

Lecture Notes
in Business Information Processing 79

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Antonia Albani
Jan L.G. Dietz
Jan Verelst (Eds.)

Advances in
Enterprise Engineering V

First Enterprise Engineering
Working Conference, EEWC 2011
Antwerp, Belgium, May 16-17, 2011
Proceedings

13

Volume Editors

Antonia Albani
University of St. Gallen
9000 St. Gallen, Switzerland
E-mail: antonia.albani@unisg.ch

Jan L.G. Dietz
Delft University of Technology
2628 CD Delft, The Netherlands
E-mail: j.l.g.dietz@tudelft.nl

Jan Verelst
University of Antwerp
2000 Antwerp, Belgium
E-mail: jan.verelst@ua.ac.be

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-21057-0 e-ISBN 978-3-642-21058-7
DOI 10.1007/978-3-642-21058-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926784

ACM Computing Classification (1998): J.1, H.3.5, H.4

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Enterprise engineering is an emerging discipline that studies enterprises from
an engineering perspective. It means that enterprises are considered to be de-
signed and implemented systems, which consequently can be re-designed and
re-implemented if there is a need for change. Enterprise engineering is rooted in
both the organizational sciences and the information system sciences. The rigor-
ous integration of these traditionally disjoint scientific areas has become possible
after the recognition that communication is a form of action. The operating prin-
ciple of organizations is that actors enter into and comply with commitments,
and in doing so bring about the business services of the enterprise. This impor-
tant insight clarifies that enterprises belong to the category of social systems, i.e.,
its active elements (actors) are social individuals (human beings). The unifying
role of human beings makes it possible to address problems in a holistic way, to
achieve unity and integration in bringing about any organizational change.

Also when regarding the implementation of organizations by means of modern
information and communication technology (ICT), enterprise engineering offers
innovative ideas. In a similar way as the ontological model of an organization is
based on atomic elements (namely, communicative acts), there is an ontological
model for ICT applications. Such a model is based on a small set of atomic
elements, such as data elements and action elements. By constructing software
in this way, the combinatorial effects (i.e., the increasing effort it takes in the
course of time to bring about a particular change) in software engineering can
be avoided.

The development of enterprise engineering requires the active involvement
of a variety of research institutes and a tight collaboration between them. This
is achieved by a continuously expanding network of universities and other insti-
tutes, called the CIAO! Network (www.ciaonetwork.org). Since 2005 this network
has organized the annual CIAO! Workshop, and since 2008 its proceedings have
been published as Advances in Enterprise Engineering in the Springer LNBIP
series. From 2011 on, this workshop was replaced by the Enterprise Engineering
Working Conference (EEWC). This book contains the proceedings of the first
EEWC, which was held in Antwerp, Belgium.

May 2011 Antonia Albani
Jan L.G. Dietz

Jan Verelst

Enterprise Engineering – The Manifesto

Introduction

This manifesto presents the focal topics and objectives of the emerging disci-
pline of enterprise engineering, as it is currently theorized and developed within
the CIAO! Network. There is a close cooperation between the CIAO! Net-
work (www.ciaonetwork.org) and the Enterprise Engineering Institute (www.ee-
institute.com) for promoting the practical application of enterprise engineering.
The manifesto comprises seven postulates, which collectively constitute the en-
terprise engineering paradigm (EEP).

Motivation

The vast majority of strategic initiatives fail, meaning that enterprises are un-
able to gain success from their strategy. Abundant research indicates that the
key reason for strategic failures is the lack of coherence and consistency among
the various components of an enterprise. At the same time, the need to operate as
a unified and integrated whole is becoming increasingly important. These chal-
lenges are dominantly addressed from a functional or managerial perspective, as
advocated by management and organization science. Such knowledge is neces-
sary and sufficient for managing an enterprise, but it is inadequate for bringing
about changes. To do that, one needs to take a constructional or engineering
perspective. Both organizations and software systems are complex and prone
to entropy. This means that in the course of time, the costs of bringing about
similar changes increase in a way that is known as combinatorial explosion. Re-
garding (automated) information systems, this has been demonstrated; regard-
ing organizations, it is still a conjecture. Entropy can be reduced and managed
effectively through modular design based on atomic elements. The people in an
enterprise are collectively responsible for the operation (including management)
of the enterprise. In addition, they are collectively responsible for the evolution
of the enterprise (adapting to needs for change). These responsibilities can only
be borne if one has appropriate knowledge of the enterprise.

Mission

Addressing the challenges mentioned above requires a paradigm shift. It is the
mission of the discipline of enterprise engineering to develop new, appropriate
theories, models, methods and other artifacts for the analysis, design, imple-
mentation, and governance of enterprises by combining (relevant parts of) man-
agement and organization science, information systems science, and computer
science. The ambition is to address (all) traditional topics in said disciplines

VIII Enterprise Engineering – The Manifesto

from the enterprise engineering paradigm. The result of our efforts should be
theoretically rigorous and practically relevant.

Postulates

Postulate 1

In order to perform optimally and to implement changes successfully, enterprises
must operate as a unified and integrated whole. Unity and integration can only
be achieved through deliberate enterprise development (comprising design, engi-
neering, and implementation) and governance.

Postulate 2

Enterprises are essentially social systems, of which the elements are human be-
ings in their role of social individuals, bestowed with appropriate authority and
bearing the corresponding responsibility. The operating principle of enterprises
is that these human beings enter into and comply with commitments regarding
the products (services) that they create (deliver). Commitments are the results
of coordination acts, which occur in universal patterns, called transactions.

Note. Human beings may be supported by technical artifacts of all kinds, notably
by ICT systems. Therefore, enterprises are often referred to as socio-technical
systems. However, only human beings are responsible and accountable for what
the supporting technical artifacts do.

Postulate 3

There are two distinct perspectives on enterprises (as on all systems): func-
tion and construction. All other perspectives are a subdivision of one of these.
Accordingly, there are two distinct kinds of models: black-box models and white-
box models. White-box models are objective; they regard the construction of a
system. Black-box models are subjective; they regard a function of a system.
Function is not a system property but a relationship between the system and
some stakeholder(s). Both perspectives are needed for developing enterprises.

Note. For convenience sake, we talk about the business of an enterprise when
taking the function perspective of the customer, and about its organization when
taking the construction perspective.

Postulate 4

In order to manage the complexity of a system (and to reduce and manage its
entropy), one must start the constructional design of the system with its ontologi-
cal model. This is a fully implementation-independent model of the construction
and the operation of the system. Moreover, an ontological model has a mod-
ular structure and its elements are (ontologically) atomic. For enterprises the

Enterprise Engineering – The Manifesto IX

meta-model of such models is called enterprise ontology. For information systems
the meta-model is called information system ontology.

Note. At any moment in the life time of a system, there is only one ontological
model, capturing its actual construction, though abstracted from its implemen-
tation. The ontological model of a system is comprehensive and concise, and
extremely stable.

Postulate 5

It is an ethical necessity for bestowing authorities on the people in an enterprise,
and having them bear the corresponding responsibility, that these people are
able to internalize the (relevant parts of the) ontological model of the enterprise,
and to constantly validate the correspondence of the model with the operational
reality.

Note. It is a duty of enterprise engineers to provide the means to the people in
an enterprise to internalize its ontological model.

Postulate 6

To ensure that an enterprise operates in compliance with its strategic concerns,
these concerns must be transformed into generic functional and constructional
normative principles, which guide the (re-)development of the enterprise, in ad-
dition to the applicable specific requirements. A coherent, consistent, and hi-
erarchically ordered set of such principles for a particular class of systems is
called an architecture. The collective architectures of an enterprise are called its
enterprise architecture.

Note. The term “architecture” is often used (also) for a model that is the out-
come of a design process, during which some architecture is applied. We do not
recommend this homonymous use of the word.

Postulate 7

For achieving and maintaining unity and integration in the (re-)development and
operation of an enterprise, organizational measures are needed, collectively called
governance. The organizational competence to take and apply these measures on
a continuous basis is called enterprise governance.

May 2011 Jan L.G. Dietz

Organization

EEWC 2011 was the First Working Conference resulting from a series of success-
ful CIAO! Workshops over the years. These workshops were aimed at addressing
the challenges that modern and complex enterprises face in a rapidly changing
world. The participants of the workshops shared a belief that dealing with these
challenges requires rigorous and scientific solutions, focusing on the design and
engineering enterprises.

This conviction has led to the idea of organizing an international working
conference on the topic of enterprise engineering, in order to bring together all
stakeholders interested in making enterprise engineering a reality. This means
that not only scientists were invited, but also practitioners. It also means that
the conference is aimed at active participation, discussion and exchange of ideas
in order to stimulate future cooperation among the participants. This makes
EEWC a working conference contributing to the further development of enter-
prise engineering as a mature discipline.

The organization of EEWC 2011 and the peer review of the contributions
made to EEWC 2011 were accomplished by an outstanding international team
of experts in the fields of enterprise engineering.

General Chair

Jan L.G. Dietz Delft University of Technology, The Netherlands

Organization Chairs

Herwig Mannaert University of Antwerp, Belgium
Jan Verelst University of Antwerp, Belgium

Program Chair

Antonia Albani University of St. Gallen, Switzerland

Program Co-chairs

Eduard Babkin Higher School of Economics Nizhny Novgorod, Russia
Junichi Iijima Tokyo Institute of Technology, Japan
José Tribolet INESC and Lisbon University of Technology, Portugal

XII Organization

Program Committee

David Aveiro
Eduard Babkin
Joseph Barjis
Bernhard Bauer
Emmanuel delaHostria
Eric Dubois
Johann Eder
Joaquim Filipe
Rony G. Flatscher
Ulrich Frank
Remigijus Gustas
Birgit Hofreiter
Jan Hoogervorst
Stijn Hoppenbrouwers
Christian Huemer
Junichi Iijima

Peter Loos
Florian Matthes
Graham Mcleod
Aldo de Moor
Hans Mulder
Martin Op ’t Land
Pontus Johnson
Erik Proper
Gil Regev
Pnina Soffer
José Tribolet
Jan Verelst
Robert Winter
Marielba Zacarias

Table of Contents

Designing Organizations with DEMO

Designing the Information Organization from Ontological Perspective . . . 1
Joop de Jong

Control Organization: A DEMO Based Specification and Extension 16
David Aveiro, António Rito Silva, and José Tribolet

Combining DEMO with Other Methods

Combining DEMO and Normalized Systems for Developing Agile
Enterprise Information Systems . 31

Marien R. Krouwel and Martin Op ’t Land

Transformation of DEMO Metamodel into XML Schema 46
Yan Wang, Antonia Albani, and Joseph Barjis

Studies in Enterprise Architecture

Enterprise Architecture for Small and Medium Enterprise Growth 61
Dina Jacobs, Paula Kotzé, Alta van der Merwe, and Aurona Gerber

A Critical Investigation of TOGAF - Based on the Enterprise
Engineering Theory and Practice . 76

Jan L.G. Dietz and Jan A.P. Hoogervorst

A Method to Develop EA Modeling Languages Using Practice-Proven
Solutions . 91

Sabine Buckl, Florian Matthes, and Christian M. Schweda

Modularity in Enterprise Architecture Projects: An Exploratory Case
Study . 106

Philip Huysmans, Kris Ven, and Jan Verelst

Author Index . 121

A. Albani, J.L.G. Dietz, and J. Verelst (Eds.): EEWC 2011, LNBIP 79, pp. 1–15, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Designing the Information Organization from
Ontological Perspective

Joop de Jong1,2

1 Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands

2 Mprise
P.O. Box 598, 3900 AN Veenendaal, The Netherlands

jdjong@mprise.nl

Abstract. Actors act on the organization‘s world. Information that is needed for
performing coordinating actions of those actors is equal to factual knowledge
that consists of either facts that constitute the world’s states or facts that are de-
rived from these original facts. That means that business actors which are
directly responsible for production results are indirectly responsible for the in-
formation that is based on their production results. This paper proposes a way
of working by which the design of the ontological model of the information
organization is based on the ontological model of the business organization.
Central to the proposed approach is the concept of responsibility. This is a fun-
damentally different approach than many current approaches in practice to
which information is usually extracted from a database of data and from whom
nobody has any idea of the accountability regarding the reliability, timeliness,
etc. of the data.

Keywords: enterprise engineering, enterprise ontology, information manage-
ment, way of working, DEMO.

1 Introduction

This paper focuses on an important theme in the domain of the enterprise engineering,
defined in the manifest [1], namely the way of connection between business actors
which request for information and business actors which create relevant facts for
computing the information. Intellectual actors which perform infological production
actions such as remembering, reproducing, reasoning and computing on this
information as well as documental actors which perform datalogical production
actions such as copying, storing, and retrieving data are actively involved in the
process of generating information. The interwork of those types of actors leading to
an optimal performance of the enterprise requires a thorough construction design of
the enterprise. Such a design can be made by using the methodology that is called the
Design and Engineering Methodology for Organizations, DEMO for short. It is
developed by Dietz [2, 3]. He focused on the way of thinking and the way of
modeling in order to be able to design an ontological model of the business
organization of the enterprise. However, the proposed principles are also applicable in

2 J. de Jong

designing the ontological model of the information organization of the enterprise. In
this paper we present a methodological approach or a way of working to construct the
model of the information organization from an ontological perspective. This way of
working distinguishes from others in at least the following two points. First, the
design of the construction model of the information organization is achieved from the
ontological model of the business organization. Second, several types of actors
(business, intellectual and documental) work together to create and remember original
facts, to derive new facts from existent facts, and to derive information from facts for
supporting conversations at the business level. Each of them has their own
responsibilities in this collaboration network. In particular, business actors create new
facts and are thus liable for the quality of these facts. They have the shared
responsibilities and the liabilities for the quality of all information. This approach
differs fundamentally from the current approach in practice to which information is
usually extracted from a database of data and from whom nobody has any idea about
the responsibility regarding the reliability, timeliness, etc. of the data.

As we said we base the proposed way of working on DEMO. DEMO is based on
the relatively young research field of Language Action Perspective, or LAP for short
[4-8]. The focus on communications the concept for understanding and modeling of
organizations comes from the Speech Act Theory [9, 10] and the Theory of
Communicative Action [11, 12]. This theory considers speech acts as a vehicle to act.
Mulder has compared the most important LAP-based theories [13] and comes to the
conclusion that DEMO is the most appropriate methodology to (re)design
organizations in an integrated way. DEMO understands an organization as a construct
that operates in a social world, also called an inter-subjective world. Within the inter-
subjective world human subjects perform actor roles and interact with each other by
transactions. This also means that the need for information is considered from the
perspective of coordination.

This paper is structured as follows. Firstly, chapter 2 contains a summary of the ψ-
theory. DEMO has been grounded on this theory. For that reason it is necessary for a
good understanding of the proposed way of working to treat briefly it’s most
important and relevant concepts. The proposed way of working in order to design the
information organization is discussed in section 3. It is split in four steps. Each step is
elaborated separately in a different section. Section 4 contains some concluding
remarks and directions for further research.

2 Summary of the ψ-Theory

For a good understanding of this paper a summary of a part of the ψ-theory on which
Dietz [2] based the DEMO methodology is presented. The ψ-theory consists of four
axioms, viz. the operation axiom, the transaction axiom, the composition axiom and
the distinction axiom, and the organization theorem.

The operation axiom states that the operation of the organization is constituted by
the activities of actors, which are elementary chunks of authority and responsibility
fulfilled by human beings. Actors perform two kinds of acts: production acts, or P-
acts for short, and coordination acts, or C-acts for short. These acts have definite re-
sults, namely production facts and coordination facts, respectively. By performing

 Designing the Information Organization from Ontological Perspective 3

P-acts, actors contribute to bringing about goods or that are delivered to other actors.
By performing C-acts, actors enter into and comply with commitments towards each
other regarding the performance of P-acts. The transaction axiom states that coordina-
tion acts are performed as steps in universal patterns. These patterns, also called
transactions, always involve two actor roles. They are aimed at achieving a particular
result, the P-fact. One of the two partaking actor roles is called the initiator, the other
the executor of the transaction. In the order phase, the initiator and the executor pur-
sue to reach agreement about the P-fact that the executor is going to bring about as
well as the intended time of creation. In the execution phase, the executor brings
about this P-fact. In the result phase, the initiator and the executor pursue to reach
agreement about the P-fact that is actually produced as well as the actual time of crea-
tion (both of which may differ from the requested one). Only if this agreement is
reached will the P-fact become existent. The composition axiom states that every
transaction is enclosed in some other transaction, or is a customer transaction of the
organization under consideration, or is a self-activation transaction. The distinction
axiom states that there are three distinct human abilities playing a role in the operation
of actors, called performa, informa and forma. The forma ability is the human ability
to conduct documental actions, such as storing, retrieving, transmitting, etc. These are
actions by which the content of the documents or data is of no importance. Actors
which use the forma ability to perform P-acts are called documental actors or D-actors
for short. The informa ability is the human ability to conduct intellectual actions, such
as reasoning, computing, remembering and recalling of knowledge, etc. These are
actions by which the content of data or documents, abstracted from the form aspects,
is of importance. Actors which use the informa ability to perform P-acts are called
intellectual actors, or I-actors for short. The performa ability is the human ability to
conduct new, original actions, such as decisions, judgments etc. The performa ability
is considered as the essential human ability for doing business, of any kind. Actors
which use the performa ability to perform P-acts are called business actors or B-actors
for short. The last part of the ψ-theory that we would like to explain is the organiza-
tion theorem. It states that the organization of an enterprise is a social system that is
constituted as the layered integration of three homogeneous systems: the B(usiness)-
organization, the I(ntelligent)-organization, and the D(ocument)-organization. The D-
organization supports the I-organization, and the I-organization supports the B-
organization. All three systems are called aspects systems of the total organization of
the enterprise.

A system can be considered from two different perspectives, namely from the
function perspective or from the construction perspective. The function perspective on
a system is based on the teleological system notion which is concerned with the (ex-
ternal) behavior or performance of a system. This notion is adequate for the purpose
of controlling or using a system. It is about services or products which are delivered
by the system. The construction perspective on a system is based on the ontological
system notion. Systems have to be designed and constructed. During the design and
engineering process questions of being effectively and efficiency of the chosen design
have to be answered by the constructor of the system. Our point of departure in this
paper is the ontological system notion. The integration between the three organiza-
tions is established through the cohesive unification of human being [14].

4 J. de Jong

Based on these axioms, DEMO designs the ontological model of any social system
by four coherent and consistent models [3]. First, the Construction Model (CM) con-
tains the identified actor roles in the composition and in the environment, the identi-
fied transaction kinds among the actor roles as well as the information links from the
actor roles in the composition to the internal fact banks (i.e. the production banks and
coordination banks of the identified transaction kinds), and to the identified external
fact banks. The CM is a constitution of two models, namely de Interaction Model
(IAM) and the Interstriction Model (ISM). Second, the Process Model (PM) of an or-
ganization is the ontological model of the state space and the transition space of the
coordination world of the organization. Third, the Action Model (AM) of an organiza-
tion contains action rules for every agendum kind for every identified actor role. An
action rule specifies the (production and/or coordination) acts that must be performed
and the corresponding conditions (in the production world and/or the coordination
world) that must hold, on the occurrence of an instance of the agendum kind (which is
an event in the coordination world). Fourth, the Fact Model (FM) of an organization
is the ontological model of the state space and the transition space of the production
world of the organization.

3 The Way of Working

3.1 Introduction

Designing an effective enterprise implicates that business processes and information
processes must be defined in coherence. The correlation between these two kinds of
processes is described in the AM. The information functions in the AM are related to
information processes which input consists of original or derived facts which are re-
trieved from fact banks inside and outside the organization boundary. These fact
banks are filled by business actors which perform production acts. In other words,
business actors need (derived) facts as information parts which have been created
earlier by themselves or by other business actors. The proposed way of working that
leads to the design of the ontological model of the information organization consists
of four steps. The four steps are the following:

1. Determining information functions. This step results to a complete list of
information functions which are requested by the business actors inside the
boundary of the organization. According to the Generic System Development
Process [2, 15] the list can be considered as the function model of the object
system that corresponds with the information organization. It is derived from the
construction model of the user system that corresponds with the ontological design
of the business organization of the enterprise. The function model contains two
different kinds of information functions. Firstly, the functions which reproduce
original facts and perform infological actions on these facts to provide information
to business actors. Secondly, the functions which remember the original facts
created by business actors.

 Designing the Information Organization from Ontological Perspective 5

2. Analyzing information functions. Each information function from the mentioned
list relates to an information process. The information processes which deliver
information to business actors are powered by original facts created by business
actors. Those business actors are responsible for the data they created. That makes
business actors shared responsible for the quality of the available information. For
each information process the responsible business actors which contribute to the
quality of the output of the information process are determined.

3. Remembering by business actors. After determining the contribution of each
business actor to each information function all fact kinds per business actor can be
constituted. All these fact kinds, added with object classes and result kinds, are
described in the Bank Contents Table (BCT) [2]. This table contains the input data
for modeling the FM subsequently. The FM relates the fact kinds, object classes
and result kinds according to the ontological coexistence rules to each other. It
presents a coherent and comprehensive picture of the object world which has been
obtained as a result of a methodological way of working. This approach is
completely different from what one often see in practice where the principle of the
waiter strategy [2] still remains very popular.

4. Modeling information processes. After specifying both the information processes
and the fact banks in which the original facts that corresponds with specific infor-
mation processes are remembered and reproduced, the IAM of the I-organization
can be designed. This step results in this model which provide clear insights both
into the possibilities of reuse infological actions and in the responsibility areas of
the individual actors.

Those four steps are elaborated in the next four sections.

3.2 Determining Information Functions

The execution of an action rule depends on the state of the coordination world or the
production world on which the organization performs its actions. Querying the
relevant state of a world takes place through an information process. According to
Dietz [2] the AM is the most detailed and comprehensive aspect model. It is atomic
on the ontological level. This leads to our perception that the direct interrelationship
between the B-organization and I-organization lies in the AM.

Let us elaborate this topic by an example. Figure 1 exhibits the IAM of a small part
of an education center, for short EC, which offers standard courses to employees of a
known set of companies (clients). A client fills in the enrollment form and sends it to
EC. By sending a confirmation email, it is conceived that EC gives a promise for the
corresponding enrollment. Each enrollment should be paid by the client. For some
clients a particular discount is applicable. In the payment request, this fact should be
taken into account. The result kinds of the transaction kinds are given in Table 1.
Figure 2 exhibits the PM. For each process step is asked under what conditions the
corresponding C-act may be activated. For example, the actor A01 receives a request
and is put to the choice whether or not a promise action to do. The answer is gained
by executing a Boolean logical expression in which one or more information
functions are called.

6 J. de Jong

Table 1. Transaction Result Table of EC

• Transaction kind Result kind
• T01 Enrollment R01 Enrollment [E] has been performed
• T02 Discount approval R02 Discount for [E] has been approved
• T10 Payment R10 Enrollment [E] has been paid

Fig. 1. The Interaction Model of EC

Fig. 2. The Process Model of EC

The concerning Boolean logical expression is part of the action rule which is
defined in the AM. The action rule related to the agendum kind (T01, requested)
shows that both a client data check and a check whether the desired course is already
full booked must be carried out. For checking several pieces of information are re-
quired the client data, the list of standard courses offered by EC, a list of companies
which are known at EC, the number of current participants and the maximum
allowable capacity of the standard course. All those pieces of information designate
actually facts which are results of decisions taken by business actors in the past.
Transactions could also be done in the mind of people. For example, the client CA02
decided to order a standard course for one of its employees at EC. The fact which
reflects this production result is remembered by CA02 itself.

DEMO distinguishes several transaction statuses, such as requested, promised, de-
clined, stated, rejected, accepted, and others, which could be part of an agenda kind.
Agenda kinds (transaction kind, transaction status) contain a set of action rules and all

 Designing the Information Organization from Ontological Perspective 7

A01 Enroller

when T01 of new(E) is requested

if the client.course is equal to a valid standard course and
 the client.company is known at EC and
 #participants(standard course) < max_capacity(standard course)
then T01 of [E] must be promised
else T01 of [E] must be declined

Fig. 3. Example of Action Rule of EC

action rules have their own Boolean logical expression. Based on those expressions a
comprehensive and consistent list of required information functions can be consti-
tuted. Figure 3 exhibits one of the action rules of agendum (T01, requested).

Table 2 is created from Figure 3. It contains the list of information functions which
are called by the action rules in the AM of EC. The information functions 1 through 3
and 5 correspond to an original fact and the fourth information function corresponds
to a derived fact. Corresponding to a derived fact means that the output of the
information function is computed by of one or more intelligent actors based on one or
more original facts. Take into account that only information functions which are
needed by internal actors are determined. The information needs of external actors are
unknown and by definition out of scope.

Table 2. List of Required Information Functions

Actor No Required Information Functions Short Description
A01 1 Client data The client data includes the identification of the

client, the client company, the participant, and
the standard course the client likes to order for
the participant

 2 Standard courses of EC The standard course that the client likes to order
must be available at EC

 3 The companies the EC works for The client company must be known at EC
 4 Number of attendees which are

enrolled for Standard course
The total amount of enrollments for the requested
standard course

 5 Maximum capacity for standard
Course

EC has used for any standard course a maximum
number of participants

A02 ……..

Next, we would like to pay attention to the criteria satisfying an information

function for being acceptable within a Boolean logical expression. We indicated
already that an information process that corresponds with an information function
enquires about the state of a part of the production world or of the coordination world.
The issue we would like to discuss is about the distinctions between what we call
coordination-specific information and competence-specific information. Should we
consider both kinds of information as relevant to be included in the way of working
we propose? The important question is to what extent the competencies defined for an

8 J. de Jong

actor role affect the definitions of the information functions that are part of the action
rules which are linked to this actor role. One would say that information gained by an
actor in the inter-subjective world of cooperating actors is still known by the actor as
it works on a production act in the subjective world. That is certainly true, but that
does not mean that all information you would like to have available during the
production act is available in the inter-subjective world. We restrict ourselves to
the information which is obtainable in the inter-subjective world. Let us look again at
the EC case. The approver determines whether a client receives a particular discount.
There is nothing about the approval written on paper. Company guidelines regarding
this process are only in heads of human being. In practice the approver takes its own
decisions. Two distinct situations can occur in practice. They are exhibit by Figure 4.

A02 Approver

when T02 of [E] is requested

T02 of [E] must be promised

A02 Approver

when T02 of [E] is requested

 if guidelines and documented experiences are available
then T02 of [E] must be promised
else T02 of [E] must be declined

Fig. 4. Two Action Rules for distinct Situations

The first action rule shows that the management of EC expects that the approver
memorizes all guidelines. The approver must be well experienced by cases from the
past. It knows many clients and knows very well which clients always ask for dis-
count and which clients always accept the offer of the EC automatically. The experi-
ences of the actor have a strong contribution in judging the approval request. Behind
the second action rule there is another narrative. The management of EC concluded
that finding an approver with such a high skills as written in the first situation is very
difficult because high competent people ask for high salaries and EC is not able to pay
a high salary to the approver. They found a solution by reducing the expectations re-
garding the quality of the skills of the approver. They would provide the new ap-
prover both the guidelines for approval and some other practical guidelines on paper.
They are convinced that the combination of lower skilled people together with guide-
lines on paper provide an equal quality in approval. In case of the second action rule
(cf. Fig. 4) the approver seems to compensate a lack of experiences and knowhow by
using some tools during its production act to provide the same contribution as the
actor of the first action rule. This reasoning sounds correct but is in fact completely

 Designing the Information Organization from Ontological Perspective 9

wrong. What actually happens is that one tries to solve a problem that occurs in the
subjective world of the actor by an additional information request in the inter-
subjective world. This is incorrect.

The narrative behind the second action rule should be resolved within the
subjective world. In the subjective world a less qualified person who is supported by
standard tools, relevant manuals and guidelines, etc. must be linked to the actor A02.
The concerning manuals do not contain information as we understand within the
framework of this paper. They contain competence-specific information which is
opposed to coordination-specific information that we discuss in this paper.

3.3 Analyzing Information Functions

Each information function is related to an information process within the
organization. An information process enquires business actors and gains original facts
created by business actors inside and outside the organization boundary as input data.
A business actor which create facts is owner of those facts and therefore responsible
for the quality of those facts and subsequently also responsible for the quality of the
information those facts contribute. Business actors, which request for information,
ought to ask permission for using facts which contribute to the concerning
information. Only when the facts are correctly applied within the information
function, the authorization for using those facts should have been approved. On the
other hand, the actors which request for information may expect that the quality of the
available facts is sufficient in terms of reliability, accuracy, etc. As an example,
the sender of an important package to a customer may assume that the address that he
receives from an intellectual actor will be the most recent address of that customer. If
the address appears to be incorrect the business actor which is responsible in the
organization for updating customer data should therefore be liable. Just another
example, the salesman in a company who is able to sell a product may assume that the
concerning product is available on stock if the common group of actors which affect
the inventory of that product have made clear that at least one qualified product in the
magazine would be available. This common group of actors must be considered as
liable for the consequences if such a product does not appear available. Intellectual
actors which deliver information to business actors do not only transfer original facts
to those business actors but they also perform production actions on original facts.
These kinds of production actions are also called intellectual actions or infological
actions. Intellectual actors operate under the rules of logic and therefore they
demonstrate predictable behavior. In practice, the acts of intellectual actors are often
taken over by software applications. Of course, intellectual actors also have their own
responsibility for the quality of their infological actions, but given the nature of their
actions, the quality issue can often be compensated by properly programmed (parts
of) actors.

This step in the proposed way of working leads to the acquiring of at least two
different views. First, it gives per information function information about the
responsible business actors which contribute to the quality of the concerning
information function. Second, it gives more information about the interdependencies
between business actors within the organization and between business actors inside
and outside the organization boundary. Insight into the interdependencies is at least in

10 J. de Jong

two different situations of utmost importance. Firstly, it is important in a situation
where it is desirable to change the ontological construction model of the enterprise. A
change of a role definition may affect acts of business actors which coordination
actions depend on the availability of specific information based on original facts
created by actors which role definition has been adapted. An actor role even can be
outsourced. This could have major consequences for the availability of information
for other actors within the organization. Secondly, in a situation that operational
disruption occurs in the execution of an actor role. If there is a delayed delivery of
raw materials, or a disruption of critical production machines or illness of employees,
then specific business actors are hindered by failure of timely availability of necessary
information. That leads to new disruptions and so on. Transparency of the model on
causes and effects is of big importance. This second step in the way of working re-
sults in a table (cf. Table 3) in which for each information process all business actors
which supply relevant original facts and all aggregate production banks from outside
the organization boundary are set out.

Table 3. List of Source Actors per Required Information Function

Actor No Required Information
Functions

Source Actor or
Ext. Production
Bank

Fact Kind/
Object Class

A01 1 Client data APB01 Cl_name,

Cl_company,
Cl_standard_course

 2 Standard courses of EC APB02 EC_standard_course
 3 The companies the EC works for APB03 EC-company
 4 Number of attendees which are

enrolled for standard course
A01 ENROLLMENT

 5 Maximum capacity for standard
course

APB04 EC_max_capacity

A02 ……..
 ……..

Table 3 is added with a fifth column with the corresponding fact kinds and object

classes. The fact kinds from outside the organization boundary are assigned to the fact
banks APB01 until APB04. Table 3 gives us also the possibility for checking the
completeness of the model. If important input data for a specific information process
is missing, then it can be resolved in one of four different ways. Firstly, look if an
existent business actor is able to deliver the needed fact or facts. Secondly, look for a
missing business actor within an existing process which should deliver this fact.
Thirdly, look for a missing business process in which a business actor should provide
the missing fact, and fourthly, if all three cases do not help you to find the required
input data within the scope of the organization, then the relevant data should be read
from an external aggregate production bank.

The ISM of EC, that contains all interstrictions between actors and fact banks is
combined with the IAM and is exhibited in Figure 5. The aggregated model is called
the CM.

 Designing the Information Organization from Ontological Perspective 11

Fig. 5. The Construction Model of EC

3.4 Remembering by Business Actors

For each business actor have to be defined which fact kinds have to be remembered.
Given the limits of the EC example we only have a limited number of fact kinds
available. The Table 3, column 4 exhibits that we can restrict ourselves to business
actor A01. A01 remembers the participants of the courses. All other facts come from
external banks. From the fact bank T01 which is affiliated to A01 the number of
registered participants per standard course can be determined.

Table 4. List of Fact Kinds per Business Actor/Fact Bank

Executor/
Bank

Description Kind Object 1 Object 2

A01/T01 ENROLLMENT Object
 cname Unary fact ENROLLMENT
 ccompany Binary fact ENROLLMENT COMPANY
 cstandard_course Binary fact ENROLLMENT STANDARD_

COURSE
 [E] has been performed Result

A02/T02 Discount for [E] has been
approved

Result

EXT/APB02 STANDARD_COURSE Object
EXT/APB03 COMPANY Object
EXT/T10 [E] has been paid Result

Furthermore, we discussed that relevant client data from APB01 which is linked to

the enrollment also should be remembered by A01. This is shown in Table 4. If this
table is added with the result kind of each actor, then Table 4 becomes equal to the
Bank Contents Table (BCT), known from Dietz [2]. Next, the FM which shows the
declarative-shape business rules can easily be created from the BCT. See Figure 6.

In the previous text of this paper we saw that a business actor remembers data, i.e.
objects, instances of fact kinds (unary and binary) and instances of result kinds (also
called P-fact kinds). But, the question is now, when does the remembering of the
mentioned data take place? Let us first look at the creation time of a production result

12 J. de Jong

Fig. 6. The Fact Model of EC

(P-fact). The creation time of a P-fact is not equal to the execution time of the corre-
sponding P-act because principally the execution time of a P-act is not precisely
known.

It is chosen to equate it with the creation time of the corresponding C-fact ‘stated’.
Then, the creation time C-fact ‘accepted’ is chosen to be the actual creation time of
the P-fact. From that time the P-fact starts to exist operationally. However, the expla-
nation of the entity life cycle (cf. Fig. 7 gives motivation to model the remembering
entities, its dependent facts and original properties in their prenatal phase, which is
considered to coincide with the creation time C-fact requested. Once they exist in the
production bank, the organization conceives their existence and is thus able to use
(reproduce) them.

Fig. 7. Existence line of Entity

Back to the example of the EC, the approver may assume after a request for an
approval that the enroller already is remembering specific client information. In this
example, we have not elaborated the need for information of the approver. Although
the P-fact of the enroller still not exists operationally, there would have undoubtedly
gone an information link between A02 and the fact bank T01 in Figure 5 if we had
elaborated the information need of A02.

3.5 Modeling Information Processes

The fourth step of the way of working concerns the design of the construction model
of the information organization. Figure 5 exhibits that A01 puts their facts into the
fact bank T01. One of the facts to remember is the unary fact client name. From now,
A01 is liable for the correct client name linked to the enrollment. Assume that A02
would like to make its promise for performing its production act dependent of
the client. Therefore, A02 has to reproduce the client name which is linked to the

 Designing the Information Organization from Ontological Perspective 13

enrollment and which has been remembered in T01. See the corresponding informa-
tion link in Figure 8. The three layers in Figure 8 correspond with the three layers,
business, infological and datalogical, in Figure 4.

Fig. 8. Reproduction of an original Fact by any Business Actor

From the construction point of view the enroller B-A01 has both an informa ability
I-A011 for remembering facts and an informa ability I-A012 for reproducing facts.
The informa ability of the approver I-A02 requests the reproducer I-A012 for the
original fact which is owned by B-A01. The forma ability D-A012 collects this fact
from the fact bank T01. This picture shows that the business actor which remembers
the original fact is responsible for the correctness of the information which is re-
quested by another business actor. Figure 8 gives an illustration about how notions as
responsibility as well as reusability of infological and datalogical production actions
are modeled in the construction models of the I-organization and the D-organization,
respectively. Look for a detailed elaboration of the way of modeling the information
and documentation organization at the research paper of de Jong [14, 16]. In this
section we will restrict ourselves in applying the theory of the mentioned paper using
the EC example.

