the col-
lection of sets minbases(G, H) iff (cl(G) \ C) �|= H. Moreover, C is a minimal
hitting set iff cl(G)\C is a maximal subgraph G′ of cl(G) such that G′ �|= H. �

Proof. (sketch) Note that if C is a hitting set, its minimality follows from the
maximality of its complement, G \ C, and vice versa. Hence we only have to
prove that C is a hitting set for minbases(G, H) iff (G \ C) �|= H .

Now we are ready to give an operational characterization of delta candidates in
terms of hitting sets and minimal bases.

Corollary 2. Let G, H, C be RDF graphs. C ∈ dcand(G, H) if and only if C is
a minimal hitting set for minbases(cl(G), H). �

Proof. Follows from the Definition 7, Theorem 2, and the observation that C ⊆
cl(G) is minimal iff cl(G) \ C is maximal. �

100 C. Gutierrez, C. Hurtado, and A. Vaisman

3.1 Erasing a Triple from a Graph

Now we are ready to present algorithms to compute the delta candidates. We re-
duce computing erase candidates to finding minimal multicuts in certain directed
graphs. The essential case is the deletion of one triple.

Definition 10 (Minimal Cut). Let (V, E) be a directed graph. A set of edges
C ⊆ E disconnects two vertices u, v ⊆ V iff each path from u to v in the graph
passes through a vertex in C. In this case C is called a cut. This cut is minimal
if the removal of any node from C does not yield another cut.

Cuts can be generalized to sets of pairs of vertices yielding multicuts. A mini-
mal multicut for a set of pairs of nodes (u1, v1), (u2, v2g), . . . , (un, vn) is a min-
imal set of edges that disconnects ui and vi, for all i. �

For a triple t in a graph G, we will show that the graphs in dcand(G, t) correspond
to certain cuts defined in two directed graphs derived from G, that we denote
G[sc] and G[sp], defined as follows:

Definition 11 (Graphs G[sc] and G[sp]). Given an RDF graph G, we denote
G[sc] = (N, E) the directed graph defined in Table 2. For each triple of the form
specified in the first column of the table, we have the corresponding edges in E.
The set of nodes N is composed of all the nodes mentioned in the edges given in
the table. The directed graph G[sp] is defined similarly in Table 2. We use the
letters n and m to refer to nodes in G[sc] and G[sp], respectively. �

Table 2. Description of the construction of the graphs G[sc] (above) and G[sp] (below)

Triple in G Edge in G[sc]

(a,sc, b) (na, nb)
(a,type, b) (nt,a, nb)

Triple in G Edges in G[sp]

(p,sp, q) (mp, mq)
(a, p, b) (ma,b, mp)
(p,dom, c) (mp, mv,dom) for each nc →∗ nv in G[sc]
(p,range, c) (mp, mv,range) for each nc →∗ nv in G[sc]

For an RDF triple t, the set of multicuts (set of pairs of nodes) associated to
the erasure of t from an RDF graph G, is defined as follows:

Definition 12 (Set of edges t[sc, G] and t[sp, G]). The set t[sc, G] contains
the pairs of nodes (u, v) as described in Table 3 (second column) with u, v nodes
in G[sc]. Analogously, we define t[sp, G] using Table 3 (third column). �

Example 4. Let us consider graph G on the left hand side of Figure 3. The center
part and the right hand side show, respectively, the graphs G[sp] and G[sc], built
according to Table 2. For example, for the triple t = (d, sc, c), the sets of edges
are (d, sc, c)[sc, G] = {(nd, nc)} and (d, sc, c)[sp, G] = ∅. There are triples which

RDFS Update: From Theory to Practice 101

.

.

a bp

sp sc

dom c f

e

scsp
.

.

mp

mc,dom

G G[sp]

m
f,dom

G[sc]

nd

ne

nc

d
type

h n t,h

sc

a,bm

nf

Fig. 3. An RDF graph G and its associated G[sc] and G[sp] graphs

give rise to multiple pairs of nodes. For example, for the triple t = (a, type, c) and
the graph in Figure 3, the sets contain the pairs (a, type, c)[sc, G] = {(nt,a, nc)}∩
G[sc] = ∅, and (a, type, c)[sp, G] = {(mab, mc,dom), (mba, mc,dom)}. �

Table 3. Construction of the pairs of nodes t[sc, G] and t[sp, G] associated to a triple
t. The minimal multicuts of them in G[sc] and G[sp] respectively, will give the elements
of dcand(G, t) (Theorem 3).

t ∈ G t[sc, G] t[sp, G]

(a,sc, b) (na, nb) –
(a,sp, b) – (ma, mb)
(a, p, b) – (mab, mp)
(a,type, c) (nt,a, nc) pairs (ma,x, mc,dom) for all x

pairs (mx,a, mc,range) for all x

The next theorem shows that computing the delta candidates can be reduced
to compute minimal multicuts, in particular the set of cuts defined in Table 3 in
the graphs defined in Table 2.

Theorem 3. The elements of dcand(G, t) are precisely the triples of G that
correspond (according to the mapping in Table 2) to the minimal multicuts of
t[sc, G] in G[sc] plus the minimal multicuts of t[sp, G] in G[sp].

Proof. The proof is a case-by-case analysis of each form of t. For t = (a, dom, c)
or t = (a, range, c), the set dcand(G, t) = {t}, because t cannot be derived by
any rule, thus, G �|= t if and only if t �∈ G.

Case t = (a, sc, b). From the deduction rules in Section 2, t can be deduced
from G if and only if there is a path in G[sc] from na to nb (note that the only
rule that can derive t is (3)). Hence dcand(G, t) is in correspondence with the
set of the minimal cuts from na to nb in G[sc].

Case t = (a, sp, b). This is similar to the previous one. ¿From the deduction
rules, it follows that t can be only be deduced from G if there is a path in G[sp]

102 C. Gutierrez, C. Hurtado, and A. Vaisman

from ma to mb (by rule (1)). Thus dcand(G, t) is the set of the minimal cuts
from ma to mb in G[sp].

Case t = (a, type, c). To deduce t we can use rules (4), (5) and (6). Rule (4)
recursively needs a triple of the same form (a, type, d) and additionally the fact
that (d, sc, c). Thus, t can be derived from G if there is path in G[sc] from nt,a

to nc. Triple t can also be derived from (5) and (6). Let us analyze (5) (the other
case is symmetric). We need the existence of triples (a, P, x) and (P, dom, u)
and u →∗ c in G[sc], i.e., (u, sc, c). Then (a, P, x) can be recursively derived
by rule(2) (and by no other rule); (P, dom, u) should be present; and the last
condition needs (u, sc, c). Hence t can be derived if for some x there is a path
from ma,x to mc,dom in G[sp] (this explains the two last lines of Table 1).

Analyzing the rules, we can conclude that t is derivable from G if and only
if we can avoid the previous forms of deducing it. That is, producing a minimal
cut between nt,a and nc in G[sc] and a minimal multicut between the set of
pairs (max, mc,dom) for all x, and the set of pairs (my,a, mrange,c) for all y, in
the graph G[sp].

Case t = (a, p, b). Here, t can only be derived using rule (2). This needs the
triples (a, q, b) and (q, sp, p). With similar arguments as above, it can be shown
that t can be derived from G iff there is path in G[sp] from ma,b to mp. Hence
dcand(G, t) is the set of minimal cuts from ma,b to mp in G[sp]. �

The complexity of the above process is given essentially by the complexity of
finding minimal multicuts:

Theorem 4. Let G, H be ground RDF graphs, and t be a ground triple. The
problem of deciding whether E ∈ ecand(G, t) is in PTIME.

Proof. From Definition 6, the problem reduces to determine if D = cl(G)\E is a
delta candidate in dcand(G, t). Let G′ = cl(G), G′ can be computed in polytime.
Theorem 3 shows that we have to test (i) whether t[sc, G′] is a minimal cut in
G′[sc] and (ii) whether t[sp, G′] is a minimal (multi)cut in G′[sp]. In both cases
the test can be done in PTIME by simple reachability analysis in the graphs
G′[sc] and G′[sp], respectively. Testing whether a set of edges S is a minimal
cut for (v1, u1) in a graph (V, E) can be done performing polytime reachability
analysis in the graph as follows. To test whether S is a cut, delete from E the
edges in S, and test whether v1 reaches u1 in this new graph. To test minimality,
do the same test for each set of edges S′ ⊂ S resulting from removing a single
edge from S. S is minimal iff all of the S′s are not cuts. We proceed similarly
for testing if a set of edges is a minimal multicut. �

3.2 Erasing a Graph from a Graph

The problem of computing erase candidates ecand(G, H) for the case where H
has several triples can be easily reduced to the previous one when H = {t}.

Lemma 1. Let G, H be ground RDF graphs in normal form (i.e. without re-
dundancies, see [5]). (i) If E ∈ ecand(G, H), then there exists a triple ti ∈ H

RDFS Update: From Theory to Practice 103

such that E ∈ ecand(G, {ti}); (ii) If D ∈ dcand(G, H), then there exists a triple
ti ∈ H such that D ∈ dcand(G, {ti}).

Proof. (i) Suppose G �|= H , then there is a triple ti ∈ H such that G �|= ti, which
yields ecand(G, H) = {G} = ecand(G, {ti}). Now we assume that G |= H .
That is H ⊆ nf(G). Let T = (H \ I). T is non-empty because I �|= H and
nf(E) = E. Now if T has more than one triple, then we add one triple of T to
I and obtain I ′ ∈ ecand(G, H) which is greater than I contradicting that E is
maximal. Therefore T must have exactly one triple, say tj . In this case can be
easily verified that E = ecand(G, {tj}). (ii) Follows directly from (ii).

The intuition of Lemma 1 is that each delete candidate in dcand(G, H) is also a
delete candidate of dcand(G, {ti}) for some triple ti in H . Therefore, the problem
of computing delete candidates reduces to finding the minimal sets among the
delete candidates associated to each triple in H .

The following result, consequence of Lemma 1(ii), yields a basic procedure for
computing delete candidates: find the minimal cuts for ecand(G, {t}) for each
triple t ∈ H , and then find the minimum among them.

Proposition 2. Let G and H be ground RDF graphs. Then
dcand(G, H) = min{D : D ∈

⋃
t∈H dcand(G, t)}.

4 Computing the Delta Candidates in Practice

We have seen that if we had disjunction, erase could be expressed as G •H =
G ∨ E1 ∨ · · · ∨ En, where the Ei’s are the erase candidates. From each Ei we
get a delta candidate Di = cl(G) \ Ei. In Section 3 we studied how to compute
the Di’s borrowing standard machinery from graph theory. This computation
is hard in the general case. In practice, however, there are two factors which
turn this computation feasible. First, in RDFS data, as in most data models,
schemas are small and stable, and data are large and dynamic. Second, what
really matters when computing RDFS updates of schemas are small parts of the
schema, essentially the length of the subclass and subproperty chains. Table 1
shows some examples of well-known RDF datasets.

Taking into account these observations, we present practical and feasible al-
gorithms for updating RDF data. We concentrate in the case of a single triple
which is the kernel of the operation (as can be deduced from Lemma 1).

4.1 Computing RDF Schema Erasure

We have already reduced the computation of erasure to that of computing the
set ecand(G, t). Algorithm 1 indicates the steps to be done. We have so far
studied the decision problem related to computing the set of erase candidates.
Generating ecand(G, H) (respectively dcand(G, H)) requires, in the worst case,
time exponential in the size of the graphs G[sp] and G[sc]. Indeed, the number of

104 C. Gutierrez, C. Hurtado, and A. Vaisman

Algorithm 1. Compute dcand(G, t) (General Case)
Input: Graph G, triple t
Output: dcand(G, t)
1: Compute G := cl(G)
2: Compute G[sc]
3: Compute G[sp]
4: Compute t[sc, G]
5: Compute t[sp,G]
6: Compute minimal multicults for t[sc, G] in G[sc, G]
7: Compute minimal multicults for t[sp,G] in G[sp, G]

cuts could be exponential. Standard algorithms on cut enumeration for directed
graphs can be adapted to our setting [10].

The good news is that what really matters is the size of the maximal connected
component of the graphs (one can avoid cuts between disconnected components).
In our case, the size of the connected components of G[sc] and G[sp] are small,
and a good estimation of it is the length of the maximal chain of sc and sp
respectively (very small in most real-world datasets). Based on the above, Algo-
rithm 2 would be a feasible one for updating schemas in most practical cases.

Algorithm 2. Update schema of G by erasing t

Input: Graph G, triple t
Output: G • t
1: Choose an ordering on predicates (see e.g. [9], 2.3)
2: Compute dcand(G, t)
3: Order the elements D ∈ dcand(G, t) under this ranking
4: Delete the minimal D from G

4.2 Computing RDF Instance Erasure

For instance erasure, the situation is optimal, since it assumes that the schema of
the graph remains untouched. In this setting, we will show that (i) the procedure
is deterministic, that is, there is a unique choice of deletion (i.e., dcand(G, t) has
a single element); (ii) this process can be done efficiently.

Algorithm 3 computes dcand(G, t) for instances. The key fact to note is that
for instances t, that is, triples of the form (a, type, b) or (a, p, b), where p does
not belong to RDFS vocabulary, the minimal multicut is unique. For triples of
the form (a, p, b), it follows from Table 3 that one has to cut paths from mab

to mp in G[sp]. Note that nodes of the form mp are non-leaf ones, hence all
edges in such paths in G[sp] come from schema triples (u, sp, v) (see Table 2).
Because we cannot touch the schema, if follows that if there is such path, the
unique option is to eliminate the edge mab, which corresponds to triples (a, w, b)
in G. For triples of the form (a, type, b) the analysis (omitted here for the sake

RDFS Update: From Theory to Practice 105

Algorithm 3. Compute dcand(G, t) (Optimized version for Instances)
Input: Graph G, triple t
Output: dcand(G, t)
1: Compute G′ := cl(G)
2: Compute G′[sc]
3: Compute G′[sp]
4: Compute t[sc, G′]
5: Compute t[sp,G′]
6: if t = (a, type, b) then
7: D ← {(a, type, z) ∈ G : nz reaches nb in G′[sc] }
8: D ← D ∪ {(a, p, x) ∈ G : max reaches mb,dom in G′[sp] }
9: D ← D ∪ {(y, p, a) ∈ G : mya reaches mb,range in G′[sp] }
10: else
11: if t = (a, p, b) then
12: D ← {(a, w, b) ∈ G : mab reaches mp in G′[sp] }
13: end if
14: end if
15: dcand(G, t)← D

of space) is similar, though slightly more involved. The cost of Algorithm 3 is
essentially the computation of the graphs G[sc] and G[sp] and then reachability
tests. Once the triples are ordered by subject and object (time O(n lg n)), the
rest can be done in linear time.

5 Related Work

Although updates have attracted the attention of the RDF community, only
updates to the instance part of an RDF graph have been addressed so far.
Sarkar [15] identifies five update operators: and presented algorithms for two
of them. Zhan [18] proposes an extension to RQL, and defines a set of up-
date operators. Both works define updates in an operational way. Ognyanov and
Kiryakov [14] describe a graph updating procedure based on the addition and
the removal of a statement (triple), and Magiridou et al [12] introduce RUL, a
declarative update language for RDF instances (schema updates are not stud-
ied). SPARQL/Update [17] is an extension to SPARQL to support updates over
a collection of RDF graphs. The treatment is purely syntactic, not considering
the semantics of RDFS vocabulary. In this sense, our work can be considered as
input for future enrichments of this language to include RDF semantics.

Konstantinidis et al. [9] introduce a framework for RDF/S ontology evolu-
tion, based on the belief revision principles of Success and Validity. The authors
map RDF to First-Order Logic (FOL), and combine FOL rules (representing
the RDF ontology), with a set of validity rules (which capture the semantics of
the language), showing that this combination captures an interesting fragment
of the RDFS data model. Finally, an ontology is represented as a set of positive

106 C. Gutierrez, C. Hurtado, and A. Vaisman

ground facts, and an update is a set of negative ground facts. If the update causes
side-effects on the ontology defined above, they chose the best option approach
based on the principle of minimal change, for which they define an order between
the FOL predicates. The paper overrides the lack of disjunction and negation in
RDF by means of working with FOL. Opposite to this approach, in the present
paper we remain within RDF.

Chirkova and Fletcher [3], building on [6] and in [9], present a preliminary
study of what they call well-behaved RDF schema evolution (namely, updates
that are unique and well-defined). They focus in the deletion of a triple from an
RDF graph, and define a notion of determinism, showing that when deleting a
triple t from a graph G, an update graph for the deletion exists (and is unique),
if and only if t is not in the closure of G, or t is deterministic in G. Although
closely related to our work, the proposal does not study instance and schema
updates separately, and practical issues are not discussed.

Description Logics ontologies can be seen as knowledge bases (KB) composed
of two parts, denoted TBox and ABox, expressing intensional and extensional
knowledge, respectively. So far, only updates to the extensional part (i.e., in-
stance updates) have been addressed. De Giacomo et al. [4] study the non-
expressibility problem for erasure. This states that given a fixed Description
Logic L, the result of an instance level update/erasure is not expressible in L
(for update, this has already been proved by Liu et al. [11]). Here, it is also
assumed that the schema remains unchanged (i.e., only the ABox is updated).
For update they use the possible models approach [16], and for erasure, the K-M
approach. Building also in the ideas expressed in [6], the authors show that for
a fragment of Description Logic, updates can be performed in PTIME with re-
spect to the sizes of the original KB and the update formula. Calvanese et al. also
study updates to ABoxes in DL-Lite ontologies. They present a classification of
the existing approaches to evolution, and show that ABox evolution under what
they define as bold semantics is uniquely defined [2].

6 Conclusions

Following the approach typical in ontology evolution, where schema and instance
updates are treated separately, we proposed practical procedures for computing
schema and instance RDF erasure, basing ourselves on the K-M approach. We
focused in bringing to practice the theory developed on this topic. As one of
our main results, we have shown that instance erasure is deterministic and fea-
sible for RDFS. Further, we presented an algorithm to perform it. For schema
erasure, the problem is non-deterministic and intractable in the general case.
However, we show that since schemas are very small in practice, it can become
tractable. Thus, we proposed an algorithm to compute schema updates, based
on computing multicuts in graphs. Future work includes developing an update
language for RDF based on the principles studied here, and implementing the
proposal at big scale.

RDFS Update: From Theory to Practice 107

Acknowledgements. This work was partly done during a visit of C. Gutierrez to
INCO, Univ. Republica, Uruguay. C. Gutierrez thanks Project Fondecyt 1110287.

References

1. Arenas, M., Consens, M., Mallea, A.: Revisiting blank nodes in rdf to avoid the
semantic mismatch with sparql. In: W3C Workshop: RDF Next Steps, Palo Alto,
CA (2010)

2. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL − lite
knowledge bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496,
pp. 112–128. Springer, Heidelberg (2010)

3. Chirkova, R., Fletcher, G.H.L.: Towards well-behaved schema evolution. In:
WebDB (2009)

4. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update
and erasure in description logic ontologies. J. Log. Comput. 19(5), 745–770 (2009)

5. Gutierrez, C., Hurtado, C.A., Mendelzon, A.O., Pérez, J.: Foundations of semantic
web databases. Journal of Computer and System Sciences (JCSS) 77, 520–541
(2010); This is the Journal version of the paper with same title Presented at the
PODS Conference Proc. PODS, pp. 95–106 (2004)

6. Gutiérrez, C., Hurtado, C.A., Vaisman, A.A.: The meaning of erasing in RDF
under the katsuno-mendelzon approach. In: WebDB (2006)

7. Hayes, P. (ed.): RDF semantics. W3C Working Draft (October 1, 2003)
8. Katsuno, H., Mendelzon, A.O.: On the difference between updating knowledge base
and revising it. In: International Conference on Principles of Knowledge Represen-
tation and Reasoning, Cambridge, MA, pp. 387–394 (1991)

9. Konstantinidis, G., Flouris, G., Antoniou, G., Christophides, V.: A formal approach
for RDF/S ontology evolution. In: ECAI, pp. 70–74 (2008)

10. Lin, H.-Y., Kuo, S.-Y., Yeh, F.-M.: Minimal cutset enumeration and network relia-
bility evaluation by recursive merge and BDD. In: IEEE Symposium on Computers
and Communications (ISCC 2003), Kiris-Kemer, Turkey, June 30 - July 3 (2003)

11. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic aboxes. In:
KR, pp. 46–56 (2006)

12. Magiridou, M., Sahtouris, S., Christophides, V., Koubarakis, M.: RUL: A declar-
ative update language for RDF. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 506–521. Springer, Heidelberg (2005)

13. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Fran-
coni, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67.
Springer, Heidelberg (2007)

14. Ognyanov, D., Kiryakov, A.: Tracking changes in RDF(S) repositories. In: Gómez-
Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 373–
378. Springer, Heidelberg (2002)

15. Sarkar, S., Ellis, H.C.: Five update operations for RDF. Rensselaer at Hartford
Technical Report, RH-DOES-TR 03-04 (2003)

16. Winslett, M.: Reasoning about action using a possible models approach. In: AAAI,
pp. 89–93 (1988)

17. WWW Consortium. SPARQL/Update: A language for updating RDF graphs
(2008), http://www.w3.org/Submission/SPARQL-Update/

18. Zhan, Y.: Updating RDF. In: 21st Computer Science Conference, Rensselaer at
Hartford (2005)

http://www.w3.org/Submission/SPARQL-Update/

Benchmarking Matching Applications on

the Semantic Web

Alfio Ferrara1, Stefano Montanelli1,
Jan Noessner2, and Heiner Stuckenschmidt2

1 Università degli Studi di Milano,
DICo - via Comelico 39, 20135 Milano, Italy

{ferrara,montanelli}@dico.unimi.it
2 KR & KM Research Group

University of Mannheim, B6 26, 68159 Mannheim, Germany
{jan,heiner}@informatik.uni-mannheim.de

Abstract. The evaluation of matching applications is becoming a ma-
jor issue in the semantic web and it requires a suitable methodological
approach as well as appropriate benchmarks. In particular, in order to
evaluate a matching application under different experimental conditions,
it is crucial to provide a test dataset characterized by a controlled variety
of different heterogeneities among data that rarely occurs in real data
repositories. In this paper, we propose SWING (Semantic Web INstance
Generation), a disciplined approach to the semi-automatic generation of
benchmarks to be used for the evaluation of matching applications.

1 Introduction

In the recent years, the increasing availability of structured linked data over the
semantic web has stimulated the development of a new generation of semantic
web applications capable of recognizing identity and similarity relations among
data descriptions provided by different web sources. This kind of applications are
generally known as matching applications and are more and more focused on the
specific peculiarities of instance and linked data matching [7]. Due to this situa-
tion, the evaluation of matching applications is becoming an emerging problem
which requires the capability to measure the effectiveness of these applications
in discovering the right correspondences between semantically-related data. One
of the most popular approaches to the evaluation of a matching application con-
sists in extracting a test dataset of linked data from an existing repository, such
as those available in the linked data project, in deleting the existing links, and in
measuring the capability of the application to automatically restore the deleted
links. However, the datasets extracted from a linked data repository, suffer of
three main limitations: i) the majority of them are created by acquiring data
from web sites using automatic extraction techniques, thus both data and links
are not validated nor checked; ii) the logical structure of these datasets is usually
quite simple and the level of semantic complexity quite low; iii) the number and

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 108–122, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Benchmarking Matching Applications on the Semantic Web 109

kind of dissimilarities among data is not controlled, so that it is difficult to tai-
lor the evaluation on the specific problems that affect the currently considered
matching application.

In this context, a reliable approach for the evaluation of matching applica-
tions has to address the following requirements: i) the test dataset used for
the evaluation must be coherent to a given domain and must be represented
according to the desired level of structural and semantic complexity; ii) the
evaluation must be executed by taking into account a controlled variety of dis-
similarities among data, including value, structural, and logical heterogeneity;
iii) a ground-truth must be available, defined as a set of links among data that
the matching application under evaluation is expected to discover. In order to
address these requirements, we propose SWING (Semantic Web INstance Gen-
eration) a disciplined approach to the semi-automatic generation of benchmarks
to be used for the evaluation of matching applications. A SWING benchmark
is composed of a set of test cases, each one represented by a set of instances
and their corresponding assertions (i.e., an OWL ABox) built from an initial
dataset of real linked data extracted from the web. SWING aims at support-
ing the work of an evaluation designer, who has the need to generate a tailored
benchmark for assessing the effectiveness of a certain matching application. The
SWING approach has been implemented as a Java application and it is available
at http://code.google.com/p/swing.

The paper is organized as follows. In Section 2, we discuss some related work
on the subject of matching evaluation. In Section 3, we summarize our approach.
In Section 4 and Section 5 we present the SWING acquisition and transforma-
tion techniques, respectively. In Section 6, we present the experimental results
obtained by executing six different matching algorithms over the benchmark. In
Section 7, we give our concluding remarks.

2 Related Work

In the last years, significant research effort has been devoted to ontology match-
ing with special attention on techniques for instance matching [7]. In the litera-
ture, most of the existing approaches/techniques use their individually created
benchmarks for evaluation, which makes a comparison difficult or even impos-
sible [10]. In the fields of object reconciliation, duplicate detection, and entity
resolution, which are closely related to instance matching, a widely used set
of benchmarks are proposed by the Transaction Processing Performance Coun-
cil (TPC)1 that focuses on evaluating transaction processing and databases. A
number of benchmarks are also available for XML data management. Popular
examples are presented in [3,5]. Since these datasets are not defined in a Seman-
tic Web language (e.g., OWL) their terminological complexity is usually very
shallow. In the area of ontology matching, the Ontology Alignment Evaluation
Initiative (OAEI) [6] organizes since 2005 an annual campaigns aiming at eval-
uating ontology matching technologies through the use of common benchmarks.
1 http://www.tpc.org

http://code.google.com/p/swing
http://www.tpc.org

110 A. Ferrara et al.

However, the main focus of the past OAEI benchmarks was to compare and eval-
uate schema-level ontology matching tools. From 2009, a new track specifically
focused on instance matching applications has been introduced in OAEI and a
benchmark has been developed to this end [8]. The weakness of this 2009 OAEI
benchmark is the basic level of flexibility enforced during the dataset creation
and the limited size of the generated test cases. The benchmark provided by
Yatskevich et al. [13] is based on real-world data, using the taxonomy of Google
and Yahoo as input. In [13], the limit of the proposed approach is the problem
to create an error-free gold standard, since the huge size of the datasets pre-
vents a manual alignment. Intelligent semi-automatic approximations are used
to overcome such a weakness, however it is not possible to guarantee that all the
correct correspondences are found and that none of the found correspondences
is incorrect. The same problem raises with the linked data benchmarks DI2 and
VLCR3. Alexe et al. [1] provide a benchmark for mapping systems, which gener-
ate schema files out of a number of given parameters. Their automatic generation
process ensures that a correct gold standard accrues. However, real-world data
are not employed and artificial instances with meaningless content are mainly
considered. Other benchmarks in the area of ontology and instance matching are
presented in [13] and [9]. In these cases, the weak point is still the limited degree
of flexibility in generating the datasets of the benchmark. We stress that the pro-
posed SWING approach provides a general framework for creating benchmarks
for instance matching applications starting with a linked data source and ending
with various transformed ABox ontologies. In particular, the SWING approach
combines the strength of both benchmarks [1] and [12] by taking real-world data
from the linked data cloud as input and by performing transformations on them
which ensure that the gold standard must be correct in all cases. Moreover, a
further contribution of the SWING approach is the high level of flexibility en-
forced in generating the datasets through data transformations that is a widely
recognized weak point of the other existing benchmarks.

3 The SWING Approach

The SWING approach is articulated in three phases as shown in Figure 1.

Data acquisition techniques. SWING provides a set of techniques for the ac-
quisition of data from the repositories of linked data and their representation as
a reference OWL ABox. In SWING, we work on open repositories by addressing
two main problems featuring this kind of datasources. First, we support the eval-
uation designer in defining a subset of data by choosing both the data categories
of interest and the desired size of the benchmark. Second, in the data enrichment
activity, we add semantics to the data acquired. In particular, we adopt specific
ontology design patterns that drive the evaluation designer in defining a data
description scheme capable of supporting the simulation of a wide spectrum of
data heterogeneities.
2 http://www.instancematching.org/oaei/imei2010.html
3 http://www.cs.vu.nl/~laurah/oaei/2010/

http://www.instancematching.org/oaei/imei2010.html
http://www.cs.vu.nl/~laurah/oaei/2010/

Benchmarking Matching Applications on the Semantic Web 111

Data Acquisition

Data Selection
Data Enrichment

Data Transformation Data Evaluation

Data Value Transformation

Data Structure Transformation

Data Semantic Transformation

Definition of Expected Results

Linked Data
repositories

Reference OWL
ABox

Transformed OWL
ABoxes (test cases) Reference Alignment

Activities &
Techniques

Phases

Outputs

Example
(IIMB2010)

(http://www.freebase.com/) star wars iv a new hope

Fantasy
Science Fiction

harrison ford 1942-7-13

star wars

Film

ford h.
a

b

c

d

Film a

b

e
c

d

e

Testing

Fig. 1. The SWING approach

Data transformation techniques. In the subsequent data transformation
activity the TBox is unchanged, while the ABox is modified in several ways by
generating a set of new ABoxes, called test cases. Each test case, is produced by
transforming the individual descriptions in the reference ABox in new individual
descriptions that are inserted in the test case at hand. The goal of transforming
the original individuals is twofold: on one side, we provide a simulated situation
where data referred to the same objects are provided in different datasources;
on the other side, we generate a number of datasets with a variable level of data
quality and complexity.

Data evaluation techniques. Finally, in the data evaluation activity, we au-
tomatically create a ground-truth as a reference alignment for each test case.
A reference alignment contains the mappings (in some contexts called “links”)
between the reference ABox individuals and the corresponding transformed in-
dividuals in the test case. These mappings are what an instance matching ap-
plication is expected to find between the original ABox and the test case.

As a running example illustrating our approach, in this paper, we present
the IIMB 2010 benchmark4, which has been created by applying our SWING
approach. IIMB 2010 has been used in the instance matching track of OAEI
2010. IIMB 2010 is a collection of OWL ontologies consisting of 29 concepts, 20
object properties, 12 data properties and thousands of individuals divided into 80
test cases. In fact in IIMB 2010, we have defined 80 test cases, divided into 4 sets
of 20 test cases each. The first three sets are different implementations of data
value, data structure, and data semantic transformations, respectively, while the
fourth set is obtained by combining together the three kinds of transformations.
IIMB 2010 is created by extracting data from Freebase [2], an open knowledge

4 http://www.instancematching.org/oaei/imei2010.html

http://www.instancematching.org/oaei/imei2010.html

112 A. Ferrara et al.

base that contains information about 11 Million real objects including movies,
books, TV shows, celebrities, locations, companies and more. Data extraction
has been performed using the query language JSON together with the Freebase
JAVA API5.

4 Data Acquisition

The SWING data acquisition phase is articulated in two tasks, called data selec-
tion and data enrichment. The task of data selection has the aim to find the right
balance between the creation of a realistic benchmark and the manageability of
the dataset therein contained. In SWING, the data selection task is performed
according to an initial query that is executed against a linked data repository
with the supervision of the evaluation designer. In particular, the size of the
linked data source is narrowed down by i) selecting a specific subset of all avail-
able linked data classes and ii) limit the individuals belonging to these selected
classes. With the latter selection technique, we can easily scale the number of
individuals from hundreds to millions only by adjusting one single parameter.
The goal of the data enrichment task is to provide a number of data enrich-
ment techniques which can be applied to any linked data source for extending
its structural and semantic complexity from the description logic ALE(D) up
to ALCHI(D). This data enrichment has to be realized, because in the open
linked data cloud the concept hierarchies are usually very low and disjointness
axioms or domain and range restrictions are rarely defined. The limited level
of semantic complexity is a distinguishing feature of linked data. Nevertheless,
many matching applications are capable of dealing with data at different levels
of OWL expressiveness.

To illustrate the SWING enrichment techniques, we will refer to a small snip-
pet of the IIMB 2010 benchmark displayed in Figure 4. The black colored nodes,
arrows, and names represent information that has been extracted from Freebase,
while the gray colored information has been added according to the following
enrichment techniques of our SWING approach.

Add Super Classes and Super Properties. The designer can adopt two dif-
ferent approaches for determining new super classes. The first one is a bottom-up
approach where new super classes are created by aggregating existing classes.
Thereby, the evaluation designer has to define a super class name which encom-
passes all the classes to include. The second approach is top-down and it requires
to define how to split a class into more subclasses. The same approaches can be
applied for determining super object properties, respectively. This task is mainly
performed manually by the designer, with the support of the system to avoid
the insertion of inconsistency errors.

In IIMB we added for instance following statements for classes and object
properties:
5 http://code.google.com/p/freebase-java/. However, we stress that any kind of
linked data-compatible source can be used to implement the SWING approach.

http://code.google.com/p/freebase-java/

Benchmarking Matching Applications on the Semantic Web 113

a
Star Wars

Episode IV:
A New Hope

name

c

starring_in

featuring

featured_by

Harrison Ford name

Film

Fantasy
Science Fiction

Person

Creature

b
directed_by

directs

featuring

featured_by

Director

Character Creator

Legend Original element SWING enrichment Inferred property

George Lucas

name

d

Han Solo

name

created_by

acted_by

Character

starring_in

featuring

featured_by

Fig. 2. A portion of IIMB 2010

(Person Character) � Creature

(directed by acted by starring in) � featuring

Convert Attributes to Class Assertions. Sometimes, linked data sources
contain string attributes which can be “upgraded” to classes. A good indicator
for such attributes is if the data values are restricted to a number of predefined
expressions like for example male and female or a restricted number of terms
denoting concepts, like for example red, green, and yellow. In this case, an
external lexical system such as for example WordNet can be used to support
the designer in finding those terms that can be considered as candidates for the
class assertion conversion. For example, in Freebase, every film has an attribute
genre with values like Fantasy, Science F iction, Horror, and many more.
This attribute was used in IIMB 2010 to derive additional class assertions as
subclasses of Film as shown in Figure 4.

(Fantasy Science F iction Horror ...) � Film

Determine Disjointness Restrictions. The challenge of this task is to add
as many disjointness restrictions as possible while ensuring the ontology consis-
tency. This could be realized by trying to add all possible disjointness combina-
tions and by checking the consistency of the ontology after each combination. If
the ontology does not turn to inconsistency we integrate the axiom, otherwise,
we discard it. In general, disjointness axioms can not only be added for classes,
but also for object properties. For the sake of readability, disjointness axioms
are not shown in Figure 4. However, in IIMB 2010, the classes Film, Location,
Language, Budget, and Creature were set to be pairwise disjoint.

Enrich with Inverse Properties. We perform the insertion of inverse prop-
erties by creating an object property with both the active and the passive verb
forms used as property names. To automate this procedure, we rely on a lexical

114 A. Ferrara et al.

systems (e.g., WordNet) to determine the active/passive verb forms to insert.
Moreover, the evaluation designed can manually insert the inverse property for
those property names that are not retrieved in WordNet. For example, in IIMB
2010, we added the property directs as the inverse of the existing property
directed by.

Specify Domain and Range Restrictions. For all existing properties, the
challenge is to find the best - that means the narrowest - domain and range
without turning the ontology to inconsistency. For an object property, all the
possible domain and range restrictions can be determined by attempting to as-
sign all the existing classes to be the potential domain/range. If the ontology
is still consistent after the assignment of this new domain/range restriction, the
change is saved, otherwise it is discarded. In the example of IIMB 2010, among
the others, the following domain and range restrictions have been added to the
object property created by:

∃created by � Character ∧ ∃created by− � Character Creator

5 Data Transformation

Once the data acquisition phase is executed and a reference ontology O is pro-
duced, we start the SWING data transformation phase that has the goal of pro-
ducing a set T = {O1,O2, . . . ,On−1,On} of new ontologies, called test cases.
Each test case Oi ∈ T has the same schema (i.e., TBox) of O but a different set
of instances (ABox) generated by transforming the ABox AO of O. In detail,
the input of each transformation is a reference ontology O and a configuration
scheme C, which contains the specification of properties involved in the trans-
formations process, the kind of transformations enforced, and the parameters
required by the transformation functions. The output is a new ontology Oi. The
implementation of each ontology transformation can be described in terms of a
transformation function θ : AO → Ai

O, where AO and Ai
O denote two ABoxes

consistent with the TBox TO of the ontology O. The transformation function
θ maps each assertion αk ∈ AO into a new set of assertions θ(αk)C according
to the configuration scheme C. Thus, given a configuration scheme C and an
ontology O, a test case Oi is produced as follows:

Oi = TO ∪Ai
O with Ai

O =
N⋃

k=1

θ(αk)C

where N is the number of assertions in AO. In SWING, we take into account
two kinds of assertions for the transformation purposes, namely class assertions
and property assertions. A class assertion has the form C(x) and denotes the
fact that and individual x is an instance of class C (i.e., the type of x is C). A
property assertion has the form P (x, y) and denotes the fact that an individual
x is featured by a property P which has value y. P may be either an object

Benchmarking Matching Applications on the Semantic Web 115

property or a data property. In the first case, the value y is another individual,
while in the second case y is a concrete value. As an example, in the reference
ontology used for IIMB 2010, we have the following assertions:

α1 : Director(b), α2 : name(b, “George Lucas”), α3 : created by(d, b)

denoting the fact that b is a Director whose name is represented by the string
“George Lucas”. Moreover the object denoted by the individual d is created by
the individual b (d denotes the character “Han Solo” as shown in Figure 2). Both
the kinds of assertions taken into account in SWING can be described in terms
of an assertion subject, denoted αs, that is the individual which the assertion
α is referred to, an assertion predicate, denoted αp, that is the RDF property
rdf : type in case of class assertions or the property involved in the assertion in
case of property assertions, and an assertion object, denoted αo, that is a class
in case of class assertions and a concrete or abstract value in case of property
assertions. For example, referring to the IIMB 2010 example above, we have
αs

1 = b, αp
1 = rdf : type, αo

1 = Director and αs
2 = b, αp

2 = name, αo
2 = “George

Lucas”. According to this notation, we can define the individual description Dj

of and individual j into an ABox AO as follows:

Dj = {αk ∈ AO | αs
k = j}

that is the set of all assertions inAO having j as subject. According to this notion
of individual description, we define also the notion of individual transformation
θ(j) as the result of the transformation θ(αk) of each assertion αk in the definition
Dj of j.

5.1 Data Transformation Procedure

The data transformation of an ontology O into an ontology Oi is run as a
procedure articulated in three steps:

Preprocessing of the Initial Ontology. The preprocessing step has the goal
of adding some axioms to the ontology TBox O, that will be the reference TBox
for the rest of the transformation and will be identical for all the test cases.
These additions are required in order to implement some of the subsequent data
transformations without altering the reference TBox. In particular, we add two
kind of axioms. As a first addition, we take into account all the data properties
Pi ∈ O and, for each property, we add a new object property Ri, such that
O = O∪Ri. Moreover, we add a data property has value to O. These additions
are required for transforming data property assertions into object property as-
sertions. The second addition is performed only if the semantic complexity of
the ontology chosen by the designer allows the usage of inverse properties. In
this case, we take into account all the object properties Ri that are not already
associated with an inverse property and we add to O a new property Ki such
that Ki ≡ R−

i .

116 A. Ferrara et al.

Deletion/Addition of Individuals. The SWING approach allows the eval-
uation designer to select a portion of individuals that must be deleted and/or
duplicated in the new ontology. The reason behind this functionality is to obtain
a new ontology where each original individual can have none, one, or more match-
ing counterparts. The goal is to add some noise in the expected mappings in such
a way that the resulting benchmark contains both test cases where each original
instance has only one matching counterpart (i.e., one-to-one mappings) and test
cases where each original instance may have more than one matching counter-
part (i.e., one-to-many mappings). This is a required feature in a benchmark to
avoid that those matching applications that produce only one-to-one mappings
are favored. In particular, the evaluation designer can choose the percentage td
(expressed in the range [0,1]) of individuals that are candidate for deletion and
the percentage ta of individuals that are candidate for addition. Then, given
the number NI of individuals in the initial ontology O, SWING calculates the
number CI of individuals that have to be deleted as CI = �td ·NI�. Given CI ,
two strategies, called deterministic and non-deterministic strategies, are defined
to randomly choose the individuals to eliminate. In the deterministic strategy,
we randomly choose CI individuals from O. The assertions in the descriptions
of the chosen individuals are simply not submitted to transformation and, thus,
do not appear in the new ontology Oi. In the non-deterministic strategy, we
take into account all the individuals in O once at a time. For each individual,
we generate a random value r in the range [0,1]. If r ≤ td, the individual is not
submitted to transformation. Every time the transformation is not executed, we
add 1 to a counter c. This procedure is iterated until c < CI or all the individuals
in O have been considered. The advantage of the deterministic strategy is that
it is possible to control the exact number of transformations that are generated.
The advantage of a non-deterministic choice is to keep the transformation pro-
cess partially blind even for the evaluation designer. Similarly, the number AI

of individuals to be added is calculated as AI = �ta · (NI − CI)�. We randomly
select the individuals to be added and for each of these individuals i, we create
a new individual i′ in the text case by substituting the individual identifier i
with a new randomly generated identifier i′. Then, each assertion αk ∈ Di is
transformed by substituting any reference to i with i′. In such a way, in the
test case we will have a copy of each individual description plus the individual
description transformation θ(i).

Individuals Transformation. For each individual description Di and for each
assertion αj ∈ Di, we calculate the transformation θ(αj)C according to the con-
figuration scheme C, that is defined by the evaluation designer. Every transfor-
mation θ(αj)C is seen as a ordered sequence of transformation operations. Each
operation takes a set A of assertions in input and returns a set A′ of trans-
formed assertions as output. The input of the first transformation operation is
the singleton set {αj}, while the output of the final operation in the sequence is
the transformation θ(αj)C . Transformation operations are distinguished in three
categories, namely data value transformation, data structure transformation, and

Benchmarking Matching Applications on the Semantic Web 117

data semantic transformation. Due to space reasons, we cannot describe opera-
tions in detail, but we summarize them in Table 1 and we will provide an example
of their application in the following.

Table 1. Summary of data transformation operations provided by SWING

Data Value Data Structure Data Semantic

Add γ σ, ζ ι
Delete ρ δ λ, π, ι
Modify ρ, κ τ , ζ λ, ω, π

γ = Random token/character addition
ρ = Random token/character modification
κ = Specific data modification
σ = Property assertion addition
ζ = Property assertion splitting
δ = Property assertion deletion

τ = Property type transformation
ι = Creation of inverse property assertions
λ = Deletion/modification of class assertions
π = Creation of super-property assertions
ω = Classification of individuals in disjoint classes

Data value transformation operations work on the concrete values of data
properties and their datatypes when available. The output is a new concrete
value. An example of data value transformation, is shown in Table 2.

Table 2. Examples of data value transformations

Operation Original value Transformed value

Standard transformation Luke Skywalker L4kd Skiwaldek
Date format 1948-12-21 December 21, 1948
Name format Samuel L. Jackson Jackson, S.L.
Gender format Male M
Synonyms Jackson has won multiple

awards [...]
Jackson has gained several
prizes [...]

Integer 10 110
Float 1.3 1.30

Data structure transformation operations change the way data values are
connected to individuals in the original ontology graph and change the type
and number of properties associated with a given individual. A comprehensive
example of data structure transformation is shown in Table 3, where an initial
set of assertions A is transformed in the corresponding set of assertions A′ by
applying the property type transformation, property assertion deletion/addition,
and property assertion splitting.

Finally, data semantic transformation operations are based on the idea of
changing the way individuals are classified and described in the original ontology.
For the sake of brevity, we illustrate the main semantic transformation operations
by means of the following example, by taking into account the portion of TO and
the assertions sets A and A′ shown in Table 4.

118 A. Ferrara et al.

Table 3. Example of data structure transformations

A A′

name(n, “Natalie Portman”) name(n, “Natalie”)
born in(n, m) name(n, “Portman”)
name(m, “Jerusalem”) born in(n, m)
gender(n, “Female”) name(m, “Jerusalem”)
date of birth(n, “1981-06-09”) name(m, “Auckland”)

obj gender(n, y)
has value(y, “Female”)

Table 4. Example of data semantic transformations
TO
Character
 Creature, created by ≡ creates−, acted by
 featuring, Creature �
Country
 ⊥

A A′

Character(k) Creature(k)
Creature(b) Country(b)
Creature(r) �(r)
created by(k, b) creates(b, k)
acted by(k, r) featuring(k, r)
name(k, “Luke Skywalker”) name(k, “Luke Skywalker”)
name(b, “George Lucas”) name(b, “George Lucas”)
name(r, “Mark Hamill”) name(r, “Mark Hamill”)

In the example, we can see how the combination of all the data semantic
operations may change the description of the individual k. In fact, in the original
set A, k (i.e., the Luke Skywalker of Star Wars) is a character created by the
individual b (i.e., George Lucas) and acted by r (i.e., Mark Hamill). In A′ instead,
k is a more generic “creature” and also the relation with r is more generic
(i.e., “featuring” instead of “acted by”). Moreover, individual k is not longer
created by b as it was in A, but it is b that creates k. But the individual b of
A′ cannot be considered the same than b ∈ A, since the class Creature and
Country are disjoint.

According to Table 1, data transformation operations may also be categorized
as operations that add, delete or modify the information originally provided by
the initial ontology. Table 1 shows also how some operations are used in order
to implement more than one action over the initial ontology, such as in case of
deletion and modifications of string tokens that are both implemented by means
of the operation ρ. Moreover, some operations cause more than one consequence
on the initial ontology. For example, the property assertion splitting ζ causes
both the modification of the original property assertion and the addition of
some new assertions in the new ontology.

5.2 Combining Transformations and Defining the Expected Results

When a benchmark is generated with SWING it is usually a good practice
to provide a set of test cases for each category of data transformation plus
a fourth bunch of test cases where data value, data structure, and data se-
mantic transformations are combined together. The combination of different

Benchmarking Matching Applications on the Semantic Web 119

transformations in SWING is easy both in case of transformations of the same
category and in case of cross-category transformations. In fact, all the transfor-
mation operations work on assertions sets and produce other assertions sets.
Thus, the combination is obtained by executing the desired transformations
one over the output of the other. As an example, we consider the initial as-
sertion set A = {name(b, “George Lucas”)} and the transformation sequence
A → ρ(A, 0.5) → A′ → τ(A′, 1.0) → A′′ι(A′′, 1.0) → A′′′ that produces the fol-
lowing results: A = name(b, “George Lucas”), A′ = name(b, “YFsqap Lucas”),
A′′ = obj name(b, x), has value(x, “YFsqap Lucas”), A′′′ = obj name−(x, b),
has value(x, “YFsqap Lucas”).

As a last step in the benchmark generation, for each test case Oi we define
a set of mappings MO,Oi that represents the set of correspondences between
the individuals of the ontology O and the individuals of the the test case Oi

that a matching application is expected to find when matching O against Oi.
For each individual j in O we define a new individual j′ and we substitute any
reference to j in Oi with a reference to j′. Then, if the pair j, j′ is not involved in
any operation of classification of individuals in disjoint classes, we insert m(j, j′)
in MO,Oi.

A comprehensive example of data transformation taken form IIMB 2010 is
shown in Figure 3, together with the expected results generated for the test case
at hand.

a
Star Wars

Episode IV:
A New Hope

name

Coming of age

b

directed_by

Director

George Lucas
name

Fantasy

Science Fiction

1944-05-14

date of birth

George Walton Lucas, Jr. (born
May 14, 1944) is an Academy
Award-nominated American film
producer [...]

article

Original ABox portion Transformed ABox portion

A New Hope

obj_name

b'directs

Person

George Lucas

name

1944

date of birth

a'

x

has_value

Star Wars
Episode IV:

has_value

y has_value

May 14

date of birth

b''

featuring

George E. T. S. Walton Lucas,
younger (born May 14, 1944)
cost Associate in Nursing
academy Award-nominated
American film [...]

article

p

Darth Vader

name

Character

created_by

Expected results

a ba' b' b''

Fig. 3. Example of data transformation taken from IIMB 2010

6 Experimental Results

In order to evaluate the applicability of the SWING approach to the evaluation
of matching applications, we have executed six different matching algorithms
against IIMB 2010 and we have compared precision and recall of each algorithm
against the different test cases of the benchmark. The six algorithms have been
chosen to represent some of the most popular and reliable matching techniques

120 A. Ferrara et al.

in the field of instance matching. We recall that the goal of our evaluation is
to verify the capability of the IIMB 2010 benchmark generated with SWING
to provide a reliable and sufficiently complete dataset to measure the effective-
ness of different and often complementary matching algorithms/applications.
The considered matching algorithms are divided into two categories, namely
simple matching and complex matching. Simple matching algorithms are three
variations of string matching functions that are used for the comparison of a
selected number of property values featuring the test case instances. Complex
matching algorithms work on the structure and semantics of test cases and on
the expected cardinality of resulting mappings. In this category we executed
the algorithms LexicalMatch, StructuralMatch, and HMatch. LexicalMatch and
StructuralMatch [11] use integer linear programming to calculate the optimal
one-to-one alignment based on the sum of the lexical similarity values. In Lexical-
Match, no structural information is considered. StructuralMatch uses both, lex-
ical and structural information. Finally, HMatch [4] is a flexible matching suite
where a number of matching techniques are implemented and organized in dif-
ferent modules providing linguistic, concept, and instance matching techniques
that can be invoked in combination.

A summary of the matching results is reported in Figure 4(a), where we show
the average values of the harmonic mean of precision and recall (i.e., FMeasure)
for each algorithm over data value, structure and semantic transformation test
cases, respectively. The last two chunks of results refer to a combination of
transformations and to the benchmark as a whole, respectively.

The goal of our experiments is to evaluate the IIMB 2010 effectiveness, that
is the capability of distinguishing among different algorithms where they are
tested on different kinds of transformations. To this end, we observe that IIMB
2010 allows to stress the difference between simple and complex matching algo-
rithms. In fact, in Figure 4(a), the FMeasure for simple matching algorithms is
between 0.4 and 0.5, while we obtain values in the range 0.8-0.9 with complex
algorithms. It is interesting to see how simple algorithms have best performances
on value transformations and worst performances on structural transformations.
This result is coherent with the fact that simple matching does not take into
account neither the semantics nor the structure of individuals, and proves that
SWING simulates structural transformation in a correct way. In case of seman-
tic transformations instead, simple algorithms have quite good performances
because many semantic transformations affect individual classification, which is
an information that is ignored by simple algorithms. In Figure 4(b), we show
the values of precision and recall of the considered algorithms in the test cases
where all the expected mappings were one-to-one mappings (i.e., 1-1 Mappings)
and in the test cases where one-to-many mappings were expected for 20% of
the individuals (i.e., 1-N Mappings). We note that the algorithms that are not
based on the assumption of finding one-to-one mappings (i.e., simple matching
algorithms and HMatch) have similar results in case of 1-1 and 1-N mappings.
Instead, LexicalMatch and StructuralMatch are based on the idea of finding the
best 1-1 mapping set. Thus, precision and recall of these algorithms are lower

Benchmarking Matching Applications on the Semantic Web 121

(a)

(b)

Fig. 4. Results for the execution of different matching algorithms against IIMB 2010

when 1-N mappings are expected. The number of individuals corresponding to
more than one individual is about 20% of the total number of individuals and
this percentage corresponds to the degradation of results that we can observe
for LexicalMatch and StructuralMatch.

7 Concluding Remarks

In this paper we have presented SWING, our approach to the supervised gen-
eration of benchmarks for the evaluation of matching applications. Experiments
presented in the paper show that SWING is applicable to the evaluation of real
matching applications with good results. Our future work is focused on collecting
more evaluations results in the instance matching evaluation track of OAEI 2010,
where SWING has been used to generate the IIMB 2010 benchmark. Moreover,
we are interested in studying the problem of extending SWING to the creation
of benchmarks for evaluation of ontology matching applications in general, by
providing a suite of comprehensive evaluation techniques and tools tailored for
the specific features of TBox constructs.

Acknowledgements. Heiner Stuckenschmidt is partially supported by the
European project SEALS (IST-2009-238975).

122 A. Ferrara et al.

References

1. Alexe, B., Tan, W.C., Velegrakis, Y.: STBenchmark: towards a Benchmark for
Mapping Systems. Proc. of the VLDB Endowment 1(1), 230–244 (2008)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a Collabo-
ratively Created Graph Database for Structuring Human Knowledge. In: Proc. of
the ACM SIGMOD Int. Conference on Management of Data, pp. 1247–1250 (2008)

3. Bressan, S., Li Lee, M., Guang Li, Y., Lacroix, Z., Nambiar, U.: The XOO7 Bench-
mark. In: Proc. of the 1st VLDBWorkshop on Efficiency and Effectiveness of XML
Tools, and Techniques, EEXTT 2002 (2002)

4. Castano, S., Ferrara, A., Montanelli, S.: Matching Ontologies in Open Networked
Systems: Techniques and Applications. Journal on Data Semantics V (2006)

5. Duchateau, F., Bellahse, Z., Hunt, E.: XBenchMatch: a Benchmark for XML
Schema Matching Tools. In: Proc. of the 33rd Int. Conference on Very Large Data
Bases, VLDB 2007 (2007)

6. Euzenat, J., Ferrara, A., Hollink, L., et al.: Results of the Ontology Alignment Eval-
uation Initiative 2009. In: Proc. of the 4th Int. Workshop on Ontology Matching,
OM 2009 (2009)

7. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
8. Ferrara, A., Lorusso, D., Montanelli, S., Varese, G.: Towards a Benchmark for
Instance Matching. In: Proc. of the ISWC Int. Workshop on Ontology Matching,
OM 2008 (2008)

9. Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large
OWL Datasets. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC
2004. LNCS, vol. 3298, pp. 274–288. Springer, Heidelberg (2004)

10. Koepcke, H., Thor, A., Rahm, E.: Evaluation of Entity Resolution Approaches on
Real-World Match Problems. In: Proc. of the 36th Int. Conference on Very Large
Data Bases, VLDB 2010 (2010)

11. Noessner, J., Niepert, M., Meilicke, C., Stuckenschmidt, H.: Leveraging Termino-
logical Structure for Object Reconciliation. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010.
LNCS, vol. 6089, pp. 334–348. Springer, Heidelberg (2010)

12. Perry, M.: TOntoGen: A Synthetic Data Set Generator for Semantic Web Appli-
cations. AIS SIGSEMIS Bulletin 2(2), 46–48 (2005)

13. Yatskevich, M., Giunchiglia, F., Avesani, P.: A Large Scale Dataset for the Eval-
uation of Matching Systems. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC
2007. LNCS, vol. 4519, Springer, Heidelberg (2007)

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 123–138, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Efficiently Evaluating Skyline Queries on RDF Databases

Ling Chen, Sidan Gao, and Kemafor Anyanwu

Semantic Computing Research Lab, Department of Computer Science
North Carolina State University

{lchen10,sgao,kogan}@ncsu.edu

Abstract. Skyline queries are a class of preference queries that compute the
pareto-optimal tuples from a set of tuples and are valuable for multi-criteria
decision making scenarios. While this problem has received significant
attention in the context of single relational table, skyline queries over joins of
multiple tables that are typical of storage models for RDF data has received
much less attention. A naïve approach such as a join-first-skyline-later strategy
splits the join and skyline computation phases which limit opportunities for
optimization. Other existing techniques for multi-relational skyline queries
assume storage and indexing techniques that are not typically used with RDF
which would require a preprocessing step for data transformation. In this paper,
we present an approach for optimizing skyline queries over RDF data stored
using a vertically partitioned schema model. It is based on the concept of a
“Header Point” which maintains a concise summary of the already visited
regions of the data space. This summary allows some fraction of non-skyline
tuples to be pruned from advancing to the skyline processing phase, thus
reducing the overall cost of expensive dominance checks required in the skyline
phase. We further present more aggressive pruning rules that result in the
computation of near-complete skylines in significantly less time than the
complete algorithm. A comprehensive performance evaluation of different
algorithms is presented using datasets with different types of data distributions
generated by a benchmark data generator.

Keywords: Skyline Queries, RDF Databases, Join.

1 Introduction

The amount of RDF data available on the Web is growing more rapidly with
broadening adoption of Semantic Web tenets in industry, government and research
communities. With datasets increasing in diversity and size, there have been more and
more research efforts spent on supporting complex decision making over such data.
An important class of querying paradigm for this purpose is preference queries, and in
particular, skyline queries. Skyline queries are valuable for supporting multi-criteria
decision making and have been extensively investigated in the context of relational
databases [1][2][3][4][5][6][11][12] but in a very limited way for Semantic Web [8].
A skyline query over a data set S with D-dimension aims to return the subset of S
which contains the points in S that are not dominated by any other data point. For two
D-dimensional data points , , , … , and , , , … , , point p is

124 L. Chen, S. Gao, and K. Anyanwu

said to dominate point q if . ≽ . for all ∈ 1, and in at least one
dimension . . where j ∈ 1, , ≽ denotes better than or equal with,
denotes better than. For example, assume that a company wants to plan a sales
promotion targeting the likeliest buyers (customers that are young with a low amount
of debt). Consider three customers A (age 20, debt $150), B (age 28, debt $200) and C
(age 25, debt $100). Customer A is clearly a better target than B because A is younger
and has less debt. Therefore, we say that A dominates B. However, A does not
dominate C since A is younger than C but has more debt than C. Therefore, the
skyline result over the customer set {A, B, C} is {A, C}.

The dominant cost in computing the skyline of a set of n D-dimension tuples lies in
the number of comparisons that needs to be made to decide if a tuple is or isn’t part of
the skyline result. The reason is that for a tuple to be selected as being in the skyline,
it would need to be compared against all other tuples to ensure that no other tuples
dominate it. Further, each tuple pair comparison involves D comparisons comparing
their values in all D dimensions. Consequently, many of existing techniques
[1][2][3][4][5][6][11][12] for computing skylines on relational databases focus on
reducing the number of tuple pair comparisons. This is achieved using indexing
[4][5][6], or partitioning data into subsets [11] where some subsets would contain
points that can quickly be determined to be in or pruned from the skyline result.

It is also possible to have skyline queries involving attributes across multiple
relations that need to be joined, i.e. multi-relational skyline. This would be a very
natural scenario in the case of RDF data since such data is often stored as vertically
partitioning relations [7]. However, there are much fewer efforts [11][12][16] directed
at evaluating skylines over multiple relations. A common strategy, which was also
proposed in the context of preference queries on the Semantic Web [8], is to first join
all necessary tables in a single table and then use a single table skyline algorithm to
compute the skyline result, i.e. join-first-skyline-later (JFSL). A limitation of the
JFSL approach is that the join phase only focuses on identifying joined tuples on
which skyline computation can then be done. It does not exploit information about the
joined tuples to identify tuples that are clearly not in the skyline result. Identifying
such tuples would allow pruning them from advancing to the skyline phase and avoid
the expensive dominance checks needed for skyline computation on those tuples.
Alternative techniques to the JFSL approach [4][5][6][11][12][16] employ specialized
indexing and storage schemes which are not typical in RDF data and require
preprocessing or storage in multiple formats.

1.1 Contributions

This paper proposes an approach for efficient processing of skyline queries over RDF
data that is stored as vertically partitioned relations. Specifically, we propose

• The concept of a Header Point that maintains a concise summary of the already
visited region of the data space for pruning incoming non-skyline tuples during
join phase. This improves efficiency by reducing number of comparisons needed
during later skyline processing phase.

 Efficiently Evaluating Skyline Queries on RDF Databases 125

• A complete algorithm and two near-complete algorithms based on an approach
that interleaves the join processing with some skyline computation to minimize
the number of tuples advancing into skyline computation phase. The near-
complete algorithms compute about 82% of skyline results in about 20% of the
time needed for the complete algorithm.

• A comprehensive performance evaluation of the algorithms using datasets with
different types of data distributions generated by a benchmark data generator.

2 Background and Problem Statement

Assume that we have a company’s data model represented in RDF containing
statements about Customers, Branches, Sales and relationships such as Age, Debt,
PurchasedBy etc. Figure 1 (a) shows a sample of such database using a graph
representation.

Fig. 1. Example RDF Graph Model and Skyline Queries

Consider again the example of sales promotion targeting the young customers with
less debt. Also assume that company would like to focus their campaigns on
customers that live close to some branch. We express such a query using an extended
SPARQL as shown in Figure 1 (b). The properties in front of MIN/MAX keywords
are the skyline properties (dimensions) to be considered during the skyline
computation. The MIN/MAX keyword specifies that we want the value in the
corresponding property to be minimized/maximized. We now formalize the concept
of a skyline graph pattern that builds on the formalization of SPARQL graph pattern
queries.

An RDF triple is 3-tuple , , where s is the subject, p is the predicate and o is
the object. Let I, L and B be the pairwise disjoint infinite set of IRIs, Blank nodes
and Literals. Also assume the existence of an infinite set V of variables disjoint from
the above sets. A triple pattern is a query pattern such that V can appear in subject,
predicate or object. A graph pattern is a combination of triple patterns by the binary
operators UNION, AND and OPT. Given an RDF database graph, a solution to a
graph pattern is a set of substitutions of the variables in the graph pattern that yields a
subgraph of the database graph and the solution to the graph pattern is the set of all
possible solutions.

126 L. Chen, S. Gao, and K. Anyanwu

Definition 1 (Skyline Graph Pattern). A Skyline Graph Pattern is defined as a tuple
(GP, SK) where GP is a graph pattern and SK is a set of skyline conditions
{ , , … , }. is of the form where is either min() or max()
function and is a property in one of the literal triple patterns in GP. The Solution
to (GP, SK) is an ordered subset , , … , where denotes the
solution to a basic graph pattern (an RDF graph with variables) and the following
conditions hold: (i) each solution ∈ is not dominated by any solution in ; (ii)
each solution ∈ is dominated by some solution in .

3 Evaluating the Skyline over the Join of Multiple-Relations

Vertically partitioned tables (VPT) are a common storage model for RDF data. A
straightforward approach to compute the skyline over a set of vertically partitioned
tables , ,…, is as follows: (i) join , ,…, into a complete
single table T (the determination of dominance between two tuples cannot be made by
looking at only a subset of the skyline properties); (ii) compute skyline over this
single table T by using any single-table skyline algorithm, such as BNL (Block-
Nested-Loop). We call this approach as “Naive” algorithm. “Naive” algorithm
maintains only a subset of all already joined tuples (candidate list) against which each
newly joined tuple is compared to determine its candidacy in the skyline result.
However, this approach does not fully exploit the information about the joined tuples
and requires too many comparisons to determine one tuple’s candidacy in skyline
result. Our approach based on the concept of a Header Point improves upon this by
using information about already joined tuples to make determinations about (i)
whether a newly joined tuple could possibly be a member of the skyline and (ii)
whether there is a possibility of additional skyline tuples to be encountered in the
future. The former allows for pruning a tuple from advancing to the skyline (SL)
phase where it would incur additional cost of comparisons with several tuples in a
skyline candidate list. The latter allows for early termination.

3.1 Header Point and Its Prunability

Our approach is based on splitting the join phase into iterations where information
about earlier iterations is summarized and used to check skyline candidacy of tuples
joined in later iterations. In each join iteration, we need to join each 2-tuple in each
VPT to their corresponding matching 2-tuples in all of the other VPTs. Let be the
table pointer pointing to the subject value (of the jth triple in and a
join iteration would be: join of to matching tuples in

In other words, at the end of a join iteration we would have computed d tuples and
each tuple is based on the 2-tuple pointed to by table pointer in some dimension VPT.

A Header Point summarizes the region of data explored in earlier join iterations. It
enables a newly joined tuple in the subsequent join iteration to be compared against this
summary rather than multiple comparisons against the tuples in the skyline candidate list.

 Efficiently Evaluating Skyline Queries on RDF Databases 127

Definition 2 (Header Point). Let , , … , be the set of tuples in the jth join
iteration. A Header Point of the computation is a tuple of 1 ,2 , . . ., where is either min() or max() function. We call

the tuples that form the basis of the Header Point (i.e. the s), Header Tuples.

To illustrate the advantage of the header point concept, we will use a smaller version
of our motivating example considering only a graph sub pattern with skyline
properties, Age and Debt. We will assume that data is organized as VPT and indexed
by Subject (SO) and by Object (OS). Using the OS index, the triples can be accessed
in decreasing order of “goodness” when minimizing/maximizing skyline properties,
i.e. in increasing/decreasing order of object values. Let us consider the earliest join
iteration involving the first tuples of each relation. Figure 2 (a) shows the table
pointers (JAge and JDebt) for the two relations and the two red lines show the matching
tuples to be joined resulting in the tuples T1 (C1, 25, 2800) and T2 (C13, 32, 800)
shown in Figure 2 (b). Since these tuples are formed from the best tuples in each
dimension, they have the best values in their respective dimensions, therefore no other
tuples dominate them and they are part of the skyline result. We can create a header
point based on the worst values (here, the largest values) in each dimension (Age and
Debt) across all the currently joined tuples resulting in a tuple H (32, 2800). T1 and
T2 are called Header Tuples.

Fig. 2. Formation of Initial Header Point and its Prunability

Our goal with the header point is to use it to determine whether newly joined tuples
in subsequent iterations should be considered as candidate skyline tuples or be pruned
from advancing to the expensive skyline processing phase. For example, assume that
in the next join iteration we compute the next set of joined tuples by advancing the
table pointer to the next tuple in each VPT. Then, one of the resulting joined tuples is
(C12, 25, 3100). For the rest of the paper, we will use C12 to denote the tuple (C12,
25, 3100). However, the current candidate skyline list { (C1, 25, 2800), (C13, 32,
800) } contains a tuple (C1, 25, 2800) that clearly dominates C12, therefore C12
should not be considered as a candidate skyline tuple. Further, we should be able to

128 L. Chen, S. Gao, and K. Anyanwu

use the information from our header point to make this determination rather than
compare every newly joined tuple with tuples in the candidate skyline list. We
observe the following relationship between newly joined tuples and the header point
that can be exploited: If a newly joined tuple is worse than the header point in at least
one dimension, then that new tuple cannot be a skyline tuple and can be pruned.
Applying this rule to our previous example, we will find that the tuple C12 is worse
than our header point H in the Debt dimension. Therefore, it can be pruned. In
contrast, the other joined tuple (C6, 30, 1200) is not worse than H in at least one
dimension (in fact, it is better in two dimensions) and is not pruned. Figure 2 (b)
shows the relationships between these points in a 2-dimensional plane: any
subsequent joined tuple located in the regions of S, Q and T can be pruned by header
point H. We now make a more precise statement about the relationship between a
header point and tuples created after the creation of the header point.

Lemma 1. Given a D-dimensional header point , , … , , any
“subsequent ” (i.e. a point constructed after the current header point) D-tuple whose
values are worse than H in at least D - 1 dimensions, are not skyline points.
Proof. Let , , … , be a new tuple that is worse than the current header
point , , … , in at least D – 1 dimensions but is a candidate skyline
point. Let be the header point that was just formed during the construction of the
most recently computed set B = , , … , , , , … , ,
... , , , … , } of candidate skyline points (header tuples), where
denotes the next best value in . Recall that B consists of the last D tuples that
resulted from the join between best tuples in each dimension and a matching tuple in
each of the other dimensions.

Assume that the dimensions in which P has worse values than the header point H are
dimensions 2 to D. Then, H “partially dominates” P in dimensions 2 to D. Further,
since the header point is formed from the combination of the worst values in each
dimension across the current header tuples, P is also partially dominated by the
current header tuples which are also current candidate skyline tuples. Therefore, the
only way for P to remain in the skyline is that no candidate skyline tuples dominate it
in the only remaining dimension, dimension 1. However, the header point tuple , , … , which is currently a candidate skyline tuple has a dimension-
1 value - that is better than . This is because the values are sorted and visited
in decreasing order of “goodness” and the tuple was constructed before P, so the
value must be better than . This means that is better than P in all
dimensions and therefore dominates P. Therefore, P cannot be a skyline tuple which
contradicts our assumption.

3.2 RDFSkyJoinWithFullHeader (RSJFH)

We now propose an algorithm RDFSkyJoinWithFullHeader (RSJFH) for computing
skylines using the Header Point concept. In the RSJFH algorithm, a join iteration
proceeds as follows: create a joined tuple based on the tuple pointed by the table
pointer for dimension i. If a resulting joined tuple is pruned, then advancing table i’s
pointer until it points to a tuple whose joined tuple is not pruned by the current
header point. This process is repeated for each dimension to create a set of d header

 Efficiently Evaluating Skyline Queries on RDF Databases 129

tuples. Since the header point is formed using the worst values in each dimension
among the joined tuples, it may represent very loose boundary conditions which will
significantly reduce its pruning power. This occurs when these worst values are
among the worst overall in the relations. In our example, this occurs in the first join
iteration with the construction of the initial header point H(32, 2800). To strengthen
the pruning power of the header point, we can update its values as we encounter new
tuples with better values i.e. the next set of D tuples whose set of worse values are
better than the worse values in the current header point. These tuples will become the
next iteration’s header tuples.

Figure 3 (a) shows the second join iteration where new header tuples are used to
update the Header Point. The next tuple in Age VPT is (C12, 25) and its joined tuple
is (C12, 25, 3100). Compared with H, C12 can be pruned since it is worse than H in at
least D-1 dimensions (D is 2). RSJFH advances the table pointer to the next tuple in
the Age table, (C2, 26) whose joined tuple is (C2, 26, 2000). Compared with H, C2 is
not pruned and this tuple is adopted as a header tuple. Then, RSJFH moves to the next
VPT Debt where the next tuple is (C6, 1200) and its joined tuple is (C6, 30, 1200).
Compared with H, C6 is not pruned. Now, there is one header tuple from each VPT
and the header point can be updated to H’ (30, 2000). Similarly, in the third join
iteration (Figure 3 (b)), RSJFH checks the subsequent joined tuples in tables Age and
Debt and finds (C5, 28, 1400) and (C5, 28, 1400) are the next header tuples in tables
Age and Debt respectively. Then, the header point is updated to H’’ (28, 1400) based
on these two header tuples.

Fig. 3. Updating Header Points

3.2.1 Termination Phase and Post Processing
The RSJFH terminates the search for additional candidate skyline tuples when either
(i) the header point is not updated or (ii) either one of the table pointers advances
down to the end of .

Lemma 2. Let , , … , be the last D-dimensional header point
computed during the last join iteration i.e. the joining process that resulted in the
computation of the last D candidate skyline tuples. If during the current join iteration

130 L. Chen, S. Gao, and K. Anyanwu

the header point is not updated or either one of the table pointers advances down
to the end of , then the search for additional candidate skyline tuples can be
terminated losslessly.
Proof. Recall that during a join iteration, we pick the next best tuples that are not
pruned in each dimension and join with other dimensions to form the next D
candidate skyline tuples. So each resulting tuple should contain the next best value in
some dimension, i.e. , , … , , , , … , , … ,, , … , . If after computing the set B, the header point is not updated, it
implies that each is worse than the corresponding hi in H. It is clear that all
these tuples can be pruned because their best dimension values are worse than our
current worst seen values in our header tuple, resulting in that the other dimensions
are clearly also worse. Thus, the header tuple dominates all of them. Further, since the
tuples in each dimension are ordered in the decreasing order of “goodness”, the next
set of best values cannot be better than those currently considered. Therefore, no
better tuples can be found with further scanning of the tables. When either one of the
table pointers advances down to the end of then all the values for that
dimension have been explored. Therefore, no new D-tuples can be formed and the
search for additional candidate skyline tuples can be terminated losslessly.

Algorithm 1. RDFSkyJoinWithFullHeader (RSJFH)
INPUT: n VPTs which are sorted according to object value, VPTList.
OUTPUT: A set of skyline points.
1.Initialization // to get first header point
2. read first tuple in each VPT and hash join to get n complete tuple Ti.
3. take the worst value in each dimension among Ti (i=1, 2,.., n) to compute Header Point H
4.While H is updated or pointers is not pointing to the end of do
5. for each VPT t ∈ VPTList
6. read one tuple and hash join to get complete tuple T and compare T with H
7. if T is prunable by H
8. T is pruned
9. else
10. T is a Header Tuple for updating H and is inserted into Candidate List C
11. end for
12. update Header Point H by Header Tuples
13. end while
14.BNLCalculate(C). // use BNL skyline algorithm to compute skyline results

Discussion. Intuitively, the header point summarizes neighborhoods that have been
explored and guides the pruning of the tuples in neighborhood around it during each
iteration. However, since RSJFH uses the worse points in each dimension, and prunes
tuples that are really worse (worse in d-1 dimensions) than the header point, it only
allows conservative pruning decisions. Therefore, some non-skyline points can still be
inserted into the candidate skyline list. For example, assume that RSJFH has just
processed the following tuples into the candidate skyline list {(25, 4000), (28, 3500),
(30, 3000)} and computed the header point (30, 4000). Then, an incoming tuple (29,
3750) would be advanced to the next stage because it is better than the header point in

 Efficiently Evaluating Skyline Queries on RDF Databases 131

both dimensions. However, it is unnecessary to advance the tuple (29, 3750) into the
next stage of the computation because it would eventually be dropped from candidate
skyline list since the tuple (28, 3500) dominates this tuple.

4 Near-Complete Algorithms

We can try to improve the header point to allow for more aggressive pruning. We
may however risk pruning out correct skyline tuples. In the following section, we
propose a strategy that strikes a balance between two objectives: increasing the
aggressiveness of pruning power of the header point and minimizing the risk of
pruning correct skyline tuples. We posit that in the context of the Web, partial results
can be tolerated particularly if the result set is “near-complete” and can be generated
much faster than the “complete” set. The approach we take is based on performing
partial updates to the header point after each join iteration rather than updating all the
dimensions.

4.1 RDFSkyJoinWithPartialHeader (RSJPH)

Definition 3 (Partial Header Point Update). Let H be the header point generated in
the previous join iteration and , , … , be the tuples in the current join iteration.
A partial update to the header point means that for the ith dimension of header point,
the value is updated only if the worst value of , , … , in the ith dimension is
better than the ith dimensional value in H.

This implies that if all values in the ith dimension are better than the ith dimensional
value of the header point, then the ith dimension of the header point is updated with
worst value as before; otherwise, the ith dimension is not updated. Thus, the header
point is aggressively updated by the improving (or advancing) dimension values of
the joined tuples in the current join iteration.

Fig. 4. Partially Update Header Points by Bitmap Computation and its Termination

132 L. Chen, S. Gao, and K. Anyanwu

We now propose an algorithm RDFSkyJoinWithPartialHeader (RSJPH) based on
the partial update. To efficiently perform a “partial update of header point”, RSJPH
uses bitmap representation for bitwise operations. Consider the skyline graph sub
pattern of Customer again. Figure 4 shows the partial update method applied after the
first join iteration. In the second iteration, there are two newly joined tuples (C13, 25,
3100) and (C6, 30, 1200) and a header point H1(32, 2800) generated in the previous
iteration. Since both the dimension-1 values of C13 and C6 are better than that of H1
and only the dimension-2 value of C6 is better than that of H1, header point is
partially updated by the worse dimension-1 values of C13 and C6, resulting in H2(30,
2800). This partial update method is implemented using Bitmap computation (bit “1”
denotes the dimension that has better value, bit “0” denotes a contrary case and a
resulting bit array indicates that in which dimension(s) the header point needs to be
updated). Iterations 3 to 6 perform the same way to partially update the header points.

Termination. RSJPH revises the termination condition based on the partial update
(Line 2 in Algorithm 2). RSJPH terminates when there is no update for header point
and all the dimensional values in the newly joined tuples are worse than that of
current header point. Iteration 7 in Figure 4 shows how RSJPH terminates.

Algorithm 2. RDFSkyJoinWithPartialHeader(RSJPH)
INPUT: n VPT which are sorted according to object value, VPTList.
OUTPUT: A set of skyline points.
Define Variables: in n newly-joined tuples , , … , , let dimension-1 value of be

, dimension-2 value of be , …, dimension-n value of be .
1.Initialization // to get first header point H
2.While (H is updated) && (< , , … , > is better than H) do
3. for each VPT t ∈ VPTListI do
4. read one tuple and hash join to get complete tuple T and compare T with H
5. use the bitmap representation to record T’s better value and worse value
6. if T is prunable by H then
7. T is pruned
8. else
9. T is inserted into Candidate List C
10. end for
11. read the bitmap as bit-slice and calculate bit-slice value by bitwise AND operation
12. for each bit-slice do // partially update H
13. if bit-slice value is 1 then
14. update the corresponding header point value
15. else
16. no update
17. end for
18.end while
19.BNLCalculate(C).

Discussion. In RSJFH, we always update the dimensions using the worse values from
the header tuples in that iteration regardless of whether those values are better or
worse than the current header point values. Essentially, a header point summarizes
only the iterations preceding it. In RSJPH, a header point may hold “good” pruning
values from earlier iterations and only update those dimensions whose values are

 Efficiently Evaluating Skyline Queries on RDF Databases 133

improving or advancing. This in a sense broadens the neighborhood that it represents
and also allows certain regions in the space to be considered for longer periods than
the previous approach. Consequently, we have a header point with more aggressive
pruning power. For example, assume that after our previous header point (30, 4000),
the next iteration would have worse values as (25, 4500). However, given our partial
update technique, only the first dimension would be updated to 25, resulting in the
header point (25, 4000). This header point would prune more tuples than the regular
header point (25, 4500). However, some of the pruned tuples that fall into the gap
between (25, 4500) and (25, 4000) may be skyline tuples, such as (25, 4250).

Proposition 1. Let , , … , be the header points generated in RSJFH and A be
the set of pruned tuples by all the header points. Similarly, let , , … , be the
header points generated in RSJPH and B be the set of pruned tuples by all the header

points. is stronger than , which means may wrongly prune some skyline

points falling into the interval < , >. Then, and the difference set B .

To avoid this we can relax the pruning check. Rather than generalizing the checking
based on number of dimensions, we do checking based on which dimensions were
updated and which were not updated.

4.2 Relaxing Prunability of Partially Updated Header Point

Given a header point, if the ith dimension is updated in the last iteration, we regard it
as an “updated dimension”; otherwise, we regard it as “non-updated dimension”.
Given a tuple p, if p has n dimensions whose values are better than that of the header
point h, we say that p has n better dimensions. From Lemma 1, we can infer that a
tuple p needs to have at least two better dimensions to survive the pruning check.
Assume that we have: (1) , is a header point partially updated from a full
updated header point , , where and , where denotes
better; Thus, is the “updated” dimension of and is the “non-updated”
dimension of ; (2) a tuple , , where , and .
Compared to , p can be pruned because p has only one better dimension. However,
when compared to , p will survive the pruning check since p has two better
dimensions (and). Since the partial update approach makes the
“updated” dimensions of too good, the tuples that may survive given the fully
updated header point , such as p, are mistakenly pruned. To alleviate this situation,
we relax the pruning condition with the following crosscheck constraint.

Crosscheck. If an incoming tuple has some dimensional values better than "non-
updated" dimension and some dimensional values worse than "updated” dimension,
we add this tuple into candidate list. To implement this algorithm, we basically add
this additional condition check between Lines 6 and 7 in Algorithm 2. The resulting
algorithm is called RDFSkyJoinWithPartialHeader+ (RSJPH+).

Proposition 2. Let be a header point in RSJPH with the “updated” dimension
that has been updated in iteration i-1 and the “non-updated” dimension that has
not been updated in iteration i-1. Let p be a new tuple that has failed the pruning

134 L. Chen, S. Gao, and K. Anyanwu

check by . If p survives the crosscheck condition, i.e., . ≽ . but . ≽ . , p is saved and added into candidate list. We regard the saved tuples
by crosscheck in iteration i as the set . . Assume C denotes the set of
pruned tuples in RSJPH+. Then, and .

5 Experimental Evaluation

Experimental Setup and Datasets. In this section, we present an experimental
evaluation of the three algorithms presented in above sections in terms of scalability,
dimensionality, average completeness coverage and prunability. We use the synthetic
datasets with independent, correlated and anti-correlated data distributions generated
by a benchmark data generator [1]. Independent data points follow the uniform
distribution. Correlated data points are not only good in one dimension but also good
in other dimensions. Anti-correlated data points are good in one dimension but bad in
one or all of the other dimensions. All the data generated by the data generator is
converted into RDF format using JENA API and is stored as VPT using BerkeleyDB.
All the algorithms are implemented in Java and the experiments are executed on a
Linux machine of 2.6.18 kernel with 2.33GHz Intel Xeon and 16GB memory. The
detailed experimental results can be found at sites.google.com/site/chenlingshome.

Scalability. Figure 5 (A), (B) and (C) show the scalability evaluation of RSJFH,
RSJPH, RSJPH+ and Naïve for independent, correlated and anti-correlated datasets (1
million to 4 million triples). In all data distributions, RSJPH and RSJPH+ are superior
to RSJFH and Naïve. The difference in execution time between RSJPH, RSJPH+ and
RSJFH comes from the fact that partial update method makes the header point
stronger (i.e. the header point has better value in each dimension and could dominate
more non-skyline tuples resulting in stronger prunability) earlier, which terminates the
algorithm earlier. For independent data (Figure 5 (A)), RSJPH and RSJPH+ use only
about 20% of the execution time needed in RSJFH and Naïve. The execution time of
RSJFH increases quickly in the independent dataset with size 4M of triples. The
reason for this increase is that the conservativeness of the full header point update
technique leads to limited effectiveness in prunability. This results in an increased
size for the candidate skyline set and consequently total number of comparisons with
Header Point. RSJPH+ relaxes the check condition in RSJPH and so allows more
tuples to be inserted into the candidate list explaining the slight increase in the
execution time in Figure 5(A). Figure 5 (B) shows that RSJFH, RSJPH and RSJPH+
perform better in correlated datasets than in independent datasets. In the correlated
data distribution, the header points tend to become stronger earlier than in the case of
independent datasets especially when the data is accessed in the decreasing order of
“goodness”. The reason for this is that the early join iterations produce tuples that are
made of the best values in each dimension. Stronger header points make the algorithm
terminate earlier and reduce the number of tuples joined and checked against the
header point and the size of candidate skyline set. Figure 5 (C) shows particularly bad
performance for the anti-correlated datasets which often have the best value in one
dimension but the worst value in one or all of the other dimensions. This leads to very
weak header points because header points are constructed from worst values of joined

 Efficiently Evaluating Skyline Queries on RDF Databases 135

tuples. RSJFH have to explore almost the entire search space, resulting in the poor
performance shown in Figure 5 (C). Although RSJPH seems to outperform the other
algorithms, this advantage is attributed to the fact that it computes only 32% of
complete skyline result set.

Fig. 5. Experimental Evaluation

0

20

40

60

80

100

120

1m 2m 3m 4m

E
xe

cu
tio

n
T

im
e(

Se
c)

Triple Size (million)

Independent
Naïve
RSJFH
RSJPH
RSJPH+

5(A)

0.5
1
2
4
8
16
32
64
128
256

1m 2m 3m 4m
E

xe
cu

tio
n

T
im

e(
Se

c)
Triple Size (million)

Correlated
Naïve
RSJFH
RSJPH
RSJPH+

5(B)

0

200

400

600

800

1000

1200

1m 2m 3m 4m

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Triple Size (million)

Anti-Correlated
Naïve
RSJFH
RSJPH
RSJPH+

5(C)

0

35

70

105

140

175

210

245

2 3 4 5

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Number of Dimensions

Independent
Naïve
RSJFH
RSJPH
RSJPH+

5(D)

0
6
12
18
24
30
36
42
48

2 3 4 5

E
xe

cu
tio

n
T

im
e(

se
c)

Number of Dimensions

Correlated
Naïve
RSJFH
RSJPH
RSJPH+

5(E)

1

4

16

64

256

1024

4096

16384

2 3 4 5

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Number of Dimensions

Anti-Correlated
Naïve
RSJFH
RSJPH
RSJPH+

5(F)

0
10
20
30
40
50
60
70
80
90

100

Independent Correlated Anti-Correlated

Pe
rc

en
ta

ge
(%

)

Data Distribution

Average Completeness Coverage

RSJFH

RSJPH

RSJPH+

5(G)

0
10
20
30
40
50
60
70
80
90

100

Independent Correlated Anti-Correlated

Pe
rc

en
ta

ge
(%

)

Data Distribution

Average Prunability

RSJFH

RSJPH

RSJPH+

5(H)

136 L. Chen, S. Gao, and K. Anyanwu

Dimensionality. Figure 5 (D), (E) and (F) show the effect of increasing the
dimensionality (2-5) on the performance of the four algorithms for different data
distributions. As in previous experiments, RSJPH and RSJPH+ consistently
outperform RSJFH and Naïve. The execution time of RSJFH starts to increase with
number of dimensions greater than 3. The reason is that the conservative way of
updating header point makes the header points greatly reduce the pruning power in
high dimensional data and the extra comparisons almost double the total execution
time. For RSJPH+, with the increase in number of dimensions, the size of the saved
tuples by the crosscheck condition increases, therefore, the size of candidate skyline
set increases and the execution time increases as well.

Average Completeness Coverage and Average Prunability. Figure 5 (G) and (H)
show the average completeness coverage (ACC) and average prunability (AP) of RSJFH,
RSJPH and RSJPH+. ACC and AP are the averages for completeness coverage and the
number of pruned triples across all the experiments shown in Figure 5 (A) to (F)
respectively. The pruned triples include the ones pruned by header points as well as the
ones pruned by early termination. Figure 5 (E) shows that RSJFH has 100% of ACC in
all data distributions. For the correlated datasets, the data distribution is advantageous in
forming a strong header point without harming the completeness of skyline results when
the data is sorted from “best” to “worst”. Thus, RSJFH, RSJPH and RSJPH+ have 100%
of ACC and 99% of AP in correlated datasets. For independent datasets, RSJPH
aggressively updates the header points to increase AP with the cost of decreasing ACC.
RSJPH+ improves the ACC by using crosscheck while only sacrificing 2.7% of the AP
compared with RSJPH. For anti-correlated datasets, the data distribution makes all the
algorithms perform poorly. Although RSJFH achieves 100% of ACC, the AP decreases
to 7%. RSJPH still maintains 99% for AP but its ACC is only 32%.

RSJPH+ achieves a good tradeoff between completeness coverage and prunability.
RSJPH+ computes about 80% of skyline results when it scans about the first 35% of
sorted datasets.

6 Related Work

In recent years, much effort has been spent on evaluating skyline over single relation.
[1] first introduced the skyline operator and proposed BNL and D&C and an
algorithm using B-trees that adopted the first step of Fagin’s . [2][3][9] proposed
algorithms that could terminate earlier based on sorting functions. [4][5][6] proposed
index algorithms that could progressively report results. Since these approaches focus
on single relation, they consider skyline computation independent from join phase,
which renders the query execution to be blocking.

Some techniques have been proposed for skyline-join over multiple relations. [11]
proposed a partitioning method that classified tuples into three types: general, local
and non-local skyline tuples. The first two types are joined to generate a subset of the
final results. However, this approach isn’t suitable for single dimension tables like
VPT [7] in RDF databases because each VPT can only be divided into general and
local skyline tuples, neither of which can be pruned, requiring a complete join of all
relevant tables. [16] proposed a framework SkyDB to partition the skyline-join

 Efficiently Evaluating Skyline Queries on RDF Databases 137

process into macro and micro level. Macro level generates abstractions while micro
level populates regions that are not pruned by macro level. Since RDF databases only
involve single dimension tables, SkyDB is not suitable for RDF databases.

In addition, there are some techniques proposed for skyline computation for
Semantic Web data and services. [8] focused on extending SPARQL with support of
expression of preference queries but it does not address the optimization of query
processing. [13] formulated the problem of semantic web services selection using the
notion of skyline query and proposed a solution for efficiently identifying the best
match between requesters and providers. [14] computed the skyline QoS-based web
service and [15] proposed several algorithms to retrieve the top-k dominating
advertised web services. [17] presented methods for automatically relaxing over-
constrained queries based on domain knowledge and user preferences.

7 Conclusion and Future Work

In this paper, we have addressed the problem of skyline queries over RDF databases.
We presented the concept of Header Point and Early Termination to prune non-
skyline tuples. We have proposed a complete algorithm RSJFH that utilized the
prunability of Header Point and Early Termination. Then, we proposed two near-
complete algorithms, RSJPH and RSJPH+, for achieving the tradeoffs between quick
response time and completeness of skyline queries over RDF databases. In future, we
will integrate cost-based techniques for further optimization. We will also address the
issue of incomplete skyline computation over RDF databases.

Acknowledgement. The work presented in this paper is partially funded by NSF
grant IIS- 0915865. Thanks to Mridu B. Narang for the draft comments and to Jigisha
Dhawan, Vikas V. Deshpande, Amrita Paul and Gurleen Kaur for the discussions.

References

[1] Borzsonyi, S., Kossmann, D., Stocker, K., Passau, U.: The Skyline Operator. In: ICDE
(2001)

[2] Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: ICDE (2003)
[3] Bartolini, I., Ciaccia, P., Patella, M.: SaLSa: computing the skyline without scanning the

whole sky. In: CIKM, Arlington, Virginia, USA, pp. 405–414 (2006)
[4] Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: VLDB,

San Francisco, CA, USA, pp. 301–310 (2001)
[5] Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for

skyline queries. In: VLDB, HK, China, pp. 275–286 (2002)
[6] Papadias, D., Fu, G., Morgan Chase, J.P., Seeger, B.: Progressive Skyline Computation in

Database Systems. ACM Trans. Database Syst (2005)
[7] Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data

management using vertical partitioning. In: VLDB, Vienna, Austria, pp. 411–422 (2007)
[8] Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences. In:

Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 612–624. Springer, Heidelberg (2006)

138 L. Chen, S. Gao, and K. Anyanwu

[9] Godfrey, P., Shipley, R., Gryz, J.: Maximal Vector Computation in Large Data Sets. In:
VLDB, Norway (2005)

[10] Raghavan, V., Rundensteiner, E.A.: Progressive Result Generation for Multi-Criteria
Decision Support Queries. In: ICDE (2010)

[11] Jin, W., Ester, M., Hu, Z., Han, J.: The Multi-Relational Skyline Operator. In: ICDE
(2007)

[12] Sun, D., Wu, S., Li,J.,Tung, A.K.H.: Skyline-join in Distributed Databases. In: ICDE
Workshops, pp. 176–181 (2008)

[13] Skoutas, D., Sacharidis, D., Simitsis, A., Sellis, T.: Serving the Sky: Discovering and
Selecting Semantic Web Services through Dynamic Skyline Queries. In: ICSC, USA
(2008)

[14] Alrifai, M., Skoutas, D., Risse, T.: Selecting Skyline Services for QoS-based Web Service
Composition. In: WWW, Raleigh, NC, USA (2010)

[15] Skoutas, D., Sacharidis, D., Simitsis, A., Kantere, V., Sellis, T.: Top-k Dominant Web
Services Under Multi-Criteria Matching. In: EDBT, Russia, pp. 898–909 (2009)

[16] Raghavan, V., Rundensteiner, E.: SkyDB: Skyline Aware Query Evaluation Framework.
In: IDAR (2009)

[17] Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing RDF Queries based on
User and Domain Preferences. JIIS 33(3) (2009)

The Design and Implementation of Minimal�

RDFS Backward Reasoning in 4store

Manuel Salvadores1, Gianluca Correndo1, Steve Harris2,
Nick Gibbins1, and Nigel Shadbolt1

1 Electronics and Computer Science,
University of Southampton, Southampton, UK

{ms8,gc3,nmg,nrs}@ecs.soton.ac.uk
2 Garlik Ltd, UK

steve.harris@garlik.com

Abstract. This paper describes the design and implementation ofMini-
mal RDFS semantics based on a backward chaining approach and imple-
mented on a clustered RDF triple store. The system presented, called 4sr,
uses 4store as base infrastructure. In order to achieve a highly scalable
system we implemented the reasoning at the lowest level of the quad
store, the bind operation. The bind operation runs concurrently in all
the data slices allowing the reasoning to be processed in parallel among
the cluster. Throughout this paper we provide detailed descriptions of
the architecture, reasoning algorithms, and a scalability evaluation with
the LUBM benchmark. 4sr is a stable tool available under a GNU GPL3
license and can be freely used and extended by the community1.

Keywords: Triple Store, Scalability, Reasoning, RDFS, SPARQL, 4store.

1 Introduction

RDF stores - or triple stores - implement some features that make them very
attractive for certain type of applications. Data is not bound to a schema and it
can be asserted directly from RDF sources (e.g. RDF/XML or Turtle files) due to
their native support of Semantic Web data standards. But the most attractive
characteristic is the possibility of implementing an entailment regime. Having
entailment regimes in a triple store allows us to infer new facts, exploiting the
semantics of properties and the information asserted in the knowledge base. To
agree on common semantics, some standards have arisen for providing different
levels of complexity encoded in a set of inference rules, from RDF and RDFS to
OWL and RIF, each of them applicable to different scenarios.

Traditionally, reasoning can be implemented via forward chaining (FC hence-
forth), backward chaining (or BC), or hybrid algorithms (a mixture of the two).

� Minimal RDFS refers to the RDFS fragment published in [8].
1 Preliminary results were presented at the Web-KR3 Workshop [10] and demoed at
ISWC 2010 [9].

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 139–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

140 M. Salvadores et al.

FC algorithms tend to apply a set of inference rules to expand the data set be-
fore or during the data assertion phase; with this approach, the database will
contain all the facts that are needed when a query is issued. On the other hand,
BC algorithms are goal directed and thus the system fires rules and/or axioms
at runtime to find the solutions. Hybrid algorithms use a combinations of for-
ward and backward chaining. The pros and cons of these approaches are well
known to the AI and database community. FC approaches force the system to
retract entailments when there is an update or insert, making data transactions
very expensive. Complete materialisation of a knowledge base could lead to an
explosion of data not manageable by current triple store technology. Backward
chaining performs better for data transactions and the size of the KB is smaller,
but queries tend to have worse performance.

Reasoners are also classified by their level of completeness. A reasoner can
claim to be complete over an entailment regime R if and only if : (a) it is able
to detect all entailments between any two expressions; and (b) it is able to draw
all valid inferences; according to R semantics. For some types of applications a
complete reasoner might be required but one should assume that higher com-
pleteness tends to degrade query response time. There is, therefore, a clear com-
promise: performance versus completeness and the old AI debate about speed
and scalability versus expressiveness. In our specific case, 4sr excludes a subset of
RDFS semantics rarely used by Semantic Web applications and implements the
semantics from the Minimal RDFS fragment [8]. 4sr entailment is complete con-
sidering Minimal RDFS semantics but incomplete for the full normative RDFS
semantics [5]. In that sense, our main contribution is a system that proves that
Minimal RDFS semantics can scale if implemented in a clustered triple store. In
comparison to our previous research, this paper formalizes 4sr against Minimal
RDFS, and also describes the components to be synchronized among the cluster
and benchmarks the bind operation to test its scalability.

The remainder of the paper is as follows: Section 2 describes the related re-
search in the area and introduces basic 4store concepts and Minimal RDFS.
Section 3 introduces and formalizes 4sr ’s distributed model. Section 4 explains
the design and implementation of 4sr explaining the modifications undertaken
in 4store. Section 5 studies the scalability of the new bind operation by bench-
marking it under different conditions, and finally Section 6 analyses the results
achieved by this work.

2 Related Work

4sr is a distributed backward chained reasoner for Minimal RDF/RDFS, and to
our knowledge is the first system with such characteristics. However a number
of related pieces of research informed our work.

Some current tools implement monolithic solutions using FC, BC or hybrid
approaches. They use different types of back-ends as triple storage such as
RDBMS, in memory, XML or native storage. Examples of these tools are Jena [2],

The Design and Implementation of Min RDFS BC Reasoning in 4store 141

Pellet [11] and Sesame [1]. These tools can perform RDFS reasoning with datasets
containing up to few million triples. But, even though they have played a key
role in helping Semantic Web technologies to get adopted, their scalability and
performance is still a major issue.

BigOWLIM2 is one of the few enterprise tools that claims to perform OWL
reasoning over billions of triples. It can run FC reasoning against the LUBM
(90K,0) [3] , which comprises around 12 billion triples. They materialize the
KBs after asserting the data which means that BigOWLIM has to retract the
materialization if the data is updated. There is no information on how this tool
behaves in this scenario, even though they claim their inferencing system is
retractable.

In the context of distributed techniques, [15] performs FC parallel reasoning
to expand the RDFS closure over hundreds of millions of triples, and it uses a
C/MPI platform tested on 128 core infrastructure with the LUBM 10k dataset.
[13] pursues a similar goal and using MapReduce computes the RDFS closure
over 865M triples in less than two hours. A continuation of this work has been
presented in [12] providing a parallel solution to compute the OWL Horst regime.
This solution, built on top of Hadoop, is deployed on a cluster of 64 machine
and has been tested against a synthetic data set containing 100 billion triples
and a 1.5 billion triples of real data from the LDSR and UniProt datasets.

[7] presented a novel method based on the fact that Semantic Web data present
very skewed distributions among terms. Based on this evidence, the authors
present a FC algorithm that works on top of data flows in a p2p infrastructure.
This approach reported a materialization of RDFS for 200 million triples in 7.2
minutes on a cluster of 64 nodes.

Obviously, in the last 2-3 years there has been a significant advance on mate-
rialization of closures for both RDFS and OWL languages. However very little
work has been presented on how to query such vast amounts of data and how to
connect those solutions with SPARQL engines. Furthermore, these types of solu-
tions are suitable for static datasets where updates and/or deletes are sparse or
non-existent. Applying this mechanism to dynamic datasets with more frequent
updates and deletes whose axioms need to be recomputed will lead to processing
bottlenecks.

To avoid these bottlenecks, progress on backward chained reasoning is re-
quired. To date, there has been little progress on distributed backward chained
reasoning for triple stores. [6] presented an implementation on top of DHTs us-
ing p2p techniques. So far, such solutions have not provided the community with
tools, and recent investigations have concluded that due to load balancing issues
they cannot scale [7].

With the SPARQL/Update specification to be ratified soon, we expect more
triple/quad stores to implement and support transactions, which makes BC rea-
soning necessary at this juncture.

2 http://www.ontotext.com/owlim/big/index.html accessed 21/06/2010

142 M. Salvadores et al.

2.1 Minimal RDFS Reasoning

RDFS extends RDF with a schema vocabulary, a regime that contains seman-
tics to describe light-weight ontologies. RDFS focusses mostly on expressing
class, property and data type relationships and its interpretations can potentially
generate inconsistencies. For instance, by using rdfs:Literal as rdfs:domain
for a predicate P, any statement (S,P,O) with P as predicate would entail (S
a rdfs:Literal) which is clearly inconsistent since RDF doesn’t allow lit-
erals to be subjects (see section 4.3 [5]). Another issue with RDFS interpre-
taions is decidability. There is a specific case when using container memberships
(rdfs:ContainerMembershipProperty) that can cause an RDFS closure to be
infinite [14]. Other similar cases like these appear when constructing ontologies
with different combinations of the RDF reification vocabulary, rdf:XMLLiteral,
disjoint XSD datatypes, etc. A complete RDFS reasoner must examine the ex-
istence of such paradoxes and generate errors when models hold inconsistencies.
Consistency checking is computationally very expensive to deal with, and re-
duces query answering performance, and one should question the applicability
of the semantics that generate inconsistencies for most type of applications.

Another known issue with RDFS is that there is no differentiation between
language constructors and ontology vocabulary, and therefore constructors can
be applied to themselves. (P rdfs:subPropertyOf rdfs:subPropertyOf), for
example, it is not clear how an RDFS reasoner should behave with such con-
struction. Thankfully this type of construction is rarely used on Semantic Web
applications and Linked Data.

[8] summarizes all the above problems among many others motivating the
use of an RDFS fragment, called Minimal RDFS. This fragment preserves the
normative semantics of the core functionalities avoiding the complexity described
in [5]. Because Minimal RDFS also avoids RDFS constructors to be applied to
themselves, it has been proven that algorithms to implement reasoning can be
bound within tight complexity limits (see section 4.2 in [8]).

Minimal RDFS is built upon the ρdf fragment which includes the following
RDFS constructors: rdfs:subPropertyOf, rdfs:subClassOf, rdfs:domain,
rdfs:range and rdf:type3. It is worth mentioning that this fragment is relevant
because it is non-trivial and associates pieces of data external to the vocabulary
of the language. Contrarily, predicates left out from the ρdf fragment essentially
characterize inner semantics in the ontological design of RDFS concepts.

2.2 4store

4store [4] is an RDF storage and SPARQL query system that became open
source under the GNU license in July 2009. Since then, a growing number of
users have been using it as a highly scalable quad store. 4store provides a sta-
ble infrastructure to implement decentralized backward chained reasoning: first

3 For the sake of clarity we use the same shortcuts as in [8] ([sp], [sc] [dom] and [type]
respectively).

The Design and Implementation of Min RDFS BC Reasoning in 4store 143

because it is implemented as a distributed RDF database and second because
it is a stable triple store that has been proven to scale up to datasets with 15G
triples in both enterprise and research projects.

4store distributes the data in non-overlapping segments. These segments are
identified by an integer and the allocation strategy is a simple mod operation
over the subject of a quad. In the rest of the paper we will represent a quad
as a 4-tuple where the first element is the model URI and the remainder is the
typical RDF triple structure (subject, predicate, object), and the quad members
will be accessed as qm, qs, qp and qo respectively.

The distributed nature of 4store is depicted in [4], and can be simplified as fol-
lows. The data segments are allocated in Storage Nodes and the query engine in
a Processing Node. The Processing Node accesses the Storage Nodes via sending
TCP/IP messages. It also decomposes a SPARQL query into a query plan made
of quad patterns. For each quad pattern, it requests a bind operation against
all segments in each Storage Node. The bind operations are run in parallel over
each segment and receive as input four lists {BM , BS , BP , BO} that represent
the quad patterns to be matched.

3 Minimal RDFS and 4sr ’s Distributed Model

This section takes Minimal RDFS algorithms from [8] and reformulates them to
be implemented as goal directed query answering system (backward chain) over
a distributed infraestructure.

We define a knowledge base (KB) as set of n graphs:
KB = {G1, G2, G3, ...Gn}

where a graph Gi is a set of quads of the form (m, s, p, o). We also define the
set of segments in a distributed RDF store as:

S = {S0, S1, S2, ...Sm−1}
Quads can be distributed among segments based on different strategies. In

our case, 4store’s distribution mechanism applies a mod operation over a hash4

of every quad’s subject. Therefore, a quad (m, s, p, o)5 from graph Gi will be
allocated in segment Sj if j = hash(s) mod m.

According to our subject based distribution policy, a quad gets allocated to a
segment regardless of the graph Gi they belong to, and a graph Gi will be split
among m′ number of segments where 0 < m′ ≤ m. It is worth mentioning that
this type of data distribution disseminates the data evenly among S making no
assumptions about the structure or content of the resources.

We now define the vocabulary of RDFS terms supported:
ρdf = {sc, sp, dom, range, type}

A quad (m, s, p, o) is an mrdf -quad iff p ∈ ρdf - {type}, and Gmrdf is a graph
with all the mrdf -quads from every graph in KB. It is important to mention that
the mrdf -quads are the statements we need to have in all the data segments in
4 Although 4store is parameterizable, most deployments use UMAC as hash function.
5 For the sake of simplicity we will not develop a whole RDF graph model here, we
assume that quads are just four-element entities.

144 M. Salvadores et al.

order to apply the deductive rules from [8], this process to replicate Gmrdf in all
segments is described throughout the rest of this section. The following rules,
extracted from [8], implement the Minimal RDFS semantics:

(sp0)

(, A, sp, B)(, B, sp, C)

(Ge, A, sp, C) (sp1)

(, A, sp, B)(, X, A, Y)

(Ge, X, B, Y)

(sc0)

(, A, sc, B)(, B, sc, C)

(Ge, A, sc, C) (sc1)

(, A, sc, B)(, X, type, A)

(Ge, X, type, B)

(dom0)

(, A, dom, B)(, X, A, Y)

(Ge, X, type, B) (ran0)

(, A, range, B)(, X, A, Y)

(Ge, Y, type, B)

(dom1)

(, A, dom, B)(, C, sp, A)(, X, C, Y)

(Ge, X, type, B) (ran1)

(, A, range, B)(, C, sp, A)(, X, C, Y)

(Ge, X, type, B)

These rules have been reformulated taking into account that we are dealing
with a quad system and not just with triples. The m element of the quads is
irrelevant for the rule condition; in the consequence the m element takes the value
of Ge which we consider the graph of entailments contained in KB. The model
element in the quad (m) does not play any role unless that the SPARQL query
being processed projects named graphs into the query resultset - see section 6.1
Future Work on named graph semantics.

At this point we have the definition of KB, S, and a set of deductive rules
for ρdf . Every segment in S contains a non-overlapping set of quads from KB.
One important aspect of 4store’s scalability is that the bind operation runs
concurrently on every segment of KB. Therefore, we need to look at data inter-
dependency in order to investigate rule chaining locks that can occur between
segments.

The chain of rules dependencies for Minimal RDFS is shown in Figure 1.
In the figure, mrdf -quads are marked with a ’*’, and quads in bold are initial
quads not triggered by any rule. The rest of the quads are entailed by triggering
one or more rules. There is an interesting characteristic in the chain of rules
that can be triggered in Minimal RDFS: in any possible chain of rules, only

(_,P0, sp , P1)* (_,P1, sp , P2)*(_,X, P0 , Y)

(Ge,X, P1 , Y) (Ge,P1, sp , P2)

(Ge,X, P2 , Y)

(_,C0, sc , C1)* (_,C1, sc , C2)*

(Ge,A, type , C1)

(Ge,A, type , C0)

(Ge,C1, sc , C2)

(Ge,A, type , C2)

(_,P1, dom , C0)* (_,A , P1, B) (_,P1, range , C0)* (_,B , P1, A)

(Ge,Y, type , C0)

(Ge,X, type , C0)

dom0
ran0

sc1
sc0

sc1

dom1

ran1

sp1

sp0sp0

rule sc1 is omitted
here for simplicity

Fig. 1. Rule Chain Tree

The Design and Implementation of Min RDFS BC Reasoning in 4store 145

one non-mrdf -quad that is not in Ge is used. This argument is backed up by
the fact that the conditions in the set of deductive rules contain zero or one
non-mrdf -quads. Therefore to implement distributed reasoning, the only data
we need to replicate in every segment of S is Gmrdf , so that Gmrdf is accessible
to the parallel execution of bind. This finding drives 4sr ’s design and it is a novel
and unique approach to implement RDFS backward chained reasoning.

4 4sr Design and Implementation

The RDFS inferencing in 4sr is based on two new components that have been
incorporated into 4store’s architecture:

Storage Node 0

Processing Node

QE

bind'(M,S,P,O)

RDFS sync

Storage Node 1

bind'(M,S,P,O)

SPARQL

Applications

Data Segment

Gmrdf Replicated
Segment

Gmrdf

mrdf-quads

Gmrdf

Fig. 2. 4sr Architecture

– RDFS Sync: A new processing node to replicate Gmrdf called RDFS sync.
This node gathers all the quads that satisfy the condition to be held in
Gmrdf from all the segments and replicates them to every Storage Node
keeping them synchronized. After every import, update, or delete, this pro-
cess extracts the new set of quads from Gmrdf in the KB and sends it to
the Storage Nodes. Even for large KBs this synchronization is fast because
Gmrdf tends to be a very small portion of the dataset.

– bind’: The new bind function matches the quads, not just taking into ac-
count the explicit knowledge, but also the extensions from the RDFS se-
mantics. This modified bind’ accesses Gmrdf to implement backward chain
reasoning. bind’ is depicted in detail in Section 4.1.

Figure 2 shows in the architecture how bind’ and RDFS Sync interact for
a hypothetical two storage-node deployment. The dashed arrows refer to the
messages exchanged between the RDFS Sync process and the Storage Nodes in
order to synchronize Gmrdf ; the arrows between the Processing Node and the
Storage Nodes refer to the bind operation requested from the Query Engine
(QE).

146 M. Salvadores et al.

4.1 bind’ and Minimal RDFS Semantics

In [10] we presented the logical model for bind’, a preliminary work that did not
take into account the Minimal RDFS fragment and was built upon a subset of
semantics from [5].

In this paper, we present a remodelled bind’ that has been reimplemented ac-
cording to the Minimal RDFS semantics and the distributed model described in
Section 3. To implement the model, we first consider the following modification
of rules dom1 and ran1. dom′

1 and ran′
1 - shown below - can replace the original

dom1 and ran1 keeping Minimal RDFS original semantics the same.

(dom′
1)

(, A, dom, B)(, C, sp, A)

(Ge, C, dom, B) (ran′
1)

(, A, range, B)(, C, sp, A)

(Ge, C, range, B)

The rationale for such a replacement is based on the fact chaining dom0 and
dom′

1 generate equivalent entailments to just dom1. And, similarly, chaining
range0 and range′1 is the same as range1.

PP1

PP2

PP3

sp

rangedom
CC5 CC3

sp

CC1CC2 CC1

CC5CC2CC1 CC3 CC1
rangedom

sp

CC2

CC1

CC3

CC5
CC4

PP1

PP2

PP3

sp

dom
CC5 CC3

sp

range

sp

sc

sc

sc

Gmrdf*

Gmrdf
,

sp closuresc closure sc closure, sc closure, dom/ran propagation

Fig. 3. Construction of G′
mrdf and G∗

mrdf from Gmrdf

Our design relies on the definition of two entailed graphs G′
mrdf and G∗

mrdf ; to
deduce these graphs we will entail dom′

1 and range′1 over Gmrdf . That process is
depicted in Figure 3, and the generated graphs hold the following characteristics:

– G′
mrdf is a graph that includes Gmrdf and the closure of sp and sc by

applying rules sp0 and sc0.
– G∗

mrdf is a graph that includes G′
mrdf plus the deductions from dom′

1 and
range′1.

We also define the following operations over G′
mrdf and G∗

mrdf , where X is
considered an arbitrary resource in KB:

– G′
mrdf |sc(X) as the subclass closure of X in G′

mrdf .
– G′

mrdf |sp(X) as the subproperty closure of X in G′
mrdf .

– G∗
mrdf |dom(X) as the set of properties in G∗

mrdf with X as domain.
– G∗

mrdf |range(X) as the set of properties in G∗
mrdf with X as range.

– G∗
mrdf |list() the set of every inferable domain or range in G∗

mrdf .
– G∗

mrdf |bind(s, p, o) the list of statements that is retrieved from a normal bind
operation for a triple pattern (s, p, o).

The Design and Implementation of Min RDFS BC Reasoning in 4store 147

With these functions we define the access to the graphs G′
mrdf and Gmrdf∗, which

we should emphasize are accessible to every segment in S. These operations,
therefore, will be used for the definition of bind ’.

A bind operation in 4store is requested by the query processor as we explained
in section 2.2. The bind receives 4 multisets with the resources to be matched or
NULL in case some part of the quad pattern is unbound, so a bind to be executed
receives as input (BM , BS , BP , BO). We omit in this paper the description of
how the query processor works in 4store, , but for the sake of understanding the
system we depict a very simple example:

SELECT ?name ?page WHERE { ?x foaf:name ?name .

?x foaf:homePage ?page . ?x foaf:basedNear dbpedia:London }

A potential query plan in 4store would issue two bind operations, first the
most restrictive query pattern:

B0 ⇐ bind(NULL, NULL, {basedNear}, {London})
B1 ⇐ bind(NULL, B0s, {name, homePage},NULL})

The only point to clarify is that the second bind receives B0s as BS (B0s refers
to the subject element of B0). The original bind operation in 4store is made of
four nested loops that traverse the indexes in an optimized manner. The ranges
of the loops are the input lists (BM , BS , BP , BO) which are used to build up the
combination of patterns to be matched. For simplicity, we draw the following
bind function:

Simplified Algorithm of the original bind in 4store:
Input: BM , BS , BP , BO,segment Output: r - a list of quads

Let B∗ be the list of pattern combinations of BM , BS , BP , BO

For every pattern in B∗

Let T be the radix tree in segment with optimized iterator for pattern

For every quad in T

If (patternm = ∅ OR patternm = quadm) AND

(patterns = ∅ OR patterns = quads) AND

(patternp = ∅ OR patternp = quadp) AND

(patterno = ∅ OR patterno = quado)

append quad into r

4store’s real implementation uses radix tries as indexes, and the index selec-
tion is optimized based on the pattern to match. This simplified algorithm plays
the role of explaining our transformation from original bind to the new bind’
that implements Minimal RDFS semantics.

Bind’ Algorithm in 4sr:
Input: BM , BS , BP , BO,segment Output: r - a list of quads

Let B∗ be the list of pattern combinations of BM , BS , BP , BO

For every pattern in B∗

148 M. Salvadores et al.

(a) If |G′
mrdf |sp(patternp)| > 1

append to r bind(patternm,patterns,G
′
mrdf |sp(patternp),patterno)

(b) Else If patternp = ∅
For every pred in segment

append to r bind’(patternm,patterns,pred,patterno)

(c) Else If patternp = type
(c0) If patterno �= ∅

For s in bind(∅,∅,G∗
mrdf |dom(patterno),∅)

append to r (Ge,sols,type,patterno)

For s in bind(∅,∅,G∗
mrdf |ran(patterno),∅)

append to r (Ge,solo,type,patterno)

append to r bind(patternm,patternm,type,G′
mrdf |sc(patterno))

(c1) Else

For object in G∗
mrdf |list()

append to r bind’(patternm,patterns,type,object)
(d) Else If patternp ∈ (sc, sp, range, dom)

append to r G∗
mrdf |bind(patterns, patternp, patterno)

(e) Else

append to r bind(patternm,patterns,patternp,patterno)

This algorithm can be seen as a wrapper of the original bind operation; it
basically rewrites every combination of quad pattern to be matched according
to the Minimal RDFS deductive rules. Each of the if conditions in the algorithm
takes care of one case of backward chain inference. These are described below:

(a) The if condition tests whether the closure has more than one element. In
such cases we operate sp inference by calling the bind with an extended
Bp made by the closure of patternp. Such a closure is obtained through
G′

mrdf |sp(patternp).
(b) If the predicate pattern is unbound then we recursively call again bind’ for

every predicate in the segment, keeping intact the rest of the elements in the
pattern.

(c) This branch is dedicated to the inference with higher complexity, when
patternp matches RDF type. It is divided in two sub-cases:

(c0) In this case, the pattern matches a specific object (patterno �= ∅). The
first loop binds all the properties for which patterno can be inferred as
a domain (G∗

mrdf |dom(patterno)). Each solution appends (Ge,sols,type,
patterno) where sols is the subject from the object element from a single
solution.
The second loop is analogous but for ranges. It is worth noticing that
this second loop appends as subject solo. The reason for this is that in
rule rano mentions the object that gets the class membership.
The last append runs the original bind extending patterno to the closures
of subclasses G′

mrdf |sc(patterno).
(c1) This is the opposite case; the object to be matched is null. For such cases

we recursively call bind’ for every inferable class in G∗
mrdf |list(). The calls

generated in this case will be processed in c0 in subsequent steps.

The Design and Implementation of Min RDFS BC Reasoning in 4store 149

(d) For patterns where the predicate is any of (sc, sp, range, dom), the pattern
match comes down to a simple bind operation over the replicated graph -
G∗

mrdf |bind(s, p, o).
(e) No reasoning needs to be triggered and a normal bind is processed. The

rationale for no reasoning being triggered comes from the fact that in the
set of deductive rules, reasoning is processed for patterns where p is one
of (type, sc, sp, range, dom) or p is part of a sp closure with more than one
element. These two conditions are satisfied in (a) and (c). (b) covers the case
of patternp = ∅ for which a recursive call for every predicate is requested.

5 LUBM Scalability Evaluation

This evaluation studies 4sr ’s distributed model and its behaviour with different
configurations in terms of number of distributed processes - segments - and size
of datasets. This analysis is based upon the LUBM synthetic benchmark [3]; we
have used 6 different datasets LUBM(100), LUBM(200), LUBM(400), ... , LUBM
(1000,0). These datasets progressively grow from 13M triples - LUBM(100,0) -
triples to 138M triples LUBM(1000,0). In [10] we presented a preliminary bench-
mark that demonstrates that 4sr can handle SPARQL queries with up to 500M
triple datasets; this benchmark shows the overall performance of the whole sys-
tem. The type of benchmark we analyse in this paper, instead of studying perfor-
mance for big datasets, studies how the bind operation behaves when trying to
find solutions that require Minimal RDFS reasoning under different conditions,
i.e. to see how the bind operations behaves when adding more processors or
when the data size is increased. Studying just the bind operation also leaves out
components of 4store that are not affected by the implementation of reasoning,
like the query engine.

Our deployment infrastructures are made of two different configurations:

1. Server set-up: One Dell PowerEdge R410 with 2 dual quad processors (8
cores - 16 threads) at 2.40GHz, 48G memory and 15k rpm SATA disks.

2. Cluster set-up: An infrastructure made of 5 Dell PowerEdge R410s, each
of them with 4 dual core processors at 2.27GHz, 48G memory and 15k rpm
SATA disks. The network connectivity is standard gigabit ethernet and all
the servers are connected to the same network switch.

4sr does not materialize any entailments in the assertion phase, therefore the
import throughput we obtained when importing the LUBM datasets is similar to
the figures reported by 4store developers, around 100kT/s for the cluster set-up
and 114kT/s for the server set-up6.

The LUBM benchmark evaluates OWL inference, and therefore there are
constructors not supported by 4sr. We have selected a set of 5 individual triple
patterns that cover all the reasoning implemented by 4sr :

6 Throughput obtained asserting the data in ntriples, the LUBM datasets had been
converted from RDF/XML into ntriples using the rapper tool.

150 M. Salvadores et al.

1. Faculty {?s type Faculty}, Faculty is an intermediate class under the
hierarchy rooted by Person. To backward entail this query 4sr will expand
Faculty’s subclass closure. Moreover, Faculty is the teacherOf’s predicate
domain, therefore, every subject of a triple {?s teacherOf ?s} will be part
of the solution.

2. Person {?s type Person}. Similar to the query above, but the closure of
Person is higher. It contains 16 subclasses, and also Person - or subclasses
of it - act as domain and/or range in a number of predicates (advisor,
affiliateOf, degreeFrom, hasAlumnus, ...). Moreover, these predicates are
part of subproperty constructors which makes this query fire all the deductive
rules in 4sr.

3. Organisation {?s type Organisation}. Binding all the resources type of
Organisation will also fire all the deductive rules in 4sr, but in this case the
level predicates that contain Organisation as domain and/or range is lower
and also the subclass closure of Person contains fewer elements - just 7.

4. degreeFrom {?s degreeFrom ?o} such predicates are not instantiated as
ground triples and can only be reached by inferring the subproperty clo-
sure of it that contains another three predicates - doctoralDegreeFrom.
mastersDegreeFrom and undergraduateDegreeFrom.

5. worksFor {?s worksFor ?o} similar backward chain to be triggered - just
subproperty closure.

For the server infrastructure we have measured configurations of 1, 2, 4, 8,
16, and 32 segments. For the cluster infrastructure we measured 4, 8, 16 and 32
- it makes no sense to measure fewer than 4 segments in a cluster made up of
four physical nodes.

The queries used in this benchmark have a low selectivity and thus generate
large number of solutions; this scenario is suitable for analysing scalability by
measuring the number of solutions entailed per second in all the segments for
different number of processes (segments) and different size of datasets. The 5
query triple patterns were processed 50 times each, the worst 4 and best 4
measurements were removed from the samples and the time of the worst segment
in each measurement was considered, since the binds are processed in parallel
and the query processor waits for all to be finished.

