

Lecture Notes in Artificial Intelligence 6301
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Thomas Sturm Christoph Zengler (Eds.)

Automated Deduction
in Geometry

7th International Workshop, ADG 2008
Shanghai, China, September 22-24, 2008
Revised Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Thomas Sturm
Max-Planck-Institut für Informatik, RG 1: Automation of Logic
66123 Saarbrücken, Germany
E-mail: sturm@mpi-inf.mpg.de

Christoph Zengler
Universität Tübingen
Wilhelm-Schickard-Institut für Informatik
Symbolic Computation Group
72076 Tübingen, Germany
E-mail: christoph@zengler.eu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21045-7 e-ISBN 978-3-642-21046-4
DOI 10.1007/978-3-642-21046-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926785

CR Subject Classification (1998): I.2.3, I.3.5, F.4.1, G.2-3, D.2.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Automated Deduction in Geometry (ADG) 2008 continued an established and
fruitful series of biannual international workshops in that area. Previous meet-
ings have taken place in Toulouse (1996), Beijing (1998), Zurich (2000), Linz
(2002), Gainesville (2004), and Pontevedra (2006). The seventh workshop was
held at the East China Normal University (ECNU) in Shanghai during Septem-
ber 22–24, 2008. ADG 2008 was co-organized by the CAS-MPG Partner Institute
for Computational Biology, the Shanghai Institute of Biology Sciences, and the
Chinese Academy of Sciences.

While the ADG workshops themselves are quite open also for the informal
discussion of work in progress, the selected contributions for the proceedings
generally undergo a very thorough and highly selective reviewing process. This
publication in the LNAI series of selected papers from 2008 continues a tradition
established with the first ADG in 1996.

As the Chair of the Program Committee, I would like to thank in the first
place all PC members, who are listed on the next page, for their competence
and dedication during two refereeing processes: first for the workshop contri-
butions and then for the selected papers published here; all this comprised a
considerable timespan. Zhenbing Zeng did a perfect job with the local organiza-
tion at the exceptionally interesting location in Shanghai. Manual Kauers and
Christoph Zengler greatly supported me with the organization of the online re-
viewing process and the preparation of these proceedings. Jesús Escribano and
Miguel Abánades created and maintained a beautiful and informative website,
which was most helpful for the organizers as well as for the attendees of the
workshop. Last but not least, I particularly want to thank Tomás Recio and
Dongming Wang for their advice that has accompanied my organizational work
for more than two years.

March 2011 Thomas Sturm

Organization

Invited Speakers

Shang-Ching Chou Wichita State University, USA/Zhejiang
University, China

Tetsuo Ida University of Tsukuba, Japan

Organizing Committee

Zhengbing Zeng Shanghai, China, Chair
Miguel A. Abánades Madrid, Spain
Jesús Escribano Madrid, Spain
Christoph Zengler Tübingen, Germany

Program Committee

Thomas Sturm MPI-INF, Saarbrücken, Germany, Chair
Hirokazu Anai Fujitsu Lab, Japan
Francisco Botana Pontevedra, Spain
Christopher Brown Annapolis, USA
Giorgio Dalzotto Pisa, Italy
Jacques Fleuriot Edinburgh, UK
Xiao-Shan Gao Beijing, China
Hoon Hong Raleigh, USA
Deepak Kapur Albuquerque, USA
Manuel Kauers Linz, Austria
Montserrat Manubens Barcelona, Spain
Pavel Pech Ceske Budejovice, Czech Republic
Tomás Recio Santander, Spain
Georg Regensburger Linz, Austria
Jürgen Richter-Gebert Munich, Germany
Pascal Schreck Strasbourg, France
Meera Sitharam Gainesville, USA)
Dongming Wang Beijing, China/Paris, France
Min Wu Shanghai, China
Bican Xia Beijing, China
Zhenbing Zeng Shanghai, China

Table of Contents

Contributed Papers

Dynamical Systems of Simplices in Dimension Two or Three 1
Gérald Bourgeois and Sébastien Orange

On the Design and Implementation of a Geometric Knowledge Base 22
Xiaoyu Chen, Ying Huang, and Dongming Wang

Proof Certificates for Algebra and Their Application to Automatic
Geometry Theorem Proving . 42

Benjamin Grégoire, Löıc Pottier, and Laurent Théry

Multivariate Resultants in Bernstein Basis . 60
Deepak Kapur and Manfred Minimair

Unique Factorization Domains in the Java Computer Algebra System . . . 86
Heinz Kredel

Automatic Verification of the Adequacy of Models for Families of
Geometric Objects . 116

Aless Lasaruk and Thomas Sturm

Formalizing Projective Plane Geometry in Coq . 141
Nicolas Magaud, Julien Narboux, and Pascal Schreck

Linear Programming for Bernstein Based Solvers . 163
Dominique Michelucci and Christoph Fünfzig

Offsetting Revolution Surfaces . 179
Fernando San Segundo and J. Rafael Sendra

An Introduction to Java Geometry Expert (Extended Abstract) 189
Zheng Ye, Shang-Ching Chou, and Xiao-Shan Gao

On the Heilbronn Optimal Configuration of Seven Points in the
Square . 196

Zhenbing Zeng and Liangyu Chen

Author Index . 225

Dynamical Systems of Simplices in

Dimension Two or Three

Gérald Bourgeois1 and Sébastien Orange2

1 GAATI, Université de la polynésie française, BP 6570, 98702 FAA’A, Tahiti,
Polynésie Française

bourgeois.gerald@gmail.com
2 LMAH, Université du Havre, 25 rue Philippe Lebon, 76600 Le Havre, France

Sebastien.Orange@univ-lehavre.fr

Abstract. Let T0 = (A0B0C0D0) be a tetrahedron, G0 be its centroid
and S be its circumsphere. Let (A1, B1, C1, D1) be the points where S
intersects the lines (G0A0, G0B0, G0C0, G0D0) and T1 be the tetrahe-
dron (A1B1C1D1). By iterating this construction, a discrete dynamical
system of tetrahedra (Ti) is built. The even and odd subsequences of
(Ti) converge to two isosceles tetrahedra with at least a geometric speed.
Moreover, we give an explicit expression of the lengths of the edges of the
limit. We study the similar problem where T0 is a planar cyclic quadri-
lateral. Then (Ti) converges to a rectangle with at least geometric speed.
Finally, we consider the case where T0 is a triangle. Then the even and
odd subsequences of (Ti) converge to two equilateral triangles with at
least a quadratic speed. The proofs are largely algebraic and use Gröbner
bases computations.

Keywords: Dynamical systems, Gröbner basis, Tetrahedron.

MSC: Primary 51F, 13P10, 37B.

1 Introduction

Notation. Let M, N be two points of Rd. The Euclidean norm of the vector−−→
MN is denoted by MN .

1.1 The General Problem

Let T0 = (A0,0 · · ·A0,d) be a d-simplex, G0 be its centroid, S be its circumsphere
in Rd, O be the center of S. For all 0 ≤ i ≤ d the line G0A0,i intersects S
in two points A0,i and A1,i. Let T1 be the d-simplex (A1,0 · · ·A1,d), and G1 be
its centroid. If we iterate this process then we produce a dynamical system of
d-simplices (Ti)i∈N with centroids (Gi)i∈N.

Using Maple, numerical investigations with thousands of random simplices in
dimensions up to 20 indicate that the following results seem true1:

1 Private communication with A. Edmonds (Indiana University).

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 1–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 G. Bourgeois and S. Orange

1. The sequence (OGi)i∈N is decreasing and tends to 0.
2. The sequences (T2i)i∈N and (T2i+1)i∈N converge to two d-simplices with cen-

troid O.

The questions 1. and 2. are known, but it seems to us that no literature is
available about these problems in the case d ≥ 3. The case d = 2 was considered
in [2] by the first author. Here we give an other proof, that is essentially algebraic.
Moreover, we obtain a better estimate for OGn. In this article, we prove also,
and this is the main result, the assertions 1. and 2. in the case d = 3. Moreover,
similar results are proved for cyclic quadrilaterals as a degenerate case of the
previous one.

1.2 The Case d = 3

The tetrahedron T0 is not planar. Therefore, for every i ∈ N, Ti = (AiBiCiDi)
is a tetrahedron such that its four vertices are not coplanar. These vertices are
ordered and Ti is viewed as a point of S4. Let φ (resp. ψ) be the function which
transforms T0 into T1 (resp. G1).

Remark 1.

1. T1 is the image of T0 by an inversion that leaves S globally invariant.
2. φ admits no non-planar tetrahedron as fixed point.
3. If T is an isosceles tetrahedron then T is a fixed point of φ ◦ φ.

Our main results are as follows.
The sequences (T2i)i∈N and (T2i+1)i∈N are well-defined and converge, with at

least geometric speed. Their limits are two non-planar isosceles tetrahedra that
are symmetric with respect to O. We consider also the degenerate case where T0

is a planar cyclic convex quadrilateral. Then, the sequence (Ti)i∈N converges to
a rectangle, with at least geometric speed. If T0 is a harmonic quadrilateral then
the limit is a square. We conjecture that the convergence is with order three.
Moreover, in both cases, we give explicit expressions for the lengths of the edges
of the limit from the ones of T0.

1.3 The Case d = 2

The triangle T0 is not flat. Therefore for every i ∈ N, Ti = (AiBiCi) is a triangle
such that its vertices are pairwise distinct.

We prove that the sequences (T2i)i∈N and (T2i+1)i∈N are well-defined and
converge to two equilateral triangles that are symmetric with respect to O.
Moreover, these sequences converge with at least quadratic speed.

Numerical investigations show that the convergence is much faster in dimen-
sion two than in dimension three.

1.4 Computational Aspects of the Proofs

Along this paper, we use rational functions of the square of the lengths of the
edges of the d-simplices. Naturally some systems of polynomial equations ap-
pear. Computations with such systems require Gröbner bases softwares. They

Dynamical Systems of Simplices in Dimension Two or Three 3

are performed by using the J. C. Faugere’s software “FGb”2 and the computer
algebra system Maple.

Considering a fixed geometrical configuration, several authors used Gröbner
bases for solving geometric constraints (see [6] and [9]). On the other hand, we
do not know any paper using Gröbner bases in order to study discrete dynamical
systems in Euclidean geometry.

2 Standard Definitions and Results about Tetrahedra

2.1 General Tetrahedra

Let T = (ABCD) be a tetrahedron and G be its centroid and V(T) be its
volume.

Notations, assumptions:

1. In the case where A, B, C, D are not coplanar, we denote by O the center of
the circumsphere of S. Moreover we assume that its radius is 1.

2. In the case where A, B, C, D are coplanar, we assume that ABCD is a cyclic
quadrilateral. We denote by O the center of the circumcircle of T . Moreover,
we assume that its radius is 1.

3. Let BC = a, CA = b, AB = c, AD = a′, BD = b′, CD = c′. Note that the
3-tuple (a, b, c) does not play the same role as (a′, b′, c′).

Proposition 2. We have

1. OG2 = 1− 1
16

(a2 + b2 + c2 + a′2 + b′2 + c′2)

= 1− 1
4
(GA2 + GB2 + GC2 + GD2).

2. GA2 =
3
16

(a′2 + b2 + c2)− 1
16

(a2 + b′2 + c′2),

GB2 =
3
16

(b′2 + c2 + a2)− 1
16

(b2 + c′2 + a′2),

GC2 =
3
16

(c′2 + a2 + b2)− 1
16

(c2 + a′2 + b′2),

GD2 =
3
16

(a′2 + b′2 + c′2)− 1
16

(a2 + b2 + c2).

Proof. 1. See [1, p. 64].
2. See [7]. ��

Notations.

1. For all u, v, w ∈ R3, Gram(u, v, w) denotes the Gram matrix of these three
vectors.

2 J.C. Faugère, LIP6, Paris 6. The FGb software can be downloaded from the website:
www-calfor.lip6.fr/∼ jcf/. It is included in Maple 13.

4 G. Bourgeois and S. Orange

2. We denote by Γ (A, B, C, D) the Cayley-Menger determinant

det

⎛
⎜⎜⎜⎜⎝

0 1 1 1 1
1 0 c2 b2 a′2

1 c2 0 a2 b′2

1 b2 a2 0 c′2

1 a′2 b′2 c′2 0

⎞
⎟⎟⎟⎟⎠ .

3. We denote by Δ(A, B, C, D) the determinant det

⎛
⎜⎜⎝

0 c2 b2 a′2

c2 0 a2 b′2

b2 a2 0 c′2

a′2 b′2 c′2 0

⎞
⎟⎟⎠ .

Proposition 3. We have:

1. 288×V(T)2 = 8×det
(
Gram

(−−→
AB,

−→
AC,

−−→
AD

))
= Γ (A, B, C, D). Therefore,

A, B, C, D are not coplanar if and only if Γ (A, B, C, D) > 0.
2. Δ(A, B, C, D) = −2Γ (A, B, C, D).

3. det

⎛
⎜⎜⎜⎜⎝

1/2 1 1 1 1
1 0 c2 b2 a′2

1 c2 0 a2 b′2

1 b2 a2 0 c′2

1 a′2 b′2 c′2 0

⎞
⎟⎟⎟⎟⎠ = 0.

Proof. 1. and 2. See [7].
3. Follows directly from 2. ��

Proposition 4. The expression Pt(T) = −Δ(A, B, C, D) has the following pro-
perties:

1. Pt(T) = (bb′ + cc′ − aa′)(cc′ + aa′ − bb′)(aa′ + bb′ − cc′)(aa′ + bb′ + cc′)
= 2a2a′2b2b′2 + 2b2b′2c2c′2 + 2c2c′2a2a′2 − a4a′4 − b4b′4 − c4c′4.

2. If T is not planar then each factor of the product appearing in 1. is positive
(Ptolemy’s inequality). Moreover Pt(T) = 576× V(T)2 .

3. If T is a cyclic quadrilateral then Pt(T) = 0.

Proof. See [3] or [7]. ��

Remark 5. Recall the relation:

16× S2 = 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4, (1)

where S is the area of a triangle with lengths of the edges a, b, c.

2.2 Isosceles Tetrahedra

Definition 6. The tetrahedron T is said to be isosceles (or equifacetal) if

a = a′, b = b′ and c = c′.

Remark 7. A planar isosceles tetrahedron is a rectangle.

Dynamical Systems of Simplices in Dimension Two or Three 5

Proposition 8. 1. The tetrahedron T is isosceles if and only if G = O.
2. If T is isosceles then 72 V2(T) = (b2 + c2 − a2)(c2 + a2 − b2)(a2 + b2 − c2)

and a2 ≤ b2 + c2, b2 ≤ c2 + a2, c2 ≤ a2 + b2.
3. One has aa′ + bb′ + cc′ ≤ 8. Moreover, T is isosceles if and only if

aa′ + bb′ + cc′ = 8 .

Proof. See [7]. ��
The following result is a direct consequence of Proposition 8 and Proposition 2.

Proposition 9. The tetrahedron T is isosceles if and only if

GA = GB = GC = GD .

3 Deformation from T0 to T1 (d = 3)

3.1 Parameters and Notations

We adapt our previous notations. Let n ∈ N and An, Bn, Cn, Dn be the vertices
of the tetrahedron Tn. We assume only that An, Bn, Cn, Dn are not all equal.
Then the functions φ, ψ are continuous in Tn.
Definition 10. The quantities dn

12 = AnBn
2, dn

13 = AnCn
2, dn

14 = AnDn
2,

dn
23 = BnCn

2, dn
24 = BnDn

2, dn
34 = CnDn

2 are called the parameters of the
tetrahedron Tn.

Notations.

1. To simplify the notations, in the case n = 0, we denote the parameters d0
ij

′
s

by the dij
′s (1 ≤ i < j ≤ 4).

2. We put g1 = G0A0
2, g2 = G0B0

2, g3 = G0C0
2 and g4 = G0D0

2.
3. The opposites of the powers of the points G0 and G1 with respect to S are

denoted by

p0 = 1−OG0
2 =

1
4
(g1 + g2 + g3 + g4) and p1.

According to Proposition 2, the gi
′s (1 ≤ i ≤ 4) and p0 are polynomial functions

of the dij
′s (1 ≤ i < j ≤ 4).

Proposition 11. 1. For all 1 ≤ i < j ≤ 4, d1
ij = p0

2 dij

gigj
.

2. The equality p1 =
p0

2

16
∑

1≤i<j≤4

dij

gigj
holds.

3. OG0
2 and OG1

2 are rational functions of the dij
′s (1 ≤ i < j ≤ 4).

Proof. Assertion 1. Clearly, G0A0 × G0A1 = p0 and G0A1
2 =

p0
2

g1
. Since the

triangles (G0A0B0) and (G0B1A1) are similar, one has
A1B1

A0B0
=

G0A1

G0B0
and

A1B1
2 = d12

p0
2

g1g2
.

Finally, assertion 2. follows from 1. and 3. follows from 2. ��

6 G. Bourgeois and S. Orange

3.2 Inequalities

The first key point is the following.

Theorem 12. We have the inequalities:

1. OG1 ≤ OG0,
2. for all (ijkl) ∈ {(1234), (1324), (1423)}, dijdkl ≤ d1

ijd
1
kl,

3. Pt(T0) ≤ Pt(T1).

Moreover, if one of these inequalities is an equality then T0 is an isosceles tetra-
hedron.

Proof. 1. One may assume that g1 ≥ g2 ≥ g3 ≥ g4 > 0. We replace the variables
g1, g2, g3, g4 with s1, s2, s3, s4 that are defined as follows:

s1 = g1 − g2, s2 = g2 − g3, s3 = g3 − g4 and s4 =
1
g4

.

Obviously, s1, s2, s3 ≥ 0 and s4 > 0. Put E = 64
(p1 − p0)g1g2g3

p0
.

The signum of E is equal to the signum of OG0
2 −OG1

2.
Using the J. C. Faugere’s software “FGb”, and the polynomial expressions of

the gi
′s (1 ≤ i ≤ 4) in the dij

′s (1 ≤ i < j ≤ 4), we compute the Gröbner basis
of the system:

[s1 − g1 + g2, s2 − g2 + g3, s3 − g3 + g4, s4g4 − 1]

for the lexicographical order induced by

d12 > d13 > d14 > d23 > d24 > d34 > s1 > s2 > s3 > s4.

The normal form of E with respect to this Gröbner basis returns this quite
surprising result:

E = d23(s1−s3)2 +16s2
2s

2
3s4 +4d34s1s2 +12s1s

2
2 +4s1s2s3 +20s2s

2
3 +21s2s

3
3s4 +

d24s
2
3 + d34s

2
1 + 4s1s

2
3 + d24s

2
1s3s4 + d34s

2
1s3s4 + 12s3

3 + 2d24s1s2s3s4 + 8s3
2 +

3d24s1s
2
3s4 + 6d34s1s2s3s4 + 4d34s

2
2 + d34s

2
3 + 5d34s

2
2s3s4 + d24s

2
1 + 3d34s1s

2
2s4 +

4s3
2s3s4+3d34s2s

2
3s4+2d24s1s3+12s2

2s3+2d34s1s3+4d34s2s3+9s4
3s4+2d34s

3
2s4+

d34s
2
1s2s4 + s2

1s2s3s4 + 4s1s
2
2s3s4 + s2

1s
2
3s4 + 10s1s2s

2
3s4 + 6s1s

3
3s4 + 3d34s1s

2
3s4.

Obviously, E is a non-negative real. Moreover if E = 0 then s1 = s2 = s3 = 0
and, according to Proposition 9, T0 is an isosceles tetrahedron.

2. Let Λ =
p4
0

g1g2g3g4
. By Proposition 11, d1

ijd
1
kl = Λdijdkl. According to

the inequality of arithmetic and geometric means (AGM), one has Λ ≥ 1 and
dijdkl ≤ d1

ijd
1
kl.

Moreover, if dijdkl = d1
ijd

1
kl then Λ = 1. Again, by AGM inequality, we have

g1 = g2 = g3 = g4 and T0 is an isosceles tetrahedron.
3. A computation gives Pt(T1) = Λ2Pt(T0) and we reason as in 2. ��

Dynamical Systems of Simplices in Dimension Two or Three 7

4 Solution of the Case d = 3. Part 1

In this section we prove that the cluster points of the sequence (Ti)i∈N are
isometric.

Theorem 13. 1. The sequence (OGn)n∈N converges to 0.
2. Let T = (ABCD) be a cluster point of the bounded sequence (Ti)i∈N. Then
T is not planar and is isometric to a fixed isosceles tetrahedron with the
following parameters:
d∞12

2 = Ld12d34, d
∞
13

2 = Ld13d24, d
∞
14

2 = Ld14d23, where

L =
64

(
√

d12d34 +
√

d13d24 +
√

d14d23)2
.

Proof. According to Theorem 12.3., the sequence (Pt(Ti))i∈N is increasing and
positive. For all i ∈ N, the four points Ai, Bi, Ci, Di are not coplanar. Since
for all i ∈ N, Gi /∈ {Ai, Bi, Ci, Di}, the sequence (Ti)i∈N is well-defined and
the functions φ, ψ are continuous in the Ti

′s (i ∈ N). Moreover, the bounded
sequence (Pt(Ti))i∈N converges to a real number Pt0 > 0.

By Theorem 12.1., the bounded sequence (OGn)n∈N is decreasing and con-
verges to r ≥ 0. We can extract a subsequence (Tnk

)k∈N from (Tn)n∈N such that
the sequences (Ank

)k∈N, (Bnk
)k∈N, (Cnk

)k∈N, (Dnk
)k∈N converge to A, B, C, D.

Let T be the tetrahedron (ABCD) and G be its centroid. Therefore (Gnk
)k∈N

converges to G, and we have OG = r and Pt(T) = Pt0. Hence, A, B, C, D
are not coplanar and φ(T) = T ′ = (A′B′C′D′) is well-defined. Let G′ be its
centroid.

Assume that T is not isosceles. Then, Theorem 12.1. implies that OG′ < OG.
Let ε ∈ (0, OG − OG′). Consider α > 0 such that OGn+1 − OG′ < ε as soon
as ||T − Tn|| < α. There exists nk ∈ N such that ||T − Tnk

|| < α. One has
OGnk+1−OG′ < ε and consequently OGnk+1 < OG = r. That is a contradiction.
Therefore, T is isosceles and (OGn)n∈N converges to 0. For every 1 ≤ i < j ≤ 4,
the parameter d∞ij of T is the limit of the sequence (dnk

ij)k∈N.
According to the proof of Theorem 12.1., for a permutation {i, j, k, l} of

{1, 2, 3, 4}, the bounded sequence (dn
ijd

n
kl)n∈N satisfies the equality

dn+1
ij dn+1

kl = Λndn
ijd

n
kl .

The sequence (dn
ijd

n
kl)n∈N is increasing and convergent. Thus, the infinite product

Π∞
n=0Λn converges to L ≥ 1, satisfying the equality d∞ij

2 = Ldijdkl. The relation
d∞12 + d∞13 + d∞14 = 8 gives the explicit value of L as a function in the dij

′s
(1 ≤ i < j ≤ 4). Thus all cluster points have same parameters. ��
Corollary 14. For every 1 ≤ i < j ≤ 4, the sequence (dn

ij)n∈N converges to d∞ij .

Proof. Let U = {(1234), (1324), (1423)}. For (ijkl) ∈ U , the sequence (dn
ijd

n
kl)n∈N

converges to d∞ij
2 and the sequence

(∑
(ijkl)∈U

√
dn

ijd
n
kl

)
n∈N

converges to 8. From

the inequality
2
∑

(ijkl)∈U

√
dn

ijd
n
kl ≤

∑
i<j

dn
ij ≤ 16,

8 G. Bourgeois and S. Orange

we deduce that the sequence
(∑

(ijkl)∈U
(√

dn
ij −

√
dn

kl

)2)
n∈N

converges to 0

and, for (i, j, k, l) ∈ U , the sequence (dn
ij − dn

kl)n∈N converges to 0 too. Therefore
the sequences (dn

ij)n∈N and (dn
kl)n∈N converge to d∞ij . ��

It remains to prove that the sequence (T2i)i∈N cannot rotate around O.

5 Solution of the Case d = 3. Part 2

We assume that T0 is not isosceles. We study the convergence speed of the
sequence (OGn

2)n∈N.

Definition 15. Let (fn)n∈N, (gn)n∈N be two positive sequences. We say that
fn = Θ(gn) if and only if there exist two positive reals α, β such that, for all
n large enough, αgn ≤ fn ≤ βgn.

5.1 Taylor Series I

For all n ∈ N and 1 ≤ i < j ≤ 4, let hn
ij = d∞ij − dn

ij , hn = (hn
ij)1≤i<j≤4 and

δn =
∑

1≤i<j≤4 hn
ij . For all n ∈ N, one puts

εn = (hn
12 − hn

34)
2d∞12 + (hn

13 − hn
24)

2d∞13 + (hn
14 − hn

23)
2d∞14.

Remark 16. The sequence (hn)n∈N converges to zero.

Proposition 17. The equality OGn+1
2 =

−δn

16
− 1

162
εn + O(||hn||3) holds.

Proof. Recall that OGn
2 =

−δn

16
. A computation done with the software “FGb”

gives the following expansion:

OGn+1
2 =

−(δn + τn)

16
(

1 +
δn

4

) + O
(
||hn||3

)
, (2)

=
−δn

16
− 1

16

(
τn −

δn
2

4

)
+ O

(
||hn||3

)
, (3)

where

τn−
δn

2

4
=

(hn
12 − hn

34)
2d∞12+(hn

13−hn
24)

2d∞13+(hn
14−hn

23)
2d∞14

16
+O

(
||hn||3

)
.

��

5.2 Taylor Series II

Recall that d∞14 = 8 − d∞12 − d∞13 and d∞12 + d∞13 > 4. The second key point is the
following:

Dynamical Systems of Simplices in Dimension Two or Three 9

Proposition 18. 1. One has δn = O(||hn||2).
2. There exists k > 0 such that εn ≥ −kδn, for all n large enough.

Proof. 1. From Proposition 3.2., the tetrahedron Tn satisfies the algebraic
equality

Eq : Δ(An, Bn, C,, Dn) + 2Γ (An, Bn, Cn, Dn) = 0.

With Maple, we obtain the Taylor expansion in hn of the LHS of (Eq) at order 2:

4(4−d∞12)(4−d∞13)(d
∞
12 +d∞13−4)δn +σ′

n +O(||hn||3) where σ′
n = O(||hn||2) is a

non-negative quadratic form in the hij
′s, (1 ≤ i < j ≤ 4). Hence δn = O(||hn||2).

2. Let h′
n = (hn

13, h
n
14, h

n
23, h

n
24, h

n
34) ∈ R5 and

σn(h′
n) = σ′

n(−hn
13 − hn

14 − hn
23 − hn

24 − hn
34, h

′
n) .

One has the equality:

σn = −4(4− d∞12)(4 − d∞13)(d
∞
12 + d∞13 − 4)δn + O(||hn||3).

Moreover, σn is a quadratic form in h′
n, whose symmetric associated matrix Σ

is defined by:

Σ =

⎛
⎜⎜⎜⎜⎝

Σ11 Σ12 Σ12 Σ14 2Σ12

∗ Σ22 2Σ12 −Σ22 Σ12 2Σ12

∗ ∗ Σ22 Σ12 2Σ12

∗ ∗ ∗ Σ11 2Σ12

∗ ∗ ∗ ∗ 4Σ12

⎞
⎟⎟⎟⎟⎠

with

⎧⎪⎪⎨
⎪⎪⎩

Σ11 = 2d∞12d∞13 + 32− 12d∞13 + d∞13
2 − 12d∞12 + d∞12

2,

Σ12 = −4d∞12 + 16 + d∞12d
∞
13 − 8d∞13 + d∞13

2,

Σ14 = −d∞12
2 + 4d∞12 + d∞13

2 − 4d∞13,
Σ22 = −4d∞13 + d∞13

2.

In the same way, we put:

ε′n(h′
n) = εn(−hn

13 − hn
14 − hn

23 − hn
24 − hn

34, h
′
n) .

One has εn = ε′n +O
(
||hn||3

)
. As previously, ε′n is a quadratic form in h′

n, whose
symmetric associated matrix is:

E =

⎛
⎜⎜⎜⎜⎝

E11 E12 E12 E14 2E12

∗ E22 2E12 − E22 E12 2E12

∗ ∗ E22 E12 2E12

∗ ∗ ∗ E11 2E12

∗ ∗ ∗ ∗ 4E12

⎞
⎟⎟⎟⎟⎠ with

⎧⎪⎪⎨
⎪⎪⎩

E11 = d∞12 + d∞13,
E12 = d∞12,
E14 = d∞12 − d∞13,
E22 = 8− d∞13.

Let F be the vector space:

F =
{
[x1, x2, x3, x4, x5]T ∈ R5 | x1 = x4, x2 = x3, x5 = −x1 − x2

}
.

Clearly, F is the kernel of the matrices Σ and E.

10 G. Bourgeois and S. Orange

Definition 19. We say that a vector hn ∈ R6 has an “acceptable” value if the
quantities

(√
d∞ij + hn

ij

)
1≤i<j≤4

satisfy the relation in Proposition 3.3.

Assume that hn has an acceptable value and a small norm. An easy computation
proves that h′

n ∈ F if and only if Tn is an isosceles tetrahedron. We know that
if T0 is not isosceles then, for every n ∈ N, the tetrahedron Tn is not isosceles.
Therefore, h′

n /∈ F . Let F⊥ be the orthogonal of F for the usual scalar product.
Write h′

n = un+vn, where un ∈ F and vn ∈ F⊥. The sequence (vn)n∈N converges
to 0 and, for all n ∈ N, vn �= 0. Moreover, one has h′

n
T
Σh′

n = vn
T Σvn > 0 and

h′
n

T
Eh′

n = vn
T Evn > 0.

A computation gives:

Spec(E|F⊥) = {2d∞13, 8d∞12, 2d∞14}

and Spec(Σ|F⊥) = {2(4− d∞12)(4− d∞14), 8(4− d∞13)(4− d∞14), 2(4− d∞12)(4− d∞13)},

with associated eigenvectors:

[−1, 0, 0, 1, 0]T , [1, 1, 1, 1, 2]T , [0,−1, 1, 0, 0]T .

Remark 20. The matrices E and Σ are simultaneously diagonalizable.

Let m = min
{

d∞13
(4− d∞12)(4 − d∞14)

,
d∞12

(4− d∞13)(4 − d∞14)
,

d∞14
(4− d∞12)(4− d∞13)

}
,

M = max
{

d∞13
(4− d∞12)(4 − d∞14)

,
d∞12

(4− d∞13)(4 − d∞14)
,

d∞14
(4− d∞12)(4 − d∞13)

}
and

ρ = min {d∞13(4− d∞13), d
∞
12(4 − d∞12), d

∞
14(4− d∞14)} .

If hn has an acceptable value, then m ≤ ε′n(h′
n)

σn(h′
n)

≤ M and

ε′n = εn + O
(
||hn||3

)
≥ mσn = −4m(4− d∞12)(4− d∞13)(4− d∞14)δn + O

(
||hn||3

)
.

To conclude, it remains to show the following property:

εn = Θ
(
||hn||2

)
and − δn = Θ

(
||hn||2

)
(∗).

Indeed, the property (∗) implies that for all large enough n, εn > −kδn, where
k ∈ R such that 0 ≤ k < 4ρ. We postpone the proof of the property (∗) in the
next section. ��

Remark 21. 1. If the limit is a regular tetrahedron then m = M =
3
2
.

2. It can be proved that ρ ≤ 32
9

, with equality if and only if the limit is a
regular tetrahedron.

Dynamical Systems of Simplices in Dimension Two or Three 11

5.3 Proof of the Property (∗)

Lemma 22. If (ijkl) ∈ U = {(1234), (1324), (1423)}, then

dn
ijd

n
kl − (d∞ij)2 = O

(
||hn||2

)
.

Proof. Let Ln =
64

(
√

dn
12d

n
34 +

√
dn
13d

n
24 +

√
dn
14d

n
23)2

. Obviously, Ln converges

to 1.

We have (d∞ij)2 = Lndn
ijd

n
kl and dn

ijd
n
kl − (d∞ij)2 =

(
1

Ln
− 1
)

(d∞ij)2, and con-

sequently,
1

Ln
− 1 =

(
√

dn
12d

n
34 +

√
dn
13d

n
24 +

√
dn
14d

n
23)

2 − 82

64
.

Thus, if we put un =
√

dn
12d

n
34 +

√
dn
13d

n
24 +

√
dn
14d

n
23 − 8, then we have to prove

that un = O
(
||hn||2

)
. One has

un =
∑

(ijkl)∈U

√
(d∞ij)2 + d∞ij (hn

ij + hn
kl) + O (||hn||2)− 8,

=
∑

(ijkl)∈U
d∞ij

√
1 +

hn
ij + hn

kl

d∞ij
+ O (||hn||2)− 8,

=
∑

(ijkl)∈U
d∞ij +

hn
ij + hn

kl

2
+ O(||hn||2)− 8 =

δn

2
+ O

(
||hn||2

)
,

= O
(
||hn||2

)
,

by Proposition 18. ��

Lemma 23. If (ijkl) ∈ U , then hn
ij + hn

kl = O(||hn||2).

Proof. One has

dn
ijd

n
kl − (d∞ij)2 = d∞ij (hn

ij + hn
kl) + hn

ijh
n
kl = O

(
||hn||2

)
by Lemma 22. ��

Lemma 24. For n large enough, there exists (ijkl) ∈ U such that

|hn
ij − hn

kl| ≥
1√
6
||hn||.

Proof. By Lemma 23, there exists A > 0 such that, for all n ∈ N and (ijkl) ∈ U ,

|hn
ij + hn

kl| ≤ A||hn||2.

Let ε ∈
(

0,
1

6A

)
. There exists N ∈ N such that, for all n ≥ N , one has ||hn|| < ε.

Let n ≥ N be an integer. We may assume that |hn
12| = supi<j |hn

ij |. Thus,

|hn
12| ≥

||hn||√
6

≥ |hn
12|√
6

and |hn
12 + hn

34| ≤ 6A(hn
12)2 and

12 G. Bourgeois and S. Orange

|hn
12 − hn

34| ≥ 2|hn
12| − |hn

12 + hn
34| ≥ 2|hn

12| − 6A(hn
12)

2.

Since 0 < |hn
12| ≤ ||hn|| < ε <

1
6A

, we deduce that 6A(hn
12)

2 < |hn
12| and

|hn
12 − hn

34| ≥ |hn
12| ≥

1√
6
||hn||. ��

Proposition 25. If (hn)n∈N has acceptable values, then for all n large enough,

εn ≥ λ||hn||2 with λ =
infi<j d∞ij

6
. Moreover, one has the equality:

−δn = Θ
(
||hn||2

)
.

Proof. The equality εn = (hn
12−hn

34)
2d∞12 +(hn

13−hn
24)

2d∞13 +(hn
14−hn

23)
2d∞14 and

Lemma 24 give the first part. If hn has an acceptable value then, by Proposi-
tion 18,

ε′n = εn + O
(
||hn||3

)
.

Hence, by the first part, if μ < λ then for all n large enough, ε′n ≥ μ||hn||2. For
all n ∈ N, one has ε′n(h′

n) ≤ Mσn(h′
n). As a consequence, for all n large enough,

σn ≥
μ

M
||hn||2.

Recall that (see proof of Proposition 18):

−δn =
σn

ν
+ O

(
||hn||3

)
with ν = 4(4− d∞12)(4 − d∞13)(4 − d∞14).

Consequently if μ1 < λ, then for all n large enough, −δn ≥
μ1

Mν
||hn||2. ��

5.4 The Main Result in Dimension Three

Let r = max
{
|d∞12 − 2|

2
,
|d∞13 − 2|

2
,
|d∞14 − 2|

2

}
∈
[

1
3

, 1
)

.

Theorem 26. The sequences (T2i)i∈N and (T2i+1)i∈N are well-defined and con-
verge to two non-planar isosceles tetrahedra that are symmetric with respect to O.
Moreover, the convergence is with at least geometric speed.

Proof. By the Proposition 25, one has:

OGn+1
2 =

−δn

16
− 1

162
εn + O

(
||hn||3

)
<
−δn

16
+

1
162

kδn + O
(
||hn||3

)
∼ OGn

2

(
1− k

16

)
.

Finally, for all n large enough, OGn+1 ≤ q OGn, where q >

√
1− ρ

4
= r.

Let Bn be the closed ball of center O and radius OGn. Let αn be the positive
angle ((An+1An), (An+1An+2)). Let ln be the distance between the two sets
Bn∩(An+1An) and Bn∩(An+1An+2). Obviously, the sequence (αn)n∈N converges
to 0 and GnGn+1 ≥ ln. We see easily that ln ∼ αn and AnAn+2 ∼ 2αn. Thus,
for all n large enough, AnAn+2 ≤ 3GnGn+1.

Dynamical Systems of Simplices in Dimension Two or Three 13

Let p ∈ N∗. For all n large enough, one has:

AnAn+2p ≤ 3
n+2p−2∑

k=n

GkGk+1 ≤ 3
n+2p−2∑

k=n

(OGk + OGk+1) ≤ 6
n+2p∑
k=n

OGk.

Since
∑

n∈N
OGn converges, the sequence (A2n)n∈N is a Cauchy sequence and

converges to a point A∞ ∈ S. In the same way (A2n+1)n∈N converges to A′∞,
the symmetric of A∞ with respect to O. Moreover,

A2nA∞ ≤ 6
∞∑

k=2n

OGk ≤
6

1− q
OG2n,

for all n large enough. Therefore, A2nA∞ = O(q2n). In the same way, we show a
similar result for the other vertices of the tetrahedra. Consequently, the sequences
(T2i)i∈N and (T2i+1)i∈N converge with at least geometric speed. ��

Remark 27. 1. The limit is a regular tetrahedron if and only if the parameters
of the non-isosceles tetrahedron T0 satisfy d12d34 = d13d24 = d14d23 < 64

9
that is T0 is an isodynamic tetrahedron.

2. According to numerical experiments, we conjecture that OGn+1 ∼ r×OGn

(convergence with order one).
3. We use the notations of Section 2.1. The tetrahedron T0 = (A0B0C0D0) is

not isosceles. Let I1, I2 be the two inversions leaving invariant the sphere
S and mapping A0, B0, C0, D0 on the vertices of an isosceles tetrahedron
(see [8, p. 184-186]). The tetrahedra I1(T0) and I2(T0) are isometric to the
limits of the sequences (T2i)i∈N and (T2i+1)i∈N. This can be proved by com-
puting the lengths of the edges of I1(T0) and I2(T0).

6 Sequence of Cyclic Quadrilaterals

6.1 Degenerate Simplices

Let us consider the case where T0 is a cyclic quadrilateral. We see the following
case as a degenerate case of the previous one.

Theorem 28. Consider a convex cyclic quadrilateral T0 = (A0B0C0D0) with
circumcircle C of center O and radius 1, and such that its vertices are pairwise
distinct. We use the previous iteration to build a sequence of convex quadrilaterals
(Ti)i∈N. The sequences (T2i)i∈N and (T2i+1)i∈N are well-defined and converge to
rectangles that have same image, whose centroid is O and whose lengths of the

edges are d∞13 = 4, d∞12 = 4
√

d12d34√
d13d24

and d∞14 = 4−d∞12. If the limit is not a square

then OGn+1 ∼
|d∞12 − 2|

2
OGn and the sequence (T2i)i∈N converges with at least

geometric speed. In the case where the limit is a square, the speed of convergence

of (OGn)n∈N is at least with order
3
2
.

14 G. Bourgeois and S. Orange

We keep the previous notations. In particular, for all n ∈ N, the parameters
(dn

ij)1≤i<j≤4 refer to the square of the lengths of the edges (diagonals included)
of Tn.

Proof. The beginning of the proof is similar to the proof of Theorem 13. By
Theorem 12.2., for every (i, j, k, l) ∈ U , the sequence (dn

ijd
n
kl)n∈N is increasing

and for 1 ≤ i < j ≤ 4, the sequence (dn
ij)n∈N has a positive lower bound. Thus a

cluster point has pairwise distinct vertices. With Theorem 12.1., we prove that
a cluster point T is a rectangle. The parameters d∞ij

′s (1 ≤ i < j ≤ 4) of T are
given by Theorem 13.2. Since the quadrilaterals are convex, we have d∞13 = 4
and d∞14 = 4− d∞12. We put μ = d∞12.

For every n ∈ N, there exist three relations between the hn
ij
′s, (1 ≤ i < j ≤ 4):

Γ (An, Bn, Cn, Dn) = 0, (4)

an
2bn

2cn
2 = 16× (area(AnBnCn))2, (5)

b′n
2
c′n

2
an

2 = 16× (area(BnCnDn))2. (6)

The last two relations express that the triangles (AnBnCn) and (BnCnDn) ad-
mit a circumscribed circle with radius 1 (the value of the area is given in Rela-
tion (1)).

Part I.
The computation of the terms of degree 1 of the Taylor series of the Relation (4)
gives

hn
12 + hn

14 + hn
23 + hn

34 − hn
24 − hn

13 = O
(
||hn||2

)
.

The computation of the terms of degree 1 of the Taylor series of Relations (5)
and (6) gives

hn
13 = O

(
||hn||2

)
and hn

24 = O
(
||hn||2

)
.

Thus δn = O
(
||hn||2

)
.

Following the proof of Lemma 23, we see that hn
12 + hn

34 = O
(
||hn||2

)
and

hn
14 + hn

23 = O
(
||hn||2

)
.

Thus hn
12

2 + hn
14

2 = Θ
(
||hn||2

)
.

Part II.
The computation of the terms of degree at most two of the Taylor series of
Relations (5) and (6) gives:

hn
13μ(4− μ) + (hn

12 + hn
23)

2 = O
(
||hn||3

)
and

hn
24μ(4− μ) + (hn

23 + hn
34)

2 = O
(
||hn||3

)
,

Dynamical Systems of Simplices in Dimension Two or Three 15

that is

hn
13 =

−(hn
12 − hn

14)
2

μ(4− μ)
+ O

(
||hn||3

)
and

hn
24 =

−(hn
12 + hn

14)
2

μ(4− μ)
+ O

(
||hn||3

)
.

In the same way, Relation (4) gives:

μ(μ− 4)(hn
12 + hn

14 + hn
23 + hn

34− hn
24 − hn

13) + μhn
14

2 + (4− μ)hn
12

2 = O
(
||hn||3

)
.

We deduce:

δn =
−hn

14
2

μ
− hn

12
2

4− μ
+ O

(
||hn||3

)
and δn = Θ

(
||hn||2

)
.

Moreover,
εn = 4μhn

12
2 + 4(4− μ)hn

14
2 + O

(
||hn||3

)
.

Hence,

OGn+1
2 =

(μ− 2)2

64

(
hn

14
2

μ
+

hn
12

2

4− μ

)
+ O

(
||hn||3

)
,

=
(μ− 2)2

4
OGn

2 + O
(
||hn||3

)
.

Case 1: μ �= 2. The limit is not a square and OGn+1 ∼ |μ− 2|
2

OGn. The
convergence is with order one.

Case 2: μ = 2. The limit is a square and OGn+1 = O
(
||hn||

3
2

)
, that is

OGn+1 = O
(
OGn

3
2

)
.

In both cases, the series
∑

n∈N
OGn converges with at least geometric speed.

Thus we may reason as in Theorem 26 and we obtain that the sequences (T2i)i∈N

and (T2i+1)i∈N converge to two rectangles, that have same image, with at least
a geometric speed. ��

6.2 A Particular Case

Let N be the kernel of the symmetric matrix Σ. hn ∈ N if and only if hn
13 = hn

24.

Definition 29. We say that a vector hn ∈ R6 has a “good” value if and only
if the dn

ij
′s = (d∞ij + hn

ij)
′s, (1 ≤ i < j ≤ 4) satisfy the relations (4),(5),(6) in

Section 6.1.

Assume that hn has a good value and a small norm. Then a geometric argu-
ment or an algebraic computation shows that

h′
n ∈ N ⇔ Tn is an isosceles trapezoid.

16 G. Bourgeois and S. Orange

Proposition 30. Keeping the assumptions of Theorem 28, we assume that there
exists k ∈ N such that Tk is an isosceles trapezoid but not a rectangle. If d∞12 = 2
then OGn+1 ∼ OGn

3.

Proof. For all n ≥ k, Tn is an isosceles trapezoid that admits (OGk) as a line
of symmetry. Therefore, the sequence (Tn)n∈N cannot rotate around O. The
sequence (Tn)n∈N converges to a rectangle that admits (OGk) as a line of sym-
metry. We study the rate of convergence using an explicit computation. We may
assume that the line of symmetry is the axis of abscissas, that the abscissa of
An and Dn is an and the abscissa of Bn and Cn is bn. Obviously, the abscissa
of the centroid of Tn is:

gn =
an + bn

2
.

An easy computation gives:

an+1 = −a2
nbn + 2anb2

n + b3
n − 4an

a2
n − 2anbn − 3b2

n + 4

and

bn+1 = −b2
nan + 2bna2

n + a3
n − 4bn

b2
n − 2bnan − 3a2

n + 4
.

We know that the sequence (an+bn)n∈N converges to 0 and the sequence (a2
n)n∈N

converges to
d∞12
4

. Hence,

gn+1 ∼
(an + bn)(a4

n − 4a3
nbn − 10a2

nb2
n + 16a2

n − 4anb3
n + 16b2

n − 16 + b4
n)

−32
.

1. Case d∞12 �= 2. The limit is not a square and we obtain gn+1 ∼
(

1− d∞12
2

)
gn

(convergence with order one). If d∞12 > 2 then, for all sufficiently large n,
O ∈]GnGn+1[.

2. Case d∞12 = 2. The limit is a square, that is the parameters of T0 satisfy the
relation:

(d12)2 = d14d23.

Define two sequences (un)n∈N and (vn)n∈N by the equalities:

for all n ∈ N, an =
1√
2

+ un and bn = − 1√
2

+ vn.

The sequences (un)n∈N and (vn)n∈N converge to 0 and

for all n ∈ N, (un, vn) �= (0, 0) .

We compute the Taylor series of the previous relation and we consider the
terms of degree at most 2. We obtain

16
√

2(un − vn) = −8(3u2
n + 3v2

n + 2unvn) + O
(
||(un, vn)||3

)
.

Dynamical Systems of Simplices in Dimension Two or Three 17

Therefore,

un − vn ∼
−1
2
√

2
(3u2

n + 3v2
n + 2unvn),

un − vn = O(||
(
un, vn)||2

)
and then

un + vn = Θ(|| (un, vn) ||).

We deduce easily the estimate:

gn+1 ∼
(a + b)(−4(un + vn)2 + O

(
||(un, vn)||3

)
−32

∼ −4(un + vn)3

−32
,

that is gn+1 ∼ gn
3 (convergence with order three). ��

For instance if a0 = 0.955, b0 = 0.12237784429, we obtain almost a square
after three iterations.

6.3 About the Limit

As in the case of a tetrahedron, there exist two inversions leaving C invariant and
mapping A0, B0, C0, D0 on the vertices of a rectangle. The images of the cyclic
quadrilateral T0 by these inversions are isometric to the limits of the sequences
(T2i)i∈N and (T2i+1)i∈N.

Remark 31. 1. The limit is a square if and only if the parameters of the non-
rectangular quadrilateral T0 satisfy d12d34 = d14d23 < 4, that is T0 is a
harmonic (or isodynamic) quadrilateral.

2. If the limit is a square then the convergence seems to be with order three.
More precisely we conjecture that OGn+1 ∼ OGn

3.

7 Solution of the Case d = 2

From now on, T0 is a non-flat triangle. We consider a dynamical system of
triangles (Tn)n∈N.

Remark 32. 1. The application φ is not one to one: indeed, if T1 is a generic
triangle, then there exist two triangles T0 such that φ(T0) = T1.

2. The triangle T1 is said to be the circum-medial triangle associated to T0

(see [5, p. 162-163]).

7.1 The Parameters
Notations

1. For all n ∈ N, let an = BnCn, bn = BnCn, cn = CnAn.
2. We denote the lengths a0, b0, c0 by a, b, c.

18 G. Bourgeois and S. Orange

Definition 33. 1. For all n ∈ N, the parameters of Tn are defined by:
sn = an

2 + bn
2 + cn

2, tn = an
2bn

2 + bn
2cn

2 + cn
2an

2, un = an
2bn

2cn
2.

2. We denote the parameters of T0 by s, t and u.

Recall that the circumradius of T0 is 1. Then u = 4t− s2 and t >
s2

4
. One has

u = 16×S2 where S is the area of (A0B0C0) and OG0
2 = 1− s

9
with 0 < s ≤ 9.

Therefore,

s = 9 ⇔ G0 = O ⇔ (A0B0C0) is an equilateral triangle.

We have the equality:

s2 − 3t = a4 − a2(b2 + c2) + b4 + c4 − b2c2.

Its RHS is a polynomial in a2 with discriminant −3(b2 − c2)2 ≤ 0. Thus t ≤ s2

3
and

t =
s2

3
⇔ (A0B0C0) is equilateral.

7.2 Deformation from T0 to T1

Here A0, B0, C0 can be on a line but are not all equal. Thus s > 0, t > 0.

Proposition 34. We have s1 ≥ s, u1 ≥ u and if s ≥ 3, t1 ≥ t. Moreover the
equality s1 = s holds if and only if (A0, B0, C0) is an equilateral triangle.

Proof. We obtain:

s1 =
s2(6t− s2)

D
, t1 =

s4t(9t− 2s2)
D2

, u1 = 4t1 − s1
2,

where D = −4s3 + 18st− 108t + 27s2. Clearly D > 0 and D is bounded.

We have s1 − s =
3s(9− s)(4t− s2)

D
≥ 0. Clearly, s1 = s if and only if s = 9

or u = 0, that is A0B0C0 is equilateral or flat.
From the equality

t1 − t =
9t
(
4t− s2

)(
9
(

s2

3
− t

)
(s− 6)2 + s2(9− s)(s− 3)

)
D2

,

we deduce that for s ≥ 3 the inequality t1 ≥ t holds.

One has
u1

u
=
(

s3

D

)2

. Hence,

u1 ≥ u ⇔ s3 ≥ D ⇔ ν = s2(9− s) + 18
(

s2

3
− t

)
(s− 6) ≥ 0.

If s ≥ 6 then ν ≥ 0. For s < 6, t >
s2

4
implies that ν ≥ s3

2
. ��

Dynamical Systems of Simplices in Dimension Two or Three 19

7.3 Convergence of the Triangles

We assume that T0 is not an equilateral triangle.

Proposition 35. Let T be a cluster point of the bounded sequence (Tn)n∈N.
Then T is a non-flat equilateral triangle. Moreover, the lengths of the edges of
Tn converge to

√
3.

Proof. 1. The non-decreasing sequence (un)n∈N converges to a real u∞ > 0.
The increasing sequence (sn)n∈N converges to a real s∞ > 0. Let T be a
cluster point of the sequence (Tn)n∈N. With a similar proof to this one used
in Theorem 26, we show that:
(a) s∞, u∞ are parameters of T . Therefore T is not flat.
(b) T is an equilateral triangle, s∞ = 9 and u∞ = 27.

2. Since for all sufficiently large n, sn ≥ 3, the sequence (tn)n∈N is non-
decreasing. Hence, (tn)n∈N converge to 27, the corresponding parameter of
T . The sequences (sn)n∈N, (tn)n∈N, (un)n∈N converge to 9, 27, 27. Therefore,
the sequences (an)n∈N, (bn)n∈N, (cn)n∈N converge to

√
3. ��

Let an
2 = 3 + hn, bn

2 = 3 + kn, cn
2 = 3 + ln and δn = (hn, kn, ln).

Lemma 36. One has hn + kn + ln ∼
1
3
(hnkn + knln + lnhn) ∼ −1

6
||δn||2.

Proof. Obviously,

u = t−4s2 ⇔ 3(hn + kn + ln) = −(hn+kn+ln)2+(hnkn+knln+lnhn)−hnknln.

Thus

3(hn + kn + ln) = −(hn + kn + ln)2 + (hnkn + knln + lnhn) + O
(
||δn||3

)
,

= hnkn + knln + lnhn + O
(
||δn||3

)
.

Consequently, hnkn + knln + lnhn =
1
2
(hn + kn + ln)2 − 1

2
(h2

n + k2
n + l2n)

∼ −1
2
(h2

n + k2
n + l2n). ��

Proposition 37. One has OGn+1 ∼ OGn
2.

Remark 38. The sequence (OGn)n∈N converges to 0 with order 2.

Proof. From the equalities OGn
2 =

hn + kn + ln
−9

and OGn+1
2 = 1 − sn+1

9
,

using Maple and from Lemma 22, we obtain the Taylor series of OGn+1
2 with

the precision O
(
||δn||5

)
:

OGn+1
2 =

Nn

−812
, where:

20 G. Bourgeois and S. Orange

Nn = 81(hn + kn + ln)2 + 18(hn + kn + ln)(2hn
2 + 2kn

2 + 2ln
2+

hnkn + knln + lnhn) + O
(
||δn||5

)
,

= 27(hn + kn + ln)(3(hn + kn + ln)− 2(hnkn + knln + lnhn)) + O
(
||δn||5

)
,

∼ −81(hn + kn + ln)2.

Finally, OGn+1
2 ∼ (hn + kn + ln)2

81
= OGn

4. ��

Remark 39. 1. We can deduce that there exists λ ∈ (0, 1), that depends on
a, b, c, such that OGn ∼ λ2n

. If T0 is close to a flat triangle then λ is close
to 1. Of course, if T0 is close to an equilateral triangle then λ is close to 0
(see T0 as the result of a large number of iterations.)

2. The result OGn+1 = O(OGn
2) obtained in [2] is weaker and does not give

the previous estimate of OGn.

7.4 The Main Result in Dimension Two

Theorem 40. The sequences (T2i)i∈N and (T2i+1)i∈N are well-defined and con-
verge with at least quadratic speed to two equilateral triangles that are symmetric
with respect to O.

Proof. As in the proof of Theorem 26, we show that the sequence (A2n)n∈N

converges to a point A∞ ∈ C and that (A2n+1)n∈N converges to a point A′∞,
the symmetric of A∞ with respect to O. Moreover,

A2nA∞ ≤ 6
∞∑

k=2n

OGk ≤ 12×OG2n

for all n large enough. Therefore, A2nA∞ = O
(
λ22n

)
. In the same way, we

show a similar result for the other vertices of the triangles. Consequently, the
sequences (T2i)i∈N and (T2i+1)i∈N converge with at least quadratic speed. ��

8 Conclusion

We mention two open problems about these dynamical systems:

1. It is a natural question to wonder whether this result can be generalized to
the case d ≥ 4. That is, does the sequence of d-simplices (T2i)i∈N converge to
a d-simplex with centroid O ? Unfortunately, by the methods of our paper,
the complexity of the computation increases considerably with d.

2. We return to the case d = 3. It seems to us interesting to replace the centroid
Gi of Ti with some other center Ωi of Ti. We may choose, for instance, Ωi as
the incenter, the Monge point or the Fermat-Torricelli point of Ti. Indeed if
one among these centers and the circumcenter of a tetrahedron T coincide,
then T is isosceles (see [4, p. 494]). Now let us suppose that we can prove
that the sequence (Ω2i)i∈N converges to O with at least a geometric speed.
Then we can deduce, using the previous methods, that the sequence (T2i)i∈N

converges with at least a geometric speed to an isosceles tetrahedron.

Dynamical Systems of Simplices in Dimension Two or Three 21

Acknowledgments. The authors wish to thank the referees for their helpful
comments and D. Adam for many valuable discussions.

References

1. Altshiller-Court, N.: Modern Pure Solid Geometry, 2nd edn., p. 353. Chelsea
Publishing Co., New York (1979)

2. Bourgeois, G., Lechêne, J.P.: Etude d’une itération en géométrie du triangle.
Bulletin APMEP 409, 147–154 (1997) (in French)

3. Coxeter, H., Greitzer, S.: Geometry Revisited. The Mathematical Association of
America (1967)

4. Edmonds, A.L., Hajja, M., Martini, H.: Coincidences of Simplex Centers and
Related Facial Structures. Contributions to Algebra and Geometry 46(2), 491–512
(2005)

5. Kimberling, C.: Triangle Centers and Central Triangles. Congressus Numerantium,
vol. 129. Utilitas Mathematica, Winnipeg (1998)

6. Lisoněk, P., Israel, R.B.: Metric Invariants of Tetrahedra via Polynomial Elimina-
tion. In: Proceedings of the 2000 International Symposium on Symbolic and Alge-
braic Computation (St. Andrews), pp. 217–219 (electronic). ACM Press, New York
(2000)

7. Mitrinović, D.S., Pečarić, J.E., Volenec, V.: Recent Advances in Geometric Inequa-
lities. Mathematics and its Applications (East European Series), vol. 28, p. 710.
Kluwer Academic Publishers Group, Dordrecht (1989)

8. Thébault, V.: Parmi les plus belles figures de la géométrie dans l’espace. Géométrie
du tétraèdre. Vuibert (1955) (in French)

9. Yang, L.: Solving Geometric Constraints with Distance-Based Global Coordinate
System. In: International Workship on Geometric Constraint Solving, Beijing (2003)

On the Design and Implementation

of a Geometric Knowledge Base

Xiaoyu Chen1,�, Ying Huang1, and Dongming Wang2

1 LMIB – SKLSDE – School of Mathematics and Systems Science,
Beihang University, Beijing 100191, China

2 Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie – CNRS,
4 place Jussieu – BP 169, 75252 Paris cedex 05, France

Abstract. This paper presents the design of a geometric knowledge base
that stores standardized, formalized, and structured geometric knowl-
edge data. Emphasis is placed on the classification and organization of
such knowledge data. In order to master the complexity of data relations,
we adopt a key strategy that works by encapsulating certain interrelated
knowledge data into knowledge objects and then organizing the knowl-
edge objects according to the hierarchic structure of their relations. We
also present our preliminary implementation of a geometric knowledge
base system that provides functionalities for creating, rendering, and
managing knowledge data with basic query services.

Keywords: geometric knowledge, knowledge data, knowledge object,
knowledge base, knowledge management.

1 Introduction

1.1 Motivation

Geometry, a subject of mathematics that models objects and relations abstracted
from the real visual world, involves knowledge about both abstract quantities
and intuitive figures. Quantities and figures are interdependent in the study of
geometry, in particular for solving problems involving complicated calculations
(with coordinates and algebraic quantities as in analytic geometry), performing
automated reasoning (for which algebraic methods are the most powerful), and
rendering figures on computer screen (which are located in the coordinate sys-
tems within the screen). Therefore, geometric knowledge is not bounded within
geometry itself, but also involves algebraic elements. It is geometric description,
its algebraic counterpart, and diagrammatic presentation together that consti-
tute the entirety of geometric knowledge. For example, to depict a circle, we
may need a statement “a circle with point O as its center and r as its radius”,
an algebraic equation “(x − a)2 + (y − b)2 = r2”, where (a, b) is the pair of
coordinates of point O, and a diagram of the circle on the screen.
� This paper was prepared when the author was visiting the DAM group of Department

of Mathematics and Computer Science, Technische Universiteit Eindhoven.

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 22–41, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Design and Implementation of a Geometric Knowledge Base 23

In general, the following three kinds of representations are needed for geomet-
ric knowledge.

– Declarative representation: explicit, formal and natural language statements
to represent definitions of geometric concepts, theorems of geometric theory,
proofs of geometric theorems, etc.

– Procedural representation: specifications of algorithms, methods, rules, or
heuristics to calculate the values of geometric quantities, to translate geo-
metric configurations into algebraic relations between coordinates, to solve
geometric problems or their algebraic counterparts, etc.

– Diagrammatic representation: diagram instructions to construct or visualize
geometric configurations.

In recent years, many efforts have been devoted to the development of high-level
software for dynamic geometry, mechanical geometric reasoning, and symbolic
geometric computation. Each piece of such software has its own implementation
of geometric knowledge for the representation and algebraization of geometric
objects and relations. However, many of the knowledge data used in these dif-
ferent pieces of geometry software are similar or even the same semantically. For
example, a circle may be constructed by three points, two points, or a point
and a segment in almost every dynamic geometry software system. It is time-
consuming and effort-wasting for one to specify such sophisticated knowledge
again while developing new geometry software. It is thus helpful to build up a
repository of geometric knowledge as explicit standard specifications for imple-
menting some basic functionalities of geometry software.

On the other hand, geometric knowledge is accumulated step by step, e.g., by
introducing new concepts using already defined concepts, deriving useful prop-
erties about new concepts, and proving or discovering theorems relating old and
new concepts. It does not lie at a flat level but is piled up with certain intrinsic
structure of hierarchy. To study and capture the knowledge structure (which is the
meta-knowledge about geometric knowledge), we note the following two aspects.

(1) For education, geometric knowledge need be distributed to learners in the
style of documents such as textbooks, lecture notes, and papers. There are com-
mon practice and implicit convention in the scientific community as how knowl-
edge should be organized, formulated, and presented. Some basic knowledge serves
as preliminaries for high-level knowledge. The narrative structure of a document
depends on the logical structure of the knowledge involved, e.g., from the simplest
to the most complicated and from the basic to the advanced. Knowledge structure
may be acquired and used to assist authors to create sound documents [2].

(2) For research, geometric knowledge need be structured so that it is easy
to trace how knowledge is developed and to identify what knowledge is basic
and what knowledge is derived. Geometric configurations can be described in
different ways by using different geometric concepts. For instance, the perpen-
dicular foot of two lines can also be described as the intersection point of two
perpendicular lines. This kind of variants of descriptions for geometric configura-
tions makes it difficult to retrieve knowledge data semantically. It is necessary to
study knowledge structure so that geometric configurations can be represented in

24 X. Chen, Y. Huang, and D. Wang

(or translated according to the definitions of the involved concepts into) a canon-
ical or standard form.