Information processes are modeled through the I-organization so that the B-actor
only needs to focus on its informa ability for both remembering entities and reproduc-
ing information. Conforming to the description in the previous subsection, the prena-
tal phase of an entity in which remembering takes place normally coincides with the
creation time of the C-fact requested. Besides that, I-transactions for the production of
information are taken place during the execution of the action rules. Both kinds of
information processes will be exhibited by the ontological model of the I-
organization, the IAM of the I-organization, of EC. To build the I-IAM one has to
determine all information functions per internal B-actor. The B-actor initiates as an
external actor of the I-organization for each information function an I-transaction (cf.
Fig. 9). Besides that, for every B-actor one I-transaction can be defined for remember-
ing a fact to a particular production bank.

14 J. de Jong

Table 5. Transaction Result Table of I-Interaction Model

Transaction kind Result kind
I-T01 enrollment remembering enrollment E has been remembered
I-T02 reproduction client data for new E client data for new E has been reproduced from APB01
I-T03 reproduction standard course standard course data has been reproduced from APB02
I-T04 reproduction company company data has been reproduced from APB03
I-T05 #participants(SC) computation #participants(SC) has been computed
I-T06 max_capacity reproduction max_capacity has been reproduced from APB04
I-T07 enrollment E reproduction enrollment E has been reproduced

Table 3 exhibits five information functions which can be linked to information
processes. In addition to these processes, which reproduce original facts and perform
infological actions on these original facts possibly, there should also be defined a
remembering process that remembers the production facts of A01. So, in the I-IAM
should be modeled six information processes which in total consist of seven
transactions. Table 5 contains the transaction result table of the I-IAM of EC. The
benefit of modeling functional requirements into I-transactions of the I-organization
(instead of a direct modeling into an I-application model) is that the responsibility for
those services is clearly shown. Without modeling the I-organization, the only visible
responsibility is that of the B-actors. Therefore, the presence of the I-actors clearly
shows the amount of the responsibility regarding the informational/intellectual ser-
vices needed by the B-actors.

Fig. 9. The I-Interaction Model of EC

 Designing the Information Organization from Ontological Perspective 15

4 Conclusion and Further Research

This paper proposes a way of working for designing the information organization
which is divided in four steps. The functional model of the information organization is
derived from the construction model of the business organization. Subsequently, the
information functions are analyzed to determine the original facts on which infological
actions within the corresponding information processes are executed. Next, the
required facts are bundled per business actor which remembers these facts and which is
also responsible for the quality of each of these facts. Finally, the construction model
of the information organization is designed for reusability purposes of the infological
actions. This way of working results in the ultimate ontological model of the
information organization which is the starting point for engineering the implementation
model of the information organization.

References

1. Dietz, J.L.G., et al.: Enterprise Engineering: The concise Manifesto - version 9 (2010)
2. Dietz, J.L.G.: Enterprise Ontology – theory and methodology. Springer, Heidelberg (2006)
3. Dietz, J.L.G.: The deep structure of business processes. Communications of the

ACM 49(5), 59–64 (2006)
4. Winograd, T., Flores, F.: Understanding Computers and Cognition: A New Foundation for

Design. Ablex Corporation, Norwood (1986)
5. Dietz, J.L.G.: Generic recurrent patterns in business processes. In: van der Aalst, W.M.P.,

ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 200–215.
Springer, Heidelberg (2003)

6. Dietz, J.L.G.: The Atoms, Molecules and Fibers of Organizations. Data and Knowledge
Engineering 47, 301–325 (2003)

7. Van Reijswoud, V.E., Mulder, J.B.F., Dietz, J.L.G.: Speech Act Based Business Process
and Information Modeling with DEMO. Information Systems Journal (1999)

8. Dietz, J.L.G.: Towards a LAP-based Information Paradigm. In: 9th International Working
Conference on the Language Action Perspective on Communication Modelling, New
Brunswick, New Jersey, USA (2004)

9. Austin, J.L.: How to do things with words. Harvard University Press, Cambridge (1962)
10. Searle, J.S.: Speech Acts, an Essay in the Philosophy of Language. Cambridge University

Press, Cambridge (1969)
11. Habermas, J.: Theorie des Kommunikatives Handelns, Erster Band. Suhrkamp Verlag,

Frankfurt am Main (1981)
12. van Reijswoud, V.E.: The Structure of Business Communication: Theory, model and ap-

plication. Delft University of Technology, Delft (1996)
13. Mulder, J.B.F.: Rapid Enterprise Design. Technical University Delft, Delft (2006)
14. de Jong, J., Dietz, J.L.G.: Understanding the Realization of Organizations. In: Albani, A.,

Dietz, J.L.G. (eds.) CIAO! 2010. LNBIP, vol. 49, pp. 31–49. Springer, Heidelberg (2010)
15. Dietz, J.L.G.: Architecture, building Strategy into Design. Academic Service, The Hague

(2008)
16. de Jong, J.: Integration Aspects between the B/I/D Organizations of the Enterprise. In: Al-

bani, A., Barjis, J., Dietz, J.L.G. (eds.) CIAO! 2009. LNBIP, vol. 34, pp. 187–200.
Springer, Heidelberg (2009)

A. Albani, J.L.G. Dietz, and J. Verelst (Eds.): EEWC 2011, LNBIP 79, pp. 16–30, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Control Organization: A DEMO Based
Specification and Extension

David Aveiro1,2, António Rito Silva2,3, and José Tribolet2,3

1 Exact Sciences and Engineering Centre, University of Madeira, Caminho da Penteada
9000-390 Funchal, Portugal

2 Center for Organizational Design and Engineering, INESC-INOV
Rua Alves Redol 9, 1000-029 Lisboa, Portugal

3 Department of Information Systems and Computer Science, Instituto Superior Técnico,
Technical University of Lisbon

daveiro@uma.pt, {jose.tribolet,rito.silva}@ist.utl.pt

Abstract. In this paper we apply the Design and Engineering Methodology for
Organizations (DEMO), to specify an ontological model for the generic Control
Organization that we argue that exists in every organization. With our proposal,
DEMO is extended so that we can specify critical properties of an organization
– that we call measures – whose value must respect certain restrictions imposed
by other properties of the organization – that we call viability norms. We can
now also precisely specify defined resilience strategies that control and elimi-
nate dysfunctions – violations of viability norms caused by exceptions. On top
of this, we can also keep a systematic trace of the history of dysfunctions of an
organization and of control acts executed to eliminate them. All of these facts
are structured in a systematic manner and provided in a set of proposed tables,
which are useful for a variety of purposes like (1) making control responsibili-
ties clear and making organization agents accountable for bad control decisions,
as well as (2) allowing more informed organization change decisions.

Keywords: enterprise engineering, control, DEMO, viability, dysfunction,
exception handling.

1 Introduction

Our research focuses on improving the management of two related kinds of organiza-
tional change: resilience change and microgenesis change. Both kinds of changes are
reactions to dysfunctions, i.e., deviations from what the norm is or from what would
be expected [1]. An organization has to be prepared for timely and adequate responses
to such dysfunctions so that its viability is maintained. To illustrate our ideas, we
convey examples from the scenario of a library, introduced in [2] and extended in our
research, as to better accommodate concepts we're proposing. The main activities of
the library are book loaning and offer book history courses. We can define three
norms: (1) min average number of registrants in book history courses 1 week before
start is 14, (2) min total income per month is 900€€ and (3) max loan declines per week
is 30. A possible dysfunction in the second norm is: average number of registrants in

 Control Organization: A DEMO Based Specification and Extension 17

book history courses is 7 on March 23th 2009. This can be a very serious situation
because, as a consequence, the library may lose income needed to acquire enough
resources and eventually go bankrupt. Dysfunctions will have a cause which may be
expected or unexpected. If the cause is expected, certain resilience strategies may
already exist that can be activated to eliminate or circumvent dysfunctions [3], [1]. If
the cause is unknown we will be in the presence of an unexpected exception. This
unexpected exception will have to to be handled so that its concrete nature is detected
and actions are undertaken that either eliminate or circumvent it, solving the dysfunc-
tion. The first time not enough students were registering it had, as a consequence, a
dysfunction in the norm of min total income per month. As a result of this dysfunc-
tion, a handling process was initiated to detect the root cause (unexpected exception)
of lack of income, namely: lack of advertisement of courses. The resilience strategy
distribute course fliers was designed and chosen as solution to avoid the referred
(previously unexpected) exception.

The handling of unexpected exceptions constitutes a central aspect of our research,
namely change through the (re)Generation, Operationalization and Discontinuation
of organizational artifacts which will eliminate or circumvent the determined cause of
dysfunction. We consider an organization artifact (OA) as a construct of an organiza-
tion like a business rule (e.g. “if invoice arrives, check list of expected items”) or an
actor role (e.g. library member). Change of OAs to handle dysfunctions is considered
a special kind of dynamics that – inspired in philosophy literature on this subject – we
call microgenesis [4]. We find that change is also driven by the detection of opportu-
nities of improvement which will increase the viability of an organization and place it
ahead of competition [5]. This is proactive change, as opposed to reactive change in
the cases of resilience and microgenesis. The general focus of our research is on mod-
eling the aspects of reactive change: (1) the resilience dynamics of strategies to solve
known exceptions causing dysfunctions and (2) the microgenesis dynamics of han-
dling unexpected exceptions also causing dysfunctions. This paper, in turn, focuses on
the first aspect: resilience dynamics. In section 2 we develop our research problem
and related work. Section 3 presents our application of DEMO, in order to specify and
handle resilience dynamics of organizations. Section 4 concludes this paper with a
critical review on work done and future lines of research.

2 Problem, Motivation and Related Work

Above findings helped us to trace down and focus on the following research problem:
an absence of concepts and method for explicit capture, and management of informa-
tion of exceptions and their handling; this includes the design and selection of OAs
that solve dysfunctions caused by exceptions. Not immediately capturing this handling
and the consequent resulting changes in reality and the model of reality itself, will
result that, as time passes, the organization will be less aware of itself than it should
be, when facing the need of future change due to other unexpected exceptions. We
focus on this problem in the context of small timely changes, as opposed to large im-
pact changes in the context of IT/IS projects, mergers, acquisitions and splittings of
organizations. This problem is highly relevant since, as we saw in the library exam-
ples, dysfunctions like lack of enough income can compromise a whole organization.

18 D. Aveiro, A.R. Silva, and J. Tribolet

Also, exception handling can sometimes take almost half of the total working time,
and the handling of, and recovering from, exceptions is expensive [6]. What causes
can be identified relating to this problem? We identify what seems to be a lack of
capture and management of relevant information of past unknown exceptions and
their handling. Many events (which were previously unknown exceptions) can have
already been known or expected in the past, but can be (frequently) forgotten and be-
come again unexpected (unknown) due to: (1) absence of explicit representation of (i)
specific exceptions and actions that were executed (in an Ad hoc and unstructured
way) for their handling and (ii) engineered OAs to solve them [7] or (2) removal of
human agents from a certain organizational actor role which had established and tac-
itly memorized specific (informal) rules to handle specific exceptions occurring in
such actor role [6]. The shortcoming of lack of continuous update of models aligned
with the continuous change of reality has been addressed, by and large, in research
and practice in the context of Workflow Management Systems (WfMS) – see, for
example, [7] and [8]. However, current solutions assume that an organization will be
using a WfMS, which will not be the case of many organizations. And, even in the
case of organizations using WfMS, relevant activities may happen outside of IT con-
text and we may also want to address exceptions related to them. From Complex
Adaptive Systems (CAS) literature, [3] (p. 33) and philosophy [1], we find that sys-
tems maintain an internal model of the world (of themselves and the environment) so
that they can activate specific resilience strategies to react, appropriately and in time,
to certain known exceptions or fluctuations in critical norms that guarantee the sys-
tem's viability. We also find that a system adapts with incremental changes [4], hav-
ing as a main purpose to survive and evolve among competition, by having credit
mechanisms which favor changes (adaptations) that increase the system's viability and
constitute criteria of measuring success [3] (p. 34), [9] (p. 5). One of the premises
from CAS theory is that, to solve new exceptions, “rule pieces” that constitute current
resilience strategies that solve similar exceptions may be re-utilized to build new re-
silience strategies or new organization artifacts to solve the new exceptions. From
unexpected exception handling in WfMS [7] and ODE [10], we find that information
on the history of organization change is an essential asset in moments where change is
again needed, i.e., in microgenesis dynamics.

Specifying resilience and microgenesis dynamics and keeping a systematic history
of their execution is deemed as a solution to our general research problem, so that
exception handling and organization change is more efficient and effective. Micro-
genesis is the main focus of our general research project, but to precisely specify its
dynamics we need to precisely specify resilience dynamics – the focus of this paper.
To ground our solution, we decided to narrow our research focus, choosing a particu-
lar OE approach, namely, the Design & Engineering Methodology for Organizations
(DEMO) [2]. From several approaches to support OE being proposed, DEMO seems
to be one of the most coherent, comprehensive, consistent and concise [2]. It has
shown to be useful in a number of applications, from small to large scale organiza-
tions – see, for example, [11] and [12] (p. 39). Nevertheless, DEMO suffers from the
same general OE shortcomings referred above. Namely, DEMO models have been
mostly used to devise blueprints to serve as instruments for discussion of broader
scale organizational change or development/change of IT systems [12] (p. 58) and
does not, yet, provide modeling constructs and a method for a continuous update of its

 Control Organization: A DEMO Based Specification and Extension 19

models as reality changes, driven by exceptions (microgenesis) nor for the continuous
control (resilience) that we need to exert on organizations to guarantee viability.

Contributions of our research are presented in the next sections. We apply DEMO,
to devise a set of concepts and a method that systematically address the elicited prob-
lem in the resilience aspect. While proceeding, the reader which is unfamiliar with
this methodology is advised to also consult [2] or [11] or other publications in:
www.demo.nl.

3 Applying DEMO to Specify the Control Organization

Microgenesis change starts in a particular context in resilience dynamics, namely,
when a certain dysfunction cannot be solved by any existing resilience strategy.
Hence, the need of focusing first in resilience, which is one of the aspects of control
of an organization. The study of control is a vast area and in this paper we address
only control issues directly related with our main focus, that is, microgenesis change.
Namely, we will now look in detail how resilience dynamics of an organization can
be precisely and coherently systematized. We leave the study of other control issues
as future research work. We do not find the aspect of resilience dynamics – in the
form of specification of viability and its control – addressed in current version of
DEMO. One of the contributions of our research is to apply DEMO to model what we
propose to call the Control Organization (CO). The CO’s ontological model is the
conceptualization of a generic organization considered to exist in every organization
and responsible for controlling its viability. We next present the formulation of the
main aspect models of the CO. In practice, the CO’s ontological model will be a de-
fault subset of the ontological model of every organization. But for separation of con-
cerns reasons we model the CO as a “separate” organization although, in practice, it is
included in the controlled organization itself. The following subsections portray, in an
intertwined manner, the CO’s aspect models while having, as anchors, a number of
tables we propose to express state information of the control aspect of an organiza-
tion. The CO’s State Model is formulated, in World Ontology Specification Language
(WOSL) [13], in Figure 2, which depicts the CO’s State Space Diagram (CO’s SSD).
WOSL is highly based in the ORM fact oriented modeling language [14], extending it
with the ability of modeling events (result kinds) affecting facts. Further ahead we
can also find the formulation of the CO’s Construction Model (CO’s CM) – depicted
in the CO’s Organization Construction Diagram (CO’s OCD) – and the CO’s Action
Model (CO’s AM) – specified in a set of three generic action rules.

3.1 Measures and Viability Norms Table

Logically, the viability of an organization should be specified by the declaration of
viability norms for measures related with its production banks. This makes sense be-
cause, inevitably, viability of an organization is related with its production. Namely,
for an organization to be viable, it needs to be able to satisfy environmental demand
and expectations, with appropriate quality, while acquiring the appropriate amount of
resources. We find that the Object Property List (OPL) – part of DEMO’s State
Model – is a convenient way of specifying fact types that are proper (mathematical)
functions, and of which the range is a set of values [2]. The fact types in an OPL are

20 D. Aveiro, A.R. Silva, and J. Tribolet

called properties (of object classes). We observe, from the OPL of the library sce-
nario, that certain properties specify restrictions on another property. E.g., we have
property max_copies_in_loan which specifies the restriction of the maximum number
of book copies a certain member of the library is allowed to have in loan. Observance
of this restriction is verified in the action rule that decides on an acceptance or a de-
cline in transaction loan start. It logically follows that, in the SM of a certain organi-
zation, certain properties will have to be declared that specify restrictions on certain
measures related to its information banks (i.e., to its production and coordination in-
formation). Taking the case of the library, one of its production banks is PB01, also
named as membership fee payments. To make sure one is able to cover all expenses of
the library, we will need to measure a relevant property related with PB01, namely,
total income per month. As a viability norm, we can declare a certain necessary
minimum income per month. We do this with property min total income per month.
To detect possible problems in loans, we can measure a relevant property related with
coordination bank CB04 of transaction loan start, namely, loan declines per week. As
a viability norm, we can declare an acceptable maximum amount of declines per
week. We do this with property max total loan declines per week. We depict, in
Figure 1, part 1 of the CO’s SSD which expresses our reasoning so far. Object class
MEASURE represents the population of all properties of the main organization which
are measures related with information banks. In other words, it represents the subset
of the properties of an organization which constitute measures that will be repeatedly
observed (measured) for viability control ends. Certain other properties of an organi-
zation will specify restrictions on the properties that are measures, so that viability is
assured. Object class VIABILITY NORM represents the population of all these re-
striction properties. Besides knowing which properties of the main organization are
measures and viability norms, we need to know explicitly which are the viability
norms imposed on each measure. We model this need with the fact type, explained by
predicative sentence: [viability norm] restricts [measure].

Fig. 1. Control Organization’s SSD - part 1

 Control Organization: A DEMO Based Specification and Extension 21

We propose the Measures and Viability Norms Table (MVNT) to express this as-
pect of the CO’s SM, exemplified in Table 1 for the case of the library. The practical
relevance of this table is a quick and summarized glance on which are the critical
variables – measures – on which to evaluate an organization’s viability and what re-
strictions – viability norms – apply for them so that one can determine if dysfunctions
are happening or not. In other words, it is a clear and succinct specification of what is
the normal and allowed quality of operation for the relevant production of an organi-
zation. As it will be clear ahead with the examples we provide, in situations of occur-
rence of expected exceptions or necessity of change, information of these measures
and restrictions on them is essential to assess change impact and eventually adopt new
values for such restrictions.

Table 1. Measures and Viability Norms Table of the library

measure viability norm scale

total income per month min total income per month EURO

loan declines per week max loan declines per week NUMBER

average # of registrants in book history
courses 1 week before start

min average # of registrants in book history courses 1
week before start

NUMBER

All measures will be properties that are derived fact types and whose derivation

rules imply a certain computation on facts of the related information bank. For the
examples in Table the derivation rules are quite simple and implicit in the property
name so we skip from presenting them. But, depending on the complexity of the vi-
ability measure and/or related information banks, derivation rules may have to be
specified, similarly to what is done for the case of the OPL of the library.

3.2 Control Responsibilities Table

To guarantee an organization’s viability, control acts will have to be executed with a
certain frequency. In such acts, measures will be measured, and evaluated, against
their respective viability norm. In case the norm is respected, it means such norm is in
a state of function and nothing else needs to be done. In case the norm is violated it
means the norm is in a state of dysfunction and other control acts will have to be exe-
cuted to solve such dysfunction, namely, initiation of resilience or microgenesis
change. Following the distinction axiom [2], the acts of measuring and evaluating
measures against viability norms are purely infological and, thus, are not part of our
model. The acts of deciding on certain control acts as a reaction to a dysfunction are
ontological and will be described in detail next.

Table 2. Control Responsibilities Table of the library

viability norm transaction kind time responsible actor role

min total income per month T20 - finance management month A20 - finance manager

max loan declines per week T21 - general management week A21 - director

min average # of registrants in book
history courses 1 week before start

T22 - course management week A21 - director

22 D. Aveiro, A.R. Silva, and J. Tribolet

It logically follows that certain transaction kinds of an organization will control
certain viability norms and, as such, certain actor roles, will be responsible for carry-
ing out the respective control acts. Additionally, it is essential to specify the frequency
with which such control is to be done. These relationships are depicted in the CO’s
SSD in Figure 1, with fact types explained by the following predicative sentences:
[viability norm] is controlled by [control transaction kind]; [viability norm] is con-
trolled every [time]. Transaction kinds of the Construction Model of the main organi-
zation which exert control are captured in object class CONTROL TRANSACTION
KIND. We propose another table to express this other aspect of the CO’s SM namely,
the Control Responsibilities Table (CRT), for the case of the library, found in Table 2.
T20, T21 and T22 are self-activation transaction kinds that execute control on the
associated viability norms with the specified frequency. The practical relevance of
this table is to clearly express two dimensions of responsibility of control of viability
norms, namely who and when. This will be very helpful for auditing ends in quickly
and clearly identifying responsibilities in case dysfunctions happen and inappropriate
decisions were taken regarding control acts.

3.3 Exceptions and Resilience Strategies Table

We propose object class EXCEPTION KIND – also depicted in Figure 1 – so that we
can specify expected exception kinds. We will need to relate each exception kind with
a viability norm which can be in a dysfunction state due to occurrences of such excep-
tion kind. This relation is specified by the fact type: [exception kind] can cause
dysfunction in [viability norm]. We propose also object class RESILIENCE STRAT-
EGY, so that we can specify resilience strategies that can solve expected exception
kinds. We propose another table to express this other aspect of the CO’s SM, namely,
the Exceptions and Resilience Strategies Table (ERST), exemplified, for the library
scenario, in Table 3. The practical relevance of the ERST is to provide a comprehen-
sive and summarized view of which exceptions exist that cause dysfunction on an
organization’s viability norms and which resilience strategies can be activated to
solve such exceptions and eliminate the dysfunction. When an expected exception
occurs, the several alternatives that exist to solve it are easily accessible so that the
authorized controller can decide on the more adequate choice. The ERST will also
provide useful information in change context where it may become clear that certain
exceptions have become obsolete. In this case, these exceptions may be discontinued,
along with the associated resilience strategies in case they do not solve any other ex-
ception. The ERST provides very useful information for the process that we propose
to call as organization artifact garbage collection. This name is inspired in the
method of memory garbage collection from computer science. In any organization it
is natural that organization artifacts become obsolete, in the sense that they are not
useful or used anymore. An example is a resilience strategy that solves an exception
that will certainly not occur again. That strategy can be discontinued as it will not be
executed anymore. So, whenever a change process is finishing in any organization or,
at certain time i ntervals (e.g., weekly or monthly), the organization artifact garbage
collection process – an inherently human activity – should verify if any exception has
become obsolete and discontinue it, eventually along with any associated resilience
strategies. The ERST will be a sound starting point and aid for such process.

For space reasons, we leave out of this paper another table we propose: the Resil-
ience Strategies Definition Table (RSDT), which details how dynamics of these

 Control Organization: A DEMO Based Specification and Extension 23

Table 3. Exceptions and Resilience Strategies Table of the library

viability norm exception kind resilience strategy

VN01 - max loan declines per week E01 - abnormal high rate of loan re-
quests due to exams season

RS01 - increase value of
max_copies_in_loan

VN02 - min average # of registrants in
lang. history courses 1 week before start

E02 - lack of advertisement of courses RS02 - distribute course fliers

E03 - general lack of interest in courses RS03 - delay courses start

RS04 - reduce # of courses

strategies are realized in terms of other transactions and controls. The practical rele-
vance of the RSDT is to provide a comprehensive view of details of each resilience
strategy and, in the context of microgenesis change, to provide, along with the ERST,
clues on how to solve new previously unexpected exceptions. The RSDT and ERST
follow the premise from CAS theory that, to solve new exceptions, “pieces” that con-
stitute current strategies that solve similar exceptions may be re-utilized to build new
resilience strategies or new organization artifacts to solve these new exceptions.

3.4 Dysfunctions Table

We will now focus on the dynamic aspect of the CO, centered around the observation
of dysfunction and appropriate reactions to them. Figure 2 presents part 2 of the

Fig. 2. Control Organization’s SSD - part 2

24 D. Aveiro, A.R. Silva, and J. Tribolet

Fig. 3. Control Organization’s OCD

Control Organization’s SSD, expressing what will be relevant state information of
dynamics of the control aspect of an organization. We identify a generic pattern of
three transaction kinds. These are considered to be implicitly enclosed by what we
proposed to call the generic control transaction kind. They are associated with their
respective actor roles which are considered to be implicitly part of the generic control
actor role. Together they form the generic CO’s OCD, depicted in Figure 3. This
means that each transaction kind belonging to the main organization’s CM and
specified, in the CO, as controlling a certain viability norm will, together with the
respective actor role responsible for its execution, implicitly adopt the behavior speci-
fied in the CO’s OCD. These three transaction kinds constitute what we can call the
dysfunction handling process (DHP) and, together with their respective actor roles
specify a pattern of behavior that underlies every control transaction kind. Normally,
it will be the case that the actor role responsible for executing a certain control trans-
action can be considered as a composite actor role aggregating the three actor roles
defined in the CO’s OCD. But it can also be the case that there is delegation of these
actor roles to other actor roles, depending on the volume of work needed to be done or
the needed expertise. Thus, we can say that each viability norm has, associated to it, a
particular (mini) Control Organization corresponding to the responsible actor role that
inherits the behavior specified by the CO’s OCD. This CO will be responsible for the
process of handling dysfunctions in this particular viability norm. The dysfunction
handling process (DHP) process starts with transaction kind dysfunction observation,
with the associated result kind, dysfunction has been observed. The execution of this
transaction may imply the creation of a dysfunction’s first constituent fact, instances
of the fact type explained by predicative sentence: [viability norm] is unkept in [dys-
function]. Instances of this fact type, together with other information derived from the
appropriate sources, will populate our proposal of a Dysfunctions Table (DFT), ex-
pressed in Table 4.

Table 4. Dysfunctions Table of the library

viability norm measurement dysfunction solved solution

min total income per
month

900 € total income per
month

805 € Jun 15 2008 DF01 Jun 21 2008 OEP01

min average # of reg-
istrants in book histo-
ry courses 1 week be-
fore start

14 average # of regis-
trants in book history
courses 1 week before
start

9 Sep 12 2008 DF02 Sep 26 2009 OEP02

11 Jan 4 2009 DF03 Feb 1 2009 OEP03

10 Feb 8 2009 DF04 Feb 15 2009 RS02

8 Mar 23 2009 DF06 Apr 7 2009 OEP04

7 Apr 18 2009 DF07 May 14 2009 RS04

max loan declines per
week

30 loan declines per week 38 Feb 8 - Feb 15
2009

DF05 Feb 20 2009 RS01

 Control Organization: A DEMO Based Specification and Extension 25

The DFT – or a similar table, adaptable to an organization’s needs – will provide a
summary of current (unsolved) dysfunctions and past (solved) dysfunctions. This will
be useful, for example, in diagnosing a recurrent previously unexpected exception. It
will also be an instrument for the “controllers of the controllers” so that higher hierar-
chy in the organization can act if certain dysfunctions are not being appropriately
handled by their responsible controllers.

3.5 Dysfunction Diagnosis and Actions Table

We will now go through the CO’s OCD and AM, which will lead us to the explana-
tion of the remaining object classes and fact types of the OC’s SM, as well as the de-
clared result kinds. These are the base for the last table of our current proposal for
expressing the control aspect of an organization. We propose actor role dysfunction
observer, to be responsible for detecting and reacting to dysfunctions, having the sin-
gle action rule (part of the CO’s AM):

on requested TDH01 (D)
 if <VN is violated> ≥
 viability_norm_of(D) = VN
 DCS = all DC in DYSFUNCTION CAUSE where
 <DC can cause dysfunction in VN>
 if <DCS empty> ≥ <initiate OEP (D)>
 €€ not <DCS empty> request TDH02 (D, DCS)
 fi
 fi
no

This specifies that, in case a measurement is violating the viability norm (VN), a new
dysfunction (D) is created that refers to VN. Then a list (DCS) is created of all possi-
ble causes that can cause VN being unkept, i.e., in dysfunction. If there is no violation
nothing happens. If DCS is empty it means that no exception is known that causes
such dysfunction – and, consequently, there are no defined resilience strategies to deal
with this dysfunction – and it is necessary to initiate an Organizational Engineering
Process (OEP) so that microgenesis dynamics will generate new OAs to cope with the
(unexpected) exception causing dysfunction. Let’s consider, for example purposes,
the ERST in Table 3, the DFT in Table 4 and the date of Sep 12 2008. Resilience
strategies to solve exceptions in norm VN02 – min average # of registrants in book
history courses 1 week before start had not yet been generated, neither the exceptions
themselves. In this case, this action rule would immediately initiate an OEP as DCS
would be empty. If DCS is not empty, it means that one of the causes in DCS can be
diagnosed as the cause of dysfunction D. Hence, transaction TDH02 – dysfunction
cause diagnosis is requested, which uses information of D and DCS.

Now considering again Table 4 and the date of Mar 23 2009, both exceptions caus-
ing dysfunctions in VN02 are a possible expected cause so list DCS would have these
two exception kinds as its elements. Result kind [dysfunction diagnosis] has been
done is the result of TDH02, whose execution will imply the creation of the constitu-
ent facts of an instance of class DYSFUNCTION CAUSE DIAGNOSIS. Such in-
stance basically specifies a decision on a possible cause of a certain dysfunction. The
population of all possible causes is specified by object class DYSFUNCTION
CAUSE which is a generalization (union of members) of object class EXCEPTION

26 D. Aveiro, A.R. Silva, and J. Tribolet

KIND and derived fact type: [dysfunction] is a [dysfunction cause]. This simply
means that, either another occurring dysfunction, or an exception kind, can be a dys-
function cause. Actor role dysfunction diagnoser is responsible for execution of
TDH02 having action rule:

on requested TDH02 (D, DCS)
 if not <DCS empty> ≥
 dysfunction_cause_of(new DCD) =
 <choose an adequate DC in DCS>
 dysfunction_of(DCD) = D
 RSS = all RS in RESILIENCE STRATEGY where <RS solves exception_kind_of(DC)>
 DCS = DCS less DC
 request TDH03 (D, DCS, DCD, RSS)
 €€ <DCS empty> ≥ <initiate OEP (D)>
 fi
no

This specifies that, just like in the previous action rule, an OEP is initiated if the list of
dysfunction causes is empty. In this action rule this means that all dysfunction causes
and respective resilience strategies will have been already tried (after successive diag-
noses and respective solution trials) and the dysfunction was not solved. This is the
case of the particular DHP handling dysfunction DF06 (c.f. DFT table of the library).
In a certain point in the execution of this DHP, after resilience strategies RS02 and
RS03 were activated and the dysfunction was not solved, OEP04 was initiated to
solve DF06, which lead to the generation and operationalization of resilience strategy
RS04. In the case that DCS has at least one cause to choose from, a new instance of
dysfunction cause diagnosis (DCD) is created and a certain dysfunction cause (DC) is
chosen to be the cause in the DCD. Considering the DHP of DF06, the first time the
action rule currently being explained is executed, DCS consists in exceptions (E02,
E03) and E02 is chosen as the cause. After this, a list (RSS) is created with all resil-
ience strategies that can solve the exception kind associated with the diagnosed
dysfunction cause (DC). In our example, at this stage, RSS will consist in resilience
strategy RS02. Then, the chosen cause (DC) is removed from the list DCS, so that, if
this action rule (diagnosis) is again executed, only one of the remaining causes can be
chosen for a new iteration of resilience trials or no causes will remain in the list – the
case that an OEP will be initiated. Finally, transaction TFH03 – dysfunction solution
choosing is requested, which receives D, DCS, DCD and RSS.

Result kind [dysfunction solution choice] has been done is the result of TDH03,
whose execution will imply the creation of the constituent facts of an instance of class
DYSFUNCTION SOLUTION CHOICE. Such instance basically specifies chosen
solutions for certain dysfunctions. The population of all allowed solutions is specified
by object class DYSFUNCTION SOLUTION which is a generalization (union of
members) of classes RESILIENCE STRATEGY and ORGANIZATIONAL ENGI-
NEERING PROCESS. This means that either an existing resilience strategy or an
organizational engineering process will constitute a particular dysfunction’s solution
choice. Actor role dysfunction solution chooser is responsible for execution of
TDH03 having action rule:

 Control Organization: A DEMO Based Specification and Extension 27

on requested TDH03 (D, DCS, DCD, RSS)
 if not <RSS empty> ≥
 CRS = <choose an adequate RS in RSS>
 dysfunction_solution_of(new DSC) = CRS
 dysfunction_of(DSC) = D
 <activate CRS for an adequate time period T>
 <wait T> && <deactivate CRS>
 if <CRS solved dysfunction> ≥
 evaluation_of(DSC)=”good”; evaluation_of(DCD)=”good”
 state_of_(D)=”solved”
 €€ not <CRS solved dysfunction> ≥
 evaluation_of(DSC)=”bad”; RSS = RSS less CRS
 request TDH03 (D, DCS, DCD, RSS)
 fi
 €€ <RSS empty> ≥
 evaluation_of(DCD)=”bad”
 request TDH02 (D, DCS)
 fi
no

This action rule begins with the choice of a resilience strategy (CRS) from the re-
ceived list RSS – containing all RSs for the diagnosed dysfunction cause. In our ex-
ample of the DHP handling DF06, this action rule will be executed two times, one
with RSS having just RS02 and another having just RS03. Then, the constituent facts
of a new dysfunction solution choice (DSC) are created. After this, CRS (in our ex-
ample, RS02 and, in the next iteration, RS03) is activated for a certain amount of time
chosen to be adequate for the solving process, after which it is deactivated. Then, if
the dysfunction got solved both choices of dysfunction cause and dysfunction solution
are evaluated as “good” and dysfunction is considered as solved, corresponding to the
occurrence of instances of the three result types: [dysfunction diagnosis] has been
evaluated; [dysfunction solution choice] has been evaluated; [dysfunction] has been
solved. An example of such situation is the handling of DF04 specified, ahead, in
Table 5. If the dysfunction was not solved with the chosen CRS, then such choice is
evaluated as “bad”, with the creation of an instance of the second result kind above.
This same CRS is removed from the list of possible solutions and there is a recursive
request for TDH03 with the same parameters (with RSS having one less element). An
example of execution of this step is the handling of DF07 – also specified in table 5 –
when resilience strategy delay courses start was evaluated as a bad solution and there
was still the option in RSS of: reduce number of classes.