Figures 4 and 5 show the results of the benchmark - the Y axis shows the
number of solutions and the X axis the number of segments where the data
was tested. The benchmark for the server configuration - Figure 4 - shows
that the system scales well up to 16 segments, some configurations only up to 8
segments, there is clear degradation for deployments of 32 segments. When the
configuration has more segments than CPUs then it is clear that system degrades
providing less throughput. In general, the bind operations that require domain
and range inference are more expensive than the others - they generate fewer
solutions per second. The worst performance was measured for the Person bind;
this case basically needs to traverse every predicate because the class Person
happens to be domain and/or range of almost every predicate in the LUBM
ontology. The highest throughputs were for worksFor and degreeFrom binds.

The Design and Implementation of Min RDFS BC Reasoning in 4store 151

Fig. 4. Server Configuration: Solutions per second per segment

Fig. 5. Cluster Configuration: Solutions per second per segment

For the biggest datasets - LUBM800 and LUBM1000 - the system degraded
drastically. For these datasets and 1,2 and 4 segment deployment the system did
not respond properly.

The cluster benchmark - Figure - shows better performance. The time needed
for transmitting messages over the network gets balanced by the fact that there
is a lot better I/O disk throughput. The server configuration has 2 mirrored
15K RPM disks, the same as each of the nodes in the cluster but every node
in the cluster can use those disks independently from the other nodes and, the
segments collide less on I/O operations.

152 M. Salvadores et al.

The performance of the cluster for the biggest datasets - LUBM800 and
LUBM1000 - show optimal performance reaching all the binds throughputs be-
tween 150K solutions per second and 300K solutions per second. Domain and
range inference for Faculty, Organisation and Person show linear scalability
and no degradation - unlike in the server configuration. The throughput perfor-
mance tends to get higher the bigger the dataset is because it generates more
solutions without yet reaching the performance limits of the cluster.

In overall, the server configuration sets the scalability limit on the LUBM
400 for the 16-node configuration. For bigger datasets than LUBM400 the server
configuration behaves worse. The cluster configuration seems to perform better
due to its more distributed nature. It is fair also to mention that, of course, the
cluster infrastructure cost is higher than the server and for some applications
the performance shown by the server configuration could be good enough.

6 Conclusions and Future Work

In this paper we have presented the design and implementation of Mininal RDFS
fragment with two novel characteristics decentralisation and backward chaining.
We have also disclosed 4sr ’s distributed model and how subProperty, subClass,
domain, range and type semantics can be parallelized by synchronizing a small
subset of the triples, namely the ones held in Gmrdf . The scalability benchmark
showed that the distributed model makes efficient usage of the cluster infras-
tructure with datasets up to 138M triples. The scalability analysis showed that
4sr utilises efficiently the cluster infrastructure providing better throughput for
bigger datasets.

Since no materialization is processed at the data assertion phase, 4sr offers a
good balance between import throughput and query performance. In that sense,
4sr will support the development of Semantic Web applications where data can
change regularly and RDFS inference is required.

6.1 Future Work

Our plans for future work include the implementation of stronger semantics
for named graphs. At the point of writing this paper the research community
is discussing how named graphs with attached semantics should behave in a
quad store. Our current implementation simply makes Gmrdf , G′

mrdf and G∗
mrdf

available to every graph and we delegate the semantics of named graphs to the
query engine that will treat entailed solutions as part of Ge.

Acknowledgements

This work was supported by the EnAKTing project funded by the Engineering
and Physical Sciences Research Council under contract EP/G008493/1.

The Design and Implementation of Min RDFS BC Reasoning in 4store 153

References

1. Broekstra, J., Kampman, A., Van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema, pp. 54–68. Springer, Heidelberg
(2002)

2. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the Semantic Web Recommendations. In: WWW (2004)

3. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics 3(2-3), 158–182 (2005)

4. Harris, S., Lamb, N., Shadbolt, N.: 4store: The Design and Implementation of a
Clustered RDF Store. In: Scalable Semantic Web Knowledge Base Systems - SSWS
2009, pp. 94–109 (2009)

5. Hayes, P., McBride, B.: RDF Semantics, W3C Recommendation (February 10,
2004), http://www.w3.org/TR/rdf-mt/

6. Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS Reasoning and Query Answering
on Top of DHTs. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 499–516.
Springer, Heidelberg (2008)

7. Kotoulas, S., Oren, E., van Harmelen, F.: Mind the Data Skew: Distributed In-
ferencing by Speeddating in Elastic Regions. In: Proceedings of the WWW 2010,
Raleigh NC, USA (2010)

8. Muñoz, S., Pérez, J., Gutierrez, C.: Simple and Efficient Minimal RDFS. Journal
of Web Semantics 7, 220–234 (2009)

9. Salvadores, M., Correndo, G., Harris, S., Gibbins, N., Shadbolt, N.: 4sr - Scal-
able Decentralized RDFS Backward Chained Reasoning. In: Posters and Demos.
International Semantic Web Conference (2010)

10. Salvadores, M., Correndo, G., Omitola, T., Gibbins, N., Harris, S., Shadbolt, N.:
4s-reasoner: RDFS Backward Chained reasoning Support in 4store. In: Web-scale
Knowledge Representation, Retrieval, and Reasoning, Web-KR3 (2010)

11. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A Practical
OWL-DL Reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

12. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.: Owl Reasoning
with Webpie: Calculating the Closure of 100 Billion Triples. In: Extended Semantic
Web Conference (2010)

13. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reason-
ing Using MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 634–649. Springer, Heidelberg (2009)

14. Weaver, J.: Redefining the RDFS closure to be decidable. In: W3C Workshop RDF
Next Steps, Stanford, Palo Alto, CA, USA (2010),
http://www.w3.org/2009/12/rdf-ws/papers/ws16

15. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure
for Hundreds of Millions of Triples. In: Bernstein, A., Karger, D.R., Heath, T.,
Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009.
LNCS, vol. 5823, pp. 682–697. Springer, Heidelberg (2009)

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/2009/12/rdf-ws/papers/ws16

miKrow: Semantic Intra-enterprise

Micro-Knowledge Management System

Vı́ctor Penela, Guillermo Álvaro, Carlos Ruiz, Carmen Córdoba,
Francesco Carbone, Michelangelo Castagnone,

José Manuel Gómez-Pérez, and Jesús Contreras

iSOCO
Avda. Partenón. 16-18, 28042, Madrid, Spain

{vpenela,galvaro,cruiz,ccordoba,fcarbone,mcastagnone,
jmgomez,jcontreras}@isoco.com

http://lab.isoco.net/

Abstract. Knowledge Management systems are one of the key strate-
gies that allow companies to fully tap into their collective knowledge.
However, two main entry barriers currently limit the potential of this
approach: i) the hurdles employees encounter discouraging them from a
strong and active participation (knowledge providing) and ii) the lack
of truly evolved intelligent technologies that allow those employees to
easily benefiting from the global knowledge provided by them and other
users (knowledge consuming). Both needs can sometimes require oppo-
site approaches, tending the current solutions to be not user friendly
enough for user participation to be strong or not intelligent enough for
them to be useful. In this paper, a lightweight framework for Knowl-
edge Management is proposed based on the combination of two layers
that cater to each need: a microblogging layer that simplifies how users
interact with the whole system and a semantic powered engine that per-
forms all the intelligent heavy lifting by combining semantic indexing and
search of messages and users. Different mechanisms are also presented
as extensions that can be plugged-in on demand and help expanding the
capabilities of the whole system.

Keywords: enterprise 2.0, knowledge management, social software, web
2.0, microblogging.

1 Introduction

The increasing amount of information generated by enterprises during the last
decade has lead to the introduction of the new Knowledge Management (KM)
concept, that has grown from a mere accessory to a full discipline that allows
companies to grow more efficient and competitive.

Best practices in KM strategies usually attack several key objectives: i) iden-
tify, gather and organize the existing knowledge within the enterprise, ii) facil-
itate the creation of new knowledge, and iii) foster innovation in the company
through the reuse and support of workers’ abilities. However, in most of the cases,

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 154–168, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://lab.isoco.net/

miKrow: Semantic Intra-enterprise Micro-Knowledge Management System 155

the potential of these approaches doesn’t get properly fulfilled by a fundamental
flow in their design: prioritizing backend technologies complexity instead of mak-
ing them easy to use and attractive enough to really encourage final users. This
tends to reduce users’ participation leading eventually to a loss of the knowledge
that these tools are supposed to capture. In order to improve and extend these
solutions, the issues detected are approached from two points of view: the system
needs to be made both more attractive, so more users get engaged and actively
participate, and smarter, so user interaction is minimized as much as possible
making the system more proactive.

For increasing the allure of the system, the Web 2.0 paradigm, and in par-
ticular the microblogging approach will be used, where end-user involvement is
fostered through lightweight and easy-to-use services and applications. These
techniques are increasingly penetrating into the context of enterprise solutions,
in a paradigm usually referred to as Enterprise 2.0. In particular, the trend of
microblogging (of which Twitter1 is the most prominent example) based on short
messages and the asymmetry of its social connections, has been embraced by a
large number of companies as the perfect way of easily allowing its employees
to communicate and actively participate in the community, as demonstrated
by successful examples like Yammer2, which has implemented its microblogging
enterprise solution into more than 70.000 organizations.

Different strategies are used in order to make the system more intelligent.
First and foremost a semantically enriched layer supports KM indexing and
search processes on top of the atomic information elements, i.e. status updates.
Internally the system uses a domain ontology and thesauri related to the partic-
ular enterprise in which it is deployed, which can capture the different concepts
relating to the company knowledge, and secondly, by making use of other in-
formation sources both internal such as already available internal knowledge
information and external such as Linked Data[4] resources. Other techniques are
also used for expanding and increasing the system intelligence, such as taking
into account user Knowledge Processes [18] that can define what is relevant for
employees in a particular context as well as reducing the cold start that a system
based on user collaboration usually has.

This paper is structured in three main sections: the State of the Art regarding
KM and microblogging is described in 2, the proposed theoretical contribution
is shown in 3, several extensions that add new value to the original solution are
explained in 4 and finally the implementation details and evaluation results are
covered in 5.

2 State of the Art

2.1 Knowledge Management

The value of KM relates directly to the effectiveness[3] with which the man-
aged knowledge enables the members of the organization to deal with today’s
1 Twitter: http://www.twitter.com/
2 Yammer: http://www.yammer.com/

http://www.twitter.com/
http://www.yammer.com/

156 V. Penela et al.

situations and effectively envision and create their future. Due to the new fea-
tures of the market like the increasing availability and mobility of skilled workers,
ideas sitting on the shelf,. . . , knowledge is not anymore a static resource of the
company. It resides in its employees, suppliers, customers,. . . . If companies do
not use the knowledge they have inside, one of their main resources stale.

In recent years computer science has faced more and more complex problems
related to information creation and fruition. Applications in which small groups
of users publish static information or perform complex tasks in a closed system
are not scalable. In 2004, James Surowiecki introduced the concept of “The
Wisdom of Crowds”[17] demonstrating how complex problems can be solved
more effectively by groups operating according to specific conditions, than by
any individual of the group. The collaborative paradigm leads to the generation
of large amounts of content and when a critical mass of documents is reached,
information becomes unavailable. Knowledge and information management are
not scalable unless formalisms are adopted. Semantic Webs aim is to transform
human readable content into machine readable. With this goal languages such
as RDF Schema and OWL have been defined.

Computer supported collaborative work[10] research analyzed the introduc-
tion of Web 2.0 in corporations: McAfee[11] called “Enterprise 2.0”, a paradigm
shift in corporations towards the 2.0 philosophy: collaborative work should not
be based in the hierarchical structure of the organization but should follow
the Web 2.0 principles of open collaboration. This is especially true for inno-
vation processes which can be particularly benefited by the new open innovation
paradigm[7]. In a world of widely distributed knowledge, companies do not have
to rely entirely on their own research, but should open the innovation to all the
employees of the organization, to providers and customers.

Web 2.0 tools do not have formal models that allow the creation of complex
systems managing large amounts of data. Nowadays solutions like folksonomies,
collaborative tagging and social tagging are adopted for collaborative categoriza-
tion of contents. In this scenario we have to face the problem of scalability and
interoperability[9]: making users free to use any keyword is very powerful but
this approach does not consider the natural semantic relations between the tags.
Semantic Web can contribute introducing computer-readable representations for
simple fragments of meaning. As will be seen, an ontology-based analysis of a
plain text provides a semantic contextualization of the content, supports tasks
such as finding semantic distance between contents and helps in creating rela-
tions between people with shared knowledge and interests.

Different mechanisms for leveraging all this scattered enterprise knowledge
have been studied during the last decade, particularly trying to ease the pain
of introducing new tools in the already overcrowded worker’s desktop by adding
a semantic layer on top of current applications. CALO3 based on the use of
cognitive systems and NEPOMUK4 trying to add the social and semantic aspects

3 CALO is part of the PAL Program: https://pal.sri.com/
4 NEPOMUK Project: http://nepomuk.semanticdesktop.org/

https://pal.sri.com/
http://nepomuk.semanticdesktop.org/

miKrow: Semantic Intra-enterprise Micro-Knowledge Management System 157

to the user’s personal desktop are two of the main references of ACTIVE5, a
project that aims to increase productivity of knowledge workers with pro-active
and contextualized mechanisms and which technology has been used to improve
the proposed solution.

2.2 Semantics in Social Networks

Microblogging is one of the recent social phenomena of Web 2.0, being one of the
key concepts that has brought Social Web to more than merely early adopters
and tech savvy users. The simplest definition of microblogging, a light version of
blogging where messages are restricted to less than a small number of characters,
does not make true judgment of the real implications of this apparent constraint.
Its simplicity and ubiquitous usage possibilities have made microblogging one of
the new standards in social communication. There is a large number of social
networks and sites, with more blooming every day, that have some microblogging
funcionalities, although currently there are two big players in the field: Twitter
and Facebook, with 175 and 600 million users respectively.

One of the main issues microblogging has today is the lack of proper semantics,
making building any kind of intelligent system on top of them quite hard. Even
though different user initiatives have emerged, such as the use of hashtags to
define channels of communication and provide a context for the conversation, its
use is mostly related to user consumption of the information, not allowing for
any real analysis of the meaning of the related data.

Twitter introduced Annotations6, as a mechanism to add structured metadata
about a tweet. It proposes an open key/value structure as properties of a type
entity with recommended types such as “place”, “movie” or “review”. This low
level approach is simplistic in the way that it does not define a formal model,
but only a mechanism to add metadata to messages.

Facebook has proposed the Open Graph protocol as a mechanism to add
metadata to its network, however the target has been quite the opposite, instead
of adding metadata to messages as with Twitter Annotations, the main goal is
to improve information linking with external resources by proposing a modified
RDFa structure for webpages.

SMOB[12] tries to solve this by proposing the use of semantically-enabled
hashtags such as #dbp:Eiffel Tower in #geo:Paris France. However this ap-
proach puts all the burden of explicitly giving meaning to different elements on
the user, which is counterproductive with the idea of microblogging as lightweight
communication tools.

This lack of semantics is a stronger constraint in a work environment, where
employees need to have both faster and more reliable tools for KM while expect-
ing new tools not to disturb their usual work experience and thus not forcing
them into having to perform new tasks. Passant et al.[13] extended their previous
approach by trying to solve these issues with a mixture of different user-friendly

5 ACTIVE Project: http://www.active-project.eu/
6 Twitter Annotations: http://dev.twitter.com/pages/annotations_overview

http://www.active-project.eu/
 http://dev.twitter.com/pages/annotations_overview

158 V. Penela et al.

Web 2.0 interfaces for users to both provide and consume RDF/OWL annota-
tions. This approach still seems quite hard on common employees, experts in
their domain but with no basic knowledge on semantic technologies.

3 Semantic Processing in Knowledge Management

In this section, the theoretical contribution of this paper towards KM is de-
scribed. We address the benefits of applying the the microblogging approach in
3.1, how the processes involved are enriched by the use of semantic indexing and
search in 3.2, and the characteristics of the necessary underlying model in 3.3.

3.1 A Lightweight Approach towards Knowledge Management

The proposed interaction platform is a web application designed following the
Web 2.0 principles of participation and usability. Our proposal centers inter-
action around a simple user interface with a single input option for end-users,
where they are able to express what are they doing, or more typically in a work
environment, what are they working at. This approach diverges from classical
KM solutions which are powerful yet complex, following the simplicity idea be-
hind the microblogging paradigm in order to reduce the general entry barriers
for end users.

The purpose of the single input parameter where end-users can write a mes-
sage is twofold: Firstly, the message is semantically indexed so it can be retrieved
later on, as well as the particular user associated to it; secondly, because the con-
tent of the message itself is used to query the same index for relevant messages
semantically related to it, as well as experts associated to those messages.

The semantic functionalities are possible thanks to underlying ontologies able
to capture the knowledge of the company[6]. Even though there are already
one too many ontologies that try to define the global and generic domain of
enterprise relationships and knowledge bases, in terms of final performance, the
final model must be as coupled as possible with the particular knowledge of
each company. Our solution is to be deployed as a standalone service, with no
ties with other deployments in other environments (e.g., in other companies)
which further emphasizes the need for domain ontologies to be adapted to the
particular needs of each company in order to fully tap into its knowledge needs
and sources.

These on-demand domain ontologies will be extended with a set of the-
sauri in order to cover probable variations such as writing mistakes and com-
monly accepted alterations, making the whole ontology mapping process suitable
for a microblogging environment where users feel less inclined to pursue utter
correctness.

3.2 Semantic Indexing and Semantic Search

In the proposed approach, status updates (microposts) are stored in the platform
knowledge base along with relevant metadata. The text of such messages is

miKrow: Semantic Intra-enterprise Micro-Knowledge Management System 159

analyzed and stored in the message index. The set of terms present in users’
statuses compose their entries in the experts index. The text of the messages is
used to perform a semantic search against the same index as well.

Semantic Indexing. When a user posts a new status message into the system,
its content is analyzed and included into a message index (status repository), al-
lowing future retrieval. Similarly, a repository of expert users (experts repository)
is populated by relating the relevant terms of the message with the particular
author.

Fig. 1. (a) Message repository creation. (b) Experts repository creation.

Technically, messages that users post to the system are groups of terms T
(both key-terms T K , relevant terms from the ontology domain, and normal
terms)

⋃
T . The process of indexing each message results in a message reposi-

tory that contains each document indexed by the different terms it contains, as
shown in figure 1(a).

In the case of the update of the semantic repository of experts, which follows
the message indexing, each user can be represented by a group of key-terms
(only those present in the domain ontology)

⋃
T K . This way, the repository of

experts will contain the different users of the systems, that can be retrieved by
the key-terms. Figure 1(b) illustrates this experts repository.

Semantic Search. The search process is launched by a user posting a new
status update. The new update message is processed by the semantic engine,
extracting related concepts from the company knowledge base, modelled as both
an ontology and a set of thesauri, and matching them with previously indexed
status updates and employees. This is performed seamlessly behind the scenes,
i.e., the user is not actively performing a search, but the current status message
is used as the search parameter directly.

Two main search approaches are provided by the semantic engine:

– Given the text of a status update, the search on the status index returns
semantically related status.

160 V. Penela et al.

– Given the text of a status update, the search on the experts index returns
semantically related people, such as other co-workers with experience on
related areas.

From a technical point of view, the semantic repository is queried by using
the group of terms

⋃
T of the posted message, as depicted in figure 2(a). This

search returns messages semantically relevant to the one that the user has just
posted.

Fig. 2. (a) Detection of related statuses. (b) Expert identification.

It is worth noting that, as it will be covered in 3.3, the search process in the
repository is semantic, therefore the relevant messages might contain some of the
exact terms present in the current status message, but also terms semantically
related through the domain ontology.

As it has been stated above, along with the search for relevant messages, the
system is also able to extract experts (identified by the terms present in the
messages they have been writing previously) associated with the current status
message being posted. In this case, the search over the semantic repository of
experts is performed by using the key-terms contained in the posted message⋃

T K , as depicted in figure 2(b).

3.3 Knowledge Base Modelling

The precision of the modelled knowledge base, which will be built with collabo-
ration from field experts, is a key performance constrain as the semantic engine
query process is built upon the defined concepts and relationships. Particularly,
the relationships between different elements in both the ontology and the the-
sauri are exploited through techniques based mainly on morphological variations,
orthographic errors and synonyms for the terms defined in the the ontology, in
order to expand the initial queries with different approaches that can extend the
query recall, without threatening the global query precision.

The analysis of the text is not performed on single words: text fragments and
n-grams are considered for ontology matching. A term, composed by one or more
words, in a text can match i) general concepts (e.g. the keyword “product” which

miKrow: Semantic Intra-enterprise Micro-Knowledge Management System 161

matches the concept “product” in the ontology), ii) semantic relations between
concepts, (e.g. the keyword “target” matches the relation product has target),
or iii) instance entities (e.g., the keyword “Sem10 Engine” which matches the
instance Sem10 Engine, a particular product of the company). This process can
produce any number of matches for each term, strongly depending on the size and
number of elements of the ontology, how well it covers the business knowledge
base of the company and how the message is related to the core elements in it.

Once associations between terms and ontology entities (concepts, attributes
and instances) are identified, the semantic search engine builds a query exploiting
these relations defined by the ontology and hence in the company knowledge
base. Different expansions can be performed depending on the initial input,
with each one being weighed accordingly to the relevance of its relation:

– If a synonym of an ontology term is detected, the ontology term is added to
the query.

– If a term corresponding to an ontology class is found, subclasses and in-
stances labels are used to expand the query.

– If an instance label is identified, the corresponding class name and sibling
instance labels are added to the query.

4 Knowledge Boosting Techniques

As extensions of the mentioned approach, different mechanisms are proposed in
this section in order to extend the original solution with value added information
that can improve the final user experience as well as to some extent some of the
know issues such as the initial cold start and the limitations and lack of proper
up-to-date maintenance of the domain ontology.

These proposed “boosting” features are in no way meant to suppress the orig-
inal index and search engines, but to expand and upgrade the results provided.

4.1 Tackling the Cold Start Problem by Leveraging Existing
Knowledge

One of the key issues the usage of a system like this presents is the delay from
its formal deployment and the moment the knowledge base is large enough for
its results to be really meaningful. This slow starting path could in many cases
be long enough for many companies to desist in their investment in this kind of
technologies.

Cold start happens when recommendations from a new item that has not been
previously rated or classified are required. Since no user information on the item
is available, a classical collaborative filtering approach is useless at that point.

This common issue on recommendation system is usually tackled by a large
array of techniques ranging from hard and soft clustering of both users and items
to other methodologies based on machine learning and probabilistic methods[15].

In order to overcome this issue, the approach proposed is to leverage cur-
rent resources available in the prepopulated knowledge base to provide simpler

162 V. Penela et al.

recommendations. That way, even though neither experts or messages will be
recommended in the beginning, other secondary elements such as resources, con-
texts and processes will provide with a first glimpse of the real value of the whole
system.

A complementary approach is to query external datasets to perform Named
Entity Recognition on the message text, as we cover in the next subsection. This
process leverages available datasets in order to provide users with related terms,
that even though are not part of the company’s knowledge base, could be of
some interest. Additionally these relevant terms could also be used as a starting
point for the ontology engineering process if seen as having an implicit relevancy
as users tend to use them in their conversations.

4.2 Linked Data Consumption

One of the issues of the previous approach is the need of a large ontology that
models as close as possible the whole knowledge base of an enterprise, which,
depending on the size and the diversity of the company, may differ from difficult
to almost impossible (new knowledge concepts being generated almost as fast
as they can be modeled). This knowledge curation for the ontology engineering
is not only a highly resource consuming process, but also the resulting ontology
needs to be maintained and kept up-to-date with new knowledge from the com-
pany such as new employees (people), new partners and customers (companies),
new business areas (technologies).

As an open approach to tackle this issue the proposed system tries to take
advantage of information already available in a structured way via the Linked
Data paradigm, providing with an easy and mostly effortless mechanism for
adding new knowledge to the system knowledge base. Each new message posted
will be processed with NLP methods against the distributed knowledge base that
the Linked Data Cloud could be seen as. New concepts or instances extracted
from that processing will be added to a temporary knowledge base of terms that
could be used to add new information to the system’s ontology. These terms
would be semiautomatically added to the knowledge via algorithms that weighs
the instance usage and the final input of a ontology engineer that decides whether
the proposed terms are really valid or is a residue from common used terms with
no further meaning to the company.

The main advantage of this approach is that it allows the whole system to
adapt and evolve with an organic growth alongside the evolution of the company
knowhow. That way, when a new client starts to make business with the company
(or even before, when the first contacts are made) some employees will probably
start to post messages about it (“Showing our new product to company ACME”,
“Calling company ACME to arrange a new meeting”,. . .). Querying the Linked
Open Data Cloud will automatically detect that this term ACME is indeed
a company, with a series of properties associated to it (headquarters location,
general director and management team, main areas of expertise,. . .), and would
allow for this new knowledge to be easily added to the local knowledge dataset.

miKrow: Semantic Intra-enterprise Micro-Knowledge Management System 163

4.3 Context-Aware Knowledge Management

In order to extend the relevancy mechanisms proposed, a context-aware[8] ap-
proach will extend the current view of messages as the only information element,
adding a new layer of external information that could somehow improve the final
user experience.

Simple rules will be used for adding a new perspective on top of the previous
approach. That way, two employees detected as having a similar level of expertise
on a particular topic will be weighed in terms of external data sources such as
who is geographically closer (e.g. same office), hierarchically closer (e.g. same
department) or available at that particular moment.

For this purpose the original enterprise ontology will be extended by means of
an already available context model[5] and the consumption of different services
provided by a context-aware infrastructure[14].

4.4 Connecting to Enterprise Information Systems

Even though the global solution is built upon a microblogging environment and
obviously focused on lightweight KM, interaction with currently deployed sys-
tems in an enterprise environment is a key element in order to ease possible
entry barriers as well as leverage already available knowledge information in the
company.

As a test use case different levels of information will be extracted from services
provided by ACTIVE project7[16]. ACTIVE aims to increase the productivity
of knowledge workers in a pro-active, contextualized, yet easy and unobtrusive
way through an integrated knowledge management workspace that reduces in-
formation overload by significantly improving the mechanisms through which
enterprise information is created, managed, and used. Combining this approach
with our microblogging solution will thrive the benefits for workers.

ACTIVE tries to extract information from the whole employee environment,
dividing the provided data in three main types of concept:

– Working Context, constructed from a particular set of items (activities, in-
formation resources, and people) used to achieve a particular undertaking.

– Resource, seen as placeholder of something that can be used, such as a
document or URL.

– Knowledge Process, defined as a loosely defined and structural ramified col-
lection of tasks carried out ky workers as part of their daily activities.

The microblogging tool will extend its classical interface by including links to
different instances of each class. These instances will be obtained by consuming
ACTIVE services with the detected terms in a particular message as tags for
the query and function as interaction channels between both systems, allowing
the employee to gather further information and working as a bridge between
lightweight KM tool and more resource-intensive platform.

7 ACTIVE Project: http://www.active-project.eu/

http://www.active-project.eu/

164 V. Penela et al.

5 Microblogging as a User Interaction Layer

The theoretical contribution covered in the previous section has been imple-
mented as a prototype, codenamed miKrow, in order to be able to evaluate and
validate our ideas. In the following subsections, we address the implementation
details and the evaluation performed.

5.1 miKrow Implementation

Figure 3 depicts the Web page of the current implementation of miKrow. After
a first version that only included the basic indexing and search mechanisms on
top of the microblogging layer, as presented in [1], this new iteration has tried to
evolve the initial approach, by adding a general improvement on both the back-
end and frontend, as well as adding new information boosting techniques that try
to improve the final user experience, such as integrating functionalities developed

Fig. 3. miKrow implementation snapshot

miKrow: Semantic Intra-enterprise Micro-Knowledge Management System 165

inside ACTIVE project, as well as solve some of the issues raised from the first
evaluation performed inside iSOCO8.

miKrow is divided in two main components, a semantic engine that uses
Lucene in order to offer search and indexing functionalities, and a microblogging
engine, for which Google’s Jaiku9 has been forked and extended to properly in-
clude and show the new type of related information that miKrow offers to the
final user.

Microblogging Engine. miKrow microblogging capabilities have been built
on top of Jaiku, recently open sourced by Google, using basic microblogging
functionalities and UI, relying on it for most of the heavy lifting related to low
level transactions, persistence management and, in general, for providing with
all the basic needs of a simple social network.

Using Jaiku gives the project a good head start, reducing the burden of mid-
dleware and infrastructure development, by reusing already production proved
Jaiku’s software, and thus allowing to extend that effort and focus on adding
the semantically enabled layer.

The choice of Jaiku over other possibilities available is based essentially in its
condition of having been extensively tested and the feasibility of being deployed
in a Cloud Computing infrastructure[2] such as Google App Engine10, thus re-
ducing both the IT costs and the burden of managing a system that could have
an exponential growth.

Semantic Engine. The semantic functionalities are implemented in a three
layered architecture: i) ontology and ontology access, ii) keyword to ontology
entity, and iii) the semantic indexing and search as the top layer.

The main functionality is the performance of Named Entity Recognition on
each new status update, allowing the extraction of some of the real meaning of
a message. This process is performed by parsing each message and analyzing
different n-gramms with a base ontology that depicts the enterprise knowledge
base and several supporting thesauri, that provides a more extended terms and
synonym dataset. Each message is then tagged with the entities that have been
extracted from that message.

Lucene11 is used to create both messages and statuses indices. Each index
contains terms tokenized using blank space for word delimitation and ontology
terms as single tokens (e.g. if the text contains “credit card” and this is a term
of the ontology, “credit”, “card” and “credit card” are added as tokens to the
index). Ontology terms are detected leveraging the keyword to ontology map-
ping engine, using the OpenRDF framework12 as an ontology access mechanism
to the ontology, and taking into account possible morphological variations, or-
thographic errors and synonyms.
8 iSOCO: http://lab.isoco.net/
9 Jaiku: http://www.jaiku.com/

10 Google App Engine: http://code.google.com/appengine/
11 Lucene: http://lucene.apache.org/
12 OpenRDF: http://openrdf.org/

http://lab.isoco.net/
http://www.jaiku.com/
http://code.google.com/appengine/
http://lucene.apache.org/
http://openrdf.org/

166 V. Penela et al.

The original semantic engine is also extended by introducing two main addi-
tional functionalities, which main goal is to reduce the usual cold start of this
type of services:

– Linked Data entities. External services such as OpenCalais13 are used to con-
nect the messages posted to external entities in the Linked Data paradigm,
allowing the system to propose new entities not included in the enterprise
ontology.

– Knowledge resources. ACTIVE technology is used to recommend knowledge
resources related with the entities extracted from the user messages, lowering
the gap between the lightweight tool and more intensive desktop platforms.

Communication between layers. The communication between both layers,
the microblogging engine employed as user interface and the semantic engine
that provides the business logic on message and experts recommendation as well
as the indexing and search functionalities, is highly decoupled and based on
Web Services. This approach provides with a more reliable system, since the
microblogging engine will keep providing its basic service even if the semantic
engine is down or malfunctioning. That way, even though the user experience
will be reduced to a simple microblogging environment, lacking any kind of
intelligent analysis and recommendation, users will still be able to check messages
by themselves and to update their statuses.

5.2 miKrow Evaluation

A first evaluation of the initial and basic version of miKrow, which was not
integrated with existing enterprise information systems, was carried in-house
inside iSOCO[1], which has around 100 employees distributed in 4 different cities
across Spain. A new evaluation has been made by enabling the new miKrow
prototype linked with ACTIVE technologies, in order to assess the “knowledge
boosting techniques” as well as the semantic benefits.

From a qualitatively point of view, we extracted the following conclusions
from the evaluation process:

– The microblogging paradigm has its own rules and syntax, and therefore
reusing a knowledge model without adapting it to the special characteris-
tics of this approach implies a decrease in both precision and recall. On one
hand, misleading suggestions are caused by stop-words that should not be
considered in a microblogging tool, for instance some initial activity gerunds
(e.g., working, preparing). On the other hand, the particular syntax of mi-
croblogging implies new ways of expressing the same things in a simpler form
(e.g., ref instead of reference), and hence the thesauri should capture those.

– Temporal relevance of microposts is not to be disregarded. In some occasions,
a message is useful only for a short time span, while in others its validity is
much longer. User feedback on the suggestions comes in handy to tackle this
issue, if they are able to tag messages as no longer valid, etc.

13 OpenCalais: http://www.opencalais.com/

http://www.opencalais.com/

miKrow: Semantic Intra-enterprise Micro-Knowledge Management System 167

– Informing users about the reasons for the suggestions (both internal to the
tool for messages and experts, and external, for documents found in the exist-
ing enterprise information systems) is important, as they perceive some sort
of intelligence in the system, and are significantly more pleased. Also, if the
suggestion is not good, they at least know why it has been produced. Again,
letting them provide feedback in these occasions will generate a benefitious
loop that will enrich the system.

6 Conclusions

This paper has presented the concept of a semantic microblogging tool to be
used within an enterprise network as a lightweight KM service. Even though
the Web 2.0 philosophy has been used for a while in work environments, in
which is usually called the Enterprise 2.0 paradigm, most of the solutions simply
apply a new social layer that does not fulfill the particularities of this kind of
environments many times becoming more a resource waste than a added-value
tool.

The addition of a semantic layer as an indexing and search engine is the pro-
posed solution in terms of extended intelligence and reliability. This semantic
engine is in charge of providing employees with related messages and experts
on the topics they are talking about. In order to improve the overall perfor-
mance a set of ontologies and thesauri will be built to fully model each company
knowledge base.

Different extensions have been built in order to improve and extend the current
solution by adding new sources of information, while providing the user with a
single entry point to the application.

Acknowledgments. This work is partially funded by the European IST projects
ACTIVE (ICT-FP7-215040), Wf4Ever (ICT-FP7-270192) and Spanish Avanza
I+D Plan project WebN+1 (TSI-020301-2009-24).

References

1. Álvaro, G., Córdoba, C., Penela, V., Castagnone, M., Carbone, F., Gómez-Pérez,
J.M., Contreras, J.: mikrow: An intra-enterprise semantic microblogging tool as a
micro-knowledge management solution. In: International Conference on Knowledge
Management and Information Sharing 2010, KMIS 2010 (2010)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view
of cloud computing. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28 (2009)

3. Bellinger, G.: Systems thinking-an operational perspective of the universe. Systems
University on the Net 25 (1996)

4. Berners-Lee, T.: Linked data. International Journal on Semantic Web and Infor-
mation Systems 4(2) (2006)

168 V. Penela et al.

5. Cadenas, A., Ruiz, C., Larizgoitia, I., Garćıa-Castro, R., Lamsfus, C., Vázquez,
I., González, M., Mart́ın, D., Poveda, M.: Context management in mobile envi-
ronments: a semantic approach. In: 1st Workshop on Context, Information and
Ontologies (CIAO 2009), pp. 1–8 (2009)

6. Carbone, F., Contreras, J., Hernández, J.: Enterprise 2.0 and semantic technolo-
gies: A technological framework for open innovation support. In: 11th European
Conference on Knowledge Management, ECKM 2010 (2010)

7. Chesbrough, H., Vanhaverbeke, W., West, J.: Open Innovation: Researching a new
paradigm. Oxford University Press, USA (2006)

8. Dey, A., Abowd, G.: Towards a better understanding of context and context-
awareness. In: CHI 2000 Workshop on the What, Who, Where, When, and How of
Context-Awareness, pp. 304–307 (2000)

9. Graves, M.: The relationship between web 2.0 and the semantic web. In: European
Semantic Technology Conference, ESTC 2007 (2007)

10. Grudin, J.: Computer-supported cooperative work: History and focus. Com-
puter 27(5), 19–26 (1994)

11. McAfee, A.: Enterprise 2.0: The dawn of emergent collaboration. MIT Sloan Man-
agement Review 47(3), 21 (2006)

12. Passant, A., Hastrup, T., Bojars, U., Breslin, J.: Microblogging: A semantic and
distributed approach. In: Proceedings of the 4th Workshop on Scripting for the
Semantic Web (2008)

13. Passant, A., Laublet, P., Breslin, J., Decker, S.: Semslates: Improving enterprise
2.0 information systems thanks to semantic web technologies. In: Proceedings of
the 5th International Conference on Collaborative Computing: Networking, Appli-
cations and Worksharing (2009)

14. Penela, V., Ruiz, C., Gómez-Pérez, J.M.: What context matters? Towards mul-
tidimensional context awareness. In: Augusto, J.C., Corchado, J.M., Novais, P.,
Analide, C. (eds.) ISAmI 2010. AISC, vol. 72, pp. 113–120. Springer, Heidelberg
(2010)

15. Schein, A., Popescul, A., Ungar, L., Pennock, D.: Methods and metrics for cold-
start recommendations. In: Proceedings of the 25th ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 253–260 ACM,New York
(2002)

16. Simperl, E., Thurlow, I., Warren, P., Dengler, F., Davies, J., Grobelnik, M.,
Mladenic, D., Gomez-Perez, J.M., Ruiz, C.: Overcoming information overload in
the enterprise: the active approach. IEEE Internet Computing 14(6), 39–46 (2010)

17. Surowiecki, J., Silverman, M., et al.: The wisdom of crowds. American Journal of
Physics 75, 190 (2007)

18. Warren, P., Kings, N., Thurlow, I., Davies, J., Brger, T., Simperl, E., Ruiz, C.,
Gómez-Pérez, J., Ermolayev, V., Ghani, R., Tilly, M., Bsser, T., Imtiaz, A.: Im-
proving knowledge worker productivity – the active approach. BT Technology Jour-
nal 26, 165–176 (2009)

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 169–182, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Faceted Ontology for a Semantic Geo-Catalogue

Feroz Farazi1, Vincenzo Maltese1, Fausto Giunchiglia1,
and Alexander Ivanyukovich2

1 DISI - Università di Trento, Trento, Italy
2 Trient Consulting Group S.r.l., Trento, Italy

Abstract. Geo-spatial applications need to provide powerful search capabilities
to support users in their daily activities. However, discovery services are often
limited by only syntactically matching user terminology to metadata describing
geographical resources. We report our work on the implementation of a geo-
graphical catalogue, and corresponding semantic extension, for the spatial data
infrastructure (SDI) of the Autonomous Province of Trento (PAT) in Italy. We
focus in particular to the semantic extension which is based on the adoption of
the S-Match semantic matching tool and on the use of a faceted ontology codi-
fying geographical domain specific knowledge. We finally report our experi-
ence in the integration of the faceted ontology with the multi-lingual geo-spatial
ontology GeoWordNet.

Keywords: Semantic geo-catalogues, faceted ontologies, ontology integration,
entity matching.

1 Introduction

Geo-spatial applications need to provide powerful search capabilities to support users
in their daily activities. This is specifically underlined by the INSPIRE1 directive and
regulations [15, 16] that establish minimum criteria for the discovery services to sup-
port search within the INSPIRE metadata elements. However, discovery services are
often limited by only syntactically matching user terminology to metadata describing
geographical resources [1]. This weakness has been identified as one of the key issues
for the future of the INSPIRE implementation [11, 17, 18, 19].

As a matter of fact, current geographical standards only aim at syntactic agreement
[23]. For example, if it is decided that the standard term to denote a harbour (defined
in WordNet as “a sheltered port where ships can take on or discharge cargo”) is har-
bour, they will fail in applications where the same concept is denoted with seaport.
As part of the solution, domain specific geo-spatial ontologies need do be adopted. In
[14] we reviewed some of the existing frameworks supporting the creation and main-
tenance of geo-spatial ontologies and proposed GeoWordNet - a multi-lingual geo-
spatial ontology providing knowledge about geographic classes (features), geo-spatial
entities (locations), entities’ metadata and part-of relations between them - as one of
the best candidates, both in terms of quantity and quality of the information provided,
to provide semantic support to the spatial applications.

1 http://inspire.jrc.ec.europa.eu/

170 F. Farazi et al.

The purpose of the Semantic Geo-Catalogue (SGC) project [20] - promoted by the
Autonomous Province of Trento (PAT) in Italy with the collaboration of Informatica
Trentina, Trient Consulting Group and the University of Trento - was to develop a
semantic geo-catalogue as an extension of the existing geo-portal of the PAT. It was
conceived to support everyday activities of the employees of the PAT. The main re-
quirement was to allow users to submit queries such as Bodies of water in Trento, run
them on top of the available geographical resources metadata and get results also for
more specific features such as rivers and lakes. This is clearly not possible without
semantic support. As reported in [12], other technological requirements directly com-
ing from the INSPIRE directives included (a) performance - send one metadata record
within 3s. (this includes, in our case, the time required for the semantic expansion of
the query); (b) availability - service up by 99% of the time; (c) capacity - 30 simulta-
neous service requests within 1s.

In this paper we report our work on the implementation of the semantic geographi-
cal catalogue for the SDI of the PAT. In particular, we focus on the semantic exten-
sion of its discovery service. The semantic extension is based on the adoption of the
S-Match2 semantic matching tool [4] and on the use of a specifically designed faceted
ontology [2] codifying the necessary domain knowledge about geography and includ-
ing inter-alia the administrative divisions (e.g., municipalities, villages), the bodies of
water (e.g., lakes, rivers) and the land formations (e.g., mountains, hills) of the PAT.
Before querying the geo-resources, user queries are expanded by S-Match with do-
main specific terms taken from the faceted ontology. In order to increase the domain
coverage, we integrated the faceted ontology with GeoWordNet.

The rest of the paper is organized as follows. Section 2 describes the overall sys-
tem architecture and focuses on the semantic extension in particular. Section 3 de-
scribes the dataset containing the locations within the PAT and how we cleaned it.
Sections 4, 5 and 6 provide details about the construction of the faceted ontology, its
population and integration with GeoWordNet, respectively. The latter step allows
supporting multiple languages (English and Italian), enlarging the background ontol-
ogy and increasing the coverage of locations and corresponding metadata such as lati-
tude and longitude coordinates. Finally Section 7 concludes the paper by summarizing
the main findings and the lessons learned.

2 The Architecture

As described in [1], the overall architecture is constituted by the front-end, business
logic and back-end layers as from the standard three-tier paradigm. The geo-catalogue
is one of the services of the existing geo-cartographic portal3 of the PAT. It has been
implemented by adapting available open-source tool4 conforming to the INSPIRE di-
rective and by taking into account the rules enforced at the national level. Following
the best practices for the integration of the third-party software into the BEA ALUI

2 S-Match is open source and can be downloaded from
 http://sourceforge.net/projects/s-match/
3 http://www.territorio.provincia.tn.it/
4 GeoNetwork OpenSource,
 http://geonetwork-opensource.org

 A Faceted Ontology for a Semantic Geo-Catalogue 171

framework5 (the current engine of the geo-portal), external services are brought to-
gether using a portlet6-based scheme, where GeoNetwork is used as a back-end. Fig. 1
provides an integrated view of the system architecture. At the front-end, the function-
alities are realized as three portlets for:

1. metadata management, including harvesting, search and catalogue navigation
functionalities;

2. user/group management, to administer access control on the geo-portal;

3. system configuration, which corresponds to the functionalities of the GeoNet-
work's Administrator Survival Tool (GAST) tool of GeoNetwork.

These functionalities are mapped 1-to-1 to the back-end services of GeoNetwork.
Notice that external applications, such as ESRI ArcCatalog, can also access the back-
end services of GeoNetwork.

Fig. 1. The overall system architecture

5 http://download.oracle.com/docs/cd/E13174_01/alui/
6 http://jcp.org/en/jsr/detail?id=168

GeoNetwork
Web-services

Front-end
BEA ALUI

Metadata
management

portlet

User and group
management

portlet

System
configuration

portlet

Metadata
management
web-service

User and group
management
web-service

System
configuration
web-service

Query
Analysis

Semantic
matching

Faceted
ontology

background
ontology

LDAP
Authentication

ORACLE GEO-
DATABASE

USER
QUERY

QUERY
RESULT

External application

Semantic extension

172 F. Farazi et al.

The GeoNetwork catalogue search function was extended by providing semantic
query processing support. In particular, the analysis of the available work in the field,
such as [6, 7, 8, 9, 10, 11], summarized in [12], brought to the selection of the S-Match
semantic matching operator as the best candidate to provide the semantic extension of
the geo-catalogue. Given two graph-like structures (e.g., XML schemas) a semantic
matching operator identifies the pairs of nodes in the two structures that are semantically
similar (equivalent, less or more specific), where the notion of semantic similarity is both
at the node level and at the structure level [13, 21, 22]. For instance, it can identify that
two nodes labelled stream and watercourse are semantically equivalent because the two
terms are synonyms in English. This allows similar information to be identified that
would be more difficult to find using traditional information retrieval approaches.

Initially designed as a standalone application, S-Match was integrated with
GeoNetwork. As explained in [1], this was done through a wrapper that provides web
services to be invoked by GeoNetwork. This approach mitigates risks of failure in ex-
perimental code while still following strict uptime requirements of the production sys-
tem. Another advantage of this approach is the possibility to reuse this service in other
applications with similar needs.

In order to work properly, S-Match needs domain specific knowledge. Providing
this knowledge is the main contribution of this paper. Knowledge about the geo-
graphical domain is codified into a faceted ontology [1]. A faceted ontology is an on-
tology composed of several subtrees, each one codifying a different aspect of the do-
main. In our case, it codifies the knowledge about geography and includes (among
others) the administrative divisions (e.g., municipalities, villages), the bodies of water
(e.g., lakes, rivers) and the land formations (e.g., mountains, hills) of the PAT.

The flow of information, starting from the user query to the query result, is repre-
sented with arrows in Fig. 1. Once the user enters a natural language query (which can
be seen as a classification composed by a single node), the query analysis component
translates it into a formal language according to the knowledge codified in the back-
ground ontology7. The formal representation of the query is then given as input to the
semantic matching component that matches it against the faceted ontology, thus ex-
panding the query with domain specific terms. The expanded query is then used by
the metadata management component to query GeoNetwork and finally access the
maps in the geo-database.

At the moment the system supports queries in Italian through their translation in
English, uses S-Match to expand feature classes and translates them back to Italian.
For instance, in the query Bodies of water in Trento only Bodies of water would be
expanded. Future work includes extended support for Italian and the semantic expan-
sion of the entities such as Trento into its (administrative and topological) parts.

3 Data Extraction and Filtering

The first step towards the construction (Section 4) and population (Section 5) of the
faceted ontology was to analyze the data provided by the PAT, extract the main

7 S-Match uses WordNet by default but it can be easily substituted programmatically, for in-

stance by plugging GeoWordNet at its place.

 A Faceted Ontology for a Semantic Geo-Catalogue 173

geographical classes and corresponding locations and filter out noisy data. The picture
below summarizes the main phases, described in detail in the next paragraphs.

Fig. 2. A global view of the phases for the dataset processing

3.1 The Dataset of the Autonomous Province of Trento

The data are available in MS Excel files (Table 1), and are gathered from the PAT
administration. The features file contains information about the main 45 geographical
classes; the ammcom file contains 256 municipalities; the localita file contains 1,507
wards and ward parts, that we generically call populated places; the toponimi file con-
tains 18,480 generic locations (including inter-alia villages, mountains, lakes, and
rivers). Comune, frazione and località popolata are the Italian class names for mu-
nicipality, ward and populated place respectively.

Table 1. The names and descriptions of the files containing PAT data

FILE NAME DESCRIPTION

features.xls It provides the name of the feature classes.

ammcom.xls It provides the name, id, latitude and longitude of the municipalities.

localita.xls It provides the name, id, latitude and longitude of the wards and ward
parts (that we map to populated places). It also provides the id of the
municipality a given ward or ward part belongs to.

toponimi.xls It provides the name, id, class, latitude and longitude of the locations.
It also provides the ids of the ward or ward part and municipality a
given generic location belongs to.

With the construction of the faceted ontology we identified a suitable name for the

rest of the Italian class names from the analysis of the PAT geographical classes in the

PHASE 3: FILTERING

Analysis
of the

dataset

Extraction
of the

macro-classes

PHASE 2: DATA EXTRACTION

Extraction
of the

locations

PHASE 1: ANALYSIS

Bilingual
issues:

double names

Provide
missing data
and remove
duplicates

Define classes
and semantic
relations be-
tween them

PHASE 4: BUILDING
THE ONTOLOGY

174 F. Farazi et al.

features file. In fact, they are very generic as they are meant to contain several, but
similar, kinds of locations. For instance, there is a class that includes springs, water-
falls and other similar entities.

3.2 Extracting the Macro-Classes

We retrieved the main PAT classes, that we call macro-classes (as they group differ-
ent types of locations), from the features file. In this file each class is associated an id
(e.g., P110) and an Italian name (e.g., Monti principali).

Table 2. Names of the administrative classes

CODE ENGLISH NAME ITALIAN NAME

E000 Province provincia

E010 Municipality comune

E020 Ward frazione

E021 populated place località popolata

We did not process the macro-class with id P310 (Regioni limitrofe) as it repre-
sents locations in the neighbouring region of Trento (out of the scope of our interest)
and P472 (Indicatori geografici) as it represents geographic codes. Notice that names
of the macro-classes needed to be refined as they are too generic and represent many
kinds of locations grouped together. As this file lacks classes for the provinces, mu-
nicipalities, wards and populated places, we created them as shown in Table 2.

3.3 Extracting the Locations

We imported all the locations into a temporary database by organizing them into the
part-of hierarchy province > municipality > ward > populated place (and other loca-
tion kinds) as follows:

• The province level. We created an entity representing the Province of Trento.
This entity is not explicitly defined in the dataset but it is clearly the root of the
hierarchy. We assigned the following names to it: Provincia Autonoma di
Trento, Provincia di Trento and Trento. It was assigned to the province class.

• The municipality level. Municipalities were extracted from the ammcom file. We
created an entity for each municipality and a part-of relation between each mu-
nicipality and the province. They were assigned to the municipality class.

• The ward and populated place level. Wards and populated places (sections of
wards) were extracted from the localita file. Here each ward is connected to the
corresponding municipality and each populated place to the corresponding ward
by specific internal codes. For each ward and populated place we created a corre-
sponding entity. Using the internal codes, each ward was connected to the corre-
sponding municipality and each populated place to the corresponding ward. They
were assigned to the class ward or populated place accordingly.

 A Faceted Ontology for a Semantic Geo-Catalogue 175

• All other locations. All other (non administrative) locations were extracted from
the toponimi file. Here each of them is connected either to a municipality, a ward
or a populated place by specific internal codes. Using the internal codes, we con-
nected them accordingly. A few of them are not connected to any place and
therefore we directly connected them to the province. Each location was tempo-
rary assigned to the corresponding macro-class.

Locations are provided with latitude and longitude coordinates in Cartesian WGS84
(World Geodetic System 1984) format, a standard coordinate reference system mainly
used in cartography, geodesy and navigation to represent geographical coordinates on
the Earth8. Since in GeoWordNet we store coordinates in WGS84 decimal format, for
compatibility we converted them accordingly.

3.4 Double Names: Bilingual Issues

Locations are provided with a name and possibly some alternative names. A few
names are double names, e.g., Cresta di Siusi Cresta de Sousc. The first (Cresta di
Siusi) is in Italian and the second (Cresta de Sousc) is in Ladin. Ladin is a language
spoken in a small part of Trentino and other Alpine regions. The combination of the
two names is the official name of the location in the PAT.

In order to identify these cases, the PAT provided an extra text file for each mu-
nicipality containing individual Italian and Ladin version of the names. In the tempo-
rary database, we put the Italian and Ladin names as alternative names. These extra
files also contain additional name variants, which are also treated as alternative
names. In the end, we found 53 additional Italian names, 53 Ladin names and 8 name
variants. For instance, for the location Monzoni, the Ladin name Monciogn and the
name variant Munciogn (poza) are provided.

3.5 Provide Missing Data and Remove Duplicates

While importing the entities in the temporary database, we found that 8 municipalities
and 39 wards were missing in the ammcom and localita files respectively, and 35 mu-
nicipalities were duplicated in the ammcom file9.

Table 3. Objects imported in the temporary database

KIND OF OBJECT NUMBER OF THE OBJECTS IMPORTED

macro-classes 44

locations 20,162

part-of relations 20,161

alternative names 7,929

8 https://www1.nga.mil/ProductsServices/GeodesyGeophysics/WorldGe
odeticSystem/

9 Note that the missing municipalities are due to the fact that they were merged with other
municipalities on 1st January 2010, while the duplicates are related to administrative islands
(regions which are not geometrically connected to the main area of each municipality).

176 F. Farazi et al.

We automatically created the missing locations and eliminated the duplicates. At
the end of the importing we identified the objects reported in Table 3. Notice that here
by part-of we mean a generic containment relation between locations. It can be
administrative or topological containment.

4 Building the Faceted Ontology

As mentioned in the previous section, the macro-classes provided by the PAT are
very generic and are meant to contain several different, but similar, kinds of locations.
This is mainly due to the criteria used by PAT during categorization that where based
not only on type but also on importance and population criteria. With the two-fold
goal of refining them and determine the missing semantic relations between them, we
analyzed the class names and created a multi-lingual faceted ontology. Our goal was
to create an ontology that both reflected the specificity of the PAT and respected the
canons of the analytico-synthetic approach [5] for the generation of a faceted ontol-
ogy. A faceted (lightweight) ontology [2] is an ontology divided into subtrees, called
facets, each encoding a different dimension or aspect of the domain knowledge. As a
result, it can be seen as a collection of hierarchies. The ontology we built encodes the
domain knowledge specific to the geographical scope of the PAT and it is therefore
suitable for its application in the geo-portal of the PAT administration.

4.1 From Macro-Classes to Atomic Concepts

We started from the 45 macro-classes extracted from the feature file that we imported
in the temporary database. Notice that they are not accompanied by any description.
Therefore, analyzing the locations contained in each macro-class, each macro-class
was manually disambiguated and refined - split, merged or renamed - and as a result
new classes had to be created.

Table 4. Examples of mapping from macro-categories to atomic concepts

MACRO-CLASSES CLASSES
P410 Capoluogo di Provincia Province

P465 Malghe e rifugi Shelter
Farm
Hut

P510 Antichita importanti
P520 Antichita di importanza minore

Antiquity

P210 Corsi dacqua/laghi (1 ord.)
P220 Corsi dacqua/laghi (2 ord.)
P230 Corsi dacqua/Canali/Fosse/Cond. forz./Laghi (3 ord.)
P240 Corsi dacqua/Canali/Fosse/Cond. forz./Laghi (>3 ord.-
25.000)
P241 Corsi dacqua/Canali/Fosse/Cond. forz./Laghi (>3 ord.)

Lake
Group of lakes
Stream
River
Rivulet
Canal

 A Faceted Ontology for a Semantic Geo-Catalogue 177

This was done through a statistical analysis. Given a macro-class, corresponding
locations were searched in GeoWordNet. We looked at all the locations in the part-of
hierarchy rooted in the Province of Trento having same name and collected their
classes. Only a little portion of the locations where found, but they were used to un-
derstand the classes corresponding to each macro-class. Some classes correspond to
more than one macro-class. The identified classes were manually refined and some of
them required a deeper analysis (with open discussions).

At the end of the process we generated 39 refined classes, including the class prov-
ince, municipality, ward and populated place previously created. Each of these
classes is what we call an atomic concept. Some examples are provided in Table 4.
They represent examples of 1-to-1, 1-to-many, many-to-1 and many-to-many map-
pings respectively.

4.2 Arrange Atomic Concepts into Hierarchies

By identifying semantic relations between atomic concepts and following the ana-
lytico-synthetic approach we finally created the faceted ontology of the PAT with five
distinct facets: antiquity, geological formation (further divided into natural elevation
and natural depression), body of water, facility and administrative division. As an ex-
ample, below we provide the body of water and geological formation facets.

Body of water (Idrografia)

Lake (Lago)
Group of lakes (Gruppo di laghi)
Stream (Corso d’acqua)

River (Fiume)
 Rivulet (Torrente)
Spring (Sorgente)
Waterfall (Cascata)

Cascade (Cascatina)
Canal (Canale)

Geological formation (Formazione geologica)
Natural elevation (Rilievo naturale)
 Highland (Altopiano)
 Hill (Collina, Colle)

Mountain (Montagna, Monte)
Mountain range (Catena montuosa)

 Peak (Cima)
Chain of peaks (Catena di picchi)

 Glacier (Ghiacciaio, Vedretta)
Natural depression (Depressione naturale)

Valley (Valle)
Mountain pass (Passo)

5 Populating the Faceted Ontology

Each location in the temporary database was associated a macro-class. The faceted
ontology was instead built using the atomic concepts generated from their refinement.
In order to populate the faceted ontology, we assigned each location in the temporary
database to the corresponding atomic concept by applying some heuristics based on
the entity names. They were mainly inspired by the statistical analysis discussed in
the previous section. As first step, each macro-class was associated to a facet. Macro-
classes associated to the same facet constitute what we call a block of classes. For in-
stance, the macro-classes from P110 to P142 (11 classes) correspond to the natural
elevation block, including inter-alia mountains, peaks, passes and glaciers. Facet spe-
cific heuristics were applied to each block.

178 F. Farazi et al.

For instance, entities with name starting with Monte were considered as instances
of the class montagna in Italian (mountain in English), while entities with name start-
ing with Passo were mapped to the class passo in Italian (pass in English). The gen-
eral criterion we used is that if we could successfully apply a heuristic we classified
the entity in the corresponding class otherwise we choose a more generic class, which
is the root of a facet (same as the block name) in the worst case. For some specific
macro-classes we reached a success rate of 98%. On average, about 50% of the loca-
tions were put in a leaf class thanks to the heuristics.

Finally, we applied the heuristics beyond the boundary of the blocks for further re-
finement of the instantiation of the entities. The idea was to understand whether, by
mistake, entities were classified in the wrong macro-class. For instance, in the natural
depression block (the 5 macro-classes from P320 to P350), 6 entities have name start-
ing with Monte and therefore they are supposed to be mountains instead. The right
place for them is therefore the natural elevation facet. In total we found 48 potentially
bad placed entities, which were checked manually. In 41.67% of the cases it revealed
that the heuristics were valid, in only 8.33% of the cases the heuristics were invalid
and the rest were unknown because of the lack of information available on the web
about the entities. We moved those considered valid in the right classes.

6 Integration with GeoWordNet

With the previous step the locations in the temporary database were associated to an
atomic concept in the faceted ontology. The next step consisted in integrating the fac-
eted ontology and corresponding locations with GeoWordNet.

6.1 Concept Integration

This step consisted in mapping atomic concepts from the faceted ontology to Ge-
oWordNet concepts. While building GeoWordNet, we integrated GeoNames classes
with WordNet by disambiguating their meaning manually [14]. This time we utilized
the experience we gathered in the previous work to automate the disambiguation
process with a little amount of manual intervention. An atomic concept from the fac-
eted ontology might or might not be available in GeoWordNet. If available we identi-
fied the corresponding concept, otherwise we selected its most suitable parent. This
can be done using the Italian or the English name of the class. In our case we used the
Italian version of the name. The procedure is as follows:

1. Identification of the facet concepts. For each facet, the concept of its root node
is manually mapped with GeoWordNet. We call it the facet concept.

2. Concept Identification. For each atomic concept C in the faceted ontology,
check if the corresponding class name is available in GeoWordNet. If the name
is available, retrieve all the candidate synsets/concepts for it. We restrict to noun
senses only. For each candidate synset/concept check if it is more specific than
the facet concept. If yes, select it as the concept for C. If none of the concepts is
more specific than the facet concept, parse the glosses of the candidate synsets. If
the facet name is available in any of the glosses, select the corresponding candi-
date synset/concept as the concept of C.

 A Faceted Ontology for a Semantic Geo-Catalogue 179

3. Parent Identification. If the class name starts with either “group of” or “chain
of”, remove this string from the name and convert the remaining part to the sin-
gular form. Identify the synset/concept of the converted part. The parent of the
identified concept is selected as the parent of the class. If the class name consists
of two or more words, take the last word and retrieve its synset/concept. Assign
this concept as the parent of the atomic concept corresponding to the class. If
neither the concept nor the parent is identified yet, ask for manual intervention.

6.2 Entity Matching

Two partially overlapped entity repositories, the temporary database built from the
PAT dataset (corresponding to the populated faceted ontology) and GeoWordNet,
were integrated. The PAT dataset overall contains 20,162 locations. GeoWordNet al-
ready contains around 7 million locations from all over the world, including some lo-
cations of the PAT. We imported all but the overlapping entities from the temporary
database to GeoWordNet. In order to detect the duplicates we experimented with dif-
ferent approaches. The entity matching task was accomplished within/across the two
datasets. We found that the following rules led to a satisfactory result; two entities
match if:
Rule 1: name, class and coordinates are the same
Rule 2: name, class, coordinates and parent are the same
Rule 3: name, class, coordinates, parent, children and alternative names are the same
As it can be noticed, Rule 2 is an extension of Rule 1 and Rule 3 is an extension of
Rule 2. Parent and children entities are identified using the part-of relation. For exam-
ple, Povo is part-of Trento. We have found the following results:

1. Within GeoWordNet. Applying Rule 1 within GeoWordNet we found 15,665
matches. We found 12,112 matches using Rule 2. Applying Rule 3 we found
12,058 matches involving 22,641 entities. By deleting duplicates these entities
can be reduced to 10,583 entities. In fact, if two (or more) entities match by Rule
3 we can safely reduce them by deleting one and keeping the other. Matching en-
tities are clearly undistinguishable.

2. Within the temporary PAT database. There are 20,162 locations in the PAT
dataset. Applying Rule 1 and Rule 2 we found 12 matches and 11 matches, re-
spectively. The result did not change by applying Rule 3 as all of the matched
entities are leaves and they have either the same or no alternative name. In total
22 entities matched and we could reduce them to 11.

3. Across the two datasets. By applying Rule 1 we found only 2 exact matches be-
tween the PAT dataset and GeoWordNet, which is far smaller than the number
we expected. Therefore, we checked the coordinates of the top level administra-
tive division Trento of the PAT in these two databases manually. We found it
with different, nevertheless, very close coordinates. In fact the coordinates were
found as (46.0704, 11.1207) in GeoWordNet and (46.0615, 11.1108) in the PAT
dataset, which motivated us to allow a tolerance while matching. The result is
reported in Table 5. At the end the last one was applied, leading to 174 matches.
It corresponds to Rule 3 with an offset of +/- 5.5 Km. We checked most of them
manually and they are undistinguishable.

180 F. Farazi et al.

Table 5. Matching coordinates with tolerance

Same
name

Same
class

Same coordinates Same parent Same Children

2 (exact match) 0 0
11 (using the offset +/-0.0001) 0 0
341 (using the offset +/-0.001) 13 12
712 (using the offset +/-0.01) 65 60

1385 1160

891 (using the offset +/-0.05) 194 174

Note that while matching classes across datasets, we took into account the sub-
sumption hierarchy of their concepts. For example, Trento as municipality in the
PAT dataset is matched with Trento as administrative division in GeoWordNet
because the former is more specific than the latter. Note also that the heuristic
above aims only at minimizing the number of duplicated entities but it cannot
prevent the possibility of still having some duplicates. However, further relaxing
it would generate false positives. For instance, by dropping the condition of hav-
ing same children we found 5% (1 over 20) of false matches.

6.3 Entity Integration

With this step non overlapping locations and part-of relations between them were im-
ported from the temporary database to GeoWordNet following the macro steps below:

1. For each location:

a. Create a new entity in GeoWordNet

b. Use the main name of the location to fill the name attribute both in English
and Italian

c. For each Italian alternative name add a value to the name attribute in Italian

d. Create an instance-of entry between the entity and the corresponding class
concept

2. Create part-of relations between the entities using the part-of hierarchy built as
described in Section 3.3

3. Generate an Italian and English gloss for each entity created with previous steps

Note that natural language glosses were automatically generated. We used several
rules, according to the language, for their generation. For instance, one in English is:

entity_name + “ is ” + article + “ “ + class_name + “ in ” + parent_name + “(“ + par-
ent_class + “ in ” + country_name + “)”;

This allows for instance to describe the Garda Lake as “Garda Lake is a lake in
Trento (Administrative division in Trentino Alto-Adige)”.

 A Faceted Ontology for a Semantic Geo-Catalogue 181

7 Conclusions

We briefly reported our experience with the geo-catalogue integration into the SDI of
the PAT and in particular with its semantic extension. S-Match, initially designed as a
standalone application, was integrated with GeoNetwork. S-Match performs a seman-
tic expansion of the query using a faceted ontology codifying the necessary domain
knowledge about geography of the PAT. This allows identifying information that
would be more difficult to find using traditional information retrieval approaches. Fu-
ture work includes extended support for Italian and the semantic expansion of the
entities such as Trento into its (administrative and topological) parts.

In this work we have also dealt with data refinement, concept integration through
parent or equivalent concept identification, ontology population using a heuristic-
based approach and finally with entity integration through entity matching. In particu-
lar, with the data refinement, depending on the cases, most of the macro-classes
needed to be split or merged so that their equivalent atomic concepts or parents could
be found in the knowledge base used (GeoWordNet in our case). We accomplished
the splitting/merging task manually supported by a statistical analysis, while the inte-
gration with the knowledge base was mostly automatic. Working on the PAT macro-
classes helped in learning how to reduce manual work in dealing with potentially
noisy sources. Entity integration was accomplished through entity matching, which
was experimented within and across the entity repositories. The entity matching crite-
ria that perform well within a single repository might need to expand or relax when
the comparison takes place across the datasets. Note that entity type specific matchers
might be necessary when dealing with different kinds of entities (e.g., persons,
organizations, events).

Acknowledgements

This work has been partially supported by the TasLab network project funded by the
European Social Fund under the act n° 1637 (30.06.2008) of the Autonomous Prov-
ince of Trento, by the European Community's Seventh Framework Programme
(FP7/2007-2013) under grant agreement n° 231126 LivingKnowledge: LivingKnowl-
edge - Facts, Opinions and Bias in Time and by “Live- Memories - Active Digital
Memories of Collective Life” funded by the Autonomous Province of Trento. We are
thankful to our colleagues of the Informatica Trentina and in particular to Pavel
Shvaiko for the fruitful discussions on the implementation of the geo-catalogue within
the geo-portal of the Autonomous Province of Trento. We acknowledge Aliaksandr
Autayeu for his support for the integration of S-Match. We are grateful to Veronica
Rizzi for her technical support within the SGC project and to Biswanath Dutta for his
suggestions for the creation of the faceted ontology. Finally, we want to thank Daniela
Ferrari, Giuliana Ucelli, Monica Laudadio, Lydia Foess and Lorenzo Vaccari of the
PAT for their kind support.

182 F. Farazi et al.

References

1. Shvaiko, P., Ivanyukovich, A., Vaccari, L., Maltese, V., Farazi, F.: A semantic geo-
catalogue implementation for a regional SDI. In: Proc. of the INPSIRE Conference (2010)

2. Giunchiglia, F., Dutta, B., Maltese, V.: Faceted Lightweight Ontologies. In: Borgida, A.T.,
Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Ap-
plications. LNCS, vol. 5600, pp. 36–51. Springer, Heidelberg (2009)

3. Giunchiglia, F., Zaihrayeu, I.: Lightweight Ontologies. The Encyclopedia of Database Sys-
tems (2007)

4. Giunchiglia, F., Autayeu, A., Pane, J.: S-Match: an open source framework for matching
lightweight ontologies. The Semantic Web Journal (2010)

5. Ranganathan, S.R.: Prolegomena to library classification. Asia Publishing House (1967)
6. Cruz, I., Sunna, W.: Structural alignment methods with applications to geospatial ontolo-

gies. Transactions in Geographic Information Science 12(6), 683–711 (2008)
7. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
8. Janowicz, K., Wilkes, M., Lutz, M.: Similarity-based information retrieval and its role

within spatial data infrastructures. In: Proc. of GIScience (2008)
9. Maué, P.: An extensible semantic catalogue for geospatial web services. Journal of Spatial

Data Infrastructures Research 3, 168–191 (2008)
10. Stock, K., Small, M., Ou, Y., Reitsma, F.: OGC catalogue services - OWL application pro-

file of CSW. Technical report, Open Geospatial Consortium (2009)
11. Vaccari, L., Shvaiko, P., Marchese, M.: A geo-service semantic integration in spatial data

infrastructures. Journal of Spatial Data Infrastructures Research 4, 24–51 (2009)
12. Shvaiko, P., Vaccari, L., Trecarichi, G.: Semantic Geo-Catalog: A Scenario and Require-

ments. In: Proc. of the 4th Workshop on Ontology Matching at ISWC (2009)
13. Giunchiglia, F., McNeill, F., Yatskevich, M., Pane, J., Besana, P., Shvaiko, P.: Approxi-

mate structure-preserving semantic matching. In: Proc. of ODBASE (2008)
14. Giunchiglia, F., Maltese, V., Farazi, F., Dutta, B.: GeoWordNet: A resource for geo-spatial

applications. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H.,
Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 121–136. Springer,
Heidelberg (2010)

15. European Parliament, Directive 2007/2/EC establishing an Infrastructure for Spatial In-
formation in the European Community (INSPIRE) (2009)

16. European Commission, COMMISSION REGULATION (EC) No 976/2009 implementing
Directive 2007/2/EC as regards the Network Services (2009)

17. Lutz, M., Ostlander, N., Kechagioglou, X., Cao, H.: Challenges for Metadata Creation and
Discovery in a multilingual SDI - Facing INSPIRE. In: Proc. of ISRSE (2009)

18. Crompvoets, J., Wachowicz, M., de Bree, F., Bregt, A.: Impact assessment of the
INSPIRE geo-portal. In: Proc. of the 10th EC GI & GIS workshop (2004)

19. Smits, P., Friis-Christensen, A.: Resource discovery in a European Spatial Data Infra-
structure. Transactions on Knowledge and Data Engineering 19(1), 85–95 (2007)

20. Ivanyukovich, A., Giunchiglia, F., Rizzi, V., Maltese, V.: SGC: Architettura del sistema.
Technical report, TCG/INFOTN/2009/3/D0002R5 (2009)

21. Giunchiglia, F., Villafiorita, A., Walsh, T.: Theories of Abstraction. In: AI Communica-
tions, vol. 10(3/4), pp. 167–176. IOS Press, Amsterdam (1997)

22. Giunchiglia, F., Walsh, T.: Abstract Theorem Proving. In: Proceedings of the 11th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 1989), pp. 372–377 (1989)

23. Kuhn, W.: Geospatial semantics: Why, of What, and How? Journal of Data Semantics
(JoDS) III, 1–24 (2005)

SoKNOS – Using Semantic Technologies

in Disaster Management Software

Grigori Babitski1, Simon Bergweiler2, Olaf Grebner1, Daniel Oberle1,
Heiko Paulheim1, and Florian Probst1

1 SAP Research
{grigori.babitski,olaf.grebner,d.oberle,heiko.paulheim,f.probst}@sap.com

2 DFKI GmbH
simon.bergweiler@dfki.de

Abstract. Disaster management software deals with supporting staff in
large catastrophic incidents such as earthquakes or floods, e.g., by pro-
viding relevant information, facilitating task and resource planning, and
managing communication with all involved parties. In this paper, we in-
troduce the SoKNOS support system, which is a functional prototype for
such software using semantic technologies for various purposes. Ontolo-
gies are used for creating a mutual understanding between developers
and end users from different organizations. Information sources and ser-
vices are annotated with ontologies for improving the provision of the
right information at the right time, for connecting existing systems and
databases to the SoKNOS system, and for providing an ontology-based
visualization. Furthermore, the users’ actions are constantly supervised,
and errors are avoided by employing ontology-based consistency check-
ing. We show how the pervasive and holistic use of semantic technologies
leads to a significant improvement of both the development and the us-
ability of disaster management software, and present some key lessons
learned from employing semantic technologies in a large-scale software
project.

1 Introduction

Disaster management software deals with supporting staff in catastrophic and
emergency situations such as earthquakes or large floods, e.g., by providing rel-
evant information, facilitating task and resource planning, and managing com-
munication with all involved parties.

Current situations in disaster management are characterized by incomplete
situation pictures, ad-hoc reaction needs, and unpredictability. First of all, these
situations require collaboration across organizations and across countries. Sec-
ond, they expose an ad-hoc need to resolve or prevent damage under extreme
time pressure and non-planned conditions. Third, disasters as such are unpre-
dictable by nature, although preventive planning for disasters can be taken.

Besides the ability to adapt to the current situation, software needs to adapt to
the end users’ needs as well. Members of disaster management organizations are

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 183–197, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

184 G. Babitski et al.

Fig. 1. Screenshot of the SoKNOS prototype [1]

to a large extent non-IT experts and only accustomed to casual usage of disas-
ter management software, since large incidents luckily occur rather infrequently.
This casual usage implies that, for example, users may not always have the right
terminology at hand in the first place, especially when facing information over-
load due to a large number of potentially relevant information sources. A large
incident poses a stressful situation for all involved users of disaster management
software. Users often need to operate multiple applications in a distributed and
heterogeneous application landscape in parallel to obtain a consistent view on
all available information.

The SoKNOS1 system [1] is a working prototype (see Fig. 1) for such soft-
ware using semantic technologies for various purposes. In SoKNOS, information
sources and services are annotated with ontologies for improving the provision of
the right information at the right time. The annotations are used for connecting
existing systems and databases to the SoKNOS system, and for creating visual-
izations of the information. Furthermore, the users’ actions are constantly super-
vised, and errors are avoided by employing ontology-based consistency checking.

A central design decision for the system was to ensure that any newly created
information as well as all integrated sensor information is semantically character-
ized, supporting the goal of a shared and semantically unambiguous information
basis across organizations. In this sense, semantic technologies were used in a
holistic and pervasive manner thought the system, making SoKNOS a good ex-
ample for the successful application of semantic technologies. Fig. 2 shows an
overview of the ontologies developed and used in the SoKNOS project.

1 More information on the publicly funded SoKNOS project can be found at
http://www.soknos.de

http://www.soknos.de

SoKNOS – Using Semantic Technologies in Disaster Management Software 185

DOLCE

Core Domain Ontology on Emergency Management UI and Interaction Ontology

Application Ontologies

Geosensor Discovery
Ontology

Ontology on
Resources

Ontology on
DamagesDialog Ontology

Ontology on
Deployment Regulations

 imports

 im
po

rts

 imports

 imports

 im
po

rts

 imports

 imports

 imports

 imports

 imports

 mapped to

Fig. 2. Ontologies developed and used in SoKNOS

The central ontology is a core domain ontology on emergency management,
aligned to the foundational ontology DOLCE [2], which defines the basic vocab-
ulary of the emergency management domain. Specialized ontologies are used for
resources and damages, and deployment regulations defining the relations be-
tween resources and damages. Those ontologies have been developed in a close
cooperation with domain experts, such as fire brigade officers.

Furthermore, for the definition of system components, ontologies of user in-
terfaces and interactions as well as geo sensors have been developed. Specialized
application ontologies can be defined for each application used in the disaster
scenario, based on the aforementioned ontologies. For supporting speech based
interaction for finding resources, a specialized dialog ontology has been devel-
oped, which has a mapping to the resources ontology.

The remaining paper is structured as follows. In section 2, we first give an
overview on six use cases where we applied ontologies and semantic technology in
the SoKNOS support system. Second, we then detail for each of these use cases
the implemented functionality and its benefits for end users (e.g., the command
staff in disaster management) and software engineers. As this is a survey on the
different usages of semantics in SoKNOS, we only briefly highlight the benefits
of applying ontologies, and we refer to other research papers for details on the
implementation and evaluation where applicable.

In section 3, we present the lessons learned of the software engineering pro-
cess. We point out successes and potential for improvements of the semantic
technologies employed. Finally, we conclude in section 4 with a summary of the
presented use cases and lessons learned.

2 Use Cases and Ontology-Based Improvements in the
SoKNOS Disaster Management Application

Six core use cases for ontologies and semantic technologies in disaster man-
agement turned out to be of particular interest during the SoKNOS project. We
have classified the use cases according to two criteria. First, the use cases provide
functionality applicable either during design time (before or after an incident)
or during run time (during the incident, including the chaos phase). Second, the
functionality is either used by the end users (firefighter, emergency management

186 G. Babitski et al.

Plausibility Checks

S
im

plified D
atabase Integration

S
ystem

 E
xtensibilty

Improved Service
Discovery

Improved Search
over Databases

Improved
Visualization

D
es

ig
n

Ti
m

e
R

un
 T

im
e

Benefits for
End Users

Benefits
for Developers

Fig. 3. Six use cases for semantic technologies covered in the SoKNOS project

staff, etc.) or by software engineers. Fig. 3 shows an overview on these use cases
identified in SoKNOS, classified according to the two criteria.

Each of the use cases presented in this paper has been implemented in the So-
KNOS support system [3]. In this section, we illustrate the benefits of ontologies
for the end users in each of these use cases. Furthermore, we explain how this
functionality has been implemented using ontologies and semantic technology.

2.1 Use Case 1: System Extensibility

In disaster management, users typically encounter a heterogeneous landscape of
IT systems, where each application exposes different user interfaces and interac-
tion paradigms, hindering end users in efficient problem resolution and decision
making. For efficiently dealing with emergency situations, systems have to be
extensible so that applications can be added or integrated with little effort. The
SoKNOS prototype features ontology-based system extensibility that allows the
integration of new system components with comparatively little effort.

For saving as much of the engineering efforts as possible, we integrate appli-
cations on the user interface layer, thus being able to re-use as many software
components as possible, and confronting the end users with familiar user inter-
faces. From a software engineering point of view, integration on the user interface
level can be tedious, especially when heterogeneous components (e.g., Java and
Flex components) are involved. From a usability point of view, we enable the
end user to make use of the various existing applications which serve different
purposes, such as managing resources, handling messages, or displaying digital
maps – some of them may be domain-specific, such as resource handling, oth-
ers may be domain-independent, such as messaging or geographic information
software.

In SoKNOS, we have developed a framework capable of dynamic integration of
applications on the user interface level based on ontologies. For the integration,

SoKNOS – Using Semantic Technologies in Disaster Management Software 187

each application is described by an application ontology, based on the SoKNOS
set of ontologies (see Fig. 2). Integration rules using the concepts defined in
those application ontologies express interactions that are possible between the
integrated applications. Integrated applications communicate using events an-
notated with concepts from the ontologies. A reasoner evaluating those event
annotations based on the ontologies and integration rules serves as an indi-
rection between the integrated applications, thus preventing code tangling and
preserving modularity and maintainability of the overall system. Details on the
integration framework can be found in [4].

Interactions between integrated applications encompass the highlighting of re-
lated information in all applications when an object is selected, or the triggering
of actions by dragging and dropping objects from one application to another.
Moreover, the user is assisted, e.g., by highlighting possible drop locations when
dragging an object. This allows users to explore the interaction possibilities of
the integrated system. Figure 1 depicts some of the integrated applications in
SoKNOS, together with example interactions.

A central innovation is that all components can expect certain events to come
with some well-known annotations since all events exchanged between compo-
nents are annotated using the ontologies from the SoKNOS ontology stack.
Therefore, the integration rules used to control cross-application interactions
can be defined based on those annotations and react to all events based on those
annotations. By mapping annotations of events to methods of the integrated
components, new components can therefore be added at run-time without hav-
ing to change the system, as long as the annotations of the events remain con-
stant, which in turn is ensured by using shared ontologies. For adding a new
application to SoKNOS, an appropriate application ontology has to be written,
and the mapping from events to methods has to be defined.

Although a reasoner is involved in processing the events exchanged between
applications, a sophisticated software architecture of the framework ensures that
the event processing times are below one second, thus, the user experience is not
negatively affected by the use of semantics. Details on the architecture and the
performance evaluation can be found in [5].

2.2 Use Case 2: Simplified Database Integration

Numerous cooperating organizations require the integration of their heteroge-
neous, distributed databases at run time to conduct efficient operational re-
source management, each using their own vocabulary and schema for naming
and describing things. As discussed above, having the relevant information at
the right place is essential in disaster management. Such information is often
stored in databases. One typical example in SoKNOS are databases of opera-
tional resources (e.g. fire brigade cars, helicopters, etc.), maintained by different
organizations, such as local fire brigades. Since larger incidents require ad hoc
cooperation of such organizations, it is necessary that such databases can be
integrated even at run-time.

188 G. Babitski et al.

In the SoKNOS prototype, we have used OntoBroker as an infrastructure for
integrating databases. As discussed in [6], OntoBroker can make instance data
stored in relational databases or accessed via Web service interfaces available as
facts in the ontology. The SoKNOS “Joint Query Engine” (JQE) uses that in-
frastructure to connect different heterogeneous resource databases in the disaster
management domain owned by different organizations.

A simple graphical user interface allows the user to pose queries against the
different databases. The JQE processes the query by unifying different names of
input-concepts like, e.g. “helicopter”, defined in the SoKNOS resources ontology,
which is mapped to the different underlying databases’ data models. The query
is then translated to a number of queries to the connected databases, and the
results are unified and returned to the querying application. In [5], we have
shown that directly passing the queries to underlying data sources is faster than
materializing the facts from the databases in the reasoner’s A-box.

For more sophisticated use cases, such as plausibility checking (see section
2.5), the JQE also provides an interface for reasoning on the connected data
sources. The query for the integrated reasoning engine must be formulated in
frame-logic (F-Logic), a higher order language for reasoning about objects [7].
The user interfaces, however, abstract from the query language and provide
simple, graphical access.

For establishing the mappings between the resources ontology and the differ-
ent databases’ data models, SoKNOS provides a user interface for interactively
connecting elements from the data model to the resources ontology. We have en-
hanced the interface described in [6] by adding the SAP AutoMappingCore [8],
which makes suggestions for possible mappings based on different ontology and
schema matching metrics. Internally, the mappings created by the user are con-
verted to F-Logic rules which call database wrappers. Thus, a unified interface
to heterogeneous databases is created using semantic technologies.

2.3 Use Case 3: Improved Search

As discussed in the previous section, one of the challenges in disaster manage-
ment is to quickly and reliably find suitable and available operational resources
to handle the operation at hand, even under stressful conditions. The challenge
in SoKNOS was to combine a spoken dialog system and the Joint Query En-
gine (JQE), described in section 2.2, in a multilevel process in order to arrive
at a more intuitive semantic search. This approach enables domain experts to
pose a single query by speech that retrieves semantically correct results from all
previously integrated databases.

Domain experts formulate queries using flexible everyday vocabulary and a
large set of possible formulations referring to the disaster domain. Natural spoken
interaction allows a skillful linguistic concatenation of keywords and phrases to
express filtering conditions which leads on one hand to more detailed queries
with more accurate results and on the other hand shortens the conventional
query interaction process itself. For example, the spoken query “Show me all
available helicopters of the fire fighters Berlin” may result in the display of the

SoKNOS – Using Semantic Technologies in Disaster Management Software 189

two relevant available helicopters in Berlin along with an acoustical feedback
“Two available helicopters of the fire fighters Berlin were found”. The ontology-
based search approach developed to that end improves conventional search by
mouse and keyboard interactions through the addition of spoken utterances.
Implementation details on the dialog system can be found in [9].

The core components of the spoken dialog system are a speech recognizer and a
speech interpretation module. The recognized speech utterances are forwarded to
the speech interpretation module, which decomposes the speech recognizer result
into several sub-queries. The speech interpretation module relies on an internal
ontology-based data representation, the so called dialog ontology, which defines
domain knowledge and provides the basic vocabulary that is required for the
retrieval of information from natural language. Based on this dialog ontology, the
speech interpretation module can resolve ambiguities and interpret incomplete
queries by expanding the input to complete queries using the situational context.
For processing the spoken queries with the JQE, the dialog ontology is mapped
to the SoKNOS resources ontology, as shown in Fig. 2.

The spoken dialog system translates the natural language query into combined
F-Logic expressions which the JQE processes to deliver search results (see above).
According to the task of giving an incident command, the development of the
dialog system was focusing on rapid and specific response to spoken domain-
specific user input, rather than on flexible input allowing for a broad common
vocabulary.

Simple measurements for the project work, carried out on a standard desktop
PC, have shown that the complete processing times of all integrated parsing and
discourse processing modules are in the range of milliseconds. This examination
shows that the processing of speech input will take place within the dialog plat-
form in real time. However, with increasing complexity of the knowledge domain,
the vocabulary and thus the complexity of the generated grammar also increase,
which in turn affects the runtime of the developed module. Detailed examina-
tions of the influence of the complexity of the knowledge domain on the runtime
behavior will be a subject of future research.

2.4 Use Case 4: Improved Discovery of External Sensor Observation
Services

Semantically correct, hence meaningful integration of measurements, for example
a system of water level sensors in a river, is especially problematic in situations
with high time pressure and low familiarity with a (sub) domain and its termi-
nology. In such cases, the crisis team member might be in need for additional
information and is just missing the appropriate search term. The SoKNOS sup-
port system addresses this need by providing an ontology-based service discovery
mechanism.

The crisis team member benefits from this functionality by being able to
integrate specific sensor information quickly, e.g., the water level of a river or
the concentration of a pollutant.

190 G. Babitski et al.

In our approach, Web services designed according to the SOS2 specification,
are semantically annotated. To this end, we have developed a geo sensor dis-
covery ontology which formalizes both observable properties (for example wind
speed, substance concentration etc.) and the feature of interest (e.g., a particular
river, a lake or a city district). The annotation is performed by extending the
standard service description with URLs pointing to the respective categories in
the ontology.

To facilitate discovery, we have established a way to determine the observable
property of interest, based on the ontology. The crisis team member specifies a
substance or geographic object (e.g., river) to which the observable properties
may pertain (e.g., water level, or stream velocity). The latter are then determined
through the relation between an observable property and its bearer, as formalized
in the ontology. To get sensor data, the end users finally specify the area of
interest by marking this area on a map, provided by a separate module in the
SoKNOS System, and by specifying the desired time interval. Details of the
implementation can be found in [10].

2.5 Use Case 5: Plausibility Checks

In an emergency situation, the stress level in the command control room is
high. Therefore, the risk of making mistakes increases over time. Mistakes in
operating the system can cause severe problems, e.g., when issuing inappropriate,
unintended orders. Therefore, it is important to double check the users’ actions
for adequacy and consistency, e.g. by performing automatic plausibility checks.
Missing plausibility checks in disaster management solutions further increase
stress and hence errors on end user side. For example, the system checks the
plausibility of an assignment that a crisis team member issues and warns the
user if the assignment of tactical unit (e.g., a fire brigade truck) to a planned
task (e.g., evacuating a building) does not appear plausible.

Plausibility checks have been considered very useful by the end users, however,
they do not want to be “over-ruled” by an application. Therefore, it is important
to leave an open door for doing things differently – the system should therefore
warn the user, but not forbid any actions explicitly. As emergencies are per def-
inition unforeseeable, the system has to provide means for taking unforeseeable
actions instead of preventing them.

While such checks may also be hard-coded in the software, it can be benefi-
cial to perform them based on an ontology, such as proposed in [11]. From an
engineering point of view, delegating consistency checking to an ontology rea-
soner reduces code tangling, as consistency checking code may be scattered way
across an application. Furthermore, having all statements about consistency in
one ontology eases maintainability and involvement of the end users.

2 The Sensor Observation Service Interface Standard (SOS) is specified by the Sen-
sor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC);
http://www.opengeospatial.org

http://www.opengeospatial.org

SoKNOS – Using Semantic Technologies in Disaster Management Software 191

In SoKNOS, the ontology on deployment regulations contains the informa-
tion about which operational resource is suitable for which task. Based on this
ontology, a reasoner may check whether the assigned unit is suitable for a task
or not. The domain knowledge involved in this decision can be rather complex;
it may, for example, include information about the devices carried by a tactical
unit, the people operating the unit, the problem that is addressed by the task,
and so on.

The implementation is quite straight forward: when the user performs an
assignment of a resource to a task, an F-Logic query is generated and passed
to the JQE (see above), which asks whether the resource is suitable for the
respective task. Based on the knowledge formalized in the ontology, the reasoner
answers the query. The processing time of the query is below one second, so the
user can be warned instantly, if required, and is not interrupted in her work.

2.6 Use Case 6: Improved Information Visualization

In a typical IT system landscape, information is contained in different IT system.
Finding and aggregating the information needed for a certain purpose is often a
time consuming task.

In SoKNOS, we have used the semantic annotations that are present for each
information object for creating an ontology-based visualization of the data con-
tained in the different systems. Each IT system integrated in SoKNOS has to
offer its data in a semantically annotated format, comparable to Linked Data
[12]. Those different annotated data sets can be merged into a data set compris-
ing the information contained in all the systems.

Based on that merged data set, an interactive graph view is generated by
the Semantic Data Explorer (SDE). The user can interact with the SDE and
the existing applications’ interfaces in parallel, thus allowing a hybrid view for
data exploration3. User studies have shown that for complex information finding
tasks in the domain of emergency management, such as finding resources that
are overbooked, the Semantic Data Explorer leads to significant improvements
both in task completion time and in user satisfaction. Details on the architecture
and the user study can be found in [13].

3 Lessons Learned – Disaster Management Applications
and Ontologies

In the three years of research and development within SoKNOS, we have imple-
mented the use cases sketched in this paper, employing semantic technologies in
numerous places. We present our lessons learned from that work in three parts:
the ontology engineering process, the software engineering process, and the usage
and suitability of ontologies in the disaster management domain.

3 A demo video of the Semantic Data Explorer can be found at
http://www.soknos.de/index.php?id=470.

http://www.soknos.de/index.php?id=470

192 G. Babitski et al.

3.1 Ontology Engineering Process

Involving end users. The early and continuous involvement of end users actually
working in the disaster management domain was a core success factor.

On the one hand, discussions with end users to gather and verify the do-
main understanding are at the core of both the ontology engineering process
and the application development. In our case, we built the ontology and appli-
cations based on multiple workshops with the German firefighting departments
of Cologne and Berlin. Additionally, using real-life documents such as working
rules and regulations and user generated knowledge sources such as Wikipedia
supported the re-construction and formalization of the knowledge to a great
extent.

On the other hand, evaluating the ontologies with end users helped to consol-
idate and validate the engineered ontologies. As a result of frequent evaluation
workshops, we were able to consolidate the overall ontology and tighten the
representation of the domain.

Establishing the role of an ontology engineer. The ontology engineering task as
such usually cannot be executed by end users. The person taking the role of an
ontology engineer needs to work in close cooperation with the end users as well as
the application’s business logic developer. Knowledge exchange with end users is
important to gather a correct and complete understanding of the domain, while
software developers need support in understanding the ontology’s concepts.

Working with end users, the role requires knowledge in both ontology engi-
neering and the respective domain that is to be formalized. We found that the
task of formalizing the domain terminology cannot be done by end users as it re-
quires ontology awareness, for example in the form of taking modeling decisions
and obeying to modeling conventions. Without this awareness, no formally cor-
rect ontology will emerge, and the ontology cannot be used for reasoning tasks.
Working with software developers, the ontology engineer can communicate the
usage of the ontology in the application and thus develop an awareness where
and how to place semantic annotations.

We had good experiences with an ontology engineer in a dedicated role embed-
ded in the project team. The ontology engineer worked with both end users and
software developers. This way, we could map the end users’ domain knowledge
efficiently into the application’s business logic.

Finding the right tools. Current tools are rarely designed with end users, i.e.,
laymen with respect to ontological modeling, in mind. In fact, ontology editors
are especially weak when it comes to complex ontologies [14].

The complex terminology modeling involved in ontology engineering is hard
to comprehend for domain experts in case of existing modeling artifacts. We
experienced domain experts in the disaster management as not been trained in
any modeling environment.

Ontology editors need improvement in their “browsing mechanisms, help sys-
tems and visualization metaphors” [14], a statement from 2005 which unfortu-
nately still holds true. Better ontology visualization helps to quickly gain an

SoKNOS – Using Semantic Technologies in Disaster Management Software 193

understanding of the ontology and better browsing mechanisms helps editors
get better suited to modeling laymen and domain-knowledgeable end users.

Details on the ontology engineering process in SoKNOS can be found in [15].

3.2 Software Engineering Process and Ontologies

Developing new mechanisms for semantic annotations. In SoKNOS, we have
relied on semantic annotation of all data within a SoKNOS system. To this end,
data models and ontologies need to be interrelated, so that each data object
instance can be semantically annotated. Based on these annotations, various
useful extensions to the system, as sketched in section 2, have been implemented.

Current approaches for interrelating class models and ontologies most often
assume that a 1:1 mapping between the class model and the ontology exists. With
these approaches, the mapping is static, i.e. each class is mapped to exactly one
ontological category, and each attribute is mapped exactly to one ontological
relation. Moreover, most annotation approaches are implemented in an intrusive
fashion, which means that the class model has to be altered in order to hook
it up with the annotation mechanism, e.g., by adding special attributes and/or
methods to classes. In SoKNOS, we have learned that both these premises –
static annotation and intrusive implementation – are not practical in a real
world software engineering setting.

The goals of ontologies and class models are different: class models aim at
simplification and easy programming, while ontologies aim at complete and cor-
rect formal representations. Thus, we cannot assume that a 1:1 mapping always
exists, and static approaches are likely to fail. A typical example from SoKNOS
is the use of one common Java class for predicted as well as for actual problems,
distinguished by a flag. While this is comfortable for the programmer, the class
cannot be statically mapped to a category in the ontology, because predicted
and actual problems are very different ontological categories.

Semantic annotations of data objects must feature a non-intrusive implemen-
tation for non-alterable legacy code or binary packages where source code and
class model cannot be altered. Class models often come as binary packages or are
created by code generators which do not allow changes to the way the classes are
generated, or licenses of integrated third-party components forbid altering the
underlying class models. In these cases, intrusive implementations for semantic
annotation are bound to fail.

As a consequence, we have developed a novel approach for semantic anno-
tation of data objects in SoKNOS. This approach is dynamic, i.e. it allows for
computing the ontological category a data object belongs to at run-time, and it is
implemented in a non-intrusive way: The rules for annotating objects are stored
separately from the class models, and an annotation engine executes those rules
by inspecting the objects to annotate, using mechanisms such as Java reflection.
Thus, class models which cannot or must not be altered can be dealt with [16].

Addressing performance. An essential requirement for user interfaces in general
is high reactivity. On the other hand, introducing a reasoning step in the event

194 G. Babitski et al.

processing mechanism is a very costly operation in terms of run time. As reaction
time of two seconds for interactions is stated as an upper limit for usability in
the HCI literature, high reactivity of the system is a paramount challenge.

We have evaluated different architectural alternatives with respect to run time
performance and scalability to larger integrated systems, such as centralized vs.
decentralized event processing, or pushing vs. pulling of dynamic instance data
into the reasoner’s A-box (assertion component). With our optimized system
design, we are able to keep the reaction times on a reasonable level, even for a
larger number of integrated applications used in parallel, with a relatively high
number of integration rules (where each integration rule controls one type of
cross-application interaction). Details on the evaluation can be found in [5].

3.3 Ontology Usage and Suitability

Finding the right modeling granularity. Both domain experts and end users
face problems in dealing with concepts needed due to ontology formalisms. We
observed that end users were irritated by the concepts and methods imposed
by the use of a strictly formal top level ontology such as DOLCE, which were
not part of their colloquial language, but needed for formally correct modeling.
We found two sources of “problematic” concepts where domain experts and end
users had problems with.

First, domain experts were not used to concepts needed to create a formally
correct ontology, e.g., as induced by using top level ontologies. Using reference
ontologies, like in our case the DOLCE top level ontology, requires complying
with a certain structure and formalism. For example, the SoKNOS ontologies
are based on DOLCE which uses concepts like “endurant” and “perdurant” to
cater for semantic interoperability between information sources. However, from
a domain expert’s point-of-view, this terminology is complicated to understand
compared to normal, colloquial language usage [17]. In our case, professional
firefighters as the domain experts were irritated by these concepts.

Second, end users were irritated by modeled domain terminology that was not
part of their colloquial language. There are concepts that firefighters don’t use in
their colloquial language but which are needed for a formally correct modeling of
the ontology, e.g., to satisfy reasoning requirements. For example, resources are
categorized in the ontology via their usage characteristics. In the given example,
the class “rescue helicopter” is sub-class of the classes “equipment”, “means of
transportation”, “motorized means of transportation”, “flying motorized means
of transportation”, “helicopter” and “ground-landing helicopter”. Except for
the term “equipment”, all other terms are not part of a firefighter’s colloquial
language but are needed have a formally correct ontology and support useful
reasoning.

In SoKNOS, we have found that this question cannot be answered trivially, as
a heuristic for identifying an optimal proportion between “every day concepts”
and “top level concepts” in the ontology is missing. Having a dedicated ontology
engineer, as discussed above, involved in the ontology engineering session helped
the domain experts understand the need and the intention of top level concepts.

SoKNOS – Using Semantic Technologies in Disaster Management Software 195

Finding the right visualization depth. Offering only a class browser with a treelike
visualization of the ontology’s extensive OWL class hierarchy caused confusion
among end users. The SoKNOS inventory management application visualized the
modeled OWL class hierarchy directly in a class browser. Here, the end user for
example can browse resources like cars, trucks and aircrafts. However, due to the
numerous concepts and the extensive class hierarchy, the user actions of selecting
and expanding nodes were often too complicated for the end user. In case that the
end user doesn’t know exactly where in the class hierarchy the desired concept
is located, browsing involves a high error-rate in the exploration process when
the explored classes and sub-classes do not contain the concept the end user
looks for. As shown in the example above, the concept “rescue helicopter” has
six upper classes. An end user needs to select and expand in this example six
times the right node to finally select the concept “rescue helicopter” as resource
in this class browser due to the direct OWL class hierarchy visualization. In
sum, we found the simple browser visualization of an OWL class hierarchy as
not sufficient for an end user interface.

In SoKNOS, we have addressed this challenge by hiding top level categories in
the user interface. Only concepts defined in the core domain ontology are used
in the user interface (but are still available to the reasoner); the foundational
categories from DOLCE are not. Thus, the end user only works with concepts
from her own domain. As a further extension, immediate categories that do not
provide additional value for the end user, such as “motorized means of trans-
portation”, can be suppressed in the visualization.

Finding the right visualization. Various ways of visualizing ontologies and anno-
tated data exist [18]. In the SoKNOS Semantic Data Explorer discussed above,
we have used a straight forward graph view, which, like the standard OWL vi-
sualization, uses ellipses for instances and rectangles for data values. The user
studies have shown that even that simple, straight forward solution provides a
large benefit for the end user. Thus, slightly modifying Jim Hendler’s famous
quote [19], we can state that a little visualization goes a long way.

4 Conclusion

In this paper, we have introduced the SoKNOS system, a functional prototype
for an integrated emergency management system which makes use of ontologies
and semantic technologies for various purposes.

In SoKNOS, ontologies have been used both at design-time and at run-time of
the system. Ontologies are used for providing a mutual understanding between
developers and end users as well as between end users from different organiza-
tions. By annotating information objects and data sources, information retrieval,
the discovery of relevant Web services and the integration of different databases
containing necessary information, are simplified and partly automated. Further-
more, ontologies are used for improving the interaction with the system by fa-
cilitating user actions across application borders, and by providing plausibility
checks for avoiding mistakes due to stressful situations.

196 G. Babitski et al.

During the course of the project, we have employed ontologies and semantic
technologies in various settings, and derived several key lessons learned. First,
the ontology engineering process necessarily should involve end users from the
very beginning and foresee the role of dedicated ontology engineers, since ontol-
ogy engineering is a non-trivial task which is significantly different from software
engineering, so it cannot be simply overtaken by a software engineer. Tool sup-
port is currently not sufficient for letting untrained users build a useful ontology.

Second, current semantic annotation mechanisms for class models are not
suitable. Those mechanisms are most often intrusive and require a 1:1 mapping
between the class model and the ontology. When dealing with legacy code, both
assumptions are unrealistic. Thus, different mechanisms for semantically anno-
tating class models are needed. Furthermore, relying on a programming model
backed by an ontology and using reasoning at run-time imposes significant chal-
lenges to reactivity and performance.

Third, it is not trivial to find an appropriate modeling and visualization depth
for ontologies. While a large modeling depth is useful for some tasks, the feedback
from the end users targeted at the need for simpler visualizations. In SoKNOS,
we have addressed that need by reducing the complexity of the visualization,
and by providing a straight forward, but very useful graphical visualization of
the annotated data.

In summary, we have shown a number of use cases which demonstrate how
the employment of ontologies and semantic technologies can make emergency
management systems more useful and versatile. The lessons learned can also be
transferred to projects with similar requirements in other domains.

Acknowledgements

The work presented in this paper has been partly funded by the German Federal
Ministry of Education and Research under grant no. 01ISO7009.

References

1. Paulheim, H., Döweling, S., Tso-Sutter, K., Probst, F., Ziegert, T.: Improving Us-
ability of Integrated Emergency Response Systems: The SoKNOS Approach. In:
Proceedings of 39 Jahrestagung der Gesellschaft für Informatik e.V (GI) - Infor-
matik 2009 LNI, vol. 154, pp. 1435–1449 (2009)

2. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb De-
liverable D18 – Ontology Library (final) (2003),
http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf

(accessed August 2, 2010)
3. Döweling, S., Probst, F., Ziegert, T., Manske, K.: SoKNOS - An Interactive Visual
Emergency Management Framework. In: Amicis, R.D., Stojanovic, R., Conti, G.
(eds.) GeoSpatial Visual Analytics. NATO Science for Peace and Security Series
C: Environmental Security, pp. 251–262. Springer, Heidelberg (2009)

4. Paulheim, H., Probst, F.: Application Integration on the User Interface Level: an
Ontology-Based Approach. Data & Knowledge Engineering Journal 69(11), 1103–
1116 (2010)

http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf

SoKNOS – Using Semantic Technologies in Disaster Management Software 197

5. Paulheim, H.: Efficient semantic event processing: Lessons learned in user inter-
face integration. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stucken-
schmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp.
60–74. Springer, Heidelberg (2010)

6. Angele, J., Erdmann, M., Wenke, D.: Ontology-Based Knowledge Management in
Automotive Engineering Scenarios. In: Hepp, M., Leenheer, P.D., Moor, A.D., Sure,
Y. (eds.) Ontology Management. Semantic Web and Beyond, vol. 7, pp. 245–264.
Springer, Heidelberg (2008)

7. Angele, J., Lausen, G.: Handbook on Ontologies. In: Staab, S., Studer, R. (eds.)
International Handbooks on Information Systems, 2nd edn., pp. 45–70. Springer,
Heidelberg (2009)

8. Voigt, K., Ivanov, P., Rummler, A.: MatchBox: Combined Meta-model Matching
for Semi-automatic Mapping Generation. In: Proceedings of the 2010 ACM Sym-
posium on Applied Computing, pp. 2281–2288. ACM, New York (2010)

9. Sonntag, D., Deru, M., Bergweiler, S.: Design and Implementation of Combined
Mobile and Touchscreen-based Multimodal Web 3.0 Interfaces. In: Arabnia, H.R.,
de la Fuente, D., Olivas, J.A. (eds.) Proceedings of the 2009 International Confer-
ence on Artificial Intelligence (ICAI 2009), pp. 974–979. CSREA Press (2009)

10. Babitski, G., Bergweiler, S., Hoffmann, J., Schön, D., Stasch, C., Walkowski, A.C.:
Ontology-based integration of sensor web services in disaster management. In:
Janowicz, K., Raubal, M., Levashkin, S. (eds.) GeoS 2009. LNCS, vol. 5892, pp.
103–121. Springer, Heidelberg (2009)

11. Liu, B., Chen, H., He, W.: Deriving User Interface from Ontologies: A Model-Based
Approach. In: ICTAI 2005: Proceedings of the 17th IEEE International Conference
on Tools with Artificial Intelligence, pp. 254–259. IEEE Computer Society, Wash-
ington, DC, USA (2005)

12. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

13. Paulheim, H., Meyer, L.: Ontology-based Information Visualization in Integrated
UIs. In: Proceedings of the 2011 International Conference on Intelligent User In-
terfaces (IUI), pp. 451–452. ACM, New York (2011)

14. Garćıa-Barriocanal, E., Sicilia, M.A., Sánchez-Alonso, S.: Usability evaluation of
ontology editors. Knowledge Organization 32(1), 1–9 (2005)

15. Babitski, G., Probst, F., Hoffmann, J., Oberle, D.: Ontology Design for Information
Integration in Catastrophy Management. In: Proceedings of the 4th International
Workshop on Applications of Semantic Technologies, AST 2009 (2009)

16. Paulheim, H., Plendl, R., Probst, F., Oberle, D.: Mapping Pragmatic Class Mod-
els to Reference Ontologies. In: 2nd International Workshop on Data Engineering
meets the Semantic Web, DESWeb (2011)

17. Hepp, M.: Possible Ontologies: How Reality Constrains the Development of Rele-
vant Ontologies. IEEE Internet Computing 11(1), 90–96 (2007)

18. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.G.: On-
tology Visualization Methods - A Survey. ACM Comput. Surv. 39(4) (2007)

19. Hendler, J.: On Beyond Ontology (2003),
http://iswc2003.semanticweb.org/hendler_files/v3_document.htm;
Invited Talk at the International Semantic Web Conference (2003)

http://iswc2003.semanticweb.org/hendler_files/v3_document.htm

Semantic Technologies for Describing
Measurement Data in Databases

Ulf Noyer, Dirk Beckmann, and Frank Köster

Institute of Transportation Systems, German Aerospace Center
{ulf.noyer,dirk.beckmann,frank.koester}@dlr.de

Abstract. Exploration and analysis of vast empirical data is a corner-
stone of the development and assessment of driver assistance systems.
A common challenge is to apply the domain specific knowledge to the
(mechanised) data handling, pre-processing and analysis process.

Ontologies can describe domain specific knowledge in a structured way
that is manageable for both humans and algorithms. This paper outlines
an architecture to support an ontology based analysis process for data
stored in databases. Build on these concepts and architecture, a proto-
type that handles semantic data annotations is presented. Finally, the
concept is demonstrated in a realistic example. The usage of exchange-
able ontologies generally allows the adaption of presented methods for
different domains.

1 Introduction

Reliable and safe automation is one foundation for modern traffic systems and
part of concepts for assistance and automation systems. Therefore, for the analy-
sis and reflection of users in automated environments, experimental systems (i.e.
vehicles and driving simulators) play an important role. They produce exhaustive
amounts of data, which can be used for an evaluation of the considered system
in a realistic environment. Long term studies and naturalistic driving studies [7]
result in similar datasets. Much data means a lot of information to interpret and
potential results to discover. Therefore our motivation is, to store derived meta
data closely connected with its original data for an integrated processing. By
using semantic technologies a continuous technical and semantic process can be
provided.

As a starting point, experimental data is to be considered as already stored
in the relational database and should not be changed in the process. As many of
the following principles not only match for measurement data, but in general for
tables in relational databases, also the term bulk data is used as an equivalent for
measurement data. So, it is aspired, to use semantic technologies for describing
the database elements to support their interpretation [15]. They allow to for-
mally handle complex data structures very flexible and schema knowledge can
be extended easily. This is a demand resulting from the fact, that experimental
systems are in continuous development and projects touch different knowledge
domains.

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 198–211, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Semantic Technologies for Describing Measurement Data in Databases 199

Fig. 1. Tables of a relational database with possible annotations

Figure 1 shows the intended database elements for semantic annotations. Ta-
bles containing sensor data of an experiment can be tagged with experiment
information. Columns can have a semantic annotation about physical unit of
containing elements and used sensor for recording. Rows or cells can get an an-
notation about bad quality or detected events in the considered elements. A
complex application case is presented in Sect. 5. More meaningful examples of
generic metadata annotations are also discussed in [16,12].

In some of the following considerations it is assumed, that table records have
an order, so the statement row is preferred to record or tuple. Also rows are
considered with the restriction that they must be uniquely identifiably. The
needed database elements from Fig. 1 are transformed in unique URIs to be
used in RDF statements. However, data itself is not transformed, since the value
itself is not used for the presented purposes. Based on this, annotations are used
similar to a formal memo or notepad mechanism. As domain knowledge is solely
modelled in exchangeable ontologies, the presented concepts can be also applied
for other domains.

2 Background and Related Work

This section introduces other work, which is needed for this paper or is relevant.

2.1 Usage of Semantic Technologies

In the last years several metadata technologies evolved, with the aim to make
them better processable by machines. Especially the Resource Description
Framework (RDF) is important in this context. Using RDF, a graph with re-
lations of the individual metadata elements can be modelled. Resources to be
described in RDF get annotated using triples, consisting of a subject, predi-
cate and an object. On top of this, statements can be flexibly constructed. For
serializing i.e. RDF/XML or Turtle syntax can be used.

200 U. Noyer, D. Beckmann, and F. Köster

The Web Ontology Language (OWL) is based on principles of RDF and can
be used to formally describe complete ontologies. In an ontology the terms and
their relations and rules are described. Especially for plain rules there is the
Semantic Web Rule Language (SWRL) as an extension of OWL [13].

2.2 RDF-Stores

A RDF-repository [18,1] (triple-store) is used to manage RDF-statements. It
supports adding, manipulating and searching statements in the repository. Such
repositories can have different backends to store managed statements. Using re-
lational databases as backend is in focus of this document. The statements con-
sisting of subject, predicate and object are stored in a separate relation in the
underlying database. Advantages of different optimization strategies are exhaus-
tively discussed in [22]. Current repositories often directly support the Simple
Protocol and RDF Query Language (SPARQL). It has for RDF-stores similar
importance as SQL for relational databases.

2.3 Mapping of Relational Databases into RDF

There have been already early approaches to map relational data into RDF
for the integration of relational databases and its contents [5]. In principle, a
predefined scheme or rules for mapping the schema of the database and its
content into RDF statements are used. There are projects ([3,6]), which are
concerned with this functionality. However, both projects are not used for this
work, because they would be strongly oversized. As shown in Sect. 3.3 just
the mapping of database schema is needed (and not of data itself), what is
comparatively easy. This work also only requires a mapping of the actually used
database elements. If in the future also data itself managed in a database should
be included in RDF mapping, usage of [6] could be a valuable option. This work
is based on the principles discussed in [5].

2.4 Scientific Workflow Systems

The presented paper is distantly related with the field of scientific workflow
systems (SWS, i.e. [2,20]). In SWS a process for evaluation of a data product
can be specified. At execution, each processing step runs consecutively on data.
The result of one step is input of the next one. Often SWS offer a graphical
interface for composition of workflow steps using directed graphs. These systems
support processing by offering metadata about processing steps and data lineage.
Exchanged data products are considered as black boxes by SWS, which are not
interpreted by the system.

But that is the focus of the presented paper, to concentrate on the content
level of exchanged data. For that reason micro-annotations are utilized in a
similar way as they are used with web pages [9] or multimedia files [11]. The
aspect of data flow and its composition has only a minor role. In this work it is
assumed that time structured data is stored in a database, an unusual restriction
for classical SWS.

Semantic Technologies for Describing Measurement Data in Databases 201

3 Data Management

The recorded time structured bulk data is stored in a relational database. All
other data either describes these time series or is deduced from it. As a result,
all data besides time series is considered as metadata.

3.1 Use Cases

This section presents the identified use cases for semantic annotations.
– Manual examination: Using an interface for interaction with annotations

a user can directly interact and manipulate them (cf. Sect. 4). Resources can
be referenced for documentation purposes. It also allows exporting tables with
annotations into a flat file format for usage in other applications.

– Services: A service is an automated piece of software, which analyses some
given data/annotations in the database and creates new data/annotations by
applying specific domain knowledge. It has a web service interface for being ex-
ternally triggered. Web services can be easily reused and orchestrated for more
complex workflow setups or automatically started, after new data has been gath-
ered. Furthermore, web services can be also reused by many SWS.

– Application integration: Any arbitrary application can also integrate sup-
port for semantic annotations. Ærogator is used for explorative data analysis
and can display annotations parallel to time series data [12]. For data mining
in time series EAMole is used and could respect annotations under data mining
aspects [12].

3.2 Common Architecture

An overview of data storage and access are shown in Fig. 2 [14]. In the bottom
layer, there is a relational database with the internal name Dominion-DataStore.
It stores relational bulk data and RDF annotations in completely separated data
structures. All elements in the figure with a horizontal pattern are related to
bulk data. Elements with a vertical pattern describe elements connected with
semantic annotations. Measurement data from an experiment is always stored
in a new table, so relational database schema is quite simple. In the database
there are stored procedures available to directly work on RDF annotations with
SQL.

Access to RDF statements is more abstracted for an efficient data handling.
The triple store abstraction implements the concrete RDF storage. The native
RDF handling of an Oracle database is used. An alternative would be a database
product independent schema layout (cf. Sect. 2.2). On top of the RDF storage
abstraction a common semantic web framework handles RDF graphs [18]. De-
pending on the concrete RDF-graph, also RDFS- or OWL- models can be han-
dled. Another layer is responsible for mapping required database elements into
resource URIs, to be referenced in RDF statements. Concrete mapping imple-
mentation is based on the principles discussed in Sect. 3.3. The RDF store allows
managing strictly divided models. So for each new bulk data table a new RDF

202 U. Noyer, D. Beckmann, and F. Köster

Fig. 2. Overview of architecture used for data access

model is used. In this way a good scalability can be reached. Generic information
is stored in a jointly used RDF model.

Strict separation of bulk data and annotations also reflects their different
usage. Afterwards measurement data is not modified anymore. Its meaning is
hidden in recorded number values to be interpreted. On top of the bulk data,
there is an abstract layer of interpretations. Descriptions (i.e. for columns) or
identified events (i.e. overtaking manoeuvre) from human imaginations are to
be seen there. In contrast to bulk data, there are much less elements. This ab-
straction layer is used during analysis, so that there is a high dynamic in the
statements. These statements are usually assertional (ABox). Schema knowledge
(TBox) can be edited using Protégé [19] or a Semantic Wiki [17] as known for
RDFS/OWL and then be integrated (cf. Sect. 4). The just presented approach
is the adaption of commonly discussed multimedia annotations [9,11] for mea-
surement data. The term micro-annotations is also adapted from this domain.

3.3 Annotation of Relational Data

In the database, bulk data is organized in relations. RDF-annotations can refer-
ence single attribute instances, tuples, attributes, relations, schemas or databases
(cf. Fig. 1). Theoretically, same mechanisms could be used to annotate other re-
lational database concepts (i.e. keys, constraints). However, those are not consid-
ered, since they are not of interest for discussed use cases. For that purpose, an
integration of relational elements in RDF is needed (cf. Sect. 2.3). Since RDF re-
quires an unique specifier for every resource, database elements must be mapped
into URIs. The used mapping approach builds on principles of [5].

Relations are uniquely identified by their name table_name. Also attributes
of a table have an unique name column_name. For simplicity, slash (/) is not
allowed in table_name and column_name. To identify tuples of a relation, the
considered relation must have an unique key. Currently, an attribute row_id is
added to every relation, which contains unique integers in context of a relation
and serves as a surrogate key. By combining the identification of a tuple and an

Semantic Technologies for Describing Measurement Data in Databases 203

attribute, single attribute instances can be referenced. Based on those assump-
tions, Table 1 shows building instructions for URIs to identify different database
elements.

Table 1. Transformation rules for a database element into an URI

DB element Transformation into URI
Relation http://www.dlr.de/ts/dominion-datastore/

↪→ table/table_name
Attribute http://www.dlr.de/ts/dominion-datastore/
of a relation ↪→ table/table_name/

↪→ column/column_name
Tuple http://www.dlr.de/ts/dominion-datastore/
of a relation ↪→ table/table_name/row/row_id
Attribute http://www.dlr.de/ts/dominion-datastore/
instance ↪→ table/table_name/
of a relation ↪→ column/column_name/

↪→ row/row_id

An example of an URI, that references an attribute instance of attribute
Velocity with a unique key 48 in relation 20100716_105523_drvstate, would
have the following form: http://www.dlr.de/ts/dominion-datastore/table/
20100716_105523_drvstate/column/VELOCITY/row/48

In the same way, before table name the name of the database instance and
the schema name are also included (Fig. 3). The inversion is well-defined and
therefore URIs can be assigned to their original database elements. Described
approach does not integrate values of relational bulk data itself into RDF, since
they are not required (cf. Sect. 2.3).

4 User Interface

The graphical user interface allows to visualize semantic annotations. During
sequent processing steps it helps to understand temporary results. Fig. 3 shows
a screenshot of the application called Semantic Database Browser. In the left
window a schema, table or column can be chosen. The main window shows
selected tables. Database elements, which have annotations, are highlighted with
a colour. When such an annotated element is selected, the bottom window shows
the annotations as a tree. In Fig. 3 the column Velocity is selected in the left
window.

The tree representation was selected, as it is very compact, especially com-
pared to graph visualizations. Since only the really needed sub-tree is fetched
from memory model, this approach preserves resources. However, it must be
considered, that only outgoing edges of the graph model are drawn. If there are
cycles in the graph and the tree is expanded, nodes can appear multiple times.
In front of each tree element is a symbol, which indicates the type of the node

http://www.dlr.de/ts/dominion-datastore/table/20100716_105523_drvstate/column/VELOCITY/row/48
http://www.dlr.de/ts/dominion-datastore/table/20100716_105523_drvstate/column/VELOCITY/row/48

204 U. Noyer, D. Beckmann, and F. Köster

Fig. 3. User interface for interactive working with annotations including highlighted
elements and a montage showing nationalized labels

(named resource, blank node, property or literal). The option describe proper-
ties lets the tree also show properties of properties. In this way i.e. domain- and
range-restrictions of properties can be viewed. Another feature is to optionally
show labels (identified by rdfs:label [10]) instead of resource names (URIs or
anonymous ids). In this case a literal is chosen, which best matches the lan-
guage chosen in the user interface (montage Fig. 3). Using the context menu it
is also possible to directly open URI-resources with the associated program, i.e.
a web-page in a semantic wiki with the web browser.

Since annotations are stored in different models for each bulk data table (cf.
Sect. 3.2), they are loaded on demand for the currently shown table. For that
reason interactions with annotations in the interface are generally performed
on the base graph model GB. This graph is the union of the actually used
graphs. That at least includes the generic graph GG, containing annotations
for database instance, schemas and table schema. Annotations on bulk data,
which are always stored in new tables, are managed in separate RDF models.
For each table Ti there exists a graph model GTi . Graph GB is manipulated
during runtime and is the union of generic annotations GG and currently viewed
table Tj: GB = GG ∪ GTj . Since GG only growths very moderately and most
annotations are managed in the different GTi , the scalability of the approach for
many experiments with their measurement tables is assured. If one table can be
processed, this is also possible for a great many of them.

It can be necessary to reference external knowledgebases GOWLi
in form of

OWL documents. Therefor
⋃

i∈I GOWLi
with i ∈ I is the set of relevant OWL

documents. As consequence GOWLi can be added as a sub-graph to GB , with the

Semantic Technologies for Describing Measurement Data in Databases 205

Fig. 4. Relations of a layer with the base graph and sub-graphs

Fig. 5. Overlay of layers for the presentation of database elements

result GB = GG ∪GTj ∪
⋃

i∈I GOWLi
. In the case of measurement data handling

an additional OWL document primarily contains additional schema knowledge,
as assertional knowledge concerning database elements is maintained in GTi .

The resulting graph of graphs is shown in Fig. 4 in the bottom half, where sub-
graphs are labelled with full text names. This graphical presentation is available
in the main window accessible by a tab. The user can interact with the graph,
as he can remove sub-graphs or request some statistics about them. For further
support of visualization layers are offered, which are configured by the user in
the left window (accessed by a tab). A layer is either the graph GB as complete
union of the included knowledge bases (base layer) or a view derived from GB

with an additional layer name and colour (Fig. 4 in the upper half).
If a database element is contained in a layer, it is highlighted in the specific

colour of the layer. Furthermore, layers have an order defined by the user. An
element contained in several layers is shown in the colour of the layer with the
greatest index (Fig. 5). In this way, a layer concept is realized similar to be
found in geo information systems. Derived graphs for layers are created using
a reasoner or SPARQL queries (Construct-, Describe- or Select) on the

206 U. Noyer, D. Beckmann, and F. Köster

base layer. The result set of a Select-query is handled as a graph consisting
only of nodes and without edges. In Fig. 3 the base layer with all annotated
database elements is shown in the background and results in a (red) colouring
of schemas, tables and columns (highlighted by two solid boxes). Cells in the
Utmnorthing-column are contained in a layer based on a Select-query and
are therefore highlighted (yellow, surrounded by a dashed box).