Geometric knowledge bases are created to store geometric knowledge data,
with well-defined structures for the types of and relationships between the knowl-
edge data stored. They should provide standard specifications for implementing
basic functionalities needed in automated deduction, diagram generation, prob-
lem solving etc., and friendly interfaces for sharing and reusing the knowledge
data created by users to generate human-readable geometric documents.

The knowledge bases should also support manipulations such as browsing,
creating, removing, and modifying knowledge data and queries for retrieving
pieces of knowledge indexed by keywords or related to given pieces of knowledge
to assist authors to create electronic documents.

The creation of a geometric knowledge base consists in providing data and
support for the development of geometry software (such as specifications of geo-
metric concepts for describing geometric configurations, rules for the translation
of geometric concepts into algebraic expressions, instructions for the construc-
tion of diagrams for complicated concepts, e.g., the Napoleon triangle of a tri-
angle), and facilities for the management of structures of geometric knowledge.
The availability of geometric knowledge bases may help reduce individual ef-
forts on creating knowledge data for geometry software development, geometric
document authoring, and other geometric applications.

1.2 State of the Art

Several projects have been initiated for the purposes of standardizing represen-
tations of geometric configurations and setting up a publicly available repository
for share and reuse.

GEOTHER [10] is an Epsilon module implemented as an integrated environ-
ment in Maple for translating the predicate specification of a geometric theorem
into English or Chinese statement, first-order logical formula, or algebraic expres-
sions, automated proving by algebraic methods, generating dynamic diagrams,
and documenting the results. It provides a standard form for specifying the en-
tries contained in the predicate routines which define how to manipulate and
translate the predicates at the running time. However, the predicates only play
the role of function calls whose entries are not complete in the sense of geometric
knowledge, since the definitions of the predicates are not provided. Moreover,
the relations among the defined predicates and specified geometric theorems are
not taken into account.

GeoCode [4] is a generic proof scheme language standard that can be run
by GeoProver which translates the proof scheme of a geometric theorem into
the specific form of the target proving system and implements the interfaces
for different CAS to solve the algebraic counterpart of the geometric prob-
lem by algebraic methods. To specify and manipulate geometric theorems, the
standard provides the routine code (translating into algebraic expressions and
construction steps for drawing the diagrams) of basic functions and advanced

On the Design and Implementation of a Geometric Knowledge Base 25

functions that are defined by using basic functions. However, the structure of
these functions and the collected proof schemes is not studied.

GeoThms [8] is an Internet framework that integrates dynamic geometry
software (GCLC, Eukleides), geometry theorem provers (GCLCprover), and a
repository storing geometric problems, their statements, illustrations, and proofs.
Although this framework provides a platform for users to browse and learn ge-
ometric theorems, explore new geometric conjectures specified in the specific
language, and obtain the automatically generated results, some geometric knowl-
edge, such as the definitions of geometric concepts and the rules for translating
geometric constructions into their algebraic counterparts, is not involved. More-
over, the relations among theorems, such as what theorems can be grouped
together and what theorems can be used in the proof of a theorem, are not
taken into account.

Intergeo [5] is an ongoing European project, whose objectives are to attack the
barrier of lack of interoperability by offering a common file format for specifying
dynamic diagrams and to build up an annotation and search web platform which
provides access to thousands of interactive geometry constructions by crossing
the boundaries of the curriculum standards of Europe. The project defines an
ontology used in searching, which specifies the cross-curriculum characteriza-
tion of geometric constructions. The platform shares the learning resources on
the form of interactive geometric constructions and related materials, which are
different from our targets of investigation.

The main novelty of our work lies in (1) encapsulating interrelated data of
geometric knowledge presented in the literature and used in geometry software
into knowledge objects, (2) formalizing the encapsulated geometric knowledge ob-
jects for representation in a knowledge base, and (3) highlighting the importance
of analyzing and structuring the relations among geometric knowledge objects.
With the data and objects stored in the knowledge base, functionalities may be
(easily) implemented to translate formalized geometric configurations into alge-
braic representations, into statements in natural languages, and into diagram
constructions automatically and to support the creation of dynamic geometric
documents.

1.3 Problem

In [2], two of the authors proposed to develop a system enabling users to con-
struct and manage dynamic textbooks interactively. The emphasis was placed on
presenting a bird’s-eye view and the conception of the system and discussing the
main ideas, design methodologies, and involved tasks and problems that need
be investigated. The system should be connected to a knowledge base capable
of storing and organizing textbook knowledge data for reuse. However, design
principles and implementation techniques on the creation of such a knowledge
base were studied and explained only briefly.

This paper focuses on the problem of realizing a geometric knowledge base
that stores standardized, formalized, and structured geometric knowledge data
and addresses a number of design and implementation issues. It is required that

26 X. Chen, Y. Huang, and D. Wang

the knowledge data stored in the database can be retrieved and used in the
development of geometry software tools for automated deduction, diagram gen-
eration, and document creation and can be rendered into a natural style for
human readability. The knowledge base should be updated dynamically and im-
mediately once an update operation such as adding, removing, or modifying on
the knowledge base is performed. The problems addressed are as follows.

1. Classification. Geometric knowledge involves many different types of knowl-
edge data, such as the name and specification of a concept, the natural lan-
guage statements and formal representation of a theorem, and the static or
dynamic figures for a theorem. We use data element to denote the data unit
defined in the knowledge base. Technically, data elements describe the logical
unit of data and fields are the actual storage units. For the convenience of
narrative, we also say that the data are stored in these data elements. What
data elements should be abstracted to characterize geometric knowledge?

2. Representation. How to formalize and represent the data for each data
element?

3. Organization. How to arrange and organize the data elements storing geo-
metric knowledge data and what are the relationships among them?

This paper presents our ideas on assembling geometric knowledge data and mas-
tering the complexity of relations within an amount of geometric knowledge. The
first step is to define the data elements for characterizing geometric knowledge
and encapsulate certain interrelated data into knowledge objects, and the knowl-
edge base will collect an amount of these knowledge objects; this will be discussed
in Sect. 2. The next step, as will be explained in Sect. 3, is to manage the struc-
ture over these knowledge objects. In Sect. 4, we shall be concerned with the
implementation aspect and report our progress and experiments on a prelimi-
nary implementation of the geometric knowledge base system. The paper will
be concluded with some discussions on future work. To be specific, we restrict
ourselves to elementary geometry with plane Euclidean geometry as the target
of investigation.

2 Representation of Geometric Knowledge Objects

In order to represent, manipulate, and manage data elements in the knowledge
base, we need to identify them and to encapsulate the interrelated ones by ana-
lyzing the relationships among them.

2.1 Identification of Knowledge Data Elements

Data elements are the basic units which are defined in the knowledge base. We
first identify what data elements should be included, based on an analysis of
functionality requirements for the knowledge as follows.

– Geometric knowledge may be rendered into natural languages, such as En-
glish and Chinese, for users to browse and read.

On the Design and Implementation of a Geometric Knowledge Base 27

– Geometric problems may be represented also algebraically, so that algebraic
methods (such as Wu’s method and the method of Gröbner bases) can be
used for automated solving.

– Geometric configurations may be visualized as static or dynamic figures.
– Nondegeneracy conditions may be associated to geometric configurations to

ensure rigorousness and unambiguousness.
– Geometric knowledge may be represented in a standard formal language,

so that it can be processed and manipulated by software tools for further
applications (e.g., automated checking of syntax/grammar and translation
of the specifications of geometric configurations into other languages or
forms — natural languages, algebraic representations, and diagram drawing
instructions).

– Knowledge may be retrieved through keywords.

Concepts provide terms for the description of domain knowledge. The basic com-
ponents of knowledge data are specific concepts from the domain (of geometry
here). The data elements for specifying geometric concepts should be provided
in the knowledge base at first.

Geometric concepts can be classified into geometric objects (such as “point”,
“line”, and “circle”), geometric quantities (such as “length”, “area”, and “de-
gree”), object relations (such as “parallel” and “perpendicular”), and quantity
relations (such as “equal to” and “greater than”). As geometric concepts are
introduced usually in a constructed way, we represent each concept with a data
element vocabulary and a data element attributeList. For example, a triangle
can be represented by a vocabulary “triangle” together with an attributeList
“(Point,Point,Point)” indicating that its attributes are geometric objects of
type Point. The vocabulary element stores a predicate symbol (denoting an ob-
ject relation or a quantity relation) or a function symbol (denoting a geometric
object or quantity), which is used to distinguish one concept from others. The
attributeList element stores the type constraint on the concept for the conve-
nience of grammar checking or concept matching in applications. For example,
in an instance of triangle of the form “triangle(A,B, C)”, the vertices A, B,
and C of the triangle must be objects of type Point. Complicated instances
of concepts can be constructed by nesting instances with correct types. For ex-
ample, “triangle(midpoint(A, B), midpoint(B, C), midpoint(A, C))” denotes the
midpoint triangle of triangle ABC, where A, B, and C are all points.

The definitions of concepts both in a formal language for automated activities
like reasoning and in natural languages for display are stored as data elements
formalDefinition and naturalRepresentation respectively.

Nondegeneracy conditions for concepts to be meaningful are also stored as a
data element nondegeneracyCondition. For example, the nondegeneracy condition
for the concept “triangle” is: the three vertices of the triangle are not collinear.

Figures, both static and dynamic, are stored as data elements staticFigure
and dynamicFigure for visualizing the corresponding configurations.

28 X. Chen, Y. Huang, and D. Wang

Scripts for translating concepts into natural languages, algebraic representa-
tions, and instructions for drawing diagrams are stored as data elements transla-
tionScript, algebraicScript, and diagramScript respectively.

Since the data elements mentioned above are all associated with Concept,
we encapsulate their data together with their relations into a geometric concept
object (called predicate or function with embedded knowledge in [11]).

More generally, we refer to a set of structured and itemized geometric knowl-
edge data as a geometric knowledge object (KO for short). Geometric knowledge
objects can be classified into Concept (Definition), Axiom, Lemma, Theorem,
Corollary, Conjecture, Proof, Problem, Example, Exercise, Solution, and Algo-
rithm. Although this classification may be arguable and need to be justified,
what is essential in our approach is to encapsulate interrelated data into certain
knowledge objects with the same structure.

The objects of Lemma, Theorem, Corollary, Conjecture, Problem, Example,
and Exercise involve data elements

– knowledgeName: the data as identifiers for the knowledge objects;
– formalRepresentation: the data to be processed by other tools or modules

for query, automated reasoning, computation, translation, etc.;
– naturalRepresentation: the data to be displayed for users to read;
– diagramInstruction: the data to be applied as instructions for drawing dia-

grams corresponding to the knowledge objects;
– algebraicRepresentation: the data made up of algebraic formulae correspond-

ing to the knowledge objects.

The objects of Axiom, which are true assertions on the basis of beliefs or ob-
servations without formal proof, involve data elements formalRepresentation,
naturalRepresentation, and diagramInstruction. The objects of Proof, Solution,
and Algorithm involve data elements formalRepresentation for mechanical check-
ing and naturalRepresentation for human reading. The data elements knowled-
geName and keyWords need be associated with all the knowledge objects for
query. The data elements staticFigure and dynamicFigure need be associated
with all the knowledge objects for visualization.

2.2 Formalization of Data Elements

The data stored in data elements are not simply of type String or Integer, but
have specially designed formats. Geometric knowledge presents the features and
properties of geometric configurations. Geometric configurations are usually de-
scribed in a way by using labels to represent objects and quantities. To formalize
the descriptions of geometric configurations, we introduce the following notions.

Definition 1. The terms of a concept are defined as follows:

(1) a variable, such as A or B, is a term;
(2) a constant, such as 0 or π, is a term;

On the Design and Implementation of a Geometric Knowledge Base 29

(3) a function of the form f(a1, . . . , an), where f is the function symbol of a
concept, each ai is a term, and (a1, . . . , an) satisfies the type constraint on
the concept, is a term.

Definition 2. Clauses are defined as follows:

(1) a reference of the form A := f(a1, . . . , an), where A is a variable and
f(a1, . . . , an) is a function, is a (reference) clause, and A is said to be refer-
enced by the function f(a1, . . . , an);

(2) a predicate of the form P (t1, . . . , tm), where P is the predicate symbol of a
concept, each ti is a term of the concept, and (t1, . . . , tm) satisfies the type
constraint on the concept, is a (predicate) clause;

(3) if M and N are predicate clauses, then M ∧N , M ∨N , (M ∧N), (M ∨N),
and ¬M are also predicate clauses and thus are clauses.

A geometric configuration is a statement of the form C1; . . . ; Ck, where each Ci

is a clause and all the variables are referenced by the functions occurring in the
statement. For example, a configuration for “Simson’s theorem” is “A :=point();
B :=point(); C :=point(); D := pointOn(circle(A, B,C)); J := foot(D, line(A, B));
H := foot(D, line(B, C)); G := foot(D, line(A, C))”.

A formal representation of a theorem is a statement of the form H ⇒ C, where
H is a geometric configuration, C is a predicate clause, and all the variables
occurring in C are referenced by the functions occurring in H . For example,
a formal representation of “Simson’s theorem” is “A := point(); B :=point();
C :=point(); D :=pointOn(circle(A, B, C)); J := foot(D, line(A, B)); H := foot(D,
line(B, C)); G := foot(D, line(A, C))⇒ collinear(J,H, G)”.

The general structure of definitions is “concept A is defined by R which
satisfies some constraints.” A formal definition is a statement of the form
A � [R where C], where A is an instance of a concept (i.e., a function or
a predicate clause) to be defined, R is a term or a predicate clause, C is a
predicate clause, and all the variables occurring in R but not in A are typed.
For example, the intersection point of two lines l and m may be defined as
“intersection(l,m)� [A::Point where incident(A, l)∧ incident(A, m)]”.

We give some examples for other data elements.
The translation script for translating the concept “collinear(Point, Point,

Point)” into an English statement is “collinear(A,B, C) �→A, B, and C arev colline-
ar”, where arev means that “are” is a verb. The algebraic script for translating the
concept “collinear(Point, Point, Point)” into an algebraic expression is “collinear
(A, B, C) �→−B[2]*C[1]+B[2]*A[1]+ A[2]*C[1]+B[1]*C[2]−B[1]*A[2]−A[1]*
C[2]=v 0”, where P[i] stands for the ith coordinate of P. The diagram script for
generating diagram instructions of the concept “triangle(Point, Point, Point)” is
“triangle(A, B, C) �→ segment[A, B], segment[B, C], segment[A, C]”. The nonde-
generacy condition for the concept “triangle(Point, Point, Point)” is “triangle(A,
B, C)� ¬ collinear(A, B, C)”.

The natural representation of “Simson’s theorem” is “The feet of the per-
pendiculars from a point on the circumcircle of a triangle to the three sides of

30 X. Chen, Y. Huang, and D. Wang

the triangle are collinear”. The diagram instruction1 of “Simson’s theorem” is
“A = (−11.1, 1.62); B = (−22.84,−15.37); C = (7.14,−15.75); a = Polygon[A,
B, C]; o = Circle[A, B, C]; D = Point[o]; l = PerpendicularLine[D, line[A, B]];
m = PerpendicularLine[D, line[B, C]]; n = PerpendicularLine[D, line[A, C]]; J
= Intersect[l, line[A, B]]; H = Intersect[m, line[B, C]]; G = Intersect[n, line[A,
C]]; SimsonLine = line[H, G]”.

The formalization of other data elements such as the formal representation of
proofs and exercises is under investigation.

2.3 Structure Design within Knowledge Objects

Each data element for a knowledge object may contain multiple data of the same
format. For example, the definition of a concept may be represented in different

Fig. 1. Structure within geometric concept objects

1 The instructions adopt the commands of the dynamic mathematics software
GeoGebra [3].

On the Design and Implementation of a Geometric Knowledge Base 31

natural languages and a theorem may have distinct algebraic representations
under different coordinate systems.Therefore, it is necessary to design the struc-
ture of data elements for knowledge objects. We abstract 10 relational tables
from the above analysis about the data elements for concept objects and the
data model is shown in Fig. 1.

As each concept may have multiple vocabularies (defined by users) and at-
tribute lists (e.g., a circle may be defined by three points on it or by its center
and one point on it), we need construct both vocabulary table and attributeList
table and use the attribute objectID of the definitionObject table to identify the
same geometric concept in different situations. The attribute conceptID of the
concept table is the identifier for a set of the encapsulated geometric concept
objects with common concept name in the knowledge base.

Now we give an example to show how to fetch needed data from an instance of
a concept according to the structure. It can be viewed as some kind of retrieval.

The expression “line(midpoint(A, B), C)” denotes the line passing through
the middle point of AB and point C. The process of fetching the algebraic script

Fig. 2. Structure within geometric knowledge objects

32 X. Chen, Y. Huang, and D. Wang

for translating this expression into algebraic expressions is as follows. From the
vocabulary “line”, the conceptID “Concept.line” for the outer concept can be
obtained from the vocabulary table. From the inner concept vocabulary “mid-
point”, the conceptID and then its type “Point” can be obtained from the vocab-
ulary table and concept table. For the second parameter “C”, the default type is
“Point”. From these two types, the pattern of the attribute list can be computed,
e.g., by linking two “Points” into “(Point, Point)”. Based on the conceptID “Con-
cept.line” and pattern, the objectID for this expression can be obtained from the
definitionObject table and further it is then feasible to fetch the needed version
of algebraic script for “line(midpoint(A, B), C)” from the algebraicScript table.

Since the same data element may be used in different types of knowledge ob-
jects, it is possible to combine the structures together for other types of knowl-
edge objects without designing separated structure for each type of knowledge
objects (see Fig. 2).

According to the structure within knowledge objects, it is easy to develop
tools for retrieving needed data from any given knowledge object.

3 Modeling of the Structure for the Knowledge Base

Knowledge objects are the atomic components of knowledge in communication
and documentation. For example, definitions of concepts and theorems are stan-
dard knowledge units in textbooks. To build up a knowledge base of encapsulated
knowledge objects, one needs to analyze and design the structure of the knowl-
edge objects. We adopt graph- and tree-based approaches for the organization
and management of geometric knowledge objects.

Geometric knowledge objects are not independent of each other; they are
closely connected. Establishing relations among knowledge objects and modeling
the KO structure are indispensable for designing the knowledge base. By KO
structure we mean an arrangement of the knowledge objects based on their
relations.

Interrelated knowledge objects may be grouped into categories, like sections
and chapters used in textbooks. Here category is used to illuminate the relation
between its subject and its members in the knowledge base. Categories are de-
fined as follows: (a) C[o1, . . . , on] is a category, where C denotes the subject of
the category, o1, . . . , on are knowledge objects, and n ≥ 1; (b) C′[c1, . . . , cm] is a
category, where C′ denotes the subject of the category, c1, . . . , cm are categories
(subcategories) or knowledge objects, called the members of the category, and
m ≥ 1. Establishing categories for knowledge objects and modeling the structure
for categories are other tasks for designing the knowledge base.

3.1 Analysis on the Structure for the Knowledge Base

KO Structure. First of all, let us analyze the relations among knowledge
objects, such as the concept objects and the theorem objects, which are the
main components of the current version of our knowledge base. We place our
emphasis on what the structure is rather than how to generate the structure.

On the Design and Implementation of a Geometric Knowledge Base 33

A new concept is introduced by using some already defined concepts and it
has two entries: one is used to indicate what are its father concepts and the
other is used to collect some “special” constraints for the new concept. For ex-
ample, the middle point of a segment is a “special” point. Its father concept is
point and the special constraint is that the distances from this point to the two
ends of the segment are equal. Thus, there are two kinds of KO structures that
describe relations among concepts: one is Type structure used to describe inheri-
tance relations and the other is Derivation structure used to describe dependence
relations among concepts.

We have examined some concepts commonly used in elementary geometry
textbooks and their Type structure is shown by the examples in Fig. 3, where
the nodes represent concept objects and the directed edges represent inheritance
relations. Based on our observations, ten geometry primitives have been chosen
as the basic (root) types (which have no father types) for geometric objects.
These primitives are defined by informal descriptions in natural mathematical
languages. Although intuitively line is not primitive as it may be defined by
means of points, from the viewpoint of geometric computation and deduction
it is convenient to consider line, as well as circle, as primitives. For the same
reason, polygon formed by lines or segments is also considered as primitive. The
Quantity type consists of Geometric Quantity type (such as length, area, and
degree) and Algebraic Quantity type used to define algebraic quantities (such
as real numbers). The Boolean type consists of Object Relation type used to
define relations among geometric objects and Quantity Relation type used to
define relations among quantities.

The Type structure is tree-like and permits multiple inheritance. For example,
an isosceles right triangle is both a special right triangle and a special isosceles
triangle.

As for the Derivation structure, each concept may be derived from several
concepts and it may derive many other concepts. For instance, the concept of
incenter of a triangle is derived from the concepts of intersection and bisector,
and it derives the concept of inscribed circle of a triangle.

Actually, the Derivation structure may also be used to describe many other
dependence relations among knowledge objects: a definition may derive a theo-
rem, some definitions may be the context of a theorem, a lemma may imply a
theorem, a theorem may imply a corollary, and a proof may be associated with
a theorem. For example, the definitions of “foot” and “collinear” provide the
context of “Simson’s theorem” and “Simson’s theorem” derives the definition of
“Simson line”.

If we take knowledge objects as nodes and inheritance or dependence relations
as directed edges, then both the Type structure and the Derivation structure can
be modeled as directed graphs without directed cycles and thus we can represent
these two structures in the knowledge base by the same method.

Structured with those relations among the knowledge objects, our geometric
knowledge base can be completely formalized in the sense that all the non-
primitive concept objects are created formally (and sometimes inductively) in

34 X. Chen, Y. Huang, and D. Wang

F
ig

.
3
.
T

y
p
e

st
ru

ct
u
re

On the Design and Implementation of a Geometric Knowledge Base 35

terms of other knowledge objects of ancestor types and all the knowledge objects
can be traced via the relations among them.

Category. The structure of a category is a tree with subject as its root, sub-
categories as its branches, and knowledge objects as its leaves. We introduce
category objects into the knowledge base to store information about the subjects
of categories. For a category object, the attribute objectID stores its identifer
(see Fig. 4). The attribute categoryID stores identifiers for the variants in dif-
ferent natural languages. The attribute role represents what the category is,
like chapter or section. The attribute name represents the name of the subject.
The attributes title and note represent the contents of the subject. The relation
between a category object and its member is inclusion.

Fig. 4. Structure within the category object

3.2 Representation of the Structure of the Knowledge Base

As mentioned in Sect. 3.1, both the Type structure and the Derivation structure
can be modeled as directed acyclic graphs whose nodes represent knowledge
objects and whose edges represent relations between the knowledge objects. In
a database the easiest way is to use a table whose two columns represent the
starting and ending nodes connected with each other. Thus each row of the table
represents a directed edge in the graph. We use a KOstructure table (see Fig. 5)
to represent the KO structure of the knowledge base. The attributes precursor
and subsequence represent the starting node and the ending node respectively,
each of which stores the objectID of the knowledge object which the node denotes.
The attribute relationType stores the type of the dependence relation between
the precursor and the subsequence, such as “derive”, “imply”, and “context”.

Similarly to the KO structure above, we use a categoryStructure table (see
Fig. 5) to represent the structure of categories in the knowledge base. The
attribute precursor represents a category object and stores its objectID. The
attribute subsequence stores the objectID of its member. The attribute rank
represents in which position in the precursor the subsequence is.

36 X. Chen, Y. Huang, and D. Wang

Fig. 5. Representation of the structure in the knowledge base

Currently, we focus our attention mainly on the inheritance relation and de-
pendence relations among knowledge objects in order to be able to investigate
what knowledge objects are basic and how to arrange knowledge objects in geo-
metric documents, where the dependence relations indicate the narrative struc-
ture. Not only concept objects, relations among other knowledge objects, such as
theorems, proofs, and solutions, are also of our concern. We have presented the
structure within knowledge objects in Fig. 2. Our aim is to establish a macro-
scopical framework for the processing of relations among different knowledge
objects (which is also why we try to encapsulate knowledge data into knowledge
objects with appropriate granularity). Under this framework, we can manage the
global structure and explore the inherent relationship of knowledge in geometric
documents.

4 Implementation of the Knowledge Base System

We have implemented an experimental system for our geometric knowledge base.
According to the structure design of data elements for knowledge objects in
Sect. 2.3, we create a database containing the involved tables in MS SQL Server.
We have chosen Java as the programming language to develop interfaces for
users to create and modify the knowledge data of Concept (Definition), Axiom,
Lemma, Theorem, Corollary, Conjecture, Problem, Example, Exercise, Proof,
Solution, and Category objects and their relations and to store the constructed
data into the corresponding tables in the database. Interfaces of our system with
several external packages for authoring special data have been implemented. The
dynamic mathematics software GeoGebra is used for creating dynamic figures.
The MathDox formula editor [7] is used to create expressions in the algebraic
representations, encoded in OpenMath [1], a standard for representing mathe-
matical objects with semantics. One can construct, for example, the definition
of “Simson line” as in Fig. 6 and a category of section as in Fig. 7.

4.1 Naming Objects in the Knowledge Base

In the knowledge base, knowledge objects and category objects are the units that
may be managed, processed, and retrieved. A knowledge object or a category
object is identified only by matching the value of its attribute objectID. It is

On the Design and Implementation of a Geometric Knowledge Base 37

Fig. 6. Constructing the definition object “Simson line”

Fig. 7. Constructing the section object “Simson lines”

important to automatically generate unique objectIDs for each knowledge object
and each category object in the knowledge base to avoid conflict. We adopt the
following naming rules for generating objectIDs from the input data:

– objectID of Concept := userName.Definition.knowledgeName.attributeList ;
– objectID of type := userName.type.knowledgeName.version

38 X. Chen, Y. Huang, and D. Wang

where type can be Axiom, Lemma, Theorem, Corollary, Conjecture, Prob-
lem, Example, Exercise, Proof, or Solution;

– objectID of Category := userName.Category.role.name.

4.2 Browsing and Querying the Knowledge Base

Browsing the Knowledge Base. The knowledge base collects an amount of
knowledge objects (which consist of the related data elements) and category ob-
jects (which consist of data about the subjects of the categories). One of browsing
the knowledge base is to render the categories as trees and category objects and
knowledge objects as tree nodes. By using the command browseBy[objectID]
where objectID is the objectID of a category object, the system will retrieve the
objectIDs of its members based on the categoryStructure table (see Fig. 5) and
perform the same process on these members recursively until they are all knowl-
edge objects. According to these objectIDs, the tree nodes will be generated by
fetching values of the attribute name stored in the knowledgeName table (see
Fig. 2) and the categoryObject table (see Fig. 4).

The other view is to browse the data within knowledge objects and category
objects. Given an objectID, the system automatically generate corresponding
XML documents by assembling the related data with this objectID through the
structure within the objects (see Figs. 1, 2, and 4) and render them in readable
styles via SAXON XSLT processor [9] and JDesktop Integration Components
(JDIC [6]), which provides Java applications with access to functionalities and
facilities furnished by the native desktop (see Fig. 8).

Querying the Knowledge Base. Currently, the system provides basic query
services through keywords and relations for users to input search commands and
to view the results. The queries through relations work at the level of knowledge
objects and category objects. This means that the queries need be described by
using the objectIDs of the objects but not simple natural texts. We explain the
commands for queries as follows.

– keyWords[word1, . . . , wordn] returns the set of knowledge objects and cat-
egory objects with keywords word1 and . . . and wordn according to the
keyWords table (see Fig. 2).

– relation[*,objectID, relationType] returns the set of knowledge objects
such that their subsequences are the knowledge object identified by objectID
with the relation of relationType; relation[objectID,*, relationType] re-
turns the set of knowledge objects such that their precursors are the knowl-
edge objects identified by objectID with the relation of relationType. These
two query commands work by using the KOstructure table (see Fig. 5).

The provided commands support fetching the knowledge objects related with a
given knowledge object and are helpful for users to author geometric documents.
For example, if one wants to include “Simson’s theorem” into a document, he/she
can query the knowledge base through keywords to see whether others have

On the Design and Implementation of a Geometric Knowledge Base 39

Fig. 8. Browsing the content of “Simson’s theorem” object

Fig. 9. Querying the knowledge base

40 X. Chen, Y. Huang, and D. Wang

constructed the theorem; if so, he/she can browse the data of the theorem and
modify the data to satisfy his/her requirement. Moreover, it is necessary to
include the knowledge objects that “Simson’s theorem” depends on, such as the
definitions of “foot”, “collinear”, and “circumcircle” which provide the context
of “Simson’s theorem”. To sort the results of retrieval, we adopt the method of
viewing them in the structure of a given category (see Fig. 9).

According to the structure within knowledge objects (see Figs. 1 and 2), it
is possible to retrieve the needed data within a knowledge object by giving
the objectID of the knowledge object, as described in the example in Sect. 2.3.
However, the specification of this functionality or API is still under development.

5 Conclusion and Future Work

In this paper, we have discussed our ideas on the design of a geometric knowl-
edge base and presented our preliminary implementation of the knowledge base
system. Our key strategy is to encapsulate certain interrelated geometric knowl-
edge data into knowledge objects. We have focused our study on the hierarchic
structure of knowledge objects and its formalization and representation. The
application tools to realize the automated activities proposed in Sect. 2.1 are
being developed.

So far the functionality of query is limited as we have to know the objectID
of the concerned knowledge object in the knowledge base first. The challenge is
to search and sort the knowledge objects that match a given geometric config-
uration which may be specified in the formal language presented in Sect. 2.2.
As a geometric configuration may be described by using different concepts, e.g.,
the description of “Simson’s theorem” can use the concept of “foot”, and it can
use the concepts of “perpendicular” and “intersection point” as well, it is nec-
essary to define a canonical form for each geometric configuration and compute
the relevance among the canonical representations of geometric configurations.
According to the Type structure and Derivation structure, we can see what con-
cepts are basic. The geometric configurations specified by using just the basic
concepts may approach to the canonical form for retrieving, which will be inves-
tigated at the next stage. Moreover, the structure of the knowledge base, i.e., the
relations among knowledge objects, is annotated by human developers or users.
It is valuable to investigate how to acquire the relations automatically through
analyzing and mining the data contained in the knowledge objects.

Acknowledgments. The authors wish to thank Professor Arjeh M. Cohen and
Dr. Hans Cuypers for offering the first author the opportunity to visit and work
in their DAM group at Technische Universiteit Eindhoven. This work has ben-
efited considerably from the friendly environment of working during his stay in
Eindhoven. The authors also wish to thank the referees for their insightful com-
ments and suggestions which have helped bring this paper to the present form.
The research has been supported by the Chinese National Key Basic Research
(973) Project 2005CB321901/2 and the SKLSDE Open Fund BUAA-SKLSDE-
09KF-01.

On the Design and Implementation of a Geometric Knowledge Base 41

References

1. Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaëtano, M., Kohlhase, M.:
The OpenMath Standard, Version 2.0. Tech. Rep., The OpenMath Society (2004),
http://www.openmath.org/

2. Chen, X., Wang, D.: Towards an Electronic Geometry Textbook. In: Botana, F.,
Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 1–23. Springer, Heidelberg
(2007)

3. GeoGebra Home, http://www.geogebra.org/cms/
4. Gräbe, H.-G.: The SymbolicData GEO Records – A Public Repository of Geometry

Theorem Proof Schemes. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930,
pp. 67–86. Springer, Heidelberg (2004)

5. Intergeo Home, http://i2geo.net/xwiki/bin/view/Main/
6. JDIC Home, https://jdic.dev.java.net/
7. MathDox Formula Editor, http://www.mathdox.org/formulaeditor/
8. Quaresma, P., Janic̆ić, P.: GeoThms — Geometry Framework. Tech. Rep. CISUC

TR 2006/002, Centre for Informatics and Systems, University of Coimbra (2006)
9. SAXON XSLT Processor Home, http://saxon.sourceforge.net/

10. Wang, D.: GEOTHER 1.1: Handling and Proving Geometric Theorems Automat-
ically. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 194–215.
Springer, Heidelberg (2004)

11. Wang, D.: Formalization and Specification of Geometric Knowledge Objects. In:
Hu, Z., Zhang, J. (eds.) Proceedings of the Sixth Asian Workshop on Foundations
of Software (AWFS 2009), Tokyo, Japan, pp. 86–98 (2009)

http://www.openmath.org/
http://www.geogebra.org/cms/
http://i2geo.net/xwiki/bin/view/Main/
https://jdic.dev.java.net/
http://www.mathdox.org/formulaeditor/
http://saxon.sourceforge.net/

Proof Certificates for Algebra

and Their Application to
Automatic Geometry Theorem Proving

Benjamin Grégoire, Löıc Pottier, and Laurent Théry

Marelle Project, INRIA Sophia Antipolis

Abstract. Integrating decision procedures in proof assistants in a safe
way is a major challenge. In this paper, we describe how, starting from
Hilbert’s Nullstellensatz theorem, we combine a modified version of
Buchberger’s algorithm and some reflexive techniques to get an effec-
tive procedure that automatically produces formal proofs of theorems
in geometry. The method is implemented in the Coq system but, since
our specialised version of Buchberger’s algorithm outputs explicit proof
certificates, it could be easily adapted to other proof assistants.

Keywords: decision procedure, Nullstellensatz, geometry theorem
proving, proof assistant.

1 Introduction

Integrating decision procedures in proof assistants in a safe way is a major chal-
lenge. Many well-known and widely-used decision procedures exist but making
them available in the context of a proof assistant is not so trivial: one has to
certify the result of the procedure. This may explain, for example, why very few
theorems of geometry have been formalised yet in the list compiled by Freek
Wiedijk [28].

The integration can be made in several ways. Everything can be done inside
the proof assistant. For example, one can write the procedure as a tactic, then,
every time the tactic is called, a proof is built for the particular instance. Alter-
natively, if the system offers a programming language, one can write the entire
procedure as a program inside the system and use standard program verifica-
tion techniques to derive its correctness once and for all. In both cases, such an
internal integration is usually very time consuming specially if the procedure is
rather complex.

Another way to go is to use external programs. For example, one can take
an existing implementation of the procedure and modifies it to output execu-
tion traces. Then, the proof assistant only needs to follow the information in
the trace to build its own proof. An alternative is to use certificates instead of
traces. Certificates do not contain all the execution path but just enough infor-
mation to make it easy for the proof assistant to build a proof. Examples of such
certificates are prime certificates that we have used [13] to get the primality of

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 42–59, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Proofs Certificates for Algebra and Their Application to Geometry 43

large prime numbers, or algebraic certificates [17]. Verifying certificates is usu-
ally more difficult than checking traces but still an order of magnitude simpler
than building internally the entire procedure. Verifying the certificates can be
done either by tactics or by a verified program.

In this paper, we advocate the combination of an external program that gener-
ates certificates and a verified program that checks certificates for the particular
case of deciding problems of the following kind:

∀X1, . . . , Xn ∈ R,
P1(X1, . . . , Xn) = 0 ∧ . . . ∧ Ps(X1, . . . , Xn) = 0
⇒ P (X1, . . . , Xn) = 0

where R is a commutative ring without zero divisor and P, P1, . . . , Ps are polyno-
mials. This has been intensively studied during the 80s, specially by the computer
algebra community. The main decision procedure used to solve these problems
is Buchberger’s algorithm [2]. A lot of efforts have been spent in improving this
algorithm and trying to apply it to various domains of theorem proving. Without
doubt, one of the most successful area of application is automatic geometry the-
orem proving (see for example [5,20,21,26,29,22] for a survey). In the context of
proof assistants, this has also recently drawn some attention. John Harrison [16]
uses a basic implementation of Buchberger’s algorithm to produce a certificate
for elementary arithmetic (e.g. proving the Chinese remainder theorem) for the
HolLight system [14]. Also, Amine Chaieb and Makarius Wenzel [3] use it in the
context of the Isabelle system [24]. One of the authors [25] has also connected
Coq with the state-of-the-art implementation of Gröbner bases algorithms.

In this paper, we explain how we manage to solve theorems of geometry
proved by Wu’s method: Desargues, Pascal, and 20 other theorems. Getting
these theorems inside a proof assistant is a real challenge: the proof certificates
we obtain for these theorems are quite large. Three key ingredients were essential:

– our implementation of Buchberger’s algorithm that generates certificates
does not try to compute the whole Gröbner basis. It just does enough work to
solve the specific problem. In practice, this reduces drastically the time that
is needed to generate certificates. Our approach is very pragmatic and lacks
a more precise insight of what is exactly gained by progressively reducing
the polynomials.

– our certificates are not just composed of a single polynomial identity but con-
sist in straight-line programs. Such programs are composed of assignments
only. No branching or loops are allowed. Straight-line programs are impor-
tant tools used in algebraic complexity to prove optimal bounds [9]. Here,
they appear to be also of great practical use.

– reflexive methods and the power of the reduction machine of the Coq system
are used to verify these certificates efficiently.

A tactic in Coq is a piece of program that allows to prove automatically some
specific kind of logical statements. It produces a proof term for this statement.
The proof is then verified by Coq. If it is correct, the statement is validated

44 B. Grégoire, L. Pottier, and L. Théry

as a theorem. In this work, we have implemented and tested a new tactic for
proving ideal membership. Its input is a statement with polynomial expressions
as hypotheses and conclusion. Its output is a proof term that is automatically
generated from a certificate (a list of polynomials lists). Another tactic has been
developed for geometry. It reduces geometrical statements into their polynomial
form. We can then compose the two tactics to prove geometrical statements.

The paper is organised as follows. In Section 2, we recall what the Nullstel-
lensatz theorem and Gröbner bases are. In Section 3, we present our modified
version of Buchberger’s algorithm that generates certificates based on straight-
line programs. In Section 4, we recall what reflexive methods in provers like Coq
are and explain how they have been used in our context to produce short proof
terms. Finally, in Section 5, we illustrate an application of our decision procedure
to prove automatically some theorems of geometry taken from [5] and [6].

2 Nullstellensatz Theorem and Gröbner Basis

We seek to prove implications of the following form:

∀X1, . . . , Xn ∈ R,
P1(X1, . . . , Xn) = 0 ∧ . . . ∧ Ps(X1, . . . , Xn) = 0
⇒ P (X1, . . . , Xn) = 0

where R is a commutative ring without zero divisor and P1, . . . , Ps are polyno-
mials. As a matter of fact, the general problem we want to solve is quantifier
elimination in general rings and fields, but the general problem reduces easily
to the problem we address here (see for example [23]). Hilbert’s Nullstellensatz
theorem shows how to reduce proofs of equalities on polynomials to algebraic
computations (see for example [7] for the notions introduced in this section).

It is easy to see that if a polynomial P in R[X1, . . . , Xn] verifies cP r =∑s
i=1 QiPi, with c ∈ R, c �= 0, r a positive integer, and the Qis in R[X1, . . . , Xn],

then P is zero whenever polynomials P1, ..., Ps are zero. The converse is also true
when R is an algebraic closed field: the method is complete. So, proving our ini-
tial problem reduces into finding Q1, . . . , Qs, c and r such that cP r =

∑
i QiPi.

In this case, we call (c, r, Q1, . . . , Qs) the ”certificate” of the statement we want
to prove since it is straightforward to obtain a proof from this certificate.

In this work, we concentrate on the special case where r = 1, i.e. the problem
of finding Q1, . . . , Qs and c such that cP =

∑
i QiPi. The cases r > 1 can

be tested by enumeration, or by using extra variables, as explained in [25] for
example. In practice, almost all problems are solved with r = 1.

2.1 Division of Polynomials

An ideal I of a ring is an additive subgroup of the ring such that a × x ∈ I
whenever a ∈ I. The ideal generated by a family of polynomials is the set of
all linear combinations of these polynomials (with polynomial coefficients). A
Gröbner basis of an ideal is a set of polynomials of the ideal such that their head

Proofs Certificates for Algebra and Their Application to Geometry 45

monomials (relative to a chosen order on monomials, e.g. lexicographic order,
or degree order) generate the ideal of head monomials of all polynomials in the
ideal. The main property of a Gröbner basis is that it provides a test for the
membership to the ideal: a polynomial is in the ideal if and only if its euclidean
division by the polynomials of the basis gives a zero remainder.

The division process is a generalisation of the division of polynomials in one
variable: to divide a polynomial P by a polynomial aXα − Q we write P =
aXαS + T where T contains no monomial that is multiple of Xα. Then we
change P into QS +T and repeat the process. When we reach a polynomial that
is not divisible by aXα −Q, this is the remainder of the division. For example,
suppose that we use the degree order on monomials. The head monomial of
x2 − z is then x2. In order to divide x4y + x2 − 1 by the polynomial x2 − z, we
rewrite x2 into z everywhere. This leads to the polynomial z2y + z − 1, which
is not divisible by x2 − z: it is the remainder of this division process. In order
to divide a polynomial by a family of polynomials, we repeat this process with
each polynomial of the family.

2.2 Gröbner Bases

In general, the remainder of a division of a polynomial by a family of polynomi-
als depends on the order in which we use the polynomials of the family. With
a Gröbner basis, this remainder is unique: this is a characteristic property of
Gröbner bases. For example, dividing x2y2 − y4 by the family {x2 + 1, xy − 1}
gives the remainder −y2− y4 if we divide by x2 + 1 but gives 1− y4 if we divide
by xy− 1. Both remainders are irreducible: so the family is not a Gröbner basis.
We can prove that the family {x2 + 1, xy− 1, x+ y, y2 + 1} is a Gröbner basis of
the ideal generated by {x2 + 1, xy− 1}. Any division of x2y2− y4 by this family
will give the remainder 0. With a simple division algorithm, we can conclude
that the polynomial x2y2 − y4 is in the ideal generated by {x2 + 1, xy − 1}.

Consider now polynomials of the ideal with a degree in y strictly lower than
2 such as x3 − y. Obviously, dividing them by only the three first polynomials
{x2+1, xy−1, x+y} of the basis is sufficient to give the remainder 0. This shows
that on some particular cases it is not necessary to have a complete Gröbner
basis in order to conclude. Also, half of the time for computing a Gröbner basis
is usually spent in verifications that do not produce any new elements for that
basis. In practice, the strategy that consists in checking the membership each
time a new polynomial is added to the family gives an effective speed-up.

3 Buchberger’s Algorithm and Certificates

The main method for computing Gröbner bases is Buchberger’s algorithm. It
consists in completing the initial family of polynomials by new polynomials in
the same ideal built from the so-called S-polynomials. For a pair of polynomials
(P, Q), its associated S-polynomial is the polynomial t1P − t2Q where the terms
t1 and t2 are chosen in such a way that the head monomials of t1P and t2Q are

46 B. Grégoire, L. Pottier, and L. Théry

identical, so they cancel out in the subtraction. The algorithm starts with the
initial family and adds all the non-zero remainders of the S-polynomials for all
pairs of elements of the family. If no new element has been added to the family,
the algorithm terminates otherwise it repeats the same completion process with
the new family. Dixon’s lemma ensures that this iterative process eventually
terminates. The resulting family is then a Gröbner basis.

We modify this algorithm in a simple way: each time a non-zero remainder
of a S-polynomial is added to the family, we divide the polynomial P by it, and
replace P by its remainder. If this remainder is zero, the algorithm terminates.
Remembering all the divisions that has been done from the beginning gives a
way of writing P as a linear combination of the original polynomials. Let us take
a concrete example. Suppose we want to show that P1 = 0 ∧ P2 = 0 ⇒ P = 0
with P1 = x2 +1, P2 = xy−1 and P = x3−y. Our initial family is then {P1, P2}
and we want to find a certificate c,Q1 and Q2 such that cP = Q1P1 + Q2P2. We
first try to divide P by the family {P1, P2} starting from left to right. P1 divides
P and the remainder is R1 = −x− y = P − xP1. R1 is non-zero and irreducible
by {P1, P2}, so we can start the completion. There is only one S-polynomial
for the family {P1, P2}, which is P3 = x + y = yP1 − xP2. It is irreducible by
{P1, P2}, so we add P3 = x+ y to the family {P1, P2}. We then try to divide R1

by P3, this gives 0 = R1 + P3 so we can stop the completion. We have

0 = R1 + P3 = (P − xP1) + (yP1 − xP2)

singling P out gives
P = (x− y)P1 + xP2

so the certificate is c = 1, Q1 = x− y and Q2 = x. Note that in order to get the
certificate, we have not computed the complete basis.

For our certificates, we are not going to express P as a combination of the
initial family as in the previous example. A more effective way of presenting the
certificate is to be a bit closer to the computation that is actually performed by
the algorithm. The certificate is then composed of two parts. The first part, CR,
is a list of polynomials. It gives the coefficients to express P as a combination
of the initial family plus the extra polynomials that the computation of the
partial Gröbner basis has added to the initial family in order to reduce P to 0.
The second part, C, is a list of polynomials lists. Each subsist corresponds to
one extra polynomial and explains why it belongs to the ideal generated by the
initial family plus the polynomials that are added before. More formally, with
an initial family {P1, . . . , Ps} this gives:

CR = [c1, . . . , cs+p]
C = [[a1 s+1, . . . , as s+1],

. . .
[a1 s+p, . . . , as s+p, . . . , as+p−1 s+p]]

where
∀i ∈ [1; p], Ps+i = a1 s+iP1 + . . . + as+i−1 s+iPs+i−1

Proofs Certificates for Algebra and Their Application to Geometry 47

and
P = −(c1P1 + . . . + cs+pPs+p)

For simplicity here, we have assumed that R is a field (hence c = 1) but we
can easily extend the certificate format to the case where divisions are pseudo-
divisions. As each new polynomial in C is defined with respect to the previous
ones, C has a structure that is very similar to straight-line programs. Applied
to our example, we get the following “program”:

P1 := x2 + 1;
P2 := xy − 1;
P3 := yP1 + (−x)P2;
P := −((−x)P1 + 0P2 + 1P3);

so the certificate is CR = [−x, 0, 1] and C = [[y,−x]]. The main advantage of
straight-line programs is that they allow the sharing of computations. This can
change the exponential computing time into linear one (see [9] for an example
of how straight-line programs can be used to find complexity bound).

In general, a straight-line program is an imperative program without loops, i.e.
a sequence of assignments of expressions to variables, each expression depending
on previously assigned variables:

x1 := f1();
x2 := f2(x1);
x3 := f3(x1, x2);
...
xn := fn(x1, ..., xn−1);

where f1, f2, ..., fn are parametric procedures. In computer algebra, they are
usually rational fractions, here just polynomials. A straight-line program can be
viewed as a directed acyclic graph, i.e. a tree with shared sub-trees.

To illustrate how this change of complexity may occur in our particular con-
text, let us consider the following contrived example. Let fn be the nth Fibonacci
number: f0 = 0, f1 = 1, fn+2 = fn+1 + fn and suppose that we want to prove
that Xfn+1−1 = 0∧Xfn −1 = 0 ⇒ X−1 = 0. Computing the Gröbner basis of
{Xfn+1 − 1, Xfn − 1} mimics Euclid’s algorithm for gcd and the decomposition
is

X − 1 = Pn−2(Xfn+1 − 1) + Pn−1(Xfn − 1) (1)

where the polynomials Pn are defined by P0 = 0, P1 = 1, Pn = −XfnPn−1 +
Pn−2. The certificate with straight-line programs is

CR = [0, . . . , 0, 1]
C = [[1,−Xfn−1],

[0, 1,−Xfn−2],
. . .
[0, . . . , 0, 1,−Xf2]]

(2)

48 B. Grégoire, L. Pottier, and L. Théry

inideal(P,F){

(* F = [P1,...,Pn] *)

R := P; C := [];CR := LR; R := R1;

SP:= Spolynomials(F,F);

let (R1,LR) = divide(R,F) in

while R <> 0 do (* stop if P divides to 0 by F *)

if SP = [] then Fail

(* the Gröbner basis is computed without reducing P to 0 *)

else let (S,LS)::SP1 = SP in

SP := SP1;

let (D,LD) = divide(S,F) in

if D <> 0 (* add a new polynomial to F *)

then F := F + [D]; (* + denotes concatenation of lists *)

SP := SP + Spolynomials(F,[D]);

C := C + [merge(LD,LS)];

let (R1,LR) = divide(R,F) in (* reduce R by F *)

CR := merge(CR,LR);

R := R1;

done;

return(CR,C);

}

Fig. 1. Pseudo-code of the modified Buchberger’s algorithm with certificate

Suppose that in order to check a polynomial equality, one first applies distribu-
tivity and then collects equal monomials. Let us compare the verification of the
two certificates (1) and (2) in term of operations on monomials. In the first one,
Pn has degree fn+2 − 2 and has fn monomials, with coefficients 1 (n odd) or
−1 (n even), then the verification of this equation requires 2fn multiplications,
and 3fn additions. In the second one, each intermediate polynomial has form
Xfk − 1, then the verification only requires 2n − 4 multiplications and 4n − 8
additions. As fn ∼ ((1 +

√
5)/2)n/

√
5, there is an exponential factor between

the two.
We end this section by giving in Figure 1 the pseudo-code of the function

inideal that generates our certificates. The function divide returns the remain-
der together with the list of quotients of the division. The function Spolynomials
computes the S-polynomials of two families. For each of these S-polynomials, it
also returns the monomials and polynomials used to compute them. The func-
tion merge adds terms of two lists of same rank, completing by zeros if needed.
Our program is composed of 3500 lines of Ocaml and 500 lines of Coq. It in-
cludes polynomial arithmetic for sparse polynomials and recursive polynomials,
rational fractions, sub-resultant, gcd computation, and unbounded integer arith-
metic. The Ocaml code could easily be used as a standalone prover provided
one adds a minimal parser/printer for polynomials.

Proofs Certificates for Algebra and Their Application to Geometry 49

4 Reflexive Method to Verify Large Certificates in Proof
Assistant

In Coq system, each deduction step appears explicitly in the final proof term.
Thus, each application of lemma (and in particular each rewriting step) is stored
in the proof. This clearly prohibits the use of rewriting tactics to verify our cer-
tificates: proof terms would be too large. Fortunately, the Coq system integrates
a programming language on which we can reason. For programs written in this
language, symbolic evaluation is also possible via the reduction mechanism. More
importantly, this reduction mechanism is integrated inside the logic: two terms
are considered equal if their normal forms, i.e. the terms after evaluation, are
structurally equal. So, reductions do not appear in proof terms. The reflexive
method introduced by Allen et al. [1] takes advantage of this reduction mech-
anism in order to reduce drastically the size of proof terms. Note that if the
reduction mechanism is particularly efficient, using reflexive methods can also
reduce the time required to verify the proof. The reflexive method relies on the
following remark:

– Let P : A → Prop be a predicate over a set A.
– Assume we are able to write in the system a program c such that the following

properties holds
c spec : ∀a, c a = true → P a

In other words, for all value a, if the evaluation of the program c on a returns
true then P is satisfied for a. This means that c is a semi decision procedure
for the properties P and c spec is the lemma which expresses that the semi
decision procedure is correct.

Now, assume that we have to prove P a′ for a specific a′ and that, for this
particular a′, the system is able to reduce c a′ into true. In order to prove P a′,
we can apply the lemma c spec to a′, so we are left with c a′ = true to prove.
Since c a′ reduces to true, this proposition c a′ = true is identical for the prover
to the proposition true = true which can be proved by the reflexivity of equality.

The Coq system is based on the Curry-Howard isomorphism. This means
that proofs are represented by programs, propositions by types and valid proofs
are well-typed programs. For example, our proof of P a′ is the program
c spec a′ (refleq true). The typing derivation of the proof is:

...
Γ � c spec a′ : c a′ = true → P a′

Γ � refleq true : true = true
true = true ≡ c a′ = true

Γ � refleq true : c a′ = true
[Conv]

Γ � c spec a′ (refleq true) : P a′

Here the key point is the use of the Conv typing rule:

Γ � t : T T ≡ U

Γ � t : U
[Conv]

50 B. Grégoire, L. Pottier, and L. Théry

which allows to view a program t of type T as a program of type U if T and
U are equal modulo reduction (convertible). All the reduction steps that are
necessary to check the convertibility of true = true and c a′ = true do not appear
in the proof term. Naturally, if the reduction steps are not in the proof term,
they are going to be performed during the checking phase. So the time needed
to check a proof that uses the reflexive method will not only crucially depend
on the efficiency of the reduction mechanism implemented by the prover but
also on the efficiency of the semi-decision procedure. The compiled reduction
mechanism of Coq has a very efficient strategy to reduce programs [11]. This
makes the reflexive method very attractive in Coq.

Now that we have introduced the reflexive method, let us explain how it
can be used to define a checker for the certificates defined in Section 3. For
polynomial operations, we use the existing polynomial library of Coq [12]. This
library has been developed for the reflexive ring tactic that proves equalities
over an arbitrary ring structure. It defines two data-types:

- E represents the type of polynomial expressions, i.e. the free algebra;
- P represents the type of polynomials in Horner normal form.

Basic operations like addition or multiplication are defined on the type P , thus
it is easy to define a normalisation algorithm norm from E to P by structural
recursion. Correctness of the basic operations is provided using an interpretation
function [[]]ρ from P to an arbitrary ring R, where ρ is the valuation function that
binds polynomial indeterminates to value in R. It is proved that each operator is
correct with respect to the interpretation function. For example the specification
of the addition is given by:

∀ρ P1 P2, [[P1 +P P2]]ρ = [[P1]]ρ +R [[P2]]ρ

In a similar way, the correctness of the normalisation is defined using an inter-
pretation function [[]]Eρ on polynomial expressions:

∀ρ E, [[E]]Eρ = [[norm E]]ρ

Thus, to prove that two ring expressions r1 and r2 in R are equal, it is sufficient
to find two polynomial expressions E1, E2 and a valuation function ρ such that
[[Ei]]Eρ reduce to ri. If the normalisation of E1 and E2 leads to the same Horner
normal form then r1 and r2 are equal. This strategy is not necessarily the best
one. The normalisation is defined by a naive structural recursion: in order to
normalise (X + Y)100 − (X + Y)100 the function first normalises twice the sub-
term (X +Y)100 and then performs the subtraction. This is clearly not optimal.

Implementing our checker on top of that library is straightforward. We first
define a function mult l that normalises each line of the certificate. In the syntax
of Coq this looks like

Function mult l (Le L: list P) : P :=

match Le, L with

| e::L′e, p::L′ ⇒ e ∗P p +P mult l L′e L′

Proofs Certificates for Algebra and Their Application to Geometry 51

| , ⇒ 0P
end.

Then a second function compute list collects all the normalised polynomials
that correspond to the lines of the certificates

Function compute list (LLe: list (list P)) (L:list P): list P :=

match LLe with

| Le::LLe ⇒ compute list LLe ((mult l Le L)::L)

| ⇒ L

end.

Finally the checking function check tests the equality of the two normal forms:

Function check (Le:list E) (p:E) (certif: list (list P) * list P) :=

let (LLe, L′e) := certif in

let L := map norm Le in

norm p =?=P mult l L′e (compute list LLe L).

Note that all the functions we have defined for our checker are tail-recursive. In
order to prove the correctness of the checker, we first define the property for a
list to be composed of only zero polynomials:

Definition Allzero ρ (L: list P) := ∀P ∈ L, [[P]]ρ = 0.

Definition AllzeroE ρ (Le: list E) := ∀P ∈ Le, [[P]]Eρ = 0.

We then show that the two functions mult l and compute list behave well with
list of zero polynomials:

Lemma mult l spec: ∀ρ Le L, Allzero ρ L → [[mult l Le L]]ρ = 0.

Lemma compute list spec:

∀ρ LLe L, Allzero ρ L → Allzero ρ (compute list LLe L).

Finally, we can derive the correctness of our checker
Lemma check correct:

∀ρ L p certif, check L p certif = true → AllzeroE ρ L → [[p]]Eρ = 0.

Defining the checker and proving its correctness is straightforward. This is ex-
actly what we wanted: the integration of a decision procedure from the prover
side should be as seamless as possible.

5 Geometry Theorem Proving

In his book [5], Shang-Ching Chou proves 512 theorems of geometry mechani-
cally. In this section, we show how we have been capable to prove some of the
most difficult ones in Coq with our certificates. We also compare our results
with other systems (HOL Light [14] and Macaulay2 [10]).

In order to turn geometry into algebra, points are represented by their co-
ordinates, geometric predicates by polynomials based on determinants, scalar
products and algebraic relations between trigonometric functions. For example,
we define collinearity in Coq by:

52 B. Grégoire, L. Pottier, and L. Théry

Definition collinear (A B C:point):=

(X A - X B) * (Y C - Y B) - (Y A - Y B) * (X C - X B) = 0.

and the fact two lines defined by two pairs of points are parallel:

Definition parallel (A B C D:point):=

(X A - X B) * (Y C - Y D) = (Y A - Y B) * (X C - X D).

Figure 2 gives a summary of some of our experiments. The machine used for
these benchmarks is a Linux PC with dual Intel Xeon 3.2Ghz processors with
33Gb of memory. Columns contain respectively:

1. The name of the theorem and in parenthesis the page in Chou’s book where
it is stated (when it exists);

2. The time in seconds for computing the certificate,
3. The time in seconds for verifying the certificate,
4. The size in number of characters of c and the Qi when expanding the cer-

tificate into cP =
∑

i QiPi.
5. The size in number of characters of the certificate,
6. The size of the certificate as a proof term (number of nodes),
7. The size of the certificate as a optimized straight-line program: every sub-

term of the proof term is shared (with let operator).

A more detailed presentation of the examples is available at

http://www-sop.inria.fr/marelle/CertiGeo

These results deserve some comments:

– The number of variables of the Gröbner bases computation is about 20 (the
number of coordinates of the points) and the degree of the input polynomials
is generally 2 (which is the general case: each ideal can be generated by
polynomials of total degree less than two, provided we add extra variables).

– The time for computing a Gröbner base is very sensitive to the variable order.
In general, a good choice is to have the variables of base points greater than
the variables of constructed points, and to use a reverse-lexicographic term
order. But this is not always the case. Only when computing with this naive
order was prohibitive, we did try to find an better order. The names of such
theorems are marked with a star in Figure 2.

– Certificates with straight-line programs are generally better than raw polyno-
mials. For examples like Ceva’s theorem, this makes a significant difference.

Theorems in geometry are not true in general, there are some non-degeneracy
conditions: some particular points must not be collinear, some lines not parallel,
and so on. From the algebra point of view, this means that we can only prove:

CP =
∑

i

QiPi

where C is a polynomial in some variables, which are parameters of the theo-
rem. From a logical point of view, this means that the conclusion of the theorem

http://www-sop.inria.fr/marelle/CertiGeo

Proofs Certificates for Algebra and Their Application to Geometry 53

Time (seconds) Size (characters) Size (nodes)

Theorem Computing Verifying Polynomials Certificate Term SLP

Ceva (264) 181 2.5 538644 477414 266233 76669
Desargues (*)(269) 0.3 0.01 6359 4551 24527 4311
Feuerbach (199) 0.8 0.4 52569 16999 15585 5497
Pappus (*)(100) 1.3 0.2 2721 1934 29945 8031
Pascal circle (*) 397 12 732982 864509 754290 183505
Pascal circle2 (20) 91 2.6 10603 15128 312626 66154
Ptolemy (*) 1.1 0.5 1549 1556 26210 9129
Ptolemy theo95 (142) 200 2.4 571931 571931 344278 73257
Pythagora 0.000 0.009 7 7 4 4
Simson (240) 0.3 0.2 1541 1238 15680 4919
Thales 0.03 0.1 5422 5169 3146 1323
bisectors 0.002 0.04 165 165 105 69
butterfly (119) 0.1 0.2 12116 11125 13661 3980
Euler circle 0.06 0.5 5532 2936 2795 1146
chords 0.002 0.04 639 642 568 282
altitudes 1.1 0.3 4947 5386 5295 1801
isosceles 0.001 0.01 10 10 3 3
medians 0.005 0.06 2910 2717 2284 1064
bisections 0.005 0.06 2577 2145 1911 831
Minh 0.07 0.1 3367 3616 3987 1881
SegmentsofChords 0.1 0.09 10375 9839 7476 2491
threepoints 0.11 0.13 2890 2587 2796 1105
fib(16) 0.003 0.8 15786 393 416 137
fib(17) 0.004 1.3 26059 423 465 151
fib(18) 0.004 2.4 40864 464 517 166
fib(22) 0.008 68 307720 630 753 225

Fig. 2. Times and sizes of some selected theorems

becomes a disjunction of the original conclusion and the degenerate cases. A
work-around is to work with coefficients that are rational fractions in some vari-
ables u1, . . . ur, called parameters. Polynomials are then not in R[X1, . . . , Xn]
anymore but in R(u1, . . . , ur)[X1, . . . , Xn]. Let us take for example Desargues’
theorem. It states that given two triangles (A, B, C) and (A1, B1, C1) and a
point S such that S, A, A1 are collinear, A, B, B1 are collinear, and S, C,
C1 are collinear, we can deduce that the intersection R of (A, B) and (A1, B1),
the intersection Q of (A, C) and (A1, C1), and the intersection P of (B, C) and
(B1, C1) are also collinear. All points are in the affine plane. Its statement and
proof in Coq are:

Lemma Desargues: forall A B C A1 B1 C1 P Q R S:point,

X S = 0 -> Y S = 0 -> Y A = 0 ->

collinear A S A1 -> collinear B S B1 -> collinear C S C1 ->

collinear B1 C1 P -> collinear B C P ->

collinear A1 C1 Q -> collinear A C Q ->

collinear A1 B1 R -> collinear A B R -> collinear P Q R

54 B. Grégoire, L. Pottier, and L. Théry

�
S

�
A

� B

�

C

�
A1

�
B1

�
C1

�

Q

�
P

�
R

Fig. 3. Desargues’theorem

∨ X A = X B ∨ X A = X C ∨ X B = X C ∨ X A = 0

∨ collinear S B C

∨ parallel A C A1 C1 ∨ parallel A B A1 B1.

Proof.

geo begin.

tzRpv 0%Z (X A::X B::Y B::X C::Y C::X A1::Y B1::Y C1::nil)

(X B1::X C1::Y P::X P::Y Q::X Q::Y R::X R

::Y C1::Y B1::X A1::Y A1::Y C::X C::Y B::X B::nil).