Table 5. Dysfunction Diagnosis and Actions Table of the library

dys-
function

observed chosen cause choice
eval

chosen solution choice
eval

solved

DF03 Jan 4 2009 lack of advertisement of courses bad distribute course fliers bad Feb 1 2009

DF04 Feb 8 2009 lack of advertisement of courses bad distribute course fliers bad Feb 15 2009

general lack of interest in courses good delay courses start good

DF05 Feb 8 - Feb
15 2009

abnormal high rate of loan re-
quests due to exams season

good increase value of
max_copies_in_loan

good Feb 20 2009

DF06 Mar 23 2009 lack of advertisement of courses bad distribute course fliers bad Apr 7 2009

general lack of interest in courses bad delay courses start bad

DF07 Apr 18 2009 lack of advertisement of courses bad distribute course fliers bad May 14 2009

general lack of interest in courses good delay courses start bad

reduce number of classes good

28 D. Aveiro, A.R. Silva, and J. Tribolet

If it happens that RSS is empty, it means that all possible solutions for the chosen
dysfunction cause have already been tried and evaluated as a “bad” choice, which
means that the diagnosis should also be evaluated as “bad” and a new request for
TDH02 has to be done so that another cause can be diagnosed. This is the case in our
example where, in the handling of DF06, RS02 – distribute course fliers – was unable
to solve the dysfunction and TDH02 had to be again requested for another cause to be
diagnosed. This is what happened just next with the choice of cause general lack of
interest in courses. These examples which are instances of the above proposed fact
and result types will populate our proposal of a Dysfunctions Diagnosis and Actions
Table (DDAT) expressed, for the case of the library, in Table 5. The DDAT – or a
similar table, adaptable to an organization’s needs – will provide a summary of the
history of choices of dysfunction diagnosis and solutions. Such history corresponds to
a trace of the execution flow of the three action rules of the CO or, in other words, a
trace of the execution flow of each DHP. Hence, together with the DFT and CRT, this
table provides a succinct and thorough trace of relevant control decisions of an or-
ganization, so that adequate measures can be taken against irresponsible agents, in a
justified and detailed manner. Counting the good and bad choices of diagnosis and
resilience strategies is a way to implement another premise from CAS, namely, a
scoring mechanism which can help on better deciding which resilience strategies to
associate with new (previously unexpected) exceptions or on the generation of new
resilience strategies.

4 Conclusions

It was not trivial to arrive at the proposed structure of the CO. Following Design Re-
search guidelines in [15], an intertwined and iterative simultaneous devising of the
CM, AM and SM was undertaken to stabilize on a coherent and succinct model for
the CO. Obviously this model has much room for improvement and other issues can
and should be explored and researched regarding the CO. For example, rules can be
declared that limit the allowed amount of variation of control of a certain property.
We could, for example, define properties: max allowed max copies in loan and min
allowed max copies in loan that would impose maximum and minimum values on the
(control) property max copies in loan of the library. In this manner, resilience strategy
increase value of max copies in loan would not be able to increase such value indefi-
nitely. Another issue to explore is the responsibilities hierarchy. One can also declare
measures and viability norms related to control transactions and also on transactions
part of resilience strategies. All declared responsibilities regarding measures and vi-
ability norms will have to relate with responsibilities belonging to higher authority
and, ultimately, with the supreme controlling authority of an organization – e.g., its
administration board. Following a systematic and neutral approach of defining meas-
ures of an organization, their respective viability norms and the network of responsi-
bilities relating them will be an aid in discussions of organizational structure
(e.g. departments, boards, etc.)

We have focused on the portions of the CO specifying relevant issues of resilience
change related with our main focus, which is microgenesis change. Developing and
perfecting further aspects like the above example of control limits and hierarchical

 Control Organization: A DEMO Based Specification and Extension 29

structure are left as future research work. To our knowledge, issues addressed in the
CO have been target of ample research and study – e.g.: on themes such as the Viable
System Model (VSM) [16] and Autopoiesis [17] – but without sound formal and theo-
retical grounds such as the ones given by enterprise ontology. In fact, our proposal of
the CO seems to fit in part of Beer's System 3 (also named control) of the VSM. We
end up formalizing part of his intellectual contribution, specifying with a concise and
coherent set of facts, how organizations are systems that maintain viability and have
recursion control mechanisms. Our research builds on the existing and proven meth-
odological framework of DEMO and its underlying theory. In a bottom up fashion,
and following the important principles of separation of concerns and verification by
instantiation [18], we use simple but comprehensive and relevant concepts from biol-
ogy, philosophy and CAS for the formulation of the CO. Our proposal of the CO’s
ontological model is, at the same time, an application and an extension of DEMO, so
that this method now has steps to address the specification of an organization's resil-
ience aspect, both in the static and dynamic realms. Each major step is confined in
each of the tables we propose. First, measures can be explicitly declared which, to-
gether with the associated viability norms, function as “sensors” of an organization’s
health, i.e., its viability. This is done in the MVNT. Second, important responsibilities
are now thoroughly explicit and traceable: we can clearly know who is responsible
(and when) for controlling each measure, as to guarantee the maintenance of each
viability norm. This is specified in the CRT. Third, the ERST systematizes solutions –
resilience strategies – for expected exceptions, an important tool for the controller to
be more able to choose the best course of action in the context of a dysfunction. En-
tering the dynamic realm, the DFT and DDAT keep a record of all observed dysfunc-
tions and the respective diagnose and solution actions performed to eliminate them.
Evaluations of which were the good and the bad choices is also done. The facts sys-
tematized in these two tables constitute valuable information for controlling the con-
trollers and for microgenesis change contexts. Concluding, with the facts we propose
to express the control aspect, we have a thorough and precise way to formally express
organizational knowledge in terms of (1) the control system of an organization and (2)
the control history in terms of dysfunctions, known cause diagnosis and resilience
decisions. Such knowledge is a central asset for humans handling resilience and mi-
crogenesis dynamics in a more informed and effective way.

References

1. Christensen, W.D., Bickhard, M.H.: The process dynamics of normative function. The
Monist. 85, 3–29 (2002)

2. Dietz, J.L.G.: Enterprise ontology: theory and methodology. Springer, New York (2006)
3. Holland, J.H.: Hidden order: how adaptation builds complexity. Basic Books, New York

(1996)
4. Bickhard, M.H.: Error dynamics: the dynamic emergence of error avoidance and error vi-

cariants. Journal of Experimental & Theoretical Artificial Intelligence 13, 199–209 (2001)
5. Brown, S.L., Eisenhardt, K.M.: Competing on the edge: strategy as structured chaos. Har-

vard Business School Press, Boston (1998)
6. Saastamoinen, H., White, G.M.: On handling exceptions. In: Proceedings of Conference

on Organizational Computing Systems, pp. 302–310. ACM, New York (1995)

30 D. Aveiro, A.R. Silva, and J. Tribolet

7. Mourão, H.: Supporting effective unexpected exceptions handling in workflow manage-
ment systems within organizational contexts. Science Faculty of Lisbon University (2007)

8. Casati, F., Pozzi, G.: Modeling exceptional behaviors in commercial workflow manage-
ment systems. In: Proceedings of the Fourth CoopIS - International Conference on Coop-
erative Information Systems, pp. 127–138. IEEE Computer Society, Washington, DC,
USA (1999)

9. Axelrod, R., Cohen, M.D.: Harnessing complexity: organizational implications of a scien-
tific frontier. Basic Books, New York (2001)

10. Magalhães, R., Silva, A.R.: Organizational design and engineering (ode) - ode white paper
- version 1 (2009)

11. Dietz, J.L.G., Albani, A.: Basic notions regarding business processes and supporting in-
formation systems. Requirements Engineering 10, 175–183 (2005)

12. Op’ t Land, M.: Applying architecture and ontology to the splitting and allying of enter-
prises. TU Delft (2008)

13. Dietz, J.L.G.: A world ontology specification language. In: Chung, S., Herrero, P. (eds.)
OTM-WS 2005. LNCS, vol. 3762, pp. 688–699. Springer, Heidelberg (2005)

14. Halpin, T.: Object role modeling: an overview. white paper (1998),
 http://www.orm.net

15. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems re-
search. MIS Quarterly 28, 75–106 (2004)

16. Beer, S.: Brain of the firm: a development in management cybernetics. Herder and Herder
(1972)

17. Maturana, H.R., Varela, F.J.: Autopoiesis and cognition: the realization of the living. D.
Reidel Pub. Co (1980)

18. Dietz, J.: Is it φτψ or bullshit? - farewell speech. Faculty of Electrical Engineering,
Mathematics and Computer Science. Technical University of Delft (2009)

Combining DEMO and Normalized Systems for

Developing Agile Enterprise Information Systems

Marien R. Krouwel1 and Martin Op ’t Land1,2

1 Capgemini Netherlands, P.O. Box 2575, 3500 GN Utrecht, The Netherlands
{marien.krouwel,martin.optland}@capgemini.com

2 Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract. Our research aims at finding key concepts to link agile enter-
prises with agile automated information systems. To effectively respond
to environmental changes, such as in market needs, technology, regula-
tions or law, enterprises need to be able to change their supporting infor-
mation system(s) accordingly. The Design and Engineering Methodology
for Organizations (DEMO) has already proven to be an effective tool in
designing and realizing agile organizations. The Normalized System (NS)
approach, on the other hand, has proven to be the key for developing
agile Information and Communication Technology (ICT) systems, which
support such agile organizations.

We found that DEMO and its underlying PSI-theory, and the princi-
ples and elements of the Normalized Systems approach match. Also we
designed, using two cases of Dutch governmental subsidy schemes, a few
simple and automatable steps to derive a Normalized System from the
ontological model of the B-organization, provided by applying DEMO
to an enterprise, while retaining the implementation freedom of the or-
ganization under consideration. Finally we found that the impact of im-
plementation choices is minimal and that it is clear how they affect the
automated information system. With this result, one vital cornerstone
for achieving enterprise agility has been covered.

Keywords: DEMO, Normalized Systems, Agile Enterprise Engineering.

1 Introduction

Agile enterprises are able to adapt rapidly and cost efficiently in response to en-
vironmental changes [1]. Examples of environmental changes enterprises have to
deal with are changing market needs, changing regulations or law, and changing
technologies [2]. Since most enterprise use some kind of information technology
(IT) in their daily operation, the supporting information systems should be able
to change accordingly. This research aims at finding key concept to link agile
enterprises with agile information systems.

The Design and Engineering Methodology for Organizations (DEMO1) has
already proven to be an effective tool in realizing agile enterprise [3]. The Nor-
malized Systems (NS) approach has proven to be the key for developing agile
1 http://www.demo.nl/

A. Albani, J.L.G. Dietz, and J. Verelst (Eds.): EEWC 2011, LNBIP 79, pp. 31–45, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.demo.nl/

32 M.R. Krouwel and M. Op ’t Land

information systems [4]. Both DEMO and NS are aimed at finding concepts for
achieving agility, comprised in both a way of thinking and a way of modeling.
In this paper it is explored how to link agile enterprise with agile automated
information systems.

By comparing the two theories, we found that the theories adhere to the idea
that separation of tasks is crucial to fully define any system, being it an en-
terprise or an IT system. Moreover, by looking at the modeling concepts from
both DEMO and Normalized Systems, a first method for defining a Normalized
System from the ontological model of the B-organization, provided by applying
DEMO to an enterprise, was designed, tested and improved. Because DEMO
abstracts from implementation details and our method does not fix any im-
plementation details, the gained Normalized System still offers implementation
freedom. It is shown that the impact of organizational and IT implementation
choices is minimal and that it is clear how they affect the automated information
system.

The remainder of this paper is structured as follows. First, some theoretical
background about DEMO and Normalized Systems is outlined in section 2. Sec-
tion 3 then provides a theoretical comparison between the DEMO and NS ways
of thinking. In section 4, one of the cases against which the method has been
tested, is introduced. The steps for deriving a model of a Normalized Systems
from an ontological model of the B-organization of an enterprise are described in
section 5, using the case from section 4 as an example. In section 6 we will show
that there is still freedom for implementation choices, by showing how imple-
mentation choices impact the model of the Normalized System. Finally, section
7 provides the conclusions as well as directions for further research.

2 Theoretical Background

2.1 DEMO

DEMO is a methodology for the design, engineering, and implementation of
organizations [3]. Applying DEMO to an enterprise provides an enterprise on-
tology: the essence of an organization, fully independent from the way in which
it is realized and implemented. Dominant in the DEMO methodology is the
Performance in Social Action (PSI- or ψ-) theory that underlies this notion of
enterprise ontology. The PSI theory consists of four axioms and one theorem,
which will be shortly explained now:

– The Operation Axiom states that the people in an organization (subjects)
can perform two kinds of acts: production acts (P-acts) and coordination
acts (C-acts). We abstract from the subjects in order to concentrate on
the different actor roles they fulfill. An actor is a subject fulfilling an actor
role. By performing P-acts they contribute to achieving the purpose or the
mission of the enterprise. By performing C-acts they enter into and comply
with mutual commitments regarding P-acts.

Combining DEMO and Normalized Systems 33

– The Transaction Axiom states that C-acts and P-acts occur in universal
patterns, called transactions. These patterns always involve two actor roles
(initiator and executor) and are aimed at achieving a particular result. The
basis transaction pattern for one transaction consists of five steps, namely
request, promise, execute, state and accept. In the request step the initiator
of the transaction requests the production of a P-fact, in the promise step the
executor of the transaction promises to produce the P-fact, in the execution
step (this is the P-act) the executor produces the P-fact, in the state step
the executor presents the P-fact to the initiator and in the accept step the
initiator accepts the P-fact. Apart from these four types of “success” C-acts,
also 7 other types of C-acts exist (Table 1).

Table 1. The 11 types of coordination acts (C-acts)

success problems canceling

request quit cancel
promise decline refuse
state stop allow
accept reject

– The Composition Axiom states that transactions (which bring about new
facts in reality) are related to each other in one of two possible ways: either
a transaction is enclosed in another transaction, or a transaction is self-
activating.

– The Distinction Axiom states that there are three distinct human abilities
playing a role in the operation of actors, called performa, informa and forma.
The forma ability concerns the being able to handle data and documents
fully ignorant of its content and meaning, e.g., to copy, transport, and store
documents. The informa ability regards the intellectual capacity of human
beings, the ability to reason and to compute or derive new facts from existing
ones. The performa ability concerns the ability of human beings to produce
original new things, i.e., facts that cannot be derived from existing facts.
Examples of such facts are decisions and judgments.

– Finally, the organization theorem states that an enterprise is a layered in-
tegration of three homogeneous aspect systems: the B-organization (B from
Business), the I-organization (I from Intellect), and the D-organization (D
from Documents).

DEMO states that a complete and essential enterprise ontology is a model of
the B-organization, consisting of four aspect models:

– The Construction Model (CM) specifies the composition, environment, and
structure of the organization. It contains the identified transaction kinds and
associated actor roles as well as the information banks and links between
these banks and actor roles.

34 M.R. Krouwel and M. Op ’t Land

– The Process Model (PM) details each single transaction type of the CM
according to the universal transaction pattern. In addition, the initiating
and waiting relationships between transactions are shown.

– The Action Model (AM) specifies the imperatively formulated business rules
that serve as guidelines for the actors in dealing with their agenda. It contains
one or more action rules for each agendum type.

– The State Model (SM) specifies the object classes, fact kinds, transaction
result kinds, and the declarative formulations of the business rules. Some
of the fact kinds can be derived from original fact kinds with a so-called
derivation rule.

The way of modeling will be shown by means of an example case in section 4.

2.2 Normalized Systems

Lehman’s software evolution laws stipulate that 1) ”A program [...] must be
continually adapted else it becomes progressively less satisfactory” and 2) ”As a
program is evolved its complexity increases unless work is done to maintain or
reduce it” [5]. On one hand this means that information systems should always
change in order to be effective, while on the other hand it means that change will
become more difficult over time, unless the information system is designed to
be evolvable. In order to genuinely design information systems accommodating
change, they should exhibit stability towards a set of anticipated changes, i.e., the
impact of a change is only dependent on the nature of the change itself [4, pp.106-
107]. If a change requires increasing effort as the information system grows, this
is called a combinatorial effect. Normalized Systems are defined as information
systems exhibiting stability with respect to an anticipated set of changes and
avoiding the occurrence of combinatorial effects [4].

The Normalized Systems approach deduces a set of four principles, or design
guidelines, to identify and circumvent combinatorial effects [4]:

Principle 1. Separation of concerns implies that every change driver or concern
should be separated from other concerns;

Principle 2. Data version transparency implies that data should be communi-
cated in version transparent ways between components;

Principle 3. Action version transparency implies that a component can be up-
graded without impacting the calling components; and

Principle 4. Separation of states implies that actions or steps in a workflow
should be separated from each other in time by keeping state after every
action or step.

From the second and third principle it can straightforwardly be deduced that the
basic software constructs, i.e. data and actions, have to be encapsulated in their
designated construct. Also, the design principles show that existing software

Combining DEMO and Normalized Systems 35

constructs, such as functions and classes, by themselves offer no mechanisms
to accommodate anticipated changes in a stable manner. Normalized Systems
therefore proposes to encapsulate software constructs in a set of five higher-level
software elements, namely, data element, action element, workflow element, trig-
ger element and connector element. These elements are modular structures that
adhere to the design principles, in order to provide the required stability with
respect to the anticipated changes [4]. The elements are independent of a spe-
cific technology environment. The internal structure of every element can be
described by a design pattern which is executable and can be expanded auto-
matically, enabling the automation of software development [4].

– A data element represents an encapsulated data construct that contains
various attributes or fields with its get- and set-methods to provide access
to their information in a data version transparent way. Generic support-
ing tasks, also called cross-cutting concerns, for instance access control and
persistency, should be added to the element in separate constructs [4]. An at-
tribute can either be a link to another data element or a primitive type such
as Integer, String, Boolean, or Date. NS data elements can be represented
by means of an ER-diagram2.

– An action element contains a core action representing one and only one spe-
cific functional task - in contrast, there are generic supporting tasks, called
cross-cutting concerns, which are not modeled in terms of action elements.
Arguments and parameters need to be encapsulated as separate data ele-
ments, and cross-cutting concerns like logging and remote access should be
added as separate constructs. Four different implementations of an action
element are distinguished:

– In a standard action, the actual task is programmed in the action element
and performed by the same information system.

– In a manual action, a human act is required to fulfill the task. The user
then has to set the state of the life cycle data element through a user
interface, after completion of the task.

– A process step can also require more complex behavior. A single task in
a workflow can be required to take care of other aspects, which are not
the concern of that particular flow. A bridge action creates an instance
of another data element which goes through its own designated flow. At
this point it is assumed that any data element instance that is created
by another instance reports its status to the instance it is created by. In
that way it is possible for the creating instance to wait for some state of
its ’child(ren)’ to continue.

– When an existing, external application is already in use to perform a
certain action, the action element can be implemented as an external
action. Such an external action calls another (information) system and
sets its end state depending on the external systems’ reported answer.

– Although workflows can be considered as a derivative concept from actions,
based upon the first and fourth principle, a workflow has to be separated

2 For details see, e.g., http://en.wikipedia.org/wiki/Entity-relationship_model

http://en.wikipedia.org/wiki/Entity-relationship_model

36 M.R. Krouwel and M. Op ’t Land

from other action elements [4, p.119]. A workflow element contains a se-
quence of actions, which should be executed in order to fulfill a workflow,
and intermediate states, and can be described by a state transition diagram.
A consequence of the state full workflow element is that state is required
for every instance of use of an action element, and that the state therefore
needs to be linked or be part of the instance of the data element serving as
argument. This data element is called the life cycle data element of a flow.
It is considered every data element knows a workflow.

– The trigger element is for controlling the states (both regular and error
states) and checking whether an action element has to be triggered. For
every action element a trigger element can be fully and deterministically
derived.

– Finally, the connector element enables users as well as other applications
from external systems to interact with data elements while ensuring an action
element is not called in a stateless way. For every data element a connector
element can be fully and deterministically derived.

Both data and action elements can contain cross-cutting concerns, or generic
supporting tasks. So, next to identifying the elements, the supporting tasks have
to be identified. The required specifications to define a Normalized System are
summarized in Table 2. As said earlier, the trigger and connector elements need
not be specified.

Table 2. Required specifications for modeling a Normalized System

Required specification Format

Elements

⎧
⎨

⎩

Data elements
Action elements
Workflow elements

Name, set of attributes (name, type)
Name, type, description/pseudo code
Name, state transition diagram

Cross-cutting concerns Name, description

3 Theoretical Comparison

When comparing the theories, for DEMO, one only has to focus on the four
axioms of the PSI theory; the organization theorem of the PSI theory is deduced
from the four axioms. For Normalized Systems it holds that, while the latter
three principles are completely taken care of by the elements, it is up to the
designer to fully adhere to the (first) principle of separation of concerns3: ”the
more fine-grained the identification of the tasks by a designer, the more tasks
are separated from each other” [4, p.112]. Normalized Systems identifies two
different kinds of tasks: functional tasks (action elements) and supporting tasks
(cross-cutting concerns).

3 One could even say that NS-principles 2, 3 and 4 are special cases of Separation of
Concerns (Principle 1).

Combining DEMO and Normalized Systems 37

DEMO clearly helps in identifying the different functional tasks. The oper-
ation axiom discerns two different types of tasks, namely, 1) tasks regarding
coordination, and 2) tasks regarding production. The transaction axiom iden-
tifies the different transaction steps, which are the same for every transaction.
Finally, the distinction axiom defines tasks at a more fine-grained level while
also discerning those as being from different kinds, namely, ontological, infolog-
ical or datalogical. The question now rises how DEMO helps in identifying the
supporting tasks.

For creating information banks, cross-cuttings concern persistency for data el-
ements and logging for action elements can be defined. Creating these banks are
in fact datalogical acts. So, it might be concluded that the I- and D-organization
in fact prescribes the generic supporting tasks. Another cross-cutting concern,
which is present in many organizations, is authorization. However, as an or-
ganization can choose whom to authorize and in what way, authorization is
considered part of the implementation of an organization and therefore it is not
present in an ontological model. In another research, we investigate how that
part, in fact a cross-cutting concern for all organizations, can be modeled.

4 Enterprise Ontology of the Dutch Governmental
Subsidy Schemes

A subsidy is an entitlement to financial resources provided by an administrative
authority for the purposes of specifically named activities of the applicant, other
than by way of payment for goods or services supplied to the administrative
authority [6, art.4:21.1]. In the Netherlands, for different kinds of activities,
different subsidy schemes exist. The process of granting a subsidy is the same for
all individualized (as opposed to portfolio) schemes (Figure 1), which simplified
reads as follows: the applicant (CA01) applies for a subsidy (T01) at the subsidy
granter (A01). Before the subsidy can be granted, a formal check has to be
performed (T02). Next, the application will be substantively examined, yielding
an amount the applicant will receive for his activities (T03). If it turns out
the application does not fulfill the substantive requirements, the amount will
be 0 (zero). Only if the formal evaluation is passed and a non-zero amount is
determined for the application, the subsidy will be granted. Both the formal
evaluator (A02) and amount determiner (A03) need access to the particular
subsidy scheme act for knowing the formal criteria and the rules for amount
determination. Dutch law states that payment (T04) has to follow within four
weeks after the grant. Waiting conditions are indicated by a dashed line in the
Process Model (Figure 2). The wait condition from T02/ac to T01/dc means
the subsidy grant can be declined early in the process, namely when the formal
evaluation yielded a negative result. The promise can only be given when the
amount determination has been finished (for details, see the Action Model in
Listing 1).

From the State Space Diagram (Figure 3) it can be read a subsidy has a
derivation rule for whether it should pass the formal evaluation or not, and

38 M.R. Krouwel and M. Op ’t Land

B-CA01

Subsidy
applicant

Subsidy agency

B-T01

Grant subsidy

B-A01

Subsidy
granter

B-T02

Formal evaluation

B-A02

Formal
evaluator

B-T03

Amount determination

B-T04

Payment

B-A03

Amount
determiner

B-A04

Payer

APB01

Subsidy scheme act

Fig. 1. Organization Construction Diagram (part of CM) of a subsidy agency

Table 3. Transaction Result Table (part of CM) of a subsidy agency

T01 Grant subsidy R01 [subsidy] has been granted
T02 Formal evaluation R02 [subsidy] has been formally evaluated
T03 Amount determination R03 amount for [subsidy] has been determined
T04 Payment R04 amount for [subsidy] has been paid out

Grant subsidy

B-T01rq

Formal evaluation

B-T02

Amount
determination

B-T03

rq

rq
1..1

rq

rq
1..1

ac

dc

1..1
Payment

B-T04

ac

pm/dc

1..1

st

rq
1..1

ac

rq

1..1

Initiation from state

Wait condition for state

Fig. 2. Process Structure Diagram (part of PM) of a subsidy agency

Combining DEMO and Normalized Systems 39

SUBSIDY

FORMALLY
EVALUATED SUBSIDY

[subsidy] has been granted

B-R01

[subsidy] has been
formally evaluated

B-R02

AMOUNT DETERMINED
SUBSIDY

amount for [subsidy]
has been determined

B-R03

[subsidy] has
been paid out

B-R04

[verdict] for formal
evaluation of [subsidy]

F03

amount of [subsidy]
is [money]

F04
subsidy amount

R

MONEY

max amount of
[subsidy] is [money]

F02
max subsidy amount

indicator for [verdict] for
formal evaluation of [subsidy]

F01

VERDICT

[subsidy] has been
formally evaluated

amount for [subsidy]
has been determined

Fig. 3. State Space Diagram (part of SM) of a subsidy agency
(Notation is like ORM: http://orm.net/)

one for calculating the maximum subsidy amount. The definitions of the rules
in general differ per subsidy scheme. Also in the SM, some process steps are
shown: First, a subsidy is evaluated formally, using the derived fact kind for
the verdict indicator, producing a result for the formal evaluation. A verdict in
general is either positive (”OK”) or negative (”not OK”). Second, for a subsidy
the subsidy amount is determined, using the derivation rule for the maximum
amount, producing the amount of subsidy that is determined. Only then, the
subsidy can be granted and paid out.

The Action Models states for every actor role how to deal with an event type.
The action rules for actor role A01 are provided in Listing 1. The action rules
for the other actor roles are straightforward as they don’t contain any decision
rules. The action rules are in fact guidelines for the subjects; it is possible for
an actor to deviate from the guidelines.

With regard to enterprise agility aspects, within the automated information
system supporting the subsidy grant process, it must be possible to:

1. add rules for different subsidy schemes;
2. change rules following from a change in law for either the entire process or

a specific scheme;
3. add different communication channels (following from the Dutch Reference

Architecture NORA);
4. choose to automate tasks or perform them manually;
5. switch between internal and external data usage;

http://orm.net/

40 M.R. Krouwel and M. Op ’t Land

1 when T01 i s requested
2 then T02 must be requested

4 when T02 i s s t a t ed
5 then T02 must be accepted

7 when T02 i s accepted
8 i f T02 y ie l ded a po s i t i v e v e rd ic t
9 then T03 must be requested

10 else T01 must be dec l i n ed

12 when T03 i s s t a t ed
13 then T03 must be accepted

15 when T03 i s accepted
16 i f subs idy amount > 0
17 then T01 must be promised
18 else T01 must be dec l i n ed

20 when T01 i s promised
21 then T01 must be executed
22 T01 must be s t a t ed

24 when T01 i s s t a t ed
25 then T04 must be requested

27 when T04 i s s t a t ed
28 then T04 must be accepted

Listing 1. Action rules for A01 of subsidy agency

6. choose which information is shown on a screen;
7. outsource or insource parts of the system;
8. assign tasks and task types to people; and
9. add controls for managing throughput time.

5 Deriving a Normalized System from an Enterprise
Ontology

Step 1. State Model
For each object class, scale, or category, a data element is created. For the
subsidy case, five data elements are created: Subsidy, FormallyEvaluated-
Subsidy, AmountDeterminedSubsidy, Money, and Verdict. External object
classes, scales, and categories (shaded gray) must be represented by one
or more primitive types. For the subsidy case, Money is represented by a
floating point number, and Verdict is represented by a String. For Verdict,
we could also have chosen a Boolean, however, the Normalized Systems ap-
proach prescribes Booleans should be avoided as they lock up the possibility
to have more than two values; Booleans should only be used in rare cases.
Fact types, connected to object classes with reference laws, are represented
by links between the data elements: FormallyEvaluatedSubsidy contains a
link to Subsidy and a link to Verdict, and AmountDeterminedSubsidy con-
tains a link to FormallyEvaluatedSubsidy and a link to Money (Figure 4).

For the unicity law, dependency law, and exclusion law from DEMO, it is
not immediately clear how they are supported in Normalized Systems. Ad-
ditional actions or other means of constraints are needed. Moreover, derived
fact types cannot simply be modeled in a Normalized System. A derivation
rule could be implemented in an action element, but then still it is not clear
how and when to use it: the calculation should not be performed more often
than strictly necessary, however, its result is not valid anymore when the
original facts on which it is based, change.

Combining DEMO and Normalized Systems 41

Subsidy

Verdict

String verdict

Money

Float amount

FormallyEvaluatedSubsidy AmountDetermined Subsidy

Fig. 4. ER diagram of identified NS data elements for subsidy agency

Step 2. Construction Model
For each transaction in the CM, two data elements are created: one for the
initiator and one for the executor, both knowing their own workflow ele-
ment with action elements as exhibited in Figure 5. If the initiator or the
executor of a transaction relies only outside the organization, the data el-
ement, workflow, and action elements for that part can be left out. The
dotted arrows indicate the following. In the request action of the initiator,
the data element for the executor is created - therefore, the communication
link is going from an action to a state, being the start state of the flow of
the newly created data element. In the promise and state action of the ex-
ecutor, the initiator is informed. In the accept action of the initiator, the
executor is informed. To accommodate the being informed, wait actions are
introduced in the other flow. Since the initiator does not know whether the
executor is going to promise or decline, it will wait for either message. A sim-
ilar reasoning holds for the accept/reject of the initiator. In the basic flow
however, only the success paths are fully outlined. The workflows can be ex-
tended in order to accommodate all problem courses, i.e., decline, reject, quit,
and stop. Huysmans et al. already showed how to deal with the cancelation
patterns [7].

request

TransactionInit
CREATED REQUESTED PROMISED

pm/dc waiter

STATED

st waiter

ACCEPTED

accept

TransactionExec
CREATED

PROMISED

promise

STATED

state

ACCEPTED

ac/rj waiterexecute

EXECUTED

state flowaction interaction between flows

Fig. 5. Basic NS workflow patterns for a single DEMO transaction kind

For the subsidy case, seven transaction data elements are created: two
for each of the three internal transactions (T02, T03, and T04) plus one for
the customer-initiated transaction (T01). Every data element representing
part of the transaction pattern contains links to the data elements that were
created for the object classes the transaction result is about. Since every
transaction is about a subsidy, all data elements contain a link to the Subsidy

42 M.R. Krouwel and M. Op ’t Land

data element. Actor roles are fulfilled by subjects in an organization. A cross-
cutting concern authorization should provide that a person only can access
the data and perform the actions he or she is authorized for. Regarding access
to fact banks, for each information link one additional connector element
should be defined that make sure that an actor role can see the data he
needs for his work.

Step 3. Action Model
From the Action Model, the decision rules can be read as well as the exact or-
der in which different transactions are started (workflow). Additional actions
must be introduced if another transaction must be started (bridge action)
or when to wait for some state of another transaction. Van Nuffel et al. al-
ready found that the decision rule should be placed in another action, as the
decision can change independent from the way in which the following action
is performed and how to deal with the cancelation patterns [8]. Although
not shown in the example, it was also found that the handling of multiple
instantiations of the same transaction kind, e.g., for periodic payment, must
be split off into yet another flow. The number of initiated transactions can
be read from the Process Model.

For the subsidy case, additional identified actions are: T02creator,
T02waiter, T02verdictchecker, T03creator, T03waiter, T03amountchecker,
and T04creator, following from respectively lines 2, 7, 8, 9, 16, 17, and 26
of Listing 1. The complete workflow for T01exec is shown in Figure 6, the
other flows don’t deviate from the basic workflow as shown in Figure 5.

T02creator

T01exec
CREATED T02 CREATED T02 ACCEPTED

T02waiter

T03 CREATED

T03creater

T03 ACCEPTED

T03waiter

DECLINED

T02verdictChecker

VERDICT OK

VERDICT NOT OK T03amountChecker

AMOUNT ZERO

promis

AMOUNT NOT ZERO

executestate

PROMISEDEXECUTED

T04creater

T04 CREATED

ac/rj waiter

ACCEPTED

REJECTED

decline

STATED

Fig. 6. Workflow for the T01exec data element

6 Implementation Freedom

After applying the steps above, one gets a Normalized System that supports the
operation of an enterprise. Now we will show that the desired enterprise agility
is achieved.

1. Add rules for different subsidy schemes: Because of data version trans-
parency, different implementations of the subsidy data element for differ-
ent schemes can be introduced. For example, for one scheme, the subsidy is
about cars, while for another scheme, it is about houses. Because of action
version transparency, different actions that apply for the different kinds of

Combining DEMO and Normalized Systems 43

subsidy can be implemented as well. For different schemes, the action for
calculating the maximum amount will differ. Of course, there must be some
mechanism that ensures the data and action versions are matched.

2. Change rules for a specific scheme: Same as for adding a new scheme.
3. Change rules for the entire process: Depending on the nature of the change,

this will mean implementing a new version of some action or adding or
deleting some action.

4. Add different communication channels: Because of action version trans-
parency, different versions of a ’coordination action’ can be implemented.
In general, to enable re-use, ’coordination actions’ will be put in their own
designated flow, which will be started by means of a bridge action.

5. Automate tasks or not: Again, this is up to the implementation of the action.
If it is chosen to automate the task, some code must be provided. When
automated, again, different versions can be used.

6. Switch between internal and external data usage: For example, for getting
person data, e.g., about the applicant of a subsidy (currently not modeled),
the organization could use its own database in which it must put all person
data on first use. However, one could also choose to connect to the govern-
mental persons register. Because of data version transparency, it is easy to
change. If external data is used, personal data can be seen as derived facts.

7. Choose which information is shown on the screen: A screen is user interaction
which is provided by connector elements. Creating a screen means adding a
connector element.

8. Outsource (or insource) part of the system: A similar reasoning holds as for
changing rules for the entire process: either actions are deleted or they are
re-implemented for calling an external system. Interesting is that this agility
in information systems does not only improve the agility in organizations in
splitting, but also eases the allying with new partners [9, p.102].

9. Add controls for managing throughput time: This can be reached by adding
trigger elements with timers. For example, if the payment of some application
is not performed within three weeks after granting, some notify action must
be started.

7 Conclusions and Future Research

In linking DEMO and Normalized Systems, we found that the underlying the-
ories both prescribe a modular structure and share the idea that separation
of tasks is crucial to fully define a system. We also found that an ontological
model of the B-organization of an enterprise, provided by applying DEMO to
an enterprise, suffices to create a functionally complete automated system for
supporting the operation of the enterprise while also providing implementation
freedom and thus enterprise agility support. This freedom includes, but is not
limited to, using different information channels, choosing to automate tasks or
not, and changing business rules. The system is however not designed taking into
account aspects such as user-friendliness, including graphical user interfaces, and

44 M.R. Krouwel and M. Op ’t Land

Table 4. Mapping DEMO concepts onto NS primitives and v.v.

DEMO concepts N
S

p
ri

m
it

iv
e
s

D
a
ta

el
em

en
t

A
ct

io
n

el
em

en
t

W
o
rk

fl
ow

el
em

en
t

T
ri
g
g
er

el
em

en
t

C
o
n
n
ec

to
r

el
em

en
t

C
ro

ss
-c

u
tt

in
g

co
n
ce

rn

Object class, category, scale dimension X ?

Fact kind X ?

Existence laws (X)

Derived fact kind

Actor role X

Transaction kind X ?

Transaction step X ?

Information bank X ? X

Information link ?

Action rule X X ?

other non-functional requirements, e.g., performance, as these aspects are not
present in DEMO. The Normalized Systems approach considers these aspects as
cross-cutting concerns which should be addressed separately from the functional
requirements.