Other features in the user interface cover manually editing annotations and
management of namespaces. By using SPARQL individual layers can be searched.
The corresponding graph of a selected resource and neighbouring nodes in a given
radius can be visualized. A in this way displayed graph also reflects the common
colouring of the different layers.

For another kind of annotation presentation the ordering of database rows is
necessary. The user interface therefore uses the natural order of the unique key
for the tables (cf. Sect. 3.3). In case of measurement data, rows are ordered by
time. This kind of presentation is also in terms of colour indicated in Fig. 5 for
layers 1 and 2 along t-axis. At this, for every layer row- and cell-annotations are
projected on t-axis. As a result, for each layer a kind of bar chart is drawn, to
visualize in which intervals annotations are existent (Fig. 6). Since layers can be
freely chosen, visual comparisons are possible.

The visual interface, which is described in this section, is in a prototypic but
fully operational state.

5 Example Application Cases

This section presents two usage examples for the previously introduced annota-
tions for measurement data.

5.1 Data Quality Management

Data quality has an essential impact for the considered analysis process. An
automated service checks recorded measurement data against its specification.
The specification is provided by the Dominion vehicular middleware [8] during
experiments and is stored as annotations in the Dominion-DataStore. Fig. 3
partially shows these specifications as annotations in namespace dmeta.

As result of the quality checks, there are (micro-)annotations generated ex-
actly for those cells, which violate their specification. Those cells are shown in
the same figure in the Utmnorthing column and highlighted by a separate
layer (yellow). These annotations are linking the violated specifications, to allow
searching and presenting different kinds of violations.

5.2 Description of Manoeuvres

The second application case is inferred from the IMoST project [4]. This project
focuses on merging into traffic on highways. Basis for analysis are test drives
from driving studies of DLR.

Semantic Technologies for Describing Measurement Data in Databases 207

An annotation service is triggered to analyse measurement data of a test drive
and extract relevant information. In this way (micro-)annotations blink left, near
centreline and vehicle ahead lost are created for complete rows. These annota-
tions themselves are divided in the categories action and environmental event.
Annotation blink left is always generated, when the appropriate measurement
variable shows a 1 to indicate, that the direction indicator has been activated. If
the variable for the distance of the vehicle to the centreline is less than 0.3 me-
ters, the annotation near centreline is created. When the distance detection to a
leading vehicle suddenly looses the vehicle ahead, the service creates the vehicle
ahead lost annotation. In this case it can be expected, that either the own or the
foreign vehicle has performed a lane change. Generally, automated services are
just one possibility to create annotations. Alternatives are the manually creation
using a video rating or completely automated approaches like data mining.

In this way, just few of the rows get annotations, since most time nothing
important happens (depending on the experiment scenario). So described an-
notations are used as a memo or notepad mechanism, to tag relevant database
elements with information for further processing. Fig. 6 shows a time line repre-
sentation (cf. Sect. 4) for selected events of an experiment. In this picture blink
left and near centreline are layers containing corresponding annotations, which
are selected by a SPARQL-query from base layer.

Fig. 6. Time line representation from user interface for the base layer and two layers
containing selected events

In the following steps of semantic enrichment every analysis step builds on the
previous ones. Thus, in every step the point of view gets more abstract and more
comprehensible for domain specialists. Below, the concept overtaking is defined.
An overtaking manoeuvre occurs, if the events blink left, near centreline and
vehicle ahead lost arise at the same time. Based on this, an analyst can search
for all these events in an analysis tool and then directly visualize the searched
situation. Technically this search is implemented using SPARQL-queries. In the
formerly presented user interface Prefix statements for registered namespaces
are optional:

PREFIX ts: <http://www.dlr.de/ts/>
SELECT ?x WHERE {

?x ts:hasProperty ts:BlinkLeft .
?x ts:hasProperty ts:NearCentreline .
?x ts:hasProperty ts:VehicleAheadLost .

}

208 U. Noyer, D. Beckmann, and F. Köster

Fig. 7. Extract from the ontology to illustrate concepts of inheritance hierarchy

By using an ontology the concepts and their relationships are systemized.
Fig. 7 shows an ontology, which covers concepts for events introduced in this
section. Circles mark classes, which are organized in an inheritance hierarchy
(green, solid arrows). The rectangular subjects are instances of type row. There
are only three tuples (row identifier 113, 852 and 870) shown in this simplifica-
tion. Black arrows with alternating dashes and dots as pattern mark rows with
identified events.

Beside introduced sub-concepts in practice there can be much more (actions:
i.e. brake, steer; environmental events: i.e. near to other vehicle, off the road).
On base of these basic concepts, the concept class manoeuvre is introduced.
Concrete actions and environmental events can form more complex manoeuvres
(cf. [24], i.e. overtaking, turn off) and a more abstract view on street incidents is
created. In the shown ontology, there is the newly introduced concept overtaking
manoeuvre as a subclass of manoeuvre. Of course an algorithm in a service could
identify the tuples, where the defined conditions for an overtaking manoeuvre
are met, and annotate them. Alternatively, concept overtaking can be modelled
in the ontology as an intersection of restrictions on necessary conditions. In
Fig. 7 this is illustrated by the three arrows with alternating dashes and dots as
pattern and overtaking as a subject. Modelling of restrictions is not shown in the
figure. By using this modelling approach a reasoner can be applied accordingly.
Its inference mechanisms deduce, in case that all conditions are complied to, an
overtaking manoeuvre is existent. In Fig. 7, that is indicated by a red, dashed
arrow. Hence, analysts can now directly identify overtaking manoeuvres using
SPARQL.

As domain experts decide to redefine the concept overtaking, just the ontology
must be changed and results can be inferred. So ontology can serve as an impor-
tant and central pool of certain expert knowledge. Furthermore, it can formalize
used vocabulary and concepts to help avoiding ambiguities and redundancies.
Another advantage is, that ontologies can be modularized in sub-ontologies, so
experts of a very specific sub-domain can be responsible for a sub-ontology. From
the knowledge management’s point of view this is very helpful. Bulk data of time

Semantic Technologies for Describing Measurement Data in Databases 209

series is very static and remains unchanged, so it is stored in traditional, rela-
tional tables. But because metadata and domain knowledge are heavily evolving
during analysis process and often have complicated structures, RDF is a suitable
modelling approach for them. RDF storage isn’t as efficient as relational storage,
but as long as metadata is less in volume than bulk data, handling and storage
is usually not a demanding task.

Modelling of temporal aspects in ontologies is still a question of research
(i.e. [21,23]). But that doesn’t matter for the presented application cases, since
just aspects without temporal aspects are modelled in the ontology. Temporal
aspects can be covered using other analysis techniques. In the presented case an
algorithm identifies, where radar looses tracking of a vehicle ahead, and creates
appropriate annotations.

Nevertheless, the use cases are currently under heavy development, to support
current results in this area of interest. In future, continuous row annotations will
be modelled using time points and intervals. In this way, number of annotations
can be reduced a lot, by just annotating beginning and end of an interval for an
occurred event or action. That feature was already used to create Fig. 6, since
the two upper layers in the picture are rendered using just start and end points.
SWRL will be used to define a finite state machine on top of these events and
detect abstract manoeuvres. Advantage of SWRL rules is that they are much
more expressive for reasoning purposes than plain ontologies. So, more complex
reasoning can be performed on event relationships, what is challenging to cover
just using conventional database technologies.

In the discussed use-case, created annotations are only used to search them
using SPARQL. But annotations represent common results and should be also re-
used by other kinds of processing steps. In this way, working with more abstract
concepts is iteratively introduced and analysts can work on a more semantic
level.

6 Summary and Outlook

The presented article discusses an approach for data management of measure-
ment data and semantic metadata to support an iterative data analysis process.
Aim of this iterative process is to provide the results of each processing step as
transparent as possible. The data in the data store can be flexibly annotated to
support the continuous and iterative process of knowledge discovery, by using
RDF annotations and micro-annotations for semantic enrichment incorporating
ontologies.

The presented approach is a combination of advantages of classical relational
databases with semantic annotations and ontologies for the analysis of sensor
data. Using ontologies, concepts and vocabulary of the metadata can be sys-
temized. For database elements annotations serve as a kind of memo or notepad
mechanism, which help both analysts and algorithms processing the time se-
ries data. In this way table data can be arbitrarily linked and become a part
of the Semantic Web. Also the user benefits of the possibility to use inferencing

210 U. Noyer, D. Beckmann, and F. Köster

software. The presented user interface allows an intuitive workflow with intro-
duced annotations. Semantic annotations are flexible and well suited for this
application of knowledge integration. By storing time structured data using a
relational database, it can be easily accessed using standard database connec-
tivity of used applications without any adaptations.

On the contrary there are also challenges in the presented approach. Using
two technologies instead of one for accessing specific data increases complexity.
That also influences modelling of considered data. The developer must consider
whether to store data in a relational way or as annotations. Moreover, the speed
of accessing annotations can be slower than a solely relational storage. A RDF-
store allows to handle separate data models for the annotation instances. So,
separate models can be used for different time structured bulk data tables to
ensure scalability. Generally we promote to use a relational design for bulk data,
which has a fix schema. For light weighted data and metadata, which constantly
evolves and where the interpretation is in focus, we prefer annotations.

The use cases and ontologies are currently refined with a stronger focus on
temporal aspects. Furthermore, the integration of automated services in a SWS
has to be realized. A further medium-term objective is to polish the user interface
and port it to the Eclipse Rich Client Platform for a productive deployment.

References

1. Aduna-Software: OpenRDF.org — ... home of Sesame. WWW (October 2008),
http://www.openrdf.org/

2. Altintas, I., et.al.: Kepler: An extensible system for design and execution of scien-
tific workflows. In: Scientific and Statistical Database Management (2004)

3. Barrasa, J., Óscar Corcho, Gómez-Pérez, A.: R2O, an Extensible and Semantically
Based Database-to-ontology Mapping Language. In: Workshop on Semantic Web
and Databases (2004)

4. Baumann, M., et al.: Integrated modelling for safe transportation — driver mod-
eling and driver experiments. In: 2te Fachtagung Fahrermodellierung (2008)

5. Berners-Lee, T.: Relational Databases on the Semantic Web (1998),
http://www.w3.org/DesignIssues/RDB-RDF.html

6. Bizer, C.: D2R MAP — A Database to RDF Mapping Language. In: World Wide
Web Conference (2003)

7. Fancher, P., et al.: Intelligent cruise control field operational test (final report).
Tech. rep., University of Michigan (1998)

8. Gačnik, J., et al.: DESCAS — Design Process for the Development of Safety-
Critical Advanced Driver Assistance Systems. In: FORMS (2008)

9. Gertz, M., Sattler, K.U.: Integrating scientific data through external, concept-based
annotations. In: Data Integration over the Web (2002)

10. Hayes, P.: RDF Semantics. W3C Recommendation (February 2004)
11. Herrera, P., et al.: Mucosa: A music content semantic annotator. In: Music Infor-

mation Retrieval (2005)
12. Köster, F.: Datenbasierte Kompetenz- und Verhaltensanalyse — Anwendungs-

beispiele im selbstorganisierten eLearning. In: OlWIR (2007)

http://www.openrdf.org/
http://www.w3.org/DesignIssues/RDB-RDF.html

Semantic Technologies for Describing Measurement Data in Databases 211

13. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Journal
of Web Semantics: Science, Services and Agents on the World Wide Web 1, 41–60
(2005)

14. Noyer, U., Beckmann, D., Köster, F.: Semantic annotation of sensor data to sup-
port data analysis processes. In: Semantic Authoring, Annotation and Knowledge
Markup Workshop (SAAKM) (2009)

15. Noyer, U., Beckmann, D., Köster, F.: Semantic technologies and metadata system-
atisation for evaluating time series in the context of driving experiments. In: 11th
International Protégé Conference, pp. 17 – 18 (2009)

16. Rothenberg, J.: Metadata to support data quality and longevity. In: Proceedings
of the 1st IEEE Metadata Conference (1996)

17. Schaffert, S., Francois Bry, J.B., Kiesel, M.: Semantic wiki. Informatik-
Spektrum 30, 434–439 (2007)

18. SourceForge.net. Jena — A Semantic Web Framework for Java (October 2008),
http://jena.sourceforge.net/

19. Stanford Center for Biomedical Informatics Research: The protégé ontology editor
and knowledge acquisition system. WWW (April 2009),
http://protege.stanford.edu/

20. myGrid team. Taverna workbench project webseite (November 2009),
http://taverna.sourceforge.net/

21. Tusch, G., Huang, X., O’Connor, M., Das, A.: Exploring microarray time series
with Protégé. In: Protégé Conference (2009)

22. Velegrakis, Y.: Relational Technologies, Metadata and RDF, ch. 4, pp. 41–66.
Springer, Heidelberg (2010)

23. Virgilio, R.D., Giunchiglia, F., Tanca, L. (eds.): Semantic Web Information Man-
agement: A Model-Based Perspective, ch. 11, pp. 225–246. Springer, Heidelberg
(2010)

24. Vollrath, M., et al.: Erkennung von Fahrmanövern als Indikator für die Belastung
des Fahrers. In: Fahrer im 21. Jahrhundert (2005)

http://jena.sourceforge.net/
http://protege.stanford.edu/
http://taverna.sourceforge.net/

Ontology-Driven Guidance for Requirements

Elicitation

Stefan Farfeleder1, Thomas Moser2, Andreas Krall1, Tor St̊alhane3,
Inah Omoronyia4, and Herbert Zojer5

1 Institute of Computer Languages, Vienna University of Technology
{stefanf,andi}@complang.tuwien.ac.at

2 Christian Doppler Laboratory ”Software Engineering Integration for Flexible
Automation Systems”, Vienna University of Technology

thomas.moser@tuwien.ac.at
3 Department of Computer and Information Science,
Norwegian University of Science and Technology

stalhane@idi.ntnu.no
4 Irish Software Engineering Research Centre, University of Limerick

inah.omoronyia@lero.ie
5 Infineon Technologies Austria AG

herbert.zojer@infineon.com

Abstract. Requirements managers aim at keeping their sets of require-
ments well-defined, consistent and up to date throughout a project’s life
cycle. Semantic web technologies have found many valuable applications
in the field of requirements engineering, with most of them focusing on
requirements analysis. However the usability of results originating from
such requirements analyses strongly depends on the quality of the orig-
inal requirements, which often are defined using natural language ex-
pressions without meaningful structures. In this work we present the
prototypic implementation of a semantic guidance system used to assist
requirements engineers with capturing requirements using a semi-formal
representation. The semantic guidance system uses concepts, relations
and axioms of a domain ontology to provide a list of suggestions the re-
quirements engineer can build on to define requirements. The semantic
guidance system is evaluated based on a domain ontology and a set of
requirements from the aerospace domain. The evaluation results show
that the semantic guidance system effectively supports requirements en-
gineers in defining well-structured requirements.

Keywords: requirements elicitation, domain ontology, elicitation guid-
ance, requirements engineering.

1 Introduction

A major goal of requirements engineering is to achieve a common understanding
between all project stakeholders regarding the set of requirements. Modern IT
projects are complex due to the high number and complexity of requirements,
as well as due to geographically distributed project stakeholders with different

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 212–226, 2011.
� Springer-Verlag Berlin Heidelberg 2011

Ontology-Driven Guidance for Requirements Elicitation 213

backgrounds and terminologies. Therefore, adequate requirements management
tools are a major contribution to address these challenges. Current requirements
management tools typically work with a common requirements database, which
can be accessed by all stakeholders to retrieve information on requirements con-
tent, state, and interdependencies.

Requirements management tools help project managers and requirements en-
gineers to keep the overview on large amounts of requirements by supporting:
(a) Requirements categorization by clustering requirements into user-defined
subsets to help users find relevant requirements more quickly, e.g., by sorting
and filtering attribute values; (b) Requirements conflict analysis (or consistency
checking) by analyzing requirements from different stakeholders for symptoms
of inconsistency, e.g., contradicting requirements; and (c) Requirements tracing
by identifying dependencies between requirements and artifacts to support anal-
yses for change impact and requirements coverage. Unfortunately, requirements
management suffers from the following challenges and limitations:

– Incompleteness [5] of requirements categorization and conflict identification,
in particular, when performed manually.

– High human effort for requirements categorization, conflict analysis and trac-
ing, especially with a large number of requirements [5].

– Tracing on syntactic rather than on concept level: requirements are often
traced on the syntactic level by explicitly linking requirements to each other.
However, requirements engineers actually want to trace concepts, i.e., link
requirements based on their meaning, which can be achieved only partially
by information retrieval approaches like ”keyword matching” [11][12].

The use of semantic technologies seems promising for addressing these chal-
lenges: Ontologies provide the means for describing the concepts of a domain
and the relationships between these concepts in a way that allows automated
reasoning [18]. Automated reasoning can support tasks such as requirements cat-
egorization, requirements conflict analysis, and requirements tracing. While these
are very valuable efforts, we think what is missing here is additionally having
a proactive and interactive guidance system that tries to improve requirements
quality while actually eliciting requirements.

In this work we present the prototypic implementation of a semantic guid-
ance system used to assist requirements engineers with capturing requirements
using a semi-formal representation. Compared to the usual flow - write require-
ments, analyze requirements using the domain ontology, improve requirements
- our approach directly uses the domain ontology knowledge in a single step.
The semantic guidance system uses concepts, relations and axioms of domain
ontologies to provide a list of suggestions the requirements engineer can build
on to define requirements.

We evaluate the proposed semantic guidance systembased on a domain ontology
and a set of requirements from the aerospace domain. The evaluation results show
that the semantic guidance system supports the requirements engineer in defining
well-structured requirements. The tool managed to provide useful suggestions for
filling missing parts of requirements in the majority of the cases (>85%).

214 S. Farfeleder et al.

This work is organized in the following way: Section 2 presents related work.
Section 3 motivates our research; section 4 introduces our approach to ontology-
based guidance. Section 5 presents an evaluation of the tool and section 6 con-
cludes and gives ideas about future work.

2 Related Work

This section summarizes related work, going from the broad field of requirements
engineering to the more specific areas of elicitation guidance and finally pattern-
based requirements.

2.1 Requirements Engineering

Requirements Engineering is a discipline that deals with understanding, docu-
menting, communicating and implementing customers’ needs. Thus, insufficient
understanding and management of requirements can be seen as the biggest cause
of project failure. In order to improve this situation a systematic process to han-
dle requirements is needed [8]. The main activities of a requirements engineering
process can be defined as follows [15]:

– Requirements Elicitation. Requirements elicitation involves technical
staff working with customers to find out about the application domain, the
services the system should provide and the system’s operational constraints.
The goal is to gather raw requirements.

– Requirements Analysis and Negotiation. Requirements analysis and
negotiation is an activity which aims to discover problems and conflicts with
the requirements and reach agreement on changes to satisfy all system stake-
holders (people that are affected by the proposed system). The final goal is
to reach a common understanding of the requirements between all project
participants.

– Requirements Documentation and Validation. The defined require-
ments, written down in a software requirements specification, are validated
against criteria like correctness, completeness, consistency, verifiability, un-
ambiguity, traceability, etc.

– Requirements Management. Requirements management consists of man-
aging changes of requirements (keeping them consistent), e.g., by ensuring re-
quirements traceability (identification of interdependencies between require-
ments, other requirements, and artifacts).

These four steps can be summarized as requirements development. In addi-
tion, requirements management is a supporting discipline to control all require-
ments and their changes during the development life cycle and to identify and
resolve inconsistencies between the requirements and the project plan and work
products. One important method of requirements management is requirements
tracing. Traceability can be defined as the degree to which a relationship between

Ontology-Driven Guidance for Requirements Elicitation 215

two or more products of the development process can be established [1]. Gotel [7]
and Watkins [21] describe why requirements tracing can help project managers
in verification, cost reduction, accountability, change management, identification
of conflicting requirements and consistency checking of models.

2.2 Elicitation Guidance

There are several approaches to guide users to specify requirements. PROPEL
[3] is a tool that provides guidance to define property specifications which are
expressed as finite-state automata. For the definition of a property the user is
guided by a question tree, a hierarchical sequence of questions. There are separate
scope trees for a property’s behavior and its scope. Based on the answers, the
tool chooses an appropriate property template. A team of medical personnel and
computer scientists used the tool to formulate properties of medical guidelines.

Kitamura et al. [14] present a requirements elicitation tool that improves re-
quirements quality by analysis. The tool analyzes natural language requirements
and finds domain ontology entities occurring in the statements. According to
these occurrences and their relations in the ontology, requirements are analyzed
in terms of completeness, correctness, consistency and unambiguity. Suggestions
are provided to the user in order to improve these metrics, e.g., if the tool finds
that a domain concept is not defined in the requirements set, the suggestion
would be to add a requirement about the missing concept.

REAS [6] is a tool that interactively detects imprecisions in natural language
requirements. It consists of a spelling checker, a rule imposer, a lexical analyzer
and a parser. Some of the rules enforced by the tool are writing short require-
ments, using active voice instead of passive and avoiding possessive pronouns
(e.g., “it” and “its”). If the tool detects a violation of a rule, the requirements
engineer is asked to improve the offending expression.

Compared to our own approach, PROPEL only deals with a rather specific
kind of requirements. The other two approaches try to identify weaknesses after
the requirements have been defined and do not actively propose wording while
writing them.

2.3 Pattern-Based Requirements

Hull, Jackson and Dick [9] first used the term boilerplate to refer to a textual
requirement template. A boilerplate consists of a sequence of attributes and
fixed syntax elements. As an example, a common boilerplate is “〈system〉 shall
〈action〉”. In this boilerplate 〈system〉 and 〈action〉 are attributes and shall is
a fixed syntax element. It is possible to combine several boilerplates by means of
simple string concatenation. This allows keeping the number of required boiler-
plates low while at the same time having a high flexibility. During instantiation
textual values are assigned to the attributes of the boilerplates; a boilerplate
requirement is thus defined by its boilerplates and its attribute values. The

216 S. Farfeleder et al.

authors did not propose a fixed list of boilerplates1 but instead envisioned a
flexible language that can be adapted or enriched when necessary.

St̊alhane, Omoronyia and Reichenbach [20] extended boilerplates with a do-
main ontology by linking attribute values to ontology concepts. They adapted
the requirements analyses introduced by Kaiya [13] to boilerplate requirements
and added a new analysis called opacity. The requirement language used in this
work is based on their combination of boilerplates and the domain ontology.

Ibrahim et al. [10] use boilerplate requirements in their work about require-
ments change management. They define a mapping from boilerplate attributes
to software design artifacts (e.g., classes, attributes, operations) and add trace-
ability links between requirements and artifacts accordingly. There are several
other pattern based languages similar to boilerplates, e.g., requirements based
on EBNF grammars [19]. Denger et al. [4] propose natural language patterns
to specify requirements in the embedded systems domain. They include a meta-
model for requirement statements and one for events and reactions which they
use to check the completeness of the pattern language. Compared to boilerplate
requirements, their patterns seem to be a bit less generic, e.g., some of the non-
functional requirements used in our evaluation would be impossible to express.

Matsuo, Ogasawara and Ohnishi [16] use controlled natural language for re-
quirements, basically restraining the way in which simple sentences can be com-
posed to more complex ones. They use a frame model to store information about
the domain. There are three kind of frames. The noun frame classifies a noun
into one of several predefined categories. The case frame classifies verbs into
operations and contains the noun types which are required for the operation. Fi-
nally the function frame represents a composition of several simple operations.
The authors use these frames to parse requirements specifications, to organize
them according to different viewpoints and to check requirements completeness.
In contrast to domain ontologies, the frame-based approach seems to be harder
to understand and to adapt by non-experts.

3 Research Issues

There have been presented several approaches to use ontologies to analyze re-
quirements. These approaches try to measure quality aspects like completeness,
correctness and consistency on a set of requirements. In [20] there is an analysis
called opacity that basically checks if, for two concepts occurring in a require-
ment, there is a relation between them in the domain ontology. A conclusion
of our review of this analysis was that, rather than first writing an incorrect
requirement, then analyzing and improving it, a better approach would be to
actually suggest the very same domain information which is used for the opacity
analysis to the requirements engineer in the first place. There are two points to
this idea:

1 J. Dick maintains a list of suggestions at
http://freespace.virgin.net/gbjedi/books/re/boilerplates.htm though.

http://freespace.virgin.net/gbjedi/books/re/boilerplates.htm

Ontology-Driven Guidance for Requirements Elicitation 217

– We want a system that automatically proposes at least parts of the require-
ments by using information originating from a domain ontology.

– We want a system that exploits relations and axioms of the domain ontol-
ogy, i.e., a system that is more powerful than just a simple dictionary. The
relations and axioms of the domain ontology represent agreed upon knowl-
edge of stakeholders; by using them we hope to improve the precision of
requirements.

We believe that a tool supporting these two points will increase efficiency by
speeding up the process to get a high-quality requirements specification.

A semantic guidance system implementing these two points was added to our
boilerplates elicitation tool (DODT). To test our assumption, we used the tool
on requirements from the domain of the Doors Management System (DMS). The
DMS is a use case developed by EADS for experimenting with and evaluating
requirements engineering and modeling techniques within the CESAR project2.
The DMS controls the doors of an airplane; its main objective is to lock the
doors of an airplane while it is moving (in the air or on the ground) and to
unlock them when the airplane is parked on the ground. The system consists of
sensors that measure the state of the doors, actuators to lock and unlock the
doors and computing elements that control the entire system.

4 Guidance for Boilerplate Requirements

This section presents our approach for guiding the requirement engineer using
information of a domain ontology.

4.1 Boilerplate Requirements Elicitation

Figure 1 shows how requirements elicitation works using the boilerplates method.
To specify a requirement, one or more boilerplates are chosen by the require-
ments engineer. The attribute values refer to entities in the domain ontology.
During instantiation the attributes of the chosen boilerplates are set and a final
boilerplate-based requirement is produced. The semantic guidance system affects
the domain ontology, the attribute values and the instantiation. Its purpose is
to suggest potential and suitable values for the attributes to the requirements
engineer.

Table 1 lists the boilerplate attributes implemented by the tool. We reduced
the number of attributes compared to the original suggestions in [9] and [20].
This was done in accordance with user wishes who were uncomfortable with
the subtile differences between similar attributes and had problems deciding on
which to use.

2 http://cesarproject.eu/

http://cesarproject.eu/

218 S. Farfeleder et al.

Fig. 1. Boilerplate Requirements Elicitation Flow

Table 1. Boilerplate Attributes and Values

Attribute Description Example Value

〈action〉 A behavior that is expected to be fulfilled
by the system, or a capability

open the door

〈entity〉 A separate entity in the domain; not fitting
into 〈user〉 or 〈system〉

door status

〈number〉 A numeric value denoting a quantity 100

〈operational con-
dition〉

A condition or event that occurs during sys-
tem operation

the user tries to
open the door

〈system〉 Any part of the system; sub-class of entity door

〈unit〉 Unit of measurement millisecond

〈user〉 A person somehow interacting with the sys-
tem, e.g., operating it; sub-class of entity

pilot

4.2 Domain Ontology

The domain ontology contains facts about the domain that are relevant to re-
quirements engineering, i.e., facts that can be used to formulate and to analyze
requirements. The domain ontology should be usable to specify requirements for
several projects in the same domain. Thus adding concepts which are only rele-
vant to a single product should be avoided. See section 6 for a discussion about
combining several ontologies. This approach could be used to split the ontology
into a common domain part and a product-specific one.

There are three kinds of facts about the domain stored in the domain ontology.
The following list describes them. The tool uses an OWL[2] representation to
store ontologies. A detailed mapping to OWL can be found in Table 2.

Ontology-Driven Guidance for Requirements Elicitation 219

Table 2. Mapping of domain facts to OWL

Fact OWL Expressions

Concept(name, definition) Declaration(Class(concept-iri))
AnnotationAssertion(rdfs:label concept-iri name)
AnnotationAssertion(rdfs:comment concept-iri defini-
tion)

Relation(subj, label, obj) Declaration(ObjectProperty(label-iri))
AnnotationAssertion(rdfs:label label-iri label)
SubClassOf(subj-iri ObjectAllValuesFrom(label-iri obj-
iri))

SubClass(sub, super) SubClassOf(sub-iri super-iri)

Equivalence(concept1,
concept2)

EquivalentClasses(concept1-iri concept2-iri)

Deprecated(concept) AnnotationAssertion(deprecated-iri concept-iri 1)

Concept: A concept represents an entity in the problem domain. The entity can
be material (e.g., a physical component of the system) or immaterial (e.g., a
temporal state). OWL classes are used to represent concepts. The reason for
using classes instead of individuals is the built-in support for sub-classing.
A concept has two attributes, its name and a textual definition. The defini-
tion is intended to provide the possibility to check whether the correct term
is used.

Relation: A relation is a labeled directed connection between two concepts.
A relation contains a label which is expected to be a verb. The label, the
relation’s source and destination concepts form a subject-verb-object triple.
Relations are used for guidance (section 4.3). Relations map to OWL object
properties and object property restrictions.

Axiom: There are two types of axioms that are relevant to guidance: sub-class
and equivalence axioms. The first one specifies that one concept is a sub-class
of another concept, e.g., cargo door is a sub-class of door. This information is
used to “inherit” suggestions to sub-class concepts, e.g., the guidance system
infers the suggestion the user opens the cargo door from the base class’ the
user opens the door.
The equivalence axiom is used to express that two concepts having different
names refer to the same entity in the domain. An example from DMS is the
equivalence of aircraft and airplane. Ideally each real-world phenomenon
has exactly one name. However, due to requirements coming from different
stakeholders or due to legacy reasons, at times several names are required.
It is possible to mark a concept as being deprecated ; the tool will warn
about occurrences of such concepts and will suggest using an equivalent
non-deprecated concept instead.

In this work we assume the pre-existence of a suitable domain ontology. See [17]
for ways of constructing new domain ontologies. The tool contains an ontology

220 S. Farfeleder et al.

editor that is tailored to the information described here. We found this editor to
be more user-friendly than generic OWL editors like Protégé3.

4.3 Guidance

When filling the attributes of a boilerplate, the tool provides a list of suggestions
to the requirements engineer. The provided guidance depends on the attribute
the requirements engineer is currently filling, e.g., the suggestions for 〈system〉
will be completely different than for 〈action〉. The idea is to apply an attribute-
based pre-filter to avoid overwhelming the user with the complete list of ontology
entities. Typing characters further filters this list of suggestions to only those
entries matching the typed string.

It is not mandatory to choose from the list of suggestions; the tool will not
stop the requirements engineer from entering something completely different.
In case information is missing from the domain ontology, an update of the on-
tology should be performed to improve the guidance for similar requirements.
All changes to the domain ontology should be validated by a domain expert to
ensure data correctness.

There are three types of suggestions for an attribute; Table 3 provides an
overview over the suggestion types.

Concept: The tool suggests to use the name of a concept for an attribute.
The tool generates two variants, just the plain name and once prefixed with
the article “the”. The idea is that most of the times using “the” will be
appropriate but sometimes other determiners like “all” or “each” are more
suitable and are typed in manually.

Verb-Object: The tool uses a relation from the domain ontology to suggest
a verb phrase to the requirements engineer. The suggestion is the concate-
nation of the verb’s infinitive form4, the word “the” and the relation’s des-
tination object. This construction is chosen in order to be grammatically
correct following a modal verb like “shall”. An example from Figure 2 is the
suggestion check the door status.

Subject-Verb-Object: For this kind of suggestion the entire relation including
subject and object is taken into account. The suggestion text is “the”, the
subject, the verb conjugated into third person singular form, “the” and the
object. An example from Figure 2 is the suggestion the person tries to open
the door.

It is possible to combine several suggestions simply by selecting the first one,
manually typing in “and” and selecting another suggestion.

For the classification of concepts into different attributes a separate ontology,
the attributes ontology, is used. The attributes ontology contains an OWL class

3 http://protege.stanford.edu/
4 For building verb infinitives the morphological analyzer of the GATE project
(http://gate.ac.uk/) is used.

http://protege.stanford.edu/
http://gate.ac.uk/

Ontology-Driven Guidance for Requirements Elicitation 221

Table 3. Suggestion Types

Type Suggestion

Concept concept
the concept

Verb-Object verb (inf.) the object

Subject-Verb-Object the subject verb (3rd sing.) the object

Fig. 2. Domain Ontology and Attributes Ontology

per attribute and the sub-class axioms mentioned in Table 1. The domain on-
tology imports the attributes ontology to use its classes. Domain concepts are
linked to attributes by means of sub-class axioms which are stored in the domain
ontology.

An example for the semantic guidance system is given in Figure 2. The do-
main ontology is shown in the upper part of the figure, the attributes ontology
is below. The concept Doors Management System is a sub-class of class system,
which in turn allows the tool to suggest using the Doors Management System
for a boilerplate containing the attribute 〈system〉. The blue regions represent
verb-object and subject-verb-object suggestions in the domain ontology. Their
mapping to the attributes 〈action〉 and 〈operational condition〉 is inferred auto-
matically by the tool.

Figure 3 shows the boilerplates for two requirements and some of the sugges-
tions provided by the guidance system. The information that Doors Management
System is a system and that second and millisecond are values for attribute unit
is stored in the domain ontology itself. The suggestions check the door status and
determine the door unlockability are inferred from the domain ontology relations.
The knowledge to suggest verb-object pairs for the attribute action is a built-in
feature of the tool. The attribute operational condition turns out to be the most
difficult one in terms of providing useful suggestions. The reason for this is that

222 S. Farfeleder et al.

Fig. 3. Boilerplates and Suggestions

there are many grammatical ways to describe conditions, a subject-verb-object
triple being only one of them. Therefore the tool does not only suggest those
triples for conditions; instead all concepts, verb-object pairs and subject-verb-
object triples are provided in order to use those phrases in conditions.

5 Evaluation

As mentioned before we evaluated the semantic guidance system with a domain
ontology and a set of requirements from the Doors Management System.

5.1 Setting

The use case contains a set of 43 requirements specified using natural language
text. Various types of requirements are included: functional, safety, performance,
reliability, availability and cost. Each requirement was reformulated into a boil-
erplate requirement using DODT. The semantic guidance system was used to
assist in filling the boilerplate attributes.

The domain ontology for DMS was specifically developed for usage with the
boilerplates tool. The data for the DMS ontology was initially provided by EADS
and was then completed by the authors. Table 4 lists the number of concepts,
relations and axioms of the DMS ontology.

Figure 4 shows the graphical user interface of the tool. At the top of the
interface boilerplates can be selected. The center shows the currently selected
boilerplates and text boxes for the attribute values of the requirements. The list
of phrases below the text boxes are the suggestions provided by the semantic
guidance system. Typing in the text boxes filters the list of suggestions. The tool
shows the textual definitions of the concepts as tooltips. Selecting a list entry
will add the text to the corresponding text box. The bottom of the interface lists
all requirements. Expressions that refer to entities from the domain ontology are

Ontology-Driven Guidance for Requirements Elicitation 223

underlined with green lines; fixed syntax elements of boilerplates with black.
If nouns missing from the domain ontology were to be seen, they would be
highlighted with the color red.

Table 5 present statistics about the suggestions produced by the guidance
system for the DMS ontology.

Table 4. Ontology Measurements

Entity Count

Concepts 107

Relations 70

Axioms 123

SubClass 108

to Concepts 15

to Attributes 93

Equivalence 15

Table 5. Guidance Suggestions

Type Count

Concept 212

Verb-Object 69

Subject-Verb-Object 101

Total 382

Table 6. Evaluation Results

Item Count

Requirements 43

Boilerplates 21

Attributes 120

Complete suggestions 36

Partial suggestions 39

Fig. 4. DODT Screenshot

224 S. Farfeleder et al.

5.2 Results

Table 6 lists the major results of the evaluation. For 43 requirements, we used
21 different boilerplates. The boilerplate which was used most often (16 times)
is 〈system〉 shall 〈action〉. The 43 boilerplate requirements have a total of 120
attributes. For 36 attributes out of 120 (30%) the semantic guidance system was
able to suggest the entire attribute value without any need for a manual change.
For another 59 attributes (57.5%) the guidance could suggest at least parts of
the attribute value. This leaves 25 attribute values (12.5%) for that the guidance
was no help. For partial matches, these are some of the reasons the attribute
values had to be modified:

– A different determiner is used than the suggested “the”, e.g., “a”, “each” or
“all”.

– The plural is used instead of singular.
– A combination of two or more suggestions is used.
– A subordinate clause is added, e.g., “each door that could be a hazard if it

unlatches”.

Reasons for no guidance are these:

– Numbers for the 〈number〉 attribute cannot be suggested.
– Words are used that do not exist in the domain ontology.

Future work will include setting up an evaluation to compare the elicitation
time with and without the semantic guidance system. However, due to the high
percentage where the guidance was able to help (>85%) we are confident that
efficiency improved, even though the presentation of explicit numbers has to be
postponed to future work.

We also hope to improve the quality of requirements using the tool. We did
a qualitative comparison of the original DMS requirements and the boilerplate
requirements. These are our findings:

– Boilerplate requirements encourage using the active voice. In our evaluation
the original requirement “Information concerning the door status shall be
sent from the Doors Management System to ground station. . . ” was turned
into “The Doors Management System shall send information concerning the
door status to ground station. . . ” 8 requirements were improved in this way.
In some cases missing subjects were added.

– Requirements like “There shall be. . . ” and “It shall not be possible to. . . ”
were changed into “The subject shall have” and “The subject shall not al-
low. . . ”. Such changes make it obvious what part of the system is responsible
to fulfill the requirement. To determine the right value for subject the origi-
nal stakeholders should be asked for clarification. Due to timing constraints
this was not possible and plausible values were inserted by the authors.

– During the requirements transformation we found that the original require-
ments used different expressions for seemingly identical things, e.g., “provi-
sion to prevent pressurization” and “pressure prevention means” or “airplane”

Ontology-Driven Guidance for Requirements Elicitation 225

and “aircraft”. Such synonyms are either stored as an equivalence axiom in
the domain ontology or, preferably, stakeholders agree upon the usage of one
term.

– Using boilerplates improved the overall consistency of the requirements. The
original requirements set contains a mixture of “must” and “shall”. While
using one or the other is probably a matter of taste, one form should be
picked and used consistently.

– The guidance system corrected a few typographic errors in the original re-
quirements, e.g., “miliseconds”.

We found the tool to be easy to use and user-friendly. This sentiment is shared
by the partners in the CESAR project who are also currently evaluating the tool.

6 Conclusion and Future Work

Requirements should be made as consistent, correct and complete as possible
to prevent detecting and correcting errors in later design phases. With respect
to the three points raised in the introduction about requirements engineering,
this work intends to be the foundation for further analyses, e.g., by facilitating
requirements categorization with ontology knowledge.

We presented a tool for the elicitation of boilerplate requirements that includes
a semantic guidance system which suggests concept names and phrases that were
built from relations and axioms of the domain ontology. The tool managed to
provide useful suggestions in the majority of the cases (>85%). We realize that
the tool needs to be evaluated in a larger context, i.e., more requirements and a
larger ontology. We will address this in our future research work.

The selection of suitable boilerplates for a requirement is not always trivial
and requires a bit of experience with the boilerplates method. Thus a feature we
want to explore and possibly add to the tool is the semi-automatic conversion
of natural language requirements into boilerplate requirements.

While creating the DMS ontology, we found there are concepts for which the
suggestions provided by the semantic guidance system really help but which
are not specific to the problem domain. The most prominent example are mea-
surement units like “second” or “kg”. So what we want to do is to collect such
entities into a separate ontology and to extend the tool to be able manage sev-
eral ontologies. This could be handled by adding OWL import declarations to
the “main” domain ontology. Such domain-independent ontologies can then be
easily reused for guidance in other domains.

Acknowledgments

The research leading to these results has received funding from the ARTEMIS
Joint Undertaking under grant agreement No 100016 and from specific national
programs and/or funding authorities. This work has been supported by the
Christian Doppler Forschungsgesellschaft and the BMWFJ, Austria.

226 S. Farfeleder et al.

References

1. IEEE Recommended Practice for Software Requirements Specifications. IEEE Std
830 (1998)

2. OWL 2 Web Ontology Language Direct Semantics. Tech. rep., W3C (2009),
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/

3. Cobleigh, R., Avrunin, G., Clarke, L.: User Guidance for Creating Precise and Ac-
cessible Property Specifications. In: 14th International Symposium on Foundations
of Software Engineering, pp. 208–218. ACM, New York (2006)

4. Denger, C., Berry, D., Kamsties, E.: Higher Quality Requirements Specifications
throughNatural LanguagePatterns. In: 2003 IEEE InternationalConference onSoft-
ware - Science, Technology and Engineering, pp. 80–90. IEEE, Los Alamitos (2003)

5. Egyed, A., Grunbacher, P.: Identifying Requirements Conflicts and Coopera-
tion: How Quality Attributes and Automated Traceability Can Help. IEEE Soft-
ware 21(6), 50–58 (2004)

6. Elazhary, H.H.: REAS: An Interactive Semi-Automated System for Software Re-
quirements Elicitation Assistance. IJEST 2(5), 957–961 (2010)

7. Gotel, O., Finkelstein, C.: An Analysis of the Requirements Traceability Problem.
In: 1st International Conference on Requirements Engineering, pp. 94–101 (1994)

8. Gottesdiener, E.: Requirements by Collaboration: Workshops for Defining Needs.
Addison-Wesley, Reading (2002)

9. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer, Heidelberg
(2005)

10. Ibrahim, N., Kadir, W., Deris, S.: Propagating Requirement Change into Software
High Level Designs towards Resilient Software Evolution. In: 16th Asia-Pacific
Software Engineering Conference, pp. 347–354. IEEE, Los Alamitos (2009)

11. Jackson, J.: A Keyphrase Based Traceability Scheme. IEEE Colloquium on Tools
and Techniques for Maintaining Traceability During Design, 2/1–2/4 (1991)

12. Kaindl, H.: The Missing Link in Requirements Engineering. Software Engineering
Notes 18, 30–39 (1993)

13. Kaiya, H., Saeki, M.: Ontology Based Requirements Analysis: Lightweight Seman-
tic Processing Approach. In: 5th Int. Conf. on Quality Software, pp. 223–230 (2005)

14. Kitamura, M., Hasegawa, R., Kaiya, H., Saeki, M.: A Supporting Tool for Re-
quirements Elicitation Using a Domain Ontology. Software and Data Technologies,
128–140 (2009)

15. Kotonya, G., Sommerville, I.: Requirements Engineering. John Wiley & Sons,
Chichester (1998)

16. Matsuo, Y., Ogasawara, K., Ohnishi, A.: Automatic Transformation of Organization
of Software Requirements Specifications. In: 4th International Conference on Re-
search Challenges in Information Science, pp. 269–278. IEEE, Los Alamitos (2010)

17. Omoronyia, I., Sindre, G., St̊alhane, T., Biffl, S., Moser, T., Sunindyo, W.: A
Domain Ontology Building Process for Guiding Requirements Elicitation. In: 16th
REFSQ, pp. 188–202 (2010)

18. Pedrinaci, C., Domingue, J., Alves de Medeiros, A.K.: A Core Ontology for Busi-
ness Process Analysis. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 49–64. Springer, Heidelberg (2008)

19. Rupp, C.: Requirements-Engineering und -Management. Hanser (2002)
20. St̊ahane, T., Omoronyia, I., Reichenbach, F.: Ontology-Guided Requirements and

Safety Analysis. In: 6th International Conference on Safety of Industrial Automated
Systems (2010)

21. Watkins, R., Neal, M.: Why and How of Requirements Tracing. IEEE Soft-
ware 11(4), 104–106 (1994)

http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 227–242, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Semantic Public Service Portal (S-PSP)

Nikolaos Loutas1,2, Deirdre Lee1, Fadi Maali1, Vassilios Peristeras3,
and Konstantinos Tarabanis2

1
 DERI, National University of Ireland Galway (NUIG), Galway, Ireland
{nikos.loutas,deirdre.lee,fadi.maali}@deri.org

2
 Information Systems Lab, University of Macedonia, Thessaloniki, Greece

kat@uom.gr
3
 European Commission, Directorate-General for Informatics, Interoperability Solutions for

European Public Administrations
vassilios.peristeras@ec.europa.eu

Abstract. One of government’s responsibilities is the provision of public
services to its citizens, for example, education, health, transportation, and social
services. Additionally, with the explosion of the Internet in the past 20 years,
many citizens have moved online as their main method of communication and
learning. Therefore, a logical step for governments is to move the provision of
public services online. However, public services have a complex structure and
may span across multiple, disparate public agencies. Moreover, the legislation
that governs a public service is usually difficult for a layman to understand.
Despite this, governments have created online portals to enable citizens to find
out about and utilise specific public services. While this is positive, most portals
fail to engage citizens because they do not manage to hide the complexity of
public services from users. Many also fail to address the specific needs of users,
providing instead only information about the most general use-case. In this
paper we present the Semantic Public Service Portal (S-PSP), which structures
and stores detailed public-services semantically, so that they may be presented
to citizens on-demand in a relevant, yet uncomplicated, manner. This ontology-
based approach enables automated and logical decision-making to take place
semantically in the application layer of the portal, while the user remains
blissfully unaware of its complexities. An additional benefit of this approach is
that the eligibility of a citizen for a particular public service may be identified
early. The S-PSP provides a rich, structured and personalised public service
description to the citizen, with which he/she can consume the public service as
directed. In this paper, a use-case of the S-PSP in a rural community in Greece
is described, demonstrating how its use can directly reduce the administrative
burden on a citizen, in this case is a rural Small and Medium Enterprise (SME).

Keywords: eGovernment, public service, semantic, portal.

1 Introduction

Public service provision is an important duty of all government departments.
Independent of what kind of service it is, every public service can be broken down into
two distinct but complementary phases: the informative phase and the performative

228 N. Loutas et al.

phase [1]. During the informative phase, the service provider provides information
about the service to the citizen/ business1, while during the performative phase the
citizen utilises the public service. The informative phase is essential for optimal service
utilisation and public-administration efficiency, however it is often overlooked by
governments. In order to effectively use a public service, citizens must identify which
public services address their needs and find answers to their questions regarding these
services, e.g. “am I eligible for this service”, “what is the outcome of the service”,
“which public agency provides the service”, etc. In this paper, we present a portal that
facilitates the informative phase of public-service provision.

An additional factor of public services is that they often have complex structures, and
may be specialized into a variety of service versions. For example a public service that is
concerned with the issuing of a driving license, may have alternative versions if this is
the first license of the applicant, if the applicant is over 60, if the applicant wishes to
drive lorries, etc. It is therefore not enough for citizens to identify a public service in
general, but they must also go one step further and identify the specific service version
for which they are eligible. The service versions refine the generic public service further
and may be differentiated from one another according to:

i. the profile of the citizen that wishes to consume the service;
ii. the service inputs and outputs; and/or

iii. the service workflow.

However, traditional governmental portals still follow a one-size-fits-all approach.
Thus the portal cannot react differently and tailor the offered public services to the
needs and the profile of each individual citizen. Moreover, the citizen has to figure
out on their own whether they are eligible for the service by reading lengthy public
service descriptions (which very often include legal terminology). These are common
problems in all existing national eGovernment portals. According to [2], the most
typical problems of eGovernment portals can be grouped into the following
categories:

• The user is unable to find the desired information or service.
• The user is unable to achieve his goal, even though the system supports it

and he has started along the path to achieve it.
• The user is able to accomplish his goal, but not efficiently, e.g., easily and

quickly.

In order to enhance the informative part of public service provision and improve
existing governmental portals, this paper introduces the Semantic Public Service
Portal (S-PSP), which aims:

• To inform citizens whether they are eligible for a specific public service;
• To personalize the public-service-related information according to the profile

and the specific needs and wants of the citizen and identify the specific
public service version;

1 For the remainder of the paper we refer only to citizens for the sake of brevity, but citizens

and businesses are implied.

 The Semantic Public Service Portal (S-PSP) 229

• To provide complete and well-structured information for the public service;
and

• To allow citizens to invoke public services that are available online (if a
service execution environment is in place).

The S-PSP was initially developed in the context of the SemanticGov project2,
where it played the role of the national Member State portal [3]. It served as an entry
point for the citizens to the public services offered by the SemanticGov platform. Two
prototypes of the portal were installed at the Region of Central Macedonia in Greece
and the City of Turin in Italy [4]. Currently, the portal is one of the three building
blocks of the Rural Inclusion3 platform, as will be described in more detail in section
5. A running prototype of the portal is available at http://vmsgov03.deri.ie:8080/rural-
inc/services?pilot=gr&pageLanguage=en

The remainder of the paper is structured as follows. Section 2 discusses related
efforts. The S-PSP is presented in section 3, along with an overview of its
architecture. The ontologies that the S-PSP used are discussed in section 4. An
example of the S-PSP in use in the context of the Chios Chamber of Commerce is
presented in section 5. Finally, our conclusions and future research directions are
discussed in section 6.

2 Related Work

Researchers have tried to solve parts of the problem that we described in the previous
section, focusing mostly on facilitating service search and discovery. Fang et al. [5]
support the selection of an optimal set of featured service-links. These links will then
appear on the homepage of an eGovernment portal, thus helping users to locate
services more easily by reducing the number of steps that they have to perform until
the desired service is found. This is expected to improve the citizens’ satisfaction and
consequently increase the number of people using the portal. Therefore, a heuristic
Web-mining algorithm called ServiceFinder is proposed, which aims to help citizens
find the services that they are looking for in eGovernment portals. ServiceFinder uses
three metrics to measure the quality of eGovernment service selection, which will
then appear as links on the homepage of the portal. These are effectiveness (degree of
easiness to locate the desired service), efficiency (probability to locate the desired
service) and utilization (sum of easily located desired services). The metrics are
calculated using patterns either extracted from the structure of the eGovernment portal
or mined from a Web log. Although this approach may improve the service discovery
by organizing better the available services within the portal, the process of finding a
service in the portal is still based on a trial and error approach. This means that the
user is still browsing the eGovernment portal in order to find the desired service.
Another drawback of this approach as compared to ours is that it provides no
information to the citizen with respect to his/her eligibility for the identified public
service.

2 http://www.semantic-gov.org
3 http://www.rural-inclusion.eu

230 N. Loutas et al.

Sacco [6] proposes a solution enabled by dynamic taxonomies, which support
different facets that may be used by citizens. The facets that the system provides are:
services, events of life, type of information, location, type of citizenship, person with
special rights and person profile. The use of dynamic taxonomies makes this approach
very flexible and fast. This is due to the fact that dynamic taxonomies adapt
dynamically to the subset of the universe on which the user is focusing. The use of
multiple facets enhances further the agility of the approach. Nonetheless, this work
suffers from similar problems as other approaches that organize services in
hierarchical category trees. The user may have to browse deep into the dynamic
taxonomy and should also be aware of the way that public administration has decided
to organize services (even if multiple facets are made available), which may differ
from his/her perspective. Therefore, the cognitive effort of citizens is not reduced as
much as expected. The eligibility question remains unanswered in this case as well.

Recently, Stollberg and Muth [7] proposed an approach for service customization
which is based on simplified service variants that expose only the service features that
are relevant to the profile of a specific user or to the characteristics of a specific usage
scenario. Hence, the authors define (i) the service variability metamodel, (ii) the main
actors and (iii) the lifecycle of the service customization process. They also provide a
set of tools based on the metamodel to support the service variant creation. This work
approaches the problem of service customization from a different perspective than the
one implemented in our work. However, we too acknowledge the need to formalize
the process, we thus use the Public Service Ontology described in section 4 to model
public services and the SBVR standard [8] for formally expressing the business rules
that lead to different service versions.

The OneStopGov project4 delivered a life-event portal that supports the active,
citizen-centric approach [9]. The portal follows a structured dialogue approach, based
on workflows that model life-events in order to personalise them to citizen profiles
and facilitate their execution. Hence, the OneStopGov approach adapts the life-event
to citizen’s profile, which practically means that citizens with different profiles will
most likely execute different versions of the same life-event. In the FIT project5, an
adaptive eGovernment portal has been implemented [10]. The approach, which
employs Semantic Web and Web 2.0 technologies, proposes a framework which
captures the user’s behaviour in the portal and adapts the portal accordingly. FIT’s
approach also recognizes the service version problem that we have described earlier
and tries to overcome this by providing personalized eGovernment services. In order
to achieve this, the FIT portal follows an iterative ontology-driven adaptation
approach (monitor, analyze, plan, execute). The FIT portal also uses OWL ontologies
to model users, events and adaptation rules.

The portal presented in this paper tries to fulfil similar objectives like the related
efforts described so far. Nevertheless, some differences can be spotted both in terms
of functionalities provided and in terms of the technologies used. For example, none
of the related efforts decide on the eligibility of the citizen for a public service before

4 www.onestopgov-project.org
5 http://www.fit-project.org/

 The Semantic Public Service Portal (S-PSP) 231

the execution of the service. This is a very strong asset of our approach, as the
eligibility check at an early stage during the informative part of service provision can
save the citizen a lot of time and money. It is interesting that the work of [6] bears
some resemblance with ours in the way that services are modelled and organized, but
what is different, apart from the use of ontologies versus taxonomies, is the fact that
in our work services are described at a greater level of granularity e.g. the distinction
between service type and service version. This difference is very important and due to
this Sacco’s work is not able to personalize services, but only provide generic info
about them. Moreover, it does not answer the eligibility question.

3 Semantic Public Service Portal (S-PSP)

The Semantic Public Service Portal (S-PSP) provides information about available
public-services, which a user may browse and search in a customisable and user-
friendly manner. Through the use of the S-PSP, a user can quickly identify:

• which public service(s) are applicable to their individual use-case,
• whether they are eligible for these public service(s), and
• what is required from the user to complete these public service(s) for their

individual use-case.

Fig. 1 shows the homepage of the S-PSP with the list of all currently available
public services and the languages they are available in.

Fig. 1. The list of public services available in the S-PSP

Once a user selects the public service they are interested in, the dialogue page
appears, as shown in Fig. 2. At this step, the user answers a series of questions, which
will determine if a user is eligible for this service and what information they will need
to provide/complete to utilise this service. Fig. 3 shows the customised information
that this particular users requires to utilise this service, moving from a one-size-fits-all
approach that is unrealistic in the case of public services.

232 N. Loutas et al.

Fig. 2. The public-service dialogue to customise the public-service information

Fig. 3. The customised information required to utilise this public service

3.1 S-PSP Architecture

The S-PSP follows a three-tier architecture, as shown in Fig. 4, which comprises of:

• the User Interface Layer, which facilitates the interaction between the
citizens and the portal, acting as an entry-point to the portal’s functionalities.

• the Application Layer, which implements the functionalities provided to the
citizens. This layer consists of two components:

o the Service Tree Locator (STL) and
o the Query Mechanism.

• the Semantic Repository Layer where all the semantic artefacts (ontologies)
used by the portal are stored.

 The Semantic Public Service Portal (S-PSP) 233

While the user interacts directly with the S-PSP interface, the service provider
collaborates with an ontology manager to define the public-service descriptions,
which are then added to the Semantic Repository. This process of semantic public-
service description is currently in the process of being automated, so that the service
provider may create the service description using a tool that will substitute the
ontology manager.

The User Interface Layer

The User Interface (UI) Layer provides citizens with the means to interact with the
portal. Its main functionality includes presenting the questions asked by the Query
Mechanism to the citizens and collecting their answers. The answers are then returned
to the Query Mechanism. It is important to clarify that all information that is made
available through the UI, e.g. list items in dropdown lists, questions and possible
answers etc., comes from the underlying ontologies stored in the Semantic
Repository.

Fig. 4. S-PSP Architecture

The Application Layer

The Application Layer consists of the Service Tree Locator (STL) and the Query
Mechanism components. The Service Tree Locator (STL) identifies the appropriate
Service Tree Ontology (STO), which models the public service that addresses the
user’s requirements. Citizens can enter keywords in the portal’s UI to describe the
service that they are looking for. These keywords are sent to the STL, which then
queries the semantic repository using SPARQL6 queries to find matching public-
service descriptions. The STL may contact WordNet7 in order to find synonyms and
hypernyms/hyponyms for the keywords entered by the user, thus making the keyword
search more effective. Finally, the resulting public services are returned to the citizens
in order for them to select the appropriate one. SPARQL was chosen as the semantic
query language, as it is a W3C Recommendation and has a large, active community.

The Query Mechanism (QM) is the core component of the S-PSP as it identifies the
questions to include in the public-service dialogue, based on a user’s previous

6 http://www.w3.org/TR/rdf-sparql-query/
7 http://wordnet.princeton.edu/

234 N. Loutas et al.

answers. The QM continually checks the user’s eligibility for the public service and,
if eligible, it stores the user’s answers in order to determine the personalised
information required to provide the service.

The Repository Layer

The Repository Layer contains the semantic repository component, which houses all of
the ontologies of the S-PSP. These will be discussed in more detail in the next section.

4 Semantic Description of Public Services

The S-PSP structures and stores detailed public-services semantically. This ontology-
based approach enables automated and logical decision-making to take place in the
application layer of the portal, while the user remains unaware of its complexities.
Adopting an ontology-based approach reaps the benefit of the flexibility of the RDF
model. This, together with the highly abstract, conceptual nature of RDF triples,
enable direct translation of fairly complex service scenarios into a machine-readable
form. Inference over OWL ontologies helps achieve more concise and readable
service descriptions. As a simple example, defining SchengenCountry as a
rdfs:subClassOf EuropeanCountry class, means that any instance of
SchengenCountry is also an instance of EuropeanCountry and eliminates the
need for explicit listing of such a condition. However, in order to create semantic
public service descriptions in this way requires a detailed analysis of the public
description. This is usually carried out by an ontology engineer, in close conjunction
with a civil servant who is extremely familiar with the intricacies of the public
service. While this may be seen as a limitation of the approach, it results in a simple
and effective tool from the citizen side. We are also in the process of creating a
public-service description tool, which will replace the need for an ontology engineer
to assist the civil servant in describing a public service semantically. The different
kinds of ontologies that are utilised by the S-PSP are:

Fig. 5. Ontologies used by the S-PSP

 The Semantic Public Service Portal (S-PSP) 235

• Service Tree Ontology (STO)
• Public Service Ontology
• User Profile Ontology: models user preference and localization information.
• Other domain-specific Ontology: captures business information needed for

service description.

We describe the details of the main ontologies used in the following sections.

4.1 Service Tree Ontology

A Service Tree Ontology (STO) formally defines the dialogue that would usually take
place between a public-service provider and a citizen for a particular public service.
STOs have a tree-like structure and are written in OWL. The dialogue starts from a
generic public service, which is stepwise refined after every question/answer pair. In
the case that the citizen is eligible for the specific public service, the dialogue leads to
the public-service version that matches their profile and a detailed structured
description of the public service version is made available. Otherwise the citizen is
informed that they are not eligible for the specific public service. STOs contain the
business rules from which the different service versions derive as well as the
questions that will be asked to the citizen in order to collect information, which
enables the portal to personalize the public service and decide on the eligibility of the
citizen and on the matching service version. Moreover, the user interface of the portal
is dynamically created based on information encoded in the STOs.

Fig. 6. The meta-ontology for STOs

In order to formalize the development of STOs, we have created a meta-ontology
that defines the classes that comprise an STO. Each STO is then created as an
instance of the meta-ontology. The meta-ontology contains classes that have been
derived from the modelling of the aforementioned dialogue, as shown in Fig. 6.

• Node. Nodes of an STO represent different states of the dialogue. A node has
the following attributes:

o The hasDescription attribute provides a brief description of the node,
as to what the node represents in the STO.

o The hasEvidencePlaceholder attribute refers to the administrative
documents, e.g. certificates, which relate to a specific service version.
A Node may contain zero or more EvidencePlaceholders.

236 N. Loutas et al.

o The containsPieceOfInformation attribute refers to other types of
information related to a specific service version, e.g. the amount of a fee
that has to be paid. A Node may contain zero or more PieceOfInformation.

The following three classes, i.e. InternalNode and LeafNode have been defined in
the ontology as subclasses of Node. They thus inherit all its attributes.

• InternalNode. This class represents those nodes of the STO that have
descendants. Apart from the attributes that they inherit from Node,
InternalNodes have also:

o The hasChildNode attribute which indicates the descendants of the
current node. There can be more than one descendants, which
constitute specializations of their parent node, mainly by containing
more information about the citizen’s profile.

o The hasQuestion attribute which refers to a specific question asked to
the citizen.

o The isRoot attribute which indicates whether the specific node is the
initial node of the dialogue or not.

• LeafNode. This class represents those nodes of the STO that have no
descendants. LeafNodes indicate the termination of the dialogue, whether
successful or not. Apart from the attributes that they inherit from Node,
LeadNodes have also the isNotEligible attribute which if true indicates that
the citizen is not allowed to use the specific public service.

• Question. This class represents the questions that the portal poses to the
citizen. It has two attributes:

o hasData models the question itself, e.g. “What is your marital
status?”

o hasAnswer models the possible answers, e.g. in the previous
question “married, single, divorced, widow”.

• SparqlQuery. This class represents formally a business rule of a specific
public service. The business rule is expressed as a SPARQL query which is
stored in the hasData attribute.

4.2 Public Service Ontology

The S-PSP capitalizes on the GEA Public Service Model implementation in OWL
(Public Service Ontology) [11]. The Public Service Ontology, which is depicted in Fig. 7,
is used for representing public service related information by creating instances of the
various classes that comprise the description of the public service. A brief description of
the Public Service Ontology’s classes follows. Societal Entities (e.g. citizen, business)
have Needs related to specific Goals. A Societal Entity requests a Public Administration
(PA) Service to serve its Goals. PA Services are categorized in several Domains (e.g.
Health, Transportation). Each Domain object is divided into several SubDomain objects
(e.g. Domain Transportation has SubDomains Ground Transportation, Air Transportation
and Water Transportation). There are several types of Social Entities (e.g. legal entity,
physical person). There are two categories of Governance Entities participating in service
provision: Political Entities and Public Administration Entities. Based on the role which
PA Entities can acquire during the service execution phase, we identify four Roles:

 The Semantic Public Service Portal (S-PSP) 237

Fig. 7. The Public Service Ontology

• Service Provider is the PA Entity that provides the service to the Societal
Entities (clients). The PA Entities belong to an Administrative Level (e.g.
municipality, regional).

• Evidence Provider is the PA Entity that provides necessary Evidence to the
Service Provider in order to execute the PA Service.

• Consequence Receiver is the PA Entity that should be informed about a PA
Service execution.

• Service Collaborator is the PA Entity that participates in the provision of a
public service (but is not the service provider).

Political Entities define PA Services which are governed by Preconditions usually
specified in Legal Acts - Laws. Preconditions set the general framework in which the
service should be performed and the underlying business rules that should be fulfilled

238 N. Loutas et al.

for the successful execution of the PA Service. Preconditions can be formally
expressed as a set of clauses. Preconditions are validated by Piece of Evidence
serving a Purpose. As Evidence is primarily pure information, it is stored in Evidence
Placeholders, thus the Evidence Placeholder contains Pieces of Evidences. PA
Service use specific types of Evidence Placeholders as Input. The Outcome refers to
the different types of results a PA Service may have. GEA defines three types of
Outcome:

• Output, which is the documented decision of the Service Provider regarding
the service asked by a Societal Entity. This is currently embedded and
reaches the client in the form of an Evidence Placeholder.

• Effect, which is the change in the state of the real world (e.g. transfer money
to an account) caused by the execution of a service. In cases where
administration refuses the provision of a service, there is no Effect.

• Consequence, which is information about the executed PA Service that needs
to be forwarded to interested parties.

4.3 Other Ontologies

In addition to the STOs, the meta-ontology for STOs, and the Public service ontology,
the following OWL ontologies are also used by the S-PSP:

• Ontologies that model the profile of businesses and citizens, for example the
brand name, type, or legal status.

• Ontologies that contain public service related information, such as the
administrative documents that are required as input for the different versions
of the public service (modelled as instances of the EvidencePlaceholder class
of the Public Service Ontology).

• Ontologies that include listings of countries, nationalities, and business
types.

4.4 Query Mechanism’s (QM) Usage of an STO

The QM, as discussed in section 3.1, is the core component of the S-PSP, as it
identifies the questions to include in the public-service dialogue, by traversing the
corresponding public-service STO. During the traversal of the STO, the public service
that the citizen has selected is being personalized according to their answers. This is
achieved by resolving the generic service type into the appropriate service version. It
is important to note that at each stage of the traversal, the next step option is unique.
This means there is no case where the same citizen could follow two different paths in
the same STO. If the current node is an InternalNode then the QM has to verify the
conditions of all its descendants, which are expressed as SPARQL queries. Therefore,
the QM takes the appropriate question from the STO and forwards it to the UI so that
the question can be displayed to the citizen. In case the current node is a LeafNode,
i.e. it has no descendants, then the end of the structured conversation has been

 The Semantic Public Service Portal (S-PSP) 239

reached. At this point the portal has collected all the necessary information for
identifying the specific public service version that matches the citizen’s profile and
for deciding on their eligibility. In case the citizen is not eligible for one of the service
versions that are modelled in the STO (isNotEligible is set to true), then the QM
terminates its execution and returns a notification message, for example, ‘You are not
eligible for this service because you are under 18 years old’.

QM Traversal Process in Pseudocode:

BEGIN
Let IN be the set of InternalNodes,

Let LN be the set of LeafNodes such as IN ∪ LN = N, where N the set of Node
instances defined in the STO
Let root be the first IN of the STO
Let curr be the Node (either InternalNode or LeafNode) to be processed
Let validated be a variable that stores the result of the evaluation of
IN’s SparqlQuery
Let ServiceBasedUserProfile be the citizen ontology instance that models the
profile of a citizen/business
curr := root

while (curr ∉LN)
 validated := false
 askQuestions(curr)
 ServiceBasedUserProfile := readAnswers()
 foreach descendant d of curr
 if (evaluate(d)=true)
 curr := d
 validated := true
 break
 end_if
 end_foreach
 if (validated = false) //in case there is no valid descendant
node
 break
 end_if
end_while
 showPublicServiceDescription(curr)
END

5 S-PSP In-Use: Rural Inclusion Trial-Site Chios

The S-PSP is currently being utilised by Rural Inclusion8, an EC project funded under
the Competitiveness and Innovative Framework Programme. Rural Inclusion aims at
adopting a state-of-art infrastructure that will facilitate the offering of innovative
services by public administration in rural areas. The S-PSP is one of three
components that make up the Rural Inclusion Platform, which is being rolled out
across five European trial-sites in France, Martinique, Greece, Latvia and Spain.

The Chios Chamber of Commerce is one of the trial-partners. It is supervised by
the Greek Ministry of Development and serves as a consultant of a wide range of
business-related matters for the Greek island of Chios. Public services that the
chamber provides and that are presented in the Rural Inclusion platform include:

8 http://www.rural-inclusion.eu

240 N. Loutas et al.

• Registration of a new business in Chios
• Provision of grants to new farmers
• Issuing of operation licenses for manufacturing companies

In this section, we will present how the ‘registration of a new business in Chios’
public service is modelled using the S-PSP ontologies. Although this service sounds
straight-forward, there are actually more than 20 different versions which stem from
variations in the legal status of the enterprise/entrepreneur, on the type of their
activity, and on their nationality. Initially, a documentation exercise was carried out
with the service provider, in order to gather all the details with regards to the
provision of the specific service. Hence, the business rules that are associated with
this public service were identified and the activity diagram of the structured dialogue
was designed. This was then encoded into an OWL ontology by the ontology
manager.

For example, one of the business rules of the ‘registration of a new business’
public service expressed in structured English (following SBVR [8]) reads “It is
obligatory that each SA company with equity capital less than 64,000 Euros pays an
annual fee of 160 Euros.” In order to collect the information that validates this rule, a
question was created asking the equity capital of the SA company, i.e. “Please
provide the equity capital of your company”. In the STO developed for this public
service, this question was then attached to one of the InternalNodes. This specific
InternalNode has three descendants. One of them will correspond to the case of an SA
company with capital less than 64,000 Euros. This will be expressed by a SPARQL
expression linked to this specific node, as shown below.

The InternalNode instance

 <owl:Thing rdf:about="#ObligesRegistration_SA">
 <rdf:type rdf:resource="&www;PortalOntology.owl#InternalNode"/>
 <prtl:containsPieceOfInformation rdf:datatype="&xsd;string"
>Registration fee 160</prtl:containsPieceOfInformation>
 <prtl:hasEvidencePlaceholder
rdf:resource="&www;DocumentOntology.owl#Application"/>
 <prtl:hasEvidencePlaceholder rdf:resource=
"&www;DocumentOntology.owl#ArticleOfIncorporation"/>
 <prtl:hasEvidencePlaceholder rdf:resource="
&www;DocumentOntology.owl#BusinessInceptionCertificate"/>
 <prtl:hasEvidencePlaceholder
rdf:resource="&www;DocumentOntology.owl#Chios_Perfecture_Statement"/>
 <prtl:hasEvidencePlaceholder
rdf:resource="&www;DocumentOntology.owl#IDorPassport"/>
 <prtl:hasCondition rdf:resource="#LicencedSACompany"/>
 <prtl:hasChildNode rdf:resource="#SA_equitybetween"/>
 <prtl:hasChildNode rdf:resource="#SA_equityless"/>
 <prtl:hasChildNode rdf:resource="#SA_equitymore"/>
 <prtl:hasQuestion rdf:resource="#qstnEquityCapital"/>
 </owl:Thing>

The Question instance

<owl:Thing rdf:about="#qstnEquityCapital">
 <rdf:type rdf:resource="&www;PortalOntology.owl#Question"/>
 <prtl:hasAnswer rdf:datatype="&xsd;string"></prtl:hasAnswer>
 <prtl:hasData xml:lang="en"> Please provide the equity capital of
your company </prtl:hasData>
 </owl:Thing>

 The Semantic Public Service Portal (S-PSP) 241

The SparqlQuery instance

<owl:Thing rdf:about="#EquityLess">
 <rdf:type rdf:resource="&www;PortalOntology.owl#SparqlQuery"/>
 <rdfs:comment rdf:datatype="&xsd;string"
 >Checks if the EU applicant requires licensing and is
registering an association</rdfs:comment>
 <prtl:hasData rdf:datatype="&xsd;string"
 >PREFIX bo:<http://www.owl-
ontologies.com/BusinessOntology.owl#> PREFIX
rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX
xsd:<http://www.w3.org/2001/XMLSchema#> SELECT ?x FROM
<http://www.owl-ontologies.com/BusinessOntology.owl>
WHERE { ?x rdf:type ?t. FILTER(?t=bo:SME). ?x bo:hasEquityCapital ?it.
FILTER(?it=bo:Fund_less_Than_64000).}</prtl:hasData>
 </owl:Thing>

6 Evaluation

The evaluation of the S-PSP is ongoing as part of the Rural Inclusion Project. As
stated previously, the S-PSP is one of three components that make up the Rural
Inclusion Platform, which is being rolled out across five European public-sector trial-
sites in France, Martinique, Greece, Latvia and Spain. Initial results are positive, with
the main constructive criticism focusing on improving the intuitive integration of the
S-PSP into the actual trial-partner sites, and where they currently provide the actual
public services. A complete evaluation will be published at a future date.

7 Conclusion

This paper presents an ontology-based, public-services portal, the S-PSP, which
facilitates the informative phase of public service provision. It checks the eligibility of
the citizens for a specific public service before the actual execution of the service,
thus saving them time, effort and money. Also the public service related information
is personalised according to the profile and the specific needs and wants of the citizen
and the specific public service version required is identified, thus providing targeted,
tailored and comprehensive information. The S-PSP’s architecture is modular and as
such it is easily extendable. This has been shown with the Rural Inclusion Platform,
where the S-PSP has been integrated with other components for a specific solution.
The S-PSP is also decoupled from the public-service execution environment that may
be available in different technologies and communicates with it using Web Services.
The main advantage of this portal is its use of semantics to describe all aspects of
public-services, resulting in reusable, extensible public-service data. New public-
services may be added to the portal through the creation of a new STO.

Acknowledgments. The work presented in this paper has been funded in part by
Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2) and the
European Union under Grant No. CIP-ICT PSP-2008-2/238900 (Rural Inclusion).
The authors would like to thank all the Rural Inclusion project partners for the
creative discussions and ideas.

242 N. Loutas et al.

References

1. Peristeras, V., Tarabanis, K.: The Governance Architecture Framework and Models. In:
Advances in Government Enterprise Architecture, IGI Global Information Science
Referencece (2008)

2. Thomas, S., Schmidt, K.U.: D4: Identification of typical problems in eGovernment portals,
in Technical Report, FIT Consortium (2006)

3. Loutas, N., Peristeras, V., Tarabanis, K.: Providing Public Services to Citizens at the
National and Pan-European level using Semantic Web Technologies. In: 6th Eastern
European eGov Days, Prague, Czech Republic (2008)

4. Loutas, N., et al.: A Semantically Enabled Portal for Facilitating the Public Service
Provision. In: Semantic Technologies for E-Government, pp. 287–314. Springer, Berlin
(2010)

5. Fang, X., Liu Sheng, O.R., Chau, M.: ServiceFinder: A Method Towards Enhancing
Service Portals. ACM Transactions on Information Systems (TOIS) 25(4) (2007)

6. Sacco, G.M.: Interactive Exploration and Discovery of eGovernment Services. In: 8th
Annual International Conference on Digital Government Research: Bridging Disciplines &
Domains, Philidelphia, US (2007)

7. Stollberg, M., Muth, M.: Service Customization by Variability Modeling. In: Service
Customization by Variability Modeling, 5th International Workshop on Engineering
Service-Oriented Applications (WESOA 2009) co-located with the ICSOC-ServiceWave,
Vienna, Austria (2009)

8. OMG, Semantics of Business Vocabulary and Business Rules (SBVR) V1.0 (2008),
http://www.omg.org/spec/SBVR/1.0/

9. Tambouris, E., Vintar, M., Tarabanis, K.: A life-event oriented framework and platform
for one-stop government. In: 4th Eastern European eGov Days, Prague, Czech Republic
(2006)

10. Schmidt, K.U., et al.: Personalization in e-Government: An Approach that combines
Semantics and Web 2.0, in: Semantic Technologies for E-Government. In: Vitvar, T.,
Peristeras, V., Tarabanis, K. (eds.) Semantic Technologies for E-Government, pp. 261–
285. Springer, Berlin (2010)

11. Peristeras, V., et al.: Ontology-Based Search for eGovernment Services Using Citizen
Profile Information. Journal of Web Engineering 8(3), 245–267 (2009)

DataFinland—A Semantic Portal for Open and Linked
Datasets

Matias Frosterus, Eero Hyvönen, and Joonas Laitio

Semantic Computing Research Group (SeCo)
Aalto University and University of Helsinki

firstname.lastname@tkk.fi
http://www.seco.tkk.fi/

Abstract. The number of open datasets available on the web is increasing rapidly
with the rise of the Linked Open Data (LOD) cloud and various governmen-
tal efforts for releasing public data in different formats, not only in RDF. The
aim in releasing open datasets is for developers to use them in innovative appli-
cations, but the datasets need to be found first and metadata available is often
minimal, heterogeneous, and distributed making the search for the right dataset
often problematic. To address the problem, we present DataFinland, a semantic
portal featuring a distributed content creation model and tools for annotating and
publishing metadata about LOD and non-RDF datasets on the web. The metadata
schema for DataFinland is based on a modified version of the voiD vocabulary for
describing linked RDF datasets, and annotations are done using an online meta-
data editor SAHA connected to ONKI ontology services providing a controlled
set of annotation concepts. The content is published instantly on an integrated
faceted search and browsing engine HAKO for human users, and as a SPARQL
endpoint and a source file for machines. As a proof of concept, the system has
been applied to LOD and Finnish governmental datasets.

1 Metadata for Linked Datasets

Linked Data refers to data published on the web in accordance with four rules1 and
guidelines [2] that allow retrieving metadata related to data entities, and linking data
within and between different datasets. The datasets and their relations are represented
using RDF (Resource Description Framework) and entities are identified by Uniform
Resource Identifiers (URIs)2, which allows the use of the Hypertext Transfer Protocol
(HTTP) to retrieve either the resources themselves, useful descriptions of them, or links
to related entities [3].

The Linked Open Data community project3 has collected a large number of datasets
and mappings between them. However, little metadata about the datasets is provided
aside from short, non-uniform descriptions. As the number of linked datasets [8] grows,
this approach does not allow for easy understanding of what kind of dataset are offered,
who provides them, what is their subject, how they interlink with each other, possible

1 http://www.w3.org/DesignIssues/LinkedData.html
2 http://www.w3.org/TR/uri-clarification/
3 http://linkeddata.org

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 243–254, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.seco.tkk.fi/

244 M. Frosterus, E. Hyvönen, and J. Laitio

licensing conditions, and so on. Such information should be available both to human
users as well as machines of the Semantic Web.

Aside from properly linked datasets in RDF format, various organizations have also
began publishing open data in whatever format they had it in. The governments of the
United States and the United Kingdom have been releasing their governmental data in
an open format4 and other governments are following suit. This provides another source
of datasets which have their own unique challenges in classifying and subsequently
finding them in that they are released in arbitrary formats with varying amounts of
associated metadata. Setting up a uniform schema and vocabulary for annotating these
datasets as well as providing effective search tools helps developers find these sets in
order to use them for new applications [6].

There are search engines for finding RDF and other datasets, such as ordinary search
engines, SWSE [11], Swoogle5, Watson6, and others. However, using such systems
based on the Google-like search paradigm it is difficult to get an idea of the whole
cloud of the offered datasets. Furthermore, finding suitable datasets based on different
selection criteria such as topic, size, licensing, publisher, language etc. is not supported.
To facilitate this, interoperable metadata about the different aspects or facets of datasets
is needed, and faceted search (also called view-based search) [19,9,12] can be used to
provide an alternative paradigm for string-based semantic search.

This paper presents DataFinland, a semantic portal for creating, publishing, and find-
ing datasets based on metadata. In contrast to systems like CKAN7, the LOD-oriented
voiD8 (Vocabulary of Interlinked Datasets) metadata schema is used to describe datasets
with property values taken from a set of shared domain ontologies providing controlled
vocabularies with clearly defined semantics. Content is annotated using a web-based
annotation tool SAHA 39 connected to ONKI ontology services10 [22,21] that publish
the domain ontologies. SAHA 3 has been integrated with the lightweight multifaceted
search engine HAKO11 [16], which facilitates automatically forming a faceted search
and browsing application for taking in and discerning the datasets on offer. The anno-
tation data itself is stored in RDF format, which makes combining the metadata about
different datasets from different sources simple. This means that it would be possible
to have several annotation projects for different sets of datasets, which could then be
combined as needed for searching purposes. As a proof of concept, the system has
been applied to describing the LOD cloud datasets and datasets in the Finnish Open
Data Catalogue Project12 complementing the linked open governmental datasets on a
national level. The demonstration is available online13 and the system received the first
prize in this year’s ”Apps4Finland–Doing Good With Open Data” competition.

4 http://www.data.gov/ and http://data.gov.uk/
5 http://swoogle.umbc.edu/
6 http://watson.kmi.open.ac.uk/WatsonWUI/
7 http://www.ckan.net/
8 http://semanticweb.org/wiki/VoiD
9 http://www.seco.tkk.fi/services/saha/

10 http://www.onki.fi/
11 http://www.seco.tkk.fi/tools/hako/
12 http://data.suomi.fi/
13 http://demo.seco.tkk.fi/saha3sandbox/voiD/hako.shtml

DataFinland—A Semantic Portal for Open and Linked Datasets 245

In the following we will first present the general model and tools for creating and
publishing metadata about (linked) datasets, and then discuss the voiD metadata schema
and ontology repository ONKI presenting a controlled vocabulary. After this, the anno-
tation tool SAHA for distributed semantic content creation is presented along with the
faceted publication engine HAKO. In conclusion, the main contributions of the paper
are listed, related work discussed, directions for future research proposed.

2 Overview of the Publication Process

Our solution for the process of producing metadata and publishing the annotated
datasets is depicted in Figure 1. The process begins with the publication of a dataset.
Metadata for the dataset is produced either by its original publisher or by a third party,
using an annotation tool, in our case SAHA 3. A metadata schema, in our case modi-
fied voiD, is used to dictate for the distributed and independent content providers the
exact nature of the metadata needed. Interoperability in annotation values is achieved
through shared ontologies that are used for certain property values in the schema (e.g.,
subject matter and publisher resources are taken from corresponding ontologies). The
ontologies are provided for the annotation tool as services, in our case by the national
ONKI Ontology Service (or by SAHA itself). Finally, the metadata about the datasets is
published in a semantic portal capable of using the annotations to make the data more
accessible to the end-user, be that a human or a computer application. For this part the
faceted search engine HAKO is used.

In the figure, we have marked the tools and resources used in our proof-of-concept
system in parentheses, but the process model itself is generic.

Fig. 1. The distributed process of producing and publishing metadata about (linked) datasets

246 M. Frosterus, E. Hyvönen, and J. Laitio

3 Metadata and Ontologies

From a semantic viewpoint, the key ingredients of general model presented above are
the metadata schema and domain ontologies/vocabularies used for filling in values in the
schema. As for the metadata schema, the Vocabulary of Interlinked Datasets (voiD), an
RDF vocabulary for describing linked datasets [1], seemed like a natural starting point
because it addresses specifically problems of representing linked data. It was therefore
chosen as a basis in our proof-of-concept system.

The basic component in voiD is a dataset, a collection of RDF triples that share a
meaningful connection with each other in the form a shared topic, source or host. The
different aspects of metadata that voiD collects could be classified into the following
three categories or facets:

1. Descriptive metadata tells what the dataset is about. This includes properties such
as the name of the dataset, the people and organizations responsible for it, as well as
the general subject of the dataset. Here voiD reuses other, established vocabularies,
such as dcterms and foaf. Additionally, voiD allows for the recording of statistics
concerning the dataset.

2. Accessibility metadata tells how to access the dataset. This includes information on
SPARQL endpoints, URI lookup as well as licensing information so that potential
users of the dataset know the terms and conditions under which the dataset can be
used.

3. Interlinking metadata tells how the dataset is linked to other datasets. This is done
by defining a linkset, the concept of which is depicted in Figure 2. If dataset :DS1
includes relations to dataset :DS2, a subset of :DS1 of the type void:Linkset is made
(:LS1) which collects all the triples that include links between the two datasets (that
is, triples whose subject is a part of DS1 and whose object is a part of :DS2).

Fig. 2. Modeling interlinking of datasets in voiD [1]

3.1 Extending voiD

In order to facilitate annotating also non-linked open datasets, we made some exten-
sions to voiD. The most important of these was a class for datasets in formats other
than RDF. This void-addon:NonRdfDataset is similar to the void:Dataset but

DataFinland—A Semantic Portal for Open and Linked Datasets 247

does not have the RDF-specific properties such as SPARQL endpoint while including a
proprety for describing the format of the dataset, void-addon:format. The addition
of this class also resulted in modifications to most of the voiD properties to include
void-addon:NonRdfDataset in their domain specifications. Another addition to the
basic voiD in our system was dcterms:language that facilitates the multi-language
applications.

4 From Annotations to Faceted Search

Since the publishing of open data is not done by any central authority, annotating the
data should also be collaborative and community-driven. To this end the annotation
tools should be easy to use and publishing the results of the annotations should be
quick and easy.

Our solution to facilitating collaborative annotation of distributed communities is
based on the SAHA 3 metadata editor and the HAKO faceted search system [16]. In
addition, we use the ONKI Ontology Service [21,22] for providing ontological concepts
to annotations. These concepts, organized as hierarchical ontologies, also provide facets
classifying the subject matter and some other aspects of the datasets in focus. Using
ontologies instead of a free tagging system provides a controlled vocabulary with well
defined meanings as well as support for multiple languages. Furthermore, the semantic
relations can be used in further reasoning when the number of datasets gets very high.

4.1 SAHA 3 Metadata Editor

SAHA 3 is a metadata editor that allows for easy annotation of varied resources hiding
the complexities of RDF and OWL from the end users. It is easily configurable to dif-
ferent schemas and supports distributed, simultaneous annotation in different locations,
which is of paramount importance when using it in a community-driven environment
such as Linked Open Data. It also functions in a normal web browser needing no special
software to be installed.

The process of annotation itself is simple using SAHA 3. When a project has been
configured, the annotator is shown the main view of a project, which gives a general
overview of it. On the left side all the classes (as denoted by owl:Class) are listed, along
with the count of how many instances of that class exist in the project. New instances
can be created from this list as can be seen in Figure 3. The instances for any class can
be browsed and filtered to find the desired ones.

The resource view, shown in Figure 4, is a basic overview of a resource. There is a
resource view for each resource in the model. All the property values of the resource are
listed, except those that are configured to be hidden. The data cannot be edited here - to
do that the [edit] button must be pressed, which takes the user to the Annotation view.

When annotating an instance, the annotator is provided with a number of fields cor-
responding to the properties whose domain matches the class of the instance (see Fig-
ure 5). Depending on the range of a given property, the field takes in either free text
or instances. In the latter case the instances can be either ones defined in the current
project or chosen from linked ONKI ontologies. In both cases autocompletion[14][10]
is used to aid the annotator.

248 M. Frosterus, E. Hyvönen, and J. Laitio

Fig. 3. Overview of a Saha project

Fig. 4. Resource view of an instance in Saha

4.2 HAKO Faceted Search Engine

HAKO is a faceted search engine that can be used to publish a SAHA 3 project as a read-
ily usable portal. The RDF data produced in SAHA 3 is exported into HAKO, which is
then configured to produce a portal matching the needs of the end user. The publisher
configures the classes whose instances are to be searched and whose properties form
the search facets for these instances.

The end result is a semantic portal supporting both faceted search as well as free text
search, which is done as a prefix search by default. For machine use, SAHA 3 also has
a SPARQL endpoint14 which can be used to access the metadata from the outside as a
service instead of accessing the HAKO portal human interface. The SPARQL interface

14 http://demo.seco.tkk.fi/saha/service/data/voiD/sparql?query={query}

DataFinland—A Semantic Portal for Open and Linked Datasets 249

can be used also internally in SAHA for providing semantic recommendation links
between data objects on the human interface.

4.3 DataFinland

DataFinland is the name given for the whole solution of combining SAHA 3 and
HAKO search portal with the extended voiD schema for creating, publishing, and find-
ing datasets based on metadata.

When configuring SAHA 3 for voiD, the dcterms:subject was connected to the
ONKI instance of the General Finnish Ontology (YSO)15 with over 20,000 concepts.
The property dcterms:license was linked to an ONKI instance featuring six Cre-
ative Commons license types, but the system also allows for the defining of other li-
cense types as new instances of a simple license class. Its properties include of a free
text description of the license as well as a possible link to a webpage describing the
license further. Finally, dcterms:language was connected to the ONKI instance of
the Lingvoj16 vocabulary listing of the languages of the world.

The SAHA 3 annotation environment for voiD (depicted in Figure 5) allows for
the annotation of both RDF and non-RDF datasets as well as licenses, formats and
organizations. Licenses are additional licenses that the user may want to use aside from
the ready linked Creative Commons licenses. Formats are simple resources to identify
the format of the dataset, e.g. PDF, MS Word Document, etc. Finally, organizations
allows for a simple way of describing an organization or a person responsible for a
given dataset in the form of a title, free text description and a link to a homepage or a
similar information source.

HAKO was configured to search for both RDF and non-RDF datasets and to form
facets based on the license, language, format and subject properties. This way the end-
user can, for example, limit his/her search to cover only Linked Open datasets by choos-
ing the RDF format. In Figure 6 the user has selected from the facets on the left RDF
datasets concerning Information technology industry in the English language. Out of
the nine results provided by HAKO, the user has chosen Advogato to see its metadata.

A problem of faceted search with wide-ranging datasets is that facets tend to get very
large, which makes category selection more difficult. A solution to this is to use hier-
archical facets. However, using the hierarchy of a thesaurus or an ontology intended
originally for annotations and reasoning may not be an optimal facet for information
retrieval from the end-user’s perspective [20]. For example, the top levels of large on-
tologies with complete hierarchies can be confusing for the end-users. Our planned
solution in the future is to provide the annotators with a simple tool for building hi-
erarchies for the facets as a part of the annotation process. Another possible solution
would be to use some kind of an all-inclusive classification system as the top level of
the facets. There has been some discussion of a classification schema for open datasets
in the community, but no clear standard has risen. In the future we plan to explore the
possibility of using the Finnish Libraries’ classification system that is based on Dewey
Decimal Classification.

15 http://www.yso.fi/onki/yso/
16 http://www.lingvoj.org/

250 M. Frosterus, E. Hyvönen, and J. Laitio

Fig. 5. SAHA 3 annotation environment

5 Discussion

5.1 Contributions

This paper presented a distributed content creation model for metadata about datasets
published on the web. The model emphasizes and supports the idea that metadata
should be created in an interoperable way by the actors that publish the actual content.
Making metadata interoperable afterwards is usually more difficult and costly. [13] In
practice this requires support for using shared metadata schemas and domain ontolo-
gies/vocabularies, as well as a shared publication channel, a semantic portal. These
facilities are provided in our model by the combination of ONKI, SAHA and HAKO
tools.

DataFinland—A Semantic Portal for Open and Linked Datasets 251

Fig. 6. HAKO faceted search portal

One of the main challenges of any model dealing with dataset metadata is to motivate
dataset publishers to also publish semantically annotated metadata about their content.
Our work is driven by the hope that this social challenge can be addressed by making
annotating easy by online tools (such as SAHA and ONKI), and by providing the anno-
tators with instant feedback on how their dataset is shown in the final semantic portal
(HAKO).

5.2 Related Work

There is a number of tools available for creating voiD descriptions. The voiD editor
ve17 and liftSSM18, an XSLT script that transforms a semantic sitemap in XML to
voiD RDF/XML format, but these allow building only rudimentary descriptions, which
should then be added to by manually editing the RDF file.

17 http://ld2sd.deri.org/ve/
18 http://vocab.deri.ie/void/guide#sec 4 3 Publishing tools

252 M. Frosterus, E. Hyvönen, and J. Laitio

As for datasets, there are a number of tools for finding Linked Open data. Semantic
Web Search Engine[11] (SWSE) takes a free text approach allowing the user to enter
a query string and returning entities from Linked Open datasets that match the query
term. Searching for whole datasets is not supported.

Aside from search tools intended for human users, there is a number of search in-
dexes intended for applications, including Sindice [18], Watson [5] and Swoogle [7].
These provide APIs supporting the discovery of RDF documents based on URIs or key-
words. Sindice is intended for finding individual documents while Swoogle is used for
finding ontologies. Watson allows the finding of all sorts of semantic data and features
advanced filtering abilities intended for both machine and human users. However, none
of these search engines are very good for exploring what sorts of datasets are available
or for getting a whole picture of a given domain.

Governmental Open Data is widely published through CKAN19 (Comprehensive
Knowledge Archive Network), a registry for Open Data packages. CKAN provides sup-
port for publishing and versioning Open data packages and includes robust API support.
However, the metadata about the data packages is recorded utlizing free tagging which
does not support hierarchical, view-based search and does not contain semantic relation
data between different tags.

Finally, concurrently to our work, an interoperability format for governmental data
catalogues based on the dcat RDF vocabulary was proposed in [17]. There, the metadata
schema was based on existing metadata used in the data catalogues as opposed to the
LOD based voiD. Furthermore, this solution does not contain tools for editing metadata
nor link to existing ontologies for use in dataset descriptions. A faceted search using
Gridworks in combination with dcat was also proposed in [4].

The distributed semantic content creation and publishing approach, using shared
metadata schemas, ontology services, and semantic portals for publication, has been
originally developed in the semantic portals of the FinnONTO project [15].

5.3 Future Work

Our intention next is to propose the testing of the demonstrational system in the Finnish
open data catalogue project. Another future application prospect is to apply the system
for publishing metadata about scientific datasets for research. Additional distributed
annotation-publishing projects can be opened with little extra work using the tools pre-
sented; proposals are solicited by the authors of this paper.

Acknowledgements

This work was conducted as a part of the National Semantic Web Ontology project
in Finland20 (FinnONTO, 2003-2012), funded mainly by the National Technology and
Innovation Agency (Tekes) and a consortium of 38 public organizations and companies.
Furthermore, we would like to thank Tuomas Palonen for his annotation work on the
datasets for the demonstration and Petri Kola and Antti Poikola for fruitful discussions
on publishing open datasets.
19 http://www.ckan.net/
20 http://www.seco.tkk.fi/projects/finnonto/

DataFinland—A Semantic Portal for Open and Linked Datasets 253

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets - on the
design and usage of void, the vocabulary of interlinked datasets. In: Conjunction with 18th
International World Wide Web Conference (WWW 2009) Linked Data on the Web Workshop
(LDOW 2009) (2009)

2. Bizer, C., Cyganiak, R., Heath, T.: How to publish linked data on the web (2007)
3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International Journal on

Semantic Web and Information Systems, IJSWIS (2009)
4. Cyganiak, R., Maali, F., Peristeras, V.: Self-service linked government data with dcat and

gridworks. In: Proceedings of the 6th International Conference on Semantic Systems, Graz,
Austria. I-SEMANTICS 2010, pp. 37:1–37:3. ACM, New York (2010)

5. dÁquin, M., Motta, E.: Watson, more than a semantic web search engine (2010)
6. Dekkers, M., Polman, F., te Velde, R., de Vries, M.: Mepsir: Measuring european public sec-

tor information resources. final report of study on exploitation of public sector information.
Technical report (2006)

7. Finin, T., Ding, L., Pan, R., Joshi, A., Kolari, P., Java, A., Peng, Y.: Swoogle: Searching for
knowledge on the semantic web. In: AAAI 2005 (intelligent systems demo), pp. 1682–1683.
The MIT Press, Cambridge (2005)

8. Hausenblas, M., Halb, W., Raimond, Y., Heath, T.: What is the size of the semantic web? In:
Proceedings of I-SEMANTICS 2008, Graz, Austria (2008)

9. Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., Lee, K.-P.: Finding the flow in
web site search. CACM 45(9), 42–49 (2002)

10. Hildebrand, M., van Ossenbruggen, J., Amin, A., Aroyo, L., Wielemaker, J., Hardman,
L.: The design space of a configurable autocompletion component. Technical Report INS-
E0708, Centrum voor Wiskunde en Informatica, Amsterdam (2007)

11. Hogan, A., Harth, A., Umrich, J., Decker, S.: Towards a scalable search and query engine for
the web. In: WWW 2007: Proceedings of the 16th international conference on World Wide
Web, pp. 1301–1302. ACM, New York (2007)

12. Hyvönen, E., Saarela, S., Viljanen, K.: Application of ontology techniques to view-based se-
mantic search and browsing. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS
2004. LNCS, vol. 3053, pp. 92–106. Springer, Heidelberg (2004)

13. Hyvönen, E.: Preventing interoperability problems instead of solving them. In: Semantic
Web Journal (2010) (accepted for pubication)

14. Hyvönen, E., Mäkelä, E.: Semantic autocompletion. In: Mizoguchi, R., Shi, Z.-Z.,
Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 739–751. Springer, Heidelberg
(2006)

15. Hyvönen, E., Viljanen, K., Mäkelä, E., Kauppinen, T., Ruotsalo, T., Valkeapää, O., Seppälä,
K., Suominen, O., Alm, O., Lindroos, R., Känsälä, T., Henriksson, R., Frosterus, M., Tuomi-
nen, J., Sinkkilä, R., Kurki, J.: Elements of a national semantic web infrastructure—case
study finland on the semantic web. In: Proceedings of the First International Semantic Com-
puting Conference (IEEE ICSC 2007). IEEE Press, Irvine (2007) (invited paper)

16. Kurki, J., Hyvönen, E.: Collaborative metadata editor integrated with ontology services and
faceted portals. In: Workshop on Ontology Repositories and Editors for the Semantic Web
(ORES 2010), The Extended Semantic Web Conference ESWC 2010, CEUR Workshop Pro-
ceedings, Heraklion, Greece (2010) http://ceur-ws.org

17. Maali, F., Cyganiak, R., Peristeras, V.: Enabling interoperability of government data cata-
logues. In: Wimmer, M.A., Chappelet, J.-L., Janssen, M., Scholl, H.J. (eds.) EGOV 2010.
LNCS, vol. 6228, pp. 339–350. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-14799-9_29

http://ceur-ws.org
http://dx.doi.org/10.1007/978-3-642-14799-9_29

254 M. Frosterus, E. Hyvönen, and J. Laitio

18. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Tummarello, G.: Sindice.com: A document-
oriented lookup index for open linked data. International Journal of Metadata, Semantics and
Ontologies 3 (2008)

19. Pollitt, A.S.: The key role of classification and indexing in view-based searching. Technical
report, University of Huddersfield, University of Huddersfield, UK (1998),
http://www.ifla.org/IV/ifla63/63polst.pdf

20. Suominen, O., Viljanen, K., Hyvönen, E.: User-centric faceted search for semantic portals
(2007)

21. Tuominen, J., Frosterus, M., Viljanen, K., Hyvönen, E.: ONKI SKOS server for publish-
ing and utilizing SKOS vocabularies and ontologies as services. In: Aroyo, L., Traverso,
P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M.,
Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 768–780. Springer, Heidelberg (2009)

22. Viljanen, K., Tuominen, J., Hyvönen, E.: Ontology libraries for production use: The finnish
ontology library service ONKI. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath,
T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 781–795. Springer, Heidelberg (2009)

http://www.ifla.org/IV/ifla63/63polst.pdf

Biological Names and Taxonomies on the

Semantic Web – Managing the Change in
Scientific Conception

Jouni Tuominen, Nina Laurenne, and Eero Hyvönen

Semantic Computing Research Group (SeCo)
Aalto University School of Science and the University of Helsinki

firstname.lastname@aalto.fi

http://www.seco.tkk.fi/

Abstract. Biodiversity management requires the usage of heterogeneous
biological information from multiple sources. Indexing, aggregating, and
finding such information is based on names and taxonomic knowledge
of organisms. However, taxonomies change in time due to new scientific
findings, opinions of authorities, and changes in our conception about life
forms. Furthermore, organism names and their meaning change in time,
different authorities use different scientific names for the same taxon
in different times, and various vernacular names are in use in different
languages. This makes data integration and information retrieval dif-
ficult without detailed biological information. This paper introduces a
meta-ontology for managing the names and taxonomies of organisms,
and presents three applications for it: 1) publishing biological species
lists as ontology services (ca. 20 taxonomies including more than 80,000
names), 2) collaborative management of the vernacular names of vascu-
lar plants (ca. 26,000 taxa), and 3) management of individual scientific
name changes based on research results, covering a group of beetles.
The applications are based on the databases of the Finnish Museum of
Natural History and are used in a living lab environment on the web.

1 Introduction

Exploitation of natural resources, urbanisation, pollution, and climate changes
accelerate the extinction of organisms on Earth which has raised a common
concern about maintaining biodiversity. For this purpose, management of in-
formation about plants and animals is needed, a task requiring an efficient us-
age of heterogeneous, dynamic biological data from distributed sources, such
as observational records, literature, and natural history collections. Central re-
sources in biodiversity management are names and ontological taxonomies of
organisms [1,19,20,3,4]. Animal ontologies are stereotypical examples in the se-
mantic web text books, but in reality semantic web technologies have hardly
been applied to managing the real life taxonomies of biological organisms and
biodiversity on the web. This paper tries to fill this gap.1

1 We discuss the taxonomies of contemporary species, not ’phylogenetic trees’ that
model evolutionary development of species, where humans are successors, e.g., of
dinosaurs.

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 255–269, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

256 J. Tuominen, N. Laurenne, and E. Hyvönen

Managing taxonomies of organisms provides new challenges to semantic web
ontology research. Firstly, although we know that lions are carnivores, a subclass
of mammals that eat other animals, the notion of ’species’ in the general case is ac-
tually very hard to define precisely. For example, some authors discuss as many as
22 different definitions of the notion of species [16]. Secondly, taxonomic knowl-
edge changes and increases due to new research results. The number of new or-
ganism names in biology increases by 25,000 every year as new taxa to science are
discovered [11]. At the same time, the rate of changes in existing names has accel-
erated by the implementation of molecular methods suggesting new positions to
organisms in taxonomies. Thirdly, biological names are not stable or reliable iden-
tifiers for organisms as they or their meaning change in time. Fourthly, the same
name can be used by different authors to refer to different taxa (units of classifi-
cation that commonly have a rank in the hierarchy), and a taxon can have more
than one name without a consensus about the preferred one.

As a result, biological texts are written, content is indexed in databases, and
information is searched for using different names and terms from different times
and authorities. In biological research, scientific names are used instead of com-
mon names, but in many applications vernacular names in different languages
are used instead. Data fusion is challenging and information retrieval without
deep biological knowledge is difficult.

We argue that a shared system for publishing and managing the scientific and
vernacular names and underlying conceptions of organisms and taxonomies is
needed. From a research viewpoint, such a system is needed to index research
results and to find out whether a potential new species is already known under
some name. Biological information needed by environmental authorities cannot
be properly indexed, found or aggregated unless the organism names and iden-
tifiers are available and can be aligned. For amateur scientists and the public,
aligning vernacular names to scientific names and taxonomies is often a prereq-
uisite for successful information retrieval.

This paper presents a meta-ontology and its applications addressing these
problems. Our research hypothesis is that semantic web technologies are useful
in practise in modelling change in the scientific perception of biological names
and taxonomies, for creating a platform for collaboratively managing scientific
knowledge about taxonomies, and for publishing taxonomies as ontology services
for indexing and information retrieval purposes in legacy systems.

In the following, biological classification systems are first discussed and a
meta-ontology TaxMeOn for defining such systems is presented [13]. Three use
case applications of the meta-ontology are then discussed: a system for manag-
ing vascular plant names collaboratively (26,000 species) based on the SAHA
metadata editor [12], application of the ONKI ontology service [25] for publish-
ing taxonomic species lists on the semantic web (over 80,000 taxa of mammals,
birds, butterflies, wasps, etc.), and a more focused application for managing the
names and scientific findings of the Afro-tropical beetle family Eucnemidae. Fi-
nally, contributions of our work are summarised, related work discussed, and
directions for further research are outlined.

Biological Names and Taxonomies on the Semantic Web 257

2 Biological Names and Taxonomies

The scientific name system is based on the Linnean binomial name system where
the basic unit is a species. Every species belongs to some genus and every genus
belongs to a higher taxon. A scientific name often has a reference to the original
publication where it was first published. For example, the scientific name of the
bumblebee, Apis mellifera Linnaeus, 1758, means that Linnaeus published the
description of the bumblebee in 1758 (in Systema Naturae 10th edition) and
that bumblebee belongs to the genus Apis. The upper levels of the taxonomic
hierarchy do not show in a scientific name. A confusing feature of scientific
names is that the meaning of the name may change although the name remains
the same. Taxon boundaries may vary according to different studies, and there
may be multiple simultaneous views of taxon limits of the same organism group.
For example, a genus may be delimited in three ways and according to each
view different sets of species are included in the genus as illustrated in Fig. 1.
These differing views are taxonomic concepts. The usage of the correct name is
not enough, and Berendsohn [1] suggested that taxonomic concepts should be
referred to by an abbreviation sec (secundum) after the authors name to indicate
in which meaning the name is used.

The nature of a biological name system is a change, as there is no single in-
terpretation of the evolution. Typically there is no agreement if the variation
observed in an organism is taxon-specific or shared by more than one taxon,
which makes the name system dynamic. For example, the fruit fly Drosophila
melanogaster was shifted into the genus Sophophora, resulting in a new name
combination Sophonophora melanogaster [7]. The most common taxonomic
changes and their implications to the scientific names are the following: 1) A
species has been shifted to another genus - the genus name changes. 2) One
species turns out to be several species - new species are described and named,
and the old name remains the same with a narrower interpretation. 3) Several
species are found to be just one species - the oldest name is valid and the other
names become its synonyms.

Taxonomic concept 1

Taxonomic concept 2 Taxonomic concept 3

Fig. 1. A genus is delimited in three different ways according to three different studies.
Black squares indicate species.

258 J. Tuominen, N. Laurenne, and E. Hyvönen

Species lists catalogue organisms occurring in a certain geographical area,
which may vary from a small region to global. Often species lists contain valid
taxon names with author information and synonyms of the valid names. They
are snapshots of time and used especially by environmental authorities. The
problem with species lists is that not all organism groups are catalogued and
changes are not necessarily recorded in the species lists. Traditionally printed
lists tend to be more detailed than online lists and their status is higher.

Species lists often follow different hierarchies and species may be associated
with different genera according to the person who published the list. The hier-
archy in a species list is a compromise that combines several studies, and the
author can subjectively emphasise a view that he/she wishes. A taxon may also
have different taxonomic ranks in literature, for example the same taxon can
occur both as a species and a subspecies.

Common names tend to have regional variation and they do not indicate
hierarchy unlike scientific names. Vernacular names have an important role in
everyday language, but due to the variation and vagueness, they have little
relevance in science. Vernacular names are used mainly in citizen science.

3 TaxMeOn – Meta-ontology of Biological Names

We have developed a meta-ontology for managing scientific and vernacular
names. The ontology model consists of three parts that serve different purposes:
1) name collections, 2) species lists, and 3) name changes resulting from re-
search. These parts are manageable separately, but associations between them
are supported. Being a meta-ontology, TaxMeOn defines classes and properties
that can be used to build ontologies. The ontologies can be used for creating
semantic metadata for describing e.g. observational data or museum collections.
TaxMeOn is based on RDF using some features of the OWL. The model contains
22 classes and 53 properties (61 including subproperties), of which ten classes
and 15 properties are common to all the three parts of the model2.

The core classes of TaxMeOn express a taxonomic concept, a scientific name,
a taxonomic rank, a publication, an author, a vernacular name, and a status of a
name. Taxonomic ranks are modelled as classes, and individual taxa are instances
of them, for example the species forest fir forrestii (belongs to the genus Abies)
is an instance of the class Species. The model contains 61 taxonomic ranks, of
which 60 are obtained from TDWG Taxon Rank LSID Ontology3. In order to
simplify the management of subspecific ranks, an additional class that combines
species and taxonomic levels below it was created.

References embody publications in a broad sense including other documented
sources of information, for instance minutes of meetings. Bibliographic informa-
tion can be associated to the reference according to the Dublin Core metadata
standard. In biology, author names are often abbreviated when attached to taxon
2 The TaxMeOn schema is available at
http://schema.onki.fi/taxmeon/

3 http://rs.tdwg.org/ontology/voc/TaxonRank

Biological Names and Taxonomies on the Semantic Web 259

names. The TaxMeOn model supports the referring system that is typical to bi-
ology. Some of the properties used in TaxMeOn are part-specific as the uses of
the parts differ from each other. For instance, the property that refers to a ver-
nacular name is only available in the name collection part as it is not relevant
in the other parts of the model.

The most distinctive feature of the research part [14] is that a scientific name
and taxonomic concepts associated to it are separated, which allows detailed
management of them both. In the name collection and species list parts, a name
and its taxonomic concepts are treated as a unit. Different statuses can be as-
sociated to names, such as validity (accepted/synonym), a stage of a naming
process (proposed/accepted) and spelling errors.

The model has a top-level hierarchy that is based on a rough classification,
such as the division of organism classes and orders. Ontologies that are gener-
ated using TaxMeOn, can be hung on the top-level classification. A hierarchy is
created using the transitive isPartOfHigherTaxon relation, e.g. to indicate that
the species forrestii belongs to the genus Abies.

Taxon names that refer to the same taxon can occur as different names in
the published species lists and different types of relations (see Table 1) can be
set between the taxa. Similarly, research results of phylogenetic studies can be
mapped using the same relations. The relations for mapping taxa are divided
on the basis of attributes of taxa (intensional) or being a member of a group
(ostensive). If it is known that two taxa have an association which is not specified,
a class is provided for expressing incomplete information (see the empty ellipse in
Fig. 2). This allows associations of taxa without detailed taxonomic knowledge,
and especially between taxa originating from different sources.

Table 1. Mapping relations used in species lists and research results. The three rela-
tions can be used as intensional and/or ostensive, using their subproperties.

Relation Description

congruent with taxon taxonomic concepts of two taxa are equal
is part of taxon a taxonomic concept of a taxon is included in a taxonomic

concept of another taxon
overlaps with taxon taxonomic concepts of two taxa overlap

In TaxMeOn, a reference (an author name and a publication year) to the
original publication can be attached to a name. A complete scientific name is
atomised into units that can be combined in applications by traversing the RDF
graph by utilising the isPartOfHigherTaxon and publishedIn relations.
Name collections. Scientific names and their taxonomic concepts are treated
as one unit in the name collection, because the scope is in vernacular names.
The model supports the usage of multiple languages and dialects of common
names. There may be several common names pointing to the same taxon, and
typically one of them is recommended or has an official status. Alternative names
are expressed defining the status using the class VernacularNameStatus and

260 J. Tuominen, N. Laurenne, and E. Hyvönen

references related to the changes of a name status can be added. This allows the
tracking the temporal order of the statuses. The model for vernacular names is
illustrated in Fig. 2.
Species lists. Species lists have a single hierarchy and they seldom include ver-
nacular names. Species lists have more relevance in science than name collections,
but they lack information about name changes and a single list does not express
the parallel or contradictory views of taxonomy which are crucial for researchers.
Synonyms of taxa are typically presented and the taxonomic concept is included
in a name like in a name collection. Taxa occurring in different species lists can
be mapped to each other or to research results using the relations in Table 1.
In addition, a general association without taxonomic details can be used (see
Fig. 2).
Biological research results. In biological research results a key element is a
taxonomic concept that can have multiple scientific names (and vice versa). In-
stead of names, taxonomic concepts are used for defining the relations between
taxa. The same relations are applied here as in the speies list part (see Ta-
ble 1). The latest research results often redefine taxon boundaries, for example
a split of taxa narrows the original taxonomic concept and the meaning of the
name changes although the name itself may remain the same. The new and the
old concepts are connected into a temporal chain by instantiation of a change
event. In Fig. 3 the concept of the beetle genus Galba is split into the concepts
of the Balgus and Pterotarsus. The taxon names are shown inside the ellipses

TaxonInNameCollection

Species

TaxonInNameCollection

Genus

VernacularName

VernacularName

TaxonInNameCollection

AcceptedVernacularName

Reference

AlternativeVernacularName

hasVernacular

Name

˘ Accepted

Wikipedia

Reference

Synonym

Forrest fir

hasVernacular

NameStatus

Chundian

lengshan

chengii C. Coltman Rogers

VernacularName

Species

list

Research

results

Abies Pine trees

forrestii

rd
fs

:la
b
e
l

Gard. Chron., III, 65:150

1919

rdfs:label

rd
fs

:s
e
e
A

ls
o

d
c
:t
it
le

hasVernacular
Name

TaxMeOn
refersTo

Taxon

is
P

a
rtO

fH
ig

h
e
r

T
a
x
o
n

Fig. 2. An example of vernacular names in a name collection. The ellipses represent
instances of TaxMeOn classes and literals are indicated as boxes. Other parts of the
model are connected to the example taxon in the box with dotted line, in which the
empty ellipse illustrates a general representation of a taxon.

Biological Names and Taxonomies on the Semantic Web 261

Pterotarsus

Elateridae

Galba
potential

Relation

Publication

Lameere, 1900

publishedIn

Split

Balgus

Fleutiaux,

1920

Eucnemidae

before

after

after

Galbites

Fleutiaux,

1918

changeIn

Taxonomic

Concept

Fleutiaux,

1945

Muona,

1987

isPartOf

HigherTaxon

Elateridae

Pterotarsus

Publication Publication

Eucnemidae

Pterotarsus
changeIn

Taxonomic

Concept

Eucnemidae

Galbites

Eucnemidae

changeIn

Taxonomic

Concept

Publication

Fleutiaux

1920

Publication

Eucnemidae

Publication

Schenkling

1928 Crowson,

1967

Throscidae

Balgus
congruent

Taxon

Publication

isOlder

Than

Cobos,

1961

Elateridae

Balgus

Publication

Publication

Guerin-

Meneville,

1831

Publication

Publication

1 2 3

4a 4b 4c

5a 5b 5c

4d

Galba

tuberculata

Eucnemidae

Guerin-Meneville,

1830

Guerin-Meneville,

1838. In the illustrations of the book

were publishe later and Galba

tuberculata had a name Pterotarsus

marmorata

historio

Publication

changeIn

Taxonomic

Concept

Fleutiaux,

1945

isPartOf

HigherTaxon

iPOHT iPOHT iPOHT

iPOHT iPOHT iPOHT

Fig. 3. An example of name changes and taxonomies of eucnemid beetles based on
research results. The ellipses represent instances of TaxMeOn classes. Taxonomic hier-
archies are expressed with the isPartOfHigherTaxon (iPOHT) relations, and the name
change series of taxa are illustrated with a darker colour. The following abbreviations
are used for the change types: S = Split of taxa, NC = Name change, TCC = Taxon
concept change and CH = Change in hierarchy. The meaning of the numbers: 1) The
species description of Galba tuberculata was originally published in 1830, but the illus-
trations of the book were published in 1838. However, in the illustrations G. tuberculata
appeared with the name Pterotarsus marmorata (conflicting information). 2) Mean-
while, in 1831, the same taxon was independently described as Pterotarsus historio
(independent events). 3) Lameere was confused by the two independently published
works and changed the name to Galba in 1900 (uncertain relation between 2 and 3).
4a) Fleutiaux split the genus Galba into two genera. The name Galba was changed
into Pterotarsus as there turned out to be a crustacean genus Galba (S, NC,TCC).
4b) Fleutiaux re-examined the genus and concluded that it is new to science and de-
scribed it as Galbites (NC, TCC). 4c) Later Fleutiaux changed his mind and renamed
the genus as Pterotarsus again (NC, TCC). 4d) Muona discovered that Fleutiaux was
originally right and renamed the genus as Galbites (NC, TCC). 5a) When Galba was
split, a part of its species were shifted into the genus Balgus that was described as
new to science at the same time. Balgus was placed in the family Eucnemidae (CH).
5b) And changed into the family Throscidae (CH). This was originally published in a
monthly magazine in the 1950’s, but the magazines were published as a book in 1967
which is most commonly cited. 5c) Balgus was changed into the family Elateridae in
1961 (CH and conflict in publication years).

262 J. Tuominen, N. Laurenne, and E. Hyvönen

representing taxonomic concepts in order to simplify the presentation. Other
change types are a lump of taxa, a change in taxon boundaries and a change in
a hierarchy. These changes lead to the creation of a new instance of a taxonomic
concept in order to maintain the traceable taxon history. An instantion of a new
concept prevents evolving non-existing name combinations and artificial classi-
fications. For instance, a species name is not associated with a genus name in
which it has never been included.

The status of a scientific name may change in time as an accepted name may
become a synonym. Multiple statuses can be attached to a name, but according
to the nomenclatural rules only one of them is accepted at time. The temporal
order of the statuses can be managed according to the same idea as in the name
collections part.

4 Use Cases

We have applied the TaxMeOn ontology model to three use cases that are based
on different needs. The datasets include a name collection of common names of
vascular plants, several species lists of different animal groups and a collection
of biological research results of Afro-tropical beetles. The use cases were selected
on the basis of the active usage of the data (vernacular names), usefulness to
the users (species lists), and the taxonomic challenges with available expertise
(scientific names based on research results). The datasets used are depicted in
Table 2.

4.1 Collaborative Management of Vascular Plants Names

The biological name collection includes 26,000 Finnish names for vascular plants
that are organised into a single hierarchy. A deeply nested hierarchy is not nec-
essary here as the classification used is robust, containing only three taxonomic
ranks. The need is to maintain the collection of the common names and to man-
age the name acceptance process. The number of yearly updates exceeds 1,000.
The typical users of the name collection are journalists, translators and other
non-biologists who need to find a common name for a scientific name.

The name collection of vascular plants is managed in SAHA4 [12]. SAHA is a
simple, powerful and scalable generic metadata editor for collaborative content
creation. Annotation projects can be added into SAHA by creating the metadata
schema for the content and loading it into SAHA. The user interface of SAHA
adapts to the schema by providing suitable forms for producing the metadata.
The values of the properties of the schema can be instances of classes defined
in the schema, references to ontologies or literals. The annotations created us-
ing SAHA are stored in a database, from which they can be retrieved for use
in semantic applications. SAHA also provides a SPARQL endpoint for making
queries to the RDF data.

4 http://demo.seco.tkk.fi/saha/VascularPlants/index.shtml

Biological Names and Taxonomies on the Semantic Web 263

Table 2. Datasets TaxMeOn has been applied to. Vascular plants are included in the
name collection, the false click beetles are biological research results, and all other
datasets are based on species lists.

Taxon group Region Publ. years # of taxa

Vascular plants World constantly
updated

25726

Long-horn beetles
(Coleoptera: Cerambycidae)

Scandinavia,
Baltic countries

1939, 1960, 1979,
1992, 2004, 2010,
2010

205, 181, 247,
269, 300, 297,
1372

Butterflies and moths
(Lepidoptera)

Scandianavia,
North-West
Russia, Estonia

1962, 1977, 1996,
2002, 2008

313, 256, 265,
4573, 12256,
3244, 3251, 3477

Thrips (Thysanoptera) Finland 2008 219
Lacewings and scorpionflies
(Neuroptera and Mecoptera)

Finland 2008 113

True bugs (Hemiptera) Finland 2008 2690
Flies (Diptera: Brachycera) Finland 2008 6373
Parasitic wasps
(Hymenoptera: Ichneumoidae)

Finland 1995, 1999, 1999,
2000, 2003

282, 398, 919,
786, 733

Bees and wasps
(Hymenoptera: Apoidea)

Finland 2010 1048

Mammals World 2008 6062
Birds World 2010 12125
False click beetles
(Coleoptera: Eucnemidae)

Afrotropics – 9 genera

New scientific species names are added by creating a new instance of the
Species class and then adding the other necessary information, such as their
status. Similarly, a higher taxon can be created if it does not already exist,
and the former is linked to the latter with the isPartOfHigherTaxon relation.
SAHA has search facilities for querying the data, and a journalist writing a non-
scientific article about a house plant, for example, can use the system for finding
a common name for the plant.

4.2 Publishing Species Lists as Ontology Services

The users of species lists are ecologists, environmental authorities and ama-
teurs searching for the correct scientific name occurring in a certain geograph-
ical area. In this use case ca. 20 published species lists obtained from the tax-
onomic database of the Finnish Museum of Natural History5 containing more
than 80,000 names were converted into TaxMeOn ontologies. In addition, seven
regional lists of long-horn beetles (cerambycids) with 100 species are available
from the years 1936–2010. The various names meaning the same taxon were
mapped by an expert. The most common differences between the lists are a
shift of a genus for a species, a change in a hierarchy and/or in a name status.
Similarly, ca. 150 species of butterfly names from five lists were mapped.
5 http://taxon.luomus.fi/

264 J. Tuominen, N. Laurenne, and E. Hyvönen

Currently, the mapped beetle names are published as services for humans and
machines in the ONKI Ontology Service6 [25]. The ONKI Ontology Service is a
general ontology library for publishing ontologies and providing functionalities
for accessing them, using ready-to-use web widgets as well as APIs. ONKI sup-
ports content indexing, concept disambiguation, searching, and query expansion.