Qed.

The theorem is proved by two tactics. The first one, geo begin, transforms
the statement in an algebraic one (disjunctions in conclusion become products,
negations in hypothesis like p �= 0 becomes t∗p = 1 where t is a new variable and
so on). The second one, tdzRpv, takes explicitly as arguments the parameters
and the variables with which the certificate generator has to be called and checks
back the resulting certificate. Without the extra conditions X A = X B ∨...∨
parallel A B A1 B1, the theorem is not true. In order to find these conditions,
we try to prove the theorem using variables X A, X B, Y B, X C, Y C, X A1,
Y B1, Y C1 as parameters, i.e. allowing to multiply P with a polynomial in these
variables. This succeeds and gives a coefficient c which has to be non zero. We
take this c and factorise it (for example using Maple [4]). In this particular case,
we get a product of 7 factors that we translate back as geometric conditions that
are added to the goal as disjunctions. Finding these extra-conditions has to be
done manually for the moment but with these extra conditions the theorem is
proved automatically.

Trying to prove a general statement can give rise to extra conditions that
have also to be proved. They correspond to denominators of all the fractions in
the certificate being non-zero. When such a condition is not contradictory with

Proofs Certificates for Algebra and Their Application to Geometry 55

the other hypotheses of the statement, it corresponds to an actual degenerated
cases, so it is added to the original statement. Nevertheless, we have to be careful.
Adding a condition that is contradictory with the other hypotheses would lead
to a theorem that is trivially true but useless. For some examples, this detection
of contradictions can be extremely costly.

Adding extra conditions has to be done for almost all theorems. This is not
an easy task because selecting automatically which variables have to be put as
parameters is not direct. As a matter of fact, there is a general method that
we outline now. The set of coefficients c such that cP is in the ideal generated
by P1, . . . , Ps is itself an ideal. It defines an algebraic variety which represents
the cases were the theorem is false. In order to completely describe this variety,
one should compute its irreducible components. This can be done again with
Gröbner bases computations. With the algebraic description of the variety of
non-degenerate conditions, we will then be able to state the theorem correctly,
even if some conditions are not easily expressible with the usual geometric pred-
icates. For the theorems we have addressed so far, the heuristic method succeeds
reasonably quickly, so we did not have to use the general machinery of irreducible
decomposition of algebraic varieties yet.

We have compared our method with two systems: Macaulay2 [10], a system
dedicated to algebraic geometry which is very efficient in Gröbner bases compu-
tations and HOL Light [14], a proof assistant that has a tactic for geometry
theorem proving using Gröbner bases computation [15] [18] . For Macaulay2,
in several cases, e.g. Pascal’s theorem for the circle, it was not able to check ideal
membership (time over 1000s) because it fails to compute the whole Gröbner
basis while our method succeeds (in 397 seconds). For HOL Light, Figure 4
gives a more extensive comparison. All theorems are general instances of the
ones presented in Figure 2. Since our version of HOL Light was running in in-
terpreted mode, times have been divided by a factor of 4 to compensate the fact
that Coq is using native code (4 is the average ratio between interpreted versus
compiled code in Ocaml). In HOL Light, geometrical theorems are proven by
refutation, i.e. the conclusion of the theorem is negated and the contradiction
1 = 0 is proved by showing that 1 is in the Gröbner basis. Since this method
differs from ours (the benefit of dividing the conclusion by the partial Gröbner
basis during completion is lost), each theorem with hypothesis H , generic case C
and particular cases CP1, . . . , CPn is proved using two equivalent formulations:

(1) the particular cases are negated in hypotheses: H ∧¬CP1∧ . . .∧¬CPn ⇒ C
(2) the conclusion is negated: H ∧ ¬CP1 ∧ . . . ∧ ¬CPn ∧ ¬C ⇒ 1 = 0.

The idea is that the first version benefits from dividing the conclusion while the
second one exactly mimics HOL Light behaviour.

Let us now comment on these results:

– the first block of lines of the first table contains theorems for which refutation
is slower than our method. For these theorems, our tactic is faster than HOL
Light.

– the second block contains theorems for which refutation is faster. For these
theorems, our tactic and HOL Light are similar.

56 B. Grégoire, L. Pottier, and L. Théry

Times (seconds)
Coq (1) HOL Light (1) Coq (2) HOL Light (2)

Feuerbach 94 >2000 >2000 >2000
Ptolemy 3.7 >800 20 >800
Ceva 4.8 28 5 28
Minh 0.8 1.9 27 1.9
Butterfly 24 20 25 21
Pappus 0.9 1 1 1

Euler circle 20 0.2 1 0.3
Pascal circle 50 6 11 6
Simson 89 118 7.3 121
Desargues 117 28 32 29
Threepoints 3 75 2.4 75

Times (seconds)
Coq HOL Light

Feuerbach or 1127 >2000
Ceva or 26 27
Pappus or 51 0.2
Desargues or >500 11
Pascal circle or 44 8

Fig. 4. Comparison with HOL Light

– the second table contains theorems written as H ⇒ C ∨CP1 ∨ . . .∨CPn. In
this case, our method behaves very badly: the polynomial representing the
conclusion is rather big, so dividing it to 0 takes a long time.

There is no clear winner between our method and the refutation one. However
it seems that when the theorem deals with euclidean geometry and not only
projective one, our method is better. In average, our tactic is faster than the one
in HOL Light and it has the extra benefit of generating a certificate that can
be easily verified.

6 Conclusion

This paper addresses an issue that is rarely taken into account by the auto-
mated theorem proving community: can we really trust the tools we are using
to prove theorems? For proof assistants, this question is central. Proof assistants
are systems where mathematical knowledge is added progressively: new facts
are derived from previously proved ones. Current systems usually come with li-
braries that contain thousands of theorems. It is then crucial for these libraries
to be built with the highest degree of confidence.

Nullstellensatz theorem and Gröbner bases algorithms are well-known ingre-
dients to automatically prove theorems but how can they be put into action if,
for example, one would like to build a library of geometrical facts that can be
easily certified even by other proof assistants? The main contribution of this pa-
per is to propose an effective way to do this. It is very easy to device a solution

Proofs Certificates for Algebra and Their Application to Geometry 57

that works only on small examples. Before what is proposed in this paper, we
had several non-conclusive attempts:

1. First, we have developed a certified implementation of Buchberger’s algo-
rithm that can be run within Coq [27]. This implementation was still an
order of magnitude slower than usual implementations that can be found
in computer algebra systems. Furthermore, any modification of this imple-
mentation usually requires a non-trivial proving effort to re-establish its
correctness. Computations like the one needed for Ceva’s theorem could not
be performed inside Coq.

2. We have also tried to use efficient programs that computes Gröbner bases [8]
using standard techniques of effective algebra [25]. These techniques make it
possible to use the program as a black box but requires to add extra variables
to the problem in order to compute the Qi. The complexity of Gröbner bases
being very sensitive to the number of variables, examples like Pascal were
clearly out of reach.

3. We have also experimented with the simple form of certificates that only
contains the coefficients of the linear combination as in the example (1)
of page 47. Unfortunately, for some examples like Feuerbach, checking the
certificates was taking much more time than generating them.

The notion of certificate as straight-line programs is a key aspect of this work.
We agree that the only insight we could get is the fib example that shows that
straightline program captures some cancellation. Still, we could not characterise
when this actually happens. But it gives an explicit interface between the com-
putation that is done externally of the proof assistant and the proof checking
that is done inside the proof assistant. It also provides a very compact way of
writing certificates. This means for example that transferring all the theorems
of Table 2 into another proof assistant is straightforward: one just needs to de-
velop his own trusted version of the checker. Note that in that case the time for
generating the certificate becomes irrelevant: having Ceva’s theorem would only
require the time to check the certificate, i.e. a couple of seconds.

The system we have developed has made it possible to get very quickly a li-
brary of standard theorems of geometry within Coq. For building the library, we
intensively use our secure decision procedure for ideal membership. Each theo-
rem was first stated in its full generality. Then, our tactic that turns the problem
in a membership problem and calls the decision procedure was tried. Most of
the time, Coq failed to fully accept the certificate returned by the decision pro-
cedure. Some polynomials have to be proved non-zero. So we add them as extra
conditions. As explained before, this was done manually. Once the extra condi-
tions added, the tactic was tried again and this time the certificate was accepted.
The theorem with its extra-conditions could then be stored in the Coq database.
What was important in this experiment was to show that our decision procedure
that is much slower than state-of-the-art Gröbner implementations could still be
used for proving interesting theorems. We have encountered very few examples
(Pascal’s theorem for conics is one of them) where our decision procedure fails
for a clear lack of computing power. This method of proving is of course very

58 B. Grégoire, L. Pottier, and L. Théry

sensitive to the way theorems are stated. This is well known. Only one theorem
has resisted our attempts to turn it into a Coq theorem, it is Morley’s theorem
(this theorem is in [5] but its statement involved extra points).

Looking at the problem of testing ideal membership from the perspective of
generating small certificates is also very intriguing. We plan to further work on
our generator. We believe it is possible to greatly improve both the efficiency
and the compactness of the certificates that are generated. We also plan to apply
similar ideas of compact certificates to other techniques that are used in geometry
theorem proving. In that respect, Ritt-Wu’s decomposition algorithm [6] seems
a natural candidate.

Acknowledgements

This work was supported by the ANR Galapagos. Yves Bertot helped us with
his expertise of the GeoGebra system [19]. We thanks the referees for their
constructive comments on the first version of this paper.

References

1. Allen, S.F., Constable, R.L., Howe, D.J., Aitken, W.E.: The Semantics of Reflected
Proof. In: LICS, pp. 95–105. IEEE Computer Society, Los Alamitos (1990)

2. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of Symbolic Computation 41(3-4) (2006)

3. Chaieb, A., Wenzel, M.: Context aware calculation and deduction. In: Kauers, M.,
Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS
(LNAI), vol. 4573, pp. 27–39. Springer, Heidelberg (2007)

4. Char, B.W., Fee, G.J., Geddes, K.O., Gonnet, G.H., Monagan, M.B.: A Tutorial
Introduction to MAPLE. Journal of Symbolic Computation 2(2), 179–200 (1986)

5. Chou, S.-C.: Mechanical geometry theorem proving. Kluwer Academic Publishers,
Dordrecht (1987)

6. Chou, S.-C., Gao, X.-S.: Ritt-Wu’s Decomposition Algorithm and Geometry
Theorem Proving. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 207–220.
Springer, Heidelberg (1990)

7. Eisenbud, D.: Commutative Algebra: with a View Toward Algebraic Geometry.
Graduate Texts in Mathematics. Springer, Heidelberg (1999)

8. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (f4). Journal
of Pure and Applied Algebra 139(1/3), 61–88 (1999)

9. Giusti, M., Heintz, J., Morais, J.E., Morgenstern, J., Pardo, L.M.: Straight-line
programs in geometric elimination theory. Journal of Pure and Applied Alge-
bra 124(1/3), 101–146 (1998)

10. Grayson, D.R., Stillman, M.E.: Macaulay2,
http://www.math.uiuc.edu/Macaulay2/

11. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Inter-
national Conference on Functional Programming 2002, pp. 235–246. ACM Press,
New York (2002)

http://www.math.uiuc.edu/Macaulay2/

Proofs Certificates for Algebra and Their Application to Geometry 59

12. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in
coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113.
Springer, Heidelberg (2005)

13. Grégoire, B., Théry, L., Werner, B.: A computational approach to pocklington
certificates in type theory. In: Hagiya, M. (ed.) FLOPS 2006. LNCS, vol. 3945, pp.
97–113. Springer, Heidelberg (2006)

14. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

15. Harrison, J.: Complex quantifier elimination in HOL. In: TPHOLs 2001: Supple-
mental Proceedings. Division of Informatics, pp. 159–174. University of Edinburgh
(2001), published as Informatics Report Series EDI-INF-RR-0046

16. Harrison, J.: Automating elementary number-theoretic proofs using gröbner bases.
In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 51–66. Springer,
Heidelberg (2007)

17. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer,
Heidelberg (2007)

18. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, Cambridge (2009)

19. Hohenwarter, M., Preiner, J.: Dynamic Mathematics with GeoGebra. Journal of
Online Mathematics 7, ID 1448 (March 2007)

20. Kapur, D.: Geometry theorem proving using Hilbert’s Nullstellensatz. In: SYM-
SAC 1986: Proceedings of the Fifth ACM Symposium on Symbolic and Algebraic
Computation, pp. 202–208. ACM, New York (1986)

21. Kapur, D.: A refutational approach to geometry theorem proving. Artificial Intel-
ligence 37(1-3), 61–93 (1988)

22. Kapur, D.: Automated Geometric Reasoning: Dixon Resultants, Gröbner Bases,
and Characteristic Sets. In: Wang, D. (ed.) ADG 1996. LNCS, vol. 1360, pp. 1–36.
Springer, Heidelberg (1998)

23. Kreisel, G., Krivine, J.L.: Elements of Mathematical Logic (Model Theory). Studies
in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1967)

24. Paulson, L.C.: Isabelle: A generic theorem prover. Journal of Automated Reason-
ing 828 (1994)

25. Pottier, L.: Connecting Gröbner Bases Programs with Coq to do Proofs in
Algebra, Geometry and Arithmetics. In: Proceedings of the LPAR Workshops:
Knowledge Exchange: Automated Provers and Proof Assistants, and The 7th
International Workshop on the Implementation of Logics. CEUR Workshop Pro-
ceedings, vol. (418) (2008)

26. Robu, J.: Geometry Theorem Proving in the Frame of the Theorema Project.
Tech. Rep. 02-23, RISC Report Series, University of Linz, Austria, phD Thesis
(September 2002)

27. Théry, L.: A Machine-Checked Implementation of Buchberger’s Algorithm. Journal
of Automated Reasoning 26(2) (2001)

28. Wiedijk, F.: Formalizing 100 Theorems, http://www.cs.ru.nl/~freek/100
29. Wu, W.-T.: On the Decision Problem and the Mechanization of Theorem-Proving

in Elementary Geometry. In: Automated Theorem Proving - After 25 Years, pp.
213–234. American Mathematical Society, Providence (1984)

http://www.cs.ru.nl/~freek/100

Multivariate Resultants in Bernstein Basis

Deepak Kapur� and Manfred Minimair

1 University of New Mexico, Department of Computer Science, Albuquerque,
New Mexico 87131, USA

kapur@cs.unm.edu
2 Seton Hall University, Department of Mathematics and Computer Science,

400 South Orange Avenue, South Orange, New Jersey 07079, USA
manfred@minimair.org

Abstract. Macaulay and Dixon resultant formulations are proposed for
parametrized multivariate polynomial systems represented in Bernstein
basis. It is proved that the Macaulay resultant for a polynomial sys-
tem in Bernstein basis vanishes for the total degree case if and only if
the either the polynomial system has a common Bernstein-toric root, a
common infinite root, or the leading forms of the polynomial system ob-
tained by replacing every variable xi in the original polynomial system
by yi

1+yi
have a non-trivial common root. For the Dixon resultant for-

mulation, the rank sub-matrix constructions for the original system and
the transformed system are shown to be essentially equivalent. Known
results about exactness of Dixon resultants of a sub-class of polynomial
systems as discussed in Chtcherba and Kapur in Journal of Symbolic
Computation (August, 2003) carry over to polynomial systems repre-
sented in the Bernstein basis. Furthermore, in certain cases, when the
extraneous factor in a projection operator constructed from the Dixon
resultant formulation is precisely known, such results also carry over to
projection operators of polynomial systems in the Bernstein basis where
extraneous factors are precisely known. Applications of these results in
the context of geometry theorem proving, implicitization and intersection
of surfaces with curves are discussed. While Macaulay matrices become
large when polynomials in Bernstein bases are used for problems in these
applications, Dixon matrices are roughly of the same size.

Keywords: resultants, Macaulay matrix, Dixon matrix, Bernstein basis.

1 Introduction

Resultants provide a necessary and sufficient condition on a polynomial system
to have a common root. If a polynomial system is parametrized, then the re-
sultant is a polynomial in the parameters such that the resultant polynomial
vanishes for parameter values if and only if the instantiated polynomial system
has a common solution (in a suitable space). Typically resultant computations
are defined for polynomials represented in the standard power basis. However,
� Partially supported by NSF Award CCF-0729097.

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 60–85, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Multivariate Resultants in Bernstein Basis 61

there are applications such as computer-aided design, graphics, robotics, chem-
ical kinematics, for which bases other than the standard power basis are more
suitable. A case in point is the Bernstein basis representation which has been
used extensively in computer-aided design [22] and also in constructive approx-
imation theory [19].

Fundamental operations for polynomials represented with respect to bases
other than the usual power basis are being intensely studied. Examples include
computation of resultants and resultant matrices for univariate polynomials
[29,36,37,41,7,40], gcds [31,20,11], generalized companion matrices [2,38,39,16],
polynomial remainder sequences [4,23], and polynomial division [3,35,1,33]. Car-
rying out fundamental operations over alternative bases is motivated by the
desire to avoid computational cost and numeric errors incurred by converting
between different polynomial bases.

We show in this paper that multivariate resultant formulations, including
Macaulay resultants [17] and Dixon resultants [26], can be adapted in a natural
way to be applicable to polynomials represented in the Bernstein basis. This
work is in part motivated by [29,41,7,40] that consider univariate cases. It is
also motivated by [30] that studies polynomial systems arising from surface-
curve intersections in Bernstein basis and constructs resultant matrices for these
special systems. However, [30] neither studies any properties of these resultant
matrices, such as Theorems 16, 21, and 22 of the current paper, nor considers the
general case of arbitrary polynomial systems as it is done in the current paper.

The Macaulay resultant (“total-degree resultant”) for a polynomial system
with xi’s as its variables and represented in the Bernstein basis with total de-
gree support can be defined by doing a transformation of the polynomials in the
Bernstein basis into a related polynomial system in the standard power basis
using a different set of variables; every variable xi in the original polynomial
system is replaced by yi

1+yi
. While preserving the original coefficients, the trans-

formed polynomial system is shown to be in the standard power basis. So the
classical Macaulay construction applies, however, leading to a Macaulay matrix
with respect to the Bernstein basis. The main result about the Macaulay re-
sultant formulation for a polynomial system in Bernstein basis is that the total
degree resultant of the polynomial system vanishes if and only if the polynomial
system has a common Bernstein-toric root (defined precisely later), a common
infinite root, or the leading forms of the transformed polynomial system have a
common (nontrivial) root.

In the case of the Dixon resultant formulation, the results are even more
direct. For polynomials represented in variables xi’s with unmixed Bernstein
basis degree, replacement of each xi by yi

1−yi
, where the yi’s are new variables,

leads to a relationship between the Dixon matrix of the original system and
the Dixon matrix of the transformed system. Because of this, known results
about exactness of Dixon resultants of a sub-class of polynomial systems as
discussed in [12] carry over to polynomial systems represented in the Bernstein
basis. Furthermore, in certain cases, when the extraneous factor in a projection
operator constructed from the Dixon resultant formulation is precisely known,

62 D. Kapur and M. Minimair

the extraneous factor in the projection operator of a polynomial system in the
Bernstein basis can be predicted a priori.

For polynomial systems represented using the Bernstein basis with mixed
basis degrees, we observe that such bases can be lifted to unmixed basis degree,
so that the results of the previous section apply. Lifting results in larger matrices
because of which additional extraneous factors are introduced into the projection
operators computed for the lifted unmixed polynomial systems represented in
the Bernstein basis. Thus we present an algorithm to reduce the Dixon matrix
to minimal size, eliminating the additional factors.

Furthermore, we show that the rank sub-matrix construction of Kapur, Saxena
and Yang [26], can be used to extract the resultant from the projection operator
generated by the Dixon matrix in Bernstein basis representation in the same way
as for power basis representation. This construction is especially useful when
polynomial systems are not generic and/or parameters are specialized. Results
from [25] where it is shown that Dixon resultant formulation exploits the sparse
structure and specialization of coefficients of terms in polynomial systems, should
extend as well, we believe, to specialized polynomial systems in the Bernstein
basis.

As already mentioned, polynomials represented in Bernstein basis have impor-
tant applications in computer graphics and in constructive approximation theory.
Let us elaborate and discuss the need for resultants for Bernstein polynomials.
In computer graphics Bernstein polynomials are used to represent Bézier curves
and surfaces. For example a surface is given by three bivariate polynomials of
the form ∑

i1i2

ak i1i2 β(nk1,nk2),(i1,i2)(x1, x2),

for k = 0, 1, 2, where the tuples (a0 i1i2 , a1 i1i2 , a2 i1i2) represent the so-called
control points for the surface. (The β’s represent Bernstein basis elements. See
Sect. 2.4.) In approximation theory Bernstein polynomials are used to approx-
imate continuous functions. In both areas polynomial equations in Bernstein
basis naturally arise, for example when intersecting curves and surfaces or when
computing roots. Obviously resultants can be used to study such systems of
equations. The techniques presented in the current paper can be used for such
studies directly without converting the polynomials into power basis representa-
tion. This provides practical benefits by avoiding the computational cost of such
a conversion. Moreover, for the case of numeric coefficients such a conversion is
normally not recommended because of numerical instability and possible severe
loss of accuracy incurred by the conversion. Applications of these results in the
context of geometry theorem proving, implicitization and intersection of surfaces
with curves are discussed. While Macaulay matrices become large when poly-
nomials in Bernstein bases are used for problems in these applications, Dixon
matrices are roughly of the same size.

The paper is organized as follows. Section 2 reviews background material
on multivariate resultants and projection operators, particularly Macaulay and
Cayley-Dixon resultant formulations. Section 2.4 is on multivariate Bernstein

Multivariate Resultants in Bernstein Basis 63

bases for polynomials. Section 3 discusses how the Macaulay resultant formu-
lation can be adapted to work on polynomial systems represented in Bernstein
bases. This is followed by the Cayley-Dixon resultant formulation for polyno-
mial systems using Bernstein bases (Sect. 4). The next Sect. 5 discusses some
applications. The paper ends with a section on conclusion and future work. The
appendix includes the proofs of the main results in the paper.

2 Preliminaries

2.1 Multivariate Resultants and Projection Operators

We summarize various notions of resultants and projection operators considered
in this paper and elaborate on their constructions in the corresponding sections
below.

By the resultant of a multi-variate polynomial system F = (f0, . . . , fl) one
usually means a polynomial in the coefficients of the fi’s that vanishes if and
only if the fi’s have a common root in a given variety. For the cases of projective
and general toric varieties one can use a Macaulay-style approach [17,18] for
constructing the resultant.

By the projection operator of a multi-variate polynomial system F one usu-
ally means a necessary condition for a common root of F , that is, a polyno-
mial in the coefficients of the fi’s that vanishes if the fi’s have a common root
in a given variety. Such projection operators can be constructed following a
Bézout/Cayley/Dixon-style approach [21,26]. It has been shown that under some
natural assumptions [9,15] these projection operators are multiples of resultants
defined over suitable varieties.

2.2 Macaulay-Style Approach

The Macaulay-style approach constructs resultants for a multi-variate polyno-
mial system F = (f0, . . . , fl) in the variables X = (x1, . . . , xl) as the quotient
of two determinants [28,10,18]. The matrix in the numerator consists of the co-
efficients of suitable multiples of the fj ’s. The multipliers for the fj ’s are power
products of the variables in X . The matrix in the denominator is a suitably
chosen sub-matrix of the matrix in the numerator. This construction leads to
resultants defined over the projective space as well as over toric varieties in gen-
eral. Section 3 will study this construction for polynomials presented in Bernstein
basis.

2.3 Bézout/Cayley/Dixon-Style Approach

The Bézout/Cayley/Dixon-style approach also constructs a matrix from mul-
tiples of the polynomials in the system F as above [21]. However, unlike the
Macaulay-style approach, the multipliers usually are polynomials instead of
monomials. This approach usually leads to a smaller matrix and thus is faster
in computations. The resultants extracted from this matrix are defined over

64 D. Kapur and M. Minimair

suitably parametrized varieties (including toric varieties) [9,26] (or affine in cer-
tain cases). Section 4 will study this construction for polynomials presented in
Bernstein basis.

2.4 Multivariate (Tensor-Product) Bernstein Bases

We review the standard notation for Bernstein bases (see e.g. [5]). Note that in
the literature Bernstein bases for multivariate polynomials are also called tensor-
product Bernstein bases because they are obtained as products of univariate
Bernstein bases, similarly to multivariate power bases.

Let N = (n1, . . . , nl) and I = (i1, . . . , il) be multi-indices such that I ≤ N ,
that is, ij ≤ nj , for all j. Furthermore, let X = (x1, . . . , xl) be a list of variables
xj . Analogous to a power product xi1

1 · · ·x
il

l , we define the I-th Bernstein basis
element (of degree N) as

βN,I(X) :=
(

n1

i1

)
· · ·
(

nl

il

)
xi1

1 (1 − x1)n1−i1 · · ·xil

l (1− xl)nl−il ,

where
(
a
b

)
is the usual binomial coefficient. Furthermore note that often we will

abbreviate the product
(
n1
i1

)
· · ·
(
nl

il

)
in the definition of βN,I(X) with

(
N
I

)
. Fur-

thermore, we call the products xi1
1 (1 − x1)n1−i1 · · ·xil

l (1 − xl)nl−il without bi-
nomial coefficients the I-th scaled Bernstein basis element.

As is well-known [5], all polynomials (over some field k) in variables X , whose
degree in each xj is less than or equal to nj, can be written as linear combinations
of Bernstein basis elements βN,I(X) with I ≤ N .

Example 1. Consider the polynomial

f = a21 x2
1 x2 + a20 x2

1 (1 − x2) + 2 a11 x1 (1− x1)x2

+ 2 a10 x1 (1− x1) (1− x2) + a01 (1 − x1)2 x2

+ a00 (1− x1)2 (1 − x2)

in the variables x1 and x2. Using the standard notation, we have

f = a21 βN,(2,1)(X) + a20 βN,(2,0)(X) + a11 βN,(1,1)(X)

+ a10 βN,(1,0)(X) + a01 βN,(0,1)(X)

+ a00 βN,(0,0)(X),

where N = (2, 1) is the basis degree and X = (x1, x2) are the variables of f .

3 An Analogue of Macaulay-Style Resultant Construction

This section constructs analogues of Macaulay-style resultants for polynomials
with total-degree support with respect to the Bernstein basis. The notion of
support with respect to the Bernstein basis is defined as for power basis.

Multivariate Resultants in Bernstein Basis 65

Definition 2 (Bernstein basis support). The support of the polynomial∑
I ∈SN

aI βN,I(X)

(with respect to the Bernstein basis of degree N) is the set SN , a subset of all
multi-indices I ≤ N . (We use the subscript N for the support set S in order to
emphasize that the support depends on the basis-degree N .)

The construction proposed in this section is a multi-variate generalization of [41]
for univariate polynomials. In [41], the authors define the univariate resultant
as the determinant of a modified Sylvester matrix where the matrix entries are
the coefficients of the Bernstein polynomials multiplied by binomial coefficients
corresponding to their Bernstein basis elements. The major difficulty in gener-
alizing this approach comes from the observation that multi-variate Bernstein
polynomials with total-degree supports have the (generic) root (1, . . . , 1) as we
will see below in Example 7.

The following definition transfers the notion of total-degree support in terms
of the power basis to the Bernstein basis. The essential property of total-degree
support is a geometric one. That is, the support set contains all multi-indices
whose absolute value is less than or equal to some given bound. The convex hull
of such a set is called a simplex. Therefore it would be quite natural to use the
term “simplex support” instead of total-degree support. But, since we want to
follow the standard notation in power basis as much as possible we keep the
usual term of total-degree support.

Definition 3. Let SN be the Bernstein basis support of the polynomial f as in
Definition 2. Then SN is called the total-degree m support (with respect to the
Bernstein basis of degree N) iff SN consists of all multi-indices I with |I| :=
i1+ · · ·+il ≤ m. Furthermore, we say f has total-degree m support (with respect
to the Bernstein basis of degree N).

Remark 4. Even though the degree N of the Bernstein basis is not directly
related to the bound m, the definition of total-degree Bernstein basis support
implies certain inequalities. One important inequality is m ≤ nj . Otherwise
the support SN could not contain all multi-indices I with |I| ≤ m such as
(m, 0, . . . , 0) which corresponds to the basis element βN,(m,0,...,0)(X). Another
inequality follows from this, namely, m < |N | = n1 + n2 + · · ·+ nl if 1 < l and
1 ≤ m.

See the Example 5 below where the polynomial f has Bernstein basis degree
N = (3, 2) but “total-degree 2 support”.

Example 5. Consider the polynomial

f = a20 βN,(2,0)(X) + a11 βN,(1,1)(X) + a02 βN,(0,2)(X)

+ a10 βN,(1,0)(X) + a01 βN,(0,1)(X) + a00 βN,(0,0)(X),

where N = (n1, n2) = (3, 2) and X = (x1, x2). Then f has total-degree 2 support
with respect to the Bernstein basis.

66 D. Kapur and M. Minimair

As already noted, this definition is analogous to the definition of total-degree
support with respect to the usual power basis. But there are significant differ-
ences of which we illustrate two.

First, Bernstein polynomials with total-degree support do not have total-
degree support with respect to the power basis.

Example 6 (Example 5 continued).
After converting into power-basis representation the polynomial f has support

{(3, 2), (3, 1), (3, 0), (2, 2), (2, 1), (2, 0), (1, 2), (1, 1), (1, 0), (0, 2), (0, 1), (0, 0)}

with respect to the power basis which is not a total-degree support. The total
degree of f with respect to power basis is even higher than 2. It is 5 which would
lead to a much larger resultant matrix than for degree 2.

Second, polynomials with total-degree Bernstein basis support vanish for the
tuple X = (1, . . . , 1).

Example 7 (Example 6 continued). Note that f does not contain the Bernstein
basis element βN,(3,2)(X) = x3

1x
2
2 and all the other basis elements either contain

the factor (1− x1) or the factor (1− x2). Thus f vanishes for X = (1, 1).

The property illustrated in the previous example can be shown for general total-
degree Bernstein basis support as stated in the following theorem.

Theorem 8. Let f be a polynomial in the variables X = (x1, . . . , xl), where
l ≥ 2, with total-degree m support with respect to the Bernstein basis and with
m ≥ 1. Then f has the root X = (1, . . . , 1).

Therefore we have to define the total-degree resultant such that the root (1, . . . , 1)
is ignored. Towards this goal, we will show how to construct another system of
polynomials from a given one. This constructed system preserves the essential
common roots of the original one. Thus the resultant of the original system can
be defined as the resultant of the newly constructed one.

Before stating the definition formally we give a motivating example.

Example 9. Consider the polynomials

fj = aj20 x2
1 (1− x2)2 + 4 aj11 x1 (1− x1)x2 (1− x2) + aj02 (1− x1)2 x2

2

+ 2 aj10 x1 (1− x1) (1− x2)2 + 2 aj01 (1− x1)2 x2 (1 − x2)

+ aj00 (1− x1)2 (1− x2)2

with total-degree 2 support with respect to the Bernstein basis for j = 0, 1, 2.
(Note that the total degree of f with respect to the power basis is indeed 4.)
From the fj ’s we construct polynomials hj by substituting xi = 1 + zi, that is,

hj = fj(1 + z1, 1 + z2)

= aj20 (1 + z1)2 z2
2 + 4 aj11 (1 + z1) z1 (1 + z2) z2 + aj02 z2

1 (1 + z2)2

− 2 aj10 (1 + z1) z1 z2
2 − 2 aj01 z2

1 (1 + z2) z2

+ aj00 z2
1 z2

2

Multivariate Resultants in Bernstein Basis 67

Thus hj(0, 0) = fj(1, 1) = 0. Obviously, the substitution xi = zi + 1 bijectively
transforms the roots of fj into the roots of hj . Therefore one can define the
resultant of the fj ’s as the toric resultant [17] of the hj ’s. Since the toric resultant
ignores roots with z1 = 0 or z2 = 0 it does not trivially vanish for the hj ’s and
therefore it is well-defined. Still, it is possible to simplify this definition of the
resultant of the fj ’s. That is, we will illustrate a transformation which maps
hj into certain gj’s (from Definition 13) under which the toric resultant can be
shown to be invariant. Thus we define the resultant of the fj ’s to be the toric
resultant of the gj ’s, which by definition is the Macaulay (projective) resultant
of the gj ’s.

In order to construct the gj ’s we substitute zi = (−yi − 1)−1 into hj and
multiply the result by (−y1 − 1)2(−y2 − 1)2, that is,

gj = (−y1 − 1)2 (−y2 − 1)2 hj((−y1 − 1)−1, (−y2 − 1)−1)

= (−y1 − 1)2 (−y2 − 1)2
(

aj20 (
−y1

−y1 − 1
)2 (−y2 − 1)−2

+ 4 aj11
−y1

−y1 − 1
(−y1 − 1)−1 −y2

−y2 − 1
(−y2 − 1)−1

+ aj02 (−y1 − 1)−2 (
−y2

−y2 − 1
)2

− 2 aj10
−y1

−y1 − 1
(−y1 − 1)−1 (−y2 − 1)−2

− 2 aj01 (−y1 − 1)−2 −y2

−y2 − 1
(−y2 − 1)−1

+ aj00 (−y1 − 1)−2 (−y2 − 1)−2
)

= aj20 y2
1 + 4 aj11 y1 y2 + aj02 y2

2 + 2 aj10 y1 + 2 aj01 y2 + aj00.

Thus the vanishing of the resultant of the fj’s is equivalent to either the fj ’s
having a common root with xi �= 1 (or possibly xi at infinity), for all i, or the
leading forms aj20 y2

1 + 4 aj11 y1 y2 + aj02 y2
2 having a common root �= 0 (compare

Theorem 16).

Remark 10. As illustrated in the previous example, total-degree resultants for
Bernstein polynomials will capture roots X where xi �= 1 for all i. Roots with
some xi’s being 1 are not captured. If one wants to deal with such roots one can
substitute 1 for the corresponding xi’s and thus obtain a strongly overdetermined
system of equations with fewer variables. This situation is analogous to toric
resultants which ignore roots where some xi vanish.

Next we define the notions of Bernstein-toric, non-trivial and infinite root which
will be used to describe the vanishing of the total-degree Bernstein resultant with
respect to Bernstein basis. The name Bernstein-toric is motivated by the standard
notion of toric. A toric root is a root X where no xi vanishes, whereas a Bernstein-
toric root is one where no xi equals 1. Non-trivial root is a well-known notion.

68 D. Kapur and M. Minimair

Furthermore, infinite roots are defined particularly for total-degree Bernstein
polynomials and are illustrated in the example following the formal definition.

Definition 11. The root X = (ξ1, . . . , ξl) of the polynomial f is called

1. Bernstein-toric iff ξi �= 1 for all i,
2. non-trivial iff ξi �= 0 for one i, that is X �= 0.

Furthermore the tuple X is called infinite root of f iff there is a strict subset of
variables Xk = (xi1 , . . . , xik

) such that X = (. . . , ξi, . . .)i/∈{i1,...,ik} is a root of
f [Xk], where the polynomial f [Xk] is recursively defined as the leading coefficient,
with respect to xik

, of f [Xk−1], and where f [X0] := f .

Example 12 (Infinite root for total-degree Bernstein basis support). Let

f = a20 x2
1 (1− x2)2 + 4 a11 x1 (1 − x1)x2 (1− x2) + a02 (1− x1)2 x2

2

+ 2 a10 x1 (1− x1) (1− x2)2 + 2 a01 (1− x1)2 x2 (1− x2)

+ a00 (1− x1)2 (1 − x2)2.

f homogenized with respect to x1 (with homogenizing variable z1) is

fh1 = a20 x2
1 (1− x2)2 + 4 a11 x1 (z1 − x1)x2 (1− x2) + a02 (z1 − x1)2 x2

2

+ 2 a10 x1 (z1 − x1) (1− x2)2 + 2 a01 (z1 − x1)2 x2 (1− x2)

+ a00 (z1 − x1)2 (1− x2)2.

Thus the leading coefficient of x1 is fh1(1, 0), that is,

f [X1] = a20 (1− x2)2 + 4 a11 (−1)x2 (1− x2) + a02 (−1)2 x2
2

+ 2 a10 (−1) (1− x2)2 + 2 a01 (−1)2 x2 (1− x2)

+ a00 (−1)2 (1 − x2)2,

where X1 = (x1). Similarly, the leading coefficient of x2 in f [X1] is

f [X2] := a20 (−1)2 + 4 a11 (−1) (−1) + a02 (−1)2

+ 2 a10 (−1) (−1)2 + 2 a01 (−1)2 (−1)

+ a00 (−1)2 (−1)2,

where X2 = (x1, x2). Then any root of f [X1] or f [X2] is called an infinite root
of f .

Definition 13 (Total-degree Bernstein resultant). Let

fj =
∑

I≤Nj ,
|I|≤mj

aI βNj ,I(X)

Multivariate Resultants in Bernstein Basis 69

be polynomials with total-degree mj support with respect to their Bernstein bases
Nj, for j = 0, . . . , l. Furthermore, let

gj =
∑

I≤Nj ,
|I|≤mj

aI

(
Nj

I

)
Y I ,

where Y I = yi1
1 · · · yil

l , for j = 0, . . . , l. Then the total-degree Bernstein resultant
of f0, . . . , fl is defined as the usual Macaulay (projective) resultant of g0, . . . , gl

(with respect to the power basis in variables Y).

Remark 14. We found that the Macaulay matrices generated when comput-
ing total-degree Bernstein resultants can also be applied to polynomials whose
supports are strict subsets of total-degree Bernstein supports. For details, see
Sect. 5.3 which covers applications where such supports arise.

Remark 15. Using the terminology of [41] the Macaulay matrix of the resultant
of the gj ’s is called the Macaulay matrix of the fj ’s with respect to the ”scaled
Bernstein basis”. Analogous to [41] one can show that this matrix can be con-
verted into a matrix with respect to the standard Bernstein basis by multiplying
its columns by suitable constants. It is important to note that this conversion
only changes the value of the determinant of the Macaulay matrix by a con-
stant factor. Also note that in the univariate case with m0 = N0 and m1 = N1,
the Macaulay matrix with respect to the scaled Bernstein basis agrees with the
Sylvester matrix of [41] (up to permutations of rows and columns) because its
sizes are (m0 + m1)× (m0 + m1).

The following theorem shows when the total-degree resultant vanishes.

Theorem 16. The total-degree Bernstein resultant of f0, . . . , fl vanishes iff the
polynomials f0, . . . , fl have a common

1. Bernstein-toric root, or
2. infinite root

or the forms ∑
|I|=mj

aI

(
Nj

I

)
Y I , (1)

for j = 0, . . . , l, have a common non-trivial root.

Obviously, one could also state the condition (1) in terms of the Bernstein basis
rather than the power basis Y I . However, the presentation in power basis is more
compact and therefore it is given in the theorem.

70 D. Kapur and M. Minimair

4 Bézout/Cayley/Dixon-Style Resultant Construction

This section provides an approach for constructing the Dixon matrix [26] for
multi-variate Bernstein polynomials. This construction will be carried out with-
out converting the Bernstein polynomials into power basis representation. Fur-
thermore, the constructed Dixon matrix will be given with respect to a suitable
Bernstein basis rather than the usual power basis. The approach of this section
is different from [6] which considers the case of two univariate polynomials. The
approach parallels [41] in the sense that it constructs a matrix (Dixon matrix)
with respect to the scaled Bernstein basis which can be converted into a ma-
trix with respect to the Bernstein basis by adjusting matrix entries by constant
factors.

This section is divided into three parts. The first part considers the construc-
tion for polynomials with unmixed Bernstein basis degrees (Definition 17). The
second part extends the first part to polynomials with arbitrary (mixed) Bern-
stein basis degrees. The third part studies the rank sub-matrix construction for
Dixon matrices with respect to Bernstein bases.

4.1 Unmixed Bernstein Basis Degrees

Definition 17. Let F = (f0, . . . , fl) be a list of multivariate polynomials in
variables X = (x1, . . . , xl) where fj is represented in Bernstein bases of degrees
Nj. Then

1. F has unmixed Bernstein basis degree iff N1 = · · · = Nl, and
2. F has mixed Bernstein basis degree iff the Nj’s are not-necessarily equal.

Example 18. Consider

f0 = a22 β(2,3),(2,2)(x1, x2) + a11 β(2,3),(1,1)(x1, x2),

f1 = b21 β(2,3),(2,1)(x1, x2) + b02 β(2,3),(0,2)(x1, x2).

Then f0 and f1 have unmixed Bernstein basis degree (2, 3).

Remark 19. It is important not to confuse the notions of (un)mixed Bernstein
basis degrees and (un)mixed Bernstein basis supports. Notice that f0 and f1

from Example 18 have unmixed Bernstein basis degree but they have mixed
Bernstein basis support. Furthermore, notice that polynomials whose Bernstein
basis degrees are mixed, necessarily have mixed Bernstein basis support.

Before giving the construction for the general case, we consider a simple univari-
ate example.

Example 20. Let F = (f0, f1) with

fj = aj3 β3,3(x) + aj2 β3,2(x) + aj1 β3,1(x) + aj0 β3,0(x).

Multivariate Resultants in Bernstein Basis 71

Observe that f0 and f1 have the same basis degree 3. By using the well-known
substitution x = y

1+y we can write fj = (1 − x)3 gj(x
1−x) where

gj = aj3 y3 + 3 aj2 y2 + 3 aj1 y + aj0.

Next let us construct the Dixon (Bézout) polynomial θF of f0 and f1. We get

θF =
∣∣∣∣f0(x) f1(x)
f0(x) f1(x)

∣∣∣∣
/

(x− x),

where the notation fj(x) means that fj is considered as a polynomial in x, as
it is given, and fj(x) means the polynomial obtained from fj(x) by replacing x
with x. By substituting the gj’s we obtain

θF =
∣∣∣∣(1− x)3 g0(y) (1− x)3 g1(y)
(1− x)3 g0(y) (1− x)3 g1(y)

∣∣∣∣
/

(x− x)

=
∣∣∣∣g0(y) g1(y)
g0(y) g1(y)

∣∣∣∣ (1 − x)3(1− x)3

x− x
,

where y = x
1−x . Notice that (1−x)3(1−x)3

x−x = (1−x)2(1−x)2

y−y . Thus

θF = (1− x)2 (1 − x)2 θG(
x

1− x
,

x

1− x
), (2)

where θG is viewed as a polynomial in y, y.
Observe that the right-hand side of (2) represents the Dixon polynomial of

F as a linear combination of suitable power products xı (1− x)2−ı xi (1− x)2−i.
Thus the matrix obtained by viewing the right-hand side as a bilinear form in
the xı (1− x)2−ı’s and the xi (1− x)2−i’s is the Dixon matrix of F with respect
to the scaled Bernstein basis. By adjusting rows and columns by corresponding
factors

(
2
ı

)−1
and

(
2
i

)−1
one obtains the Dixon matrix of F with respect to the

Bernstein basis.

The following theorems describe, in general, the construction of the Dixon poly-
nomial and matrix for Bernstein polynomials.

Theorem 21. Let F = (f0, . . . , fl) be a list of polynomials in variables X =
(x1, . . . , xl) such that all fj’s have the same (unmixed) Bernstein basis degree
N = (n0, . . . , nl). Furthermore, let gj be a polynomial in the variables Y =
(y1, . . . , yl) such that

fj = (1 − x1)n1 . . . (1− xl)nl gj(
x1

1− x1
, . . . ,

xl

1− xl
)

and let G = (g0, . . . , gl). Then the coefficient of βN ′,I(X) ·βN ′,I(X) in the Dixon

polynomial of F is
(
N

′

I

)−1
·
(
N ′
I

)−1
times the coefficient of Y

I
Y I of the Dixon

polynomial of G, where N
′

= (l n1 − 1, (l − 1)n2 − 1, . . . , nl − 1), N ′ = (n1 −
1, 2 n2 − 1 . . . , l nl − 1), X = (x1, . . . , xl) and Y = (y1, . . . , yl).

72 D. Kapur and M. Minimair

The polynomials gj in the theorem can be obtained by replacing xi with yi

1+yi

as is well-known.

Theorem 22 (Theorem 21 continued). Thus the Dixon matrix with respect
to Bernstein basis of degree N

′
and N ′ can be obtained from the Dixon polyno-

mial of F viewed as bilinear form in the Bernstein basis elements βN
′
,I(X) and

βN ′,I(X). Its entry with row index βN
′
,I(X) and column index βN,I(X) can be

obtained by multiplying the entry with row index Y
I

and column index Y I of the

Dixon matrix of G by
(
N

′

I

)−1

·
(
N ′
I

)−1
.

Remark 23. Theorem 21 implies that the Dixon matrix of F with respect to the
scaled Bernstein basis is the Dixon matrix of G.

4.2 Mixed Bernstein Basis Degrees

Theorem 21 requires that the Bernstein basis degrees of the fj’s are all the
same (unmixed). In this section we treat the case of not-necessarily unmixed
Bernstein basis degrees by lifting to unmixed degrees. Let us first consider a
simple example.

Example 24. Let

f0 = 3 β2,2(x) + 5 β2,1(x) + 7 β2,0(x),

f1 = a11 β1,1(x) + a10 β1,0(x)

such that the Bernstein basis degree of f0 is 2 and of f1 is 1. In order to be able
to apply Theorem 21 one can lift (by a well-known procedure) the basis degree
of f1 to 2. One obtains

f1 = a11 β2,2(x) +
a11 + a10

2
β2,1(x) + a10 β2,0(x).

Hence, according to Theorem 21, G = (g0, g1) with

g0 = 3 x2 + 5 x + 7,

g1 = a11 x2 + (a11 + a10)x + a10.

Thus the Dixon polynomial θF of F = (f0, f1) with respect to the Bernstein
basis is given by

θF = (1− x) · (1− x) · θG(
x

1− x
,

x

1− x
)

= (3a10 − 7a11) β1,1(x) β1,1(x) + (3a10 − 7a11) β1,1(x) β1,0(x)

+ (3a10 − 7a11) β1,0(x) β1,1(x) + (3a10 − 7a11) β1,0(x) β1,0(x).

Multivariate Resultants in Bernstein Basis 73

As in the previous example, given F = (f0, . . . , fl) with mixed basis de-
grees Nj = (nj1, . . . , njl) we first lift the basis degrees of the fj’s to Nmax =
(maxj(nj1), . . . maxj(njl)). Then we apply the construction from Sect. 4.1 to
the lifted fj ’s.

But, when following this approach the resulting Dixon matrix can become
larger than actually needed! This is shown in the following example.

Example 25 (Example 24 continued). The Dixon matrix with respect to Bern-
stein basis of the lifted fj’s is(

3a10 − 7a11 3a10 − 7a11

3a10 − 7a11 3a10 − 7a11

)
.

Observe that the maximal minor 3a10 − 7a11 of the Dixon matrix is the deter-
minant of a 1-by-1 sub-matrix. That is, the size of the Dixon matrix is larger
than necessary. This larger size is caused by the lifting operation that lifted the
Bernstein basis degree of f1.

Since the fj ’s are lifted, the resulting Dixon polynomial is lifted as well, that is,
its Bernstein basis has higher degree then necessary. This causes the enlarged
Dixon matrix.

Example 26 (Example 25 continued). The Dixon polynomial θF can also be rep-
resented as (3a10 − 7a11) β0,0(x) β0,0(x) with basis degree 0.

Because of the possibility of representing the Dixon polynomial with lower basis
degree, as is shown in the previous example, we describe a procedure to reduce
the basis degree of a Bernstein polynomial (Definitions 27 and 28).

Definition 27 ([33]). Let the head and tail operators be defined as

Headm(x,
m∑

j=0

aj βj,m(x)) =
m∑

j=0

(−1)m−j

(
m

j

)
aj

and

Tailm(x,
m∑

j=0

aj βj,m(x)) =

m−1∑
j=0

(−1)j

(
j∑

i=0

(−1)i

(
m

i

)
ai

) (
m− 1

j

)−1

βj,m−1(x).

The head operator Headm(x, p) returns the coefficient of xm of the polynomial p
of Bernstein basis degree m. The tail operator Headm(x, p) returns p represented
with respect to Bernstein basis of degree m− 1 if Headm(x, p) = 0.

74 D. Kapur and M. Minimair

Definition 28. (Basis degree reduction algorithm)

Input: Bernstein polynomial p in variables x1, . . . , xl

Output: Bernstein polynomial q of minimal Bernstein basis degree in each vari-
able xi with p = q

Algorithm: For each variable xi of p, repeat p ← Tailm(xi, p), where m is
the Bernstein basis degree of p in xi, until Headm(xi, p) �= 0. Then return
q ← p.

The correctness of the algorithm is shown in the appendix (Theorem 37).

Example 29 (Example 26 continued).

θF = ((3a10 − 7a11) β1,1(x) + (3a10 − 7a11) β1,0(x)) β1,1(x)+

((3a10 − 7a11) β1,1(x) + (3a10 − 7a11) β1,0(x)) β1,0(x).

Since Head1(x, θF) = 0, we compute

p ← Tail1(x, θF) = ((3a10 − 7a11) β1,1(x) + (3a10 − 7a11) β1,0(x)) β0,0(x).

Since now Head0(x, p) �= 0 and Head1(x, p) = 0, we compute

p ← Tail1(p) = (3a10 − 7a11) β0,0(x) β0,0(x)

which is the desired Dixon polynomial of minimal Bernstein basis degree (0, 0).

Remark 30. Concluding, the basis degree reduction algorithm allows us to mini-
mize the Bernstein basis degree of the Dixon polynomial for polynomials of mixed
basis degrees. Thus the Dixon matrix obtained from the Dixon polynomial after
applying the basis degree reduction algorithm is also of minimal size.

4.3 Dixon Resultant

We study the relationship between the Dixon resultant computed with respect
to Bernstein and with respect to power basis. Before stating the main theorem,
we introduce the natural definitions of gcd of maximal minors of Dixon matrices
(rank sub-matrix constructions [26] of Kapur/Saxena/Yang) with respect to the
different bases.

Definition 31. Let F = (f0, . . . , fl) be a list of l-variate polynomials with para-
metric (polynomial) coefficients. Then

1. the power-basis gcd of the maximal Dixon minors and
2. the Bernstein-basis gcd of the maximal Dixon minors

is defined (up to constant factor) as the gcd of all maximal minors of the Dixon
matrix of F constructed, respectively, with respect to

Multivariate Resultants in Bernstein Basis 75

1. the power basis as in [26], and
2. the Bernstein basis as it is described in the previous two sub-sections.

Theorem 32. The Bernstein-basis gcd of the maximal Dixon minors of F equals
(up to constant factor) the power-basis gcd of the maximal Dixon minors of F .

We conclude with a short example for Theorem 32.

Example 33. Consider

f0 = a11 x1 x2 + a10 x1 + a01 x2 + a00,

f1 = b1 x1 + b0,

f2 = c1 x1 + c0.

Notice that f1 and f2 are both univariate in the variable x1, whereas f0 is
bivariate. Therefore the resultant of this system is the resultant of f1 and f2

which is r = b1 c0 − b0 c1. The 2-by-1 Dixon matrix with respect to the power
basis is (

−a01 (b1 c0 − b0 c1)
−a11 (b1 c0 − b0 c1)

)
.

The gcd of the maximal minors is r. In Bernstein basis representation we have

f0 = (a00 + a01 + a10 + a11) βN,(1,1)(X) + (a00 + a10) βN,(1,0)(X)

+ (a00 + a01) βN,(0,1)(X) + a00 βN,(0,0)(X),

f1 = (b0 + b1) βN,(1,1)(X) + (b0 + b1) βN,(1,0)(X) + b0 βN,(0,1)(X)

+ b0 βN,(0,0)(X),

f2 = (c0 + c1) βN,(1,1)(X) + (c0 + c1) βN,(1,0)(X) + c0 βN,(0,1)(X)

+ c0 βN,(0,0)(X),

where N = (1, 1) and X = (x1, x2). The minimal size Dixon matrix with respect
to Bernstein basis is (

−(a11 + a01) (b1 c0 − b0 c1)
−a01 (b1 c0 − b0 c1)

)
.

The gcd of the maximal minors is also r as it is stated in Theorem 32.

5 Applications

In Sect. 5.1 and 5.2 we respectively consider a proof of a geometric theorem and
surface-curve intersections in Bernstein basis. Furthermore, in Sect. 5.3 we inves-
tigate the efficiency of Bernstein-basis resultants for several well-known geomet-
ric benchmark problems, which also include some of the systems from Sect. 5.2
and 5.1

76 D. Kapur and M. Minimair

B a

bc ai
ae

be

C

A

Fig. 1. Bisectors

5.1 A Theorem on Drawing by Compass and Ruler

As in [14,24] we consider the question whether a triangle can by drawn by com-
pass and ruler given the lengths of certain external and internal bisectors. The
triangle ABC can be seen in Fig. 1. The bisectors are denoted by ai, ae, and be.
As shown in [14], the squares of the length of the bisectors depend rationally on
the lengths a, b, c of the sides of the triangle. Thus one obtains a corresponding
system of three polynomials in the lengths of the bisectors and of the sides [14].
When converted into Bernstein basis, two polynomials in this system have a
square Newton polygon with respect to the Bernstein basis, namely, the convex
hull of the points {(0, 0), (3, 0), (0, 3), (3, 3)}. The Newton polygon of the third
polynomial is spanned by the points {(2, 0), (0, 2), (3, 0), (0, 3)}. The coefficients
of the polynomials are quite large and therefore the system is not included here.
Still the Dixon resultant, eliminating b and c, of the polynomial system can be
computed quite efficiently because the corresponding Dixon matrix is only of
size 18 × 18 and of rank 9. Since the resultant of the polynomial system is of
degree 20, it can be shown that [14] it is impossible to construct the triangle
ABC with compass and ruler from its bisectors.

5.2 Surface-Curve Intersection

We use Bernstein-basis Dixon resultants in order to intersect a real surface

(x, y, z) = (s1(r, s), s2(r, s), s3(r, s))

with real curves (c1(t), c2(t), c3(t)). For example, consider the Enneper surface
[14] in Fig. 2. Enneper surface is named after the German mathematician Alfred
Enneper who constructed the surface in 1863. This is a well known minimal
surface, that is, a surface with vanishing mean curvature. Its Bernstein-basis

Multivariate Resultants in Bernstein Basis 77

Fig. 2. Enneper surface

representation is

s1 = 5/3 βN1,(3,2)(r, s) + 2/3 βN1,(3,1)(r, s) + 2/3 βN1,(3,0)(r, s)

+ 4/3 βN1,(2,2)(r, s) + 2/3 βN1,(2,1)(r, s) + 2/3 βN1,(2,0)(r, s)

+ 2/3 βN1,(1,2)(r, s) + 1/3 βN1,(1,1)(r, s) + 1/3 βN1,(1,0)(r, s)

s2 = −5/3 βN2,(2,3)(r, s)− 4/3 βN2,(2,2)(r, s)− 2/3 βN2,(2,1)(r, s)

− 2/3 − 2/3 βN2,(1,3)(r, s)βN2,(1,2)(r, s)− 1/3 βN2,(1,1)(r, s)

− 2/3 βN2,(0,3)(r, s)− 2/3 βN2,(0,2)(r, s)− 1/3 βN2,(0,1)(r, s)

s3 = βN3,(2,1)(r, s) + βN3,(2,0)(r, s)− βN3,(2,2)(r, s)− βN3,(0,2)(r, s),

where N1 = (3, 2), N2 = (2, 3), N3 = (2, 2) are the Bernstein basis degrees of
the corresponding polynomials s1, s2, s3. Furthermore, consider the curve

c1 = 11/3 β2,2(t) + β2,1(t) + β2,0(t),

c2 = −3 β2,2(t) + β2,1(t) + β2,0(t),

c3 = −29/3 β2,2(t) + β2,1(t) + β2,0(t).

Next, we construct the differences s1 − x, s2 − y, s3 − z, where x, y, z are some
independent symbols. In order to obtain these differences in proper Bernstein-
basis representation, one views the symbols x, y, z as constant polynomials in
r and s. Thus they respectively correspond to x ·

∑3
i=0

∑2
j=0 βN1,(i,j)(r, s), y ·∑2

i=0

∑3
j=0 βN2,(i,j)(r, s), and z ·

∑2
i=0

∑2
j=0 βN3,(i,j)(r, s). Therefore we get

f1 = s1 − x ·
3∑

i=0

2∑
j=0

βN1,(i,j)(r, s),

f2 = s2 − y ·
2∑

i=0

3∑
j=0

βN2,(i,j)(r, s),

f3 = s3 − z ·
2∑

i=0

2∑
j=0

βN3,(i,j)(r, s).

78 D. Kapur and M. Minimair

In order to intersect the Enneper surface with the curve, we substitute (c1, c2, c3)
for (x, y, z) in the fi’s and eliminate the variables r, s. However, it depends on
the desired application if we prefer substituting for (x, y, z) before eliminating,
or eliminating before substituting. The latter approach may be more efficient if
we expect to intersect several different curves with the surface. For the current
example, we take this approach. Thus, eliminating r and s from f1, f2, f3 by
using the Bernstein-basis Dixon resultant yields the implicit representation of
the Enneper surface

46656 x6 − 46656 x4z + 77760 z3x4 + 279936 x4z2 − 139968 x4y2

+ 248832 z5x2 − 248832 z3x2 + 404352 z3x2y2 + 27648 z6x2 + 139968 y4x2

+93312 zy2x2 +414720 z4x2 +73728 z7−331776 z5−248832 y2z3−414720 z4y2

− 279936 y4z2 − 46656 y4z − 46656 y6 − 4096 z9 + 248832 z5y2 − 27648 z6y2

+ 77760 y4z3.

Then, substituting (c1, c2, c3) for (x, y, z) yields

p = −87008774400 β18,18(t)− 12938372352 β18,17(t)−
942126336

17
β18,16(t)

+
11214109440

17
β18,15(t) +

13965831936
85

β18,14(t)−
3177969408

119
β18,13(t)

− 49317661440
1547

β18,12(t)−
1563215104

221
β18,11(t) +

8489107712
2431

β18,10(t)

+
2213933312

715
β18,9(t) +

1585319168
2431

β18,8(t)−
4070656

17
β18,7(t)

+
1526528

17
β18,6(t) +

9185024
17

β18,5(t) +
55624448

85
β18,4(t)

+
8990464

17
β18,3(t) +

6371072
17

β18,2(t) + 297728 β18,1(t) + 297728 β18,0(t).

Now, one can approximate the real roots of p using standard software. Here, the
example has been chosen such that one obtains t = ± 1

2 . All the other roots of p
are complex and thus do not correspond to the intersection of the real Enneper
surface with the real curve.

5.3 Geometric Benchmarks

We study several geometric benchmark problems from [14]:

– bisector (Sect. 11.1.8),
– strophoid (Sect. 11.2.1),
– surface (Sect. 11.2.2),
– sphere (Sect. 11.2.3),
– bicubic (Sect. 11.2.4),
– cubic (Sect. 11.2.5),
– enneper (Sect. 11.2.6).

Multivariate Resultants in Bernstein Basis 79

Bernstein basis Power basis
Dixon Macaulay Dixon Macaulay
matrix matrix matrix matrix

Benchmark Size Rank Size Rank Size Rank Size Rank

bisector 18 × 18 9 136 × 136 101 14 × 13 13 55 × 55 45

strophoid 8 × 8 4 36 × 36 30 6 × 5 5 36 × 36 30

surface 18 × 18 5 153 × 153 110 12 × 12 5 36 × 36 30

sphere 16 × 16 10 91 × 91 91 11 × 12 10 45 × 45 41

bicubic 18 × 18 18 153 × 153 123 18 × 18 18 66 × 66 66

cubic 18 × 18 11 105 × 105 87 11 × 11 11 36 × 36 34

enneper 18 × 18 9 91 × 91 70 11 × 11 9 28 × 28 28

Fig. 3. Resultant matrices for Bernstein and power bases

For more details on the benchmark “bisector” which represents a theorem from
elementary geometry see Sect. 5.1. The other benchmarks are surface impliciti-
zation problems. The implicitization corresponding to the benchmark “enneper”
is detailed in Sect. 5.2. The following table shows the dimensions and ranks of
the Dixon and Macaulay matrices obtained for the benchmark problems. The
data with respect to power basis is from [14] whereas the data with respect to
Bernstein basis has been generated by the authors using the Maple packages
[32,34] after converting the polynomials from [14] into Bernstein basis.

We observe in Fig. 3 that the ranks of the Bernstein-basis Dixon matrices are
less than or equal to the power-basis Dixon matrices. This means that extracting
resultants from maximal-rank minors can be performed at least as efficiently in
Bernstein basis as in power basis. The sizes of the Bernstein-basis Dixon matrices
tend to be slightly larger than the corresponding power-basis Dixon matrices.
However, this only insignificantly affects running times. That is, current efficient
methods for extracting maximal-rank minors of matrices first find a submatrix of
maximal rank and then compute its determinant (see e.g. [8]). Since computing
the determinant is by far the more expensive operation, the practical running
time most significantly depends on the rank of the matrix, that is, of the size of
its maximal-rank submatrix rather than the size of the whole matrix.

In contrast, we see in Fig. 3 that the ranks and sizes of the Bernstein-basis
Macaulay matrices are greater than or equal to the corresponding ranks of
the power-basis Macaulay matrices for the benchmarks. Moreover, we observed
that the corresponding Macaulay resultants vanish and therefore do not yield
any information about the existence of common roots, for both Bernstein and
power basis representations. However, we noticed that for these benchmarks
the maximal-rank minors of the Macaulay matrix still are projection operators.
Similar observations have also been made by [27].

Furthermore, we point out that [14] contains several other polynomial systems
from applications in elementary geometry not shown in Fig. 3. Those systems
are sparse in power basis representation. But they become dense and suffer from
a huge blow up of coefficient size when converted into Bernstein basis. We found

80 D. Kapur and M. Minimair

that for those systems the Bernstein basis representation seems inefficient and
causes the construction of Dixon matrices and the extraction of maximal-rank
minors to take many hours.