We also found that Normalized Systems does not yet support all concepts
of DEMO. In Table 4 we have summarized for each DEMO concept which NS
primitives have to be created, indicated by an X. One empty row appears: for
derived fact kinds it is not yet clear how to model them in a Normalized System;
there is not a construct in NS onto which it can directly be mapped. The (X) in
the third row means that the existence laws are only partially covered by Nor-
malized Systems. It should be investigated how one can model all the existence
laws from DEMO in a Normalized Systems while retaining agility.

The other way around, from Table 4 it can also be read for each NS primitive
which DEMO concepts are needed for defining it. There are two empty columns
(except for the question marks), for the trigger and connector element as they
can be derived from the other elements.

With this result, one vital cornerstone for achieving enterprise agility has
been covered. At the same time, in achieving enterprise agility, more means and
concepts are needed.

In this research we found some issues that need further investigation:

– First, it must be investigated how to model derived fact kinds, derived ob-
ject classes, and derived categories in Normalized Systems; there is not one
construct in Normalized Systems present that supports the derivation of
facts.

Combining DEMO and Normalized Systems 45

– Second, for the unicity law, dependency law, and exclusion law from DEMO,
it is not immediately clear how they are supported in Normalized Systems,
so it should be investigated how Normalized Systems can support these laws.

– Third, as indicated by the question marks in Table 4, this research did not
fully look into the trigger and connector element.

– Fourth, it should be investigated to what extent modeling the I- and D-
organization of an enterprise - based on the DEMO models for the B-
organization - adds value for creating automated systems according to the
Normalized Systems approach. De Jong [10] describes how to derive DEMO
models for the I- and D-organizations from the DEMO models from the B-
organization. During our research we noticed that the I- and D-organization
seem to offer mainly generic functionality, or, in Normalized Systems termi-
nology, cross-cutting concerns. Therefore it should be investigated to what
extent the I- and D-organization offer generic functionality and to what
extent specific functionality.

References

1. Tsourveloudis, N.C., Valavanis, K.P.: On the Measurement of Enterprise Agility.
Journal of Intelligent and Robotic Systems (33), 329–342 (2002)

2. Arnold, B., Engels, A., Op ’t Land, M.: FPS: een andere kijk op componenten en
architectuur in de financiële wereld (deel 2). A & I, 24–32 (2000)

3. Dietz, J.L.G.: Enterprise Ontology. Springer, Heidelberg (2006)
4. Mannaert, H., Verelst, J.: Normalized systems: re-creating information technology

based on laws for software evolvability. Koppa, Kermt (2009)
5. Lehman, M.: On understanding laws, evolution, and conservation in the large-

program life cycle. Journal of Systems and Software 1, 213–221 (1980)
6. De Rijksoverheid : (Algemene wet bestuursrecht),

http://www.rijksoverheid.nl/onderwerpen/algemene-wet-bestuursrecht-awb

7. Huysmans, P., Bellens, D., Van Nuffel, D., Ven, K.: Aligning the Constructs of
Enterprise Ontology and Normalized Systems. In: Albani, A., Dietz, J.L.G. (eds.)
CIAO! 2010. Lecture Notes in Business Information Processing, vol. 49, pp. 1–15.
Springer, Heidelberg (2010)

8. Nuffel, D.V., Huysmans, P., Bellens, D., Ven, K.: Translating Ontological Business
Transactions into Evolvable Information Systems. In: 5th International Conference
on Software Engineering Advances, ICSEA 2010 (2010)

9. Op ’t Land, M.: Applying architecture and ontology to the splitting and allying of
enterprises. PhD thesis. Delft University of Technology (2008)

10. de Jong, J., Dietz, J.L.: Understanding the realization of organizations. In: Al-
bani, A., Dietz, J.L. (eds.) CIAO! 2010. Lecture Notes in Business Information
Processing, vol. 49, pp. 31–49. Springer, Heidelberg (2010)

http://www.rijksoverheid.nl/onderwerpen/algemene-wet-bestuursrecht-awb

Transformation of DEMO Metamodel into XML

Schema

Yan Wang1, Antonia Albani2, and Joseph Barjis3

1 Tilburg University
European Research Institute in Service Science

PO Box 90153, 5000 LE Tilburg, The Netherlands
y.wang13@uvt.nl

2 University of St. Gallen
Institute of Information Management

Müller-Friedberg-Strasse 8, 9000 St. Gallen, Switzerland
antonia.albani@unisg.ch

3 Delft University of Technology
Faculty of Technology, Policy and Management
PO Box 5031, 2600 GA Delft, The Netherlands

j.barjis@tudelft.nl

Abstract. In this paper, we propose an approach to transform models
derived by applying the Design and Engineering Methodology for Or-
ganizations (DEMO) into an exchangeable format. DEMO is based on
a founded theory, the Ψ -theory, and satisfies the requirements to be a
well defined domain modeling methodology. Having the DEMO models
represented in an exchangeable format is beneficial for different types
of applications supporting the information system development process.
Applications used for the automatic analysis (simulation) of the DEMO
models or for the identification of business components are just two ex-
amples to be mentioned.

Keywords: DEMO metamodel, model transformation, XML Schema.

1 Introduction

Modern enterprises are challenged by the reality of a dynamic business environ-
ment. With the increasing business scale, companies are encountering more com-
plex situations, such as globalized sales and sourcing markets, shortened product
life cycles, and innovative pressure on products, services and processes [1]. In or-
der to stay in and win the game in the competitive business world, enterprises
need to adapt to the fast changing market quickly and expand their coopera-
tive relationships with their business partners. Adaptive and agile information
systems for enterprises are therefore crucial in order to support the business
needs. Thus while developing such information systems for enterprises, it is nec-
essary to have a suitable methodology for modeling the business domain. The
appropriateness and the quality of the business domain models are vital for the

A. Albani, J.L.G. Dietz, and J. Verelst (Eds.): EEWC 2011, LNBIP 79, pp. 46–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Transformation of DEMO Metamodel into XML Schema 47

development process. Dietz proposes some quality criteria regarding a business
domain model in [2], which are coherence (the domain models constitute a logical
and truly integral whole), comprehensiveness (complete coverage of all relevant
issues), consistency (the domain models are free of contradictions or irregular-
ities), conciseness (all relevant models are compact and succinct), and essence
(the domain model should only show the essence of the enterprise). The Design
and Engineering Methodology for Organizations (DEMO) [2] is a methodology
that satisfies these requirements and that additionally distinguishes between es-
sential (business), infological and datalogical acts and facts, ultimately resulting
in the distinction between three aspect organizations: the B-organization (B
from business), the I-organization (I from infological), and the D-organization
(D from datalogical). The apparent advantages of DEMO – in particular the
huge reduction of complexity [3] – led us to choose DEMO for modeling the
business domain.

DEMO has already proven to be beneficial for the development of the sup-
porting information systems (see [4,5]). However no exchange format of DEMO
models has been defined so far in order to allow for automatic access of DEMO
model data by third party applications. Example applications are a) tools for
the automatic identification of business components based on DEMO models,
or b) simulation tools, where readability and structure of the model data are
both important and helpful. This paper therefore presents research on meta-
model transformation, where the transformation of DEMO metamodel to XML
Schema is elaborated.

The paper is structured as follows. Section 2 introduces state of the art in
model transformation. Additionally, the section presents the metamodel transfor-
mation approach as used in this paper. The DEMO metamodel which is needed
for the said transformation is introduced in the sections 3. In section 4 several
transformation rules that are used to transform the DEMO metamodel into XML
Schema are introduced. One exemplary case, in section 5, shows the transfor-
mation procedure and the resulting XML structure for an instance of a DEMO
metamodel. The evaluation of the transformation results is made in section 6.
At last, section 7 concludes and proposes some work for future research.

2 Model Transformation

Metamodeling has been widely used as a transformation approach, of which
exemplary applications can be found in [6] [7]. Figure 1 visualizes a general
metamodel mapping transformation. The transformation is from Model A to
Model B. The language used for expressing Model A is defined in Metamodel
A. The Metamodel B defines the language that describes Model B. These two
languages are connected by the Transformation model. The task of this trans-
formation model is to map the source language and the target language, so that
it can build a bridge from Model A to Model B. The transformation model is
expressed in terms of a set of transformation rules that address the detailed
guidance of the transformation. Thus the transformation procedure from Model
A to Model B is accomplished by using metamodeling.

48 Y. Wang, A. Albani, and J. Barjis

Model A

Model B

Metamodel A

Transformation
model

Metamodel B

Language used

Source language

Target language

Language used

Transformation

Fig. 1. Metamodel Mapping Transformation [8]

Fig. 2. UML to XML Schema Transformation [9]

A good example of applying metamodeling e.g., in the Model Driven Archi-
tecture (MDA), is the transformation between UML class diagram and XML
Schema from [9]. Depicted in Figure 2, the source UML model and the target
alternative XML Schema are situated in level M1, the source UML metamodel
and the target XML Schema metamodel are situated in level M2. The source and
target models are mapped with each other within the same level. For example,
the class construct from UML metamodel, which is in level M2, is possible to
be mapped either to “Element” declaration or “Complex Type” definition con-
struct from XML Schema metamodel, which is also in level M2. Following the
same transformation rules, instances as e.g., “C1” or “C2” of the UML meta-
model “class” type can then be mapped either to instances of the “Element” or
“Complex Type” of the XML Schema metamodel.

When using the metamodeling approach in model transformation, the actual
transformation is executed within the modeling languages used in the metamodel

Transformation of DEMO Metamodel into XML Schema 49

Fig. 3. DEMO metamodel to XML Schema transformation

of the source and target models. The complex instance contents at the model
level are left out of sight during the transformation. In the presented research we
use the DEMO metamodel defined by Dietz and introduced in [10] as the source,
and the XML Schema as the target metamodel on the level M2. Fig. 3 illustrates
the elements used for the transformation needed. The DEMO meta schema on
the level M3 defines the concepts used for defining the DEMO metamodel. Based
on the DEMO metamodel and the XML Schema on level M2, transformation
rules are defined allowing the transformation of DEMO models into XML format
on level M1.

3 DEMO Metamodel

As metamodeling transformation approach is chosen in this proposed DEMO
transformation, DEMO metamodel is a crucial source material for the transfor-
mation. The DEMO metamodel [10] on level M2 (see Fig. 3), corresponding to
the aspect models on level M1, includes the Meta Construction Model (MCM),
Meta Process Model (MPM), Meta Action Model (MAM), Meta State Model
(MSM), and the metamodel for cross-model tables TRT, IUT and BCT. These
metamodels provide the basic constructs and relationships that occur in any
instance aspect of DEMO models on level M1 (see fig. 3). The language used in
specifying the DEMO metamodel is called World Ontology Specification Lan-
guage (WOSL). Regarding the limited space in this paper, we restrict ourselves
on describing two aspects of the DEMO metamodel, namely the MSM and the
MCM. For the same reason, only these two are discussed in the following sec-
tions. We refer to [10] for readers who are interested in a complete description
of DEMO metamodel.

3.1 Meta State Model (MSM)

We start by introducing the MSM, since it builds the basis for the whole DEMO
metamodel. The MSM is part of the DEMO metamodel, and has connection with

50 Y. Wang, A. Albani, and J. Barjis

the MCM. It fulfills two roles, besides being the metamodel of SM, MSM also
defines the metamodel of the whole DEMO metamodel. We call the metamodel
of the whole DEMO metamodel a meta schema (see level M3 in Fig. 3). We are
going to briefly describe the MSM’s role of being the meta schema and focuse
on its specification of being metamodel of SM, because the said transformation
takes place on level M2 (Fig. 3).

The MSM, as DEMO meta schema, specifies the concepts used in WOSL,
including the declared fact type, derived fact type, unary fact type, binary fact
type, object class, scale and category. Furthermore, existence laws, such as ex-
clusion law, unicity law, reference law and dependency law are defined in this
meta schema as well.

The MSM, as being the metamodel of SM, defines the basic constructs of the
SM. A SM is instantiated in terms of a lawful set of basic constructs. Figure 4
shows how the MSM specifies a basic construct, and how a basic construct in
SM look like. The basic construct in SM (Figure 4 (b)) states that the role x in
fact type F has a domain A. And for every a ∈ A there must be a tuple <a>in
F. The corresponding definition of this construct in MSM is expressed in Figure
4 (a): for every unary fact type there must be one and only one instance fact
type x in the binary fact type <x, y>, the domain of fact type x is the object
class y. Additionally, object x is dependent on object y, while x belongs to class
UNARY FACT TYPE, and y belongs to an extension of unary fact type.

The two roles of MSM imply that the MSM not only defines the structure of
instance SM, but also defines the concepts used by the whole DEMO metamodel.
The MCM in the following section will be explained by using the concepts defined
in the MSM.

x

A

(a) one simple construct in meta State Model (b) one simple construct in State Model

F

x y

the domain of x is y

x y

x is dependent on y

x is a unary fact type
x

(reference law)

(dependency law)

UNARY
FACT
TYPE

OBJECT
CLASS

Fig. 4. Basic construct at both metamodel level and model level (with dependency
law)

3.2 Meta Construction Model (MCM)

The MCM specifies the interaction structure of CM. Being outlined in Figure 5,
TRANSACTION KIND, ELEMENTARY ACTOR ROLE and INFORMATION
BANK including the PRODUCTION BANK and COORDINATION BANK are
the core object classes within the MCM.

For describing the DEMO metamodel we adopt the following convention (we
take the type ELEMENTARY ACTOR ROLE as an example): if there is a fact

Transformation of DEMO Metamodel into XML Schema 51

a, and the type of a is the elementary actor role, we would say that ‘a is an
elementary actor role’ or ‘elementary actor role a’. This is equivalent saying
that ‘elementary actor role (a) holds’. This kind of expression will be used in
the specification of DEMO metamodel in this section.

The description of the correlation between the ELEMENTARY ACTOR ROLE
and TRANSACTION KIND is specified like this: if there is an ‘elementary actor
role a is an initiator of transaction kind t ’, there must be a ‘transaction kind
(t) holds’. Meanwhile, constrained by the dependency law, for every transac-
tion kind, there must be an elementary actor role a, that ‘a is an initiator of t
holds’, where t is the transaction kind. If there is an elementary actor role ‘a is
the executor of transaction kind t ’, there must be a ‘transaction kind (t) holds’.
Meanwhile, constrained by the dependency law, for every transaction kind, there
must be an elementary actor role a, that ‘a is the executor of t holds’, where
t is the transaction kind. Note that there are unicity laws hold for both a and
t in the lawful binary fact type. That means every transaction kind and every
elementary actor role cannot occur more than once in the lawful binary fact
type. Thus it implies that there is a strict one-to-one relationship between the
transaction and its executor.

Fig. 5. Meta Construction Model

The MCM also specifies that an elementary actor role, either initiator or ex-
ecutor, may use information from information banks, but not necessarily. There
are two kinds of information banks, namely, the production bank and coordina-
tion bank. The correlation between transaction kinds and information banks are
restricted to a one-to-one relationship, as shown in Fig. 5 there are unicity laws
hold in the binary fact types between transaction kinds and information banks re-
spectively. In addition, constrained by the dependency laws hold for transaction

52 Y. Wang, A. Albani, and J. Barjis

kinds and information banks, every coordination fact or production fact produced
by a transaction must belong to the corresponding coordination bank or produc-
tion bank respectively; every coordination bank or production bank can only come
into existence when there is some coordination fact or production fact respectively.
It is not possible to have an empty information bank or a transaction without its
corresponding information banks, since there are always coordination facts and
production facts produced as the results of the coordination acts and production
acts which are performed during transaction process steps.

The result types are the connections between the MCM and the MSM. The
transaction kind plays a crucial role in connecting MCM to MSM. Seen in Fig. 5,
in the binary fact type ’F is the result kind of T’, transaction kind T belongs to
TRANSACTION KIND which is part of MCM. Result kind F, situates outside
the MCM boundary, belongs to declared fact type which is part of MSM. The
connection between the transaction kind and its result kind is strictly one-to-one
relationship, as marked by the unicity laws.

An exemplary instance CM of a library case include an Organization Con-
struction Diagram (OCD) (Figure 6) and a TRT (Table 1). In the exemplary
transaction ‘membership registration’ (T01), the initiator of T01 is the compos-
ite actor role ‘aspirant member’ (CA02); the executor of T01 is the elementary
actor role ‘registrar’ (A01). The composite actor role could be an elementary ac-
tor role or a composite actor role. The transaction symbol has two meanings in
OCD, one is the transaction T01, the other one is the combination of production
bank PB01 and coordination bank CB01 that belong to transaction T01. The
elementary actor role A01 uses information from the composite production bank
‘personal data’ (CPB11) and ‘general data’ (CPB14). For T01, the result type is
R01 ‘membership M has been started’. This structure is specified in MCM,which
implies that the relationship between actor roles and transaction in the instance
model is fully consistent with the corresponding structure in the metamodel.

Fig. 6. An exemplary OCD of the library

Transformation of DEMO Metamodel into XML Schema 53

Table 1. The TRT of the library

transaction type result type

T01 membership registration R01 membership M has been started

4 Transformation Rules

The transformation rules will be derived from three aspects: what information
needs to be transformed (selection rules); how the selected information is struc-
tured in target format (structuring rules); how to verify the transformation re-
sults (mapping rules).

4.1 Selection Rules

Selection rules aim to clarify the complete and essential information objects for
the transformation.

In this paper, we select information from MCM and MSM. For MCM, we
select the object classes, binary fact types and the correlation among them. It
is because the object classes contain all the information objects, and the binary
fact types and the correlations contain the relationships among the information
objects.

Considering the fact that the proposed transformation is about DEMO meta-
model on level M2 (Fig. 3), we only pick up the object classes and fact types
that are used in the basic constructs, and the existence laws which are directly
used in building the DEMO metamodel, but exclude the concepts for specify-
ing object class, fact types and existence laws are situated on level M3, namely
DEMO meta schema. Tables 2 lists all the information objects chosen from MCM
and MSM. The selected information will be transformed into target XML-based
format.

Table 2. The selected information from the MCM and MSM

Information Items Information Items
MCM TRANSACTION KIND MSM FACT TYPE

A is an initiator of T OBJECT CLASS
A is the executor of T the domain of x is y

ELEMENTARY ACTOR ROLE x is a declared fact type
A uses information from B SCALE
INFORMATION BANK PROPERTY
PRODUCTION BANK c is the domain of x

B is the production bank of T s is the range of x
COORDINATION BANK mutual exclusion holds for x and y

B is the coordination bank of T x is dependent on y
F is the result kind of T unicity holds for x

54 Y. Wang, A. Albani, and J. Barjis

4.2 Structuring Rules

The chosen contents from the DEMO metamodel must be structured hierarchi-
cally in the XML schema files. It implies that those information objects must be
clustered as elements, complex types or attributes in XML Schema, regarding
their different features and priorities in DEMO metamodel. An example of the
general structure of XML document is shown in Listing 1.1.

Listing 1.1. An example of defining the element and complex type and attribute

<xsd : e lement name=”ELEMENT” type=”COMPLEXTYPE”/>
<xsd : complexType name=”COMPLEXTYPE”>

. . .
<xsd : a t t r i b u t e name=”a t t r i bu t e ” type=”type ” use=”requ i r ed/ op t i ona l ”/>
</xsd : complexType>

We define those which have the central position in the metamodel as the root
element in the schema, e.g. the one which holds the most dependency laws, or the
one which is the most generically constructed in the metamodel. For instance, the
transaction kind has the central position in MCM, which is because in MCM the
transaction kind holds the most dependency laws. Its central position also makes
sense at the model level, since in DEMO aspect models, CM is the most concise
model as mentioned in section 3.2, while the other models detail part of the CM.
The other information, which is not in the central position, is defined as complex
types in order to detail the root element. The existential constraints contained
in the metamodels are defined as attributes of either elements or complex types.

Besides considering the hierarchy in the chosen contents, we also pay attention
to the structure of the instance XML files. We need to add an additional root
element to have the structured model information nested in the root element,
when the current root element is instantiated by more than one cases.

Listing 1.2. XML schema for global element <Transactions>

<xsd : e lement name=”Transact ions”>
<xsd : complexType>

<xsd : sequence>
<xsd : e lement name=”Transact ion” type=”TRANSACTION KIND” maxOccurs=”

unbounded”/>
<xsd : e lement name=”Transact ion” type=”TRANSACTION KIND” maxOccurs=”

unbounded”/>
<xsd : e lement name=”Transact ion” type=”TRANSACTION KIND” maxOccurs=”

unbounded”/>
</xsd : sequence>

</xsd : complexType>
</xsd : element>

An example of the root element in the schema of the CM explains itself
(Listing 1.2). The child element <Transaction>and its complex type content
“TRANSACTION KIND” comprehends all the model information within the
transaction. If there are three transactions T01, T02 and T03, for each transac-
tion, it is specified as an element <Transaction>and includes its complext type
“TRANSACTION KIND”. Then we need to set another parent element for this
sequence of <Transaction>. Thus we set element <Transactions>as the root
element, which includes all the <Transaction>elements in the instance XML

Transformation of DEMO Metamodel into XML Schema 55

file. This structuring rules are applied to transform the model information from
source format to target format.

4.3 Mapping Rules

This rule is made to guarantee the information completeness and correctness
in the transformation results, in order to verify the transformation results. The
mapping is made from two perspectives, which are the precision of the constraints
in the XML schema files and the completeness of the information objects in
the instance XML documents, compared with the original DEMO metamodel.
Therefore, for each information object in the original DEMO metamodel, there
should be a corresponding interpretation in the XML schema files, in terms of
either an element or a complex type; for every necessary constraint, there should
also be an equivalent part in the schema files, in terms of an attribute of either
an element or a complex type.

The following table lists how the proposed transformation converts DEMO
meta schema elements in XML Schema elements at a high level. The DEMO
meta schema elements are the elements specified in WOSL, including the object
class, the fact type, the exclusion law, the unicity law, the reference law and
the dependency law. The object class is converted to either an element or a
complex type content. The fact type is considered as either a child element or a
contained element within complex types. The exclusion law restricts the value of
an XSD string simple type. The unicity law notifies the occurrence of a contained
element within complex types. The reference law and the dependency law tell
the necessity of the usage of an attribute.

Table 3. DEMO meta schema elements and XML Schema elements

DEMO meta schema elements XML Schema elements

Object class Element
Complex type

Fact type Child element of a contained element (com-
plex type)

Exclusion law Restriction of an XSD string simple type
with two enumeration facets

Unicity law Occurrence indicators of elements
•minOccurs = 1
•maxOccurs = 1

Reference law Attribute of an element
•use = optional

Dependency law Attribute of an element
•use = required

5 Exemplary Case

In this section, we take one transaction of the library case as an example to
demonstrate the transformation procedure. As exemplified in Figure 6 and Table

56 Y. Wang, A. Albani, and J. Barjis

1 (section 3), CA02 (aspirant member) initiates T01 (membership registration),
of which the executor is numbered A01 (register). The result type of T01 is that
R01 membership M has been started. The coordination and production bank
that belong to T01 are combined in the information bank PB01. In addition,
internal actor role A01 gets to know some general information from CPB14, and
the personal information about the aspirant member from CPB11.

Listing 1.3. Schema code for Meta Construction Model

<xsd:schema xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”>
<xsd : e l ement name=”Transact ions ”>

<xsd:complexType>
<xsd : sequence>

<xsd : e l ement name=”Transact ion” type=”TRANSACTION KIND” maxOccurs=”
unbounded”/>

</ xsd : sequence>
</xsd:complexType>

</ xsd : e l ement>
<xsd:complexType name=”TRANSACTION KIND”>

<xsd : sequence>
<xsd : e l ement name=”Tname” type=” x s d : s t r i n g ”/>
<xsd : e l ement name=” I n i t i a t o r ” type=”ELEMENTARYACTOR ROLE” minOccurs=

”1” maxOccurs=”unbounded”/>
<xsd : e l ement name=”Executor ” type=”ELEMENTARYACTOR ROLE” minOccurs=”

1” maxOccurs=”1”/>
<xsd : e l ement name=”UseInformation ” type=”INFORMATION BANK” minOccurs=

”1” maxOccurs=”1”/>
<xsd :e l ement name=”Resu l t” type=”DeclaredFactType” minOccurs=”1”

maxOccurs=”1”/>
</ xsd : sequence>
<x sd : a t t r i b u t e name=”TransactionID” type=” x sd : s t r i n g ” use=” requ i r ed”/>

</xsd:complexType>
<xsd:complexType name=”ELEMENTARYACTOR ROLE”>

<xsd : sequence>
<xsd : e l ement name=”name” type=” x sd : s t r i n g ”/>
<xsd : e l ement name=”UseInformation ” type=”INFORMATION BANK” minOccurs=

”0” maxOccurs=”unbounded”/>
</ xsd : sequence>
<x sd : a t t r i b u t e name=”ActorID” type=” x s d : s t r i n g ” use=” requ i r ed”/>

</xsd:complexType>
<xsd:complexType name=”INFORMATION BANK”>

<xsd : s impleContent>
<x sd : ex t en s i on base=” x s d : s t r i n g ”>

<x s d : a t t r i b u t e name=”BankType” use=” op t i ona l ”>
<xsd:simpleType>

<x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>
<xsd:enumeration va lue=”Product ion”/>
<xsd:enumeration va lue=”Coordinat ion ”/>

</ x s d : r e s t r i c t i o n>
</ xsd:simpleType>

</ x sd : a t t r i b u t e>
<x s d : a t t r i b u t e name=”BankID” type=” x s d : s t r i n g ” use=” requ i r ed”/>

</ x sd : e x t en s i on>
</ xsd : s impleContent>

</xsd:complexType>
<xsd:complexType name=”DeclaredFactType”>

<xsd : s impleContent>
<x sd : ex t en s i on base=” x s d : s t r i n g ”>

<x s d : a t t r i b u t e name=”ResultID ” type=” x sd : s t r i n g ” use=” requ i r ed”/>
</ x sd : e x t en s i on>

</ xsd : s impleContent>
</xsd:complexType>
</xsd:schema>

Transformation of DEMO Metamodel into XML Schema 57

The MCM is the corresponding metamodel for the instance model described
above. Applying the selection rules, we have the information objects that need
to be transformed (Table 2). With the guidance of the structure rules, we design
the XML Schema (Listing 1.3) as the transformation result of those selected
information objects from the MCM.

In order to elaborate the transformation as automatically as possible, an ap-
plication, which can produce the XML files for DEMO models based on the
designed XML schema and input model information, is built. A form (Figure 7)
is designed to collect the required information objects from instance CM (Fig-
ure 6,Table 1). All the filled information will be processed in the application and
structured in a new XML file (Listing 1.4), of which the structure is defined in
the above schema (Listing 1.3).

Listing 1.4. The XML document of CM

<?xml version=” 1 . 0 ” encoding=”UTF−8” standalone=”no”?>
<Transact ions xm ln s : x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xsi:noNamespaceSchemaLocation=”C:\Tomcat\webapps\ROOT\demo\CM. xsd”>
<Transact ion Transact ionID=”T01”>

<Tname>membership r e g i s t r a t i o n</Tname>
<I n i t i a t o r ActorID=”CA02”>

<name>a sp i r an t member</name>
<UseInformation BankID=”PB01”>PB01</UseInformation>

</ I n i t i a t o r>
<Executor ActorID=”A01”>

<name>r e g i s t r a r</name>
<UseInformation BankID=”PB01”>PB01</UseInformation>
<UseInformation BankID=”CPB14” BankType=”Production”>gene ra l data</

UseInformation>
<UseInformation BankID=”CPB11” BankType=”Production”>pe r sona l data</

UseInformation>
</Executor>
<UseInformation BankID=”PB01”>PB01</UseInformation>
<Resu l t ResultID=”R01”>membership M has been s ta r t ed</Resu l t>

</Transact ion>

Fig. 7. The information items required for CM

58 Y. Wang, A. Albani, and J. Barjis

This is one simple example to demonstrate the transformation procedure and
show the result of our proposed DEMO transformation. In next section, an
evaluation will be made to this transformation result.

6 Evaluation

In this section, we will evaluate the proposed transformation from two perspec-
tives, which are the verification and the usefulness of the transformation result
respectively.

6.1 Verification

Verifying the transformation results is of significant importance to the feasibility
of the proposed transformation approach. We will present a comparison of the
produced exemplary XML documents and their corresponding original DEMO
models. The comparison aims to map the information contained in the XML
documents with the information from the original models, to see whether the
information is completely and precisely maintained during the transformation.

The comparison between the XML document and the original diagram of
CM is carried out in the unit of business transaction, including the actor roles
that participate in the transaction and the information banks belonging to or
used by particular transaction (Figure 6). In section 5 we provide the semantic
description and the XML document of this transaction. Here we map them
precisely in Table 4.

Clearly seen from the comparison, all the items in the original CM have
been correspondingly stored in the XML document, which implies that the

Table 4. Mapping of T01 membership registration

Description of original CM XML document
T01 membership registration <Transaction TransactionID=”T01”>

<Tname>membership registration</Tname>
CA02 (aspirant member) initi-
ates T01

<Initiator ActorID=”CA02”>

<name>aspirant member</name>
information bank PB01 belong
to transaction T01

<UseInformation BankID=”PB01”>PB01</UseInformation>

</Initiator>
the executor is A01 (register) <Executor ActorID=”A01”>

<name>registrar</name>
information bank PB01 belong
to transaction T01

<UseInformation BankID=”PB01”>PB01</UseInformation>

A01 gets general information
from CPB14

<UseInformation BankID=”CPB14” Bank-
Type=”Production”>general data</UseInformation>

A01 gets personal information
from CPB11

<UseInformation BankID=”CPB11” Bank-
Type=”Production”>personal data</UseInformation>
</Executor>

information bank PB01 belong
to transaction T01

<UseInformation BankID=”PB01”>PB01</UseInformation>

result type of T01 is R01 <Result ResultID=”R01”>membership M has been
started</Result>
</Transaction>

Transformation of DEMO Metamodel into XML Schema 59

model transformation is completely and correctly maintained during our pro-
posed transformation procedure.

6.2 Usefulness

The XML documents of the DEMO aspect models resulting from the transfor-
mation process as introduced in the previous sections, should be of use for several
types of applications. As already mentioned in the introduction, the resulting
XML documents have added value for simulation tools as well as for tools used
to identify business components allowing for information systems to be modeled
at a high-level of abstraction. It goes beyond the scope of this paper to show
how the transformation results are used for such kind of applications. We re-
fer to [10] for further details on the usage of the transformation results for the
identification of business components.

7 Conclusion

This paper discusses an approach to transform DEMO metamodels into XML
Schema, allowing to export the semantic data of DEMO models into XML doc-
uments. This data can then be extracted by several different applications for
further processing.

The approach involves a research about background information on model
transformation, a grasp of DEMO metamodel, the definition of transformation
rules, the design of XML schema for the DEMO metamodel, the instantiation of
the designed XML schema, and the transformation results evaluation. A compre-
hensive interpretation of the DEMO metamodel was made in XML Schema. We
made three transformation rules for the design of XML schema, which specify
the content of the proposed DEMO transformation, determine the structure of
the expected XML documents, and guarantee the completeness of the selected
information and the preciseness of the transformed information. The designed
XML schema can be instantiated into a set of XML documents with concrete
model information as e.g., from the exemplary case. The produced XML docu-
ments are the transformation results. By semantically mapping the information
items in the XML documents with the ones in the original aspect models, we
verify the transformation results and guarantee the information completeness
during the transformation procedure.

Based on this paper, some future works are envisioned. Firstly, reproducing
the DEMO diagrams from the transformation results is expected, which provides
a more direct verification of the DEMO transformation. Secondly, an automa-
tion for combining e.g., graphical user interfaces, used for producing DEMO
models, and the tool, used to identify business components, is desired to be in-
vestigated in future research. The integration of these tools, based on the XML
transformation of DEMO models as presented in this paper, will support de-
signers in generating high-level constructional information system models, by
means of business components. Thirdly, the simulation of DEMO models is an-
other direction into which we want to continue our research. Any conceptual

60 Y. Wang, A. Albani, and J. Barjis

model developed for simulation, will impact all aspects of the subsequent simu-
lation study such as the simulation model development speed, the validity of the
model, the experimentation and the confidence based in the model and future
reusability of the models. Having an input conceptual model based on theory,
as the Ψ -theory DEMO is based on, and having the models transformed into an
exchangeable format (XML), lays down a profound opportunity for generating
simulation models that can be automatically analyzed. Furthermore the XML
format is simulation environment independent, which allows the simulation mod-
els to be generated using any simulation environments or tools. Although the
simulation is not discussed in details in this paper, it opens up a potential future
research, which will be investigated by the authors.

Acknowledgments

This project is supported by the Swiss National Science Foundation (SNSF).

References

1. Hamel, G., Prahalad, C.K.: The Core Competence of the Corporation. In: Strate-
gische Unternehmungsplanung Strategische Unternehmungsführung, Springer, Hei-
delberg (2006)

2. Dietz, J.L.: Enterprise Ontology Theory and Methodology. Springer, Heidelberg
(2006)

3. Dietz, J.L.: The deep structure of business processes. Communications of the
ACM 49(5) (May 2006)

4. Albani, A., Dietz, J.L.: Enterprise ontology based development of information sys-
tems. International Journal of Internet and Enterprise Management, Special Issue
on Enterprise Design and Engineering 7(1) (2011)

5. Albani, A., Dietz, J.L.: The benefit of enterprise ontology in identifying business
components. In: The Past and Future of Information Systems: 1976–2006 and Be-
yond, IFIP 19th World Computer Congress, TC-8, Information System Stream,
Santiago de Chile, Chile. IFIP International Federation for Information Process-
ing, vol. 214, pp. 243–254. Springer, Boston (2006)

6. Goknil, A., Topaloglu, Y.: Ontological perspective in metamodeling for model
transformations. In: MIS 2005: Proceedings of the 2005 Symposia on Metainfor-
matics, ACM, New York (2005)

7. Koch, N.: Transformation techniques in the model-driven development process of
uwe. In: ICWE 2006: Workshop Proceedings of the Sixth International Conference
on Web Engineering, ACM, New York (2006)

8. OMG, O.M.G.: Mda guide version 1.0.1 (June 2003)
9. Kurtev, I., van den Berg, K., Aksit, M.: Uml to xml-schema transformation: a

case study in managing alternative model transformations in mda. In: Forum on
specification and Design Languages (FDL 2003), ECSI, Frankfurt, Germany (2003)

10. Wang, Y.: Transformation of demo models into exchangeable format. Master’s
thesis, Delft University of Technology (April 2009)

A. Albani, J.L.G. Dietz, and J. Verelst (Eds.): EEWC 2011, LNBIP 79, pp. 61–75, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Enterprise Architecture for Small and Medium
Enterprise Growth

Dina Jacobs1,3, Paula Kotzé1,2,4, Alta van der Merwe1,2, and Aurona Gerber1,2

1 School of IT, North West University, Vanderbijlpark, South Africa
2 CSIR Meraka Institute, P.O. Box 395, Pretoria, 0001, South Africa

3 TriVector, P.O. Box 68753, Highveld 2, 0169, South Africa
4 School of ICT, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

dina.jacobs@trivector.co.za,
{paula.kotze,aurona.gerber,alta}@meraka.org.za

Abstract. A key constraint for growing small and medium enterprises (SMEs)
is the business skills required to grow the enterprises through the stages of
transformation. Criticism against growth stage models for SMEs is of concern,
since these models contain the typical knowledge that appeals to managers of
small enterprises as guidance in how to manage growth. In this article we pro-
pose the SMEAG model to explore the relevance of enterprise architecture (EA)
for enhancing existing growth stage models in order to counteract some of this
criticism. EA is well-known as a field that claims to manage change and com-
plexity. The rationale to combine the concepts of growth stage models and EA
is based on the level of change and complexity associated with the growth of
small enterprises into medium enterprises. SMEAG combines the existing
growth stage model of Scott and Bruce, the Enterprise Architecture Framework
by Hoogervorst, and the EA as Foundation for Business Execution Model by
Ross, Weill and Robertson.