Fig. 4 depicts the user interface of the ONKI server [24]. The user is browsing
the species lists of cerambycid beetles, and has made a query for taxon names
starting with a string “ab”. The selected species abdominalis has been described
by Stephens in 1831, and it occurs in the species list Catalogue of Palaearctic
Coleoptera, published in the year 2010 [15]. The species abdominalis belongs to
the subgenus and genus Grammoptera. The taxonomy of the family Cerambyci-
dae is visualised as a hierarchy tree. The same species also occurs in other species
lists, which is indicated by congruentWithTaxonOst relation. Browsing the taxa
reveals varying taxon names and classifications. For example, the Grammoptera
(Grammoptera) abdominalis has a subgenus in this example, but the rank sub-
genus does not exist in the other lists of cerambycid. Also, the synonyms of the
selected taxon are shown (analis, femorata, nigrescens and variegata).

Fig. 4. The species of abdominalis shown in the ONKI Browser

The ONKI Ontology Services can be integrated into applications on the user
interface level (in HTML) by utilising the ONKI Selector, a lightweight web
widget providing functionalities for accessing ontologies. The ONKI API has
6 http://demo.seco.tkk.fi/onkiskos/cerambycids/

Biological Names and Taxonomies on the Semantic Web 265

been implemented in three ways: as an AJAX service, as a Web Service, and as
a simple HTTP API.

The ONKI Ontology Service contains several ontologies covering different
fields and is a part of the FinnONTO project [6] that aims to build a national
ontology infrastructure. The Finnish Spatio-temporal Ontology (SAPO) [8], for
example, can be used to disambiguate geographical information of observational
data. Combining the usage of species ontologies and SAPO, extensive data har-
monisation is avoided as both taxon names and geographical names change in
time.

4.3 Management of Individual Scientific Names

The use case of scientific names is the Afro-tropical beetle family Eucnemidae,
which consists of ca. nine genera that have gone through numerous taxonomic
treatments. Also, mistakes and uncertain events are modelled if they are rel-
evant to name changes. For example, the position of the species Pterotarsus
historio in taxonomic classification has changed 22 times and at least eight tax-
onomic concepts are associated to the genus Pterotarsus [17]. Fig. 3 illustrates
the problematic nature of the beetle group in a simplified example. A compara-
ble comparable situation concerns most organism groups on Earth. Due to the
numerous changes in scientific names, even researchers find it hard to remember
them and this information can only be found in publications of taxonomy. The
option of managing individual names is advantageous as it completes the species
lists and allows the mapping of detailed taxonomic information to the species
lists. For example, environmental authorities and most biologists prefer a simple
representation of species lists instead of complicated change series.

5 Discussion

We have explored the applicability of the semantic web technologies for the
management needs of biological names. Separating taxonomic concepts from
scientific and vernacular names is justified due to the ambiguity of the names
referring to taxa. This also enables relating relevant attributes separately to a
concept and to a name, although it is not always clear to which of these an
attribute should be linked and subjective decisions have to made. The idea of
the model is simplicity and practicality in real-world use cases.

The fruitfulness lays in the possibilities to link divergent data serving diver-
gent purposes and in linking detailed information with more general information.
For example, a common name of a house plant, a taxonomic concept that ap-
pears to be a species complex (a unit formed by several closely related species)
and the geographical area can be linked.

The most complex use case is the management of scientific name changes of
biological research results. The main goal is to maintain the temporal control
of the name changes and classifications. The instantiation of taxon names and
concepts lead to a situation in which they are hard to manage when they form a

266 J. Tuominen, N. Laurenne, and E. Hyvönen

long chain. Every change increases the number of instances created. Protegé7 was
used for editing the ontologies, although managing names is quite inconvenient
because they are shown as an alphabetically ordered flat list, not as a taxonomic
hierarchy.

As Protegé is rather complicated for a non-expert user, the metadata editor
SAHA was used for maintaining the continuous changes of common names of
plants. The simplicity of SAHA makes it a suitable option for ordinary users
who want to concentrate on the content. However, we noticed that some useful
features are missing from SAHA. The visualisation of a nested hierarchy would
help users to compare differing classifications.

In many biological ontologies the ’subclass of’ relation is used for expressing
the taxon hierarchies. However, in the TaxMeOn model we use the isPartHigh-
erTaxon relation instead. If the ’subclass of’ relation was used to express the
taxonomic hierarchy, a taxon would incorrectly be an instance of the higher
taxon ranks, e.g., a species would be an instance of the class Genus. This would
lead to a situation in which queries for genera also return species.

5.1 Related Work

NCBO BioPortal8 and OBO Foundry9 have large collections of life science on-
tologies mainly concentrating on biomedicine and physiology. The absence of
taxonomic ontologies is distinctive which may indicate the complexity of the bi-
ological name system. The portals contain only three taxonomic ontologies (Am-
phibian taxonomy, Fly taxonomy and Teleost taxonomy) and one broader clas-
sification (NCBI organismal classification). The taxonomic hierarchy is defined
using the rdfs:subClassOf relation in the existing ontologies. Taxonconcept.org10

provides Linked Open Data identifiers for species concepts and links data about
them originating from different sources. All names are expressed using literals
and the following taxonomic ranks are included: a combination of a species and a
genus, a class and an order. Parallel hierarchies are not supported. Geospecies11

uses the properties skos:broaderTransitive and skos:narrowerTransitive to ex-
press the hierarchy.

Page [19] discusses the importance of persistent identifiers for organism names
and presents a solution for managing names and their synonyms on the semantic
web. The taxon names from different sources referring to the same taxon are
mapped using the owl:sameAs relation which is a strong statement. Hierarchy
is expressed using two different methods in order to support efficient queries.

Schulz et al. [20] presented the first ontology model of biological taxa and its
application to physical individuals. Taxa organised in a hierarchy is thoroughly
discussed, but the model is static and based on a single unchangeable taxonomy.

7 http://protege.stanford.edu/
8 http://bioportal.bioontology.org/
9 http://www.obofoundry.org/

10 http://www.taxonconcept.org/
11 http://lod.geospecies.org/

Biological Names and Taxonomies on the Semantic Web 267

Despite recognising the dynamic nature of taxonomy and the name system, the
model is not applicable in the management of biological names as such.

Franz and Peet [3] enlighten the problematic nature of the topic by describing
how semantics can be applied in relating taxa to each other. They introduce two
essentially important terms from philosophy to taxonomy to specify the way, in
which differing classifications that include different sets of taxa can be compared.
An ostensive relation is specified by being a member of a group and intensional
relations are based on properties uniting the group. These two fundamentally
different approaches can be used simultaneously, which increases the information
content of the relation.

Franz and Thau [4] developed the model of scientific names further by eval-
uating the limitations of applying ontologies. They concluded that ontologies
should focus either on a nomenclatural point of view or on strategies for align-
ing multiple taxonomies.

Tuominen et al. [23] model the taxonomic hierarchy using the skos:broader
property, and preferred scientific and common names of the taxa are represented
with the property skos:prefLabel and alternative names with skos:altLabel. The
property rdf:type is used to indicate the taxonomic rank. This is applicable to
relatively simple taxonomies such as species lists, but it does not support ex-
pressing more elaborate information (changes in a concept or a name).

The Darwin Core (DwC) [2] is a metadata schema developed for observation
data by the TDWG (Biodiversity Information Standards). The goal of the DwC
is to standardise the form of presenting biological information in order to enhance
the usage of it. However, it lacks the semantic aspect and the terms related to
biological names are restricted due to the wide and general scope of the DwC.

The scope of the related work presented above differs from our approach as
our focus is on practical name management and retrieval of names.

Research on ontology versioning [10] and ontology evolution [18] has focused
on finding mappings between different ontology versions, performing ontology
refinements and other changes in the conceptualisation [9,21], and in reasoning
with multi-version ontologies [5]. There are similarities in our problem field,
but our focus is to support multiple parallel ontologies interpreting the domain
differently, not in versioning or evolution of a specific ontology. For example,
there is no single taxonomy of all organisms, but different views of how they
should be organised into hierarchies.

A similar type of an approach for managing changes and parallel views of
concepts has been proposed by Tennis and Sutton [22] in the context of SKOS
vocabularies. However, TaxMeOn supports richer ways of expressing informa-
tion, e.g. for managing changes of taxon names and concepts separately.

5.2 Future Work

The model will be tested using different datasets to ensure its applicability. Cur-
rently, the research results part covers animal names, but will be expanded to
plant names as well. The lack of user-friendly tools is obvious and the metadata

268 J. Tuominen, N. Laurenne, and E. Hyvönen

editor SAHA is planned to be expanded to respond to the needs. Describing
evolutionary trees and their information content is a challenging application
area as phylogenetics produces name changes.

Acknowledgements. This work is part of the National Semantic Web Ontology
project in Finland12 (FinnONTO, 2003-2012), funded mainly by the National
Technology and Innovation Agency (Tekes) and a consortium of 38 organizations.
We thank Jyrki Muona, Hans Silfverberg, Leo Junikka and Juhana Nieminen for
their collaboration.

References

1. Berendsohn, W.: The concept of ”potential taxon” in databases. Taxon 44, 207–212
(1995)

2. Darwin Core Task Group. Darwin core. Tech. rep (2009),
http://www.tdwg.org/standards/450/

3. Franz, N., Peet, R.: Towards a language for mapping relationships among taxo-
nomic concepts. Systematics and Biodiversity 7(1), 5–20 (2009)

4. Franz, N., Thau, D.: Biological taxonomy and ontology development: scope and
limitations. Biodiversity Informatics 7, 45–66 (2010)

5. Huang, Z., Stuckenschmidt, H.: Reasoning with multi-version ontologies: A tem-
poral logic approach. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.)
ISWC 2005. LNCS, vol. 3729, pp. 398–412. Springer, Heidelberg (2005)

6. Hyvönen, E., Viljanen, K., Tuominen, J., Seppälä, K.: Building a national semantic
web ontology and ontology service infrastructure – the FinnONTO approach. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 95–109. Springer, Heidelberg (2008)

7. ICZN. Opinion 2245 (case 3407) drosophila fallén, 1823 (insecta, diptera):
Drosophila funebris fabricius, 1787 is maintained as the type species. Bulletin of
Zoological Nomenclature 67(1) (2010)

8. Kauppinen, T., Väätäinen, J., Hyvönen, E.: Creating and using geospatial ontology
time series in a semantic cultural heritage portal. In: Bechhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 110–123.
Springer, Heidelberg (2008)

9. Klein, M.: Change Management for Distributed Ontologies. Ph.D. thesis, Vrije
Universiteit Amsterdam (August 2004)

10. Klein, M., Fensel, D.: Ontology versioning on the Semantic Web. In: Proceedings of
the International Semantic Web Working Symposium (SWWS), July 30 – August
1, pp. 75–91. Stanford University, California (2001)

11. Knapp, S., Polaszek, A., Watson, M.: Spreading the word. Nature 446, 261–262
(2007)

12. Kurki, J., Hyvönen, E.: Collaborative metadata editor integrated with ontology
services and faceted portals. In: Workshop on Ontology Repositories and Edi-
tors for the Semantic Web (ORES 2010), the Extended Semantic Web Confer-
ence ESWC 2010, CEUR Workshop Proceedings, Heraklion, Greece (June 2010),
http://ceur-ws.org/

12 http://www.seco.tkk.fi/projects/finnonto/

http://www.tdwg.org/standards/450/
http://ceur-ws.org/

Biological Names and Taxonomies on the Semantic Web 269

13. Laurenne, N., Tuominen, J., Koho, M., Hyvönen, E.: Modeling and publishing
biological names and classifications on the semantic web. In: TDWG 2010 Annual
Conference of the Taxonomic Databases Working Group (September 2010); poster
abstract

14. Laurenne, N., Tuominen, J., Koho, M., Hyvönen, E.: Taxon meta-ontology
TaxMeOn – towards an ontology model for managing changing scientific names
in time. In: TDWG 2010 Annual Conference of the Taxonomic Databases Working
Group (September 2010); contributed abstract

15. Löbl, I., Smetana, A.: Catalogue of Palearctic Coleoptera Chrysomeloidea, vol. 6.
Apollo Books, Stenstrup (2010)

16. Mayden, R.L.: A hierarchy of species concepts: the denouement in the saga of the
species problem. In: Claridge, M.F., Dawah, H.A., Wilson, M.R. (eds.) Species:
The Units of Biodiversity Systematics Association Special, vol. 54, pp. 381–424.
Chapman and Hall, London (1997)

17. Muona, J.: A revision of the indomalesian tribe galbitini new tribe (coleoptera,
eucnemidae). Entomologica Scandinavica. Supplement 39, 1–67 (1991)

18. Noy, N., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowl-
edge and Information Systems 6(4) (2004)

19. Page, R.: Taxonomic names, metadata, and the semantic web. Biodiversity Infor-
matics 3, 1–15 (2006)

20. Schulz, S., Stenzhorn, H., Boeker, M.: The ontology of biological taxa. Bioinfor-
matics 24(13), 313–321 (2008)

21. Stojanovic, L.: Methods and Tools for Ontology Evolution. Ph.D. thesis, University
of Karlsruhe, Germany (2004)

22. Tennis, J.T., Sutton, S.A.: Extending the simple knowledge organization system
for concept management in vocabulary development applications. Journal of the
American Society for Information Science and Technology 59(1), 25–37 (2008)

23. Tuominen, J., Frosterus, M., Laurenne, N., Hyvönen, E.: Publishing biological
classifications as SKOS vocabulary services on the semantic web. In: TDWG 2010
Annual Conference of the Taxonomic Databases Working Group (September 2010);
demonstration abstract

24. Tuominen, J., Frosterus, M., Viljanen, K., Hyvönen, E.: ONKI SKOS server for
publishing and utilizing SKOS vocabularies and ontologies as services. In: Aroyo,
L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi,
R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp.
768–780. Springer, Heidelberg (2009)

25. Viljanen, K., Tuominen, J., Hyvönen, E.: Ontology libraries for production use: The
finnish ontology library service ONKI. In: Aroyo, L., Traverso, P., Ciravegna, F.,
Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl,
E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 781–795. Springer, Heidelberg (2009)

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 270–284, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Approach for More Efficient Energy Consumption
Based on Real-Time Situational Awareness

Yongchun Xu, Nenad Stojanovic, Ljiljana Stojanovic,
Darko Anicic, and Rudi Studer

FZI Research Center for Information Technology
76131 Karlsruhe, Germany

name.familyname@fzi.de

Abstract. In this paper we present a novel approach for achieving energy
efficiency in public buildings (especially sensor-enabled offices) based on the
application of intelligent complex event processing and semantic technologies.
In the nutshell of the approach is an efficient method for realizing the real-time
situational awareness that helps in recognizing the situations where a more
efficient energy consumption is possible and reaction on those opportunities
promptly. Semantics allows a proper contextualization of the sensor data (i.e. its
abstract interpretation), whereas complex event processing enables the efficient
real-time processing of sensor data and its logic-based nature supports a
declarative definition of the situations of interests. The approach has been
implemented in the iCEP framework for intelligent Complex Event Reasoning.
The results from a preliminary evaluation study are very promising: the
approach enables a very precise real-time detection of the office occupancy
situations that limit the operation of the lighting system based on the actual use
of the space.

Keywords: Energy Efficiency, Complex Event Processing, Semantic
Technology, Office Occupancy Control.

1 Introduction

Real-time processing has become very important for sensor-based applications, since
the quantity of data being generated from sensors requires on–the-fly processing and
immediate reaction in order to be effective. There are many examples, starting from
item-tracking in RFID-supported logistics to remote patient monitoring in eHealth.
Indeed, real-time awareness enables the detection of problems (e.g. a damaged item in
a delivery, or an acute health problem in a patient) as soon as they happen, so that the
reaction can be successfully performed. Note that the same mechanism can be used
for preventive reactions, i.e. reacting before a problem would happen.

In the nutshell of this mechanism is the ability to recognize in real-time1 (or even
ahead of time) some interesting situations, what is called “real-time situational
awareness”. Note that this goes beyond the traditional (static) situational awareness

1 We consider “business real-time“ as the criteria for declaring something to be processed in

real-time.

 An Approach for More Efficient Energy Consumption 271

(like in [1]) that is focused on the understanding a situation (if possible in real-
time). Real-time situational awareness introduces the notion of real-time emergency:
the main goal is to recognize a situation of interest as soon as possible in order to be
able to react on it properly.

On the other hand, such a process introduces several challenges for the processing
of sensor-data:

a) it should be very efficient in order to retain its “real-time” flavor and
b) it should be very flexible in order to deal with various and dynamically changing

patterns (situations) of interests (that should be recognized in real-time).
Complex event processing is a technology that can resolve these challenges.

Energy efficiency is one of application areas, where real-time situational awareness
can bring a substantial added value. Smart Grid is a well-known example: Smart
meters2 enable real-time publishing of information about energy consumption of a
user (usually once every seven minutes), which consequently can support the real-
time optimization of the energy production. Decreasing energy consumption in
buildings, public spaces and households is another very promising area for applying
real-time situational awareness. It has been shown that the creation of the awareness
about the current (in real-time) energy consumption in a household can bring itself up
to 20% savings in electricity bills. Beside these passive savings, active energy savings
by switching off electrical devices in particular situations are very common methods
in reducing energy consumption3.

Although well developed, current approaches for achieving energy efficiency seem to
be “inefficient”: they are usually dealing with customized solutions tuned to the
predefined energy consumption scenarios. The consequence is that the costs for
introducing and maintaining these solutions are quite high, since e.g. each new scenario
(the so-called energy consumption pattern) has to be modeled separately. On the other
hand, due to a high variation in the energy consumption profile (e.g. the spatial
distribution of energy consumers), energy consumption patterns are very variable and
modeling new patterns is more a rule than an exception. Therefore, although oriented
towards real-time recognition of the interesting situations, these approaches are suffering
from the inflexibility in the detection process, e.g. by not having available a declarative
description of the situations to be detected and by not performing an intelligent
processing (reasoning) on the incoming data. Obviously, the application of semantic
technologies can be very promising for resolving these challenges.

In this paper we present a novel approach for achieving energy efficiency that
exploits real-time situational awareness based on the use of Complex Event
Processing and Semantic Technologies. The main idea is to enable a semantic-based
description of the situations of interests (i.e. energy consumption patterns) and
perform reasoning about those situations in real-time. The approach leverages on our
work in the domain of intelligent Complex Event Processing (iCEP)4, especially
complex event reasoning, that combines a very efficient in-memory processing (on
the fly) of a huge amount of streaming data and the reasoning (on the fly) using
available domain knowledge.

2 http://www.smartmeters.com/faqs.html
3 http://www.greentrac.com/
4 See iCEP.fzi.de

272 Y. Xu et al.

The approach has been implemented using the iCEP framework and deployed in
our experimental environment that supports testing novel technologies with a higher
users’ involvement. We have performed a case study related to the office occupancy
control that limits the operation of the lighting system based on the actual use of the
space. Preliminary evaluation tests have shown very promising results regarding the
usability and the efficiency of the approach: the approach is able to abstract from
particular patterns to be recognized into general/declarative situations to be reasoned
about.

The paper is structured in the following way:
In the second section we give more details about our Energy Efficiency use case,

from the real-time consumption point of view. In the third section we outline the
architecture of our solution. In section four we describe some evaluation details,
whereas section five elaborates briefly on the related work. In section six we give
some concluding remarks.

2 Energy Efficiency in Offices: State of the Art and Requirements
Analysis

There are several studies which show that up to 70% of the energy consumption in an
office environment can be saved just by “creating awareness” about the current
energy consumption. This is especially related to the very low electricity consumption
of the equipment and lighting. For example, while according to Logicalis5, 94% of
workers surveyed turn their lights off at home, only 66% thought about doing the
same at work. Turning the lights off all too often gets ignored by offices, whose lights
continue to shine even after everyone has gone home. On the other hand, many of the
energy saving activities can be automated, like “whenever workers leave a room, the
lights should be turned off” (see more examples in the Evaluation section).

There are several approaches which are dealing with the automation of this
process, which are usually taking into account the following factors for the lighting
issues:

- control of the user’s presence in an office, as a necessary condition to turn on the
light;

- regulation of the artificial light, in relation to the natural light level;
- possibility of a manual regulation of the light, forcing the automatic regulation, in

order to better meet the user’s needs.

Therefore, the automation of the energy saving process is related to an efficient
sensing of the current situation in an office and reacting in particular situations. The
best examples are the so-called occupancy controls that limit the operation of the
lighting system based on the actual use of the space. Unlike scheduling controls, they
do not operate by a pre-established time schedule. Instead, the system senses when the
space is occupied and turns the lights on. When the system senses that there has been
no activity in the space, it assumes the space is unoccupied and turns the lights off. To

5 http://www.energysavingsecrets.co.uk/HowToRunAnEnergyEfficientOffice.html

 An Approach for More Efficient Energy Consumption 273

prevent the system from turning the lights off while the space is still occupied but
there is very little activity, a time delay typically ranging from 1 to 15 minutes can be
programmed into the controls.

However, as already mentioned in the Introduction, current approaches are based
on a fix set of rules that are designed for a particular scenario. Let’s illustrate this on
the example depicted in Figure 1: an office with six desks, each equipped with a lamp.
The task is to enable switching off the corresponding lamp when a person is leaving
the room. The most advanced systems would model several patterns that describe
situations that a person is leaving the room which implies the need for switching off
the light at her/his desk. A pattern for the region F would be (cf. Figure 1):

If sequence (RegionF, RegionD, RegionB, Door) Then SwitchOff(LampF) (1)

Fig. 1. The distribution of sensors in a smart office. There are three types of sensors: 1) contact
sensors (TFK - attached to the door), 2) moving sensors (M1 – M6) and Light barrier sensors
(L1-L4)

The main drawbacks of such an approach are:

1) the energy saving patterns are “hard-coded”, which means that all patterns
must be explicitly defined in order to be taken into account;

2) there is no abstraction in the pattern definition, so that any kind of
generalization is excluded;

3) the patterns are “static”, so that any kind of changes in the initial setting
cannot be realized easily.

Consequently, the requirements for a novel approach are related to:

1) a declarative description of energy saving patterns in order to enable an
abstract definition of the situations to be recognized;

274 Y. Xu et al.

2) the usage of domain knowledge in order to support the use of implicit
information in the detection process;

3) the management of patterns, including their evolution.

In the rest of the paper we present such an approach.

3 iCEP Approach for the Energy Efficiency

In order to resolve the above mentioned problems, we have developed a logic-based
approach for the automatic control of the energy consumption in an office scenario. In
the nutshell of the approach is a very efficient complex event processing supported by
deductive reasoning capabilities, implemented in the ETALIS engine [2]. The data
processed by ETALIS are coming from sensors placed in the office (cf. Figure 1).
Sensors are semantically described using ontologies. In the rest of this section we
present the information model behind the approach and give more details about the
underlying processing system.

3.1 Information Model

Figure 2 represents the information model used in the proposed approach.

Fig. 2. Information model of the system

It consists of three layers: the raw data provided by sensors, the Digital Entities
provided by sensor resources and the context information provided by the advanced
system components or context-level resources.

The raw data consists of the value that the sensor provides, e.g., the numerical
value 25. A resource may augment this information with meta-information, e.g. that
the measured value is a temperature that it is in degrees Celsius that it was measured
by sensor X at a certain point in time etc. We call the resulting information Digital
Entity.

 An Approach for More Efficient Energy Consumption 275

This information is not yet contextualized, i.e., we may know that it is a
temperature, but not what this temperature describes, e.g., is this the indoor
temperature of a room or the temperature within the fridge? This information is
modeled by the context information. The real world is modeled as Real-world entities,
which are further described by the context attributes. The Real-world entities have an
identifier and an entity type. The entity type, e.g., person, place, or car, etc. defines
the context attributes of an entity of interest. For example, a person can have a blood
pressure; whereas a car can have a certain fuel level. The context attributes have an
attribute name, e.g., “hasIndoorTemperature”, an attribute type, e.g., “temperature”
and a context value. The context value consists of a Digital Entity plus some quality
of information parameters. This quality of information may be different from the
quality information that was provided by the observation and measurement, e.g., the
accuracy for a room temperature may be calculated as a function of the accuracy of
the Digital Entity and the reliability that the temperature sensor provides the
temperature of the room.

In order to deal with situations we introduce Abstract Entities that correspond to
the abstraction of the Real-world entities in a given application context. For example,
a Region in Figure 1 is an Abstract entity. Similarly to a Real-world entity, an
Abstract entity is associated to some Context attribute, which has some Abstract
value. Note that Abstract value is a matter of the interpretation of the raw data (see
Figure 2).

Finally, a situation of interests is a combination of several Abstract states and
Values that represent the so-called Event types. Combinations are based on event
processing operators (AND, OR, SEQ, etc. [3].

Events represent instantiations of Event types in real time. Those events are
processed by ETALIS6 engine.

The sensor system takes advantages of using semantic technologies. We use an
ontology that is specified in W3C RDF/XML standard format to manage the sensor
information and the background domain knowledge (see section 3.4). Our sensor
system integrates ETALIS engine, which has the ability to perform stream reasoning
with the background knowledge (ontologies) to achieve a high processing
performance.

3.2 ETALIS

ETALIS Language for Events [2] is a logic-based formalism for Complex Event
Processing (CEP) and Stream Reasoning. It uses SWI-Prolog Semantic Web Library7
to represent an RDF/XML ontology as a set of Prolog rules and facts. ETALIS is an
open-source implementation of the language. The language and a corresponding
implementation are based on a novel event processing strategy which detects complex
events by maintaining the intermediate states. Every time an atomic event (relevant
w.r.t. the set of monitored events) occurs, the system updates the internal state of
complex events. Essentially, this internal state encodes what atomic events are still
missing for the completion a certain complex event. Complex events are detected as

6 http://code.google.com/p/etalis/
7 http://www.swi-prolog.org/pldoc/package/semweb.html

276 Y. Xu et al.

soon as the last event required for their detection has occurred. Descriptions telling
which occurrence of an event drive the detection of complex events (including the
relationships between complex events and events they consist of) are given by
deductive rules. Consequently, detection of complex events then amounts to an
inference problem.

Event processing formalisms based on deductive or logic rules [4, 5, 6] have been
attracting considerable attention as they feature formal, declarative semantics.
Declarative semantics of a CEP system prescribe what the system needs to detect, i.e.,
a user does not need to worry how that will be detected. In this respect declarative
semantics guarantees predictability and repeatability of results produced by a CEP
system. Moreover, CEP systems based on deductive rules can process not only events,
but also any additional background knowledge relevant with respect to the detection
of complex situations in real-time. Hence a rule-based approach enables a high
abstraction level and a uniform framework for realizing knowledge-based CEP
applications (i.e., specification of complex event patterns, contextual knowledge, and
their interaction). Such applications can be further supported by machine learning
(more specifically data mining) tools, to automate the construction and refinement of
event patterns (see [7]). Although the machine learning support per se is out of scope
of this paper, we want to emphasize the importance of the formal, rule-based
semantics which can further enable automated construction of both, event patterns
and the background knowledge. These features are beyond capabilities of existing
approaches [8, 9, 10], and this is one of reasons why ETALIS follows a logic rule-
based approach for event processing.

In the following, we identify a number of benefits of the ETALIS event processing
model, realized via deductive rules: First, a rule-based formalism (like the one we
present in this paper) is expressive enough and convenient to represent diverse
complex event patterns. Second, a formal deductive procedure guarantees the
correctness of the entire event processing. Unlike reactive rules (production rules and
ECA rules), declarative rules are free of side-effects; the order in which rules are
evaluated is irrelevant. Third, although it is outside the scope of this paper, a
deductive rule representation of complex events may further help in the verification of
complex event patterns defined by a user (e.g., by discovering patterns that can never
be detected due to inconsistency problems). Further on, ETALIS can also express
responses on complex events, and reason about them in the same formalism [11].
Fourth, by maintaining the state of changes, the ETALIS event model is also capable
of handling queries over the entire space (i.e. answering queries that span over
multiple ongoing detections of complex events). Ultimately, the proposed event
model allows for reasoning over events, their relationships, entire state, and possible
contextual knowledge available for a particular domain (application). Reasoning in
the ETALIS event model can be further exploited to find ways to reach a given aim,
which is a task that requires some intelligence. For example, an application or a
service needs to reach a stable or known (desired) state. To achieve this, the system
has to have a capability to reason about, or to asses states (in a changing
environment). Another example is to just “track and trace” the state of any entity at
any time (in order to be able to “sense and respond” in a proactive way).

Technically, ETALIS approach is based on the decomposition of complex event
patterns into intermediate patterns (i.e. goals). The status of achieved goals is

 An Approach for More Efficient Energy Consumption 277

materialized as first class citizens of a fact base. These materialized goals show the
progress toward completion of one or more complete event patterns. Such goals are
automatically asserted by rules as relevant events occur. They can persist over a
period of time “waiting” in order to support detection of a more complex goal or
complete pattern. Important characteristics of these goals are that they are asserted
only if they are used later on (to support a more complex goal or an event pattern),
that goals are all unique and persist as long as they remain relevant (after that they can
be deleted). Goals are asserted by rules which are executed in the backward chaining
mode. The notable property of these rules is that they are event-driven. Hence,
although the rules are executed backwards, overall they exhibit a forward chaining
behavior. For more information, an interested reader is referred to [2].

3.3 Example

As already mentioned, one of the main advantages of our approach is the possibility
to define the situations of interests in a declarative way and reason about them based
on the incoming sensor data.

In order to illustrate the abstractions introduced by ETALIS, we present here a very
illustrative example for the occupancy control based on the office context presented in
Figure 1.

In the traditional approaches, the situation of interests:
“a person left the room and her/his desk lamp should be switched off within 5 sec”

must be described by using one rule for each possible situation. An example is
illustrated in Figure 3: a person left the room by traversing from Region F, through
Region D and B till the door.

Fig. 3. A possible path from the office desk to the door: a situation that can lead to switching
off the lamp at the desk in the Region F

Therefore, traditional approaches must cover use all possible “evacuation” paths
which is a tedious and error prone process. The situation is even worse when we
consider that the distribution of objects in the office can be changed – the whole set of
rules must be rewritten.

278 Y. Xu et al.

On the other hand, in our approach there is only one logic-based statement that
covers all requested situations, by describing them declaratively:

Namespace: cep: http://www.icep.fzi.de/cepsensor.owl#
Pattern.event:

door_open <- status(‘cep:door’, 'cep:door_opened').

status(A, B) <- sensor(X, Y)
 WHERE
 (rdfs_individual_of(Sensor, 'cep:Sensor'),

rdf(Sensor, 'cep:hasName', X),
 rdf(State, 'cep:hasValue', Y),

rdfs_individual_of(State, 'cep:State'),
 rdf(B, 'cep:detectedWithState', State),

rdfs_individual_of(B, 'cep:Status'),
rdf(Sensor, 'cep:locatedIn', A)).

movement(Loc1,Loc2) <- status(Loc1, ‘cep:movementInRegion’) SEQ status(Bord,
‘cep:moveover’) SEQ status(Loc2, ‘cep:movementInRegion’)

 WHERE
(rdfs_individual_of(Loc1, 'cep:Region'),
rdfs_individual_of(Loc2, 'cep:Region'),
rdfs_individual_of(Bord, 'cep:Borderline'),
rdf(Loc1, 'cep:hasNeighbor', Loc2),
rdf(Loc1, 'cep:hasBorderline', Bord),
rdf(Loc2, 'cep:hasBorderline', Bord))2sec.

comment: this statement detects the situation that a person has changed the region, if within
2 sec the movement sensor and light barrier sensor for a Region has been activated

movement(Loc1,Loc3) <- movement(Loc1,Loc2) SEQ movement(Loc2,Loc3) .
movement(Loc, ‘cep:door’) <- (movement(Loc, ‘cep:regionB’) SEQ status(Bord,
‘cep:moveover’)) 2sec.
comment: this statement is the most crucial one: by introducing recursive rules we are able
to describe all possible paths which are containing succeeding regions
SwitchOff(Loc) <- (movement(Loc, ‘cep:door’) SEQ door_open)5sec.
comment: this statement detects the situation that a person has left the room (after a
sequence of traversing between regions) and that after 5 sec the light at the starting location
should be switched off

Note that the particular state of the world (like this presented in Figure 2) is
represented in the domain ontology and the CEP engine (ETALIS) is accessing that
knowledge in the real time.

rdf(?Subject, ?Predicate, ?Object)
is a function in SWI-Prolog Semantic Web Library . It is an Elementary query for triples.
Subject and Predicate are atoms representing the fully qualified URL of the resource. Object
is either an atom representing a resource or literal (Value) if the object is a literal value.

rdfs_individual_of(?Resource, ?Class)
is a function in SWI-Prolog Semantic Web Library. It tests whether the Resource is an
individual of class. It returns true if Resource is an individual of Class. This implies
Resource has an rdf:type property that refers to Class or a sub-class thereof. It can be used to
test, to generate classes Resource belongs to or to generate individuals described by Class.

 An Approach for More Efficient Energy Consumption 279

3.4 Domain Ontology

The structure of the ontology used in our scenario is shown in Figure 4.
The Sensor class hierarchy on the top left models the sensors of the scenario such

as contact sensor, movement sensor and light barrier sensor. Each sensor type has
one or several states, which describe the physical sensing information of sensors, e.g.
the contact sensor has two states: on or off. The states of sensors are modeled by using
the class State.

The Actuator class hierarchy on the top right of the Figure 4, similar to the Sensor
class hierarchy, models all actuators. Each Actuator has some processes, modeled in
the class Process and defining the functions of the actuators. For example, the Switch
has two processes corresponding to the switch on and switch off functions.

Fig. 4. Illustration of the main concepts in the domain ontology

The Object hierarchy describes the real world entities such as Lamp, Door and
Region, which are connected to a sensor or an actuator. The object property locatedIn
describes the connection between the Objects and Sensors or Actuators. Each object
has several statuses e.g. Door has two statuses: open and closed. Some of these
statuses can be detected by Sensor with the special State; the others are controlled by
Actuator by using related Process.

This ontology is used as background knowledge by ETALIS engine. Indeed,
ETALIS allows using background knowledge in the detection process - any constraint
can be easily associated to each situation, which enables a very easy generation of
new occupancy situations that should be detected. For example, it is very easy to
introduce a new property of a region in an office, like to treat regions that have a
window separately from other regions.

280 Y. Xu et al.

4 Evaluation

In order to evaluate the performance of the proposed system we have implemented a
test case concerning efficient energy consumption in an office. We have used the FZI
Living Lab8 environment for the testing.

The use case is based on simulating occupancy control situations that limit the
operation of the lighting system based on the actual use of the space. In other words,
if there is a situation, that leads to possibly saving energy, being recognized in a way
specified in Section 3.3, the corresponding lighting source should be either dimmed or
switched off. In order to make the test realistic we have implemented the set of energy
consumption patterns developed for a Building Energy Challenge9. Table 1 represents
some of those patterns. Note that in order to be realistic we assume that there are
negative and positive situations from the energy efficiency point of view, depicted as
Penalties and Bonus in Table 1 (the setting has been completely taken from the
Building Energy Challenge).

Table 1. Examples of the consumption patterns from the Building Energy Challenge

Penalties Bonus
Having a window open while the heating
system is on

Switch off the light each time when
leaving the office

Leaving the office at the end of the day
with the computer switched on

Switch off the heating each time when
none is in the office

Switch on the artificial light while day
light is sufficient

Switch off the computer when leaving
the office for more than one hour

Having a temperature lower than 26 °C
with the air conditioning on [12]

Switch off the artificial light while day
light is sufficient

We have modeled all these patterns using ETALIS language and ontologies as
discussed in Section 3. The setting of the sensors was very similar to that presented in
Figure 1 (additional sensors for measuring temperature, light intensity and actuators
for electric devices have been introduced).

We performed an experiment in order to measure savings in the energy
consumption. We have measured the power saving time in the period of one month in
an office with five people. We find this setting as a very common one. As already
explained, our declarative approach doesn’t depend on the number of sensors and the

8 Living Labs is a practical approach to realize open innovation with a regional dimension. By

definition, it is “research methodology for sensing, validating and refining complex solutions
in real life contexts”. It is conceptualized as an innovation platform that brings together and
involves a multitude of actors, such as end-users, researchers, industrialists and policy
makers. They crucial characteristic is that they are user-centered with an active participation
of users within the entire development process. Usually, Living Labs build upon or create a
technology platform geared to answer the needs of users in a particular situation.

9 A contest regarding energy consumption between several office buildings within a company,
see: http://www.artist-embedded.org/docs/Events/2010/GREEMBED/0_GREEMBED_Papers/
IntUBE 20- 20GREEMBED.pdf

 An Approach for More Efficient Energy Consumption 281

size of the room. We performed several changes in the layout of the room (position of
sensors) but without the need to change the complex event patterns. Therefore, the
abstraction provided by our language is correct: interesting situations are defined on
the level of objects, independently from the current position of sensors.

Table 2 presents the results from this experiment. In the last column we present the
average value of measurements and in the rest of the columns the values for four
particular days (1st, 10th, 20th and 30th) in order to illustrate how theses consumption
values varied.

Power saving time represents the time when some electric devices were switched
off because of the situation that the corresponding person (related to that device) had
left the room.

We are quite satisfied with the general result of the experiment: the proposed
approach leads to significant reductions in the energy consumption. We didn’t
encounter any example of the false positive.

Table 2. The results from the experiment

 1st day 10th day 20th day 30th day average
Power
saving time:

33089s 19548s 58133s 42152s 38255s

Total time: 109199s 103665s 124676s 117021s 111354s
Proportion: 30.3% 18.9% 46.6% 36% 34.3%
Error: 12 13 18 10 13
Total switch: 67 56 59 56 62
Error rate 17.9% 23.2% 30.5% 17.9% 18.3%

The only problem we have faced is the rather huge error rate, whereas an error
represents the number of situations that couldn’t be detected by using currently
deployed patterns (out of scope of the experiment). In the following we give an
explanation (i.e. interfere factors) of these situations.

The first interfere factor is the precision of the sensors. In the evaluation we used
ELV FS20 sensor systems including FS20 PIRI-2 motion sensor, FS20 IR light
barrier sensor, FS20 TFK contact sensor and FS20 ST-3 radio electrical socket. The
motion sensor and the light barrier sensor have a minimal send time interval of 8
seconds, which means they can only send a single value every 8 seconds. In the case
of a high activity frequency, the sensors can’t detect all activities. Furthermore, the
sensors can’t detect some situations such as two people come into the office together.
In this situation the sensors are not able to recognize the number of the people and
only one lamp will be switched on. To overcome this, we can use more sensors and
the better sensors to increase the precision of the event detection.

The second interfere factor is unanticipated activity in the office. For example, a
user forgets to close the door after coming into the office. Then when another user
leaves the office, he doesn’t need to open the door, which is a necessary event
according to the pattern. In this situation, the lamp will also not be switched off.
Similarly, a visitor has visited the office, when he leaves the office, one lamp in the

282 Y. Xu et al.

office will be falsely switched off. This problem can be overcome by installing
automatic door closing device and using new sensor technologies (such as RFID) to
recognize the identity of the user.

The third interfere factor results from the fact that the pattern definition doesn’t
match the character of a user. In the pattern we have defined that the movement event
and door open event must happen within 5 seconds to trigger the switch off event. If a
user is accustomed to do something else costing more than 5 seconds before he opens
the door, then his lamp will not be switched off. The problem can be solved by doing
some study on the characters of the users before defining the patterns.

Modeling the above mentioned situations will be one of the subjects of the further
work.

5 Related Work

In this section we only present the related work related to the current lighting control
systems. Related work to our approach for complex event processing can be found in [2].

Current lighting and climate control systems often rely on building regulations that
define maximum occupancy numbers for maintaining proper lighting and
temperatures. However, in many situations, there are rooms that are used infrequently,
and may be lighted, heated or cooled needlessly. Having knowledge regarding
occupancy and being able to accurately predict usage patterns may allow significant
energy-savings.

In [13], the authors reported on the deployment of a wireless camera sensor
network for collecting data regarding occupancy in a large multi-function building.
They constructed multivariate Gaussian and agent based models for predicting user
mobility patterns in buildings.

In [14], the authors identified that the majority of this energy waste occurs during
the weekdays, not during the weeknights or over the weekends. They showed that this
pattern of energy waste is particularly suited to be controlled by occupancy sensors,
which not only prevent runaway operation after typical business hours, but also
capture savings during the business day.

An analysis of the impact of the new trends in energy efficient lighting design
practices on human comfort and productivity in the modern IT offices is given in [14].

In [15], the authors presented the design and implementation of a presence sensor
platform that can be used for accurate occupancy detection at the level of individual
offices. The presence sensor is low-cost, wireless, and incrementally deployable
within existing buildings.

An examination of different types of buildings and their energy use is given in
[16]. The authors discussed opportunities available to improve energy efficient
operation through various strategies from lighting to computing.

As a conclusion, there are many approaches for the lighting control, but none of
them is using a more declarative approach that would enable an efficient real-time
situation detection.

 An Approach for More Efficient Energy Consumption 283

6 Conclusions

In this paper we presented a novel approach for achieving energy efficiency in public
buildings (especially sensor-enabled offices) based on the application of intelligent
complex event processing and semantic technologies. In the nutshell of the approach
is an efficient method for realizing real-time situational awareness that helps in
recognizing the situations where a more efficient energy consumption is possible and
reaction on those opportunities promptly. Semantics allows a proper contextualization
of the sensor data (its abstract interpretation). Complex event processing enables the
efficient real-time processing of sensor data and its logic-based nature supports a
declarative definition of the situations of interests.

The approach has been implemented using iCEP framework and deployed in the
FZI Living Lab environment that supports testing novel technologies with a higher
users’ involvement. We have performed a case study related to the office occupancy
control, that limits the operation of the lighting system based on the actual use of the
space. Preliminary evaluation tests have shown very promising results regarding the
usability and the efficiency of the approach: the approach is able to abstract from
particular patterns to be recognized into general/declarative situations to be reasoned
about.

Future work will be related to modeling a more comprehensive set of patterns for
representing more complex situations as described in the Evaluation section.
Additionally, new tests in the Living Lab have been planned.

Acknowledgments

Research for this paper was partially financed by EU in the following FP7 projects:
ALERT (ICT-258098), PLAY (ICT-258659) and ARtSENSE (ICT-270318).

References

1. Thirunarayan, K., Henson, C., Sheth, A.: Situation Awareness via Abductive Reasoning
for Semantic Sensor Data: A Preliminary Report. In: Proceedings of the 2009 International
Symposium on Collaborative Technologies and Systems (CTS 2009), Baltimore, MD,
May 18-22 (2009)

2. Anicic, D., Fodor, P., Rudolph, S., Stuehmer, R., Stojanovic, N., Studer, R.: A rule-based
language for complex event processing and reasoning. In: Proceedings of the 4th
International Conference on Web Reasoning and Rule Systems (RR 2010), pp. 42–57
(2010)

3. Deepak, M.: SNOOP: An Event Specification Language For Active Database Systems.
Master Thesis, University of Florida (1991)

4. Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,
M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data management
applications. In: VLDB 2002: Proceedings of the 28th international conference on Very
Large Data Bases. VLDB Endowment (2002)

5. Ray, O.: Nonmonotonic abductive inductive learning. Journal of Applied Logic (2008)

284 Y. Xu et al.

6. Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing time into rdf. IEEE Transactions
on Knowledge and Data Engineering 19(2), 207–218 (2007)

7. Ryvkina, E., Maskey, A.S., Cherniack, M., Zdonik, S.: Revision processing in a stream
processing engine: A high-level design. In: Proc. Int. Conf. on Data Eng (ICDE), Atlanta,
GA, USA (2006)

8. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event
streams. In: Proceedings of the 28th ACM SIGMOD Conference, pp. 147–160 (2008)

9. Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent streaming through time: A
vision for event stream processing. In: Proceedings of the 3rd Biennial Conference on
Innovative Data Systems Research (CIDR 2007), pp. 363–374 (2007)

10. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic foundations
and query execution. VLDB Journal 15(2), 121–142 (2006)

11. Anicic, D., Stojanovic, N.: Expressive logical framework for reasoning about complex
events and situations. In: Intelligent Event Processing - AAAI Spring Symposium 2009.
Stanford University, California (2009)

12. Recommendation from the French Construction code for construction and housing,
http://www.legifrance.gouv.fr/affichCodeArticle.do;
jsessionid=87AE72FAE86DC9CF56B8673C1B88F9AD.tpdjo08v_2?
cidTexte=LEGITEXT000006074096&idArticle=
LEGIARTI000006896264&dateTexte=20090619&categorieLien=id

13. Erickson, V.L., et al.: Energy Efficient Building Environment Control Strategies Using
Real-time Occupancy Measurements. In: Proceedings of the First ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in Buildings, pp. 19–24 (2009)

14. von Neida, B., et al.: An analysis of the energy and cost savings potential of occupancy
sensors for commercial lighting systems,

 http://www.lrc.rpi.edu/resources/pdf/dorene1.pdf
15. Walawalkar, R., et al.: Effect of Efficient Lighting on Ergonomic Aspects in Modern IT

Offices,
 http://www.walawalkar.com/info/Publications/Papers/
 EE&Ergonomics.pdf

16. Agarwal, Y., et al.: Occupancy-driven energy management for smart building automation.
In: Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Building (2010)

Ontology-Driven Complex Event Processing in
Heterogeneous Sensor Networks

Kerry Taylor1 and Lucas Leidinger2

1 CSIRO ICT Centre
GPO Box 664, Canberra, ACT, 2602, Australia

kerry.taylor@csiro.au
2 University of Applied Sciences of the Saarland

lucas.leidinger@gmx.de

Abstract. Modern scientific applications of sensor networks are driving
the development of technologies to make heterogeneous sensor networks
easier to deploy, program and use in multiple application contexts. One
key requirement, addressed by this work, is the need for methods to
detect events in real time that arise from complex correlations of mea-
surements made by independent sensing devices. Because the mapping
of such complex events to direct sensor measurements may be poorly un-
derstood, such methods must support experimental and frequent speci-
fication of the events of interest. This means that the event specification
method must be embedded in the problem domain of the end-user, must
support the user to discover observable properties of interest, and must
provide automatic and efficient enaction of the specification.

This paper proposes the use of ontologies to specify and recognise com-
plex events that arise as selections and correlations (including temporal
correlations) of structured digital messages, typically streamed from mul-
tiple sensor networks. Ontologies are used as a basis for the definition
of contextualised complex events of interest which are translated to se-
lections and temporal combinations of streamed messages. Supported by
description logic reasoning, the event descriptions are translated to the
native language of a commercial Complex Event Processor (CEP), and
executed under the control of the CEP.

The software is currently deployed for micro-climate monitoring of
experimental food crop plants, where precise knowledge and control of
growing conditions is needed to map phenotypical traits to the plant
genome.

1 Introduction

Sensor networks, especially low-cost wireless sensor networks (WSNs), are rapidly
gaining popularity for use in developing scientific knowledge. Scientists are per-
forming dense monitoring of natural environment parameters to learn about
matters including faunal distribution and behaviour, biodiversity and biological
interactions, air and water quality, micro-climatic conditions, and human im-
pact. In some cases a regular collection of homogenous sensor data is sufficient

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 285–299, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

286 K. Taylor and L. Leidinger

to support subsequent intensive data analysis over a data archive. In other cases,
there is a need for real-time data collection, analysis, and active response. This
will arise when scientists are unsure about the how to detect the phenomena
being investigated, when a human response is necessary to an observed event,
or when the recognised occurrence of an event should cause a change in the
monitoring behavior or equipment configuration. For example, when turtle eggs
begin to hatch on the beach in stormy weather, a scientist should be alerted and
cameras should be activated. When an endangered plant begins to flower and
pollinators are detected in the locality, a protecting cloche should be removed to
enable pollination. When nitrate concentrations at several points in the water
course exceed a threshold, the downstream oyster farmers should be warned and
additional water quality parameters should be monitored.

In these cases the events may be detected only by recognising a complex cor-
relation of observations made over multiple sensors attached to multiple WSN
nodes, and possibly distributed over multiple networks. The sensors may be het-
erogenous, as may be the sensing nodes that control them. Although in principle
is possible to use in-network processing techniques by explicitly programming
each device to make observations and to coordinate and correlate those obser-
vations with neighbouring nodes, this is very difficult in general and certainly
requires advanced programming skills and dedication with current technology. If
we add the typical experimental challenge to the mix—that it is not well known
how to define the desired event in terms of measurable properties, nor even what
all the interesting events might be over the life of a sensor network deployment,
then we can conclude that better tools are needed to offer this capability.

A better tool should enable an experimental scientist to

– discover sensors that could be used to make relevant measurements;
– develop a specification for the event of interest in terms of the available

sensing capability;
– reuse measurements that are already being made if possible or to
– program the sensor devices to make the necessary measurements otherwise;
– describe an action to be taken if the interesting event is detected; and to
– easily deploy the specification for efficient runtime processing.

In this paper we propose the use of ontologies as an important part of such a
tool. In earlier work we have shown how to effectively program sensor networks
and devices by modelling the sensing capability and programming language in
an OWL ontology, using the ontology to add contextual concepts for use in
the programming task, and using the ontology reasoning capability to validate
commands [12]. In this work, we propose that an ontology can capture valuable
domain context for sensor capability description and discovery, for description
of an interesting event in terms of potential sensor measurements, and for opti-
mising the execution strategy for run-time event detection.

We do not address sensor discovery, but discovery methods based on ontolog-
ical descriptions abound, for example [11] and [6]. In our work, we rely on the
newly developed SSN ontology from the W3C Semantic Sensor Network Incu-
bator Group [13], to take advantage of an emerging community terminology.

Ontology Driven Complex Event Processing 287

For enactment of event detection, we employ one of the many commercial or
open source complex event processors (CEP) or distributed stream management
systems (DSMS). These software systems are capable of binding to input streams
of real-time structured messages, such as those arising as observation values
reported from sensor networks. They can efficiently evaluate queries over those
streams that check message content for particular values and for values related
to previous messages in the same stream or to messages in other streams. They
support temporal and aggregation operators to enable the detection of events
that arise as complex correlations of data values in the messages. These systems,
too, are notoriously difficult to configure [5] although they commonly offer an
SQL-like query language with which to express the desired events. There is no
standard language (although they are usually similar to CQL[2]) nor even a
widely-used algebra or well-defined semantic model for events.

In our work, we develop an ontology of domain, event, observation and sensor
network, and use that ontology to drive a user interface. When the user specifies
an event of interest through the interface, our middleware processes the specifica-
tion and generates configuration commands for a CEP system. The CEP system
monitors the selected data streams and generates alerts to be delivered to spec-
ified clients when the event occurs. Our contribution is the general method for a
better tool for scientists as described above, although this paper focuses on the
parts that offer development and optimised deployment of the specification of a
complex event.

Outline. We begin our description of the method for ontology-driven complex
event detection by presenting the overall architecture and the role of the ontology
and CEP in section 2. In section 3 we describe the ontology driven user interface,
and how it is used to specify complex events over sensor measurements. In section
4 we describe how our semantic middleware processes the specification together
with the initial ontology to generate optimised configuration instructions for the
CEP middleware. In order to apply the system each sensor network needs an
interface developed as described in section 5. After an analysis of related work
in section 6 we conclude with a summary and presentation of future work.

2 Architecture - Event Framework

Our event framework is software that implements our method for ontology driven
complex event processing in heterogeneous sensor networks.

The event framework includes all software to define, process and recognize
complex events in sensor networks. The framework is composed of five separate
parts, each of which may be replaceable for different applications, although the
semantic event middleware is the core component:

User interface to build complex event definitions;
Semantic event middleware to process complex event definitions;
Management module interfaces to program and access different kinds of

sensor data sources;

288 K. Taylor and L. Leidinger

Event ontology containing the model of sensor networks, sensor programs,
complex events and the event environment; and

CEP server to perform the complex event detection over multiple heteroge-
neous sensor network data streams (Coral8 1 in our case).

Fig. 1 shows the event framework and illustrates the communication between
components. The basic process can be described as follows:

1. The user defines a complex event definition composed from several atomic
sensed events within the user interface.

2. The complex event definition is processed and stored in the event ontology.
3. The ontology data is used to program the required sensors.
4. The event detection part for the current event definition is separately saved

in an ExportOntology and sent to the semantic event middleware.
5. The semantic event middleware transforms the received ontology into CEP

streams and queries, written in the CEP-dependent Event Processing Lan-
guage (EPL).

6. The semantic event middleware sets up the CEP server with created streams
and queries, and initiates the event detection process.

7. The CEP server performs the event detection and sends an alert if the spec-
ified event has been recognized.

The EventOntology is the central part of the Event Framework. It allows the use
of reasoning over event information to obtain additional knowledge and to perform
semantic optimisations. A clear formalization of the event and measurement en-
vironment is necessary to exploit these advantages. Our OWL 2.0 event ontology
extends an early form of the SSN ontology of the W3C SSN-XG [13]. It is reported
to be in ALCIQ(D) by the ontology editor, Protégé.Alongwith the sensors, itmod-
els the domain of application and the concept and model of the entire event frame-
work.Events, alerts, triggers, streams, locations, instruments, phenomena, sensors
and sensor programsare all part of this description.Additional classes and instance
data are included to describe relations between single events, time intervals, and
to define different kinds of sensor programs. The high-level structure is apparent
through its reflection in the user interface given in section 3. The interested reader
may find the ontology at http://research.ict.csiro.au/conferences/ssn/
EventOntology_no_imports.owl.

The CEP server application performs the actual complex event detection. For
this, the server receives a stream with configuration information for the event
data sources and a query for the complex event detection, both expressed in the
CEP’s proprietary EPL. The CEP server is also responsible for sending the user
defined alert message if an event has been detected.

We now provide more detail on our user interface, our semantic event mid-
dleware and our management module interfaces for each source.

1 The Coral8 CEP-platform.
http://www.aleri.com/products/aleri-cep/coral8-engine

http://www.aleri.com/products/aleri-cep/coral8-engine

Ontology Driven Complex Event Processing 289

Fig. 1. Event Framework

3 Ontology-Driven User Interface

The user interface is implemented as a plug-in to the popular OWL 2.0 ontology
editor Protégé. It contains windows to manage new locations and instruments,
and to create complex event definitions as shown in see Fig 2. It has the func-
tionality to store entered information as ontology instance data, the capability to
perform semantic optimisations, and to program the sensor devices before com-
plex event descriptions are sent for the further processing to the semantic event
middleware. The sensor programming capability [12] is not further described.

The ability to provide a user interface which allows one to define events in
a logical and expressive way and also to store this definition in an ontology
requires splitting the entire complex event definition into parts: Events, Alerts,
Observations, and Triggers. Each part describes exactly one event property that
is able to be stored within an ontology.

290 K. Taylor and L. Leidinger

Fig. 2. User Interface

3.1 Events

Every event description consists of two major parts: an alert which will be acti-
vated if an event has been recognized, and the definition of the event itself. The
definition can be expressive and must be able to represent user-defined complex
structures. To achieve this goal, every complex event definition, called an obser-
vation, is composed of several atomic observations. Each atomic observation can
be individually configured in four main steps.

1. Select a sensor from an instrument at a specific location.
2. Choose the update interval for this sensor.
3. Set up a trigger including trigger values.
4. Define the relationship to the following observation.

Defining the relationship to the following observation together with function-
ality to group sequential observations enables the formation of complex event
descriptions. The design of instruments and locations declares that every instru-
ment is located at a specific location. This allows the grouping of all instruments
from one location and the selection of instruments based on the location name.
The location itself has no finer definition in this implementation, although it

Ontology Driven Complex Event Processing 291

could be useful to add extra information like physical values or the kind of loca-
tion and an environment description. Both location and instrument descriptions
are stored within the ontology. The user interface loads this information dynam-
ically and only displays valid entries within the event definition window.

3.2 Alerts

The user can choose to receive an email or a text message on a mobile phone
if an event has been detected. Every email includes standard passages about
the event processing supplemented with event specific information such as the
latest sensor data and a description of the trigger configuration. The SMS alert
is shorter. Alerts are defined within the ontology, together with the relevant EPL
code fragments, and dynamically loaded and integrated into the user interface.
This easily allows the integration of additional alert types. In future work we
will add an alert type to send a control message to external software systems.

3.3 Observations

Complex events are designed within the ontology, so that every complex event
contains an observation. An observation itself is used as a generic term for five
different kinds that are used to realize the complexity of definitions. Observation
operators are used to define the logical AND, OR and FOLLOWED BY rela-
tionships between atomic or compound observations. Bracketed grouping can
also be represented in observation groups.

Atomic Observation is the description of an atomic event within the entire
complex event definition. It contains the information to program the selected
sensor and the trigger definition for the event.

Observation Intersection is used to create a logical AND (&&) relationship
between two observations. Each of these observations can be a single obser-
vation, an observation union, an observation sequence or another observation
intersection in turn.

Observation Union is the counterpart to the observation intersection. It links
two observations by a logical OR (||) relationship. Here again, each of obser-
vations can be a single observation, an observation intersection, an observa-
tion sequence or another observation union.

Observation Sequence is used to create a FOLLOWED BY (,) relationship
between two observations. FOLLOWED BY specifies that the next event
has to be recognized chronologically after the previous one. Each of these
observations can be a single observation, an observation intersection, an
observation union or an observation sequence. This is only available if strict
order is used, as described in the next paragraph.

Observation Groups are used to combine multiple single observations. Each
group belongs to a certain event and contains all consecutive observations
summarized by the user within one parenthetical group.

292 K. Taylor and L. Leidinger

It is not possible to define AND and OR relations using the corresponding
primitives of the underlying ontology language itself because we also need to
use the custom FOLLOWED BY operator to express temporal relationships
between atomic observations.

The FOLLOWED BY relationship is used to define temporal sequences of
atomic events meaning that the next event within the event expression must
arrive after the previous one. A time period specifies the duration within which
individual observations can be triggered in order to be valid and taken into
account for the entire complex event detection. Using a strict temporal order
allows the defintion of event definitions such as: Send an alert if the temperature
at location A or at location B falls below 0 degrees and then humidity becomes
less than 15 percent at location A followed by wind speed with more than 130
km/h in combination with a north-easterly wind direction at location B within
a period of 30 seconds.

An important part of the observation design is that the ontology includes code
fragments to generate CEP-platform-specific statements which are used for the
run-time event detection.

3.4 Triggers

To create expressive and practical event descriptions, it is necessary to inter-
pret, analyse and filter environmental observations to be able to define which
occurrences are interesting for an event. The data source is already described by
the sensor program within an atomic observation. In order to be in a position to
recognize complex events, it is not enough to simply compare incoming values. It
is much more revealing to observe time dependent behaviour and value patterns.
For this reason, nine different kinds of Triggers were designed.

About examines if the received data is equal to a user defined value. Values
within 10 percent tolerance are detected.

Area recognizes all readings in the interval between two given values.
Change monitors if the current reading changes with respect to the average

value of the previous two readings.
Decrease is used to detect if the latest value is lower than the average of two

preceding readings.
Equal simply checks if the current value equals a value defined by the user.
Greater triggers if the received value is greater than a user defined value.
Increase is the opposite of Decrease and observes if the latest value is greater

than the average of two preceding readings.
Less triggers if the received reading is smaller than a user defined value.
Received recognizes if data from a sensor has been received, without further

qualification.

Like the observation concept, the trigger specification within the ontology con-
tains CEP-platform specific code fragments which are used to generate queries

Ontology Driven Complex Event Processing 293

for the event detection. The trigger implementation focuses on demonstration
purposes and is quite elementary. The calculations of limiting values as well as the
limiting values itself were chosen arbitrarily to obtain a satisfactory behaviour in
the targeted environment. This design is sufficient to demonstrate the technical
feasibility of defining complex triggers in an ontology and to transform them
into CEP statements.

4 Semantic Event Middleware

All complex event descriptions in the form of an ontology are forwarded from the
user interface to the semantic event middleware. The semantic event middleware
uses the complex event descriptions to generate streams and queries for the CEP
server application to enact the event detection. Subsequently, the CEP server is
connected, streams and queries are registered, and the event detection process
started.

4.1 Communication with the User Interface

Within the semantic event middleware, the same ontology as in the user inter-
faceEventOntology, is used. New complex event descriptions generated in the
user interface are received by a network connection, so that the event definition
and the event transformation can be performed independently. Only ontology
fragments for new complex event descriptions are exchanged; they are merged
with the local EventOntology on receipt.

4.2 Transforming Ontology Data into EPL Statements

Through the decomposition of the complex event definitions into individual
parts, describing exactly one property, it is possible to extract the entire event
description from the ontology and make it usable to generate CEP program
code. These CEP programs are composed of streams and queries. Streams are
used to create connections to event data sources and to filter the required data
for the event detection. Queries describe the actual event detection including all
observed sensors, triggers and relationships between atomic observations, groups
and the temporal order of observations.

At this point, code fragments, which are stored as datatype property values
in the event ontology are used to form EPL statements. Furthermore, class and
instance names from the ontology are used to generate names for variables in the
CEP code. Together, this supports the generation of large parts of the CEP code
automatically and independently of the particular EPL. Storing code fragments
not only for one CEP implementation but for multiple CEP-platforms in the
ontology would additionally allow the choice of different CEP implementations.
However, as the grammar of the EPL needs to be reflected in the translation
of the Ontology2CEPTransformer (fig. 1), alternative implementations of this
module may be necessary for CEP platforms employing a very different language
structure.

294 K. Taylor and L. Leidinger

Fig. 3 illustrates this usage of ontology data to create Coral8 EPL program
code. The shown ontology data and the code snippet correspond to a com-
plex event definition example which recognizes temperature between -20 and
-10 degrees, amongst other observations. All shaded statements are generated
from the description of sensor programs from the ontology. For example, the sen-
sor program individual “program 0 1283418466826Ind” has the object properties
“WS-TemperatureSensor” and “WM1600”. Both are used as variable names to
describe input and output streams as well as CEP windows that include the
definition of which data has to be filtered. The black highlighted expression
within the “where” clause is also created automatically. The template clause,
“trigCmd”, for the Area trigger, “column > value1 AND column < value2”, is
used as basis for the “where” clause. This information is stored in the ontology
as a part of the definition of the Area trigger class, and so, through a reasoner,
is also a dataproperty value of the “trigger 0 1283418466826Ind” individual of
that class. Other data property values instantiated through the user interface
provide the user defined thresholds “hasValue1” and “hasValue2” to replace the
terms “value1” and “value2” inside the template clause. The template string “col-
umn” is replaced by the corresponding variable name generated by using the
description of sensor program “program 0 1283418466826Ind”.

4.3 Semantic Optimisation of Streams

Reasoning is used to improve the efficiency of streams within the semantic event
middleware. The goal is to reuse existing information to save run-time resources
and to reduce the amount of data which must be transferred between the data
sources and the event processing application. This may be especially important
when multiple users are being served.

Since CEP platforms and the Semantic Event Middleware are able to monitor
several complex events at the same time, it is possible to re-use some streams
already configured in the CEP for previously specified complex events. When
a stream definition is created through this software through commands to the
CEP, it is also defined in the EventOntology as an instance of the stream class
with associated property instances. For example, if streams which provide tem-
perature and wind speed from location plot21north and wind direction from
location plot23central have previously been established, then a new query which
only requires wind speed from plot21north and wind direction from location
plot23central can reuse the two existing streams. The usable pre-existing streams
are retrievable by a reasoner, being the individual members of the class described
as a stream which measures wind speed at plot21north and the individual mem-
bers of the class described as a stream which measures wind direction from
location plot23central.

5 Management Module Interfaces

In order that different sources can be used for the event processing, the module
for specifying and providing event data streams is abstracted. The usage of a

Ontology Driven Complex Event Processing 295

Fig. 3. Using ontology information to generate Coral8 CEP statements

management module interface allows the implementation of an independent so-
lution for each specific kind of instrument, sensor network or event source. for
our test deployment have developed two instances of the management module
interface, one to connect a WeatherMaster1600 2 weather station instrument and
the other to interface with a relational database archive. Each additional man-
agement module interface would be accessed, integrated and implemented in the
same manner. It would be necessary to update the user interface source code to
use a new management module interface as well as to extend the model of the
EventOntology with new instrument specific capabilities.

Most parts of the weather station management module interface are reused
from the related project [12]. The software allows high-level programming for
the weather station instrument and access to measured data.

2 Environdata WeatherMaster1600.
http://www.environdata.com.au/weathermaster1600

http://www.environdata.com.au/weathermaster1600

296 K. Taylor and L. Leidinger

6 Related Work

Research over the past twenty years has produced a large number of research
prototypes and commercial products to continuously monitor data streams for
detection of events arising as complex correlations of source data values. These
may be known as distributed stream management systems, complex event pro-
cessors, or sensor data management systems. Some are directed at scientific
users and incorporate grid computing elements; others are optimised for high
message throughput rates; and others again are closely integrated with the sen-
sor networks that generate the data and can instigate collection of data from
the sensors on demand. Some of the best known are Aurora/Borealis[1], TinyDB
[10], Caldera[9], and Esper [4].

In concurrent work, [3] extends the standard RDF query language SPARQL
to provide a SPARQL interface to querying streaming data sources, together
with a temporally extended RDF response. One aim of that work was to make
streaming sensor data available within the linked open data framework, hence
the choice of an RDF/SPARQL model. However, like in our work, the queries are
mapped to to a native stream processing language for run-time execution. In that
case a more traditional query translation approach is used with an intermediate
algebraic representation, and reverse translation of query answers.

Our event framework does not offer a query language interface directly but we
offer an exploratory GUI that can be understood as defining an interesting event
rather than querying for instances of the event. However, because an event spec-
ification in our approach is simply an ontology fragment, other query-language
like interfaces or API could be readily designed. A query language based on
description logic conjunctive queries over the classes and properties of an event
definition would be a more natural match for our work than extended SPARQL.

Although we do not offer a linked open data solution, we rely on the more
expressive OWL ontology language to provide design-time contextualisation of
the sensor data and optimisation, but with no run-time processing overhead.
Our approach provides a more direct translation path to the underlying EPL, so
is likely to allow more expressive queries (where modelled in the ontology) and
possibly also more compact and efficient EPL code. For example, our system
straightforwardly offers complex events defined by integrating multiple sensor
data streams, whereas that capability is set down for future work in [3].

In [6], a SensorMashup platform is described that offers a visual composer
for sensor data streams. Data sources and intermediate analytical tools are de-
scribed by reference to an ontology, enabling an integrated discovery mechanism
for such sources. A SPARQL endpoint is offered to query both sensor descrip-
tions (in the conventional manner) and also individual sensor data streams.
Like our event framework, a third-party DSMS is used to manage the raw sen-
sor data streams. A SPARQL query is translated to an SQL-like continuous
query over the streams to be handled by the DSMS, but the usual essential
windowing and aggregation functions of a DSMS (such as "average") cannot be
used as there is no SPARQL counterpart. The most important difference to our

Ontology Driven Complex Event Processing 297

framework is in the approach to queries requiring correlations over multiple
independent streams. In SensorMashup such queries are written, mapped and
processed separately for each input stream. Although the visual composer sup-
ports the explicit combination of streams, it appears that this means feeding the
streams as inputs to subsequent processing steps embedded in arbitrary software
services, so correlation over the streams to recognise combined events must be
done outside the DSMS. In our approach a single declarative query over multiple
streams is mapped directly to a declarative query in the language of the CEP,
therefore enabling the CEP to perform run-time optimisation of the process-
ing for which it is designed. On the other hand, other than the basic operators
embedded in our CEP, our current approach does not support integration of
analytical tools.

7 Future Work and Conclusion

We have shown that it is possible to offer a sophisticated, domain-contextualised
service for complex event processing. The ontology can be used to specify events
that comprise complex correlations of observations over multiple sensor data
streams, and to specify an action to be taken when events occur. The ontol-
ogy is used only for event definition and optimisation and is compiled out of
the specification for run time processing, where a third party high-throughput
complex event processing engine is used. This approach offers the advantages
of semantic descriptions but without the cost of semantic interpretation at run
time, permitting choice of the best CEP or DSMS tool for stream processing.

Most such processors can be used, provided they offer a query language inter-
face. Because the ontology itself holds command language fragments, and most
of the command languages have a similar syntax, the adaptation to a different
event processor may require no more than replacement of the fragments in the
ontology. Some alteration to the code managing the CEP interface might also be
required. For broader sensor network applications, it will be necessary to extend
the complexity of the aggregation and relationship operators over stream values
beyond those that are available natively in the CEPs. We plan to incorporate a
statistical analysis component, and possibly also a textual analysis component
to support this. We expect this will slow the run-time processing but it will offer
added functionality in relatively low throughput applications.

We have described our work in terms of the Protégé plug-in user interface
to construct event specifications. Although our user interface is ontology-driven,
we expect that the capability it offers would, in some cases, be better built into
other tools more specifically customised to the domain of application. Recalling
that the task of the user interface is only to supply an ontology fragment that
drives the downstream processing, this should not be difficult.

We have integrated the work reported in this paper with our earlier work for
ontology-driven sensor network programming[12]. Within one ontology-driven
interface a user can both program the sensor networks and specify actions to be

298 K. Taylor and L. Leidinger

taken when complex events arising from the sensed data are detected. Further-
more, a user can specify a complex event of interest, within the capability of
the available sensor networks, and if the necessary phenomena are not currently
being monitored, the system will automatically and transparently program those
various sensor networks to monitor the necessary phenomena.

Our work is currently deployed on our Phenonet network for agricultural
monitoring installed near Leeton, NSW, Australia. Although a fairly small de-
ployment, the architecture is highly heterogeneous. The network includes several
Fleck devices3 of a WSN with sensors for soil moisture, leaf temperature, and
soil moisture. There is a separate Fleck WSN with the node directly connected
to a Vaisala Automatic Weather Station 4, a solar radiation sensor, and a pho-
tosynthetically active radiation sensor. Another independent wireless network of
Hussat data loggers5 with soil temperature profile and soil moisture profile sen-
sors is also present. Finally there is an independent IP-connected Environdata
automatic weather station. Currently, stream data arising from Fleck and Hussat
nodes is retrieved by polling a database archive and automated programming
of the nodes through the event framework is not possible. The programming
capability and live stream feed for these sources will be available shortly, taking
advantage of code optimisation work [7] in a service architecture [8].

One event that is particularly important in this domain is the occurrence
of frost. We will investigate including frequent weather reports as a source of
streaming data together with our sensors in the field. We will use the system
to develop an adequate recognition of a frost occurrence and connect the event
notification to the control system for infrastructure that can protect the experi-
mental crop in the field.

The strength and novelty of this work lies in its use of ontologies and reason-
ing. We have shown how a scientist can develop a specification for an event of
interest in terms of the available sensing capability, reusing measurements that
are already being made. We have shown how a scientist can describe an action
to be taken if the interesting event is detected, and can easily deploy the spec-
ification for efficient runtime processing. Because of the ontological component,
the work can also be used together with semantic discovery techniques and also
semantic sensor network programming techniques to offer a complete solution for
user-driven scientific and experimental reuse of heterogenous sensor networks.

Acknowledgement. The authors thank the members of the CSIRO semantic sen-
sor networks team, Peter Lamb, Doug Palmer, Laurent Lefort, Leakha Henry
and Michael Compton, and the CSIRO Phenomics scientists, Xavier Sirault and
3 Powercom Fleck. See
http://www.powercomgroup.com/Latest_News_Stories/Fleck_long_range_
wireless_sensing_and_control.shtml

4 Vaisala WM30. See
http://www.vaisala.com/files/WM30_Brochure_in_English.pdf
for the data sheet

5 Hussat wireless microloggers. See
http://hussat.com.au/

http://www.vaisala.com/files/WM30_Brochure_in_English.pdf
http://hussat.com.au/

Ontology Driven Complex Event Processing 299

David Deery. This work was conducted using the Protégé resource, which is sup-
ported by grant LM007885 from the United States National Library of Medicine.

References

1. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.B.: Aurora: a new model and architecture for data
stream management. VLDB Journal 12(2), 120–139 (2003)

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: Semantic
foundations and query execution. Very Large Database (VLDB) Journal 14 (2005)

3. Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to
streaming data sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P.,
Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS,
vol. 6496, pp. 96–111. Springer, Heidelberg (2010)

4. Esper–Complex Event Processing. Espertech event stream intelligence (December
2010), http://esper.codehaus.org/

5. Hinze, A., Sachs, K., Buchmann, A.: Event-based applications and enabling tech-
nologies. In: DEBS 2009: Proceedings of the Third ACM International Conference
on Distributed Event-Based Systems, pp. 1–15. ACM, New York (2009)

6. Le-Phuoc, D., Hauswirth, M.: Linked open data in sensor data mashups. In: Taylor,
K., Ayyagari, A., De Roure, D. (eds.) Proceedings of the 2nd International Work-
shop on Semantic Sensor Networks, SSN 2009, Washington DC, USA, October
2009, vol. 522, pp. 1–16 (2009) CEUR workshop proceedings

7. Li, L., Taylor, k.: Generating an efficient sensor network program by partial de-
duction. In: Zhang, B.-T., Orgun, M.A. (eds.) PRICAI 2010. LNCS, vol. 6230, pp.
134–145. Springer, Heidelberg (2010)

8. Li, L., Taylor, K.: A framework for semantic sensor network services. In: Bouguet-
taya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 347–
361. Springer, Heidelberg (2008)

9. Liu, Y., Vijayakumar, N., Plale, B.: Stream processing in data-driven computa-
tional science. In: Proc. 7th IEEE/ACM International Conference on Grid Com-
puting, GRID 2006, pp. 160–167. IEEE, Washington, DC, USA (2006)

10. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisi-
tional query processing system for sensor networks. ACM Trans. Database Syst. 30,
122–173 (2005)

11. Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with
interactive composition techniques. IEEE Intelligent Systems 19, 42–49 (2004)

12. Taylor, K., Penkala, P.: Using explicit semantic representations for user program-
ming of sensor devices. In: Advances in Ontologies: Proceedings of the Australasian
Ontology Workshop Conferences in Research and Practice in Information Technol-
ogy, Melbourne, Australia, December 1. CRPIT, vol. 112, Australasian Computer
Society (2009)

13. W3C SSN-XG members. SSN: Semantic sensor network ontology (December 2010),
http://purl.oclc.org/NET/ssnx/ssn

http://esper.codehaus.org/
http://purl.oclc.org/NET/ssnx/ssn

A Semantically Enabled Service Architecture for

Mashups over Streaming and Stored Data

Alasdair J.G. Gray1, Raúl Garćıa-Castro2, Kostis Kyzirakos3,
Manos Karpathiotakis3, Jean-Paul Calbimonte2, Kevin Page4, Jason Sadler4,
Alex Frazer4, Ixent Galpin1, Alvaro A.A. Fernandes1, Norman W. Paton1,

Oscar Corcho2, Manolis Koubarakis3, David De Roure4,
Kirk Martinez4, and Asunción Gómez-Pérez2

1 University of Manchester, United Kingdom
2 Universidad Politécnica de Madrid, Spain

3 National and Kapodistrian University of Athens, Greece
4 University of Southampton, United Kingdom

http://www.semsorgrid4env.eu

Abstract. Sensing devices are increasingly being deployed to monitor
the physical world around us. One class of application for which sensor
data is pertinent is environmental decision support systems, e.g. flood
emergency response. However, in order to interpret the readings from
the sensors, the data needs to be put in context through correlation with
other sensor readings, sensor data histories, and stored data, as well
as juxtaposing with maps and forecast models. In this paper we use a
flood emergency response planning application to identify requirements
for a semantic sensor web. We propose a generic service architecture
to satisfy the requirements that uses semantic annotations to support
well-informed interactions between the services. We present the SemSor-
Grid4Env realisation of the architecture and illustrate its capabilities in
the context of the example application.

Keywords: Sensor web architecture, semantic sensor networks, sensor
network ontology, mashups, use case.

1 Introduction

Sensor networks promise to bridge the gap that, for too long, has separated
computing applications from the physical world that they model and in which
they are ultimately embedded. Many scientific and technological challenges need
to be tackled before sensor networks can be exploited to their full capacity
for aiding decision support applications. Additionally, as more and more sensor
networks are independently developed and deployed, it becomes increasingly
important to support their reuse in applications that were not foreseen or that
transcend their original purpose. This will facilitate the use of sensor network
technology to support decision-making that requires on-the-fly integration of
data of differing modalities, e.g. sensed data with data stored in databases, as

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 300–314, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.semsorgrid4env.eu

Semantic Service Architecture for Data Mashups 301

well as the ad hoc generation of mashups over data stemming from computations
that combine real-time and legacy historical data. This, in turn, will enable the
enacting of decisions based on such real-time sensed data.

One area that has seen a massive increase in the deployment of sensing de-
vices to continuously gather data is environmental monitoring [9]. For example,
metocean data, i.e. wave, tide, and meteorology data, for the south coast of Eng-
land is measured by two independently deployed sensor networks—the Channel
Coastal Observatory (cco)1 and WaveNet2—as well as meteorological data from
the MetOffice3. More broadly, data from sensors is being used worldwide to im-
prove predictions of, and plan responses to, environmental disasters, e.g. coastal
and estuarine flooding, forest fires, and tsunamis. The models that make these
predictions can be improved by combining data from a wide variety of sources.
For example, in a coastal flooding scenario, details of sea defences, combined
with current wave information, can be used to identify potential overtopping
events—when waves go over the top of a sea defence. When responding to a
flooding event additional data sources such as live traffic feeds4, and details of
public transport infrastructure can help inform decisions.

Enabling the rapid development of flexible and user-centric decision support
systems that use data from multiple autonomous independently deployed sensor
networks and other applications raises several technical challenges, including:
(i) Discovering relevant sources of data based on their content, e.g. features of
interest and the region covered by the dataset; (ii) Reconciling heterogeneity in
the data sources, e.g. the modality, data model, or interface of the data source,
and enabling users to retrieve data using domain concepts; and (iii) Integrating
and/or mashing up data from multiple sources to enable more knowledge about
a situation to become available. ogc-swe [3] and gsn [1] are previous proposals
that share some of our aims in this paper. However, both require data sources
to expose their respective data model, thus limiting the reuse of existing sources
from a multitude of domains. Additionally, neither supports integrating data
from heterogeneous data sources. Our proposed approach makes extensive use
of semantic technologies to reconcile the heterogeneity of data sources whilst
offering services for correlating data from independent sources. This enables user-
level applications to generate queries over ontologies which are then translated
into queries to be executed over the data sources. Data is returned expressed
in terms of the user-level ontology and can be correlated and juxtaposed with
other data in a meaningful and controlled manner.

The rest of the paper is structured as follows. In Section 2 we provide a
detailed description of the flood emergency planning scenario for the south coast
of England and identify the set of requirements. Section 3 provides an overview
of the ontology network that we have developed to represent the information

1 http://www.channelcoast.org/ (21 October 2010).
2 http://www.cefas.co.uk/our-science/observing-and-modelling/

monitoring-programmes/wavenet.aspx (21 October 2010).
3 http://www.metoffice.gov.uk/ (4 November 2010).
4 http://www.highways.gov.uk/rssfeed/rss.xml (4 November 2010).

http://www.channelcoast.org/
http://www.metoffice.gov.uk/
http://www.highways.gov.uk/rssfeed/rss.xml

302 A.J.G. Gray et al.

needed in this scenario. We then present our architecture for a semantic sensor
web in Section 4, and describe the role of ontologies and semantic annotations in
the architecture. Section 5 describes a prototype deployment of our architecture
for the flood emergency response use case. We discuss related work in Section 6
and present our conclusions in Section 7.

2 Motivating Scenario and Requirements

This section presents a flood emergency planning scenario for the south coast
of England, drawn from the SemSorGrid4Env project5, that illustrates the use of
data coming from sensor networks together with traditional stored data sources,
e.g. relational databases, and map images. Requirements for a software infras-
tructure aimed to support the use case are identified. Although the requirements
have been identified for a specific use case, they are representative of general re-
quirements for a software infrastructure to enable web applications to generate
data mashups over heterogeneous data sources, including sensor data.

2.1 Flood Emergency Planning Scenario

A flood emergency response planner would like to receive an alert, by email
or sms text message, when a flooding event is predicted to occur, or has been
detected to have occurred, for their area of responsibility. Such a prediction may
stem from a model that forecasts the future tidal patterns based on the current
sea state, as measured by sensor networks such as the cco1 and WaveNet2, and
predicted weather from a web feed such as that provided by the UK Met Office3.
Alternatively, it could arise from a sea defence, the details of which are stored in
a database such as the UK Environment Agency’s National Flood and Coastal
Defence Database (nfcdd)6, being overtopped, as measured by some sensor.
This requires characterising the overtopping event that, in turn, requires stored
and sensed data to be correlated.

When the emergency response planner receives an alert, they need to plan
a suitable response based on the likely severity of the flood, its location, and
the likely impact on the public, the environment, and industry. To enable them
to respond appropriately, they need to dynamically find relevant data sources
based on the thematic and spatiotemporal coverage of the data. Once relevant
sources have been identified, suitable mechanisms for retrieving, correlating, and
displaying the data in terms of the flooding domain are required that hide the
complexities of the heterogeneity of the sources, data modalities, and terminol-
ogy used. For example, the manager responsible for the Portsmouth region would
need details of the shipping due to arrive (available from web feeds), as well as
details of the ships and their cargo (available from databases). They would also
need the weather forecast (available from web feeds), details of the current sea
5 http://www.semsorgrid4env.eu/ (24 November 2010).
6 http://www.scisys.co.uk/casestudies/environment/nfcdd.aspx

(21 October 2010).

http://www.semsorgrid4env.eu/
http://www.scisys.co.uk/casestudies/environment/nfcdd.aspx

Semantic Service Architecture for Data Mashups 303

state (available from sensors), and a forecast of how the latter are likely to evolve
in the region (available from predictive models). This would enable them to make
more accurate decisions about the likely effects of the sea-state on shipping. Sim-
ilarly, they must assess the risk to the public. To aid this, they need details of
the transportation infrastructure (available from stored data), populated areas
(available as maps), and the predicted effects of the flood (available from models
based on the sensor data).

2.2 Requirements

The following general requirements can be drawn from the scenario.

R1 Accurate characterisation of conditions that define an event. It should be
possible to describe the data of interest and allow the system to discover
how to retrieve the data. This is shown in the example scenario by the need
to automatically identify when the conditions characterising an overtopping
event are met so that an alert can be generated.

R2 Correlation of data of differing modalities. It should be possible to correlate
streaming data from sensors with stored data such as stream archives and
databases, and visual data such as maps. This is shown in the scenario by
the need to detect overtopping events that combines sensor data with data
stored in a database and display it on a map.

R3 Integrating data coming from heterogeneous data models. It should be possi-
ble to mediate data coming from autonomous sources regardless of the source
data model, i.e. the conceptualisation and terminology used in the data, and
representations (e.g. relational, rdf, and xml). This is shown in the scenario
by the need to use a wide variety of independent sources.

R4 Discovery of relevant data sources. It should be possible to identify poten-
tially useful sources of data based on the spatiotemporal and thematic cov-
erage of the data provided. This is shown in the scenario by the need to find
sources of data when planning the response to a flooding event.

R5 Presentation and control of information. It should be possible for users to
discover, relate, juxtapose, and display information from a variety of sources
without needing to understand the sources, and in response to an evolving
situation. This is shown throughout the scenario.

3 Modelling Semantic Sensor Web Information

The requirements presented in the previous section indicate that there is a clear
need to support the ad hoc responsive evolving use of an information space. The
data resources of the information space will contain various forms of hetero-
geneity, including data modality (i.e. sensed, stored, and graphical), data model
(i.e. terminology), and data representation (e.g. relational, rdf, and xml), which
need to be reconciled into a single coherent conceptualisation. We use ontolo-
gies to represent the common data model for the information space since they
facilitate: (i) Describing the different infrastructure services and data sources as

304 A.J.G. Gray et al.

SSN

SWEET

Service

Coastal
Defences

Ordnance
Survey

Additional
Regions

Role

DOLCE
UltraLite

Schema

FOAF

Upper

External

SSG4Env
infrastructure

Flood domain

Fig. 1. The SemSorGrid4Env ontology network in the flood emergency planning sce-
nario. The arrows indicate ontology reuse.

well as any domain-dependent information; (ii) Having a shared vocabulary to
interoperate both across the internal infrastructure services, and between that
infrastructure and external sources that adopt alternative approaches, e.g. ogc-
swe based ones [3]; and (iii) Discovering, accessing, and integrating information
that is shared within the infrastructure.

Fig. 1 illustrates how the ontologynetwork used in the flood emergency planning
scenario is composed of different ontologies that can be classified in different layers
accordingtowhether theontologyrepresents:domain-specific informationrequired
for the scenario, information required for the infrastructure, orupper-level informa-
tion used to facilitate interoperability among the other ontologies. These ontolo-
gies satisfy different knowledge representation requirements extracted during the
development of the architecture and of the scenario prototype. (i) To represent sen-
sor networks and their observed information about properties of certain features
of interest. This is covered by the SSN ontology, developed by the W3C Semantic
Sensor Network Incubator Group7. The SSN reuses the DOLCE+DnS UltraLite up-
per ontology8. (ii) To represent the services provided by the infrastructure and the
datasets theyprovideaccess to.This is coveredbytheServicemodule that reuses the
SWEETupper ontologies [15] and includes concepts fromthe ISO19119 standardon
geographic information services [11]. (iii) To represent schema metadata about re-
lations and relational streams. This is covered by the Schema module that extends,
and corrects, an ontology for relational data and schema components [14]. (iv) To
represent the geographic and administrative regions of the south coast of England.
This is covered by the Ordnance Survey ontologies9, which include the regions from
7 http://www.w3.org/2005/Incubator/ssn/ (11 November 2010).
8 http://www.loa-cnr.it/ontologies/DUL.owl accessed 11 November 2010.
9 http://www.ordnancesurvey.co.uk/oswebsite/ontology/ (11 November 2010).

http://www.w3.org/2005/Incubator/ssn/
http://www.loa-cnr.it/ontologies/DUL.owl
http://www.ordnancesurvey.co.uk/oswebsite/ontology/

Semantic Service Architecture for Data Mashups 305

GreatBritain, and by the Additional Regionsontology, which includes other regions
needed in our scenario. (v) To represent those features of interest and their proper-
ties that are specific to thefloodemergencyplanning scenario.This is coveredbythe
Coastal Defences ontology. (vi) To represent the different roles involved in a flood
emergency planning scenario. This is covered by the Roles ontology.

All the ontologies10 have been implemented using owl. While some of the
ontologies presented here are specific to the flood warning scenario, e.g. Role,
the architecture proposed in the next section is generic. Thus, it can be adapted
to other situations by replacing the flood domain ontologies.

4 Semantic Sensor Web Architecture

The proposed service architecture gives rise to a semantic sensor web for environ-
mental management that aims to meet the requirements identified in Section 2.
The architecture (Fig. 2) comprises a set of services that can be composed into
orchestrations to deliver the desired functionality. The architecture can interact
with existing frameworks such as ogc-swe [3], either as applications that ex-
ploit our services or as concrete resources that are wrapped to provide additional
functionality, e.g. query-based access or semantic integration. A sample orches-
tration from the flood scenario is given in Fig. 5 and described in Section 5. The
architecture is structured into three tiers, although a service may call any other
service regardless of which tier they appear in. The data tier enables the publi-
cation and querying of data in its native format, i.e. a relational database can be
queried using sql and sensor data through a continuous query language such as
sneeql [7]. The middleware tier supports the discovery of relevant data as well
as the reconciliation of data models and querying over these reconciled models.
The application tier provides domain specific services and supports the tran-
sition from service-oriented web services to rest services [6]. The interfaces11

offered by the web services in our architecture are given in Table 1. A full spec-
ification of the services, and the operations they support, can be found in [8].
The service architecture uses, where possible, existing web service standards.

The specification of the service interfaces, i.e. the wsdl definition of the
service-oriented services, supports well-formed interactions with the services.
However, it is anticipated that there will be multiple services which, at a func-
tional level, satisfy a user’s needs. To enable the user to make a well-informed
choice between these services, the architecture uses semantically annotated prop-
erty documents which describe the non-functional properties of a service, e.g. the
datasets and their features, that are available from the service. The property doc-
ument can be retrieved through the service interface operations, provided by all
services, and their content is specified using the ontology network (Fig. 1).

In the following sections, we describe the services of the architecture and
the role of the property document in supporting their activities. We illustrate
these interactions with the property document for the cco sensor data service,

10 http://www.semsorgrid4env.eu/ontologies/ (7 December 2010)
11 We use the term interface to mean a logical group of operations.

http://www.semsorgrid4env.eu/ontologies/

306 A.J.G. Gray et al.

Fig. 2. Conceptual view of the service architecture. Boxes denote SemSorGrid4Env ser-
vices, ovals denote external services/entities, arrows denote caller-callee relationships.

Table 1. Services and their interfaces. Interfaces shown in italics are optional.

Service Name Interfaces Offered Notes

Data Source Service Service, Integration, Query, Data
Access, Subscription

Must provide at least one of query, data
access, or subscription interfaces.

Semantic Registry
Service

Service, Registration, Discovery,
Query, Data Access, Subscription

Either the discovery or the query inter-
face must be provided.

Semantic Integrator
Service

Service, Integration, Query, Data
Access, Subscription

One of the data access or subscription
interface must be offered to support
queries over streams.

Application Services rest Interface design focuses on identifying
and structuring web resources.

excerpts of which are shown in Fig. 3. Note, these declarations make use of strdf
[12], a spatiotemporal extensions for rdf that defines uris of the form &term.

4.1 Data Source Services

Data source services provide the mechanism to publish data: either coming from
a sensor network or some other data source, e.g. a database or another data
service. Depending on the interfaces supported by the data service, operations
are provided for querying, retrieving, and subscribing to data. A distributed
query processing service can be offered, using the integration interface, which
consumes data from other services that may only support the data access or
subscription interfaces.

Data source services publish a property document about the data that they
provide, and the mechanisms by which it may be accessed. The first part of
the property document in Fig. 3 describes the interaction mechanisms provided,

&term

Semantic Service Architecture for Data Mashups 307

1 <service:WebService rdf:about="#cco-ws">
2 <rdfs:label>Channel coastal observatory streaming data service</rdfs:label>
3 <service:hasInterface rdf:resource="service:ssg4ePullStream"/>
4 <service:hasDataset rdf:resource="#envdata_SandownPier_Tide"/>
5 <service:hasDataset rdf:resource="#envdata_SandownPier_Met"/>
6 ...
7 </service:WebService>
8 <sweet:Dataset rdf:about="#envdata_SandownPier_Tide">
9 <rdfs:label>envdata_SandownPier_Tide</rdfs:label>

10 <service:coversRegion rdf:resource="&AdditionalRegions;SandownPierLocation"/>
11 <time:hasTemporalExtent rdf:datatype="®istry;TemporalInterval">
12 [2005, NOW]</time:hasTemporalExtent>;
13 <service:includesFeatureType rdf:resource="&CoastalDefences;Sea"/>
14 <service:includesPropertyType rdf:resource="&CoastalDefences;TideHeight"/>
15 <service:includesPropertyType rdf:resource="&CoastalDefences;WaveHeight"/>
16 <service:hasSchema rdf:resource="#envdata_SandownPier_Tide_Schema"/>
17 ...
18 </sweet:Dataset>
19 <schema:Stream rdf:about="#envdata_SandownPier_Tide_Schema">
20 <schema:extent-name>envdata_SandownPier_Tide</schema:extent-name>
21 <schema:hasAttribute rdf:resource="#HMax"/>
22 <schema:hasAttribute rdf:resource="#Tp"/>
23 ...
24 </schema:Stream>
25 <schema:Attribute rdf:about="#HMax">
26 <schema:attribute-name>HMax</schema:attribute-name>
27 ...
28 </schema:Attribute>
29 ...

Fig. 3. Snippets from the cco sensor data web service semantic property document
expressed in strdf [12] using xml notation. We assume appropriate namespace decla-
rations and represent omitted parts of the document with ‘. . . ’.

i.e. the interfaces (line 3) and operations supported by the data service. The
rest of the property document describes the data that is available through the
service, which is not covered in the wsdl definition of the service.

A data source may publish one or more datasets, as per the ws-dai stan-
dard [2]. Lines 4 and 5 show that the cco sensor data service publishes multi-
ple datasets including the two identified as #envdata_SandownPier_Tide and
#envdata_SandownPier_Met. Each dataset is described in terms of its spa-
tiotemporal and thematic coverage, and (where appropriate) its schema. Lines 8
to 18 provide details of the #envdata_SandownPier_Tide dataset. Specifically,
lines 10 to 12 describe the spatiotemporal range of the dataset as providing data
for the ‘Sandown Pier’ location and that the time range is from 2005 until the
current time, represented with the distinguished literal ‘NOW’. The types of fea-
tures covered by the dataset are declared by the statements in line 13, which
state that the #envdata_SandownPier_Tide dataset contains information about
the CoastalDefences concept Sea. Lines 14 and 15 give the property types covered
as the CoastalDefences concepts of TideHeight and WaveHeight. Where appro-
priate, e.g. for relational data sources, the property document also includes an
ontological description of the schema of the dataset using the Schema ontology.
Line 16 declares that the #envdata_SandownPier_Tide dataset has a schema
described by the resource #envdata_SandownPier_Tide_Schema. Lines 19 to 28
describe the relational schema of the #envdata_SandownPier_Tide data stream:

##envdata_SandownPier_Tide
#envdata_SandownPier_Met
##envdata_SandownPier_Tide
##envdata_SandownPier_Tide
##envdata_SandownPier_Tide
##envdata_SandownPier_Tide_Schema
##envdata_SandownPier_Tide

308 A.J.G. Gray et al.

its name, attributes, types of the attributes, primary key, and timestamp at-
tribute. It is this information that enables a distributed query service, which
itself can be seen as a data service, to support queries over external data sources.

4.2 Semantic Registry Service

The registry service supports the discovery of relevant services. The registration
interface enables the registration of service descriptions, viz. the information con-
tained in the service property document. Since a registry service can be seen as a
data service, it provides the same interfaces, with the data access and subscrip-
tion interfaces providing support for long-lived queries. In the SemSorGrid4Env
implementation, the registry service data store is populated with the content
of the service property documents. It supports query-based access through the
spatiotemporal sparql extension stsparql [12]. External services, such as those
defined by the ogc [3,5], can be manually entered.

The information contained in the property document enables applications to
discover relevant data sources using application domain specific terms. For exam-
ple, a flood response manager responsible for the Portsmouth region would like
to discover sensor data sources for that region &AdditionalRegions;Solent.
From Fig. 3, we see that the cco sensor data web service #CCO-WS exposes
a stream interface service:ssg4ePullStream (line 3) taken from the Service ontol-
ogy, and that the #envdata_SandownPier_Tide dataset has the spatial
coverage &AdditionalRegions;SandownPierLocation (line 10) using the Ad-
ditional Regions ontology. Due to the use of spatial constraints in the defini-
tions of the regions in the ontology, the registry is able to deduce that the
#envdata_SandownPier_Tide dataset is relevant for the application. This is be-
cause the location &AdditionalRegions;SandownPierLocation is contained in
the region defined for the Solent &AdditionalRegions;Solent. Thus, #CCO-WS
is a relevant source for the flood response manager.

4.3 Semantic Integration Service

The integrator supports the creation and querying of an information space over
independent heterogeneous data sources. The integration interface enables the
creation of an integrated data model by supplying a mapping document relating
the data sources to the global model. The query interface enables ontology-based
access to the data sources [4]. That is, a user or application can express a query
in terms of ontological concepts and the integration service translates it into
a set of queries over the relevant sources, retrieves the answers, and translates
them into ontological instances. Note, the integration service is a data source,
thus it provides the same interfaces, with either the data access or subscription
interface being offered to support long-lived continuous queries over sensor data.

The integrator uses the property documents of the data sources involved in
an integration to select the appropriate interaction mechanism. That is, for each
data source, the property document informs the integrator of the interfaces and
query language supported. From the example document given in Fig. 3, the

&AdditionalRegions;Solent
##CCO-WS
##envdata_SandownPier_Tide
&AdditionalRegions;SandownPierLocation
##envdata_SandownPier_Tide
&AdditionalRegions;SandownPierLocation
&AdditionalRegions;Solent
##CCO-WS

Semantic Service Architecture for Data Mashups 309

integrator can infer that the #CCO-WS only supports data retrieval through the
pull-stream interface (line 3), i.e. it does not support queries, and that the schema
of the #envdata_SandownPier_Tide is as described (lines 19-28). The integrator
can also query the registry to discover suitable distributed query processing
services to invoke in answering queries over the integrated data resource. The
property documents of the data sources also aid the integrator in the creation of
the property document that describes the integrated data model. In particular,
its spatiotemporal and thematic content. Note that the semantic representation
of a source schema, as provided in lines 19-28 of Fig. 3, can help mapping tools
in understanding the schema of a data source and, therefore, in the creation of
mappings between source schemas and an ontology for the domain of interest.

4.4 Application Services

The services in the application tier of the architecture provide support for web-
based applications and mashups to interact with the services and data sources
in the architecture. On the whole, web-based applications and mashups interact
through a resource-oriented approach [6], i.e. they interact through http calls,
viz. get, post, put, and delete. As such, the application services bridge the
gap between a resource-oriented viewpoint that prevails for user fronting appli-
cations and the service-oriented viewpoint that is preferred in middleware and
back-end system components. By exposing a rest interface, the application ser-
vices enable web-based applications to request content based on formats that
they can process and display to the user, e.g. gml, geojson, and html [13].

The application services, and ultimately the applications that rely on them,
exploit information contained in the property documents associated with ser-
vices. Property documents enable application services to locate relevant services
through the registry and gain insight into how to interact with them. They also
enable applications to integrate data sources through integration services.

4.5 Summary

The property document enables well-informed interactions between the services
in the architecture, and is instrumental in all aspects of the functionality offered.
It is not a requirement to provide the semantic property document, and no
parts of it are mandatory. As such, external services, e.g. those defined by ogc
[3,5], can be incorporated into the architecture. However, by describing the non-
functional properties, particularly the spatiotemporal and thematic coverage of
its data, in a property document a service can be discovered through the registry,
and used by the integrator and application services in a seamless manner.

5 The Flood Scenario Deployment

We now show how the architecture enables the flood emergency planning scenario
described in Section 2. We show how a flood emergency planner (the user) can

##CCO-WS
##envdata_SandownPier_Tide

310 A.J.G. Gray et al.

Fig. 4. Screenshots from the flood emergency response Web application available from
http://webgis1.geodata.soton.ac.uk/flood.html

add a source to identify when an overtopping event is detected. The scenario
assumes the existence of: (i) a semantic registry service at some well known
location; (ii) several data services which have registered their semantic property
documents with the registry service; and (iii) a distributed query service, an
integration service, and application services to support the web application.

The user accesses the web application through the login screen shown in the
top left of Fig. 4. When logging into the application, the user selects their role,
the region they are responsible for, and the task that they wish to conduct.
The options in the selection boxes are populated with terms from the ontology
network (Fig. 1), e.g. the choice of role comes from the concepts in the Role
ontology. This provides an initial characterisation of the data that is relevant
for the interaction, i.e. the values provided parameterise the queries sent to the
registry in order to discover relevant data sources. For the login selection shown,
the registry query is parameterised to discover data sources for the Portsmouth
area for a Coastal Zone Manager who wishes to monitor the current status.

The result of the login process is shown in the main screenshot in Fig. 4. The user
is presented with two map views based on the region selected, viz. Portsmouth. The
left pane shows a zoomed-out map providing context while the right pane shows a
zoomed-in map on the region selected. Both maps have been superimposed with
layers presenting data from a variety of sources that satisfied the queries sent to
the registry.The available layers are shown in the Map Layers pop-up window, from
which the user can select the layers theywish tobe displayed. In the example shown,
three layers have been selected for display. Two of these—showing the main roads
and the populated areas—havebeen retrieved fromogc-wms services [5] that have
been manually registered, i.e. details of the service and the dataset have been en-
tered into the registry through a web form. The currentwave height values retrieved

http://webgis1.geodata.soton.ac.uk/flood.html

Semantic Service Architecture for Data Mashups 311

GET http://…/geojson?resource=integrator&query=q
SPARQLExecuteFactory(integrator, q)

GenericQueryFactory(snee, pull, q’)

Web
Application

Application
Services Integrator DQP CCO-WS CCO-Stored

EPR
EPR

URL

GetStreamItem(cco:<stream>, <pos>)
WebRowSet

JSON
GET URL

SPARQLResultSet
GetStreamItem(int:<stream>, <pos>)

WebRowSet
SQLExecute(cco-stored, q’’)

GetStreamItem(snee:pull:<stream>, <pos>)
WebRowSet

()

Fig. 5. Interaction diagram showing how data is integrated across heterogeneous data
sources. Operations below the dotted line are repeated periodically.

from the available sensor networks for the region are juxtaposed on top. The val-
ues are displayed as red circles: the larger the circle, the higher the wave value
measured.

To support identifying an overtopping event requires data from heterogenous
sources with different schemas and data modalities, viz. stored and sensed, to be
integrated. The required orchestration is depicted in Fig. 5 which shows a web
application retrieving data through an integrator that exposes an ontological
view of the source data. Note that the orchestration assumes that the integrated
resource has already been created, i.e. the mapping document relating the data
sources to the ontological view has already been passed to the integrator. The
web application supports the user in discovering potential data services for de-
tecting overtopping events based on the contents of the property documents
stored by the registry service (not shown in the orchestration in Fig. 5). The
web application then supports the user in characterising an overtopping event
as a query over the ontological view, hiding all the complexities of the required
orchestration. The web application uses a restful interface offered by an appli-
cation service to pass the query as a service call to the integrator. The integrator
translates the query over the ontological view into a query expressed in terms of
the source schemas. The integrator instantiates a distributed query processing
service (dqp) to evaluate the query over the sources. As the query is evalu-
ated, answers are periodically retrieved through the interactions shown below
the dotted line in Fig. 5. The rate at which the dqp service polls its sources is
controlled by the rate declared in the property document of each source. Simi-
larly, the rates at which the integrator and the application poll their respective
source is controlled by the property document declarations.

312 A.J.G. Gray et al.

6 Related Work

We describe related work in its ability to satisfy the requirements identified in
Section 2.

The Open Geospatial Consortium Sensor Web Enablement (ogc-swe) [3] de-
fines a set of xml data models for describing sensors and their data, as well as
a set of web services for publishing sensor data, locating data, and receiving
alerts about the data. A reference implementation of the framework was devel-
oped in the sany project [16]. The framework can be seen to satisfy R4, and
provides support for satisfying R5. However, data access patterns are limited by
the service interfaces and there is no support for declarative query languages.
As such, it does not fully satisfy R1. Data is published according to their xml
data models, which is not always possible with autonomous data sources. Thus,
they do not satisfy R3. ogc-swe does not fully meet R2: there is support for
unmediated merging of sensor and stored data but not for correlating it. We note
that the GetCapabilities operation provided by the services provide support for
the functional properties in our property documents but not the spatiotemporal
or thematic properties. Henson et al. [10] have extended the sensor observa-
tion service by semantically annotating the data. Our proposal goes beyond this
by using semantics to support the discovery, integration, and mashup of data
stemming from autonomous heterogeneous data sources.

Global Sensor Network (gsn) [1] is a middleware platform for the deployment
and programming of sensor networks. It allows for the abstraction of sensor
nodes as data sources irrespective of the underlying hardware and provides query
processing capabilities within the middleware. It enables a data-oriented view of
sensor networks and the processing of queries over that data. gsn satisfies R1
and R2 provided that the data is all published in the same data model. It does
not satisfy the other requirements.

Collaborative Oceanography [17] used semantic annotations to support the
reuse of oceanographic data. Their approach relied on a centralised triple store
containing the annotations and the manual mashup of data based on these an-
notations. Our approach provides support for semantic integration and mashup
of heterogeneous data sources.

7 Conclusions

We have presented a service architecture for providing support to semantic sensor
web applications. The architecture provides a semantically integrated informa-
tion space for sensed and stored data drawn from heterogeneous autonomous
data sources. The architecture enables rapid development of thin applications
(mashups) over this information space through the use of (i) declarative queries
to describe the data need, both for locating data based on its spatiotemporal
and thematic coverage, and for integrating and accessing data, and (ii) seman-
tically annotated property documents which support well-informed interactions
between the architecture services.

Five high-level requirements were identified, from the application use case
presented, that are considered to be relevant for a broad range of applications.

Semantic Service Architecture for Data Mashups 313

R1 Accurate characterisation of conditions that define an event. This is sat-
isfied by the use of declarative queries to retrieve data. Underlying data
sources can be queried through their native query language, e.g. sql for
relational databases and sneeql for relational streams coming from sensor
networks, while the integrator provides for ontology-based queries expressed
in a sparql extension for streaming data, viz. sparqlStream. Data sources
that do not support query-based data retrieval can be queried through the
use of a distributed query service.

R2 Correlation of data of differing modalities. This is satisfied through the use
of query languages that provide support for correlating sensed and streaming
data, e.g. sneeql and sparqlStream, as well as the use of application services
to create layers for juxtaposing data.

R3 Integrating data coming from heterogeneous data models. This is satisfied
by the use of ontologies to provide a common vocabulary and data model.
Data sources publish semantically annotated property documents that use
concepts available in ontologies to describe their datasets and interfaces. The
registry, integrator, and application services can automatically exploit the
content of the property documents due to the use of ontological terms.

R4 Discovery of relevant data sources. This is satisfied by the semantic registry
service and the publication of semantically annotated property documents by
the data services. The registry service uses the statements contained in the
property documents to identify relevant data services by answering declar-
ative stsparql queries which characterise the spatiotemporal and thematic
data needs of applications and users.

R5 Presentation and control of information. This is satisfied by the interaction
between web-based applications and mashups with the application services.
By providing rest style interfaces, offering data in a variety of formats
including mapping layers, and using domain specific concepts drawn from
(where possible) standard domain ontologies, the application services enable
the rapid development of thin web-based applications without sacrificing the
functionality and control offered to the user.

The next steps for the implementation of our architecture are to provide services
which can push data from the sources through the architecture, and to provide
mechanisms for interacting with existing infrastructures such as ogc-swe. For
future work we intend to investigate offering configurable mechanisms for sup-
porting rest interfaces to integrated information spaces. We will also perform
a user evaluation with coastal managers from the Solent region.

Acknowledgments. This work has been supported by the European Commis-
sion project SemSorGrid4Env (FP7-223913).

References

1. Aberer, K., Hauswirth, M., Salehi, A.: Infrastructure for data processing in large-
scale interconnected sensor networks. In: 8th International Conference on Mobile
Data Management (MDM 2007), pp. 198–205 (2007)

314 A.J.G. Gray et al.

2. Antonioletti, M., Krause, A., Paton, N.W., Eisenbrg, A., Laws, S., Malaika, S.,
Melton, J., Pearson, D.: The WS-DAI family of specifications for web service data
access and integration. SIGMOD Record 35(1), 48–55 (2006)

3. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC R© sensor web enablement:
Overview and high level architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A.
(eds.) GSN 2006. LNCS, vol. 4540, pp. 175–190. Springer, Heidelberg (2008)

4. Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to
streaming data sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P.,
Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS,
vol. 6496, pp. 96–111. Springer, Heidelberg (2010)

5. de la Beaujardiere, J.: OpenGIS R© web map server implementation specification.
Standard Specification 06-042, Open Geospatial Consortium Inc. (2006)

6. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, Information and Computer Science, University of Cal-
ifornia, Irvine, California, USA (2000)

7. Galpin, I., Brenninkmeijer, C.Y.A., Gray, A.J.G., Jabeen, F., Fernandes, A.A.A.,
Paton, N.W.: SNEE: a query processor for wireless sensor networks. Distributed
and Parallel Databases 29(1-2), 31–85 (2010)

8. Gray, A.J.G., Galpin, I., Fernandes, A.A.A., Paton, N.W., Page, K., Sadler, J.,
Kyzirakos, K., Koubarakis, M., Calbimonte, J.P., Garcia, R., Corcho, O., Ga-
baldón, J.E., Aparicio, J.J.: SemSorGrid4Env architecture – phase II. Deliverable
D1.3v2, SemSorGrid4Env (December 2010),
http://www.semsorgrid4env.eu/files/deliverables/wp1/D1.3v2.pdf

9. Hart, J.K., Martinez, K.: Environmental sensor networks: A revolution in earth
system science? Earth Science Reviews 78, 177–191 (2006)

10. Henson, C., Pschorr, J., Sheth, A.P., Thirunarayan, K.: SemSOS: Semantic sensor
observation service. In: International Symposium on Collaborative Technologies
and Systems, CTS 2009 (2009)

11. Geographic information – services. International Standard ISO19119:2005, ISO
(2005)

12. Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic
sensor web: The model stRDF and the query language stSPARQL. In: Aroyo, L.,
Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudo-
rache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg
(2010)

13. Page, K., De Roure, D.C., Martinez, K., Sadler, J., Kit, O.: Linked sensor data:
RESTfully serving RDF and GML. In: International Workshop on Semantic Sensor
Networks, pp. 49–63 (2009)

14. Pérez de Laborda, C., Conrad, S.: Relational.OWL: a data and schema repre-
sentation format based on OWL. In: 2nd Asia-Pacific Conference on Conceptual
Modelling (APCCM 2005), Newcastle, Australia, pp. 89–96 (2005)

15. Raskin, R.G., Pan, M.J.: Knowledge representation in the semantic web for earth
and environmental terminology (SWEET). Computers and Geosciences 31(9),
1119–1125 (2005)

16. Schimak, G., Havlik, D.: Sensors anywhere – sensor web enablement in risk man-
agement applications. ERCIM News 76, 40–41 (2009)

17. Tao, F., Campbell, J., Pagnani, M., Griffiths, G.: Collaborative ocean resource in-
teroperability: Multi-use of ocean data on the semantic web. In: Aroyo, L., Traverso,
P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E.,
Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 753–767. Springer,
Heidelberg (2009)

http://www.semsorgrid4env.eu/files/deliverables/wp1/D1.3v2.pdf

Zhi# – OWL Aware Compilation

Alexander Paar1 and Denny Vrandečić2

1 University of Pretoria, Hillcrest, Pretoria 0002, South Africa
alexpaar@acm.org

2 KIT Karlsruhe Institute of Technology, Karlsruhe, Germany, and
ISI Information Sciences Institute, University of Southern California, USA

denny.vrandecic@kit.edu

Abstract. The usefulness of the Web Ontology Language to describe
domains of discourse and to facilitate automatic reasoning services has
been widely acknowledged. However, the programmability of ontological
knowledge bases is severely impaired by the different conceptual bases
of statically typed object-oriented programming languages such as Java
and C# and ontology languages such as the Web Ontology Language
(OWL). In this work, a novel programming language is presented that
integrates OWL and XSD data types with C#. The Zhi# programming
language is the first solution of its kind to make XSD data types and
OWL class descriptions first-class citizens of a widely-used programming
language. The Zhi# programming language eases the development of Se-
mantic Web applications and facilitates the use and reuse of knowledge
in form of ontologies. The presented approach was successfully validated
to reduce the number of possible runtime errors compared to the use of
XML and OWL APIs.

Keywords: OWL DL, C#, Zhi#, ontologies, programmability.

1 Introduction

A typical OWL DL [12] knowledge base comprises two components: a TBox
defining the formal relations between the classes and properties of the ontology;
and an ABox containing assertional knowledge about the individuals of the on-
tology. The TBox is often regarded to be the more stable part of the ontology,
whereas the ABox may be subject to occasional or even constant change. In
particular, modifications may lead to an ABox that violates constraints given
by the TBox, such as cardinality constraints or value space restrictions of OWL
datatype properties. Up to now, ontological knowledge bases are modified us-
ing APIs, which are provided by a variety of different ontology management
systems [7,21]. From a software developer’s perspective, there is no support for
statically detecting illegal operations based on given terminologies (e.g., unde-
fined classes, invalid datatype property values) and conveniently integrating on-
tological classes, properties, and individuals with the program text of a general
purpose programming language.

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 315–329, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

316 A. Paar and D. Vrandečić

A common difficulty of widely used OWL APIs and the usage of wrapper
classes to represent entities of an ontology are the different conceptual bases
of types and instances in a programming language and classes, properties, in-
dividuals, and XML Schema Definition [4] data type values in OWL DL. In
particular, the Web Ontology Language reveals the following major differences
to object-oriented programming languages and database management systems:

– In contrast to object-oriented programming languages, OWL provides a rich
set of class constructors. For example, classes can be described via cardinality
and value restrictions on properties (e.g., a small meeting is a meeting with
at most three participants).

– OWL class descriptions can be automatically classified in a subsumption
hierarchy. Imitating this inherent behavior of ontological knowledge bases
using a hierarchy of programming language wrapper classes would result in
reimplementing a complete OWL DL reasoner.

– Unlike object-oriented programming languages or database management sys-
tems, OWL makes the open world assumption (OWA), which codifies the
informal notion that in general no single observer has complete knowledge.
The open world assumption limits the deductions a reasoner can make. In
particular, it is not possible to infer that a statement is false just because it is
not stated explicitly. The OWA is closely related to the monotonic nature of
first-order logic (i.e. adding information never falsifies previous conclusions).

– The Web Ontology Language does not make the unique name assumption
(UNA). In contrast to logics with the unique name assumption, different
ontological individuals do not necessarily refer to different entities in the de-
scribed world. In fact, two individuals can be inferred to be identical (e.g.,
values of functional object properties). In OWL, it is also possible to explic-
itly declare that two given named individuals refer to the same entity or to
different entities.

– Unlike object-oriented programming languages, ontological properties in
OWL DL are not defined as part of class definitions but form a hierarchy of
their own (i.e. property centric modeling).

– In OWL, property domain and range declarations are not constraining. In-
stead, the declared domain and range of an OWL property is used to infer
the types of the subjects and objects of assertions, respectively. Thus, OWL
properties facilitate ad hoc relationships [13] between entities that may not
have been foreseen when a class was defined.

The Zhi#1 programming language is a superset of conventional C# version 1.0
boasting programming language inherent support for XML Schema Definition
and the Web Ontology Language. Zhi#’s OWL aware compilation includes static
typing and type inference for XSD data types and a combination of static typing
and dynamic checking for OWL DL ontologies. XSD constraining facets and
ontological reasoning were integrated with host language features such as method
overriding, user-defined operators, and runtime type checks. For the lack of space,
1 Zhi (Chinese): Knowledge, information, wisdom.

Zhi# – OWL Aware Compilation 317

only elementary examples of an integrated use of XSD data types and ontological
class descriptions in Zhi# are presented. The Zhi# programming language is
implemented by a compiler framework [16] that is – by means of plug-ins –
extensible with external type systems2. Detailed descriptions of the compiler
framework and the XSD and OWL plug-ins can be found in [17]. Zhi# programs
are compiled into conventional C# and are interoperable with .NET assemblies.
The Zhi# approach is distinguished by a combination of features that is targeted
to make ontologies available in an object-oriented programming language using
conventional object-oriented notation.

In contrast to naïve approaches that are based on the generation of wrapper
classes for XSD and OWL types, no code generation in form of an additional
class hierarchy is required in Zhi#. Instead, ontologies are integrated into the
programming language, which facilitates OWL aware compilation including type
checking on the ontology level. At runtime, the results of ontological reasoning
influence the execution of Zhi# programs: Zhi# programs don’t just execute,
they reason. The underlying ontology management system can be substituted
without recompilation of Zhi# programs. The Zhi# programming language pro-
vides full support for XSD data types. Thus, Zhi# can compensate for datatype
agnostic OWL APIs. Zhi# programs can be used concurrently with API-based
knowledge base clients to allow for a smooth migration of an existing code-base.

2 The Zhi# Programming Language

The type system of the C# programming language implements nominal sub-
typing. In nominative type systems type compatibility is determined by explicit
declarations. A type is a subtype of another if and only if it is explicitly declared
to be so in its definition. The XML Schema Definition type system extends
nominal subtyping with value space-based subtyping. An atomic data type is a
subtype of another if it is explicitly declared to be so in its definition or if its
value space (i.e. the set of values for a given data type) is a subset of the value
space of the other type. The subset relation of the types’ value spaces is sufficient.
The two types do not need to be in an explicitly declared derivation path. In the
Web Ontology Language, nominal subtyping is augmented by ontological rea-
soning. An inferred class hierarchy can include additional subsumption relations
between class descriptions. Ontological individuals can be explicitly declared to
be of a given type and they can be inferred to be in the extension of further
class descriptions. Some object-oriented programming languages provide a lim-
ited set of isomorphic mappings from XSD data types to programmatic types.
In general, however, compilers for programming languages such as Java or C#
are unaware of the subtyping mechanisms that are used for XSD and OWL.

The Zhi# programming language is a proper superset of ECMA 334 standard
C# version 1.0 [6]. The only syntactical extensions, which are entailed by Zhi#’s
2 Given the general extensibility of the Zhi# programming language with external

type systems and for the sake of brevity, in this work, XSD data types and OWL
class descriptions are subsumed under the term external types.

318 A. Paar and D. Vrandečić

extensibility with respect to external type systems, are the following: External
types (i.e. XSD data types and OWL class descriptions) can be included using
the keyword import, which works analogously for external types like the C#
using keyword for .NET programming language type definitions. It permits the
use of external types in a Zhi# namespace such that, one does not have to qualify
the use of a type in that namespace. An import directive can be used in all places
where a using directive is permissible. As shown below, the import keyword is
followed by a type system evidence, which specifies the external type system (i.e.
XSD or OWL). Like using directives, import directives do not provide access to
any nested namespaces.

import type_system_evidence alias = external_namespace;

In Zhi# program text that follows an arbitrary number of import directives,
external type and property references must be fully qualified using an alias that is
bound to the namespace in which the external type is defined. Type and property
references have the syntactic form #alias#local_name (both the namespace
alias and the local name must be preceded by a ’#’-symbol).

External types can be used in Zhi# programs in all places where .NET types
are admissible except for type declarations (i.e. external types can only be im-
ported but not declared in Zhi# programs). For example, methods can be over-
ridden using external types, user defined operators can have external input and
output parameters, and arithmetic and logical expressions can be built up us-
ing external objects. Because Zhi#’s support for external types is a language
feature and not (yet) a feature of the runtime, similar restrictions to the usage
of external types apply as for generic type definitions in the Java programming
language (e.g., methods cannot be overloaded based on external types from the
same type system at the same position in the method signature).

In Zhi# programs, types of different type systems can cooperatively be used
in one single statement. As shown in line 5 in the following code snippet, the
.NET System.Int32 variable age can be assigned the XSD data type value of the
OWL datatype property hasAge of the ontological individual Alice.

1 import OWL c h i l = http :// c h i l . s e r v e r . de ;
2 c l a s s C {
3 pub l i c s t a t i c void Main () {
4 #c h i l#Person a l i c e = new #c h i l#Person("# c h i l#Alice ") ;
5 i n t age = a l i c e .# c h i l#hasAge ;
6 }
7 }

2.1 Static Typing

C# is a statically typed programming language. Type checking is performed
during compile time as opposed to runtime. As a consequence, many errors can
be caught early at compile time (i.e. fail-fast), which allows for efficient execution
at runtime. This section describes the static type checks that can be performed
on ontological expressions in Zhi# programs.

Zhi# – OWL Aware Compilation 319

Syntax checks. The most fundamental compile-time feature that Zhi# provides
for OWL is checking the existence of referenced ontology elements in the im-
ported terminology. The C# statements below declare the ontological individu-
als a and b. Individual b is added as a property value for property R of individual
a. For the sake of brevity, in this work, the URI fragment identifier “#” may
be used to indicate ontology elements in Zhi# programs instead of using fully-
qualified names. The object o shall be an instance of an arbitrary OWL API.
The given code is a well-typed C# program. It may, however, fail at runtime if
in the TBox of the referenced ontology classes A and B and property R do not
exist.