6 Conclusion and Future Work

We have adapted the construction of multivariate resultant formulations to be
applicable to parametrized multivariate polynomial systems in Bernstein basis.
The key idea is to transform a polynomial system represented in Bernstein basis
by replacing each variable xi by yi

1+yi
, where yi is a new variable, and relating the

zero set of the original polynomial system to that of the transformed polynomial
system. This transformation on a polynomial system in Bernstein basis leads to
a new polynomial system in the standard power basis preserving the coefficients
of the original system. So the classical Macaulay construction applies leading to
a resultant matrix with respect to the Bernstein basis. The main result about
Macaulay resultant formulation is that the total degree resultant of the polyno-
mial system in Bernstein basis vanishes if and only if the polynomial system has
a common Bernstein-toric root, a common infinite root, or the leading forms of
the transformed polynomial system have a common non-trivial root.

In the case of the Dixon resultant formulation the rank sub-matrix construc-
tions for the original system and the transformed system are essentially equiva-
lent. Thus, known results about exactness of Dixon resultants of a sub-class of
polynomial systems as discussed in [12] carry over to polynomial systems repre-
sented in the Bernstein basis. Furthermore, in certain cases, when the extraneous
factor in a projection operator constructed from the Dixon resultant formulation
is precisely known, the projection operator of a polynomial system in the Bern-
stein basis can be predicted a priori to precisely include the known extraneous
factor.

We conjecture that all the known results about the exactness of resultant
matrices vis a vis resultant computation and the nature of extraneous factors in
projection operators when polynomial systems are not generic and/or specialized
extend to the case when a polynomial system is represented in Bernstein basis.
This needs to be explored further.

Applications of these results have been discussed in the context of geometry
theorem proving, implicitization and intersection of surfaces with curves. It was
observed that for geometry problems, where power basis representation of poly-
nomials is sparse, their representation in Bernstein bases often becomes dense;
as a result, the Bernstein basis representation is inefficient.

In future work, we propose to study how various resultant matrix construc-
tions behave when the coefficients of polynomials in Bernstein basis are floating
points, instead of parameters. We would like to understand the numerical stabil-
ity of the Dixon matrix construction and how well-behaved the resultant matrices
are, e.g. by studying their condition numbers [40].

Multivariate Resultants in Bernstein Basis 81

References

1. Amiraslani, A.: Dividing polynomials when you only know their values. In:
Gonzalez-Vega, L., Recio, T. (eds.) Proceedings of Encuentros de Álgebra Com-
putacional y Aplicaciones (EACA) 2004, pp. 5–10 (2004)

2. Barnett, S.: Polynomials and linear control systems. Monographs and Textbooks
in Pure and Applied Mathematics, vol. 77. Marcel Dekker Inc., New York (1983)

3. Barnett, S.: Division of generalized polynomials using the comrade matrix. Linear
Algebra Appl. 60, 159–175 (1984)

4. Barnett, S.: Euclidean remainders for generalized polynomials. Linear Algebra
Appl. 99, 111–122 (1988)

5. Berchtold, J., Bowyer, A.: Robust arithmetic for multivariate bernstein-form
polynomials. In: Computer-Aided Design, pp. 681–689 (2000)

6. Bini, D.A., Gemignani, L.: Bernstein-Bezoutian matrices. Theoret. Comput.
Sci. 315(2-3), 319–333 (2004)

7. Bini, D.A., Gemignani, L., Winkler, J.R.: Structured matrix methods for CAGD:
an application to computing the resultant of polynomials in the Bernstein basis.
Numer. Linear Algebra Appl. 12(8), 685–698 (2005)

8. Brazier, M., Chcherba, A.: MatDetInterp. Symbolic matrix determinant interpo-
lator, http://www.chtcherba.com/arthur/Projects/MatDetInterp/

9. Busé, L., Elkadi, M., Mourrain, B.: Generalized resultants over unirational
algebraic varieties. J. Symbolic Computation 29(4-5), 515–526 (2000)

10. Canny, J.: Generalised characteristic polynomials. J. Symbolic Computation 9,
241–250 (1990)

11. Cheng, H., Labahn, G.: On computing polynomial GCDs in alternate bases. In:
ISSAC 2006, pp. 47–54. ACM, New York (2006)

12. Chtcherba, A., Kapur, D.: Exact resultants for corner-cut unmixed multivari-
ate polynomial systems using the Dixon formulation. J. Symbolic Computation
36(3-4), 289–315 (2003)

13. Chtcherba, A.D., Kapur, D., Minimair, M.: Cayley-dixon resultant matrices
of multi-univariate composed polynomials. In: Ganzha, V.G., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 125–137. Springer,
Heidelberg (2005)

14. Chtcherba, A.D.: A new Sylvester-type Resultant Method based on the Dixon-
Bézout Formulation. PhD dissertation, University of New Mexico, Department of
Computer Science (August 2003)

15. Chtcherba, A.D., Kapur, D.: Conditions for determinantal formula for resultant
of a polynomial system. In: ISSAC 2006: Proceedings of the 2006 International
Symposium on Symbolic and Algebraic Computation, Genoa, Italy, pp. 55–62.
ACM, New York (2006), doi:10.1145/1145768.1145784

16. Corless, R.: Generalized companion matrices in the lagrange basis. In: Gonzalez-
Vega, L., Recio, T. (eds.) Proceedings of Encuentros de Álgebra Computacional y
Aplicaciones (EACA) 2004, pp. 317–322 (2004)

17. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, Heidelberg
(1998)

18. D’Andrea, C.: Macaulay style formulas for sparse resultants. Trans. Amer. Math.
Soc. 354(7), 2595–2629 (electronic) (2002)

19. Devore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Heidelberg
(1993)

http://www.chtcherba.com/arthur/Projects/MatDetInterp/

82 D. Kapur and M. Minimair

20. Diaz-Toca, G.M., Gonzalez-Vega, L.: Barnett’s theorems about the greatest
common divisor of several univariate polynomials through Bezout-like matrices.
J. Symbolic Comput. 34(1), 59–81 (2002)

21. Dixon, A.-L.: On a form of the elimination of two quantics. Proc. London Math.
Soc. 6, 468–478 (1908)

22. Farin, G.F.: Curves and Surfaces for CAGD: A practical guide, 5th edn. Morgan
Kaufmann, San Francisco (1991)

23. Gemignani, L.: Manipulating polynomials in generalized form. Tech. Rep. TR-96-
14, Università di Pisa, Departmento di Informatica, Corso Italia 40, 56125 Pisa,
Italy (December 1996)

24. Heymann, W.: Problem der Winkelhalbierenden. Ztschr. f. Math. und Phys. 35
(1890)

25. Kapur, D., Saxena, T.: Sparsity considerations in Dixon resultants. In: Proceedings
of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, PA, pp. 184–191. ACM, New York (1996)

26. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using the
Dixon resultants. In: ACM ISSAC 1994, Oxford, England, pp. 99–107 (July 1994)

27. Lewis, R.: Comparing acceleration techniques for the Dixon and Macaulay resul-
tants. Mathematics and Computers in Simulation (2008) (accepted)

28. Macaulay, F.S.: The algebraic theory of modular systems. Cambridge Mathematical
Library (1916)

29. Mani, V., Hartwig, R.E.: Generalized polynomial bases and the Bezoutian. Linear
Algebra Appl. 251, 293–320 (1997)

30. Manocha, D., Krishnan, S.: Algebraic pruning: A fast technique for curve and
surface intersection. Computer-Aided Geometric Design 20, 1–23 (1997)

31. Maroulas, J., Barnett, S.: Greatest common divisor of generalized polynomial and
polynomial matrices. Linear Algebra Appl. 22, 195–210 (1978)

32. Minimair, M.: MR, macaulay resultant package for Maple (April 2003),
http://minimair.org/MR.mpl

33. Minimair, M.: Basis-independent polynomial division algorithm applied to divi-
sion in lagrange and bernstein basis (CD-ROM). In: Kapur, D. (ed.) Proceedings
of Asian Symposium on Computer Mathematics (ASCM). National University of
Singapore (2007)

34. Minimair, M.: DR, Maple package for computing Dixon projection operators
(resultants) (2007), http://minimair.org/dr

35. Tsai, Y.-F., Farouki, R.T.: Algorithm 812: BPOLY: An object-oriented library of
numerical algorithms for polynomials in Bernstein form. ACM Transactions on
Mathematical Software 27(2), 267–296 (2001)

36. Winkler, J.R.: A resultant matrix for scaled Bernstein polynomials. Linear Algebra
Appl. 319(1-3), 179–191 (2000)

37. Winkler, J.R.: Computational experiments with resultants for scaled Bernstein
polynomials. In: Mathematical Methods for Curves and Surfaces, Oslo, pp. 535–
544. Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN (2001)

38. Winkler, J.R.: Properties of the companion matrix resultant for Bernstein polyno-
mials. In: Uncertainty in Geometric Computations. Kluwer Internat. Ser. Engrg.
Comput. Sci., vol. 704, pp. 185–198. Kluwer Acad. Publ., Boston (2002)

39. Winkler, J.R.: A companion matrix resultant for Bernstein polynomials. Linear
Algebra Appl. 362, 153–175 (2003)

40. Winkler, J.R.: Numerical and algebraic properties of Bernstein basis resultant
matrices. In: Computational Methods for Algebraic Spline Surfaces, pp. 107–118.
Springer, Berlin (2005)

http://minimair.org/MR.mpl
http://minimair.org/dr

Multivariate Resultants in Bernstein Basis 83

41. Winkler, J.R., Goldman, R.N.: The Sylvester resultant matrix for Bernstein
polynomials. In: Curve and Surface Design, Saint-Malo. Mod. Methods Math.,
pp. 407–416. Nashboro Press, Brentwood (2003)

A Appendix: Proofs

A.1 Proofs for Macaulay-Style Construction

Proof (Theorem 8). Consider the polynomial

f =
∑

I≤N,
|I|≤m

aI βN,I(X)

with total-degree Bernstein basis support where N = (n1, . . . , nl). Since by def-
inition 1 ≤ m ≤ nj , we have |N | ≥ l · m > m (compare also Remark 4).
Therefore f does not contain the basis element βN,N(X) = xn1

1 · · ·xnl
n which

does not vanish for xj = 1. Moreover, all the basis elements βN,I(X) with some
ij < nj contain the factor (1 − xj)nj−ij which vanishes for xj = 1.

For proving Theorem 16, we start with a simple lemma about the range of the
variable transformation used to map fj into gj. It is well-known that fj can be
transformed into gj by substituting yi

1+yi
into xi and by multiplying the result

by (1 + yi)Nji for all i.

Lemma 34. Let K be a field. Then the map y �→ x = y
1+y bijectively maps

K\{−1} to K\{1} with inverse x �→ x
1−x .

Proof (Lemma 34). Obviously the mapping is only defined for K\{−1}. It re-
mains to show that there is no y such that x = 1. This is true because the
equation y

1+y = 1 does not have a solution. Bijectivity and inverse follow from
solving y

1+y = x.

The next lemma shows an alternative way of constructing gj from fj by homog-
enization.

Lemma 35. gj of Theorem 16 can be obtained from fj by homogenizing gj with
respect to each variable xi with, say, homogenizing variable zi and by replacing
(xi, zi) with (yi, 1 + yi).

Proof (Lemma 35). Since the transformation from gj into fj is composed of
individual independent transformations for each variable xi, it is sufficient to
show the lemma for transforming the Bernstein basis element f = βn,k(x) into
g =

(
n
k

)
yk. Now,

84 D. Kapur and M. Minimair

g =
(

n

k

)
yk ((1 + y)− y)n−k

=
(

n

k

)
xk (z − x)n−k,

where x = y and z = 1 + y and
(
n
k

)
xk (z − x)n−k is the homogenization of f .

Now we are ready to prove the theorem.

Proof (Theorem 16). As is well-known, gj can be obtained from fj by substi-
tuting yi

1+yi
for xi and by multiplying the result by (1 + yi)Nji . We will use this

fact several times below without explicitly referring to it.
Now, let us study when the Macaulay (projective) resultant of the gj ’s van-

ishes. It vanishes if and only if

1. either the gj ’s have a common root or the
2. leading forms (1)

have a common non-trivial root.
We analyze Case 1. Let Y be a common root of the gj ’s. First we assume that

yi �= −1 for all i. By Lemma 34, we have that xi �= 1 for all i. Therefore such a
Y yields a Bernstein-toric root X of the fj ’s. Next we assume that there is an i
such that yi = −1. By Lemma 34 there is no corresponding tuple X . However,
by Lemma 35 a root with yi = −1 can be interpreted as a root of the leading
coefficients, with respect to xi, of the fj’s as it is the usual practice of algebraic
geometry.

A.2 Proofs for Bézout/Cayley/Dixon-Style Construction

First we formulate a proposition to be used in the proof of Theorem 21.

Proposition 36. Let y = x
1−x and y = x

1−x . Then

x− x = (y − y) (1− x) (1− x)

Proof (Proposition 36). We have

(y − y) (1 − x) (1− x) =
(

x

1− x
− x

1− x

)
(1− x) (1 − x)

= x (1− x) − x (1− x)
= x − x.

Now we are ready to prove the theorem.

Proof (Theorem 21). By Proposition 36 and with yj , yj respectively denoting
xj

1−xj
and xj

1−xj
, the Dixon polynomial of F is

θF =

∣∣∣∣∣∣∣∣∣

. . . fj(x1, . . . , xl) . . .

. . . fj(x1, . . . , xl) . . .
...

. . . fj(x1, . . . , xl) . . .

∣∣∣∣∣∣∣∣∣
/

l∏
i=1

(xi − xi)

Multivariate Resultants in Bernstein Basis 85

=

∣∣∣∣∣∣∣∣∣

. . . (1 − x1)n1 · (1− x2)n2 · · · (1 − xl)nl · gj(y1, . . . , yl) . . .

. . . (1− x1)n1 · (1− x2)n2 · · · (1− xl)nl · gj(y1, . . . , yl) . . .
...

. . . (1− x1)n1 · (1− x2)n2 · · · (1− xl)nl · gj(y1, . . . , ybarl) . . .

∣∣∣∣∣∣∣∣∣∏l
i=1 (yi − yi) (1 − xi) (1− xi)

=

∣∣∣∣∣∣∣∣∣

. . . gj(y1, . . . , yl) . . .

. . . gj(y1, . . . , yl) . . .
...

. . . gj(y1, . . . , yl) . . .

∣∣∣∣∣∣∣∣∣
∏l

i=1 (1 − xi)ni (l−i) (1 − xi)ni i∏l
i=1 (yi − yi) (1− xi) (1 − xi)

=
l∏

i=1

(1− xi)ni(l−i+1)−1 (1− xi)nii−1 θG.

The above equality writes θF as a linear combination of power products of x,
1 − x, x, 1 − x, that is, of the scaled Bernstein bases in variables X and X of
degrees N

′
and N ′. The linear factors are the coefficients of θG. By adjusting

the coefficients of θG by suitable binomial factors
(
N

′

I

)−1

and
(
N ′

I

)−1
we obtain

the coefficients with respect to the Bernstein basis.

Proof (Theorem 22). Theorem 22 follows immediately from the proof of
Theorem 21 because the Dixon matrix is the coefficient matrix of the Dixon
polynomial.

Theorem 37. The Bernstein basis degree reduction algorithm of Definition 28
is correct.

Proof (Theorem 37). Since the algorithm reduces the basis degree independently
for each individual variable, it is sufficient to show the correctness for the univari-
ate case l = 1. For this case, the correctness follows from repeated application of
Theorem 33 of [33] which implies that p = Headm(x1, p) · xm

1 + Tailm(x1, p),
where the representation of Tailm(x1, p) has Bernstein basis degree m− 1.

Proof (Theorem 32). Let P and B be the Dixon matrix of F with respect to,
respectively, the power and the Bernstein basis. Observe that, in the case of un-
mixed Bernstein basis degree as well as in the case of mixed ones after minimizing
the basis degree of the Dixon polynomial (with Definition 28), P = T · B · T ,
where T and T are basis transformation matrices (for converting the power basis
into the Bernstein basis, respectively, for the row and for the column monomial
indices of the Dixon matrix P). By Proposition 2.1 of [13] and its preceding
remark, the gcd of the maximal minors of B divides the gcd of the maximal
minors of P . By inverting T and T and reversing the roles of P and B, the gcd
of the maximal minors of P divides the gcd of the maximal minors of B and the
theorem follows.

Unique Factorization Domains

in the Java Computer Algebra System

Heinz Kredel

IT-Center, University of Mannheim, Germany
kredel@rz.uni-mannheim.de

Abstract. This paper describes the implementation of recursive algo-
rithms in unique factorization domains, namely multivariate polynomial
greatest common divisors (gcd) and factorization into irreducible parts
in the Java computer algebra library (JAS). The implementation of gcds,
resultants and factorization is part of the essential building blocks for any
computation in algebraic geometry, in particular in automated deduction
in geometry. There are various implementations of these algorithms in
procedural programming languages. Our aim is an implementation in a
modern object oriented programming language with generic data types,
as it is provided by Java programming language. We exemplify that the
type design and implementation of JAS is suitable for the implementation
of several greatest common divisor algorithms and factorization of mul-
tivariate polynomials. Due to the design we can employ this package in
very general settings not commonly seen in other computer algebra sys-
tems. As for example, in the coefficient arithmetic for advanced Gröbner
basis computations like in polynomial rings over rational function fields
or (finite, commutative) regular rings. The new package provides factory
methods for the selection of one of the several implementations for non
experts. Further we introduce a parallel proxy for gcd implementations
which runs different implementations concurrently.

Keywords: unique factorization domain, multivariate polynomials, real
roots, greatest common divisors.

1 Introduction

We have presented an object oriented design of a Java Computer Algebra Sys-
tem (called JAS in the following) as type safe and thread safe approach to com-
puter algebra in [29–31, 33]. JAS provides a well designed software library using
generic types for algebraic computations implemented in the Java programming
language. The library can be used as any other Java software package or it can
be used interactively or interpreted through an jython (Java Python) front end.
The focus of JAS is at the moment on commutative and solvable polynomials,
Gröbner bases and applications. By the use of Java as implementation language,
JAS is 64-bit and multi-core CPU ready. JAS is available in [37].

This work is interesting for automated deduction in geometry as part of com-
puter algebra and computer science, since it explores the Java [51] type system

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 86–115, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Unique Factorization Domains in the Java Computer Algebra System 87

for expressiveness and eventual short comings. Moreover it employs many Java
packages, and stresses their design and performance in the context of computer
algebra, in competition with sophisticated computer algebra systems, imple-
mented in other programming languages.

JAS contains interfaces and classes for basic arithmetic of integers, rational
numbers and multivariate polynomials with integer or rational number coeffi-
cients. The package edu.jas.gb contains classes for polynomial and solvable
polynomial reduction, Gröbner bases and ideal arithmetic as well as thread par-
allel and distributed versions of Buchbergers algorithm [35, 36]. Package edu.-
jas.gbmod contains classes for module Gröbner bases, syzygies for polynomials
and solvable polynomials. Applications of Gröbner bases, such as ideal inter-
sections, ideal quotients and Comprehensive Gröbner bases [34] are contained
in package edu.jas.application and univariate power-series are provided by
package edu.jas.ps.

In this paper we describe an extension of the library by a package for multi-
variate polynomial greatest common divisor and factorization computations.

1.1 Related Work

In this section we briefly summarize the discussion of related work from [29]. For
an evaluation of the JAS library in comparison to other systems see [30, 31, 33].
For an overview on other computer algebra systems see [20]. The mathematical
background for this paper can be found in [28, 17, 10], these books also contain
references to the articles where the algorithms have been published first.

Typed computer algebra systems with own programming languages are de-
scribed in [24, 7, 52]. Computer algebra systems implemented in other program-
ming languages and libraries are: in C/C++ [21, 8, 45], in Modula-2 [38] and
in Oberon [22]. Python wrappers for computer algebra systems are presented
in [50, 26].

Java computer algebra implementations have been discussed in [55, 43, 44, 4,
13, 2]. Newer approaches are discussed in [46, 25, 14].

The expression of mathematical requirements for generic algorithms in pro-
gramming language constructs have been discussed in [42, 49]. Object oriented
programming concepts in geometric deduction are presented in [40, 9, 56, 23].

This paper contains revised parts of [32]. It is extended by a section on perfor-
mance comparison with Maple and a description of a class for greatest common
divisor computation using (univariate) Hensel lifting. There is a new section on
polynomial factorization (Sect. 7) and one on real root isolation (Sect. 8).

1.2 Outline

In the next Sect. 2, we give an overview of the JAS type system for polynomials
and an example on using the JAS library. Due to limited space we must assume
that you are familiar with the Java programming language [1] and object ori-
ented programming. The introduction is continued by an example of Gröbner
base computations over regular rings. The setup and layout of the proposed li-
brary extensions for gcd computations are discussed in Sect. 3. The presentation

88 H. Kredel

of the main implementing classes in Sect. 4. For the mathematical details see
[10, 17, 28]. Sect. 5 presents performance comparisons and Sect. 6 evaluates
the presented design. The classes for polynomial factorization are sketched in
Sect. 7. A package for real root isolation and real algebraic numbers is discussed
in Sect. 8. Finally Sect. 9 draws some conclusions.

2 Introduction to JAS

In this section we introduce the general layout of the polynomial types and show
an example for the usage of the JAS library.

Figure 1 shows the central part of the JAS type system. The interface
RingElem defines the methods which we expect to be available on all ring

� � � � � � � � � 	 �
 � � � � � �
� � � � � � � �

� � � � � � � � ! " # # $ % & '
� � � � (� � ! " # # $ % & '
� � �) ' � * � ! " # # $ % & '
� % + , & $ � � # ! � " - % . * ! " # # $ % & '
� / & � / 0 # 1 % � ! � ' *
� . # 2 3 & 4 % 5 # � & ! 0 ! � ' *
� . $ # ' % � ! 0
� ' % 6 & * % � ! 0
� � , 2 � & ! 0 ! 0
� � , " * 4 & . * � & ! 0 ! 0
� 2 , $ * � 3 $ 7 � & ! 0 ! 0
� � ' 8 % 4 � % � ! 0
� 1 � 8 � 1 % � + ! 0 ! 0
� 4 % 2 & � ' 1 % 4 � + ! 0 ! 0

� � � � � � � � � 	 �
 � � � � � �
� � � � 9 : ; < = > ?

� 6 % * � � � � � ! 0
� 6 % * � (� � ! 0
� @ 4 # 2 A ' * % 6 % 4 � � ! $ # ' 6 ! 0
� 4 & ' 1 # 2 � ' ! � ' * ! 0
� . # 3 7 � & ! 0 ! 0
� 3 & 4 � % � � ! B * 4 � ' 6 ! 0
� � � C � % $ 1 � ! " # # $ % & '
� � � 0 # 2 2 , * & * � 8 % � ! " # # $ % & '
� � � D � � # . � & * � 8 % � ! " # # $ % & '
� . / & 4 & . * % 4 � � * � . � ! � ' *

� � � � � � � � � 	 �
 � � � � � �
E F G H I J K G I L M N J

O P � � Q R � S � R 	 T � U V W P � � Q R � S � R 	 T � � 	 �
 X
O P � � Q R � S � R 	 T � U V W P � � Q R � S � R 	 T � � 	 �
 Y Z W � Y � W � � [\ � Z � R V X

] P � � Q R � S � R 	 T � U V W P � � Q R � S � R 	 T � � 	 �
 Y W ^ R V � � � _ T [X
O � � T � 	 �
 ` T � � � R � a a 	 Z 	 � � � U X W �
O � � T � 	 �
 � � [\ � Z � R V U X W � � [\ � Z � R V
O � � T � 	 �
 _ R � R 	 T � U X
O � � �
 � b U X W 	 � �
O � � � � � � U V W P � � Q R � S � R 	 T � � 	 �
 Y c W 	 � � Y d W � R �
 X W P � � Q R � S � R 	 T �
O Z R � � V T Z � U V W P � � Q R � S � R 	 T � � 	 �
 X W P � � Q R � S � R 	 T �
O � R ^ � V 	 �
 U X W ^ � V 	 �

O � R ^ � V 	 �
 U e W ^ � V 	 �
 f g X W ^ � V 	 �

O
 Z � U T W P � � Q R � S � R 	 T � X W P � � Q R � S � R 	 T �
O R � h � e � V � � U W P � � Q R � S � R 	 T � X W P � � Q R � S � R 	 T �

� � � � � � � � � 	 �
 � � � � � �
E F G H I J K G I L M N J i M G j

O P � � Q R � S � R 	 T � � 	 �
 U Z R k T Z W � 	 �
 k T Z � R V S Y � W 	 � � X
O P � � Q R � S � R 	 T � � 	 �
 U Z R k T Z W � 	 �
 k T Z � R V S Y � W 	 � � Y � R W l � V m V � � V X
O P � � Q R � S � R 	 T � � 	 �
 U Z R k T Z W � 	 �
 k T Z � R V S Y � W 	 � � Y � R W l � V m V � � V Y e W ^ � V 	 �
 f g X
O Z R � � V T Z � U 	 W 	 � � X W P � � Q R � S � R 	 T � � 	 �

O � � � � � � U 	 W 	 � � X W P � � Q R � S � R 	 T � � 	 �

O � R ^ � V 	 �
 U X W ^ � V 	 �

O V T � � R U d W 	 � � Y � W 	 � � Y � W 	 � � Y n W a � R T � X W P � � Q R � S � R 	 T �

Fig. 1. Overview of the ring element type and of generic polynomials

Unique Factorization Domains in the Java Computer Algebra System 89

elements, for example subtract(), multiply(), isZERO() or isUnit() with
the obvious meanings.

The construction of ring elements is done by factories, modeled after the fac-
tory creational design pattern [16]. The interface RingFactory defines the con-
struction methods, for example getONE() to create the one element from the ring,
fromInteger() to embed the natural numbers into the ring, random() to create
a random element or isCommutative() to query if the ring is commutative.

The generic polynomial class GenPolynomial implements the RingElem inter-
face and specifies that generic coefficients must be of type RingElem. In addition
to the methods mandated by the interface, the GenPolynomial implements the
methods like leadingMonomial() or extend() and contract() to transform
the polynomial to ‘bigger’ or ‘smaller’ polynomial rings.

Polynomials are to be created via, respectively with, a polynomial factory
GenPolynomialRing. In addition to the ring factory methods it defines for exam-
ple a method to create random polynomials with parameters for coefficient size,
number of terms, maximal degree and exponent vector density. The construc-
tor for GenPolynomialRing takes parameters for a factory for the coefficients,
the number of variables, the names for the variables and a term order object
TermOrder.

For further details on the JAS types, interfaces and classes see [37, 29, 31, 33].
To get an idea of the interplay of the types, classes and object construction

consider the following type

List<GenPolynomial<Product<Residue<BigRational>>>>

of a list of polynomials over a direct product of residue class rings modulo
some polynomial ideal over the rational numbers. It arises in the computation
of Gröbner bases over commutative regular rings, see [47, 53, 54].

R = Q[x1, . . . , xn], S′ =
(∏

p∈spec(R)

R/p
)
[y1, . . . , yr].

To keep the example simple we will show how to generate a list L of polynomials
in the ring

L ⊂ S = (Q[x0, x1, x2]/ideal(F))4[a, b].
The ring S is represented by the object in variable fac in the listing in Fig. 2.
Random polynomials of this ring may look like the one shown in Fig. 3. The
coefficients from (Q[x0, x1, x2]/ideal(F))4 are shown enclosed in braces {} in
the form i=polynomial. I.e. the index i denotes the product component i =
0, 1, 2, 3 which reveals that the Product class is implemented using a sparse data
structure. The list of F is printed after the ‘rr =’ together with the indication of
the type of the residue class ring ResidueRing as polynomial ring in the variables
x0, x1, x2 over the rational numbers BigRationalwith graded lexicographical
term order IGRLEX. The variables a, b are from the ‘main’ polynomial ring and
the rest of Fig. 3 should be obvious.

The output in Fig. 3 is computed by the program from Fig. 2. Line number
1 defines the variable L of our intended type and creates it as an Java Array-
List. Lines 2 and 3 show the creation of the base polynomial ring Q[x0, x1, x2]

90 H. Kredel

1 List<GenPolynomial<Product<Residue<BigRational>>>> L

= new ArrayList<GenPolynomial<Product<Residue<BigRational>>>>();

2 BigRational bf = new BigRational(1);

3 GenPolynomialRing<BigRational> pfac

= new GenPolynomialRing<BigRational>(bf,3);

4 List<GenPolynomial<BigRational>> F

= new ArrayList<GenPolynomial<BigRational>>();

5 GenPolynomial<BigRational> pp = null;

6 for (int i = 0; i < 2; i++) {

7 pp = pfac.random(5,4,3,0.4f);

8 F.add(pp);

9 }

10 Ideal<BigRational> id = new Ideal<BigRational>(pfac,F);

11 id.doGB();

12 ResidueRing<BigRational> rr = new ResidueRing<BigRational>(id);

13 System.out.println("rr = " + rr);

14 ProductRing<Residue<BigRational>> pr

= new ProductRing<Residue<BigRational>>(rr,4);

15 String[] vars = new String[] { "a", "b" };

16 GenPolynomialRing<Product<Residue<BigRational>>> fac

= new GenPolynomialRing<Product<Residue<BigRational>>>(pr,2,vars);

17 GenPolynomial<Product<Residue<BigRational>>> p;

18 for (int i = 0; i < 3; i++) {

19 p = fac.random(2,4,4,0.4f);

20 L.add(p);

21 }

22 System.out.println("L = " + L);

23 GroebnerBase<Product<Residue<BigRational>>> bb

= new RGroebnerBasePseudoSeq<Product<Residue<BigRational>>>(pr);

24 List<GenPolynomial<Product<Residue<BigRational>>>> G = bb.GB(L);

25 System.out.println("G = " + G);

Fig. 2. Constructing algebraic objects

in variable pfac. In lines 4 to 9 a list F of random polynomials is constructed
which will generate the ideal of the residue class ring. Lines 10 to 13 create a
Gröbner basis for the ideal, setup the residue class ring rr and print it out. Line
14 constructs the regular ring pr as direct product of 4 copies of the residue class
ring rr. The the final polynomial ring fac in the variables a and b is defined in
lines 15 and 16. Lines 17 to 22 then generate the desired random polynomials, put
them to the list L and print it out. The last lines 23 to 25 show the instantiation
of a Gröbner base algorithm for regular coefficient rings bb and the computation
of a Gröbner base G. GroebnerBasePseudomeans the fraction free algorithm for
coefficient arithmetic. To keep polynomials at a reasonable size, the primitive
part of the polynomials is used. This requires gcd computations on Product
objects, which is possible by our design, see 4.1.

Unique Factorization Domains in the Java Computer Algebra System 91

rr = ResidueRing[BigRational(x0, x1, x2) IGRLEX

((x0^2 + 295/336), (x2 - 350/1593 x1 - 1100/2301))]

L = [

{0=x1 - 280/93 , 2=x0 * x1 - 33/23 } a^2 * b^3

+ {0=122500/2537649 x1^3 + 770000/3665493 x1^2

+ 14460385/47651409 x1 + 14630/89739 ,

3=350/1593 x1 + 23/6 x0 + 1100/2301 } , ...]

Fig. 3. Random polynomials from ring S

With this example we see that the software representations of rings snap to-
gether like ‘LEGO blocks’ to build up arbitrary structured rings. This concludes
the introduction to JAS, further details can be found, as already mentioned, in
[37, 29, 31, 33].

3 GCD Class Layout

In this section we discuss the overall design considerations for the implemen-
tation of a library for multivariate polynomial greatest common divisor (gcd)
computations. We assume that the reader is familiar with the importance and
the mathematics of the topic, presented for example in [28, 17, 10].

3.1 Design Overview

For the implementation of the multivariate gcd algorithm we have several choices

1. where to place the algorithms in the library,
2. which interfaces to implement, and
3. which recursive polynomial methods to use.

For the first item we could place the gcd algorithms into the class GenPoly-
nomial, to setup an new class, or setup a new package. Axiom [24] places the
the gcd algorithms directly into the abstract polynomial class (called category).
For the type system this would be best, since having an gcd algorithm is a prop-
erty of the multivariate polynomials. Most library oriented systems, place the
gcd algorithms in a separate package in a separate class. This is to keep the code
at a manageable size. In our implementation the class GenPolynomial consists of
about 1200 lines of code, whereas all gcd classes (with several gcd implementa-
tions) consist of about 3200 lines of code. For other systems this ratio is similar,
for example in MAS [38] or Aldes/SAC-2 [11]. The better maintainability of
the code has led us to choose the separate package approach. The new package
is called edu.jas.ufd. We leave a simple gcd() method, only for univariate
polynomials over fields, in the class GenPolynomial.

The other two items are discussed in the following subsections.

92 H. Kredel

3.2 Interface GcdRingElem

The second item, the interface question, is not that easy to decide. In our type
hierarchy (see Fig. 1) we would like to let GenPolynomial (or some sub-class)
implement GcdRingElem (an extension of RingElem by the methods gcd() and
egcd()) to document the fact that we can compute gcds. This is moreover re-
quired, if we want to use polynomials as coefficients of polynomials and want to
compute gcds in these structures. To take the content of such a polynomial we
must have the method gcd() available for the coefficients.

As a resort, one could also extend GenPolynomial to let the sub-class imple-
ment GcdRingElem, for example

class GcdGenPolynomial<C extends GcdRingElem<C>>
extends GenPolynomial<C>
implements GcdRingElem<GcdGenPolynomial<C>>.

As we have noted in [30, 31], this is not possible, since sub-classes cannot im-
plement the same interface as the superclass with different generic type parame-
ters. I.e. RingElem would be implemented twice with different type parameters:
GcdGenPolynomial and GenPolynomial, which is not type-safe and so it is not
allowed in Java.

Another possibility is to let GenPolynomial directly implement GcdRingElem.
Then we could, however, not guarantee that the method gcd() can always be
implemented. There can be cases, where gcd() will fail to exist and an exception
must be thrown. But we have accepted such behavior already with the method
inverse() in RingElem. If we chose this alternative and let GenPolynomial
implement GcdRingElem, eventually with GcdRingElem as coefficient types, we
would have to change nearly all existing classes. I.e. more than 100 coefficient
type restrictions must be be adjusted from RingElem to GcdRingElem.

Despite of this situation we finally decided to let RingElem directly define
gcd(), but with no guarantees that it will not throw an exception. This requires
only 10 existing classes to additionally implement a gcd() method. Some throw
an exception, and for others (like fields) the gcd is trivially 1. So now GcdRing-
Elem is only a marker interface and RingElem itself defines gcd().

3.3 Recursive Methods

The third item, the recursive polynomial methods question, is discussed in this
section.

We have exercised some care in the definition of our interfaces to ensure, that
we can define recursive polynomials (see Fig. 1).

First, the interface RingElem is defined as

RingElem<C extends RingElem<C>>.

So the type parameter C can (and must) itself be of type RingElem. With this
we can define polynomials with polynomials as coefficients

GenPolynomial<GenPolynomial<BigRational>>.

Unique Factorization Domains in the Java Computer Algebra System 93

In the applications implemented so far we did not make much use of this feature.
However, there are many algebraic algorithms which are only meaningful in a re-
cursive setting, for example greatest common divisors, resultants or factorization
of multivariate polynomials.

If we use our current implementation of GenPolynomial, we observe, that our
type system will unfortunately lead to code duplication. Consider the greatest
common divisor method gcd() with the specification

GenPolynomial<C> gcd(GenPolynomial<C> P, GenPolynomial<C> S)

This method will be a driver for the recursion. It will check if the number of
variables in the polynomials is one, or if it is greater than one. In the first case,
a method for the recursion base case of univariate polynomials, must be called

GenPolynomial<C> baseGcd(GenPolynomial<C> P, S).

In the second case, the polynomials have to be converted to recursive represen-
tation and a method for the recursion case must be called

GenPolynomial<GenPolynomial<C>>
recursiveUnivariateGcd(GenPolynomial<GenPolynomial<C>> P, S).

The type of the parameters for recursiveUnivariateGcd() is univariate poly-
nomials with (multivariate) polynomials as coefficients. The Java code for base-
Gcd() and recursiveUnivariateGcd() is mostly the same, but because of the
type system, the methods must have different parameter types. Further, by type
erasure for generic parameters during compilation, they must also have different
names.

3.4 Conversion of Representation

In the setting described in the previous section, we need methods to convert
between the distributed and recursive representation. In the class PolyUtil we
have implemented two static methods for this purpose. In the following, assume
that C extends RingElem<C>.

The first method converts a distributed polynomial A to a recursive polynomial
in the polynomial ring defined by the ring factory rf.

GenPolynomial<GenPolynomial<C>>
recursive(GenPolynomialRing<GenPolynomial<C>> rf,

GenPolynomial<C> A)

In the method gcd() the recursive polynomial ring rf will be an univariate
polynomial ring with multivariate polynomials as coefficients.

The second method converts a recursive polynomial B to a distributed poly-
nomial in the polynomial ring defined by the ring factory dfac.

GenPolynomial<C>
distribute(GenPolynomialRing<C> dfac,

GenPolynomial<GenPolynomial<C>> B)

94 H. Kredel

We have not yet studied the performance implications of many back and forth
conversions between these two representations. For a sketch of a recursive poly-
nomial representation in Java see the appendix in [32].

4 GCD Implementations

In this section we present the most important algorithmic versions for gcd com-
putation. An overview of the classes is given in Fig. 4. The class relations are
modeled after the template method design pattern, see [16].

We start with an interface GreatestCommonDivisor. It defines the method
names for a ring with gcd algorithm. First there is the method gcd() itself,
together with the method lcm() to compute the least common multiple of two
polynomials. With the help of gcd() the algorithms for the content content()
and the primitive part primitivePart() computation can be implemented.
With the help of a polynomial derivative, the square-free part squarefree-
Part() and the square-free factors squarefreeFactors() can be implemented.
Finally the resultant of two polynomials resultant() is defined. It doesn’t use

�

��������	�

����������		�
������

���������	

������������	

�����	

�����	

�����������	

����������������	

�������������������	

�

��������������������������	�

�������������	

����������������	

��������	
�

��������������������	

�����������������������	

�����������������	

��������������������	

�������������	

����������������������	
�

������������������������	

���������������������������	

���������	

������������	

�����	

�����	

����������������	

�������������������	

�����������	

������������������	

��������	

�����������	

���������	

�

��������������������������

���������	

���������������������	

�

�����������������������������

���������	

���������������������	

�

��������������������������

��������������������	

���������	

������������������������	

���������������������	

���������������	

�������������������	

���������������������������

��������������������� ������	

���������	

���������������������	

�����	

���������������������������

���������	

���������������������	

�����	

��������������������������

���������������������!�����	

���������	

Fig. 4. Greatest common divisor classes

Unique Factorization Domains in the Java Computer Algebra System 95

the gcd() implementation, but is implemented like gcd. Since ADG, the inter-
face has been enhanced by methods coPrime() to compute lists of co-prime
polynomials from given lists of polynomials.

The abstract super class for the implementations is called GreatestCommon-
DivisorAbstract. It implements nearly all methods defined in the
GreatestCommonDivisor interface. The abstract methods are baseGcd() and
recursiveUnivariateGcd(). The method gcd() first checks for the recursion
base, and eventually calls baseGcd(). Otherwise it converts the input polyno-
mials to recursive representation, as univariate polynomials with multivariate
polynomial coefficients, and calls method recursiveUnivariateGcd(). The re-
sult is then converted back to the distributed GenPolynomial representation.
The method recursiveGcd() can be used for arbitrary recursive polynomials
(not only univariate ones). The input polynomials are converted to distributed
form, then gcd() is called and finally the result polynomial is converted back to
the given recursive form.

The concrete implementations come in two flavors. The first flavor imple-
ments only the methods baseGcd() and recursiveUnivariateGcd(), using the
setup provided by the abstract super class. The second flavor directly imple-
ments gcd() without providing baseGcd() and recursiveUnivariateGcd().
However, these versions are only valid for the JAS coefficient classes BigInteger
or ModInteger.

4.1 Polynomial Remainder Sequences

Euclid’s algorithm to compute gcds by taking remainders is good for the integers
and works for polynomials. For polynomials it is, however, inefficient due to the
intermediate expression explosion, i.e. the base coefficients and the degrees of the
coefficient polynomials can become extremely large during the computation. The
result of the computation can nevertheless be surprisingly small, for example 1.

To overcome this coefficient explosion, the intermediate remainders are sim-
plified according to different strategies. The sequence of intermediate remainders
is called polynomial remainder sequence (PRS), see [17, 28, 41].

The maximum simplification is achieved by the primitive PRS. In this case,
from the remainder in each step, the primitive part is taken. However, the com-
putation of primitive parts can be very expensive too, since a gcd of all the
coefficients of the remainder must be computed. The primitive PRS gcd is im-
plemented by the class GreatestCommonDivisorPrimitive.

The best known remainder sequence is the sub-resultant PRS. In this algo-
rithm, the coefficients of the remainder are divided by a polynomial, which can
be computed at nearly no additional cost. The simplification gained, is not so
good, as with the primitive PRS, but the coefficients are kept at nearly the same
size, and it doesn’t cost the recursive gcd computations. The sub-resultant PRS
gcd is implemented by the class GreatestCommonDivisorSubres.

The original euclidean algorithm is implemented by the class GreatestCommon-
DivisorSimple. Here, no simplifications of the remainder are applied, except if
the base coefficient ring is a field. In this case the remainder polynomials are made

96 H. Kredel

monic, i.e. the leading base coefficient is multiplied by its inverse to make it equal
to 1. This PRS is also called the monic PRS.

The PRS algorithm implementations make no use of specific properties of the
coefficients, only a gcd() method is required to exist. So they can be used in very
general settings, as shown in Sect. 2, Fig. 2. In this example the class Residue
implements gcd() as gcd of the canonical residue class representatives and the
class Product implements gcd() as component wise gcds.

4.2 Modular Methods

For the special case of integer coefficients, there are even more advanced tech-
niques. First the base integer coefficients are mapped to elements of finite fields,
i.e. to integers modulo a prime number. If this mapping is done with some care,
then the original polynomials can be reconstructed by the Chinese remainder
theorem, see [17]. Recall, that the algorithm proceeds roughly as follows:

1. Map the coefficients of the polynomials modulo some prime number p. If the
mapping is not ‘good’, choose a new prime and continue with step 1.

2. Compute the gcd over the modulo p coefficient ring. If the gcd is 1, also the
‘real’ gcd is one, so return 1.

3. From gcds modulo different primes reconstruct an approximation of the gcd
using Chinese remaindering. If the approximation is ‘correct’, then return it,
otherwise, choose a new prime and continue with step 1.

The algorithm is implemented by the class GreatestCommonDivisorModular.Note,
that it is no longer generic, since it explicitly requires BigInteger coefficients.
It extends the super class GreatestCommonDivisorAbstract<BigInteger>with
fixed type parameter. The gcd in step 2 can be computed by a monic PRS, since
the coefficients are from a field, or by the algorithm described next.

The Chinese remaindering can not only be applied with prime numbers, but
also with prime polynomials. To make the computation especially simple, one
chooses linear univariate prime polynomials. This amounts then to the evaluation
of the polynomial T at the constant term of the prime polynomial, i.e. T mod (x−
a) = T (a). By this evaluation also a variable of the input polynomial disappears.
With this method the recursion is done by removing one variable at a time,
until the polynomial is univariate. Then the monic PRS is used to compute
the gcd. In the end, step by step the polynomials are reconstructed by Chinese
remaindering until all variables are present again. This algorithm is implemented
by the class GreatestCommonDivisorModEval. As above, it is no longer generic,
since it requires ModInteger coefficients. It extends the super class Greatest-
CommonDivisorAbstract<ModInteger> with fixed type parameter.

There is another modular algorithm using the Hensel lifting. In this algorithm,
the reconstruction of the real gcd from a modular gcd is done modulo powers pe

of a prime number p. This algorithm is implemented for univariate polynomials
in class GreatestCommonDivisorHensel. It extends GreatestCommonDivisor-
Subres<BigInteger> so that for multivariate polynomials first the sub-resultant
algorithm is used and then in the univariate case Hensel lifting is performed. In

Unique Factorization Domains in the Java Computer Algebra System 97

case, the greatest common divisor is not co-prime to the cofactor the algorithm
falls back to the univariate sub-resultant algorithm.

4.3 GCD Factory

All the presented algorithms have pros and cons with respect to the computing
time. So which algorithm to choose? This question can seldom by answered by
mere users of the library. So it is the task of the implementers to find a way, to
choose the optimal implementation. We do this with the class GCDFactory, which
employs the factory pattern, see [16], to construct a suitable gcd implementation.
Its definition is

GreatestCommonDivisor<C> GCDFactory.<C>getImplementation(fac).

The static method getImplementation() constructs a suitable gcd implementa-
tion, based on the given type parameter C. This method has a coefficient factory
parameter fac. For, say, BigInteger coefficients we would compute the gcd of
two polynomials of this type by

GreatestCommonDivisor<BigInteger> engine
= GCDFactory.getImplementation(fac);

c = engine.gcd(a,b);

Here, engine denotes a variable with the gcd interface type, which holds a
reference to an object implementing the gcd algorithm. An alternative to get-
Implementation() is a method getProxy(), with the same signature,

GreatestCommonDivisor<C> GCDFactory.<C>getProxy(fac),

which returns a gcd proxy class. It is described in the next section.
Currently four versions of getImplementation() are implemented for the

coefficient types ModInteger, BigInteger, BigRational and the most general
GcdRingElem<C>. The selection of the respective version takes place at compile
time. I.e. depending on the specified type parameter C, different methods are
selected. The coefficient factory parameter fac is used at run-time to check if
the coefficients are from a field, to further refine the selection.

static GreatestCommonDivisor<ModInteger>
getImplementation(ModInteger fac)

static ... GreatestCommonDivisor<BigInteger> ...

static <C extends GcdRingElem<C>> GreatestCommonDivisor<C>
getImplementation(RingFactory<C> fac).

To use non-static methods, it would be necessary, to instantiate GCDFactory
objects for each type separately. The gcd factories are, however, difficult to
implement when the concrete type parameter, for example BigInteger, is not
available. To overcome this problem, the last method must be able to handle
also the first three cases at run-time.

98 H. Kredel

�

����������		�
��������������

�

��������

��������	
��

����������

��������������������������

�������

����������

�����������
��

���������������������

��������	
��

Fig. 5. GCD proxy class

4.4 GCD Proxy

The selection of a gcd algorithm with the class GCDFactory is not optimal for
all kinds of input polynomial shapes. The modular algorithms are generally the
best, but for some particular polynomials the PRS algorithms perform better.
There are many investigations on the complexity of the gcd algorithms, see [17]
and the references therein. The complexity bounds can be calculated depending
on further polynomial shape properties:

– the size of the coefficients,
– the degrees of the polynomials, and
– the number of variables,
– the density or sparsity of polynomials, i.e. the relation between the number

of non-zero coefficients to the number of all possible coefficients for the given
degrees,

– and the density of the exponents.

However, the determination of all these properties, together with the estima-
tion of the execution time, require a substantial amount of computing time,
which can not be neglected. Moreover, the estimations are often worst case up-
per bound estimates which are of little value in practice. These limitations have
been addressed by the concept of speculative parallelism in [48].

In the time of multi-core CPU computers, we can do better than the precise
complexity case distinctions: we can compute the gcd with two (or more) dif-
ferent implementations in parallel. Then we return the result from the fastest
algorithm, and cancel the other still running one. Java provides all this in the
package java.util.concurrent. A sketch of the gcd proxy class GCDProxy and
the method gcd follows.

final GreatestCommonDivisor<C> e1, e2;
protected ExecutorService pool; // set in constructor
GenPolynomial<C> gcd(final GenPolynomial<C> P, ... S) {
List<Callable<GenPolynomial<C>>> cs = ...;

Unique Factorization Domains in the Java Computer Algebra System 99

cs.add(new Callable<GenPolynomial<C>>() {
public GenPolynomial<C> call() {

return e1.gcd(P,S);
}

}
);

cs.add(... e2.gcd(P,S); ...);
return pool.invokeAny(cs);

}

The variables e1 and e2 hold gcd implementations, and are set in the constructor
of GCDProxy, for example in the method getProxy() of GCDFactory. pool is
an ExecutorService, which provides the method invokeAny(). It executes all
Callable objects in the list cs in parallel. After the termination of the fastest
call() method, the other, still running methods are canceled. The result of the
fastest call() is then returned by the proxy method gcd(). The polynomials P
and S are the actual parameters of the proxy method gcd().

With this proxy gcd implementation, the computation of the gcds is as fast
as the computation of the fastest algorithm for a given coefficient type, and the
run-time shape of the polynomials. This is true, if there are more than one CPU
in the computer and the other CPU is idle. If there is only one CPU, or the
second CPU is occupied by some other computation, then the computing time
of the proxy gcd method is not worse than two times the computing time of the
fastest algorithm. This will in most cases be better, since the computing times
of the different algorithms with different polynomial shapes differ in general by
more than a factor of two.

For the safe forced termination of the second running computation a new
Java exception PreemptingException had to be introduced. It is checked in the
construction of new polynomials via the class PreemptStatus which is queried
during polynomial ring construction.

5 GCD Performance

In this section we report on some performance measurements for the different
algorithms. Our tests are not intended to be comprehensive like in [39] or the
references contained therein. We just want to make sure that our implementation
qualitatively matches the known weaknesses and strengths of the algorithms.

5.1 Relative Algorithm Performance

In this sub-section we compare our implemented algorithms against each other.
We generate three random polynomials a, b, c, with the shape parameters given
in the respective figure. Then we compute the gcd of ac and bc, let d = gcd(ac, bc)
and check if c|d. The random polynomial parameters are: the number of variables
r, the size of the coefficients 2k, the number of terms l, the maximal degree e,
and the density of exponent vectors q. The maximal degrees of the polynomials

100 H. Kredel

degrees, e s p sr ms me

a=7, b=6, c=2 23 23 36 1306 2176

a=5, b=5, c=2 12 19 13 36 457

a=3, b=6, c=2 1456 117 1299 1380 691

a=5, b=5, c=0 508 6 6 799 2

s = simple, p = primitive, sr = sub-resultant, ms = modular simple monic, me =
modular evaluation. random() parameters: r = 4, k = 7, l = 6, q = 0.3,

Fig. 6. PRS and modular gcd performance

degrees, e sr ms me

a=5, b=5, c=0 3 29 27

a=6, b=7, c=2 181 695 2845

a=5, b=5, c=0 235 86 4

a=7, b=5, c=2 1763 874 628

a=4, b=5, c=0 26 1322 12

sr = sub-resultant, ms = modular simple monic, me = modular evaluation. random()
parameters: r = 4, k = 7, l = 6, q = 0.3,

Fig. 7. Sub-resultant and modular gcd performance

degrees, e time algorithm

a=6, b=6, c=2 3566 subres

a=5, b=6, c=2 1794 modular

a=7, b=7, c=2 1205 subres

a=5, b=5, c=0 8 modular

BigInteger coefficients, winning algorithm: subres = sub-resultant, modular =
modular simple monic. random() parameters: r = 4, k = 24, l = 6, q = 0.3,

Fig. 8. Proxy gcd performance, integer

degrees, e time algorithm

a=6, b=6, c=2 3897 modeval

a=7, b=6, c=2 1739 modeval

a=5, b=4, c=0 905 subres

a=5, b=5, c=0 10 modeval

ModInteger coefficients, winning algorithm: subres = sub-resultant, modeval =
modular evaluation. random() parameters: r = 4, k = 6, l = 6, q = 0.3,

Fig. 9. Proxy gcd performance, modular integer

are shown in the left column. The computing times are in milliseconds on one
AMD 1.6 GHz CPU, with JDK 1.5 and server VM.

Comparisons in Figs. 6 and 7 show differences of factors of 10 to 100 for the
different algorithms and different polynomial shapes. The comparisons for the

Unique Factorization Domains in the Java Computer Algebra System 101

random parameters jas(1) jas(2) map map n

r=2, k=1, l=3, d=4, q=0.6 15 2 28 20

r=2, k=2, l=4, d=8, q=0.5 6 6 28 20

r=2, k=3, l=5, d=12, q=0.4 4 3 28 20

r=2, k=4, l=6, d=16, q=0.3 6 8 28 40

r=2, k=5, l=7, d=20, q=0.2 5 5 28 44

r=2, k=6, l=8, d=24, q=0.1 3 1 32 44

Polynomials in 2 variables, c = 1.

Fig. 10. Performance comparison to other CAS (1)

random parameters jas(1) jas(2) map map n

r=6, k=1, l=3, d=4, q=0.6 17 6 8 24

r=6, k=2, l=4, d=8, q=0.5 11 15 12 36

r=6, k=3, l=5, d=12, q=0.4 19 19 12 44

r=6, k=4, l=6, d=16, q=0.3 38 29 16 48

r=6, k=5, l=7, d=20, q=0.2 20 19 16 48

r=6, k=6, l=8, d=24, q=0.1 10 6 16 48

Polynomials in 6 variables, c = 1.

Fig. 11. Performance comparison to other CAS (2)

random parameters jas(1) jas(2) map map n

r=9, k=5, l=3, d=4, q=0.6 22 15 24 20

r=9, k=10, l=4, d=8, q=0.5 29 34 28 44

r=9, k=15, l=5, d=12, q=0.4 249 36 32 52

r=9, k=20, l=6, d=16, q=0.3 25 61 32 56

r=9, k=25, l=7, d=20, q=0.2 21 19 36 60

r=9, k=30, l=8, d=24, q=0.1 10 9 40 60

Polynomials in 9 variables, with constant greatest common divisor (c = 1).

Fig. 12. Performance comparison to other CAS (3)

GCDProxy are contained in Figs. 8 and 9. We see that for each run an other
algorithm may be the fastest, which exemplifies the usefulness of the proxy gcd
approach.

5.2 Comparison with other CAS

We generate three random polynomials a, b, with the shape parameters given in
the respective figure. Polynomial c is either constant = 1 or a random polynomial
with 2 to 3 terms. We compute the gcd of ac and bc, let d = gcd(ac, bc) and
check if c|d. The random polynomial parameters shown in the left column are:
the number of variables r, the size of the coefficients 2k, the number of terms l,
the maximal degree e, and the density of exponent vectors q.

102 H. Kredel

All computing times are in milliseconds on a 32-bit computer with 16 Intel
XEON hyper-threading CPUs running at 2.7 GHz. Measurements are with JDK
1.5 and the 32-bit server JVM. The JDK 1.6 is known to be faster about 10−
20%, but has not been used for this tests. We compare JAS to Maple version
9.5 and version 11.0. In Figs. 10, 11, 12, 13 and 14 these versions are named
“map” and “map n” respectively. The columns named “jas(1)” and “jas(2)” are
timings for the first, respectively the second run in the same JVM instance. From
comparisons between Maple and other computer algebra systems (as for example
from [39]) one may then draw some conclusions about the comparison between
JAS and the other systems. But such comparisons always depend on the system
version and the available computer infrastructure and should be interpreted with
caution. The Maple timing code is

st:=time():
d:=gcd(ac,bc):
time()-st:
print("maple time = ", st, " gcd = ", d):

and the JAS (jython) timing code is

tt = System.currentTimeMillis();
g = R.gcd(ac,bc);
tt = System.currentTimeMillis() - tt;
tt2 = System.currentTimeMillis();
g2 = R.gcd(ac,bc);
tt2 = System.currentTimeMillis() - tt2;
print "jas gcd time =", tt, " (", tt2, ") milliseconds"

R.gcd(ac,bc) is the gcd method of the respective polynomial ring. It uses the
GCDProxy for the BigInteger coefficient ring, that is, the sub-resultant algorithm
and the modular algorithm run in parallel. tt is the time for the first run and
tt2 is the time for the second run.

In Figs. 10, 11 and 12 with a constant greatest common divisor we see similar
computing times for JAS and Maple. In Figs. 13 and 14 with a non-constant
greatest common divisor we see varying results. For certain random parameters

random parameters jas(1) jas(2) map map n

r=2, k=35, l=9, d=8, q=0.6 79 32 20 28

r=2, k=70, l=12, d=16, q=0.5 37 32 24 56

r=2, k=105, l=15, d=24, q=0.4 676 328 24 64

r=2, k=140, l=18, d=32, q=0.3 18 15 28 72

r=2, k=175, l=21, d=40, q=0.2 22 21 32 72

r=2, k=210, l=24, d=48, q=0.1 15 14 36 76

Polynomials in 2 variables, c �= 1, with 2 - 3 terms.

Fig. 13. Performance comparison to other CAS (4)

Unique Factorization Domains in the Java Computer Algebra System 103

JAS is slower than Maple (see Fig. 13) but in Fig. 14 we see that Maple 9.5 is
slower than JAS, but JAS is comparable to Maple 11.0. Note, that JAS runs two
algorithms in parallel, where for Maple it is not known to us, if multiple CPUs
are used if available.

5.3 Application Performance

With the gcd implementation we re-factored the rational function class Quotient
in package edu.jas.application. To reduce quotients of polynomials to lowest
terms the gcd of the nominator and denominator is divided out. Due to the
‘LEGO block’ design, the new ring can be used also as coefficients for polyno-
mials. So the Gröbner bases implementation can directly be used for these rings
(without recompilation). We compare the computing time with the system MAS
[38], since we are familiar with the implementation details in it. Other systems
where a computation in such a setting is possible will be compared later.

We studied the performance on the examples from Raksanyi [6] and Hawes2
[5, 19]. In the first table in Fig. 15 we compared the computation with MAS [38].
The computing times are in milliseconds on an AMD 1.6 GHz CPU, with JDK
1.6 for JAS. For JAS we compute the same Gröbner base two times, the time for
the second run is enclosed in parenthesis. We see, that for the first run there is
considerable time spend in JVM ’warm-up’, i.e. code profiling and just-in-time
compilation. For the client-VM, second run, the timing for the Raksanyi example
is the same magnitude as for MAS. In case of the server-VM we see, that even
in the second run, the JVM tries hard to find more optimizations. In this case
the computing times are less than half of the first run, but slower than the MAS
timings. For the graded Hawes2 example the computing times are in an equal
range. The same example with lexicographic term order shows more differences:
the computation with JAS is about 2 times faster than MAS, even in the first
run and further improves in the second run.

Note, that in all examples the server JVM is slightly slower than the client
JVM since the additional optimization of the server JVM can not be amortized
in this short running examples. In a second or subsequent runs the timings
generally improve due to optimizations by just-in-time compilation.

The second table in Fig. 15 shows the gcd algorithm count for the Hawes2
example. Here most of the time the sub-resultant algorithm was fastest. But

random parameters jas(1) jas(2) map map n

r=9, k=5, l=3, d=4, q=0.6 61 55 16 16

r=9, k=10, l=4, d=8, q=0.5 792 293 20 44

r=9, k=15, l=5, d=12, q=0.4 147 94 24 52

r=9, k=20, l=6, d=16, q=0.3 15 17 2096 64

r=9, k=25, l=7, d=20, q=0.2 17 16 2100 68

r=9, k=30, l=8, d=24, q=0.1 16 14 2100 68

Polynomials in 9 variables with c �= 1, with 2 - 3 terms.

Fig. 14. Performance comparison to other CAS (5)

104 H. Kredel

since this was run on a one CPU computer it only shows the preference of the
JVM scheduler for the first started algorithm (compare Sect. 4.4).

The Hawes2 example [5, 19] is used in Fig. 16 to compare different gcd al-
gorithms for the rational function coefficients. The computing times are in mil-
liseconds on a 16 CPU 64-bit AMD Opteron 2.6 GHz, with JDK 1.5 and server
JVM. The first three lines show computations with the GCDProxy running two
algorithms in parallel and the remaining lines show the times for only one gcd
algorithm. The counts vary since two implementations may terminate at nearly
the same time, so eventually the discarded result is also counted as success.
In this example the integer coefficients in the rational function coefficients are
smaller than 228. So the sub-resultant algorithm alone is faster than the modu-
lar algorithms and the modular computations with primes slightly less than 259

are slower than the computations modulo small primes. The modular evaluation
algorithm is faster than the monic PRS algorithm in the recursion.

The comparison is not statistically rigorous in the sense of [18] as we have
done only two runs of the methods.

6 GCD Evaluation

In the following we summarize the pros and cons of the new algorithms. We start
with the problems and end with the positive aspects.

– We are using a distributed representation with conversions to recursive rep-
resentation on demand. It is not investigated how costly these many conver-
sions between distributed and recursive representation are. There are also
manipulations of ring factories to setup the correct polynomial ring for re-
cursions. Compared to MAS with a recursive polynomial representation, the
timings in Fig. 15 indicate that the conversions are indeed acceptable.

– The class ModInteger for polynomial coefficients is implemented using Big-
Integer. Systems like Singular [21], MAS [38] and Aldes/SAC-2 [11], use
ints for modular integer coefficients. This can have great influence on the

example MAS JAS, clientVM JAS, serverVM

Raksanyi, G 50 311 (53) 479 (205)

Raksanyi, L 40 267 (52) 419 (198)

Hawes2, G 610 528 (237) 1106 (1351)

Hawes2, L 26030 9766 (8324) 11061 (5966)

time in milliseconds for Gröbner base examples, Term order: G = graded, L =
lexicographical, timings in parenthesis are for second run.

example/algorithm Subres Modular

Hawes2, G 1215 105

Hawes2, L 4030 125

Fig. 15. GB with rational function coefficients

Unique Factorization Domains in the Java Computer Algebra System 105

gcd algorithm time count of first count of second

Subres and Modular p < 228 5799 3807 2054

Subres and Modular p < 259 10817 3682 2100

Modular p < 228 and Subres 5662 2423 3239

Subres 5973

Modular p < 228 with ModEval 21932

Modular p < 228 with Monic 27671

Modular p < 259 with Monic 34732

Modular p < 259 with ModEval 24495

time in milliseconds for Hawes2 lex Gröbner base example, first, second = count for
respecive algorithm, p shows the size of the used prime numbers.