Keywords: Enterprise architecture, small and medium enterprises, growth stage
models.

1 Introduction

Growing small enterprises to become medium enterprises, with the objective of job
creation in South Africa, is a top priority [5]. However, a key constraint is the busi-
ness skills required to grow the small enterprises through the various stages of trans-
formation. This lack of business skills as constraint is confirmed from a global
perspective by Jones [7: p. 1] in his statement “it is recommended that training be
provided for all SME entrepreneurs to prepare them for the road ahead and the chal-
lenges and crisis that they will inevitable meet along the way”. Hanks, Watson et al.
[4] also refer to the lack of business skills, although phrased slightly differently: “pi-
loting an organization through the growth process represents a formidable managerial
challenge”.

The initial assumption may be that there are consolidated growth stage models
available for small and medium enterprises (SMEs) to address this lack of business

62 D. Jacobs et al.

skills. However in a review of relevant material [2, 4, 7, 9-10, 12] there is evidence
that this assumption may be questionable, specifically due to the status of such growth
stage models for SMEs. In their review of research on small firm growth Davidsson,
Achtenhagen and Naldi [2] define growth stage models as a description of the distinct
stages of SME growth and the set of typical problems and organizational responses
associated with each stage. They noted that authors of review articles on growth stage
models for SMEs agree that it is not easy to extract a coherent picture from research,
but the inherent complexity of the phenomenon is at least acknowledged. One of the
critiques is that the growth stage models tend to assume all SMEs pass inexorably
through each stage. A second critique is that growth stage models of SMEs are not
sufficiently supported by empirical observation.

This criticisms of growth stage models is of concern since these models typically
contain the knowledge that appeals to managers of small enterprises [2, 9].

Enterprise architecture (EA) is widely claimed to be an approach to manage
change and complexity [6, 18]. EA not only constitutes a baseline for managing
change, but also provides the mechanism by which the reality of the enterprise and its
systems can be aligned with management intentions [16]. We argue that EA can con-
tribute towards a solution to the criticism against growth stage models that a small
enterprise may not pass through all stages of transformation.

This paper explores using EA to enhance existing SME growth stage models with
the objective to provide guidance for SME managers during the transformation proc-
ess from being a small enterprise to becoming a medium enterprise. The rationale to
combine the concepts of growth stage models and EA is based on the level of change
and complexity associated with the growth of small enterprises into medium
enterprises.

The output of this research is the proposed ‘SME EA growth’ (SMEAG) model.
Experience in industry assisted with developing the SMEAG model through combin-
ing theories from the SME growth stage models and EA domains. The SMEAG
model is derived by combining the existing growth stage model of Scott and Bruce
[14], the Enterprise Architecture Framework by Hoogervorst [6] and the EA as Foun-
dation for Business Execution Model discussed by Ross, Weill and Robertson [13].
The SMEAG model allows for judicious selection of appropriate states and transition
during the SME growth process. The proposed SMEAG model is illustrated, using as
case study, the operating model of an SME that is in the transformation phase from
being a small to becoming a medium enterprise.

The value contribution of the SMEAG model can be summarised as the enrichment
of the existing SME growth stage model concept with the following three concepts
from the EA domain:

• Replacing the stage concept with a current to future state transition approach.
• The Hoogervorst Enterprise Architecture Framework [6] to indicate the areas of

concern, design domains and the architecture principles and standards.
• The Foundation for Business Execution Model [13] to identify the operating

model and the level of standardisation and integration required.

The SMEAG model is developed keeping the constraint of resource poverty in the
SME world in mind.

 Enterprise Architecture for Small and Medium Enterprise Growth 63

Section 2 describes the background by examining the domains of SMEs, growth
stage models and enterprise architecture. The proposed SMEAG model is presented in
section 3. Section 4 illustrates the application of the SMEAG model in a case study
and discusses the value of SMEAG model in the context of this case study. Section 5
concludes with a reference to future research.

2 Background

This section provides the background and the motivation for the research by intro-
ducing the relevant domains, namely SMEs, growth stage models and enterprise
architecture.

2.1 Small and Medium Enterprises (SMEs)

In order to better comprehend the problem domain, it is necessary to understand the
nature of SMEs compared to their larger counterparts. Several factors can play a role,
namely:

• The role of SMEs as part of the global and the local (in our case South African)
economies. According to Cassell, Nadin et al. [1] approximately 99% of all firms
in the EU are SMEs, which employ about 65 million people in total. Globally
SMEs account for 99% of business and 40% to 50% of gross domestic product
(GDP).

• The reality of resource poverty in the SME world. Welsh and White [15] argued
that the very size of a small business creates a special condition, referred to as re-
source poverty, distinguishing them from their larger counterparts and which re-
quires different management approaches than that followed by larger business.

• Only a small percentage of SME owners envision growing from a small to a me-
dium enterprise. Several studies have shown that across countries, SME growth is
not the norm [2]. Most firms start small, live small and die small, and most busi-
ness founders have modest growth aspirations for their firms. According to Jones
[7] the average life cycle of SME’s is in the region of five years or less.

The Global Entrepreneurship Monitor (GEM) report [5] identified the need in South
Africa to assist small enterprises to grow into medium enterprises and in doing so to
stimulate job creation. The GEM research program was initiated in 1997 as a joint
venture between academics at London Business School and Babson College in the
United States. GEM has grown to a consortium of 64 national teams and is regarded
as one of the most important longitudinal studies of entrepreneurship in the world.

From the GEM perspective [5], a number of statistics and statements relevant to
SMEs in South Africa can be listed to provide a better understanding of the cause of
the problem addressed in this paper. Of the 2.4 million registered companies in South
Africa in 2009, 2.2 million were SMEs. SMEs thus play an important part in the
economy. Only a small fraction of firms (3.9%) in the start-up phase employ any
staff, and only a tiny fraction (<3%) of necessity-oriented businesses create six or

64 D. Jacobs et al.

more jobs. The GEM Report also mentioned that formal business require training in
skills, such as how to keep records, budget, manage cash flow, maximize trade credit
and write a business plan.

2.2 SME Growth Stage Models

Growth stage models are important for SMEs in order to understand. manage and
predict problems that might arise during growing the business. The question is
whether growth stage models can successfully assist the SME manager that wants to
transform the small enterprise in to a medium enterprise.

Both Davidsson et al. [2] and McMahon [9] did comprehensive reviews of litera-
ture related to SME growth stage models. According to Davidsson et al. [2], studies of
small firm growth are no longer in short supply, but it does not necessarily imply that
everything is known about small firm growth. All of the authors of the articles they
reviewed commented on the lack of a coherent picture portrayed by reference mate-
rial. However, there is no evidence in the literature that this identified lack of material
is currently addressed by researchers. This is unfortunate because growth stage mod-
els represent the type of knowledge small firm managers typically require.

Both Davidsson et al. [2] and McMahon [9] refer to the seminal book by Penrose
[11] explaining the two different connotations of growth, namely the amount of
growth versus the process of growth. SME growth stage models are related to the
process of growth. SME growth is viewed as a series of phases or stages of develop-
ment through which the business may pass during an enterprise life-cycle.

Massey, Lewis et al. [8] confirmed that the life cycle phenomenon has been found
meaningful by SME owner managers. A comprehensive comparison of ten life-cycle
models, with particular focus on the life cycle stages and the organizational dimen-
sions used to describe them, is reported in Hanks et al. [4].

All the reviews [2, 4, 8-9] mentioned the justified criticism regarding over-
determinism, questionable empirical support and that the stage models tend to assume
all SMEs pass through each phase of a growth stage model.

Various models have been proposed specifically addressing the criticism regarding
the sequential stages. As an example, Perenyi, Selvarajah et al. [12] proposes a con-
ceptual model with the focus on the transitions between the life cycle stages. These
transitions can indicate the development of SMEs, without constraining the model by
imposing the sequential nature of the stages. In Hanks et al. [4] it is proposed that
each life-cycle stage consists of a unique configuration of variables related to organi-
zation context and structure.

The SME growth stage models that focus on generic problems organizations may
encounter during growth is, however, valuable for the definition of SME operating
models and assisting SME managers to make important decisions [7]. The model by
Greiner [3] makes entrepreneurs aware of possible crises and solutions as part of the
transformation through the different stages. The model by Scott and Bruce [14], the
five stages of which is illustrated in Fig. 1, is based on the model by Greiner.

 Enterprise Architecture for Small and Medium Enterprise Growth 65

 Stage 1
Inception

Stage 2
Survival

Stage 3
Growth

Stage 4
Expansion

Stage 5
Maturity

Stage of
Industry

Emerging,
fragmented

Emerging,
fragmented

Growth, some
larger com-
petitors, new
entries

Growth,
shakeout

Growth/shake
out or ma-
ture/declining

Key Issues Obtaining
customers,
economic
production

Revenues and
expenses

Managed
growth, ensur-
ing resources

Financial
growth, main-
taining control

Expense
control, pro-
ductivity,
niche market-
ing if industry
declining

Top Man-
agement role

Direct super-
vision

Supervised
supervision

Delegation,
co-ordination

Decentraliza-
tion

Decentraliza-
tion

Management
Style

Entrepreneu-
rial, individual-
istic

Entrepreneu-
rial, adminis-
trative

Entrepreneu-
rial, co-
ordinate

Professional,
administrative

Watchdog

Organization
Structure

Unstructured Simple Functional,
centralized

Functional,
decentralized

Decentralized
func-
tional/product

Product and
Market Re-
search

None Little Some new
product de-
velopment

New product,
innovation,
market re-
search

Production
innovation

Systems and
Controls

Simple book-
keeping,
eyeball control

Simple book-
keeping,
personal
control

Accounting
systems,
simple control
reports

Budgeting
systems,
monthly sales
and produc-
tion reports,
delegated
control

Formal con-
trol, systems
management
by objectives

Major Source
of Finance

Owners,
friends and
relatives,
suppliers
leasing

Owners,
suppliers,
banks

Banks, new
partners,
retained earn-
ings

Retained
earnings, new
partners,
secured long-
term debt

Retained
earnings,
long-term debt

Cash Genera-
tion

Negative Negative /
breakeven

Positive but
reinvested

Positive with
small dividend

Cash genera-
tor, higher
dividend

Major In-
vestments

Plant and
equipment

Working capi-
tal

Working capi-
tal, extended
plant

New operating
units

Maintenance
of plant and
market posi-
tion

Product-
market

Single line
and limited
channels and
market

Single line
and market
but increasing
scale and
channels

Broadened
but limited
line, single
market, multi-
ple channels

Extended
range, in-
creased mar-
kets and
channels

Contained
lines. Multiple
markets and
channels

Fig. 1. Scott and Bruce SME Growth Model [14]

66 D. Jacobs et al.

In the Scott and Bruce model the different criteria, such as stage of the industry, key
issues, etc., are presented related to each stage, from the inception stage through to the
maturity stage. For example, in the first stage, inception, the key issues are that of ob-
taining customers and economic production, which change in the maturity stage to that
of expense control, productivity, and niche marketing if the industry is declining.

2.3 Enterprise Architecture

Section 2.1 confirmed the importance of SMEs to contribute to job creation consider-
ing the large number of SMEs that is part of the economy. Three of the challenges
derived from the discussion in section 2.1 are the phenomenon of resource poverty,
the small number of SMEs that are interested in growth to become a medium enter-
prise, and lack of skills of SME managers to transform a small enterprise into a me-
dium enterprise.

The question is whether growth stage models can successfully assist the SME man-
ager that wants to transform the small enterprise to a medium enterprise. Section 2.2
mentioned that growth stage models are criticized. One of the key reasons for this criti-
cism is that all the enterprises do not pass through all the stages in a specific sequence
following all the stage criteria for a specific stage. It was also noted that the transfor-
mation from a small to medium enterprise is complex with high change impact.

From the perspective of change and complexity EA is considered as a discipline
that could contribute to the solution to assist the SME management during the growth
of a small enterprise. Investigating the relevance of EA to compliment growth stage
models is therefore relevant.

The four EA concepts that are specifically considered as part of the development of
the SMEAG model are briefly presented in the remainder of this section, namely:

• The relevance of EA considering the change and complexity associated with
SME growth.

• The introduction of the state transition approach versus a stage based approach.
• The Hoogervorst EA Framework [6].
• The Foundation for Business Execution Model [13].

The Hoogervorst EA Framework [6] is defined as the expression of aspects (areas of
concern and design domains) that are considered relevant and must be addressed by
the architecture to be defined. EA is defined as a coherent and consistent set of prin-
ciples and standards that guides enterprise design [6].

Hoogervorst [6] states that enterprise engineering enables enterprise change and
adaptation, with EA providing the guidance for the design in order for the enterprise
to operate as a unified and integrated whole. Zachman [17] also discussed EA as an
approach to manage change and complexity by emphasising the state transition con-
cept of the change from a current state (as-is) to a future state (to-be) perspective.

Ross et al. [13] proposed the Foundation for Business Execution Model where en-
terprises have to define their operating model and define the processes and infrastruc-
ture critical to their operations (i.e. their EAs). The model describes how an enterprise
can thrive and grow. In order to grow you need to understand the relevance of process
standardization and process integration as part of the transformation process. Process

 Enterprise Architecture for Small and Medium Enterprise Growth 67

standardization delivers efficiency and predictability across the company and integra-
tion links the efforts of organizational units through shared data.

The operating model determines the level of standardization and integration re-
quired. Four different types of operating models are described [13], namely diversifi-
cation (low standardization and low integration), coordination (low standardization
and high integration), unification (high standardization and high integration) and rep-
lication (high standardization and low integration). For each of the operating models a
core diagram is proposed [13]. Fig. 2, for example, presents the proposed replication
core diagram. When designing a replication core diagram, one starts with the identifi-
cation of the key processes to be standardized and replicated across the business units.
The next step is to identify the technologies automating those key processes. It is not
necessary to include the data and customers as part of the core diagram as integration
is not a requirement to support growth as part of the replication operating model.

Standardized

Processes

Automating
and linking

technologies

Business-unit-
specific data

Business-unit-
specific

customers

Customer
types

Required

Optional

Business
process

Data

Technology

Processes

Outcome

Fig. 2. Replication core diagram (adapted from Ross et al. [13])

3 The Proposed SMEAG Model

In this section we propose the SMEAG model, where the objective is to provide a
model for SME managers that are involved with the transformation of a small enter-
prise into a medium enterprise to assist them during the growth process. The abbre-
viation SMEAG evolved from the different concepts included in the proposed model,
namely Small Medium Enterprise + Enterprise Architecture + Growth.

The SMEAG model is an enhancement of the Scott and Bruce growth stage model
[14] incorporating:

• the EA principle of a current and a future state,
• the Hoogervorst EA framework [6] concept describing the areas of concern, the

domain and the enterprise architecture principles and standards, and

68 D. Jacobs et al.

• the operating model and core diagram concepts from the Foundation for Execu-
tion model of Ross et al. [13].

The growth stage model by Scott and Bruce [14] was selected since it highlights the
typical decision making points in the transformation from a small to medium
enterprise.

The Scott and Bruce growth stage model (Fig. 1) was adapted not to pass through
the stages sequentially and phase by phase, but rather based on the identification of
the current state to the future state concept advocated by EA.

The Hoogervorst EA framework [6] was selected to incorporate EA concepts in-
cluding the areas of concern, EA design domains and the EA principles and standards.

The Foundation for Business Execution Model [13] was selected as EA model for
inclusion in the SMEAG model to support the applicable operating model. It is the
potential value of the operating model to address growth that makes this model appli-
cable to the SME manager. Not only will it position the importance of the selection of
an appropriate operating model, but also the level of process standardization and
process integration required to support the growth based on the operating model.

The SMEAG model, as illustrated in Fig. 3, consists of three components:

• The SMEAG Fact Sheet.
• The SMEAG Work Sheet.
• The Operating Model Core Diagram.

These components are described in more detail in the following three sub-sections.

Hoogervorst
Enterprise

Architecture
Framework

Scott and
Bruce

Growth Stage
Model

State
Transition vs.

Stage
Approach

SMEAG Model

•Fact Sheet
•Work Sheet
•Operating Core
Diagram

Ross et al.
Foundation for

Execution
Model

Fig. 3. SMEAG Model

3.1 The SMEAG Fact Sheet

The SMEAG Fact Sheet is a generic accelerator using EA to enhance the SME
growth stage models that is pre-populated and available as accelerator for the SME
management.

There are two aspects that relates to the SMEAG Fact Sheet. The first is the struc-
ture, referring to the relationships between the Area of Concern, the typical options to

 Enterprise Architecture for Small and Medium Enterprise Growth 69

consider describing the State, the Design Domain and the Architecture Principles and
Standards. This generic structure is derived from the Scott and Bruce Growth Stage
Model [14] (Fig. 1) and the Hoogervorst Framework [6].

The second aspect is the content of the SMEAG Fact Sheet, as illustrated with ex-
amples in Fig. 4. The first row, Organization Structure, has its origin in the Scott and
Bruce growth stage model [14] , and the second row, Operating Model is a contribu-
tion from the Foundation for Business Execution Model [13]. The Area of Concern is
identified from either a growth stage model or an EA model. The various States are
identified from the various sources and then the Design Domain is allocated with
guidance from Hoogervorst [6]. The Architecture Principles and Standards are either
sourced from EA models or developed by EA experts. The preparation of the
SMEAG Fact Sheet is not merely a ’concatenation’ of the various sources, but rather
an analysis, contextualisation and alignment of the information from the various
sources.

Area of
Concern

State Options Design
Domain

Architecture Principles and Stan-
dards

Organiza-
tion Struc-
ture

Unstructured
Simple
Functional centralized
Functional decentralized
Product/... decentralized

Organization

Technology

* Grouping of activities (units) must
create minimized cross-boundary
relationships.
*Process design must address dele-
gation of coordination activities explic-
itly.
*Collaboration services must be made
available.

Operating
Model

Diversification
Co-ordination
Replication
Unification

Business

Information

Technology

*Key processes to be standardised.
*Multiple customer interaction chan-
nels must operate transparently (inter
functionally)
*Informational data may have only
one authorizing source.
*Customer data must be available
from one unified source.
*Redundant data entry about the
same data is not allowed.

Fig. 4. SMEAG Fact Sheet

3.2 The SMEAG Work Sheet

The second component of the SMEAG model is the SMEAG Work Sheet. In contrast
with the SMEAG Fact Sheet the SMEAG Work Sheet is dependent on the input of the
SMEAG management to complete the following four steps:

1. The review and extension of the SMEAG Fact Sheet with SME specific ‘areas of
concern’, if available.

2. The selection of the ’areas of concern’ from the SMEAG Fact Sheet applicable to
the SME.

3. The identification of the current state per area of concern from the SMEAG Fact
Sheet, as well as the future state if relevant.

70 D. Jacobs et al.

4. To determine the actions required for the transition from the current state to the
future state.

The SMEAG Work Sheet is an input for the business plan prepared by the SME man-
agement for each financial year. An example of a Work Sheet is illustrated in Fig. 7
when we discuss the case study.

3.3 The SMEAG Operating Core Diagram

The third component of the SMEAG model is the Operating Model Core Diagram to
guide the SME manager through the standardization and integration of processes and
identification of the enabling technology. This step involves the incorporation of the
Foundation for Business Execution Model [13]. At this stage it is necessary to con-
firm the operating model for growth (diversification vs. coordination vs. unification
vs. replication.)

4 Case Study

This section illustrates the use of SMEAG using a case study. Section 4.1 provides the
case study background. Section 4.2 highlights the stage vs. state problem and section
4.3 applies SMEAG.

4.1 Case Study Background

The case study is based on an SME that is growing from a small enterprise into a me-
dium enterprise. The nature of the underlying business conducted by the small enter-
prise is that of a ‘consulting practice’ with a narrowly defined service range. The
number of full time employees is around 35 and the number of sub contractors varies
between 10 and 20.

The SME’s management wants to understand the areas of concern and wish to
identify the initiatives to be included in the business plan to manage the growth from
a small to medium enterprise deliberately.

During 2010 the SME developed an operating model with one of the objectives the
growth of the enterprise from a small into a medium enterprise. The growth model for
2011 is based on the replication of new pipelines and, although not clearly stated as
part of the 2010 operating model, the replication model [13] was found a good fit to
describe the growth model. A brief overview of the 2010 operating model of the SME
is included in Fig. 5.

4.2 Stage vs. State Problem Confirmation

The SME’s initial problem was that it was not possible to determine the current and
future ‘stage’ of the SME using growth stage models as guideline.

Using the 2010 operating model (Fig. 5), the current and future states of the SME
were mapped according to the Scott and Bruce model (the model is illustrated in
Fig. 1). The outcome of the current and future states mapping for the case study SME
is illustrated in Fig. 6. The current state varies between Stage 2 and Stage 4, and the

 Enterprise Architecture for Small and Medium Enterprise Growth 71

Focus Area Current State Future State

Ownership:
Legal structure

One registered entity No change

Ownership: Sharehold-
ing

Current shareholding weighted
towards non managerial interest.

Restructuring of shares into
individual management as op-
posed to investment hands.

Cash generating capa-
bility

Solid No change

Operating Model Although different “markets”
exist within the definition of the
current business focus the busi-
ness runs as one consolidated
whole

The end-state envisages the
dismantling and restructuring of
the entire organization so as to:

Stabilize end state revenue.
Refocus the business mix so as
to achieve higher margins.
Maintaining overheads. Chang-
ing financial reporting.

Operating Model:
Dividend Policy

No defined dividend policy. Dividend policy in conjunction
with risk and performance man-
agement system.

Operating Model:
Business Definition

Company plays in the bottom
segment and margins are at the
lower level of the possible range.

The end-state envisages a drift
to higher margin business within
the current business definition
and a diversification into “effi-
ciency” originated process work.

Operating Model:
Performance Manage-
ment

The organization design (and
the financial support system) is
not geared to report on divisional
/project profitability.

A performance management
system based on consistency of
rewards versus roles and a
clearly articulated and motiva-
tional reward system.

Risk Management Retention of cash and a mixed
of permanent and variable re-
sources.

Limitation of current model turn-
over. A mix of fixed versus vari-
able resources. Retention of
cash.

Risk: Contingent liabili-
ties or area of future
financial risk

None No change

Organizational Struc-
ture: Corporate Govern-
ance

Multitude of roles played by
certain individuals.

A more formalized governance
structure.

Fig. 5. 2010 Operating model of SME to be used as case study

future state between Stage 3 and Stage 5 of the Scott and Bruce model. For four of the
criteria there is no difference between the current and future states.

This mapping illustrates why the SME had a problem to determine its current and
future ‘stage’ according to the guidelines of growth stage models. The mapping illus-
trates that an enterprise is not necessarily in the same stage for all criteria when grow-
ing, i.e. an SME does not necessarily progress sequentially and simultaneously through
all the criteria of a stage. The enterprise thus may not gain any value by moving auto-
matically to the next stage for of all the criteria, as proposed by growth stage models.

The proposed SMEAG model, suggesting a possible way to address this problem,
was next applied to the case study.

72 D. Jacobs et al.

0

1

2

3

4

5

6

Current State

Future State

Fig. 6. Current and Future State (Case Study)

4.3 SMEAG Model

The case study SMEAG model is based on the 4 steps described in section 3.2. Step 1
is to review the SMEAG Fact Sheet with the 2010 Operating Model of the SME
(Fig. 5). An example is included as illustration in Fig. 7.

Area of
Concern

State Options Design
Domain

Architecture Principles
and Standards

Dividend
Policy

No dividend policy
Dividend policy

Business

* Minimum 10% of turnover
available for working capital
before dividend is consid-
ered.

Fig. 7. Example SMEAG Extended Fact Sheet (Case Study)

The second step is to complete the SMEAG Work Sheet as described in section
3.3. The third step, adding the required actions are also included in Fig. 8 to illustrate
the outcome.

Area of
Concern

2010 State
(Current)

2011 State
(Future)

Actions

Organization
structure

Functional centralized

Functional cen-
tralized

Review process design to
ensure delegation of coor-
dination activities is explic-
itly addressed.

Operating
model

None Replication Key processes to be stan-
dardised.

Fig. 8. Example SMEAG Work Sheet (Case Study)

 Enterprise Architecture for Small and Medium Enterprise Growth 73

The final step is to prepare the replication core diagram. The replication core dia-
gram is representing the key processes to be standardized as well as the enabling
technology. The case study described in this paper is based on replication as operating
model and Fig. 9 illustrates the replication core diagram for this case study. Since it is
a replication model only processes and technology are included in the diagram (inte-
gration is not a not a requirement to support growth as part the replication operating
model). The identification of the key processes was done during a work session using
reference models as accelerator.

Subcontractor ManagementProject & Engagement
Service Delivery

Client & Opportunity
Management

Strategy & Planning

Engagement Management
•Proposal and Order
Management
•Invoice Management
•Time and Expense
Management

Accounting
System

Time
Management
System

Knowledge & Resource
Life-Cycle

Document
Management
System and
E-mail

Enterprise Management &
Support:
•Human Capital
Management
•Financials

HR System
Payroll
System

Accounting
System

Processes Enabling
Technologies

Legend

Fig. 9. Case study replication core diagram

4.4 Discussion

From the perspective of the SME management the SMEAG model successfully ad-
dressed the ‘stage’ problem in the case study by replacing it with the state based ap-
proach. The SMEAG Fact Sheet was successfully used to populate the SMEAG Work
Sheet. The final outcome is the 2011 Business Plan and the SMEAG Work Sheet con-
tributed to a more complete description of the areas of concern. The value of the repli-
cation core diagram is seen as the first step to standardize the key processes for roll-out
to the different pipelines. Based on the architectural principles and standards the SME
management are asking for the integration of the systems to have a single source for
information. A key benefit is that accelerators are making it a feasible model from a
SME resource poverty perspective, considering that the number of hours required from
SME management is relatively low and the cost implication a minimum.

5 Conclusion

The primary objective of the SMEAG model is to provide guidance for SME manag-
ers during the transformation process of growing from a small into a medium

74 D. Jacobs et al.

enterprise. In the case study that was used to illustrate the use of the SMEAG model,
the state based approached was successfully used to address the stage based problem.
There is thus evidence that enterprise architecture is relevant to complement existing
SME growth stage models. Not only does EA address the gap regarding the configu-
ration of the various current and future states per area of concern, it also enhances the
model to have a better understanding of the different operating models for growth and
the importance of the standardization and integration of processes.

The key contributions of the SMEAG model are:

• The positioning of the current state versus future state concept.
• The positioning of EA regarding its principles and standards against those of

growth stage models..
• The integration of the operating model core diagram to identify process stan-

dardization and integration.
• The packaging of the model to make it a practical tool for SME managers.

The outcome of this research is the first version of the proposed SMEAG model. The
next iteration of development will focus on the completeness of the model, the inter-
dependencies between the areas of concern, as well as the options indicating the state
per area of concern in the SMEAG Fact Sheet. The content of the SMEAG Fact Sheet
will also be verified and extended against more growth stage models and other EA
models.

References

1. Cassell, C., Nadin, S., Gray, M., Clegg, C.: Exploring human resource management prac-
tices in small and medium sized enterprises. Personnel Review 31, 671–692 (2002)

2. Davidsson, P., Achtenhagen, L., Naldi, L.: Research on Small Firm Growth: A Review
(2005)

3. Greiner, L.E.: Evolutions and revolutions as organizations grow. Harvard Business Re-
view 50, 37–46 (1972)

4. Hanks, S.H., Watson, C.J., Jansen, E., Chandler, G.N.: Tightening the life-cycle construct:
a taxonomic study of growth stage configurations in high-technology organizations. Entre-
preneurship Theory and Practice 18, 5–29 (1993)

5. Herrington, M., Kew, J., Kew, P.: Tracking Entrepreneurship in South Africa: A GEM
Perspective (2010)

6. Hoogervorst, J.A.P.: Enterprise Governance and Enterprise Engineering. Springer, Heidel-
berg (2009)

7. Jones, N.: SMEs Life Cycle – Steps to Failure or Success?
8. Massey, C., L.ewis, K., Warriner, V., Harris, C., Tweed, D., Cheyene, J., Cameron, A.:

Exploring firm development in the context of New Zealand SMEs. Small Enterprise Re-
search: The Journal of SEAANZ 14, 1–13 (2006)

9. McMahon, R.: Stage Models of SME Growth Reconsidered (1998)
10. Miller, D.: The Genesis of Configuration. Academy of Management Review 12, 686–701

(1987)
11. Penrose, E.: The Theory Oxford University Press, Oxford (1959)

 Enterprise Architecture for Small and Medium Enterprise Growth 75

12. Perenyi, A., Selvarajah, C., Muthaly, S.: The Stage Model of Firm Development: A Con-
ceptualization of SME Growth. In: Proceedings of Regional Frontiers of Entrepreneurship
Research 2008: 5th International Australian Graduate School of Entrepreneurship (AGSE)
Entrepreneurship Research Exchange, Australian Graduate School of Entrepreneurship,
Swinburne University of Technology, Melbourne, Victoria (2008)

13. Ross, J., Weill, P., Robertson, D.: Enterprise Architecture as Strategy Creating a Founda-
tion for Business Execution. Harvard Business School Publishing, Boston (2006)

14. Scott, M., Bruce, R.: Five stages of growth in small business. Long Range Planning 20,
45–52 (1987)

15. Welsh John, A., White, J.F.: Small business ratio analysis: a cautionary note to consult-
ants. Journal of Small Business Management, 20–23 (1981)

16. Whitman, L., Ramachandran, K., Ketkat, V.: A taxonomy of a living model of the enter-
prise, pp. 848–855. IEEE Computer Society, Los Alamitos (2001)

17. Zachman, J.A.: The Zachman Framework for Enterprise Architecture: Primer for Enter-
prise Engineering and Manufacturing. Zachman Framework Associates (2006)

18. Zachman, J.A.: The Zachman FrameworkTM: The Official Concise Definition. Zachman
International (2008)

A. Albani, J.L.G. Dietz, and J. Verelst (Eds.): EEWC 2011, LNBIP 79, pp. 76–90, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Critical Investigation of TOGAF – Based on the
Enterprise Engineering Theory and Practice

Jan L.G. Dietz and Jan A.P. Hoogervorst

Delft University of Technology,
{j.l.g.dietz,j.a.p.hoogervorst}@tudelft.nl

Abstract. TOGAF (The Open Group Architecture Framework) is growingly
considered to be the de facto standard way of working for the development and
deployment of modern IT systems in enterprises. A major characteristic of
modern IT systems, as opposed to the ones in the past, is that they are an
integral part of the total enterprise, and effectively support some part of the en-
terprise’s activities. Consequently, they must be developed with unity and inte-
gration in mind. Business development, organization development, and IT sys-
tems development cannot be addressed anymore as unrelated subjects. In this
paper, the authors report on an investigation of TOGAF (version 9) regarding
the extent to which it satisfies the indispensable requirement of unity and inte-
gration. The conclusion is that TOGAF fails to do this, as it fails to achieve sev-
eral other ambitions. The main cause of these failures seems to be the lack of a
sound and appropriate theory. In carrying out the investigation, the authors have
based themselves on the enterprise engineering theory, as well as on extensive
practical experiences.

Keywords: TOGAF, Enterprise Architecture, Architecture Framework,
Enterprise Engineering.

1 Introduction

The track record regarding successfully implementing strategic initiatives is rather
poor. Some publications speak about less than 10% success rate [Mintzberg 1994].
This rather low figure compares with other sources. According to Kaplan and Norton,
many studies prove that between 70% and 90% of strategic initiatives fail, meaning
that the expected result is not achieved [2004]. Studies concerning a specific strategic
domain, such as total quality management, business process reengineering, customer
relationship management, or mergers and acquisitions, similarly report high failure
rates. All too often, failures are conveniently attributed to unforeseen or uncontrolla-
ble external events. However, strategic failure is seldom the unavoidable result of an
inadequate strategy, but mostly the avoidable consequence of inadequate operation-
alization of the strategic intent. A plethora of literature indicates that a (if not the)
core reason for strategic failures is the lack of coherence and consistency among the
various enterprise aspects, which precludes it to operate in a unified and integrated
manner [Kotter 1995, Nadler and Tushman 1997, Pettigrew 1998, Doucet et al. 2009,
Leinwand and Mainardi 2010]. We contend that a unified and integrated enterprise

 A Critical Investigation of TOGAF – Based on the Enterprise Engineering Theory 77

does not occur incidentally, but must be intentionally designed. A McKinsey publica-
tion confirmed this observation: rather than the traditional management focus on ad-
hoc structural changes, acquisitions or competition, “they would be better off focusing
on organizational design” [Bryan and Joyce 2007].

To ensure enterprise unity and integration many mutually related aspects have to
be taken into account. In order to master this enormous task, many authors argue that
the system approach is the only way to address the core problem effectively, hence to
study and develop enterprises as systems [Bertalanffy 1969, Bunge 1979, Ghara-
jedaghi 1999, Rechtin 2000]. Ackoff therefore argues that the high rate of failing
strategic initiatives mentioned previously, is the consequence of the initiatives being
fundamentally anti-systemic [Ackoff 1999].

The Open Group Architecture Framework (TOGAF, version 9) is positioned as an
approach for developing enterprises and/or enterprise IT systems [The Open Group
2009a]. TOGAF correctly acknowledges that developing entails a design perspective.
Therefore, we consider TOGAF to be a candidate methodology in developing enter-
prises. In this article we will investigate TOGAF in this respect, specifically assessing
how the design perspective is operationalized in a systemic approach for ensuring
enterprise unity and integration. The authors have based their analysis on the current
enterprise engineering theory [Albani & Dietz 2010, Albani & Terlouw 2010, Aveiro
et.al. 2010a, Aveiro et.al. 2010b, Barjis et. al. 2009, Dietz 2006, Dietz 2008, Hooger-
vorst 2009, Jong & Dietz 2010, Nuffel et. al. 2009, Ven & Verelst 2009], as well as
on extensive practical experiences1.

The article is structured as follows. In section 2, the foundations are presented and
discussed that are considered appropriate and imperative for a sensible investigation
of the claims that TOGAF apparently makes. On these foundations we formulate, in
section 3, seven assessment criteria and we assess TOGAF on each of these criteria.
In section 4, we summarize the conclusions of our research.

2 The Theoretical Basis for Enterprise Design

As the basis for assessing TOGAF in a profound and thorough way we will present
and discuss in this section a theoretical outline regarding the development of systems,
including enterprises. The basic paradigm we adopt is that enterprises are purpose-
fully designed systems, in accordance with the Enterprise Engineering Manifesto2.
We consider this outline suitable for assessing TOGAF since it covers all issues that
are dealt with by TOGAF.

2.1 The Notion of System

Various system definitions exist. Jackson sees a system as “a complex whole the
functioning of which depends on its parts and the interaction between these parts”
[2003, p.3]. Maier and Rechtin define a system as “a set of different elements so con-
nected or related as to perform a unique function not performable by the elements
alone” [2002]. Von Bertalanffy speaks of “a set of elements standing in interrelation

1 The reader is referred to www.ee-institute.com for further information.
2 http://www.ciaonetwork.org/publications/EEManifesto.pdf

78 J.L.G. Dietz and J.A.P. Hoogervorst

among themselves and with the environment” [1969, p.252]. It appears that there are
basically two kinds of system notions: teleological and ontological [Dietz 2006]. The
teleological system notion is concerned with the function or purpose of the system.
This notion is suited and perfectly adequate for using or controlling a system (whereas
the ontological notion is not). The associated kind of model is the black-box model.
Actually, the teleological system notion is equal to a black-box model of the system.
This can easily be understood if one recognizes that purpose (or function) is not a
system property but a relationship between a system and a stakeholder. For example,
every car driver has a black-box model of the behavior of the car he or she drives.
Black-box models can be decomposed by means of functional decomposition. Usu-
ally, a car driver also has some functional decomposition in his or her mind. It is im-
portant to note that black-box models are fundamentally subjective.