1 IOWLAPI o = [. . .] ;
2 o . add Ind iv idua l("#a" , "#A") ;
3 o . add Ind iv idua l("#b" , "#B") ;
4 o . addObjectPropertyValue("#a" , "#R" , "#b ") ;

In Zhi#, the same declarations can be rewritten as shown below, turning
the ontological properties into first-class citizens of the programming language.
As a result, the Zhi# compiler statically checks if class descriptions A and B
and property R exist in the imported ontology and raises an error if they are
undefined. Note how in line 4 the RDF triple [a R b] is created in the shared
ontological knowledge base using object-oriented member access.

Creation of individuals. In C#, the new -operator can be used to create objects
on the heap and to invoke constructors. In Zhi#, the new -operator can also be
used to return ontological individuals in a knowledge base as follows.

�

Zhi# provides a constructor for OWL class instances that takes the URI of
the individual. As in conventional C#, the new -operator cannot be overloaded.
In contrast to .NET objects, ontological individuals are not created on the heap
but in the shared ontological knowledge base, and as such they are subject
to ontological reasoning. This is also in contrast to naïve approaches where
wrapper classes for ontological classes are instantiated as plain .NET objects.
Zhi# programs use handles to the actual individuals in the shared ontological
knowledge base. Also note that an existing individual in the ontology with the
same URI is reused, following Semantic Web standards. As for assignments of
.NET object creation expressions to variables or fields, the type of the individual
creation expression must be subsumed by the type of the lvalue based on the
class hierarchy (see line 2 in the code snippet above). Zhi# supports covariant
coercions for ontological individuals and arrays of ontological individuals.

320 A. Paar and D. Vrandečić

Disjoint classes. In OWL DL, classes can be stated to be disjoint from each
other using the owl:disjointWith constructor. It guarantees that an individual
that is a member of one class cannot simultaneously be a member of the other
class. In the following code snippet, the Zhi# compiler reports an error in line
2 for the disjoint classes MeetingRoom and LargeRoom.

� ¬
�

If a property relates an individual to another individual, and the property has
a class as its range, then the other individual must belong to the range class.
Assuming the OWL object property takesPlaceInAuditorium relates Lectures
with LargeRooms, line 2 in the following code snippet results in a compile-time
error due to the disjointness of MeetingRoom and LargeRoom. Property domain
declarations are treated analogously.

1 #Lecture l = [. . .] ;
2 l .# takesPlaceInAuditor ium = new #MeetingRoom ([. . .]) ;

Disjoint XSD data types. In Zhi#, a “frame-like” view on OWL object proper-
ties is provided by the checked -operator used in conjunction with assignments
to OWL object properties (see Section 2.2). For assignments to OWL datatype
properties in Zhi# programs, the “frame-like” composite view is the default be-
havior. The data type of the property value must be a subtype of the datatype
property range restriction. The following assignment in line 2 fails to type-check
for an OWL datatype property hasCapacity with domain MeetingRoom and
range xsd#byte because in Zhi# programs the literal 23.5 is interpreted as a
.NET floating point value (i.e. xsd#double), which is disjoint with the primitive
base type of xsd#byte (i.e. xsd#decimal).

1 #MeetingRoom r = [. . .] ;
2 r .#hasCapacity = 23 . 5 ;

The XSD compiler plug-in allows for downcasting objects to compatible XSD
data types (i.e. XSD types that are derived from the same primitive base type).
The assignment in line 3 in the following Zhi# program is validated by a down-
cast. In general, this may lead to an InvalidCastException at runtime, which
prevents OWL datatype properties from being assigned invalid property values.

1 in t i = [. . .] ;
2 #MeetingRoom r = [. . .] ;
3 r .#hasCapacity = (xsd#byte) i ;

Properties. Erik Meijer and Peter Drayton note that “at the moment that you
define a [programming language] class Person you have to have the divine insight
to define all possible relationships that a person can have with any other possible
object or keep type open” [13]. Ontology engineers do not need to make early
commitments about all possible relationships that instances of a class may have.
In Zhi# programs, ontological individuals can be related to other individuals

Zhi# – OWL Aware Compilation 321

and XSD data type values using an object-oriented notation. In contrast to au-
thoritative type declarations of class members in statically typed object-oriented
programming languages, domain and range declarations of OWL object proper-
ties are used to infer the types of the subject (i.e. host object) and object (i.e.
property value). Hence, the types of the related individuals do not necessarily
need to be subsumed by the domain and range declarations of the used object
property before the statement. The only requirement here is that the related
individuals are not declared to be instances of classes disjoint to the declared
domain and range. In the following Zhi# program, the ontological individuals
referred to by e and l are inferred to be not only an Event and a Location but
also a Lecture and a LargeRoom, respectively.

1 #Event e = [. . .] ; // e refers to e, e:Event
2 #Locat ion l = [. . .] ; // l refers to l, l:Location
3 e.# takesPlaceInAuditor ium = l ; // e:Lecture, l:LargeRoom

Both for OWL object and non-functional OWL datatype properties the prop-
erty assignment semantics in Zhi# are additive. The following assignment state-
ment adds the individual referred to by b as a value for property R of the
individual referred to by a; it does not remove existing triples in the ontology.

a.#R = b ;

Correspondingly, property access expressions yield arrays of individuals and
arrays of XSD data type values for OWL object properties and non-functional
OWL datatype properties, respectively, since an individual may be related to
more than one property value. Accordingly, the type of OWL object property
and non-functional OWL datatype property access expressions in Zhi# is always
an array type, where the base type is the range declaration of the property.

The type of an assignment to an OWL object property and a non-functional
OWL datatype property is always an array type, too. This behavior is slightly dif-
ferent from the typical typing assumptions in programming languages. Because
the assignment operator (=) cannot be overloaded in .NET, after an assignment
of the form x = y = z all three objects can be considered equal based on the
applicable kind of equivalence (i.e. reference and value equality). The same is
not always true for assignments to OWL properties considering the array ranks
of the types of the involved objects. In the following cascaded assignment ex-
pression, the static type of the expression b.#R = c is Array Range(R) because
individual b may be related by property R to more individuals than only c.
As a result, with the following assignment in Zhi#, individual a is related by
property R to all individuals that are related to individual b by property R.

Ontological equality. In Zhi#, the equality operator (==) can be used to deter-
mine if two ontological individuals are identical (i.e. refer to the same entity in
the described world). The inequality operator (!=) returns true if two individu-
als are known (either explicitly or implicitly) to be not identical. Note that the

322 A. Paar and D. Vrandečić

inequality operator is thus not implemented as the logical negation of == as
individuals can be unknown to be identical or different.

Auxiliary properties and methods. The Zhi# compiler framework supports a
full-fledged object-oriented notation for external types. In particular, compiler
plug-ins can provide methods, properties, and indexers for static references and
instances of external types. The OWL compiler plug-in implements a number
of auxiliary properties and methods for ontological classes, properties, and in-
dividuals in Zhi# programs. For example, in order to remove property value
assertions from the ontology, the OWL compiler plug-in provides the auxiliary
methods Remove and Clear for OWL properties to remove one particular value
and all values for an OWL property of the specified individual, respectively. In
line 2 in the following code snippet, the ontological individual b is removed as a
property value for property R of individual a. In line 3, all property values for
property R of individual a are removed.

As a second example, for static references of OWL classes the auxiliary prop-
erties Exists, Count, and Individuals are defined. The Exists property yields
true if individuals of the given type exist in the ontology, otherwise false. Count
returns the number of individuals in the extension of the specified class de-
scription. Individuals yields an array of defined individuals of the given type.
The Individuals property is generic in respect of the static type reference on
which it is invoked. In the following array definition, the type of the property
access expression #Person.Individuals is Array Person (and not Array Thing).
Accordingly, it can be assigned to variable persons of type Array Person.

#Person [] persons = #Person . I nd i v i dua l s ;

Note that all described functionality is provided in a “pay-as-you-go” manner:
in Zhi#, there is no runtime performance or code size overhead for conventional
C# code and Zhi# programs that do not use external type definitions.

2.2 Dynamic Checking

In a statically typed programming language such as C# the possible types of an
object are known at compile time. Unfortunately, the non-contextual property
centric data modeling features of the Web Ontology Language render static type
checking only a partial test on Zhi# programs. As a result, the OWL plug-in for
the Zhi# compiler framework and the Zhi# runtime library facilitate dynamic
checking of ontological knowledge bases.

Ontological individuals can be in the extensions of a number of different class
descriptions. In the same way, explicitly made RDF type assertions may be
inconsistent with particular property values or the number of values for a par-
ticular property of an individual. More severely, ontological knowledge bases are

Zhi# – OWL Aware Compilation 323

subject to concurrent modifications via interfaces of different levels of abstrac-
tion (e.g., RDF triples, logical concept view). In Zhi#, before each single usage
of an individual 1) the individual is dynamically checked to be in the extension
of the declared class and 2) the knowledge base is checked to be consistent; an
exception is thrown if either is not the case.

Runtime type checks. Reasoning is used to infer the classes an individual belongs
to. This corresponds to the use of the instanceof and is-operator in Java and C#,
respectively. In Zhi#, the is-operator is used to determine whether an individual
is in the extension of a particular class description. The use of the is-operator is
completely statically type-checked both on the programming language and the
ontology level. For example, the Zhi# compiler will detect if an individual will
never be included by a class description that is disjoint with its asserted type.
See the Zhi# program in Section 3 for an exemplary use of the is-operator.

Checked property assignments. In general, neither domain nor range declara-
tions of OWL properties are constraints. This is in contrast to frame languages
and object-oriented programming languages. In statically typed object-oriented
programming languages such as C#, properties are declared as class members.
The domain of a property corresponds to the type of the containing host object.
Only instances of the domain type can have the declared property. The range
of a property (i.e. class attribute) is also given by an explicit type declaration.
This type declaration is constraining, too. All objects that are declared to be
values of a property must be instances of the declared type at the time of the
assignment. Many ontology engineers favor a rather frame-like composite view
of classes and their associated properties, too. Indeed, the advantage of using
property domain and range descriptions to constrain the set of conforming RDF
triples is a more succinct structuring of an ontology or schema. In Zhi#, the
checked -keyword, which can be used as an operator or a statement, supports
the frame-like notion of OWL object properties. The following example demon-
strates the checked -operator on an OWL object property assignment expression.
For an OWL object property takesPlaceInAuditorium, which relates Lectures
with LargeRooms, an exception is thrown at runtime if the individuals referred
to by e and l are not in the extensions of the named class descriptions Lecture
and LargeRoom, respectively.

�
�

�

XSD and OWL were integrated with the Zhi# programming language simi-
larly like generic types in Java. XSD data types and OWL DL class descriptions
in Zhi# programs are subject to type substitution where references of external
types are translated into 1) a constant set of proxy classes and 2) function calls
on the Zhi# runtime library and its extensions for XSD and OWL. Detailed
explanations how Zhi# programs are compiled into conventional C# are given
in [17].

324 A. Paar and D. Vrandečić

3 Validation

The Zhi# compiler was regression tested with 12 KLOC of Zhi# test code, which
was inductively constructed based on the Zhi# language grammar, and 9 KLOC
of typing information to regression test the semantic analysis of Zhi# programs.

The ease of use of ontological class descriptions and property declarations in
Zhi# is illustrated in [17] by contradistinction with C#-based implementations
of “ontological” behavior for .NET objects. The Zhi# approach facilitates the
use of readily available ontology management systems compared to handcrafted
reasoning code.

Examples for the advantage of OWL aware compilation in the Zhi# program-
ming language over an API-based use of ontology management systems can be
shown based on the following programming tasks, which are all frequent for
ontology-based applications. Assume the following TBox.

A, B � ¬C, ≥1R � A, � � ∀R.B, � � ≤1R, � � ∀U.xsd#positiveInteger

Task 1: Make an ontology available in a computer program.
Task 2: Create individual instances a, o, b, and c of classes �, B, and C.
Task 3: Add individual o as a value for property R of individual a.
Task 4a): List the RDF types of individual o.
Task 4b): Check whether individual o is included by class description B.
Task 4c): List all individuals in the extension of class description B.
Task 5: Add individual c as a value for property R of individual a, which causes

an inconsistent ABox since class descriptions B (range of property R) and
C (which includes c) are disjoint.

Task 6: Add individual b as a value for property R of individual a and test if in-
dividuals o and b are equal (i.e. is there an inferred sameAs(o,b) statement
in the ontology?).

Task 7: Add literals 23, −23, and string literal “NaN” as values for property U
of individual o, where −23 and “NaN” are invalid values for the given TBox.

In line 1 in the Zhi# program shown below, the given TBox, which is de-
fined in the http://www.zhimantic.com/eval namespace, is imported into the
Zhi# compile unit. In line 2, XML Schema Definition’s built-in data types are
imported. In lines 4–9, ontological individuals are created. In line 9, the fully
qualified name of individual c is inferred from the containing namespace of the
named class description C. In line 10, the RDF triple [a R o] is declared in
the ontology. Note how Zhi# facilitates the declaration of ad hoc relationships
(instead of enforcing a frame-like view, where Thing a would not have a slot
R). In line 11, a foreach-loop is used to iterate over all values of the auxiliary
Types property of individual o. Note, in line 12, how ontological individuals are
implicitly convertible to .NET strings. In line 15, the is-operator is used to dy-
namically check the RDF type of individual o. Be aware that the type check is
performed on the ontology level. In line 16, a foreach-loop iterates over all values
of the auxiliary Individuals property of the static class reference B. Note that
the Individuals property is generic with respect to the static class reference on

Zhi# – OWL Aware Compilation 325

which it is invoked. The assignment statement in line 19 causes a compile-time
error since individual c cannot simultaneously be in the extension of class C (its
declared type) and B (the range restriction of property R) for consistent ontolo-
gies. In line 22, individuals o and b are compared for equality. Note that the
equality operator (==) evaluates on the ontology level (i.e. o == b evaluates to
true since o and b were both used as values for functional property R). In lines
23–25, XSD data type variables are defined. In lines 26–28, property values are
declared for datatype property U of individual o. Lines 27–28 cause compile-time
errors since the XSD data types xsd#integer and xsd#string are not subsumed
by the range restriction of datatype property U (i.e. xsd#positiveInteger).

↪→

↪→

↪→

↪→

−

Java code using the Jena Semantic Web Framework for the same given pro-
gramming tasks is available online3. It can be seen that the Zhi# code shown
above treats the OWL terminology as first-class citizens of the program code,
and is thus not only inherently less error-prone but can also be checked at com-
pile time. Zhi#’s inherent support for ontologies facilitates type checking on the
ontology level, which is completely unavailable if OWL APIs are used.

Finally, we mapped the CHIL OWL API [8,16,17] on auxiliary properties and
methods of ontology entities in Zhi# programs. The functionality of 50 of the
3 http://sourceforge.net/p/zhisharp/wiki/Examples of Use/

http://sourceforge.net/p/zhisharp/wiki/Examples

326 A. Paar and D. Vrandečić

91 formally specified CHIL OWL API methods could be implemented as Zhi#
programming language features, which facilitates the static checking of related
method preconditions. Thus, more than half of the possible exceptions that may
occur at runtime with API-based access could be eliminated.

The author leaves it to the reader to assess hybrid approaches that propose
methodological means of integrating OWL models, which are managed by frame-
works such as Protégé and Jena, with computer programs (see Puleston et al. [19]
for an OWL-Java combination). Experience shows that integration shortcomings
of hybrid approaches can barely be compensated by methodologies, which usu-
ally put the burden to behave compliantly to the ontology on the programmer.

4 Related Work

A major disadvantage of using an OWL API compared to, for example, Java-
based domain models is the lack of type checking for ontological individuals.
This lack of compile-time support has lead to the development of code generation
tools such as the Ontology Bean Generator [18] for the Java Agent Development
Framework [22], which generates proxy classes in order to represent elements
of an ontology. Similarly, Kalyanpur et al. [9] devised an automatic mapping
of particular elements of an OWL ontology to Java code. Although carefully
engineered the main shortcomings of this implementation are the blown up Java
class hierarchy and the lack of a concurrently accessible ontological knowledge
base at runtime (i.e. the “knowledge base” is only available in one particular Java
virtual machine in the form of instances of automatically generated Java classes).
This separation of the ontology definition from the reasoning engine results in
a lack of available ABox reasoning (e.g., type inference based on nominals).
The two latter problems were circumvented by the RDFReactor approach [25]
where a Java API for processing RDF data is automatically generated from an
RDF schema. However, RDFReactor only provides a frame-like view of OWL
ontologies whereas Zhi# allows for full-fledged ontological reasoning.

In stark contrast to these systems, the Zhi# programming language syntac-
tically integrates OWL classes and properties with the C# programming lan-
guage using conventional object-oriented notation. Also, Zhi# provides static
type checking for atomic XSD data types, which may be the range of OWL
datatype properties, while many ontology management systems – not to men-
tion the above approaches – simply discard range restrictions of OWL datatype
properties. A combination of static typing and dynamic checking is used for on-
tological class descriptions. In contrast to static type checking that is based on
generated proxy classes, Zhi#’s OWL compiler plug-in adheres to disjoint class
descriptions and copes well with multiple inheritance.

Koide and Takeda [11] implemented an OWL reasoner for the FL0 Description
Logic on top of the Common Lisp Object System [5] by means of the Meta-Object
Protocol [10]. Their implementation of the used structural subsumption algo-
rithm [2] is described, however, to yield only incomplete results. The integration
of OWL with the Python programming language was suggested by Vrandečić
and implemented by Babik and Hluchy [3] who used metaclass-programming

Zhi# – OWL Aware Compilation 327

to embed OWL class and property descriptions with Python. Their approach,
however, offers mainly a syntactic integration in form of LISP-like macros. Also,
their prototypical implementation does not support namespaces and open world
semantics.

The representation and the type checking of ontological individuals in Zhi#
is similar to the type Dynamic, which was introduced by Abadi et al. [1]. Values
of type Dynamic are pairs of a value v and a type tag T, where v has the
type denoted by T. The result of evaluating the expression dynamic e:T is a
pair of a value v and a type tag T, where v is the result of evaluating e. The
expression dynamic e:T has type Dynamic if e has type T. Zhi#’s dynamic
type checking of ontological individuals corresponds to the typecase construct as
proposed by Abadi et al. in order to inspect the type tag of a given Dynamic.
In Zhi# source programs, the use of OWL class names corresponds to explicit
dynamic constructs. In compiled Zhi# code, invocations of the AssertKindOf
method of the Zhi# runtime correspond to explicit typecase constructs.

Thatte described a “quasi-static” type system [23], where explicit dynamic
and typecase constructs are replaced by implicit coercions and runtime checks.
As in Thatte’s work, Zhi#’s dynamic typing for OWL detects errors as early
as possible to make it easy to find the programming error that led to the type
error. Abadi et al. and Thatte’s dynamic types were only embedded with a
simple λ-calculus. The same is true for recent gradual typing proposals [20].
Tobin-Hochstadt and Felleisen developed the notion of occurrence typing and
implemented a Typed Scheme [24]. Occurrence typing assigns distinct subtypes
of a parameter to distinct occurrences, depending on the control flow of the
program. Such distinctions are not made by Zhi#’s OWL compiler plug-in since
it is hard to imagine that appropriate subtypes can be computed considering
complex OWL class descriptions.

5 Conclusion

The Zhi# programming language makes the property-centric modeling features
of the Web Ontology Language available via C#’s object-oriented notation (i.e.
normal member access). The power of the “.” can be used to declare ad hoc rela-
tionships between ontological individuals on a per instance basis. Zhi#’s OWL
aware compilation integrates value space-based subtyping of XML Schema Def-
inition and ontological classification with features of the programming language
such as method overriding, user-defined operators, and runtime type checks. The
Zhi# programming language is implemented by an extensible compiler frame-
work, which is tailored to facilitate the integration of external classifier and
reasoner components with the type checking of Zhi# programs. The compiler
was written in C# 3.0 and integrated with the MSBuild build system for Mi-
crosoft Visual Studio. An Eclipse-based frontend was developed including an
editor with syntax highlighting and autocompletion. The complete Zhi# tool
suite totals 110 C# KLOC and 35 Java KLOC. Zhi# is available online4.
4 http://zhisharp.sourceforge.net

http://zhisharp.sourceforge.net

328 A. Paar and D. Vrandečić

Zhi# offers a combination of static typing and dynamic checking for ontolog-
ical class descriptions. Ontological reasoning directly influences the execution of
programs: Zhi# programs don’t just execute, they reason. Thus, the develop-
ment of intelligent applications is facilitated. In contrast to many OWL APIs,
Zhi# contains extensive support for XSD data types. Zhi# code that uses ele-
ments of an ontology is compiled into conventional C#. All functionality related
to the use of ontologies is provided in a “pay-as-you-go” manner. The underlying
ontology management system can be substituted in the Zhi# runtime library
without recompilation of Zhi# programs.

Future work will include the transformation of Ontology Definition Metamod-
els [15] into Zhi# programs. With ontological class descriptions being first-class
citizens the complete MOF [14] modeling space can be translated into the Zhi#
programming language. We further plan to investigate the interplay of closed
world semantics in an ontology with autoepistemic features (e.g., the epistemo-
logical K-operator) with the static typing in Zhi#.

The Zhi# solution to provide programming language inherent support for
ontologies is the first of its kind. Earlier attempts either lack ABox reason-
ing, concurrent access to a shared ontological knowledge base, or fall short in
fully supporting OWL DL’s modeling features. In recent years, numerous pub-
lications described the – apparently relevant – OWL-OO integration problem.
However, the plethora of naïve code generation approaches and contrived hy-
brid methodologies all turned out to not solve the problem in its entirety. This
work demonstrates that OWL DL ontologies can be natively integrated into a
general-purpose programming language. The Zhi# compiler infrastructure has
shown to be a viable approach to solving the OWL-OO integration problem.

References

1. Abadi, M., Cardelli, L., Pierce, B., Plotkin, G.: Dynamic typing in a statically-
typed language. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13(2), 237–268 (1991)

2. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook. Cambridge University Press, Cambridge (2003)

3. Babik, M., Hluchy, L.: Deep integration of Python with Web Ontology Language.
In: Bizer, C., Auer, S., Miller, L. (eds.) 2nd Workshop on Scripting for the Semantic
Web (SFSW) CEUR Workshop Proceedings, vol. 183 (June 2006)

4. Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes Second Edition. Tech-
nical report, World Wide Web Consortium (W3C) (October 2004)

5. Demichiel, L.G., Gabriel, R.P.: The Common Lisp Object System: An Overview.
In: Bézivin, J., Hullot, J.-M., Lieberman, H., Cointe, P. (eds.) ECOOP 1987. LNCS,
vol. 276, pp. 151–170. Springer, Heidelberg (1987)

6. Hejlsberg, A., Wiltamuth, S., Golde, P.: C# language specification version 1.0.
Technical report, ECMA International (2002)

7. Labs, H.P.: Jena Semantic Web Framework (2004)
8. Information Society Technology integrated project 506909. Computers in the Hu-

man Interaction Loop, CHIL (2004)

Zhi# – OWL Aware Compilation 329

9. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic mapping of OWL
ontologies into Java. In: Maurer, F., Ruhe, G. (eds.) 16th International Conference
on Software Engineering and Knowledge Engineering (SEKE), pp. 98–103 (June
2004)

10. Kiczales, G., de Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press, Cambridge (1991)

11. Koide, S., Takeda, H.: OWL Full reasoning from an object-oriented perspective.
In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185,
pp. 263–277. Springer, Heidelberg (2006)

12. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview.
Technical report, World Wide Web Consortium (W3C) (February 2004)

13. Meijer, E., Drayton, P.: Static typing where possible, dynamic typing when needed.
In: OOPSLA Workshop on Revival of Dynamic Languages (2004)

14. Object Management Group (OMG). MetaObject Facility (August 2005)
15. Object Management Group (OMG). Ontology Definition Metamodel (2005)
16. Paar, A.: Zhi# – programming language inherent support for ontologies. In: Favre,

J.-M., Gasevic, D., Lämmel, R., Winter, A. (eds.) ateM 2007: Proceedings of the 4th
International Workshop on Software Language Engineering, Mainzer Informatik-
Berichte,Mainz, Germany, pp. 165–181. Johannes Gutenberg Universität Mainz,
Nashville (2007)

17. Paar, A.: Zhi# – Programming Language Inherent Support for Ontologies. PhD
thesis, Universität Karlsruhe (TH), Am Fasanengarten 5, 76137 Karlsruhe, Ger-
many (July 2009),
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019039

18. Protégé Wiki: Ontology Bean Generator (2007)
19. Puleston, C., Parsia, B., Cunningham, J., Rector, A.L.: Integrating object-oriented

and ontological representations: A case study in Java and OWL. In: Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)
ISWC 2008. LNCS, vol. 5318, pp. 130–145. Springer, Heidelberg (2008)

20. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Bailey, M.W.
(ed.) 7th Workshop on Scheme and Functional Programming (Scheme) ACM SIG-
PLAN Notices, vol. 41. ACM Press, New York (2006)

21. Stanford University School of Medicine. Protégé knowledge acquisition system
(2006)

22. Telecom Italia. Java Agent Development Framework, JADE (2007)
23. Thatte, S.R.: Quasi-static typing. In: 17th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL), pp. 367–381. ACM Press, New
York (1990)

24. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed
Scheme. ACM SIGPLAN Notices 43(1), 395–406 (2008)

25. Völkel, M.: RDFReactor – from ontologies to programmatic data access. In: 1st
Jena User Conference (JUC). HP Bristol (May 2006)

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019039

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 330–344, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Lightweight Semantic Annotation of Geospatial
RESTful Services

Víctor Saquicela, Luis M. Vilches-Blazquez, and Oscar Corcho

Ontology Engineering Group, Departamento de Inteligencia Artificial
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{vsaquicela,lmvilches,ocorcho}@fi.upm.es

Abstract. RESTful services are increasingly gaining traction over WS-* ones.
As with WS-* services, their semantic annotation can provide benefits in tasks
related to their discovery, composition and mediation. In this paper we present
an approach to automate the semantic annotation of RESTful services using a
cross-domain ontology like DBpedia, domain ontologies like GeoNames, and
additional external resources (suggestion and synonym services). We also
present a preliminary evaluation in the geospatial domain that proves the
feasibility of our approach in a domain where RESTful services are increasingly
appearing and highlights that it is possible to carry out this semantic annotation
with satisfactory results.

Keywords: REST, semantic annotation, geospatial RESTful services.

1 Introduction

In recent years, since the advent of Web 2.0 applications and given some of the
limitations of “classical” Web services based on SOAP and WSDL, Representational
State Transfer (REST) services have become an increasing phenomenon. Machine-
oriented Web applications and APIs that are conformant to the REST architectural
style [23], normally referred to as RESTful Web services, have started appearing
mainly due to their relative simplicity and their natural suitability for the Web.

However, using RESTful services still requires much human intervention since the
majority of their descriptions are given in the form of unstructured text in a Web page
(HTML), which contains a list of the available operations, their URIs and parameters
(also called attributes), expected output, error messages, and a set of examples of their
execution. This hampers the automatic discovery, interpretation and invocation of
these services, which may be required in the development of applications, without
extensive user involvement.

Traditionally, semantic annotation approaches for services have focused on
defining formalisms to describe them, and have been normally applied to WS-*
service description formalisms and middleware. More recently, these (usually
heavyweight) approaches have started to be adapted into a more lightweight manner
for the semantic description of RESTful services [1, 5, 8]. However, most of the
processes related to the annotation of RESTful services (e.g., [2, 11]) still require a

 Lightweight Semantic Annotation of Geospatial RESTful Services 331

large amount of human intervention. First, humans have to understand the informal
descriptions provided in the RESTful service description pages, and then the semantic
annotation of RESTful services is done manually, with or without assistance.

In this paper, we address the challenge of automating the semantic annotation of
RESTful services by: (1) obtaining and formalising their syntactic descriptions, which
allows their registration and invocation, and (2) interpreting, and semantically
enriching their parameters.

The main contribution of our work is the partial automation of the process of
RESTful semantic annotation services using diverse types of resources: a cross-
domain ontology, DBpedia (combined with GeoNames in the specific case of
geospatial services), and diverse external services, such as suggestion and synonym
services.

The remainder of this paper is structured as follows: Section 2 presents related
work in the context of semantic annotation of WS-* and RESTful services. Section 3
introduces our approach for automating the annotation of RESTful services, including
explanations on how we derive their syntactic description and semantic annotation.
Section 4 presents the evaluation of our system in the context of these services from
the geospatial domain. Finally, Section 5 presents some conclusions of this paper and
identifies future lines of work.

2 Related Work

Most research in the semantic annotation of RESTful services has focused on the
definition of formal description languages for creating semantic annotations. The
main proposed formalisms for describing these services are: the Web Application
Description Language1 (WADL), which describes syntactically RESTful services and
the resources that they access; its semantic annotation extension [19]; MicroWSMO
[3], which uses hREST (HTML for RESTful services) [3, 5]; and SA-REST [2, 8],
which uses SAWSDL [1] and RDFa2 to describe service properties.

From a broader point of view, the work done in the state of the art on Semantic
Web Services (SWS) has mainly focused on WS-*services. OWL-S and WSMO are
approaches that use ontologies to describe services.

Some authors propose the adaptation of heavyweight WS-* approaches to describe
RESTful services. An example is proposed in [10], which makes use of OWL-S as the
base ontology for services, whereas WADL is used for syntactically describing them.
Then, the HTTP protocol is used for transferring messages, defining the action to be
executed, and also defining the execution scope. Finally, URI identifiers are
responsible for specifying the service interface.

Other approaches are more lightweight (e.g., [1, 2]). The authors advocate an
integrated lightweight approach for describing semantically RESTful services. This
approach is based on use of the hREST and MicroWSMO microformats to facilitate
the annotation process. The SWEET tool [2] supports users in creating semantic
descriptions of RESTful services based on the aforementioned technologies. Unlike

 1 http://www.w3.org/Submission/wadl/
 2 http://www.w3.org/TR/xhtml-rdfa-primer/

332 V. Saquicela, L.M. Vilches-Blazquez, and O. Corcho

this work, our approach is focused on automating this process, and could be well
integrated into this tool. Once the semantics of the RESTful service is obtained, this
could be represented in any of the existing semantic description approaches, such as
hREST, MicroWSMO, etc.

Finally, another approach for service description that focuses on automation, and
hence can be considered closer to our work, is presented in [17]. This approach
classifies service parameter datatypes using HTML treated Web form files as the Web
service's parameters using Naïve Bayes.

3 An Approach for the Automatic Semantic Annotation of
RESTful Services

In this section, we present our approach, visualized in Figure 1, for automating the
syntactic and semantic annotation of RESTful services. Our system consists of three
main components, including invocation and registration, repository, and semantic
annotation components, which are enriched by diverse external resources. Next, we
briefly describe the different components, illustrating the descriptions with some
sample services on the geospatial domain.

Fig. 1. RESTful Service Semantic Annotation System

3.1 A Sample Set of RESTful Services in the Geospatial Domain

Nowadays the largest online repository of information about Web 2.0 mashups and
APIs is ProgrammableWeb.com. This aggregator site provides information on 5,401
mashups and 2,390 APIs that were registered between September 2005 and

 Lightweight Semantic Annotation of Geospatial RESTful Services 333

November 2010. Mashups tagged as “mapping” represent a 44.5% mashups (2,403
mashups) of the listed ones, what represents the importance of geospatial information
in the generation of these applications. With respect to APIs, GoogleMaps is the most
used with an 89.4%, that is, this API is used on 2,136 mashups. These data show the
importance of geospatial information in the context of the REST world. The following
services, taken from the aforementioned site, are two representative geospatial
RESTful services:

• Service 1. http://ws.geonames.org/countryInfo?country=ES
This service retrieves information related to a ‘country’. More specifically, it
returns information about the following parameters: ‘capital’, ‘population’, ‘area’
(km2), and ‘bounding box of mainland’ (excluding offshore islands). In the
specified URL, we retrieve information about Spain.

• Service 2. http://api.eventful.com/rest/venues/search?app_key=p4t8BFcLDt

CzpxdS&location=Madrid
This service retrieves information about places (venues). More specifically, it
returns parameters like: ‘city’, ‘venue_name’, ‘region_name’, ‘country_name’,
‘latitude’, ‘longitude’, etc. In the specified URL, we retrieve information about
Madrid.

3.2 Syntactic Description Storing: Invocation and Registration Details into a
Repository

As aforementioned, RESTful services are normally described or registered in sites
like programmableWeb by means of their URLs, plus some natural language
descriptions, tags, and execution examples, if at all available. Hence, the first step in
our system is to take as input the URL of an available RESTful service that is known
by users (for instance, it has been discovered by a user by browsing this site, or it has
been sent to the user by a friend).

In our system, the user adds the URLs of a service as a starting point, with the
objective of obtaining automatically information related to it. Once the URLs is
added, our system invokes the RESTful service with some sample parameters,
obtained from the examples that are normally provided together with the URL (if this
information is not available, our system cannot continue automatically without further
human intervention), and analyzes the response to obtain a basic syntactic description
of the parameter set, used as inputs and outputs.

In this process our system uses the Service Data Object3 (SDO) API to perform the
invocation of the RESTful service and determine whether it is available or not. SDO
is a specification for a programming model that unifies data programming across data
source types and provides robust support for common application patterns in a
disconnected way [22]. The invocation process is performed as follows: first, it takes
the input parameters and their values, which are given to the service as part of a URL.
Then, the system invokes the service that translates our "RESTful service call" into a
query to a specific service, including the URL and related parameters.

 3 http://www.oasis-opencsa.org/sdo

334 V. Saquicela, L.M. Vilches-Blazquez, and O. Corcho

The service invocation of a specific RESTful service may return diverse formats,
such as JSON, XML, etc. In our work we use any of these formats, although for
presentation purposes in this paper we will show how we handle XML responses. The
results of a sample invocation of the services that we presented in section 3.1 are
showed in Table 1.

Table 1. XML response of two sample RESTful services

Service 1 Service 2

<geonames>
 <country>
 <countryCode>ES</countryCode>
 <countryName>Spain</countryName>
 <isoNumeric>724</isoNumeric>
 <isoAlpha3>ESP</isoAlpha3>
 <fipsCode>SP</fipsCode>
 <continent>EU</continent>
 <capital>Madrid</capital>
 <areaInSqKm>504782.0</areaInSqKm>
 <population>40491000</population>
 <currencyCode>EUR</currencyCode>
 <languages>es-ES,ca,gl,eu</languages>
 <geonameId>2510769</geonameId>
 <bBoxWest>-18.169641494751</bBoxWest
 <bBoxNorth>43.791725</bBoxNorth>
 <bBoxEast>4.3153896</bBoxEast>
 <bBoxSouth>27.6388</bBoxSouth>
 </country>
</geonames>

<venue id="V0-001-000154997-6">
 <url>http://eventful.com/madrid/venues/la-
 ancha-/V0-001-000154997-6</url>
 <country_name>Spain</country_name>
 <name>La Ancha</name>
 <venue_name>La Ancha</venue_name>
 <description></description>
 <venue_type>Restaurant</venue_type>
 <address></address>
 <city_name>Madrid</city_name>
 <region_name></region_name>
 <region_abbr></region_abbr>
 <postal_code></postal_code>
 <country_abbr2>ES</country_abbr2>
 <country_abbr>ESP</country_abbr>
 <longitude>-3.68333</longitude>
 <latitude>40.4</latitude>
 <geocode_type>City Based GeoCodes
 </geocode_type>
 <owner>frankg</owner>
 <timezone></timezone>
 <created></created>
 <event_count>0</event_count>
 <trackback_count>0</trackback_count>
 <comment_count>0</comment_count>
 <link_count>0</link_count>
 
</venue>
<venue id="V0-001-000154998-5">

These XML responses are processed using SDO, which enables to navigate
through the XML and extract output parameters of each service4. The result of this
invocation process is a syntactic definition of the RESTful service in XML, which can
be expressed in description languages like WADL or stored into a relational model.
Table 2 shows the different output parameters of each service, where we can observe
by manual inspection that there is some similarity between diverse parameters (e.g.,
countryName and country_name) and that they return similar values (Spain).
However, these parameters are written differently. These differences between
parameters are described and dealt with in sections 3.3.1 and 3.3.2.

With URL and input/output parameters, we generate a WADL description that can
be used as the input to the next process. Additionally, we register and store this
description into a repository using an oriented-object model. This repository is
implemented as a database that is specifically designed to store syntactic descriptions
of RESTful services and parameters’ values of invocations. We selected this storage
model in order to increase efficiency in the recovery of the RESTful services.

 4 In the work reported here, we considered only XML tags with values.

 Lightweight Semantic Annotation of Geospatial RESTful Services 335

Once the RESTful service is registered and the WADL description is generated,
our system invokes the service without associated parameters. For example:

*Service 1’. http://ws.geonames.org/countryInfo?
*This is an example of invocation (Service 1) without its associated parameters.

On the other hand, our system also considers service URLs as http://www.foo.org/

weather/Madrid. These services belong to a specific RESTful entity and they are
always invoked with its associated parameters.

In this way, the system invokes the service for retrieving a collection of instances
(countries)5 related to the service. The results of this invocation are stored into the
oriented-object model. Thus, this process allows collecting additional information
about a service (output parameters and instances), which is registered in our system,
and retrieving it for future processes without the need to invoke the original service.

Table 2. Syntactic description of our two sample RESTful services

Service 1:
countryInfo($country,bBoxSouth,isoNumeric,continent,fipsCode,areaInSqKm,languages,iso
Alpha3,countryCode,bBoxNorth,population,bBoxWest,currencyCode,bBoxEast,capital,geo
nameId,countryName)

Service 2:
rest/venues/search($location,$app_key,id,link_count,page_count,longitude,trackback_count,
version,venue_type,owner,url,country_name,event_count,total_items,city_name,address,na
me,latitude,page_number,postal_code,country_abbr,first_item,page_items,last_item,page_si
ze,country_abbr2,comment_count,geocode_type,search_time,venue_name)

3.3 Semantic Annotation

Some of the difficulties that arise in the semantic annotation of RESTful services are
briefly described in [1, 11]. In order to cope with them, we rely on techniques and
processes that permit: a) semantic annotation using only the syntactic description of
the services and their input/output parameters, or b) semantic annotation by
identifying a set of example values that allow the automatic invocation of the service.

The starting point of the semantic annotation process is the list of syntactic
parameters obtained previously (a WADL file or the model stored into a relational
database). Once the RESTful service is syntactically described with all its identified
input and output parameters, we proceed into its semantic annotation. We follow a
heuristic approach that combines a number of external services and semantic
resources to propose annotations for the parameters as shown in Figure 2. Next, we
describe the main components of the semantic annotation.

 5 The results of this service invocation are available at
 http://delicias.dia.fi.upm.es/RESTfulAnnotationWeb/RESTService1/RESTservice1.xml

336 V. Saquicela, L.M. Vilches-Blazquez, and O. Corcho

Fig. 2. Semantic annotation process

3.3.1 A Model for Describing RESTful Services
In order to describe semantically these services we define a model to represent the
relationships of the different service parameters with the diverse resources used for
semantic annotation. Some of the elements of this model are domain-independent,
while others are domain dependent (in our examples we use these related to the
geospatial domain, where we have performed our experiments in order to evaluate the
feasibility of our approach). With respect to the domain-independent component, we
use DBpedia, a community driven knowledge base, as the main source of background
knowledge for supporting the semantic annotation process. This is complemented by
the domain-dependent component. In the context of the shown examples, we use
GeoNames6 as a source related to geospatial information. This model (Figure 3)
defines the following components:

- Parameter. This class provides a list of all parameters (inputs and outputs)

collected from different services. Likewise, we search for additional information
for each parameter, such as suggestions and synonyms, for enriching the initial
description of parameters. The relation hasCollection relates Parameter
with DBpediaOntology. Every parameter can be related to any number of
DBpedia classes or properties (from 0 to N).

- Ontologies. This class contains classes and properties of the DBpedia and
GeoNames ontology related to the parameters of each service. This class is
related to the classes DBpediaInstance and GeonamesInstance by

 6 http://www.geonames.org/

 Lightweight Semantic Annotation of Geospatial RESTful Services 337

means of the relation hasCollection. Ontologies can be related to any
number of DBpedia or GeoNames instances (from 0 to N).

- DBpediaInstance. This class collects values from the DBpedia SPARQL
Endpoint, where a parameter may have one o more associated resources.

- GeonamesInstance. This class collects geospatial information related to
latitude, longitude, and bounding box parameters from a
GeoNames SPARQL Endpoint.

The information related to each parameter of the RESTful service (semantic

annotations) is stored only once in the system repository. By doing this, we avoid to
duplicate information related to the same parameters, hence storing annotations
independently of services and increasing the efficiency of our system.

0..*

1

Fig. 3. Model for the description of geospatial RESTful service parameters

3.3.2 Using Semantic Sources in the Annotation Process
At this stage, the list of syntactic parameters obtained previously is used to query the
DBpedia and GeoNames SPARQL Endpoints (the latter is only used in the case of the
geospatial domain) and retrieve associated results for each parameter, as follows:

- First, the system retrieves all the classes from the DBpedia ontology whose

names have a match with each parameter of the RESTful service. In this
matching process we test two different techniques:

• On the one hand, our approach uses an exact match to compare parameters of

RESTful service with the labels of the ontologies’ classes and properties.
• On the other hand, our approach uses a combination of various similarity

metrics (Jaro, JaroWinkler and Levenshtein metrics)7 to compare parameters
with the labels of the elements of these ontologies. This proposal allows

 7 http://staffwww.dcs.shef.ac.uk/people/S.Chapman/stringmetrics.html

338 V. Saquicela, L.M. Vilches-Blazquez, and O. Corcho

matching between strings such as countryName, country_name, or
country, for example.

If the system obtains correspondences from the matching process, it uses these
DBpedia concepts individually to retrieve samples (concept instances) from the
DBpedia SPARQL Endpoint. Likewise, when a parameter matches an ontology
class related to some geospatial information; such as latitude, longitude, or
bounding box, our system retrieves samples from the GeoNames SPARQL
Endpoint. The resulting information (RDF) is suggested automatically to the
system and registered as a possible value for the corresponding parameter. When
a parameter matches more than once in the DBpedia ontology, our system only
considers those concepts that have information (instances), and automatically
discards those ontology concepts without instances.

- Next, the system tries to find correspondences between parameters of the
RESTful service and ontology properties. If the system obtains some
correspondences, it uses these DBpedia properties individually to retrieve
information of the DBpedia or GeoNames SPARQL Endpoint, as described
above. Furthermore, this information is registered as a possible correct value for
the corresponding parameter.

- Finally, with the obtained classes and properties, the system calls the DBpedia
and GeoNames SPARQL Endpoints to retrieve values (instances) for those
classes and properties, so that now we have possible values for them.

3.3.3 Enriching the Semantic Annotations
Our system looks for matches with DBpedia (and GeoNames) classes and properties.
Hence it is possible to have parameters with not correspondences identified, since
there are many lexical and syntactic variations that the parameter names may have,
and because in some cases the information that is being requested may not be
available in any of the external sources that are consulted. In order to annotate
semantically the parameters that did not match any DBpedia resource, we use
additional external services to enrich the results. Below we describe the main
characteristics of the external services that we consider.

Spelling Suggestion Services

Web search engines (e.g. Google, Yahoo, and Microsoft) usually try to detect and
solve users’ writing mistakes. Spelling Suggestion services, also called “Did You
Mean”, are algorithms which aim at solving these spelling mistakes. For example,
when a user writes ‘countryName’ these algorithms suggest ‘country’ and ‘name’
separately.

In our system we use the Yahoo Boss service8 to retrieve suggestions about the
parameters that we have obtained in the previous steps and for which we have not
obtained any candidate in our semantic resources. Thus, for each parameter that the
system did not find a correspondence with classes or properties in DBpedia (nor
GeoNames), this service is invoked to obtain a list of suggestions to query DBpedia

 8 http://developer.yahoo.com/search/boss/boss_guide/Spelling_Suggest.html

 Lightweight Semantic Annotation of Geospatial RESTful Services 339

(and GeoNames) again. The output is registered and stored into the repository.
Following the previous example, the parameter ‘countryName’ is not found in the
DBpedia ontology. Nevertheless, the added service allows separating this parameter
in ‘country’ and ‘name’, and then it calls to the DBpedia SPARQL Endpoint with
these new strings for obtaining results.

Synonym services

This external service9 is incorporated into the system to retrieve possible synonyms
for a certain parameter. This service tries to improve the semantic annotation process
when our system does not offer results for the previous steps, that is, when we still
have parameters in a RESTful service without any potential annotations.

As an example, we may have a parameter called ‘address’. The invocation process
uses the synonyms service to retrieve a set of synonyms of ‘address’ such as extension,
reference, mention, citation, denotation, destination, source, cite, acknowledgment, and
so on. These outputs are registered and stored into the repository, and then, the service
calls to the DBpedia (and GeoNames) SPARQL Endpoints for results again.

Both spelling suggestion and synonym services use the matching process described
in section 3.3.1 to find possible matches between the output of these services and the
components of the used ontologies.

3.4 Checking the Semantic Annotation of RESTful Services

In order to check the collected sample individuals and the initial semantic annotations
obtained as a result of the previous process, our system invokes the RESTful services
that were already registered in the repository (as we describe in Section 3.2) and
validates the input and output parameters for checking which is the best option to
describe each parameter.

For the validation of the input parameters, our system selects, for each parameter,
a random subset of the example instances (of classes and/or properties) coming from
the DBpedia (and GeoNames) ontology that we have obtained and registered before.
Next, it makes several invocations of the RESTful service iterating over these
registered values. The system does not check this with all the possible combination of
collected instances for all parameters for two reasons: first, because of the
combinatorial explosion that may be produced in such a case, and second because
many RESTful services have invocation limitations.

When a service has one or more than one input parameter, the system obtains
randomly some instances of this parameter for the validation process. Each parameter
generates a collection (list) of instances from our repository. Then, the system joins
instances to obtain a table of all combinations of each parameter. Likewise, the
geospatial parameters, specifically latitude and longitude parameters, are combined to
obtain some values (instances) that can be used for this invocation.

If the service returns results from the invocation, then the service is considered as
executable, and the corresponding annotations are marked as valid. If a service cannot
be invoked successfully, the service is classified as non-executable and is automatically
discarded from the list of services that can be automatically annotated.

 9 http://www.synonyms.net/

340 V. Saquicela, L.M. Vilches-Blazquez, and O. Corcho

For the validation of the output parameters, our system only takes into account
executions with the correct inputs from the input sets that have been considered
before. Next, the system compares the outputs obtained after execution with the
information already stored in the repository due to the initial retrieval processes done
before with DBPedia (and GeoNames), and external utility services. If the output can
be matched, our system considers the output annotation as valid.

Finally, the correspondences that have been established between the different
parameters of the RESTful service and the DBpedia (and GeoNames) ontology are
registered and stored in the repository, so that they can be used later. In such a way,
the RESTful service is annotated semantically and it will allow generating semantic
descriptions or annotations of any of the types that were identified in the related work
section (WADL, hREST, etc.). Table 3 provides an abbreviated form of this
description for our exemplar service 1.

Table 3. Semantic annotation of a RESTful service

($country,http://www.w3.org/2003/01/geo/wgs84_pos#lat,http://
w ww.w3.org/2003/01/geo/wgs84_pos#long,isoNumeric,http://dbpedia
.org/ontology/Continent,fipsCode,http://dbpedia.org/property/
areaMetroKm,languages,isoAlpha3,http://dbpedia.org/ontology/cou
ntry,http://www.w3.org/2003/01/geo/wgs84_pos#lat,http://www.w3
.org/2003/01/geo/wgs84_pos#long,http://dbpedia.org/ontology/
populationDensity,http://www.w3.org/2003/01/geo/wgs84_pos#lat,ht
tp://www.w3.org/2003/01/geo/wgs84_pos#long,http://dbpedia.org/
ontology/Currency,http://www.w3.org/2003/01/geo/wgs84_pos#lat,
http://www.w3.org/2003/01/geo/wgs84_pos#long,http://dbpedia.org
/ontology/capitalgeonameId,http://dbpedia.org/ontology/country)

4 Experimental Results

In order to evaluate our approach in the geospatial domain we have used 60 different
RESTful services found in http://www.programmableweb.com/, which we have
selected randomly from those that were available and could be characterized to
contain geospatial information by a manual lookup. The list of these services can be
found in our experiment website10. In the syntactic registration of all these services in
the system, by means of introducing the list of their URLs, our system successfully
registered 56 of them into the repository (4 services could not be registered due to an
invocation error). As a result of this syntactic registration, the system has produced a
complete list of 369 different parameters (52 input parameters and 342 output
parameters), without duplications.

This analysis follows the three steps described in our semantic annotation process.
First, our system identifies correctly 191 of 369 parameters by calling directly the
DBpedia and GeoNames ontologies. Second, the system uses initial parameters plus
the suggestion service and calls the DBpedia and GeoNames ontologies. In this case,

10 http://delicias.dia.fi.upm.es/RESTfulAnnotationWeb/SourcesList/sources.ods

 Lightweight Semantic Annotation of Geospatial RESTful Services 341

it identifies 33 correspondences and adds 57 parameters to the initial ones. Third, the
system uses the initial parameters plus the synonyms service, and calls the DBpedia
and GeoNames ontologies. It identifies 126 correspondences and incorporates 1,147
additional parameters into the system. Finally, the system combines all the resources
that result from the enrichment process and calls again the DBpedia and GeoNames
SPARQL endpoint. Here it identifies 159 correspondences and adds 1,573 more
parameters. A detailed view of these results is shown in Table 4.

Table 4. Enriching initial parameters with external resources

Attributes Total Additional
parameters

Matches (DBpedia
and GeoNames

ontologies)
Initial parameters 369 - 191
Parameters + Suggestions 426 57 33
Parameters + Synonyms 1573 1147 126
Parameters + Suggestions + Synonyms 1573 1204 159

With respect to the validation of input parameters11 (see Table 5), our system

recognizes 152 inputs of the initial list, of which 76 parameters can be annotated
automatically with the DBpedia (33 parameters) and GeoNames (45 parameters)
ontologies.

Likewise, we have discovered with our evaluation that some other parameters are
useless in terms of semantic annotation processes, since they refer to the navigation
process through the RESTful service results or “special” parameters. These
parameters (input/output) are not considered for this validation (nevertheless, they are
considered to the invocation process), concretely 155 “special” parameters, for
instance, userID, api_key, page, total, hits, etc.). These parameters were
detected manually and a list of them is collected in this website12. Our system takes
them out automatically from the service registration process13.

One aspect of our system is that we cannot always guarantee a successful
annotation, because in some cases the system cannot find any correspondence
between the service parameters and the concepts or properties of the DBpedia or
GeoNames ontologies. This is common, for instance, when parameter names are
described by only one letter (e.g., s, l or q) and hence they are not sufficiently
descriptive for our automated approach to find any correspondence. In our evaluation,
we had 12 of this type of parameters. In these cases the parameters should be shown
to users for a manual description of them.

In summary, for 56 of the 60 initial geospatial RESTful services we have obtained
correct input parameter associations, except for 4 cases where we could not find any
correspondence.

11 A detailed analysis on these input parameters is available at
 http://delicias.dia.fi.upm.es/RESTfulAnnotationWeb/inputs/inputs.ods
12 http://delicias.dia.fi.upm.es/RESTfulAnnotationWeb/parameters/Parameters.ods
13 This was not described in the process described in section 3 since we did not consider it relevant

for the description of the whole process.

342 V. Saquicela, L.M. Vilches-Blazquez, and O. Corcho

Table 5. Results of the input and output paremeters

RESTful
Service

Total
parameters

Annotated
parameters

Annotated
parameters
(DBpedia)

Annotated
parameters
(GeoNames)

Special
parameters

Service
validation

Input
parameters

152 76 33 45 73 56 4

Output
parameters

862 315 202 113 299 -

With respect to the validation of output parameters14 (see Table 5), our system

recognizes 862 outputs that belong to the 56 services whose input parameters have
been validated. This total of output parameters is divided into 315 whose
correspondences can be found using DBpedia (202 parameters) and GeoNames (113
parameters) ontologies, and 391 (special (299) and not found (92) parameters) whose
correspondences cannot be found.

Table 6. Output parameters metrics

RESTful
Service

Found
parameters

 Not found
parameters

Annotated Not
annotated

Right
parameters

Precision Recall

Output
parameters

475 92 315 160 242 0.66 0.77

While in the context of the input parameters we are interested in determining whether

we can call the service or not, in the case of output parameters, we are interested in the
precision and recall metrics of the annotation process. Hence, we have generated a gold
standard with the studied services in order to assign manually the annotations that have
to be produced for all output parameters of these services, and we have performed an
evaluation of the results obtained from the system for the parameters that are found.
Regarding the parameters that are found, our system annotates 315 of them
automatically, from which 242 parameters are annotated correctly according to the gold
standard, while 160 parameters are not annotated. This provides us with an average
value for precision equal to 0.66 and recall equal to 0.77 for both metrics.

To the best of our knowledge, there are no available results from existing research
works to compare our results against. Likewise, these preliminary results prove the
feasibility of our system and highlight that its possible to carry out an assisted
semantic annotation of RESTful services.

5 Conclusions and Future Work

In this paper we have proposed an approach to perform an assisted semantic
annotation process of RESTful services. This process is implemented in a system that

14 A detailed analysis on these output parameters is available at
 http://delicias.dia.fi.upm.es/ RESTfulAnnotationWeb/ouputs/outputs.ods

 Lightweight Semantic Annotation of Geospatial RESTful Services 343

takes into account the DBpedia ontology and its SPARQL Endpoint, for general
annotation, and GeoNames and its SPARQL Endpoint for geospatial specific results,
as well as different external resources such as synonyms and suggestion services. We
use combinations of these resources to discover meanings for each of the parameters
of the RESTful services that a user may select and perform semantic annotations of
them.

To illustrate our work and guide the explanations of the proposed semantic
annotation process we have used two exemplary RESTful services related to the
geospatial domain. Besides, we have presented some preliminary experimental results
that prove the feasibility of our approach, at least in the geospatial domain, and show
that it is possible to assist the semantic annotation of RESTful services, again at least
in this domain.

Future work will focus on the development of a GUI that will ease the introduction
of existing services by users for their semantic annotation, probably incorporated in
any existing RESTful semantic annotation tool/utility suite. Furthermore, we also plan
to make improvements to the proposed system through the analysis of instances
retrieved in the matching process, so as to improve the results that have been
demonstrated in our evaluation. In the same sense, we also aim at improving the
SPARQL queries to DBpedia and other semantic resources associated or not to a
specific domain, to better explore this resource in the annotation process, and
optimize the use of suggestion and synonyms services. Finally, we will incorporate
more specific domain ontologies in the semantic process for taking advantage of
specific domain characteristics.

Acknowledgments

This work has been supported by the R&D project España Virtual (CENIT2008-
1030), funded by Centro Nacional de Información Geográfica and CDTI under the
R&D programme Ingenio 2010.

References

1. Maleshkova, M., Kopecky, J., Pedrinaci, C.: Adapting SAWSDL for Semantic
Annotations of RESTful Services. In: Workshop: Beyond SAWSDL at OnTheMove
Federated Conferences & Workshops, Vilamoura, Portugal (2009)

2. Maleshkova, M., Pedrinaci, C., Domingue, J.: Semantically Annotating RESTful Services
with SWEET, Demo at 8th ISWC, Washington D.C., USA (2009)

3. Maleshkova, M., Gridinoc, L., Pedrinaci, C., Domingue, J.: Supporting the Semi-
Automatic Acquisition of Semantic RESTful Service Descriptions. In: ESWC (2009)

4. Pedrinaci, C., Domingue, J., Krummenacher, R.: Linked Data Meets Artificial Intelligence.
In: Services and the Web of Data: An Unexploited Symbiosis, Workshop: Linked AI:
AAAI Spring Symposium (2010)

5. Kopecký, J., Gomadam, K., Vitvar, T.: hRESTS: An HTML Microformat for Describing
RESTful Web Services. Web Intelligence, 619–625 (2008)

6. Lambert, D., Domingue, J.: Grounding semantic web services with rules. In: Workshop:
Semantic Web Applications and Perspectives, Rome, Italy (2008)

344 V. Saquicela, L.M. Vilches-Blazquez, and O. Corcho

7. Steinmetz, N., Lausen, H., Brunner, M.: Web Service Search on Large Scale.
ICSOC/ServiceWave, 437–444 (2009)

8. Lathem, J., Gomadam, K., Sheth, A.P.: SA-REST and (S)mashups: Adding Semantics to
RESTful Services. In: ICSC 2007, pp. 469–476 (2007)

9. García Rodríguez, M., Álvarez, J.M., Berrueta, D., Polo, L.: Declarative Data Grounding
Using a Mapping Language. Communications of SIWN 6, 132–138 (2009)

10. Freitas Ferreira Filho, O., Grigas Varella Ferreira, M.A.: Semantic Web Services: A
RESTful Approach. In: IADIS Int. Conference WWW/INTERNET 2009, Rome, Italy
(2009)

11. Alowisheq, A., Millard, D.E., Tiropanis, T.: EXPRESS: EXPressing REstful Semantic
Services Using Domain Ontologies. In: Bernstein, A., Karger, D.R., Heath, T.,
Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS,
vol. 5823, pp. 941–948. Springer, Heidelberg (2009)

12. Alarcon, R., Wilde, E.: Linking Data from RESTful Services. In: LDOW 2010, Raleigh,
North Carolina (2010)

13. Lerman, K., Plangprasopchok, A., Knoblock, C.A.: Semantic Labeling of Online
Information Sources. Int. J. Semantic Web Inf. Syst. 3(3), 36–56 (2007)

14. Ambite, J.L., Darbha, S., Goel, A., Knoblock, C.A., Lerman, K., Parundekar, R., Russ, T.:
Automatically constructing semantic web services from online sources. In: Bernstein, A.,
Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.)
ISWC 2009. LNCS, vol. 5823, pp. 17–32. Springer, Heidelberg (2009)

15. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling Schemas of Disparate Data Sources:
A Machine-Learning Approach. In: SIGMOD Conference 2001, pp. 509–520 (2001)

16. Doan, A., Domingos, P., Halevy, A.Y.: Learning to Match the Schemas of Data Sources:
A Multistrategy Approach. Machine Learning 50(3), 279–301 (2003)

17. Heß, A., Kushmerick, N.: Learning to attach semantic metadata to web services. In:
Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 258–273.
Springer, Heidelberg (2003)

18. Rahm, E., Bernstein, P.: On matching schemas automatically. VLDB. Journal 10(4) (2001)
19. Battle, R., Benson, E.: Brinding the semantic web and web 2.0 with Representational State

Tranfer (REST). Web semantics 6, 61–69 (2008)
20. Braga, D., Ceri, S., Martinenghi, D., Daniel, F.: Mashing Up Search Services. IEEE

Internet Computing 12(5), 16–23 (2008)
21. Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl, V., Mau, L., Ng, Y.H.,

Simmen, D., Singh, A.: Damia: a data mashup fabric for intranet applications. In:
Proceedings of the 33rd Int. Conference on VLDB 2007 Endowment, pp. 1370–1373
(2007)

22. Resende, L.: Handling heterogeneous data sources in a SOA environment with service data
objects (SDO). In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 895–897. ACM, New York (2007)

23. Fielding, R.: Architectural Styles and The Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine (2000)

Towards Custom Cloud Services

Using Semantic Technology to Optimize Resource
Configuration

Steffen Haak and Stephan Grimm

Research Center for Information Technology (FZI)
Haid-und-Neu-Str. 10-14

D-76131 Karlsruhe, Germany
{haak,grimm}@fzi.de

Abstract. In today’s highly dynamic economy, businesses have to adapt
quickly to market changes, be it customer, competition- or regulation-
driven. Cloud computing promises to be a solution to the ever changing
computing demand of businesses. Current SaaS, PaaS and IaaS services
are often found to be too inflexible to meet the diverse customer require-
ments regarding service composition and Quality-of-Service. We there-
fore propose an ontology-based optimization framework allowing Cloud
providers to find the best suiting resource composition based on an ab-
stract request for a custom service. Our contribution is three-fold. First,
we describe an OWL/SWRL based ontology framework for describing
resources (hard- and software) along with their dependencies, interop-
erability constraints and meta information. Second, we provide an algo-
rithm that makes use of some reasoning queries to derive a graph over all
feasible resource compositions based on the abstract request. Third, we
show how the graph can be transformed into an integer program, allow-
ing to find the optimal solution from a profit maximizing perspective.

1 Introduction

In the last decades, most companies regarded their IT systems as a necessary
but unimportant part of their business models. Investments into IT infrastruc-
ture were cost- rather than quality-driven and long product life cycles made
investments long-term rather than flexible. However the Internet’s increasing
importance for global business, emerging new paradigms like Service Oriented
Architectures (SOA) and Cloud computing, and the ever increasing competition
fostered through globalization has made many companies rethink their IT strat-
egy. Even in traditional industries, IT no longer just acts as a supporting unit -
in many cases IT has become a strategic competitive factor. The challenge has
become even harder, as product and service life cycles become shorter and adap-
tation to market changes needs to be more agile as ever before [6]. Naturally this
challenge is encountered by all parts of modern business, putting high demands
on flexibility and agility on a company’s supporting IT services.

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 345–359, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

346 S. Haak and S. Grimm

Cloud computing (and its SaaS, PaaS and IaaS offerings) promises to be a so-
lution for cutting costs in IT spending while simultaneously increasing flexibility.
According to thecloudmarket.com [1], there already exist over 11.000 different
preconfigured Amazon EC2 images from various providers, that can be run as
virtual appliance on Amazon’s Elastic Compute Cloud (EC2). The large variety
indicates the importance of custom service offers. However, the customer has
little support in the technical and economic decision process for selecting an
appropriate image and deploying it on the Cloud. It is neither guaranteed, that
there finds an image that is configured exactly according to the customer needs.

Apparently there is a great business opportunity for Cloud providers who
manage to offer Custom Cloud Services tailored to their customers’ needs. Trans-
ferring the selection and deployment process to the provider simplifies the cus-
tomer’s decision process significantly. In such a scenario, the provider faces the
challenging task of automatically finding the optimal service composition based
on the customer request, from both a technical and an economic view. A cus-
tomer requesting a database service having for example only preferences on the
underlying operating system or the available storage space leaves a lot of room
for economic optimization of the service composition. A MySQL database run-
ning on a Linux-based virtual machine (VM) might be advantageous over the
more costly Oracle alternative on a Windows-based VM.

Custom Cloud Services, as referred to in this paper, are compositions of com-
mercial off-the-shelf software, operating system and virtualized hardware, bun-
dled to offer a particular functionality as requested by a customer. The functional
requirements usually leave many choices when choosing required resources from
groups that offer equal or similar functionalities as in the above mentioned exam-
ple. Finding the optimal choice involves many different aspects, including (among
others) technical dependencies and interoperability constraints, customer prefer-
ences on resources and Quality-of-Service (QoS) attributes, capacity constraints
and license costs. In a sense, it is a configuration problem as known from typical
configurators for products like cars, etc. However, stated as integer program-
ming or constraint optimization problem [15,7], it is underspecified as not all
configuration variables (the set of required service resource types) can be clearly
specified ex ante from the customer request. The missing variables however can
be derived dynamically as they are implicitly contained in the resources’ depen-
dencies. For example, a customer request for a CRM software might implicitly
require an additional database, some underlying operating system on some vir-
tualized hardware.

As mentioned before, traditional linear or constraint programming techniques
require the knowledge of all variables. In order to overcome this problem, we pro-
pose an ontology-based approach for a convenient and standardized knowledge
representation of all known Cloud service resources, allowing to derive the com-
plete configuration problem by subsequently resolving resource dependencies.

The remainder of this paper is structured as follows. Section 2 describes
an example use case, which helps us to derive requirements for the designated

Towards Custom Cloud Services 347

framework. These requirements are also used for a qualitative evaluation of our
approach and to distinguish it from related work.

In Section 3 we describe our main contribution. We start by describing our
understanding of functional requirements, which serve as input for the ontology-
based optimization framework. We then propose the usage of a three-fold ontol-
ogy system to serve as knowledge base. We distinguish between a generic service
ontology, that contains the meta concepts provided in this paper, a domain on-
tology that makes use of these concepts and contains the actual knowledge about
known infrastructure resources, and a result ontology that is used to represent a
graph, spanning a network over different choices based on abstract dependency
relations that can exist between different resources (e.g. that every application
needs some operating system). We formally describe this dependency graph and
show how it can be derived algorithmically, making use of different queries to
the ontology system. Further we show how this graph can be used to obtain all
feasible infrastructure compositions. In addition, we show how the graph can be
transformed into an integer program for finding the profit optimal configuration
with respect to customer preferences and costs. For knowledge representation,
we make use of the Semantic Web ontology and rule languages OWL and SWRL
combined with SPARQL querying facilities.

Section 4 describes a proof-of-concept implementation of the presented frame-
work and reviews the requirements from Section 2 with respect to our contribu-
tion. In Section 5 we conclude this paper by giving an overview on open issues
and an outlook on future research.

2 Use Case, Requirements and Related Work

For a better understanding and evaluating our research we present a use case
describing an example request for a Custom Cloud Service. We use it to derive
a set of required properties for our contribution. The section is concluded by an
overview on the related literature.

2.1 Use Case

Consider a service request from a customer who wants to set up an online survey
for a two months period. The customer has no preferences regarding the survey
system, however would slightly prefer a Windows-based operating system over
Linux. As he is quite acquainted with Oracle products, the survey system’s
underlying database is preferably also Oracle-based. The expected workload in
form of concurrent users is unclear, however this is not considered a problem
due to scalability of Cloud services.

In a typical scenario the provider wants to maximize profit, i.e. the difference
between the offer price and the accruing costs. The challenge is to find the
configuration that is in line with the customer preferences, thus having a high
offer price, while simultaneously considering cost aspects.

348 S. Haak and S. Grimm

2.2 Requirements

Based on the use case, we can now derive a set of requirements, defining and
clarifying the goals of the desired solution. We identify five major properties that
we find necessary to provide an adequate solution for finding the optimal service
configuration in this case:

R 1 (Top Down Dependency Resolution). Automatic resolution of all
transitive dependencies between resource classes, starting from the top level func-
tional requirement resources until no more unresolved dependencies exist. Thus
deducting all variables for the Custom Cloud Service configuration problem.

R 2 (Functional Requirements). The functional requirements for the desig-
nated service should be describable by abstract or concrete resources (on different
levels).

R 3 (Customer Preferences). The approach should be able to consider cus-
tomer preferences regarding different configuration options.

R 4 (Interoperability Check). The interoperability/compatibility between re-
sources has to be validated. For reducing the modeling overhead, this validation
should be possible on both instance and higher abstraction levels.

R 5 (Profit Optimization). The profit maximizing Custom Cloud Service
configuration has to be found. I.e. the configuration yielding the greatest dif-
ference between the achievable offer price for a configuration and the accruing
costs on provider side.

Additionally we require correctness, completeness and consistency for the des-
ignated decision support mechanism. However, as these properties are rather
generic we do not consider them for our related literature review.

2.3 Related Work

For solving the technically and economically complex problem of deriving and
optimizing configuration alternatives, we have to touch a broad spectrum of
research areas, from Web service composition to techniques from operations
research and constraint programming.

Berardi et al. [4] address the problem of automatic service composition by
describing a service in terms of an execution tree, then making use of finite
state machines to check for possible service compositions that match a requested
behavior. Lécué et al. [11] present an AI planning-oriented approach using Se-
mantics. Based on causal link matrices, the algorithm calculates a regression-
based optimal service chain. Both [4] and [11] concentrate on input/output
based matching of Web services, thus they are not suitable for infrastructure
service compositions, where the interfaces are much more complex and cannot
be described in terms of input and output. Another work from the Semantic Web
context by Lamparter et al. [10] describes the matching process between requests
and offers of Web services. This approach is a related example for the matching

Towards Custom Cloud Services 349

of interoperability constraints (R 4), however it does not include dependency
resolution.

Blau et al. [5] propose an ontology-based tool for planning and pricing of
service mash-ups. The tool can be used to compose complex Web services from
a set of known atomic services, which are stored in a domain specific ontology.
Afterwards the complex service can be validated based on axioms and rules in
the ontology.

Sabin et al. [15] present different constraint programming approaches for prod-
uct configuration. Van Hoeve [7] describes optimization approaches for constraint
satisfaction problems. In [9] an optimization framework combining constraint
programming with a description logic is provided. All related to R 5.

We also want to mention two software tools that include a transitive depen-
dency management, thus are mainly related to requirements 1 and 4. Advanced
Packaging Tool (APT) [16] is a package management system to handle the instal-
lation and removal of software packages on Linux distributions. APT allows to
automatically install further packages required by the desired software to avoid
missing dependencies. The dependency management also includes compatibility
checks, however only in form of a rather simple version level check. Another
dependency manager is Apache Ivy [2]. Dependencies in Ivy are resolved tran-
sitively, i.e. you have to declare only direct dependencies, further dependencies
of required resources are resolved automatically. Both approaches do not allow
semantic annotations to allow more complex dependencies or interoperability
constraints.

3 Custom Cloud Service Configuration

The contribution of our work consists of several elements in the context of con-
figuring Custom Cloud Services. For a common understanding we first want to
provide our own definition:

Definition 1 (Custom Cloud Service). A Custom Cloud Service is a Cloud
Computing service, composed by a set of software components and existing Cloud
infrastructure resources, according to the abstract functional requirements and
non-functional preferences of an individual customer or target customer group.

In the following section we provide a formal definition on the functional require-
ments on Custom Cloud Services, tailored to the described use case. We then
present an ontology model, that can be used to formally capture the knowledge
about Cloud resources, their interdependencies and compatibility constraints as
well as cost meta information. We also present an algorithm to build a depen-
dency graph based on this knowledge, which can be seen as completely specified
configuration problem. Lastly we show how the graph can be transformed into
an integer program, allowing to find the optimal solution from a cost-benefit per-
spective. A sequence diagram to visualize the proposed interaction is depicted
in Figure 1.

350 S. Haak and S. Grimm

Customer Provider

Functional Requirements

Preferences

Dependency Graph

Service Offer

Dependency
Graph Algorithm

Optimization

Accept

Deployment

Decline

Fig. 1. Interaction Process

3.1 Functional Requirements

Functional requirements describe what is needed, i.e. the components required
for a functioning service, whereas non-functional requirements describe how it is
needed, i.e. the desired quality of the service. For the declarative description of
functional requirements, we build on concepts taken from an ontology that con-
tains background information in form of an abstract resource description layer
(service ontology) and a domain-specific layer containing domain-dependent de-
scriptions of available resources (domain ontology). We define functional require-
ments as follows.

Definition 2 (Functional Requirements). For a background ontology O the
functional requirements for deploying a service is described by the tuple R =
(C, t), with C = {C1, . . . , Cn}, a set of concepts in O, and t, the requested time
period for the service.

For illustration, the functional requirements of the presented use case would be
the tuple R = ({OnlineSurvey} , 1440h).

3.2 Knowledge Representation

For knowledge representation, we rely on the Web Ontology Language (OWL)
[12] specification for several reasons. It has been established as the leading Se-
mantic Web standard, is widely spread thus offering a large set of modeling tools
and inference engines, is well documented and offers description logics (DL) ex-
pressiveness that fits well our anticipated description of services at class-level.
In addition, OWL comes with a standardized, web-compliant serialization which
ensures interoperability over the borders of single institutions.

Towards Custom Cloud Services 351

For stating more complex compatibility constraints that go beyond the DL
expressivity, we also make use of the Semantic Web Rule Language (SWRL) [8]
in combination with OWL, while we restrict ourselves to DL-safe rules [14] as is a
decidable fragment supported by OWL reasoners like Pellet [17] or KAON2 [13].

We make use of three different ontologies. A generic service ontology, which
defines the fundamental concepts of our model. The actual knowledge on the
known software and Cloud resources is modeled in the domain ontology and will
differ for the various users or use cases. While the service ontology is a static
model, the domain ontology has to be dynamic, i.e. it will need constant updates
on the current infrastructure situation. The third ontology is used to store the
results of the algorithm that derives all alternatives by dissolving the resources’
dependencies. Both domain and result ontology import the fundamental concepts
defined in the service ontology.

Result GraphDependency & CompatibilityCosts

ServiceComponent

requires

isCompatibleTo choice

Costs

hasCosts

VariableCosts

xsd:float
hasValue

FixCosts

xsd:float

multiplyer

ResultNode

hasOption

SourceNode

OrNode

connectsTo

Alternative

contains

SinkNodeconnectsTo

Fig. 2. Service Ontology

Service Ontology. The service ontology is partially depicted in Figure 2. For
the reader’s convenience we illustrate the ontology in UML notation where UML
classes correspond to OWL concepts, UML associations to object properties,
UML inheritance to sub-concept relations and UML objects to OWL instances.
Basically, the service ontology provides concepts for three different aspects:

1. Service resources along with dependencies and compatibility information,
needed to derive all valid service configuration alternatives

2. Cost meta information for evaluating these alternatives
3. Structure elements needed for an ontology representation of the dependency

graph

The most fundamental concept for deriving all feasible deployment alterna-
tives is the classServiceComponent alongwith the corresponding object properties

352 S. Haak and S. Grimm

requires and isCompatibleTo. The requires property is used to describe the func-
tional dependency between two resource instances. In most cases, dependencies
can and should be described in an abstract way at class-level. We can do this
by including the dependency relation into the class axiom in conjunction with
an object restriction in the form of an existential quantifier on the required
class:

ComponentA � ServiceComponent

� ∃requires.ComponentB

Hereby we state that each resource of type ComponentA requires some resource
of type ComponentB. As a more concrete example, we could state that every
instance of the class Application requires at least some operating system:

Application � ServiceComponent

� ∃requires.OS

The compatibility can be asserted on instance level using the isCompatibleTo
object property. That implies that there has to be one object relation between
all possible combinations of interdependent resources. To reduce this modeling
overhead, we propose the usage of SWRL rules, which allow us to state compat-
ibility on class level:

isCompatibleTo(x,y) ← (L1.1)
ComponentA(x) (L1.2)
ComponentB(y) (L1.3)

We can exploit the full expressiveness of DL-safe SWRL rules. E.g. to state that
all versions of MySQL are compatible to all Windows versions except Windows
95, we include the following rule:

isCompatibleTo(x,y) ← (L2.1)
MySQL(x) (L2.2)

Windows(y) (L2.3)
differentFrom(y,’Windows95’) (L2.4)

For inclusion of cost information we distinguish between non-recurring Fix-
Costs and recurring VariableCosts. The latter being more complex, as the total
amount depends on another variable, which has to be defined in the context to
serve as a multiplier. E.g. the overall usage fee for a cloud provider depends on
the planned usage period for the service.

Domain Ontology. The domain ontology uses the concepts described in the
preceding section to capture the knowledge about the Cloud service resources of

Towards Custom Cloud Services 353

a certain domain of interest. This allows to easily use the same technology for
many different contexts, just by loading a different domain ontology. In addition,
knowledge can be combined by loading several domain ontologies, as long as this
does not lead to inconsistencies.

Result Ontology. By resolving the transitive dependencies for the set of re-
sources from the functional requirements, it is clear that we cannot add any
knowledge, we can only make additional knowledge explicit, that is contained in
the knowledge base implicitly.

For persisting the extended model, we also rely on an OWL ontology, such
that it can be used for further reasoning tasks. The result ontology makes use
of the concepts SourceNode, SinkNode, OrNode and Alternative, all defined in
the service ontology. SourceNode and SinkNode are a helper nodes to have a
distinct starting and ending points in the graph. They correspond to the source
and sink nodes in a network. The OrNode is introduced to capture the branching
whenever there is more than one compatible resource instance that fulfills the
dependency requirement.

In the remainder of the paper we work with a more formal notation for the
dependency graph. Note that both notations are semantically the same. An
example graph is depicted in Figure 3.

Online
SurveySource

Quikpoll

LimeSurvey

op
tio

n
op

tio
n

Script

Script

requires

requires

DB

DB

requires

re
qu

ire
s

Oracle

MySQL

option

option

op
tio

n

Perl

PHP

option

option

OS

OS

OS

OS

requires

requires

requires

requires

Win

Linux

option

option

option

op
tio

n
op

tio
n

option

op
tio

n

Sink

requires

requires

op
tio

n

VM option

VM Xen

VMware

option

op
tio

n

Fig. 3. Example Dependency Graph

Definition 3 (Dependency Graph). For a background ontology O and a
functional requirements tuple R = (C, t), the dependency graph G = (V, E)
is a directed, acyclic, labeled graph with vertices V and edges E and a labeling
function L, recursively defined as follows:

– n0 ∈ V is the source node of G
– n∞ ∈ V is the sink node of G
– there is a node nC ∈ V with label L(nC) = C for each (atomic or nominal)

class C ∈ C and an edge (n0, nC) ∈ E
– if n ∈ V is a node with an atomic class label L(n) = A then there is a node

no with label L(no) = {o} for each individual o ∈ O with O |= A(o), and an
edge e = (n, no) with label L(e) = or

354 S. Haak and S. Grimm

– if n ∈ V is a node with a nominal class label L(n) = {o} then there is a node
nC with label L(nC) = C for each atomic or nominal class C with O |= C(x)
for all x such that O |= requires(o, x) and O |= isCompatibleT o(o, x), and
an edge e = (n, nC) with label L(e) = and.

3.3 Dependency Graph Algorithm

OWL reasoners typically construct models for answering standard reasoning
tasks but do not expose them as such. Since we need to explicitly access such
models as configuration alternatives at the instance-level, we chose an algorith-
mic solution, making use of OWL reasoning capabilities in between the construc-
tion of dependency graphs.

Algorithm 1. determineDependencies(R, O; G) – Initiate the construction of a
dependency graph.
Require: a functional requirement tuple R = (C, F) and ontology O
Ensure: G contains the dependency graph for R

V := {n0, n∞}, V ∗ := E := ∅
for all C ∈ C do

V := V ∪ {nC}, L(nC) := C
E := E ∪ {(n0, nC)}, L((n0, nC)) = and
for all o with O |= C(o) do

V := V ∪ {no}, L(no) = {o}
E := E ∪ {(nC , no)}, L((nC , no)) = or
deductServiceInfrastructure(O, o, G, V ∗)

end for
end for

The procedure determineDependencies in Algorithm 1 initiates the construction
of a dependency graph, starting from functional requirements R, and calls the
procedure deductServiceInfrastructure in Algorithm 2, which recursively finds suit-
able service resource instances by following the object property requires.

In the procedure getRequiredClasses we invoke the reasoning engine with the
following SPARQL query to find all implicitly stated dependencies, i.e. through
a class axiom rather than explicitly on instance level:

SELECT ? sub ? t ? obj
WHERE {

? sub owl : sameAs dm: component .
? sub so : r e q u i r e s : b0 .
: b0 rd f : type ? t .
? obj rd f : type ? t }

ORDER BY ? t

so hereby refers to the name space of the service ontology, dm to the name
space of the domain ontology. The literal :b0 refers to a blank node, i.e. there

Towards Custom Cloud Services 355

Algorithm 2. deductServiceInfrastructure(O, o; G, V ∗) – Recursively construct a
dependency graph for a given ontology and resource instance.
Require: an ontology O and a resource instance o ∈ O
Ensure: G = (V, E) contains a dependency graph for o, V ∗ contains all resource
instance nodes visited

V ∗ := V ∗ ∪ {no}
C := ∅, getRequiredClasses(o; C)
if C = ∅ then E := E ∪ {(no, n∞)}
for all C ∈ C do

V := V ∪ {nC}, L(nC) := C
E := E ∪ {(no, nC)}, L((no, nC)) = and
for all o′ with O |= C(o′) and O |= isCompatibleTo(o, o′) do

V := V ∪ {no′}, L(no′) = {o′}
E := E ∪ {(nC , no′)}, L((nC , no′)) = or
if no′ �∈ V ∗ then deductServiceInfrastructure(O, o′ , G, V ∗)

end for
end for

do not exist two individuals for which we find the requires property, but based
from the axiomatic knowledge we know there has to be at least one.

The query will answer us with a set of all types of these anonymous individuals.
This has one disadvantage: we are only interested in the most specific class
assertions. E.g. if it was stated that every application needs an operating system,
the query would have the class OS in its result set, however also every superclass
up to Thing.

Therefore, in a second step, we need to find out the most specific classes,
i.e. all classes that have no subclasses also contained in the result set. This can
be achieved by a simple algorithm which has a worst case runtime of O(n2)
subsumption checks.

As there are redundant dependencies, which by themselves again might have
further dependencies, we memorize the visited resources (V ∗), as we do not need
to resolve their dependencies more than once.

Further the algorithm remembers unfulfilled requirements and recursively
traces them back, deleting unfeasible paths. We have not included these steps in
the above printed pseudo algorithm, as they would only confuse the reader.

Constraint Satisfaction Problem In another formal representation of the
graph (Figure 4), denoted as GF , we can recognize the analogy to a constraint
satisfaction problem [7], which is defined by a set of variables X = {X1, . . . , Xn},
a set of domainsD = {DX1 , . . . , DXn} defining the possible values for X and a set
of constraints C. In GF the variables X are equal to vertices labeled with classes
C ∈ O, and the domains DXi equal to vertices labeled with resource instances
o ∈ O. Vertices, labeled with an identical resource class C, are subsumed by one
variable XC . The constraints in C can be derived from the edges denoting the
interoperability between resources.

356 S. Haak and S. Grimm

X1Source

x11

x12

op
tio
n

op
tio

n

X2

X2

requires

requires

X3

X3

requires

re
qu
ire
s

x31

x32

option

option

op
tio
n

x21

x22

option

option

X4

X4

X4

X4

requires

requires

requires

requires

x41

x42

option

option

option

op
tio
n

op
tio

n

option

op
tio

n

Sink

requires

requires

op
tio
n

X5 option

X5 x51

x52

option

op
tio
n

Fig. 4. Formal Dependency Graph

3.4 Preferences

As shown in Figure 1, after receiving the dependency graph, the customer can
specify preferences. For quantifying the customer satisfaction for a certain con-
figuration, we introduce the notion of a scoring function [3]. The scoring function
maps the customer preferences on certain configuration choices to a real number
in the interval [0, 1]. We achieve that by a weighted aggregation of the single
preference values regarding the different configuration choices (cf. Section 3.5).
For expressing non-compensating preferences, we define a set of additional re-
strictions R added to set of constraints C.

Definition 4 (Preferences). For a dependency graph GF the customer pref-
erences are described by the triplet P = (P, Λ,R), with P = {P1, . . . , Pn}, a set
of preference vectors, Λ = {λ1, . . . , λn} a set of weights for each variable Xi in
X with

∑
i λi = 1 and R a set of non-compensating restrictions.

Example. For a variable XOS representing the various operating system choices
with DXOS = {Win, Linux}, the preferences are denoted by the vector POS =
(1, 0.8)T , expressing the slight preference for a Windows-based system, as de-
scribed in our use case. Analogously, we would denote PDB = (0.5, 1)T with
DXDB = {MySQL, Oracle}. If both preference values are considered equally
important, we would denote λOS = λDB = 0.5. A non-compensating restriction
could be that the online survey has to be PHP-based, denoted by
R = {XScript

!= PHP}.

3.5 Optimization

Having the dependency graph GF and the customer preferences P we want to
find the optimal configuration that will be offered to the customer. The optimal
configuration can differ in various scenarios with different pricing schemes and
potential additional constraints (like capacity restrictions). In this work we define
the optimum as the configuration that yields the highest profit, i.e. the achieved
price minus the accruing costs. Hereby we assume, that customer is sharing his

Towards Custom Cloud Services 357

willingness to pay for a service perfectly fulfilling all his preferences, denoted by
α. Extensions to this simple economic model are considered in ongoing research.

In a naive approach, we could try to iterate over all feasible configurations
in GF . One configuration is a sub graph, as the meaning of the edges can be
interpreted as and and or. As a matter of fact, we can rewrite the dependency
graph as Boolean formula.If we convert the Boolean formula (which is already
in negation normal form) into its disjunctive normal form (DNF) by a step-wise
replacement using de Morgan’s laws, we exactly get an enumeration over all sets
of resource instances that reflect the different configurations.

However, we are interested in the optimal configuration, thus iterating over
all configurations might not be the best choice as it is very costly with respect
to runtime. We therefore set up an integer program, which calculates the profit
maximizing configuration. The variables from the constraint satisfaction problem
are by modeled a vector of binary decision variables Xi = (X1

i , . . . , Xm
i) for m

different choices.

maximize
X

α · S(X)− C(X)

subject to
∑

xj
i∈Xi

xj
i = 1 ∀Xi ∈ X

Xi ·Xk ≤ Iik ∀i, j : Xi →r Xk

R ∈ R constraints from P

with

S(X) =
∑

Xi∈X
λi ·Xi · Pi

C(X) =
∑

Xi∈X
Ci ·Xi

Iik hereby denotes an interoperability matrix between Xi and Xk that can
be derived from GF . The cost function C(X) merely is the sum over all costs
for the chosen resources, which are stored in the ontology O. In case of variable
costs, we multiply the cost value with the requested time period for the service
t from R (cf. Section 3.1).

4 Evaluation

We evaluate our contribution qualitatively by having implemented a proof-of-
concept prototype and comparing the presented approach to the requirements
from Section 2.2.

4.1 Implementation

The implemented prototype can be executed using Java Web Start1. For using
the prototype, a domain ontology (an example ontology is provided) has to be
1 http://research.steffenhaak.de/ServicePlanner/

http://research.steffenhaak.de/ServicePlanner/

358 S. Haak and S. Grimm

loaded, before one can add the set of resources C. Eventually, the algorithms can
be started by using the menu items ResolveDependencies and Evaluate. However,
not all functionalities presented in this paper are integrated. We can derive all
feasible configurations using the described DNF approach. The integer program
has been implemented using CPLEX, thus not being part of the downloadable
prototype. As reasoning engine we have chosen Pellet [17], as to our knowledge it
is the only OWL DL reasoner that is capable of both SWRL rules and SPARQL
queries that involve blank nodes.

4.2 Requirements Review

Taking a look back to the requirements derived from the use case, we have pre-
sented a framework to model knowledge about Cloud resource dependencies and
compatibilities. Based on this knowledge base a set of functional requirements
can be defined in from of classes from the ontology on arbitrary abstraction level.
It is used to derive a dependency graph ensuring interoperability of all configura-
tions. Based on the graph, the customer can define preferences for each variable,
which are subsumed in a scoring function. Stated as constraint satisfaction prob-
lem, an integer program finds out the profit maximizing configuration, making
use of the scoring function and the cost information stored in the ontology. The
proposed approach therefore fulfills requirements R 1 to R 5.

5 Conclusion

In this paper, we propose an ontology-based optimization framework for finding
the optimal Cloud service configuration based on a set of functional require-
ments, customer preferences and cost information. We do this by means of an
OWL DL approach, combined with DL-safe SWRL rules and SPARQL querying
facilities. We can model dependencies between resource classes of any abstraction
level and use complex rules to ensure compatibility between resources. An inte-
ger program allows us to find the profit maximizing configuration. We provide a
prototypical implementation as proof-of-concept.

We recognize several reasonable extensions and shortcomings to our approach.
The economic model for the profit maximization is very simplistic. It is arguable
that the customer is willing to give price his preferences and willingness to pay
in a truthful manner. Further extensions from an economic perspective are the
integration of capacity constraints and optimizing several concurrent requests.
Ongoing research is dealing with both issues.

From the semantic perspective, a more complex cost and quality model would
be beneficial. In addition, we plan to investigate on how the proposed domain
ontology can be maintained collaboratively by incentivizing resource suppliers
to contribute the necessary knowledge about their resources as interoperability
and dependencies themselves.

We also recognize the need for a better evaluation, qualitatively, through rely-
ing on an industry use case, and quantitatively, by analyzing both the economic
benefit of our solution and its computational complexity.

Towards Custom Cloud Services 359

References

1. The Cloud Market EC2 Statistics (2010), http://thecloudmarket.com/stats
2. Apache. Apache Ivy (2010), http://ant.apache.org/ivy/
3. Asker, J., Cantillon, E.: Properties of Scoring Auctions. The RAND Journal of
Economics 39(1), 69–85 (2008)

4. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Auto-
matic service composition based on behavioral descriptions. Int. J. of Cooperative
Information Systems 14(4), 333–376 (2005)

5. Blau, B., Neumann, D., Weinhardt, C., Lamparter, S.: Planning and pricing of
service mashups. In: 10th IEEE Conference on E-Commerce Technology and the
Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-Services,
pp. 19–26 (2008)

6. Gaimon, C., Singhal, V.: Flexibility and the choice of manufacturing facilities under
short product life cycles. European Journal of Operational Research 60(2), 211–223
(1992)

7. van Hoeve, W.: Operations Research Techniques in Constraint Programming.
Ph.D. thesis, Tepper School of Business (2005)

8. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining OWL and RuleML. W3C Member
submission 21 (2004)

9. Junker, U., Mailharro, D.: The logic of ilog (j) configurator: Combining constraint
programming with a description logic. In: Proceedings of Workshop on Configura-
tion, IJCAI, vol. 3, pp. 13–20. Citeseer (2003)

10. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: Proceedings of the 16th international confer-
ence on World Wide Web, pp. 1013–1022. ACM Press, New York (2007)

11. Lécué, F., Léger, A.: A formal model for web service composition. In: Proceeding
of the 2006 conference on Leading the Web in Concurrent Engineering, pp. 37–46.
IOS Press, Amsterdam (2006)

12. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview.
W3C recommendation 10, 2004–03 (2004)

13. Motik, B., Studer, R.: KAON2–A Scalable Reasoning Tool for the Semantic Web.
In: Proceedings of the 2nd European Semantic Web Conference (ESWC 2005),
Heraklion, Greece (2005)

14. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. Jour-
nal of Web Semantics: Science, Services and Agents on the World Wide Web 3(1),
41–60 (2005)

15. Sabin, D., Freuder, E.: Configuration as composite constraint satisfaction. In: Pro-
ceedings of the Artificial Intelligence and Manufacturing Research Planning Work-
shop, pp. 153–161 (1996)

16. Silva, G.: APT howto (2003),
http://www.debian.org/doc/manuals/apt-howto/index.en.html

17. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
owl-dl reasoner. Web Semantics: Science, Services and Agents on the World Wide
Web 5(2), 51–53 (2007)

http://thecloudmarket.com/stats
http://ant.apache.org/ivy/
http://www.debian.org/doc/manuals/apt-howto/index.en.html

One Tag to Bind Them All:

Measuring Term Abstractness
in Social Metadata

Dominik Benz1,�, Christian Körner2,�,
Andreas Hotho3, Gerd Stumme1, and Markus Strohmaier2

1 Knowledge and Data Engineering Group (KDE), University of Kassel
{benz,stumme}@cs.uni-kassel.de

2 Knowledge Management Institute, Graz University of Technology
{christian.koerner,markus.strohmaier}@tugraz.at

3 Data Mining and Information Retrieval Group, University of Würzburg
hotho@informatik.uni-wuerzburg.de

Abstract. Recent research has demonstrated how the widespread adop-
tion of collaborative tagging systems yields emergent semantics. In recent
years, much has been learned about how to harvest the data produced
by taggers for engineering light-weight ontologies. For example, existing
measures of tag similarity and tag relatedness have proven crucial step
stones for making latent semantic relations in tagging systems explicit.
However, little progress has been made on other issues, such as under-
standing the different levels of tag generality (or tag abstractness), which
is essential for, among others, identifying hierarchical relationships be-
tween concepts. In this paper we aim to address this gap. Starting from
a review of linguistic definitions of word abstractness, we first use sev-
eral large-scale ontologies and taxonomies as grounded measures of word
generality, including Yago, Wordnet, DMOZ and WikiTaxonomy. Then,
we introduce and apply several folksonomy-based methods to measure
the level of generality of given tags. We evaluate these methods by com-
paring them with the grounded measures. Our results suggest that the
generality of tags in social tagging systems can be approximated with
simple measures. Our work has implications for a number of problems
related to social tagging systems, including search, tag recommendation,
and the acquisition of light-weight ontologies from tagging data.

Keywords: tagging, generality, measures, emergent semantics, folk-
sonomies.

1 Introduction

Since the advent of participatory web applications like Flickr1, Youtube2 or
Delicious3, social annotations (especially in the form of collaboratively created
� Both authors contributed equally to this work.
1 http://www.flickr.com
2 http://www.youtube.com
3 http://www.delicious.com

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 360–374, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.flickr.com
http://www.youtube.com
http://www.delicious.com

One Tag to Bind Them All 361

keywords or tags) form an integral part of current approaches to collaborative
knowledge management. Analyses of the structure of the resulting large-scale
bodies of human-annotated resources have shown several interesting properties,
especially regarding the presence of emergent semantics. Motivated by the vi-
sion of bridging the gap towards the Semantic Web, much has been learned in
recent years about how to harvest the data produced by taggers for engineering
light-weight ontologies. However, little progress has been made on other issues,
such as understanding the different levels of tag generality (or tag abstractness),
which is essential for e.g. identifying hierarchical relationships between concepts.
While several methods of deriving taxonomies from tagging systems have been
proposed, a systematic comparison of the underlying notion of abstractness is
largely missing.

This paper aims to address this gap by presenting a systematic analysis of
various folksonomy-derived notions of term abstractness. Starting from a re-
view of linguistic definitions of word abstractness, we first use several large-scale
ontologies and taxonomies as grounded measures of word generality, including
Yago, Wordnet, DMOZ and WikiTaxonomy. Then, we introduce and apply sev-
eral folksonomy-based methods to measure the level of generality of given tags.
We evaluate these methods by comparing them with the grounded measures.

Our results show that the abstractness judgments by some of the measures
under consideration come close to those of well-defined and manually built tax-
onomies. Furthermore, we provide empirical evidence that tag abstractness can
be approximated by simple measures. The results of this research are relevant
to all applications who benefit from a deeper understanding of tag semantics,
e.g. ontology learning or clustering algorithms, tag recommendations systems or
folksonomy navigation facilities. In addition, our results can help to alleviate the
problem of varying “basic levels” in folksonomies [11] by matching more specific
terms (used usually by domain experts) to more general ones.

This paper is structured as follows: At first we give an overview about related
work, especially regarding term abstractness and emergent semantics (Section 2).
This is followed by some basic notions in Section 3. In the subsequent section
we give an overview of the introduced measures (section 4) and evaluate them
in Section 5 with the help of established datasets as ground truth and a user
study. Finally we conclude in Section 6 and point to future work.

2 Related Work

The first research direction relevant to this work has its roots in the analysis
of the structure of collaborative tagging systems. Golder and Huberman [11]
provided a first systematic analysis, mentioning among others the hypothesis of
“varying basic levels” – according to which users use more specific tags in their
domain of expertise. However, the authors only provided exemplary proofs for
this hypothesis, lacking a well-grounded measure of tag generality. In the follow-
ing, a considerable number of approaches proposed methods to make the implicit
semantic structures within a folksonomy explicit [19,13,22,2]. All of the previous

362 D. Benz et al.

works comprise in a more or less explicit way methods to capture the “gener-
ality” of a tag (e.g. by investigating the centrality of tags in a similarity graph
or by applying a statistical model of subsumption) – however, a comparison of
the chosen methods has not been given. Henschel et al. [12] claim to generate
more precise taxonomies by an entropy filter. In our own recent work [17] we
showed that the quality of semantics within a social tagging system is also depen-
dent on the tagging habits of individual users, Heymann [14] introduced another
entropy-based tag generality measure in the context of tag recommendation.

From a completely different point of view, the question of which factors deter-
mine the generality or abstractness of natural language terms has been addressed
by researchers coming from the areas of Linguistics and Psychology. The psy-
chologist Paivio [20] published in 1968 a list of 925 nouns along with human con-
creteness rankings; an extended list was published by Clark [8]. Kammann [16]
compared two definitions of word abstractness in a psychological study, namely
imagery and the number of subordinate words, and concluded that both capture
basically independent dimensions. Allen et al. [1] identify the generality of texts
with the help of a set of “reference terms”, whose generality level is known.
They also showed up a correlation between a word’s generality and its depth
in the WordNet hierarchy. In their work they developed statistics from analy-
sis of word frequency and the comparison to a set of reference terms. In [25],
Zhang makes an attempt to distinguish the four linguistic concepts fuzziness,
vagueness, generality and ambiguity.

3 Basic Notions

As stated above, the main intent of a term generality measure is to allow a
differentiation of lexical entities l1, l2, . . . by their degree of abstractness (i.e.
their ability to “bind” other tags). As a prerequisite for a formalization of this
problem, we will first introduce a common terminology which allows us to refer
to the usage of lexical entities in the context of taxonomies and collaborative
tagging systems in a unified way.

Taxonomies, Core Ontologies and Lexicons. First of all, according to [7] a
taxonomy can also be regarded as a part of a core ontology, [3] O := (C, root ,≥C ,
LC ,F), whereby C is a set of concept identifiers and root is a designated root
concept for the partial order ≥C on C. ≥C is called concept hierarchy or tax-
onomy; if c1 ≥C c2(c1, c2 ∈ C), then c1 is a superconcept of c2, and hence we
assume c1 to be more abstract or “general” than c2. LC is a set of lexical labels
for concepts and a mapping relation F which associates concepts with their re-
spective label. Please note that a concept c can be associated with one or more
labels, i.e. ∀l ∈ LC : |{l : (c, l) ∈ F}| ≥ 1. As an example, in scientific contexts
the terms “article” and “paper” are often used synonymously, which would be
reflected by (c1, paper) ∈ F and (c1, article) ∈ F , given that c1 is the concept

One Tag to Bind Them All 363

identifier of scientific articles. In the literature, one often defines a separate
lexicon L = (LC ,F) and associates it with a core ontology [18]; but as it suffices
for the context of this work, we assume the lexicon to be an integral part of the
ontology itself for the sake of simplicity.

Folksonomies. As an alternative approach to taxonomies, collaborative tagging
systems have gained a considerable amount of attention. Their underlying data
structure is called folksonomy; according to [15], a folksonomy is a tuple F :=
(U, T, R, Y) where U , T , and R are finite sets, whose elements are called users,
tags and resources, respectively. Y is a ternary relation between them, i.e. Y ⊆
U×T×R. An element y ∈ Y is called a tag assignment or TAS. A post is a triple
(u, Tur, r) with u ∈ U , r ∈ R, and a non-empty set Tur := {t ∈ T | (u, t, r) ∈ Y }.
Intrinsically, concepts are not explicitly present within a folksonomy; however,
the set of tags T contains lexical items similar to the vocabulary set LC of a
core ontology.

Term Graphs. Both core ontologies and folksonomies introduce various kinds
of relations among the lexical items contained in them. A typical example are
tag cooccurrence networks, which constitute an aggregation of the folksonomy
structure indicating which tags have occurred together. Generally spoken, these
term graphs G can be formalized as weighted undirected graphs G = (L, E, w)
whereby L is a set of vertices (corresponding to lexical items), E ⊆ L×L model
the edges and w: E → R is a function which assigns a weight to the edges. As an
example, given a folksonomy (U, T, R, Y), one can define the post-based4 tag-tag
cooccurrence graph as Gcooc = (T, E, w) whose set of vertices corresponds to
the set T of tags. Two tags t1 and t2 are connected by an edge, iff there is at
least one post (u, Tur, r) with t1, t2 ∈ Tur. The weight of this edge is given by
the number of posts that contain both t1 and t2, i.e. w(t1, t2) := card{(u, r) ∈
U ×R | t1, t2 ∈ Tur}

As we will define term abstractness measures based on core ontologies, folk-
sonomies and term graphs, we will commonly refer to them as term structures
S in the remainder of this paper. L(S) is a projection on the set of lexical items
contained in S. Based on the above terminology, we now formally define a term
abstractness measure in the following way:

Definition 1. A term abstractness measure �S based upon a term structure S

is a partial order among the lexical items L present in S, i.e. �S⊆ L(S)× L(S).
If (l1, l2) ∈�S (or l1 �S l2) we say that l1 is more abstract than l2.

In the following, we will make frequent use of ranking functions r: L(S) → R

for lexical items in order to define a tag abstractness measure; please note that
a ranking function corresponds to a partial order according to (l1, l2) ∈�S⇔
r(l1) > r(l2). We will denote the resulting term abstractness measure as �S

r.
4 Other possibilities are resource-based and user-based cooccurrence; we use post-
based cooccurrence in the scope of this work as it is efficiently computable and
captures a sufficient amount of information.

364 D. Benz et al.

4 Measures of Tag Generality

Based on the notions defined above, we will now introduce a set of ranking
functions r which are supposed to order lexical items within a folksonomy F

by their degree of abstractness, inducing a partial order �F
r among the set of

tags.5 The measures are partially based on prior work in related areas, and
build on different intuitions. One commonality they all share is that none of
them considers the textual content of a tag itself (e.g. with linguistic methods).
All measures operate solely on the folksonomy structure itself or on a derived
term network, making them language-independent.

Frequency-based measures. A first natural intuition is that more abstract
tags are simply used more often, because there exist more resources which they
describe – as an example, the number of “computer”s in the world is much
larger than the number of “notebook”s; hence one might assume that within a
folksonomy, the tag “computer” is used more often than the tag “notebook”.
We capture this intuition in the abstractness measure �F

freq(t) induced by the
ranking function freq which counts the number of tag assignments according to
freq(t) = card{(u, t′, r) ∈ Y : t = t′}

Entropy-based measures. Another intuition stems from information theory:
Entropy measures the degree of uncertainty associated with a random variable.
Considering the application of tags as a random process, one can expect that
more general tags show a more even distribution, because they are probably
used at a relatively constant level to annotate a broad spectrum of resources.
Hence, more abstract terms will have a higher entropy. This approach was also
used by Heymann [14] to capture the “generality” of tags in the context of tag
recommendation. We adapt the notion from there and define

entr(t) = −
∑

t′∈cooc(t)

p(t′|t) log p(t′|t) (1)

whereby cooc(t) is the set of tags which cooccur with t, and p(t′|t) =
w(t′,t)∑

t′′∈cooc(t) w(t′′,t) (with w(t′, t) being the cooccurrence weight defined in

Section 3). entr(x) induces the term abstractness measure �F
entr .

Centrality Measures. In network theory the centrality of a node v ∈ V in a
network G is usually an indication of how important the vertex is [24]. Applied
to our problem at hand, centrality can also be contemplated as a measure of
abstractness or generality, following the intuition that more abstract terms are
also more “important”. We adopted three standard centralities (degree, close-
ness, betweenness). All of them can be applied to a term graph G, leaving us
5 Note that all term abstractness measures based on real-value ranking functions are
by construction total orders, but this is not mandatory.

One Tag to Bind Them All 365

with three measures �G

dc, �G

bc and �G
cc as follows: Degree centrality simply counts

the number of direct neighbors d(v) of a vertex v in a graph G = (V, E):

dc(v) =
d(v)
|V | − 1

(2)

According to betweenness centrality a vertex has a high centrality if it can be
found on many shortest paths between other vertex pairs:

bc(v) =
∑

s�=v �=t∈V

σst(v)
σst

(3)

Hereby σst denotes the number of shortest paths between s and t and σst(v) is
the number of shortest paths between s and t passing through v. As its compu-
tation is obviously very expensive, it is often approximated [4] by calculating the
shortest paths only between a fraction of points. Finally, a vertex ranks higher
according to closeness centrality the shorter its shortest path length to all other
reachable nodes is:

cc(v) =
1∑

t∈V \v dG(v, t)
(4)

dG(v, t) denotes hereby the geodesic distance (shortest path) between the vertices
v and t.

Statistical Subsumption. Schmitz et.al. [22] applied a statistical model of
subsumption between tags when trying to infer hierarchical relationships. It is
based on the assumption that a tag t subsumes another tag t′ if p(t|t′) > ξ and
p(t′|t) < ξ for a suitable threshold ξ. For measuring generality, the number of
subsumed tags can be seen as an indicator of abstractness – the more tags a tag
subsumes the more general it is:

subs(t) = card{t′ ∈ T : p(t|t′) > ξ) ∧ p(t′|t) < ξ} (5)

5 Evaluation

In order to assess the quality of the tag abstractness measures �F

freq , �F
entr , �G

dc ,
�G

bc, �G
cc and �F

subs introduced above, a natural approach is to compare them
against a ground truth. A suitable grounding should yield reliable judgments
about the “true” abstractness of a given lexical item. Of special interest are
hereby taxonomies and concept hierarchies, whose hierarchical structure typi-
cally contains more abstract terms like “entity” or “thing” close to the taxonomy
root, whereby more concrete terms are found deeper in the hierarchy. Hence, we
have chosen a set of established core ontologies and taxonomies, which cover each
a rather broad spectrum of topics. They vary in their degree of controlledness
– WordNet (see below) on the one hand being manually crafted by language
experts, while the Wikipedia category hierarchy and DMOZ on the other hand
are built in a much less controlled manner by a large number of motivated web
users. In the following, we first briefly introduce each dataset; an overview about
their statistical properties can be found in Table 1.

366 D. Benz et al.

Table 1. Statistical properties of the datasets used in the evaluation

Core ontology |C| | ≥C | |LC| |F| | �O |
WORDNET 79,690 81,866 141,391 141,692 2,028,925
YAGO 244,553 249,465 206,418 244,553 2,078,788
WIKI 2,445,974 4,447,010 2,445,974 2,445,974 13,171,439
DMOZ 767,019 767,019 241,910 767,019 5,210,226

Folksonomy |U| |T | |R| |Y |
DEL (Delicious) 667,128 2,454,546 18,782,132 140,333,714

Term Graphs |T | |E|
COOC 892,749 38,210,913
SIM 10,000 405,706

5.1 Grounding Datasets

WordNet [9] is a semantic lexicon of the English language. In WordNet, words
are grouped into synsets, sets of synonyms that represent one concept. Among
other relations, the is-a relation connects a hyponym (more specific synset) to
a hypernym (more general synset). A synset can have multiple hypernyms, so
that the graph is not a tree, but a directed acyclic graph. In order to allow
for comparison with the other grounding datasets, we focussed on the noun
subsumption network6. As it consists of several disconnected hierarchies, it is
useful to add a fake top-level node subsuming all the roots of those hierarchies,
making the graph fully connected and allowing a relative abstractness judgment
between all contained pairs of nouns.

Yago [23] is a large ontology which was derived automatically from Wikipedia
and WordNet. Manual evaluation studies have shown that its precision (i.e. the
percentage of “correct” facts) lies around 95%. It has a much higher coverage
than WordNet (see Table 1), because it also contains named entities like peo-
ple, books or products. The complete ontology contains 1.7 million entities and
15 million relations; as our main interest lies in the taxonomy hierarchy, we
restricted ourselves to the contained is-a relation7 among concepts.

WikiTaxonomy [21] is the third dataset used for evaluation. This large scale
domain independent taxonomy8 was derived by evaluating the semantic network
between Wikipedia concepts and labeling the relations as isa and notisa, using
methods based on the connectivity of the network and on lexico-syntactic pat-
terns. It contains by far the largest number of lexical items (see Table 1), but
this comes at the cost of a much lower level of manual controlledness.

DMOZ9 (also known as the open directory project or ODP) is an open con-
tent directory for links of the World Wide Web. Although it is hierarchically
structured, it differs from the above-mentioned datasets insofar as its internal
link structure does not always reflect a sub-concept/super-concept relationship.
Despite this fact, we we included the DMOZ category hierarchy as a grounding

6 http://wordnet.princeton.edu/wordnet/download/ (v2.1)
7 http://www.mpi-inf.mpg.de/yago-naga/yago/subclassof.zip (v2008-w40-2)
8 http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php
9 http://www.dmoz.org/

http://wordnet.princeton.edu/wordnet/download/
http://www.mpi-inf.mpg.de/yago-naga/yago/subclassof.zip
http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php
http://www.dmoz.org/

One Tag to Bind Them All 367

dataset because it was built for a similar purpose like many collaborative book-
marking services (namely organizing WWW references). In addition, some of its
top level categories (like “arts” or “business”) are described by rather abstract
terms.

5.2 Tagging Dataset

In order to test the performance of our proposed term abstractness measures,
we used a dataset crawled from the social bookmarking system Delicious in
November 2006.10 From the raw data, we first derived the tag-tag cooccurrence
graph COOC = (T ′,Ecooc,wcooc). Two tags t1 and t2 are connected by an edge,
iff there is at least one post (u, Tur, r) with t1, t2 ∈ Tur. The edge weight is
given by wcooc(t1, t2) := card{(u, r) ∈ U ×R | t1, t2 ∈ Tur} . In order to exclude
cooccurrences introduced by chance and to enable an efficient computation of
the centrality measures, we removed all tags from the resulting graph with a
degree of less than 2.

In a similar way to [13], we also derived a tag-tag similarity graph SIM =
(T ′′, Esim , wsim) by computing the Resource-Context-Similarity described in [5].
The latter is based on a frequency-based representation of tags in the vector space
of all resources, in which similarity is computed by the cosine similarity. Because
rarely used tags have very sparse vector representations, we restricted ourselves
to the 10,000 most frequently used tags. Based on the resulting pairwise simi-
larity values, we added an edge (t1, t2) to the edge list Esim when the similarity
was above a given threshold min sim = 0.04. This threshold was determined
by inspecting the distribution of all similarity values. Table 1 summarizes the
statistics of all tagging datasets.

Subsequently, we computed all term abstractness measures introduced in the
previous chapter based on DEL, COOC and SIM , i.e. �DEL

freq , �DEL
entr , �COOC

dc ,
�COOC

bc , �COOC
cc , �SIM

bc , �SIM
cc and �F

subs .

5.3 Direct Evaluation Metric

As stated above, our grounding datasets contain information about concept sub-
sumptions. If a concept c1 subsumes concept c2 (i.e. (c1, c2) ∈≥C), we assume
c1 to be more abstract than c2; as the taxonomic relation is transitive, we can
infer (c1, c2), (c2, c3) ∈≥C⇒ (c1, c3) ∈≥C and hence that c1 is also more ab-
stract than c3. In other words, thinking of the taxonomic relation as a directed
graph, a given concept c is more abstract than all other concepts contained in
the subgraph rooted at c. As we are interested in abstractness judgments about
lexical items, we can consequently infer that concept labels for more abstract
concepts are more abstract themselves. However, hereby we are facing the prob-
lem of polysemy: A given lexical item l can be used as a label for several concepts
10 The data set is publicly available at

http://www.uni-koblenz-landau.de/koblenz/fb4/AGStaab/Research/DataSets/

PINTSExperimentsDataSets/index_html

http://www.uni-koblenz-landau.de/koblenz/fb4/AGStaab/Research/DataSets/PINTSExperimentsDataSets/index_html
http://www.uni-koblenz-landau.de/koblenz/fb4/AGStaab/Research/DataSets/PINTSExperimentsDataSets/index_html

368 D. Benz et al.

cc_cooc
dc_cooc

entropy
frequency

bc_cooc
subs

cc_sim
bc_sim

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

co
rr

el
at

io
n

(a) WordNet

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

co
rr

el
at

io
n

(b) YAGO

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

co
rr

el
at

io
n

(c) DMOZ

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

co
rr

el
at

io
n

(d) WikiTaxonomy

Fig. 1. Grounding of each introduced term abstractness measure �S against four
ground-truth taxonomies. Each bar corresponds to a term abstractness measure; the
y-axis depicts the gamma correlation as defined in Equation 7. (Values for cc sim and
bc sim in (d) are −0.05 and −0.005, resp.).

of different abstractness levels. Consequently, l has “several” abstractness lev-
els, depending in which context it is used. As a most simple approach, which
removes possible effects of word sense disambiguation techniques, we “resolve”
ambiguity in the following way: The abstractness measure �O⊆ LC ×LC on the
vocabulary of a core ontology O is constructed according to

(l1, l2) ∈�O⇔ (c1, l1) ∈ F ∧ (c2, l2) ∈ F ∧ (c1, c2) ∈≥C (6)

whereby F is the label assigment relation defined in Section 3 . Due to the
polysemy effect described above, �O is not necessarily a partial order, as it
may contain cycles. But despite this fact, �O contains the complete information
which terms li ∈ LC are more abstract than other terms lj ∈ LC according to
the taxonomy of O. Hence we can use it as a “ground truth” to judge the quality
of a given term abstractness measure �S.

We are interested how well �O correlates to �S; picking up the idea of the
gamma rank correlation [6], we define concordant and discordant pairs between
�S and �S as follows: a pair of terms l and k is called concordant w.r.t. two
partial orderings �, �∗, if they agree on it, i.e. (l � k∧ l �∗ k)∨ (k � l∧k �∗ l).
It is called discordant if they disagree, i.e. (l � k ∧ k �∗ l) ∨ (k � l ∧ l �∗ k).

One Tag to Bind Them All 369

Note that there may exist pairs which are neither concordant nor discordant.
Based on these notions, the gamma rank correlation is defined as

CR(�, �∗) =
|C| − |D|
|C|+ |D| (7)

whereby C and D denote the set of concordant and discordant pairs, respectively.
In our case, �∗ is not a partial ordering, but only a relation – which means

that in the worst case, a pair l, k can be concordant and discordant at the same
time. As is obvious from the definition of the gamma correlation (see Eq. 7),
such inconsistencies lead to a lower correlation. Hence, our proposed method
of “resolving” term ambiguity by constructing �O according to Eq. 6 leads to
a lower bound of correlation. Figure 1 summarizes the correlation of each of
our analyzed measures, grounded against each of our ground truth taxonomies.
First of all, one can observe that the correlation values between the different
grounding datasets differ significantly. This is most obvious for the DMOZ hi-
erarchy, where almost all measures perform only slightly better than random
guessing. A slight exception is the entropy-based abstractness measure �F

entropy ,
which in general gives greater than 0.25 across all datasets. Another relatively
constant impression is that the centrality measures based on the tag similarity
graph (cc sim and bc sim) show a smaller correlation than the other measures.
The globally best correlations are found for the WikiTaxonomy dataset, namely
by the subsumption-model-based measure subs. Apart from that, the centrality
measures based on the tag cooccurrence graph and the frequency-based measure
show a similar behavior.

5.4 Derived Measures

The grounding approach of the previous section gave a first impression of the
ability of each measure to predict term abstractness judgments explicitly present
in a given taxonomy. This methodology allowed only for an evaluation based on
term pairs between which a connection exists in �O, i.e. pairs where l1 is either
a predecessor or a successor of l2 in the term subsumption hierarchy. However,
our proposed measures make further distinctions among terms between which no
connection exists within a taxonomy (e.g. the freq states that the most frequent
term t is more abstract than all other terms). This phenomenon can probably
also be found when asking humans – e.g. if one would ask which of the terms “art”
or “theoretical computer science” is more abstract, most people will probably
choose “art”, even though both words are not connected by the is-a relation in
(at least most) general-purpose taxonomies.

In order to extend our evaluation to these cases, we derived two straightfor-
ward measures from a taxonomy which allow for a comparison of the abstract-
ness level between terms occurring in disconnected parts of the taxonomy graph.
Because this approach goes beyond the explicitly encoded abstractness informa-
tion, the question is justified to which extent it makes sense to compare the
generality of completely unrelated terms, e.g. between “waterfall” and “chair”.

370 D. Benz et al.

Table 2. Results from the user study

Category Number of classifications

One tag more general 41
Same level 11
Not comparable 154
Do not know one or two tags 3

Besides our own intuition, we are not aware of any reliable method to determine
when humans perceive the abstractness of two terms as comparable or not. For
this reason, we validated the derived measures – namely (i) the shortest path to
the taxonomy root and (ii)the number of subordinate terms – by an experiment
with human subjects.

Shortest path to taxonomy root. As stated above, most taxonomies are
built in a top-down fashion, whereby more abstract terms are more likely to
occur closer to the taxonomy root. Hence, a natural candidate for judging the
abstractness of a term is to measure its distance to the root node. This corre-
sponds to a ranking function sp root(l), which ranks the terms l contained in
a taxonomy in ascending order by the length of the shortest path between root
and l.

Number of subordinate terms. Another measure is inspired by Kammann et
al. [16], who stated that “the abstractness of a word or a concept is determined by
the number of subordinate words it embraces[. . .]”. Given a taxonomy O and its
comprised term subsumption relation �O, we can easily determine the number
of “sub-terms” by subgraph size(l) = card{(l, l′) ∈�O}. We are aware that this
measure is strongly influenced e.g. by fast-evolving domains like e.g. “mobile
computing”, whose rapid growth along with a strong expansion of the included
vocabulary might lead to an overestimation of its abstractness level. This is
another motivating reason for the user study presented in the next paragraph.

Validation by user study. In order to check whether sp root(l) and
subgraph size(l) correspond to human judgments of term abstractness, we per-
formed an exemplary user study with 12 participants11. As a test set, we drew a
random sample of 100 popular terms occurring in each of our datasets; for each
term, we selected 3 candidate terms, taking into account cooccurrence informa-
tion from the folksonomy DEL. The resulting 300 term pairs were shown to the
each subject via a web interface12, asking them to label the pair by one of 5
options (see Table 2)

We calculated Fleiss’ κ [10] to get a closer look at the agreement of the study
participants. In our experiment, κ = 0.2836 is indicating fair agreement. Table 2
shows the results of the number of classifications given that an agreement of 6 or
more participants signalizes significant agreement. The relatively high number
11 Students and staff from two IT departments.
12 http://www.kde.cs.uni-kassel.de/benz/generality_game.html

http://www.kde.cs.uni-kassel.de/benz/generality_game.html

One Tag to Bind Them All 371

Table 3. Accuracy of the taxonomy-derived abstractness measures

Wordnet Yago DMOZ WikiTaxonomy
sp root 0.94 0.42 0.88 0.45
subgraph size 0.94 0.96 0.8 0.87

of “not comparable” judgments show that even with our elaborate filtering, the
task of differentiating abstractness levels is quite difficult. Despite this fact, our
user study provided us with a well-agreed set of 41 term pairs, for which we got
reliable abstractness judgments. Denoting these pairs as �manual , we can now
check the accuracy of the term abstractness measures introduced by sp root and
subgraph size, i.e. the percentage of correctly predicted pairs. Table 3 contains
the resulting accuracy values. From our sample data, it seems that the subgraph
size (i.e. the number of subordinate terms) is a more reliable predictor of human
abstractness judgments. Hence, we will use it for a more detailed grounding of
our folksonomy-based abstractness measures.

The ranking function subgraph size naturally induces a partial order
�O

subgraph size among the set of lexical items present in a core ontology O. In
order to check how close each of our introduced term abstractness measures cor-
relate, we computed the gamma correlation coefficient [6] between the two partial
orders (see Eq. 7). Figure 2 shows the resulting correlations. Again, the corre-
lation level between the datasets differs, with DMOZ having the lowest values.
This is consistent with the first evaluation based solely on the taxonomic rela-
tions (see Figure 1). Another consistent observation is that the measure based on
the tag similarity network (bc sim and cc sim) show the weakest performance.
The globally best value is found for the subsumption model, compared to the
WikiTaxonomy (0.5); for the remaining conditions, almost all correlation values
lie in the range between 0.25 and 0.4, and correlate hence weakly.