Fig. 16. Gcd on rational function coefficients

computing time. However, JAS is with this choice able to perform compu-
tations with arbitrary long modular integers. The right choice of prime size
for modular integers is not yet determined. We experimented with primes of
size less than Long.maxValue and less than Integer.maxValue which could
eventually be exploited in BigInteger.

– The bounds used to stop iteration over primes, are not yet state of the art.
We currently use the bounds found in [11]. The bounds derived in [10] and
[17] are not yet incorporated. However, we try to detect factors by exact
division, early.

– The univariate polynomials and methods are not separate implementations
tuned for this case. I.e. we simply use the multivariate polynomials and
methods with only one variable.

– There are no methods for extended gcds and half extended gcds implemented
for multivariate polynomials yet. Better algorithms for the gcd computation
of lists of polynomials are not yet implemented.

– For generic polynomials, such as GenPolynomial<GenPolynomial<C>> the
gcd method can not be used. This sounds strange, but the coefficients are
itself polynomials and so do not implement a multivariate polynomial gcd.
In this case the method recursiveGcd must be called explicitly.

– We have designed a clean interface GreatestCommonDivisor with only the
most useful methods. These are gcd(), lcm(), primitivePart(), cont-
ent(), squarefreePart(), squarefreeFactors(), resultant() and
coPrime().

– The generic algorithms work for all implemented polynomial coefficients from
(commutative) fields. The PRS implementations can be used in very general
settings, as exemplified in Sects. 2 and 4.1.

– The abstract class GreatestCommonDivisorAbstract implements the full
set of methods, as required by the interface. Only two methods must be im-
plemented for the different gcd algorithms. The abstract class should even-
tually, be re-factored to provide an abstract class for PRS algorithms and
an abstract class for the modular algorithms.

106 H. Kredel

– The gcd factory allows non-experts of computer algebra to choose the right
algorithm for their problem. The selection is first based on the coefficient
type at compile time and more precisely at the field property at run-time.
For the special cases of BigInteger and ModInteger coefficients, the mod-
ular algorithms can be employed. This factory approach contrasts the ap-
proach taken in [42] and [49] to provide programming language constructs
to specify the requirements for the employment of certain implementations.
These constructs would then direct the selection of the right algorithm, some
at compile time and some at run-time.

– The new proxy class with gcd interface provides effective selection of the
fastest algorithms at run-time. This is achieved at the cost of a parallel exe-
cution of two different gcd algorithms. This could waste maximally the time
for the computation of the fastest algorithm. I.e. if two CPUs are working on
the problem, the work of one of them is discarded. In case there is only one
CPU, the computing time is maximally two times of the fastest algorithm.

7 Factorization

In this section we present a first working implementation of polynomial fac-
torization. The mathematical background for polynomial factorization can be
found for example in [28, 27, 17, 10], see also [20] for up-to-date references on
the topic. Our goal is to have a working implementation for polynomial factor-
ization over various coefficient rings to study suitable class layouts. In the future
we will implement faster algorithms like the Berlekamp algorithm for the factor-
ization over integers modulo a prime number or multivariate Hensel lifting for
the multivariate polynomial factorization case.

7.1 Class Layout

Figure 17 shows the class layout of an interface, two abstract and several con-
crete classes. The interface Factorization defines the most useful factoriza-
tion methods. The method factors() computes a complete factorization with
no further preconditions and returns a SortedMap, which maps polynomials to
the exponents of the polynomials occurring in the factorization. The method
factorsSquarefree() factors a square-free polynomial. It returns a list of poly-
nomials since the exponents will all be 1. Method factorsRadical() computes
a complete factorization, but returns a list of polynomials, that is, all exponents
are removed. Methods isIrreducible(), isReducible() and isSquarefree()
test the respective properties for a polynomial. isFactorization() tests if a
given map or list is actually a factorization for a given polynomial. For conve-
nience there are methods squarefreePart() and squarefreeFactors() which
delegate the computation to a suitable greatest common divisor engine.

The abstract class FactorAbstract implements all of the methods specified in
the interface. Only baseFactorSquarefree() for the factorization of a square-
free univariate polynomial is declared abstract and must be implemented for
each coefficient ring. For multivariate polynomials Kronecker’s algorithm is used

Unique Factorization Domains in the Java Computer Algebra System 107

to reduce this case to a univariate problem and to reassemble multivariate fac-
tors from univariate ones. This algorithm is not particularly fast and will be
accompanied by a multivariate Hensel algorithm in the future.

7.2 Modular, Integer and Rational Coefficients

Class FactorModular implements baseFactorSquarefree() for polynomials
with coefficients of integers modulo a prime number. To this end it uses the
methods distinctDegreeFactor() and equalDegreeFactor() to first factor
the polynomial into distinct degree parts and then to factor these parts into
equal degree factors. Due to the required computation of high powers the method
modPower() had to be implemented also for BigInteger powers, since normal
long integers overflowed to easily. In the future these methods will be accompa-
nied by a Berlekamp algorithm.

�

��������	�
���

�������	
��������

����
�������		���������

�����������	�
��������

�����������	�
����������	��	����

�����������	�
�������		���������

�������	�
��������

�������	�
����������	��	����

�������	�
�������		���������

����
�����������	���������

������������

��������	��������	
���	�������������	

������������!	������������"�#���	
���	�������������	

�������	������	��

�����������	�����	��	����

�

�������
�������

�������	�������������	
���	�����

�������	
���	�����

�����������	�����	��	����

�������������

�����������������	
���	����$��������	

�������	%��������

�����������	�����	��	����

����������
��

�������	�����	��

������"�������"��	�������	���

������&���"��	�������	���

�����������	�����	��	����

�

�����������

������������	

�����		���������

����%���������

��������	��	����

�������	�����	��	����

�������	���

�������	�%�������

������	��	��'�	���

������	��	�������	���

���������	���������

�

��������	�����

�����������!	������������"�#���	
���	�����

�������	
���	�����

�����		���������

����%���������

��������	��	����

�������	�����	��	����

�����������	�%�������

�����������	���

���������	
�������������

�������	�%�������

�������	���

������	��	��'�	���

��(�����#�'�	���

������'	�����#�'�	���

������	��	�������	���

���������	���������

Fig. 17. Factorization classes and interfaces

108 H. Kredel

Factorization of polynomials with integer coefficients is implemented in class
FactorInteger and method baseFactorSquarefree(). In the algorithm of Zas-
senhaus, a polynomial is first factored modulo ‘good’ primes p, then the factors
are lifted via Hensel to coefficients modulo pe. The true factors over the integers
are searched with combinatorial factor search. This implementation is experi-
mental and has not yet reached a satisfying state. The factorization modulo a
prime number is currently done with three small primes (starting with 3 until
good primes are found) followed by one bigger prime number less than 232, start-
ing with 228 − 57 and decreasing. From these four factorizations the one with
the least number of factors is chosen for lifting. The modulo p factorizations will
be done in parallel in the future.

Factorization of polynomials with rational number coefficients is implemented
in class FactorRational. The algorithm simply clears denominators and uses
factorization over integers. The leading coefficient of the input polynomial is
attached to the first factor.

7.3 Algebraic Number Coefficients

Class FactorAlgebraic implements factorization of polynomials with algebraic
number coefficients. The implementation works for algebraic numbers over the
rational numbers and over modular integers. The algorithm computes a (suit-
able) norm of a polynomial to be factored over the respective algebraic numbers,
then it factors this norm. Since the norm is a polynomial with rational number
or modular integer coefficients the classes FactorRational or FactorModular
will be used. The required implementation is selected via class FactorFactory
(see below). The greatest common divisors between the factors of the norm
and the given polynomial will then be its factors over the algebraic number
field. Since the greatest common divisors have to be computed over an alge-
braic number field, one of the generic implementations presented in Sect. 4.1
will be employed (selected with getProxy() of GCDFactory). The implementa-
tion also works for iterated algebraic number field coefficients, for example in
Q(i)(

√
2)[x]. Of corse, computing first a primitive element for this iterated field

extension would speedup the computation.

7.4 Absolute Factorization

The absolute factorization of a polynomial, that is, a factorization over an alge-
braically closed coefficient field, is implemented in class FactorAbsolute. The
implementation has been tested for an algebraically closed field over the ra-
tional numbers, but it should eventually work also for an algebraically closed
field over prime modular integers. The main method is baseFactorsAbsolute-
Irreducible for the factorization of a polynomial which is irreducible over the
given coefficient field. This method constructs a field extension of the ground field
from the given irreducible polynomial. The given polynomial is then factored in
this algebraic field extension with the algorithms from class FactorAlgebraic.

This class contains further methods to compute polynomials which satisfy
the preconditions of the main method. Method isAbsoluteIrreducible tests

Unique Factorization Domains in the Java Computer Algebra System 109

if a polynomial is absolutely irreducible by computing an absolute factoriza-
tion, but only if the polynomial is irreducible. The methods baseFactors-
Absolute() and baseFactorsAbsoluteSquarefree() are just used to compute
irreducible factors which are then absolutely factored by baseFactorsAbsolute-
Irreducible(). The methods for multivariate polynomials factorsAbsolute()
and factorsAbsoluteSquarefree() are also only used to compute irreducible
factors which are then absolutely factored by factorsAbsoluteIrreducible().
This method works by substituting random numbers for the variables to finally
obtain a univariate squarefree polynomial. An irreducible factor of smallest de-
gree of this polynomial is then used to construct a field extension of the ground
field. The given multivariate polynomial is then factored over this algebraic num-
ber field and yields the desired absolute factorization.

Interestingly, class FactorAbsolute is itself abstract and extends abstract
class FactorAbstract. To make it instantiable FactorAbsolute is extended
by class FactorRational, class FactorModular and class FactorAlgebraic.
In this way we enhance the classes for factoring over rational, modular prime
numbers and algebraic extensions thereof with absolute factorization methods.
An interface for the absolute factorization methods is not yet implemented. Note,
there are algorithms to reduce the degree of the algebraic field extensions which
are currently not implemented, but are planed for implementation in future work.

7.5 Factor Factory

For the selection of suitable factorization implementation we provide a factory
named FactorFactory. Its method getImplementation selects an implementa-
tion based on the supplied polynomial coefficient factory. There is little choice at
the moment, as there is only one algorithm implemented for each factoring prob-
lem. This will change as more and more alternative factoring methods become
available.

As mentioned already, there will be a Berlekamp modular factoring algorithm,
multivariate Hensel lifting algorithm and, eventually, different modular selection
strategies for integer coefficients factoring. Also the univariate Kronecker algo-
rithm based on the factorization in coefficient rings and interpolation will even-
tually be implemented. The presented implementation is only partially generic,
as it is implemented for concrete coefficient rings (modular integers, integers
and rational numbers). Only the algebraic number factorization is generic for
iterated algebraic number coefficients. To achieve a fully generic design (called
categorical in Axiom) as presented by [15] we need for example factorization
over rational function fields (quotients of multivariate polynomials) and deal
with inseparable field extensions1.

8 Real Roots

In this section we sketch the implementation for real root isolation and ap-
plications. The algorithms are based at Sturm sequences, special polynomial
1 By 2010 this has been worked out and will be presented elsewhere.

110 H. Kredel

�

��������	�

���������

�������		
�	����������	��	��������

�������		
���������	��	��������������
��
���������

�������		
���������	��	�����������������������
��
���������

���� �!� ��������
�����������������	��	�����������"		���

�������		
�	�
�������
�����������������	��	������������	

��������
������������
�����������������	��	���������������������
��������

��������
�������#������
��
������������������	��	�����������������������
��
���������

������$� �������
�����������������	��	��������� ������	��	������������

������%� �
����������
�����������������	��	��������� ������	��	�����������������

�

������������	�

�������		
�	����

���� �
����	����

��"���&
�	�	�
��

���������	
��

�������		
���

���� �!� ���

���������	���	��

��������
�������

��������
��������

����������	������	�������

�������
�����$� ��

������$� ��

��������
%� �
����
�������

�������
�����%� �
�����

������%� �
�����

�

������������

���
���$�'��&���������	��	��������������
����	��	��������

�������		
���������	��	��������������
��
���������

�������		
��������
����������$������
����	��	���������������
��
���������

�������		
�	�
�������
����������$������
����	��	�������������	

�������		
�	�
�������
�����������������	��	������������	

��������
$� �
������������
�����������������	��	��������� ������	��	������������
��������

�

��������

�����
����

���� !
����

���
���������
�������� !
�����

���
��������������

����
!��

��
	(�&������������)*��)���
!)�� (�&����

Fig. 18. Real Root classes and interfaces

remainder sequences, introduced in Sect. 4.1. The algorithms are implemented
following Sect. 8.8 in [3] with the following changes. The last loop of algorithm
ISOLATE with a hidden while loop is moved to algorithm ISOREC, which is imple-
mented in method realRoots(v,S). The algorithm SQUEEZE is implemented in
method realMagnitude(). Method realSign() was not in Sect. 8.8, but is cru-
cial for the class RealAlgebraicNumber, as will be seen later. For mathematical
background, different algorithms and references see Sect. 2.1.6 in [20] and [12].

The class design follows the standard pattern of interface, abstract and con-
crete classes, see Fig. 18. The interface RealRoots defines the visible API of the
package. It defines the methods realRoots() to compute isolating intervals for
the real roots and with given precision computes isolating intervals with length
smaller than the requested precision. The method realRootCount(v,f) com-
putes the number of real roots of the polynomial f in the interval v. Method

Unique Factorization Domains in the Java Computer Algebra System 111

realSign(v,f,g) with parameters, isolating interval v for a real root of the
polynomial f computes the real sign sign(g(α)) of polynomial g as element of
the field K[x]/f = K(α). The method realMagnitude(v,f,g,eps) computes
the magnitude |g(α)| of polynomial g as element of the field K[x]/f = K(α) up
to a desired precision eps. Intervals are implemented with the container class
Interval, which has a method toDecimal() to compute a floating point ap-
proximation of the interval mid-point.

The abstract class RealRootsAbstract implements methods which are in-
dependent of Sturm sequences. Finally class RealRootsSturm implements the
remaining methods which require Sturm sequences. These are the methods real-
RootCount(), the realRoots() method without precision argument and the
method invariantSignInterval() which is used for the computation of the
real sign. For these methods exist companion methods which take a Sturm se-
quence as further parameter. And there is the method sturmSequence() to
compute a Sturm sequence for a given polynomial. All other methods, mainly
dealing with interval refinement, can be implemented in the abstract class.

8.1 Real Algebraic Numbers

Using the real root computation we can now construct classes for real algebraic
numbers. They are represented as polynomials g modulo a defining polynomial f
for the algebraic field extension together with an isolating interval for a specific
real root α of f , that is g(α) ∈ K(α) = K[x]/f . The implementation is contained
in class RealAlgebraicNumber with factory class RealAlgebraicRing. The fac-
tory class contains an instance of the real root computation engine, which is
used to refine intervals as required.

A first version of these classes tried to extend class AlgebraicNumber re-
spectively factory AlgebraicNumberRing from package edu.jas.poly. However,
with this design it was not possible to define polynomials with such coefficients,
due to the problem of type erasure in generic interfaces (see also Sect. 3.2 and
the already mentioned [33, 31]). The solution is to use an object variable holding
the AlgebraicNumber, that is, we use an association instead of sub-classing.

This design allows then the definition of polynomials with real algebraic
coefficients

GenPolynomial<RealAlgebraicNumber<BigRational>>.

Moreover, for such polynomials we can also use real root isolation algorithms
and instantiate for example

RealRootsSturm<RealAlgebraicNumber<BigRational>>.

This is possible since we implemented method realSign() which is used in
method signum() of the a real algebraic number.

A slight optimization is implemented to use rational interval end points, but
real algebraic end points work also. There is a small problem with method
toDecimal() in class Interval which must use case distinction on types and
casts to determine the correct way to compute rational end points. This will

112 H. Kredel

be solved in future by a suitable interface which extends RingElem and defines
a method toRational(). BigRational and RealAlgebraicNumber will the im-
plement this interface.

Left to do is the implementation of algorithm REALZEROS which computes
the real roots of a zero dimensional ideal. This requires the computation of
the univariate polynomials of minimal degree contained in the ideal, and their
factorization2.

9 Conclusions

We have designed and implemented a first part of ‘multiplicative ideal theory’,
namely the computation of multivariate polynomial greatest common divisors
and multivariate polynomial factorization. The new package provides a factory
GCDFactory for the selection of one of the several implementations for non ex-
perts. The correct selection is based on the coefficient type of the polynomials
and during run-time on the question if the coefficient ring is a field. A parallel
proxy GCDProxy for gcd computation runs different implementations in paral-
lel and takes the result from the first finishing method. This greatly improves
the run-time behavior of the gcd computations. The new package is also type-
safe designed with Java’s generic types. We exploited the gcd package in the
Quotient, Residue and Product classes. This provided a new coefficient ring of
rational functions for the polynomials and also new coefficient rings of residue
class rings and product rings. With an efficient gcd implementation we are now
able to compute Gröbner bases over those coefficient rings. For small Gröbner
base computations the performance is equal to MAS and for bigger examples
the computing time with JAS is better by a factor of two or three. For random
polynomials the performance of gcd computations is comparable to Maple.

For the factorization of polynomials we provide first versions for coefficient
rings of modular integers, integers, rational numbers and algebraic numbers.
Absolute factorization is implemented for rational numbers, modular integers
and algebraic extensions thereof. We will have to fill some missing links to provide
a fully generic design as presented by [15]3. Future topics to explore, include the
improvement, completion and performance of the factorization of polynomials.
Eventually we will further investigate a new recursive polynomial representation
for gcd computation and factorization.

Real roots of univariate polynomials can be computed by Sturm sequences
and counting sign variations on interval bounds to arbitrary precision. The im-
plementation is generic and can be used for polynomials with rational number
coefficients and, moreover for real algebraic coefficients. There are faster al-
gorithms for real root isolation which will eventually be implemented in the
future, see [12]. Moreover complex root isolation is a topic to be treated in the
future.

2 By 2010 this has been worked out and will be presented elsewhere.
3 This will be presented elsewhere in 2010.

Unique Factorization Domains in the Java Computer Algebra System 113

Acknowledgments

I thank ThomasBecker for discussions on the implementation of a polynomial tem-
plate library and Raphael Jolly for the discussions on the generic type system suit-
able for a computer algebra system. With Samuel Kredel I had many discussions on
implementation choices for algebraic algorithms compared to C++. Thanks also
to Markus Aleksy and Hans-Guenther Kruse for encouraging and supporting this
work. JAS itself has improved by requirements from Axel Kramer and Brandon
Barker.This paper incorporates the valuable feedback duringADG workshop from
its participants, in particular Dongming Wang and Thomas Sturm to name a few.

References

1. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language, 4th edn.
Addison-Wesley, Reading (2005)

2. Becker, M.Y.: Symbolic Integration in Java. PhD thesis, Trinity College, University
of Cambridge (2001)

3. Becker, T., Weispfenning, V.: Gröbner Bases - A Computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics. Springer, Heidelberg (1993)

4. Bernardin,L.,Char,B.,Kaltofen,E.:SymboliccomputationinJava:anappraisement.
In: Dooley, S. (ed.) Proc. ISSAC1999, pp. 237–244. ACM Press, New York (1999)

5. Bini, D.A., Mourrain, B.: Polynomial test suite from PoSSo and Frisco projects.
Technical report (1998), http://www-sop.inria.fr/saga/POL/ (accessed Novem-
ber 2009)

6. Böge, W., Gebauer, R., Kredel, H.: Some examples for solving systems of algebraic
equations by calculating Groebner bases. J. Symb. Comput. 2(1), 83–98 (1986)

7. Bronstein, M.: Sigmait - a strongly-typed embeddable computer algebra library.
In: Limongelli, C., Calmet, J. (eds.) DISCO 1996. LNCS, vol. 1128, pp. 22–33.
Springer, Heidelberg (1996)

8. Buchmann, J., Pfahler, T.: LiDIA. In: Computer Algebra Handbook, pp. 403–408.
Springer, Heidelberg (2003)

9. Chen, X., Wang, D.: Towards an electronic geometry textbook. In: Botana, F., Recio,
T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 1–23. Springer, Heidelberg (2007)

10. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer,
Heidelberg (1996)

11. Collins, G.E., Loos, R.G.: ALDES and SAC-2 now available. ACM SIGSAM
Bull. 12(2), 19 (1982)

12. Collins, G.E., Loos, R.G.: Real Zeros of Polynomials. In: Buchberger, Collins, Loos
(eds.) Computing Supplement: Computer Algebra, pp. 83–94. Springer, Heidelberg
(1982)

13. Conrad, M.: The Java class package com.perisic.ring. Technical report (2002-2004),
http://ring.perisic.com/ (accessed November 2009)

14. Dautelle, J.-M.: JScience: Java tools and libraries for the advancement of
science. Technical report (2005-2007), http://www.jscience.org/ (accessed
November 2009)

15. Davenport, H.J., Gianni, P., Trager, B.M.: Scratchpad’s view of algebra II: A
categorical view of factorization. In: Proc. ISSAC 1991, Bonn, pp. 32–38. ACM
Press, New York (1991)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Reading (1995); Deutsch: Entwurfsmuster. Addison-Wesley Reading (1996)

http://www-sop.inria.fr/saga/POL/
http://ring.perisic.com/
http://www.jscience.org/

114 H. Kredel

17. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra.
Kluwer, Dordrecht (1993)

18. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java per-
formance evaluation. In: ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pp. 57–76. University of Montreal, Que-
bec (2007)

19. Gräbe, H.-G.: The SymbolicData project. Technical report (2000-2006),
http://www.symbolicdata.org (accessed November 2009)

20. Grabmaier, J., Kaltofen, E., Weispfenning, V. (eds.): Computer Algebra Hand-
book. Springer, Heidelberg (2003)

21. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular - A Computer Algebra
System for Polynomial Computations. In: Computer Algebra Handbook, pp. 445–
450. Springer, Heidelberg (2003)

22. Gruntz, D., Weck, W.: A Generic Computer Algebra Library in Oberon.
Manuscript available via Citeseer (1994)

23. Hohenwarter, M., Fuchs, K.: Combination of dynamic geometry, algebra and calcu-
lus in the software system GeoGebra. In: Computer Algebra Systems and Dynamic
Geometry Systems in Mathematics Teaching Conference, Pecs, Hungary (2004)

24. Jenks, R., Sutor, R. (eds.): axiom The Scientific Computation System. Springer,
Heidelberg (1992)

25. Jolly, R.: jscl-meditor - Java symbolic computing library and mathematical
editor. Technical report (2003), http://jscl-meditor.sourceforge.net/

(accessed November 2009)
26. Jolly, R., Kredel, H.: How to turn a scripting language into a domain specific

language for computer algebra. Technical report (2008),
http://arXiv.org/abs/0811.1061

27. Kaltofen, E.: Factorization of Polynomials. In: Buchberger, Collins, Loos (eds.)
Computing Supplement: Computer Algebra, pp. 95–113. Springer, Heidelberg
(1982)

28. Knuth, D.E.: The Art of Computer Programming - Volume 2, Seminumerical Al-
gorithms. Addison-Wesley, Reading (1981)

29. Kredel, H.: On the Design of a Java Computer Algebra System. In: Proc. PPPJ
2006, pp. 143–152. University of Mannheim (2006)

30. Kredel, H.: Evaluation of a Java Computer Algebra System. In: Proceedings ASCM
2007, pp. 59–62. National University of Singapore (2007)

31. Kredel, H.: Evaluation of a Java computer algebra system. In: Kapur, D. (ed.)
ASCM 2007. LNCS (LNAI), vol. 5081, pp. 121–138. Springer, Heidelberg (2008)

32. Kredel, H.: Multivariate greatest common divisors in the Java Computer Algebra
System. In: Proc. Automated Deduction in Geometry (ADG), pp. 41–61. East
China Normal University, Shanghai (2008)

33. Kredel, H.: On a Java Computer Algebra System, its performance and applications.
Science of Computer Programming 70(2-3), 185–207 (2008)

34. Kredel, H.: Comprehensive Gröbner bases in a Java Computer Algebra System.
In: Proceedings ASCM 2009, pp. 77–90. Kyushu University, Fukuoka (2009)

35. Kredel, H.: Distributed parallel Gröbner bases computation. In: Proc. Workshop
on Engineering Complex Distributed Systems (ECDS) at CISIS 2009, Pages on
CD–ROM, University of Fukuoka, Japan (2009)

36. Kredel, H.: Distributed hybrid Gröbner bases computation. In: Proc. Workshop on
Engineering Complex Distributed Systems (ECDS) at CISIS 2010, University of
Krakow, Poland (2010) (page to appear)

http://www.symbolicdata.org
http://jscl-meditor.sourceforge.net/
http://arXiv.org/abs/0811.1061

Unique Factorization Domains in the Java Computer Algebra System 115

37. Kredel, H.: The Java algebra system (JAS), Technical report (2000),
http://krum.rz.uni-mannheim.de/jas/

38. Kredel, H., Pesch, M.: MAS: The Modula-2 Algebra System. In: Computer Algebra
Handbook, pp. 421–428. Springer, Heidelberg (2003)

39. Lewis, R.H., Wester, M.: Comparison of polynomial-oriented computer algebra
systems. SIGSAM Bull. 33(4), 5–13 (1999)

40. Liang, T., Wang, D.: Towards a geometric-object-oriented language. In: Hong, H.
(ed.) Proc. Automated Deduction in Geometry 2004, Florida, USA (2004)

41. Loos, R.: Generalized Polynomial Remainder Sequences. In: Buchberger, Collins,
Loos (eds.) Computing Supplement: Computer Algebra, pp. 115–138. Springer,
Heidelberg (1982)

42. Musser, D.R., Schupp, S., Loos, R.: Requirement oriented programming. In: Jazay-
eri, M., Musser, D.R., Loos, R.G.K. (eds.) Dagstuhl Seminar 1998. LNCS, vol. 1766,
pp. 12–24. Springer, Heidelberg (2000)

43. Niculescu, V.: A design proposal for an object oriented algebraic library. Technical
report, Studia Universitatis “Babes-Bolyai” (2003)

44. Niculescu, V.: OOLACA: an object oriented library for abstract and computational
algebra. In: OOPSLA Companion, pp. 160–161. ACM, New York (2004)

45. Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proc. ISSAC
1992, pp. 387–396. ACM Press, New York (1992)

46. Platzer, A.: The Orbital library. Technical report, University of Karlsruhe (2005),
http://www.functologic.com/

47. Sato, Y., Suzuki, A.: Gröbner bases in polynomial rings over von Neumann regular
rings – their applications. In: Proceedings ASCM 2000. Lecture Notes Series on
Computing, vol. 8, pp. 59–62. World Scientific Publications, Singapore (2000)

48. Schreiner, W., Hong, H.: PACLIB — a system for parallel algebraic computation
on shared memory computers. In: Alnuweiri, H.M. (ed.) Parallel Systems Fair at
the Seventh International Parallel Processing Symposium, IPPS 1993, Newport
Beach, CA, April 14, pp. 56–61 (1993)

49. Schupp, S., Loos, R.: SuchThat - generic programming works. In: Jazayeri, M.,
Musser, D.R., Loos, R.G.K. (eds.) Dagstuhl Seminar 1998. LNCS, vol. 1766, pp.
133–145. Springer, Heidelberg (2000)

50. Stein, W.: SAGE Mathematics Software (Version 2.7). The SAGE Group (2007),
http://www.sagemath.org (accessed November 2009)

51. Sun Microsystems, Inc. The Java development kit. Technical report (1994-2009),
http://java.sun.com/ (accessed November 2009)

52. Watt, S.: Aldor. In: Computer Algebra Handbook, pp. 265–270. Springer, Heidel-
berg (2003)

53. Weispfenning, V.: Gröbner bases for polynomial ideals over commutative regular
rings. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378,
pp. 336–347. Springer, Heidelberg (1989)

54. Weispfenning, V.: Comprehensive Gröbner bases and regular rings. J. Symb.
Comput. 41, 285–296 (2006)

55. Whelan, C., Duffy, A., Burnett, A., Dowling, T.: A Java API for polynomial arith-
metic. In: Proc. PPPJ 2003, pp. 139–144. Computer Science Press, New York
(2003)

56. Ye, Z., Chou, S.-C., Gao, X.-S.: An introduction to Java geometry expert (JGEX).
In: Proc. Automated Deduction in Geometry (ADG), pp. 79–85. East China
Normal University, Shanghai (2008)

http://krum.rz.uni-mannheim.de/jas/
http://www.functologic.com/
http://www.sagemath.org
http://java.sun.com/

Automatic Verification of the Adequacy of

Models for Families of Geometric Objects

Aless Lasaruk1 and Thomas Sturm2

1 FORWISS, Universität Passau, 94030 Passau, Germany
lasaruk@uni-passau.de

2 Departamento de Matemáticas, Estad́ıstica y Computación, Facultad de Ciencias,
Universidad de Cantabria, 39071 Santander, Spain

sturmt@unican.es

Abstract. We consider parametric families of semi-algebraic geometric
objects, each implicitly defined by a first-order formula. Given an unam-
biguous description of such an object family and an intended alternative
description we automatically construct a first-order formula which is true
if and only if our alternative description uniquely describes geometric ob-
jects of the reference description. We can decide this formula by applying
real quantifier elimination. In the positive case we furthermore derive the
defining first-order formulas corresponding to our new description. In the
negative case we can produce sample points establishing a counterexam-
ple for the uniqueness. We demonstrate our method by automatically
proving uniqueness theorems for characterizations of several geometric
primitives and simple complex objects. Finally, we focus on tori, charac-
terizations of which can be applied in spline approximation theory with
toric segments. Although we cannot yet practically solve the fundamen-
tal open questions in this area within reasonable time and space, we
demonstrate that they can be formulated in our framework. In addition
this points at an interesting and practically relevant challenge problem
for automated deduction in geometry in general.

Keywords: Real Geometry, Unique Representation, Automated Prov-
ing, Real Quantifier Elimination.

1 Introduction

Motivated by questions from approximation theory with toric splines [10, 16,
11, 8, 13, 15], we are interested in automatically checking the adequacy of in-
tended models for given families of geometric objects. Such a model is a family
of real tuples, called model parameters, collecting coordinates of certain data,
e.g. points, radii, normals, describing an object of the family. In an adequate
model each model parameter describes a unique object of the model. In an un-
ambiguous model, vice versa, each object of the model is described by only one
model parameter.

Our approach is the following: For a given family of geometric objects we pick
an unambiguous reference model with respect to which we specify our intended

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 116–140, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automatic Verification of the Adequacy of Models 117

model. The intended semantics of our intended model is described by a first-order
formula over the reals with ordering, which relates variables over the reference
model with variables over the intended model. Similarly, the tuples admissible as
model parameters for the reference model and the intended models are described
by respective first-order formulas. From these formulas we automatically gener-
ate another first-order sentence, which establishes a hypothesis on the adequacy
of our intended model. In a final—and computationally hardest—step, we prove
or disprove our hypothesis using real quantifier elimination methods.

For a survey of implemented real quantifier elimination methods see e.g. [7].
We are also going to use some established generalizations of quantifier elimina-
tion. On the one hand, there is generic quantifier elimination, which has been
originally introduced in the context of geometric theorem proving [17, 6]: Generic
quantifier elimination possibly introduces during the elimination a set A of as-
sumptions, which are exclusively negated equations in non-quantified variables.
The assumptions are chosen in such a way that they support the elimination pro-
cess by avoiding case distinctions on the vanishing of certain terms. For input ϕ
and quantifier-free equivalent ϕ′, we then have the semantics

∧
A −→ (ϕ ←→

ϕ′). It is well-known that in the context of geometry the assumptions made by
generic quantifier elimination are in general well-interpretable as non-degeneracy
conditions [17, 6, 19, 18]. On the other hand there is extended quantifier elimina-
tion, which was originally motivated by elimination-based symbolic optimization
methods, where it had been applied to existential formulas [23]. Here we are go-
ing to apply it, in contrast, to universal formulas. For such formulas it yields in
case of unsatisfiability in addition to the quantifier-free equivalent “false” a set
of sample values for the universally quantified variables that serve as a witness
by not satisfying the quantifier-free part of the input formula. For a survey of
both generic and extended quantifier elimination see e.g. [17].

On the software side we use the symbolic logic software redlog by the second
author et al. [4], which is part of the computer algebra system reduce. reduce
has recently been turned into an open-source project so that the entire system
is freely available on the web1. In addition, the redlog homepage2 features
comprehensive documentation, references, and an online database containing
computation examples. redlog provides implementations of several real quan-
tifier elimination methods [7]. For our purposes here, we mostly use virtual sub-
stitution methods [9, 22] in combination with with sophisticated simplification
techniques [5]. This is supplemented with partial cylindrical algebraic decompo-
sition (cad), which redlog uses by default as a fallback option for remaining
quantifiers when virtual substitutions runs into degree violations. Whenever cad
is involved, we will explicitly point at this.

The original contributions of the present paper include the following:

1. For families of geometric objects we automatically generate a first-order for-
mula that can be used to automatically decide via real quantifier elimination

1 http://reduce-algebra.sourceforge.net/
2 http://www.redlog.eu/

118 A. Lasaruk and T. Sturm

whether or not a given alternative description of the object family is suitable
to represent these geometric objects uniquely.

2. In the positive case, we automatically generate by real quantifier elimination
a quantifier-free description of the characteristic function with respect to the
new representation.

3. In the negative case, we obtain by extended quantifier elimination a geomet-
ric configuration that establishes a counterexample for the uniqueness.

4. We rigorously simplify the resulting first-order formulas by transforming the
objects of the reference model into “general position.”

5. We make precise the asymptotic worst-case complexity of our approach.
6. We apply our framework to several non-trivial examples in real 2-space and

real 3-space thus demonstrating its applicability. These examples include in
particular a 2-dimensional variant of our following challenge problem on tori.

7. We propose a new challenging benchmark example for real quantifier elim-
ination as well as for automated deduction in geometry in general: Find
necessary and sufficient conditions on finitely many points on a torus and
normals in these points such that they uniquely describe a torus. This we can-
not solve ourselves yet but we provide various reductions of this problem,
which we consider of general interest to the community.

The plan of our paper is as follows: In Sect. 2 we illustrate the basic idea of our
paper by means of a simple example. In Sect. 3 we recall basic definitions of
geometric objects and give a rigorous description of our technique. In Sect. 4 we
make precise the asymptotic worst case complexity of our method. Sect. 5 then
turns to concrete examples for geometric primitives in two and three dimensions.
Sect. 6 describes work in progress: We give an overview on the current research
on the approximation of parallel surfaces in particular by toric splines. We show
that important questions on the quality of such approximations can be reduced
to questions that are formally tractable within our framework described here. In
Subsect. 6.1 we fully automatically treat the corresponding questions in 2-space,
where they are nontrivial as well. In Sect. 7 we finally summarize and evaluate
our results.

2 An Outline of Our Method

As an introductory example, we would like to check whether or not a sphere in
the plane can be uniquely described by a point and a normal in this point on
the sphere. In other words, are there two different spheres with a common point
and normal in this point?

A sphere with center (cx, cy) and radius r > 0 is implicitly described by the
equation

(x− cx)2 + (y − cy)2 = r2.

Similarly, a point (px, py) lies on the sphere and has the normal (nx, ny) on the
sphere if and only if

(px − cx)2 + (py − cy)2 = r2 and − (px − cx)ny + (py − cy)nx = 0.

Automatic Verification of the Adequacy of Models 119

As usual, we require the normal vector to have length 1. Using this, our original
question reduces to the question whether the following holds: For any choice of
all occurring variables, whenever all of

r > 0, r0 > 0,

(px − cx)2 + (py − cy)2 = r2, (px − cx0)2 + (py − cy0)2 = r2
0 ,

−(px − cx)ny + (py − cy)nx = 0, −(px − cx0)ny + (py − cy0)nx = 0,

n2
x + n2

y = 1

hold, then (cx, cy) = (cx0, cy0) and r = r0. This straightforwardly describes that
any two admissible spheres are equal.

Since one of the spheres can be freely chosen, it is “obviously” sufficient to
consider (cx, cy) = (0, 0) and r = 1. Substitution yields the following simpli-
fied formulation, where we formalize our implicit logical structure and universal
quantification above:

∀px∀py∀ny∀nx∀cx0∀cy0∀r0

(
p2

x + p2
y = 1 ∧ −pxny + pynx = 0 ∧ r0 > 0 ∧

(px − cx0)2 + (py − cy0)2 = r2
0 ∧ −(px − cx0)ny + (py − cy0)nx = 0 ∧

n2
x + n2

y = 1 −→ cx0 = 0 ∧ cy0 = 0 ∧ r0 = 1
)
.

Of course, the answer is negative: Consider, e.g., (cx0, cy0) = (−1, 0), r0 = 2,
(px, py) = (1, 0), and (nx, ny) = (−1, 0). We are going to revisit this example
within our formal framework as Example 3 in the following section. There the
situation is pictured in Fig. 2.

The above procedure of modelling the problem and the simplifications used
there are quite what any mathematician would intuitively do. Our goal is to
formalize this apparently trivial procedure in order to fully automatize it.

Notice that first-order formulations like our final one given above can be
directly solved by real quantifier elimination. Hence, combining our approach
introduced here with real quantifier elimination, we arrive at a fully automatic
procedure where quantifier elimination serves as a black box so that potential
users need not care about first-order logic at all.

3 A Formal Description of Our Method

We consider real n-space V = Rn. We consider furthermore a set Θ ⊆ Rk and a
function χ : V × Θ → {true, false}. For each θ ∈ Θ we define

Gχ(θ) = { v ∈ V | χ(v, θ) } ⊆ V.

For technical reasons Gχ(θ) may be the trivial object ∅. This way we obtain a
family Gχ = {Gχ(θ)}θ∈Θ of geometric objects over V . We call (Θ, χ) a model
of the set of objects Gχ[Θ] = {Gχ(θ) ∈ ℘(V) | θ ∈ Θ }. We call each θ ∈ Θ a
model parameter, and we call χ the characteristic function of (Θ, χ). Notice that
χ naturally corresponds to a relation on V ×Θ.

120 A. Lasaruk and T. Sturm

For our framework discussed in this paper, we are going to consider first-
order formulas over the reals with ordering. For simplicity, we are generally
going to refer to such formulas simply as formula. We generally assume that
Θ can be described by a formula τ(t1, . . . , tk) and that χ is given as formula
χ(x1, . . . , xn, t1, . . . , tk).

A model is called unambiguous if for each object G �= ∅ in Gχ[Θ] there is
exactly one model parameter θ ∈ Θ such that G = Gχ(θ).

Example 1 (Spheres in 2-space). Consider V = R2 and the family of spheres in
V . We choose the model (Θ, χ) with Θ = R2 × R> given by τ(cx, cy, r) ≡ r > 0
and

χ(x, y, cx, cy, r) ≡ (x− cx)2 + (y − cy)2 = r2.

That is, each model parameter θ ∈ Θ describes the center and the radius of a
corresponding sphere. This model is unambiguous. An ambiguous variant can
be obtained by generalizing to Θ = R2 × R \ {0}; then the radius r can be
alternatively represented by −r. ��

Consider a model (Θ, χ) with Θ ⊆ Rk, which is going to serve as a reference
model. We choose a set Θ′ ⊆ Rl, which we would like to establish another model
for the same family of geometric objects as (Θ, χ). An intended semantics of Θ′

with respect to (Θ, χ) is a formula ψ(t, t′) where t and t′ are vectors of variables
ranging over Θ and Θ′, respectively, such that for each θ ∈ Θ there exists θ′ ∈ Θ′

such that ψ(θ, θ′) holds. That is, ψ assigns to each θ ∈ Θ at least one θ′ ∈ Θ′.
Notice that given formulas τ(t) and τ ′(t′) for Θ and Θ′, respectively, this defining
condition can be automatically checked by real quantifier elimination applied to
∀t(τ −→ ∃t′(τ ′ ∧ ψ)).

Example 2 (Spheres in 2-space, continued). We continue the previous exam-
ple. We pick Θ′ = R2 × S2, where S2 ⊆ R2 is the unit sphere, described by
τ ′(px, py, nx, ny) ≡ n2

x + n2
y = 1. Our intended semantics is given by

ψ(cx, cy, r, px, py, nx, ny) ≡ (px − cx)2 + (py − cy)2 = r2 ∧
−(px − cx)ny + (py − cy)nx = 0.

This semantics straightforwardly describes the intention that (px, py) is a point
on the modelled sphere and (nx, ny) is a normal vector on the sphere at that
point. ��

Let Σ ⊆ Θ. An intended semantics ψ of Θ′ is adequate for (Σ, χ) with respect
to (Θ, χ) if the following holds:

(i) There exists χ∗ such that (Θ′, χ∗) is a model for some Gχ∗ comprising the
same nontrivial objects as Gχ|Σ .

(ii) If there are σ ∈ Σ, θ ∈ Θ, and θ′ ∈ Θ′ such that both ψ(σ, θ′) and ψ(θ, θ′)
hold, then Gχ(σ) = Gχ(θ) = Gχ∗(θ′).

Automatic Verification of the Adequacy of Models 121

θ

σ−1

0

1

2

−2 −1 0 1

θ̄′

θ′

Fig. 1. An illustration of the definition of adequacy

Since this definition is quite subtle, we give an example, which is illustrated in
Fig. 1: Choose (Θ, χ) to model the family of spheres, and choose Σ ⊆ Θ as the
singleton containing the unit sphere. We have Σ = {σ} and θ ∈ Θ \Σ. Consider
an intended semantics ψ that assigns to a sphere an element of Θ′, which is a
point on that sphere and a normal vector in that point, e.g., ψ(σ, θ′) and ψ(θ, θ′),
and ψ(θ, θ̄′). Although θ /∈ Σ, this ψ is not adequate for Σ with respect to
(Θ, χ) because Gχ(σ) �= Gχ(θ). On the other hand, ψ(θ, θ̄′) cannot possibly turn
ψ inadequate, because according to our intuitive specification above ψ cannot
possibly assign θ̄′ also to the unit sphere σ, which is the only object modelled
by Σ.

In the important special case that Σ = Θ, we simply say that the intended
semantics ψ of Θ′ is adequate for (Θ, χ). Then for χ′ := χ∗ we have that (Θ′, χ′)
comprises the same nontrivial objects as Gχ, and condition (ii) simplifies as
follows: If there are θ ∈ Θ and θ′ ∈ Θ′ such that ψ(θ, θ′), then Gχ(θ) = Gχ′ (θ′).
Recall that by the definition of intended semantics, there is at least one θ′ for
each θ satisfying ψ(θ, θ′), and for unambiguous (Θ, χ) there is at most one θ ∈ Θ
for each θ′ satisfying ψ(θ, θ′).

Example 3 (Spheres in 2-space, continued). Consider θ = (−1, 0, 2) ∈ Θ and
θ′ = (1, 0,−1, 0) ∈ Θ′. Consider furthermore the sphere θ∗ = (0, 0, 1) ∈ Θ.
The situation is depicted in Fig. 2. Obviously, Gχ(θ) �= Gχ(θ∗). On the other
hand, one easily verifies that both ψ(θ, θ′) and ψ(θ∗, θ′) hold. Assume for a
contradiction that there is χ′ as required by the definition of adequacy. It then
follows that

Gχ′(θ′) = Gχ(θ) �= Gχ(θ∗) = Gχ′ (θ′).

122 A. Lasaruk and T. Sturm

θ∗

θ−1

0

1

2

−2 −1 0 1

θ′

Fig. 2. An illustration of the geometry in Example 3

Thus our specification of one point with a normal vector is not adequate for
spheres. ��

In Example 3 we have given a manual proof for the fact that spheres in real
2-space cannot adequately be described by a single point in combination with
a normal vector on the sphere at this point. The remainder of this section is
devoted to automatizing such proofs within our framework. For our approach
it is necessary to generally start with unambiguous reference models. For our
intended models, in contrast, we are not interested in unambiguity. Recall from
the definitions that even in an ambiguous model (Θ′, χ′) each model parameter
still describes a unique geometric object because χ′ is a function. It is just not
necessarily the only model parameter describing this object.

Theorem 4. Let (Θ, χ), where Θ ⊆ Rk is described by τ(t), be an unambiguous
model for a family Gχ of geometric objects in Rn. Consider Θ′ ⊆ Rl described
by τ ′(t′) and an intended semantics ψ(t, t′) of Θ′ with respect to (Θ, χ). Then
the following holds:

(i) The following first-order formula over the reals is equivalent to the adequacy
of ψ for Gχ:

Φ(ψ, t, τ, τ ′) ≡ ∀t′∀t∀t0(τ ∧ τ [t0/t] ∧ τ ′ −→ ψ ∧ ψ[t0/t] −→ t = t0).

(ii) In case of adequacy χ′ is given by χ′ ≡ ∃t(τ ∧ χ ∧ ψ). ��

Using real quantifier elimination one can automatically decide the condition Φ
in (i) and in the positive case obtain a quantifier-free description of χ′ in (ii).

Automatic Verification of the Adequacy of Models 123

Furthermore, in (i) we may drop from Φ some of the universal quantifiers and
use generic quantifier elimination, which speeds up the elimination process. As
a rule one would drop quantifiers from the outermost block ∀t′, which refer
to the intended model Θ′. Then generic quantifier elimination possibly yields
non-degeneracy conditions on Θ′. In the negative case extended quantifier elim-
ination can produce a counterexample proving that ψ is not adequate. Recall
that generally extended and generic quantifier elimination can be combined.

We are going to model and automatically prove our example on spheres in
real 2-space, which we had discussed in Example 1–3.

Example 5 (Spheres in 2-space, continued). Recall that we have got

τ(cx, cy, r) ≡ r > 0,

τ ′(px, py, nx, ny) ≡ n2
x + n2

y = 1,

ψ(cx, cy, r, px, py, nx, ny) ≡ (px − cx)2 + (py − cy)2 = r2 ∧
−(px − cx)ny + (py − cy)nx = 0.

Using a procedure implemented in reduce for this purpose, we automatically
generate

Φ(ψ, {cx, cy, r}, τ, τ ′) ≡
∀px∀py∀ny∀nx∀cx∀cy∀r∀cx0∀cy0∀r0(r > 0 ∧ r0 > 0 ∧ n2

x + n2
y − 1 = 0

−→ (px − cx)2 + (py − cy)2 = r2 ∧ −(px − cx)ny + (py − cy)nx = 0 ∧
(px − cx0)2 + (py − cy0)2 = r2

0 ∧ −(px − cx0)ny + (py − cy0)nx = 0
−→ cx − cx0 = 0 ∧ cy − cy0 = 0 ∧ r − r0 = 0).

We are going to continue the discussion of this Φ as a part of Example 10 in the
next section. ��

We are now going to discuss how the formulas produced by the application
of Theorem 4 can be simplified by bringing the reference model into general
position.

Let (Θ, χ) be an unambiguous model of some family Gχ of geometric objects
not containing ∅. A group F of functions operating on Gχ is a group of functions
operating on V with the following closure property: For each f ∈ F and θ ∈ Θ
there is θ0 ∈ Θ such that f(Gχ(θ)) = Gχ(θ0). We obtain from F an equivalence
relation ∼F on Θ by defining

θ ∼F θ0 ⇐⇒ f(Gχ(θ)) = Gχ(θ0) for some f ∈ F .

Consider now Θ′ and some intended semantics ψ for Θ′ with respect to (Θ, χ).
We call ψ compatible with F if for each f : V → V ∈ F there is f̄ : Θ′ → Θ′

such that for all θ, θ0 ∈ Θ and θ′ ∈ Θ′ with f(Gχ(θ)) = Gχ(θ0), we have

ψ(θ, θ′) =⇒ ψ(θ0, f̄(θ′)).

124 A. Lasaruk and T. Sturm

Lemma 6. Let (Θ, χ) be an unambiguous model of some family Gχ of geometric
objects not containing ∅. Let F be a group of functions operating on Gχ. Consider
the model (ΘF , χ), where ΘF is a set of representants of Θ/∼F . Let ψ be an
intended semantics of some Θ′ with respect to (Θ, χ) that is compatible with F .
Then the following two statements are equivalent:

(i) ψ is adequate for (ΘF , χ) with respect to (Θ, χ).
(ii) ψ is adequate for (Θ, χ).

Proof. Assume (i). We construct χ′ : V × Θ′ → {true, false} satisfying the ad-
equacy condition in (ii) by specifying Gχ′ (θ′) for given θ′ ∈ Θ′. If there is no
θ ∈ Θ such that ψ(θ, θ′) we set Gχ′(θ′) = ∅. Else there is exactly one θf ∈ ΘF

such that θf ∼F θ via f ∈ F , i.e., f(Gχ(θ)) = Gχ(θf). We set

Gχ′(θ′) = f−1(Gχ(θf)) = Gχ(θ),

which is well-defined: For let θ∗ ∈ Θ with ψ(θ∗, θ′). There is θg ∈ Θ with
f(Gχ(θ∗)) = Gχ(θg). Since ψ is compatible with F we have ψ(θf , f̄(θ′)) and
ψ(θg, f̄(θ′)). Since ψ is adequate for (ΘF , χ) with respect to (Θ, χ), there exists
χ∗ such that (Θ′, χ∗) satisfies the definition of adequacy, and we have

Gχ(θf) = Gχ∗(f̄(θ′)) = Gχ(θg).

We apply to both sides f−1 and obtain

Gχ(θ) = f−1(Gχ(θf)) = f−1(Gχ(θg)) = Gχ(θ∗).

From the unambiguity of (Θ, χ) it follows that θ = θ∗. From the definition of
intended semantics it follows that for each θ ∈ Θ there is at least one θ′ ∈ Θ′

such that ψ(θ, θ′) holds. From our construction it follows that Gχ(θ) = Gχ′ (θ′).
Hence our new model comprises the same nontrivial objects as (Θ, χ).

The converse implication from (ii) to (i) is straightforward. ��

Throughout this paper we focus on sets of points and normals for our intended
models Θ′. Possible choices for the function group F to bring a model into general
position are then isometries or more generally affine bijections f : Rn → Rn with
f(x) = αAx + b, where A is an orthogonal matrix, b ∈ Rn, and α ∈ R \ {0}.
The group of bijections of the above form is called the group of similarities. In
the case of similarities a suitable choice for f̄ in the definition of compatibility
is given by

f̄(p1, . . . , pk, n1, . . . , nl) = (f(p1), . . . , f(pk), An1, . . . , Anl).

Notice that further ascending in the transformation group hierarchy by allowing
weaker conditions on group members, e.g. by allowing arbitrary affine bijections,
does not generally yield a compatible description because the properties of nor-
mals are not necessarily preserved by these functions.

Automatic Verification of the Adequacy of Models 125

Theorem 7. Let (Θ, χ), where Θ ⊆ Rk is described by τ(t), be an unambigu-
ous model for a family Gχ of geometric objects not containing ∅. Let Θ′ ⊆ Rl

described by τ ′(t′). Consider an intended semantics ψ(t, t′) of Θ′ with respect
to (Θ, χ) that is compatible with a group of functions operating on Θ, where
Θ0 ⊆ Θ is a set of representants of Θ/∼. Let σ be a substitution on the vari-
ables t in τ defined as follows: Check in Θ0 for which coordinates there occurs
only one value; σ substitutes these unique values for the corresponding variables
s ⊆ t. Then denoting t̃ = t \ s the following first-order formula over the reals is
equivalent to the adequacy of ψ for Gχ:

Φ̃(ψ, t̃, τ, τ ′, σ) ≡ ∀t′∀t̃∀t0(τσ ∧ τ [t0/t] ∧ τ ′ −→ ψσ ∧ ψ[t0/t] −→ tσ = t0).

Proof. This follows immediately from Lemma 6. ��
Notice that in the positive case χ′ can still be computed as described in Theo-
rem 4 (ii). Furthermore the natural assumption that the reference model does
not contain the empty set can be verified by quantifier elimination applied to the
sentence ∀t(τ −→ ∃xχ). Exactly as discussed for Theorem 4 we can drop some
quantifiers and use generic quantifier elimination. It is important to understand,
however, that any condition obtained this way, even for variables of the intended
model, refers to the description of objects from Θ/∼.

In the sequel we generally choose the function group F and the set of repre-
sentants Θ0 such that we maximize the number of parameters that are equal in
all entries of Θ0. We continue our example of spheres in 2-space showing how
the formulation in Example 5 is simplified by Lemma 6 and Theorem 7.

Example 8 (Spheres in 2-space, continued). With respect to the group of sim-
ilarities in R2 we can choose the set Θ0 = {(0, 0, 1)} as a set of represen-
tants for spheres in 2-space. The corresponding subset of spheres contains only
one element: the unit sphere in the origin. Hence we obtain the substitution
σ = [0/xc, 0/yc, 1/r]. According to Theorem 7 we automatically generate essen-
tially the following formula:

Φ̃(ψ, {cx, cy, r}, τ, τ ′) ≡
∀px∀py∀ny∀nx∀cx0∀cy0∀r0(1 > 0 ∧ r0 > 0 ∧ n2

x + n2
y = 1

−→ p2
x + p2

y = 1 ∧−pxny + pynx = 0 ∧
(px − cx0)2 + (py − cy0)2 = r2

0 ∧ −(px − cx0)ny + (py − cy0)nx = 0
−→ cx0 = 0 ∧ cy0 = 0 ∧ r0 = 1).

This formula is simpler than the one obtained in Example 5 in the following
sense: It does not contain the three variables cx, cy, r and also not the corre-
sponding universal quantifiers. We are going to continue the discussion of this Φ̃
in combination with Φ from Example 5 as Example 10 in the next section. ��

4 Complexity

The complexity of our approach is obviously dominated by the real quantifier
elimination step. Real quantifier elimination is well-known to have in general

126 A. Lasaruk and T. Sturm

double exponential time complexity in the worst case [2, 20]. In our approach,
however, we exclusively use universal quantifiers. The absence of quantifier
changes reduces the worst-case complexity to single exponential. More precisely
it is single exponential in the number of universal quantifiers but only polynomial
in all other natural complexity parameters, as e.g. number of atomic formulas,
polynomial degrees, polynomial coefficient sizes. Extended quantifier elimination
and generic quantifier elimination are not essentially harder than regular quan-
tifier elimination. Notice that with our use of generic quantifier elimination we
drop some quantifiers, which exponentially improves the complexity.

5 Example Computations for Geometric Primitives

To illustrate our framework, we are going to study in this section several families
of geometric primitives. We are going to automatically prove or disprove state-
ments concerning the number of points and normals needed to uniquely—though
not necessarily unambiguously—specify these objects. We start in two dimen-
sions, where we consider the families of lines and spheres. In three dimensions
we consider the families of planes and spheres. The following Sect. 6 includes
some computations with complex objects, viz. circle rings in 2-space and tori in
3-space.

All our computations have been carried out on a 2.8 GHz Intel Core 2 Duo
using only one core within at most 1 GB of memory.

5.1 Lines and Spheres in 2-Space

A line in 2-space is uniquely defined by one point on the line and one normal in
this point. Despite the simplicity of this problem, we give an automatic proof of
this statement in order to summarize our framework once more:

Example 9 (Lines in 2-space). A natural unambiguous reference model for the
family of lines in 2-space is given by (Θ, χ), where Θ = { θ ∈ R3 | τ(θ) } with

τ(a, b, c) ≡ a2 + b2 = 1 ∧ (a > 0 ∨ (a = 0 ∧ b = 1)),

and the characteristic function is given by

χ(x, y, a, b, c) ≡ ax + by + c = 0.

We choose Θ′ = { θ′ ∈ R4 | τ ′(θ′) } with

τ ′(px, py, nx, ny) ≡ n2
x + n2

y = 1

and the following intended semantics that (px, py) is a point on the line and
(nx, ny) is a normal in this point:

ψ(a, b, c, px, py, nx, ny) ≡ apx + bpy + c = 0 ∧ −nya + nxb = 0.

Automatic Verification of the Adequacy of Models 127

Regular quantifier elimination applied to the formula

∀a∀b∀c(τ −→ ∃px∃py∃nx∃ny(τ ′ ∧ ψ))

yields “true” in less than 10 ms, which confirms that ψ matches the definition of
an intended semantics. By directly applying Theorem 4 we automatically obtain
the formula

Φ(ψ, {a, b, c}, τ, τ ′) ≡
∀px∀py∀ny∀nx∀a0∀b0∀c0(a2 + b2 = 1 ∧ (a > 0 ∨ (a = 0 ∧ b = 1)) ∧

a2
0 + b2

0 = 1 ∧ (a0 > 0 ∨ (a0 = 0 ∧ b0 = 1)) ∧ n2
x + n2

y = 1
−→ apx + bpy + c = 0 ∧ −nya + nxb = 0 ∧

a0px + b0py + c0 = 0 ∧ −nya0 + nxb0 = 0
−→ a0 = a ∧ b0 = b ∧ c0 = c)

as a necessary and sufficient condition for the adequacy of ψ. For this formula
redlog returns in 30ms the expected result “true.”

With respect to the group of similarities we can choose the set of represen-
tants Θ0 = {(0, 1, 0)}, which exclusively contains the representation of the line
identical to the x-axis. Since all elements of Θ0 trivially have the same entries,
we have σ = [0/a, 1/b, 0/c]. Using now Theorem 7 we automatically obtain the
following alternative formula:

Φ̃(ψ, {a, b, c}, τ, τ ′) ≡
∀px∀py∀ny∀nx∀a0∀b0∀c0(

a2
0 + b2

0 = 1 ∧ (a0 > 0 ∨ (a0 = 0 ∧ b0 = 1)) ∧ n2
x + n2

y = 1
−→ py = 0 ∧ nx = 0 ∧ a0px + b0py + c0 = 0 ∧ −nya0 + nxb0 = 0
−→ a0 = 0 ∧ b0 = 1 ∧ c0 = 0).

For this Φ̃ redlog returns the expected result “true” in less than 10ms.
Since our model has turned out adequate, we may apply part (ii) of Theo-

rem 4 to obtain the corresponding characteristic function χ′ = ∃a∃b∃c(τ ∧χ∧ψ).
Within 50ms we obtain a quantifier-free description containing 76 atomic for-
mulas, and within another 50ms we can prove by quantifier elimination that this
obtained description is in fact equivalent to the obvious characteristic function
(x− px)nx + (y − py)ny = 0. ��

We continue with the computation results for our spheres in 2-space, which we
had discussed repeatedly as Examples 1–3, 5, and 8.

Example 10 (Spheres in 2-space, continued). For the formula Φ given in Exam-
ple 5 regular quantifier elimination yields “false” within 20ms. Extended quan-
tifier elimination yields within 60ms in addition the following sample point:

{cx = −1, cx0 = 0, cy = 0, cy0 = 0,

nx = 1, ny = 0, px = −2, py = 0, r = 1, r0 = 2}.

128 A. Lasaruk and T. Sturm

Notice that this result is as natural as our illustrative counterexample from
Example 3. In fact it is that example mirrored at the line y = −1/2.

For the formula Φ̃ given in Example 8 we obtain “false” in 30ms. Here ex-
tended quantifier elimination yields an alternative sample point:

{cx0 = −2, cy0 = 0, nx = 1, ny = 0, px = −1, py = 0, r0 = 1}. ��

We now modify our example on spheres in 2-space by adding a second point to
our intended semantics thus considering the following statement: Two distinct
points together with a normal in one of these points comprise an adequate model
for spheres in 2-space. It is not hard to see that this statement is true: Consider
the line segment connecting the two given points. A line through the middle of
this segment and orthogonal to it contains the center of the circle. From this
construction it is easy to obtain all parameters of the circle.

Example 11 (Spheres in 2-space by two points and one normal). We use the
same Θ and Θ0 with σ = [0/cx, 0/cy, 1/r] as in Example 8. Thus τ remains
unmodified. For our intended model we switch to Θ′ = { θ′ ∈ R6 | τ ′(θ′) }, where
we add to τ ′ the condition that our two considered points are distinct:

τ ′(p1x, p1y, nx, ny, p2x, p2y) ≡ n2
x + n2

y = 1 ∧ (p1x �= p1y ∨ p2x �= p2y).

We consider the following straightforward intended semantics:

ψ(cx, cy, r, p1x, p1y, n1x, n1y, p2x, p2y) ≡ (p1x − cx)2 + (p1y − cx)2 = r2 ∧
(p2x − cx)2 + (p2y − cx)2 = r2 ∧
−n1y(p1x − cx) + n1x(p1y − cy) = 0.

This way we automatically obtain via Theorem 7 our first-order input formula Φ̃.
From this we drop the outermost universal quantifiers ∀p1x∀p1y∀nx∀ny∀p2x∀p2y,
which refer to the variables for our intended model Θ′. This yields Φ̂. We apply
generic quantifier elimination and obtain after 20ms a quantifier-free equivalent
Φ̂′ with 10 atomic formulas subject to the following assumptions:

A = {nxp1x − nxp2x + nyp1y − nyp2y �= 0, nx �= 0}.

Regular quantifier elimination proves within 4.6 s that
∧

A −→ Φ̂′, i.e., Φ̂′ is true
on the assumptions in A. For this elimination redlog uses for the last quantifier
∀nx partial cad as a fallback option. The first condition in A states that the
line through p1 and p2 is not orthogonal to n. This obviously follows from that
facts that p1 �= p2 and that n is a normal at p1. As for the second condition,
regular quantifier elimination on ∀Φ̂[0/nx] yields “true” in less than 10ms. This
shows that this condition is not relevant.

A bit surprisingly, applying generic quantifier elimination in the same style to
Φ according to Theorem 4 yields the same assumptions A as above plus “true”
as a quantifier-free equivalent in only 20ms.