The ontological system notion regards the construction and operation of a system.
It is independent of and therefore indifferent to the function or purpose that one as-
signs to the system. This notion is suited and perfectly adequate for building and
changing systems (whereas the teleological notion is not). The associated kind of
model is the white-box model. White-box models can be decomposed by means of
constructional decomposition. Note that there is only one constructional decomposi-
tion of a system.

Based on the rigorous systemic ontology of Mario Bunge [Bunge 1979] we apply
the next ontological notion of system [Dietz 2006]. A system is a tuple <C,E,P,S>,
where:

C : composition: a set of system elements of one and the same system category.
E : environment: a set of elements of the same category as the elements of C.
P : production: the products or services that C delivers to E.
S : structure: the mutually influencing bonds among the elements of C, and be-

tween the elements of C and the elements of E.

The concept of system kind or category is crucial for deeply understanding the onto-
logical system notion. Many system categories can be identified, for example biologi-
cal, chemical, electrical and social. Note that the system definition provided above
defines a homogeneous system. The most interesting systems, however, are heteroge-
neous systems, like cars and enterprises. They are constructions of homogenous
systems. The unification and integration of a number of homogenous systems into a
heterogeneous system is by no means trivial. That is why unity and integration are
core concepts within the system approach [Gharajedaghi 1999].

2.2 The Notion of Architecture and Architecture Framework

So, the systems of our interest are designed systems, like IT systems and enterprises.
The design of these systems is by its very nature not ‘incidental’. Instead it is a goal-
directed process in which the designer needs guidance. One explicit kind of guidance
is provided by the system requirements, both the functional requirements and the con-
structional ones. However, in general these requirements keep an amount of design
freedom left that the designer has to cope with somehow. He needs additional, norma-
tive, guidelines. Often such guidelines are kept implicit, even to the extent that de-
signers are not aware of them. We fully agree in this respect with Ulrich’s critical

 A Critical Investigation of TOGAF – Based on the Enterprise Engineering Theory 79

system heuristics, arguing that the normative aspects of system design must be made
explicit [In: Jackson 2003]. Architecture provides the answer to this question, as it has
done since time immemorial in constructional engineering.

Conceptually, architecture thus can be defined as the normative restriction of de-
sign freedom [Dietz 2009]. Practically, it consists of a coherent and consistent set of
principles and standards that guide system design [Dietz 2009, Hoogervorst 2009].
Since architecture guides system design, devising architecture should take place perti-
nent to relevant system aspects as presented by an architecture framework. We con-
ceive an architecture framework thus as a conceptual structure for architecturing, i.e.
for devising architectures. Three dimensions play a role in the process of architectur-
ing [Dietz 2009]:

System kinds, which we will identify by S
Design domains, labeled as D
Areas of concern, labeled as A

These three dimensions seem to be necessary and sufficient. Examples of system
kinds are organizations, information systems, and IT systems. The second dimension
is the design domain to which a design principle belongs. Examples of principles are:
‘process control must be separated from process execution’, or ‘network access must
be based on authentication and role-based authorization’. Building on the systemic
foundations, as discussed in Section 2.1, we distinguish between two domains on the
highest level of detail: function and construction. The third dimension is the area of
concern that a design principle addresses. Whereas the first two dimensions (system
kind and design domain) are timeless, the third one is not. It reflects the, generally
time-dependent, focal interests of stakeholders. Examples of areas of concern are se-
curity, compliance, privacy, agility, and user-friendliness. They serve to organize the
total set of design principles of an architecture into subsets that correspond to the in-
terests of the distinct stakeholders. These subsets need not be disjoint. Put differently,
areas of concern may overlap. It means that a particular design principle regards sev-
eral interests and therefore addresses several areas of concern.

An architecture framework can thus be presented symbolically as a triplet <S,D,A>.
It is a conceptual structure related to one or more system kinds, a number of areas of
concern, and a necessary and sufficient set of design domains [Hoogervorst 2009]. As
said, the highest level distinction between design domains concerns the distinction
between the system function and the system construction. Within this distinction, fur-
ther detailing is evidently required; it refers to the specialization of design domains
associated with more detailed observations. Such specialization thus creates a certain
order whereby a more detailed design domain is subordinated under the next higher
design domain, in the way that, for example, the design domain ‘engine’ is subordi-
nated under the overall design domain ‘car’, and ‘piston’ in turn is subordinated under
the domain ‘engine’. This is an important condition for safeguarding coherence and
consistency, which has been emphasized previously as an important objective of de-
fining architecture. Establishing the necessary and sufficient (complete) set of design
domains can be a daunting task for complex systems, such as enterprises. Knowledge
and experience of the architect concerning the system kind in question is obviously
crucial.

80 J.L.G. Dietz and J.A.P. Hoogervorst

2.3 The Generic System Development Process

Figure 1 exhibits the so-called Generic System Development Process (GSDP) [Dietz,
2008], which applies to the development of systems of any kind. Taking the function
perspective, one `sees' the function and the (external) behaviour of a system; the cor-
responding type of model is the black-box model. Taking the construction perspec-
tive, one `sees' the construction and the operation of a system; the corresponding type
of model is the white-box model. In developing a system both the function perspec-
tive and the construction perspective are relevant. The GSDP identifies the most basic
steps in a development process.

Fig. 1. The Generic System Development Process

The starting point is the need by some system, called the using system (US), for a
supporting system, called the object system (OS). A clear distinction between the US
and the OS is often neglected, leading to blurred discussions about the functionality of
the OS. In the GSDP, the US is the stable starting point for the development process.
One must have an appropriate understanding of the US in order to successfully design
an OS. By nature, this understanding must be constructional understanding, since it is
the construction of the US that is going to be supported by the function of the OS. So
one starts with conceiving a white-box model of the US. Preferably, this model is an
ontological model [Dietz, 2006]; otherwise one can easily become confused by irrele-
vant implementation issues of the US. From the white-box model of the US one de-
termines the functional requirements for the OS (function design). These requirements
are by nature formulated in terms of the construction and operation of the US. More-
over, and consequently, they need to be fully independent of the construction of the
OS. The next basic design step is to devise specifications for the construction and
operation of the OS, in terms of a white-box model of the OS (construction design).

 A Critical Investigation of TOGAF – Based on the Enterprise Engineering Theory 81

For this design phase, the US may provide constructional requirements, often also
called non-functional requirements. They mostly regard performance and quality as-
pects. A thorough analysis of the white-box model of the OS must guarantee that
building the OS is feasible, given the available technology. The GSDP also includes
the important experience from practice that designing is an iterative process: the final
result of every design process is (or should be) a balanced compromise between rea-
sonable functional requirements and feasible constructional specifications [Dietz, Al-
bani 2005]. For the sake of simplicity, however, we left it out from the figure.

In addition to the functional and constructional requirements, there may be func-
tional and constructional principles respectively. These design principles are the
operational shape of the notion of architecture, as discussed in Section 2.2. They gen-
erally hold for a class of systems. An example of a functional principle is that man-
machine dialogs must comply with some standard. An example of a constructional
principle is that the applications must be component-based. Ideally the construction
design phase results first into an ontological model of the OS, i.e. a white-box model
that is completely independent of its implementation. Gradually this ontological
model is transformed into more detailed (and more implementation dependent) white-
box models, the last one being the implementation model. This process is called im-
plementation design or just engineering. If the OS is a software application, then the
implementation model would be the source code in some programming language. The
act of implementing consists of assigning appropriate technological means to the im-
plementation model, e.g. running the source code on an appropriate platform.

2.4 Enterprise and Enterprise Architecture

Building on the theoretical foundations that have been discussed in Sections 2.1 thru
2.3, we will now provide precise and consistent definitions of the notions of enterprise
and of enterprise architecture. Enterprises are goal-directed social entities that are
designed as deliberately structured activity systems linked to the external environment
[Daft 2001]. All enterprises face the fundamental issue of indispensable differentia-
tion (the creation of specific tasks) on the one hand, and establishing unity and inte-
gration (the realization of coherence and consistency in task execution) on the other
hand [Lawrence Lorsch 1967]. Certain cooperative interaction patterns must therefore
necessarily exist between human actors for collectively realizing the enterprise
purpose and function. Enterprise performance is thus ultimately the result of social
interaction between human actors who enter into, and comply with, commitments
concerning the execution of tasks. Obviously, an enterprise design theory and meth-
odology must address aforementioned issue effectively. For that we adopt the so-
called Ψ(psi)-theory: Performance through Social Interaction [Dietz 2006], which is
grounded in the view that the collaborative interaction patterns between human actors
in enterprises are constituted by coordination activities, which are based on mutual
communication. These notions form the basis for the so-called speech/act theory, or
the language/action perspective on the design of cooperative work [Winograd and
Flores 1987]. Thus language is seen “as the primary dimension of human cooperative
activity” [Winograd 1988]. Within this perspective, the focus is on communicative
patterns that constitute the mutual coordination, since people act through language.

Individuals within enterprises fulfill actor roles (manifesting the differentiation in
task execution), whereby basically two types of activities are performed: (1) production

82 J.L.G. Dietz and J.A.P. Hoogervorst

activities and (2) coordination activities [Dietz 2006]. Production activities can yield a
material or immaterial result. Material production has to do with manufacturing, storage
or the transport of goods for example. Immaterial production concerns decision-making,
granting something, sentencing a person by a judge, appointing a person in a function
and so on. Coordination activities concern the communicative actions mentioned above
pertinent to entering into and complying with commitments about production activities.
Coordination activities are therefore always linked to production activities. The enter-
prise is then seen as a “network of commitments” [Winograd and Flores 1987, p.150].
Coordination and production activities come in universal patterns, called transactions.
An enterprise process is thus a structure of causally related transactions.

Based on the general systems development process discussed before, the first step
in designing an enterprise is establishing the implementation-independent (ontologi-
cal) models, which are based on, and reflect, the essential transactions of the enter-
prise [Dietz 2006]. Discussing these models falls outside our current scope. For now
we like to stress that the implementation-independent nature of the models substan-
tially reduces the complexity, hence the effort to comprehend the enterprise.
Moreover, the models precisely depict the essential communicative – hence collabora-
tive – patterns between the different actors in the enterprise that collectively depict the
whole essential enterprise operation. The issue of differentiation on the one hand, and
unity and integration on the other, is thereby formally addressed at the essential,
implementation-independent level. Additionally, the explicit modeling of the coordi-
nation activities of a transaction allows the precise definition of operational rules
guiding these activities.

After having defined the implementation-independent models, further design of the
enterprise system (S) needs to take place in order to devise construction models that
can be implemented. Design takes place in various design domains (D), guided by
architecture for addressing areas of concern (A) and further ensuring unity and inte-
gration. As indicated previously, there are basically two main categories of design
domains: functional and constructional ones. Various labels are used in the literature
to identify areas where (some form of) design should take place, such as business,
information, data, application, infrastructure, or technology. The distinction between
function and construction is virtually never made explicitly. With reference to afore-
mentioned distinction, we will identify design domains comprehensively enterprise-
wide. Subsequent design pertinent to these design domains (guided architecture)
transforms or complements the implementation-independent ontological models in
construction models that ultimately can be implemented. We propose four main en-
terprise design domains [Hoogervorst 2009]:

Business. This design domain concerns the enterprise function, having to do with: (1)
the elements of the enterprise environment, such as customers, suppliers, business
partners, or stakeholders, (2) the products and services the enterprise delivers to its
environment, and (3) the relationships between them, like sales and communication
channels. In fact, all these topics concern sub (functional) design domains within the
main business design domain.

Organization. The organization design domain concerns the internal arrangement of
the enterprise for delivering the enterprise’s function. It includes sub design domains
like processes, employee behavior, enterprise culture, management/leadership

 A Critical Investigation of TOGAF – Based on the Enterprise Engineering Theory 83

practices, and various structures and systems, such as concerning accounting, pur-
chasing, payment, or employee remuneration and evaluation. These are all topics that
must be formally brought within the enterprise design perspective [Luthans 1992,
Daft 2001, Schein 2004]

With the label ‘organization’ the main enterprise construction design domain can be
identified. In view of information as a crucial production factor, rather than seeing the
design domain ‘information’ as part of the design domain ‘organization’ we will con-
sider the design domain ‘information’ as a separate main constructional design domain.
Similar considerations hold for the design domain ‘(information) technology’.

Information. Many informational aspects play a role, such as the structure and qual-
ity of information, the management of information (gathering, storage, distribution),
and the utilization of information. These topics are examples of sub information de-
sign domains. As indicated, also the information design domain has to do with the
enterprise construction.

Technology. Appreciably, technology is essential for organizational and informa-
tional support, hence an import aspect of the enterprise construction. Within the scope
of this paper we restrict ourselves to information technology. This design domain is
concerned with sub domains like the IT network, application, storage, data communi-
cation, etc.

In view of the above, the enterprise construction is defined by three aspect systems:
organization, information, and IT, hence three main construction design domains. To-
gether with the business functional design domain, we have the four main enterprise
design domains that are schematically depicted in figure 2. The arrows between the
design domains express mutual relationships that must be addressed for establishing a
unified and integrated enterprise. For all main enterprise design domains (D) (and their
sub design domains) architecture must be defined that (1) adequately serves as design
guidance for ensuring unity and integration, and (2) addresses one or more areas of
concern (A). Ample examples are provided in [Hoogervorst 2009]. Restricting our-
selves to the four main design domains, four main architectures can be identified:

Fig. 2. Main enterprise design domains

84 J.L.G. Dietz and J.A.P. Hoogervorst

Business architecture: the function architecture of the enterprise. The business archi-
tecture can formally be defined as a coherent and consistent set of principles and
standards that guide the design of the enterprise’s function. We might consider princi-
ples concerning the provisioning of products and services to customers, the market
position relative to competitors or the relationship with stakeholders.

Organization architecture: an aspect of the enterprise construction architecture. The
organization architecture is defined as a coherent and consistent set of principles and
standards that guide the design of the enterprise’s organization for providing the en-
terprise products and services. Organization architecture for example concerns the
design of processes, but also the design of accounting, purchasing, payment, or em-
ployee remuneration and evaluation systems. This design perspective is thus necessar-
ily broad. So, establishing desired employee and management behavior, or certain
norms and values – all have to do with organizational design.

Information architecture: viewed as a coherent and consistent set of principles and
standards that guide the design of an enterprise’s information systems. Principles and
standards, for example, concern the structure and quality of information, the man-
agement of information (gathering, storage, distribution), and the utilization of infor-
mation. Information architecture is also a sub-architecture of the enterprise construc-
tion architecture. Notably, information architecture differs from IT architecture
because it is technology independent.

IT architecture: the third sub-architecture of the enterprise construction architecture,
defined as a coherent and consistent set of principles and standards that guide the
design of IT systems. Principles and standards in this sub-architecture concern all
technology dependent IT aspects like network, application, storage, middleware, and
so on.

Notably, more detail is required to carry out design activities within the main de-
sign domains. More specific sub design domains thus need to be considered, like the
sub design domain ‘processes’ within the main design domain ‘organization’, as men-
tioned before. So, process architecture can be seen as a sub-architecture of organiza-
tion architecture. As indicated before, this points to a hierarchy of design domains and
associated architectures: the enterprise at large, the four main design domains, and
within these main domains further sub design domains. The latter we have discussed
elsewhere [Hoogervorst 2009]. The totality of these architectures is enterprise archi-
tecture, which is defined as a coherent and consistent set of principles and standards
for the design of the enterprise as a whole. Within the sub design domains, the func-
tion/construction perspective likewise holds for the relevant subsystems.

3 Assessing TOGAF

In this section, we will assess TOGAF on the theoretical basis as presented in Section
2. All aspects of TOGAF will be addressed except governance. In our view, govern-
ance is not part of an architecture framework or a development methodology. We
view enterprise (IT) governance as an organizational competence for continuously
exercising guiding authority over enterprise (IT) strategy and architecture develop-
ment and the subsequent design and implementation of the enterprise (IT system).

 A Critical Investigation of TOGAF – Based on the Enterprise Engineering Theory 85

This organizational competence must be established for successfully applying the
enterprise (IT) development methodology. Moreover, addressing governance in depth
would exceed the limited space of this article. From the theoretical basis as presented
in Section 2 we derive the seven concrete assessment criteria listed below. After the
formulation of each criterion (in italics) we discuss the extent to which it is satisfied
by TOGAF.

In order to successfully operationalize strategic changes and ensure enterprise per-
formance, an enterprise must operate as a unified and integrated whole. Unity and
integration are not achieved ‘incidentally’ but must be intentionally created through
enterprise design.

Integrated and unified enterprise design seems to be the only way towards mastering
the ‘organized complexity’ of an enterprise [Weinberg 2001]. Assessing TOGAF on
this criterion is complicated by the fact that it remains unclear what the objective of
TOGAF precisely is. Put differently, TOGAF’s notion of enterprise architecture is
ambiguous. The descriptive view on architecture (meaning (1) in [The Open Group
2009a, p.9]) is predominant, however. Indicative of this conclusion is the frequent use
of terms like “architecture design” and “architecture description”. Also ‘The Open
Group Business Architect Certification Program’ discusses architecture in the descrip-
tive sense: in terms of the result of design activities [The Open Group 2009b]. Thus
we consider the TOGAF notion of enterprise architecture as some form of a design.
Hence, by applying TOGAF, unified and integrated enterprise design can be estab-
lished, in principle. However, no formal theory and associated methodology is offered
for addressing the organized complexity of enterprises and for guaranteeing unified
and integrated enterprise design. Although TOGAF purports to be holistic [The Open
Group 2009a, p.43] it remains unclear how the holistic view is effectuated. Moreover,
effectively establishing enterprise unity and integration requires a scope far exceeding
mere IT and process integration [Peters and Waterman 1982, Scott Morton 1991, Doz
and Thanheiser 1993, Miles et al. 1995, Martin 1995, Hoogervorst 1998, Daft 2001].

The essential nature of enterprises is their being social systems. Enterprises consist of
human beings (actors) who enter into and comply with commitments. In doing so, they
collectively realize the enterprise function, and determine enterprise performance.

Given the technology-focused origin of TOGAF, we feel the essential nature of enter-
prises is not captured by merely extending the IT focus to the ‘business domain’ in
view of the fact that IT supports business processes. Human beings constitute the core
of enterprise success and this important aspect appears not to be addressed by TO-
GAF. As Drucker has pointed out, social aspects of organizing should be the central
focus of organizational and management science [Drucker 1985]. Ultimately, enter-
prise performance is determined by the enterprise’s social system [McGregor 1960,
Hoogervorst 1998]. This essential aspect must be acknowledged and addressed in any
enterprise design methodology.

An important first step in designing an enterprise is capturing its implementation in-
dependent essence, also known as enterprise ontology. The ontological model of an
enterprise comprises the identified transactions and the corresponding actor roles
(chunks of authority and responsibility).

86 J.L.G. Dietz and J.A.P. Hoogervorst

The notion of an implementation independent (ontological) model is totally absent in
TOGAF. At the same time, in order to master the organized complexity of enterprises,
one needs a perspective that allows one to initially reduce the complexity of enter-
prises substantially by focusing on the implementation independent essence of the
enterprise, i.e. on the enterprise ontology. In doing so, the previously mentioned no-
tion that enterprises are social systems in which human beings enter into, and comply
with, commitments is formally operationalized.

Two distinct perspectives are paramount in any design-oriented study of enterprises:
function and construction. The function perspective concerns the function and behav-
ior of the enterprise vis-à-vis its environment. The construction perspective concerns
the construction and operation of the enterprise.

TOGAF does not seem to offer these perspectives because it lacks an appropriate sys-
tem notion. Consequently, the system kind remains unclear. As indicated earlier, we
consider the TOGAF notion of enterprise architecture as some form of a design. This
suggests the enterprise as the system kind of observation. Nonetheless, this perspec-
tive is not thoroughly operationalized through functional and constructional enterprise
design. It might however very well be that TOGAF’s notion of enterprise architecture
is not about comprehensive enterprise-wide design. Instead, given the origin of TO-
GAF, the focus might be on the design of the enterprise ‘IT system’, which we con-
sider to be the totality of IT subsystems for delivering IT services to the enterprise.
But then, the construction perspective on the enterprise as the using system becomes
imperative in order to meaningfully determine the IT systems’ functions. Only within
this perspective the issue of ‘business and IT alignment’ can be addressed effectively.
That brings us back to the enterprise-wide design perspective, which, as pointed out
before, seems not to be fully explored by TOGAF.

Enterprise design comprises both function design and construction design. The main
enterprise design domains are: business (function), and organization, information,
and IT (construction). Through subsequent design, the implementation independent
enterprise ontological models are complemented by a sequence of ever more detailed
construction models of which the ‘lowest’ one is implementable.

Creating enterprise unity and integration necessitates comprehensive enterprise-wide
functional and constructional design. Despite TOGAF’s frequent reference to the
notions of ‘enterprise’ and ‘design’ no approach for enterprise-wide functional and
constructional design is provided. Comprehensive design domains that cover the en-
terprise in its totality are not indicated. The multiple aspects, as known from the tradi-
tional organizational literature, that determine enterprise performance, are thus not or
inadequately addressed.

Design pertinent to these domains is respectively guided by business architecture,
organization architecture, information architecture, and IT architecture. Collectively
they constitute enterprise architecture, where architecture is conceptually defined as
the normative restriction of design freedom, and practically as a coherent and consis-
tent set of standards and design principles.

 A Critical Investigation of TOGAF – Based on the Enterprise Engineering Theory 87

Comprehensive enterprise-wide design entails design guidance, such that unity and
integration is achieved and areas of concern are adequately addressed. TOGAF ap-
pears to use a vague and ambiguous notion of architecture. Based on the actual usage
of the term “architecture”, this concept must in fact be understood as a result of de-
sign activities, rather than a concept providing design guidance. TOGAF’s section on
architecture principles rightly so addresses their importance. However, the focus
seems to be limited to IT: “Architecture principles define the underlying general rules
and guidelines for the use and deployment of all IT resources and assets across the
enterprise” [The Open Group 2009a, p.266]. The general, not design-specific charac-
ter is reflected in the examples given [ibid.]. Enterprise-wide design guidance in the
form of normative, prescriptive architecture is arguably not addressed as a central
point of attention.

Even if we take into account TOGAF’s focus on the enterprise IT system, a com-
prehensive set of IT system (functional and constructional) design domains must be
defined. For these domains architectures must be devised – collectively referred to as
IT architecture – that addresses areas of concern and ensure a unified and integrated
enterprise IT system design. Pertinent to the enterprise IT system, TOGAF speaks
about data, application, and technology architecture. However, not in the normative,
prescriptive sense. According to TOGAF, application architecture “provides a blue-
print for the individual application systems to be deployed, their interactions, and
their relationships to the core business processes of the organization” [op. cit. p.10].
This viewpoint shows TOGAF’s lack of a formal distinction between system kinds
(cf. Section 2.2) since business processes cannot be addressed within the IT system
perspective, but only within the enterprise-wide system perspective. By the same rea-
soning, the functional IT design domains cannot be addressed within the IT system
scope but only within the white-box scope of the enterprise as the using system.

Indeed, TOGAF does introduce the notion of ‘business architecture’, but in an in-
appropriate way, as we have seen.

Devising an architecture (called architecturing) must be performed within an archi-
tecture framework. Consequently, it regards particular system kinds, design domains,
and areas of concern.

As outlined in Section 2, devising an architecture must take place with reference to
(1) the system kind S of observation, and for which architecture provides design guid-
ance, (2) the design domains D were the architecture is used, and (3) the areas of con-
cern A that the architecture addresses. We feel that TOGAF lacks a formal distinction
between architecturing (devising design principles and standards) and designing, as
well as between designing and implementing. TOGAF refers to design activities in
phases that should concern implementation only. Implementation and project plan-
ning aspects are obviously important topics but, in our view, they should be clearly
distinguished from architecturing and designing, hence, should not be part of an archi-
tecture framework.

88 J.L.G. Dietz and J.A.P. Hoogervorst

4 Conclusions

Enterprises are (1) goal directed, (2) purposefully designed social systems, that (3)
interact with their environments, and for which (4) their unified and integrated opera-
tion is conditional for enterprise performance and the successful operationalization of
strategic intentions. These four aspects must be central to any design approach for
enterprises. Over the years, The Open Group has contributed considerable efforts to
devising approaches – collectively identified under the TOGAF label – for enterprise
and/or IT system design.. Although these efforts can obviously be appreciated, our
analysis forces us to conclude that the TOGAF approach is not grounded in formal,
theory-based concepts such that the essential aspects of enterprises are effectively and
comprehensively addressed. Moreover, the concepts used are largely ambiguous and
ill-defined, thereby making it difficult to master the organized complexity of enter-
prises. We fail to see how conceptual incoherence and inconsistency can methodically
bring forward a coherent and consistent whole. Obvious improvement areas are the
clarity, coherence and consistency of the concepts used, and addressing the perspec-
tive outlined in section 3.

A major objection one could have is that we have applied our own evaluation
framework for assessing TOGAF. To our defense, we can only argue that we have not
found another framework that suits our objectives. An often suggested candidate is
the GERAM framework [GERAM 1999], since it is intended to facilitate the unifica-
tion of methods for enterprise integration. However, GERAM offers no theory and
associated methodology to accomplish the task. Admittedly, TOGAF acknowledges
the importance of unity and integration for proper enterprise and IT systems perform-
ance, but it fails to make this operational. Moreover, elements of our framework have
been advocated by others too, as referenced in this article.

Arguably, society is largely a society of enterprises. Put differently, societal well-
being is to a considerable extent determined by the performance and conduct of enter-
prises. Adequate performance and conduct (or the opposite) thus have far reaching
consequences. For such adequacy, proper enterprise design is crucial. TOGAF aims to
address this issue, but fails to do so. As said before, the major cause of this is the lack
of a coherent underlying theory. We cannot continue to deal with the immense prob-
lems we are facing in an unprofessional way. It is time to practice a profession that is
built on sound theoretical foundations, along the lines we have sketched in this paper.
Hopefully, our reflection contributes to raise awareness of TOGAF’s shortcomings
and to rebuild it on solid grounds. This is vitally important in view of the crucial role
of enterprises for customers, employees, stakeholders, and the society at large.

References

Ackoff, R.L.: Ackoff’s Best: His Classic Writings on Management. Wiley, New York (1999)
Albani, A., Dietz, J.L.G.: Enterprise Ontology based Development of Information Systems.

International Journal for Internet and Enterprise Management 7(1) (2010)
Albani, A., Terlouw, L.: An Enterprise Ontology-Based Approach to Service Specification.

IEEE Transactions on Services Computing (October-December 2010)

 A Critical Investigation of TOGAF – Based on the Enterprise Engineering Theory 89

Aveiro, D., Rito Silva, A., Tribolet, J.: Extending the design and engineering methodology for
organizations with the generation operationalization and discontinuation organization. In:
Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 226–241.
Springer, Heidelberg (2010)

Aveiro, D., Rito Silva, A., Tribolet, J.: Towards a G.O.D. Organization for organizational self-
awareness. In: Albani, A., Dietz, J.L.G. (eds.) CIAO! 2010. Lecture Notes in Business In-
formation Processing, vol. 49, pp. 16–30. Springer, Heidelberg (2010)

Barjis, J., Kolfschoten, G.L., Verbraeck, A.: Collaborative enterprise modeling. In: Proper, E.,
Harmsen, F., Dietz, J.L.G. (eds.) PRET 2009. Lecture Notes in Business Information Proc-
essing, vol. 28, pp. 50–62. Springer, Heidelberg (2009)

von Bertalanffy, L.: General Systems Theory. George Braziller, New York (1969)
Bryan, L.L., Joyce, C.I.: Better strategy through organizational design. McKinsey Quarterly 2

(2007)
Bunge, M.: Treatise on Basic Philosophy Volume 4: A World of Systems. In: Dordrecht, D.

(ed.). Reidel Publishing Company (1979)
Daft, R.L.: Organization Theory and Design. South-Western Publishing, Mason (2001)
Dietz, J.L.G., Albani, A.: Basic notions regarding business processes and supporting informa-

tion systems. Requirements Engineering 10(3), 175–183 (2005)
Dietz, J.L.G.: Enterprise Ontology. Springer, Berlin (2006)
Dietz, J.L.G.: Architecture: Building Strategy into Design. SDU Publishing, The Hague (2009)
Doucet, G., Gøtze, J., Saha, P., Bernard, S.: Coherence Management: Architecting the Enter-

prise for Alignment, Agility and Assurance. AuthorHouse, Bloomongton (2009)
Doz, Y., Thanheiser, H.: Regaining Competitiveness: A Process of Organizational Renewal. In:

Hendry, J., Johnson, G., Newton, J. (eds.) Strategic Thinking: Leadership and the Manage-
ment of Change. Wiley, Chichester (1993)

Drucker, P.: Management. Harper, New York (1985)
GERAM, Generalized Enterprise Reference Architecture and Methodology, Version 1.6.3,

IFIP-IFAC Taskforce (1999)
Gharajedaghi, J.: Systems Thinking. Butterworth Heinemann, Boston (1999)
Hoogervorst, J.A.P.: Quality and Customer Oriented Behavior: Towards a Coherent Approach

for Improvement, Delft, Eburon (1998)
Hoogervorst, J.A.P.: Enterprise Governance and Enterprise Engineering. Springer, Berlin

(2009)
Jackson, M.C.: Systems Thinking. Wiley, Chichester (2003)
Jong, J., de, D.J.L.G.: Understanding the realization of organizations. In: Albani, A., Dietz,

J.L.G. (eds.) CIAO! 2010. Lecture Notes in Business Information Processing, vol. 49, pp.
31–49. Springer, Heidelberg (2010)

Kaplan, R.S., Norton, D.P.: Norton, Strategy Maps. Harvard Business School Press, Boston
(2004)

Kotter, J.P.: Leading Change: Why Transformation Efforts Fail. Harvard Business Re-
view 71(2), 59–67 (1995)

Lawrence, P., Lorsch, J.: Organization and Environment. Harvard Business School Press, Bos-
ton (1967)

Leinwand, P., Mainardi, C.: The Coherence Premium. Harvard Business Review (June 2010)
Luthans, F.: Organizational Behavior. McGraw-Hill, New York (1992)
Maier, M.W., Rechtin, E.: The Art of Systems Architecting. CRC Press, Boca Renton (2002)
Martin, J.: The Great Transition. In: Using the Seven Principles of Enterprise Engineering to

Align People, Technology and, Strategy. American Management Association, New York
(1995)

90 J.L.G. Dietz and J.A.P. Hoogervorst

McGregor, D.M.: The Human Side of Enterprise. McGraw-Hill, New York (1960)
Miles, R.E., Coleman, H.J., Douglas Creed, W.E.: Success in Corporate Redesign. California

Management Review 37(3), 128–145 (1995)
Mintzberg, H.: The Rise and Fall of Strategic Planning. The Free Press, New York (1994)
Nadler, D.A., Tushman, M.L.: Competing by Design: The Power of Organizational Architec-

ture. Oxford University Press, New York (1997)
van Nuffel, D., Mulder, H., van Kervel, S.: Enhancing the formal foundations of BPMN by

enterprise ontology. In: Albani, A., Barjis, J., Dietz, J.L.G., et al. (eds.) CIAO! 2009. Lec-
ture Notes in Business Information Processing, vol. 34, pp. 115–129. Springer, Heidelberg
(2009)

Peters, T.J., Waterman, R.H.: In Search of Excellence. Warner Books, New York (1982)
Pettigrew, A.: Success and Failure in Corporate Transformation Initiatives. In: Galliers, R.D.,

Baets, W.R.J. (eds.) Information Technology and Organizational Transformation. Wiley,
Chichester (1998)

Rechtin, E.: Systems Architecting of Organizations. CRC Press, Boca Raton (2000)
Scott Morton, M.S.: The Corporation of the 1990s. Information Technology and Organiza-

tional transformation. Oxford University Press, New York (1991)
Schein, E.H.: Organizational Culture and Leadership. Wiley, Chichester (2004)
The Open Group, TOGAF Version 9. Van Haren Publishing, Zaltbommel (2009a)
The Open Group, The Open Group Business Architect Certification Program, San Francisco

(2009b)
Terlouw, L., Dietz, J.L.G.: A Framework for Clarifying Service-Oriented Notions – How to

Position Different Approaches. Enterprise Modeling and Information Systems Architec-
tures 5(1) (July 2010)

Ven, K., Verelst, J.: The adoption of DEMO: A research agenda. In: Albani, A., Barjis, J.,
Dietz, J.L.G. (eds.) CIAO! 2009. Lecture Notes in Business Information Processing, vol. 34,
pp. 157–171. Springer, Heidelberg (2009)

Weinberg, G.M.: An Introduction to General Systems Thinking. Dorset House Pub-lishing,
New York (2001)

Winograd, T.: A Language/Action Perspective on the Design of Cooperative Work. Human-
Computer Interaction 3(1), 3–20 (1988)

Winograd, T., Flores, F.: Understanding Computers and Cognition: A New Foundation for
Design. Addison-Wesley, Boston (1987)

A Method to Develop EA Modeling Languages

Using Practice-Proven Solutions

Sabine Buckl, Florian Matthes, and Christian M. Schweda

Chair for Software Engineering of Business Information Systems (sebis),
Technische Universität München,

Boltzmannstr. 3, 85748 Garching, Germany
{sabine.buckl,matthes,christian.m.schweda}@mytum.de

http://wwwmatthes.in.tum.de

Abstract. Enterprises are unique in the way of doing business. This
uniqueness is typically reflected in the overall make up of the enterprise
– the enterprise architecture (EA). Globalized markets, changing legal
regulations, and technological innovations thereby force enterprises to
continually adapt their EA to the changing environment. As response,
enterprises aim at a strategic management of the EA providing a holistic
model of the key elements and relationships of an enterprise. Different
supporting modeling languages have been proposed but none of them
has gained broad acceptance due to the above described uniqueness.

In this paper we present a method to develop organization-specific
EA modeling languages based on building blocks representing practice-
proven solutions. Following the common understanding of modeling lan-
guages as consisting of syntax, semantics, and notation, we provide three
different types of building blocks: information model building blocks that
specify the syntax, glossary building blocks that textually define seman-
tics, and viewpoint building blocks that specify the notation of the lan-
guage. The applicability of the method for integrating building blocks
to a consistent EA modeling language is illustrated along a case study
from the public sector. The exposition of the method concludes with an
outlook on further areas of research.

1 Motivation and Overview

Enterprise architecture (EA) management is a discipline, which has recently
gained increased attention from academia and practice. Thereby, a few topics
which are nowadays regarded to be part of EA management, have a long his-
tory in information systems research. This can be exemplified with the topic
of business-IT-alignment discussed e.g. by Henderson and Venkatraman in the
late nineties as strategic alignment [1]. While these discussions might have cat-
alyzed the evolution of EA management, the overall discipline is still subject to
ongoing development. This in particular applies as different research communi-
ties continue to argue on the perspective, from which EA management should
be approached (cf. discussions by Frank [2] or Wegman [3]). The approaches

A. Albani, J.L.G. Dietz, and J. Verelst (Eds.): EEWC 2011, LNBIP 79, pp. 91–105, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://wwwmatthes.in.tum.de

92 S. Buckl, F. Matthes, and C.M. Schweda

nevertheless agree that EA management needs to provide a holistic view on an
enterprise, accounting for aspects from all layers, ranging from business to IT.