5.5 Discussion

Our primary goal during the evaluation was to check if folksonomy-based term
abstractness measures are able to make reliable judgments about the relative ab-
stractness level of terms. A first consistent observation is that measures based on
frequency, entropy or centrality in the tag cooccurrence graph do exhibit a cor-
relation to the abstractness information encoded in gold-standard-taxonomies.
One exception is DMOZ, for which almost all measures exhibit only very weak
correlation values. We attribute this to the fact that the semantics of the DMOZ
topic hierarchy is much less precise compared to the other grounding datasets;
as an example, the category Top/Computers/Multimedia/Music and Audio/Software/Java does
hardly imply that Software “is a kind of” Music and Audio. WordNet on the
contrary subsumes the term Java (among others) under taxonomically much
more precise parents: [...] > communication > language > artifical language > programming

language > java The same holds for Yago, and the WikiTaxonomy was also built
with a strong focus on is-a relations [21]. This is actually an interesting obser-
vation: Despite the fact that both DMOZ and Delicious were built for similar

372 D. Benz et al.

cc_cooc
dc_cooc

entropy
frequency

bc_cooc
subs

cc_sim
bc_sim

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

co
rr

el
at

io
n

(a) WordNet

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

co
rr

el
at

io
n

(b) YAGO

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

co
rr

el
at

io
n

(c) DMOZ

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

co
rr

el
at

io
n

(d) WikiTaxonomy

Fig. 2. Grounding of the term abstractness measure �S against �O

subgraph size derived
from four ground-truth taxonomies. Each bar corresponds to a term abstractness mea-
sure; the y-axis depicts the gamma correlation as defined in Equation 7.

purposes (namely organizing WWW references), the implicit semantics within
Delicious resembles more closely to well-established semantic repositories than
to the bookmark-folder-inspired hierarchical organization scheme of DMOZ.

Another consistent observation is that abstractness measures based on tag
similarity graphs (as used e.g. by [13]) perform worst through all experimental
conditions. This is consistent with observations in our own prior work [5], where
we showed that distributional similarity measures (like the one used in this paper
or by [13]) induce connections preferably among tags having the same generality
level. On the contrary, applying e.g. centrality measures to the “plain” tag cooc-
currence graph yield better results. Hence, a justifiable conclusion is that tag-tag
cooccurrence encodes a considerable amount of “taxonomic” information.

But this information is not solely present in the cooccurrence graph – also a
probabilistic model of subsumption [22] yields good results in some conditions,
especially when grounding against the taxonomy-derived subgraph size ranking.
We attribute this to the fact that both measures (the subsumption model and
the subgraph size) are based on the same principle, namely that a term is more
general the more other terms it subsumes.

Apart from that, even the simplest approach of measuring term abstractness
by the mere frequency (i.e. the number of times a tag has been used) already
exhibits a considerable correlation to our gold-standard taxonomies. This has an
interesting application to the popularity/generality problem: Our results point in
the direction that popular tags are on average more abstract (or more general)
than less frequently used ones. In summary, the interpretation of our results

One Tag to Bind Them All 373

can be condensed in two statements: First, folksonomy-based measures of term
abstractness do exhibit a partially strong correlation to well-defined semantic
repositories; and second, the abstractness level of a given tag can be approxi-
mated well by simple measures.

6 Conclusions

In this paper, we performed a systematic analysis of folksonomy-based term ab-
stractness measures. To this end, we first provided a common terminology to
subsume the notion of term abstractness in folksonomies and core ontologies.
We then contributed a methodology to compare the abstractness information
contained in each of our analyzed measures to established taxonomies, namely
WordNet, Yago, DMOZ and the WikiTaxonomy. Our results suggest that cen-
trality and entropy measures can differentiate well between abstract and concrete
terms. In addition, we have provided evidence that the tag cooccurence graph is
a more valuable input to centrality measures compared to tag similarity graphs
in order to measure abstractness. Apart from that, we also shed light on the tag
generality vs. popularity problem by showing that in fact, popularity seems to be
a fairly good indicator of the “true” generality of a given tag. These insights are
useful for all kinds of applications who benefit from a deeper understanding of
tag semantics. As an example, tag recommendation engines could take general-
ity information into account in order to improve their predictions, or folksonomy
navigation facilities could offer a new direction of browsing towards more general
or more specific directions. Finally, our results inform the design of algorithms
geared towards making the implicit semantics in folksonomies explicit.

As next steps, we plan to apply our measures to identify generalists and spe-
cialists in social tagging systems. A possible hypothesis hereby is that specialists
use a more specific vocabulary whereas generalists rely mainly on abstract tags.

Acknowledgments. We would like to thank Dr. Denis Helic and Beate Krause
for fruitful discussions during the creation of this work. The research presented
in this work is in part funded by the Know-Center, the FWF Austrian Science
Fund Grant P20269, the European Commission as part of the FP7 Marie Curie
IAPP project TEAM (grant no. 251514), the WebZubi project funded by BMBF
and the VENUS project funded by Land Hessen.

References

1. Allen, R., Wu, Y.: Generality of texts. In: Digital Libraries: People, Knowledge,
and Technology. LNCS, Springer, Heidelberg (2010)

2. Benz, D., Hotho, A., Stumme, G.: Semantics made by you and me: Self-emerging
ontologies can capture the diversity of shared knowledge. In: Proc. of WebSci 2010,
Raleigh, NC, USA (2010)

3. Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle,
D., Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Stumme, G.,
Sure, Y., Tane, J., Volz, R., Zacharias, V.: KAON - Towards a Large Scale Semantic
Web. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS,
vol. 2455, pp. 304–313. Springer, Heidelberg (2002)

374 D. Benz et al.

4. Brandes, U., Pich, C.: Centrality estimation in large networks. I. J. Bifurcation
and Chaos 17(7), 2303–2318 (2007)

5. Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic analysis of tag similar-
ity measures in collaborative tagging systems. In: Proc. of the 3rd Workshop on
Ontology Learning and Population (OLP3), Patras, Greece, pp. 39–43 (July 2008)

6. Cheng, W., Rademaker, M., De Baets, B., Hüllermeier, E.: Predicting partial orders:
Ranking with abstention. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.)
ECML PKDD 2010. LNCS, vol. 6321, pp. 215–230. Springer, Heidelberg (2010)

7. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora
using formal concept analysis. Journal of Artificial Intelligence Research (JAIR) 24,
305–339 (2005)

8. Clark, J., Paivio, A.: Extensions of the Paivio, Yuille, and Madigan 1968 norms.
Behavior Research Methods, Instruments, & Computers 36(3), 371 (2004)

9. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

10. Fleiss, J., et al.: Measuring nominal scale agreement among many raters. Psycho-
logical Bulletin 76(5), 378–382 (1971)

11. Golder, S., Huberman, B.A.: Usage patterns of collaborative tagging systems. Jour-
nal of Information Science 32(2), 198–208 (2006)

12. Henschel, A., Woon, W.L., Wächter, T., Madnick, S.: Comparison of generality
based algorithm variants for automatic taxonomy generation. In: Proc. of IIT 2009,
pp. 206–210. IEEE Press, Piscataway (2009)

13. Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical
taxonomies in social tagging systems. Tech. Rep. 2006-10, CS dep. (April 2006)

14. Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: SIGIR
2008: Proc. of the 31st Annual Int’l ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 531–538. ACM, New York (2008)

15. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folk-
sonomies: Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.
LNCS(LNAI), vol. 4011, pp. 411–426. Springer, Heidelberg (2006)

16. Kammann, R., Streeter, L.: Two meanings of word abstractness. Journal of Verbal
Learning and Verbal Behavior 10(3), 303–306 (1971)

17. Körner, C., Benz, D., Hotho, A., Strohmaier, M., Stumme, G.: Stop thinking, start
tagging: tag semantics emerge from collaborative verbosity. In: Proc. of WWW
2010, pp. 521–530. ACM, New York (2010)

18. Maedche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Pub-
lishing, Boston (2002)

19. Mika, P.: Ontologies are us: A unified model of social networks and semantics.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 522–536. Springer, Heidelberg (2005)

20. Paivio, A., Yuille, J.C., Madigan, S.A.: Concreteness, imagery, and meaningfulness
values for 925 nouns. Journal of Experimental Psychology 76 (1968)

21. Ponzetto, S.P., Strube, M.: Deriving a large-scale taxonomy from wikipedia. In:
AAAI, pp. 1440–1445. AAAI Press, Menlo Park (2007)

22. Schmitz, P.: Inducing ontology from flickr tags (2006)
23. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge.

In: 16th international World Wide Web conference, WWW 2007 (2007)
24. Wasserman, S., Faust, K.: Social network analysis: Methods and applications. Cam-

bridge Univ. Pr, Cambridge (1994)
25. Zhang, Q.: Fuzziness - vagueness - generality - ambiguity. Journal of Pragmat-

ics 29(1), 13–31 (1998)

Semantic Enrichment of Twitter Posts for User

Profile Construction on the Social Web

Fabian Abel, Qi Gao, Geert-Jan Houben, and Ke Tao

Web Information Systems, Delft University of Technology
{f.abel,q.gao,g.j.p.m.houben,k.tao}@tudelft.nl

Abstract. As the most popular microblogging platform, the vast
amount of content on Twitter is constantly growing so that the retrieval
of relevant information (streams) is becoming more and more difficult ev-
ery day. Representing the semantics of individual Twitter activities and
modeling the interests of Twitter users would allow for personalization
and therewith countervail the information overload. Given the variety
and recency of topics people discuss on Twitter, semantic user profiles
generated from Twitter posts moreover promise to be beneficial for other
applications on the Social Web as well. However, automatically inferring
the semantic meaning of Twitter posts is a non-trivial problem.
In this paper we investigate semantic user modeling based on Twit-

ter posts. We introduce and analyze methods for linking Twitter posts
with related news articles in order to contextualize Twitter activities. We
then propose and compare strategies that exploit the semantics extracted
from both tweets and related news articles to represent individual Twit-
ter activities in a semantically meaningful way. A large-scale evaluation
validates the benefits of our approach and shows that our methods re-
late tweets to news articles with high precision and coverage, enrich the
semantics of tweets clearly and have strong impact on the construction
of semantic user profiles for the Social Web.

Keywords: semantic enrichment, twitter, user profile construction,
news, linkage.

1 Introduction and Motivation

With the advent of social networking, tagging or microblogging that become tan-
gible in Social Web systems like Facebook, Delicious and Twitter, a new culture
of participation penetrates the Web. Today, more than 190 million people are
using Twitter and together publish more than 65 million messages (tweets) per
day1. Recent research shows that the exploitation of tweets allows for valuable
applications such as earthquake warning systems [1], opinion mining [2] or dis-
covery and ranking of fresh Web sites [3]. These applications mainly analyze and
utilize the wisdom of the crowds as source of information rather than relying on
individual tweets. Analogously, previous research in the field of microblogging
1 http://techcrunch.com/2010/06/08/twitter-190-million-users/

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 375–389, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://techcrunch.com/2010/06/08/twitter-190-million-users/

376 F. Abel et al.

studied information propagation patterns in the global Twitter network [4,5]
and exploited network structures to identify influentual users [6,7] as well as
malicious users [8,9]. While related work reveals several insights regarding the
characteristics of the global Twitter network, there exists little research on un-
derstanding the semantics of individual microblogging activities and modeling
individual users on Twitter with Semantic Web technologies.

Learning and modeling the semantics of individual Twitter activities is impor-
tant because the amount of tweets published each day is continuously growing
so that users need support to benefit from Twitter information streams. For ex-
ample, given the huge amount of information streams available on Twitter, user
profiling and personalization techniques that support users in selecting streams
to follow or particular items to read are becoming crucial [6]. Further, given the
variety and recency of topics people discuss on Twitter [5], user profiles that
capture the semantics of individual tweets are becoming interesting for other
applications on the Social Web as well. In order to provide personalization func-
tionalities in Twitter and moreover enable Social Web applications to consume
semantically meaningful representations of the users’ Twitter activities, there is
thus urgent need to research user modeling strategies that allow for the con-
struction of user profiles with rich semantics.

In this paper we introduce approaches for enriching the semantics of Twit-
ter posts and modeling users based on their microblogging activities. Given the
realtime nature and news media characteristics of Twitter [5], we explore pos-
sibilities of linking Twitter posts with news articles from the Web. Therefore,
we present and evaluate different strategies that link tweets with news articles
and contextualize the semantics of tweets with semantics extracted from the
corresponding news articles. Based on a large dataset of more than 3 million
tweets published by more than 45,000 users, we compare the performance of dif-
ferent strategies for linking tweets with news and analyze their impact on user
modeling.

2 Related Work

Since Twitter was launched in 2007 research started to investigate the phe-
nomenon of microblogging. Most research on Twitter investigates the network
structure and properties of the Twitter network, e.g. [4,5,6,7]. Kwak et al. con-
ducted a temporal analysis of trending topics in Twitter and discovered that
over 85% of the tweets posted everyday are related to news [5]. They also show
that hashtags are good indicators to detect events and trending topics. Huang
et al. analyze the semantics of hashtags in more detail and reveal that tagging
in Twitter rather used to join public discussions than organizing content for fu-
ture retrieval [10]. Laniada and Mika [11] have defined metrics to characterize
hashtags with respect to four dimensions: frequency, specificity, consistency, and
stability over time. The combination of measures can help assessing hashtags as
strong representative identifiers. Miles explored the retrieval of hashtags for rec-
ommendation purposes and introduced a method which considers user interests

Semantic Enrichment of Twitter Posts for User Profile Construction 377

in a certain topic to find hashtags that are often applied to posts related to this
topic [12]. In this paper, we compare hashtag-based methods with methods that
extract and analyze the semantics of tweets. While SMOB [13], the semantic mi-
croblogging framework, enables users to explicitly attach semantic annotations
(URIs) to their short messages by applying MOAT [14] and therewith allows for
making the meaning of (hash)tags explicit, our ambition is to infer the semantics
of individual Twitter activities automatically.

Research on information retrieval and personalization in Twitter focussed on
ranking users and content. For example, Cha et al. [7] present an in-depth com-
parison of three measures of influence, in-degree, re-tweets, and mentions, to
identify and rank influential users. Based on these measures, they also investi-
gate the dynamics of user influence across topics and time. Weng et al. [6] focus
on identifying influential users of microblogging services as well. They reveal
that the presence of reciprocity can be explained by phenomenon of homophily,
i.e. people who are similar are likely to follow each other. Content recommen-
dations in Twitter aim at evaluating the importance of information for a given
user and directing the user’s attention to certain items. Anlei et al. [3] propose a
method to use microblogging streams to detect fresh URLs mentioned in Twit-
ter messages and compute rankings of these URLs. Chen et al. also focus on
recommending URLs posted in Twitter messages and propose to structure the
problem of content recommendations into three separate dimensions [15]: discov-
ering the source of content, modeling the interests of the users to rank content
and exploiting the social network structure to adjust the ranking according to
the general popularity of the items. Chen et al. however do not investigate user
modeling in detail, but represent users and their tweets by means of a bag of
words, from which they remove stop-words. In this paper we go beyond bag-
of-word representations and link tweets to news articles from which we extract
entities to generate semantically more meaningful user profiles.

Interweaving traditional news media and social media is the goal of research
projects such as SYNC32, which aims to enrich news events with opinions from
the blogosphere. Twitris 2.0 [16] is a Semantic Web platform that connects event-
related Twitter messages with other media such as YouTube videos and Google
News. Using Twarql [17] for the detection of DBpedia entities and making the
semantics of hashtags explicit (via tagdef 3), it captures the semantics of major
news events. TwitterStand [18] also analyzes the Twitter network to capture
tweets that correspond to late breaking news. Such analyses on certain news
events, such as the election in Iran 2009 [2] or the earthquake in Chile 2010 [19],
have also been conducted by other related work. However, analyzing the feasi-
bility of linking individual tweets with news articles for enriching and contex-
tualizing the semantics of user activities on Twitter to generate valuable user
profiles for the Social Web – which is the main contribution of this paper – has
not been researched yet.

2 http://www.sync3.eu
3 http://tagdef.com

http://www.sync3.eu
http://tagdef.com

378 F. Abel et al.

 
 

news articles microblog posts g pg pg

(a) Generic solution (b) Example scenario

Fig. 1. Generic solution for semantic enrichment of tweets and user profile construction:
(a) generic architecture and (b) example of processing tweets and news articles

3 How to Exploit Twitter for Semantic User Modeling?

The length of Twitter messages is limited to 140 characters which makes it dif-
ficult to detect the semantics of these messages. For example, posts such as “In-
teresting: http://bit.ly/iajV21 #politics” or “@nytimes this makes me scared”
are even for humans difficult to understand without knowing the context. How-
ever, by following the links one can explore this context and grasp the semantics
of the tweets. Many Twitter activities are related to news events. According to
Kwak et al., more than 85% of the tweets in the Twitter network are related to
news [5]. This observation motivates our idea of linking Twitter activities with
news articles to automatically capture and enrich the semantics of microblogging
activities. Such relations between tweets and news further allow for capturing
user interests regarding trending topics and support applications that require
recent user interests like recommender systems for news or other fresh items.

Figure 1(a) visualizes the components of our approach for constructing user
profiles with rich semantics based on Twitter posts. We relate Twitter messages
with news articles and exploit the content of both tweets and news articles to
derive the semantics of the users’ microblogging activities. Therefore, we ag-
gregate individual posts of Twitter users as well as news articles published by
mainstream media such as CNN, BBC, or New York Times and propose the
following components.

Semantic Enrichment of Twitter Posts for User Profile Construction 379

Linkage. The challenge of linking tweets and news articles is to identify these
articles a certain Twitter message refers to. Sometimes, users explicitly link
to the corresponding Web sites, but often there is no hyperlink within a
Twitter message which requires more advanced strategies. In Section 4 we
introduce and evaluate different strategies that allow for the discovery of
relations between tweets and news articles.

Semantic Enrichment. Given the content of tweets and news articles, another
challenge is to extract valuable semantics from the textual content. Further,
when processing news article Web sites an additional challenge is to extract
the main content of the news article. While RSS facilitates aggregation of
news articles, the main content of a news article is often not embedded
within the RSS feed, but is available via the corresponding HTML-formatted
Web site. These Web sites contain supplemental content (boilerplate) such
as navigation menus, advertisements or comments provided by readers of the
article. To extract the main content of news articles we use BoilerPipe [20],
a library that applies linguistic rules to separate main content from the
boilerplate.
In order to support user modeling and personalization it is important to –
given the raw content of tweets and news articles – distill topics and extract
entities users are concerned with. We therefore utilize Web services provided
by OpenCalais4, which allow for the extraction of entities such as people,
organizations or events and moreover assign unique URIs to known entities
and topics.
The connections between the semantically enriched news articles and Twitter
posts enable us to construct a rich RDF graph that represents the microblog-
ging activities in a semantically well-defined context.

User Modeling. Based on the RDF graph, which connects Twitter posts, news
articles, related entities and topics, we introduce and analyze user modeling
strategies that create semantically rich user profiles describing different facets
of the users (see Section 5).

Figure 1(b) further illustrates our generic solution by means of an example
taken from our dataset: a user is posting a message about the election of the
sportsman of the year and states that she supports Francesca Schiavone, an
Italian tennis player. The Twitter message itself just mentions the given name
francesca and indicates with a hashtag (#sport) that this post is related to
sports. Hence, given just the text from this Twitter message it is not possi-
ble to automatically infer that the user is concerned with the tennis player.
Given our linkage strategies (see Section 4), one can relate the Twitter mes-
sage with a corresponding news article published by CNN, which details on the
SI sportsman election and Francesca Schiavone in particular. Entity and topic
recognition reveal that the article is about tennis (topic:Tennis) and Schiavone’s
(person:Francesca Schiavone) success at French Open (event:FrenchOpen) and
therewith enrich the semantics which can be extracted from the Twitter message
itself (topic:Sports).
4 http://www.opencalais.com

http://www.opencalais.com

380 F. Abel et al.

4 Analyzing Linkage between Tweets and News for
Semantic Enrichment

The key idea of our approach to enrich the semantics of Twitter messages is
based on relating individual tweets to news articles so that semantics extracted
from news articles can be applied to clarify the meaning of tweets. In this section
we introduce different strategies for linking Twitter posts with news articles that
provide details on these posts. To evaluate the impact of these strategies on the
semantic enrichment of Twitter posts we conduct an analysis on a large dataset
gathered from Twitter and major news publishing Web sites.

4.1 Strategies for Discovering Tweet-News Relations

The strategies, which we propose to find correlations between Twitter posts
and external news resources, can be divided into URL-based strategies, which
exploit interaction patterns and hyperlinks mentioned in tweets, and content-
based strategies, which exploit the content of tweets and news articles. In the
following definitions, T denotes the set of all tweets available in our dataset while
N refers to the set of news articles.

URL-based Strategies. URLs (mostly short URLs shortened by services such
as bit.ly) that are contained in tweets can be considered as indicators for news-
related tweets. In particular, if a tweet contains a URL that points to an external
news resource, there is a very high possibility that this tweet is closely related to
the linked resource. Based on this principle we defined two URL-based strategies.

Definition 1 (Strict URL-based strategy). If a Twitter post t ∈ T contains
at least one URL that is from certain mainstream news publishers and links to
a news article n ∈ N , then we consider t and n as related: (t, n) ∈ Rs, where
Rs ⊆ T ×N .

For this strategy, we select BBC, CNN and the New York Times as the set
of mainstream news publishers and apply URL-patterns to discover the corre-
sponding tweets that point to these Web sites. A potential drawback of the strict
URL-based strategy is that it will miss relevant relations for Twitter messages
that contains no URL. For example, if a user replies to Twitter message that
is according to the strict URL-based strategy related to a news article n then
this reply message might be related to n as well. Based on this idea, we define a
second URL-based strategy that is more flexible than the first one.

Definition 2 (Lenient URL-based strategy). If a tweet tr ∈ T is a reply
or re-tweet from another tweet t ∈ T , which contains at least one URL that is
linked to a news article n ∈ N authored by certain mainstream news publishers,
then we consider both tr and t as being related to n: (tr, n) ∈ Rl, (t, n) ∈ Rl,
where Rl ⊆ T ×N .

Hence, the lenient URL-based strategy extends the strict strategy with tweets
that were published as part of an interaction with a tweet that is according to
the strict strategy news-related so that Rs ⊆ Rl.

Semantic Enrichment of Twitter Posts for User Profile Construction 381

Content based Strategies. As tweets do not necessarily contain a URL, we
propse another set of strategies that exploit the content of tweets and news arti-
cles to connect tweets with news. For example, the Twitter post about Francesca
Schiavone in Figure 1(b) should be linked to the corresponding news article even
though the tweet does not have a URL directly pointing to the article. We thus
propose three further strategies that analyze the content of Twitter posts to
allow for linkage between Twitter activities and news articles.

Definition 3 (Bag-of-Words Strategy). Formally, a Twitter post tj ∈ T can
be represented by a vector t = (α1, α2..αm) where αi is the frequency of a word
i in t and m denotes the total number of words in t. Each news article n ∈ N is
also represented as a vector n = (β1, β2..βk) where βi is the frequency of a word
i in the title of the news article n and k denotes the total number of words in n.

The bag-of-word strategy relates a tweet t with the news article n, for which
the TF × IDF score is maximized: (t, n) ∈ Rb, where Rb ⊆ T ×N .

The bag-of-words strategy thus compares a tweet t with every news article in
N and chooses the most similar ones to build a relation between t and the
corresponding article n. TF × IDF is applied to measure the similarity. Given
a Twitter post t and a news article n, the term frequency TFi of a term i (with
αi > 0 in the vector representation of t) is βi, i.e. the number of occurrences
of the word i in n. And IDFi, the inverse document frequency, is IDFi =
1+ log(|N |

|{n∈N :βi>0}|+1), where |{n ∈ N : βi > 0}| is the number of news articles,
in which the term i appears. Given TF and IDF , the similarity between t and
n is calculated as follows.

sim(t, n) =

m∑
i=1

TFi · IDFi (1)

Given a ranking according to the above similarity measure, we select top
ranked tweet-news pairs (t, n) as candidates for constructing a valid relation.
Following the realtime nature of Twitter, we also add a temporal constraint to
filter out these candidates, for which the publishing date of the Twitter message
and news article differs more than two days.

The bag-of-words strategy treats all words in a Twitter post as equally im-
portant. However, in Twitter, hashtags can be considered as special words that
are important features to characterize a tweet [11]. For news articles, some key-
words such as person names, locations, topics, etc. are also good descriptors to
characterize a news article. Conveying these observations, we introduce hashtag-
based and entity-based strategies for discovering relations between tweets and
news articles. These strategies follow the idea of the bag-of-words strategy (see
Definition 3) and differ in the way of representing news articles and tweets.

Definition 4 (Hashtag-based strategy). The hashtag-based strategy repre-
sents a Twitter post t ∈ T via its hashtags: h = (α1, α2..αm), where αi is the
number of occurrences of a hashtag i in t and m denotes the total number of
hashtags in t.

382 F. Abel et al.

The hashtag-based strategy relates a tweet t (represented via its hashtags) with
the news article n, for which the TF × IDF score is maximized: (t, n) ∈ Rh,
where Rh ⊆ T ×N .

While the hashtag-based strategy thus varies the style of representing Twitter
messages, the entity-based strategy introduces a new approach for representing
news articles.

Definition 5 (Entity-based strategy). Twitter posts t ∈ T are represented
by a vector t = (α1, α2..αm) where αi is the frequency of a word i in t and m
denotes the total number of words in t. Each news article n ∈ N is represented by
means of a vector n = (β1, β2..βk), where βi is the frequency of an entity within
the news article, i is the label of the entity and k denotes the total number of
distinct entities in the news article n.

The entity-based strategy relates the Twitter post t (represented via bag-of-
words) with the news article n (represented via the labels of entities mentioned in
n), for which the TF ×IDF score is maximized: (t, n) ∈ Re, where Re ⊆ T ×N .

Entities are extracted by exploiting OpenCalais as described in Section 3. For
the hashtag- and entity-based strategies, we thus use Equation 1 to generate
a set of candidates of related tweet-news pairs and then filter out these pairs,
which do not fulfill the temporal constraint that prescribes that the tweet and
news article should be published within a time span of two days. Such temporal
constraints may reduce the recall but have a positive effect on the precision as
we will see in our analysis below.

4.2 Analysis and Evaluation

To analyze the impact of the strategies on semantic enrichment of Twitter posts,
we evaluate the performance of the strategies with respect to coverage and pre-
cision based on a large data corpus which we crawled from Twitter and three
major news media sites: BBC, CNN and New York Times.

Data Collection and Characteristics. Over a period of three weeks we
crawled Twitter information streams via the Twitter streaming API. We started
from a seed set of 56 Twitter accounts (Un), which are maintained by people
associated with one of the three mainstream news publishers, and gradually ex-
tended this so that we finally observed the Twitter activities of 48,927 extra
users (Uu), who are not explicitly associated with BBC, CNN or the New York
Times. The extension was done in a snowball manner: we added users to Uu,
who interacted with another user u ∈ Un ∪Uu. The 56 Twitter accounts closely
related to mainstream news media enable publishers of news articles to discuss
their articles and news events with the Twitter audience. For the 48,927 casual
users we crawled all Twitter activities independently whether the activity was
part of an interaction with the Twitter accounts of the mainstream news media
or not. In total we thereby obtained more than 3.3 million tweets.

Figure 2 shows the number of tweets per user and depicts how often these
users interacted with a Twitter account associated with mainstream media. The

Semantic Enrichment of Twitter Posts for User Profile Construction 383

Fig. 2. Number of tweets per useru∈Uu aswell as the number of interactions (re-tweeting
or reply activities) with Twitter accounts maintained by mainstream news media

distribution of the number of tweets per user shows a power-law-like distribution.
For many users we recorded less than 10 Twitter activities within the three week
observation period. Less than 500 users were highly active and published more
than 1000 tweets. Further, the majority (more than 75%) of users interacted
only once with a news-related user u ∈ Un. We observed only nine users, who
re-tweeted or replied to messages from news-related users more than 100 times
and identified one of these users as spam user, who just joined the discussion to
promote Web sites.

To connect tweets with news articles, we further crawled traditional news me-
dia. Each of the three mainstream news publishers (BBC, CNN, and New York
Times) also provides a variety of news channels via their Web site. These news
channels correspond to different news categories such as politics, sports, or cul-
ture and are made available via RSS feed. We constantly monitored 63 different
RSS feeds from the corresponding news publishers and crawled the main content
as well as supplemental metadata (title, author, publishing data, etc.) of more
than 44,000 news articles.

Experimental Results. In order to evaluate the accuracy of the different
strategies for relating tweets with news articles, we randomly selected tweet-
news pairs that were correlated by a given strategy and judged the relatedness
of the news article and the tweet message on a scale between 1 (“not related”)
and 4 (“perfect match”), where 2 means “not closely related” and 3 denotes “re-
lated” tweet-news pairs. For example, given a Twitter message about Francesca
Schiavone’s victory at French Open 2010, we considered news articles that re-
port about this victory as “perfect match” while news articles about Francesca
Schiavone, for which this victory is not the main topic but just mentioned as
background information were considered as “related”. In total, we (the authors
of this paper) judged 1427 tweet-news pairs where each of the strategies de-
picted in Figure 3 was judged at least 200 times. For 85 pairs (5.96%) we were
not able to decide whether the corresponding Twitter posts and the news article
are related. We considered these pairs as “not related” and tweet-news relations,
which were rated at least with 3 as truly related.

384 F. Abel et al.

Fig. 3. Precision of different strategies for relating Twitter messages with news articles.
(considered to refer to accurate).

Given this ground truth of correct tweet-news relations, we compare the preci-
sion of the different strategies, i.e. the fraction of correctly generated tweet-news
relations. Figure 3 plots the results and shows that the URL-based strategies
perform best with a precision of 80.59% (strict) and 78.8% (lenient) respec-
tively. The naive content-based strategy, which utilizes the entire Twitter mes-
sage (excluding stop-words) as search query and applies TFxIDF to rank the
news articles, performs worst and is clearly outperformed by all other strategies.
It is interesting to see that the entity-based strategy, which considers the pub-
lishing date of the Twitter message and news article, is nearly as good as the
lenient URL-based strategy and clearly outperforms the hashtag-based strategy,
which uses the temporal constraints as well. Even without considering tempo-
ral constraints, the entity-based strategy results in higher accuracy than the
hashtag-based strategy. We conclude that the constellation/set of entities men-
tioned in a news article and Twitter message correspondingly, i.e. the number
of shared entities, is a good indicator of relating tweets and news articles.

Figure 4 shows the coverage of the strategies, i.e. the number of tweets per
user, for which the corresponding strategy found an appropriate news article.
The URL-based strategies, which achieve the highest accuracy, are very restric-
tive: for less than 1000 users the number of tweets that are connected to news
articles is higher than 10. The coverage of the lenient URL-based strategy is
clearly higher than for the strict one, which can be explained by the number of
interactions with Twitter accounts from mainstream news media (see Figure 2).
The hashtag-based and entity-based strategies even allow for a far more higher
number of tweet-news pairs. However, the hashtag-based strategy fails to relate
tweets for more than 79% of the users, because most of these people do not make
use of hashtags. By contrast, the entity-based strategy is applicable for the great
majority of people and, given that it showed an accuracy of more than 70% can
be considered as the most successful strategy.

Combining all strategies results in the highest coverage: for more than 20%
of the users, the number of tweet-news relations is higher than 10. In the next
section we will show that given these tweet-news relations we can create rich
profiles that go beyond the variety of profiles, which are just constructed based
on the tweets of the users.

Semantic Enrichment of Twitter Posts for User Profile Construction 385

Fig. 4. Number of tweets per user, which are according to the different strategies
related to news articles

5 Analyzing User Profile Construction Based on
Semantic Enrichment

Based on the linkage of Twitter activities with news articles, we can exploit the
semantics embodied in the news articles to create and enrich user profiles. In this
section, we first present approaches for user modeling based on Twitter activities
and then analyze the impact of exploiting related news articles for user profile
construction in Twitter.

5.1 User Modeling Strategies

In this study we focus on two types of profiles: entity-based and topic-based
profiles. An entity-based profile models a user’s interests into a given set of
entities such as persons, organizations, or events and can be defined as follows.

Definition 6 (Entity-based profile). The entity-based profile of a user u ∈
U is a set of weighted entities where the weight of an entity e ∈ E is computed
by a certain strategy w with respect to the given user u.

P (u) = {(e, w(u, e))|e ∈ E, u ∈ U} (2)

w(u, e) is the weight that is associated with an entity e for a given user u. E
and U denote the set of entities and users respectively.

In Twitter, a naive strategy for computing a weight w(u, e) is to count the num-
ber of u’s tweets that refer to the given entity e. |P (u)| depicts the number of
distinct entities that appear in a profile P (u). While entity-based profiles repre-
sent a user in a detailed and fine-grained fashion, topic-based profiles describe
a user’s interests into topics such as sports, politics or technology that can be
specified analogously (see Definition 7).

Definition 7 (Topic-based profile). The topic-based profile PT (u) of a user
u ∈ U is the restriction of an entity-based profile P (u) to a set of topics T ⊆ E.

386 F. Abel et al.

From a technical point of view, both types of profiles specify the interest of a user
into a certain URI, which represents an entity or topic respectively. Given the
URI-based representation, the entity- and topic-based profiles become part of the
Web of Linked Data and can therewith not only be applied for personalization
purposes in Twitter (e.g., recommendations of tweet messages or information
streams to follow) but in in other systems as well. For the construction of entity-
and topic-based profiles we compare the following two strategies.

Tweet-based. The tweet-based baseline strategy constructs entity- and topic-
based user profiles by considering only the Twitter messages posted by a
user, i.e. the first step of our user modeling approach depicted in Figure 1(a)
is omitted so that tweets are not linked to news articles. Entities and topics
are directly extracted from tweets using OpenCalais. The weight of an entity
corresponds to the number of tweets, from which an entity was successfully
extracted, and the weight of a topic corresponds to the number of tweets,
which were categorized with the given topic.

News-based. The news-based user modeling strategy applies the full pipeline of
our architecture for constructing the user profiles (see Figure 1(a)). Twitter
messages are linked to news articles by combining the URL-based and entity-
based (with temporal restrictions) strategies introduced in Section 4 and
entities and topics are extracted from the news articles, which have been
linked with the Twitter activities of the given user. The weights correspond
again to the number of Twitter activities which relate to an entity and topic
respectively.

Our hypothesis is that the news-based user modeling strategy, which benefits
from the linkage of Twitter messages with news articles, creates more valuable
profiles than the tweet-based strategy.

5.2 Analysis and Evaluation

To validate our hypothesis we randomly selected 1000 users (from Uu) and ap-
plied both strategies to create semantic user profiles from their Twitter activ-
ities. Figure 5 compares the number of distinct entities and topics available in
the corresponding profiles (|P (u)|). Even though the number of Twitter activ-
ities, which can be linked to news articles, is smaller than the total number of
Twitter activities of a user (cf. Fig. 2, Fig. 4), the number of entities and topics
available in the profiles generated via the news-based strategy is higher than for
the tweet-based approach. Regarding the entity-based profiles this difference is
higher than for the topic-based profiles, because each Twitter message and news
article is usually categorized with one topic at most whereas for the number
of entities there is no such limit. News articles provide much more background
information (a higher number of entities) than Twitter messages and thus allow
for the construction of more detailed entity-based user profiles.

Further, the variety of the entity-based profiles generated via the news-based
strategy is much higher than for the tweet-based strategy as depicted in
Figure 5(c). For the tweet-based strategy, more than 50% of the profiles contain

Semantic Enrichment of Twitter Posts for User Profile Construction 387

1 10 100 1000
user profiles

0

10

100

1000

10000
en

tit
ie

s
pe

r
us

er
 p

ro
fil

e
News-based
Tweet-based

(a) Entity-based profiles

1 10 100 1000

user profiles

0

10

di
st

in
ct

 to
pi

cs
 p

er
 u

se
r

pr
ofi

le

News-based
Tweet-based

(b) Topic-based profiles

0 200 400 600 800 1000

user profiles

0

10

20

30

nu
m

be
r

of
 fa

ce
t t

yp
es

 p
er

 u
se

r
pr

ofi
le News-based

Tweet-based

(c) User profile facets

1 10 100 1000
user profiles

1

10

100

1000

10000

nu
m

be
r

of
 h

as
ht

ag
s

pe
r

us
er

 p
ro
fil

e entity-based (news)
hashtag-based

(d) Hashtag- vs. entity-based profiles

Fig. 5. Comparison between tweet-based and news-based user modeling strategies:
(a) for creating entity-based profiles and (b) topic-based profiles, (c) with respect to
the variety of facet types available in the user profiles (example facet types: person,
event, location, product). Further, (d) hashtag-based vs. entity-based profiles: number
of distinct hash tags and entities per profile.

just less than four types of entities (mostly persons and organizations) while for
the news-based strategy more than 50% of the profiles reveal interests in more
than 20 types of entities. For example, they show that users are – in addition
to persons or organizations – also concerned with certain events or products.
The news-based strategy, i.e. the complete user construction pipeline proposed
in Figure 1, thus allows for the construction of profiles that cover different facets
of interests which increases the number of applications that can be built on top
of our user modeling approaches (e.g., product recommendations).

Related research stresses the role of hashtags for being valuable descrip-
tors [11,12,10]. However, a comparison between hashtag-based profiles and entity-
based profiles created via the news-based strategy shows that for user modeling
on Twitter, hashtags seem to be a less valuable source of information. Figure 5(d)
reveals that the number of distinct hashtags available in the corresponding user
profiles is much smaller than the number of distinct entities that are discovered
with our strategy, which relates Twitter messages with news articles. Given that
each named entity as well as each topic of an entity- and topic-based user profile
has a URI, the semantic expressiveness of profiles generated with the news-based
user modeling strategy is much higher than for the hashtag-based profiles.

388 F. Abel et al.

6 Conclusions and Future Work

In this article, we introduced and analyzed strategies that enrich the semantics of
microblogging activities for creating semantically rich user profiles on the Social
Web. We present different strategies that connect Twitter messages with related
news articles and exploit semantics extracted from news articles to deduce and
contextualize the semantic meaning of individual Twitter posts. Our evaluation
on a large Twitter dataset (more than 3 million tweets posted by more than
45,000 users) showed that, given the name of entities mentioned in a news article
(such as persons or organizations) as well as the temporal context of the article,
we can relate tweets and news articles with high precision (more than 70%)
and high coverage (approx. 15% of the tweets can be linked to news articles).
Our analysis further revealed that the exploitation of tweet-news relation has
significant impact on user modeling and allows for the construction of more
meaningful profiles (more profile facets and more detailed knowledge regarding
user interests/concerns) than user modeling based on tweets only.

Semantic enrichment of Twitter user activities based on semantics extracted
from news articles thus leads to meaningful representations of Twitter activities,
ready for being applied in Twitter and other Social Web systems. In our ongo-
ing research, we would deepen the investigation of how the profiles constructed
by this type of user modeling strategies impact personalization on the Social
Web5. Given the variety and recency of the constructed profiles, there are dif-
ferent applications worthwhile to explore such as Twitter stream and message
recommendations, product recommendations or recommending news.

Acknowledgements. This work is partially sponsored by the EU FP7 projects
ImREAL (http://imreal-project.eu) and GRAPPLE (http://grapple-project.org).

References

1. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time
event detection by social sensors. In: Proc. of 19th Int. Conf. on World Wide Web,
pp. 851–860. ACM, New York (2010)

2. Gaffney, D.: #iranElection: quantifying online activism. In: Proc. of the WebSci10:
Extending the Frontiers of Society On-Line (2010)

3. Dong, A., Zhang, R., Kolari, P., Bai, J., Diaz, F., Chang, Y., Zheng, Z., Zha, H.:
Time is of the essence: improving recency ranking using Twitter data. In: Proc. of
19th Int. Conf. on World Wide Web, pp. 331–340. ACM, New York (2010)

4. Lerman, K., Ghosh, R.: Information contagion: an empirical study of spread of
news on Digg and Twitter social networks. In: Cohen, W.W., Gosling, S. (eds.)
Proc. of 4th Int. Conf. on Weblogs and Social Media. AAAI Press, Menlo Park
(2010)

5. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proc. of the 19th Int. Conf. on World Wide Web, pp. 591–600. ACM,
New York (2010)

5 Code and further results: http://wis.ewi.tudelft.nl/umap2011/

http://wis.ewi.tudelft.nl/umap2011/

Semantic Enrichment of Twitter Posts for User Profile Construction 389

6. Weng, J., Lim, E.P., Jiang, J., He, Q.: TwitterRank: finding topic-sensitive influ-
ential Twitterers. In: Davison, B.D., Suel, T., Craswell, N., Liu, B. (eds.) Proc. of
3rd ACM Int. Conf. on Web Search and Data Mining, pp. 261–270. ACM, New
York (2010)

7. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence
in twitter: The million follower fallacy. In: Cohen, W.W., Gosling, S. (eds.) Proc.
of 4th Int. Conf. on Weblogs and Social Media. AAAI Press, Menlo Park (2010)

8. Lee, K., Caverlee, J., Webb, S.: The social honeypot project: protecting online
communities from spammers. In: Proc. of 19th Int. Conf. on World Wide Web, pp.
1139–1140. ACM, New York (2010)

9. Lee, K., Caverlee, J., Webb, S.: Uncovering social spammers: social honeypots
+ machine learning. In: Proc. of 33rd Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pp. 435–442. ACM, New York (2010)

10. Huang, J., Thornton, K.M., Efthimiadis, E.N.: Conversational tagging in twitter.
In: Proc. of 21st Conf. on Hypertext and Hypermedia, pp. 173–178. ACM, New
York (2010)

11. Laniado, D., Mika, P.: Making sense of twitter. In: Patel-Schneider, P.F., Pan, Y.,
Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC
2010, Part I. LNCS, vol. 6496, pp. 470–485. Springer, Heidelberg (2010)

12. Efron, M.: Hashtag retrieval in a microblogging environment. In: Proc. of 33rd Int.
ACM SIGIR Conf. on Research and Development in Information Retrieval, pp.
787–788. ACM, New York (2010)

13. Passant, A., Hastrup, T., Bojars, U., Breslin, J.: Microblogging: A Semantic Web
and Distributed Approach. In: Bizer, C., Auer, S., Grimnes, G.A., Heath, T. (eds.)
Proc. of 4th Workshop Scripting For the Semantic Web (SFSW 2008) co-located
with ESWC 2008, vol. 368 (2008), CEUR-WS.org

14. Passant, A., Laublet, P.: Meaning Of A Tag: A collaborative approach to bridge
the gap between tagging and Linked Data. In: Proceedings of the WWW 2008
Workshop Linked Data on the Web (LDOW 2008), Beijing, China (2008)

15. Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and tweet: experi-
ments on recommending content from information streams. In: Proc. of 28th Int.
Conf. on Human Factors in Computing Systems, pp. 1185–1194. ACM, New York
(2010)

16. Jadhav, A., Purohit, H., Kapanipathi, P., Ananthram, P., Ranabahu, A., Nguyen,
V., Mendes, P.N., Smith, A.G., Cooney, M., Sheth, A.: Twitris 2.0: Semantically
empowered system for understanding perceptions from social data. In: Proc. of the
Int. Semantic Web Challenge (2010)

17. Mendes, P.N., Passant, A., Kapanipathi, P.: Twarql: tapping into the wisdom of
the crowd. In: Proc. of the 6th International Conference on Semantic Systems, pp.
45:1–45:3. ACM, New York (2010)

18. Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D., Sperling, J.:
Twitterstand: news in tweets. In: Proc. of 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 42–51. ACM,
New York (2009)

19. Mendoza, M., Poblete, B., Castillo, C.: Twitter Under Crisis: Can we trust what
we RT? In: Proc. of 1st Workshop on Social Media Analytics (SOMA 2010). ACM
Press, New York (2010)

20. Kohlschütter, C., Fankhauser, P., Nejdl, W.: Boilerplate detection using shallow
text features. In: Proc. of 3rd ACM Int. Conf. on Web Search and Data Mining,
pp. 441–450. ACM, New York (2010)

CEUR-WS.org

Improving Categorisation in Social Media Using

Hyperlinks to Structured Data Sources�

Sheila Kinsella1, Mengjiao Wang1, John G. Breslin1,2, and Conor Hayes1

1 Digital Enterprise Research Institute, National University of Ireland, Galway
firstname.lastname@deri.org

2 School of Engineering and Informatics, National University of Ireland, Galway
john.breslin@nuigalway.ie

Abstract. Social media presents unique challenges for topic classifica-
tion, including the brevity of posts, the informal nature of conversations,
and the frequent reliance on external hyperlinks to give context to a con-
versation. In this paper we investigate the usefulness of these external
hyperlinks for categorising the topic of individual posts. We focus our
analysis on objects that have related metadata available on the Web,
either via APIs or as Linked Data. Our experiments show that the in-
clusion of metadata from hyperlinked objects in addition to the original
post content significantly improved classifier performance on two dis-
parate datasets. We found that including selected metadata from APIs
and Linked Data gave better results than including text from HTML
pages. We investigate how this improvement varies across different top-
ics. We also make use of the structure of the data to compare the use-
fulness of different types of external metadata for topic classification in
a social media dataset.

Keywords: social media, hyperlinks, text classification, Linked Data,
metadata.

1 Introduction

Social media such as blogs, discussion forums, micro-blogging services and social-
networking sites have grown significantly in popularity in recent years. By low-
ering the barriers to online communication, social media enables users to easily
access and share content, news, opinions and information in general. Recent re-
search has investigated how microblogging services such as Twitter enable real-
time, first-hand reporting of news events [15] and how question-answering sites
such as Yahoo! Answers allow users to ask questions on any topic and receive
community-evaluated answers [1]. Social media sites like these are generating
huge amounts of user-generated content and are becoming a valuable source of
information for the average Web user.

� The work presented in this paper has been funded in part by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2).

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 390–404, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Improving Categorisation in Social Media 391

However, navigating this wealth of information can be challenging. Posts are
unstructured with little or no metadata and are usually much shorter than a
typical Web document. Due to the casual environment and minimal curation
in social media sites, the quality is highly variable [1]. Much of the informa-
tion contained in social media is generated during conversations between people
who have a shared context that allows them to communicate without explicitly
stating all relevant information. In many cases, vital pieces of information are
provided not within the text of the post, but behind hyperlinks that users post
to refer to a relevant resource. For example, a poster may recommend a book by
posting a hyperlink to a webpage where you can buy it, rather than using the
traditional method of providing the book title and name of the author. In the
message board dataset described in Section 4, we found that 65% of posts that
linked to books mentioned neither the complete title nor the complete author
name, and at least 11% did not contain even a partial title or author name.

Such hyperlinks to external resources are a potential source of additional infor-
mation for information retrieval in online conversations. Hyperlinks to sources of
structured data are particularly promising because the most relevant metadata
can be extracted and associated with the original post content. The resulting
rich representations of posts can be used for enhanced search and classification.
Recently, there has been a growing amount of structured information available
on the Web. Many of the most popular websites such as Amazon and YouTube
provide developer APIs that can be used to programmatically access metadata
about resources, and there is also a growing amount of RDFa and Linked Data
being published. The Linking Open Data [5] project in particular has resulted in
many structured datasets from diverse domains becoming available on the Web,
some of which we use as data sources in our experiments.

In this paper, we focus on the task of improving categorisation in social me-
dia using metadata from external hyperlinks, building on initial experiments re-
ported in [14]. To ensure that our conclusions are valid across different websites,
we investigate datasets from two disparate types of social media, a discussion fo-
rum and a micro-blogging website. We compare the results of topic classification
based on post content, on text from hyperlinked HTML documents, on meta-
data from external hyperlinks, and on combinations of these. Our experiments
show that incorporating metadata from hyperlinks can significantly improve the
accuracy of categorisation of social media items. We make use of the structure
of the data to empirically evaluate which metadata types are most useful for
categorisation. We also investigate how the results vary by topic, in order to
determine the circumstances where this approach would add the most benefit.
Our results demonstrate that thanks to the linked nature of the Web, structured
data can be useful to improve classification even in non-structured data.

2 Related Work

The enhancement of Web documents with external information for information
retrieval is a long-established technique, an early example being Google’s use of

392 S. Kinsella et al.

anchor text for Web search [17]. Previous studies in the field of Web document
categorisation have proven that the classification of webpages can be boosted by
taking into account the text of neighbouring webpages ([2], [16]). Our work differs
in that we focus on social media and rather than incorporating entire webpages
or parts of webpages, we include specific metadata items that have a semantic
relation to the objects discussed in a post. This approach enables us to compare
the effectiveness of different metadata types for improving classification.

Other work has looked at classifying particular types of Web objects using
metadata. Our work is related to that of Figueiredo et al. [8], who assess the
quality of various textual features in Web 2.0 sites such as YouTube for classi-
fying objects within that site. They do not use any external data. Yin et al. [21]
propose improving object classification within a website by bridging heteroge-
neous objects so that category information can be propagated from one domain
to another. They improve the classification of Amazon products by learning from
the tags of HTML documents contained within ODP1 categories.

There is previous work on classifying social media using the metadata of the
post itself. Berendt and Hanser [4] investigated automatic domain classification
of blog posts with different combinations of body, tags and title. Sun et al. [19]
showed that blog topic classification can be improved by including tags and
descriptions. Our work differs from these because we use metadata from objects
on the Web to describe a social media post that links to those objects.

There has also been related work in the area of classifying Twitter messages.
Garcia Esparza et al. [9] investigated tweet categorisation based on content.
Jansen et al. [12] classified posts relating to consumer brands according to their
sentiment. Irani et al. [11] studied the problem of identifying posters who aim
to dishonestly gain visibility by misleadingly tagging posts with popular topics.
They build models that correspond to topics in order to identify messages that
are tagged with a topic but are in fact spam. They take advantage of hyperlinks
by augmenting their models with text from webpages linked to within posts.
Our work differs in that we focus on the potential offered by structured Web
data and show that extracting relevant metadata gives superior results to using
entire webpages. In the Semantic Web domain, Stankovic et al. [18] proposed a
method for mapping conference-related posts to their corresponding talks and
then to relevant DBpedia topics, enabling the posts to be more easily searched.

A relevant study that used structured data from hyperlinks in social media
was performed by Cha et al. [7] who used hyperlinks in a blog dataset to study
information propagation in the blogosphere. They downloaded the metadata of
YouTube videos and analysed the popularity of categories, the age distribution
of videos, and the diffusion patterns of different categories of videos.

3 Enhanced Post Representations

Hyperlinks are often an integral part of online conversations. Users share videos
or photos they have seen, point to products or movies they are interested in,
1 Open Directory Project, http://www.dmoz.org/, accessed March 2011.

Improving Categorisation in Social Media 393

Amazon

social
media
data

YouTube

Flickr

Linked
Data Web APIs

hyperlinks

metadata

DBpedia

DBTune

Linked
MDB

(a)

original
content
obj title
obj author
obj type
obj category

amazon.com
Title: Rugby: A Player…
Author: Derek Robinson
Product Group: Book
Category: Rugby, Rules

social media site
Hey has anyone read

this book by Derek
Robinson yet?

http://www.amazon...

Hey has anyone read this book by Derek
Robinson yet? http://www.amazon...
Rugby: A Player's Guide to the Laws
Derek Robinson
Book
Rugby, Rules

(b)

Fig. 1. (a) Web sources that were used to enrich social media data; (b) example of a
how a social media post can be enhanced with external structured data relating to it

and use external articles as references in discussions. These external resources
can provide useful new data such as author information in the case of books,
or genre information in the case of movies. Many of these hyperlinks are to
websites that publish metadata about objects, such as videos (YouTube) or
products (Amazon), and make this metadata available via an API or as Linked
Data. These websites are particularly useful since they allow particular pieces
of relevant data to be identified and extracted, along with their relationship to
the hyperlinked resource. In some cases the metadata is published by external
sources, e.g., DBpedia [3] provides a structured representation of Wikipedia.
Figure 1(a) gives a graphical representation of how a social media dataset can
be enhanced with information from various Web sources. The sources shown are
those that will be used in experiments later in this paper.

Figure 1(b) gives an example of a post where additional useful information
can be gained by considering the metadata of a hyperlinked object. Some of the
information such as the author is redundant, but the title of the book and the
categories are new. Both the title and the categories can be of use for classifying
this post, which was posted in a Rugby forum. The name of the book could be
useful for information retrieval, for example in a search scenario where a user
queries for a book title. It is likely that certain metadata types will generally be
more useful than others - for example, while the name of a book’s publisher may
sometimes indicate the topic of a book, in many cases it will not be helpful.

In order to integrate information from structured data sources in our post
representations we make use of the vector space model so that we can re-use
established methods that operate on vector models. A document di is represented
as a vector of terms di = {wi,1, wi,2...wi,t} where wi,j denotes the weight of term
j in document i. Functions such as tf-idf and document length normalisation can
be applied to reduce the impact of variations in term frequency and document
length. For each post, we create one feature vector based on the text from the
original post, another based on hyperlinked HTML documents, and another
based on hyperlinked object metadata. We experiment with different ways of
combining the text sources into unified feature vectors.

394 S. Kinsella et al.

4 Data Corpus

In our experiments, we use datasets originating from two different types of social
media: Forum, from an online discussion forum, and Twitter, from the microblog-
ging site2. We examined the domains linked to in each dataset and identified the
most common sources of structured data. We extracted the posts that contained
hyperlinks to these sources, and for each hyperlink we retrieved the related meta-
data as well as the corresponding HTML page. An identical pre-processing step
was applied to each text source - post content, metadata and HTML documents.
All text was lower-cased, non-alphabetic characters were omitted and stopwords
were removed. Table 1 shows the average number of unique tokens remaining
per post for each text source after preprocessing. The discrepancy in lengths of
metadata and HTML between datasets is due to differences in the distribution
of domains linked to in each dataset. Wikipedia articles, for example, tend to
have particularly long HTML documents.

We now describe each stage of the data collection in more detail. The process
of metadata collection for the forum dataset is described further in [13].

Forum dataset. We use the corpus from the 2008 boards.ie SIOC Data Com-
petition3, which covers ten years of discussion forum posts represented in the
SIOC (Semantically-Interlinked Online Communities) format [6]. Each post be-
longs to a thread, or conversation, and each thread belongs to a forum, which
typically covers one particular area of interest. Our analysis considers only the
posts contained in the final year of the dataset, since the more recent posts con-
tain more links to structured data sources. From the most common domains in
the dataset we identified MySpace, IMDB and Wikipedia as sources of Linked
Data, via third-party data publishers detailed later in this section. We iden-
tified Amazon, YouTube and Flickr as sources of metadata via APIs. We use
forum titles as categories for the classification experiments, since authors gen-
erally choose a forum to post in according to the topic of the post. We selected
ten forums for these experiments based on the criteria that they were among the
most popular forums in the dataset and they each have a clear topic (as opposed
to general “chat” forums). The percentage of posts that have hyperlinks varies
between forums, from 4% in Poker to 14% in Musicians, with an average of 8%
across forums. These are a minority of posts; however, we believe they are worth
focusing on because the presence of a hyperlink often indicates that the post is a

Table 1. Average unique tokens from each text source (± standard deviation)

Dataset Content Metadata HTML

Forum 37.8 ± 42.6 19.6 ± 26.0 597.0 ± 659.1
Twitter 5.9 ± 2.6 26.9 ± 28.1 399.7 ± 302.9

2 http://twitter.com/, accessed March 2011.
3 http://data.sioc-project.org/ , accessed March 2011.

boards.ie
http://data.sioc-project.org/

Improving Categorisation in Social Media 395

useful source of information rather than just chat. Of the posts with hyperlinks,
we focus on the 23% that link to one or more of the structured data sources
listed previously. For the 23% of posts that have a title, this is included as part
of the post content. Since discussion forums are typically already categorised,
performing topic classification is not usually necessary. However, this data is
representative of the short, informal discussion systems that are increasingly
found on Web 2.0 sites, so the results obtained from utilising the class labels in
this dataset should be applicable to similar uncategorised social media sites.

Twitter dataset. The Twitter dataset4 comes from Yang and Leskovec [20],
and covers 476 million posts from June 2009 to December 2009. Twitter is a mi-
croblogging site that allows users to post 140 character status messages (tweets)
to other users who subscribe to their updates. Due to the post length restriction,
Twitter users make frequent use of URL shortening services such as bit.ly5 to
substantially shorten URLs in order to save space. Therefore for this dataset it
was necessary to first decode short URLs via cURL6. From the most common
domains we identified Amazon, YouTube and Flickr as sources of metadata via
APIs. Like many social media websites, but in contrast to the previous dataset,
Twitter does not provide a formal method for categorising tweets. However, a
convention has evolved among users to tag updates with topics using words or
phrases prefixed by a hash symbol (#). We make use of these hashtags to create
six categories for classification experiments. Our approach borrows the hashtag-
to-category mappings method from Esparza et al. [9] to identify tweets that
relate to selected categories. We reuse and extend the hashtag categories of [9];
Table 2 shows the mappings between hashtags and categories. These categories
were chosen because they occur with a high frequency in the dataset and they
have a concrete topic. Tweets belonging to more than one category were omitted,
since our goal is to assign items to a single category. All hashtags were removed
from tweets, including those that do not feature in Table 2, since they may also
contain category information. Any URLs to websites other than the selected
metadata sources were eliminated from tweets. Finally, to avoid repeated posts
caused by users retweeting (resending another post), all retweets were omitted.

External metadata. Amazon product, Flickr photo and YouTube video meta-
data was retrieved from the respective APIs. MySpace music artist information
was obtained from DBTune7 (an RDF wrapper of various musical sources in-
cluding MySpace), IMDB movie information from LinkedMDB8 (a movie dataset
with links to IMDB) and Wikipedia article information from DBpedia9. The lat-
ter three services are part of the Linking Open Data project [5]. The number
4 http://snap.stanford.edu/data/twitter7.html, accessed March 2011.
5 http://bit.ly, accessed March 2011.
6 http://curl.haxx.se/, accessed March 2011.
7 http://dbtune.org/, accessed March 2011.
8 http://linkedmdb.org/, accessed March 2011.
9 http://dbpedia.org/, accessed March 2011.

http://dbtune.org/
http://linkedmdb.org/
http://dbpedia.org/

396 S. Kinsella et al.

Table 2. Categories and corresponding hashtags in the Twitter dataset

Category #hashtags

Books book, books, comic, comics, bookreview, reading, readingnow, literature
Games game, pcgames, videogames, gaming, gamer, xbox, psp, wii
Movies movie, movies, film, films, cinema
Photography photography, photo
Politics politics
Sports nfl, sports, sport, football, f1, fitness, nba, golf

0

200

400

600

800

1000

1200

1400
Video

Product

Photo

Music Artist

Movie

Article

(a)

0

100

200

300

400

500

600
Video

Product

Photo

(b)

Fig. 2. No. of posts containing links to each type of object for (a) Forum, (b) Twitter

of posts containing links to each type of object in the Forum dataset is shown
in Figure 2(a), and the number of posts containing links to each type of object
for Twitter is shown in Figure 2(b). For the Forum dataset, hyperlinks to mu-
sic artists occur mainly in the Musicians forum, movies in the Films forum, and
photos in the Photography forum. The other object types are spread more evenly
between the remaining seven forums. In total, Forum contains 6,626 posts and
Twitter contains 2,415 posts. Note that in rare cases in Forum, a post contains
links to multiple object types, in which case that post is included twice in a col-
umn. Therefore the total counts in Figure 2(a) are inflated by approximately 1%.
For our analysis, we select only the most commonly available metadata types in
order to make comparisons between them, but our method could be applied us-
ing arbitrary metadata. The metadata types that we chose were Title, Category
(includes music/movie genre), Description (includes Wikipedia abstract), Tags
and Author/Director (for Amazon books and IMDB movies only).

Improving Categorisation in Social Media 397

HTML documents. We crawled the corresponding HTML document for each
hyperlink remaining in the datasets. For any cases where a HTML document
was not retrievable, this object was removed from the dataset. We stripped out
HTML tags and retained only the visible text of the webpage.

5 Analysis of the External Metadata

We now investigate some features of the metadata that was collected for the
Forum dataset. Statistics are not reported for Twitter due to space constraints.
Note that this analysis was performed after pre-processing the metadata text.

The first section of Table 3 shows the percentage of non-empty metadata for
each type of object. This is of interest since a metadata type that occurs rarely
will have limited usefulness. Due to the unique features of each website, not
every object type can have every metadata type. There are large variations in
the percentage of non-empty features for different metadata types. Titles are
typically essential to identify an object and categories are typically required by
a website’s browsing interface, so these features are almost always present. For
user-generated content, the frequency of non-empty fields is depends on whether
the field is mandatory. For example, tags are often absent in Flickr because
they are optional, while for videos they are almost always present because in the
absence of user-provided tags, YouTube automatically assigns tags. For products,
the author feature is often empty since this field is only available for books.
For movies, the director feature is sometimes empty, presumably due to some
inconsistencies in the various sources from which LinkedMDB integrates data.

The second section of Table 3 shows the average number of unique tokens
found in non-empty metadata fields. These figures are an indicator of how much
information each feature provides. In general, titles and authors/directors pro-
vide few tokens since they are quite short. For categories, the number of tokens
depends on whether the website allows multiple categories (e.g., Wikipedia) or
single categories (e.g., YouTube). The number of unique tokens obtained from
descriptions and tags are quite similar across all object types studied.

The third section of Table 3 gives the average percentage of unique tokens from
metadata that do not occur in post content. This section is important since it
shows which features tend to provide novel information. Note that for article
titles, the percentage is zero since all titles are contained within the article’s
URL. For music artist titles, the figure is low since bands often use their title
as their username, which is contained within the artist’s URL. All other object
types have URLs that are independent of the object properties. This section
also allows us to see how users typically describe an object. For example, 40%
of the tokens from product titles are novel, indicating that posters often do
not precisely name the products that they link to. For the subset of products
that are books, 23% of tokens from titles were novel. Approximately 32% of the
tokens from book authors and 43% of the tokens from movie directors are novel,
showing that posters often mention these names in their posts, but that in many
other cases this is new information which can aid retrieval.

398 S. Kinsella et al.

Table 3. Properties of external metadata content for Forum

Title Category Description Tags
Author/
Director

Average % of text features that are non-empty after pre-processing

Article 100.0 100.0 99.7 - -
Movie 100.0 100.0 - - 39.9
Music Artist 99.7 100.0 - - -
Photo 100.0 - 58.8 84.9 -
Product 100.0 100.0 - 75.2 65.4
Video 100.0 100.0 99.5 99.5 -

Average unique metadata tokens for non-empty fields (± standard deviation)

Article 2.1 ± 0.9 13.6 ± 12.1 15.8 ± 8.3 - -
Movie 1.7 ± 0.7 4.1 ± 1.8 - - 2.2 ± 0.6
Music Artist 1.8 ± 0.9 2.7 ± 0.9 - - -
Photo 2.0 ± 1.1 - 10.9 ± 17.2 6.5 ± 4.9 -
Product 5.2 ± 3.0 11.5 ± 7.8 - 5.7 ± 2.1 2.0 ± 0.4
Video 3.7 ± 1.6 1.0 ± 0.0 13.1 ± 26.3 7.2 ± 5.0 -

Average % of unique metadata tokens that are novel (do not occur in post content)

Article 0.0 78.5 68.4 - -
Movie 17.4 76.2 - - 43.3
Music Artist 10.1 85.4 - - -
Photo 72.5 - 50.3 74.6 -
Product 39.5 81.0 - 51.1 32.2
Video 62.0 95.7 78.5 74.4 -

6 Classification Experiments

In this section, we evaluate the classification of posts in the Forum and Twit-
ter datasets, based on different post representations including the original text
augmented with external metadata.

6.1 Experimental Setup

For each post, the following representations were derived, in order to compare
their usefulness as sources of features for topic classification:

Content (without URLs): Original post content with hyperlinks removed.
Content: The full original content with hyperlinks intact.
HTML: The text parsed from the HTML document(s) to which a post links.
Metadata: The external metadata retrieved from the hyperlinks of the post.

Document length normalisation and tf-idf weighting were applied to each fea-
ture vector. We also generate aggregate feature vectors for the combinations
of Content+HTML and Content+Metadata. An aggregate vector for two text
sources is obtained by adding their individual feature vectors, after document
length normalisation and tf-idf weighting. We tested two methods for combining
different sources of textual information into a single vector:

Improving Categorisation in Social Media 399

Bag of words: The same term in different sources is represented by the same
element in the document vector. For these experiments, we test different
weightings of the two sources, specifically {0.1:0.9, 0.2:0.8, ... , 0.9:0.1}. Two
vectors v1 and v2 are combined into a single vector v where a term i in v is
given by, for example, v[i] = (v1[i]× 0.1) + (v2[i]× 0.9).

Concatenate: The same term in different sources is represented by different
elements in the feature vector - i.e., “music” appearing in a post is distinct
from “music” in a HTML page. Two vectors v1 and v2 are combined into a
single vector v via concatenation, i.e., v = 〈v1, v2〉.

Classification of documents was performed with the Multinomial Näıve Bayes
classifier implemented in Weka [10]. A ten-fold cross validation was used to assess
the performance of the classifier on each type of document representation. K-fold
cross validation involves randomly splitting a dataset into K folds, and using one
fold as test data and the remaining K − 1 folds as training data. The process is
repeated so that each of the K folds is used as a test set exactly once. Duplication
of hyperlinks across splits was disallowed, so the metadata of a particular object
cannot occur in multiple folds. In order to avoid duplication of post content due
to one post quoting another, Forum was split by thread so that multiple posts
from one thread do not occur in separate folds. Duplication was not an issue
in Twitter since retweets had been removed. These restrictions resulted in the
omission of approximately 11% of the Forum posts from any fold.

6.2 Experimental Results

The accuracy of classification for each representation is measured using the F1

measure, which takes into account both precision p and recall r and is defined
as F1 = 2.p.r

p+r . Micro-averaged F1 is calculated by averaging F1 over each test
instance and is therefore more heavily influenced by common categories, while
macro-averaged F1 is calculated by averaging F1 over the result for each category
and is therefore more heavily influenced by rare categories.

The results of the classification experiments for each post representation are
shown in Table 4 with their 90% confidence intervals. For both datasets, classi-
fication results based on content improve when tokens from URLs within posts
are included. Classification using only the HTML pages linked to by posts gives
relatively poor results, while classification using only metadata from hyperlinked
objects improves accuracy for Forum, but decreases accuracy for Twitter. Those
differences are all statistically significant. For the combined representations, the
bag-of-words representation gives slightly better results than concatenation. The
results reported are for the best-performing weightings. For Forum, these were
0.9:0.1 for Content+HTML and 0.5:0.5 for Content+Metadata. For Twitter,
these were 0.9:0.1 for Content+HTML and 0.8:0.2 for Content+Metadata. For
both HTML and Metadata, a bag-of-words combination with Content outper-
forms results for Content alone. The Content+Metadata approach significantly
outperforms the Content+HTML approach, for both datasets.

400 S. Kinsella et al.

Table 4. Micro-averaged F1 for (± 90% Confidence Interval)

Data Source
Forum Twitter

Bag of Words Concatenate Bag of Words Concatenate

Content (without URLs) 0.745 ± 0.009 - 0.722 ± 0.019 -
Content 0.811 ± 0.008 - 0.759 ± 0.015 -
HTML 0.730 ± 0.007 - 0.645 ± 0.020 -
Metadata 0.835 ± 0.009 - 0.683 ± 0.018 -
Content+HTML 0.832 ± 0.007 0.795 ± 0.004 0.784 ± 0.016 0.728 ± 0.016
Content+Metadata 0.899 ± 0.005 0.899 ± 0.005 0.820 ± 0.013 0.804 ± 0.018

Table 5. F1 achieved by classifier for each category, ordered by performance

Forum Twitter

Forum Content Metadata
Content

Forum Content Metadata
Content

+M’data +M’data

Musicians 0.973 0.911 0.981 Books 0.804 0.836 0.877
Photography 0.922 0.844 0.953 Photography 0.785 0.728 0.842
Soccer 0.805 0.902 0.945 Games 0.772 0.675 0.830
Martial Arts 0.788 0.881 0.917 Movies 0.718 0.777 0.827
Motors 0.740 0.869 0.911 Sports 0.744 0.563 0.781
Movies 0.825 0.845 0.881 Politics 0.685 0.499 0.733
Politics 0.791 0.776 0.846
Poker 0.646 0.757 0.823
Atheism 0.756 0.732 0.821
Television 0.559 0.664 0.716

Macro-Avgd 0.781 0.818 0.879 Macro-Avgd 0.751 0.680 0.815

Table 5 shows the detailed results for each category, for Content, Metadata
and Content+Metadata (using the bag-of-words weighting with the best perfor-
mance). There is a large variation in classification results for different categories.
For post classification based on Content, Forum results vary from 0.973 down to
0.559 and Twitter results vary from 0.804 down to 0.685. Despite the variation
between categories, Content+Metadata always results in the best performance.
For the two single source representations, some categories obtain better results
using Content and others using Metadata. The higher result between these two
representations is highlighted with italics.

Table 6 shows the gains in accuracy achieved by performing classification
based on different types of metadata from Wikipedia articles and YouTube
videos, for the Forum dataset. We limit our analysis to these object types be-
cause they have consistently good coverage across all of the forums, apart from
Musicians which we excluded from this analysis. These results are based only
on the posts with links to objects that have non-empty content for every meta-
data type and amount to 1,623 posts for Wikipedia articles and 2,027 posts
for YouTube videos. We compare the results against Content (without URLs),
because Wikipedia URLs contain article titles and our aim is to measure the

Improving Categorisation in Social Media 401

Table 6. Micro-averaged F1 for classification based on selected metadata types in
Forum (± 90% Confidence Interval)

Metadata Type Content (w/o URLs) Metadata Only Content+Metadata

Wikipedia Articles

Category
0.761 ± 0.014

0.811 ± 0.012 0.851 ± 0.009
Description 0.798 ± 0.016 0.850 ± 0.009
Title 0.685 ± 0.016 0.809 ± 0.011

YouTube Videos

Tag

0.709 ±0.011

0.838 ± 0.019 0.864 ± 0.012
Title 0.773 ± 0.015 0.824 ± 0.013
Description 0.752 ± 0.010 0.810 ± 0.013
Category 0.514 ± 0.017 0.753 ± 0.014

effects of the inclusion of titles and other metadata. Table 6 shows that the re-
sults for different metadata types vary considerably. For posts containing links
to Wikipedia articles, the article categories alone result in a better classification
of the post’s topic than the original post content, with an F1 of 0.811 compared
to 0.761. Likewise, for posts that contain links to YouTube videos, the video tags
provide a much better indicator of the post topic than the actual post text. The
Content+Metadata column shows results where each metadata type was com-
bined with post content (without URLs), using a bag-of-words representation
with 0.5:0.5 weightings. Every metadata type examined improved post classifi-
cation relative to the post content alone. However some metadata types improve
the results significantly more than others, with Content+Category achieving the
best scores for articles, and Content+Tags achieving the best scores for videos.

7 Discussion

The usage of external information from hyperlinks for categorisation or retrieval
on the Web is a well-established technique. Our experiments show that categori-
sation of social media posts can be improved by making use of semantically-rich
data sources where the most relevant data items can be experimentally iden-
tified. Both datasets showed similar patterns, although the Twitter scores are
consistently lower. It may be that the Twitter hashtags are not as accurate de-
scriptors of topic as the forum categories. Also, for Forum the external metadata
is a better indicator of the category than the post content while for Twitter the
reverse is true. This may be partially due to the fact that the distribution of
domains linked to in each dataset is different and some domains may provide
more useful information than others, either within URLs or within metadata.

We also observe that results vary considerably depending on the topic that
is under discussion. For example in Forum, classification of a post in the Mu-
sicians forum is trivial, since almost all posts that feature a link to MySpace
belong here. In contrast, the classification of a Television forum post is much
more challenging, because this forum mentions a wide variety of topics which
are televised. We also note that some topics achieve better classification results

402 S. Kinsella et al.

using only external metadata but others have better results with the original
content. In the case of the Musicians and Photography forums, the good results
for Content may be due to the fact that links to MySpace are highly indicative
of the Musicians forum, and links to Flickr are usually from the Photography
forum. The Politics and Atheism forums also achieve better results based on post
content - this may be because they have a high percentage of links to Wikipedia
articles, whose URLs include title information. We can conclude for posts whose
hyperlinks contain such useful indicators, the addition of external metadata may
give only a slight improvement, but for posts whose URLs do not give such ex-
plicit clues, the addition of external metadata can be an important advantage
for topic classification.

A major benefit of using structured data rather than HTML documents is that
it becomes possible to compare the improvements gained by integrating different
metadata types. Our results show that the effect of the addition of different
metadata types varies greatly, e.g., Wikipedia categories and descriptions are
much more useful than article titles. The benefit of different metadata types is
not consistent across sites - Wikipedia’s rich categories are far more useful than
YouTube’s limited categories. Often particular metadata types from hyperlinked
objects in a post can be a better descriptor of the post topic than the post itself,
for example YouTube tags, titles and descriptions. In these cases the structure of
the data could be exploited to highly weight the most relevant metadata types.
Thus, even classification on unstructured Web content can immediately benefit
from semantically-rich data, provided that there are hyperlinks to some of the
many websites that do provide structured data. While this paper focused on
commonly-available metadata types, our approach could be applied to arbitrary
metadata types from unknown sources, where machine-learning techniques would
be employed to automatically select and weight the most useful metadata.

In our experiments, we used the structure of the external data to identify
which types of metadata provide the most useful texts for improving classifi-
cation. In addition to providing metadata, the Linked Data sources are also
part of a rich interconnected graph with semantic links between related enti-
ties. We have shown that the textual information associated with resources can
improve categorisation, and it would be interesting to also make use of the se-
mantic links between concepts. For example, imagine a Television post contains
links to the series dbpedia:Fawlty Towers. A later post that links to the se-
ries dbpedia:Mr Bean could be classified under the same category, due to the
fact that the concepts are linked in several ways, including their genres and the
fact that they are both produced by British television channels. Just as we used
machine-learning techniques to identify the most beneficial metadata types, we
could also identify the most useful properties between entities.

Potential applications for our approach include categorisation of either new or
existing post items. For example, on a multi-forum site (i.e., one that contains a
hierarchy of individual forums categorised according to topic area), a user may
not know the best forum where they should make their post, or where it is most
likely to receive comments that are useful to the user. This can be the case where

Improving Categorisation in Social Media 403

the content is relevant to not just one forum topic but to multiple topic areas.
On post creation, the system could use previous metadata-augmented posts and
any links if present in the new post to suggest potential categories for this post.
Similarly, posts that have already been created but are not receiving many com-
ments could be compared against existing augmented posts to determine if they
should be located in a different topic area than they are already in.

This approach also has potential usage across different platforms. While it
may be difficult to use augmented posts from Twitter to aid with categorisation
of posts on forums due to the differing natures of microblogs and discussion
forums, there could be use cases where augmented posts from discussion forums,
news groups or mailing lists (e.g., as provided via Google Groups) could be
used to help categorisations across these heterogeneous, yet similar, platforms.
Also, the categories from augmented discussion forum posts could be used to
recommend tags or topics for new blog content at post creation time.

8 Conclusion

In this work, we have investigated the potential of using metadata from hyper-
linked objects for classifying the topic of posts in online forums and microblogs.
The approach could also be applied to other types of social media. Our exper-
iments show that post categorisation based on a combination of content and
object metadata gives significantly better results than categorisation based on
either content alone or content and hyperlinked HTML documents. We observed
that the significance of the improvement obtained from including external meta-
data varies by topic, depending on the properties of the URLs that tend to
occur within that category. We also found that different metadata types vary
in their usefulness for post classification, and some types of object metadata
are even more useful for topic classification than the actual content of the post.
We conclude that for posts that contain hyperlinks to structured data sources,
the semantically-rich descriptions of entities can be a valuable resource for post
classification. The enriched structured representation of a post as content plus
object metadata also has potential for improving search in social media.

References

1. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality
content in social media. In: 1st Int’l Conference on Web Search and Data Mining,
WSDM 2008. ACM, New York (2008)

2. Angelova, R., Weikum, G.: Graph-based text classification: Learn from your neigh-
bors. In: 29th Int’l SIGIR Conference on Research and Development in Information
Retrieval. SIGIR 2006. ACM, New York (2006)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DB-
pedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mi-
zoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

404 S. Kinsella et al.

4. Berendt, B., Hanser, C.: Tags are not metadata, but “just more content”–to some
people. In: 5th Int’l Conference on Weblogs and Social Media, ICWSM 2007 (2007)

5. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The story so far. International
Journal on Semantic Web and Information Systems 5(3) (2009)

6. Breslin, J.G., Harth, A., Bojars, U., Decker, S.: Towards semantically-interlinked
online communities. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS,
vol. 3532, pp. 500–514. Springer, Heidelberg (2005)

7. Cha, M., Pérez, J., Haddadi, H.: Flash Floods and Ripples: The spread of media
content through the blogosphere. In: 3rd Int’l Conference on Weblogs and Social
Media, ICWSM 2009 (2009)

8. Figueiredo, F., Belém, F., Pinto, H., Almeida, J., Gonçalves, M., Fernandes, D.,
Moura, E., Cristo, M.: Evidence of quality of textual features on the Web 2.0. In:
18th Conference on Information and Knowledge Management, CIKM 2009. ACM,
New York (2009)

9. Garcia Esparza, S., O’Mahony, M.P., Smyth, B.: Towards tagging and categoriza-
tion for micro-blogs. In: 21st National Conference on Artificial Intelligence and
Cognitive Science, AICS 2010 (2010)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
WEKA data mining software: An update. ACM SIGKDD Exp. 11(1) (2009)

11. Irani, D., Webb, S., Pu, C., Li, K.: Study of trend-stuffing on Twitter through text
classification. In: 7th Collaboration, Electronic messaging, Anti-Abuse and Spam
Conference, CEAS 2010 (2010)

12. Jansen, B.J., Zhang, M., Sobel, K., Chowdury, A.: Twitter power: Tweets as elec-
tronic word of mouth. J. Am. Soc. Inf. Sci. 60(11) (2009)

13. Kinsella, S., Passant, A., Breslin, J.G.: Using hyperlinks to enrich message board
content with Linked Data. In: 6th Int’l Conference on Semantic Systems, I-
SEMANTICS 2010. ACM, New York (2010)

14. Kinsella, S., Passant, A., Breslin, J.G.: Topic classification in social media using
metadata from hyperlinked objects. In: Clough, P., Foley, C., Gurrin, C., Jones,
G.J.F., Kraaij, W., Lee, H., Murdock, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp.
201–206. Springer, Heidelberg (2011)

15. Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: Can we trust what we
RT? In: 1st Workshop on Social Media Analytics, SOMA 2010. ACM, New York
(2010)

16. Qi, X., Davison, B.: Classifiers without borders: Incorporating fielded text from
neighboring web pages. In: 31st Int’l SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR 2008. ACM, New York (2008)

17. Sergey, B., Lawrence, P.: The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

18. Stankovic, M., Rowe, M., Laublet, P.: Mapping tweets to conference talks: a gold-
mine for semantics. In: 3rd Int’l Workshop on Social Data on the Web, SDoW 2010
(2010), CEUR-WS.org

19. Sun, A., Suryanto, M.A., Liu, Y.: Blog classification using tags: An empirical study.
In: Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007.
LNCS, vol. 4822, pp. 307–316. Springer, Heidelberg (2007)

20. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Fourth
Int’l Conference on Web Search and Data Mining, WSDM 2011. ACM, New York
(2011)

21. Yin, Z., Li, R., Mei, Q., Han, J.: Exploring social tagging graph for web object
classification. In: 15th SIGKDD Int’l Conference on Knowledge Discovery and Data
Mining, KDD 2009. ACM, New York (2009)

CEUR-WS.org

Predicting Discussions on the Social

Semantic Web

Matthew Rowe, Sofia Angeletou, and Harith Alani

Knowledge Media Institute, The Open University, Milton Keynes, United Kingdom
{m.c.rowe,s.angeletou,h.alani}@open.ac.uk

Abstract. Social Web platforms are quickly becoming the natural place
for people to engage in discussing current events, topics, and policies.
Analysing such discussions is of high value to analysts who are interested
in assessing up-to-the-minute public opinion, consensus, and trends. How-
ever, we have a limited understanding of how content and user features
can influence the amount of response that posts (e.g., Twitter messages)
receive, and how this can impact the growth of discussion threads. Un-
derstanding these dynamics can help users to issue better posts, and
enable analysts to make timely predictions on which discussion threads
will evolve into active ones and which are likely to wither too quickly.
In this paper we present an approach for predicting discussions on the
Social Web, by (a) identifying seed posts, then (b) making predictions
on the level of discussion that such posts will generate. We explore the
use of post-content and user features and their subsequent effects on
predictions. Our experiments produced an optimum F1 score of 0.848 for
identifying seed posts, and an average measure of 0.673 for Normalised
Discounted Cumulative Gain when predicting discussion levels.

1 Introduction

The rise of the Social Web is encouraging more and more people to use these
media to share opinions and ideas, and to engage in discussions about all kinds
of topics and current events. As a consequence, the rate at which such discus-
sions are growing, and new ones are initiated, is extremely high. The last few
years have witnessed a growing demand for tools and techniques for searching
and processing such online conversations to, for example; get a more up-to-date
analysis of public opinion in certain products or brands; identify the main topics
that the public is interested in at any given time; and gauge popularity of certain
governmental policies and politicians. Furthermore, governments and businesses
are investing more into using social media as an effective and fast approach for
reaching out to the public, to draw their attention to new policies or products,
and to engage them in open consultations and customer support discussions.

In spite of the above, there is a general lack of intelligent techniques for
timely identification of which of the countless discussions are likely to gain more
momentum than others. Such techniques can help tools and social media analysts
overcome the great challenge of scale. For example, more than 7.4 million tweets

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 405–420, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

406 M. Rowe, S. Angeletou, and H. Alani

on Wikileaks1 were posted in just a few weeks. As early as 1997, Goldhaber [6]
introduced the concept of attention economics as a way to stress the importance
of engaging user attention in the new information era. However, there is a very
limited understanding of the role that certain user-characteristics and content-
features play in influencing the amount of response and attention generated
on these social medias. Understanding the impact of such features can support
interested parties in building more effective strategies for engaging with the
public on social media.

In this work we are interested in identifying the characteristics of content
posted on the Social Web that generate a high volume of attention - using the
microblogging platform Twitter as our data source. In particular, we explore
the attributes of posts (i.e., content and the author properties) that evolved into
popular discussions and therefore received a lot of attention. We then investigate
the use of such attributes for making predictions on discussion activity and their
contributions. We also present a behaviour ontology, designed to model statistical
features that our prediction techniques use from the Social Web in a common
format. More precisely, we explore the following research questions: Is it possible
to identify discussion seed posts with high-levels of accuracy? What are the key
features that describe seed posts? And: How can the level of discussion that a post
will yield be predicted? Investigation of these questions has lead to the following
contributions in this paper:

1. Identification of seed posts : We present a classification-based method to iden-
tify discussion seed posts. Experiments are described using two corpora of
tweets with features comprised from the posts and from the post authors.
Analysis of such features identified key attributes that improve the likelihood
of a post eliciting a response.

2. Prediction of discussion activity levels : We describe a ranking-based ap-
proach to predicting discussion activity levels, enabling our analysis to place
posts in order of their expected discussion volume.

This paper is structured as follows: section 2 presents related work in the area
of discussion and activity prediction on social media. Section 3 describes our
ontology for modelling statistical features of users and posts. Section 4 presents
our method for identifying discussion seed posts, and our experiments using two
datasets of tweets. Section 5 describes our prediction method, the features used
and our prediction experiments. Conclusions and future work are covered in
section 6.

2 Background and Related Work

We define a discussion (conversation) as a chain of two or more posts, connected
together to form a directed acyclic graph. Discussions begin with the publication
of a seed post, following which users then post a reply to the seed, and then a

1 http://www.guardian.co.uk/media/wikileaks

http://www.guardian.co.uk/media/wikileaks

Predicting Discussions on the Social Semantic Web 407

reply is posted in response, thus forming a discussion chain. Our work in this
paper addresses the issue of predicting discussion activity on the Social Semantic
Web. This entails the identification of discussion seeds as well as the response
activity and volume of the conversation they initiate. To this end, the related
literature can be studied in two partially overlapping research lines.

The first line concerns the topic of identifying high quality users and content
on the Social Web, understanding the factors that initiate attention towards
them and contribute to their popularity. Mishne and Glance [10] juxtapose the
number of comments per weblog with the number of page views and incoming
links, factors which constitute the weblog’s popularity - where the number of
comments is strongly correlated with popularity. Hsu et.al [8] present a method
to identify good quality comments on Digg stories and rank them based on
user features (e.g., number of posts, age in the system, number of friendships,
number of profile views and topic of activity) and content features (e.g., length,
informativeness, readability and complexity). Szabo and Huberman [14] use Digg
and Youtube by exploiting the number of post votes as a feature to predict views
of future content. Adamic et. al [1] and Bian et.al [2] use the Yahoo! question
answering service to assess the quality of questions and answers and predict the
best answer chosen by the question poster, where bespoke features are used (e.g.,
no. of best answers per user, no. of replies per question, answer length and thread
length). Ratkiewicz et. al [11], study the attention towards Wikipedia pages prior
and after certain events. They quantify their models using the number of clicks
on a specific page. Work by Cha et. al [5] regards attention towards a user as an
indicator of influence, they study users’ influence on Twitter by measuring the
number of followers, number of retweets and mentions. Our work extends the
current state of the art by exploring new user and content features for identifying
discussion seed posts. We focus on the use of Twitter as a source for our datasets,
where the role of user reputation and content quality are linked together.

The second line of work concerns the identification of conversation activity
on Twitter. Although a significant amount of work exists that analyses the phe-
nomenon of microblogging in many levels, in this work we focus on the ones
that study discussion activity. Only recent work by [12] has constructed conver-
sation models using data obtained from Twitter by employing a state transition
mechanism to label dialogue acts (e.g., reference broadcast, question, reaction,
comment) within a discussion chain. The most relevant work to ours, by Suh et.
al [13], explores the factors which lead to a post being retweeted, finding that the
existence of a hashtag or URL in the original post does not affect its retweeting
chance, while the number of followers and followed does. Our work differs from
[13] by identifying discussions conducted, as opposed to identifying information
spread, and unlike existing work by [12] we extend our scope to discussions,
rather than merely considering interactions of replies between 2 parties. In do-
ing so we identify discussion seed posts and the key features that lead to starting
a discussion and generating attention. To the best of our knowledge there is no
existing work that can suggest and predict if and to what extent a post will be
responded to.

408 M. Rowe, S. Angeletou, and H. Alani

3 Behaviour Ontology

In the context of our work - predicting discussions - we rely on statistical fea-
tures of both users and posts, which we describe in greater detail in the following
section. No ontologies at present allow the capturing of such information, and
its description using common semantics. To fill this gap we have developed a
behaviour ontology,2 closely integrated with the Semantically Interlinked Online
Communities (SIOC) ontology [3], this enables the modelling of various user
activities and and related impacts on a Social Networking Site (SNS). The be-
haviour ontology represents posts on social networking sites, the content of those
posts, the sentiment of the content and the impact which a post has had on the
site. It also extends existing SIOC concepts, in particular sioc:UserAccount, with
information about the impact the user has had on the site by capturing the num-
ber of followers and friends the user has at a given time (represented with the
Data property CollectionDate). For the sake of brevity and space restrictions
Figure 1 shows a part of the ontology that is relevant to the representation of
the information used in our approach.

Fig. 1. The Behaviour Ontology

The two key classes presented in Figure 1 are: PostImpact and UserImpact.
The former models the number of replies that a given post has generated, char-
acterising the level of discussion that the post has yielded up until a given point
in time. The latter class models the impact that the user has had within a given
SNS. Capturing this information is crucial to predicting discussion activity, as
according to [8,13] user reputation and standing within an online space is often
a key factor in predicting whether content will generate attention or not.

4 Identifying Discussion Seeds

Identifying seed posts prior to such posts receiving a reply allows discussions to
be pre-empted and tracked accordingly. We define a seed post as a post on a
2 http://people.kmi.open.ac.uk/rowe/ontologies/UserOnto_0.23.rdf

http://people.kmi.open.ac.uk/rowe/ontologies/UserOnto_0.23.rdf

Predicting Discussions on the Social Semantic Web 409

given Social Web platform that will yield at least one reply - within this paper
we concentrate on the use of tweets, therefore a seed post is regarded as the
initial tweet that generates a reply. Features which describe seed posts can be
divided into two sets: user features - attributes that define the user making the
post; and, content features - attributes that are based solely on the post itself.
We wish to explore the application of such features in identifying seed posts, to
do this we train several machine learning classifiers and report on our findings.
However we first describe the features used.

4.1 Feature Extraction

The likelihood of posts eliciting replies depends upon popularity, a highly subjec-
tive term influenced by external factors. Properties influencing popularity include
user attributes - describing the reputation of the user - and attributes of a post’s
content - generally referred to as content features. In Table 1 we define user and
content features and study their influence on the discussion “continuation”.

Table 1. User and Content Features

User Features
In Degree: Number of followers of U #

Out Degree: Number of users U follows #
List Degree: Number of lists U appears on. Lists group users by topic #
Post Count: Total number of posts the user has ever posted #

User Age: Number of minutes from user join date #
Post Rate: Posting frequency of the user PostCount

UserAge

Content Features
Post length: Length of the post in characters #
Complexity: Cumulative entropy of the unique words in post p λ

of total word length n and pi the frequency of each word

∑
i∈[1,n] pi(log λ−log pi)

λ
Uppercase count: Number of uppercase words #

Readability: Gunning fog index using average sentence length (ASL) [7]
and the percentage of complex words (PCW). 0.4(ASL + PCW)

Verb Count: Number of verbs #
Noun Count: Number of nouns #

Adjective Count: Number of adjectives #
Referral Count: Number of @user #

Time in the day: Normalised time in the day measured in minutes #
Informativeness: Terminological novelty of the post wrt other posts

The cumulative tfIdf value of each term t in post p
∑

t∈p tfidf(t, p)

Polarity: Cumulation of polar term weights in p (using

Sentiwordnet3 lexicon) normalised by polar terms count P o+Ne
|terms|

4.2 Experiments

Experiments are intended to test the performance of different classification mod-
els in identifying seed posts. Therefore we used four classifiers: discriminative
classifiers Perceptron and SVM, the generative classifier Naive Bayes and the
decision-tree classifier J48. For each classifier we used three feature settings:
user features, content features and user+content features.
3 http://sentiwordnet.isti.cnr.it/

http://sentiwordnet.isti.cnr.it/

410 M. Rowe, S. Angeletou, and H. Alani

Datasets. For our experiments we used two datasets of tweets available on the
Web: Haiti earthquake tweets4 and the State of the Union Address tweets.5 The
former dataset contains tweets which relate to the Haiti earthquake disaster -
tagged with #haiti - covering a varying timespan. The latter dataset contains
all tweets published during the duration of president Barack Obama’s State of
the Union Address speech. Our goal is to predict discussion activity based on
the features of a given post by first identifying seed posts, before moving on to
predict the discussion level.

Within the above datasets many of the posts are not seeds, but are instead
replies to previous posts, thereby featuring in the discussion chain as a node.
In [13] retweets are considered as part of the discussion activity. In our work
we identify discussions using the explicit “in reply to” information obtained
by the Twitter API, which does not include retweets. We make this decision
based on the work presented in boyd et.al [4], where an analysis of retweeting
as a discussion practice is presented, arguing that message forwards adhere to
different motives which do not necessarily designate a response to the initial
message. Therefore, we only investigate explicit replies to messages. To gather
our discussions, and our seed posts, we iteratively move up the reply chain - i.e.,
from reply to parent post - until we reach the seed post in the discussion. We
define this process as dataset enrichment, and is performed by querying Twitter’s
REST API6 using the in reply to id of the parent post, and moving one-step at
a time up the reply chain. This same approach has been employed successfully
in work by [12] to gather a large-scale conversation dataset from Twitter.

Table 2. Statistics of the datasets used for experiments

Dataset Users Tweets Seeds Non-Seeds Replies
Haiti 44,497 65,022 1,405 60,686 2,931

Union Address 66,300 80,272 7,228 55,169 17,875

Table 2 shows the statistics that explain our collected datasets. One can ob-
serve the difference in conversational tweets between the two corpora, where the
Haiti dataset contains fewer seed posts as a percentage than the Union dataset,
and therefore fewer replies. However, as we explain in a later section, this does
not correlate with a higher discussion volume in the former dataset. We con-
vert the collected datasets from their proprietary JSON formats into triples,
annotated using concepts from our above behaviour ontology, this enables our
features to be derived by querying our datasets using basic SPARQL queries.

Evaluation Measures. The task of identifying seed posts is a binary classi-
fication problem: is this post a seed post or not? We can therefore restrict our

4 http://infochimps.com/datasets/twitter-haiti-earthquake-data
5 http://infochimps.com/datasets/tweets-during-state-of-the-union-address
6 http://dev.twitter.com

http://infochimps.com/datasets/twitter-haiti-earthquake-data
http://infochimps.com/datasets/tweets-during-state-of-the-union-address
http://dev.twitter.com

Predicting Discussions on the Social Semantic Web 411

labels to one of two classes: seed and non-seed. To evaluate the performance our
method we use four measures: precision, recall, f-measure and area under the
Receiver Operator Curve. Precision measures the proportion of retrieved posts
which were actually seed posts, recall measures the proportion of seed posts
which were correctly identified and fallout measures the proportion of non-seed
posts which were incorrectly classified as seed posts (i.e., false positive rate). We
use f-measure, as defined in Equation 1 as the harmonic mean between precision
and recall, setting β = 1 to weight precision and recall equally. We also plot the
Receiver Operator Curve of our trained models to show graphical comparisons
of performance.

Fβ =
(1 + β2) ∗ P ∗ R

β2 ∗ P + R
(1)

For our experiments we divided each dataset up into 3 sets: a training set, a
validation set and a testing set using a 70/20/10 split. We trained our classifi-
cation models using the training split and then applied them to the validation
set, labelling the posts within this split. From these initial results we performed
model selection by choosing the best performing model - based on maximising
the F1 score - and used this model together with the best performing features,
using a ranking heuristic, to classify posts contained within our test split. We
first report on the results obtained from our model selection phase, before moving
onto our results from using the best model with the top-k features.

Table 3. Results from the classification of seed posts using varying feature sets and
classification models

(a) Haiti Dataset

P R F1 ROC
User Perc 0.794 0.528 0.634 0.727

SVM 0.843 0.159 0.267 0.566
NB 0.948 0.269 0.420 0.785
J48 0.906 0.679 0.776 0.822

Content Perc 0.875 0.077 0.142 0.606
SVM 0.552 0.727 0.627 0.589
NB 0.721 0.638 0.677 0.769
J48 0.685 0.705 0.695 0.711

All Perc 0.794 0.528 0.634 0.726
SVM 0.483 0.996 0.651 0.502
NB 0.962 0.280 0.434 0.852
J48 0.824 0.775 0.798 0.836

(b) Union Address Dataset

P R F1 ROC
User Perc 0.658 0.697 0.677 0.673

SVM 0.510 0.946 0.663 0.512
NB 0.844 0.086 0.157 0.707
J48 0.851 0.722 0.782 0.830

Content Perc 0.467 0.698 0.560 0.457
SVM 0.650 0.589 0.618 0.638
NB 0.762 0.212 0.332 0.649
J48 0.740 0.533 0.619 0.736

All Perc 0.630 0.762 0.690 0.672
SVM 0.499 0.990 0.664 0.506
NB 0.874 0.212 0.341 0.737
J48 0.890 0.810 0.848 0.877

4.3 Results

Our findings from Table 3 demonstrate the effectiveness of using solely user
features for identifying seed posts. In both the Haiti and Union Address datasets
training a classification model using user features shows improved performance
over the same models trained using content features. In the case of the Union
dataset we are able to achieve an F1 score of 0.782, coupled with high precision,

412 M. Rowe, S. Angeletou, and H. Alani

when using the J48 decision-tree classifier - where the latter figure (precision)
indicates conservative estimates using only user features. We also achieve similar
high-levels of precision when using the same classifier on the Haiti dataset. The
plots of the Receiver Operator Characteristic (ROC) curves in Figure 2 show
similar levels of performance for each classifier over the two corpora.When using
solely user features J48 is shown to dominate the ROC space, subsuming the
plots from the other models. A similar behaviour is exhibited for the Naive
Bayes classifier where SVM and Perceptron are each outperformed. The plots
also demonstrate the poor recall levels when using only content features, where
each model fails to yield the same performance as the use of only user features.
However the plots show that effectiveness of combining both user and content
features.

(a) Haiti Dataset

(b) Union Address Dataset

Fig. 2. ROC Curves for Classification Models with differing Feature Sets

Experiments identify the J48 classifier as being our best performing model
yielding optimum F1 scores and by analysing the induced decision tree we observe
the affects of individual features. Extremes of post polarity are found to be good
indicators of seed posts, while posts which fall within this mid-polarity range are
likely to be objective. One reason for this could be that the posts which elicit
an emotional response are more likely to generate a reply. Analysis of the time
of day identifies 4pm to midnight and 3pm to midnight as being associated with
seed posts for the Haiti and Union Address datasets respectively.

Predicting Discussions on the Social Semantic Web 413

Top-k Feature Selection. Thus far we have only analysed the use of fea-
tures grouped together prompting questions: which features are more important
than others? and what features are good indicators of a seed post? To gauge
the importance of features in identifying seed posts we rank our features by
their Information Gain Ratio (IGR) with respect to seed posts. Our rankings in
Table 4 indicate that the number of lists that a user is featured in appears in the
first position for both the Haiti and Union Address datasets, and the in-degree
of the user also features towards the top of each ranking. Such features increase

Table 4. Features ranked by Information Gain Ratio wrt Seed Post class label. The
feature name is paired within its IG in brackets.

Rank Haiti Union Address
1 user-list-degree (0.275) user-list-degree (0.319)
2 user-in-degree (0.221) content-time-in-day (0.152)
3 content-informativeness (0.154) user-in-degree (0.133)
4 user-num-posts (0.111) user-num-posts (0.104)
5 content-time-in-day (0.089) user-post-rate (0.075)
6 user-post-rate (0.075) user-out-degree (0.056)
7 content-polarity (0.064) content-referral-count (0.030)
8 user-out-degree (0.040) user-age (0.015)
9 content-referral-count (0.038) content-polarity (0.015)
10 content-length (0.020) content-length (0.010)
11 content-readability (0.018) content-complexity (0.004)
12 user-age (0.015) content-noun-count (0.002)
13 content-uppercase-count (0.012) content-readability (0.001)
14 content-noun-count (0.010) content-verb-count (0.001)
15 content-adj-count (0.005) content-adj-count (0.0)
16 content-complexity (0.0) content-informativeness (0.0)
17 content-verb-count (0.0) content-uppercase-count (0.0)

Fig. 3. Contributions of top-5 features to identifying Non-seeds (N) and Seeds (S).
Upper plots are for the Haiti dataset and the lower plots are for the Union Address
dataset.

414 M. Rowe, S. Angeletou, and H. Alani

the broadcast capability of the user, where any post made by the user is read
by a large audience, increasing the likelihood of yielding a response. To gauge
the similarity between the rankings we measured the Pearson Correlation Co-
efficient, which we found to be 0.674 indicating a good correlation between the
two lists and their respective ranks.

The top-most ranks from each dataset are dominated by user features includ-
ing the list-degree, in-degree, num-of-posts and post-rate. Such features describe
a user’s reputation, where higher values are associated with seed posts. Figure 3
shows the contributions of each of the top-5 features to class decisions in the
training set, where the list-degree and in-degree of the user are seen to correlate
heavily with seed posts. Using these rankings our next experiment explored the
effects of training a classification model using only the top-k features, observing
the affects of iteratively increasing k and the impact upon performance. We se-
lected the J48 classifier for training - based on its optimum performance during
the model selection phase - and trained the classifier using the training split
from each dataset and only the top-k features based on our observed rankings.
The model was then applied to the held out test split of 10%, thereby ensuring
independence from our previous experiment.

(a) F1 scores (b) Precision and Recall

Fig. 4. Classification using J48 and top-k features ranked by Information Gain Ratio

Figure 4 shows the results from our experiments, where at lower levels of k we
observe similar levels of performance - particularly when only the highest ranked
feature is used (i.e., list-degree). As we increase k, including more features within
our classification model, we observe improvements in F1 scores for both datasets.
The lower ranks shown in Table 4 are dominated by content features. As we
include the lower-ranked features, our plots show a slight decrease in performance
for the Haiti dataset due to the low IGR scores yielded for such features. For
both datasets we yield 1 for precision when each model is trained using just
the list-degree of the user, although J48 induces different cutoff points for the
two datasets when judging the level of this nominal value. Using this feature

Predicting Discussions on the Social Semantic Web 415

provides a conservative estimate of seed posts, highlighted by the correlation in
our training split in Figure 3. Such findings are consistent with work by [14]
which found a rich get richer phenomena, where popular users - with a large
audience of listeners/followers/observers - would yield feedback, and in doing so
increase their in-degree: as the followers of their followers observed replies.

The results from our experiments have empirically demonstrated the affects
of using user features in comparison with content features for identifying seed
posts. Ranking features by their Information Gain Ratio also explains the impor-
tance of features, where we observe the effectiveness of including user features in
identifying seed posts. However the role of content features also plays an impor-
tant part, where the inclusion of the correct time of day to make a post impacts
upon the likelihood of the post yielding a reply and starting a discussion.

5 Predicting Discussion Activity Levels

Identifying seed posts and the features which are commonly found within such
posts, enables policy makers, and regular web users alike, to improve their posts
or role in a community to ensure a reply and start a discussion. Identifying seed
posts before they receive a reply also enables the tracking of key posts which are
likely to yield a discussion - rather than monitoring a wide range of posts, some
of which will lead to a discussion, while others may not. A natural progression of
the identification of seed posts is it to predict the level of discussion that a seed
post will generate. In doing so we can identify the optimum features that a given
post, and its user, must have in order to maximise impact, generate a response
and lead to a lengthy discussion. Predicting an exact number of replies that a
given post will generate is not a straightforward task. Analysis of the training
splits in our tweet datasets (Haiti and Union Address) identifies a large range in
the discussion volumes and the distribution of these levels: in the Haiti dataset
we found that the discussion volume ranged from 1 reply through to 74, and for
the Union Address dataset we found similar levels: 1 post to 75.

(a) Probability distribution functions (b) Cumulative distribution functions

Fig. 5. Distribution functions of the Haiti and Union Address datasets

416 M. Rowe, S. Angeletou, and H. Alani

More in-depth analysis of the data is shown in Figure 5(a) and Figure 5(b), dis-
playing the probability distributions and cumulative distributions respectively.
For each dataset we used maximum likelihood estimation to optimise parame-
ters for various distribution models, and selected the best fitting model using
the Kolmogorov-Smirnov goodness-of-fit test against the training splits from our
datasets. For the Haiti dataset we fitted the Gamma distribution - found to be
a good fit at α = 0.1, and for the Union dataset we fitted the Chi-squared dis-
tribution - however this was found to provide the minimum deviation from the
data without satisfying any of the goodness of fit tests. The distributions convey,
for both fitted datasets, that the probability mass is concentrated towards the
head of the distribution where the volume of the discussion is at its lowest. The
likelihood of a given post generating many replies - where many can be gauged as
the mean number of replies within the discussion volume distribution - tends to
0 as the volume increases. Such density levels render the application of standard
prediction error measures such as Relative Absolute Error inapplicable, given
that the mean of the volumes would be used as the random estimator for accu-
racy measurement. A solution to this problem is instead to assess whether one
post will generate a larger discussion than another, thereby producing a ranking,
similar to the method used in [8].

To predict the discussion activity level we use a Support Vector Regression
model trained using the three distinct feature set combinations that we intro-
duced earlier in this paper: user features, content features and user+content
features. Using the predicted values for each post we can then form a ranking,
which is comparable to a ground truth ranking within our data. This provides
discussion activity levels, where posts are ordered by their expected volume. This
approach also enables contextual predictions where a post can be compared with
existing posts that have produced lengthy debates.

5.1 Experiments

Datasets. For our experiments we used the same datasets as in the previous
section: tweets collected from the Haiti crisis and the Union Address speech. We
maintain the same splits as before - training/validation/testing with a 70/20/10
split - but without using the test split. Instead we train the regression models
using the seed posts in the training split and then test the prediction accuracy
using the seed posts in the validation split - seed posts in the validation set
are identified using the J48 classifier trained using both user+content features.
Table 5 describes our datasets for clarification.

Table 5. Discussion volumes and distributions of our datasets

Dataset Train Size Test Size Test Vol Mean Test Vol SD
Haiti 980 210 1.664 3.017

Union Address 5,067 1,161 1.761 2.342

Predicting Discussions on the Social Semantic Web 417

Evaluation Measures. To assess the accuracy of learnt regression models we
compare the predicted rank from each model against the actual rank within our
datasets - given that we have measured the discussion volume when collecting the
data. Our intuition is that certain posts will attract a larger discussion volume
than others, where the preference between posts based on such volume measures
will enable a comparison of the ranking against a ground truth ranking based
on the actual discussion volumes. To compare rankings we use the Normalised
Discounted Cumulative Gain measure [9] for the top-k ranked elements, defined
as NDCGk = DCGk/iDCGk. This divides the Discounted Cumulative Gain
(DCG) derived from the predicted rank against the actual rank defined as iDCG
above. DCG is an empirical measure that is tailored towards rewarding rankings
where the top-most elements in the ground truth are found within the same
position in the predicted rank. This is motivated by web search scenarios where
end users wish to find the most important documents on the first page of search
results. We have a similar motivation given that we wish to identify those seed
posts which yield the largest discussions and should therefore appear at the top
of our ranking. We formalise DCG as:

DCGk =

k∑
i=1

reli

log2(1 + i)
(2)

In order to define reli we use the same approach as [8]: reli = N − ranki + 1,
where ranki is the ground truth rank of the element at index i from the predicted
ranking. Therefore when dividing the predicted rank by the actual rank, we
get a normalised value ranging between 0 and 1, where 1 defines the predicted
rank as being equivalent to the actual rank. To provide a range of measures
we calculated NDCG@k for 6 different values where k = {1, 5, 10, 20, 50, 100},
thereby assessing the accuracy of our rankings over different portions of the top-
k posts. We learnt a Support Vector Regression model for each dataset using the
same feature sets as our earlier identification task: user features, content features
and user+content features.

5.2 Results

Figure 6 shows the ranking accuracy that we achieve using a Support Vector
Regression model for prediction over the two datasets, where we observe differing
performance levels achieved using different feature set combinations. For the
Haiti dataset the user features play a greater role in predicting discussion activity
levels for larger values of k. For the Union Address dataset user features also
outperform content features as k increases. In each case we note that content
features do not provide as accurate predictions as the use of solely user features.
Such findings are consistent with experiments described in [8] which found that
user features yielded improved ranking of comments posted on Stories from Digg
in comparison with merely content features.

418 M. Rowe, S. Angeletou, and H. Alani

(a) Haiti (b) Union Address

Fig. 6. Predicted seed post ranking using Support Vector Regression compared with
ground truth ranking using NCDG@k

Following on from our initial rank predictions we identify the user features as
being important predictors of discussion activity levels. By performing analysis of
the learnt regression model over the training split we can analyse the coefficients
induced by the model - Table 6 present the coefficients learnt from the user
features. Although different coefficients are learnt for each dataset, for major
features with greater weights the signs remain the same. In the case of the list-
degree of the user, which yielded high IGR during classification, there is a similar
positive association with the discussion volume - the same is also true for the
in-degree and the out-degree of the user. This indicates that a constant increase
in the combination of a user’s in-degree, out-degree, and list-degree will lead to
increased discussion volumes. Out-degree plays an important role by enabling
the seed post author to see posted responses - given that the larger the out-degree
the greater the reception of information from other users.

Table 6. Coefficients of user features learnt using Support Vector Regression over the
two Datasets. Coefficients are rounded to 4 dp.

user-num-posts user-out-degree user-in-degree user-list-degree user-age user-post-rate
Haiti -0.0019 +0.001 +0.0016 +0.0046 +0.0001 +0.0001
Union -0.0025 +0.0114 +0.0025 +0.0154 -0.0003 -0.0002

6 Conclusions

The abundance of discussions carried out on the Social Web hinders the tracking
of debates and opinion, while some discussions may form lengthy debate others
may simply die out. Effective monitoring of high activity discussions can be
solved by predicting which posts will start a discussion and their subsequent
discussion activity levels. In this paper we have explored three research questions,
the first of which asked Is it possible to identify discussion seed posts with high-
levels of accuracy? We have presented a method to identify discussion seed
posts achieving an optimum F1 score of 0.848 for experiments over one dataset.
Experiments with both content and user features demonstrated the importance

Predicting Discussions on the Social Semantic Web 419

of the user’s reputation in eliciting a response. We sought further analyses of
individual features - exploring What are the key features that describe seed posts?
- and identified the importance of users’ list-degree and in-degree: the former
measuring the number of subscription channels that a given user has been added
to and the latter defining the number of people subscribing to the user.

Following identification of seed posts, we then investigated: How can the level
of discussion that a post will yield be predicted? Implementing a Support Vector
Regression model produced a ranking of seed posts ordered by expected dis-
cussion activity from high to low, achieving an average measure of 0.673 for
Normalised Discounted Cumulative Gain using user features. Creation of such
rankings allows seed posts to be compared against other posts already generat-
ing lengthy discussions. Furthermore, through our use of regression models we
are able to alter the predicted feature, enabling the time of day to publish a post
to be predicted in order to maximise response.

The prediction techniques that we have outlined within this paper are designed
to work over data obtained from disparate data sources. Our future work will
explore the adaptation of induced models across domains and platforms and look
to leverage overriding patterns for later application. Such a crossover however
is not possible without a common understanding of information across such
sources, therefore in this paper we have presented a behaviour ontology - built
as an extension to SIOC - which allows the necessary features to be captured
using common semantics from disparate domains and platforms. We will also
explore the notion of user-dependent post topic entropy, where the specialisation
of a user is captured through a topic distribution. Our intuition is that incurring
followers is dependent on certain topics, where the publication of posts that cite
such topics are more likely to elicit a response.

Acknowledgements

This work is funded by the EC-FP7 projects WeGov (grant number 248512) and
Robust (grant number 257859).

References

1. Adamic, L.A., Zhang, J., Bakshy, E., Ackerman, M.S.: Knowledge sharing and
Yahoo Answers: Everyone knows something. In: Proceedings of WWW 2008, pp.
665–674. ACM, New York (2008)

2. Bian, J., Liu, Y., Zhou, D., Agichtein, E., Zha, H.: Learning to Recognize Reliable
Users and Content in Social Media with Coupled Mutual Reinforcement. In: 18th
International World Wide Web Conference (WWW 2009) (April 2009)

3. Bojars, U., Breslin, J.G., Peristeras, V., Tummarello, G., Decker, S.: Interlinking
the social web with semantics. IEEE Intelligent Systems 23, 29–40 (2008)

4. Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: Conversational aspects of
retweeting on twitter. In: Hawaii International Conference on System Sciences, pp.
1–10 (2010)

420 M. Rowe, S. Angeletou, and H. Alani

5. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring User Influence
in Twitter: The Million Follower Fallacy. In: Fourth International AAAI Conference
on Weblogs and Social Media (May 2010)

6. Goldhaber, M.H.: The Attention Economy and the Net. First Monday 2(4) (1997)
7. Gunning, R.: The Technique of Clear Writing. McGraw-Hill, New York (1952)
8. Hsu, C.-F., Khabiri, E., Caverlee, J.: Ranking Comments on the Social Web. In:
International Conference on Computational Science and Engineering, CSE 2009,
vol. 4 (August 2009)

9. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques.
ACM Trans. Inf. Syst. 20, 422–446 (2002)

10. Mishne, G., Glance, N.: Leave a Reply: An Analysis of Weblog Comments. In:
Third annual workshop on the Weblogging ecosystem (2006)

11. Ratkiewicz, J., Menczer, F., Fortunato, S., Flammini, A., Vespignani, A.: Charac-
terizing and modeling the dynamics of online popularity. Physical Review Letters
(May 2010)

12. Ritter, A., Cherry, C., Dolan, B.: Unsupervised Modeling of Twitter Conversations.
In: Proc. HLT-NAACL 2010 (2010)

13. Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? Large scale analytics
on factors impacting retweet in Twitter network. In: Proceedings of the IEEE
Second International Conference on Social Computing (SocialCom), pp. 177–184
(August 2010)

14. Szabo, G., Huberman, B.A.: Predicting the popularity of online content. ACM
Commun. 53(8), 80–88 (2010)

Mining for Reengineering: An Application to

Semantic Wikis Using Formal and Relational
Concept Analysis

Lian Shi1, Yannick Toussaint1, Amedeo Napoli1, and Alexandre Blansché2

1 LORIA CNRS – INRIA Nancy Grand-Est – Nancy Université, équipe Orpailleur,
BP 70239, F-54506 Vandœuvre-lès-Nancy

firstname.lastname@loria.fr
2 Laboratoire LITA, Université Paul Verlaine, Île du Saulcy F-57000 Metz

alexandre.blansche@univ-metz.fr

Abstract. Semantic wikis enable collaboration between human agents
for creating knowledge systems. In this way, data embedded in semantic
wikis can be mined and the resulting knowledge patterns can be reused
to extend and improve the structure of wikis. This paper proposes a
method for guiding the reengineering and improving the structure of
a semantic wiki. This method suggests the creation of categories and
relations between categories using Formal Concept Analysis (FCA) and
Relational Concept Analysis (RCA). FCA allows the design of a concept
lattice while RCA provides relational attributes completing the content
of formal concepts. The originality of the approach is to consider the wiki
content from FCA and RCA points of view and to extract knowledge
units from this content allowing a factorization and a reengineering of
the wiki structure. This method is general and does not depend on any
domain and can be generalized to every kind of semantic wiki. Examples
are studied throughout the paper and experiments show the substantial
results.

1 Introduction

Wikis provide friendly environments to create, modify and update a website,
where different topics or pages are linked by hyperlinks, forming a large page
network [9]. In the trend of semantic web, taking advantage of knowledge rep-
resentation and ontology technologies, semantic wikis extend the capabilities of
wikis by allowing annotations attached to elements in a wiki page [6]. Annota-
tions refer to the introduction of a category for “typing” a page or a relation
between an element of the page and another element in another page. Knowledge
units in semantic wikis are usually represented within RDF Schema and OWL
constructions, and can be queried on the fly using SPARQL for example. There-
fore, semantic wikis enable communities to collaboratively produce both a large
set of textual documents that human agents can easily browse thanks to semantic
links and a formalized knowledge base readable by software agents. Moreover, a

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 421–435, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

422 L. Shi et al.

semantic wiki can be considered as a wide blackboard where human agents inter-
act with software agents [3] for producing and completing knowledge. However,
the collaborative and multi-user aspects introduce different perceptions of a do-
main and thus differences in knowledge organization. The incremental building
over the time may also introduce lacks or over-definitions in the knowledge base.

Accordingly, learning techniques can be used to solve these kinds of problems
by reengineering, i.e. a semantic wiki is considered as a base for discovering and
organizing existing and new knowledge units. Furthermore, semantic data em-
bedded in the semantic wikis are rarely used to enrich and improve the quality
of semantic wikis themselves. There is a large body of potential knowledge units
hidden in the content of a wiki, and knowledge discovery techniques are can-
didate for making explicit these units. The objective of the present work is to
use knowledge discovery techniques –based on Formal Concept Analysis and Re-
lational Concept Analysis– for learning new knowledge units such as categories
and links between objects in pages for enriching the content and the organization
of a semantic wiki. Thus, the present work aims at reengineering a semantic wiki
for ensuring a well-founded description and organization of domain objects and
categories, as well as setting relations between objects at the most appropriate
level of description.

Reengineering improves the quality of a semantic wiki by allowing stability
and optimal factorization of the category hierarchy, by identifying similar cat-
egories, by creating new categories, and by detecting inaccuracy or omissions.
The knowledge discovery techniques used in this reengineering approach are
based on Formal Concept Analysis (FCA) [5] and Relational Concept Analy-
sis (RCA) [10]. FCA is a mathematical approach for designing a concept lattice
from a binary context composed of a set of objects described by attributes. RCA
extends FCA by taking into account relations between objects and introducing
relational attributes within formal concepts, i.e. reifying relations between ob-
jects at the concept level. FCA and RCA are powerful techniques that allow
a user to answer a set of questions related to the quality of organization and
content of semantic wiki contents. The originality of this approach is to con-
sider the semantic wiki content as a starting point for knowledge discovery and
reengineering, applying FCA and RCA for extracting knowledge units from this
content and allowing a completion and a factorization of the wiki structure (a
first attempt in this direction can be found in [1]). The present approach is gen-
eral and does not either depend on any domain or require customized rules or
queries, thus can be generalized to every semantic wikis.

After defining some terminology about semantic wikis in Section 2, we intro-
duce basics elements on Formal and Relational Concept Analysis and in Sec-
tion 3. Section 4 gives details on the proposed approach for reengineering a
semantic wiki. In Section 5, we propose an evaluation of the method based on
experimental results, and we discuss the results and related issues (Section 6).
After a brief review of related work, we conclude with a summary in Section 7.

Reengineering Semantic Wikis with FCA and RCA 423

Fig. 1. A wiki page titled “Harry Potter and the Philosopher’s Stone”. The upper half
shows the content of the wiki page while the lower half is the underlying annotated
form.

2 Problem Setting and Wiki Terminology

Throughout this paper, we use wiki(s) to refer to semantic wiki(s). Each wiki
page is considered as a “source ontological element”, including classes and prop-
erties [8]. Annotations in the page provide statements about this source element.
For example, the page entitled “Harry Potter and the Philosopher’s Stone” de-
scribes a movie and a set of annotations attached to this page (Figure 1).

Editors annotate an object represented by a wiki page with categories, data
types, and relations, i.e. an object can be linked to other objects through re-
lations. A category allows a user to classify pages and categories can be orga-
nized into a hierarchy. For example, the annotation [[Category:Film]] states
that the page about “Harry Potter and the Philosopher’s Stone” belongs to
the category Film. The category Fantasy is a subcategory of Film as soon
as the annotation [[Category:Film]] is inserted in the Fantasy page. Bi-
nary relationships are introduced between pages. For example, the annotation
[[Directed by::Chris Colombus]] is inserted in the “Harry Potter. . . ” page
for making explicit the Directed by relation between “Harry Potter. . . ” page
and “Chris Colombus” page.

Some attributes are allowed to assign “values”: they specify a relationship
from a page to a data type such as numbers. Then [[Duration::152min]] give
the the duration of the film “Harry Potter. . . ”.

Basically, all categories in a wiki are manually created by various editors, pos-
sibly introducing several sources of inconsistency and redundancy. The fact that
the number of pages is continuously growing and that new categories are intro-
duced is a major challenge for managing the category hierarchy construction.
For keeping efficient the browsing and navigation within the wiki, the category
hierarchy has to be periodically updated. Thus, a tool for automatically manag-
ing the category hierarchy in a wiki is of first importance. In the following, we

424 L. Shi et al.

show how this can be done using FCA and RCA, which are both detailed in the
next section.

3 Introducing Formal Concept Analysis (FCA) and
Relational Concept Analysis (RCA)

3.1 Formal Concept Analysis

The basics of FCA are introduced in [5]. Data are encoded in a formal context
K = (G, M, I), i.e. a binary table where G is a set of objects, M a set of attributes,
and I ⊆ G× M an incidence relation. Two derivation operators, both denoted
by ′, formalize the sharing of attributes for objects, and, in a dual way, the
sharing of objects for attributes:

′ : ℘(G) −→ ℘(M) with X′ = {m ∈ M | ∀g ∈ X, gIm}
′ : ℘(M) −→ ℘(G) with Y′ = {g ∈ G | ∀m ∈ Y, gIm}
℘(G) and ℘(M) respectively denote the powersets of G and M; gIm states that ob-

ject g ∈ G is owning attribute m ∈ M. The two derivation operators ′ form a Galois
connection between ℘(G) and ℘(M). Maximal sets of objects related to maximal
set of attributes correspond to closed sets of the composition of both operators
′ (denoted ′′), for ℘(G) and ℘(M) respectively. A pair (X, Y) ∈ ℘(G)× ℘(M), where
X = Y′ and Y = X′, is a formal concept, X being the extent and Y being the intent
of the concept. The set CK of all concepts from K is ordered by extent inclusion,
denoted by ≤K. Then, LK = 〈CK,≤K〉 forms the concept lattice of K.