Regular quantifier elimination succeeds neither for Φ nor for Φ̃ within reason-
able time and space. ��

Automatic Verification of the Adequacy of Models 129

In the previous example we have made the important observation that generic
quantifier elimination by virtual substitution performs better on the more general
formula Φ according to Theorem 4 than on Φ̃ according to Theorem 7. This is
something which requires to be carefully monitored and analyzed in the future.
For now, we collect some ideas, which are suitable to explain that anomaly:
First, the substitution σ might not substantially support the elimination here
and become irrelevant by simplification after the elimination of the first few
quantifiers. Second, σ destroys symmetries in the input formula, the presence of
which might support the simplification process during elimination. Finally, due
to the extra quantified variables in Φ there is more freedom of choice for a good
elimination order of the universal quantifiers, which can be freely interchanged.
Notice also, that the observed effect might be caused by the fact that there is an
elimination order chosen that simply happens to be better; in that case it would
not be significant but point once more at the well-known fact that quantifier
elimination is generally sensitive to the chosen order of like quantifiers [3].

5.2 Planes and Spheres in 3-Space

We now turn to computation examples in 3-space. For this we simplify notation
as follows: For u = (ux, uy, uz) and v = (vx, vy, vz), we denote by 〈u | v〉 the
polynomial resulting from the application of the standard scalar product to u
and v. Similarly, ‖u‖2, which equals 〈u | u〉, denotes the square of the Euclidean
norm of u. We denote by u× v = 0 the conjunction resulting from equating each
component of the cross product u×v to zero. Furthermore we admit cross prod-
ucts u× v as arguments of scalar products, which obviously leads to polynomial
conditions as well.

Example 12 (Planes in 3-space). An unambiguous model for planes in 3-space
is given by (Θ, χ), where Θ = { θ ∈ R4 | τ(θ) } with

τ(a, b, c, d) ≡ ‖(a, b, c)‖2 = 1 ∧
(a > 0 ∨ (a = 0 ∧ b > 0) ∨ (a = 0 ∧ b = 0 ∧ c > 0)),

and the characteristic function is given by

χ(x, y, z, a, b, c, d) ≡ 〈(x, y, z) | (a, b, c)〉+ d = 0.

We consider Θ′ = { θ ∈ R6 | τ ′(θ) } with τ ′(p, n) ≡ ‖n‖2 = 1 for p = (px, py, pz)
and n = (nx, ny, nz). Our intended semantics is given by

ψ(a, b, c, d, p, n) ≡ 〈p | (a, b, c)〉+ d = 0 ∧ n× (a, b, c) = 0,

i.e., p and n are one point and one normal, respectively. Applying regular quanti-
fier elimination to the formula Φ automatically obtained according to Theorem 4
does not succeed within reasonable time and space.

For generating Φ̃ according to Theorem 7 we choose with respect to the sim-
ilarities the set of representants

Θ0 = {(0, 1, 0, 0)} with σ = [0/a, 1/b, 0/c, 0/d].

130 A. Lasaruk and T. Sturm

We then obtain by regular quantifier elimination “true” in less than 10ms.
By means of generic quantifier elimination we obtain within less than 10ms
a quantifier-free description for χ′ ≡ ∃a∃b∃c∃d(τ ∧ χ ∧ ψ), viz.

nxpx − nxx + nypy − nyy + nzpz − nzz = 0,

i.e. 〈n | p − (x, y, z)〉 = 0, subject to the condition A = {nx �= 0}. For this, we
have not used the default settings of redlog but switched off rlgenct, which
stands for generate complex theory. This way, generic quantifier elimination may
exclusively make monomial assumptions. ��
With the standard settings, i.e. rlqegenct on, we obtain in the previous exam-
ple “false” as a quantifier-free equivalent for χ′. The conditions A then contain
〈n | p − (x, y, z)〉 �= 0 which exactly contradicts our model that n is normal on
the plane. This makes the result meaningless. The observation that with orthog-
onality conditions generic quantifier elimination produces assumptions that are
not non-degeneracy conditions has to our knowledge not been reported in the
literature so far.

A sphere in 3-space is uniquely given by two points and two normals in these
points. The center, and subsequently the radius, can be computed by intersecting
the rays starting in the two given points in direction of the respective normals.
In fact, a sphere is uniquely defined even by two points and only one normal in
one of the points. This is less obvious; a non-automiatic proof can be obtained
by a construction in analogy to the spheres example in 2-space.

Example 13 (Spheres in 3-space). An unambiguous model for spheres in 3-space
is given by (Θ, χ), where Θ = { θ ∈ R4 | τ(θ) } with τ(c, r) ≡ r > 0 for
c = (cx, cy, cz), and the characteristic function is given by

χ(x, y, z, c, r) ≡ ‖(x, y, z)− c‖2 = r2.

That is, c is the center and r is the radius of the sphere. In analogy to our
discussion of spheres in 2-space we consider Θ′ = { θ ∈ R9 | τ ′(θ′) } where for two
points p1 = (p1x, p1y, p1z), p2 = (p2x, p2y, p2z) and one normal n = (nx, ny, nz)
we have

τ ′(p1, n, p2) ≡ ‖n‖2 = 1 ∧ p1 �= p2,

and the intended semantics

ψ(c, r, p1, n, p2) ≡ ‖p1 − c‖2 = r2 ∧ ‖p2 − c‖2 = r2 ∧ (p1 − c)× n = 0.

We automatically generate Φ according to Theorem 4, drop the outermost block

∀p1x∀p1y∀p1z∀p2x∀p2y∀p2z∀nx∀ny∀nz

of quantifiers refrerring to the variables of the intended model Θ′, and apply
generic quantifier elimination. We obtain within 30ms the quantifier-free equiv-
alent “true” subject to the conditions A = {nx �= 0, ny �= 0, p1x �= p2x}.

Regular quantifier elimination on Φ does not succeed within reasonable time
and space. Interestingly, generic quantifier elimination on some suitable Φ̃ gen-
erated according to Theorem 7 delivers a slightly more complicated result here;
compare the remarks after Example 11 about this. ��

Automatic Verification of the Adequacy of Models 131

6 Tori

Technical applications frequently require the computation of a parallel surface
P ′ to a given surface P in R3 [15, 8], i.e., for each point p′ of P ′ the Euclidean
distance infp∈P ‖p′ − p‖ is constant. In [15] there is a parallel surface to a given
aspheric surface computed in order to model the shrinkage of an aspheric lens.
Reference [8] is concerned with another industrial application involving the au-
tomated estimation of the middle point position of a spheric milling cutter head.
Here admissible head middle point positions lie on a parallel surface to the man-
ufactured surface. In both these applications the runtime complexity of the basic
operations on parallel surfaces is critical. One example for such basic operations
is the minimal distance computation of a point to the given parallel surface.

In order to achieve acceptable runtime complexities the mathematical repre-
sentations of the considered surfaces should be simple, which we want to make
precise now. One established solution is to approximate the given surface by a
spline of appropriate surface patches. One prominent example for such appro-
priate patches are toric patches [10]. Toric patches are simple at the first place
due to the following invariance property: The parallel surface to a toric patch is
a union of toric patches. Another advantage is the existence of simple formulas
for the distance computation between a point and a toric patch. Last but not
least a toric patch can be implicitly represented by a variety of degree four. This
keeps small the number of parameters per patch needed to be stored in software
systems. In a recent publication Schöne has shown that an arbitrary continuous
function f : D → R defined on a compact square D ⊆ R2 can be approximated
by a spline constructed from generalized toric patches up to an arbitrary pos-
itive precision [14]. Generalized toric patches contain also degenerate tori, like
cylinders or planes.

The work in [14] suffers, however, from an inherent drawback of approximating
as a first step the surface by step functions, which introduces discontinuities and
as a consequence does not lead to a sufficiently smooth approximation at the
end. The need for better smooth approximations of surfaces with toric patches
leads to the question under which conditions two toric patches have a GC

1-joint
[13]. A GC

1-joint is a property of two smooth surfaces to have equal normals on
their intersection curve. In that course, Martin introduces the notion of principal
patches [10]. These are surfaces that are bounded by their lines of curvature.
Martin shows that continuous joints between principal patches are possible along
these curves. As an example for such surfaces he considers cyclides. These are
surfaces where the lines of curvature are circles. The set of cyclides comprises
as a special case the set of toric patches, where the lines of curvature are the
meridians and the circles of latitude [16, 12]. Srinivas et al. construct surface
approximations by smooth surfaces from cyclide patches with GC

1-joints along
the lines of curvature [16]. Mäurer and Krasauskas prove that a GC

1-joint of
two cyclide patches is possible at other lines than lines of curvature [11]. Schöne
treats in [14] the following property of toric patches:

132 A. Lasaruk and T. Sturm

Conjecture 14. Between any two non-trivial toric patches obtained from distinct
tori a GC

1-joint with a regular intersection curve is possible only along their lines
of curvature.

In other words, any regular intersection curve between the two patches is a line of
curvature for each of them. Since the lines of curvature of tori are only meridians
and circles of latitude, this implies that there is not much freedom to smoothly
approximate surfaces exclusively using toric patches.

Conjecture 14 can be reduced to the following Conjecture, which is for fixed
k tractable by automated deduction on the basis of the framework introduced
in this paper:

Conjecture 15. There exists k ∈ N such that given a torus T , any family of
pairwise distinct points p1, . . . , pk with normals n1, . . . , nk on T which do not
lie on a common line of curvature uniquely determines T . ��

Notice that finitely many points and normals on a common line of curvature,
i.e. meridian or circle of latitude, cannot uniquely describe a torus: Given such
points and normals one can freely choose the inner or outer radius, respectively.

Proof (of Conjecture 14 using Conjecture 15). Consider toric patches T1 and T2

obtained from different tori. Assume for a contradiction that the regular GC
1

intersection curve L between T1 and T2 is not a line of curvature. We choose
pairwise distinct p1, . . . , pk on L with normals n1, . . . , nk. Since L is a GC

1-joint
curve the normals ni apply to both T1 and T2. According to Lemma 15 these
chosen points and normals describe a unique torus T . It follows that T1 = T and
T2 = T , a contradiction. ��

Schöne proves a weaker variant of Conjecture 15 for k = 4 and k = 5 adding
further requirements on the points p1,. . . , pk and normals n1, . . . , nk, which
then imply the uniqueness of T . The status of Conjecture 15 in its original form
remains unclear in [14]. If Conjecture 15 is true, then there exists also a smallest
k ∈ N, which satisfies Conjecture 15. The original motivation of the present
paper was the following conjecture:

Conjecture 16. The number k = 4 is the smallest possible choice in Conjec-
ture 15. ��

It is not hard to see that k ≤ 2 cannot be a valid choice in Conjecture 15 [14].
Thus if Conjecture 15 is true for k = 4, then k = 3 is the only possible smaller
choice, and in order to prove Conjecture 16 it suffices to give a counterexample
for k = 3.

We are going to continue this discussion in Sect. 6.2, where we demonstrate
how to apply our framework to prove Conjecture 15 and Conjecture 16. Before,
we discuss in Sect. 6.1 some computations for circle rings, which are the 2-
dimensional counterpart of tori and which we may expect to be computationally
considerably easier.

Automatic Verification of the Adequacy of Models 133

(cx, cy)
r1

r2

Fig. 3. Our reference model of a circle ring

6.1 Circle Rings in 2-Space

The family of circle rings in 2-space resembles the family of tori in 3-space: If
we intersect a torus with a plane, which has the rotation axis of the torus as
its normal, then we obtain as an intersection curve either the empty set, or one
circle or a circle ring consisting of two circles with a common center but distinct
radii. Second, the parallel curve to a circle ring patch is a union of circle ring
patches.

Consider Θ = { θ ∈ R4 | τ(θ) } with τ(cx, cy, r1, r2) ≡ r1 > r2 ∧ r2 > 0.
A natural unambiguous model for a circle ring is given by interpreting c = (cx, cy)
as the common center and r1 and r2 as the radii of the two circles. We are,
however, going to use the following characteristic function instead:

χ(x, y, c, r1, r2) ≡ ‖(x, y)− c‖2 = (r1 − r2)2 ∨ ‖(x, y)− c‖2 = (r1 + r2)2.

Fig. 3 pictures the role of the two radii r1 and r2 in χ. This model exactly
corresponds to one common description of a torus, which we are going to use in
the next subsection.

We are now going to study how many points and normals we need to uniquely
describe a circle ring. Similar to our modeling of spheres in Examples 2 and 11
the following formula expresses for a circle ring with center c = (cx, cy) and radii
r1, r2 that the point pi = (pix, piy) lies on this circle ring and has the normal
ni = (nix, niy) in this point:

ωi(c, r1, r2, pi, ni) ≡ 〈(−niy, nix) | pi − c〉 = 0 ∧ ‖pi + r2ni − c‖2 = r2
1 .

Notice that we assume ni to be normalized and that pi lies on the outer circle if
and only if ni points into the direction of c.

134 A. Lasaruk and T. Sturm

We study the following statement: Two points p1, p2 on a circle ring with two
corresponding normals n1, n2 uniquely define the circle ring.

For the simplest nontrivial case of two points with two normals we choose
Θ′

2 = { θ ∈ R8 | τ ′
2(θ) } with

τ ′
2(p1, n1, p2, n2) ≡ p1 �= p2 ∧ ‖n1‖2 = 1 ∧ ‖n2‖2 = 1,

where obviously p1 �= p2 ≡ p1x �= p2x ∨ p1y �= p2y. Our intended semantics is
given by

ψ2(c, r1, r2, p1, n1, p2, n2) ≡ ω1 ∧ ω2.

With respect to the group of similarities we can choose the reference model
Θ0 = { (0, 0, 1, r2) | 0 < r2 < 1 }, which represents circle rings in the origin with
central radius 1. This yields σ = [0/cx, 0/cy, 1/r1]. We automatically generate Φ̃
according to Theorem 7 and drop the outermost universal quantifiers referring
to p1, n1, p2, and n2.

Applying generic quantifier elimination yields after 15.5 s a quantifier-free
equivalent containing 124 atomic formulas plus the assumptions

A = {n2
1x + n2

1y − n2
2x − n2

2y �= 0, n1xn2y − n1yn2x �= 0, n1x �= 0}.

The first assumption actually says ‖n1‖2 �= ‖n2‖2. That is, the assumption
quite trivially turns Φ̃ true by contradicting the premise τ ′

2, which includes
‖n1‖2 = ‖n2‖2 = 1 and occurs as the antecedens of an implication. There are
two possible approaches to avoid this: First, one can try switching off rlqegenct
as discussed with Example 12. Second, one can universally quantify n1 and n2

in order to admit assumptions only on p1 and p2. Both these approaches lead to
excessive computation times without satisfactory results.

We thus optimize our model using the following observation: Since circle rings
in our reference model are invariant with respect to rotation around the origin
we may without loss of generality assume that p1 is located on the x-axis, say
p1 = (1 + r2, 0) and consequently n1 = (−1, 0). This additionally makes the
assumption that p1 is located on the outer circle, which will turn out not to
be a restriction later. On the computational side this can be encoded by using
another substitution ρ = [1 + r2/p1x, 0/p1y,−1/n1x, 0/n1y] and applying this
to the matrix of Φ̃ yielding Φ̃ρ. Generic quantifier elimination applied to ∀n2Φ̃ρ

followed by some automatic simplification using Gröbner basis methods [5] yields
after only 120 ms altogether the following quantifier-free equivalent subject to
the assumptions A = {p2x �= 0, p2y �= 0}:

p2
2x + p2

2y − 1 ≤ 0 ∨ p2
2x + p2

2y − 4 ≥ 0 ∨ (p3
2x + p2xp2

2y ≥ 0 ∧ p2x < 0).

Since p3
2x + p2xp2

2y = p2x · ‖p2‖2 and ‖p2‖2 > 0 due to A, the correspond-
ing conjunction above simplifies to p2x ≥ 0 ∧ p2x < 0, i.e., “false.” The entire
quantifier-free result can thus be rewritten as

‖p2‖ ≤ 1 ∨ ‖p2‖ ≥ 2.

Automatic Verification of the Adequacy of Models 135

Since in our model the center of the circle ring is the origin and the radius of
the outer circle is 1 + r2 for r2 < 1, the second condition states that p2 does not
lie on the circle ring at all thus trivially satisfying Φ̃ρ by violating τ ′ρ ∧ ψ2σρ,
which is part of the antecedens of an implication in Φ̃ρ. From a less syntactic
point of view, such points p2 may occur as sub-vectors of θ′ ∈ Θ′

2 but these θ′

are not assigned to any parameter θ ∈ Θ by the intended semantics. Similarly,
for the first condition only the case ‖p1‖ = 0 is relevant, which states that p2 lies
on the inner circle. Recall that we had positioned p1 on the outer circle. Hence,
p1 and p2 must lie on different circles, and we have learned a forteriori that our
decision in ρ to place p1 on the outer circle was not a loss of generality.

We are now going to discuss the two cases p2x = 0 and p2y = 0, which have
been excluded in the course of the automatic introduction of A. This can be done
by independently considering ∀n2Φ̃ρ[0/p2x] and ∀n2Φ̃ρ[0/p2y], respectively, and
once more applying generic quantifier elimination to the considerably simpler
problems obtained this way. Using the same simplification procedures as above,
we obtain for the first case in less than 10 ms the following quantifier-free formula
subject to the assumption A = {p2y �= 0}:

p2y + 2 ≤ 0 ∨ p2y − 2 ≥ 0 ∨ (p2y + 1 ≥ 0 ∧ p2y − 1 ≤ 0).

The first two constraints trivially satisfy the input formula by positioning p2

beyond outer circle, and the conjunction yields our well-known condition that
p2 must lie on the inner circle. For the second case we obtain the assumption
A = {p2x �= 0} and the quantifier-free formula

p2x + 2 ≤ 0 ∨ p2x + 1 = 0 ∨ p2x − 1 ≥ 0.

The first two constraints imply that p2 does not lie on the circle ring at all. The
last constraint implies p1 = (1+ r2, 0) = p2, which is excluded by τ ′

2ρ. Hence, we
have learned something new: Our chosen p1 together with p2 located on the x-
axis cannot uniquely describe a circle ring. It is quite clear that the corresponding
relevant condition in the general model, i.e., before the application of σ and ρ
is that p1, p2 and the center c are not collinear. In both discussed special cases,
the introduced assumptions A are not critical since they only exclude that p2 is
the origin, which would once more trivially satisfy ∀n2Φ̃ρ.

Notice that our obtained conditions greatly fit together with our introduction
on the situation with tori: When obtaining a circle ring via intersection of a torus
with a plane perpendicular to the rotation axis, the inner circle, the outer circle,
and intersections of the circle ring with lines through the center are images of
lines of curvature of that torus under this operation.

We conclude our discussion of circle rings with an interesting computational
experiment: Most of the conditions obtained during our discussion above involved
the distance between p2 and the center of the circle ring. It is obvious that such
conditions can be more naturally described when admitting to refer to the radius
r2 of the outer circle. We thus drop from ∀n2Φ̃ρ the quantifier ∀r2 and then
apply generic quantifier elimination: This yields within 80 ms “true” subject to
the following assumptions:

136 A. Lasaruk and T. Sturm

A = {p2
2x + p2

2y − r2
2 − 2r2 − 1 �= 0, p2x �= 0, p2y �= 0}.

The first assumption ‖p2‖2 �= (1 + r2)2 states that p2 must not lie on the outer
circle, where we have put p1. The third assumption states that p2 does not lie on
the x-axis, which reflects the necessary assumption on the original model that
p1 and p2 must not be collinear with the center of the circle ring. Of course,
this way we only know that these assumptions are sufficient while above we have
automatically proved that they are both necessary and sufficient. It is, however,
noteworthy that this style of automatic proving with its obvious weakness resem-
bles techniques generally accepted for automatic proving of geometric theorems
as, e.g., in the famous monograph by Chou [1].

6.2 Tori in 3-Space

The family of tori in R3 is given by Θ = {θ ∈ R8 | τ(θ)} with

τ(c, r, r1, r2) ≡ r1 > r2 ∧ r2 > 0 ∧ ‖r‖ = 1 ∧
(rx > 0 ∨ (rx = 0 ∧ ry > 0) ∨ (rx = 0 ∧ ry = 0 ∧ rz = 1)).

Here c = (cx, cy, cz) is the center point and r = (rx, ry, rz) is the direction of the
rotation axis of the torus. We call r1, r2 ∈ R+ the inner and the outer radius,
respectively. The middle plane of the torus is the plane with normal r containing
c. The middle circle is the circle on the middle plane given by all points with
distance r1 to the center point.

According to [14] a point p = (x, y, z) ∈ R3 lies on the torus defined by
θ = (c, r, r1, r2) if and only if using the notational convention r′ = (r′x, r′y, r′z) we
have

χ(p, c, r, r1, r2) ≡ ∃r′(‖r′‖2 = 1 ∧ 〈r | p + r2r
′ − c〉 = 0 ∧

〈r × r′ | c− p〉 = 0 ∧ ‖p + r2r
′ − c‖2 = r2

1).

The model (Θ, χ) has 7 degrees of freedom, and it is unambiguous.
We now turn to first-order descriptions of normals on a torus in a given point.

Denote by S3 ⊆ R3 the unit sphere. A vector ni = (nix, niy, niz) ∈ S3 is a normal
in the point pi = (pix, piy, piz) ∈ R3 on a torus given by θ = (c, n, r1, r2) if and
only if

ωi(c, r, r1, r2, pi, ni) ≡ 〈r | pi + r2ni − c〉 = 0 ∧
〈r × ni | c− pi〉 = 0 ∧ ‖pi + r2ni − c‖2 = r2

1 .

For a number k of points p1, . . . , pk and normals n1, . . . , nk in these points we
consider Θ′

k = { θ′ ∈ R6k | τ ′
k(θ′) } with τ ′

k(p1, n1, . . . , pk, nk) at least specifying

k∧
i=1

‖ni‖2 = 1.

Automatic Verification of the Adequacy of Models 137

An intended semantics for a torus model is then given by

ψk(c, r, r1, r2, p1, n1, . . . , pk, nk) ≡
k∧

i=1

ωi.

With respect to the similarity group of R3 the reference family of tori can be
represented by tori in the origin with the middle plane having the y-axis as
normal. Additionally, in analogy to our model of circle rings, we can set r1 = 1.
This yields σ = [0/cx, 0/cy, 0/cz, 0/rx, 1/ry, 0/rz, 1/r1].

We now turn to a first-order formulation of the statement “points with nor-
mals lie on a common line of curvature of a torus.” Recall from our discussion
of circle rings in the previous section that we had automatically contained a
corresponding condition by leaving certain variables unquantified.

In order to strictly apply our framework, however, suitable conditions have
to be added to τ ′ in advance, and they have to be formulated in such a way
that they refer exclusively to the coordinates of the points and normals under
consideration but not to any torus. This is the content of the following lemma.

Lemma 17. The points p1, . . . , pk with corresponding normals n1, . . . , nk lie
on a line of curvature of some (not unique) torus T if and only if there exist
0 < λ ∈ R, a plane E, and p ∈ E such that for each 1 ≤ i ≤ k we have

(i) pi ∈ E,
(ii) normal ni is orthogonal to the normal of E, and
(iii) p = λni + pi.

Proof. For the direction from the left to the right it suffices to recall that the
lines of curvature of tori are meridians and circles of latitude, both of which are
circles. It is easy to see that (i)–(iii) are satisfied by any circle in 3-space and
normals that lie on the same plane as the circle.

To prove the direction from the right to the left it is sufficient to construct a
torus, for which the points p1, . . . , pk and normals n1, . . . , nk lie on a meridian.
We choose the inner radius r1 = λ and the outer radius r2 = 2λ. The center
point of the torus c is then a (freely-chosen) point in E that has distance r2 from
p. The rotation axis is then r = (p− c)×n, where n is the normal of E. It is not
hard to see that the points p1, . . . , pk and normals n1, . . . , nk lie on a meridian
for the specified torus. ��
For fixed k, the conditions in Lemma 17 can be written as a first-order formula
over the reals such that we obtain the following τ ′

k specifying Θ′
k:

τ ′
k(p1, n1, . . . , pk, nk) ≡

∃λ∃p∃n∃d
k∧

i=1

(‖ni‖ = 1 ∧ 〈pi | n〉 − d = 0 ∧ 〈ni | n〉 = 0 ∧ p = λni + pi) .

From the existence of a quantifier elimination procedure for the reals it follows
that these conditions can even be equivalently expressed without quantifiers.

On the basis of these preparations we can in theory automatically treat within
our framework the following problems:

138 A. Lasaruk and T. Sturm

1. Automatically prove Conjecture 16. That is, show that the intended seman-
tics ψ3 of Θ′

3 as specified by τ ′
3 is not adequate for (Θ, χ).

2. Try to automatically prove Conjecture 15. That is, check for increasing fixed
k = 4, 5, . . . whether or not the intended semantics ψk of Θ′

k as specified by
τ ′
k is adequate for (Θ, χ).

Assume now that we succeed in proving Conjecture 16, i.e, the quantifier elimi-
nation returns “false” on the corresponding Φ̃:

3. Automatically construct a counterexample for Conjecture 16. Here extended
quantifier elimination would yield as a counterexample in addition to “false”
three points with normals that uniquely describe a torus.

4. Find additional conditions on three points and normals that do not lie on
a line of curvature such that they uniquely describe a torus. When adding
first-order formulations of suitable conditions to τ ′

3 yielding τ ′′
3 , we would

have that ψ3 becomes an adequate semantics of the corresponding Θ′′
3 with

respect to (Θ, χ).

Leaving certain variables unquantified, such additional condition can be obtained
either as quantifier-free equivalents or as assumptions with generic quantifier
elimination; compare our computations with circle rings. Technically, one can
possibly drop from τ ′

3 the conditions according to Lemma 17 and expect to
obtain these as well.

So far, we could not automatically solve any of the above problems in practice.
Detailed analyses of our test computations have shown that the main problem
is that the condition 〈r × ni | c − pi〉 = 0 in ωi introduces a condition of
total degree 3, which leads to massive trial factorizations of polynomials during
quantifier elimination. An extension of the implementation of virtual substitution
in redlog to the cubic case [21] might considerably improve the situation.

Generally, we consider these open questions an interesting and practically
relevant challenge problem for automated deduction in geometry.

7 Conclusions

We have proposed a general framework to automatically prove uniqueness of geo-
metric objects described by parameterizations intended by the user: On the basis
of an intended semantics, which relates the intended parameterization to a refer-
ence parameterization, we automatically generate first-order sentences over the
reals with ordering, which are true if and only if the intended parameterization
is adequate. This sentence can then be decided by real quantifier elimination or,
heuristically, by generic real quantifier elimination, where we possibly automati-
cally derive non-degeneracy conditions missing the formulation. In a subsequent
quantifier elimination step we can in the positive case compute a quantifier-free
description of the characteristic function for our new parameterization. In the
negative case we can compute sample values witnessing the non-adequacy.

Automatic Verification of the Adequacy of Models 139

We have improved our basic framework by rigorously restricting to geomet-
ric objects in general position. It is noteworthy that our restrictions to general
positions are systematically integrated into our framework in contrast to mak-
ing ad hoc simplifications where the amount of human intelligence entering the
automated deduction could hardly be specified or controlled.

The worst-case complexity of our approach is bounded by single exponential
time.

We have given various computation examples with redlog in 2-space and
3-space using besides the present quantifier elimination services our procedures
Φ and Φ̃ implemented there for generating the input formulas.

The original motivation for our paper was a conjecture that toric patches
can be joined smoothly only along lines of curvature, i.e. meridians or circles of
latitude. We have reduced this conjecture to another one essentially tractable
by automated deduction within our proposed framework: A torus is uniquely
defined by finitely many points and corresponding normals if and only if these
points do not lie on a common line of curvature. We have not yet succeeded in
the automatic proof of this reduced conjecture but fully automatically treated
the corresponding questions for circle rings in 2-space. Since we have exhibited
that a proof or disproof of our conjecture has interesting practical consequences
for spline approximation of parallel surfaces, we think that this is a challenging
task for researchers in quantifier elimination and more generally for the entire
automated deduction in geometry community.

Acknowledgments. The authors are grateful to R. Schöne and K. Donner for
pointing at the existing research around toric spline interpolation and open prob-
lems in this area, as well as for useful references and many helpful discussions.

References

1. Chou, S.-C.: Mechanical Geometry Theorem Proving. Mathematics and its
applications. D. Reidel Publishing Company, Dordrecht (1988)

2. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential.
Journal of Symbolic Computation 5(1-2), 29–35 (1988)

3. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Gutier-
rez, J. (ed.) Proceedings of the 2004 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2004), pp. 111–118. ACM Press, New York (2004)

4. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

5. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered
fields. Journal of Symbolic Computation 24(2), 209–231 (1997)

6. Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic
theorem proving in real geometry. Journal of Automated Reasoning 21(3), 357–380
(1998)

7. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Matzat, B.H., Greuel, G.-M., Hiss, G. (eds.) Algorithmic Algebra and Number
Theory, pp. 221–247. Springer, Berlin (1998)

140 A. Lasaruk and T. Sturm

8. Jüttler, B., Sampoli, M.L.: Hermite interpolation by piecewise polynomial surfaces
with rational offsets. Computer-Aided Geometric Design 17, 361–385 (2000)

9. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36(5), 450–462 (1993)

10. Martin, R.R.: Principal patches. a new class of surface patch based on differential
geometry. In: Eurographics 1983, pp. 47–55. North Holland, Amsterdam (1984)

11. Mäurer, C., Krasauskas, R.: Joining cyclide patches along quartic boundary curves.
In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Proceedings of the International
Conference on Mathematical Methods for Curves and Surfaces II, Lillehammer, pp.
359–366. Vanderbilt University, Nashville (1998)

12. Pratt, M.J.: Cyclides in computer-aided geometric design. Computer-Aided
Geometric Design 7, 221–242 (1990)

13. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer,
Berlin (2002)

14. Schöne, R.: Torische Splines. Doctoral dissertation, Department of Computer
Science and Mathematics. University of Passau, Germany, D-94030 Passau, Ger-
many (2007)

15. Schöne, R., Hintermann, D., Hanning, T.: Approximation of shrinked aspheres.
In: Gregory, G.G., Howard, J.M., Koshel, R.J. (eds.) International Optical De-
sign Conference 2006 (Proceedings of SPIE-OSA). Proceedings of SPIE, vol. 6342.
SPIE, Bellingham (2006)

16. Srinivas, Y.L., Kumar, V., Dutta, D.: Surface design using cyclide patches.
Computer-Aided Design 28, 263–276 (1996)

17. Sturm, T.: Real Quantifier Elimination in Geometry. Doctoral dissertation,
Department of Mathematics and Computer Science. University of Passau, Ger-
many, D-94030 Passau, Germany (December 1999)

18. Sturm, T.: Reasoning over networks by symbolic methods. Applicable Algebra in
Engineering, Communication and Computing 10(1), 79–96 (1999)

19. Sturm, T., Weispfenning, V.: Computational geometry problems in Redlog. In:
Wang, D. (ed.) ADG 1996. LNCS (LNAI), vol. 1360, pp. 58–86. Springer, Heidel-
berg (1998)

20. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic
Computation 5(1-2), 3–27 (1988)

21. Weispfenning, V.: Quantifier elimination for real algebra—the cubic case. In:
Proceedings of the International Symposium on Symbolic and Algebraic Com-
putation, Oxford, England (ISSAC 1994), pp. 258–263. ACM Press, New York
(1994)

22. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Applicable Algebra in Engineering Communication and Computing 8(2),
85–101 (1997)

23. Weispfenning, V.: Simulation and optimization by quantifier elimination. Journal
of Symbolic Computation 24(2), 189–208 (1997)

Formalizing Projective Plane Geometry in Coq�

Nicolas Magaud, Julien Narboux, and Pascal Schreck

LSIIT UMR 7005 CNRS - Université de Strasbourg

Abstract. We investigate how projective plane geometry can be formal-
ized in a proof assistant such as Coq. Such a formalization increases the
reliability of textbook proofs whose details and particular cases are often
overlooked and left to the reader as exercises. Projective plane geome-
try is described through two different axiom systems which are formally
proved equivalent. Usual properties such as decidability of equality of
points (and lines) are then proved in a constructive way. The duality
principle as well as formal models of projective plane geometry are then
studied and implemented in Coq. Finally, we formally prove in Coq that
Desargues’ property is independent of the axioms of projective plane
geometry.

Keywords: formalization, projective geometry, duality, Coq.

1 Introduction

This paper deals with formalizing projective plane geometry. Projective plane
geometry can be described by a fairly simple set of axioms. However it captures
the main aspects of plane geometry, especially perspective. It is a good candidate
to be formalized in a proof assistant. Most of the description and proofs are
available in textbooks such as [9,3]. However, in most books, many lemmas are
considered trivial and many proofs are left to the reader. Building a formal
development in a proof assistant allows for more flexibility. If required, axioms
can be changed easily and proofs can be rechecked automatically by the system.
Such changes may only require minor rewriting of the proofs by the user. In
all cases, the proofs are computer-verified, which dramatically increases their
reliability compared to paper-and-pencil proofs.

This formalization is not only interesting in itself. It also allows to evaluate
the adequacy of a proof assistant such as Coq to develop a formal theory and
to build some models of this theory. More significantly, we formalize projective
plane geometry because we are interested in building reliable and robust con-
straint solving programs (see [16,15]). Indeed, in geometric constraint solving,
handling the numerous particular cases is crucial to ensure robustness. Detect-
ing whether a configuration is degenerated or not requires theorem proving [30]:
which theorems are required and how to prove them is among the issues we
want to address. As shown in [21], point-line incidences in the projective plane
are sufficient to express usual geometric constraints.
� This work is partially supported by the ANR project Galapagos.

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 141–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

142 N. Magaud, J. Narboux, and P. Schreck

Finally, as computer scientists, we are interested in the effectiveness of proofs
in order to extract programs from these proofs. The Coq proof assistant [8,1]
implements a constructive logic and allows program extraction from constructive
proofs. Therefore, it is the perfect tool to carry out a constructive formalization.

In this paper, we formalize the theory of projective plane geometry and we
build models of this theory. In a subsequent paper [18], we revisit and generalize
the axiom system for projective geometry in a at least 3 dimensional setting
using flats and ranks and prove Desargues’ property holds in that case.

Related Work. Proof assistants have already been used in the context of geom-
etry. The task consisting in mechanizing Hilbert’s Grundlagen der Geometrie
has been partially achieved. A first formalization using the Coq proof assis-
tant was proposed by Christophe Dehlinger, Jean-François Dufourd and Pascal
Schreck [11]. This first approach was realized in an intuitionist setting, and con-
cluded that the decidability of point equality and collinearity is necessary to
check Hilbert’s proofs. Another formalization using the Isabelle/Isar proof as-
sistant [26] was performed by Jacques Fleuriot and Laura Meikle [19]. Both
formalizations have concluded that, even if Hilbert has done some pioneering
work about formal systems, his proofs are in fact not fully formal, in particular
degenerated cases are often implicit in the presentation of Hilbert. The proofs
can be made more rigorous by machine assistance. Frédérique Guilhot realized a
large Coq development about Euclidean geometry following a presentation suit-
able for use in french high-school [13]. In [24,25], Julien Narboux presented the
formalization and implementation in the Coq proof assistant of the area decision
procedure of Chou, Gao and Zhang [6] and a formalization of foundations of Eu-
clidean geometry based on Tarski’s axiom system [33,31]. In [12], Jean Duprat
proposes the formalization in Coq of an axiom system for compass and ruler
geometry. Regarding formal proofs of algorithms in the field of computational
geometry, we can cite David Pichardie and Yves Bertot [27] for their formal-
ization of convex hulls algorithms in Coq as well as Laura Meikle and Jacques
Fleuriot [20] for theirs in a Hoare-like framework in Isabelle. Several papers in-
troduce methods for automatic proof in projective geometry, e.g. [29,17]. Our
work is different because we perform interactive proofs in projective geometry.
Our approach is only slightly automated, but we can deal with the degenerated
cases by careful study in the proof assistant whereas these cases are ignored in
[29]. In addition we can deal with theorems which are not stated as a geometric
construction, which is a limitation of approaches based on the Wu’s method and
the area method.

Notations. Most Coq notations, which are really close to mathematical ones,
will be explained along the course of the paper. The negation is noted ˜. The
most awkward notation for the reader not accustomed to Coq is the curly-
brackets notation for constructive existential quantification over the sort Type.
For instance, the formula forall l:Line, {X:Point| ˜Incid X l} expresses
that ∀l : Line, ∃X : Point,¬X ∈ l.

Formalizing Projective Plane Geometry in Coq 143

Outline. The paper is organized as follows. In Sect. 2, we present the axioms
for projective plane geometry and their description in the Coq proof assistant.
In Sect. 3, we study the duality between points and lines. Section 4 deals with
finite and infinite models for projective plane geometry. In Sect. 5 we build both
desarguesian and non-desarguesian models.

2 Axioms

2.1 A First Set of Axioms

We assume that we have two kinds of objects which we call points and lines.
We also assume that we have a relation (∈) between elements of these two sets.
Projective plane geometry can be described using the six axioms presented in
Fig. 1.

The first two axioms deal with existence of points and lines. We choose not to
require points (resp. lines) to be distinct in axiom ’Line Existence’ (resp. ’Point
Existence’). If the points (resp. lines) are equal, the line (resp. the point) still

Axiom Line Existence

∀A B : Point, (∃l : Line, A ∈ l ∧ B ∈ l)

Axiom Point Existence

∀l m : Line, (∃A : Point, A ∈ l ∧ A ∈ m)

Axiom Line Uniqueness

∀A B : Point, A �= B ⇒ ∀l m : Line, A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ l = m

Axiom Point Uniqueness

∀l m : Line, l �= m ⇒ ∀A B : Point, A ∈ l ∧ A ∈ m ∧ B ∈ l ∧ B ∈ m ⇒ A = B

Definition (distinct4)

distinct4 A B C D ≡ A �= B ∧ A �= C ∧ A �= D ∧ B �= C ∧ B �= D ∧ C �= D

Axiom Four Points

∃A : Point,∃B : Point,∃C : Point,∃D : Point,
distinct4 A B C D ∧
(∀l : Line, (A ∈ l ∧ B ∈ l ⇒ C /∈ l ∧ D /∈ l)∧
(A ∈ l ∧ C ∈ l ⇒ B /∈ l ∧ D /∈ l)∧
(A ∈ l ∧ D ∈ l ⇒ B /∈ l ∧ C /∈ l)∧
(B ∈ l ∧ C ∈ l ⇒ A /∈ l ∧ D /∈ l)∧
(B ∈ l ∧ D ∈ l ⇒ A /∈ l ∧ C /∈ l)∧
(C ∈ l ∧ D ∈ l ⇒ A /∈ l ∧ B /∈ l))

Fig. 1. A first axiom system for projective plane geometry

144 N. Magaud, J. Narboux, and P. Schreck

exists: actually there potentially exists an infinity of lines (resp. points). This
design choice follows a general rule in formal geometry: it is crucial to consider
statements which are as general as possible.

The next two axioms deal with uniqueness of the above defined line and point.
These axioms hold only if the two points (resp. lines) are distinct. As suggested
in [2], axioms ’Point Uniqueness’ and ’Line Uniqueness’ can be merged into a
more convenient axiom with no negation. This axiom is classically equivalent to
the conjunction of the two others:

Axiom Uniqueness

∀A B : Point, ∀l m : Line,
A ∈ l ⇒ B ∈ l ⇒ A ∈ m ⇒ B ∈ m ⇒ A = B ∨ l = m

Finally, axiom ‘Four points’ states that there exists at least four distinct
points, no three of them being collinear. This means dimension is at least 2.
Together with axiom ’Point Existence’ which expresses that the dimension is
at most 2 (two lines always intersect), it imposes that the dimension of this
projective space is exactly 2. The formalization of this axiom system is straight-
forward, but from a practical point of view, proofs in most textbooks often use
some variants of this system. To ease mechanization of proofs, we formalize the
equivalence between these systems.

2.2 Another Axiom System for Projective Plane Geometry

Another Non-degeneracy Axiom. Axiom ’Four Points’ states a non-degene-
racy condition, namely that the projective space we consider is not reduced to
a single line. This can be expressed in another way through two new axioms:

Axiom Three Points

∀l : Line, ∃ABC : Point, A �= B ∧B �= C ∧A �= C ∧A ∈ l ∧B ∈ l ∧ C ∈ l

Axiom Lower Dimension

∃l1 : Line, ∃l2 : Line, l1 �= l2

The first axiom expresses that each line contains at least three points; the second
one states that there exist two distinct lines.

We prove that axiom ‘Four points’ can be replaced by axiom ‘Three points’
and axiom ‘Lower dimension’ in the system defined in the previous section and
vice-versa. Both settings share the following axioms: Line Existence, Point Exis-
tence, Uniqueness. In mathematics textbooks, the equivalence of these two sets
of axioms is usually presented as a remark.1 For instance in [3], the proof is left
to the reader. In a proof assistant such as Coq, these proofs have to be made
explicit and proving them formally requires some technical work mostly related
to handling the numerous configurations of points. The basic principles of the
proof are presented in Appendix A.
1 Proving this in Coq requires more than 1000 lines of proof.

Formalizing Projective Plane Geometry in Coq 145

2.3 Implementation in Coq

We formalize the previous definitions in the Coq proof assistant [1,8]. To do
so, we take advantage of the modules and functors of Coq. Modules [7] allow
to define parametrized theory and to put together types and definitions into a
module structure. This enhances the re-usability of developments, by providing a
formal interface for such a structure. In addition, functors can be used to connect
module types to one another.

Modules and Projective Plane. Our first module PreProjectivePlane con-
tains axioms dealing with point (resp. line) existence and uniqueness. From that

Module Type ProjectivePlane.

Parameter Point: Set.
Parameter Line: Set.
Parameter Incid : Point -> Line -> Prop.

Axiom incid_dec : forall (A:Point)(l:Line), {Incid A l} + {~Incid A l}.

(* Line Existence : any two points lie on a unique Line *)

Axiom a1_exist : forall (A B :Point),
{l:Line | Incid A l /\ Incid B l}.

(* Point Existence : any two lines meet in a unique point *)
Axiom a2_exist : forall (l1 l2:Line),

{A:Point | Incid A l1 /\ Incid A l2}.

Axiom uniqueness : forall A B :Point, forall l m : Line,
Incid A l -> Incid B l -> Incid A m -> Incid B m -> A=B \/ l=m.

(* Four points : there exist four points with no three collinear *)
Axiom a3: {A:Point & {B :Point & {C:Point & {D :Point |
(forall l :Line, distinct4 A B C D/\

(Incid A l /\ Incid B l -> ~Incid C l /\ ~Incid D l)
/\ (Incid A l /\ Incid C l -> ~Incid B l /\ ~Incid D l)
/\ (Incid A l /\ Incid D l -> ~Incid C l /\ ~Incid B l)
/\ (Incid C l /\ Incid B l -> ~Incid A l /\ ~Incid D l)
/\ (Incid D l /\ Incid B l -> ~Incid C l /\ ~Incid A l)
/\ (Incid C l /\ Incid D l -> ~Incid B l /\ ~Incid A l))}}}}.

End ProjectivePlane.

Fig. 2. The module type with axioms required to describe a projective plane. The
incidence relation (∈) is noted Incid in our Coq development. {Incid A l} + {˜Incid
A l} expresses that we know constructively that A ∈ l ∨ ¬A ∈ l.

146 N. Magaud, J. Narboux, and P. Schreck

we derive some basic properties, including uniqueness of a line (resp. of a point),
from the general uniqueness axiom. Then, on top of PreProjectivePlane, we
build two modules ProjectivePlane which contains axiom ‘Four points’ and
ProjectivePlane’ which contains axiom ‘Three points’ and axiom ‘Lower di-
mension’. A theory is of type ProjectivePlane if it contains all the notions
presented in Fig.2. The two module types ProjectivePlane and Projective-
Plane’ are connected through two functors Back and Forth which prove the
equivalence of these two axiom systems when the axioms ’Line Existence’ and
’Point Existence’ as well as Uniqueness are available. Figure 2 sums up the mod-
ule type for projective plane geometry and Fig. 3 presents the global organization
of the development.

Deciding Equality. From the assumption that incidence is decidable:

∀A : Point, ∀l : Line, (A ∈ l ∨ ¬A ∈ l),

we prove that point (resp. line) equality is decidable. The proofs of decidability
for point (resp. line) equality are intuitionist, in the sense that they do not use the
excluded middle property. Details of these proofs are available in Appendix B.

From these basic axioms, we can consider proving some theorems about pro-
jective plane geometry. For instance, we prove that if we consider lines as set
of points, there always exists a bijection between two lines (see Appendix E
for details). In order to improve genericity, we show that the well-known prin-
ciple of duality between point and line can be derived in Coq. It allows us to
prove automatically half of the theorems of interest from the proofs of their dual
counterparts.

3 Duality

3.1 Principle of Duality

It is well known that projective geometry enjoys a principle of duality, namely
that every definition remains significant and every theorem remains true, when
we interchange the concepts Point and Line. But as we exchange points and
lines, predicates must be exchanged with their dual as well. For example, the
collinearity property, i.e. col A B C ≡ ∃l : Line, A ∈ l ∧ B ∈ l ∧ C ∈ l must be
replaced by the concurrency property i.e. meet a b c ≡ ∃L : Point, a � L ∧ b �
L ∧ c � L. To formalize this principle, we make use of the module system of
Coq [1,7]. In practice, we consider the module type ProjectivePlane’ defined
in the previous section and we build a functor from ProjectivePlane’ to itself
in which we map points to lines and lines to points:

Module swap (M: ProjectivePlane’) : ProjectivePlane’.
Definition Point := M.Line.
Definition Line := M.Point.
Definition Incid := fun (x:Point) (y:Line) => M.Incid y x.
...

Formalizing Projective Plane Geometry in Coq 147

To build this functor we need to show that the dual of each axiom holds. It
is clear that the axioms of existence and uniqueness of lines are the dual of the
axioms for existence and uniqueness of points:

Definition a1_exist := M.a2_exist.
Definition a1_unique := M.a2_unique.
Definition a2_exist := M.a1_exist.
Definition a2_unique := M.a1_unique.

To prove the dual version of axiom ‘Three points’ and axiom ‘Lower dimension’
it is necessary to use the other axioms. Appendix C provides the detailed proof
of the fact that incidence geometry is a dual of itself and Fig. 3 a summary of
the organization of the development.

3.2 Applications

� P

duality⇒

� P1

� P2

Formalizing this principle of duality leads to
an interesting theoretical result. In addition,
this principle is also useful in practice. For
every theorem we prove, we can easily derive
its dual using our functor swap. For instance,
from the lemma outsider stating that for every couple of lines, there is a point
which is not on these lines, we can derive its dual automatically: for every couple
of points, there is a line not going through these points.

Module Example (M’: ProjectivePlane’).

Module Swaped := swap M’.
Export M’.

Module Back := back.back Swaped.
Module ProjectivePlaneFacts_m := decidability.decidability Back.

Lemma dual_example :
forall P1 P2 : Point,{l : Line | ~ Incid P1 l /\ ~ Incid P2 l}.
Proof.
apply ProjectivePlaneFacts_m.outsider.
Qed.

End Example.

So far, we focused on axiom systems and formal proofs. The next step is
to check whether well-known models verify our axioms for projective plane
geometry.

4 Models

In order to prove formally that our sets of axioms are consistent, we build some
models. We build both finite and infinite models: among them the smallest pro-
jective plane and an infinite model based on homogeneous coordinates.

148 N. Magaud, J. Narboux, and P. Schreck

duality

��

ProjectiveP lane′

A1A2A
′
3

back

��

ProjectiveP lane
A1A2A3

forth

��

Fig. 3. A modular organization. Arrows represent functors and boxes represent mod-
ules types.

4.1 Finite Models

Following Coxeter’s notation [9], a finite projective geometry is written PG(a, b)
where a is the number of dimensions, and given a point on a line, b is the
number of other lines through the point. We build two finite models: PG(2, 2)
and PG(2, 5). PG(2, 2) is the smallest projective plane and is also known as
Fano’s plane.

�
A

�
B

�G

� E

�

F

�D
�
C

Fano’s Plane. In two dimensions, we can easily build the
model with the least number of points and lines: 7 each.
This model is called Fano’s plane. On the figure, points are
simply represented by points, whereas lines are represented
by six segments and a circle (DEF).

In order to formalize this model, we define a module
FanoPlane of type ProjectivePlane. The typing system of Coq will ensure
that our definitions are really instances of the abstract definition of a projective
plane.

The set of points is defined by an inductive2 type with 7 constructors and the
set of lines as well:

Inductive ind_point : Set := A | B | C | D | E | F | G.
Inductive ind_line : Set := ABF | BCD | CAE | ADG | BEG | CFG | DEF.

Definition point : Set := ind_point.
Definition line : Set := ind_line.

The incidence relation is given explicitly by its graph:

Definition incid_bool : Point -> Line -> bool := fun P L =>
match (P,L) with
(A,ABF) | (A,CAE) | (A,ADG) | (B,BCD) | (B,BEG) | (B,ABF)
|(C,BCD) | (C,CAE) | (C,CFG) | (D,BCD) | (D,ADG) | (D,DEF)
|(E,CAE) | (E,BEG) | (E,DEF) | (F,ABF) | (F,DEF) | (F,CFG)
|(G,ADG) | (G,CFG) | (G,BEG) => true
| _ => false
end.
2 Note that this type is not really inductive, but sum types are defined in Coq using

a special case of the general concept of inductive types.

Formalizing Projective Plane Geometry in Coq 149

The proofs of existence and uniqueness are performed by case analysis. Note
that in order to prove the axioms of uniqueness, we must prove that for every
couple of points (resp. lines) there is a unique line (resp. point). This creates
72 = 49 cases. For each of these cases, we have to perform a case analysis on the
lines, this produces again 49 cases, leading to a total of 2401 cases. The proof is
computed easily by Coq.

PG(2,5). We follow [9] and build another model of the projective plane which
is still finite but larger than Fano’s plane. This model is called PG(2, 5). It
contains 31 points and as many lines. The incidence relation is given on Table 1
in Appendix D. From the technical view of the formalization, this model is harder
to build than Fano’s plane because the proof produces 923 521 cases3. However,
the proofs of these cases can be automated. The total size of the proof object
generated by Coq (a term of the calculus of inductive constructions) is 7 Mo.

4.2 Infinite Model: Homogeneous Coordinates

To build an infinite model of projective geometry we use homogeneous coordi-
nates introduced by August Ferdinand Möbius. We present our formalization
in the context of the projective plane, but it can be easily generalized to any
other dimension. The homogeneous coordinates of a point (resp. of a line) of
a projective plane is a triple of numbers which are not all zero. These num-
bers are elements of any commutative field of characteristic zero. Two triples
which are proportional are considered as equal: for any λ �= 0, (x1, x2, x3) =
(λx1, λx2, λx3).

To formalize this notion in Coq it would be natural to define pseudo-points
as triple of elements of a field and then define points (resp. lines) as the equiva-
lence classes of proportional non-zero triple in this field. Unfortunately, defining
a type by quotient is something difficult to do in the calculus of inductive con-
structions used by Coq [5]. Therefore, we choose to define the quotient type
directly by representing the classes of points and lines by a normal form. Points
and lines are represented by their triple of coordinates such that the last non
zero coordinate is 1. Consider a point (x1, x2, x3). If x3 �= 0 we can represent it
by (x1/x3, x2/x3, 1). If x3 = 0, we perform case distinction on x2. If x2 �= 0 we
can represent it by (x1/x2, 1, 0), else we represent it by (1, 0, 0). This definition
can be formalized in Coq using the following inductive type where F is the type
of the elements of our field and P0, P1 and P2 are the constructors for the three
different cases:

3 In [9], the proof given is the following: “we observe that any two residues are found
together in just one column of the table (see on page 161), and that any two columns
contain just one common number”. This amounts to checking, for more than 400
different configurations, whether two sets of six elements have only one common
element. In such a case, mechanized theorem proving is the best way to ensure
correctness.

150 N. Magaud, J. Narboux, and P. Schreck

Inductive Point : Set :=
| P2 : F -> F -> Point (* (x1,x2,1) *)
| P1 : F -> Point (* (x1,1 ,0) *)
| P0 : Point. (* (1 ,0 ,0) *)

The second and third constructors correspond to ideal points (points at
infinity).

The incidence relation (noted Incid in Coq and ∈ in this paper) can then
be defined as the inner product of a point and line. The definition of the inner
product can be made more generic by using triples, instead of giving a definition
distinguishing each of the 3× 3 cases.

To do this, we define two functions, one to transform a point into a triple
of coordinates, and another one to normalize a triple of coordinates to obtain
a point. We can then prove two lemmas which state that our definitions are
consistent:

Lemma triple_point :
forall P : Point, point_of_triple (triple_of_point P) = P.

Lemma point_triple :
forall a b c : F, (a,b,c) <> (0,0,0) ->
exists l, triple_of_point (point_of_triple (a,b,c)) = (a*l,b*l,c*l).

Lemma point_of_triple_functionnal:
forall a b c l : F, (a,b,c) <> (0,0,0) -> l <> 0 ->
point_of_triple(a,b,c) = point_of_triple(a*l,b*l,c*l).

The inner product and incidence relations can then be defined as:

Definition inner_product_triple A B :=
match (A,B) with
((a,b,c),(d,e,f)) => a*d+b*e+c*f

end.

Definition Incid : Point -> Line -> Prop := fun P L =>
inner_product_triple (triple_of_point P) (triple_of_line L) = 0.

Now, we need to prove that the axioms of a projective plane hold in this
setting. The proof of the decidability of Incid and of axioms (Three Points)
and (Lower Dimension) are straightforward. For the uniqueness axiom, after
unfolding of definitions, the problem reduces to a goal involving equations such
as the following ones:

r ∗ r5 + r0 ∗ r6 + 1 = 0
r ∗ r3 + r0 ∗ r4 + 1 = 0
r1 ∗ r5 + r2 ∗ r6 + 1 = 0
r1 ∗ r3 + r2 ∗ r4 + 1 = 0

⇒ (r = r1 ∧ r0 = r2) ∨ (r3 = r5 ∧ r4 = r6).

Using the following equivalences considered as rewrite rules, we can convert
this goal into an ideal-membership problem which can be solved using the Gröb-
ner bases tactic developed by Loïc Pottier [10]:

Formalizing Projective Plane Geometry in Coq 151

∀ab, a = b ⇔ a− b = 0
∀ab, (a = 0 ∨ b = 0) ⇔ ab = 0
∀ab, (a = 0 ∧ b = 0) ⇔ a2 + b2 = 0.

This tactic provides automation to solve algebraic goals which otherwise would
be tedious to prove interactively. Proofs achieved by the Gröbner basis tactic
require less than 2 seconds of computation except one which requires about a
minute.

Finally, for the existence axioms, we need to define the line passing through
two points (resp. the point at the intersection of two lines).

5 Desarguesian and Non-desarguesian Models

Desargues’ property is among the most fundamental properties of projective
geometry since in the projective space Desargues’ property becomes a theorem
and consequently all the projective spaces arise from a division field. In this
section, we formalize two models showing on the one hand, that Desargues’
property is compatible with the axioms of projective geometry and, on the other
hand that it is independent of them. Let’s first recall Desargues’ statement in
projective geometry.

5.1 Desargues’ Property

Desargues’ property states that: Let E be a projective space and A,B,C,A′,B′,C′

be points in E, if the three lines joining the corresponding vertices of triangles
ABC and A′B′C′ all meet in a point O, then the three intersections of pairs of
corresponding sides α, β and γ lie on a line.

If E is at least of dimension three, Desargues’ property always holds. In [18],
we have formalized this theorem in Coq. If E is of dimension two, Desargues’

�A

�

B

�

C

� O

�

C’

�

A’

�

B’

�

�

�

β

γ

α

Fig. 4. Desargues’ Property

152 N. Magaud, J. Narboux, and P. Schreck

property is independent from all the projective plane geometry axioms. We first
show that it is not contradictory with these axioms by formally proving it holds in
Fano’s plane. Then, we build a model (Moulton’s plane) in which all projective
plane geometry axioms hold but Desargues’ property does not hold. This is
achieved by making explicit a configuration for which Desargues’ property is not
satisfied. Overall this shows the independence of Desargues’s theorem from the
axioms of projective plane geometry, which can be regarded as the starting point
of non-desarguesian geometry [4].

5.2 Fano’s Plane Is Desarguesian

At first sight, proving Desargues’ property in Fano’s plane seems to be straight-
forward to achieve by case analysis on the 7 points and 7 lines. However, this
requires handling numerous cases4 including many configurations which contra-
dict the hypotheses.

To formalize the property we make use of two kinds of symmetries, a symmetry
of the theory and a symmetry of the statement.

Symmetry of the Statement. We first study the special case where the point
O of Desargues’ configuration corresponds to A, and the line OA corresponds to
ADG, OB to CAE and OC to ADF . Then as Desargues’ statement is symmetric
by permutation of the three lines which intersect in O, we can formalize a proof of
slightly more general lemma desargues_from_Awhere the point O of Desargues’
configuration still corresponds to A but the three lines intersecting in O are
universally quantified.

Symmetry of the Theory. The theory of Fano’s plane is invariant by per-
mutation of points. It means that, even if it is not obvious from the figure in
Sect. 4.1, all the points play the same role: if (A, B, C, D, E, F, G) is a Fano’s
plane then (B, C, D, F, E, G, A) is one as well. We formalize this by building a
functor from Fano’s theory to itself which permutes the points. Using this func-
tor and desargues_from_A, we show that Desargues’ property holds for any
choice for O among the 7 points of the plane.

5.3 Independence of Desargues’ Property

Moulton Plane and its Projective Counterpart. Moulton plane [23] is
an affine plane in which lines with a negative slope are bent (i.e. the slope is
doubled) when they cross the y-axis. It can be easily extended into a projective
plane.

Moulton plane is an incidence structure which consists of a set of points
P , a set of lines L, and an incidence relation between elements of P and el-
ements of L. Points are denoted by couples (x, y) ∈ R2. Lines are denoted by

4 The most naïve approach would consider 77 cases, even with careful analysis it
remains untractable to prove all the cases without considering symmetries.

Formalizing Projective Plane Geometry in Coq 153

(m, b) ∈ (R ∪∞)× R (where m is the slope - ∞ for vertical lines - and b the
y-intercept). The incidence relation is defined as follows:

(x, y) ∈ (m, b) ⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = b if m = ∞
y = mx + b if m ≥ 0
y = mx + b if m ≤ 0, x ≤ 0
y = 2mx + b if m ≤ 0, x ≥ 0.

This incidence structure verifies the properties of an affine plane. It can be
turned into a projective plane through the following process.

– We extend P with points at infinity (one direction point for each possible
slope, including the vertical one); therefore P is (R× R) ∪ R.

– We extend the set L of affine lines with a new one which connects all points
at the infinite; therefore L is ((R ∪∞)× R) ∪∞.

– We finally extend the incidence relation in order to have all direction points
and only them incident to the infinite line. We also extend each affine line
with a direction point (the one bearing its slope).

This construction leads to a projective plane. The whole process is formally
described in Coq and we show that all the axioms of projective plane geometry
presented in Sect. 2 hold. Most proofs on real numbers rely on using Gröbner
basis computation in Coq as already used in Sect. 4.2.

A Configuration of Desargues where the Theorem Does Not Hold. We
build a special configuration of Desargues for which the property does not hold.
This can be achieved in a very algebraic point of view using only coordinates
and equations for lines. We first present it that way and then show on a figure
why Desargues’ property does not hold for our configuration.

Let’s consider 7 points: O(−4, 12), A(−8, 8), B(−5, 8), C(−4, 6), A′(−14, 2),
B′(−7, 0) and C′(−4, 3). We then build the points α(−3, 4), β(6/11, 38/11) and
γ(−35, 8) which are respectively at the intersection of (BC) and (B′C′), (AC)
and (A′C′) and (AB) and (A′B′). Then we can check using automated proce-
dures on real numbers computation that there exists no line in Moulton plane
which is incident to these 3 points α, β and γ.

� �

�

�

�

�

�

�
�

� A B
C

A’
B’

C’

O

α

γ

β
�

β

Fig. 5. Counter example to Desargues’ theorem in Moulton’s plane

154 N. Magaud, J. Narboux, and P. Schreck

Overall Desargues’ property does not hold in this configuration because only
some of the lines are bent. Especially, of the two lines used to build β, one of
them is a straight line (A′C′) and the other one (AC) is bent. That is what
prevents the three points α, β and γ from being on the same line.

Proofs studied in previous sections illustrate how combining automated and
interactive theorem proving can be successful.

6 Conclusion and Future Work

In this paper, we have shown how projective plane geometry can be formalized
in Coq using two different axiom systems. We proved them equivalent. We then
managed to mechanize the duality principle and to build finite and infinite mod-
els, as well as desarguesian and non-desarguesian models. Using Coq helped us
produce more precise proofs which handle all cases whereas in textbooks some
very particular cases can sometimes be overlooked. Overall our Coq development
of projective plane geometry amounts to 7.5K lines with about 200 definitions
and lemmas.5

Our development makes use of a rather strong axiom, namely decidability of
the incidence predicate. All subsequent properties are derived in an intuitionist
logic from this axiom and those of projective plane geometry. It would be also
interesting to perform our formalization using a purely constructive system of
axioms as the ones proposed by Heyting and von Plato [14,28]. These systems
of axioms are based on the apartness predicate which is the negation of the
incidence predicate. It is easy to prove using classical logic that the axioms of a
projective plane implies the axioms of Heyting. It would be also interesting to
derive more theorems in a purely constructive framework.

In the future, we plan to carry on our investigations in two main directions.
On the one hand, we expect to write a reliable algorithm for constraint solving
in incidence geometry. It requires to specify projective plane geometry, which is
what we achieve in this paper. The next step will be to certify that whenever
the prover says three points are collinear (resp. non-collinear), we can build a
proof at the specification level that these points are actually collinear (resp.
non-collinear).