Independent from the question of perspective, other indications for the ongo-
ing development of the EA management discipline exist. EA modeling represents
a prominent example. Although most EA management approaches emphasize on
the importance of modeling the EA, no common metamodel, called informa-
tion model in accordance with Buckl et al. in [4], has yet been established. In
the last years, many information models were proposed but none of them has
gained broad acceptance. Some researchers even challenge the hypothesis that
such a model exists (cf. [5,6]). They expect enterprises to have largely different
expectations on the benefits of EA management, and therefore assume that an
information model is an enterprise-specific artifact. In Section 2 we discuss possi-
ble reasons for this kind of specificity, when we revisit how today’s EA modeling
languages position themselves as tools for supporting EA management functions.
In [5] Buckl et al. discuss three different ways for developing organization-specific
EA modeling languages, of which two approaches, namely the customization ap-
proach and the integration approach try to leverage established best-practices.
Understanding that most of today’s EA and EA management frameworks pursue
a customization-based approach, we discuss the shortcomings of such approach
which motivates the research objective of this article:

Introduce a method for developing EA information models based on com-
poseable best-practice solutions for defining such languages, and show
the applicability of the method.

This objective is approached in Section 3, where we outline our method for
developing organization-specific EA modeling languages, which is based on re-
usable building blocks for such languages. The method is based on a specific
understanding of EA modeling languages, according to which the language’s syn-
tax is specified in an information model, the notation is defined via notation
functions as well as representation functions, and the semantics is defined
textually in a glossary. For any of these constituents, the presented method
supplies specific building blocks, which are further composed into a comprehen-
sive EA modeling language. The applicability of the method is exemplified in
Section 4. Final Section 5 summarizes the article’s findings and gives an outlook
on further research to follow in the field.

2 EA Modeling: Theoretic Foundations and
State-of-the-Art

A plethora of different EA management approaches has been proposed in the
past that typically either focus on a language to model the EA or on a method
how to document, analyze, and communicate EA-related aspects. This section
provides an overview on selected EA management approaches with particular
focus on the proposed EA modeling language(s). Preparing the analysis of ex-
isting EA modeling languages, we establish a theoretic foundations and revisit a

A Method to Develop EA Modeling Languages 93

conceptual framework for EA design as discussed by Buckl et al. in [7]. Central
to this framework is the understanding that EA modeling has both an inten-
sional and an extensional nature. Extensionally, languages are used to reflect
certain architectural properties, i.e. phenomena, whereas the intensional nature
of a language reflects the fact that the corresponding models are created for
’doing something’. Understanding EA management as a design process, i.e. as
engineering process targeting the transformation of the enterprise, Buckl et al.
apply in [7] the propositional framework for design of Simon [8]. This framework
promotes a formal understanding of the activity of design, based on the cen-
tral notion of means-end -relationships. Any design activity is carried out in the
light of domain-inherent characteristics and relationships (“natural laws” [8])
that connect dedicated means to corresponding ends. This conversely means
that a designer with a specific end (goal) in mind searches for means by which
the design artifact will achieve those ends. For the context of EA management,
this means that enterprise architects “given the constraints and fixed parame-
ters, find values for the command variables that satisfy the utility function” [8].
Building on this, Buckl et al. explored in [7] how the constituents of EA-specific
design propositions look alike and devised a mapping distinguishing between:

– the current and future make-up of the EA (command variables),
– the strategies & projects affecting and changing the EA (means),
– the principles & standards guiding the evolution of the EA (constraints),
– the visions & goals describing a target state of the EA (ends), and
– the KPIs & metrics measuring and evaluating an EA state (utility func-

tion).

Above distinction pertains to the EA modeling language, more precisely to the
language constituent of the syntax that introduces the primitives used in an EA
model. In line with Ernst et al. [9], we assume that the language syntax is rep-
resented in an EA information model, containing the classes, properties, and
associations used to describe a particular area-of-interest in the EA. These
areas-of-interest can be distinguished to extensional ones (concerns), i.e. ones
covering the command variables, and intensional ones, covering cross-cutting
aspects, as strategies, goals, standards, or metrics. This distinction is to be kept
in mind with respect to the review of the state-of-the-art undertaken in this sec-
tion, but also for devising our development method in Section 3. The distinction
gives rise to a particular conception of the EA modeling language(s) used to
support a particular EA management approach.

TOGAF proposes to structure the EA in different architecture domains rep-
resenting subsets of the overall EA [10]. TOGAF distinguishes between

– business architecture concerned with strategic, governmental, organizational,
and process-related aspects,

– data architecture describing the structure of an organization’s data assets
and data management resources,

– application architecture considering the application systems, their interac-
tions, and their relationships to the business processes, and

94 S. Buckl, F. Matthes, and C.M. Schweda

– technology architecture describing the software and hardware capabilities
required to support business, data, and application services.

Answering the question which elements should be considered in an EA man-
agement endeavor, TOGAF presents the core content metamodel. Therein, the
entities and relationships that make up an EA are described [10]. The core con-
tent metamodel provides entities for all architectural layers. Besides the entities,
which can be grouped to one of the architectural layers, TOGAF also introduces
crosscutting entities associated with all objects among others principle, require-
ment, work package. Thereby, the kind of relationship is not discussed. TOGAF
provides six metamodel extensions [10], e.g the motivation extension to enable
measurement of business performance by introducing concepts as driver, goal,
and objective. While each of these extensions supplies concepts for modeling
and described the intended usage context, these concepts are not formulated as
cross-cutting aspects pertaining to arbitrary architecture elements.

In the 1970s and the 1980s several EA-related frameworks have been de-
veloped. In response to the emerging number of frameworks in this area, the
International Task Force on Enterprise Integration was established aiming at
the development of a reference framework that supports comparison and evalu-
ation of existing approaches [11]. As a result of the investigation, the Task Force
developed the Generalised Enterprise Reference Architecture and Methodology
(GERAM). GERAM consists of nine components, of which with respect to the
EA modeling language, three components are of interest. These do not impose
particular languages but define criteria for an EA management approach [12]:

– Generalised Enterprise Reference Architecture (GERA): GERA describes
the basic concepts to be used in enterprise engineering and integration
projects. According to GERAM these concepts can be categorized as human-
oriented concepts, process-oriented concepts, and technology-oriented
concepts.

– Enterprise Modeling Languages (EMLs): EMLs define the generic model-
ing constructs for enterprise modeling. In particular, the EMLs provide con-
structs to describe and model human roles, operational processes, supporting
information, and technologies.

– Generic Enterprise Modeling Concepts (GEMCs): GEMCs define and for-
malize the generic concepts of enterprise modeling. The following ways of
formalization exists: natural language explanations (glossaries), meta mod-
els describing the elements and their relationships (information models), and
theories defining the semantics of enterprise modeling languages (ontologies).

GERA defines a life-cycle for each constituting concept of the enterprise, which
consists of the phases identification, concept, requirements, (preliminary and de-
tailed) design, implementation, operation, and decommission. While most of the
aforementioned phases are self-explanatory, the concept phase deserves a more
in depth analysis with respect to our analysis framework. The phase is concerned
with the definition of the entity’s mission, vision, strategies, objectives, etc. [12].
Thus, linking the cross-cutting aspects of strategies, projects, visions, and goals

A Method to Develop EA Modeling Languages 95

to any concept considered during enterprise transformation. In line with the ob-
jective of GERAM to define requirements for EA (management) frameworks, no
description how this relation should be conceptualized is given. Similarly, the
concept of life history is discussed and the link to different kind of projects is
explored and related to the phases of the EA concepts.

In addition, to the generalized propositions for a language for EA descriptions
as discussed above, the EMLs define two requirements to enable integration of
special purpose modeling languages (cf. [12]). First, every area as represented in
the modeling framework must be covered for every enterprise entity type, and
second, any model developed must be able to be integrated with models of other
subject areas, if the information content of the model requires integration. The
need to integrate different languages results from the distinct ’expressive powers’
related to the intended purpose, e.g. description vs. analysis, of the languages.

Against the background of over 15 years of practice, Dietz [13] has devel-
oped a “methodology for (re)designing and (re)engineering organizations” called
DEMO. With its sound theoretical foundation in a theory called Ψ -theory the
method takes a different perspective on the enterprise focusing on the so-called
“enterprise ontology”. Dietz uses this term to denote a “coherent, comprehen-
sive, consistent and concise model of the essence of the enterprise”. Critical to
his definition is thereby the notion of “essence” that in the sense of Dietz targets
the deep behavioral nature of the enterprise, but not realization and implemen-
tation specific details. The method of DEMO provides an approach to develop
enterprise ontologies in a systematic way [13], i.e. reflects commitment-related
information. In line with the four basic axioms of Ψ -theory the ontological model
of the enterprise is constituted of four distinct submodels (construction model,
state model, process model, and action model) The construction model speci-
fies the construction of the organization embodied in the identified transaction
types as well as actor roles. Detailing the coordination aspect of the transac-
tions, the process model describes causal and conditional relationships between
different transactions. Complementing this perspective the state model outlines
the state space of P-facts, i.e. of production results, while P-acts are not part of
the state model, as they may be derived from the corresponding process model.
The action model describes the enterprise ontology on the most detailed model,
such that – as Dietz states in [13] – the other models may be derived from the
action model, and are hence only provided for ease of use. The different ab-
stracted models (construction, process and state model) are complemented each
with a specific description language, of which especially the language behind the
state model deserves special attention. The so called “world ontology specifi-
cation language” (WOSL) (cf. Dietz [14]) provides the basic language elements
for describing rigid and non-rigid structures, i.e. states that exist universally
over time and states that may change. The construction and process model lan-
guages present themselves as two sides of the same coin taking a blackbox and
a whitebox perspective on the organizational transactions further mirrored in
the prescriptive understanding of an EA complementing the enterprise ontology
with “functional” and “constructional principles” [13].

96 S. Buckl, F. Matthes, and C.M. Schweda

3 Designing an EA Modeling Language

Different EA management problems call for a distinct understanding of the EA
and hence entail a different way of modeling architectural properties. For each
such problem, the corresponding understanding of the problem domain, i.e. the
relevant part of the EA, can be expressed in a specific EA modeling language.
This language is domain appropriate in terms of Krogstie [15], i.e. constrains
itself only to relevant syntax, semantics, and notation. For developing one or
more EA modeling languages, e.g. representing different problems, we have to
design the corresponding syntax, semantics, and notation. Prior to introducing
our design method, we provide a conceptual model that describes the interplay
of these constituents. Central thereto is the information model, which in line
with our considerations in [9], specifies the syntax of the modeling language via
model elements. Semantics is considered as a function assigning exactly one
predicator [16] to each model element. This predicator acts as surrogate for
a corresponding part of the conceptualization, i.e. for an architecture property in
the sense of Dijkman et al. [17]. Such property represents a characteristic of the
architecture relevant in respect to one or more architecture stakeholders. Com-
plementing the notation is described as a representation function assigning one
visualization element1 to each model element. In consequence, a predica-
tor (or the thereby represented architectural property) is assigned a particular
visualization element by the modeling language.

Semantics
assignment

Information
model

 1

 *

Model
element1 1

Predicator

 1

 1
 designates

Architecture
property

 1

1
classifies

1 1
Visualization

element

Representation
assignment

Semantics
function

 1

 *

Representation
function

 1

 *

Fig. 1. General constituents of an EA modeling language

Different languages in turn can cover different sets of predicators and can
assign different visualization elements thereto. Figure 1 depicts the conceptual
model for modeling languages utilizing aforementioned terms. The architecture
property is therein shown in gray, as it represents a purely intrapersonal con-
cept, whereas the three basic constituents of the language syntax (information

1 In line with Kamlah and Lorenzen [16] arbitrary speech acts can notate an element.
With the focus of the domain, we constrain our subsequent considerations to visual
elements.

A Method to Develop EA Modeling Languages 97

model), semantics (semantics function), and notation (representation
function) are highlighted.

Combining different modeling languages in a consistent manner builds on the
notion of consistency as introduced by Dijkman in [18]. In particular, the ques-
tion of integrating the underlying information models is of relevance, as these
can contain different model elements reflecting the same architecture prop-
erty. Such model elements originate from different ways of perceiving the
underlying property. For the context of the method, the predicator, i.e. the glos-
sary entry, identifies the corresponding property. Two information models can
be interlinked by three different types of relationships, namely overlap, sub-
sume, and conflict. Moving from the instance-level perspective on relationships
as taken by Dijkman in [18] to an understanding on a conceptual level, we use
the predicators and define the basic relationship overlap as expressing that two
information models share at least one predicator. Building on this, the two other
types of relationships are defined as follows:

– Two information models conflict with each other, if they overlap, but make
contradictory statements with respect to the model elements assigned to
overlapping predicators.

– One information model subsumes another one, if the subsuming model is
completely overlapped by the subsumed one, i.e. if all predicators of the
subsuming information model are also present in its subsumed counterpart.

Subsume and conflict are closely related to each other in the sense that for
two conflicting information models it is not possible to find or create a third in-
formation model subsuming both. Contrariwise, a subsumed information model
completely overlaps the subsuming one without raising conflicts. The types of
relationships between information models provide a basis for our development
method in a threefold manner. Firstly, the users can be prevented from select-
ing conflicting information models to be integrated into the comprehensive in-
formation model supporting their EA management function. Secondly, existing
overlaps between the selected information models can be accounted for during
integration of the information models. Finally, the subsume-relationship can be
used to derive possible paths for evolving the information model.

Linking information models to visualizations, we have to define two types
of functions, namely the notation function and the representation

Model
element

Representation
assignment

1 1

Notation
function

 1

 *

 1

 *

Information
model

Visualization
element

Fig. 2. Notation function

Model
element

Representation
assignment

1 0..1

Representation
function

 1

 *

 1

 *

Information
model

Visualization
element

Fig. 3. Representation function

98 S. Buckl, F. Matthes, and C.M. Schweda

function. For each modeling language the notation function establishes a bijec-
tive mapping between model elements and visualization elements. The
representation function of other modeling languages contrariwise does not es-
tablish one-to-one relationships, but can provide an aggregated perspective on
the information model elements, e.g. by abstracting relationships or calculating
sums. Put in terms of our conceptual model for the constituents of an EA model-
ing language, we can describe the general distinction between notation functions
and representation functions via the existence of representation assignments as
shown in Figures 2 and 3, respectively.

The solutions provided by the different approaches to EA management,
discussed in Section 2, provide partial EA modeling languages, which are doc-
umented on different levels of abstraction, giving several specifics of the ap-
plication, e.g. the employed terminology. EA management approaches with an
embracing appeal tend to mitigate specifics of a singular prescription and to
present the solutions in a stratified terminology, thereby increasing readability
and comparability. In this sense the assignments between the predicators and
the model elements as contained in different EA modeling languages of the ap-
proach are adapted. Any EA modeling language can supply at most one model
element assigned to a particular predicator from the stratified terminology
of the approach. Nevertheless, different languages can bring along elements as-
signed to the same predicator. Figure 4 displays the conceptual model bringing
together different EA modeling languages backed in a consistent terminology.

Semantics
assignment

Information
model

 1

 *

Model
element1 1..*

Predicator

Semantics
function

 1

 *

Fig. 4. Semantics assignments in a set of EA modeling languages

Our development method has to target the three aspects of EA modeling
languages with corresponding building blocks. These building blocks have been
proven to work in practice [19]. In particular information model building block
(IBB) supplying an information model, viewpoint building block (VBB) supply-
ing a representation function, and glossary building block (GBB) supplying a
semantics function. These building blocks are complemented with techniques fa-
cilitating their integration and combination. Using the techniques and building
blocks of the different types a consistent set of EA modeling languages can be
developed. Figure 5 shows the interplay of the different practice-proven building
blocks complementing the development method.

With respect to IBBs, our method offers an additional distinction between
model elements that reflect architecture elements, representing the

A Method to Develop EA Modeling Languages 99

extensional nature, and those that reflect goals of EA management, representing
the intentional nature. Revisiting the analysis of EA modeling languages from
Section 2, we understand goals as particular instantiation of a more general prin-
ciple of describing EAs. Similar to goals, also projects or standards raise certain
characteristics that do not supply an identity condition (IC) for the correspond-
ing model elements. Put in other words, while goals, projects, and standards
themselves supply an IC, they relate to dependent model elements that do not
supply an IC, are dispersive types [20]. Based on this analysis, we establish a dis-
tinction between two types of IBBs: one building around identifiable architecture
elements (concern IBBs) and one centering around cross-cutting architecture
characteristics (cross-cutting IBBs). These concepts are further summarized
under the term area-of-interest.

Organized library of
best-practice building blocks

IBB
VBBGBB

EA modeling (sub-)language

Glossary Information
model Viewpoint

Language custom
ization &

adaptation m

ethod

«contributes to» «contributes to»«contributes to»

Fig. 5. Interplay of language building blocks

An IBB defines a part of the syntax of an EA modeling language by speci-
fying the corresponding model elements, i.e. the types, relationships, and
propertys, that make up the syntax. In developing a specific information model,
cross-cutting IBBs corresponding to goals and questions, projects, or standards
are applied, i.e. added, to concern IBBs. Via supplied semantics assignments,
the model elements are linked to predicators, i.e. classifying terms from the
glossary, which in turn reflect a particular architecture property. The different
values that an architecture property can take are codified into instantiations
of the corresponding model element. If this concept, for example, is a prop-
erty2 these instances can be identified with the range of the corresponding data
type, e.g. integer or string. Similar considerations also apply for types and
relationships. With the IBBs specifying re-usable information models bound
to a consistent underlying terminology, the relationships applying on informa-
tion models can also be applied to interrelate IBBs. The IBB-relationships are
of interest in extending the method’s underlying organized collection of IBBs as
exemplified in Figure 6. Each of these relationships is therein set effective by at
least one predicator.

2 We use the different typeset to avoid confusion with the architectural property.

100 S. Buckl, F. Matthes, and C.M. Schweda

«conflicts»

«overlaps» «overlaps»

 «subsumes»

IBB1:IBB

IBB3:IBB

IBB2:IBB

IBB4:IBB IBB5:IBB

Fig. 6. Exemplary net of IBB-relationships

In order to ensure usability of the method in general and the techniques for
selecting and integrating the IBBs in special, any newly added IBB has to be
embedded into the net of IBB-relationships, if overlapping. Forcing the contrib-
utors of IBBs to establish these relationships manually would aggravate any
extension of the organized library of building blocks, exponentially growing with
the number of already supplied IBBs. Resolving the aforementioned difficulty, we
decide to derive these relationships from the relationships between predicators
and model elements as well as the containment of model elements in the IBBs.

Another important aspect of developing EA modeling languages from practice-
proven solutions is the notational aspect. Any language brings along symbolic
representations for the model elements and their relationships, which must
in turn match the specific notational expectations of the corresponding users.
With respect to the method, this means that the users must be able to select
proven-practice notations and adopt them to fit their particular EA modeling
languages. The VBBs provide such proven-practice representation assignments
as derived from the analyzed EA management approaches. These assignments
are of abstract nature, i.e. do not relate to a particular underlying information
model, but to an abstract conception of the information to be represented. Lat-
ter forms the viewmodel3, which can be understood as a ’virtual’ information
model, acting as domain for a representation function. Revisiting the exemplary
visualization shown in this section, we explain the notion of the viewmodel along
the example of the clustered visualization, which according to Wittenburg [21]
is frequently used in representing EA information4.

a:A

b1:B

A

B

b2:B

b3:B b4:B

 1

 *

 relates

A clustered visualization depicts instances of an outer type A and in-
stances of an inner type B, which are related via some relationship.

3 A similar concept is discussed by Fowler in
http://martinfowler.com/eaaDev/PresentationModel.html (cited 2010-12-23).

4 Wittenburg calls this type of visualization “cluster map” [21, page 78–79].

http://martinfowler.com/eaaDev/PresentationModel.html

A Method to Develop EA Modeling Languages 101

The viewmodel supplies enough information to create the visualization but
not more, such that the representation assignments constitute a bijective repre-
sentation function. It would nevertheless be possible to create the visualization
in cases, where additional information was supplied. In mathematical terms this
means that any particular kind of visualization, i.e. any VBB, can be applied
on any information model capable of supplying the sufficient information.
For being in turn able to perform graphical modeling, the underlying informa-
tion model must not supply additional information, i.e. has to supply only the
minimal necessary information. Such information model is closely related to
the viewmodel of the corresponding VBB. These considerations take a different
point of view on what differentiates notation functions and graphical represen-
tation functions. While the former relate visualizations to their necessary and
sufficient information model (the viewmodel), latter functions can build equiva-
lently on any sufficient information model. Being sufficient relates to the concept
of the subsume-relationship introduced above. Any information model that is
subsumed by visualization’s necessary and sufficient information model is itself
sufficient to create the visualization. Understanding the subsume-relationship
as a basis for evolving the information model of an organization, we can en-
sure that any subsumed information model is still sufficient to create the once
selected graphical representations. Aforementioned indications give rise to the
following definition of VBBs. In line with our considerations in [22] we detail
on the contribution that a VBB makes with respect to specifying a viewpoint.
According to the provided contribution, we distinguish different types of VBBs:

– Symbol VBBs that assign a mapping between a model element and a
visible visualization element, i.e. a symbol in terms of [9].

– Structural VBBs that assign a complex structure of model elements
to a set of interrelated visualization elements. Such building blocks are
mostly not self-contained but reference other VBBs as sub-assignments.

– Decorating VBBs that assign a mapping between a model element and
a visual property of a visualization element, which in turn results
from a mapping specified in a different VBB.

– Hybrid VBBs that specify to some extent a combination of the above. Such
VBBs can be constituted from other VBBs, e.g. a structural VBB referencing
an elementary VBB to which additionally a decorating VBB is applied.

Any viewpoint is configured in terms of at least one structural VBB that deter-
mines the overall make-up of the corresponding visualization. This understanding
aligns with the principle of the base map as established by Wittenburg in [21]
used to describe the basic nature of the analyzed software maps. It is neverthe-
less not necessary for a viewpoint to build on an isolated structural VBB, as
also a hybrid VBB containing at least one structural VBB can serve as base
VBB for a viewpoint. Finally, the GBBs are used to provide a consistent under-
lying understanding of the concepts employed in the IBBs. Central thereto is the
notion of the predicator, which is complemented with a textual description of
the according semantics. This description can in turn link to related predicators,

102 S. Buckl, F. Matthes, and C.M. Schweda

although the relationships established thereby are not typed, but give indications
on a corresponding connectedness.

Complementing above considerations on the building blocks and their inter-
relationships to each other, we subsequently outline how the organized library
of building blocks is used by the development method proposed in this paper.
In general building block-based development of EA modeling languages con-
sists of three distinct activities, namely information modeling, viewpoint
definition, and glossary adaptation. Latter activity is elemental in its na-
ture, meaning that the users of the method browse through an existing glossary
and rename one or more of its entries. Thereby, the corresponding predicator is
shadowed with an organization-specific predicator, that consistently inherits all
semantic assignments of its underlying predicator. Information modeling starts
with an empty information model and iteratively applies the following four steps:

1. Select EA management-relevant goal to pursue and choose cross-cutting IBB
reflecting the goal on an adequate level of abstraction.

2. Select EA concern on which the goal applies and choose admissible concern
IBB reflecting the concern on an adequate level of abstraction.

3. Integrate the cross-cutting IBB with the concern IBB to build a problem-
specific information model by specifying the goal-relevant model elements.

4. Integrate the problem-specific information model with the already existing
information model. (omitted in first iteration)

After above steps have been executed once, an information model is maintained
by the method in the organization-specific configuration. This information model
is used to determine, whether a concern IBB is admissible or not. The latter is the
case, when the IBB conflicts with an already integrated one. Another subtlety
applies to this step, as the concern descriptions change with the adaptation of
the glossary, thus ensuring that the users perform the selection based on their
adapted terminology. The activity of viewpoint definition is closely interrelated
to the one defining the EA management function in general. The method part of
the function specifies particular tasks, in which actors in EA management and
EA stakeholders have to be informed or must provide information on certain
architectural aspects. With the viewpoints, in line with Krogstie [15], being the
vehicles for externalizing, comprehending, and communicating information, any
relationship between an actor or stakeholder and a task has to be supplied with
a specific viewpoint. Thereto, the following two step approach is applied:

1. Select base VBB and establish admissible links from its virtual information
model to the model of available information.

2. Repeat: add VBB to detail existing viewpoint and establish admissible links
from the corresponding virtual information model to the model of available
information.

Two conceptions in the former approach deserve special attention. Firstly, it can
be the case that in some tasks of the EA management function not all informa-
tion according to the integrated information model is available. This particularly

A Method to Develop EA Modeling Languages 103

applies for documentation-related tasks, such that any VBB applied to define a
viewpoint is confined to the information actually available. Put in other words,
the VBB has to be configured against the model of available information. Sec-
ondly, while there are in general only a few restrictions on the VBB to apply for a
specific task, the configuration of the corresponding viewpoint is restricted with
respect to the intended usage thereof. Having selected a task-actor-relationship,
according to which the actor has to provide information about an EA concern,
the configured viewpoint must supply representation assignments that constitute
a notation function for the information under consideration. Put in other words,
the actors must have the possibility to model the corresponding part of the
enterprise using the established modeling language. In this sense, any mapping
configuration is analyzed by means of the provided techniques with respect to its
suitability to maintain a bijective relationship with the underlying information
model, i.e. if this information model is isomorphic to the VBB’s viewmodel.

4 Exemplifying the Design Approach

A public authority providing IT services to several federal ministries has over
the years ‘grown’ a highly heterogeneous application landscape, causing high
maintenance costs and requiring a diverse set of IT operating skills. In order to
address this IT-related problem, the authority decides to introduce an EA man-
agement function specifically pursuing the goal of standardization on the level of
business applications and their underlying technologies. Having chosen goal and
concern, two IBBs become available, one describing how to operationalize stan-
dardization, another defining the concepts needed to describe the relationship
between applications and technologies. Figure 7 depicts the information model
derived from these IBBs via integration.

The complementing GBBs for the information model elements, introduce def-
initions. The public authority decides to apply the definitions without adap-
tations. Finally, the authority designs a viewpoint for communicating the in-
formation about standardization. The viewpoint builds on a basic cluster-VBB
extended with a VBB for color-coding, according to which non-standard tech-
nologies are colored red, whereas standard technologies are colored green.

«mixin»
Standardizable

/isStandard:bool

«mixin»
Standard

isStandard:bool

Busines application
name:string

Technology
name:string

* 1..*
uses

* 1..*
uses

Fig. 7. Information model

104 S. Buckl, F. Matthes, and C.M. Schweda

5 Conclusion and Outlook

Balancing organization specificity on the one hand and the demand for a gen-
eral method to model EAs, we proposed in this paper a method to develop
organization-specific EA modeling languages based on practice-proven build-
ing blocks. To enable organization-specific configuration, three different types
of building blocks have been proposed. Information model building blocks de-
scribing the syntax of the language, i.e. the concepts that make up the EA,
glossary building blocks that specify the semantics of the concepts reflecting
the organization-specific terminology, and viewpoint building blocks providing a
stakeholder-specific notation for visualizing EA-related information. While the
different building blocks enable flexible configuration to an organization-specific
EA modeling language, aspects of consistency have to be accounted for. In pre-
senting our development method we discussed how consistency can be ensured.

While the utilization of the development method in a case study with an indus-
try partner from the public sector provides first indications for the applicability
and utility of the presented method, further case studies should be conducted.
Furthermore, a tool supporting the user of the development method in conduct-
ing the single steps of the method can be regarded useful. In particular as such a
tool could be used as a configurator for that would enable initial design as well as
adaptation of EA modeling languages thus supporting the enterprise architects
in adapting to changing environmental influences and problems to be addressed.
The resulting configuration could further be used as input for dedicated EA
management tools to facilitate the customization thereof.

References

1. Henderson, J.C., Venkatraman, N.: Strategic alignment: leveraging information
technology for transforming organizations. IBM Systems Journal 32(1), 472–484
(1993)

2. Frank, U.: Multi-perspective enterprise modeling (memo) – conceptual framework
and modeling languages. In: 35th Hawaii International Conference on System Sci-
ences (HICSS 2002), Washington, DC, USA, pp. 1258–1267 (2002)

3. Wegmann, A.: On the systemic enterprise architecture methodology (seam). In:
SEAM. Published at the International Conference on Enterprise Information Sys-
tems (ICEIS 2003), pp. 483–490 (2003)

4. Buckl, S., Ernst, A.M., Lankes, J., Matthes, F., Schweda, C.M., Wittenburg, A.:
Generating visualizations of enterprise architectures using model transformation
(extended version). Enterprise Modelling and Information Systems Architectures
– An International Journal 2(2), 3–13 (2007)

5. Buckl, S., Ernst, A.M., Lankes, J., Schneider, K., Schweda, C.M.: A pattern based
approach for constructing enterprise architecture management information mod-
els. In: Oberweis, A., Weinhardt, C., Gimpel, H., Koschmider, A., Pankratius, V.,
Schnizler (eds.) Wirtschaftsinformatik 2007, pp. 145–162. Universitätsverlag Karl-
sruhe, Karlsruhe (2007)

A Method to Develop EA Modeling Languages 105

6. Kurpjuweit, S., Winter, R.: Viewpoint-based meta model engineering. In: Reichert,
M., Strecker, S., Turowski, K. (eds.) 2nd International Workshop on Enterprise
Modelling and Information Systems Architectures (EMISA 2007). LNI, Bonn, Ger-
many, Gesellschaft für Informatik, pp. 143–161 (2007)

7. Buckl, S., Matthes, F., Roth, S., Schulz, C., Schweda, C.M.: A conceptual frame-
work for enterprise architecture design. In: Proper, E., Lankhorst, M.M., Schönherr,
M., Barjis, J., Overbeek, S. (eds.) TEAR 2010. Lecture Notes in Business Infor-
mation Processing, vol. 70, pp. 44–56. Springer, Heidelberg (2010)

8. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
9. Ernst, A.M., Lankes, J., Schweda, C.M., Wittenburg, A.: Using model transfor-

mation for generating visualizations from repository contents – an application to
software cartography. Technical report, Chair for Informatics 19 (sebis). Technische
Universität München, Munich, Germany (2006)

10. The Open Group: TOGAF “Enterprise Edition” Version 9(2009),
http://www.togaf.org cited 2010-02-25

11. Bernus, P., Nemes, L., Schmidt, G.: Handbook on Enterprise Architecture.
Springer, Heidelberg (2003)

12. IFIP-IFAC Task Force on Architecture for Enterprise Integration: Geram: The gen-
eralised enterprise reference architecture and methodology. In: Bernus, P., Nemes,
L., Schmidt, G., eds.: Handbook on Enterprise Architecture, pp. 21–63. Springer,
Heidelberg (2003)

13. Dietz, J.L.: Enterprise Ontology. Springer, Heidelberg (2006)
14. Dietz, J.L.: A world ontology specification language. In: On the Move to Meaningful

Internet Systems 2005: OTM Workshops, pp. 688–699 (2005)
15. Krogstie, J.: A semiotic approach to quality in requirements specifications. In: Pro-

ceedings of the IFIP TC8 / WG8.1 Working Conference on Organizational Semi-
otics: Evolving a Science of Information Systems, pp. 231–249. Kluwer, Deventer
(2002)

16. Kamlah, W., Lorenzen, P.: Logische Propädeutik: Vorschule des vernünftigen Re-
dens, 2nd edn. Metzler, Stuttgart (1967)

17. Dijkman, R.M., Quartel, D.A., van Sinderen, M.J.: Consistency in multi-viewpoint
design of enterprise information systems. Information and Software Technol-
ogy 50(7–8), 737–752 (2008)

18. Dijkman, R.M.: Consistency in multi-viewpoint architectural design. PhD thesis.
Enschede (2006)

19. Buckl, S., Matthes, F., Schweda, C.M.: Utilizing patterns in developing design
theories. In: 2010 International Conference on Information Systems, ICIS 2010
(2010)

20. Guizzardi, G.: Ontological foundations for structural conceptual models. PhD the-
sis, CTIT, Centre for Telematics and Information Technology. Enschede, The
Netherlands (2005)

21. Wittenburg, A.: Softwarekartographie: Modelle und Methoden zur systematischen
Visualisierung von Anwendungslandschaften. PhD thesis, Fakultät für Informatik,
Technische Universität München, Germany (2007)

22. Buckl, S., Gulden, J., Schweda, C.M.: Supporting ad hoc analyses on enterprise
models. In: 4th International Workshop on Enterprise Modelling and Information
Systems Architectures (2010)

http://www.togaf.org

Modularity in Enterprise Architecture Projects:

An Exploratory Case Study

Philip Huysmans, Kris Ven, and Jan Verelst

Department of Management Information Systems, University of Antwerp,
Prinsstraat 13, B-2000 Antwerp, Belgium

{philip.huysmans,kris.ven,jan.verelst}@ua.ac.be

Abstract. Contemporary organizations are operating in increasingly
volatile environments and must be able to respond quickly to changes
in their environment. Enterprise Engineering aims to design agile orga-
nizations by applying theories from other fields. A theory from system
sciences that receives much attention in this regard is modularity. In
this paper, we apply a traditional modularity approach to a real-life case
study. The subject of this case study is an enterprise architecture project
in an e-government context. Our analysis shows that modularity can pro-
vide a relevant perspective in such projects. Moreover, it provides insights
concerning the usage of enterprise architecture frameworks. However, due
to the different nature of organizations, additional research is required
to precisely understand the application of organizational modularity.

Keywords: Enterprise Architecture, Modularity, Enterprise
Engineering.

1 Introduction

Contemporary organizations are operating in increasingly volatile environments
and must be able to respond quickly to changes in their environment in order
to gain a competitive advantage [1,2]. Moreover, these environments become in-
creasingly complex. Consequently, it is hard to achieve long-term competitive
advantages. Many authors argue that organizations therefore need to implement
innovations at a steady pace to seek business sustainability [3], instead of rely-
ing on a single competitive advantage. The strategy organizations use to thrive
in their environment is implemented in various organizational artifacts, such as
data, processes, departments, and decision structures. Consequently, these arti-
facts need to be able to be adaptable when a strategy changes in response to
changes in the environment. However, these artifacts, as well as their integra-
tion, increase in complexity, which makes them harder to adapt. As a result,
organizational architectures are often perceived to be rigid instead of flexible.

Recently, modularity theory has been used by many authors to provide a
scientific foundation for research concerning agile organizations. However, at-
tempts to formulate a general theoretical framework for modular organizations
often lead to conflicting results. In our research, we therefore use a bottom-up

A. Albani, J.L.G. Dietz, and J. Verelst (Eds.): EEWC 2011, LNBIP 79, pp. 106–120, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Modularity in EA Projects: An Exploratory Case Study 107

perspective, and study the application and relevance of modularity theory in
real-life projects. In this paper, we present an exploratory case study in which
a project is observed to introduce flexibility in governmental processes. While
the project is considered to be successful, it remains difficult to objectivate the
amount of flexibility which has been reached, or if improvements can be made.
By analyzing the project using a modularity perspective, we attempt to objecti-
vate the implemented solution. Based on the lessons learned during this research
project, a better understanding of a relevant application of modularity in enter-
prise architecture projects can be achieved. We believe that such lessons can
contribute to the emerging field of Enterprise Engineering [4].

The rest of this paper is structured as follows. In Section 2, we introduce the
modularity literature which is used in the analysis. A description of the orga-
nization which is the subject of this case study is provided in Section 3. The
enterprise architecture project is then analyzed from a modularity perspective
in Section 4. Next, the implications and lessons learned are discussed in Sec-
tion 5. Finally, conclusions and implications from this case study are discussed
in Section 6.