For example, let us consider the two formal contexts KFilms and KActors

given in Table 1. The context on the left provides descriptions for films while
the context on the right is for actors. Each film or actor is introduced by its
name and has a set of attributes. The two corresponding lattices, LInitF ilms and
LInitActors are given on Figure 2 and Figure 3.

A reduced labelling is used in the drawing of lattice: attributes are inherited
from high level to low levels while objects are shared form low levels to high

Fig. 2. The initial lattice of films LInitF ilms

Reengineering Semantic Wikis with FCA and RCA 425

Table 1. The two binary contexts of films KF ilms (left) and actors KActors (right)

F
re

n
ch

E
n
g
li
sh

G
e
rm

a
n
y

R
o
m

a
n
c
e

C
o
m

e
d
y
D

ra
m

a

h
a
sA

w
a
rd

s
h
a
sR

u
n
n
in

g
T

im
e

h
a
sY

e
a
r

A
m

e
ri

c
a
n

Jeux d’enfants x x x x
Good Bye, Lenin x x x x x

Catch me if you can x x x x x
And now my love x x x x x

America’s Sweethearts x x x x x x
Kleinruppin Forever x x x

h
a
sA

w
a
rd

s
F
e
m

a
le

M
a
le

A
g
e
2
0

A
g
e
3
0

Guillaume Canet x x x
Daniel Brühl x x x

Leonardo DiCaprio x x x
Marthe Keller x
Tolias Schenke x
Julia Roberts x x

Catherine Zeta Jones x
Anna Maria Muhe x x

levels in a lattice. For example, concept c5 in LInitActors has for intent the set
of attributes {Female, hasAward} (respectively from c1 and c3). By contrast,
concept c3 in LInitActors has for extent the set of individuals {Julia Roberts,
Leonardo DiCaprio, Daniel Brül, Guillaume Canet} (respectively from c5,
c6, and c9). When attributes are mentioned following reduced labelling, they
will be said local attributes, otherwise inherited attributes. Attributes obey the
following rules: when there are at least two local attributes a1 and a2 in the same
intent, these attributes are equivalent, i.e. a1 appears as soon as a2 and recipro-
cally. For example, hasRunninigTime and hasYear are equivalent in LInitF ilms

(see Figure 2). Moreover, local attributes imply inherited attributes. For exam-
ple, ComedyDrama implies hasRunninigTime and hasYear.

3.2 Relational Concept Analysis

Table 2. The context KStarring of
the relation Starring between films
and actors (films and actors are ob-
jects in the contexts KF ilms and
KActors)

G
u
il
la

u
m

e
D

a
n
ie

l
B

rü
h
l

L
e
o
n
a
rd

o
D

iC
a
p
ri

o

M
a
rt

h
e

K
e
ll
e
r

T
o
li
a
s

S
ch

e
n
k
e

J
u
li
a

R
o
b
e
rt

s
C

a
th

e
ri

n
e

Z
e
ta

J
o
n
e
s

A
n
n
a

M
a
ri

a
M

u
h
e

Jeux d’enfants x x
Good Bye, Lenin x

Catch me if you can x
And now my love x x

America’s Sweethearts x x
Kleinruppin Forever x x

RCA was introduced and detailed in [10].
Data is described by a relational context
family (RCF), composed of a set of con-
texts K = {Ki} and a set of binary re-
lations R = {rk}. A relation rk ⊆ Gj × G�

connects two object sets, a domain Gj,
i.e. dom(rk) = Gj, and a range G�, i.e.
ran(rk) = G�. For example, the RCF cor-
responding to the current example is com-
posed of the contexts KFilms and KActors.
The context KStarring represents the rela-
tion Starring between films and actors (a
film is starring an actor).

Hereafter, we briefly introduce the mech-
anism of RCA necessary for understanding
the following (other details are given in [10]).
RCA is based on a relational scaling mecha-
nism that transforms a relation rk into a set

426 L. Shi et al.

Fig. 3. The initial lattice of actors LInitActors

of relational attributes that are added to complete the “initial context” describ-
ing the object set Gj = dom(rk). For each relation rk ⊆ Gj × G�, there is an initial
lattice for each object set, i.e. Lj for Gj and L� for G�. For example, the two ini-
tial lattices for the relation Starring are LInitF ilms (Figure 2) and LInitActors

(Figure 3).
Given the relation rk ⊆ Gj × G�, the RCA mechanism starts from two ini-

tial lattices, Lj and L�, and builds a series of intermediate lattices by gradually
completing the initial context Gj = dom(rk) with new “relational attributes”. For
that, relational scaling follows the DL semantics of role restrictions. Given the re-
lation rk ⊆ Gj × G�, a relational attribute ∃rk : c –c being a concept and ∃ the ex-
istential quantifier– is associated to an object g ∈ Gj whenever rk(g) ∩ extent(c)
�= ∅ (other quantifiers are available, see [10]). For example, let us consider the
concept c1 whose intent is Starring : c3 in LFinalF ilms, i.e. the final lattice of
films on Figure 4. This means that all films in the extent of c1 are related to
(at least one or more) actors in the extent of concept c3 in LFinalActors, i.e. the
final lattice of actors, through the relation Starring (actors in the extent of c3
are characterized by the hasAward attribute).

The series of intermediate lattices converges toward a “fixpoint” or “final
lattice” and the RCA mechanism is terminated. This is why there is one initial
and one final lattice for each context of the considered RCF. Here, LInitActors is

Reengineering Semantic Wikis with FCA and RCA 427

Fig. 4. The final relational lattice of films LF inalF ilms

identical to LFinalActors (Figure 3), and there are two different lattices for films,
namely the initial LInitF ilms (Figure 2) and the final LFinalF ilms (Figure 4).

4 Methodology

In this section, we give details on the knowledge discovery approach used for
wiki reengineering. We first explain how data are retrieved and how the different
formal contexts and associated concept lattices are built. Then, we analyze the
concepts and propose a new organization for the category hierarchy in the wiki.

4.1 Construction of the Relational Context Family

A complete RDF data export of a given wiki can be obtained by crawling the
individual RDF export of each wiki page. According to the schema defined by Se-
mantic MediaWiki1(SMW), a category is defined as a owl:Class and the object
described in a page is exported as an instance defined by SWIVT ontology [7],
which provides a basis for interpreting the semantic data exported by SMW.

The constructionof a relational context family fromRDFdata export is basedon
the following correspondence. Objects in SMW are considered as objects in FCA,
1 http://ontoworld.org/wiki/SMW

http://ontoworld.org/wiki/SMW

428 L. Shi et al.

categories and datatype attributes in SMW are considered as attributes in FCA,
and finally relations in SMW are considered as relations between objects in RCA.

We conduct SPARQL queries on the RDF dump to obtain a set of objects
represented by pages (O), a set of categories (C), a set of datatype attributes (A)
and a set of relations (R). Unlike the previous example in Section 3, here each
RCF has only one set of objects G (i.e. all objects represented by wiki pages)
and each relation ri ∈ R (0 ≤ i ≤ n) is defined on G× G, where

– G consists of all objects obtained from O.
– M is defined as M = C ∪ A.
– I ⊆ G× M. A pair (g, m) ∈ I iff m ∈ C and object g belongs to this category,

or m ∈ A and g is annotated by this attribute. Additionally, the transitivity
has to be explicitly stated in the context, i.e. (g, m′) ∈ I iff m′ ∈ C, (g, m) ∈ I
and m ⊆ m′.

– n is the number of relations from R.

By doing this, abstraction will be maximized and objects will be classified into
formal concepts without any prior knowledge but RDF data,

4.2 Analyzing Formal Concepts of the Concept Lattice

Based on the two binary contexts KFilms and KActors, and on the relational
context family KStarring, we obtain a relational lattice of films shown in Figure 4.
In this lattice, the intent of each concept can be divided into a set of categories, a
set of attributes and a set of relational attributes. The analysis of formal concepts
is driven by the following questions:

Question 1: Identifying equivalence between categories. Actually, categories ap-
pear as attributes and local attributes in a formal concept are equivalent [5].
For instance, the intent of concept c9 in the lattice LFinalF ilms makes cate-
gories American and English equivalent, meaning that American and English
movies are English speaking movies. This kind of redundancy is often due to the
fact that a user may introduce a new category into the wiki without being well
informed of existing ones.

Question 2: Creating new categories. A formal concept with no categories in its
intent means that there is no category in the wiki for characterizing the set of
objects in its extent. Therefore, a new category may be defined to capture this
concept. For instance, in the lattice LFinalF ilms, concept c5 has the attribute
hasAward that can be used for defining a new category, say ”Awarded”, which
can classify objects having awards. Similarly, concept c6 in lattice LFinalF ilms

could be associated to a new category “movies starring male actors”, because it
has no category in its local intent but has the relational attribute Starring:c7
and concept c7 in the lattice LInitActors has category Male as its local intent.

Question 3: Detecting category subsumption. Subsumption relations in the lat-
tice infer subsumptions between existing categories and discovered categories.
As a result, more optimized hierarchies can be defined and the organization of

Reengineering Semantic Wikis with FCA and RCA 429

the wiki can be improved. In the lattice LFinalF ilms, we assume that categories
English and American are subcategories of ComedyDrama by observing concepts
c4 and c9. This sounds strange but is mainly due to the Closed-World Assump-
tion of RCA, which collides with the openness of a semantic wiki and the reduced
size of our running example (see Section 6).

Question 4: Defining categories. Definitions are quite rare in SMW despite they
are essential. Nevertheless, definitions can help humans understanding of the
purposes of categories and can be used for automatic classification by introduc-
ing necessary and sufficient conditions for an individual to belong to a category.
As seen in question 1, elements in the local intent are substantially equivalent.
Therefore, if a formal concept contains a category and one or more attributes in
its local intent, then these attributes can be considered as a definition of that cat-
egory. Moreover, any new introduced object to that category should be assigned
these attributes. The case of equivalence between a category and a relational
attribute is similar. For instance, concept c2 has the category RomanceMovie in
its intent. This category can be defined by the relational attribute Starring:c1
where the intent of c1 is Female (see lattice LInitActors). Then a romance movie
would involve a female actor, and any new object in this concept should be
related to at least one actress.

The result of all these is an RDF model that defines an OWL ontology con-
taining both a TBox (new class definitions, subsumptions and equivalences) and
an ABox (new instantiations). The final step is to contribute back with new
knowledge to the original wiki. Our method acts as a wiki user suggesting up-
dates. These changes, as any change from any other user, can be undone. Even
if all the results are correct and consistent, some of them may be useless in prac-
tice. Therefore, in this approach it is the responsibility of a human expert or
the wiki community to evaluate the reengineering proposals following the spirit
of collaborative editing work for wikis. Moreover, discarded proposals should be
remembered, so they are not proposed again in subsequent executions.

5 Experimental Results

We applied our method to several semantic wikis and defined criteria for evalu-
ating the experimental results.

5.1 From Wikis to Lattices

RDF dumps from a number of semantic wikis were obtained using an ad hoc
crawler. Seven wikis were selected for the experiments due to their represen-
tative characteristics, as summarized in Table 3. The selected wikis2 include
2 Retrieved by Dec 2, 2010, from
http://wiki.bioclipse.net/, http://hackerspaces.be/,
http://referata.com/, http://geospatial.referata.com/,
http://www.sharingbuttons.org/ , http://tlcwiki.com/ and
http://vsk.wikia.com/, respectively.

http://wiki.bioclipse.net/
http://hackerspaces.be/
http://referata.com/
http://geospatial.referata.com/
http://www.sharingbuttons.org/
http://tlcwiki.com/
http://vsk.wikia.com/

430 L. Shi et al.

Table 3. Wiki characteristics in terms of the total number of pages (AP), the number
of content pages (CP), the number of uncategorized content pages (UCP), the number
of categories (CAT), the number of subsumptions (SUBCAT), the number of datatype
attributes (DP), the number of relations (OP), the average cardinality of categories
(CATSIZE), the average number of datatype attributes in content pages (DPS/CP)
and the average number of relations in content pages (OPS/CF)

Semantic Wiki AP CP UCP CAT SUBCAT DP OP CATSIZE DPS/CP OPS/CF

Bioclipse 573 373 220 74 9 3 17 4.49 0.12 0.73

Hackerspace 821 564 312 11 0 0 14 26.00 0.00 2.56

Open Geospatial 131 120 14 4 0 0 8 26.50 0.00 4.97

Referata 316 155 121 13 0 0 48 2.85 0.00 0.88

Sharing Buttons 121 54 3 2 0 7 7 25.50 4.46 3.98

TLC 371 331 23 38 14 25 9 10.16 3.56 0.89

Virtual Skipper 820 226 43 109 106 41 7 4.17 2.42 0.28

Bioclipse, Hackerspace, Open Geospatial Encyclopedia, Referata, Sharing
Buttons, Toyota Land Cruiser (TLC) and Virtual Skipper (VSK). The char-
acteristics obtained by querying the RDF dumps using SPARQL differ from the
statistics contained in the Special:Statistics page. These divergences were
caused by the slightly different definitions for “content page” and the incom-
pleteness of the RDF exports of some wikis.

Some of these wikis have a dense categorization (e.g., VSK has 109 categories
for 226 concepts content pages, then roughly a 2:1 ratio of content pages to
categories), while others are subject to inexistent or lightweight category hier-
archies (e.g., Hackerspace ratio is 50:1). Ideally, we would expect to categorize
some of the uncategorized pages listed under the UCP column in the table. Un-
fortunately, this is hampered by the fact that almost all of these unclassified
pages are also lacking attributes or relations with other pages (for instance, in
the Bioclipse wiki, only one out of 220 has attributes). Therefore, FCA/RCA is
unable to discover categories because of inadequate information.

All objects, wiki categories, datatype attributes and relations were obtained
by using Jena3. A custom Java script transformed each RDF model into an
RCF described in XML. All lattices were produced by the Java-based Galicia4

platform and exported to XML documents.

5.2 Results

Table 4 shows the topological characteristics of the lattices of all wikis. The
number of formal concepts defines the size of the lattice. Apparently, this num-
ber is not always proportional to the size of the wiki. For instance, in spite of
Bioclipse wiki being smaller than Hackerspace wiki in terms of pages, the lattice

3 http://jena.sourceforge.net/
4 http://sourceforge.net/projects/galicia/

http://jena.sourceforge.net/
http://sourceforge.net/projects/galicia/

Reengineering Semantic Wikis with FCA and RCA 431

Table 4. Characteristics of the computed lattices

Semantic Wiki Concepts Edges Depth Connectivity Width

Bioclipse 170 319 8 1.88 21.25

Hackerspace 21 34 5 1.62 4.20

Open Geospatial 67 120 5 1.79 13.40

Referata 24 139 4 1.63 6.00

Sharing Buttons 70 130 6 1.86 11.67

TLC 520 1059 9 2.04 57.78

Virtual Skipper 148 294 12 1.99 12.33

of Bioclipse has more concepts than Hackperspace one. In the lattice, each edge
represents a subsumption relationship between concepts. Moreover, the depth
of the lattice is defined by the longest path from the top concept down to the
bottom concept, knowing that there are no cycles. The higher it is, the deeper
the concept hierarchy is.

The connectivity of the lattice is defined as the average number of edges per
concept. It is noteworthy that all lattices have a similar connectivity in a narrow
range between 1.62 and 2.05. It seems that the characteristics of the wikis do
not have a strong influence in the connectedness of the lattice. Finally, the last
column gives the average number of concepts per level in the lattice. This value
indicates the width of the lattice and it correlates to the size of the lattice.
Consequently, the shape of a lattice is determined by both its depth and width.

Galicia produces XML files that represent the lattices as graphs, where con-
cepts are labeled with their intent and extent. Using another custom Java ap-
plication, we interpret these files and transform them into OWL/RDF graphs.
Specifically, our application processes all concepts, and:

– generates owl:equivalentClass assertions for categories appearing as ele-
ments in the same intent of a concept,

– generates rdf:type assertions to express a membership of instances in the
extent of a concept to the categories in the intent of the concept,

– generates rdfs:subClassOf assertions to subsumption relations between
concepts,

– introduces new owl:Classes if the intent of a concept does not contain any
category, and defines a new category by using the attributes in the intent.

After substracting the model given by FCA/RCA and removing trivial new
categories, an RDF model is generated that contains concrete findings for reengi-
neering the wiki. In Table 5 we report some metrics about the findings. It should
be noticed that, in the case of VSK, the number of equivalences between origi-
nally existing categories (CAT-EQ) rises quickly due to the combinatorial effect
and the symmetry of the equivalence (i.e. A ≡ B and B ≡ A count for two
entries). Although some content pages are classified (CAT-CP), the lattice fails
to classify originally uncategorized pages. The prime reason is that these pages
often lack any attribute that can be used to derive a categorization.

432 L. Shi et al.

Table 5. The result of analyzing the lattices in terms of the number of new pro-
posed memberships of content pages to categories (CAT-CP), the number of proposed
sub-categorizations (SUB-CAT’), the number of category equivalences between origi-
nally existing categories (CAT-EQ) and the number of proposed non-trivial categories
(NEW-CAT-NT)

Semantic Wiki CAT-CP SUB-CAT’ CAT-EQ NEW-CAT-NT

Bioclipse 781 194 8 73

Hackerspace 597 19 2 5

Open Geospatial 85 29 0 25

Referata 20 19 0 5

Sharing Buttons 156 26 0 18

TLC 1521 375 0 191

Virtual Skipper 181 161 58 72

240 2 4 6 8 10 12 14 16 18 20 22

25

0

5

10

15

20

Category size (number of pages)

Nu
mb

er
 of

 ca
teg

or
ies

Original wiki
Reengineered wiki

Fig. 5. Category size histogram of VSK wiki before and after FCA/RCA. Shaded area
represents new proposed categories.

Figure 5 compares the category size histogram before and after the reengi-
neering of VSK wiki. The shaded area amounts for the number of new discovered
categories. The histogram clearly shows that most of the discovered categories
are small in terms of their sizes.

The number of discovered subsumption relationships (SUB-CAT’) seems to
be more related to the number of discovered new categories than to the num-
ber of pre-existing ones. This indicates that in general the new categories are
refinements of other ones; in other words, they have a “place” in the hierarchy.

Two of the studied wikis (Hackerspace and Referata) lead to only a few new
categories. By looking into these two wikis, we found that they are already well
organized and therefore provide less opportunities for reengineering, combined
with the fact that these wikis do not use datatype properties.

Reengineering Semantic Wikis with FCA and RCA 433

Finally, we provide some of the generated findings to illustrate the kind
of knowledge that can be obtained. For instance, in TLC wiki, the category
Has specialty-is-Service+garage is among the 191 proposed ones (the name
is automatically generated and probably is not optimal). This new category is
defined in the resulting OWL model with the Description Logic (DL) formula:
Vendor�∃has specialty.{Service garage}. Semantically, it can be interpreted
as a subcategory of Vendor which aggregates those that have this precise spe-
cialty (actually, 89 out of 109 vendors).

Subsumption relations are also discovered among pre-existing categories. For
instance, in the Bioclipse wiki, a rearrangement of categories into a hierar-
chy is proposed, with subsumptions such as Repositories maintained by
Stefan Kuhn � Repository. For some reason, this obvious subsumption link
was missing in the wiki, and can be reconstructed afterwards by our method.

The discovered category equivalences and new restrictions based on attributes
lead to definitions for the existing categories. Consider the discovered equivalence
regarding TLC wiki: Diesel Engines ≡ ∃fuel.{diesel}. In the
original wiki, only Diesel Engines � Engine is present. Therefore, the com-
bination of both formulae provides a precise definition of the existing category,
i.e. Diesel Engines ≡ Engine� ∃fuel.{diesel}.

6 Discussion

The experimental results show that our proposed method conduces to reengi-
neering proposals that can go beyond what is obtained by DL-reasoning and
querying on the original wiki. It is noteworthy to say that we do not compute
the closure of our resulting model, which would produce an enlargement of the
values in Table 5 but with little practical effect on the quality of the feedback
provided to the wiki.

The method is suitable for any semantic wiki regardless of its topic or lan-
guage. However, the computations are not linear with the size of the wiki (in
terms of the number of pages). Precisely, the maximum size of the lattice is
2min(|G|,|M|) with respect to FCA and 2min(|G|,2∗|G|) with respect to RCA. There-
fore, processing large wikis can be a computational challenge.

FCA/RCA operates under the Closed-World Assumption (CWA), which di-
verges from the Open-World Assumption (OWA) of OWL reasoning. More im-
portantly, CWA collides with the open nature of wikis. As a consequence, some
of the results are counter-intuitive when they are translated back to the wiki,
as it was exemplified in the previous section. However, the results are always
consistent with the current data in the wiki, and the method can be repeated
over time if the wiki changes. Recall that the process is “semi-automatic” and
that an analysis is required.

A feedback analysis remains to be done. An approach for such an analysis
is to provide results to human experts (e.g., wiki editors), who may evaluate
the quality of the results based on their knowledge and experience. The quality
can be measured in terms of correctness and usefulness. The latter will produce

434 L. Shi et al.

a subjective indication of the “insights” of the results, i.e., how much they go
beyond the “trivial” and “irrelevant” proposals for reengineering.

7 Related Works and Conclusion

Krötzsch and co-authors [6] underlined that semantic wikis manage to dissemi-
nate semantic technologies among a broad audience and many of the emerging
semantic wikis resemble small semantic webs. The knowledge model of a seman-
tic wiki often corresponds to a small fragment of OWL-DL, but this fragment
differs from one wiki to another as illustrated with SMW and IkeWiki [11].
Some extensions of SMW (like Halo Extension5) enable to introduce the domain
and the range of a relation that are needed by FCA/RCA in order to abstract
properties and relations between objects at the category level.

There exist several attempts to combine DL-based knowledge representation
and FCA. One of the main works is the thesis of B. Sertkaya (see an overview
in [12]). The objective is to use FCA for building a conceptualization of the world
that could be encoded in an expressive DL. An “extended bottom-up approach”
(computing Least Common Subsumers, Good Common Subsumers) is proposed
for a bottom-up construction of a knowledge base, even including an existing
knowledge base. However, SMW does not provide either disjunction or negation.
Furthermore, concept lattices are mapped to the so called FL description logic
in [10]. Then, the FCA/RCA combination provides substantial capabilities for
working with wikis.

Among several domains of experiment, reengineering or refactoring UML mod-
els [4] is quite similar to the purpose of the present paper, i.e. wiki reengineering.
The goal was to build abstractions in UML models.

Chernov et al. [2] defined a method for introducing semantics in “non-semantic”
wikis. They attempt to define relations between categories looking at links be-
tween individuals. The method is essentially based on statistics: observing the
number of links between pages in categories and computing Connectivity Ratio
in order to suggest semantic connections between categories. Although there is no
measure involved in the their approach, we are currently working at using numer-
ical measures to deal with noise or omissions in the data.

Contrasting the previous work, the approach presented in [1] uses FCA on
the semantic information embedded in wikis, however, authors did not distin-
guish attributes, relations and categories. In the present work, we go beyond by
distinguishing semantical elements, in particular, datatype attributes, relations
and categories, and we complete the work of FCA with the work of RCA on
relations, giving better results on the reengineering of wikis.

In this paper, we proposed an approach for reengineering semantic wikis based
on FCA and RCA. Our approach alleviates the human effort required to de-
tect category redundancy, discover potential categories and identify membership
between pages and category, subsumption and equivalence between categories.
These objectives are achieved by analyzing formal concepts of lattices built on
5 The Halo Project: http://semanticweb.org/wiki/Project_Halo

http://semanticweb.org/wiki/Project_Halo

Reengineering Semantic Wikis with FCA and RCA 435

the semantic data contained in wikis. We argue that the use of FCA and RCA
helps to build a well-organized category hierarchy. Our experiments show that
the proposed method is adaptable and effective for reengineering semantic wikis.
Moreover, our findings pose several open problems for future study.

References

1. Blansché, A., Skaf-Molli, H., Molli, P., Napoli, A.: Human-machine collaboration
for enriching semantic wikis using formal concept analysis. In: Lange, C., Reu-
telshoefer, J., Schaffert, S., Skaf-Molli, H. (eds.) Fifth Workshop on Semantic
Wikis – Linking Data and People (SemWiki-2010), CEUR Workshop Proceedings,
vol. 632 (2010)

2. Chernov, S., Iofciu, T., Nejdl, W., Zhou, X.: Extracting semantic relationships
between wikipedia categories. In: 1st International Workshop SemWiki2006 - From
Wiki to Semantics, co-located with the ESWC 2006, Budva, (2006)

3. Cordier, A., Lieber, J., Molli, P., Nauer, E., Skaf-Molli, H., Toussaint, Y.: Wiki-
Taaable: A semantic wiki as a blackboard for a textual case-based reasoning system.
In: 4th Workshop on Semantic Wikis (SemWiki2009), held in the 6th European
Semantic Web Conference (May 2009)

4. Dao, M., Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Improving gener-
alization level in uml models iterative cross generalization in practice. In: ICCS,
pp. 346–360 (2004)

5. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)
6. Krötzsch, M., Schaffert, S., Vrandečić, D.: Reasoning in semantic wikis. In: Anto-
niou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-L., Tolks-
dorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 310–329. Springer, Heidelberg
(2007)

7. Krözsch, M., Vrandečić, D.: Swivt ontology specification,
http://semantic-mediawiki.org/swivt/

8. Krözsch, M., Vrandečić, D., Kolkel, M., Haller, H., Studer, R.: Semantic wikipedia.
J. Web Sem., 251–261 (2007)

9. Leuf, B., Cunningham, W.: The Wiki Way: Quick Collaboration on the Web.
Addison-Wesley Longman, Amsterdam (2001)

10. Rouane, M.H., Huchard, M., Napoli, A., Valtchev, P.: A proposal for combin-
ing formal concept analysis and description logics for mining relational data. In:
Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp.
51–65. Springer, Heidelberg (2007)

11. Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management.
In: 1st International Workshop on Semantic Technologies in Collaborative Appli-
cations (STICA 2006), Manchester, UK (2006)

12. Sertkaya, B.: Formal Concept Analysis Methods for Descriptions Logics. PhD the-
sis, Dresden university (2008)

http://semantic-mediawiki.org/swivt/

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 436–440, 2011.
© Springer-Verlag Berlin Heidelberg 2011

SmartLink: A Web-Based Editor and
Search Environment for Linked Services

Stefan Dietze, Hong Qing Yu, Carlos Pedrinaci, Dong Liu, and John Domingue

Knowledge Media Institute, The Open University, MK7 6AA, Milton Keynes, UK
{s.dietze,h.q.yu,c.pedrinaci,d.liu,j.b.domingue}@open.ac.uk

Abstract. Despite considerable research dedicated to Semantic Web Services
(SWS), structured semantics are still not used significantly to annotate Web
services and APIs. This is due to the complexity of comprehensive SWS models
and has led to the emergence of a new approach dubbed Linked Services.
Linked Services adopt Linked Data principles to produce simplified, RDF-
based service descriptions that are easier to create and interpret. However,
current Linked Services editors assume the existence of services documentation
in the form of HTML or WSDL files. Therefore, we introduce SmartLink, a
Web-based editor and search environment for Linked Services. Based on an
easy-to-use Web form and a REST-ful API, SmartLink allows both humans as
well as machines to produce light-weight service descriptions from scratch.

Keywords: Semantic Web Services, Linked Services, Linked Data, SmartLink.

1 Introduction

The past decade has seen a range of research efforts in the area of Semantic Web
Services (SWS), aiming at the automation of Web service-related tasks such as
discovery, orchestration or mediation. Several conceptual models, such as OWL-S
[6], WSMO [3], and standards like SAWSDL [7] have been proposed, usually
covering aspects such as service capabilities, interfaces and non-functional properties.
However, SWS research has for the most part targeted WSDL or SOAP-based Web
services, which are not prevalent on the Web. Also, due to the inherent complexity
required to fully capture computational functionality, creating SWS descriptions has
represented an important knowledge acquisition bottleneck and required the use of
rich knowledge representation languages and complex reasoners. Hence, so far there
has been little take up of SWS technology within non-academic environments.

That is particularly concerning since Web services – nowadays including a range of
often more light-weight technologies beyond the WSDL/SOAP approach, such as
RESTful services or XML-feeds – are in widespread use throughout the Web. That has
led to the emergence of more simplified SWS approaches to which we shall refer here
as “lightweight”, such as WSMO-Lite [9] SA-REST [7] and Micro-WSMO/hRESTs [4]
which replace “heavyweight” SWS with simpler models expressed in RDF(S) which
aligns them with current practices in the growing Semantic Web [1] and simplifies the
creation of service descriptions. While the Semantic Web has successfully redefined

 SmartLink: A Web-Based Editor and Search Environment for Linked Services 437

itself as a Web of Linked (Open) Data (LOD) [2], the emerging Linked Services
approach [7] exploits the established LOD principles for service description and
publication, and is catering for exploiting the complementarity of the Linked Data and
services to support the creation of advanced applications for the Web.

In order to support annotation of a variety of services, such as WSDL services as
well as REST APIs, the EC-funded project SOA4ALL1, has developed the Linked
Services registry and discovery engine iServe2. iServe supports publishing service
annotations as linked data expressed in terms of a simple conceptual model that is
suitable for both human and machine consumption and abstracts from existing
heterogeneity of service annotation formalisms: the Minimal Service Model (MSM).
The MSM is a simple RDF(S) ontology able to capture (part of) the semantics of both
Web services and Web APIs. While MSM [7] is extensible to benefit from the added
expressivity of other formalisms, iServe allows import of service annotations
following, for instance, SAWSDL, WSMO-Lite, MicroWSMO, or OWL-S. Once
imported, service annotations are automatically published on the basis of the Linked
Data principles. Service descriptions are thus accessible based on resolvable HTTP
URIs by utilising content negotiation to return service instances in either plain HTML
or RDF. In addition to a SPARQL endpoint, a REST API allows remote applications
to publish annotations and to discover services through an advanced set of discovery
strategies that combine semantic reasoning and information retrieval techniques. In
order to support users in creating semantic annotations for services two editors have
been developed: SWEET [5] (SemanticWeb sErvices Editing Tool) and SOWER
(SWEET is nOt a Wsdl EditoR), which support users in annotating Web APIs and
WSDL services respectively.

However, SWEET and SOWER build on the assumption that either HTML
documentation of services/APIs (SWEET) or WSDL files (SOWER) are available as
starting point for annotation. While that holds for a certain set of services, a number
of services on the Web neither provide a WSDL nor an HTML documentation and
hence, current Linked Services editors cannot be deployed in a range of cases. In
addition, we would like to promote an approach were services documentation relies
on structured RDF(S) and additional human-readable documentation is not provided
manually but automatically generated to avoid redundancies. Therefore, we introduce
and demonstrate SmartLink, an editing and search environment for Linked Services
addressing the issues described above.

2 SmartLink: Linked Services Editor and Search Environment

In order to provide a Linked Services editor which allows the annotation of REST-ful
services without any pre-existing documentation, a new services annotation and
search tool was created, SmartLink3 ("SeMantic Annotation enviRonmenT for Linked
services"). SmartLink allows annotation of REST-ful services based on the MSM
from scratch, that is, without any pre-existing services documentation such as WSDL
or HTML files, as assumed by existing annotation tools (Section 1). SmartLink

1 http://www.soa4all.eu/
2 http://iserve.kmi.open.ac.uk
3 http://smartlink.open.ac.uk & http://kmi.open.ac.uk/technologies/name/smartlink

438 S. Dietze et al.

operates on top of LOD stores such as iServe and is an open environment accessible
to users simply via OpenID4 authentication.

SmartLink exploits an extension of the MSM schema including a number of
additional non-functional properties. These non-functional properties cover, for
instance, contact person, developer name, Quality of Service (QoS), development
status, service license, and WSMO goal reference. The latter property directly
contributes to facilitate our approach of allowing MSM models to refer to existing
WSMO goals which utilize the same service entity. MSM-schema properties are
directly stored in iServe, while additional properties are captured in a complementary
RDF store based on OpenRDF Sesame5. Due to the SmartLink-specific extensions to
the MSM, we refer in the following to our Linked Services RDF store as iServe+. The
following figure depicts the overall architecture of the SmartLink environment.

Fig. 1. SmartLink – overall architecture

SmartLink allows developers to directly annotate existing RESTful services and
APIs, which potentially also includes the annotation of WSMO goal requests – which
in fact are RESTful services themselves – as MSM service instances. Figure 2 depicts
the SmartLink Web interface showing the service editing form and the services
library.

Being an LOD-compliant environment, one of the core features of the MSM is the
capability to associate service descriptions with so-called model references which refer
to RDF descriptions in external vocabularies defining the semantics of the service or its
parts. That way, for instance, a particular service response message can be associated
with an external RDF description which details and further describes the nature of the
response. However, while this feature is useful and even necessary in order to provide
meaningful service models, finding appropriate model references across the entire
Web of data is a challenging task. Therefore, SmartLink uses established Linked Data

4 http://openid.net/
5 http://www.openrdf.org/

 SmartLink: A Web-Based Editor and Search Environment for Linked Services 439

APIs – currently the WATSON6 API - to identify and recommend suitable model
references to the user.

Dedicated APIs allow machines and third party applications to interact with
iServe+, e.g., to submit service instances or to discover and execute services. In
addition, the Web application provides a search form which allows to query for
particular services. Service matchmaking is being achieved by matching a set of core
properties (input, output, keywords), submitting SPARQL queries, and a dedicated set
of APIs.

Fig. 2. SmartLink – Web interface

SmartLink currently provides mechanisms which enable the export of particular
(MSM) service instances as RDF or human-readable HTML. In order to facilitate
service model transformation between MSM and other SWS formalisms, current
research deals with the establishment of an export mechanism of MSM services.

3 Discussion and Conclusion

Current work deals with a first exploitation of SmartLink in the context of the
NoTube project7 where the ultimate goal is to develop a network of services,
connected through the use of semantics, to personalize consumption of digital (IP)TV
content. NoTube adopts the Linked Services approach by utilising the iServe+ and
SmartLink tools. In addition, we have devised a functional classification for services
specific to the NoTube domain, stored and exposed via our iServe+ environment.
From our initial use case, a few observations have been made which will shape our

6 http://watson.kmi.open.ac.uk/WatsonWUI/
7 http://www.notube.tv

440 S. Dietze et al.

future efforts. For instance, the recommendation of LOD model references via open
APIs proved very useful to aid SmartLink users when annotating services. However,
due to the increasing number of LOD datasets – strongly differing in terms of quality
and usefulness – it might be necessary in the future to select recommendations only
based on a controlled subset of the LOD cloud in order to reduce available choices.

While SmartLink proved beneficial when creating light-weight service annotations,
the lack of service automation and execution support provided by our extended MSM
models, and, more importantly, the current tool support, made it necessary to transform
and augment these models to into more comprehensive service models (WSMO). Due
to the lack of overlap between concurrent SWS models, transformation is a manual and
costly process. Hence, our current research and development deals with the extension of
the MSM by taking into account execution and composition oriented aspects and the
development of additional APIs, which allow the discovery, execution and semi-
automated composition of Linked Services, and make the exploitation of additional
SWS approaches obsolete.

Acknowledgments

This work is partly funded by the European projects NoTube and mEducator. The
authors would like to thank the European Commission for their support.

References

[1] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
Magazine (2001) (retrieved March 29, 2009)

[2] Bizer, C., Heath, T., et al.: Linked data - The Story So Far. Special Issue on Linked data.
International Journal on Semantic Web and Information Systems, IJSWIS (2009)

[3] Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue,
J.: Enabling Semantic Web Services: The Web Service Modeling Ontology. Springer,
Heidelberg (2007)

[4] Kopecky, J.; Vitvar, T.; and Gomadam, K. MicroWSMO. Deliverable, Conceptual
Models for Services Working Group (2008),

 http://cms-wg.sti2.org/TR/d12/v0.1/20090310/d12v01_20090310.pdf
[5] Maleshkova, M., Pedrinaci, C., Domingue, J.: Supporting the creation of semantic restful

service descriptions. In: 8th International Semantic Web Conference on Workshop:
Service Matchmaking and Resource Retrieval in the Semantic Web, SMR2 (2009)

[6] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S:
Semantic Markup for Web Services. Member submission, W3C. W3C Member
Submission, November 22 (2004)

[7] Pedrinaci, C., Domingue, J.: Toward the Next Wave of Services: Linked Services for the
Web of Data. Journal of Universal Computer Science 16(13), 1694–1719 (2010)

[8] Sheth, A.P., Gomadam, K., Ranabahu, A.: Semantics enhanced services: Meteor-s,
SAWSDL and SA-REST. IEEE Data Eng. Bull. 31(3), 8–12 (2008)

[9] Vitvar, T., Kopecky, J., Viskova, J., Fensel, D.: Wsmo-lite annotations for web services.
In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, Springer, Heidelberg (2008)

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 441–445, 2011.
© Springer-Verlag Berlin Heidelberg 2011

ViziQuer: A Tool to Explore and Query SPARQL
Endpoints

Martins Zviedris and Guntis Barzdins

Institute of Matematics and Computer Science, University of Latvia, Raina bulv. 29,
Riga LV-1459, Latvia

Martins.Zviedris@LUMII.lv, Guntis.Barzdins@LUMII.lv

Abstract. The presented tool uses a novel approach to explore and query a
SPARQL endpoint. The tool is simple to use as a user needs only to enter an
address of a SPARQL endpoint of one’s interest. The tool will extract and
visualize graphically the data schema of the endpoint. The user will be able to
overview the data schema and use it to construct a SPARQL query according to
the data schema. The tool can be downloaded from http://viziquer.lumii.lv.
There is also additional information and help on how to use it in practice.

Keywords: SPARQL endpoint, Visualization, Query, Ontology.

1 Introduction

SPARQL endpoints take vital role in the Semantic Web as they provide access to
actual data for end-users and software agents. Thus, it is important for developers and
end-users to understand structure of the underlying data in a SPARQL endpoint to use
the available data efficiently. Nowadays a problem arises as there is not enough
fundamental work on the SPARQL endpoint schema definition or underlying data
documentation. There is ongoing work [1] on an endpoint description, but it is in
early development phase and not in actual use.

Until now SPARQL endpoints have been developed just as an access point for
SPARQL queries to collect semantically structured data. There is not enough work on
the SPARQL endpoint management process to document and overview the
underlying data. For example, in SQL like database systems a database programmer
can easily extract and view the underlying data schema, thus making much easier to
develop a system that works with the database data. It is obvious that for a SPARQL
endpoint user it would be also much faster and easier to work with the unknown
endpoint data if the user would have more information about the actual data schema
(ontology) according to which instance data in the endpoint is organized.

Use of existing query tools [2, 3, 4] is mostly like black box testing of a SPARQL
endpoint, because they do not provide overview of a SPARQL endpoint data schema.
Existing approaches are mostly based on faceted querying meaning that a user gets
overview of only a small part of the actual ontology. The user is like a real explorer
without knowledge of what will be encountered in next two steps and in which
direction to browse for the needed data. Alternatively, a programmer could construct

442 M. Zviedris and G. Barzdins

a SPARQL query by looking at some ontology and hope that a SPARQL endpoint
contains the needed data and that correct URI namespaces are used. Note that most
SPARQL endpoints nowadays do not provide any ontology or data schema at all as
documentation, thus it is quite hard and time-consuming for a programmer to guess
their data structure. There exist tools that can show all classes and all properties found
in a SPARQL endpoint but not the structure of the underlying data.

Also there exists an approach [5] that can visualize ontologies as diagram graphs to
aid better understanding of an ontology, but these applications are standalone and
cannot connect to a SPARQL endpoint to view or edit underlying ontology. Unlike
[5] we do not intend to show all possible ontology details as, but we rather
concentrate on providing a simplified ontology derived from the actual data in a
SPARQL endpoint.

2 Overview of the Tool

We have created a tool – ViziQuer1 that supports a connection to a SPARQL endpoint
that contains typed data. By typed data we mean that objects have the class they
belong to defined by the relation rdf:type. The tool can be used to explore, understand
and query SPARQL semantic database endpoint of ones interest. Thus, the ViziQuer
consists of three parts. Firstly, the tool connects and extracts underlying data schema
from a SPARQL endpoint. Secondly, the tool allows an end-user to graphically
inspect the extracted data schema. Thirdly, an end-user can use the tool to construct a
SPARQL query accordingly to the underlying data schema and execute it on the
SPARQL endpoint.

The connection process begins by entering a SPARQL endpoint address that an
end-user wants to connect and explore. Using predefined sequence of SPARQL
queries ViziQuer extracts simple data schema from the SPARQL endpoint. Extraction
process can take a while since schema retrieval depends on ontology size and speed of
the SPARQL endpoint. We already mentioned that we only support typed data, as it is
the basic feature required to extract at least part of the underlying data schema such as
classes, their attributes and relations. SPARQL endpoints without rdf:type definitions
can be explored only by RDF data browsers, for example, Tabulator [6].

There is no formal limit on data schema size; still we do not recommend trying the
DBpedia2 endpoint and similar ones. Firstly, because we make an assumption that a
SPARQL endpoint does not have any limit to answer size, while DBpedia limits
every answer to 1000 rows. Secondly, we do not recommend a DBpedia like endpoint
as it would be very slow process to extract schema and would not give enough
advantage as it would not be easy to explore the endpoint that consists of more than
1000 classes, that is a bit too much for a normal end-user to grasp without a higher
ontology structuring, for example [7].

When extracting data schema from the typed underlying data, rather than from the
given ontology, one is faced with the lack of definitions for subclass relations
between object classes. Without subclass definitions a problem arises, as we need to

1 http://viziquer.lumii.lv/
2 http://DBpedia.org/sparql

 ViziQuer: A Tool to Explore and Query SPARQL Endpoints 443

depict part of relations more than once – as each logical, but not formally defined
subclass might have the same outgoing relation present in data resulting in explosion
of duplicate relations as one can grasp in the view of naïve schema visualization in
Fig. 1 where depicted is schema visualization result of the Semantic Web Dog Food
endpoint3. We use UML like graphical notation similar to one proposed in [5].

Fig. 1. The Semantic Web Dog Food endpoint full schema

As one can easily see in Fig 1, the naïve data schema visualization is opaque
because subclass relations are not defined and each relation is drawn multiple times.
To make it more comprehensive currently we use a hack and display each relation
only once (see Fig.2) even if the relation actually occurs between more than one pair
of classes. Thus, we get a comprehensive picture that is not fully semantically correct,
but understandable for an end-user. In the third step when an end-user composes a
SPARQL query based on the extracted schema all relation occurrences are taken into
account. A semantically correct way to solve the duplicate relations problem would be
to allow end-user to manually define missing subclass relations (based on meaningful
names of classes) and then automatically “lift” duplicate relations to the most abstract
superclass and thus making each relation to appear only once.

Fig. 2. The Semantic Web Dog Food with namespace and limited associations

Last important feature of the ViziQuer tool is ability to semi-automatically
construct SPARQL queries according to the extracted data schema (ontology). In the

3 http://data.semanticweb.org/sparql

444 M. Zviedris and G. Barzdins

ViziQuer we have implemented a subset of the GQL graphic query language [8] that
provides basic features for selection of a subset of data. As queries are based on the
ontology then querying is more like constructing or drawing a subset of the ontology
corresponding to data that an end-user is interested in for further analysis.

A query construction is possible by two paradigms. First, a user can construct a
query by selecting one class and browsing further like in faceted browsing where a
user selects a possible way further from already selected classes. Second, a user can
use a connection-based query construction. This means that a user selects two classes
of interest by adding them to a query diagram and by drawing a line between them
indicates that both classes should be interconnected. The tool uses an advanced
algorithm to propose suitable paths how these two classes can be interconnected and a
user just needs to select a path that best fits to desired path. Thus, when a user wants
to connect some classes that are a bit further one from another, a selection of an
acceptable path between classes is needed rather than a guess by manual browsing
that can be quite hard in the faceted browsing paradigm if a user is not very well
familiar with the ontology structure. We should also mention that both paradigms
could be used in parallel when one constructs a SPARQL query.

We will briefly explain the GQL by an example query. Main idea in the GQL is
selection of an interconnected subset of classes, attributes, and associations that at
some point can be viewed as an ontology subset. Additionally it is possible to restrict
the subset by some basic filters on class attributes. In Fig. 3 is depicted the example
constructed for the Semantic Web Dog Food endpoint.

Fig. 3. Example query of the GQL based on the Semantic Web Dog Food endpoint

The query formulated in Fig. 3 could be rephrased as to “select those authors that
have edited some proceedings and also have some paper in edited proceedings that are
related to some conference event”. We add restriction that conference acronym is
ESWC2009. We set the answer to contain a persons first name, a name of published
paper, a year when proceedings where published and also a name of the conference.
For limited space reasons we do not show this query translated into SPARQL.

The ViziQuer implementation is based on the Model Driven Architecture
technologies that allow it to be very flexible and to connect to any SPARQL endpoint.
We used the GrTP platform [9] as environment for the tool development. GrTP allows
to easy manipulating graphical diagrams that is most needed to construct graphical
queries and visualize a SPARQL endpoint underlying data schema. Main drawback for

 ViziQuer: A Tool to Explore and Query SPARQL Endpoints 445

the platform is that it supports only the Windows operating systems, thus the ViziQuer
currently works only in the Windows operating system environment.

3 Results and Conclusions

We have developed a tool that simplifies work with unknown SPARQL endpoints.
The tool allows an end-user not just to build SPARQL queries, but also to get an
overview of the underlying data. Still, as quality of formal ontology definitions in
SPARQL endpoints is often incomplete further improvements must be made in
schema management, for example, ability to manually add subclass relations between
classes. Also it would be wise to consider a case when data is logically typed, but
formal type definitions are missing.

Acknowledgments

This work has been partly supported by the European Social Fund within the project
«Support for Doctoral Studies at University of Latvia».

References

1. SPARQL endpoint description,
 http://esw.w3.org/SparqlEndpointDescription
2. Heim, P., Ertl, T., Ziegler, J.: Facet Graphs: Complex Semantic Querying Made Easy. In:

Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache,
T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 288–302. Springer, Heidelberg (2010)

3. Longwell RDF Browser, SIMILE (2005),
 http://simile.mit.edu/longwell/
4. List of SPARQL faceted browsers,
 http://esw.w3.org/SemanticWebTools#Special_Browsers
5. Barzdins, J., Barzdins, G., Cerans, K., Liepins, R., Sprogis, A.: OWLGrEd: a UML Style

Graphical Notation and Editor for OWL. In: Clark, K., Sirin, E. (eds.) Proc. 7th
International Workshop OWL: Experience and Directions, OWLED-2010 (2010)

6. Berners-Lee, T., Hollenbach, J., Lu, K., Presbrey, J., Prud’ommeaux, E., Schraefel, M.C.:
Tabulator Redux: Browsing and writing Linked Data. In: Proc. WWW 2008 Workshop:
LDOW (2008)

7. Zviedris, M.: Ontology repository for User Interaction. In: d’Aquin, M., Castro,
A.G., Lange, C., Viljanen, K. (eds.) ORES-2010 Workshop on Ontology Repositories and
Editiors for the Semantic Web, CEUR (2010),

 http://CEUR-WS.org/Vol-596/
8. Barzdins, G., Rikacovs, R., Zviedris, M.: Graphical Query Language as SPARQL

Frontend. In: Grundspenkis, J., Kirikova, M., Manolopoulos, Y., Morzy, T., Novickis,
L., Vossen, G. (eds.) Local Proceedings of 13th East-European Conference (ADBIS 2009),
pp. 93–107. Riga Technical University, Riga (2009)

9. Barzdins, J., Zarins, A., Cerans, K., Kalnins, A., Rencis, E., Lace, L., Liepins, R., Sprogis,
A.: GrTP:Transformation Based Graphical Tool Building Platform. In: Proceedings of the
MoDELS 2007 Workshop on Model Driven Development of Advanced User Interfaces
(MDDAUI-2007), CEUR Workshop Proceedings, vol. 297 (2007)

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 446–450, 2011.
© Springer-Verlag Berlin Heidelberg 2011

EasyApp: Goal-Driven Service Flow Generator with
Semantic Web Service Technologies

Yoo-mi Park1, Yuchul Jung1, HyunKyung Yoo1, Hyunjoo Bae1, and Hwa-Sung Kim2

1 Service Convergence Research Team, Service Platform Department,
Internet Research Laboratory, ETRI, Korea

{parkym,jyc77,hkyoo,hjbae}@etri.re.kr
2 Dept. of Electronics & Communications Eng., KwangWoon Univ., Korea

hwkim@kw.ac.kr

Abstract. EasyApp is a goal-driven service flow generator based on semantic
web service annotation and discovery technologies. The purpose of EasyApp is to
provide application creation environment for software programmers to make new
application semi-automatically by enabling the semantic composition of web
services on the Web. In this demo, we introduce key technologies of EasyApp
to overcome the problems of the previous work on semantic web service
technologies. Demonstration of use case ‘hiring process’ shows that EasyApp
helps software developers make easily a service flow with key technologies:
ontology-based goal analysis, semantic service annotation, semantic service
discovery, and goal-driven service flow generation.

Keywords: goal-driven service flow generation, semantic web service annotation,
semantic web service discovery, semantic web service composition.

1 Introduction

Semantic Web Service is a new paradigm to combine the Semantic Web and Web
Services. It is expected to support dynamic computation of services as well as
distributed computation. Ultimately, on Web Service, it leads to goal-based computing
which is fully declarative in nature [1-3].

The previous researches on Semantic Web Services are OWL-S [4,6] and WSMO
[5,6]. They suggested new service models and description languages with ontology
for goal-based computing. However, these semantic web service approaches using the
new models and languages require expertise on ontology and lots of manual work
even for experts. In addition, they dealt with WSDL-based web services rather than
RESTful web services which are commonly used in the industry recently. These
limitations make it difficult to respond fast to the dynamically changing web service
world that exist more than 30,000 services [8,9].

In this demo paper, we introduce a goal-driven service flow generator (i.e., EasyApp)
with novel semantic web service technologies that can be applied to the currently
existing web services without any changes. Towards automatic service composition,
especially, we have considered semi-automatic service annotation, goal-driven semantic

 EasyApp: Goal-Driven Service Flow Generator 447

service discovery, and automatic service flow generation based on our goal ontology
as its key enabling technologies. The key technologies can be applied for both
WSDL-based services and RESTful services. In the use case ‘hiring process’, we show
that the software developer makes service flows which satisfy his/her goals on EasyApp
where our novel semantic web service technologies are embedded.

2 EasyApp

2.1 System Overview

EasyApp is a goal-driven service flow generator based on semantic web service
annotation and discovery technologies. It provides application creation environment for
a user to make new application by enabling semantic service composition of web
services on the Web. Potential users of EasyApp are both expert software programmers
and beginners.

Fig.1 shows service architecture of EasyApp and its logical functional entities that
are ‘goal analyzer’, ‘semantic service discovery’, ‘service flow generator’, and
‘source code generator’. On EasyApp, a user inputs ‘user goal’ and finally gets a
service flow satisfied with the given goal. The user goal is parsed by referencing ‘goal
pattern library’ and decomposed into corresponding sub-goals by the ‘goal analyzer’.
Each sub-goal is a criterion of the ‘semantic service discovery’. The ‘semantic service
discovery’ discovers and ranks relevant services among semantically annotated
services stored in the registry. With the result of semantic service discovery, the
‘service flow generator’ makes up a basic service flow. After that, the user can refine
the service flow manually and generate a template code in Java and XML by ‘source
code generator’ automatically. EasyApp is strongly devoted by semantic service
annotator, which is explained in the next section.

Notify
person

Apply
request

Post request

free

Unified Communication

Service Domain

Cost

ETRI co.

Functionality

Provider

Goal Ontology Goal Pattern Library Integrated Service Registry
(semantically annotated services)

Semantic Service
annotator

Service
Flow

Generator
99%

Availability

Source
Code

Generator
Token

“hiring”

99%

AvailabilitySecurity

>4

Reputation

Goal

User
Goal

Service
Flows

“User Goal”

Graphic User Interfaces

Goal
Analyzer

Service flows and
source code(*.java)

Semantic
Service

Discovery

Goal Input +
Semantic Criteria Selector

Service Flow Editor

Easy App User

Fig. 1. Service Architecture of EasyApp

448 Y. Park et al.

2.2 Key Technologies

We address the key technologies of this demo as follows:

� Semantic service annotation: It involves tagging of services with additional semantic
information so that service annotation becomes more meaningful and clear. We
focus on the semantic annotation of web services, especially by considering their
data semantics, functional semantics, and non-functional semantics about a target
service as follows:
 Data semantics : input and output parameters
 Functional semantics: name, category, provider, location, description, and

country
 Non-functional semantics: availability, cost, security level, user rating, and

response time
We provide a semi-automatic semantic service annotation environment by
supporting automatically crawled meta-information of each web service and a
step-wise annotation on web user interface.

� Ontology-based goal analysis: It generates a set of sub-goals which can fulfill the
user-specified goal with goal ontology and goal pattern library. In case of goal
ontology, the goals widely used in the communication field are selected and
constructed as OWL ontology. The goal ontology covers synonyms, hypernyms,
and hyponyms. The goal pattern library stores a set of sequential sub-goals that
can meet high-level goals such as “hiring a person”, “making group meeting”, and
“planning business trip”.

� Semantic service discovery: It performs a goal-driven matchmaking on
semantically annotated services. In case of semantic service discovery, we employ
the goal-driven service matchmaking which considers textual similarity, functional
similarity [7], and constraints of non-functional properties (NFP) simultaneously.
It can effectively deal with various types of service description and dynamically
changing QoS of web services according to the user-specified goal.

� Goal driven service flow generator: With the result of semantic service discovery,
it composes the discovered web services automatically without user’s intervention.
It can be achieved by referring to goal pattern library. The goal pattern library is
built with well-structured goal patterns which are composed of goal and relevant
sub-goals.

3 Use Case – Hiring Process

Suppose that a software programmer wants to develop a ‘hiring process for a
company’ using some web services in the internet and intranet. The ‘hiring process
for a company’ should handle three party communication channels among requester,
applicant, and broker. Even in a small company, there is a person who requests to hire
a new employee, and a person who is responsible for hiring a person, and applicants
who want to apply the company. Fig. 2 shows a process of making new ‘hiring
process’ application on EasyApp with a simple goal.

 EasyApp: Goal-Driven Service Flow Generator 449

First of all, a developer catches a keyword in mind describing his/her goal, which
can be ‘job’, ‘work’, or ‘hiring’. He/she inputs the keyword in the goal box (1). Based
on the given keyword, EasyApp extends keywords (e.g. ‘vocation’, ‘occupation’,
‘career’, ‘recruiting’, ‘resume’, etc) as its substitutes from goal ontology and then
looks up the relevant goals with the extended keywords from goal pattern library.
After goal analysis, EasyApp suggests several candidate goals which concretize the
user’s keyword to the developer. The suggested goals are ‘hiring a person’, ‘recruiting
people’, ‘offering a job’, ‘getting a job’, and ‘making a resume’. He/she can select an
appropriate goal, which is ‘hiring a person’ among them (2). Then, he/she can select
additional criteria (non-functional semantics mentioned in Section 2.2) (3) to make
his/her requirement clearer. When he/she clicks ‘search’ button (4), EasyApp
decomposes the goal into sub-goals using goal pattern library and makes up a basic
service flow that is composed of sequential sub-goals. Then, EasyApp discovers
relevant services which satisfy sub-goals through semantic service discovery. During
the semantic service discovery, top-k services are ranked based on a weighted sum of
the textual similarity score given by keyword search and the functional similarity that
represents the goal achievability of the given service. The top-k services are re-ranked
by the weighted sum of each NFP’s weight and its importance. After the discovery, a
service flow is displayed in the service flow editor (5).

(9)

(1)
(2)

(3)

(4)

(5)

(6)

(8)

(10)

(7)

Fig. 2. Making service flow for ‘Hiring a person’ on EasyApp

450 Y. Park et al.

In this use case, a service flow consists of the following sub-goals: ‘make request’
(for requester to make hiring request to the broker in company) ‘post document’
(for requester to upload a required specification) ‘get document’ (for broker to get
the required specification) ‘make meeting’ (for requester to meet the applicants)
‘notify person’ (for requester to send result to the applicants). The sub-goals include
finally ranked top-k services as a result of service discovery.

The developer can choose the most appropriate service (6) by referring to service
properties represented in the ‘property’ view (7). He/she can modify the service flow
in the editor when he/she wants by dragging & dropping activity icons (8) on palette
(9). After the developer finishes the selection of services and the modification of
service flows, he/she can obtain java code from the service flow (10). Finally, the
developer gets a service flow for ‘hiring process’ on EasyApp.

4 Conclusions

In this demo, we present EasyApp, which is a novel and practical semantic web
service composition environment. With EasyApp, software developer can make
service flows that match the targeting goal regardless of web service programming
proficiency. Further work is to employ semantic service mediation technology for on-
the-fly service discovery and composition of web services.

Acknowledgments. This work was supported by the IT R&D program of KCC/KCA
[KI002076, Development of Customer Oriented Convergent Service Common
Platform Technology based on Network].

References

1. Fensel, D., Kerrigan, M., Zaremba, M.: Implementing Semantic Web Services. Springer,
Heidelberg (2008)

2. Preist, C.: A Conceptual Architecture for Semantic Web Services. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 395–409.
Springer, Heidelberg (2004)

3. Cabral, L., Domingue, J., Motta, E., Payne, T.R., Hakimpour, F.: Approaches to Semantic
Web Services: an Overview and Comparisons. In: Bussler, C.J., Davies, J., Fensel, D.,
Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 225–239. Springer, Heidelberg (2004)

4. Web Service Modeling Ontology (WSMO),
 http://www.w3.org/Submission/WSMO/

5. Semantic Markup for Web Services (OWL-S),
 http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

6. Lara, R., Roman, D., Polleres, A., Fensel, D.: A Conceptual Comparison of WSMO and
OWL-S. In: European Conference on Web Services, pp. 254–269 (2004)

7. Shin, D.-H., Lee, K.-H., Suda, T.: Automated Generation of Composite Web Services
based on Functional Semantics. Journal of Web Semantics 7(4), 332–343 (2009)

8. Seekda,
 http://webservices.seekda.com/

9. ProgrammableWeb,
 http://www.programmableweb.com/

Who’s Who – A Linked Data Visualisation Tool for
Mobile Environments

A. Elizabeth Cano1,�, Aba-Sah Dadzie1, and Melanie Hartmann2

1 OAK Group, Dept. of Computer Science, The University of Sheffield, UK
2 Telecooperation Group, Universität Darmstadt, Germany

{a.cano,a.dadzie}@dcs.shef.ac.uk, melanie@tk.de

Abstract. Reduced size in hand-held devices imposes significant usability and
visualisation challenges. Semantic adaptation to specific usage contexts is a key
feature for overcoming usability and display limitations on mobile devices. We
demonstrate a novel application which: (i) links the physical world with the se-
mantic web, facilitating context-based information access, (ii) enhances the pro-
cessing of semantically enriched, linked data on mobile devices, (iii) provides an
intuitive interface for mobile devices, reducing information overload.

Keywords: linked data, semantic web, visualisation, mobile devices.

1 Introduction

Mobile devices are increasingly becoming an extension of the lives of humans in the
physical world. The popularity of these devices simplifies in-situ management of the
ordinary end user’s information needs. Specifically, smart phones’ embedded devices
(e.g., built-in cameras) allow to build an abstraction of the user’s environment. Such
abstraction provides contextual information that designers can leverage in adapting a
mobile interface to the user’s information needs. Further, context can act as a set of
parameters to query the Linked Data (LD) cloud. The cloud connects distributed data
across the Semantic Web; it exposes a wide range of heterogeneous data, information
and knowledge using URIs (Uniform Resource Identifiers) and RDF (Resource De-
scription Framework) [2,6]. This large amount of structured data supports SPARQL
querying and the follow your nose principle in order to obtain facts. We present Who’s
Who, a tool that leverages structured data extracted from the LD cloud to satisfy users’
information needs ubiquitously. The application provides the following contributions:

1. Exploiting contextual information: Who’s Who facilitates access to the LD cloud
by exploiting contextual information, linking the physical world with the virtual.

2. Enhanced processing of Linked Data on mobile devices: Who’s Who enables
processing of semantic, linked data, tailoring its presentation to the limited re-
sources of mobile devices, e.g., reducing latency when querying semantic data by
processing triples within a mobile browser’s light-weight triple store.

3. Mobile access to Linked Data: Who’s Who uses novel visualisation strategies to
access LD on mobile devices, in order to overcome the usability challenges arising
from the huge amount of information in the LD cloud and limited mobile device
display size. This visualisation also enables intuitive, non-expert access to LD.

� To whom correspondence should be addressed.

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 451–455, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

452 A.E. Cano, A.-S. Dadzie, and M. Hartmann

2 Application Scenario

To illustrate our work consider the following scenario:

Bob is a potential masters student invited to an open day at a university. He will tour
different departments to get to know their facilities and research. To make the best of the
open day, Bob will use his mobile phone as a location guide, allowing him to retrieve
information (encoded as LD) about each department he visits, with the aid of visual
markers distributed around the university. This will allow him to identify researchers he
would like to meet and potential projects to work on.

We demonstrate the approach taken in Who’s Who to realise this scenario, i.e., to sup-
port user- and context-sensitive information retrieval from the LD cloud using a mobile
device. We exemplify this using the Data.dcs [6] linked dataset, which describes the
research groups in the Department of Computer Science at the University of Sheffield.

3 The Who’s Who Application

Who’s Who facilitates entry into the LD cloud by exploiting context (section 3.1), re-
duces potential latency due to resource restrictions on even advanced mobile devices
(section 3.2) and enables seamless management of information load (section 3.3).

3.1 Exploiting Context to Augment Physical Entities

The digital augmentation of physical entities has become a popular feature of many out-
door and indoor mobile applications [4]. For example, outdoors, a user’s GPS (Global
Positioning System) provides a contextual parameter for retrieving nearby points of
interest. However, GPS is not suited for indoor use, due to among others, poor signal
strength and range accuracy. Alternatives to location-based augmentation for indoor en-
vironments are visual detection and RFID (Radio Frequency IDentification) tags, which
can be used to attach hyperlinks to real-world objects. In contrast to RFID readers, vi-
sual markers enable widespread use since they can be easily produced by regular print-
ers, and read by standard cameras, which are now integrated into most mobile phones.

To bridge the gap between a physical entity’s representation and existing information
regarding it in the LD cloud, we follow the approach illustrated in Fig. 1, which consists
of the following process: (1) a URI encoded in a visual marker represents a physical en-
tity – in our scenario (section 2), a research group housed in the building at the location
in question; (2) this URI translates to a server-side request which queries the LD cloud
to enrich the information related to this entity – in our scenario, with research group
members, their collaborations and publications; (3) this information is processed on the
mobile device and presented to the end user.

3.2 Processing of Linked Data on Mobile Devices

Increments in memory capacity and processing power in mobile devices, particularly
in smart phones, allow semantic processing of large numbers of triples (e.g., the Apple

Who’s Who – A Linked Data Visualisation Tool for Mobile Environments 453

Fig. 1. The Who’s Who application in a nutshell

iPhone 3GS has a 600Mhz CPU and 256MB RAM, and the HTC Hero has a 528MHz
CPU and 288MB RAM; see also benchmarks for semantic data processing in small
devices in [3]). Although it is possible to handle triples in local RDF stores in Android-
based mobiles, this is not possible in other platforms such as the iPhone. An alterna-
tive is to use existing lightweight developments such as rdfQuery1, which runs on web
browsers, and HTML 5 features for persisting storage.

However, processing and rendering of semantic resources on mobile web browsers is
still limited by low memory allocation (e.g., 10-64MB in Webkit and Firefox mobile on
iPhone and Android phones). Leaving entirely the processing and rendering of seman-
tic resources to the mobile client improves the user experience by reducing latency due
to multiple requests. However, memory allocation restrictions make this a sub-optimal
option. On the other hand, executing the semantic analysis and data processing entirely
on the server-side results in the execution of continuous calls to the server, which trans-
lates to high data latency and a degradation of the responsiveness of the user interface
and interactivity. There must be a compromise between the number of triples handled
by a (mobile device) web browser and visualisation flow performance.

Who’s Who follows the mobile and server-side based architecture in Fig. 2. Based on
the parameters encoded in a visual marker, Who’s Who queries Data.dcs. The Data.dcs
triples are loaded in-memory via Jena on the server-side, following which SPARQL
queries are executed. The triples retrieved are encoded with JSON – a lightweight
data-interchange format – using JSONLib2, and returned with a JavaScript callback
to the mobile device. On the Who’s Who mobile-side, the triples are loaded into an rdf-
Query lightweight triple store. Interaction with the visualisation triggers local SPARQL
queries that further filter the information.

The advantages of adopting this approach are that: 1) users need not download the
application in advance (as is the case with applications relying on local RDF storage);
2) users need not know the URI corresponding to the physical entity they want to enrich,
as contextual information is pre-encoded in the visual markers; 3) there is a balance be-
tween the triple load handled by the server- and mobile-sides, which translates to more
responsive user interfaces; 4) the mobile-side triple store allows semantic filtering on
the views exposed to the user, reducing latency and improving the interface’s usability.

1 rdfQuery: http://code.google.com/p/rdfquery
2 JSONLib: http://json-lib.sourceforge.net

http://code.google.com/p/rdfquery
http://json-lib.sourceforge.net

454 A.E. Cano, A.-S. Dadzie, and M. Hartmann

Fig. 2. Mobile- and server-side interaction in Who’s Who architectural design

3.3 Visualisation

Who’s Who supports the user in retrieving information stored in the LD cloud with
visualisations tailored to the application domain. User requests are automatically trans-
lated to SPARQL queries executed on the lightweight triple store on the mobile device
itself. If required, additional triples are retrieved from the Who’s Who server. Fig. 3 de-
scribes the interaction flow for retrieving publications: 1) the user is presented a list of
researchers corresponding to the physical entity encoded in the scanned visual marker;
2) when the user taps on a researcher – in this case Fabio Ciravegna – a SPARQL query
is executed; 3) the publication view is presented, providing an additional filtering layer.

The publication view shows a graph containing the triples resulting from the SPARQL
query – the number of publications per year and the number of collaborators involved
in each publication. In Fig. 3 (3), the user has tapped on the graph bubble corresponding
to the year 2009, which links to two collaborators. The publications are arranged in a
“card deck”, where the first publication appears in the foreground. The user can traverse
through the publications – where there are multiple – by selecting the next in the deck.

Fig. 3. (1) After selecting a researcher; (2) a SPARQL query is executed; (3) the resulting triples
are presented in the graph in the publication view

4 Related Work

Searching for information about entities and events in a user’s environment is an oft-
performed activity. The state of the art focuses on text-based browsing and querying of
LD on desktop browsers, e.g., Sig.ma [8] and Marbles [1], targeted predominantly at
technical experts (see also [2]). This excludes a significant part of the user population –
non-technical end users – who make use of advanced technology embedded in everyday

Who’s Who – A Linked Data Visualisation Tool for Mobile Environments 455

devices such as mobile phones. One of the best examples of a visual browser targeted at
mainstream use is DBPedia Mobile [1]; which is a location-aware Semantic Web client
that identifies and enriches information about nearby objects. However it relies on GPS
sensors for retrieving context, which makes it unsuitable for our indoor scenario. Our
approach improves on existing LD browsers for mobile devices in that Who’s Who:
1) extracts contextual information encoded in visual markers; 2) hides explicit SPARQL
filters from the user, increasing usability for especially non-technical users.

5 Summary

Who’s Who was developed to support especially those end users who may have little to
no knowledge about where to find information on nearby physical entities. It provides
exploratory navigation through new environments, guided by the user’s context. Studies
(see, e.g., [5,7]) evaluating the utility and usability of tag-based interaction with mobile
device applications illustrate the potential of lowering barriers to LD use.

We have demonstrated the use of a set of visual markers, corresponding to research
groups in a university department, to explore the linked data exposed in Data.dcs, using
a smart phone equipped with a camera and a QRcode scanner. We have also illustrated
how the approach taken in Who’s Who simplifies such tasks, by using visualisation
of structured data to extract relevant context and manage information load, to reveal
interesting facts (otherwise difficult to identify), and to facilitate knowledge extraction.

Acknowledgements. A.E. Cano is funded by CONACyT, grant 175203. A.-S. Dadzie
and M. Hartmann are funded by the European Commission (EC) project SmartProducts
(231204). This work was also supported by the EC project WeKnowIt (215453).

References

1. Becker, C., Bizer, C.: Exploring the geospatial semantic web with DBpedia Mobile. Journal
of Web Semantics 7(4), 278–286 (2009)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. International Journal
on Semantic Web and Information Systems (2009)

3. d’Aquin, M., Nikolov, A., Motta, E.: How much semantic data on small devices? In: Cimiano,
P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 565–575. Springer, Heidelberg (2010)

4. Fröhlich, P., Oulasvirta, A., Baldauf, M., Nurminen, A.: On the move, wirelessly connected to
the world. ACM Commun. 54, 132–138 (2011)

5. Mäkelä, K., Belt, S., Greenblatt, D., Häkkilä, J.: Mobile interaction with visual and RFID tags:
a field study on user perceptions. In: Proc. CHI 2007, pp. 991–994 (2007)

6. Rowe, M.: Data.dcs: Converting legacy data into linked data. In: Proc., Linked Data on the
Web Workshop at WWW’10 (2010)

7. Toye, E., Sharp, R., Madhavapeddy, A., Scott, D., Upton, E., Blackwell, A.: Interacting with
mobile services: an evaluation of camera-phones and visual tags. Personal and Ubiquitous
Computing 11, 97–106 (2007)

8. Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker, S.: Sig.ma:
live views on the web of data. In: WWW’10, pp. 1301–1304 (2010)

OntosFeeder – A Versatile Semantic Context

Provider for Web Content Authoring

Alex Klebeck1, Sebastian Hellmann2, Christian Ehrlich1, and Sören Auer2

1 Ontos GmbH, Poetenweg 49, Leipzig, Germany
{alex.klebeck,christian.ehrlich}@ontos.com

http://ontos.com
2 Universität Leipzig, Institut für Informatik, AKSW,

Postfach 100920, D-04009 Leipzig, Germany
{hellmann,auer}@informatik.uni-leipzig.de

http://aksw.org

Abstract. As the amount of structured information available on the
Web as Linked Data has reached a respectable size. However, the ques-
tion arises, how this information can be operationalised in order to boost
productivity. A clear improvement over the keyword-based document re-
trieval as well as the manual aggregation and compilation of facts is
the provision of contextual information in an integrated fashion. In this
demo, we present theOntos Feeder – a system serving as context informa-
tion provider, that can be integrated into Content Management Systems
in order to support authors by supplying additional information on the
fly. During the creation of text, relevant entities are highlighted and con-
textually disambiguated; facts from trusted sources such as DBpedia or
Freebase are shown to the author. Productivity is increased, because the
author does not have to leave her working environment to research facts,
thus media breaks are avoided. Additionally, the author can choose to
annotate the created content with RDFa or Microformats, thus making
it ”semantic-ready” for indexing by the new generation of search engines.
The presented system is available as Open Source and was adapted for
WordPress and Drupal.

1 Introduction

One of the routine tasks of a content author (e.g. a journalist) during the time of
writing is researching for context information required for the intended article.
Without proper tool support, the author has to resort to manual searching (e.g.
Google) and skimming through available information sources. The availability of
structured data on the Semantic Data Web allows to automate these routine ac-
tivities by identifying topics within the article with the aid of Natural Language
Processing (NLP) and subsequently presenting relevant context information by
retrieving descriptions from the Linked Open Data Web (LOD).

We present the Ontos Feeder1 – a system serving as context information
provider, that can be integrated into Content Management Systems in order to
1 http://www.ontos.com

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 456–460, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://ontos.com
http://aksw.org
http://www.ontos.com

Ontos Feeder 457

Fig. 1. Entities are highlighted in the WYSIWYG editor of the CMS, Pop-ups allow
to select further information

support authors by supplying additional information on the fly. Ontos Feeder
uses the Ontos Web Service (OWS, see Section 3) to analyse the article text
and retrieve Ontos Entity Identifier (OEI) URIs for relevant topics. These OEIs
are interlinked with several data sources on the web and enriched with internal
facts from the Ontos Knowledge Base. The Feeder is open-source and currently
available for the CMS (Drupal2 and Wordpress3. Additionally, the Feeder can
automatically annotate the article with Microformats and RDFa annotations.
These are increasingly utilized by search engines such as Google or Bing 4.

2 Feature Description and User Interface Walkthrough

The content creation process begins with the writing of an article in a supported
CMS system. Having written the content, the author clicks on the get tags
button to send the text to the OWS. The OWS analyses the text and returns
disambiguated URIs for the found entities. Then the Ontos Feeder annotates
the returned entities in the original text within the CMS and highlights them in
the WYSIWYG editor (see Figure 1). In a context information area of the
CMS an overview of the found entities is given in the form of thumbnails (see
Figure 2). Now the author has several choices:

– View additional information about the entities and navigate recursively.
– Adapt the filter (e.g. by type) in the config options and remove some of the

entities.
– Revise the text and resend the text to the OWS.
– Accept all annotated entities and publish them along with the text.

2 http://sourceforge.net/projects/ontosfeeder
3 http://wordpress.org/extend/plugins/ontos-feeder/
4 http://ivan-herman.name/2009/12/12/rdfa-usage-spreading.../ and
http://www.mahalo.com/rdfa

http://sourceforge.net/projects/ontosfeeder
http://wordpress.org/extend/plugins/ontos-feeder/
http://ivan-herman.name/2009/12/12/rdfa-usage-spreading.../
http://www.mahalo.com/rdfa

458 A. Klebeck et al.

Fig. 2. The context information
area is displayed next to the
WYSIWYG editor and allows to
navigate recursively to relevant
contextual information from the
Data Web

If an author requires additional information
about a particular entity, pointing at each an-
notation or thumbnail results in showing an ap-
propriate pop-up menu with further contextual
information. Each entity type provides different
context information depending on their source;
some of them are gathered from LOD providers
such as DBpedia or Freebase, and some are
coming directly from the OWS itself. While the
LOD providers are used to retrieve entity at-
tributes like age, nationality or area, the OWS
provides information from the Ontos Knowl-
edge Base comprised of information about the
relationships to other entities (persons or or-
ganisations), related news articles as well as a
summarizing entity report. Clicking on the re-
lated persons or organisations link in the pop-
up menu refreshes the context information area
with the thumbnails of that entities, so that the
author can navigate recursively through all the
relationships.

The Ontos Knowledge Base contains aggre-
gated information from various sources. The
URIs assigned to the extracted entities by the
Web Service are Ontos Entity Identifiers (OEI).
OEIs are de-referencable identifiers and are con-
nected via owl:sameAs links to other Linked
Data entities. Therefore, additional information
from other Linked Data providers such as DB-
pedia and Freebase is presented in the entity
context as well.

3 Architecture

While the server side consists of the OWS, the client side consists of the Core
system and the CMS - adapters (see Figure 3). The core is CMS independent
and can be embedded into a specific CMS by an appropriate adapter. Currently
adapters for Drupal and WordPress are available.

Ontos Web Service (OWS) The Core system sends queries to the OWS. The On-
tos Knowledge Base contains aggregated and refined information from around 1
million documents mainly from English online news. The Ontos Semantic Engine
(NLP) extracts entities and their relationships from the text and disambiguates
entities based on significance[1]. The significance is a complex measure based on
the position of the occurrence in the text, the overall number of occurrences and

Ontos Feeder 459

Fig. 3. Ontos Feeder overall architecture

the number of connected events and facts extracted from the text. The resulting
information is returned to the Ontos Feeder.

Ontos Feeder. The Ontos Feeder currently supports requesting information for
persons, organisations, locations and products, but can generally be extended to
handle any of the entity types supported by the OWS. The user can configure,
which types of entities the OWS should try to recognize in the provided text.
The retrieval of each single piece of contextual information is encapsulated as a
separate task by Ontos Feeder to increase the flexibility. The task engine sup-
ports task chaining, so if information could not be retrieved from a particular
Linked Data source, it is requested from another one. The type of presented
contextual information depends on the type of the recognized entity. The con-
textual information of a Person for example can consist of the age, nationality,
status roles, connections to other persons and organisations, latest articles about
this person, a Wikipedia article, a New York Times article, the personal home-
page and a collection of different public social network profiles from Twitter or
Facebook. Information about connections to other people and organisations, the
status roles and the relevant articles are collected from the OWS. As every sin-
gle information piece is requested by its own task, the variety of the presented
contextual information can easily be adapted to personal needs.

4 Embedding Metadata

The OWS is able to annotate plain text as well as markup data such as HTML
documents. The result is returned as a stand-off annotation, either in the

460 A. Klebeck et al.

form of start and end positions for text or an XPath expression for XML markup.
A specialized annotation algorithm is used to: 1. highlight the annotations in the
source HTML document in the editors. and 2. insert the annotations inline (as
e.g. RDFa) into the HTML source of the article. Because all of the supported
CMS WYSIWYG editors (currently FCKEditor and TinyMCE5) are capable
of returning the current article as plain text, Ontos Feeder utilizes the Web
Service in plain-text mode. As each of the editors have a different API, a special
abstraction layer is put in front of the annotation algorithm to make it editor-
independent. Furthermore, to make the annotation algorithm work faster for a
plain-text document, all annotations are sorted in descended order and inserted
bottom-up into the text. This avoids the recalculation of the annotation positions
as compared to the top-down insertion. The annotation algorithm is capable
of dealing with the entire supported semantic markup languages (RDFa and
Microformats) and allows for annotation highlighting and on-the-fly binding of
the contextual pop-up menu (see Figure 1).

5 Related Work and Summary

In recent years, several services have been published for suggesting annotations
of tags to users. Among those services, OpenCalais and Zemanta are highly
related to the Ontos Feeder as they also provide CMS integrations6. While Ze-
manta focuses on provide tag and link suggestions only, OpenCalais additionally
extracts facts from the written text of the article. In contrast, the focus of the
OWS is to provide disambiguated additional information, which is useful for the
author. The data comes from the Ontos Knowledge Base and has been aggre-
gated and fused from several sources. Also, the contribution of the Ontos Feeder,
go well beyond the provision of a mere wrapper of a data service as it has a flex-
ible, extensible architecture, is open-source and provides a context information
area with recursive Linked Data navigation that aids the author. It transform
stand-off annotations into inline RDFa and thus allows for a more fine-grained
annotation method. Future work will be devoted to the area of co-referencing[2]
for example by using OKKAM. Furthermore, it is planned, that users are able
to define own vocabularies for named entity recognition, thus personalizing the
annotation process.

References

1. Efimenko, I., Minor, S., Starostin, A., Drobyazko, G., Khoroshevsky, V.: Providing
Semantic Content for the Next Generation Web. In: Semantic Web, pp. 39–62.
InTech (2010)

2. Glaser, H., Jaffri, A., Millard, I.: Managing co-reference on the semantic web. In:
WWW 2009 Workshop: Linked Data on the Web, LDOW 2009 (April 2009)

5 http://ckeditor.com/ and http://tinymce.moxiecode.com/
6 http://drupal.org/project/[opencalais|zemanta]

http://ckeditor.com/
 http://tinymce.moxiecode.com/
http://drupal.org/project/[opencalais|zemanta]

wayOU – Linked Data-Based Social Location

Tracking in a Large, Distributed Organisation

Mathieu d’Aquin, Fouad Zablith, and Enrico Motta

Knowledge Media Institute, The Open University, Milton Keynes, UK
{m.daquin,f.zablith,e.motta}@open.ac.uk

Abstract. While the publication of linked open data has gained momen-
tum in large organisations, the way for users of these organisations to en-
gage with these data is still unclear. Here, we demonstrate a mobile appli-
cation called wayOU (where are you at the Open University) which relies
on the data published by The Open University (under data.open.ac.uk)
to provide social, location-based services to its students and members of
staff. An interesting aspect of this application is that, not only it con-
sumes linked data produced by the University from various repositories,
but it also contributes to it by creating new connections between people,
places and other types of resources.

1 Introduction

The Open University1 is a large UK University dedicated to distance learning.
Apart from its main campus, it is distributed over 13 regional centres across the
country. As part of the LUCERO project (Linking University Content for Educa-
tion and Research Online2), the Open University is publishing linked open data,
concerning people, publications, courses, places, and open educational material
from existing institutional repositories and databases, under data.open.ac.uk.3

While the collection, conversion, exposure and maintenance of linked data
in large organisations is slowly becoming easier, it is still an issue to get users
of these organisations to engage with the data in a way suitable to them and
that could also benefit to re-enforcing the data. Many ‘applications’ of linked
data mostly concern the visualisation or exploration of available data for a par-
ticular purpose (see for example [1]), especially in mobile applications (see for
example [2] or [3]), or the use of linked data to accomplish a specific task (e.g.,
recommendation in DBrec [4]). Our goal is to provide features to users that not
only make use of linked data, but which usage would contribute in creating new
connections in the data, including currently implicit relations between people
and places.

We demonstrate wayOU (where are you at the Open University): a mobile
application developed for the Google Android platform4 that allows users of the
1 http://www.open.ac.uk
2 http://lucero-project.info
3 http://data.open.ac.uk
4 http://www.android.com

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 461–465, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.open.ac.uk
http://lucero-project.info
http://data.open.ac.uk
http://www.android.com

462 M. d’Aquin, F. Zablith, and E. Motta

Open University (members of staff and students) to keep track of the places in
which they have been on the main campus and the regional centres, and connect
this information to other aspects of their interaction with the organisation (their
workplace, meetings with colleagues, tutorials, etc.) This application relies on
the data available through the SPARQL endpoint of data.open.ac.uk to get in-
formation regarding places (buildings, floors) and people (identifier, network), as
well as the linked data published by the UK government regarding locations in
the UK (especially, data.ordnancesurvey.co.uk5). More importantly, it generates
and keeps track of information generated for each user regarding their current lo-
cation, usual workplace, history of visits at the Open University and the reasons
for these visits. In this way, it can be compared to the foursquare application6

working in a specific ‘corporate’ environment and allowing to declare and expose
more complex connections between users and places in this environment.

In the next section, we give a general overview of the structure of the wayOU
application and in Section 3, we give more details about the way users interact
with it. We discuss in Section 4 the future work and challenges we identified from
our experience in building a social, mobile application based on linked data.

2 The wayOU Android Application

An overview of the architecture of the wayOU application is presented in Fig-
ure 1. The application can run on any Android enabled device (with at least
Android OS 1.6 installed). This part of the application is mainly in charge of
the interaction between the application and the user. It does not store any in-
formation locally (apart from basic settings such as the user’s identifier). The
information used and produced by the application is manipulated through an
ad-hoc SPARQL client, accessing 2 SPARQL endpoints:

data.open.ac.uk provides an open SPARQL endpoint with information re-
garding the places in the Open University’s campus and regional centres,
especially regarding buildings and floors within buildings. It also contains
information regarding members of the Open University (especially publica-
tions and projects), as well as about other resources such as courses, au-
dio/video podcasts, open educational resources, etc. The SPARQL endpoint
from data.ordnancesurvey.co.uk is used to obtain information regarding the
location of buildings, based on their postcodes.7

A personal information store is used to store the information generated by
the application for each user, and to query it. It deploys a service to update
the store with RDF regarding the current location and activities of users
and a SPARQL endpoint which identifies the appropriate graph to query
depending on the identity of the user.

In addition, an option is available to export information from the private space
of the personal information store, to the public one of data.open.ac.uk.
5 http://data.ordnancesurvey.co.uk
6 http://foursquare.com
7 Postcode units in the UK identify small areas, often corresponding to a single street.

http://data.ordnancesurvey.co.uk
http://foursquare.com

wayOU – Linked Data-Based Social Location 463

Fig. 1. Overview of the architecture of the wayOU Android application

3 Interface and Demonstration

In this section, we quickly go through the mobile interface of the wayOU appli-
cation, as a way to explain its features and behaviour.

wayOU appears as a standard application on an Android-enabled mobile de-
vice. It does not require any setting other than the identifier of the user to work
(the OUCU, Open University Computer Username, which is assigned to every
member of staff and student of the University. See below).

The Locations tab is the main view of the ap-
plication. It allows to enter the postcode, build-
ing name and floor level where the user is cur-
rently located. The postcode is automatically set
to the closest postcode in which the Open Uni-
versity has buildings. Each field provides sugges-
tions for auto-completion based on relevant data
fetched from data.open.ac.uk: the building field
suggests buildings in the chosen postcode and
the floor field depends on the building field. In
this view, it is also possible to provide a rea-
son for attending a specific place. Predefined rea-
sons are given with auto-completion, and include
“Meeting with” somebody, “Giving a Tutorial”
for a course and “Attending a tutorial” for a
course. The second field provides values for auto-

completion from the list of courses at The Open University or the list of people
in the user’s network, depending on the chosen reason.

464 M. d’Aquin, F. Zablith, and E. Motta

The history of all the places attended by the
user is also displayed as a list in the Loca-
tions tab. In this list, the user can quickly check
whether he or she has already been in a given
place, using the provided summary (postcode,
building name, floor level) and the picture auto-
matically attached to each item in the list. Each
item links to a page describing the relationship
between the user and this particular location,
including the times he or she has attended it,
whether or not it is his/her workplace, and rea-
sons for attending otherwise.

The profile tab allows the user to connect the
location information generated from the appli-
cation to his/her identity at The Open Univer-
sity. The OUCU corresponds to the login of the
user on the OU network, and is used to generate
the URI identifying this particular user in the
data.open.ac.uk linked data space. The user is
also offered the possibility to declare his/her cur-
rent location as his/her workplace, as well as to
export the personal information generated by the
application into the data.open.ac.uk space. This
corresponds to exposing this information as pub-
lic, so that it can be reused, for example, by the
applications generating profile pages for members
of staff of the University.

The notion of network is included in the ap-
plication as a similar mechanism to the ones of
‘friends’ or ‘contacts’ in other social applications.
Here, an initial list of members of the social net-
work is populated from the list of collaborators of
the user, derived from the co-authors of his/her
papers, and people at the Open University work-
ing, or having worked, on the same projects. In
addition, new members of the network can be de-
rived based on the data generated by the applica-
tion, because of users attending the same meet-
ings or tutorials.

4 Conclusion, Future Work and Challenges

The wayOU application is currently being tested with selected users of the Open
University. It will be made progressively available to more users before being
fully opened, by the time of the conference. An interesting aspect of the wayOU

wayOU – Linked Data-Based Social Location 465

application is that it both relies on and contributes to a base of linked data in
a given organisation, and from which more information can be derived, possibly
leading to new applications (e.g., analysing the movement of people within the
organisation depending on their social network).

There are obvious challenges in building linked data-based mobile applica-
tions: while the mobile device is not required to realise complex computations,
the overhead created by communicating with SPARQL endpoints represents a
bottleneck. As the history of locations and the network of users grow, more
and more time is needed to obtain and transfer the information. This and other
challenges need be investigated in the future:
Dealing with complex privacy options. At the moment, the privacy options
permitted by the application are rather simple: everything is private unless ex-
plicitly exported to data.open.ac.uk. More complex settings would be desirable,
up to the possibility to define arbitrary complex access policies (for example:
“give access to my current location on the campus, but not the regional centres,
to people I have written papers with in the last 3 years”).
Integrating with other social platforms. An obvious next step for this
application is the integration with other social platforms, including for example
exporting the current location to Twitter8 or extending the user’s network based
on his/her Facebook9 account. The Open University has developed several social
network applications, including the Facebook course profile application10 which
could enhance and be enhanced by wayOU. Integrating such additional sources
of information requires more effort as they are not based on linked data, and
would make even more complex the privacy related issues described above.
A generic, reusable application. wayOU is developed specifically for users
at the Open University and relies on linked data resources present at the Open
University. However, adapting it for other organisations could be envisaged. Since
it is designed to use the specific resources, vocabularies and URI Schemes of
data.open.ac.uk, it is still unclear how much effort would be required.

References

1. Lehmann, J., Knappe, S.: DBpedia Navigator. In: ISWC Billion Triple Challenge
(2008)

2. Becker, C., Bizer, C.: DBpedia mobile: A location-enabled linked data browser. In:
Proceedings of Linked Data on the Web Workshop (LDOW 2008), Citeseer (2008)

3. van Aart, C., Wielinga, B., van Hage, W.R.: Mobile Cultural Heritage Guide:
Location-Aware Semantic Search. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010.
LNCS, vol. 6317, pp. 257–271. Springer, Heidelberg (2010)

4. Passant, A., Decker, S.: Hey! Ho! Let’s Go! Explanatory Music Recommendations
with dbrec. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt,
H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 411–415.
Springer, Heidelberg (2010)

8 http://twitter.com
9 http://facebook.com

10 http://www.facebook.com/apps/application.php?

api key=06d85b85540794e2fd02e9ef83206bf6

SeaFish: A Game for Collaborative and Visual

Image Annotation and Interlinking

Stefan Thaler1, Katharina Siorpaes1, David Mear3,
Elena Simperl1,2, and Carl Goodman3

1 University of Innsbruck, STI-Innsbruck, Innsbruck, Austria
firstname.secondname@sti2.at

2 Karlsruhe Institute of Technology, AIFB, Karlsruhe, Germany
firstname.secondname@kit.edu

3 Pepper’s Ghost Productions, London, UK
firstname.secondname@peppersghost.com

Abstract. Many tasks in semantic content creation, from building and
aligning vocabularies to annotation or data interlinking, still require hu-
man intervention. Even though automatic methods addressing the afore-
mentioned challenges have reached a certain level of maturity, user input
is still required at many ends of these processes. The idea of human com-
putation is to rely on the human user for problems that are impossible
to solve for computers. However, users need clear incentives in order to
dedicate their time and manual labor to tasks. The OntoGame series
uses games to hide abstract tasks behind entertaining user interfaces
and gaming experiences in order to collect knowledge. SeaFish is a game
for collaborative image annotation and interlinking without text. In this
latest release of the OntoGame series, players have to select images that
are related to a concept that is represented by an image (from DBpedia)
from a collection of images (produced by querying flickrTM wrappr with
the respective concept). The data collected by SeaFish is published as
Linked Data on the Web. In this paper we outline the SeaFish game and
demo.

Keywords: Games for semantic content creation, Image annotation,
Linked Open Data, multimedia interlinking.

1 Motivation

The automated interpretation and description of images is still a major challenge.
CAPTCHAs are still a prime example for a task that is trivial for a human user
but impossible for a computer [6], allowing the distinction between a human user
and a machine. The paradigm of human computation is also the foundation for
”games with a purpose” [4] which aim to exploit human intelligence for solv-
ing computationally difficult tasks by masquerading them as games. Thereby,
an abstract (knowledge acquisition or curation) task is not only hidden behind
an attractive, easy-to-understand user interface but users are also given incen-
tives to dedicate their time to solving the task. Playing, competition, and social

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 466–470, 2011.
� Springer-Verlag Berlin Heidelberg 2011

SeaFish 467

recognition are core motivational mechanisms of games. The OntoGame series
uses casual games in order to acquire human input for several semantic content
creation tasks, such as ontology building (e.g. the OntoPronto game), video an-
notation (e.g. the OntoTube game), or ontology alignment (e.g. the SpotTheLink
game).

In this paper we present the SeaFish game and describe its demo as planned
for ESWC 2011. SeaFish is the latest release of the OntoGame series. SeaFish is
a game for collaborative image annotation and interlinking without text. Play-
ers have to select images that are related to a concept that is represented by
an image (from DBpedia) from a collection of images (produced by querying
flickrTMwrappr1 with the respective concept). Players get points based on their
degree of consensus with the player community. The data collected by SeaFish
is published as Linked Data on the Web.

SeaFish does not involve any reading for annotation. It solely relies on images.
This means that the game can be played in a fast pace as reading takes more
time than just looking at a visual representation of a concept. Moreover, the
game is not constrained by language or reading limitations. The resulting data is
published as Linked Data and thus, SeaFish implements game-based multimedia
interlinking as described by Buerger and colleagues[2].

Related work. We sketch related work focusing on games for the creation of image
annotations. A comprehensive list of games for knowledge acquisition is available
at the INSEMTIVES homepage2. Luis von Ahn introduced the ESP game[7]
aka Google’s Image Labeler for annotating images. Additioinally, he created
other serious games that are published at the GWAP homepage3. PopVideo4

aims to label videos and Waisda5 allows players to tag live TV shows. Magic
Bullet[9] evaluates the robustness of Captchas, TagCaptcha[3] produces image
annotations as side product of the CAPTCHA process. Finally, Picture This 6 is
another game for annotating images, however, unlike the ESP game users don’t
create tags but have to decide on the best matching tag.

2 Collaborative and Game-Based Image Annotation

SeaFish SeaFish is a single player game where players have to fish related images
that are floating around. Users can play from the OntoGame website7 as either
registered user or as anonymous guest. Players may also login via Facebook by
visiting the OntoGame Facebook page8. After they clicked the SeaFish! button

1 flickrTM wrappr,http://www4.wiwiss.fu-berlin.de/flickrwrappr/
2 INSEMTIVES, http://www.insemtives.eu/games.php
3 Games with a Purpose, www.gwap.com
4 www.gwap.com/popvideo
5 Waisda, http://waisda.nl/
6 Picture This
7 OntoGame, http://www.ontogame.org/games
8 OntoGame Facebook page, http://apps.facebook.com/ontogame

468 S. Thaler et al.

Fig. 1. SeaFish - in game screen

the game starts. From there players may either get playing instructions or start
a game. Each game round is about a concept taken from DBpedia that is repre-
sented by an image. Players see this image on the right hand side. Additionally,
players see the result of an search for the concept on flickrTMwrappr, which
are floating through the main screen (see Figure 1). Players have 2 minutes to
mark those images as either related to the concept or unrelated to the concept.
They can do so by catching the images with the fishing rod and dragging them
either to the green basket (related) or the red basket (not related).

Players always obtain a small reward for catching an image. Generally, players
get more points depending on whether their decision is consensual with decisions
of the majority of other players. Additionally, the reward a player gets always
depends on their reliability as well as their level. When an image is caught a
new image appears in order to have less than ten images floating on the screen
at the same time. The game stops when all images have been fished or the time
is up. After each game round (see Figure 2) players can compare their answers
with the communitys answers as well as view statistics on accuracy and time.

To give an example of Seafish: in a game round the player is shown an image of
Blackberry (see Figure 1) on the right hand side (retrieved from DBpedia). As a
result of the query Blackberry on flickrTMwrappr, pictures are floating around
on the main screen. The task of the player is to select those image that are
related to the concept Blackberry(the berry) and those that are not by putting
images in the ”Discard” or ”Catch” baskets on the bottom of the screen.

SeaFish 469

Fig. 2. SeaFish - comparison screen

Data export. SeaFish exports annotations as RDF triples. In our first scenario
we create annotations of the form <image><http://xmlns.com/foaf/spec/depic-
tion><concept>as well as the inverse property. Our concepts are taken from
DBpedia plus follow the four Linked Open Data principles[1]. This means that
our data may be used to contribute to the Linked Open Data cloud without
being modified.

Our annotations are generated from stored answers in the following manner:
let si be an answer that states an image is related to a concept, i a number
greater than six, ri the reliability of the player giving the answer at the time of
the answer and n the number of total answers stored about an image. A player’s
reliability is a measurement of how accurate this player played in previous games.

3 Discussion and Outlook

Currently, three months after the initial release of SeaFish we have collected
feedback, implemented the proposed changes and re-released the game. A still
open issue is the lack of returning player. To counter this we have integrated
leveling mechanisms. We have integrated it on Facebook to profit from the so-
cial network effect. We are currently evaluating the outcome of these measures.
Besides, we also evaluate the effect of tweaking the rewarding function on the
quality of the generated annotations.

470 S. Thaler et al.

We also identified a possible extension of SeaFish: Ookaboo9 is an API that
links pictures to concepts from different Linked Open Data sources and makes
them searchable. SeaFish could on the one hand be used to verify the data
provided on Ookaboo. On the other hand it could also be used to provide new
image tags.

Another possibility to attract more players is a planned feature to allow users
to add their own category of concepts to play in the games.

4 Conclusion

At ESWC 2011 the audience of the demo players will be able to play the games
of the OntoGame series (including Seafish) and can see how and which data is
generated. In this paper, we have described the SeaFish game for collaborative
image annotation. We are currently collecting massive user input in order to
thoroughly evaluate the game by assessing the quality of generated data and the
user experience.

Acknowledgments

The work presented has been funded by the FP7 project INSEMTIVES under
EU Objective 4.3 (grant number FP7-231181).

References

1. Berners-Lee, T.: Linked data - design issues (2006)
2. Hausenblas, M., Troncy, R., Raimond, Y., Bürger, T.: Interlinking multimedia: How
to apply linked data principles to multimedia fragments. In: Linked Data on the Web
Workshop, LDOW 2009 (2009)

3. Morrison, D., Marchand-Maillet, S., Bruno, E.: Tagcaptcha: annotating images with
captchas. In: Proceedings of the ACM SIGKDDWorkshop on Human Computation,
HCOMP 2009, pp. 44–45. ACM, New York (2009)

4. Von Ahn, L.: Games with a purpose. IEEE Computer 29(6), 92–94 (2006)
5. Von Ahn, L.: Peekaboom: A Game for Locating Objects in Images (2006)
6. Von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard ai problems
for security (2003)

7. Ahn, L.v., Dabbish, L.: Labeling images with a computer game. In: CHI, pp. 319–326
(2004)

8. von Ahn, L., Ginosar, S., Kedia, M., Blum, M.: Improving Image Search with
PHETCH. In: IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP 2007, vol. 4, pp. IV-1209 –IV-1212 (2007)

9. Yan, J., Yu, S.-Y.: Magic bullet: a dual-purpose computer game. In: Proceedings of
the ACM SIGKDD Workshop on Human Computation, HCOMP 2009, pp. 32–33.
ACM, New York (2009)

9 Ookaboo, http://ookaboo.com/

The Planetary System: Executable Science,
Technology, Engineering and Math Papers

Christoph Lange, Michael Kohlhase, Catalin David, Deyan Ginev,
Andrea Kohlhase, Bogdan Matican, Stefan Mirea, and Vyacheslav Zholudev

Computer Science, Jacobs University Bremen, Germany
{ch.lange,m.kohlhase,c.david,d.ginev,a.kohlhase,

b.matican,s.mirea,v.zholudev}@jacobs-university.de

Abstract. Executable scientific papers contain not just layouted text
for reading. They contain, or link to, machine-comprehensible represen-
tations of the scientific findings or experiments they describe. Client-side
players can thus enable readers to “check, manipulate and explore the
result space" [1]. We have realized executable papers in the STEM do-
main with the Planetary system. Semantic annotations associate the
papers with a content commons holding the background ontology, the an-
notations are exposed as Linked Data, and a frontend player application
hooks modular interactive services into the semantic annotations.

1 Application Context: STEM Document Collections

The Planetary system [2] is a semantic social environment for document col-
lections in Science, Technology, Engineering and Mathematics (STEM). STEM
documents have in common that they describe concepts using mathematical
formulæ, which are composed from mathematical symbols – operators, func-
tions, etc. –, which have again been defined as more foundational mathematical
concepts in mathematical documents. Thus, there is a dynamically growing on-
tology of domain knowledge. The domain knowledge is structured along the
following, largely independent dimensions [3,4]: (i) logical and functional struc-
tures, (ii) narrative and rhetorical document structures, (iii) information on how
to present all of the former to the reader (such as the notation of mathematical
symbols), (iv) application-specific structures (e.g. for physics), (v) administrative
metadata, and (vi) users’ discussions about artifacts of domain knowledge.

We have set up Planetary instances for the following paradigmatic docu-
ment collections: (i) a browser for the ePrint arχiv [5], (ii) a reincarnation of the
PlanetMath mathematical encyclopledia [6] (where the name Planetary comes
from), (iii) a companion site to the general computer science (GenCS) lecture
of the second author [7,8], and (iv) an atlas of theories of formal logic [9]. This
list is ordered by increasing machine-comprehensibility of the representation and
thus, as explained below, by increasing “executability" of the respective papers.
All instances support browsing and fine-grained discussion. The PlanetMath and
GenCS collections are editable, as in a wiki1, whereas the arχiv and Logic Atlas
1 Planetary reuses technology of our earlier semantic wiki SWiM [10].

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 471–475, 2011.
© Springer-Verlag Berlin Heidelberg 2011

472 C. Lange et al.

corpora have been imported from external sources and are presented read-only.
We have prepared demos of selected services in all of these instances.

2 Key Technology: Semantics-Preserving Transformations

Documents published in Planetary become flexible, adaptive interfaces to a
content commons of domain objects, context, and their relations. This is achieved
by providing an integrated user experience through a set of interactions with
documents based on an extensible set of client- and server side services that draw
on explicit (and thus machine-understandable) representations in the content
commons. We have implemented or reused ontologies for all structures of STEM
knowledge ([4] gives an overview). Annotations of papers with terms from these
ontologies act as hooks for local interactive services. By translation, Planetary
makes the structural ontologies editable in the same way as the papers, so that
the community can adapt and extend them to their needs.

The sources of the papers are maintained in LATEX or the semantic mathemat-
ical markup language OMDoc [11]. For querying and information retrieval, and
interlinking with external knowledge – including discussions about concepts in
the papers, but also remote Linked Datasets –, we extract their semantic struc-
tural outlines to an RDF representation, which is accessible to external services
via a SPARQL endpoint and as Linked Data [8]. For human-comprehensible
presentation, we transform the sources to XHTML+MathML+SVG [8]. These
papers gain their “executability" from embedded semantic annotations: Content
MathML2 embedded into formulæ [13], and an RDFa subgraph of the above-
mentioned RDF representation embedded into XHTML and SVG.

The amount of semantic annotations depends on the source representation:
(i) The arχiv corpus – 500+K scientific publications – has LATEX sources, most of
which merely make the section structure of a document machine-comprehensible,
but hardly the fine-grained functional structures of mathematical formulæ, state-
ments (definition, axiom, theorem, proof, etc.), and theories. We have trans-
formed the papers to XHTML+MathML, preserving semantic properties like
formula and document structure [5]. (ii) The PlanetMath corpus is maintained
inside Planetary; it additionally features subject classification metadata and
semi-automatically annotated concept links [14], which we preserve as RDFa.
(iii) The GenCS corpus is maintained in STEX, a semantics-extended LATEX [15],
inside Planetary. STEX makes explicit the functional structures of formulæ,
statements, and theories, narrative and rhetorical structures, information on no-
tation, as well as – via an RDFa-like extensibility – arbitrary administrative and
application-specific metadata. This structural markup is preserved as Content
MathML and RDFa in the human-comprehensible output. In this translation,
OMDoc, an XML language semantically equivalent to STEX, serves as an inter-
mediate representation. (iv) The Logic Atlas is imported into Planetary from
an external OMDoc source but otherwise treated analogously to the GenCS
corpus.
2 Or the semantically equivalent OpenMath [12].

The Planetary System 473

3 Demo: Interactive Services and the Planetary API

Our demo focuses on how Planetary makes STEM papers executable – by
hooking interactive services into the annotations that the semantics-preserving
translations put into the human-comprehensible presentations of the papers. Ser-
vices are accessible locally via a context menu for each object with (fine-grained)
semantic annotations – e.g. a subterm of a formula –, or via the “InfoBar", as
shown in fig. 1. The menu has one entry per service available in the current
context; the InfoBar indicates the services available for the information objects
in each line of the paper. In the image on the right of fig. 1, we selected a sub-
term and requested to fold it, i.e. to simplify its display by replacing it with an
ellipsis. The FoldingBar on the left, similar to source code IDEs, enables folding
document structures, and the InfoBar icons on the right indicate the availability
of local discussions. Clicking them highlights all items with discussions; clicking
any of them yields an icon menu as shown in the center. The icon menu for
the discussion service allows for reporting problems or asking questions using
a STEM-specifically extended argumentation ontology [16]. The richer semantic
markup of the GenCS and Logic Atlas collections enable services that utilize log-
ical and functional structures – reflected by a different icon menu. Fig. 2 demon-
strates looking up a definition and exploring the prerequisites of a concept. The
definition lookup service obtains the URI of a symbol from the annotation of a
formula and queries the server for the corresponding definition. The server-side
part of the prerequisite navigation service obtains the transitive closure of all
dependencies of a given item and returns them as an annotated SVG graph.
Computational services make mathematical formulæ truly executable: The user
can send a selected expression to a computer algebra web service for evaluation
or graphing [17], or have unit conversions applied to measurable quantities [18].
Finally, besides these existing services, we will demonstrate the ease of realizing
additional services – within the Planetary environment or externally of it. The
API for services running as scripts in client-side documents is essentially defined

⇓

Fig. 1. Interacting with an arχiv article via FoldingBar, InfoBar, and localized dis-
cussions. On the right: localized folding inside formulæ

474 C. Lange et al.

Fig. 2. Definition Lookup and Prerequisites Navigation

by the in-document annotations, the underlying structural ontologies that are
retrievable from the content commons, the possibility to execute queries against
the content commons, and the extensibility of the client-side user interface.

4 Related Work
Like a semantic wiki, Planetary supports editing and discussing resources.
Many wikis support LATEX formulæ, but without fine-grained semantic anno-
tation. They can merely render formulæ in a human-readable way but not
make them executable. The Living Document [19] environment enables users
to annotate and share life science documents and interlink them with
Web knowledge bases, turning – like Planetary – every single paper into a
portal for exploring the underlying network. However, life science knowledge
structures, e.g. proteins and genes, are relatively flat, compared to the tree-
like and context-sensitive formulæ of STEM. State-of-the-art math e-learning
systems, including ActiveMath [20] and MathDox [21], also make papers exe-
cutable. However, they do not preserve the semantic structure of these papers
in their human-readable output, which makes it harder for developers to embed
additional services into papers.

5 Conclusion and Outlook
Planetary makes documents executable on top of a content commons backed
by structural ontologies. Apart from mastering semantic markup – which we
alleviate with dedicated editing and transformation technology – document au-
thors, as well as authors of structural ontologies, only need expertise in their own
domain. In particular, no system level programming is necessary: The semantic
representations act as a high-level conceptual interface between content authors
and the system and service developers. Even developers can realize consider-
ably new services as a client-side script that runs a query against the content

The Planetary System 475

commons. This separation of concerns ensures a long-term compatibility of the
knowledge hosted in a Planetary instance with future demands.

References

1. Executable Paper Challenge, http://www.executablepapers.com
2. David, C., et al.: eMath 3.0: Building Blocks for a social and semantic Web for

online mathematics & ELearning. In: Workshop on Mathematics and ICT (2010),
http://kwarc.info/kohlhase/papers/malog10.pdf

3. Kohlhase, A., Kohlhase, M., Lange, C.: Dimensions of formality: A case study
for MKM in software engineering. In: Autexier, S., Calmet, J., Delahaye, D., Ion,
P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS(LNAI),
vol. 6167, pp. 355–369. Springer, Heidelberg (2010)

4. Lange, C.: Ontologies and Languages for Representing Mathematical Knowledge
on the Semantic Web. Submitted to Semantic Web Journal,
http://www.semantic-web-journal.net/underreview

5. arXMLiv Build System, http://arxivdemo.mathweb.org
6. PlanetMath Redux, http://planetmath.mathweb.org
7. Kohlhase, M., et al.: Planet GenCS, http://gencs.kwarc.info
8. David, C., Kohlhase, M., Lange, C., Rabe, F., Zhiltsov, N., Zholudev, V.: Publish-

ing math lecture notes as linked data. In: Aroyo, L., Antoniou, G., Hyvönen, E.,
ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010.
LNCS, vol. 6089, pp. 370–375. Springer, Heidelberg (2010)

9. Logic Atlas and Integrator, http://logicatlas.omdoc.org
10. Lange, C.: SWiM – A semantic wiki for mathematical knowledge management. In:

Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 832–837. Springer, Heidelberg (2008)

11. Kohlhase, M.: OMDoc An open markup format for mathematical documents [Ver-
sion 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)

12. Open Math 2.0. (2004), http://www.openmath.org/standard/om20
13. MathML 3.0., http://www.w3.org/TR/MathML3
14. Gardner, J., Krowne, A., Xiong, L.: NNexus: Towards an Automatic Linker for

a Massively-Distributed Collaborative Corpus. IEEE Transactions on Knowledge
and Data Engineering 21.6 (2009)

15. Kohlhase, A., Kohlhase, M., Lange, C.: sTeX – A System for Flexible Formalization
of Linked Data. In: I-Semantics (2010)

16. Lange, C., et al.: Expressing Argumentative Discussions in Social Media Sites. In:
Social Data on the Web Workshop at ISWC (2008)

17. David, C., Lange, C., Rabe, F.: Interactive Documents as Interfaces to Computer
Algebra Systems: JOBAD and Wolfram|Alpha. In: CALCULEMUS, Emerging
Trends (2010)

18. Giceva, J., Lange, C., Rabe, F.: Integrating web services into active mathemat-
ical documents. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM
2009, Held as Part of CICM 2009. LNCS(LNAI), vol. 5625, pp. 279–293. Springer,
Heidelberg (2009)

19. García, A., et al.: Semantic Web and Social Web heading towards Living Docu-
ments in the Life Sciences. In: Web Semantics 8.2–3 (2010)

20. ActiveMath, http://www.activemath.org
21. MathDox Interactive Mathematics, http://www.mathdox.org

http://www.executablepapers.com
http://kwarc.info/kohlhase/papers/malog10.pdf
http://www.semantic-web-journal.net/underreview
http://arxivdemo.mathweb.org
http://planetmath.mathweb.org
http://gencs.kwarc.info
http://logicatlas.omdoc.org
http://www.openmath.org/standard/om20
http://www.w3.org/TR/MathML3
http://www.activemath.org
http://www.mathdox.org

Semantic Annotation of Images on Flickr�

Pierre Andrews, Sergey Kanshin, Juan Pane, and Ilya Zaihrayeu

Department of Information and Communication Technology
University of Trento Italy

{andrews,kanshin,pane,ilya}@disi.unitn.it

Abstract. In this paper we introduce an application that allows its
users to have an explicit control on the meaning of tags they use when
uploading photos on Flickr. In fact, this application provides to the users
an improved interface with which they can add concepts to photos in-
stead of simple free-text tags. They can thus directly provide semantic
tags for their photos that can then be used to improve services such as
search.

1 Introduction

The task of discovering the semantics of photos is still very difficult and hence,
automatic annotation with concepts “is widely recognized as an extremely diffi-
cult issue” [1]. It is thus preferable to ask the creators of the photos to annotate
them directly when they share them. As was demonstrated in [2], simple free-
text annotations are not sufficient for performing good indexing and leveraging
semantic search.

In this paper we discuss an extension to a popular open source photo uploader
for the Flickr1 website that allows the annotation of image files with semantic
annotations without extra involvement from the user. One of the feature of this
tool is the bootstrapping of semantic annotations by extraction of the intrin-
sic semantics contained in the context in which the images reside on the local
computer of the user before uploading them to Flickr by using the technology de-
scribed in [3]. The users can also manually provide semantic annotations through
an extended interface. These semantic annotations are linked to their meaning
in a knowledge organisation system such as Wordnet2.

The source code for the tools described in this paper is available freely at
https://sourceforge.net/projects/insemtives/.

2 Semantic Annotation Platform

The Semantic Annotation tool is built as an application on top of the INSEM-
TIVES platform. Interested readers are referred to [4] for details on this platform.
� This work has been partly supported by the INSEMTIVES project (FP7-231181,
see http://www.insemtives.eu).

1 http://www.flickr.com
2 http://wordnet.princeton.edu/

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 476–480, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.flickr.com
http://wordnet.princeton.edu/

Semantic Annotation of Images on Flickr 477

Fig. 1. Image properties with added concepts

The platform services are exposed through the INSEMTIVES platform API’s,
which can then be used by third party applications. The API’s are based on a
communication framework which represents a highly modular client-server archi-
tecture implemented using communication layer over JMS3 messaging protocol
as well as six other protocols, including REST4 and Web Service Notification.
The platform is divided in two main components: Structured Knowledge and
User and Communities. The Structured Knowledge component stores all arti-
facts in RDF following the semantic annotation model defined in [5]. The seman-
tic store relies on OWLIM5 while the initial lexical resource is based on Wordnet
and DBPedia. The User and Communities component contains user profiles and
is responsible for maintaining provenance information of the annotations and
resources in the platform.

3 Semantic Photo Annotation

The semantic annotation application has been developed as an extension to the
JUploadr6 uploading tool for Flickr. This tool has been chosen as it is open
source and developed in Java which is the main development language for the
INSEMTIVES platform and makes the tool easily multi-platform.

3 Java Messaging Service, see http://java.sun.com/products/jms/
4 http://en.wikipedia.org/wiki/Representational_State_Transfer
5 http://www.ontotext.com/owlim/
6 http://www.juploadr.org/

http://java.sun.com/products/jms/
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.ontotext.com/owlim/
http://www.juploadr.org/

478 P. Andrews et al.

jUploadr allows the user to queue photos for uploading on Flickr and set their
properties (see Figure 1). In particular, the tags, description and title, which are
the main metadata stored and displayed by the Flickr website.

3.1 Semi-automatic Semantic Annotation

Concept Tagging The INSEMTIVES Uploadr tool will try to understand where
the users have stored their photos and automatically add tags to them. For in-
stance, if the users have stored their photos in the folder: . . . /Pictures/Trips/
Trentino/Hike to Bondone-10-01-10/IMG 0001.jpg then the software will un-
derstand that these were photos of a trip in the Trentino’s mountains and will
automatically propose relevant concepts (see Figure 1).

When a new photo is added to the upload batch, the following processing
takes place:

1. clean and split the photo path in phrases,
2. send the ordered set of phrases to the INSEMTIVES platform,
3. receive a set of tokens for each phrase with the corresponding concepts,
4. attach each identified concept to the photo to be uploaded as a semantic

annotation.

The cleaning of the path is performed to remove generic parts of the path
that might not contain interesting semantic information for bootstrapping. The
cleaning is specific to that particular type of media and the one applied for
image files is the following: 1. if the path starts with the name of the user’s home
directory, drop the beginning. 2. if the path starts with /media or /mnt, drop
the beginning. 3. if the path contains the word ”picture(s)”, ”Media”, ”Photos”
drop anything on the left of that word. Including that word. 4. treat as spaces.

Each section of the path (between path separators) is treated as a phrase –
i.e., a short sentence made of related tokens. The set of phrases in the path is sent
in an ordered way to the NLP service to be used as a context for disambiguation.
For instance, “Hike to Bondone” will be treated in the context of “Trip” and thus
“hike” will be disambiguated to “a long walk usually for exercise or pleasure”
instead of “the amount a salary is increased”7(see Figure 1).

These special tags have a “meaning” (or “semantics”) attached to them, a
summary of that meaning is always displayed next to the concept and if the user
hovers the mouse over one of them, it’s definition is displayed (see Figure 1).

Location Tagging. In the “geo” tab of the properties window for a photo, the user
can specify where the photo was taken. Once a location is specified for a photo, the
user can press the “Find concepts” button to ask the INSEMTIVES tool to find
automatically new concepts that relate to the location where the photo was taken
by looking at popular terms alreadyused for this location onFlickr. These concepts
will then be added to the list of semantic tags in the “Photo Info” tab, where the
user can remove the ones that might not fit the photo.
7 These senses are taken from WordNet.

Semantic Annotation of Images on Flickr 479

Fig. 2. Specifying Location of an Image

3.2 Manual Semantic Annotation

The user can also provide manual semantic annotations. When typing a free-text
tag, the user is given a list of possible concepts from the platform knowledge
base. Each concept is disambiguated by a summary word (see Figure 3.2a) and
hovering it provides its definition.

a) Concept Completion b) Concept Disambiguation

For the concepts that were automatically proposed by the services described
earlier, the user can correct the disambiguation by selecting the right sense from
a drop-down list. Here also, a summary is shown and the user can display the
definition of the concept (see Figure 3.2b)) .

4 Semantic Search

On the Flickr website, photos can only be searched by keywords, hence, if a
photo is tagged with “cat” and another one with “dog”, these photos will not
be found when searching for “animal”.

However, if the photos were uploaded with the INSEMTIVES Uploadr and
were assigned the concepts “cat” and “dog”, then they can be retrieved with a
semantic search for “animal”. To do this, the INSEMTIVES Uploadr provides a
specific search interface as shown in Figure 3.

480 P. Andrews et al.

Fig. 3. Example of a Semantic Search. A search for “journey” found photos about a
“trip”.

5 Demonstration

The goal of the demonstration will be to show the extension of the standard
open source jUploadr application with the specific semantic annotation tools.
The demonstration will be split in two main scenarios:
Annotation of Photos the new tools for semantic annotation of images will be

demonstrated in a scenario showing the use of automatic concept extraction
from the local context, recommendation of concepts from the location and
manual input of concepts to annotate a photo.

Semantic Search for Photos once some photos have been annotated and up-
loaded on Flickr, we will demonstrate the semantic search tool that is able
to retrieve photos, no only on the tags attached to them, but also on the
concepts used for annotation, thus finding related photos by mapping syn-
onymous terms to the same concept and by reasoning about the subsumption
relationship between concepts.

The visitors will also be shown how to download and install the tool for their
own use with their Flickr accounts so that they can upload ESWC’11 photos
with semantic annotations.

References

1. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends
of the new age. ACM Comput. Surv. 40, 5:1–5:60 (2008)

2. Andrews, P., Pane, J., Zaihrayeu, I.: Semantic disambiguation in folksonomy: a case
study. In: Bernardi, R., Chambers, S., Gottfried, B., Segond, F., Zaihrayeu, I. (eds.)
Advanced Language Technologies for Digital Libraries. LNCS Hot Topic subline.
Springer, Heidelberg (2011)

3. Zaihrayeu, I., Sun, L., Giunchiglia, F., Pan, W., Ju, Q., Chi, M., Huang, X.: From
web directories to ontologies: Natural language processing challenges. In: Aberer,
K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika,
P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC
2007 and ISWC 2007. LNCS, vol. 4825, pp. 623–636. Springer, Heidelberg (2007)

4. Siorpaes, K., Konstantinov, M., Popov, B.: Requirement analysis and architectural
design of semantic content management platform. Technical report, Insemtives.eu
(September 2009)

5. Andrews, P., Zaihrayeu, I., Pane, J., Autayeu, A., Nozhchev, M.: Report on the
refinement of the proposed models, methods and semantic search. Technical report,
Insemtives.eu (November 2010)

FedX: A Federation Layer for Distributed Query

Processing on Linked Open Data

Andreas Schwarte1, Peter Haase1, Katja Hose2,
Ralf Schenkel2, and Michael Schmidt1

1 fluid Operations AG, Walldorf, Germany
2 Max-Planck Institute for Informatics, Saarbrücken, Germany

Abstract. Driven by the success of the Linked Open Data initiative
today’s Semantic Web is best characterized as a Web of interlinked
datasets. Hand in hand with this structure new challenges to query
processing are arising. Especially queries for which more than one data
source can contribute results require advanced optimization and evalua-
tion approaches, the major challenge lying in the nature of distribution:
Heterogenous data sources have to be integrated into a federation to
globally appear as a single repository. On the query level, though, tech-
niques have to be developed to meet the requirements of efficient query
computation in the distributed setting. We present FedX, a project which
extends the Sesame Framework with a federation layer that enables ef-
ficient query processing on distributed Linked Open Data sources. We
discuss key insights to its architecture and summarize our optimization
techniques for the federated setting. The practicability of our system will
be demonstrated in various scenarios using the Information Workbench.