On the other hand, in a at least 3-dimensional setting, we shall study how to
formally link together the axiom system based on the concept of ranks presented
in [18] to a more traditional axiom system like the ones we presented in this
paper. Moreover, formalizing in Coq some fully automated proof methods based
on geometric algebras such as [29,17] would be an interesting challenge.

On the technical side, we also plan to study how our development can make
use of first-order type classes [32] instead of modules and functors. We expect
this new feature to improve the readability of the formal description by making
implicit some technical details.
5 The Coq development is available here:
http://coq.inria.fr/distrib/current/contribs/ProjectivePlaneGeometry.
html

http://coq.inria.fr/distrib/current/contribs/ProjectivePlaneGeometry.html
http://coq.inria.fr/distrib/current/contribs/ProjectivePlaneGeometry.html

Formalizing Projective Plane Geometry in Coq 155

Acknowledgments. We would like to thank Loïc Pottier for providing the Coq
tactic for solving systems of equations using Gröbner basis.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development,
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004)

2. Bezem, M., Hendriks, D.: On the Mechanization of the Proof of Hessenberg’s The-
orem in Coherent Logic. Journal of Automated Reasoning 40(1), 61–85 (2008)

3. Buekenhout, F. (ed.): Handbook of Incidence Geometry. North-Holland, Amster-
dam (1995)

4. Cerroni, C.: Non-Desarguian Geometries and the Foundations of Geometry from
David Hilbert to Ruth Moufang. Historia Mathematica 31(3), 320–336 (2004)

5. Chicli, L., Pottier, L., Simpson, D.: Mathematical quotients and quotient types in
coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 95–107.
Springer, Heidelberg (2003)

6. Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Machine Proofs in Geometry. Series on
Applied Mathematics. World Scientific, Singapore (1994)

7. Chrząszcz, J.: Implementing Modules in the Coq System. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 270–286. Springer, Heidelberg (2003)

8. Coq development team, The: The Coq Proof Assistant Reference Manual, Version
8.0. LogiCal Project (2004)

9. Coxeter, H.S.M.: Projective Geometry. Springer, Heidelberg (1987)
10. Créci, J., Pottier, L.: Gb: une procédure de décision pour Coq. In: Actes JFLA

2004 (2004) (in french)
11. Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-Order Intuitionistic Formaliza-

tion and Proofs in Hilbert’s Elementary Geometry. In: Richter-Gebert, J., Wang,
D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061, pp. 306–324. Springer, Heidelberg
(2001)

12. Duprat, J.: Une axiomatique de la géométrie plane en Coq. In: Actes des JFLA
2008, pp. 123–136. INRIA (2008) (in french)

13. Guilhot, F.: Formalisation en Coq et visualisation d’un cours de géométrie pour le
lycée. Revue des Sciences et Technologies de l’Information, Technique et Science
Informatiques, Langages applicatifs 24, 1113–1138 (2005) (in french)

14. Heyting, A.: Axioms for intuitionistic plane affine geometry. In: Suppes, P., Henkin,
A.T.L. (eds.) The Axiomatic Method, with Special Reference to Geometry and
Physics, pp. 160–173. North-Holland, Amsterdam (1959)

15. Hoffmann, C.M., Joan-Arinyo, R.: Parametric Modeling. In: Handbook of Com-
puter Aided Geometric Design, pp. 519–541. Elsevier, Amsterdam (2002)

16. Jermann, C., Trombettoni, G., Neveu, B., Mathis, P.: Decomposition of Geometric
Constraint Systems: a Survey. International Journal of Computational Geometry
and Application 16(5-6), 379–414 (2006)

17. Li, H., Wu, Y.: Automated Short Proof Generation for Projective Geometric The-
orems with Cayley and Bracket Algebras: I. incidence geometry. J. Symb. Com-
put. 36(5), 717–762 (2003)

18. Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq
using ranks. In: Proceedings of the ACM Symposium on Applied Computing, SAC
2009. ACM Press, New York (2009)

156 N. Magaud, J. Narboux, and P. Schreck

19. Meikle, L.I., Fleuriot, J.D.: Formalizing hilbert’s grundlagen in isabelle/Isar. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer,
Heidelberg (2003)

20. Meikle, L.I., Fleuriot, J.D.: Mechanical Theorem Proving in Computational Ge-
ometry. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp.
1–18. Springer, Heidelberg (2006)

21. Michelucci, D., Foufou, S., Lamarque, L., Schreck, P.: Geometric constraints solv-
ing: some tracks. In: SPM 2006: Proceedings of the 2006 ACM Symposium on Solid
and Physical Modeling, pp. 185–196. ACM Press, New York (2006)

22. Miquel, A., Werner, B.: The Not So Simple Proof-Irrelevant Model of CC. In: Geu-
vers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 240–258. Springer,
Heidelberg (2003)

23. Moulton, F.R.: A Simple Non-Desarguesian Plane Geometry. Transactions of the
American Mathematical Society 3(2), 192–195 (1902)

24. Narboux, J.: A Decision Procedure for Geometry in Coq. In: Slind, K., Bunker,
A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 225–240.
Springer, Heidelberg (2004)

25. Narboux, J.: Mechanical Theorem Proving in Tarski’s Geometry. In: Botana, F.,
Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 139–156. Springer, Hei-
delberg (2007)

26. Paulson, L.C.: The Isabelle reference manual (2006)
27. Pichardie, D., Bertot, Y.: Formalizing Convex Hull Algorithms. In: Boulton, R.J.,

Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 346–361. Springer, Hei-
delberg (2001)

28. von Plato, J.: The Axioms of Constructive Geometry. In: Annals of Pure and
Applied Logic, vol. 76, pp. 169–200 (1995)

29. Richter-Gebert, J.: Mechanical Theorem Proving in Projective Geometry. Ann.
Math. Artif. Intell. 13(1-2), 139–172 (1995)

30. Schreck, P.: Robustness in CAD Geometric Construction. In: 5th International
Conference on Information Visualisation IV 2001, London, pp. 111–116 (July 2001)

31. Schwabhauser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in
der Geometrie. Springer, Heidelberg (1983) (in german)

32. Sozeau, M., Oury, N.: First-Class Type Classes. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg
(2008)

33. Tarski, A.: What is Elementary Geometry? In: Henkin, L., Suppes, P., Tarski, A.
(eds.) The Axiomatic Method, with Special Reference to Geometry and Physics,
pp. 16–29. North-Holland, Amsterdam (1959)

A Proof of Equivalence of Axiom Systems

In this section, we provide the proof of the equivalence of the two axiom systems.

A.1 From Axiom ‘Four Points’ to Axiom ‘Three Points’ and Axiom
‘Lower Dimension’

We first prove that each line contains at least three points:

∀l : Line, ∃ABC : Point, distinct3 A B C ∧A ∈ l ∧B ∈ l ∧ C ∈ l.

Formalizing Projective Plane Geometry in Coq 157

We have as an assumption that there exist four points A, B, C and D with no
three collinear. We have three cases to study depending on how many points are
on line l: either two, one or zero points of these four points are on l.

– Two points are on l (say P and Q), two are not on l (say R and S).
We build m which goes through R and S, it intersects l on a point (say X)
which is different from P and Q. X has to be distinct from P (resp. Q),
otherwise we would have P , R and S collinear (resp. Q, R and S collinear).

– One point is on l (say A) , the three other ones are not on l (say B, C
and D).
We have to build two more points on l. We proceed by creating lines going
through points outside of l. We have to distinguish cases in order to avoid
alignment issues.

– No point is on l, all four points (say A, B, C and D) are outside of l .
We have to build three distinct points. We do the same reasoning steps,
building lines from A, B, C and D.

All possible configuration for the 4 points can be captured by these three cases,
sometimes via renaming of points. Details can be found in the formal Coq
development.

Axiom ’Lower dimension’ can be proved very easily:

∃l1 : Line, ∃l2 : Line, l1 �= l2.

We simply consider 2 lines l (which goes through A and B) and m (which goes
through C and D). It is straightforward to show they are different: if they were
not, then A, B, C and D would be collinear and this would contradict axiom
‘Four points’.

A.2 From Axioms ‘Three Points’ and ‘Lower Dimension’ to Axiom
‘Four Points’

We prove some preliminary lemmas: for any two distinct lines l1 and l2, each of
them carrying at least three points (say M , N and O for l1 and P , Q and R for
l2), we make a case distinction depending on where these points lie with respect
to the intersection of l1 and l2. There are four cases to consider:

– One of the three points of l1 (say M) and one of those of l2 (say P , which is
actually equal to M) are at the intersection of l1 and l2. Then the remaining
points (M , O, Q and R) verify axiom ‘Four points’. No three of them can
be collinear otherwise we would have l1 = l2.

– One point of l1 (say M) is at the intersection of l1 and l2. Then points M ,
O, Q and R verify axiom ‘Four points’.

– One point of l2 (say P) is at the intersection of l1 and l2. Exchanging l1 and
l2 in the previous lemma solves the case.

– No point of l1 and l2 is at the intersection. Then points M , O, Q and R also
verify axiom ‘Four points’.

158 N. Magaud, J. Narboux, and P. Schreck

Axiom ’Four points’ is then proved by first making two lines l1 and l2 explicit
(through axiom ‘Lower dimension’), then considering three distinct points on
each line (through axiom ‘Three points’). The four lemmas allow to prove the
existence of four points in the various possible configurations depending on which
points (if any) lie at the intersection of l1 and l2.

B Decidability Proofs

From the axiom system ProjectivePlane (see Fig. 2) and a decidability axiom
about incidence, namely

∀A : Point, l : Line, A ∈ l ∨ ¬A ∈ l,

we can derive proofs of decidability of point equality as well as line equality.
Both theorems can be proved independently, in a intuitionist way (none of them
require the use of classical logic).

B.1 Line Equality

Given any two lines l1 and l2, they either are equal or not:

∀l1 l2 : Line, l1 = l2 ∨ l1 �= l2.

From axiom ‘Three points’, we know there exists three distinct points M , N and
P on l1. We then proceed by case analysis depending on whether M and N are
on l2.

M ∈ l2 :
N ∈ l2 : l1 = l2 because of the Uniqueness Axiom and the fact that M �= N .
N /∈ l2 : l1 and l2 are different because N is on l1 and not on l2.

M /∈ l2 : l1 and l2 are different because M is on l1 and not on l2.

B.2 Point Equality

Given any two points A and B, they either are equal or not:

∀A B : Point, A = B ∨A �= B.

We first prove an auxiliary lemma:

∀A B : Point, ∀d : Line, A �∈ d ⇒ B �∈ d ⇒ A = B ∨A �= B.

From axiom ‘Three points’, we know there exists three distinct points M , N and
P incident to d. We build two lines l1 = (AM) and l2 = (AN). These two lines
are different because N and M are distinct and A is not incident to d.

B ∈ l1 :
B ∈ l2 : A = B from the Uniqueness Axiom and the fact that l1 �= l2.

Formalizing Projective Plane Geometry in Coq 159

B /∈ l2 : A �= B because A is incident to l2 and B is not.
B /∈ l1 : A �= B because A is incident to l1 and B is not.

The main theorem can now be proved: from axiom ‘Lower dimension’, there
exists two distinct lines Δ0 and Δ1. We proceed by case analysis on whether A
and B belong to Δ0 and Δ1.

A ∈ Δ0 :
B ∈ Δ0 :

A ∈ Δ1 :
B ∈ Δ1 : A = B from the Uniqueness Axiom and the fact that

Δ0 �= Δ1.
B /∈ Δ1 : A �= B, because A is incident to Δ1 and B is not.

A /∈ Δ1 :
B ∈ Δ1 : A �= B, because A is not incident to Δ1 and B is.
B /∈ Δ1 : We apply the previous lemma with d = Δ1.

B /∈ Δ0 : A �= B, because A is incident to Δ0 and B is not.
A /∈ Δ0 :

B ∈ Δ0 : A �= B, because A is not incident to Δ0 and B is.
B /∈ Δ0 : We apply the previous lemma with d = Δ0.

A

B
�C

�

�

⇒

P
�

Fig. 6. Proving the dual of axiom ‘Three points’

C Proof of the Principle of Duality

In this section, we show that the duality principle is correct. As stated before
the proof of most axioms is straightforward, hence we only prove the dual of
axiom ‘Three points’. We need to prove that:

∀P, ∃l1l2l3, P ∈ l1 ∧ P ∈ l2 ∧ P ∈ l3.

First, we prove the following two lemmas:

∀Pl, P �∈ l ⇒ ∃l1l2l3, P ∈ l1 ∧ P ∈ l2 ∧ P ∈ l3

and
∀l1l2, ∃P, P �∈ l1 ∧ P �∈ l2.

Proof of the first lemma: let’s take three distinct points A, B and C on l using
axiom ‘Three points’. Then we can build the lines (PA), (PB) and (PC). Those

160 N. Magaud, J. Narboux, and P. Schreck

lines are distinct because otherwise using the uniqueness axiom we could prove
that A,B and C are not distinct.

Proof of the second lemma: If l1 = l2 we need to build a point not on l1.
From axiom ‘Lower dimension’, we know there are two lines. From axiom ‘Three
points’ we can conclude because we know there are at least three points on each
line.

Otherwise l1 �= l2. Let’s call C the intersection of l1 and l2. Then, we can
build two points P1 and P2 on l1 and l2 respectively which are different from C.
We know that P1 �= P2 because otherwise l1 = l2. Let d be the line through P1

and P2. We can build a third point Q on d. Q is neither on l1 nor on l2. This
concludes the lemma.

Finally, we can prove the dual of axiom ‘Three points’. We build two lines
l1 and l2 using axiom ‘Lower dimension’. Then we perform case distinction on
P ∈ l1 and P ∈ l2. If P ∈ l1 ∧ P ∈ l2 we use the second lemma. Otherwise
P �∈ l1 ∨ P �∈ l2. In both cases, we can use the first lemma.

E Lines as Set of Points

In our development, we consider two basic notions: points and lines. Lines can
actually be viewed as sets of points. With this representation, for any lines l1
and l2 we can build a bijection from l1 to l2.

We first define the set of points corresponding to a given line l, it consists of
all the points of the plane which are incident to l.

Definition line_as_set_of_points (l:Line):= {X:Point | Incid X l}.

From this definition, we want to prove the following theorem:

Theorem line_set_of_points : forall l1 l2:line,
exists f:(line_as_set_of_points l1) -> (line_as_set_of_points l2),

bijective f.

It states there exists a bijective function f from l1 to l2 when these lines
are viewed as sets of points. We build a constructive proof of this existential
formula, which requires to make explicit the function f and then check whether
it is actually a bijection, i.e. verifies the one-to-one and onto properties.

The proof proceeds as follows:
First of all, one can safely assume that l1 and l2 are different. If not, then the

identity function works just fine. The first step of the proof is to write a function
which, given two lines l1 and l2 computes a point P which belongs neither to l1
nor to l2.

Lemma outsider : forall l1 l2: Line,
{P:Point | ~Incid P l1/\~Incid P l2}.

We now explicitly construct the function f as shown on Fig. 7. Given a point
A1 of l1, we can build a line (say Δ) going through A1 and P . Lines Δ and l2
intersect in a point A2. We define f such that f(A1) = A2. It remains to prove

Formalizing Projective Plane Geometry in Coq 161

D
In

ci
d
en

ce
R

el
at

io
n

of
P

G
(2

,5
)

T
ab

le
1.

T
he

in
ci

de
nc

e
re

la
ti
on

of
P

G
(2

,5
).

E
ac

h
co

lu
m

n
lis

ts
th

e
lin

es
in

ci
de

nt
to

th
e

gi
ve

n
po

in
t.

P
3
0

P
2
9

P
2
8

P
2
7

P
2
6

P
2
5

P
2
4

P
2
3

P
2
2

P
2
1

P
2
0

P
1
9

P
1
8

P
1
7

P
1
6

P
1
5

P
1
4

P
1
3

P
1
2

P
1
1

P
1
0

P
9

P
8

P
7

P
6

P
5

P
4

P
3

P
2

P
1

P
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

0
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

0
1

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
0

1
2

3
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
0

1
2

3
4

5
6

7
8

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

0
1

2
3

4
5

6
7

8
9

10
11

12
19

20
21

22
23

24
25

26
27

28
29

30
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

162 N. Magaud, J. Narboux, and P. Schreck

A1

P

�

� A2
�B2�

B1

�

�

Fig. 7. Building a bijection between l1 and l2

that this function is actually bijective. Proving that this function is one-to-one
requires to assume proof irrelevance [22]. Proof irrelevance expresses that proofs
of the same formula are equal. It allows us to show existential propositions with
the same type are equal regardless of the proof terms proving the formulas.
Proving the onto property requires to apply the construction process of f in the
reverse order going from line l2 to line l1.

Linear Programming for Bernstein Based Solvers

Dominique Michelucci and Christoph Fünfzig

LE2I, UMR CNRS 5158, 9 av Alain Savary, BP 47870, 21078 Dijon cedex, France
Dominique.Michelucci@u-bourgogne.fr

Abstract. Some interval Newton solvers rely on tensorial Bernstein
bases to compute sharp enclosures of multivariate polynomials on the
unit hypercube. These solvers compute all coefficients with respect to
tensorial Bernstein bases. Unfortunately, polynomials become exponen-
tial size in tensorial Bernstein bases. This article gives the first polyno-
mial time method to solve this issue. A polynomial number of relevant
Bernstein polynomials is selected. The non-negativity of each of these
Bernstein polynomials gives a linear inequality in a space connected to
the monomials of the canonical tensorial basis. We resort to linear pro-
gramming on the resulting Bernstein polytope to compute range bounds
of a polynomial or bounds of the zero set.

Keywords: subdivision solver, tensorial bernstein basis, Bernstein poly-
tope, geometric constraint solving.

1 Introduction

Especially in 3D, geometric constraint solving eventually requires solving sys-
tems of non-linear, typically algebraic equations. Usually, irreducible systems
are solved with numerical methods, for instance homotopy [12,4,17], Newton-
Raphson iterations, interval Newton methods [9], and Bernstein-based solvers.

Computer Graphics, CAD-CAM, and some people in numerical analysis, use
properties of tensorial Bernstein bases (TBB) and Bernstein based solvers, for
computing intersections between algebraic non-linear surfaces and curves, and
for numerically solving systems of polynomial equations [8,13,16,5,15,11]. TBB
provide sharp enclosures of multivariate polynomials over a box, i.e., a carte-
sian product of intervals. The range of a multivariate polynomial p(x), x =
(x1, . . . , xn) over the unit box x ∈ [0, 1]n is the interval given by the small-
est and the greatest coefficients of the polynomial p(x) expressed in the TBB.
This property and the de Casteljau algorithm or other subdivision methods are
used in Computer Graphics and CAD-CAM to compute tight covers of implicit
algebraic curves and surfaces [10].

However, polynomials become exponential size in the TBB. For instance, the
monomial 1 is written (B(d1)

0 (x1) + . . . + B
(d1)
d1

(x1)) · . . . · (B(dn)
0 (xn) + . . . +

B
(dn)
dn

(xn)). Even a linear polynomial p(x1, . . . , xn) has an exponential number
2n of coefficients in the TBB, while it has linear size O(n) in the commonly used
canonical basis. A quadratic polynomial p(x1, . . . , xn) has exponential size 3n in

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 163–178, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

164 D. Michelucci and C. Fünfzig

the TBB, while it has a quadratic number O(n2) of coefficients in the canonical
basis with monomials x2

i , xixj , xi, and 1.
This feature makes current Bernstein based solvers impracticable for systems

with more than n = 6 or 7 unknowns. Geometric constraints, especially in 3D,
often yield big irreducible systems. For instance, the regular icosahedron and
non-regular ones (20 triangular faces, 12 vertices, 30 edges) can be specified, up
to location and orientation in 3D space, by the length of their edges. Similar
for their duals, the regular dodecahedron, or non-regular ones (12 pentagonal
faces, 20 vertices, 30 edges) can be specified by the length of their edges and
by coplanarity conditions for each of their faces. These systems of equations are
quadratic, i.e., the degree of their monomials is at most 2 since equations are:
a2

k+b2
k+c2

k = 1, akxi+bkyi+ckzi+dk = 0, (xi−xj)2+(yi−yj)2+(zi−zj)2 = D2
ij ,

where (xi, yi, zi) are the coordinates of vertex i, akx + bky + ckz + dk = 0 is the
equation of the plane of face k, and Dij is the length of edge ij. For a well-
constrained system, three points are arbitrarily fixed: a vertex is fixed at the
origin, one of its neighbor on the x axis, and another one is fixed on the Oxy
plane. These systems are huge, they are roughly irreducible, and they can not be
solved with current TBB solvers due to the exponential size of the representation
of their polynomials.

This article proposes the first polynomial time algorithm to overcome this
difficulty with TBB. The solver in [15] does not use the TBB but resorts to the
simplicial Bernstein bases, which have polynomial cardinality.

The main idea is to make explicit the Bernstein polytope. While current TBB
solvers implicitly use this kind of polytope and consider it as the convex hull of
its vertices, the method in this article considers it as the intersection of a set
of halfspaces in a space connected to the monomials of the canonical tensorial
basis: the non-negativity of some Bernstein polynomials provide linear inequal-
ities for each non-linear monomial. It turns out that the Bernstein polytope
has an exponential number of vertices, but it has only a polynomial number of
bounding hyperplanes. Thus linear programming (LP) algorithms, say the sim-
plex algorithm, can be used to compute the vertex of the Bernstein polytope,
which minimizes or maximizes the linear objective function corresponding to a
polynomial. It is known that the simplex method is not polynomial time in the
worst case thus it is better to invoke a polynomial time method like the ellipsoid
method or an interior point method from a theoretical point of view. However
in practice the simplex algorithm is very competitive.

Since a lot of systems of geometric constraints yield to systems of quadratic
equations (like the examples above), and since all algebraic systems can be re-
duced with polynomial overhead to quadratic systems using auxilliary equations
and variables and using iterated squaring, this paper only considers systems of
quadratic equations for simplicity. The main idea of the algorithm is the fol-
lowing: define the Bernstein polytope through its hyperplanes rather than as
the convex hull of its vertices. This polytope definition can straightforwardly be
extended to systems with higher degree.

Linear Programming for Bernstein Based Solvers 165

Section 2 reminds standard notations. Section 3 defines the Bernstein polytope
and its bounding hyperplanes. Sections 4.1 and 4.2 explain how to compute
a range of a multivariate polynomial and reducing a domain while preserving
its roots reduces to linear programming problems, considering the Bernstein
polytope. Computing tight range bounds of multivariate polynomials can be
used in interval Newton solvers, the principle of which is presented in Sect. 5.
Actually, the Bernstein polytope can be used to propose a new kind of solver,
which does not use Newton’s method. It is presented in Sect. 6. Some technical
problems, scaling and inaccuracy, are succinctly mentioned in Sect. 7. Our first
solver implementation bypasses the inaccuracy issue using rational arithmetic;
we then implemented the first robust floating-point CPU variant of this solver
(Sect. 7.4). Section 7.3 mentions some theorems used by solvers to certify that
a box contains no root, or at least one root, or a unique regular root. Section 8
concludes and lists future works.

2 Tensorial Bernstein Bases, Definitions, Main Properties

The d + 1 Bernstein polynomials B
(d)
i of degree d, also written Bi for fixed d,

are a basis of degree-d polynomials

B
(d)
i (x) =

(
d

i

)
xi(1− x)d−i, i = 0, . . . , d,

where the binomial coefficient C(i, d) =
(
d
i

)
is the number of i-subsets of a d-set.

The conversion with the canonical basis (x0, x1, . . . , xd) is a linear mapping.
Classical formulas are

xk = (1/C(k, d))
d∑

i=k

C(k, i)B
(d)
i (x)

x1 = (1/d)
d∑

i=0

i B
(d)
i (x)

x0 = 1 =
d∑

i=0

B
(d)
i (x).

The main properties are that their sum equals 1, and every B
(d)
i (x) is positive

for x ∈ [0, 1].
It means that for 0 ≤ x ≤ 1, p(x) =

∑
piBi(x) is a linear convex combination

of the coefficients pi. For a polynomial p with pi ∈ R, p(x), x ∈ [0, 1] lies in the
interval [min pi, max pi]. This enclosure is tight, and the minimum or maximum
bound is exact if it is attained for i = 0 or i = d. If the pi lie in 2D (or 3D), p(x)
describes a 2D (or 3D) Bézier curve, and the arc p(x), x ∈ [0, 1] lies inside the
convex hull of its so called control points pi.

166 D. Michelucci and C. Fünfzig

For an example, let p(x) be a polynomial in x ∈ R. Since x = 0 B0(x) +
1/dB1(x)+2/dB2(x)+ . . .+d/dBd(x), the polynomial curve (x, y = p(x)) with
x ∈ [0, 1] lies in the convex hull of its control points (i/d, pi), where p(x) =∑

i piBi(x).
In constrast to coefficients in the canonical basis (1, x, x2, . . . , xd), control

points depend on the interval for x. The classical de Casteljau method provides
the control points of p(x), x ∈ [0, t] and of p(x), x ∈ [t, 1].

For multivariate polynomials, the TBB is the tensorial product

(B(d1)
0 (x1), . . . , B

(d1)
d1

(x1)) · (B(d2)
0 (x2), . . . , B

(d2)
d2

(x2)) ·

The convex hull properties and the de Casteljau method extend to the TBB,
which provide sharp enclosure of multivariate polynomials p(x), x ∈ [0, 1]n. For
this reason, TBB are routinely used in CAD-CAM and Computer Graphics for
computing tight covers, e.g., voxelizations, of implicit algebraic curves or surfaces
[10] in low dimension (2D, 3D, 4D).

3 Definition of the Bernstein Polytope

Each monomial xi, xixj , x2
i with total degree 1 or 2 is attached to a variable

of a linear programming problem. Non-linear dependences between monomials
xi and x2

i , or between monomials xi, xj , xixj , are represented by the Bernstein
polytope, through linear inequalities constraining corresponding LP variables.

3.1 Univariate Polynomials

For univariate polynomials of degree d, the Bernstein polytope is a convex poly-
hedron which encloses the arc of the curve (x, x2, . . . , xd) in Rd with x ∈ [0, 1].
Its hyperplanes and halfspaces are given by B

(d)
i (x) ≥ 0, i = 0, . . . , d.

For degree d = 2, the Bernstein polytope is a triangle, in Fig. 1; x and y are
the LP variables representing monomials x and x2; counting multiplicities, each
triangle side meets the curve (x, y = x2), 0 ≤ x ≤ 1, in two points. For degree
d = 3, the Bernstein polytope is a tetrahedron, in Fig. 2; x, y, z are the LP
variables representing monomials x, x2, x3; counting multiplicities, each plane
meets the curve (x, y = x2, z = x3), 0 ≤ x ≤ 1 in three points. The extension to
higher degrees is easy.

3.2 Multivariate Polynomials

We extend the Bernstein polytope to multivariate polynomials as follows. The
inequalities for multivariate polynomials are obtained as the relevant products
of the inequalities for univariate polynomials. We consider only quadratic poly-
nomials with monomials xi, x

2
i , xixj , x

2
j . The hyperplanes for xi, x2

i have been
given above. So consider now the non-linear dependences between monomials
xi, xj , xixj , renamed x, y, z = xy in the following for a more intuitive nota-
tion. As usual, all variables have values from the unit interval [0, 1]. The surface

Linear Programming for Bernstein Based Solvers 167

0 1

B0 ≥ 0
B1 ≥ 0

B2 ≥ 0

4y+x−3 = 0

3/5 7/90 1

B0 ≥ 0
B1 ≥ 0

B2 ≥ 0

Fig. 1. Left: The Bernstein polytope encloses the curve (x, y = x2) for (x, y) ∈ [0, 1]2.
Its limiting sides are: B0(x) = (1−x)2 = y−2x+1 ≥ 0, B1(x) = 2x(1−x) = 2x−2y ≥ 0,
B2(x) = x2 = y ≥ 0. Right: solving 4x2 + x − 3 = 0 with x ∈ [0, 1] is equivalent to
intersecting the line 4y + x− 3 = 0 with the curve (x, x2). By linear programming, the
x interval is reduced from [0, 1] to [3/5, 7/9].

patch (x, y, z = xy) is enclosed in a convex polyhedron, shown in Fig. 3, whose
halfspaces are

B
(1)
0 (x)B(1)

0 (y) = (1− x)(1 − y) ≥ 0⇒ 1− x− y + z ≥ 0
B

(1)
0 (x)B(1)

1 (y) = (1− x)y ≥ 0 ⇒ y − z ≥ 0
B

(1)
1 (x)B(1)

0 (y) = x(1 − y) ≥ 0 ⇒ x− z ≥ 0
B

(1)
1 (x)B(1)

1 (y) = xy ≥ 0 ⇒ z ≥ 0.

This tetrahedon is the convex hull of the patch, thus it is optimal. Each of these
non-linear inequalities B

(1)
i (x)B(1)

j (y) ≥ 0 in x and y gives a linear inequality in
the LP variables x, y, z. For a quadratic system in n unknowns x1, . . . , xn, their
number O(n2) is polynomial. It is of the same order as an arbitrary quadratic
polynomial in the canonical basis. The extension to higher degrees is easy but
left to the reader for conciseness.

4 Linear Programming

The method resorts to linear programming (LP) to bypass the problem due to
the exponential cardinality of the TBB. This section shows how to compute a
range for a polynomial p(x), x = (x1, . . . , xn) over the unit hypercube, and how
it reduces to solving a linear programming problem.

168 D. Michelucci and C. Fünfzig

(1, 1, 1)

(0, 0, 0)

(1/3,0,0) (2/3, 1/3, 0)

Fig. 2. The Bernstein polytope, a tetrahedron, enclosing the curve (x, y = x2, z = x3)
with x ∈ [0, 1]. Its vertices are v0 = (0, 0, 0), v1 = (1/3, 0, 0), v2 = (2/3, 1/3, 0) and
v3 = (1, 1, 1). v0 lies on B1 = B2 = B3 = 0, v1 on B0 = B2 = B3 = 0, etc. B0(x) =
(1 − x)3 ≥ 0 ⇒ 1 − 3x + 3y − z ≥ 0, B1(x) = 3x(1 − x)2 ≥ 0 ⇒ 3x − 6y + 3z ≥ 0,
B2(x) = 3x2(1 − x) ≥ 0 ⇒ 3y − 3z ≥ 0, B3(x) = x3 ≥ 0 ⇒ 3z ≥ 0.

y

x

z

y

z

x

Fig. 3. The Bernstein polytope enclosing the surface patch (x, y, z = xy). Inequalities
of delimiting planes are Bi(x)Bj(y) ≥ 0, where B0(t) = 1 − t, B1(t) = t and i = 0, 1.

Linear Programming for Bernstein Based Solvers 169

4.1 Range Bound for a Polynomial

The method for computing a range bound of a polynomial is illustrated with
a simple example. To compute a lower and an upper bound of the polynomial
p(x) = 4x2 + x − 3, for x ∈ [0, 1], minimize, and maximize, the linear objective
function: 4y + x− 3 on the Bernstein polytope (the triangle in Fig. 1) enclosing
the curve (x, y = x2), x ∈ [0, 1]. It is a LP problem after replacing x2 with y.
From left to right, the LP tableau of the initial problems, the LP tableau for the
minimum, the LP tableau for the maximum are given:

min, max : p = 4y + x − 3
0 ≤ B0 = y − 2x + 1
0 ≤ B1 = −2y + 2x
0 ≤ B2 = y,

min p = −3 + x + 4y
B0 = 1 − 2x + y
B1 = 2x − 2y
B2 = y,

max p = 2 − 5B0 − 9/2B1

x = 1 − B0 − B1/2
y = 1 − B0 − B1

B2 = 1 − B0 − B1.

The simplex method due to Dantzig performs Gauss pivoting operations on
the rows of the initial tableau to reach the two last tableaux, which exhibit the
minimum and the maximum. Variables on the left side of the tableaux are basic
variables, variables on the right side are non-basic variables with values 0, the
standard convention in linear programming. Let us comment on the tableau for
the maximum. In max p = 2 − 5B0 − 9/2B1, the value of p can not be greater
than 2 because non-basic variables B0 and B1 have values 0, and increasing
their values can only decrease p due to their negative coefficients −5B0− 9/2B1

in the objective function. The same kind of comments apply to the tableau for
the minimum. Thus the polynomial p(x ∈ [0, 1]) lies in the interval [−3, 2]. The
minimum occurs at x = 0 (x is a non-basic variable for the minimum tableau)
so it is exact. The maximum occurs at x = 1 (x is a basic variable in the line
x = 1−B0 −B1/2 of the rightmost tableau) so it is exact too.

Observe that at vertex v0 = (0, 0) where B1 = B2 = 0, the polynomial value
is p0 = p(0) = −3; at vertex v1 = (1/2, 0) where B0 = B2 = 0, the polynomial
value is p1 = p(1/2) = −3/2; at vertex v2 = (1, 1) where B0 = B1 = 0, the
polynomial value is p2 = p(1) = 2. These values p0, p1, p2 are the coefficients in
the Bernstein basis of p(x): p(x) = p0B0(x) + p1B1(x) + p2B2(x).

This property trivially holds for all univariate polynomials by definition of
the Bernstein polytope.

Remark 1. It is possible to drop the coefficients in the inequalities B
(d)
i (x) ≥ 0

of the halfspaces of the Bernstein polytope. It does not modify the Bernstein
polytope and does not modify the results of range computations, nor the results
of the domain reduction (Sect. 4.2).

Remark 2. The Bernstein polytope for univariate polynomials can be tightened,
e.g., with B

(2)
1 (xi) ≤ 1/2 as in Fig. 4. The number of hyperplanes is still poly-

nomial, and tighter ranges are obtained. It can also improve the reduction of
domains. Since inequalities for multivariate polynomials are just products of
inequalities for univariate ones, the Bernstein polytope for multivariate polyno-
mials (with degree greater than 2) can also be tightened. Adding halfspaces is
not possible with current TBB solvers that use the primal definition.

170 D. Michelucci and C. Fünfzig

Remark 3. A forerunner of this approach is Olivier Beaumont [1], who used
Chebychev polynomials and LP for enclosing multivariate polynomials in his
PhD. In the univariate case, Chebychev inequalities are obtained as follows: the
monomial xd is interpolated in the d Gauss points with a degree d−1 polynomial
T (x), then the error is bounded, which gives inequalities b0 ≤ xd − T (x) ≤ b1.
Actually, any interpolation scheme using its own interpolation points, e.g., the
minimax polynomials, gives inequalities. Inequalities in the multivariate case
(x1, x2, . . . , xn) are again given by relevant products of univariate inequalities.
Chebychev polynomials or the minimax polynomials provide other inequalities
and other halfspaces, which can be used instead or together with the Bernstein
polytope.

0 1

Fig. 4. Tightened Bernstein polytope, e.g., using the inequality x − y ≤ 1/4

4.2 Domain Reduction

This section shows how the solver reduces intervals or boxes, preserving the
contained roots, for the simple equation 4x2 + x − 3 = 0 for x ∈ [0, 1]. Solving
is equivalent to finding the intersection points between the line 4y + x − 3 = 0
and the curve (x, y = x2). This curve is enclosed in its Bernstein polytope,
the triangle of Fig. 1. Intersecting the line and the triangle, i.e., finding the
minimum and maximum value of x, will reduce the interval for x. It is the same
LP problem as above except this time we minimize and maximize x. The LP
tableaux are

min, max : x
0 ≤ B0 = y − 2x + 1
0 ≤ B1 = −2y + 2x
0 ≤ B2 = y,

min x = 3/5 + 2/5B1

y = 3/5− 1/10B1

B0 = 2/5− 9/10B1

B2 = 3/5− 1/10B1,

max x = 7/9− 4/9B0

y = 5/9 + 1/9B0

B1 = 4/9− 10/9B0

B2 = 5/9 + 1/9B0.

Linear Programming for Bernstein Based Solvers 171

Thus the interval [0, 1] for x is reduced to [3/5, 7/9], and no root is lost. To
further reduce this interval, use the scaling in Sect. 7.1, which maps x ∈ [3/5, 7/9]
to X ∈ [0, 1]: x = 3/5 + (7/9 − 3/5)X = b + aX , and the equation in X is
4a2X2+(8ab+b)X+(b−3) = 0. Convergence around a regular root is quadratic
like Newton’s method but the convergence rate is not discussed in detail here.

If the line does not cut the Bernstein triangle, more generally, if the LP
problem is not feasible then it proves that the domain contains no root.

5 Use in Interval Newton Solvers

TBB-based solvers are interval Newton solvers, which rely on the TBB properties
to compute tight ranges of multivariate polynomials.

This section presents the principle of interval Newton methods, which isolates
real roots of a well-constrained system f(x) = 0, x ∈ Rn and f : Rn → Rn, inside
a given initial box B ⊂ Rn. Push B on a stack of boxes to be studied. First try
to reduce B: compute with some interval method a range B′ (an enclosing box)
of N(B), where N(x) = x − f(x)M , where M is the inverse of the jacobian of
f at the centre of the box B. As usual, a floating point approximation of the
inverse is sufficient, and an LU decomposition can be used instead of explicitly
computing the inverse matrix. Roots inside B are located in B ∩B′. If B ∩B′ is
empty, B contains no root. Otherwise, if B ∩B′ is significantly smaller than B,
try to reduce B ∩ B′ again, or, if some Kantorovich test guarantees that there
is a unique root inside and that Newton iterations are going to converge (Sect.
7.3), apply the classical Newton method to the center of B ∩ B′, and add the
resulting root to a list of solutions. If B ∩B′ is not significantly smaller than B,
bissect B ∩B′ for instance along its longest side, or the side which reduced the
least in the current iteration, and push the two halves on the stack. Actually,
a set of residual boxes is typically handled: a box is residual when the box is
small and can no more be divided because of the finite precision of floating point
arithmetic, but the method can not decide on the status of the box, for instance,
it contains a singular root or very close regular roots.

The main difficulty in this algorithm is to compute a tight range bound of
N(B) and this is one topic of this article. Computing an ε-approximation of
the exact range is NP-hard. Thus researchers in the interval analysis community
have proposed several methods to compute in polynomial time a superset of the
exact range with some trade offs between time complexity and accuracy. It turns
out that TBB provide sharp range bounds.

If all equations are quadratic, it is composed of n quadratic polynomials Pi(x),
and it is easy to symbolically compute N(x). Each polynomial is defined by
O(n2) coefficients, represented by floating point values or better by intervals with
floating point bounds. We can also apply the scaling (Sect. 7.1) in polynomial
time so that the studied box B is [0, 1]n. The main problem is then to compute
a range bound of a quadratic polynomial p(x) with x ∈ [0, 1]n. For this, the
method based on TBB and LP is explained in Sect. 4.1.

172 D. Michelucci and C. Fünfzig

6 New Solver

The principle of the Bernstein polytope can be used to compute tight range
bounds of multivariate polynomials and applied to classical interval Newton
methods. However, the Bernstein polytope or tightened Bernstein polytopes
make possible new solvers, which no more refer to Newton’s method.

In this new method, the Bernstein polytope enclosing the quadratic algebraic
patch (x1, . . . , xn, x2

1, . . . , x
2
n, x1x2, . . . , xn−1xn) is defined as before. Moreover,

all equations of f(x) = 0 are translated into n linear constraints in the LP
variables. Quadratic inequalities can also be translated into linear inequalities in
the LP variables: this approach deals very easily with inequalities, in constrast
to other solvers like homotopy solvers. Then 2n linear optimization problems are
solved: minimize xi for i = 1, . . . , n and maximize xi for i = 1, . . . , n.

Figure 1, right, shows this method applied to the equation 4x2 + x − 3 = 0.
Let y be the LP variable representing x2, corresponding to variable x. The
intersection of the convex polygon and the line 4y + x− 3 = 0 gives an interval
[3/5, 7/9] for x, which encloses the root of the equation: 4x2 + x − 3 = 0. This
interval is then mapped to [0, 1]: x = 3/5 + (7/9 − 3/5)X , X ∈ [0, 1] using the
scaling in Sect. 7.1. The same method is then applied to the resulting equation
in X . The convergence is quadratic if there is only a regular root. When the box
is not significantly reduced, for instance for x2 − x = 0, a bisection is performed
as usual. Empirically, almost all bisections separate roots. Note that bisections
are the only way to separate roots, domain reduction can not.

An advantage of this solver is that preconditioning the system, i.e., multiply-
ing equations with the inverse of the jacobian at the center of the box, is not
necessary. All the work is performed by the simplex method.

Indeed, current TBB solvers often need and use some specific procedure to
detect as early as possible that the studied box contains no root [13,11] (Sect.
7.3) in order to avoid an exponential number of bisections, when separating two
close and locally parallel curves in 2D. A recent article [11] proposed a procedure
which also takes into account inequalities gi(x) ≤ 0 in the system f(x) = 0,
g(x) ≤ 0. Its principle is to search with linear programming a polynomial h(x) =∑

j αjfj(x)+
∑

βigi(x) with αj ∈ R and βi ≥ 0 such that h(x) is always greater
than 1 in the studied box, i.e., its smallest coefficient in the TBB is 1. If such
an h exists then the studied box contains no root. It turns out that this new
solver detects early that boxes contain no root without any specific procedures,
i.e., the LP problem is not feasible in this case.

7 Technicalities

7.1 Scaling

After reduction, the reduced box is no more [0, 1]n. A scaling maps the box [u, v]
with ui ≤ vi to the unit hypercube [0, 1]n. Define xi = ui + (vi − ui)Xi with
wi = vi − ui, X ∈ [0, 1]n. Then x2

i = w2
i X2

i + 2uiwiXi + u2
i ,

Linear Programming for Bernstein Based Solvers 173

xixj = wiwjXiXj + uiwjXj + ujwiXi + uiuj. Scaling is a linear mapping in
the space of the LP variables.

Another possibility is to scale the Bernstein polytope. The equalities and
inequalities of the system f(x) = 0, g(x) ≤ 0 are left unchanged by this. As
usual in the LP problem, the monomial x2

i is represented by some LP variable
qi, and the monomial xixj by some LP variable xij . For a box xi = [ui, vi] with
wi = vi − ui, the hyperplanes of the Bernstein polytope are changed as follows

B
(2)
0 (xi) ≥ 0 ⇒ (vi − xi)2 = qi − 2vixi + v2

i ≥ 0
B

(2)
1 (xi) ≥ 0 ⇒ 2(xi − ui)(vi − xi) = 2(−qi + (ui + vi)xi − uivi) ≥ 0

B
(2)
2 (xi) ≥ 0 ⇒ (xi − ui)2 = qi − 2uixi + u2

i ≥ 0
B

(1)
0 (xi)B

(1)
0 (xj) ≥ 0⇒ (vi − xi)(vj − xj) = xij − vixj − vjxi + vivj ≥ 0

B
(1)
0 (xi)B

(1)
1 (xj) ≥ 0⇒ (vi − xi)(xj − uj) = −xij + ujxi + vixj − viuj ≥ 0

B
(1)
1 (xi)B

(1)
1 (xj) ≥ 0⇒ (xi − ui)(xj − uj) = xij − ujxi − uixj + uiuj ≥ 0.

7.2 Inaccuracy Issues

The Bernstein polytope encloses very tightly the underlying algebraic quadratic
patch: (x1, . . . , xn, x2

1, . . . , x
2
n, x1x2, . . . , xn−1xn), xi ∈ [0, 1]. Thus with a naive

floating point implementation, some roots are missed because of rounding errors.
For example, when solving x2 − x = 0 with x ∈ [0, 1], the line y − x = 0
is considered, see Fig. 1. If this line becomes y − x = ε with ε > 0 due to
inaccuracy, the two roots are missed.

For conciseness, we only mention the principle of three solutions: the first and
the simplest one is to resort to an exact rational arithmetic; unfortunately it is
terribly slow. Michelucci’s solver uses this first solution. We then considered a
second solution, which resorts to interval arithmetics [1,9]; intervals bounds are
floating point numbers, and intervals are rounded outwards at each operation.
The used intervals are typically some ULPs large and they only account for the
rounding inaccuracy. However, the simplex algorithm has to be modified so it is
impossible to use pre-existing LP solvers in floating point arithmetic. For this
reason, we prefered a third approach: the solution error of the final linear system
in the LP solver is bounded by a backwards error analysis à la Wilkinson, and the
LP inequalities are changed accordingly. Fünfzig’s solver used this approach [6].

7.3 Guarantees and Theorems

Interval solvers use procedures to prove that the studied box contains no root,
or contains at least one root, or contains a unique regular root. These tests rely
on mathematical theorems, e.g., Miranda or Kantorovich. This section presents
mathematical theorems, which fit well with TBB solvers, including the new solver
in Sect. 6. Details will be given elsewhere in a forthcoming article.

Some solvers require an existence test. Poincaré-Miranda’s theorem, can be
used in TBB solvers [11] to prove that a given box contains at least one root
of a system of equation. This theorem states under mild assumptions (i.e., the

174 D. Michelucci and C. Fünfzig

continuity of the functions fi) that if n continuous functions from Rn to Rn are
such that each function fi(x) is always negative on the hyperface xi = 0 of the
hypercube [0, 1]n and fi(x) is always positive on the opposite hyperface xi = 1
for i = 1, . . . , n, then the system f1(x) = . . . = fn(x) = 0 has at least one root in
the hypercube [0, 1]n. The hypothesis of Miranda’s theorem is more likely to hold
if the system is preconditioned. Instead of solving the initial system f(x) = 0, a
linear combination of the fi is considered so that its jacobian is approximately
the identity matrice at the center of the studied box. This preconditioned system
is g(x) = J(xc)−1f(x) = 0.

Some solvers require an uniqueness test. Newton-Kantorovich’s theorem can
be used to prove that a box contains a unique regular root of a system of non-
linear equations. This theorem is especially convenient for algebraic quadratic
systems, where second derivatives are constant. A second computable condition
for uniqueness is given by Kim and Elber [5]: they prove that if the null vector is
the only common tangent vector to hypersurfaces fi(x) = 0 then the uniqueness
of the root is guaranteed. An equivalent condition is that all enclosing cones of
normals of the n hypersurfaces fi(x) = 0 are disjoint. After preconditionning,
this condition becomes likely for a small enough box enclosing a unique regular
root r. In this case, preconditioning makes hypersurfaces close to orthogonal
planes passing through r. A third computable condition that guarantees unique-
ness considers the Newton map: n(x) = x−Mf(x), where f(x) = 0 is the system
to be solved and where M is close to the inverse of the jacobian of f at the center
of the studied box. It also considers the norm of its jacobian n′(x) = I−Mf ′(x).
If for some norm ‖n′(x)‖ < 1 in the studied box then n(x) is guaranteed to be
contracting in the studied box, which proves that the root is unique. An upper
bound of the maximum and infinite norms can be computed with interval anal-
ysis. The approach proposed in this article is also able to compute such upper
bounds for matrix norms.

Several methods have been proposed to detect quickly that a studied box
contains no root [13,11]. The paper [11] takes also into account inequalities
gi(x) ≤ 0. Its principle is to search with linear programming a polynomial
h =

∑
j αjfj +

∑
βigi with αj ∈ R and βi ≥ 0 such that h > 1 in the studied box

with the smallest coefficient in the TBB is 1. If such h exists then the studied box
contains no root. It turns out that the new solver in Sect. 6 straightforwardly
supersedes this method. The studied box contains no root if the feasible set of
the LP problem is empty.

7.4 Solver Implementation

Dominique Michelucci implemented the first variant of the new solver described
in Sect. 6 in May 2008. He used exact rational arithmetic to avoid errors due
to numerical inaccuracy, and a straightforward simplex solver [2] with ratio-
nal arithmetic in Ocaml. This implementation shows the feasibility of the LP
reduction approach but the solver is too slow in practice.

Linear Programming for Bernstein Based Solvers 175

Fig. 5. Comparison of the new solver and a standard interval Newton solver on the same
2D examples. Top: boxes computed with the new solver. Bottom: boxes computed
with a standard interval Newton solver. Clearly, the new solver earlier detects empty
boxes, and its convergence rate is better.

+

0

1

2

e

0 1

y

x

y = exp x

e

e−

Fig. 6. A convex polygon enclosing the section of the curve (x, y = expx), 0 ≤ x ≤ 1.
e is enclosed in an interval [e−, e+].

176 D. Michelucci and C. Fünfzig

Then, Christoph Fünfzig implemented the first floating-point variant of this
solver in January-June 2009 during his postdoctorate in Dijon [6]. For solving
LP problems, Christoph’s solver relies on the freely available revised simplex
solver SoPlex 1.4.1 developed by Roland Wunderling [18] in his PhD thesis.
The solver needs only floating point arithmetic and routinely solves non-linear
systems with several dozens of non-linear algebraic (quadratic or higher degrees)
equations and unknowns, which previous Bernstein based solvers are not able
to solve. In [6], we generate quadratic systems with arbitrary size from circle-
packing representations of planar and completely triangulated graphs. [6] gives
other examples from geometric constraints in 3D, like the molecule problem,
for instance the Stewart platform also called the octahedron problem, or the
computation of lines tangent to four given spheres in 3D.

Examples in 2D can be drawn and permit to visually compare the new solver
with a standard interval Newton solver. Figure 5 from [6] shows the computation
of intersection points between two conics, in the top row with the new solver,
and in the bottom row with a standard interval Newton solver.

Both solvers run on the CPU. We are considering the project of GPU im-
plementations: for each box reduction, the 2n LP problems can be solved in
parallel. Moreover, there is some intrinsic parallelism in the simplex method
and in interior-point LP solvers. Thus, a GPU implementation may divide the
running time by more than 2n, where n is the number of unknowns.

8 Conclusion and Future Work

This article has proposed the first polynomial time method to overcome the diffi-
culty due to the exponential cardinality of the TBB. It has defined the Bernstein
polytope, which is only implicit in previous TBB solvers. Here are possible future
works and concerns, which could not be discussed in detail:

Examples of geometric constraints solving and implementation issues are dis-
cussed elsewhere [6] such as accounting for inaccuracy in the simplex method.

GPU implementations of the new solver are possible and planned for a near
future.

The Newton-Kantorovich theorem provides a simple and convenient test to
prove the uniqueness of a regular root in a box, especially for quadratic systems
where all second derivatives are constant. This issue, not specific to TBB solvers,
could not be discussed here, as well as deciding about the existence of at least
one root in a given box, e.g., the test relying on Miranda’s theorem [11].

In [7], we compare the Bernstein polytope with other polytopes like the TBB
polytope. The TBB polytope gives exactly the same bounds as the smallest
and the largest TBB coefficient. The TBB polytope is tighter than the Bern-
stein polytope but it has exponential size and complexity: both, its number of
hyperplanes and its number of vertices are exponential. [7] concludes that the
Bernstein polytope is the best compromise.

The Bernstein polytope should be defined for higher degrees and for other
geometric bases, e.g., spline bases. It will extend the scope of the geometric
solver by Kim and Elber [5].

Linear Programming for Bernstein Based Solvers 177

The new solver can be generalized in order to manage non-algebraic equations,
using for instance transcendental functions cos, exp, etc. It suffices to compute a
convex polygone enclosing the 2D curve (x, cosx) and the 2D curve (x, exp x) for
x ∈ [a, b]. Figure 6 shows a possible convex polygon for (x, exp x) for x ∈ [0, 1].
This feature is a great advantage compared to other solvers, e.g., homotopy.

The new solver applies without modification to over-constrained systems,
where inaccuracy is a serious issue again, but more work is needed to extend
it to under-constrained systems, and to compute in a certified manner the topol-
ogy of semi-algebraic or semi-analytic sets defined by a system of equations and
inequalities [3,14]. However, we already use the two solvers to compute tight
covers of curves and surfaces [6].

Acknowledgements. We thankfully acknowledge the Regional Council of Bur-
gundy for funding the postdoc position of Ch. Fünfzig at the LE2I in Dijon. This
funding has been essential.

References

1. Beaumont, O.: Algorithmique pour les intervalles. Ph.D. thesis, Université de
Rennes 1 (1999)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms,
2nd edn. MIT Press, Cambridge (2001)

3. Delanoue, N., Jaulin, L., Cottenceau, B.: Guaranteeing the homotopy type of a set
defined by nonlinear inequalities. Reliable Computing 13(5), 381–398 (2007)

4. Durand, C.B.: Symbolic and Numerical Techniques for Constraint Solving. Ph.D.
thesis, Purdue University (1998)

5. Elber, G., Kim, M.-S.: Geometric constraint solver using multivariate rational
spline functions. In: SMA 2001: Proc. of the 6th ACM Symp. on Solid Modeling and
Applications, pp. 1–10. ACM Press, New York (2001), doi:10.1145/376957.376958

6. Fünfzig, C., Michelucci, D., Foufou, S.: Nonlinear systems solver in floating-point
arithmetic using lp reduction. In: SPM 2009: 2009 SIAM/ACM Joint Confer-
ence on Geometric and Physical Modeling, pp. 123–134. ACM, New York (2009),
doi:10.1145/1629255.1629271

7. Fünfzig, C., Michelucci, D., Foufou, S.: Optimizations for bernstein-based solvers
using domain reduction. In: CD Proceedings of Eighth International Symposium on
Tools and Methods of Competitive Engineering (TMCE 2010). Faculty of Industrial
Design Engineering, Delft University of Technology, Ancona, Italy (2010)

8. Garloff, J., Smith, A.P.: Investigation of a subdivision based algorithm for solving
systems of polynomial equations. Journal of Nonlinear Analysis: Series A Theory
and Methods 47(1), 167–178 (2001)

9. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht
(1996)

10. Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G.: Comparison of interval
methods for plotting algebraic curves. Computer Aided Geometric Design 7(19),
553–587 (2002), citeseer.ist.psu.edu/article/martin02comparison.html

11. Michelucci, D., Foufou, S.: Bernstein basis for interval analysis: application to
geometric constraints systems solving. In: Bruguera, Daumas (eds.) Proceedings of
8th Conference on Real Numbers and Computers, pp. 37–46. Unidixital, Santiago
de Compostela (2008)

citeseer.ist.psu.edu/article/martin02comparison.html

178 D. Michelucci and C. Fünfzig

12. Michelucci, D.: Solving geometric constraints by homotopy. IEEE Trans on
Visualization and Computer Graphics, 28–34 (1996)

13. Mourrain, B., Pavone, J.-P.: Subdivision methods for solving polynomial equations.
Journal of Symbolic Computation 3(44), 292–306 (2009)

14. Delanoue, N., Jaulin, L., Cottenceau, B.: Using interval arithmetic to prove that a
set is path-connected. Theoretical Computer Science, Special issue: Real Numbers
and Computers 351(1), 119–128 (2006)

15. Reuter, M., Mikkelsen, T.S., Sherbrooke, E.C., Maekawa, T., Patrikalakis, N.M.:
Solving nonlinear polynomial systems in the barycentric bernstein basis. Vis. Com-
put. 24(3), 187–200 (2008)

16. Sherbrooke, E.C., Patrikalakis, N.M.: Computation of the solutions of nonlinear
polynomial systems. Comput. Aided Geom. Des. 10(5), 379–405 (1993)

17. Sommese, A.J., Wampler, C.W.: Numerical solution of polynomial systems arising
in engineering and science. World Scientific Press, Singapore (2005)

18. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. the-
sis, TU Berlin (1996), http://www.zib.de/Publications/abstracts/TR-96-09/

http://www.zib.de/Publications/abstracts/TR-96-09/

Offsetting Revolution Surfaces�

Fernando San Segundo and J. Rafael Sendra

Universidad de Alcalá, Depto. de Matemáticas,
E-28871 Alcalá de Henares, Madrid, Spain

{fernando.sansegundo,rafael.sendra}@uah.es

Abstract. In this paper, first, we provide a resultant-based implicitiza-
tion method for revolution surfaces, generated by non necessarily rational
curves. Secondly, we analyze the offsetting problem for revolution sur-
faces, proving that the offsetting and the revolution constructions are
commutative. Finally, as a consequence of this, the (total and partial)
degree formulas for the generic offset to an irreducible plane curve, given
in our previous papers, are extended to the case of offsets to surfaces of
revolution.

Keywords: offset, revolution surface, implicit equation.

1 Introduction

Revolution surfaces are very common objects in Computer Aided Geometric De-
sign, and offsetting a surface is also a frequently used process in the applications.
Thus, it is natural to study the offsetting process for these special surfaces. In
the Geometric Modeling literature, revolution surfaces are often introduced in-
formally, and under the assumption that they are generated by a rational plane
curve (see e.g. [1], [4], [6]). Here we address the more general situation, in which
the generating curve is any algebraic plane curve C, given by its implicit equation.

In order to do this, in the first part of our work, we introduce a formal notion
of surface of revolution by means of incidence diagrams, and from there we state
some preliminary properties. Then we show how the implicit equation of the
revolution surface is related to the implicit equation of the initial curve by means
of resultants. This result shows that, even when the generating curve is a rational
curve given parametrically, an efficient way to obtain the implicit equation of
a revolution surface is to apply the most suitable curve implicitization method,
and then use the result in Theorem 6.

In the second part, we apply the above ideas and results to the offsetting
process in the case of revolution surfaces. The main result of this part is Theo-
rem 11, where we prove that the offset of a revolution surface is the surface of
revolution of the offset curve. From this result, many properties of the offset to
a surface of revolution may be traced back to the properties of the generating

� This work has been partially supported by Research Project MTM2008-04699-C03-
01 of the Spanish Ministerio de Ciencia e Innovación.

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 179–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

180 F.S. Segundo and J.R. Sendra

curve. Here we focus on the degree problem for offset surfaces. Thus, we show
how the formulae in [7] and [9] generalize to surfaces of revolution. This provides,
to our knowledge, the first example in the literature of offset degree analysis for
a certain family of surfaces.

Some of these results have been presented, in the form of a short commu-
nication, at EACA 2008, held at Granada, Spain, in September 2008, and a
short version of this work appears in the book of abstracts of that conference
(see [8]).

2 Surfaces of Revolution

In the sequel, IK is an algebraically closed field of characteristic zero. For the ap-
plication to CAGD, one considers IK = C as the algebraic closure of IR. Let C be
an algebraic irreducible plane affine curve (seen in the coordinate (y2, y3)–plane)
defined by the irreducible polynomial f(y2, y3) ∈ IK[y2, y3], and not equal to the
line y2 = 0 (this is because we will rotate around this line). The construction is
illustrated in Fig. 1.

*-

Fig. 1. Construction of a Surface of Revolution

Formally, in order to introduce the revolution construction, we consider the
following incidence diagram:

B ⊂ IK5

π1

�������������
π2

��������������

π1(B) ⊂ IK3 C × IK ⊂ IK2 × IK

Offsetting Revolution Surfaces 181

where, denoting ȳ = (y1, y2, y3), the revolution incidence variety is

B =

⎧⎪⎪⎨
⎪⎪⎩(r, ȳ, λ) ∈ IK5

∣∣∣∣∣∣∣∣
f(r, y3) = 0,
r2 = y2

1 + y2
2 ,

(1 + λ2)y1 = 2λr,
(1 + λ2)y2 = (1− λ2)r.

⎫⎪⎪⎬
⎪⎪⎭ ,

with this projection maps:

π1 : IK5 −→ IK3, π2 : IK5 −→ IK2 × IK
(r, y1, y2, y3, λ)
−→ (y1, y2, y3) (r, y1, y2, y3, λ)
−→ ((r, y3), λ).

With this notation we are ready for the formal definition:

Definition 1. The surface of revolution generated by rotating C around the y3

axis is the Zariski closure π1(B)∗ of π1(B). We denote the surface of revolution
of C by Revy3(C).
The following lemma lists the properties of the incidence diagram that we will
need in the sequel:

Lemma 2. Let C be irreducible, and not equal to the line y2 = 0.

(1) π2 is a birational map.
(2) π1 is a finite map.

Proof. First note that, for ((r, y3), λ) ∈ C × (IK \ {±
√
−1}), the inverse of π2 is

given by

π−1
2 ((r, y3), λ) =

(
r,

2rλ

λ2 + 1
,
(1− λ2)r
λ2 + 1

, y3, λ

)
.

On the other hand, since C is not the line y2 = 0, we can find a point (in fact
infinitely many) (r0, c) ∈ C with r0 �= 0. Then the point p = (r0, 0, r0, c, 0) is in
B, and since π1(r0, 0, r0, c, 0) = (0, r0, c), the fiber π−1

1 (π1(p)) is determined by
the system:{

f(r, c) = 0, r2 = 02 + r2
0 , (1 + λ2)0 = 2λr, (1 + λ2)r0 = (1− λ2)r

}
.

Therefore, because of r0 �= 0, we must have λ = 0 and r = r0. The fiber is thus
zero-dimensional (see Theorem 11.12 in [5]). �
Remark 3. Note that if C is the line y2 = 0, then all the points in B are of the
form p = (0, a, b, c, λ0) with a2+b2 = 0 or λ2

0+1 = 0. In the first case, π−1
1 (π1(p))

contains all the points (0, a, b, c, μ) for any μ ∈ IK. In the second case, π−1
1 (π1(p))

contains all the points (0, α, β, c, λ0) with α2 + β2 = 0. In any case the fiber is
1-dimensional, and it follows that dim(Revy3(C)) = dim(B)− 1 = 1.

The following proposition, which is a direct consequence of the previous lemma,
shows that the above notion of revolution surface is well defined.

Proposition 4. Let C be irreducible, and not equal to the line y2 = 0. Then
Revy3(C) is an irreducible surface.

Remark 5. Note that, if C is not irreducible, then its surface of revolution can
be introduced as the union of the surfaces of revolution of its components.

182 F.S. Segundo and J.R. Sendra

3 Implicitization of Revolution Surfaces

Our next goal is to derive a method for computing the implicit equation of
Revy3(C). For this purpose, first, collecting terms of odd and even degree in y2,
we write f (i.e. the implicit equation of C) as follows:

f(y2, y3) = A(y2
2 , y3) + y2B(y2

2 , y3). (1)

We will see that there are two cases to consider:

– case (a): either B = 0 and hence f ∈ IK[y2
2 , y3]; that is, f contains only even

powers of y2,
– case (b): or B �= 0, when f contains at least one odd power of y2.