2 Theoretical Foundation

Modularity is a concept from systems theory that has already been applied
successfully in several domains. A common theme underlying the concept of
modularity in each of these domains is achieving agility and flexibility [5,6]. The
idea behind modularity is that a system should be composed in such a manner
that all components are loosely coupled. To this end, system elements that must
intensively interact with each other should be isolated in a separate module to
ensure that changes to this module do not have an influence on other modules in
the system. Communication between these modules is managed by well-defined
interfaces [6]. The concept of modularity has been used in, amongst others, soft-
ware engineering [7] and product design [8,9]. Campagnolo and Camuffo [10]
provide a management literature overview which shows increasing attention to
modularity in the organizational context. They confirmed research interest in
organizational modularity by identifying a large number of publications con-
cerning not only product modularity, but also modularity in production systems
and the organizational structure itself. In this section, we first outline relevant
literature concerning organizational modularity. Second, we discuss enterprise
architecture frameworks, which are frequently used as the tool to design mod-
ular organizations. Third, we introduce the modularity approach we use in this
paper.

2.1 Organizational Modularity

We focus on the use of modularity in the design of organizations [5,10,11]. This
research area investigates how organizations can be constructed using loosely
coupled and autonomous organizational artifacts that allow organizations to

108 P. Huysmans, K. Ven, and J. Verelst

adapt more quickly to changing environments [5,12]. This approach is compliant
with the Enterprise Engineering research paradigm, which applies relevant the-
ories from other fields to the evolvability of organizations. Much debate is going
on concerning the exact implications of modularity. Many publications discuss
the impact of the specificity of the market or product on modular organizational
structures [13]. While certain authors assume a natural convergence of industries
towards modular configurations [14], others claim that no clear evidence exists
that such convergence is taking place [15]. Depending on the observed factors
and the interactions which are taken into account, a top-down approach seems
to lead to conflicting results. These conflicting results show that modularity has
to be approached as a multifaceted concept [13]. We agree that organizational
modularity has to be studied taking into account the context and specificity of
the organization, as argued by [16]. This view suggests a bottom-up research
approach, as opposed to a top-down analysis of markets and sectors. Therefore,
it seems logical to study modularity in a real-life context, where influences of
various factors can be analyzed, in order to deepen the understanding of modular
organizations.

2.2 Enterprise Architecture

Enterprise architecture frameworks are proposed as a tool to design flexible or-
ganizations. They present an integrated view of the strategic goals and organiza-
tional and technical artifacts of an organization. By offering separate views for,
e.g., process and data stakeholders, they enable separate analysis on these levels.
Consequently, they seem to enable to view the organization as a set of building
blocks which can be adapted independently. Enterprise architecture frameworks
are therefore regarded as a tool to implement and maintain evolvable organiza-
tions. However, a clear distinction should be made between a structure of loosely
coupled artifacts and a collection of models with specific abstractions. Consider
a tightly integrated information system. It is possible to create different mod-
els of such a system which only represent certain aspects and abstract others.
Such models can be useful for, e.g., improved understanding of different parts
of the organization, or to create a common language for communication. How-
ever, when changes to this system need to be made, it is no longer possible to
neglect all abstracted aspects, since the modeled aspects might heavily impact
aspects which are invisible in the model. In contrast, a system with loosely cou-
pled modules may be more complex to represent, but will be easier to adapt,
since the impact of a change will be contained in the module itself. While many
authors cite modularity as the underlying theory for constructing enterprise ar-
chitectures, few reports exist which analyze real-life solutions from an explicit
modularity perspective. Some enterprise architecture frameworks indeed seem
to focus solely on representing models, but neglect the actual structure of the
artifact. In our opinion, the actual artifact implementation cannot be neglected
in an Enterprise Engineering viewpoint.

Modularity in EA Projects: An Exploratory Case Study 109

2.3 Baldwin and Clark

Given the common theoretical foundation to study modular artifacts, it has been
proposed to analyze modular organizations with similar tools as those used for
analyzing other modular artifacts. Baldwin and Clark [6,17,18] propose to de-
sign modular artifacts using a technique called Design Structure Matrix (DSM)
Mapping. In a DSM, an artifact is described by a set of design parameters. The
matrix is then filled by checking for each parameter by which other parameters
it is affected and which parameters are affected by it. The result is a map of
dependencies that affect the detailed structure of the artifact. Dependencies are
represented by an “x”. The intersection of identical design options is marked
with a “.”. An example design structure matrix is shown in Table 1. Consider
the design dependency which is represented by the “x” in the intersection of
the column of design option A2 and the row of design option A1. This signifies
that design option A2 influences design option A1: the design decision for de-
sign option A1 will be dependent on the decision taken for design option A2.
This dependency does not break the modular structure of the artifact, since
design options A1 and A2 both belong to the same module. Now consider the
dependency of design option B1 on design option A2. Since these design options
belong to different modules, it can be concluded that these modules are directly
dependent on each other. Therefore, this dependency violates the modular struc-
ture. Indirect or chained dependencies can occur as well. While design option
B2 does not seem to affect any design options of module A, it does affect design
option B1, which in turn affects design option A1. Therefore, a so-called chained
dependency exists between design options B2 and A2.

Table 1. Example design Structure Matrix

Module A Module B

O
p
ti

o
n

A
1

O
p
ti

o
n

A
2

O
p
ti
o
n

B
1

O
p
ti
o
n

B
2

Module A
Option A1 . x
Option A2 . x

Module B
Option B1 . x
Option B2 .

Baldwin and Clark state that “[b]ecause of these dependencies, there will be
consequences and ramifications of any choice” made during the design of the
artifact [6]. A design choice for a given parameter can limit or affect the possible
design choices concerning other parameters. Moreover, when the artifact needs
to be changed, interactions between design options can alter the performance
of the artifact, or even break its functionality. Therefore, if a certain design
parameter is changed, the impact of this change on all design parameters it
affects needs to be accounted for. Consequently, changes to an artifact with an

110 P. Huysmans, K. Ven, and J. Verelst

imperfect modular structure cause ripple effects throughout the design. As a
result, the magnitude of the effort needed to apply a certain change becomes
unpredictable.

According to Baldwin and Clark [6], dependencies in a DSM can be resolved
through the process of design rationalization. Instead of allowing different design
options for a given parameter, a design rule could be defined which enforces
the use of a certain design option. Doing so restricts the design alternatives,
but prevents uncontrolled ripple effects between the various modules. This is
in line with the definition of architecture used in Enterprise Ontology, which
states that architecture limits design freedom [19]. The use of such design rules
can be observed in the various application fields of modularity. A standard in
the computer industry could be considered as a bundle of design rules. For
example, the TCP/IP standard specifies communication protocols for computer
networks, and therefore limits the choice of protocols on each network layer. In
an organizational context, the use of such design rules is proposed by prescriptive
enterprise architectures. The design rationalization process results in a structure
of global design rules, which have to be adhered to by all modules, and a set of
modules which should be independent from each other.

3 Case Description

In this case study, we focus on a Belgian governmental organization, whose
mission is to introduce and implement e-government solutions. To achieve this
goal, it undertakes projects in the field of back-office reengineering, and tries to
leverage these improvements by supporting projects with governmental partners.
In this paper, we analyze a project that improves the way data from various
sources is used in governmental processes. We will refer to this project as the
Data Usage in Governmental Processes (DUGP) project.

The need for the DUGP project arises from the complex collection of data
sources used in governmental processes. Because of the different governments on
the federal, regional and community level, different data sources fall under the
responsibility of different governmental entities. As a result, the data in these
data sources is offered in different ways. The data sources which need to adhere
to laws and decrees are referred to as authentic data sources. Governmental or-
ganizations that offer their services through processes (which we will call process
owners) may rely on data from different sources. For example, the process to re-
quest construction premiums requires personal data of the citizen requesting the
premium (from data source A) as well as geographical data of the construction
site (from data source B). Since the databases which contain the personal and ge-
ographical data are not integrated or standardized, various conversions between
implementation aspects of these data sources may be necessary. Suppose that
the information required from data source A needs to be obtained by invoking a
single web service call, providing the address from the end user using four data
fields (street name, street number, bus number, city name). In order to query
geographical information in data source B, a request file containing two data

Modularity in EA Projects: An Exploratory Case Study 111

fields (street name and street number, and ZIP code) has to be transferred us-
ing the FTP protocol. Since the construction premium process depends on both
data sources, it needs to be able to communicate using two different versions of
address data syntax. The complexity of these conversions is a barrier for the use
of these data sources. As a result, many processes are designed to request the
required information from the end user. Different process owners therefore create
custom databases which contain information that is available in authentic data
sources as well. However, the quality of such data sources cannot be checked
or guaranteed. For example, a citizen who changes his address is only required
to notify official instances of this change. Consequently, an organization using a
custom database to save addresses instead of requesting them from the official
data source will eventually have incorrect data.

The goal of the DUGP project is twofold. First, process owners need a more
uniform and simpler way to access authentic data sources. Currently, the dif-
ference in accessing data from various providers leads to process owners who
collect the required data themselves, instead of requesting it from authentic
data sources. A central platform which offers a uniform way to access data is
expected to remedy this. Moreover, a central platform enables more transparent
data management: collection and administration of data is a concern of the re-
sponsible entity; technical, legal and organizational aspects which are common
for all data sources would be addressed by organization responsible for the cen-
tral platform. Second, the DUGP project aims to improve the integration of data
between data sources. This would improve the understanding of relationships
between various data sources, which would be beneficial for process designers.
Currently, such integration is missing since the data sources belong to organi-
zations in different levels of the governmental hierarchy, and no organization is
responsible for the explicit integration of data. In order to promote adoption of
the platform, the e-government organization will co-finance projects which use
the platform to provide better integration and more efficient processes. Given the
broad scope and the required interaction with other governmental organizations,
an enterprise architecture framework was selected to guide the DUGP project.
The organization uses an adapted version of the Zachman framework to define
the needs for their projects and guide the development and implementation. In
their framework, a column was added for governance, and rows were added for
testing and deployment of artifacts. Based on this framework, the organization
decided to build a platform to offer unified and integrated access to authen-
tic data sources. The platform is based on two existing data sources from the
federal government. Data from these data sources will be augmented with data
available in data sources from other governments (e.g., geographical data, which
is offered by regional governments). The first data source which is used focuses
on data concerning organizations. In this data source, data such as registration
number, official addresses and legal statute of enterprises can be obtained. We
will refer to this data source as the Data Source for Organizations (DSO)1. The
Federal Public Service Economy is responsible for this data source. The second

1 In order to preserve anonimity, DSO, EDSO, DSI and EDSI are fictional names.

112 P. Huysmans, K. Ven, and J. Verelst

data source offers data concerning individuals. It refers to data such as employ-
ment and social status of citizens. We will refer to this data source as the Data
Source for Individuals (DSI)1. This data source is governed by a separate or-
ganization created by the federal government. The platform will maintain this
distinction, and offer its data services grouped in an Enhanced Data Source for
Organizations (EDSO)1 and an Enhanced Data Source for Individuals (EDSI)1.

Since the EDSO relies on the DSO for its data, and the EDSI relies on the
DSI, they need to consider the implementation of these data sources. Many im-
plementation aspects are quite different. For example, the DSI has webservices
available to query its data. As a result, these webservices can be used to de-
velop webservices in the EDSI. These webservices are not directly offered in
their original form. Instead, a facade pattern is used. This enables the creation
of a uniform web service syntax throughout the platform. In contrast, the DSO
has no webservices available. It is a mainframe which operates using batch re-
quests. Therefore, a copy is made from the original DSO every night. This copy
is then augmented with data from other governmental authorities, and used as
a central database on which the services from the EDSO are provided. In order
to simplify data access, the new platform provides three data delivery methods
which will be available for all data sources: data repositories, an online appli-
cation and webservices. Customized data repositories are large data files, which
are copied to the process owner. After this initial data provision, automatic up-
dates are transferred when data changes. These repositories are offered to enable
process owners to incorporate the data from the new platform in their processes,
without having to implement a webservices-based data access. Since many or-
ganizations are accustomed to using their own data sources in their processes,
a customized data repository can be implemented without many changes in the
processes. However, the unauthorized data sources which have been collected by
the organizations themselves will then be replaced with authentic data. The on-
line application allows for manual consultation of the data with a much smaller
granularity: instead of a single large data file, only the result of a single query is
returned. The same result can be obtained automatically through the use of web-
services. Webservices offer the same data granularity, but can be implemented
to automate processes.

4 Application of Modularity

In this section, we analyze the DUGP project presented in Section 3 using the
theory outlined in Section 2. First, we attempt to gain a relevant understanding
of the identified issues using a modularity perspective. By expressing the problem
description using terminology from modularity literature, we attempt to clearly
specify which issues will be resolved in the project. Second, we assess whether
the guidelines suggested in the modularity literature can be applied in this case
study, and compare them with the solution which was proposed in practice.
Third, we evaluate the built artifact using modularity criteria. We are then
able to motivate this design in a more structured way, and possibly identify
improvements to the design.

Modularity in EA Projects: An Exploratory Case Study 113

4.1 Modeling Data Sources and Processes before the DUGP-Project

Before the introduction of the platform, usage of the different data sources by
process owners was not straightforward. Usage of different data sources resulted
in multiple implementations of the same functionality. Consider the implementa-
tions for data syntax and data delivery from the construction premium example
introduced in Section 3.

Table 2. Design Structure Matrix before the project

Process DS

T
h
ro

u
g
h
p
u
t

D
a
ta

R
et

re
iv

a
l

D
a
ta

S
y
n
ta

x
D

a
ta

D
ic

ti
o
n
a
ry

C
a
p
a
ci

ty
D

a
ta

D
el

iv
er

y
D

a
ta

S
y
n
ta

x
D

a
ta

D
ic

ti
o
n
a
ry

P
ro

ce
ss

Process Throughput . x x
Data Retrieval . x x x
Data Syntax . x x x
Data Dictionary x . x x

D
S

Capacity . x
Data Delivery x . x
Data Syntax x . x
Data Dictionary x .

If we interpret this example according to modularity theory, these issues man-
ifest as design dependencies in a design structure matrix. The dependencies show
which implementation aspects of a data source influence the process design, and
which aspects only impact the internal design of the data source. Consider the
partly DSM for the construction premium example process in Table 2. In this
table, processes and data sources (DS) are considered to be modules. A sample
is taken from the aspects of data and process implementations which have been
mentioned in the case study interview. These aspects are represented as design
parameters. The “x”-es on a grey background represent the design dependencies
discussed in Section 3. The data syntax used in the process depends on the data
syntax used by the data source, and data retrieval of the process depends on
the data delivery of the data source. Since every single process needs to access
data directly from different sources, the data syntax used in that process is de-
pendent of every data source it uses. Therefore, design dependencies can exist
between the process modules and multiple data source module instances. When
data syntax differs between two data sources, the process has to be capable of
working with these two different syntaxes, for example by providing a conver-
sion mechanism. The same reasoning goes for data delivery: the process has to
be able to interpret XML responses from webservices, as well as read physical
files delivered by FTP. In other words, the process needs to be aware of the pos-
sible implementations of different aspects of the data sources, and account for all

114 P. Huysmans, K. Ven, and J. Verelst

these variations. Implementing and maintaining multiple versions for all aspects
results in additional complexity, which is not inherent to the process itself.

This DSM shows that various aspects need to be considered for both data
sources. However, when additional data sources are needed, additional depen-
dencies will be added. Consequently, a process change which requires an addi-
tional data source can result in additional implementations of all the mentioned
data design parameters on which aspects of the process module depends. More-
over, additional implementations may be necessary when a data source changes
a certain design option. The occurrence of design dependencies therefore can
force a module to adapt to changes in modules outside its control.

Using the design structure matrix, we can explicitly identify sources of inter-
actions between modules, and explain why complexity exists in the integration
of these modules in systems. Doing so objectivates the issues which need to be
addressed by the DUGP project. Moreover, while the same issues have been
identified by knowledgeable and experienced employees, an analysis using DSM
seems to be more structured, and therefore more repeatable. A respondent con-
firmed that “while these dependencies are known as critical problems in the
heads of our experienced analysts, we have no way of documenting them, or
capturing them when an analyst leaves our team.”

4.2 Solutions Proposed by Modularity

The illustrated dependencies reveal that relevant modules can be identified, and
that it makes sense to consider the data and processes as a modular structure
in order to provide a precise problem description. The modular structure of pro-
cesses and data sources before the DUGP project was tightly coupled, as shown
by the identified dependencies. The goal of the project is thus to enable the mod-
ules to be more loosely coupled. Only then, traditional modularity benefits and
modular operators can be applied. For example, modularity promises to enable
concurrent upgrade processes. In this case, processes will be able to implement
changes without being restricted by implementation aspects of data sources. The
specification of a new process to realize e-government goals (adding a module to
the modular structure), or a reorganization of the data sources because of new
regulations (splitting modules) will not interfere with the operation of existing
processes.

According to Baldwin and Clark [6], architectural rules have to be defined in
order to eliminate dependencies. By restricting design freedom, a uniform solu-
tion can be enforced. In this case, this would eliminate the need to use multiple
implementations for a given design option. For example, data delivery could be
restricted to web services, or a reference model could be imposed which ensures
a common data syntax. For every dependency which occurs between two differ-
ent modules, an architectural rule needs to be defined. If all dependencies are
handled this way, design dependencies will only occur within modules. Archi-
tectural rules need to be specified by a central organizational unit which has
authority on the level and scope which the rule applies to. Here, the responsibil-
ity for implementing the design options according to the architectural rules can

Modularity in EA Projects: An Exploratory Case Study 115

be attributed to the organizations responsible for the data sources. Because of
the political situation, the various data sources fall under the responsibility of
different governmental entities. Currently, no central organizational entity exists
which could decide and impose architectural rules to the organizations govern-
ing the data sources. A respondent agrees that “central control is necessary to
impose such rules”. He further notes that “however, the government resembles
more a constellation of SME’s, instead of one large organization.” An agreement
between all governmental units would need be reached to establish any architec-
tural rule. However, most organizations have legacy systems, which are difficult
to change. As a result, they are not inclined to accept the introduction of such
architectural rules. Consequently, we can conclude that the traditional solution
suggested by modularity theory is not feasible in this case.

In order to be able to offer data access which adheres to architectural rules,
an intermediary platform needs to be built, which will be controlled by the
e-government organization. The platform which is build can therefore be con-
sidered to be an additional module, which adheres to architectural rules defined
by the organization. In the following subsection, we analyze this platform from
a modularity viewpoint.

4.3 DUGP Project Analysis

To analyze the implemented solution as a modular structure, we consider pro-
cesses, data sources (DS) and the developed platform as modules. These mod-
ules are shown in the design structure matrix in Table 3, The goal of the DUGP
project is to eliminate dependencies between the data source and process mod-
ules. When comparing the platform with the design structure matrix in Table 2,
we can conclude that some of these dependencies are indeed eliminated. Con-
sider for example the data syntax and data delivery. We included an empty grey
background to mark the previous existence of these dependencies. The syntax
of webservices offered by EDSI is decoupled from the naming conventions of the
DSI by using a facade pattern. As a result, naming conventions can be kept inter-
nally consistent with custom-built webservices for EDSO. The data syntax can
be considered as an architectural rule which is maintained by the e-government
organization. By adhering to this data syntax, process owners no longer need
conversions between different data syntax versions. Another example is the data
delivery design. In data sources from the platform, data can be provided through
customized data repositories, an online application or webservices. Here, a sin-
gle design option has not been selected, but the consistent offering of all data
delivery techniques allows process owners to implement a single design for data
delivery. Again, process owners no longer depend on the specific data delivery
technique of the individual data sources. Consequently, it seems that the plat-
form aids to decouple the process owners from the design decision of the data
sources.

However, as stated by Baldwin and Clark, eliminating all dependencies in a
modular structure is not a trivial task [6]. Consider the design option process
throughput in the case of an automated process. Our respondents indicated that

116 P. Huysmans, K. Ven, and J. Verelst

Table 3. Design Structure Matrix for the developed platform

Process Platform DS

P
.
T

h
ro

u
g
h
p
u
t

D
a
ta

R
et

ri
ev

a
l

D
a
ta

S
y
n
ta

x
D

a
ta

D
ic

ti
o
n
a
ry

C
a
p
a
ci

ty
D

a
ta

D
el

iv
er

y
D

a
ta

S
y
n
ta

x
D

a
ta

D
ic

ti
o
n
a
ry

C
a
p
a
ci

ty
D

a
ta

D
el

iv
er

y
D

a
ta

S
y
n
ta

x
D

a
ta

D
ic

ti
o
n
a
ry

P
ro

ce
ss

Process Throughput . x x
Data Retrieval x . x x
Data Syntax x . x x
Data Dictionary . x x

P
la

tf
o
rm

Capacity . x x x
Data Delivery x . x x
Data Syntax x . x x
Data Dictionary x x . x x

D
S

Capacity . x x
Data Delivery x . x
Data Syntax x . x
Data Dictionary x .

the number of processes which can be supported is limited by, amongst others,
the capacity of the data delivery implementation. In Table 3, this is visualized by
the “x” where the column of the capacity of the platform intersects with the row
of process throughput. A possible data delivery implementation in the platform
are webservices. As described above, webservices from the platform can be either
custom-built by the e-government organization (e.g., webservices for EDSO), or
can be part of a facade-pattern, calling underlying webservices (e.g., webservices
for EDSI). The custom-built webservices operate on a local database. Conse-
quently, their capacity is limited by the servers of the e-government organization
itself. However, webservices which are part of the facade pattern are dependent
on the capacity of the underlying services of DSI. Based on the implementation,
issues with webservice capacity need to be discussed with the e-government or-
ganization or with the organization responsible for the original data source. The
difference between the implementation of webservices in the platform is based
on the available data delivery techniques from the original data sources. In Ta-
ble 3, this is visualized by the “x” where the column of the data delivery of
a data source intersects with row of the capacity of the platform. It therefore
seems that an unexpected dependency can be identified: when the platform is
used, the process throughput design decision is impacted by the data delivery
technique of the original date source. When the data delivery of DSO is changed
(e.g., webservices become available) and used by the platform, process perfor-
mance may be impacted. This is an example of a chained design dependency
which propagates through the design structure matrix. Such dependencies are
difficult to trace and to account for in change projects.

Modularity in EA Projects: An Exploratory Case Study 117

5 Discussion

The project under review aims to decouple organizational artifacts in order to
introduce flexibility for governmental organizations. By introducing a platform as
an architectural layer between data sources and processes, the impact of a change
on the process level or variability on the data level is kept minimal. Such projects
are usually perceived to be rather complex. In this case study, we explored the use
of an approach using traditional modularity tools. We illustrated our approach
with partly design structure matrices to illustrate the key contributions of this
approach. While we do not claim to be able to generalize our results based on a
single case study, we conclude that a modularity approach proved useful in this
project. More specifically, we identified following advantages.

First, the identified dependencies in the design structure matrix allow for a
more structured and objective analysis of the problem description. In Section 4.1,
it is shown that the occurrence of dependencies between the process and data
source modules introduce complexity from the data sources to the process level.
Since this complexity does not belong to the process level, it is perceived by pro-
cess owners as an important barrier for the use of the data sources. Therefore,
the data sources were underused, and process owners relied instead on the cre-
ation and use of unauthorized data sources. Put differently, these dependencies
show that the data sources could not be used as black box modules. The design
options which have an impact on the process module indicate which aspects ne-
cessitate a white box view on the data sources. Enterprise Engineering advocates
a strict distinction between these two views [4]. However, the occurrence of de-
sign dependencies prohibits the use of a strict black box view. Second, additional
dependencies have been identified through the structured analysis of the design
structure matrix. By identifying relevant design options and checking their in-
teraction with design options of related modules, issues can be discovered which
are not clearly present. Indeed, without an explicit modularity perspective, it is
unlikely that a perfect modular structure would be designed. More specifically,
the occurrence of chained dependencies can be expected to be discovered more
easily through an analysis using a design structure matrix. Third, expected risks
when implementing a certain design can be estimated more easily. For example,
modularity theory suggests to eliminate existing dependencies by specifying ar-
chitectural rules. By selecting a single option for a design option, all modules
can assume a stable design decision for that option. However, for the data deliv-
ery design option, the choice was made to support three different design options
(custom repositories, an online application and webservices). This design deci-
sion deviates explicitly from the solution proposed by modularity. Consequently,
additional effort will need to be attributed to this design option to prevent it
from impacting the process module. Concretely, the e-government organization
needs to keep supporting three different data delivery implementations equally,
instead of a single one.

Nonetheless, the analysis shows that the DUGP project indeed improved mod-
ularity. Moreover, the identified benefits indicate the this modularity approach
can be useful in such projects. However, the nature of organizations is quite

118 P. Huysmans, K. Ven, and J. Verelst

different from other artifacts which modularity has been applied to. Therefore,
it can be expected that an identical application of modularity as in other fields
is not feasible. In this case study, it is clear that the division of authority among
various organizations made the specification of organization-wide architectural
rules impossible. Consequently, the e-government organization needed to intro-
duce an additional module to eliminate the direct dependencies between data
sources. The developed platform therefore needs to interact with data sources,
and present the required functionality to process owners without exporting non-
relevant aspects. Many dependencies have been eliminated by this solution. How-
ever, the disadvantage is that the creation of a new module which interacts with
other modules can also introduce new dependencies. Because of the integration
with multiple modules, especially the risk for introducing chained dependencies
increases. These dependencies are much harder to identify and to remedy than
direct dependencies. Moreover, the introduction of the e-government organiza-
tion as an intermediary organization makes the structure more complex and less
transparent: we discussed how in case of poor process throughput, it is unclear
which organization needs to be addressed.

The lessons learned from this case study can be used to understand how enter-
prise architecture frameworks can support complex projects. Consider for exam-
ple the organizational processes in this case study. While they can be separately
represented in a process model view in an enterprise architecture framework,
their concrete implementation incorporates many aspects of elements from other
organizational levels. While analysis and communication can be supported by
process models, it is, ultimately, this implementation that needs to be adapted.
Exactly these interactions are made explicit using a modularity approach. By fo-
cussing on decoupling modules, the complexity which is not inherent to that level
is eliminated. If all dependencies with modules from other levels could be elimi-
nated, only the complexity inherent to the process level would remain. However,
the general use of modularity tools such as the design structure matrix may be
too vague to apply directly in enterprise architecture projects. Therefore, guide-
lines are needed to support the design of decoupled organizational artifacts. In
an organizational context, the use of such design rules is proposed by prescrip-
tive enterprise architectures. In a prescriptive enterprise architecture, principles
have to be defined by the organization, which have to be adhered to during the
design of any organizational artifact. This is in line with the definition of archi-
tecture in Enterprise Engineering, which states that “an architecture consists of
normative principles which guide the development of an enterprise” [4]. In most
frameworks, these principles are considered to ensure the implementation of an
organization-specific strategy. Consequently, it is assumed that such guidelines
need to be created by the organization itself. Currently, no design rules or prin-
ciples have been proposed to achieve certain characteristics independent of the
organization. For example, no guidelines exist in prescriptive enterprise archi-
tecture frameworks to design an evolvable organization. Such guidelines are not
present in descriptive enterprise architecture frameworks either. When position-
ing the DUGP project in an descriptive enterprise architecture framework, it

Modularity in EA Projects: An Exploratory Case Study 119

seems to have a clear focus. Consider the Zachman Framework. The complexity
addressed in this project is located in the logical and physical layer of the data
column. In the logical layer, the specific data entities and data relationships are
described. The implementation of the entities and relationships is described in
the physical layer. The different methods to deliver the data would be described
in the function column of these layers. Positioning these elements in the frame-
work could help to identify relevant module candidates, but does not provide
any insight regarding design dependencies. The Zachman framework only claims
to be a taxonomy to position organizational models, and does not define any
requirements for the specific models. The ability to identify design dependencies
has to be provided by a relevant modeling method. Therefore, we can conclude
that the approach used in this paper is supplementary to the use of prescriptive
and descriptive enterprise architecture frameworks.

6 Conclusion and Future Research

This paper illustrates the potential of Enterprise Engineering: knowledge which
exists and is applied in other fields can aid to remedy organizational issues. The
current methods which are used in this context are usually not supported by
an integrating theory, which inherently limits their general applicability. In our
research, we consider modularity as a candidate for such an integrating theory.
However, organizations are, by nature, quite different than artifacts tradition-
ally used in modularity approaches. Therefore, researchers should focus more on
the precise implications of modularity. For example, this case study illustrated
that an organizational structure cannot be considered to be modular just be-
cause it consists of separate organizations. If no architectural rules are applied
to ensure consistent interoperability, none of the benefits associated with mod-
ular structures will be achieved. In [10], it is indeed argued that “controversies
and ambiguities on how modularity should be defined, measured and used in
managerially meaningful ways” still exist. We will therefore continue to use a
bottom-up perspective in our future research. By analyzing additional projects
on different organizational levels, we strive for a better insight of organizational
modularity and its impact on the use of enterprise architecture frameworks.

References

1. Teece, D.J., Pisano, G., Shuen, A.: Dynamic capabilities and strategic management.
Strategic Management Journal 18(7), 509–533 (1997)

2. Eisenhardt, K.M., Martin, J.A.: Dynamic capabilities: What are they? Strategic
Management Journal 21(10/11), 1105–1121 (2000)

3. Van de Ven Andrew, H., Harold, L.A.: An Introduction to the Minnesota Innovation
Research Program. Oxford University Press, New York (2000)

4. Dietz, J.L.G.: Enterprise Engineering Manifesto.,
http://ciaonetwork.org/publications/EEManifesto.pdf

5. Sanchez, R., Mahoney, J.T.: Modularity, flexibility, and knowledge management in
product and organization design. Strategic Management Journal 17, 63–76 (1996)

http://ciaonetwork.org/publications/EEManifesto.pdf

120 P. Huysmans, K. Ven, and J. Verelst

6. Baldwin, C.Y., Clark, K.B.: Design Rules. The Power of Modularity, volume 1 of
MIT Press Books, vol. 1. The MIT Press, Cambridge (January 2000)

7. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

8. Salvador, F., Forza, C., Rungtusanatham, M.: Modularity, product variety, pro-
duction volume, and component sourcing: theorizing beyond generic prescriptions.
Journal of Operations Management 20(5), 549–575 (2002)

9. Fixson, S.K.: Product architecture assessment: a tool to link product, process,
and supply chain design decisions. Journal of Operations Management. 23(3-4),
345–369 (2005); Coordinating Product Design, Process Design and Supply Chain
Design Decisions

10. Campagnolo, D., Camuffo, A.: The concept of modularity in management studies:
A literature review. International Journal of Management Reviews (2010)

11. Tiwana, A.: Does interfirm modularity complement ignorance? a field study of
software outsourcing alliances. Strategic Management Journal 29(11), 1241–1252
(2008)

12. Douglas Orton, J., Weick, K.E.: Loosely coupled systems: A reconceptualization.
The Academy of Management Review 15(2), 203–223 (1990)

13. Hoetker, G.: Do modular products lead to modular organizations? Strategic Man-
agement Journal 27(6), 501–518 (2006)

14. Galvin, P., Morkel, A.: Modularity on industry structure: The case of the world
the effect of product bicycle industry. Industry & Innovation 8(1), 31–47 (2001)

15. Chesbrough, H.W., Kusunoki, K.: The modularity trap: innovation, technology
phase-shifts and the resulting limits of virtual organisations, pp. 202–230. Sage,
Thousand Oaks (2001)

16. Berger, S.: How We Compete: What Companies Around the World Are Doing to
Make it in Today’s Global Economy, doubleday (2005)

17. Baldwin, C.Y., Clark, K.B.: The value, costs and organizational consequences of
modularity. Working Paper (May 2003)

18. Baldwin, C.Y.: Where do transactions come from? modularity, transactions, and
the boundaries of firms. Industrial and Corporate Change 17(1), 155–195 (2008)

19. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg
(May 2006)

Author Index

Albani, Antonia 46
Aveiro, David 16

Barjis, Joseph 46
Buckl, Sabine 91

de Jong, Joop 1
Dietz, Jan L.G. 76

Gerber, Aurona 61

Hoogervorst, Jan A.P. 76
Huysmans, Philip 106

Jacobs, Dina 61

Kotzé, Paula 61
Krouwel, Marien R. 31

Matthes, Florian 91

Op ’t Land, Martin 31

Schweda, Christian M. 91
Silva, António Rito 16

Tribolet, José 16

van der Merwe, Alta 61
Ven, Kris 106
Verelst, Jan 106

Wang, Yan 46

	Title
	Preface
	Organization
	Table of Contents
	Designing Organizations with DEMO
	Designing the Information Organization from Ontological Perspective
	Introduction
	Summary of the $ψ$-Theory
	The Way of Working
	Introduction
	Determining Information Functions
	Analyzing Information Functions
	Remembering by Business Actors
	Modeling Information Processes

	Conclusion and Further Research
	References

	Control Organization: A DEMO Based Specification and Extension
	Introduction
	Problem, Motivation and Related Work
	Applying DEMO to Specify the Control Organization
	Measures and Viability Norms Table
	Control Responsibilities Table
	Exceptions and Resilience Strategies Table
	Dysfunctions Table
	Dysfunction Diagnosis and Actions Table

	Conclusions
	References

	Combining DEMO with Other Methods
	Combining DEMO and Normalized Systems for Developing Agile Enterprise Information Systems
	Introduction
	Theoretical Background
	DEMO
	Normalized Systems

	Theoretical Comparison
	Enterprise Ontology of the Dutch Governmental Subsidy Schemes
	Deriving a Normalized System from an Enterprise Ontology
	Implementation Freedom
	Conclusions and Future Research
	References

	Transformation of DEMO Metamodel into XML Schema
	Introduction
	Model Transformation
	DEMO Metamodel
	Meta State Model (MSM)
	Meta Construction Model (MCM)

	Transformation Rules
	Selection Rules
	Structuring Rules
	Mapping Rules

	Exemplary Case
	Evaluation
	Verification
	Usefulness

	Conclusion
	References

	Studies in Enterprise Architecture
	Enterprise Architecture for Small and Medium Enterprise Growth
	Introduction
	Background
	Small and Medium Enterprises (SMEs)
	SME Growth Stage Models
	Enterprise Architecture

	The Proposed SMEAG Model
	The SMEAG Fact Sheet
	The SMEAG Work Sheet
	The SMEAG Operating Core Diagram

	Case Study
	Case Study Background
	Stage vs. State Problem Confirmation
	SMEAG Model
	Discussion

	Conclusion
	References

	A Critical Investigation of TOGAF – Based on the Enterprise Engineering Theory and Practice
	Introduction
	The Theoretical Basis for Enterprise Design
	The Notion of System
	The Notion of Architecture and Architecture Framework
	The Generic System Development Process
	Enterprise and Enterprise Architecture

	Assessing TOGAF
	Conclusions
	References

	A Method to Develop EA Modeling Languages Using Practice-Proven Solutions
	Motivation and Overview
	EA Modeling: Theoretic Foundations and State-of-the-Art
	Designing an EA Modeling Language
	Exemplifying the Design Approach
	Conclusion and Outlook
	References

	Modularity in Enterprise Architecture Projects: An Exploratory Case Study
	Introduction
	Theoretical Foundation
	Organizational Modularity
	Enterprise Architecture
	Baldwin and Clark

	Case Description
	Application of Modularity
	Modeling Data Sources and Processes before the DUGP-Project
	Solutions Proposed by Modularity
	DUGP Project Analysis

	Discussion
	Conclusion and Future Research
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