1 Introduction

Motivated by the ongoing success of the Linked Open Data initiative and the
growing amount of semantic data sources available on the Web, new approaches
to query processing are emerging. While query processing in the context of RDF
is traditionally done locally using centralized stores, recently one can observe
a paradigm shift towards federated approaches which can be attributed to the
decentralized structure of the Semantic Web. The Linked Open Data cloud -
representing a large portion of the Semantic Web - comprises more than 200
datasets that are interlinked by RDF links. In practice many scenarios exist
where more than one data source can contribute information, making query
processing more complex. Contrary to the idea of Linked Data, centralized query
processing requires to copy and integrate relevant datasets into a local repository.
Accounting for the structure, the natural approach to follow in such a setting is
federated query processing over the distributed data sources.

While there exist efficient solutions to query processing in the context of RDF
for local, centralized repositories [7,5], research contributions and frameworks for
distributed, federated query processing are still in the early stages. In practical

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 481–486, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

482 A. Schwarte et al.

terms the Sesame framework in conjunction with AliBaba1 is one possible sample
solution allowing for federations of distributed repositories and endpoints. How-
ever, benchmarks have shown poor performance for many queries in the federated
setup due to the absence of advanced optimization techniques [6]. From the re-
search community DARQ [9] and Networked Graphs [10] contribute approaches
to federated SPARQL queries and federated integration. Since both require pro-
prietary extensions to languages and protocols which are not supported by most
of today’s endpoints, they are not applicable in practical environments.

In this demonstration paper we present FedX, a practical framework for trans-
parent access to data sources through a federation. The framework offers efficient
query processing in the distributed setting, while using only protocols and stan-
dards that are supported by most of today’s data sources.

In the following we will describe the FedX system and give a demonstration
of its practical applicability in the Information Workbench. In section 2 we give
some insights into the federation layer. Next, in section 3 we present the demon-
stration scenario. Finally, we conclude with some remarks on future work.

2 FedX - Design and System Overview

FedX2 is being developed to provide an efficient solution for distributed query
processing on Linked Open Data. It is implemented in Java and extends the
Sesame framework with a federation layer. FedX is incorporated into Sesame
as a SAIL (Storage and Inference Layer), which is Sesame’s mechanism for al-
lowing seamless integration of standard and customized RDF repositories. The
underlying Sesame infrastructure enables heterogeneous data sources to be used
as endpoints within the federation. FedX implements the logics for optimization
and efficient execution of the query in the distributed setting.

Figure 1 shows the architecture of an application built on top of FedX. The
application layer provides the frontend to the query processing engine and is
necessary for any kind of interaction with the federation. We decided to employ
the Information Workbench [8] as such for our demonstration (see section 3).
However, any other application can be used as well by utilizing the Sesame API.

The second layer is composed of the Sesame Framework and provides the
basic infrastructure for the query processing engine. In particular this includes
facilities for query parsing, Java mappings, I/O components, and the API for
client interaction.

The federation layer is implemented as an extension to Sesame in form of
a SAIL and constitutes FedX. FedX utilizes the basic Sesame infrastructure de-
scribed above, and adds the necessary functionality for data source management,
endpoint communication and - most importantly - optimizations for distributed
query processing. Data sources can be added to a FedX federation in form of any
repository mediator, where the latter means a supported Sesame repository im-
plementation. Standard implementations are provided for local, native Sesame
1 http://www.openrdf.org/doc/alibaba/2.0-beta4/
2 FedX project page: http://iwb.fluidops.com/FedX

FedX 483

Information Workbench

Sesame
Framework

FedX:
Federation

Layer

Data
Sources

Application
Layer

Query Processing Infrastructure (Parsing, Java Mappings, I/O, Public API)

SPARQL
Endpoint

Native
Repository

Custom
Repository

HTTP API API

Optimizers
Statement Sources
Groupings & Filter

Join Order

Statistics + Cache
Variable Counting

Infrastructure
Endpoint Management

Concurrency
Evaluation Logic

Sesame API

Fig. 1. FedX System Overview

repositories as well as for remote SPARQL endpoints. Furthermore custom medi-
ators can be integrated by implementing the appropriate Sesame interface. With
these mediators different types of federations are possible: purely local ones con-
sisting of native, local Sesame repositories, endpoint federations or hybrid forms.

Federated query processing in FedX is comprised of the following steps. First,
a global query is formulated against a federation of data sources. The global
query is then parsed and optimized for the distributed setting. In particular it is
split into local subqueries that can be answered by the individual data sources.
Results of these local queries are merged in the federator and finally returned
in an aggregated form. The whole process is transparent for the user, i.e. data
appears to be virtually integrated in a single RDF graph.

Most crucial to the performance of such a query processing engine is the
use of optimization techniques. Especially in the federated, distributed setting
it is essential to apply new approaches to reduce the number of requests to
the endpoints. Besides various generic techniques, FedX integrates some more
sophisticated optimizations for the distributed environment. The combination
of our applied join order optimization and the grouped subqueries reduce the
number of intermediate results and requests tremendously, and are thus the
major contributions for improving query performance in the distributed setting.
The following listing gives an overview.

• Statement sources: Prior to query evaluation, all statements of the given
SPARQL query are examined for their relevant data sources to avoid unnec-
essary communication during query processing.

• Filter pushing: SPARQL filter expressions are pushed down whenever pos-
sible to allow for early evaluation.

• Parallel processing: Concurrency is exploited by means of multithreaded
execution of join and union computations.

484 A. Schwarte et al.

• Join order: Join order tremendously influences performance since the number
of intermediate results determines overall query runtime. In FedX the vari-
able counting technique proposed in [3] supplemented with various heuristics
is used to estimate the cost for each join. Following a greedy approach the
joins are then executed in ascending order of cost.

• Bound joins: To reduce the number of requests and thus the overall runtime,
joins are computed in a block nested loop join.

• Groupings: Statements which have the same relevant data source are co-
executed in a single SPARQL query to push joins to the particular endpoint.

First benchmarks with FedBench3 indicate a significant improvement of query
performance compared to existing solutions4. For many queries proposed in [6] a
performance gain of more than 90% can be achieved resulting in improvements
of an order of magnitude, timeouts do not occur any longer. This is in particular
due to the improved join order and the other above mentioned optimizations.

3 Demonstrating FedX in the Information Workbench

With the goal of illustrating the practicability of our system we provide a demon-
stration scenario using the previously discussed architecture. We employ the
Information Workbench for demonstrating the federated approach to query pro-
cessing with FedX. The Information Workbench is a flexible platform for Linked
Data application development and provides among others frontend facilities for
our UI as well as the integration with the backend, i.e. the query processing lay-
ers. In our demonstration we show a browser based UI allowing dynamic access
and manipulation of federations at query time as well as ad hoc query formula-
tion, then we execute the optimized query at the configured data sources using
FedX, and finally we present the query results in the platform’s widget based
visualization components. The scenario steps from the user’s point of view are
summarized in the following and illustrated in figure 2.

1. Linked Open Data discovery. Data sources can be visually explored and
discovered using a global data registry.

2. Federation setup. The federation is constructed and/or modified dynam-
ically on demand using a browser based self-service interface. Discovered
Linked Data repositories can be integrated into the federation with a single
click.

3. Query definition. A query can be formulated ad hoc using SPARQL or
selected from a subset of the FedBench queries. The predefined queries are
designed to match the domain-specific data sources and produce results.

3 FedBench project page: http://code.google.com/p/fbench/
4 For an initial comparison we employed the AliBaba extension for the Sesame frame-
work. To the best of our knowledge AliBaba provides the only federation layer avail-
able that does not require any proprietary extensions (e.g. SPARQL extensions).

FedX 485
1

Linked Open Data
Discovery

Visual Exploration of Data Sets

2
Self-Service

Federation Setup
Integrate discovered Linked Data

4
Query Execution &

Result Presentation
Widget-based visualization in

the Information Workbench

3
Query Definition

Ad hoc query formulation
using SPARQL

Fig. 2. Illustration of the Demonstration Workflow

4. Query execution using FedX and result presentation. The formu-
lated query is submitted to the backend using the Sesame API and processed
within FedX. After the query is parsed by Sesame, FedX applies its optimiza-
tions and evaluates the query at the data sources given by the dynamically
configured federation. Finally, results are returned to the application layer
for presentation in the widget based visualization components provided by
the Information Workbench.

For the demonstration we use cross domain and lifescience datasets and queries
as proposed in the FedBench benchmark. Those collections span a subset of the
Linked Open Data cloud and are useful to illustrate practical applicability of
query processing techniques such as those of FedX. Since FedX improves query
response time compared to existing solutions, and moreover since the total run-
time for most queries is in a range that is considered responsive, it is a valuable
contribution for practical federated query processing.

4 Conclusion and Future Work

In this paper we have presented FedX and a practical demonstration within
the Information Workbench. FedX provides a flexible federation layer integrated
into the Sesame Framework which is suitable for practical application scenarios.
First evaluation benchmarks have indicated that response time and query per-
formance are such, that FedX in conjunction with a suitable application layer
can be considered a highly valuable framework for federated query processing in
today’s settings. In future versions more advanced optimization techniques will
be integrated into FedX to further improve query performance. Current ideas
include the use of caching, integration of statistics (e.g. voiD [2]), and finally
advanced grouping of subqueries to reduce the number requests.

References

1. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J.
(eds.) ISWC 2002. LNCS, vol. 2342, p. 54. Springer, Heidelberg (2002)

2. Alexander, K., et al.: Describing Linked Datasets – On the Design and Usage of
voiD. In: Proceedings of the Linked Data on the Web Workshop (2009)

486 A. Schwarte et al.

3. Stocker, M., et al.: SPARQL basic graph pattern optimization using selectivity
estimation. In: WWW, pp. 595–604. ACM, New York (2008)

4. Görlitz, O., et al.: Federated Data Management and Query Optimization for Linked
Open Data. In: New Directions in Web Data Management (2011)

5. Erling, O., et al.: Rdf support in the virtuoso dbms. In: CSSW (2007)
6. Haase, P., Mathäß, T., Ziller, M.: An Evaluation of Approaches to Federated Query
Processing over Linked Data. In: I-SEMANTICS (2010)

7. Neumann, T., Weikum, G.: Rdf-3X: a RISC-style engine for RDF. PVLDB 1(1)
(2008)

8. Haase, P., et al.: The Information Workbench - Interacting with the Web of Data.
Technical report, fluid Operations & AIFB Karlsruhe (2009)

9. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

10. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for sparql rules,
sparql views and rdf data integration on the web. In: WWW (2008)

Reasoning in Expressive Extensions

of the RDF Semantics

Michael Schneider

FZI Research Center for Information Technology, Karlsruhe, Germany
schneid@fzi.de

Abstract. The research proposed here deals with reasoning in expres-
sive semantic extensions of the RDF Semantics specification, up to the
level of OWL 2 Full. The work aims to conduct an in-depth study of
the distinctive features and the degree of implementability of OWL Full
reasoning. This paper describes the core problem, presents the proposed
approach, reports on initial results, and lists planned future tasks.

Keywords: Semantic Web, Reasoning, RDF Semantics, OWL Full.

1 Problem Statement and State of the Art

This research deals with reasoning in expressive semantic extensions of the RDF
Semantics specification [5]. The focus will specifically be on the ontology lan-
guage OWL 2 Full [9], which has been standardized by the World Wide Web
Consortium (W3C) in 2009 as an RDFS-compatible flavor of OWL that essen-
tially covers all other members of the RDF and OWL language families. Several
W3C languages have dependencies on OWL Full, including SKOS, RIF, and the
current revision of SPARQL (“SPARQL 1.1”). So far, however, OWL Full has
largely been ignored by the research community and no practically applicable
reasoner has been implemented.

The current situation may have a variety of reasons. The most frequently
heard technical argument against OWL Full reasoning is that OWL Full is
computationally undecidable with regard to key reasoning tasks [7]. However,
undecidability is a common theoretic problem in other fields as well, as for first-
order logic reasoning, which still has many highly efficient implementations with
relevant industrial applications [11]. Nevertheless, the undecidability argument
and other arguments have led to strong reservations about OWL Full and have
effectively prevented researchers from studying the distinctive features of the
language and from searching for methods to realize at least useful partial im-
plementations of OWL Full reasoning. But without a better understanding of
OWL Full reasoning and its relationship to other reasoning approaches it will
not even become clear what the added value of an OWL Full reasoner would be.

An OWL Full reasoner would make the full expressivity of OWL available
to unrestricted RDF data on the Semantic Web. A conceivable use case for
OWL Full reasoners is to complement RDF rule reasoners in reasoning-enabled

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 487–491, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

488 M. Schneider

applications operating on weakly-structured data to provide for significantly
enhanced reasoning power. RDF rule reasoners, such as those implementing the
OWL 2 RL/RDF rules [8], typically allow for efficient and scalable reasoning
on arbitrary RDF data, but their reasoning capabilities are intrinsically limited,
in particular with regard to terminological reasoning. OWL Full, on the other
hand, offers very high reasoning expressivity, roughly comparable to that of OWL
DL and even beyond. In a reasoning-enabled application, an RDF rule reasoner
could rapidly produce the bulk of easily derivable results, while more thorough
inferencing could be delegated to an OWL Full reasoner. Interoperability would
often be warranted, since OWL Full applies to arbitrary RDF graphs as well,
and is semantically fully compatible with RDFS and the OWL 2 RL/RDF rules.
In contrast, OWL DL reasoners cannot generally be expected to work reliably in
this use case due to the many syntactic restrictions and the differing semantics
of OWL DL compared to the RDF Semantics.

As said, only little effort has been spent in the implementation of OWL Full
reasoning so far. One general idea that can be found in the literature is to trans-
late the native semantics of an ontology language into a first-order logic (FOL)
axiomatisation and to use an automated theorem prover (ATP) for reasoning.
An early application of this approach to a preliminary version of RDF and a
precursor of OWL has been reported by Fikes et al. [1]. The focus of this work
was, however, more on identifying technical problems in the original language
specifications rather than on practical reasoning. Hayes [4] provides fairly com-
plete translations of RDF(S) and OWL 1 Full into Common Logic, but does
not report on any reasoning experiments. This gap is filled by Hawke’s reasoner
Surnia [3], which applies an ATP to an FOL axiomatisation of OWL 1 Full.
For unknown reasons, however, Surnia performed rather poorly on reasoning
tests [12]. Comparable studies have also been carried out for ATP-based OWL
DL reasoning, which have shown more promising results [10].

This research is going to conduct an in-depth study of the features and the
implementability of OWL Full reasoning. More precisely, the following research
questions will be investigated: Firstly, what are the distinctive features of OWL 2
Full compared to other approaches used for Semantic Web reasoning? Secondly,
to which degree and how can OWL 2 Full reasoning be implemented?

2 Proposed Approach and Methodology

The investigation of the two research questions will be carried out in the form
of a feature analysis and an implementability analysis.

The goal of the feature analysis is to create a systematic and comprehen-
sive catalogue of distinctive pragmatic features of OWL 2 Full. Both syntactic
and semantic aspects of the language will be taken into account. A feature will
be called distinctive, if it is not supported by either OWL 2 DL or by typi-
cal RDF rule reasoners, as those implementing the OWL 2 RL/RDF rules. For
example, a distinctive syntactic-aspect feature might be the ability to assert a
disjointness axiom between two annotation properties (as for SKOS lexical la-
bels), while a distinctive semantic-aspect feature might be the ability to draw

Reasoning in Expressive Extensions of the RDF Semantics 489

logical conclusions from such an axiom; neither is supported by OWL 2 DL. For
each identified feature, a precise description, a motivation, an explanation for its
distinctiveness, and one or more concrete examples will be given. Identification
of the features may make use of any kind of source, including literature, ontolo-
gies, forum discussions, or technical aspects of the language. For each candidate
feature, concrete evidence will be searched in order to support its validity.

The implementability analysis will concentrate on studying the FOL trans-
lation approach, as mentioned in Sec. 1. This approach has the advantage that
it applies to arbitrary extensions of the RDF Semantics and it enjoys strong and
mature reasoning tool support through existing ATPs. The idea is to create a
corresponding FOL formula for every model-theoretic semantic condition of the
OWL 2 Full semantics. For example, the semantic condition for class subsump-
tion, as given in Sec. 5.8 of [9], can be translated into the FOL formula

∀c, d : iext(rdfs:subClassOf, c, d)⇔ ic(c) ∧ ic(d) ∧ ∀x : [icext(c, x)⇒ icext(d, x)] .

An RDF triple ‘:s :p :o’ is mapped to an atomic FOL formula ‘iext(p, s, o)’.
An RDF graph is translated into a conjunction of such ‘iext’ atoms, with ex-
istentially quantified variables representing blank nodes. An entailment query
is represented by the conjunction of the OWL Full axiomatisation, the transla-
tion of the premise graph, and the negated translation of the conclusion graph.
Entailment checking can then be performed by means of an ATP.

The implementability analysis will be based on a prototypical reasoner that
is going to be built from an ATP, an FOL axiomatisation of the OWL 2 Full
semantics, and a converter for translating RDF graphs into FOL formulas. The
reasoner will then be evaluated based on the identified distinctive OWL Full
features. This will be done by using the created concrete feature examples as test
cases for conformance and performance testing of the parsing and the reasoning
capabilities of the reasoner. Conversely, this method will help ensuring that the
identified distinctive features will be technically valid. The evaluation results will
be compared to those for OWL DL reasoners and RDF rule reasoners.

To the author’s knowledge, the proposed research will be the first in-depth
study of the features and the implementability of OWL 2 Full reasoning. No
analysis of the distinctive pragmatic features of OWL 2 Full has been done so
far. Also, there has been no rigorous analysis of OWL 2 Full reasoning based on
the FOL translation approach yet.

3 Current Status and Initial Results

The syntactic-aspect feature analysis has been partially completed for the
OWL 1 subset of OWL 2 Full. This work resulted in a catalogue of 90 features
that have been grouped into 14 categories. The features were often motivated by
data on the public Semantic Web. Example ontologies for all the features were
used in the EU project SEALS (http://seals-project.eu) as test cases for
the evaluation of ontology engineering tools. Project deliverable D10.3 reports
on various problems that have been observed when using the OWL DL-centric
OWL API (http://owlapi.sourceforge.net) with these test cases.

http://seals-project.eu
http://owlapi.sourceforge.net

490 M. Schneider

Table 1. Results for a test suite of 32 characteristic OWL Full conclusions

Reasoner / Mode Success Failure Unknown System Error

Pellet 2.2.2 / OWL-API 3.1 9 22 0 1
BigOWLIM 3.4 / owl2-rl 9 23 0 0
iProver 0.8 / all OWL Full axioms 28 0 4 0
iProver 0.8 / sufficient axioms only 32 0 0 0

For the semantic-aspect feature analysis, work on the development of
several reasoning test suites has been started. The test suites are designed accord-
ing to diverse criteria, such as language coverage, reasoning difficulty, and realism.
Oneof these test suites consists of “characteristic”OWL2Full conclusions frome.g.
meta-modeling, annotation properties, unrestricted use of complex
properties, and “vocabulary reflection”. They have been collected from forum dis-
cussions and other sources. The first two rows of Table 1 show the results of apply-
ing the test suite to the OWL 2 DL reasoner Pellet (http://clarkparsia.com/
pellet) and theOWL2RL/RDFrule reasonerOWLIM (http://ontotext.com/
owlim).Both reasoners succeeded on only a small fraction of the test suite, and they
did so conjointly only on two of the test cases.

For the implementability analysis, an FOL axiomatisation has been cre-
ated for a major fragment of the OWL 2 Full semantics, the main omission being
support for datatype reasoning. The used FOL dialect is the language for en-
coding TPTP problems (http://tptp.org). A converter from RDF graphs to
TPTP formulas has also been implemented. This enables the use of the OWL
Full axiomatisation with a large number of existing ATPs.

The third row of Table 1 shows the results from applying the same test suite
to the ATP iProver (http://code.google.com/p/iprover). When using the
complete OWL Full axiomatisation, iProver succeeded on most of the test cases,
but for a few test cases it did not terminate within a time limit of 300 seconds.
Further analysis suggested that this issue may be due to the large number of
complex OWL 2 Full axioms. The complete axiomatisation was then, separately
for each test case, manually reduced to small sub-axiomatisations that were just
sufficient to entail the expected result. This allowed iProver to succeed on all
test cases (fourth row). In this scenario, reasoning typically finished within a
few hundredth of a second on a standard personal computer, compared to often
several seconds for the complete axiomatisation. These and additional results
from experiments concerning OWL 2 Full language coverage, scalability and
model-finding have been submitted to CADE 2011.

4 Conclusions and Future Work

This paper proposed a first in-depth study of the distinctive features and the
degree of implementability of OWL 2 Full reasoning. First results indicate that
one can use ATPs and an FOL axiomatisation of the OWL 2 Full semantics for
genuine OWL Full reasoning beyond the capabilities of typical RDF rule and
OWL DL reasoners. The approach is flexible enough to implement arbitrary
extensions of the RDF Semantics or to add features such as rule-style reasoning.

http://tptp.org
http://code.google.com/p/iprover

Reasoning in Expressive Extensions of the RDF Semantics 491

It has been observed that acceptable reasoning performance can often only be
achieved by reducing the whole OWL Full axiomatisation to a small sufficient
sub-axiomatisation. A next step will therefore be to search for an automated
method to eliminate redundant axioms with regard to the given input ontology.

So far, the implementability analysis was restricted to entailment and incon-
sistency checking. To fulfil the discussed use case of complementing RDF rule
reasoners in reasoning-enabled applications, OWL Full reasoners should also
support flexible query answering on arbitrary RDF data. This will specifically
be needed to realize the OWL 2 RDF-Based Semantics entailment regime of
SPARQL 1.1 [2]. Some ATPs have been reported to offer query answering on
FOL knowledgebases [6]. It will be analyzed to what extent these capabilities
can be exploited for OWL Full query answering.

For the syntactic-aspect feature analysis, which has already been finished for
OWL 1 Full, the remaining work will be to extend the analysis to the whole
of OWL 2 Full. The semantic-aspect feature analysis is in a less-complete state
and still requires the development of a feature categorization similar to that
of the syntactic-aspect feature analysis. The started work of building reasoning
test suites will be continued and will eventually lead to a collection of concrete
examples for the still to-be-identified semantic-aspect features.

References

1. Fikes, R., McGuinness, D., Waldinger, R.: A First-Order Logic Semantics for Se-
mantic Web Markup Languages. Tech. Rep. KSL-02-01, Knowledge Systems Lab-
oratory, Stanford University, Stanford, CA 94305 (January 2002)

2. Glimm, B., Ogbuji, C. (eds.): SPARQL 1.1 Entailment Regimes. W3C Working
Draft (October 14, 2010)

3. Hawke, S.: Surnia (2003), http://www.w3.org/2003/08/surnia
4. Hayes, P.: Translating Semantic Web Languages into Common Logic (July 18,
2005), http://www.ihmc.us/users/phayes/CL/SW2SCL.html

5. Hayes, P. (ed.): RDF Semantics. W3C Recommendation (February 10, 2004)
6. Horrocks, I., Voronkov, A.: Reasoning Support for Expressive Ontology Languages
Using a Theorem Prover. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS,
vol. 3861, pp. 201–218. Springer, Heidelberg (2006)

7. Motik, B.: On the Properties of Metamodeling in OWL. Journal of Logic and
Computation 17(4), 617–637 (2007)

8. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2
Web Ontology Language: Profiles. W3C Recommendation (October 27, 2009)

9. Schneider, M. (ed.): OWL 2Web Ontology Language: RDF-Based Semantics. W3C
Recommendation (October 27, 2009)

10. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using Vampire to Reason
with OWL. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC
2004. LNCS, vol. 3298, pp. 471–485. Springer, Heidelberg (2004)

11. Voronkov, A.: Automated Reasoning: Past Story and New Trends. In: Proc. IJCAI
2003, pp. 1607–1612 (2003)

12. W3C WebOnt OWL Working Group: OWL 1 Test Results (March 9, 2004),
http://www.w3.org/2003/08/owl-systems/test-results-out

http://www.w3.org/2003/08/surnia
http://www.ihmc.us/users/phayes/CL/SW2SCL.html
http://www.w3.org/2003/08/owl-systems/test-results-out

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 492–496, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Personal Semantics: Personal Information Management
in the Web with Semantic Technologies

Salman Elahi

Knowledge Media Institute (KMi), The Open University, UK
s.elahi@open.ac.uk

Abstract. Every web user has several online profiles through which personal
information is exchanged with many service providers. This exchange of
personal information happens at a pace difficult to fully comprehend and
manage without a global view and control with obvious consequences on data
control, ownership and, of course, privacy. To tackle issues associated with
current service-centric approaches, we propose a user-centric architecture where
the interaction between a user and other agents is managed based on a global
profile for the user, maintained in a profile management system and controlled
by the user herself. In this PhD, we will investigate research issues and
challenges in realizing such a system based on semantic technologies.

1 Research Problem

Web users maintain several online profiles across e-commerce websites, social
networks and others, making it difficult for them to realize how much information is
exchanged and what happens to that information. In other words, web interactions are
happening in a ‘one to many’ mode, where different agents, with different statuses
and relationships to the user take part and receive personal information. We refer to
this phenomenon as the fragmentation of personal data exchange, where many
different ‘destinations’ of the data receive various fragments of personal information
over time, without the user having a global view of her own data.

The problem stems from the model these online interactions are based upon, i.e. a
service-centric model, where everything is focused on the needs of a particular
organization. Current research suggests a rather contrasting model to address these
issues: a user-centric approach [1] where the interaction between a user and other agents
is managed based on a global profile for the user, maintained in a profile management
system and controlled by the user herself. Parts of this profile can be requested by various
agents (websites), with the user being given the possibility to control these accesses and
to keep track of them directly within the profile management system. In this PhD, we will
investigate research issues and challenges in realizing a system based on user-centric
profiles, and show how semantic technologies can support users in making sense,
managing and controlling their exchanges of personal data on the Web with such a
system.

 Personal Semantics: Personal Information Management in the Web 493

2 State of the Art

Personal information management as defined in [2] is at the core of Semantic
Desktops [3], which are concerned with the management of information produced and
consumed by desktop applications. While there are significant overlaps, our approach
focuses on personal information on the web and on the way this information is
exchanged with other agents, rather than on the management of information in the
close, local environment of the user.

Identity management shares a thin boundary with the aspects of personal
information management we are looking at. The most popular approach for “user-
centric” identity management is OpenID1. OpenID is a protocol that provides a unique
ID to each user to be used over various services. It therefore supports users in
reducing the distribution of their identity data. OAuth2 coupled with OpenID provides
secure exchange of data without disclosing users’ credentials to third party websites.
However, OpenID and OAuth are essentially concerned with the problem of
authentication, not the management of personal information. A few initiatives are
attempting to realize user-centric identity management frameworks, including
Windows CardSpace3, LiberryAlliance4, Higgins I-Card5, etc. These frameworks
provide central places for storing and managing personal information (i.e., profiles),
to which external websites are granted access. In this sense, they comply with our
notion of user-centric personal information management system. While they still
suffer from a number of limitations (e.g., in iCard based frameworks, personal data is
still fragmented, in the sense that profile information is “boxed” according to the
websites requesting it). [4,5] concern flexible user profiles in mash up environments.
They focus on domain independent models while [6,7] also discuss user models but
with a focus on retail domain. FOAF+SSL [8] is an authentication protocol to provide
secure exchange of distributed information. It uses the SSL layer in modern day Web
browsers to create a secure conduit of information between two parties. FOAF+SSL is
also in an initial phase of development and has not been widely adopted yet.

3 Propose Approach and Methodology

A social context provides a very comfortable leverage to someone to represent and
manage their persona in different real world interactions as compared to online
interactions, where it becomes a tedious task to maintain one’s identity (personal
information) in one place because of the many different profiles a typical web user
usually possesses with each service provider she interacts with. In this scenario, user-
centric profiles seem to be a promising solution where a user can define different
contexts to disclose certain aspects of her profile depending on what type of agents

1 http://www.openid.net
2 http://www.oauth.net
3
 http://www.microsoft.com/windows/products/winfamily/cardspace/
default.aspx

4 http://www.projectliberty.org/liberty/about/
5 http://www.eclipse.org/higgins/

494 S. Elahi

she is communicating with. However, the realization of a truly user-centric personal
profile management system raises complex research issues and challenges, which we
intend to tackle in this PhD, partly based on the use of semantic technologies. More
precisely, we will focus on the technical and the user aspects [9]:

• The technical aspects include in particular issues related to user modelling in an
open, web environment: how to integrate multiple profiles into one global
profile? How to manage access policies and access rights on user information,
including identifying policy conflicts between consumer and provider and
suggesting ways to resolve them? How to make a user’s interaction more
sophisticated and friendly with new concepts? How to represent behavioural
changes in the profile while maintaining consistency?

• The user-related issues regard the way to integrate this user-centric approach in
the existing social environment of the user: How much of a profile can be
constructed with already available user information? What interaction models
are suitable to the management of large, global user profiles by web users? Will
users be willing to invest time in such a system? What mechanisms are
necessary to ensure trust in the profile providers?

In practice, we envisage the combination of user-centric profile management with
semantic technologies as a system where the user is offered the ability to manage one,
integrated profile containing information potentially relevant to different agents she is
communicating with: a semantic model of her personal information. Such a semantic
model of personal information can not only be used to negotiate terms of
communications (access policies) with different service providers but can also be
reasoned upon, enabling a user to have a global coherent model of her data, helping
her in making sense, managing and giving access to them. Through this approach, we
intend to answer the following three questions:

1. How to model a user? Different users would have different requirements to be
able to flexibly structure, organize and represent their arbitrary data.

2. How to model semantic access control over semantic data? We will be looking
at how access control, and especially definition of access rights in user-centric
profile scenarios is realized in a way homogeneous to the description of its
semantic data, taking benefit from the flexible data model and inference
capabilities provided by the Semantic Web technologies.

3. How users would react to such a new approach? We will empirically study the
impact of a user-centric profile management system on the practices of data
exchange, based on user surveys and on monitoring usages.

The methodology to resolve these questions will consist of the following phases:

1. Feasibility studies: The idea of user-centric profile management has not yet
been tested in the open environment of the web, where thousands of exchanges
happen with hundreds of websites every day. In the next section, we give an
overview of a first study where we reconstructed a global user profile from logs
of a particular user’s activities on the web [10]. Such feasibility studies help us

 Personal Semantics: Personal Information Management in the Web 495

identifying specific technical issues related to the combination of semantic
technologies with user-centric profile management in a web environment.

2. Contrasting the user-centric approach with existing models: In this phase,
we focus on the aspect of managing the flexible exchange and access to personal
information using an ontological model. We are conducting another experiment
by creating a semantic representation of the current information and access
model of a large organization (The Open University), in order to contrast it with
a possible user-centric view of information and access. The Open University
represents a perfect example of a large-scale distributed organization with
multiple departments, a very large number of distance learning students and off
campus employees. In this phase, we intend to demonstrate how a user-centric,
semantic model of ‘personal information’ and ‘access policies’ provides added
value through allowing users to manage, reason upon and control their own
information in a more transparent way than in an organization centric model.

3. Tackling specific technical issues and prototyping: We propose an
architecture consisting of four evolving sub-frameworks. The profile framework
will provide intuitive interfaces for distributed management of user-centric
profiles. The policy framework acts as a security grid based on the intelligence
provided by the Semantic framework, which assesses user behaviour and
provide recommendations to evolve the profile and keeps the cycle going. The
policy framework derives security policies based on the rich semantic
information about the agents the user is interacting with and defines access
rights on the contents which are then used in the Content framework when a
request comes in for certain information from a consuming agent [9].

4. Empirical study and evaluation: Along with the evaluation studies of phase 1
and 2 we will be realise empirical studies where the prototype system developed
in the previous phase will be used within an organization instead of the usual
information and access mechanisms. Through collecting both usage and survey
data, we will be able to assess the benefit of the approach, and evaluate specific
advantages gained through the use of semantic technologies.

4 Initial Results

In this section we discuss initial results obtained (during the first year of this part-time
PhD). In [10], our objective was to collect all the fragments of personal information
sent by a user during several weeks, and to try to reconstruct from these fragments a
coherent global profile. From logs of HTTP traffics through specifically developed
tools, the user managed to create 36 profile attributes mapped onto 1,108 data
attributes. However, while this small and simple exercise proved to be satisfying the
basic hypothesis, we also identified few research issues and challenges which will
need to be addressed to create more complex and flexible user profiles [10], including
the need for complex and sophisticated profile representations (with temporal and
multi-faceted representations), the need to include multiple, external sources of
information to enrich the profile (including information about the accessing agents)
and the need for appropriate mechanisms for the definition of semantic access control

496 S. Elahi

model over semantic data. On the last point, we are currently investigating a
prospective model for access control in a user-centric scenario, and applying it in the
scenario of the Open University’s information and access model. Through the use of
an ontological model, and the possibility of employing inference upon such a model,
we expect to obtain results showing how the user-centric approach can outsmart the
organization-centric approach, providing better overviews of the access control
aspects over the considered data and possibly detecting un-intended behaviours which
normally remain hidden in an organization-centric view.

5 Future Work

The next major steps for this part-time PhD include completing the current work on
Semantic policies and access rights in the next 4 months. The results obtained from
this exercise will be used to develop a prototype profile management system based on
the user-centric framework discussed earlier. This framework will employ semantic
technologies to provide access control through semantic policies with evolvable
profiles representing changing needs of a user in today’s online interactions. This
phase will investigate and try to address the technical issues mentioned above. Social
issues will be investigated in the next phase with the deployment of this system in
place of the Open University’s usual information and access mechanisms to gather
empirical evidence of how users interact with such a system and its impact on them.
This empirical evidence will be used in the evaluation of the system.

References

1. Iannella, R.: Social Web Profiles. Position paper, SNI (2009)
2. Jones, W., Teevan, J.: Personal Information Management (2007); ISBN: 9780295987378
3. Sauermann, L., Bernardi, A., Dengel, A.: Overview and outlook on the semantic desktop.

In: ISWC (2005)
4. Leonardi, E., Houben, G., Sluijs, K., Hidders, J., Herder, E., Abel, F., Krause, D.,

Heckmann, D.: User Profile Elicitation and Conversion in a Mashup Environment. In:
FIWLIW (2009)

5. Abel, F., Heckmann, D., Herder, E., Hidders, J., Houben, G., Krause, D., Leonardi, E.,
Slujis, K.: A Framework for Flexible User Profile Mashups, AP-WEB 2.0 (2009)

6. Ghosh, R., Dekhil, M.: Mashups for semantic user profiles. Poster. In: International World
Wide Web Conference, WWW (2008), Poster

7. Ghosh, R., Dekhil, M.: I, Me and My Phone: Identity and Personalization Using Mobile
Devices. In: HPL 2007-184 (2007)

8. Story, H., Harbulot, B., Jacobi, I., Jones, M.: FOAF+SSL: RESTful Authentication for the
Social Web. In: SPOT (2009)

9. Olesen, H., Noll, J., Hoffmann, M. (eds.): User profiles, personalization and privacy.
WWRF Outlook series, Wireless World Research Forum (May 2009)

10. Elahi, S., d’Aquin, M., Motta, E.: Who Wants a Piece of Me? Reconstructing a User
Profile from Personal Web Activity Logs. In: LUPAS, ESWC (2010)

Reasoning with Noisy Semantic Data

Qiu Ji1, Zhiqiang Gao1,�, and Zhisheng Huang2

1 School of Computer Science and Engineering, Southeast University, Nanjing, China
{jiqiu,zqgao}@seu.edu.cn

2 Department of Mathematics and Computer Science, Vrije University Amsterdam
huang@cs.vu.nl

1 Problem Statement

Based on URIs, HTTP and RDF, the Linked Data project [3] aims to expose,
share and connect related data from diverse sources on the Semantic Web. Linked
Open Data (LOD) is a community effort to apply the Linked Data principles
to data published under open licenses. With this effort, a large number of LOD
datasets have been gathered in the LOD cloud, such as DBpedia, Freebase and
FOAF profiles. These datasets are connected by links such as owl:sameAs. LOD
has gained rapidly progressed and is still growing constantly. Until May 2009,
there are 4.7 billion RDF triples and around 142 million RDF links [3]. After
that, the total has been increased to 16 billion triples in March 2010 and another
14 billion triples have been published by the AIFB according to [17].

With the ever growing LOD datasets, one problem naturally arises, that is,
the generation of the data may introduce noise, thus hinders the application
of the data in practice. To make the Linked Data more useful, it is important
to propose approaches for dealing with noise within the data. In [6], the au-
thors classify noise in Linked Data into three main categories: accessibility1 and
derefencability2 w.r.t. URI/HTTP, syntax errors, and noise3 and inconsistency4

w.r.t. reasoning. In our work, we focus on dealing with the third category of
noise, namely noise and inconsistency w.r.t. reasoning, but may also consider
other categories of noise. We further consider one more noise in the logical level,
that is, the logical inconsistency caused by ontology mapping.

2 State of the Art

In [6], a comprehensive study of various kinds of noise in Linked Data have been
conducted over 149,057 URIs concluding 54,836 valid RDF/XML document. In
� Corresponding author.
1 The problem of accessibility here means some of the retrieved documents have no
structured data or contain misreported content-types.

2 Dereferencing means providing information about a resource lookup of its URI using
HTTP.

3 The noise can be atypical use of OWL/RDFS vocabularies, or use of undefined
classes and properties, and so on.

4 Inconsistency here means logical inconsistency in OWL ontologies.

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 497–502, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

498 Q. Ji, Z. Gao, and Z. Huang

[1], an approach was proposed to detect accidental syntactic errors or vocabulary
misuse and then apply patches to produce OWL DL ontologies. As owl:sameAs
has been heavily used in LOD to connect different data resources, it becomes
more and more important to use it correctly. That is, any two URI references
connected by owl:sameAs should be the same thing. But in reality, the correct-
ness can not be ensured. Therefore, the authors in [5] explored the origins of
this situation and developed an Similarity Ontology by systematizing various
theoretically-motivated distinctions which are ’kind of close’ to owl:sameAs.

Compared with other kinds of noise in Linked Data, there have been much
work on dealing with logical contradictions in OWL ontologies (see [2] for a sur-
vey). Given an inconsistent ontology, one can either use an inconsistency-tolerant
approach to reasoning with it (e.g. [7]) or repair it (e.g. [16]). To provide some
additional information to deal with inconsistency, some researchers have pro-
posed to measure inconsistency in an OWL ontology [10]. Logical inconsistency
can also occur when mappings among ontologies are established [11].

In our work, we will mainly focus on noise w.r.t. reasoning in Linked Data. We
will enhance the state of the art in the following aspects. First, we will consider
learning expressive ontologies from noisy LOD datasets and provide methods to
measure the noise. Second, we will enhance existing approaches to handle the
inconsistency in learned ontologies by using some patterns and defining novel
inconsistency-tolerant approaches. Third, we will propose measures to evaluate
inconsistent mappings and novel methods to repair mappings. We explain each
of the three aspects in detail in the following section.

3 Proposed Approach and Methodology

3.1 Statistical Reasoning with Noisy Linked Data

Developing an ontology is not an easy task and often introduces noise and in-
completeness. This happens in LOD datasets as well. The ontologies in LOD
datasets are generally inexpressive and may contain a lot of noise. For example,
one of the most popular ontology, DBpedia ontology5, is claimed as a shallow
ontology. The TBox of this ontology mainly includes a class hierarchy.

To deal with the incomplete ontologies, we plan to use statistical relational
learning(SRL) techniques to learn expressive ontologies from LOD datasets
(more details can be seen in [19]).

Before learning ontologies, we will propose methods to measure the noise of
a data, which can be defined according to the data quality assessment [13] in
database area. For instance, an objective metric can be defined as the degree to
which misused vocabularies from all vocabularies in an ontology. Such kind of
measures provides a reference to decide whether a dataset needs to be cleaned
or not. If it is necessary to do cleaning, we could apply various cleaning strate-
gies to correct or remove the noise. For example, we can correct the misused

5 http://wiki.dbpedia.org/Ontology

http://wiki.dbpedia.org/Ontology

Reasoning with Noisy Semantic Data 499

vocabularies manually with the help of an ontology editor like Protege6. After
ontology learning, we can define the measure of ontology incompleteness which
is the degree to which axioms are missing from the ontology.

3.2 Handling OWL Inconsistency in Linked Data

After learning expressive ontologies from LOD datasets and linking them with
other datasets, we may confront the problem of inconsistency7 handling. Ac-
cording to [6], it may be quite difficult to deal with this kind of noise. Due to the
large scale of the data, it is hard to apply existing approaches for reasoning with
inconsistent OWL ontologies to deal with OWL inconsistency in Linked Data.

In [6], the authors suggested that, to handle inconsistency in Linked Data, in-
consistent data may be pre-processed with those triples causing inconsistencies
dropped according to some heuristic measures. We fully agree with this pro-
posal. One measure that we will consider is the inconsistency measure defined
by four-valued semantics (see [10]). In the open philosophy of the Web, it may
be not desirable to completely repair inconsistent ontologies. One reason, as sug-
gested in [6], is that contradiction could be considered as a ‘healthy’ symptom
of different opinion. Therefore, when we repair inconsistency in OWL ontologies
in Linked Data, our goal is not to result in fully consistent ontologies, but to
reduce the inconsistency degrees of those ontologies. After that, we can apply
some inconsistency-tolerant approaches to reasoning with those inconsistent on-
tologies. To partially repair an inconsistent ontology, we will apply some patterns
to efficiently detect the sources of inconsistency, such as patterns given in [18].
To provide inconsistency-tolerant reasoning services, we will further develop the
idea of using selection functions [7] to reasoning with inconsistent ontologies. The
idea is to propose specific selection functions for specific ontology languages.

3.3 Mapping Repair and Evaluation

As reported in [8], LOD datasets are well connected by RDF links on the instance
level. But on the schema level, the ontologies are loosely linked. It is interesting
to consider aligning these ontologies based on the plentiful resources of LOD
datasets. A few such approaches have been proposed in [8,12].

With the mappings generated, we may confront the problem of dealing with
inconsistency caused by mappings and ontologies if we interpret mappings with
OWL semantics. We will first consider evaluating the inconsistent mappings8 by
defining a nonstandard reasoner. We will then consider mapping repair based on
work in [14,11]. For example, we can apply some patterns to efficiently detect
problematic correspondences in the mappings.

6 http://protege.stanford.edu/
7 A data is inconsistent iff it has no model.
8 An inconsistent mapping means no concepts in O1 ∪ O2 are interpreted as empty
but there is such a concept in the union of O1, O2 connected by M.

http://protege.stanford.edu/

500 Q. Ji, Z. Gao, and Z. Huang

3.4 Evaluation

To evaluate our work, we will implement our proposed approaches and do eval-
uation over LOD datasets. Based on our previously developed system RaDON9,
which is a tool to repair and diagnose ontology networks, we will develop a
system for reasoning with noisy Linked Data.

4 Results

We have studied repair and diagnosis in ontology networks and developed a
tool, called RaDON, to deal with logical contradictions in ontology networks
(see [9]). The functionalities provided by RaDON have been implemented by
extending the capabilities of existing reasoners. Specifically, the functionalities
include debugging and repairing an inconsistent ontology or mapping, and coping
with inconsistency based on a paraconsistency-based algorithm.

In [15], we proposed possibilistic extension of OWL to deal with inconsistency
and uncertainty in OWL ontologies. Some novel inference services have been
defined and algorithms for implementing these inference services were given. We
have implemented these algorithms and provided evaluations for their efficiency.

For an inconsistent mapping, the semantic precision and recall defined in [4]
meet the trivialization problems. To resolve such kind of problems, we define
the meaningfulness of an answer given by an inconsistency reasoner: Given two
ontologies O1 and O2 and a mapping M between them, for a correspondence
c = 〈e, e′, r, α〉, an answer provided by an inconsistency reasoner is meaningful
iff the following condition holds: Σ � t(c) ⇒(∃Σ′ � Σ)(Σ′ �|= e �⊥ and Σ′ �|=
e′ �⊥ and Σ′ |= t(c)). Here, e and e′ are atomic concepts. r is a semantic
relation like equivalence and α is a confidence value. t is a translation function
to transfer a correspondence to a DL axiom. Σ is the union of O1, O2 and a
set of axioms obtained by translating all correspondences in M to DL axioms.
An inconsistency reasoner is regarded as meaningful iff all of the answers are
meaningful. Based on this definition, we can redefine semantic measures in [4].

5 Conclusions

Reasoning with noisy Linked Data is a quite challenging and interesting work. In
our work, we mainly consider the following work: (1) We will propose methods
for measuring noisy LOD datasets like incompleteness and clean the noise in
these datasets if necessary. Based on the plentiful LOD datasets, we will propose
methods for learning expressive ontologies using SRL techniques. (2) To deal with
logical inconsistency, we propose to partially repair an inconsistent ontology by
considering some patterns to achieve good scalability for LOD datasets. Then we
plan to apply some novel inconsistency-tolerant reasoning strategies like defining
specific selection functions for specific ontology languages. (3) We will propose
methods for evaluating inconsistent mappings and methods to repair inconsistent
mappings by applying some patterns.
9 http://neon-toolkit.org/wiki/RaDON

http://neon-toolkit.org/wiki/RaDON

Reasoning with Noisy Semantic Data 501

Acknowledgements

This paper is sponsored by NSCF 60873153 and 60803061.

References

1. Bechhofer, S., Volz, R.: Patching syntax in OWL ontologies. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 668–682.
Springer, Heidelberg (2004)

2. Bell, D., Qi, G., Liu, W.: Approaches to inconsistency handling in description-logic
based ontologies. In: Chung, S., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS,
vol. 4806, pp. 1303–1311. Springer, Heidelberg (2007)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. In: IJSWIS,
pp. 1–22 (2009)

4. Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In:
IJCAI, Hyderabad, India, pp. 348–353 (2007)

5. Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When
owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 305–320. Springer,
Heidelberg (2010)

6. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic
web. In: LDOW, Raleigh, NC, USA (2010)

7. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies.
In: IJCAI, pp. 454–459. Morgan Kaufmann, San Francisco (2005)

8. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for
linked open data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496,
pp. 402–417. Springer, Heidelberg (2010)

9. Ji, Q., Haase, P., Qi, G., Hitzler, P., Stadtmüller, S.: RaDON — repair and diag-
nosis in ontology networks. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P.,
Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 863–867. Springer, Heidelberg (2009)

10. Ma, Y., Qi, G., Hitzler, P.: Computing inconsistency measure based on paracon-
sistent semantics. Journal of Logic and Computation (2010)

11. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In:
AAAI, pp. 1408–1413 (2007)

12. Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and building ontologies of
linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L.,
Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp.
598–614. Springer, Heidelberg (2010)

13. Pipino, L., Lee, Y.W., Wang, R.Y.: Data quality assessment. ACM Commun. 45(4),
211–218 (2002)

14. Qi, G., Ji, Q., Haase, P.: A conflict-based operator for mapping revision. In:
Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 521–536. Springer, Hei-
delberg (2009)

15. Qi, G., Ji, Q., Pan, J.Z., Du, J.: Extending description logics with uncertainty rea-
soning in possibilistic logic. International Journal of Intelligent System (to appear,
2011)

502 Q. Ji, Z. Gao, and Z. Huang

16. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. J. Autom. Reasoning 39(3), 317–349 (2007)

17. Vrandecic, D., Krotzsch, M., Rudolph, S., Losch, U.: Leveraging non-lexical knowl-
edge for the linked open data web. Review of AF Transactions, 18–27 (2010)

18. Wang, H., Horridge, M., Rector, A.L., Drummond, N., Seidenberg, J.: Debugging
OWL-DL ontologies: A heuristic approach. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 745–757. Springer, Heidelberg
(2005)

19. Zhu, M., Gao, Z.: SRL based ontology learning from linked open data. In: ESWC
PhD Symposium,Crete, Greece (to appear, 2011)

Extracting and Modeling Historical Events to

Enhance Searching and Browsing of Digital
Cultural Heritage Collections

Roxane Segers

Department of Computer Science, VU University Amsterdam
r.h.segers@vu.nl

1 Research Context and Problem Statement

Currently, cultural heritage portals limit their users to search only for individual
objects and not for objects related to some historical narrative. Typically, most
museums select objects for an exhibition based on the story they want to tell the
public, but in digital collections this context can currently not be made explicit
as the historical context is not part of the object annotations.

From previous experiences with cultural heritage portals such as Europeana1

and CHIP2, we observed that adding historical events to object descriptions is
valuable for the grounding of cultural heritage objects in their historical context
as events represent important changepoints in time and form the basic units
of the historical narrative. Further, historical event descriptions are comprised
of actors, locations and timestamps that are in some cases already present as
facets of the object annotation. As such, adding events to object descriptions
can enhance browsing and searching of cultural heritage collections as the events
unify otherwise unrelated but historical relevant facets of object annotations.

The problem motivating this research is threefold: (1) There is no standard
practice in cultural heritage organizations to include events within the object
annotation, e.g. there is neither a shared vocabulary for the (historical) event
descriptions, nor for different historical terms and concepts. The creation of such
vocabulary is important in order to ensure alignment between the descriptions
of historical events, which typically vary over time. (2) A multitude of different
historical perspectives and interpretations of the same historical event exist.
As a result, a variety of expressions can be used to describe the same event
which implies problems for creating thesauri and vocabularies. (3) There is no
consensus on the elements that make up an event and which could provide
meaningful relationships between the events and pertaining objects.

This PhD research is situated in the context of two projects: (1) The Se-
mantics of History project3 with focus on the modeling and extraction of events
and their perspectives from historical text documents; (2) Agora4 with focus on
1 http://www.europeana.eu
2 http://www.chip-project.org/
3 http://www2.let.vu.nl/oz/cltl/semhis/
4 http://www.agora.cs.vu.nl

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 503–507, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

504 R. Segers

searching, browsing and representing historical events online. Both projects use
the digital collections of the Netherlands Institute for Sound and Vision5 and
the Rijksmuseum Amsterdam6.

In my research, I focus on the following research questions:

1. What is an adequate event model to capture variances and invariances of
historical events? Can we instantiate this event model (semi-)automatically?

2. What is an adequate organization of a historical ontology to be used for
annotations for cultural heritage objects?

3. What is a suitable organization of a historical event thesaurus to allow for
diverse interpretations and expressions for events?

4. What are relevant evaluation criteria for quality of the event model, the
historical ontology and the thesaurus and their added value for exploration
and search of cultural heritage objects?

Issues Related to the Research Questions

1. The event model provides the vocabulary for the event elements and their
relations. However, the domain-specific requirements for modeling historical
events in terms of classes and properties cannot be given beforehand. Addi-
tionally, the historical event model facilitates relations between events, e.g.
causality, meronymy. However, these relations are not part of an event but
exist as an interpretational element between two or more events and thus
need to be modeled as a separate module.

2. The historical ontology serves as a semantic meta-layer to type historical
events, independently of the expressions used. However, it is unknown to
what degree an ontology can be used as an unprejudiced meta-layer for such
typing as it might imply an interpretation. Ontologies typically represent a
time-fixed view on reality which influences the modeling of objects that can
only play a role in an event after a certain point in time. Additionally, the
expressivity and extensibility of the ontology depends on the expressivity and
extensibility of the event model and vice versa. It is critical to know how
they interact, as incompatible properties can affect reasoning about events.

3. The instantiation of the event model needs to be based on different
sources to capture the different perspectives and interpretations of events.
Typically, event descriptions reside in unstructured text documents. Thus,
portable information extraction techniques should be applied for detecting
events and their elements in document collections of different style and topic.

4. The event thesaurus is a structured set of historical events used for event-
based annotation of cultural heritage objects and for aligning different object
collections. For the creation of such a thesaurus we need to know (1) how
to identify and organize equal and similar event descriptions and (2) how
to identify and structure multiple interpretations of the relations between
events. Properties such as hasSubevent can become problematic for structur-
ing the thesaurus, as some sources might only report temporal inclusion.

5 http://portal.beeldengeluid.nl/
6 http://www.rijksmuseum.nl/

Extracting and Modeling Historical Events 505

2 State of the Art

This PhD work is related to four research areas. Here, we give a brief state of
the art, a comprehensive overview of the related work can be found online7.

Event models: Various event models exist, e.g. the Event Ontology8, LODE
[13], the F-Model [12], SEM [6] and CIDOC-CRM9. However, none were explic-
itly designed for historical events and each has various limitations concerning
extending the model with domain-specific properties.

Model instantiation: Diverse information extraction (IE) techniques are used
to instantiate models in a variety of domains, e.g. [1] and [4]. However, historical
event extraction is emerging only recently.

Ontologies: Formal ontologies, e.g. DOLCE [10] and SUMO [11], and lexical
databases, e.g. WordNet [5] exist that can partly be reused for historical ontology.
Top-level ontologies pose modeling choices that may not compatible with the
historical domain requirements. WordNet is language specific and not consistent
in the modeling of synsets, which hampers the ontological soundness for an
historical ontology.

Ontology learning can be seen as a subtask of information extraction that
focuses on learning classes and relations between classes. Different techniques
exist for ontology learning, e.g. [9], [2] but interpretational issues pertaining to
historical events have not been addressed yet.

Related projects: A historical thesaurus [7] has been used in CultureSampo10

to enhance searching and browsing of Finnish cultural heritage. It comprises
event instances statically organized in a timeline and does not allow for various
views on events. Modeling historical data and events has also been the focus of
FDR/Pearl Harbor project [8] but no results have been published yet.

3 Approach

We propose the following novel approach for extracting and structuring knowl-
edge of historical events from various text sources. First, we adapt an existing
event model to meet the domain specific requirements. Next, we populate this
model and learn a historical ontology using information extraction techniques.11

For the creation of the event thesaurus we consider to use different reasoning
techniques over both the instances and types of the modeled event descriptions.
Following, we elaborate on the approach in relation to the research questions:

RQ1: We consider SEM[6] as a model to start from, as it is not domain-
specific, represents a minimal set of event classes and includes placeholders for
a foreign typing system.
7 http://semanticweb.cs.vu.nl/agora/relatedwork
8 http://motools.sf.net/event/event.html
9 http://cidoc.ics.forth.gr/officialreleasecidoc.html

10 http://www.kulttuurisampo.fi/
11 see: http://semanticweb.cs.vu.nl/agora/experiments

506 R. Segers

RQ 2: We consider learning the ontology bottom up by using the facets of
the extracted events as relevant terms in the domain[2]. WordNet is used as an
external vocabulary to semantically organize the terms and determine the least
common subsumer[3]. We consider to map the ontology to DOLCE to guarantee
ontological soundness.

RQ 3: We consider to learn lexical patterns for extracting coarse-grained
historical event descriptions from general Web documents and apply these to
domain-specific text collections. These patterns are semantically rich and can be
used to classify the extractions. The relevance scores for the patterns are used
to determine the precision of the extractions. To boost the recall of the pattern-
based extraction, we consider using the internal syntactic structure of the events
as patterns.

RQ4: For the creation of the thesaurus, we consider temporal-spational rea-
soning methods to identify similar event descriptions. To identify explicit rela-
tions between events, we consider information extraction in the text documents.
Further, implicit relations are inferred from the typing of the events.

4 Methodology

We apply the following iteration methodology in order to realize the approach
in section 3, i.e. Iteration I is scoped on acquisition of basic models:

– Analysis of SEM classes for the information extraction process.
– Learn patterns to instantiate SEM classes, starting with the event class.

Next, we extend to other classes and pertaining relations. We combine the
results of three IE techniques: (1) pattern-based and (2) co-occurrancy based,
both using Yahoo and Wikipedia and (3) lexical framing in newspaper col-
lections. For each we evaluate the recall, precision and reusability.

– Ontology, version 1, based on the first extraction results.
– Thesaurus, version 1, with limited relations.
– Test and evaluate the ontology and thesaurus in the Agora demonstrator.

We define new requirements from the evaluation.

In Iteration II we iterate all the RQs once again to extend the models with
domain specific requirements:

– Extend the document collection to domain-specific texts, e.g. scopenotes
with links to historical themes and historical handbooks. We scope the do-
main to two periods/themes of interest to the involved cultural heritage in-
stitutions. Apply the IE techniques and the extended event model. Creation
of ontology version 2 with unprejudiced typing of events.

– Evaluate the ontology and thesaurus version 2 by applying the IE module
and event model to another historical period/theme to ensure that the results
are not over-fitting the data. Integrate the results in the Agora demonstrator.

– Define requirements for evaluating the thesaurus in the Agora demonstrator,
e.g. added value in terms of links between objects (quantitative), added value
in terms of relevant and coherent links (qualitative).

Extracting and Modeling Historical Events 507

5 Achieved Results and Future Work

The PhD work is now entering the second year. Current work involves analysing
the extracted events by the pattern-based IE. The results so far are:

– literature study on event models, requirements for an historical event model
and best practices in the application of event models within different do-
mains. (journal paper, accepted for JWS2010).

– study on historical events definition and modeling requirements; use case for
event annotations of cultural heritage objects (Workshop Events2010).

– experiments with pattern-based event extraction (accepted abstract at
CLIN’11).

– prototype of Agora portal for event-based searching and browsing of cultural
heritage collections (demo accepted at Museums at the Web’11)

Future work will accomplish the steps in the approach. We also consider exper-
iments on the portability of the results to other domains and languages.

References

1. Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology learning from Text: Meth-
ods, Evaluation and Applications. IOS Press, Amsterdam (2005)

2. Cimiano, P.: Ontology Learning and Population from Text Algorithms, Evaluation
and Application. Springer, Heidelberg (2006)

3. Cohen, W., Borgida, A., Hirsh, H.: Computing least common subsumers in de-
scription logics. In: Proceedings of AAAI 1992. AAAI Press, Menlo Park (1992)

4. de Boer, V.: Ontology Enrichment from Heterogeneous Sources on the Web. PhD
thesis, VU University, Amsterdam, The Netherlands (2010)

5. Fellbaum, C. (ed.): Wordnet: An Electronical Lexical Database. MIT Press, Cam-
bridge (1998)

6. van Hage, W., Malaisé, V., de Vries, G., Schreiber, G., van Someren, M.: Combining
ship trajectories and semantics with the simple event model (sem). In: EiMM 2009,
New York, NY, USA, pp. 73–80 (2009)

7. Hyvönen, E., Alm, O., Kuittinen, H.: Using an ontology of historical events in
semantic portals for cultural heritage. In: ISWC 2007 (2007)

8. Ide, N., Woolner, D.: Historical ontologies. In: Words and Intelligence II: Essays in
Honor of Yorick Wilks, pp. 137–152 (2007)

9. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent
Systems, 72–79 (2001)

10. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.:
Wonderweb deliverable d18. Technical report, ISTC-CNR (2003)

11. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of FOIS
2001, pp. 2–9. ACM, New York (2001)

12. Scherp, A., Franz, T., Saathoff, C., Staab, S.: F—a model of events based on
the foundational ontology dolce+dns ultralight. In: K-CAP 2009, Redondo Beach
(2009)

13. Shaw, R., Troncy, R., Hardman, L.: LODE: Linking open descriptions of events.
In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp.
153–167. Springer, Heidelberg (2009)

Enriching Ontologies by Learned Negation
Or How to Teach Ontologies Vegetarianism

Daniel Fleischhacker

KR & KM Research Group, University of Mannheim, Germany
daniel@informatik.uni-mannheim.de

1 Problem Statement

Ontologies form the basis of the semantic web by providing knowledge on concepts,
relations and instances. Unfortunately, the manual creation of ontologies is a time-
intensive and hence expensive task. This leads to the so-called knowledge acquisition
bottleneck being a major problem for a more widespread adoption of the semantic web.
Ontology learning tries to widen the bottleneck by supporting human knowledge engi-
neers in creating ontologies. For this purpose, knowledge is extracted from existing data
sources and is transformed into ontologies. So far, most ontology learning approaches
are limited to very basic types of ontologies consisting of concept hierarchies and rela-
tions but do not use large amounts of the expressivity ontologies provide.

Negation is of great importance in ontologies since many common ideas and con-
cepts are only fully expressible using negation. An example for the usefulness of nega-
tion is the notion of a vegetarian who is characterized by not eating meat. It is
impossible to fully formalize this notion without applying negation at some level. Not
stating these additional information on vegetarians would severely limit the possibili-
ties to deduce new knowledge on vegetarians from the ontology by doing reasoning.
Furthermore, negation is of great significance for assessing the quality of ontologies.
Without it, ontologies may never get incoherent or inconsistent which is an important
quality criterion. Additionally, with negations contained in ontologies, it is possible to
use ontology debugging approaches more effectively.

Given all these points, we consider it important to put effort into a more elaborate
research of automatic or semi-automatic learning of negation for enriching ontologies.

2 State of the Art

There is a large number of possible data sources all of them exposing different proper-
ties with respect to their structure and content. To handle these different inputs, ontology
learning makes use of approaches from many different research areas which leads to a
wide spectrum of different ontology learning methods [2].

Regarding the learning of negation there is little work so far. An example being the
extraction of concept disjointness as a special case of negation. Haase and Völker [6]
use lexico-syntactic patterns and their work is extended by Völker et al. [16] applying
classification approaches on a number of different lexical and structural features in their
LeDA tool. However, these approaches focus on the generation of disjointness of atomic

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 508–512, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Enriching Ontologies by Learned Negation 509

classes and are not directly applicable for generating axioms containing complements
of complex class expressions. Even if most negation axioms, i.e., axioms containing
explicit negation, may be represented by disjointness, the representation in data (e.g.,
vegetarian as someone who does not eat meat) not necessarily resembles disjointness.

Another ontology learning method which also generates negation is implemented by
the DL-Learner tool [11]. It uses inductive logic programming (ILP) to yield complex
axioms describing concepts from a given ontology. Unfortunately, this method suffers
from two issues. First, it is limited to using ontologies or data sets convertible to ontolo-
gies as data sources, thus it is not adequate to handle unstructured data and probably
most semi-structured information. Secondly, the approach is not directly applicable to
large data sets. This is mainly because of the dependency on reasoning for generating
the relevant axioms which introduces scalability problems. Hellmann et al. [9] propose
a method to extract fragments from the data to reduce it to a processable size but this
could nevertheless lead to the loss of relevant data.

Texts are reasonable sources to extract knowledge about negation axioms, and de-
tecting negation in texts could be a valid first step towards reaching this goal. Thus,
work regarding the general detection of negation in biomedical texts is also of interest
for learning negation. Most research in detecting negation in texts has been made in the
biomedical domain where the approaches are used to extract data on the presence or
absence of certain findings. This detection is mainly done by means of a list of negation
markers and regular expressions [1], by additionally using linguistic approaches like
grammatical parsing [10, 5] or by applying machine learning techniques [13, 12, 14]. It
is particularly important that the detection of negation also requires the identification
of its scope, i.e., the parts of the sentence the negation is referring to. Even if some of
the mentioned works might be usable on open-domain texts, there is no evaluation in
this direction but only for the biomedical domain and thus there is no information on
their performance for other domains. Furthermore, it is not clear if detected negations
are similar to the ones required in ontologies.

Recently, there has been more work on negation detection for open-domain texts
mainly driven by its usefulness for sentiment analysis [3] or contradiction detection
[8]. Councill et al., who particularly concentrate on the task of detecting the scopes
of negation, also evaluated their approach on product review texts using an appropriate,
annotated gold standard which unfortunately seems not to be publicly available. Despite
these recent works, detecting negation in open-domain texts remains an open problem.

3 Expected Contributions

The main contribution of this work is expected to be the development of approaches
to enrich given ontologies with negation axioms extracted from texts as a part of an
overall ontology learning approach and accompanied by a corresponding implementa-
tion. For this purpose, we will take already existing, manually engineered ontologies
and add negation axioms extracted from free texts.

Negations in ontologies could provide great benefit for many application. In the field
of biomedicine, one example would be an ontology containing information on different
drugs. For some of these drugs, it is known that there are bacteria which are resis-
tant against them. For instance, methicillin-resistant Staphylococcus aureus (MRSA)

510 D. Fleischhacker

are strains of Staphylococcus aureus resistant against beta-lactam antibiotics. The ax-
iom BetaLactamAntibiotic � ¬∃effectiveAgainst.MRSA could be used
to represent this in an ontology. Given such negation axioms, it would be possible to
deduce from the ontology which drugs are not suitable for treating diseases caused by
specific pathogens.

A second contribution will be developing and employing approaches to combine
multiple ways of extracting negation. This will help compensating possible shortcom-
ing of certain approaches or data sources and to achieve better overall results.

When enriching ontologies by negation, we have to pay special attention to the main-
tenance of the ontology’s consistency and coherence. Without this, there is the risk of
rendering the ontology inconsistent and less useful for reasoning tasks. Such inconsis-
tencies do not have to come from the addition of the learned negation axioms themselves
but may also arise from erroneous non-negation axioms added by the overall learning
approach.

To be able to actually evaluate the results gained by extracting negations from differ-
ent data sources, an appropriate evaluation strategy is necessary. Based on related work,
we will develop methodologies suited for the evaluation.

4 Methodology and Approach

In the following, we give an overview on the methodology which we want to follow to
come up with the aforementioned contributions.

Negation Extraction from Text. We expect the detection of negation in textual data
to be domain-dependent to a high degree. However, we will focus on the biomedical
domain because of the large amount of work already done there regarding negation de-
tection and the availability of expressive ontologies. There are several kinds of negations
in texts which we will have to handle. Mostly, these kinds of textual negations are dis-
tinguishable into direct negation like caused by the word not and indirect negation rec-
ognizable by words like doubt, which introduce the negation solely by their semantics,
and misunderstanding, where the semantics of negation is characterized by morpholog-
ical markers like mis-. For the first manner of indirect negation, the lexical-semantic
relation of antonymy may provide some additional hints for detection. This is why we
already did experiments on detecting antonymy relations by means of relatedness and
similarity measures. We will evaluate the approaches from the biomedical domain re-
garding their coverage for these different kinds of negation and develop approaches to
treat the yet uncovered ones. To do this, we will most likely start with pattern-based
detection approaches and then additionally apply machine learning methods.

For the enrichment of ontologies, we have to develop approaches to actually trans-
fer the extracted textual negations into suitable logical negation which is not a trivial
problem because of the ambiguity of natural language. Furthermore, we will evaluate
the way negation is used in existing ontologies particularly regarding possible modeling
errors made by humans and regarding the expressivity required for these negation ax-
ioms. Based on the findings, we will choose description logic fragments best suited for
representing the learned negation while maintaining desirable computational properties.

Enriching Ontologies by Learned Negation 511

An especially interesting approach is the combination of ways to learn from multiple
data sources. As mentioned, this can help to compensate shortcomings in different ap-
proaches or data sources. LeDA [16] already combined different approaches but this is
only done in course of their disjointness extraction algorithm and not directly applicable
for combining arbitrary approaches. Having a more general way of combining different
approaches, we could use it to integrate the negation axioms extracted by our proposed
text-based system and other systems like DL-Learner [11].

Consistency Maintenance. The task of consistency maintenance has to be employed
for the overall ontology learning and enrichment process and not only for the en-
richment by negation axioms. Most ontology learning approaches produce confidence
values for generated axioms. Thus, we have to deal with uncertainty like Haase and
Völker [7] who also considered uncertainty to create consistent ontologies by ontology
learning. We will apply similar debugging methods but also more general approaches
like the one by Schlobach [15]. Regarding the overall learning approach, we will also
explore methods of instantiating a feedback loop from debugging to the actual learning
process. For the ontologies containing negation axioms, we are also able to compute
different measures, e.g., the number of incoherent concepts widely seen as an indicator
for an ontology’s quality.

Evaluation. The evaluation of the correctness of the created negation axioms is also im-
portant for the overall goal of learning negation. As there is no standard way of evaluating
these axioms, we will propose a new methodology. There are different ways of evaluating
general ontology learning approaches [4]. For negations, it seems to be less desirable to
use a gold standard especially since its manual creation is extremely labor-intensive for
large data sources. Alternatively, we could use the learning approach in an application
which benefits from a more expressive ontology. For our evaluation, we will look for such
applications. Finally, we could let human domain experts evaluate the extracted axioms
regarding their correctness. Even if this means that there is no possibility of computing
the completeness for the extracted axioms with respect to a given data source, important
values such as the inter annotator agreement may still be computed.

5 Conclusion

In this paper, we presented our plans to develop and implement approaches to enrich
ontologies by complex negation axioms. As described above, we consider this bene-
ficial for a couple of reasons. Having the results in the area of negation detection for
biomedical texts and some for open-domain texts, we already have some foundations
regarding negations in texts which should enable us to achieve first results soon. All
in all, learning approaches for negation can assist humans in creating more thoroughly
formalized ontologies and thus lead to a more expressive semantic web.

References

1. Chapman, W.W., Bridewell, W., Hanbury, P., Cooper, G.F., Buchanan, B.G.: A simple al-
gorithm for identifying negated findings and diseases in discharge summaries. Journal of
Biomedical Informatics 34(5), 301–310 (2001)

512 D. Fleischhacker

2. Cimiano, P., Mädche, A., Staab, S., Völker, J.: Ontology learning. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies, 2nd edn., pp. 245–267. Springer, Heidelberg (2009)

3. Councill, I.G., McDonald, R., Velikovich, L.: What’s great and what’s not: learning to clas-
sify the scope of negation for improved sentiment analysis. In: Proc. of the Workshop on
Negation and Speculation in Natural Language Processing, pp. 51–59 (2010)

4. Dellschaft, K., Staab, S.: On how to perform a gold standard based evaluation of ontology
learning. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 228–241. Springer, Heidelberg
(2006)

5. Gindl, S., Kaiser, K., Miksch, S.: Syntactical negation detection in clinical practice guide-
lines. Studies in Health Technology and Informatics 136, 187–192 (2008)

6. Haase, P., Völker, J.: Ontology learning and reasoning - dealing with uncertainty and in-
consistency. In: Proc. of the Workshop on Uncertainty Reasoning for the Semantic Web
(URSW), pp. 45–55 (2005)

7. Haase, P., Völker, J.: Ontology learning and reasoning — dealing with uncertainty and in-
consistency. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J.,
Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327,
pp. 366–384. Springer, Heidelberg (2008)

8. Harabagiu, S., Hickl, A., Lacatusu, F.: Negation, contrast and contradiction in text process-
ing. In: Proc. of the 21st national conference on Artificial intelligence, vol. 1, pp. 755–762
(2006)

9. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large
knowledge bases. International Journal On Semantic Web and Information Systems 5, 25–48
(2009)

10. Huang, Y., Lowe, H.J.: A novel hybrid approach to automated negation detection in clinical
radiology reports. Journal of the American Medical Informatics Association 14(3), 304–311
(2007)

11. Lehmann, J.: DL-Learner: Learning concepts in description logics. Journal of Machine
Learning Research 10, 2639–2642 (2009)

12. Li, J., Zhou, G., Wang, H., Zhu, Q.: Learning the scope of negation via shallow semantic
parsing. In: Proc. of the 23rd International Conference on Computational Linguistics, pp.
671–679 (2010)

13. Morante, R., Daelemans, W.: A metalearning approach to processing the scope of negation.
In: Proc. of the 13th Conference on Computational Natural Language Learning, pp. 21–29
(2009)

14. Sarafraz, F., Nenadic, G.: Using SVMs with the command relation features to identify
negated events in biomedical literature. In: Proc. of the Workshop on Negation and Spec-
ulation in Natural Language Processing, pp. 78–85 (2010)

15. Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gómez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 226–240. Springer, Heidelberg (2005)

16. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer,
M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)

Optimizing Query Answering over OWL Ontologies�

Ilianna Kollia

ECE School, National Technical University of Athens, Greece
���������������	
����

Abstract. Query answering is a key reasoning task for many ontology based
applications in the Semantic Web. Unfortunately for OWL, the worst case com-
plexity of query answering is very high. That is why, when the schema of an
ontology is written in a highly expressive language like OWL 2 DL, currently
used query answering systems do not find all answers to queries posed over the
ontology, i.e., they are incomplete. In this paper optimizations are discussed that
may make query answering over expressive languages feasible in practice. These
optimizations mostly focus on the use of traditional database techniques that will
be adapted to be applicable to knowledge bases. Moreover, caching techniques
and a form of progressive query answering are also explored.

1 Problem

Query answering is an important task in the Semantic Web since it allows for the extrac-
tion of information from data as specified by the user. The answers to queries are based
not only on the explicitly stated facts but also on the inferred facts. In order to dervive
such implicit facts, we distinguish between the terminological and the assertional part
of an ontology [2]. The terminological part, called TBox, describes general informa-
tion about the modeled domain of the ontology, e.g., the relationships between classes
and properties. The assertional part, called ABox, contains concrete instance data, e.g.,
stating which indviduals belong to a class or are related with a property.

The derivation of the implicit facts of a knowledge base is done by reasoners and
is a computational problem of high complexity. For example, OWL 2 DL entailment
is known to be N2ExpTime-complete [7]. Hence the expressivity of the TBox, which
defines how complex the background knowledge that will be used to derive implicit
facts is, constitutes one source of complexity in query answering. The other source is
the size of the ABox.

A query answer is a mapping from the variables appearing in the query to terms of
the queried knowledge base such that replacing the variables with their mappings yields
an entailed consequence of the ontology. The well known conjunctive queries contain
variables which can be mapped to individuals and literals appearing in the ABox of
the queried knowledge base. A naive algorithm for finding the answers of a conjunctive
query w.r.t. a knowledge base would check which of the instantiated queries (formed by
substituting the variables of the query with every individual appearing in the ABox) are
entailed by the knowledge base. Hence such an algorithm would perform mn entailment
checks, where m is the number of individuals in the ontology and n is the number of

� This work is partially funded by the EC Indicate project.

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 513–517.
c� Springer-Verlag Berlin Heidelberg 2011

514 I. Kollia

variables in the query. The cost of an entailment check depends on the used logic, i.e.,
by using a less expressive formalism than OWL 2 DL one can reduce the complexity.

Because of the high complexity of entailment checking in OWL 2 DL, it is evident
that query answering becomes problematic. Our research tackles this problem attempt-
ing to achieve as high expressivity as possible as well as eÆciency in practice.

2 State of the Art

To achieve practicality, current query answering systems work either with logics of low
complexity or are incomplete in the sense that they compute only some of the answers
w.r.t. TBoxes of higher complexity. Moreover, in order to achieve scalability they use
databases for storing the instance data.

In order to deal with large amounts of data, the reduction of a ���� knowledge
base to a disjunctive datalog program that entails the same set of ground facts as the
original knowledge base has been explored [6]. In this way optimization methods from
deductive databases, such as the join order optimization or the magic set transformation
[3] can be used to answer queries. This technique is better suited for knowledge bases
with large ABoxes but small TBoxes.

According to rewriting techniques that are currently applicable to OWL QL and
OWL EL, the ontology is split into a schema and a data part. The data can be stored into
relational databases or triple stores. The schema part can be used to rewrite the user’s
query into a union of one or more conjunctive queries (for OWL QL which is based
on a family of description logics called DL-Lite [4]) or a datalog query (for OWL EL)
[10,11] which can then be evaluated over the data part without taking the schema into
account. This approach addresses scalability issues well but su�ers from the fact that
the size of the rewritten queries can be large making the evaluation diÆcult.

Materialization techniques have been employed by systems like Jena, Sesame, OWL-
LIM. These techniques extend the ABox with implicit facts that are entailed by the
TBox. They produce incomplete answers when queries are evaluated over an ontology
with an expressive TBox. This happens because in expressive fragments of OWL due to
the presence of disjunctive information it is not the case that a unique canonical model
can be used to answer queries. Moreover, due to the presence of existential information
it cannot be guaranteed that the models of an ontology are finite. Apart from being in-
complete for query answering, the use of materialization techniques is problematic in
case the data change frequently because in such case the frequent recomputation of the
entailed implicit facts is required which is costly.

Approximations of ontologies written in highly expressive languages have also been
used for query answering. In [9] one such technique has been presented which approx-
imates an OWL DL ontology with a DL-Lite ontology producing sound but incomplete
answers to queries. It should be stated though that in the case of conjunctive queries
that do not contain non-distinguished variables, the described method provides sound
as well as complete answers.

A couple of optimizations for conjunctive queries over OWL ontologies have been
presented in [12] that take advantage of instance retrieval optimization techniques for
tableau reasoners. Most of them are more suitable to be used with tableau and not with
resolution based reasoners which is the type of reasoner we will use.

Optimizing Query Answering over OWL Ontologies 515

3 Proposed Approach and Methodology

A naive query answering algorithm that checks all possible mappings for query vari-
ables needs optimizations in order to deal with expressive languages and behave well
in practice. In my PhD, starting from the highly expressive OWL 2 DL, an optimized
query answering algorithm will be devised that will use resolution based reasoners for
answering conjunctive queries and it will be extended to cover also queries about the
schema of an ontology. Through this work, it will be seen whether optimizations can
make query answering over OWL 2 DL feasible.

A first set of optimizations will be targeted at transferring techniques from relational
and deductive databases [1] to knowledge bases. For example, since it has been ob-
served that the order in which query atoms are evaluated is of critical importance to
the running time of a query, techniques from databases, such as cost based query re-
ordering, will be used to find optimal query execution plans. These techniques will be
appropriately adapted to take into account the schema of the ontology apart from the
data. As an example, let us consider a conjunctive query C(x), R(x,y), D(y), where x,y
are individual variables, C,D are classes and R is a property. At the moment it is not
clear whether the query is more eÆciently evaluated with the query atoms in the order
presented above or in a di�erent order such as C(x), D(y), R(x,y) or R(x,y), C(x), D(y).

In many cases there is no need to consider all the elements of the data part as possible
mappings for query variables in conjunctive queries and hence avoid checking whether
all of them lead to the entailment of the instantiated queries by the queried knowledge
base. This can be so, either because the user is not interested in answers belonging to
some set or because some sets of mappings are not relevant w.r.t. a query. Such cases
will be identified and only an appropriate subset of the possible mappings for query
variables will be checked leading hopefully to an important reduction in the running
time of queries. Moreover, eÆcient caching techniques will be used to store parts of the
models of the queried ontology since it holds that, queries instantiated by many di�erent
mappings and checked afterwards for entailment by the queried ontology, often use
the same parts of models. Hence saving these models will avoid the reconstruction of
them every time they are needed hopefully reducing the execution time of queries. This
is especially useful in the highly expressive OWL 2 DL in which the construction of
models requires a substantial amount of time.

The query answering algorithm will be made to work progressively, i.e., to output
query answers as soon as they are computed, outputing first the answers that are easily
computed and then answers that are more diÆcult to be found. For example, the answers
coming from the explicitly stated facts in the ABox can be found and given to the user
relatively quickly. Answers which require reasoning are more diÆcult to be computed
and require more time. What is more, even between mappings that require reasoning to
decide whether they constitute answers, the computation time needed di�ers substan-
tially. This happens because in order to decide whether di�erent mappings consistute
answers, the reasoner might have to build models of di�erent size and complexity. For
example, the amount of backtracking that the reasoner performs while trying di�erent
possibilities that arise from disjunctions defines the complexity of a model and hence

516 I. Kollia

the time that is needed to be constructed. This, in turn, influences the time needed to
decide whether a mapping constitutes an answer or not. A more complex setting will
then be adopted in which query answers are given to the user in the order of decreased
relevance. This includes the definition of appropriate relevance criteria. The profile of
the user who types the query can be exploited to define such measures of relevance.
Since in highly expressive languages the time to compute all the answers for a query is
high, through progressive query answering the user is given some answers to work with
as soon as they are derived and more answers as time passes. However, the user should
expect incomplete answers since some “hard” answers cannot be computed in reason-
able time. The user may, therefore, be interested in the degree of (in)completeness of
the used system which can be computed and presented to him.

The above described algorithm will be developed in conjuction with the SPARQL
query language which is an RDF based query language that has recently been extended
by W3C to find query answers under the OWL entailment relation (the OWL entailment
regime of SPARQL [5]). In SPARQL a new class of powerful queries can be written
which go beyond conjunctive queries. These queries allow variables in place of classes,
object and data properties of OWL axioms apart from individuals and literals and need
di�erent optimizations than the ones applicable to conjunctive queries. Such queries
have only partly been considered [13].

The steps that will be followed during the research are briefly described below. First,
the formalized optimizations and techniques will be implemented in a system that will
use SPARQL as a query language. As explained above, we will start with ontologies
expressed in OWL 2 DL and see whether the applicable optimizations reduce the run-
ning time of queries to such extent that query answering becomes more feasible. In case
the time for query answering is not acceptable even with the use of the considered op-
timizations, we will use techniques like knowledge compilation to approximate OWL
DL ontologies with simplified versions of them of lower complexity and see how the
use of these simplified ontologies a�ects the query answering times.

4 Results

A first attempt towards an optimized algorithm has been made. In particular, SPARQL
has already been extended to allow the use of OWL inference for computing query
answers. A cost based query reordering approach that seems to work well with con-
junctive queries has been developed. A couple of optimizations have been made for the
new class of expressive queries that can be represented in SPARQL. Such optimiza-
tions include the use of query rewriting techniques that transform the initial query to an
equivalent one that can be evaluated more eÆciently, the use of the class and property
hierarchy of the queried ontology to prune the search space of candidate bindings for
query variables and the use of more specialized tasks of OWL reasoners than entail-
ment checking to speed query execution. The proposed optimizations can reduce query
execution time by up to three orders of magnitude [8]. 1

1 This work has been done in collaboration with Dr Birte Glimm and Professor Ian Horrocks in
the Oxford University Computing Laboratory.

Optimizing Query Answering over OWL Ontologies 517

5 Conclusion

Taking into account the fact that naive query answering techniques are impractical over
expressive languages like OWL 2 DL, in my PhD I will try to devise optimized algo-
rithms that will hopefully behave well in practice. In order to achieve this, techniques
from relational and deductive databases will be transferred to knowledge bases and an
evaluation of their applicability and eÆciency will be made. For example, we will anal-
yse whether the magic set technique for finding relevant parts of data w.r.t. queries and
rules can be extended in our setting, where we have disjunction and existential quan-
tification in the rule head. The results taken so far are promising. However, more tests
need to be performed using a greater range of ontologies and queries.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1994)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, Cambridge (2007)

3. Beeri, C., Ramakrishnan, R.: On the power of magic. In: PODS. pp. 269–284 (1987)
4. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning

and eÆcient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

5. Glimm, B., Krötzsch, M.: SPARQL beyond subgraph matching. In: Patel-Schneider, P.F.,
Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010,
Part I. LNCS, vol. 6496, pp. 241–256. Springer, Heidelberg (2010)

6. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction to disjunc-
tive datalog. J. Autom. Reason. 39, 351–384 (2007)

7. Kazakov, Y.: ��� and ����� are harder than �����. In: Brewka, G., Lang, J. (eds.)
Proc. 11th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2008),
pp. 274–284. AAAI Press, Menlo Park (2008)

8. Kollia, I., Glimm, B., Horrocks, I.: SPARQL Query Answering over OWL Ontologies
(2010), accepted for publication, http:��www.comlab.ox.ac.uk�files�3681�paper.pdf

9. Pan, J.Z., Thomas, E.: Approximating OWL-DL ontologies. In: Proceedings of the 22nd
National Conference on Artificial Intelligence, vol. 2, pp. 1434–1439. AAAI Press, Menlo
Park (2007)

10. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting under
description logic constraints. Journal of Applied Logic 8(2), 186–209 (2010)

11. Rosati, R.: On conjunctive query answering in EL. In: Proceedings of the 2007 International
Workshop on Description Logic (DL 2007). CEUR Electronic Workshop Proceedings (2007)

12. Sirin, E., Parsia, B.: Optimizations for answering conjunctive abox queries: First results. In:
Proc. of the Int. Description Logics Workshop, DL (2006)

13. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: Golbreich, C., Kalyan-
pur, A., Parsia, B. (eds.) Proc. OWLED 2007 Workshop on OWL: Experiences and Direc-
tions. CEUR Workshop Proceedings, vol. 258 (2007), CEUR-WS.org

http://www.comlab.ox.ac.uk/files/3681/paper.pdf
CEUR-WS.org

Hybrid Search

Ranking for Structured and Unstructured Data�

Daniel M. Herzig

Institute AIFB, Karlsruhe Institute of Technology, Germany
herzig@kit.edu

Abstract. A growing amount of structured data is published on the
Web and complements the textual content. Searching the textual con-
tent is performed primarily by the means of keyword queries and Infor-
mation Retrieval methods. Structured data allow database-like queries
for retrieval. Since structured and unstructured data occur often as a
combination of both, are embedded in each other, or are complementary,
the question of how search can take advantage of this hybrid data set-
ting arises. Of particular interest is the question of how ranking as the
algorithmic decision of what information is relevant for a given query can
take structured and unstructured data into account by also allowing hy-
brid queries consisting of structured elements combined with keywords.
I propose to investigate this question in the course of my PhD thesis.

1 Introduction

Currently, an increasing amount of structured data is published on the Web
according to the Linked Data principles. This structured data supplements the
textual, unstructured data already available on the Web and thereby provides
the basis for new ways of searching the Web. The structured data is available in
several ways. On the one hand there are data sets available as purely structured
RDF independent from a text base, and on the other hand there is structured
data embedded directly in textual data via RDFa or data extracted from texts.
Taking advantage of this heterogenous environment promises to improve search
by making it possible to answer more kinds of information needs, because some
information needs benefit greatly from structured data, e.g. “What is the popu-
lation of Berlin?”. Here, the answer is a fact assertion, whereas other information
needs are better addressed with textual documents, e.g. “Why did Heinrich von
Kleist commit suicide?”, where a potential answers might be his suicide note, if
at all, but certainly not a fact assertion. Moreover, texts can hold sentiments,
preferences and opinions, which are often supported by facts and data. There-
fore, a hybrid data scenario holds also the possibility to examine the retrieval of
opinions or different views on a topic and the facts supporting them. Thus far,
document and fact retrieval are often regarded as two separate disciplines and
� This work was supported by the German Federal Ministry of Education and Research
(BMBF) under the iGreen project (grant 01IA08005K).

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 518–522, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Hybrid Search Ranking for Structured and Unstructured Data 519

the combination of both for search is not yet investigated in a satisfying way[1].
This thesis is situated between these two disciplines and combines them on the
data and on the query level. We call this scenario Hybrid Search. However, search
comprises the entire technical spectrum from indexing to the user interface. This
thesis concentrates on ranking, which is a core method of search and crucial for
its effectiveness. The goal of this thesis is to investigate a unified ranking frame-
work for hybrid search as the search on structured and unstructured data with
queries consisting of keywords and structured elements. The question this the-
sis addresses is how structured and unstructured data can be used to improve
search and how hybrid queries can be answered on hybrid data.

2 Problem Definition

This thesis addresses the problem of ranking on hybrid data for hybrid queries.
The frame of this research problem is defined by the following data and query
model: The proposed data model follows the RDF data model with Named
Graphs1 and is represented as a graph G(R, L, ER, EL, EG, Ĝ) consisting of re-
source nodes R, edges ER connecting resource nodes, edges EL connecting re-
source nodes to literal nodes L, and edges EG connecting resource nodes to
Named Graphs Ĝ, which are graphs Ĝ(R′, L′, E′

R, E′
L) consisting of subsets of

the elements of G, e.g. R′ ⊂ R. Textual data is integrated following the same
modeling paradigm and using the already mentioned modeling constructs. Each
text entity is represented by a resource of the type textual document. This re-
source has one edge, labelled content, pointing to a literal node holding the
textual information. In a later stage, there can be more edges providing more
fine grated distinctions, such as headline, paragraph, etc. All triples comprised
by the textual information of one textual entity form a Named Graph ĝ ∈ Ĝ, as
illustrated in Figure 1 by the dashed circle. The data model is a simplified RDF
model with Named Graphs and allows to use RDF data easily.

Fig. 1. Illustration of the data model. A textual document on the left side and struc-
tured data on the right side.

Queries to this data model should have a seamless flexibility ranging from
purely textual keyword queries, over hybrid queries, to crisp structured queries.
A hybrid query q can consist of a structured part qs and a textual part qt, i.e.
q = qs ∧ qt. If one part is empty, the query is either purely textual or purely

1 Named Graphs: http://www.w3.org/2004/03/trix/

http://www.w3.org/2004/03/trix/

520 D.M. Herzig

structured. The structured part qs follows the SPARQL query language and is a
set of graph patterns, qs = {qs1, qs2, ...}. The textual part qt allows to associate
a keyword query kw to each variable, i.e. qt = {qti |qti = (xi, kw), xi ∈ V ar(q)}.
For example, assume the information need: “Formula One drivers who moved to
Switzerland”2, which is illustrated in Figure 2. The result to such a query are
bindings to the distinguished variables. This model allows to represent purely
structured, hybrid, and purely textual queries. A purely textual query, i.e. simple
keyword query, would be the query in Fig. 2 without line (1). This query model
is a close adaptation of the model by [3].

Select ?x where {
?x rdf:type ns:FormulaOneRacer # (1)

?x {moved to Switzerland } } # (2)

Fig. 2. Illustration of the query model, consisting of the a structured part, i.e. triple
patterns (1) and unstructured part, i.e. keyword patterns (2).

3 State of the Art

Related fields of research are IR, in particular Web IR, ranking of structured
data and databases, and the already existing work on hybrid. This section briefly
outlines related work of these fields to the proposed approach in the Section 4.

Ranking originated in the IR community, where the retrieval units are tex-
tual documents. The main notions for ranking are descriptive statistics about
the documents and the entire document corpus, such as term frequency. One of
the most used algorithm in this line is BM25[4]. Language model approaches are
increasingly applied, because of their formal basis in probability theory. There-
fore, language models will be the basis for the proposed ranking approach. The
work by [5] are of particular interest, since it builds on language models for
structured retrieval, combines keywords and structured queries and addresses
structural mismatches between query and data structure. However, structure
means here the document and sentence structure and not a graph based data
model. Ranking for Web search deals not just with fixed document corpora, but
with the entire scale of the Web. However, it can take advantage of the link
structure of the Web. Exemplars using this link analysis are foremost the well
known works by [6] and [7]. Translating the idea of [6,7] for ranking data on
the Web has been studied by [8,9]. Also concepts of XML retrieval [10] as the
retrieval of semi-structured documents needs to be addressed. The parallels are
here that elements in the XML scenario are similar to resources in ours. Ranking
for databases draws on the advantage that the data schema is strict and rigid,
which is not the case in our setting. Still, the idea of correlations[11] between
values needs to be investigated. Combing text and structured data, i.e. hybrid
approaches, such as [12], which uses a domain ontology for retrieving documents,
or [13], which retrieves documents as well as factual assertions. However, the data
setting is different to ours. Most notably is the approach by [3], which could be
2 Topic GC-2009-49 taken from [2].

Hybrid Search Ranking for Structured and Unstructured Data 521

used as a reference in an evaluation, because it supports keyword augmented
structured queries similar to ours. However, the approach does not take docu-
ments into account, and is centered around triples as the atomic units, where as
our proposed approach regards entities, i.e. URIs of subjects respectively objects,
as the atomic pieces.

4 Proposed Approach

Starting point are retrieval methods similar to [3,5] applied to a hybrid scenario,
because they have proven to be applicable for similar settings and are the state of
the art in IR. Following the idea of language models, we rank result graphs accord-
ing to the probability of being an result graph g to the given query q, i.e.P (g|q).The
structured part of the query is regarded as a constraint for the beginning and can
be relaxed later. It fulfills the purpose of selecting candidate results. Since qs deter-
mines the shape of the result graphs, all possible graphs share the same structure.
Therefore, the rank of a result depends only on the aspects, which differentiate the
results, i.e. the bindings to the variables and their relations to qt. Therefore, we can
reduce the ranking to P (g|q) ∝

∏n
i=1 P (qi|xi), with qi = qtj ∧ qsk

, xi ∈ qtj , gsk
,

the keyword and triple patterns associated to variables xi.

P (g|q) ∝ P (g) · P (q|g) ∝ P (g) ·
n∏

i=1

P (qi|xi) (1)

P (qi|xi) is computed in two ways depending whether q is a purely structured
query or not. If it is purely structured, the query is crisp and we assume that
the information need is entirely captured. The ranking is then based on the
popularity of the resulting URIs. If a textual part is present, the information
need is rather imprecisely captured making it necessary to rank the results by
measuring the relation of each keyword k of the textual part to the corresponding
variable, see equation (2).

P (qi|xi) =
{∏

k∈qti
αPt(k|xi) + (1 − α)Pt(k) if qt �= ∅∏

xi
Ps(xi) if qt = ∅ (2)

If a textual part is present, several models for computing Pt(k|xi) will be inves-
tigated: Starting with a simple one, which takes all textual information of xi as one
bag-of-words and a more fine grained one, which takes the edges from xi to neigh-
boring nodes into account.This ranking model is an initial model for the study of
search in the hybrid scenario. Possible future directions of research are to extend
this model and integrate more of the semantics provided by the underlying data.

5 Evaluation Methodology

The widest acceptance in IR for evaluating ranking approaches has the so-called
Cranfield methodology[14]. It provides well studied grounds and will be the basis
of the evaluation in line with [15]. However, the setting needs to be adapted to the
hybrid scenario. This can be done by adding structured elements to the keyword

522 D.M. Herzig

queries of [15] and by using datasets, which are a combination of structured and
unstructured data, e.g. the combination of Wikipedia and dbpedia.

6 Conclusion

The goal of this thesis is to investigate a unified ranking methodology for search
on hybrid data using adaptive queries. The proposed approach builds on a graph
based data model, which is compatible to RDF and incorporates textual docu-
ments. The query model allows seamless querying ranging from purely textual
queries, to hybrid queries, and to purely structured queries. The ranking ap-
proach builds methodologically on language models. The evaluation methodol-
ogy uses existing standards from the IR community, if applicable, but needs to
be adapted to the hybrid context. The question this thesis addresses is how the
combination of structured and unstructured data can be used to improve search.

References

1. Weikum, G.: DB & IR: both sides now. In: SIGMOD (2007)
2. Santos, D., Cabral, L.M.: GikiCLEF: crosscultural issues in an international set-
ting: asking non-English-centered questions to wikipedia. In: CLEF (2009)

3. Elbassuoni, S., Ramanath, M., Schenkel, R., Sydow, M., Weikum, G.: Language-
model-based ranking for queries on RDF-graphs. In: CIKM 2009 (2009)

4. Robertson, S., Zaragoza, H.: The Probabilistic Relevance Framework: BM25 and
Beyond. Foundations and Trends in Information Retrieval 3(4), 333–389 (2010)

5. Zhao, L., Callan, J.: Effective and efficient structured retrieval. In: CIKM (2009)
6. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: ACM-
SIAM, San Francisco, California, United States, pp. 668–677 (1998)

7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: WWW, Brisbane, Australia, pp. 107–117 (1998)

8. Harth, A., Kinsella, S., Decker, S.: Using naming authority to rank data and on-
tologies for web search. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 277–292. Springer, Heidelberg (2009)

9. Delbru, R., Toupikov, N., Catasta, M., Tummarello, G., Decker, S.: Hierarchical
link analysis for ranking web data. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten
Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS,
vol. 6089, pp. 225–239. Springer, Heidelberg (2010)

10. Lalmas, M.: XML Retrieval. Synthesis Lectures on Information Concepts, Re-
trieval, and Services. Morgan & Claypool Publishers, San Francisco (2009)

11. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic ranking of database
query results. In: VLDB, pp. 888–899 (2004)

12. Rocha, C., Schwabe, D., Aragao, M.P.: A hybrid approach for searching in the
semantic web. In: World Wide Web, WWW 2004, New York, NY, USA (2004)

13. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid
search: Effectively combining keywords and semantic searches. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021,
pp. 554–568. Springer, Heidelberg (2008)

14. Cleverdon, C.: The CRANFIELD Tests on Index Langauge Devices. Aslib (1967)
15. Halpin, H., Herzig, D.M., Mika, P., Blanco, R., Pound, J., Thompson, H.S., Tran,

D.T.: Evaluating ad-hoc object retrieval. In: IWEST 2010, ISWC (2010)

Author Index

Abel, Fabian II-375
Adolf, Bob II-31
Alani, Harith II-405
Allocca, Carlo I-352
al-Saffar, Sinan II-31
Álvaro, Guillermo II-154
Andrews, Pierre II-476
Angeletou, Sofia II-405
Anicic, Darko II-270
Anyanwu, Kemafor II-46, II-123
Arenas, Marcelo II-1
Arndt, Natanael I-200
Auer, Sören I-185, I-200, II-456
Au Yeung, Ching-man I-32

Babitski, Grigori II-183
Bae, Hyunjoo II-446
Barzdins, Guntis II-441
Beckmann, Dirk II-198
Benz, Dominik II-360
Bergweiler, Simon II-183
Bicer, Veli I-47
Blansché, Alexandre II-421
Blum, Daniel II-16
Borillo Domenech, Ricardo I-17
Bouayad-Agha, Nadjet I-230
Brennan, Rob I-336
Breslin, John G. II-390
Bühmann, Lorenz I-63
Buil-Aranda, Carlos II-1

Cai, Zhonglun I-32
Calbimonte, Jean-Paul II-300
Cano, A. Elizabeth II-451
Carbone, Francesco II-154
Casamayor, Gerard I-230
Castagnone, Michelangelo II-154
Chen, Jianfeng I-290
Chen, Ling II-123
Cimiano, Philipp I-245
Cohen, Sara II-16
Constantopoulos, Panos II-77
Contreras, Jesús II-154
Corcho, Oscar II-1, II-300, II-330

Córdoba, Carmen II-154
Correndo, Gianluca II-139
Curé, Olivier I-367

Dadzie, Aba-Sah I-93, II-451
Damova, Mariana I-80
d’Aquin, Mathieu II-461
David, Catalin II-471
Deligiannakis, Antonios II-77
De Roure, David II-300
Dietze, Stefan II-436
Dı́ez, Fernando I-230
Domingue, John II-436
Dritsou, Vicky II-77

Ehrlich, Christian II-456
Elahi, Salman II-492
Elbassuoni, Shady II-62
Ermilov, Timofey I-185, I-200

Farazi, Feroz II-169
Farfeleder, Stefan II-212
Fernandes, Alvaro A.A. II-300
Ferrara, Alfio II-108
Fleischhacker, Daniel II-508
Frazer, Alex II-300
Frischmuth, Philipp I-200
Frosterus, Matias II-243
Fu, Bo I-336

Galpin, Ixent II-300
Gao, Qi II-375
Gao, Sidan II-123
Gao, Zhiqiang II-497
Garćıa-Castro, Raúl II-300
Gibbins, Nicholas I-32
Gibbins, Nick II-139
Ginev, Deyan II-471
Giunchiglia, Fausto II-169
Glimm, Birte I-382
Gómez-Pérez, Asunción II-300
Gómez-Pérez, José Manuel II-154
Goodman, Carl II-466
Goodman, Eric L. II-31
Gossen, Anna I-47

524 Author Index

Gray, Alasdair J.G. II-300
Grebner, Olaf II-183
Grimm, Stephan I-260, I-397, II-345
Gutierrez, Claudio II-93

Haak, Steffen II-345
Haase, Peter II-481
Haglin, David II-31
Hall, Wendy I-32
Harris, Steve II-139
Harth, Andreas I-170
Hartig, Olaf I-154
Hartmann, Melanie II-451
Hayes, Conor II-390
Heino, Norman I-185
Hellmann, Sebastian II-456
Herzig, Daniel M. II-518
Hirota, Takeru I-305
Hitzler, Pascal I-80
Horrocks, Ian I-382
Hose, Katja II-481
Hotho, Andreas II-360
Houben, Geert-Jan II-375
Hu, Wei I-290
Huang, Zhisheng II-497
Hurtado, Carlos II-93
Hyvönen, Eero I-215, II-243, II-255

Ivanyukovich, Alexander II-169

Jain, Prateek I-80
Ji, Qiu II-497
Jimenez, Edward II-31
Jovanovic, Jelena I-108
Jung, Yuchul II-446

Kanshin, Sergey II-476
Karpathiotakis, Manos II-300
Keet, C. Maria I-321
Kim, Hwa-Sung II-446
Kim, HyeongSik II-46
Kinsella, Sheila II-390
Klebeck, Alex II-456
Kohlhase, Andrea II-471
Kohlhase, Michael II-471
Kollia, Ilianna I-382, II-513
Körner, Christian II-360
Köster, Frank II-198
Kotidis, Yannis II-77
Koubarakis, Manolis II-300

Koutsomitropoulos, Dimitrios A. I-17
Kozaki, Kouji I-305
Krall, Andreas II-212
Kyzirakos, Kostis II-300

Ladwig, Günter I-139
Laitio, Joonas II-243
Lamolle, Myriam I-367
Lange, Christoph II-471
Laublet, Philippe I-108
Laurenne, Nina II-255
Le Duc, Chan I-367
Lee, Deirdre II-227
Lehmann, Jens I-63
Leidinger, Lucas II-285
Liu, Dong II-436
López Hernández, Sergio I-230
Loutas, Nikolaos II-227

Maali, Fadi II-227
Maltese, Vincenzo II-169
Manolis, Nikos I-1
Martinez, Kirk II-300
Matican, Bogdan II-471
McCrae, John I-245
Mear, David II-466
Mehdi, Anees I-397
Mirea, Stefan II-471
Mizell, David II-31
Mizoguchi, Riichiro I-305
Montanelli, Stefano II-108
Moser, Thomas II-212
Motta, Enrico II-461

Napoli, Amedeo II-421
Niepert, Mathias I-124
Niu, Xing I-275
Noessner, Jan II-108
Noyer, Ulf II-198

Oberle, Daniel II-183
Omoronyia, Inah II-212
O’Sullivan, Declan I-336

Paar, Alexander II-315
Page, Kevin II-300
Pane, Juan II-476
Park, Yoo-mi II-446
Paton, Norman W. II-300
Paulheim, Heiko II-183

Author Index 525

Pedrinaci, Carlos II-436
Peñaloza, Rafael I-410
Penela, Vı́ctor II-154
Peristeras, Vassilios II-227
Petrelli, Daniela I-93
Probst, Florian II-183

Qi, Guilin I-275
Qu, Yuzhong I-290

Ramanath, Maya II-62
Ravindra, Padmashree II-46
Rowe, Matthew I-93, II-405
Rudolph, Sebastian I-397
Ruiz, Carlos II-154

Sadler, Jason II-300
Salvadores, Manuel I-32, II-139
Saquicela, Vı́ctor II-330
Schenkel, Ralf II-481
Schmidt, Michael II-481
Schneider, Michael II-487
Schwarte, Andreas II-481
Segers, Roxane II-503
Shadbolt, Nigel I-32, II-139
Sheth, Amit P. I-80
Shi, Lian II-421
Simperl, Elena II-466
Singh, Priyanka I-32
Sinkkilä, Reetta I-215
Siorpaes, Katharina II-466
Solomou, Georgia D. I-17
Speiser, Sebastian I-170
Spohr, Dennis I-245
St̊alhane, Tor II-212
Stankovic, Milan I-108
Stojanovic, Ljiljana II-270
Stojanovic, Nenad II-270
Strohmaier, Markus II-360
Stuckenschmidt, Heiner II-108
Studer, Rudi II-270
Stumme, Gerd II-360
Suominen, Osma I-215

Tao, Ke II-375
Tarabanis, Konstantinos II-227
Taylor, Kerry II-285
Thaler, Stefan II-466
Toussaint, Yannick II-421
Tramp, Sebastian I-185, I-200
Tran, Thanh I-47, I-139
Tuominen, Jouni II-255
Turhan, Anni-Yasmin I-410
Tzitzikas, Yannis I-1

Vaisman, Alejandro II-93
Vasquez, Reymonrod G. I-80
Verma, Kunal I-80
Vilches-Blazquez, Luis.M. II-330
Völker, Johanna I-124
Vrandečić, Denny II-315

Wang, Haofen I-275
Wang, Mengjiao II-390
Wang, Xiaowei I-32
Wanner, Leo I-230
Weikum, Gerhard II-62
Wissmann, Jens I-260
Wu, Gang I-275

Xu, Yongchun II-270

Yang, Yang I-32
Yao, Jiadi I-32
Yeh, Peter Z. I-80
Yoo, HyunKyung II-446
Yu, Hong Qing II-436
Yu, Yong I-275

Zablith, Fouad II-461
Zaihrayeu, Ilya II-476
Zareian, Amir I-32
Zhang, Hang I-290
Zholudev, Vyacheslav II-471
Zojer, Herbert II-212
Zviedris, Martins II-441

	Title
	Preface
	Organization
	Table of Contents
	Semantic Data Management Track
	Semantics and Optimization of the SPARQL 1.1 Federation Extension
	Introduction
	Syntax and Semantics of the SPARQL 1.1 Federation Extension
	Syntax of the Federation Extension
	Semantics of the Federation Extension

	On Evaluating the SERVICE Operator
	The Notion of Boundedness
	The Notion of Service-Safeness: Considering Sub-patterns and Nested Service Operators

	Optimizing the Evaluation of the OPTIONAL Operator in SPARQL Federated Queries
	Optimization via Well-Designed Patterns

	Implementation of SPARQL-DQP and Well-Designed Patterns Optimization
	Implementation: SPARQL-DQP
	Evaluation

	References

	Grr: Generating Random RDF
	Introduction
	Abstract Generation Language
	Concrete Generation Language
	Optimization Techniques
	Experimentation
	Conclusion
	References

	High-Performance Computing Applied to Semantic Databases
	Introduction
	Cray XMT
	Code Libraries for the XMT

	Dictionary Encoding
	Results

	RDFS Closure
	Results

	Data Model: A Graph
	Querying
	Results

	Conclusions
	References

	An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce
	Introduction
	Background and Motivation
	RDF Graph Pattern Matching
	Graph Pattern Matching in Apache Pig

	Foundations
	Data Model and Algebra
	RAPID+: Integrating NTGA Operators into Pig

	Evaluation
	Setup
	Experiment Results

	Related Work
	Conclusion
	References

	Query Relaxation for Entity-Relationship Search
	Introduction
	Motivation
	Query Relaxation Problem
	Our Approach

	Relaxation Framework
	Relaxation Strategy
	Constructing Documents and LMs
	Examples
	Using Other Information Sources

	Relaxing Queries and Ranking Results
	Generating Relaxed Queries
	Result Ranking

	Experimental Evaluation
	Setup
	Quality of Relaxations
	Quality of Query Results

	Related Work
	Conclusion
	References

	Optimizing Query Shortcuts in RDF Databases
	Introduction
	Problem Formulation
	Preliminary Concepts
	Estimating Shortcut Benefit
	Space-Constrained Benefit Maximization

	Bi-criterion Optimization
	Linear Relaxation

	Evaluation
	Related Work
	Conclusions
	References

	RDFS Update: From Theory to Practice
	Introduction
	Preliminaries
	Semantics of Erase in RDF
	Approximating Erase in RDF

	Computing the Erase in RDF
	Erasing a Triple from a Graph
	Erasing a Graph from a Graph

	Computing the Delta Candidates in Practice
	Computing RDF Schema Erasure
	Computing RDF Instance Erasure

	Related Work
	Conclusions
	References

	Benchmarking Matching Applications on the Semantic Web
	Introduction
	Related Work
	The SWING Approach
	Data Acquisition
	Data Transformation
	Data Transformation Procedure
	Combining Transformations and Defining the Expected Results

	Experimental Results
	Concluding Remarks
	References

	Efficiently Evaluating Skyline Queries on RDF Databases
	Introduction
	Contributions

	Background and Problem Statement
	Evaluating the Skyline over the Join of Multiple-Relations
	Header Point and Its Prunability
	RDFSkyJoinWithFullHeader (RSJFH)

	Near-Complete Algorithms
	RDFSkyJoinWithPartialHeader (RSJPH)
	Relaxing Prunability of Partially Updated Header Point

	Experimental Evaluation
	Related Work
	Conclusion and Future Work
	References

	The Design and Implementation of Minimal RDFS Backward Reasoning in 4store
	Introduction
	Related Work
	Minimal RDFS Reasoning
	4store

	Minimal RDFS and 4sr's Distributed Model
	4sr Design and Implementation
	bind' and Minimal RDFS Semantics

	LUBM Scalability Evaluation
	Conclusions and Future Work
	Future Work

	References

	Semantic Web in Use Track
	miKrow: Semantic Intra-enterprise Micro-Knowledge Management System
	Introduction
	State of the Art
	Knowledge Management
	Semantics in Social Networks

	Semantic Processing in Knowledge Management
	A Lightweight Approach towards Knowledge Management
	Semantic Indexing and Semantic Search
	Semantic Indexing.
	Semantic Search.

	Knowledge Base Modelling

	Knowledge Boosting Techniques
	Tackling the Cold Start Problem by Leveraging Existing Knowledge
	Linked Data Consumption
	Context-Aware Knowledge Management
	Connecting to Enterprise Information Systems

	Microblogging as a User Interaction Layer
	miKrow Implementation
	Microblogging Engine.
	Semantic Engine.
	Communication between layers.

	miKrow Evaluation

	Conclusions
	References

	A Faceted Ontology for a Semantic Geo-Catalogue
	Introduction
	The Architecture
	Data Extraction and Filtering
	The Dataset of the Autonomous Province of Trento
	Extracting the Macro-Classes
	Extracting the Locations
	Double Names: Bilingual Issues
	Provide Missing Data and Remove Duplicates

	Building the Faceted Ontology
	From Macro-Classes to Atomic Concepts
	Arrange Atomic Concepts into Hierarchies

	Populating the Faceted Ontology
	Integration with GeoWordNet
	Concept Integration
	Entity Matching
	Entity Integration

	Conclusions
	References

	SoKNOS – Using Semantic Technologies in Disaster Management Software
	Introduction
	Use Cases and Ontology-Based Improvements in the SoKNOS Disaster Management Application
	Use Case 1: System Extensibility
	Use Case 2: Simplified Database Integration
	Use Case 3: Improved Search
	Use Case 4: Improved Discovery of External Sensor Observation Services
	Use Case 5: Plausibility Checks
	Use Case 6: Improved Information Visualization

	Lessons Learned – Disaster Management Applications and Ontologies
	Ontology Engineering Process
	Software Engineering Process and Ontologies
	Ontology Usage and Suitability

	Conclusion
	References

	Semantic Technologies for Describing Measurement Data in Databases
	Introduction
	Background and Related Work
	Usage of Semantic Technologies
	RDF-Stores
	Mapping of Relational Databases into RDF
	Scientific Workflow Systems

	Data Management
	Use Cases
	Common Architecture
	Annotation of Relational Data

	User Interface
	Example Application Cases
	Data Quality Management
	Description of Manoeuvres

	Summary and Outlook
	References

	Ontology-Driven Guidance for Requirements Elicitation
	Introduction
	Related Work
	Requirements Engineering
	Elicitation Guidance
	Pattern-Based Requirements

	Research Issues
	Guidance for Boilerplate Requirements
	Boilerplate Requirements Elicitation
	Domain Ontology
	Guidance

	Evaluation
	Setting
	Results

	Conclusion and Future Work
	References

	The Semantic Public Service Portal (S-PSP)
	Introduction
	Related Work
	Semantic Public Service Portal (S-PSP)
	S-PSP Architecture

	Semantic Description of Public Services
	Service Tree Ontology
	Public Service Ontology
	Other Ontologies
	Query Mechanism’s (QM) Usage of an STO

	S-PSP In-Use: Rural Inclusion Trial-Site Chios
	Evaluation
	Conclusion
	References

	DataFinland—A Semantic Portal for Open and Linked Datasets
	Metadata for Linked Datasets
	Overview of the Publication Process
	Metadata and Ontologies
	Extending voiD

	From Annotations to Faceted Search
	SAHA 3 Metadata Editor
	HAKO Faceted Search Engine
	DataFinland

	Discussion
	Contributions
	Related Work
	Future Work

	References

	Biological Names and Taxonomies on the Semantic Web – Managing the Change in Scientific Conception
	Introduction
	Biological Names and Taxonomies
	TaxMeOn – Meta-ontology of Biological Names
	Use Cases
	Collaborative Management of Vascular Plants Names
	Publishing Species Lists as Ontology Services
	Management of Individual Scientific Names

	Discussion
	Related Work
	Future Work

	References

	An Approach for More Efficient Energy Consumption Based on Real-Time Situational Awareness
	Introduction
	Energy Efficiency in Offices: State of the Art and Requirements Analysis
	iCEP Approach for the Energy Efficiency
	Information Model
	ETALIS
	Example
	Domain Ontology

	Evaluation
	Related Work
	Conclusions
	References

	Sensor Web Track
	Ontology-Driven Complex Event Processing in Heterogeneous Sensor Networks
	Introduction
	Architecture - Event Framework
	Ontology-Driven User Interface
	Events
	Alerts
	Observations
	Triggers

	Semantic Event Middleware
	Communication with the User Interface
	Transforming Ontology Data into EPL Statements
	Semantic Optimisation of Streams

	Management Module Interfaces
	Related Work
	Future Work and Conclusion
	References

	A Semantically Enabled Service Architecture for Mashups over Streaming and Stored Data
	Introduction
	Motivating Scenario and Requirements
	Flood Emergency Planning Scenario
	Requirements

	Modelling Semantic Sensor Web Information
	Semantic Sensor Web Architecture
	Data Source Services
	Semantic Registry Service
	Semantic Integration Service
	Application Services
	Summary

	The Flood Scenario Deployment
	Related Work
	Conclusions
	References

	Software, Services, Processes and Cloud Computing Track
	Zhi# – OWL Aware Compilation
	Introduction
	The Zhi# Programming Language
	Static Typing
	Dynamic Checking

	Validation
	Related Work
	Conclusion
	References

	Lightweight Semantic Annotation of Geospatial RESTful Services
	Introduction
	Related Work
	An Approach for the Automatic Semantic Annotation of RESTful Services
	A Sample Set of RESTful Services in the Geospatial Domain
	Syntactic Description Storing: Invocation and Registration Details into a Repository
	Semantic Annotation
	Checking the Semantic Annotation of RESTful Services

	Experimental Results
	Conclusions and Future Work
	References

	Towards Custom Cloud Services
	Introduction
	Use Case, Requirements and Related Work
	Use Case
	Requirements
	Related Work

	Custom Cloud Service Configuration
	Functional Requirements
	Knowledge Representation
	Dependency Graph Algorithm
	Preferences
	Optimization

	Evaluation
	Implementation
	Requirements Review

	Conclusion
	References

	Social Web and Web Science Track
	One Tag to Bind Them All: Measuring Term Abstractness in Social Metadata
	Introduction
	Related Work
	Basic Notions
	Taxonomies, Core Ontologies and Lexicons.
	Folksonomies.
	Term Graphs.

	Measures of Tag Generality
	Frequency-based measures.
	Entropy-based measures.
	Centrality Measures.
	Statistical Subsumption.

	Evaluation
	Grounding Datasets
	Tagging Dataset
	Direct Evaluation Metric
	Derived Measures
	Shortest path to taxonomy root.
	Number of subordinate terms.
	Validation by user study.

	Discussion

	Conclusions
	References

	Semantic Enrichment of Twitter Posts for User Profile Construction on the Social Web
	Introduction and Motivation
	Related Work
	How to Exploit Twitter for Semantic User Modeling?
	Analyzing Linkage between Tweets and News for Semantic Enrichment
	Strategies for Discovering Tweet-News Relations
	Analysis and Evaluation

	Analyzing User Profile Construction Based on Semantic Enrichment
	User Modeling Strategies
	Analysis and Evaluation

	Conclusions and Future Work
	References

	Improving Categorisation in Social Media Using Hyperlinks to Structured Data Sources
	Introduction
	Related Work
	Enhanced Post Representations
	Data Corpus
	Analysis of the External Metadata
	Classification Experiments
	Experimental Setup
	Experimental Results

	Discussion
	Conclusion
	References

	Predicting Discussions on the Social Semantic Web
	Introduction
	Background and Related Work
	Behaviour Ontology
	Identifying Discussion Seeds
	Feature Extraction
	Experiments
	Results

	Predicting Discussion Activity Levels
	Experiments
	Results

	Conclusions
	References

	Mining for Reengineering: An Application to Semantic Wikis Using Formal and Relational Concept Analysis
	Introduction
	Problem Setting and Wiki Terminology
	Introducing Formal Concept Analysis (FCA) and Relational Concept Analysis (RCA)
	Formal Concept Analysis
	Relational Concept Analysis

	Methodology
	Construction of the Relational Context Family
	Analyzing Formal Concepts of the Concept Lattice

	Experimental Results
	From Wikis to Lattices
	Results

	Discussion
	Related Works and Conclusion
	References

	Demo Track
	SmartLink: A Web-Based Editor and Search Environment for Linked Services
	Introduction
	SmartLink: Linked Services Editor and Search Environment
	Discussion and Conclusion
	References

	ViziQuer: A Tool to Explore and Query SPARQL Endpoints
	Introduction
	Overview of the Tool
	Results and Conclusions
	References

	EasyApp: Goal-Driven Service Flow Generator with Semantic Web Service Technologies
	Introduction
	EasyApp
	System Overview
	Key Technologies

	Use Case – Hiring Process
	Conclusions
	References

	Who’s Who – A Linked Data Visualisation Tool for Mobile Environments
	Introduction
	Application Scenario
	The Who's Who Application
	Exploiting Context to Augment Physical Entities
	Processing of Linked Data on Mobile Devices
	Visualisation

	Related Work
	Summary
	References

	OntosFeeder – A Versatile Semantic Context Provider for Web Content Authoring
	Introduction
	Feature Description and User Interface Walkthrough
	Architecture
	Embedding Metadata
	Related Work and Summary
	References

	wayOU – Linked Data-Based Social Location Tracking in a Large, Distributed Organisation
	Introduction
	The wayOU Android Application
	Interface and Demonstration
	Conclusion, Future Work and Challenges
	References

	SeaFish: A Game for Collaborative and Visual Image Annotation and Interlinking
	Motivation
	Collaborative and Game-Based Image Annotation
	Discussion and Outlook
	Conclusion
	References

	The Planetary System: Executable Science, Technology, Engineering and Math Papers
	Application Context: STEM Document Collections
	Key Technology: Semantics-Preserving Transformations
	Demo: Interactive Services and the PlanetaryAPI
	Related Work
	Conclusion and Outlook
	References

	Semantic Annotation of Images on Flickr
	Introduction
	Semantic Annotation Platform
	Semantic Photo Annotation
	Semi-automatic Semantic Annotation
	Manual Semantic Annotation

	Semantic Search
	Demonstration
	References

	FedX: A Federation Layer for Distributed Query Processing on Linked Open Data
	Introduction
	FedX - Design and System Overview
	Demonstrating FedX in the Information Workbench
	Conclusion and Future Work
	References

	PhD Symposium
	Reasoning in Expressive Extensions of the RDF Semantics
	Problem Statement and State of the Art
	Proposed Approach and Methodology
	Current Status and Initial Results
	Conclusions and Future Work
	References

	Personal Semantics: Personal Information Management in the Web with Semantic Technologies
	Research Problem
	State of the Art
	Propose Approach and Methodology
	Initial Results
	Future Work
	References

	Reasoning with Noisy Semantic Data
	Problem Statement
	State of the Art
	Proposed Approach and Methodology
	Statistical Reasoning with Noisy Linked Data
	Handling OWL Inconsistency in Linked Data
	Mapping Repair and Evaluation
	Evaluation

	Results
	Conclusions
	References

	Extracting and Modeling Historical Events to Enhance Searching and Browsing of Digital Cultural Heritage Collections
	Research Context and Problem Statement
	State of the Art
	Approach
	Methodology
	Achieved Results and Future Work
	References

	Enriching Ontologies by Learned Negation
	Problem Statement
	State of the Art
	Expected Contributions
	Methodology and Approach
	Conclusion
	References

	Optimizing Query Answering over OWL Ontologies
	Problem
	State of the Art
	Proposed Approach and Methodology
	Results
	Conclusion
	References

	Hybrid Search Ranking for Structured and Unstructured Data
	Introduction
	Problem Definition
	State of the Art
	Proposed Approach
	Evaluation Methodology
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