Then, the following theorem shows how the implicit equations of Revy3(C) and
C are related by means of resultants.

Theorem 6. Let σ(y1, y2, y3) be the implicit equation of Revy3(C), and let the
implicit equation of C be f(y2, y3). Then there exists � ∈ IN such that

σ(y1, y2, y3)	 = Resr(f(r, y3), r2 − (y2
1 + y2

2)).

Furthermore, if R(y1, y2, y3) is the above resultant, it holds that:

1. In case (a), R(y1, y2, y3) = (A(y2
1 + y2

2 , y3))2, and so

σ(y1, y2, y3) = A(y2
1 + y2

2 , y3).

2. In case (b),

σ(y1, y2, y3) = R(y1, y2, y3) = A2(y2
1 + y2

2 , y3)− (y2
1 + y2

2)B
2(y2

1 + y2
2 , y3).

Proof. Let I be the ideal in IK[r, y1, y2, y3, λ] generated as follows:

I = 〈f(r, y3), r2 − y2
1 − y2

2 , (1 + λ2)y1 − 2λr, (1 + λ2)y3 − (1− λ2)r〉

(that is, the ideal generated by the polynomials in B). Observe that the resultant
R belongs to the (r, λ)-elimination ideal I∩IK[y1, y2, y3]. Moreover, R equals the
product of f(r, y3) evaluated at the roots of r2 − y2

1 − y2
2 as a polynomial in r

(see e.g. [12]). So R = f(
√

y2
1 + y2

2 , y3)f(−
√

y2
1 + y2

2 , y3). Therefore, in case (a),
R(ȳ) = (A(y2

1 + y2
2 , y3))2. Furthermore, in case (b),

R(ȳ) = A2(y2
1 + y2

2 , y3)− (y2
1 + y2

2)B
2(y2

1 + y2
2 , y3).

Now, in either case, since σ is irreducible, it divides R. And conversely, using
that r2 − y2

1 − y2
2 is monic in r, by the Extension Theorem for resultants (see

[3]) one deduces that R(ȳ) defines a surface contained in Revy3(C). Thus, σ is
the square-free part of R. �

Offsetting Revolution Surfaces 183

Remark 7. If C is not irreducible, the method described in this theorem still
provides the implicit equation of its surface of revolution; in this case, the square-
free part of the resultant factors into the implicit equations of the components
of Revy3(C).

Next theorem, that is a direct consequence of the previous theorem, gives a
complete degree analysis of Revy3(C).

Theorem 8. Let σ(y1, y2, y3) be the implicit equation of Revy3(C), and let the
implicit equation of C be f(y2, y3). Then, it holds that:

1. In case (a), deg(y1,y2,y3)(σ) = deg(y2,y3)(f), degyi
(σ) = degy2

(f), for i = 1, 2,
and degy3

(σ) = degy3
(f).

2. In case (b), deg(y1,y2,y3)(σ) = 2 deg(y2,y3)(f), degyi
(σ) = 2 degy2

(f), for
i = 1, 2, and degy3

(σ) = 2 degy3
(f).

We finish this section with an illustrating example.

Example 9. Let C be the non-rational cubic defined by f(y2, y3) = y2
3−y2(y2

2−1).
Then A(y2, y3) = y2

3 and B(y2, y3) = −(y2
2 − 1) �= 0, and so f(y2, y3) is in case

(b). Thus, the implicit equation of Revy3(C) is given by:

σ(y1, y2, y3) = y4
3 − (y2

1 + y2
2)((y

2
1 + y2

2)− 1)2.

4 Offsets to Revolution Surfaces

In this section we apply the above results to analyze the offsetting process in
the case of revolution surfaces. Let C be a curve as above. We denote by Od(C)
the offset to C at distance d (see [2]). The normal vectors to Revy3(C) have the
following (geometrically intuitive) fundamental property.

Lemma 10. Let p̃ ∈ Revy3(C) be obtained rotating p ∈ C around the y3 axis,
and let us denote by θ the particular rotation carrying p to p̃. Then, Ñ(p̃), the
normal vector to Revy3(C) at p̃, is parallel to the vector θ(Ñ(p)), obtained by
applying the same rotation to the normal vector N(p) to C at p.

Proof. With the notation introduced for the revolution incidence variety, note
that if p = (0, r, y3) ∈ C and (r, y3, λ) ∈ B, then the rotation in the statement is
given by the following matrix:

M =

⎛
⎜⎜⎜⎜⎜⎝

1− λ2

λ2 + 1
2λ

λ2 + 1
0

−2λ

λ2 + 1
1− λ2

λ2 + 1
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

184 F.S. Segundo and J.R. Sendra

and therefore p̃ = θ(p) =
(

2rλ
λ2+1 , (1−λ2)r

λ2+1 , y3

)
. Then, from (1), it is easy to check

that a normal vector to C at p is given by:

Ñ(p) = [0, 2 ∂1A(ν)r + B(ν) + 2 r2∂1B(ν), ∂2A
(
r2, y3

)
+ r∂2B(ν)],

where ν =
(
r2, y3

)
and ∂1A, ∂2A denote the partial derivatives of A w.r.t. its first

and second variable, respectively (similarly for B). The rotation of this normal
vector, θ(Ñ(p)), is given by M ·N(p), where M is the above matrix. On the other
hand, computing the gradient ∇σ(p̃), and taking into account that σ(p̃) = 0, a
straightforward computation shows that:

∇σ(p̃) ∧M ·N(p) = 0,

where ∧ denotes cross product. This concludes the proof of our claim. �

In the following theorem, which is a direct consequence of the above reasonings,
we assume that both C and Od(C) are in the (y2, y3)–plane.

Theorem 11. Od(Revy3(C)) = Revy3(Od(C)).
Now we turn to the degree problem. From the last theorem, if we can deduce
in which case ((a) or (b)) of Theorem 6) the implicit equation of Od(C) is, then
applying Theorem 8 as well as results in [7] and [9], we can provide formulae for
the partial and total degree of Od(Revy3(C)). Note that polynomials in IK[y2

2 , y3]
(that is, the polynomials in case (b)) are characterized by the symmetry condi-
tion f(−y2, y3) = f(y2, y3). Thus, we need to show that this symmetry condition
is inherited by the offset. The answer is contained in the following two proposi-
tions. The first one analyzes the problem from the implicit point of view. The
second one shows how to detect this property from the parametric point of view.
This is useful e.g. if one is given a parametric representation of the generating
curve, and wishes to obtain the offset surface degrees without implicitizing the
curve.

In the following proposition, let f(y2, y3) be the polynomial defining C and let
g(y2, y3, d) be the generic equation of the offset Od(C) (see [9] for its definition
and properties).

Proposition 12. Let f(y2, y3) and g(y2, y3, d) be the polynomials defining C and
Od(C), respectively. Then, g(y2, y3, d) = g(−y2, y3, d) if and only if f(y2, y3) =
f(−y2, y3).

Proof. The right-left implication follows from the offset geometric construction,
because the normal vector to C and the normal vector to its offset at the corre-
sponding points are parallel. Conversely, suppose that g(y2, y3, d) = g(−y2, y3, d).
Now, let d0 be such that no coefficient w.r.t. {y2, y3} of g vanishes when substi-
tuting d by d0, and such that g(y2, y3, d0) is the implicit equation ofOd0(C). Then
Od0(Od0(C)) = C ∪O2d0(C) (see [10]). Let g̃(y2, y3, d0) be the polynomial defining
Od0(Od0(C)). Then g̃(y2, y3, d0) = g(y2, y3, 2d0)f(y2, y3). Furthermore, because
of the hypothesis and how d0 has been taken, g(y2, y3, 2d0) = g(−y2, y3, 2d0).

Offsetting Revolution Surfaces 185

Moreover, because of the first implication g̃(y2, y3, d0) inherits this property. Now,
from g̃ = gf , it follows immediately that f(y2, y3) = f(−y2, y3). �

Now we show how to detect this symmetry from a parametrization of C. So we
assume that C is rational, and that

PC(t) =
(

C1(t)
C3(t)

,
C2(t)
C3(t)

)
, with gcd(C1, C2, C3) = 1, (2)

is a rational parametrization of C. Then, the symmetry condition can be trans-
lated into asking that

P̃C(s) =
(
−C1(s)

C3(s)
,
C2(s)
C3(s)

)
also parametrizes C. So, taking into account that the implicit equation of C is the
square-free part of Rest(C3y2 −C1, C3y3 −C2) (see [11]), one gets the following
result.

Proposition 13. Let g(y2, y3, d) be the generic offset equation for Od(C). Then
g(y2, y3, d) = g(−y2, y3, d) iff

gcd(C3(t)C1(s) + C1(t)C3(s), C3(t)C2(s)− C2(t)C3(s))

is non-trivial.

Proof. Let

M1(s, t) = C3(t)C1(s) + C3(s)C1(t), M2(s, t) = C3(t)C2(s)− C3(s)C2(t),

and D(s, t) = gcd(M1, M2). We first observe that M1 and M2 can not be both
simultaneously zero, since this would imply that PC is not a parametrization.
Moreover, note that if either C1

C3
or C2

C3
is constant, the result follows. Thus, in

the rest of the proof we assume that no component of P is constant.
Let D ⊂ IK3 be defined as follows:

D := {(to, so, uo) ∈ IK3 |uoC3(to)C3(so) = 1, M1(to, so) = M2(to, so) = 0}.

We consider the diagram:

D
π1

������������������
π2

������������������

π1(D) ⊂ IK

P̃C

		�������������������
π2(D) ⊂ IK

PC

�������������������

Δ := PC(IK) ∩ P̃C(IK)

186 F.S. Segundo and J.R. Sendra

where π1(to, so, uo) = to, π2(to, so, uo) = so and P̃C(s) =
(
−C1(s)

C3(s)
, C2(s)

C3(s)

)
is

as in (2). We observe that the diagram is commutative and that PC ◦ π1 and
P̃C ◦ π2 are both surjective on Δ. Let D be constant. Then D is either empty,
or zero-dimensional. Thus, Δ is either empty or zero-dimensional. In particular,
P̃C does not parametrize C, and by Proposition 12 we conclude that f(y2, y3) �=
f(−y2, y3). If D is a non-constant polynomial, we first observe that

gcd(D, C3(t)) = gcd(D, C3(s)) = 1.

Indeed, if gcd(D, C3(t)) �= 1 (similarly if gcd(D, C3(s)) �= 1), then M1(t, s) and
M2(t, s) have a non-trivial common factor depending only on t. Taking into
account that no component of P is constant, that factor would then divide
C1(t), C2(t) and C3(t), which is impossible because gcd(C1, C2, C3) = 1 by hy-
pothesis. In this situation we have that dim(D) = 1, and that IK\π1(D) is empty
or finite. The same holds for IK \ π2(D). Thus, dim(Δ) = 1. This implies, by
Proposition 12, that f(y2, y3) = f(−y2, y3). �

Using these results, one derives the following algorithm for the solution of the
offset degree problem in the case of surfaces of revolution.

Algorithm:
Offset Degree for the Surface of Revolution Generated by the Curve C.

– Input: Either the defining polynomial f or a rational parametrization PC(t),
as above, of C (C is not the axes y2 = 0).

– Output: The total and partial degrees of Od(Revy3(C)).

1. Apply either Proposition 12 or 13 to check whether the generic offset equa-
tion g(y2, y3, d) of Od(C) is in case(a) or case(b) (with the terminology in-
troduced before Theorem 6).

2. Apply formulae in [7], [9] to get

δ = degy2,y3
(g), δ2 = degy2

(g), δ3 = degy3
(g), δd = degd(g).

3. Let G(y1, y2, y3, d) be the polynomial defining Od(Revy3(C)).
In case (a) return:
degȳ(G) = δ, degy1

(G) = degy2
(G) = δ2, degy3

(G) = δ3, degd(G) = δd.
In case (b), return:
degȳ(G) = 2δ, degy1

(G) = degy2
(G) = 2δ2, degy3

(G) = 2δ3, degd(G) = 2δd.

Let us finish with some examples:

Example 14. Consider the parabola with equation given by f(y2, y3) = y3 − y2
2 .

Then obviously f(−y2, y3) = f(y2, y3), and so we are in case (a). Applying the
formulae in [7] and [9], one has: {δ = 6, δ2 = 6, δ3 = 4, δd = 6}, and so the
algorithm returns {deg(y1,y2,y3)(G) = 6, degy1

(G) = degy2
(G) = 6, degy3

(G) =
4, degd(G) = 6} for the degrees of the offset of the circular paraboloid defined
by y3 − (y2

1 + y2
2) = 0, which is the surface of revolution generated by C.

Offsetting Revolution Surfaces 187

Example 15. For the non-rational cubic C in Example 9, the formulae in [7] and
[9], give: {δ = 14, δ2 = 14, δ3 = 12, δd = 14}, and so, since we are in case (b), the
algorithm returns

deg(y1,y2,y3)(G) = 28, degy1
(G) = degy2

(G) = 28, degy3
(G) = 24, degd(G) = 28,

for the degrees of Revy3(C).

Example 16. Let C be the lemniscate parametrized by

PC(t) =

(√
2(t + t3)
1 + t4

,

√
2(t− t3)
1 + t4

)
.

Then one has

gcd(C3(t)C1(s) + C1(t)C3(s), C3(t)C2(s)− C2(t)C3(s)) = ts + 1,

and it follows that we are in case (a). Using the formulae in [7] and [9], one has:
{δ = δ2 = δ3 = δd = 12}, and so the algorithm returns

{deg(y1,y2,y3)(G) = degy1
(G) = degy2

(G) = degy3
(G) = degd(G) = 12}

for the degrees of Revy3(C).

Example 17. Let C be the Folium parametrized by

PC(t) =
(

3t

1 + t3
,

3t2

1 + t3

)
.

Then one has

gcd(C3(t)C1(s) + C1(t)C3(s), C3(t)C2(s)− C2(t)C3(s)) = 3

and we are in case (b). Using the formulae in [7] and [9], one has: {δ = δ2 =
δ3 = δd = 14}, and so the algorithm returns

{deg(y1,y2,y3)(G) = degy1
(G) = degy2

(G) = degy3
(G) = degd(G) = 28}

for the degrees of Revy3(C).

References

1. Agoston, M.K.: Computer Graphics and Geometric Modeling: Implementation and
Algorithms. Springer, Heidelberg (2005)

2. Arrondo, E., Sendra, J., Sendra, J.R.: Parametric generalized offsets to hypersur-
faces. Journal of Symbolic Computation 23(2-3), 267–285 (1997)

3. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, 2nd edn.
Springer, Heidelberg (1997)

188 F.S. Segundo and J.R. Sendra

4. Farin, G.E.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kauf-
mann, San Francisco (2001)

5. Harris, J.: Algebraic Geometry: A First Course. Springer, Heidelberg (1992)
6. Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design

and Manufacturing. Springer, Heidelberg (2002)
7. San Segundo, F., Sendra, J.R.: Degree formulae for offset curves. J. Pure Appl.

Algebra 195(3), 301–335 (2005), doi:10.1016/j.jpaa.2004.08.026
8. San Segundo, F., Sendra, J.R.: The offset degree problem for surfaces of revolu-

tion. In: Proceedings of the XIth Encuentro de Algebra Computacional y Aplica-
ciones(EACA 2008), Universidad de Granada, pp. 65–68 (2008)

9. San Segundo, F., Sendra, J.R.: Partial degree formulae for plane offset curves. Jour-
nal of Symbolic Computation 44(6), 635–654 (2009), doi:10.1016/j.jsc.2008.10.002

10. Sendra, J.R., Sendra, J.: Algebraic analysis of offsets to hypersurfaces. Mathema-
tische Zeitschrift 234(4), 697–719 (2000)

11. Sendra, J.R., Winkler, F., Pérez-Dı́az, S.: Rational Algebraic Curves—A Computer
Algebra Approach. Springer, Heidelberg (2007)

12. van der Waerden, B.L.: Algebra. Springer, Heidelberg (2003)

An Introduction to Java Geometry Expert�

(Extended Abstract)

Zheng Ye1, Shang-Ching Chou2, and Xiao-Shan Gao3

1 Zhejiang GongShang University, Zhejiang, China
2 Wichita State Univesity, Kansas, U.S.A

3 KLMM, Institute of Systems Science, Chinese Academy of Sciences, Beijing, China

Abstract. This paper gives a brief introduction to the system Java Ge-
ometry Expert (JGEX). This system consists of three parts: the drawing
part, the proving and reasoning part, and the most distinctive part –
the part for generating visually dynamic presentation of proofs in plane
geometry. The current version of JGEX is beta 0.80, which is available
at our website woody: http://woody.cs.wichita.edu.

Keywords: Plane Geometry, Geometry Theorem Proving, Visually
Dynamic Presentation, Pythagoras’ Theorem.

1 Introduction

Highly successful algebraic methods for automated geometry theorem proving
have been developed since Wu’s pioneering work in 1978 [16]. Hundreds of diffi-
cult geometry theorems have been proved with these methods [7,9,10,4,15,14].

The proofs, generated by these algebraic methods, involve computations of
polynomials with hundreds or even thousands of terms. Thus they are generally
not (human) readable.

Most proofs in geometry textbooks are synthetic (possibly with some very
simple algebraic computations). Students can read the proofs step by step with
assistance of one or more diagrams. However, they often need to spend time
and energy on identifying a geometry element in the proof text with that in the
corresponding diagram. When the same element is mentioned later in the proof
text they might spend equal amounts of time and energy on identifying it again
in the diagram. When the diagram becomes complicated, e.g., there are over a
dozen of points involved in the diagram, the problem becomes serious not only
to novices, but also to experts.

Geometry textbooks generally alleviate this problem by using two or more
diagrams with different marks for angles and segments, and possibly with shad-
owed areas, e.g., a shadowed triangle, in the diagrams. However, this kind of
presentation of proofs is static.

With dynamic mediums such as computer displays, we propose an entirely
new approach – visually dynamic presentation of proofs (VDPP), to solve this
problem.
� The work reported here was supported by NSF Grant CCR-0201253.

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 189–195, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://woody.cs.wichita.edu

190 Z. Ye, S.-C. Chou, and X.-S. Gao

In a single diagram for the proof, when the proof text goes on step by step
with mouse clicks, the related geometry elements in the diagram are animated,
added, or deleted dynamically with various visually dynamic effects.

We have implemented two methods for generating such presentations of proofs
in our developing system Java Geometry Expert (JGEX): the manual input
method and the automated method, which will be illustrated by examples in
later sections.

2 The Parts of JGEX

The Drawing Part [5]. This part has the dynamic geometry features simi-
lar to those used in the popular and excellent systems such as the Geometers
Sketchpad, Cabri, and Cinderella.

With mouse clicks, the diagram is constructed and the corresponding geom-
etry statement is generated with its non-degenerate conditions in its geometric
form. It can be saved in several forms. One form is in plain text, which can be
used in turn to generate the diagram with prompting the user to select points.

The Proving and Reasoning Part. Beside the traditional algebraic methods
such as Wu’s method and the Gröbner basis method, we have also implemented
the full-angle method and the deductive database method [3,6] for generating
short, elegant synthetic proofs. These are the basis of the next part.

The Part of the Visually Dynamic Representation of Proofs. We have
implemented two methods for generation of such visually dynamic representation
(VDPP) which will be discussed in detail in next two sections.

3 The Manual Input Method

JGEX provides a very general tool for manually creating VDPPs. It can be used
by students or teachers to write or to present proofs. We plan to implement four
modes. So far we have only implemented Modes 1 and 2.

Mode 1: Animated Diagrams Only. The approach in this mode is very similar
to the approach of Proof Without Words (PWW) presented in three excellent
books [11,12,13]. However, we add another dimension to the PWW approach,
i.e., instead of a static diagram or a series of static diagrams, the diagram here
is visually dynamic.

Example 1. A Proof of the Pythagorean Theorem (Fig. 1).

This proof is from the webpage [1] which is a collection of 72 proofs of the
Pythagoras theorem. From our visually dynamic presentation in Fig. 1, one
can clearly see the elegance of the proof. For the real animated gif file created
with JGEX see the Collection at http://woody.cs.wichita.edu/collection,
where many JGEX-manually created examples are given, in particular there are
over two dozens of proofs of the Pythagorean Theorem with the area dissection

http://woody.cs.wichita.edu/collection

An Introduction to Java Geometry Expert 191

Fig. 1. A Proof of Pythagorean Theorem with Only Three Moves

method, similar to this one, are given. These examples can be easily created with
JGEX as a general tool.

Mode 2: Proofs with text and an animation diagram. First a student needs to
know the proof. Then he/she inputs the proof step by step mostly with mouse
clicks on the diagram to avoid typos (e.g., typing letter A instead of letter S).
When the proof is completed, others can see the proof step by step while cor-
responding geometry elements in the step are animated to reflect the geometric
meaning of this step.

In this mode, JGEX only verifies numerical correctness of the assertion of a
step by randomly generating many floating point number instances of the dia-
gram. It does not care whether an assertion is a logical consequence of previous
assertions. It could be a good tool for students to write proofs. However, the
teachers need to decide whether the proof is correct or complete.

Example 2. Let circle O be the circumscribed circle of an equilateral triangle
ABC and E a point on the arc AB. Prove that EC = EA + EB (Fig. 2).

Fig. 2. A Proof of the Special Case of Ptolemy’s Theorem

192 Z. Ye, S.-C. Chou, and X.-S. Gao

In Fig. 2, the fact �AFC ∼= �AEB is highlighted with the visual effects as
follows: triangle �AFC and triangle �AEB are filled with colors and a copy
of �AFC is rotated on the fly and drops to �AEB. Fig. 2 is a static diagram
from the animated diagram of this theorem. In this diagram, the red color-filled
triangle is rotating and about to drop to the �AEB.

4 The Automated Methods

In JGEX, we have implemented automated generation of VDPPs with the full-
angle method [3] and with the deductive database method [6]; for details, see our
paper [17] which is already published. The two methods developed in the 1990s
imply automated addition of auxiliary geometric elements: given two points A
and B, three non-collinear points C, D and E, or two lines l1 and l2, if the
automatically generated proof requires, there will be a line AB or a segment
AB, or a circle CDE, or a full-angle 	 [l1, l2], etc. However, the methods are
unable to add a point of intersection of, say, two given lines.

The full-angle method is a natural way to generate proofs with hierarchical
structures. Any non-initial facts found by forward chaining can be expanded to
view the proof of the fact for further investigation. If the proof of this fact has
a sufficient number of steps, we can consider this fact and its proof as a lemma
application. Hierarchically structured proofs allow the user to concentrate on
the main steps.

Example 3. (Simson’s Theorem) Let E be a point on the circumscribed circle(D)
of triangle ABC. Let F , G, and H be the feet of the three perpendicular lines

Fig. 3. Simson’s Theorem

An Introduction to Java Geometry Expert 193

from point E to the three sides AB, BC, and AC, respectively. Show that F , G
and H are collinear (Fig. 3).

Fig. 3 shows the machine-generated proofs with the full-angle method. Step
2 is expanded and highlighted with the two auxiliary angles and one auxil-
iary circle appear and blink. This step uses Rule 8 (See Fig. 3) with the fact
cyclic(C, E, G, H). This fact is found by the forward chaining, i.e., a fact in the
fixpoint. The user can expand this step to view the proof of this fact.

There are two floating windows in Fig. 3. The right one shows the portion
of the diagram where the rule applies. The left one gives the detail of the rule.
In this case, it shows that Rule 8 is the full-angle version of the inscribed angle
theorem.

5 Visualization of Fixpoints

The fixpoint generated by the deductive database method contains surprisingly
rich amounts of information, some of which is very unexpected. Visualizing fix-
points can help users to explore properties that they are not aware of.

Example 4. (The Orthocenter Theorem) Let CD and BE be two altitudes of
triangle ABC, F the intersection of CD and BE, and G the intersection of AF
and BC. Show that 	 [DGA] = 	 [AGE] (Fig. 4).

Fig. 4 shows the fixpoint of this theorem found by forward chaining. There
are seven groups of angle congruence. By clicking one of them (highlighted in

Fig. 4. The Orthocenter Theorem

194 Z. Ye, S.-C. Chou, and X.-S. Gao

Fig. 4), the corresponding angles appear in the diagram. We can see that the
fact ([DGA] = 	 [AGE]) is in the fixpoint thus the conclusion is reached by
forward chaining.

6 Conclusion

JGEX is based on our previous version of Geometry Expert (GEX)[8]. However,
it has been rewritten completely in Java with emphasis on its ease of use. The
most distinctive feature of JGEX is its visually dynamic presentation of proofs.
This makes JGEX a valuable tool for generating and presenting geometry proofs
with various visual effects. It could have many applications, e.g., in geometry
education.

JGEX is still an ongoing developing system. The current version is beta 0.80
which is available in our website woody [2].

References

1. Cut-the-knot,
http://www.cut-the-knot.org/pythagoras/index.shtml

2. Chou, S., Gao, X., Ye, Z.: Java geometry expert server (2009),
http://woody.cs.wichita.edu

3. Chou, S., Gao, X., Zhang, J.: Automated generation of readable proofs with
geometric invariants, II. Theorem proving with full-angles. Journal Automated
Reasoning 17, 325–347 (1996)

4. Chou, S.C.: Mechanical geometry theorem proving. Springer, Heidelberg (1988)

5. Chou, S.C., Gao, X., Ye, Z.: Java Geometry Expert. In: Proceedings of the 10th
Asian Technology Conference in Mathematics, pp. 78–84 (2005)

6. Chou, S.C., Gao, X.S., Zhang, J.Z.: A deductive database approach to automated
geometry theorem proving and discovering. Journal of Automated Reasoning 25(3),
219–246 (2000)

7. Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theorem
proving in real geometry. Journal of Automated Reasoning 21(3), 357–380 (1998)

8. Gao, X.S., Zhang, J.Z., Chou, S.C.: Geometry Expert. Nine Chapters Pub. (1998)
(in Chinese)

9. Hongbo, L., Minde, C.: Proving theorems in elementary geometry with Glifford
algebraic method. Chinese Math. Progress 26(4), 357–371 (1997)

10. Li, H.: Some applications of Clifford algebra to geometries. Automated Deduction
in Geometry, 156–179 (1999)

11. Nelsen, R.: Proofs without words: Exercises in visual thinking. Mathematical Assn
of Amer (1993)

12. Nelsen, R.: Proofs without words: More exercises in visual thinking. Mathematical
Assn of Amer (2001)

13. Nelsen, R., Alsina, C.: Math Made Visual: Creating Images for Understanding
Mathematics. Mathematical Assn of Amer (2006)

14. Wang, D.: Reasoning about geometric problems using an elimination method.
Automatic Practical Reasoning, 147–185 (1989)

http://www.cut-the-knot.org/pythagoras/index.shtml
http://woody.cs.wichita.edu

An Introduction to Java Geometry Expert 195

15. Wang, D.M., Gao, X.S.: Geometry theorems proved mechanically using
Wu’method–part on Euclidean geometry. Mathematics-Mechanization Research
Preprints 2 (1987)

16. Wen-Tsun, W.: On the decision problem and the mechanization of theorem proving
in elementary geometry. Scientia Sinica 21(2), 159–172 (1978)

17. Ye, Z., Chou, S.C., Gao, X.S.: Visually Dynamic Presentation of Proofs in Plane
Geometry Part 2. Automated Generation of Visually Dynamic Presentations with
the Full-Angle Method and the Deductive Database Method. Journal of Automated
Reasoning 45(3), 243–266 (2010)

On the Heilbronn Optimal Configuration of

Seven Points in the Square�

Zhenbing Zeng and Liangyu Chen

Shanghai Key Laboratory of Trustworthy Computing
East China Normal University

200062 Shanghai, China
{zbzeng,lychen}@sei.ecnu.edu.cn

Abstract. In this paper, we prove that for any seven points in a unit
square there exist three points whose area is not greater than a constant
h7 = 0.083859... as conjectured by Francesc Comellas and J. Luis A.
Yebra in 2002.

Keywords: Heilbronn Problem, Combinatorial Geometry, Automated
Deduction.

1 Introduction

The Heilbronn problem for a given bounded closed convex set K in the plane
and an integer n ≥ 3 is to find the maximum of the following

hK, n(p1, p2, · · · , pn) = min{area(pipjpk)|1 ≤ i < j < k ≤ n}

over all p1, p2, · · · , pn ∈ K. A configuration {p1, p2, · · · , pn} ⊂ K is called a
Heilbronn configuration of n points in K if it reaches the maximal value. Let
h(K, n) be the maximum corresponding to given K, n.

There has been a lot of work on the approximation of h(K, n) for large n. The
exact values of h(K, n) are known only for n ≤ 6 and K is square, triangle and
disk. There are also some conjectures on the possible Heilbronn configurations
obtained by numeric optimization methods (see [5,3,9]). The following is such a
conjecture for 7 points in a square established by Francesc Comellas, J. Luis A.
Yebra in [3].

Conjecture 1. For any seven points p1, p2, · · · , p7 in the unit square S, the
inequality

min{area(pipjpk)|1 ≤ i < j < k ≤ 7} ≤ 2z2 + 14z − 1
38

≈ 0.083859 · · ·

� This work is supported by the National Natural Science Foundation of China (No.
10471044) and the Major Research Plan of the National Natural Science Foundation
of China (No. 90718041).

T. Sturm and C. Zengler (Eds.): ADG 2008, LNAI 6301, pp. 196–224, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Heilbronn Optimal Configuration of Seven Points in the Square 197

holds, where z is the smallest positive real root of equation

z3 + 5z2 − 5z + 1 = 0, z = 0.287258 · · · .

The equality holds for the configuration shown in Fig. 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 1. The Heilbronn configuration of 7 points in the unit square

In this paper, we give a strict proof to this conjecture. The proof is composed of
the following steps. The first step is to classify the possible optimal configurations
according to the combinatorial type of the configuration and the allocation of the
configuration in the unit square so that the original problem can be reduced to
searching of finitely many types of local optimal configurations, and each of these
local optimizations can be represented as a non-linear programming problem.
In the second step we simplify each non-linear optimization problem through
finding the loose constraints of the feasible set of the problem. In the third
step we devote to get the upper bounds of the reduced non-linear programming
problems and prove that among these problems there is only one case (in the
sense of isometric transformation) can reach the global optimization and in all
other local optimizations the smallest triangle is not greater than 1/12 of the
unit square.

2 Reducing the Optimal Configuration to 226 Local
Optimizations

In this section we investigate the collocation of possible optimal configurations
within the unit square and reduce the original problem to a finite many local
optimization problems. This step is completed by the following 5 sub-steps.

Sub-Step 1. Prove that if a configuration of 7 points p1, p2, · · · , p7 ∈ S is the
optimal configuration of Heilbronn Problem for seven points, then the convex
hull of the seven points can not be a triangle or a tetragon. This claim is relied
on the following known property [4,7,9].

198 Z. Zeng and L. Chen

Lemma 1. If points P4, P5 are contained in the triangle P1P2P3, then the small-
est triangles formed by the five points is less than 1/(4+ 2

√
3) < 1/6 of the area

of P1P2P3.

Sub-Step 2. Let Σk (5 ≤ k ≤ 7) be the set of all configurations of 7 points
p1, p2, · · · , p7 ∈ S such that its convex hull is a k-gon. Prove that if {p1, p2, · · · , p7}
∈ Σk is a Heilbronn configuration, then there exists a parallelogram ABCD of
unit area that covers the convex hull (say, P1P2 · · ·Pk) of the optimal config-
uration in one of the 13 forms shown in Fig.2, Fig.3 and Fig.4. This result is
obtained by using of the following property proved in [8,9].

Lemma 2. If K = p1p2 · · · pn is a convex n-gon and ABCD is one of the par-
allelogram covering K with the smallest area, then each edge of ABCD contains
at least one of the vertices of K, and furthermore,

1. if K and ABCD have no common vertex, then {p1, p2, · · · , pn} has at least
five points contained in the four edges of ABCD, and
(a) if K ∩BC = {pk}, K ∩DA = {pm}, then pkpm//AB,
(b) if K ∩AB = pipj(j = i+1), K ∩CD = {pl}, p′l = �(pl, BC)∩AB, where

�(pl, BC) the line that passes through pl and parallels to BC, then p′l is
contained in the interior of the segment pipj,

(c) if K ∩ AB = pipj(j = i + 1), K ∩ CD = plpm and p′l = �(pl, BC) ∩
AB, p′m = �(pm, BC) ∩AB, then p′lp

′
m ∩ pipj �= ∅;

2. if K and ABCD have one common vertex, say, p1 = A, then in the interior
of each edge of ABCD there exists one or two vertices of K, say, p2 contained
in the interior of AB and pn in the interior of DA, and
(a) if BC or CD contains only one vertex of K, say K ∩ BC = {pi}, then

p′i ∈ pnp1, where p′i = �(pi, AB) ∩DA,
(b) if BC or CD contains two vertices of K, say K ∩BC = pipj, pj ∈ piC,

then p′i ∈ pnp1 also holds, where p′i = �(pi, AB) ∩DA;
3. if K and ABCD have two common vertices and these two points form a

diagonal of ABCD, say, p1 = A, pk = C, then each edge of ABCD also
contains one vertex of K in its interior.

Sub-Step 3. Then we prove that if the optimal configuration {p1, p2, · · · , p7}
is of category Σ5, P1P2 · · ·P5 its convex hull, and R0, R1, · · · , R9, RX the 11
sub-regions of the convex hull divided the diagonals as shown in Fig.5, then
P6, P7 = {p1, p2, · · · , p7} \ {P1, P2, · · · , P5} satisfy one of the following properties

(P6 ∈ R9, P7 ∈ R2) ∨ (P6 ∈ R9, P7 ∈ R6)
∨(P6 ∈ R0, P7 ∈ R7) ∨ (P6 ∈ R0, P7 ∈ R3)
∨(P6 ∈ R8, P7 ∈ R1) ∨ (P6 ∈ R8, P7 ∈ R5)

up to a permutation of P6, P7. This can be proved by using Lemma 1 and the
following result (cf. [8]).

On the Heilbronn Optimal Configuration of Seven Points in the Square 199

A B

CD

A B

CD

A B

CD

P P

P

P

P

P P

P

P

P

P P

P

P

P

1 2

3

4

5

1 2

3

4

5

1 2

3

4

5

(5A) (5B) (5C)

Fig. 2. The minimal parallelogram covering Σ5 configurations. Note that DP4 ≤
AP2, BP3 ≤ AP5 in (5A) and (5C), and DP4 < AP2, area(P3AB) ≤ area(P5AB)
in (5B).

P P P P

P P P P

P P P P

P P P P

P
P

P P

P P P

P

P P

P

P

P

P

P

P

P P P

P

P P

P

P

P P P P

P P P P

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3

3

3 3

3 3 3

3

4 4

4

4

4

4

4

5

5 5 5

6

5 5

5

4

6 6 6 5

6 6 6 6

(6E) (6F) (6G) (6H)

(6A) (6B) (6C) (6D)

Fig. 3. The minimal parallelogram covering Σ6 configurations. Note that DP5 ≤
AP2, BP3 ≤ AP6 in (6E), (6G), DP5 ≤ AP2, BP4 ≤ AP6 in (6F), and AP1 ≤ DP4 ≤
AP2, AP6 ≤ BP3 ≤ AP5 in (6H).

200 Z. Zeng and L. Chen

A B

CD

A B

CD

P P

P

P

P

P

P

P P

P

P

P

P

P

1 2

3

4

5

6

7

1 2

3

4

5

6

7

(7A) (7B)

Fig. 4. The minimal parallelogram covering Σ7 configurations. Note that P2P5//BC,
P7P3//AB in (7A), and P7P3//AB in (7B).

Lemma 3. In the configuration (5A) shown in Fig.2, P1P2 > DP4, P1P5 >
BP3, then

area(P1P4P5) + area(P2P3P4) <
1
2
, area(P1P2P3) + area(P3P4P5) <

1
2
.

Using this property we deduce the computation of the possible Σ5-category
optimal configurations into 3× 6 = 18 non-linear optimization problems with 8
(for (5C) in Fig.2) to 9 (for (5A) and (5B) in Fig.2) unknowns.

P P

P

P

P

R
R

R

R

RRR

R

R

R

R

1 2

3

4

5

0

1

2

3

456

7

8

9

X

Fig. 5. The sub-regions divided by the diagonals of a pentagon

Sub-Step 4. For the possible Σ6 optimal configuration, each type in Fig.3 can
be decomposed into 26 sub-types (explained later) according to the position the
point (say, p7) that is not a vertex of the convex hull (see Fig.6). This leads the
computation of the Σ6 optimization configurations to 8× 26 = 208 (the number
can be reduced if consider the symmetry in (6A) and (6H) configurations in

On the Heilbronn Optimal Configuration of Seven Points in the Square 201

P P

P

P

P

P

PP

P

P

P

P

1 2

3

4

5

6

32

1

6

5

4

1
3 4

5

7

8

9

10111213

16

17
18

19
20

21

22
23

24 25
6

14

15

4
21

18

16

15

14

13 12 11 10

7

6

5

20
19

24

23

22

2126

9

8

2 3

17

(a) (b)

Fig. 6. The oriented sub-regions of a convex hexagon divided by its diagonals

Fig.3) non-linear optimization problems with 7 (for configuration (6A)) to 9 (for
(6D), (6F), (6G) and (6H) in Fig.3) unknowns.

To explain the 26 sub-types of Σ6, we need to use the concept of orientation of
triangles. Let ABC be any triangle with A = (x1, x2), B = (x3, x4), C = (x5, x6).
Then the oriented area of ABC is

area(ABC) =
1
2
·

∣∣∣∣∣∣
x1 x2 1
x3 x4 1
x5 x6 1

∣∣∣∣∣∣ .
We will call that the orientation of ABC is positive (or orient(ABC) = 1)
if S(ABC) > 0, and the orientation is negative (or orient(ABC) = −1) if
S(ABC) < 0, as shown in Fig. 7. We may call a triangle ABC is degenerate if
area(ABC) = 0.

Note that the diagonals of a convex hexagon divide the hexagon into 24 or
25 small regions. Each region is a triangle, or a quadrilateral, or a pentagon.
If the three major diagonals meet at the same point, then the number of the
small regions is 24. Otherwise it is 25. Let Δ be the triangle region formed by
the three major diagonals. Then according to the orientation of Δ the shapes

� �

�

�
�

�
�

�
�

��

�
�
�
�
�
�

A B

C

orient(ABC) > 0

� �

�

�
�

�
�

�
�

�
�

�
�

�
�

A

B

C
��

�

�

� ���

�

�

orient(ABC) < 0

Fig. 7. Two triangles with different orientations

202 Z. Zeng and L. Chen

of 24 small regions can be classified into two cases, as shown in Fig.6. In Case
(a), regions with number 19, 21, 23 are quadrilateral, regions 20, 22, 24 are
pentagon. In Case (b), regions 19, 21, 23 are pentagon and regions 20, 22, 24 are
quadrilateral. In both cases, regions with number 1, 2, · · · , 18 are all triangles.
The following observations are obviously true.

Lemma 4. Let P1P2 · · ·P6 and P ′
1P

′
2 · · ·P ′

6 be the two hexagons corresponding to
Case (a) and Case (b) in Fig. 6. Then for any natural number k with 1 ≤ k ≤ 24,
any point Q that is contained in the region with number k in Case (a), and any
point Q′ that is contained in the region with number k in Case (b), the orientation
of triangle QPiPj is same as the that of Q′P ′

iP
′
j for all i, j with 1 ≤ i < j ≤ 6.

Lemma 5. Let P1P2 · · ·P6 and P ′
1P

′
2 · · ·P ′

6 be the two hexagons corresponding
to Case (a) and Case (b) in Fig. 6. Then for any point Q that is contained in the
triangle formed by the three major diagonals (region with number 25) in Case
(a), and any point Q′ that is contained in the triangle formed by the three major
diagonals (region with number 26) in Case (b), the orientation of triangle QPiPj

and the orientations of Q′P ′
iP

′
j differ only for the following cases.

orient(QP1P4) = −orient(Q′P ′
1P

′
4) = 1;

orient(QP2P5) = −orient(Q′P ′
2P

′
5) = −1;

orient(QP3P6) = −orient(Q′P ′
3P

′
6) = 1.

Sub-Step 5. For the two categories defined in Fig.4, that is, the categories cor-
responding to that optimal configuration {p1, p2, · · · , p7} is a convex heptagon,
it is easy to prove that the (local) optimal configuration satisfies the following
property (cf. [9,6])

area(p1p2p3) = area(p2p3p4) = · · · = area(p7p1p2),

and therefore, p1p2 · · · p7 is the maximal regular heptagon inscribed in the unit
square,

min{area(pipjpk) : 1 ≤ i < j < k ≤ 7} =
sin2(2π/7) tan(π/7)

2(1 + cos(π/7)) sin(3π/7)
<

1
12

,

which shows that the local optimal configurations in Σ7 can not be the global
optimization.

To summarize this step we known that p1p2 · · · p7 is the Heilbronn optimal
configuration of seven points in the unit square, then either the convex hull
of p1p2 · · · p7 is a convex pentagon, say, P1P2 · · ·P5, satisfying that the con-
figuration {P1, P2, · · · , P5, A, B, C, D} is belong to one of the three categories
(5A), (5B), (5C) and P6, P7 = {p1, p2, · · · , p7} \ {P1, P2, · · · , P5} are contained in
one of the following six 2-tuples of regions:

(R9, R2), (R9, R6), (R0, R7), (R0, R3), (R8, R1), (R8, R5);

On the Heilbronn Optimal Configuration of Seven Points in the Square 203

or the convex hull of p1p2 · · · p7 is a convex hexagon, say, P1P2 · · ·P6, satis-
fying that the configuration of {P1, P2, · · · , P6, A, B, C, D} is belong to one of
the eight categories (6A), (6B), · · · , (6H) and the point P7 = {p1, p2, · · · , p7} \
{P1, P2, · · · , P6} is contained in one of the 26 oriented sub-regions divided by the
diagonals of the hexagon. This reduced the original problem to 6×3+26×8 = 226
sub-problems with less freedoms which can also be regarded as local optimization
problems.

3 Checking the Loose Constraints of Non-linear
Programming Problems

The second part of the proof is to simplify the constraints of the 18+ 208 = 226
non-linear optimization problems. Each problem is in the following form

maxx0,

subject to
Si,j,k(x1, · · · , xq) ≥ x0, (1 ≤ i < j < k ≤ 7)
0 ≤ x1, · · · , xq ≤ 1.

where Si,j,k(x1, x2, · · · , xq) are quadratic polynomials determined by the area
formula

area(pipjpk) =
1
2
·

∣∣∣∣∣∣
x1 x2 1
x3 x4 1
x5 x6 1

∣∣∣∣∣∣ , Si,j,k = orient(pipjpk) · area(pipjpk)

for oriented triangle formed by pi = (x1, x2), pj = (x3, x4), pk = (x5, x6). For
simplicity we may assume that the coordinates of the seven points are

P1 = (x1, x2), P2 = (x3, x4), · · · , · · · , P6 = (x11, x12), P7 = (x13, x14)

and we will use f1 ≥ 0, f2 ≥ 0, · · · , f35 ≥ 0 to represent the 35 constraints related
to the area of triangles in the following way:

f1 = f1(x0, x1, · · · , x14) = S1,2,3 − x0,

f2 = f2(x0, x1, · · · , x14) = S1,2,4 − x0,

f3 = f3(x0, x1, · · · , x14) = S1,2,5 − x0,

· · · · · · ,
f34 = f34(x0, x1, · · · , x14) = S4,6,7 − x0,

f35 = f35(x0, x1, · · · , x14) = S5,6,7 − x0.

We shall use (5Xij), (5Xij), (5Xij) where X ∈ {A, B, C} and

(i, j) ∈ {(9, 2), (9, 6), (0, 7), (0, 3), (8, 1), (8, 5)}

204 Z. Zeng and L. Chen

to denote the 18 non-linear programming problems corresponding to the possible
Σ5 optimal configurations and use (6Xk) where X ∈ {A, B, · · · , H} and 1 ≤
k ≤ 26 to denote the 208 non-linear programming problems corresponding to
the possible Σ6 optimal configurations.

For the linear constraint part 0 ≤ xi ≤ 1(i = 1, 2, · · · , 14), we have the
following known coordinates for (5Xij) problems:

(5Aij) : x1 = 0, x2 = 0, x4 = 0, x5 = 1, x8 = 1, x9 = 0;
(5Bij) : x1 = 0, x2 = 0, x3 = 1, x4 = 0, x8 = 1, x9 = 0;
(5Cij) : x1 = 0, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x8 = 1, x9 = 0;

and the following known for (6Xk) problems:

(6Ak) : x1 = 0, x2 = 0, x4 = 0, x5 = 1, x7 = 1,

x10 = 1, x11 = 0, x12 = 1;
(6Bk) : x1 = 0, x2 = 0, x4 = 0, x5 = 1,

x10 = 1, x11 = 0, x12 = 1;
(6Ck) : x1 = 0, x2 = 0, x4 = 0, x5 = 1, x7 = 1,

x11 = 0, x12 = 1;
(6Dk) : x1 = 0, x2 = 0, x4 = 0, x7 = 1,

x11 = 0, x12 = 1;
(6Ek) : x1 = 0, x2 = 0, x4 = 0, x5 = 1, x7 = 1,

x10 = 1, x11 = 0;
(6Fk) : x1 = 0, x2 = 0, x4 = 0, x7 = 1,

x10 = 1, x11 = 0;
(6Gk) : x1 = 0, x2 = 0, x4 = 0, x5 = 1,

x10 = 1, x11 = 0;
(6Hk) : x2 = 0, x4 = 0, x5 = 1, x8 = 1,

x9 = 0, x11 = 0.

And all other coordinates xn in non-linear programming problems (5Xij), (6Xk)
satisfy the strict inequality 0 < xn < 1.

Note that if we take x3 = 1 in (5Aij) or take x5 = 1 in (5Bij) then the
problems changed to (5Cij). That is, (5Cij) is a degenerate case of (5Aij) or
(5Bij). This can be shown by the following diagram.

(5Aij) −→ (5Cij)←− (5Bij)

The following diagram shows the degenerate relations among non-linear pro-
gramming problems (6Ak), (6Bk), · · · , (6Gk).

On the Heilbronn Optimal Configuration of Seven Points in the Square 205

(6Ak)
↗ ↖

(6Dk) −→ (6Ck) −→ (6Bk) (6Ek)←− (6Fk)
↖ ↗

(6Gk)

The following simple observation can be used to simplify the constraints of
the non-linear optimizations.

Lemma 6. Let Area(·) be the area of a polygon.
(i) If p4 is contained in the interior of a triangle p1p2p3, then

Area(p1p2p3) > min{Area(pipjpk)|1 ≤ i ≤ 4}.

(ii) If p1p2 · · · p5 is a convex pentagon, then

Area(p1p2p4) > min{Area(pipjpk)|1 ≤ i ≤ 5}.

With this property we can find a subset S of {f1, f2, · · · , f35} such that if
(x0, x1, · · · , x14) is any feasible solution of (5Xij) or (6Xk), then all member
f ∈ S satisfies the strict inequality f(x0, x1, · · · , x14) > 0. We show how to do
this for (5X92) and (6X16) as examples.

Fig. 8. Configurations corresponding to (5X92) and (6X16)

In (5X92) configurations, we have

(1)
P6 ∈ P1P2P4, P1P2P5, P1P3P4, P1P3P5, P1P4P7, P1P5P7,
P7 ∈ P1P2P3, P2P3P4, P2P3P5, P2P3P6,

and the following 6 convex pentagons formed by points P1, P2, · · · , P7

P1P2P3P4P5, P1P2P7P4P5, P1P7P3P4P5,

P2P3P4P5P6, P2P7P4P5P6, P3P4P5P6P7,

206 Z. Zeng and L. Chen

from which we know that the following triangles are not the smallest ones:

(2)

in P1P2P3P4P5 : P1P2P4, P2P3P5, P1P3P4, P2P4P5(∗), P1P3P5;
in P1P2P7P4P5 : P1P2P4, P2P5P7(∗), P1P4P7, P2P4P5, P1P5P7;
in P1P7P3P4P5 : P1P4P7, P3P5P7(∗), P1P3P4, P4P5P7(∗), P1P5P7;
in P2P3P4P5P6 : P2P3P5, P3P4P6(∗), P2P4P5, P3P5P6(∗), P2P4P6(∗);
in P2P7P4P5P6 : P2P5P7, P4P6P7(∗), P2P4P5, P5P6P7(∗), P2P4P6;
in P3P4P5P6P7 : P3P4P6, P4P5P7, P3P5P6, P4P6P7, P3P5P7;

where the (∗) after a triangle is to show that the triangle is neither contained in
(1) nor previous lines of (2). So we have

S(5X92) = {f1, f2, f3, f6, f7, f12, f14, f16, f17, f18,
f20, f21, f24, f26, f28, f29, f31, f33, f35}

for X = A, B, C. In (6X16) configurations we have

(3) P7 ∈ P1P2P6, P1P3P6, P1P4P6, P1P5P6,

and only the following 5 pentagons

P1P2P4P6P7, P1P2P5P6P7, P1P3P4P6P7, P1P3P5P6P7, P1P4P5P6P7

formed by P1, P2, · · · , P7 are not convex. In the following list we use PiPjPk(mn)
to denote that {Pi, Pj , Pk, Pm, Pn} formed a convex pentagon(and therefore,
PiPjPk is not the smallest one among triangles formed by these five points).

(4)

P1P2P3, P1P2P4(36), P1P2P5(36), P1P2P6, P1P2P7,
P1P3P4(26), P1P3P5(46), P1P3P6, P1P3P7(25),

P1P4P5(36), P1P4P6(25), P1P4P7(25),
P1P5P6, P1P5P7,

P1P6P7,
P2P3P4, P2P3P5(46), P2P3P6(41), P2P3P7(41),

P2P4P5(36), P2P4P6(51), P2P4P7(51),
P2P5P6(41), P2P5P7(36),

P2P6P7,
P3P4P5, P3P4P6(25), P3P4P7(25),

P3P5P6(41), P3P5P7(41),
P3P6P7(52),

P4P5P6, P4P5P7(36),
P4P6P7(52),
P5P6P7.

Thus

S(6X16) = {f2, f3, f4, f6, f7, f8, f9, f10, f11, f12, f13, f17, f18, f19,
f20, f21, f22, f23, f24, f27, f28, f29, f30, f31, f33, f34}

On the Heilbronn Optimal Configuration of Seven Points in the Square 207

has 26 members for X ∈ {A, B, · · · , H}. This means, the non-linear optimization
problems (6A16) can be simplified to the following one:

(6A16)

max x0,
s.t. f1 ≥ 0, f5 ≥ 0, f14 ≥ 0, f15 ≥ 0, f16 ≥ 0,

f25 ≥ 0, f26 ≥ 0, f32 ≥ 0, f35 ≥ 0;
x1 = 0, x2 = 0, x4 = 0, x5 = 1, x7 = 1,
x10 = 1, x11 = 0, x12 = 1;
0 < xi < 1(i = 3, 6, 8, 9, 13, 14).

The above procedure for simplifying the constraints can be realized automat-
ically by a computer program. The following is the results for all non-linear
programming problems (5Xij) and (6Xk).

Theorem 1. Let #(·) be the cardinal of a set. Then

#S(5Xij) = 19

for all X = A, B, C and (i, j) ∈ {(9, 2), (9, 6), (0, 7), (0, 3), (8, 1), (8, 5)}, and

#(6Xk) = 26(k = 1, 4, 7, 10, 13, 16),
#(6Xk) = 24(k = 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18),
#(6Xk) = 21(k = 19, 20, 21, 22, 23, 24),
#(6X25) = #(6X26) = 23,

for all X = A, B, · · · , H.

Proof. The proof is obtained by applying Lemma 6 to the corresponding 226
configurations. Q.E.D.

So we have reduced each of the 226 non-linear optimization problems to a prob-
lem with less unknowns and less constraints, namely, to maximize the linear
function F (y0, y1, · · · , yq) = y0 (q ≤ 8), where y1, y2, · · · , yq ∈ {x1, x2, · · · , x14},
over a bounded subset Q ⊂ Rq+1 formed by p = 16 or less quadratic (or linear)
polynomials of y0, y1, y2, · · · , yq and the following linear inequalities

0 < y0 <
1
9
, 0 < yi < 1(i = 1, 2, · · · , q).

Here the upper bound 1
9 of y0 is based on the fact that if a pentagon or hexagon

K is contained in the unit square then the area of K is less than 1, and the
following known result (cf. [6]).

Lemma 7. For any seven points P1, P2, · · · , P7 in the plane, there exists a tri-
angle formed by the points whose area is not more than 1/9 of the area of the
convex hull of the seven points.

For computing the global maximum of the 226 problems, we may restrict each
problem to x0 > 1/12. Since the configuration found by Francesc Comellas, J.
Luis A. Yebra shows that the optimal for Σ5 satisfies

hΣ5 ≥ 0.083859 · · · = 1
11.92477 · · · >

1
12

,

208 Z. Zeng and L. Chen

and for Σ6 configurations a known result (see [9]) is

h|Σ6 ≥
1
12

as shown in the following figure.

�

�

�

�

�

�

�

�
�
�
�
��

	
	
	
	

	
	
	

	
	
		

�����������

�
�

�
�

��

�
�

�
�

���
�
�
�
��

�
�

�
�

�
�

�
�

�
��

������������
�

��

P1 P2

P3

P4

P5P6

P7

Fig. 9. A possible optimal configuration in Σ6

4 Solving Non-linear Programming With Symbolic
Computation

The third part of the proof is to solve the 226 non-linear programming problems.
We may define an order on these problems, say,

(5C92) ≺ (5C96) ≺ (5C07) ≺ (5C03) ≺ (5C81) ≺ (5C85)
≺ (5B92) ≺ · · · ≺ (5B85) ≺ (5A92) ≺ · · · ≺ (5A85)
≺ (6A1) ≺ (6A2) ≺ · · · ≺ (6A26) ≺ · · · ≺ (6H26),

and use the notation SP (n) (1 ≤ n ≤ 226) to represent the n-th sub-problem in
this sequence. It is clear now that SP (n) is in the following general form

Sub-Problem SP (n) :
max y0;
s.t. g1(y1, · · · , yq)− y0 ≥ 0,
· · · ,
gp(y1, · · · , yq)− y0 ≥ 0,

0 < y0 <
1
9
, 0 < y1 < 1, · · · , 0 < yq < 1,

Note that for each problem SP (n), the point set Q(n) ⊂ Rq+1 defined by the
constraints,

Q(n) = {(y0, y1, · · · , yq)|0 < y0 < 1/9, 0 < yi < 1 for all i = 1, · · · , q,
gj(y1, · · · , yq)− y0 ≥ 0 for all j = 1, · · · , p} ,

On the Heilbronn Optimal Configuration of Seven Points in the Square 209

is non-empty and bounded. Let

Q(n, a) = {(y1, · · · , yq)|0 < yi < 1 for all i = 1, · · · , q,
gj(y1, · · · , yq)− a ≥ 0 for all j = 1, · · · , p} ⊂ Rq

be defined for all real number a. Then Q(n, a) can be considered as (a projection
of) the intersection of Q(n) and the hyperplane x0 = a. It is clear that

Q(n, a2) ⊂ Q(n, a1) if a1 < a2,

and the optimal solution of SP (n) is the maximal value a such that Q(n, a)
is non-empty, that is, if a is the optimal solution of SP (n) then Q(n, a) �= ∅
and Q(n, a′) = ∅ for all a′ > a. It is possible that a sub-problem SP (n) has
no solution since the constraint Q(n) may not be a closed subset, that is, there
exists a sequence a1, a2, · · · , ak, · · · of real numbers such that

0 < a1 < a2 < · · · < ak < · · · < 1/9, lim
k→∞

ak = a0,

and all sets Q(n, ak) are non-empty, but Q(n, a0) is empty.

The following property shows that for computing the global maximum of the
226 non-linear programming problems, we only need to consider that problems
SP (n) for which SP (n) has solutions.

Lemma 8. If SP (n) has no solution, then there exists n′ with 1 ≤ n′ ≤ n such
that

Q(n, a) �= ∅ =⇒ Q(n′, a) �= ∅

for all real number a > 0 and SP (n′) has a solution.

Proof. It is clear that for each sub-problem SP (n), there exists at least a config-
uration, namely, a specified set of x1, x2, · · · , x14 such that the p1 = (x1, x2), · · · ,
p7 = (x13, x14) satisfy a = min Si,j,k(pipjpk) > 0. For this specified a we have
Q(n, a) �= ∅. Let

a0 = sup{a > 0|Q(n, a) �= ∅},

and a1, a2, · · · , ak, · · · a sequence of real numbers such that

Q(n, ak) �= ∅ for k = 1, 2, · · · , lim
k→∞

ak = a0.

Then for any sequence Yk = (y(1)
1 , · · · , y(1)

q) ∈ Q(n, ak), k = 1, 2, · · ·, there is a
subsequence Ykl

such that

lim
l→∞

Ykl
= (y(0)

1 , · · · , y(0)
q)

exists. It is clear that

Y0 := (y(0)
1 , · · · , y(0)

q) ∈ Q(n, a0) \Q(n, a0),

210 Z. Zeng and L. Chen

which implies that there exists at least one i with 1 ≤ i ≤ q such that y
(0)
i = 0.

Meanwhile, Y0 satisfies

gj(y
(0)
1 , · · · , y(0)

q) ≥ a0 > 0 for all j = 1, 2, · · · , p,

that means the configuration defined by Y0 is in generic position, that is, no three
points are collinear, and therefore, it is a degenerate configuration of SP (n).
According to the definition of the order on the 226 problems and the degenerate
relations diagrams, this degenerate problem SP (n′) satisfies n′ < n. This proves
Lemma 8. Q.E.D.

Given any n with 1 ≤ n ≤ 226, if the sub-problem SP (n) has a solution y0 = a
and (y1, · · · , yq) ∈ S(n, a), then it is obvious that the set of indices of the tight
constraints of SP (n) defined by

T (n) := {j|1 ≤ j ≤ p, gj(y1, · · · , yq)− a = 0}

is not empty and a is the maximal real number such that the following semi-
algebraic system

(n, T (n), a) :

⎧⎨
⎩

gi(y1, · · · , yq) = a for i ∈ T (n),
gj(y1, · · · , yq) > a for j �∈ T (n),
0 < y1 < 1, · · · , 0 < yq < 1,

has real solutions. For short we call this T (n) the optimal tight constraints
of SP (n). In general, for each subset T ⊂ {1, 2, · · · , p} we can construct the
following non-linear programming problem induced by the sub-problem SP (n)
and T ,

NLP (n, T) :
max y0,
s.t. gi(y1, · · · , yq)− y0 = 0, for all i ∈ T,

gj(y1, · · · , yq)− y0 > 0, for all j �∈ T,
0 < y0 < 1/9, 0 < y1 < 1, · · · , 0 < yq < 1.

Then the sub-problem SP (n) can be decomposed into a family of non-linear pro-
gramming problems NLP (n, T), T ∈ {1, 2, · · · , p} in this form, and the optimal
solution of SP (n) is the maximal of solutions of NLP (n, T) over all T .

It is also clear that for any sub-problem SP (n) (1 ≤ n ≤ 226) and any
T1, T2 ⊂ {1, 2, · · · , p} with T1 ⊂ T2, if a1 and a2 are solutions of NLP (n, T1)
and NLP (n, T2), with respectively, then a1 ≥ a2. In particularly, if the sub-
problem SP (n) has a solution y0 = a and T (n) is the optimal tight constraints
of SP (n), then for subset T ⊂ {1, 2, · · · , p} with T (n) ⊂ T and T (n) �= T , either
the problem NLP(n, T) has no solution, or any real point (a′, y′

1, · · · , y′
q) in the

following semi-algebraic system

(n, T, h) :

⎧⎨
⎩

gi(y1, · · · , yq) = h for i ∈ T,
gj(y1, · · · , yq) > h for j �∈ T,
0 < y1 < 1, · · · , 0 < yq < 1.

On the Heilbronn Optimal Configuration of Seven Points in the Square 211

satisfies that a′ < a.
The general idea for solving each non-linear programming problem SP (n)

max y0;
s.t. g1(y1, · · · , yq)− y0 ≥ 0, · · · , gp(y1, · · · , yq)− y0 ≥ 0,

y0 <
1
9
, 0 < y1 < 1, · · · , 0 < yq < 1,

is to investigate each non-linear programming problem NLP (n, T) to see if there
exists a subset T of {1, 2, · · · , p} such that the corresponding problem NLP (n, T)
has a solution y0(n, T) which is better than the known result. Let

S = S(n) = {T |T ⊂ {1, 2, · · · , p}}.

Since we are looking for the global maximum of y0(n, T) for n = 1, 2, · · · , 226
and T over corresponding S(n), and we know already that this maximum is not
less than 1/12 from the configuration in the Fig. 9, thus the sub-problem SP (n)
can be reduced to solving the family of the following modified problems,

NLP (n, T) :
max y0,
s.t. gi(y1, · · · , yq)− y0 = 0, for all i ∈ T,

gj(y1, · · · , yq)− y0 > 0, for all j �∈ T,
1/12 < y0 < 1/9, 0 < y1 < 1, · · · , 0 < yq < 1,

(T ∈ S(n))

By NLP (n, T) �= ∅ we denote that the modified problem NLP (n, T) has a
solution y0(n, T) such that y0(n, T) > 1/12. Let

D(n) = {T ⊂ S|NLP (n, T) �= ∅}.

and
A(n) = {T ⊂ S|NLP (n, T) = ∅},

Then our goal is to find for what n the set D(n) is not empty. For any T ∈ S
and U ⊂ S let mov(T,U) be the following operation

U := U ∪ {T }, S := S \ {T },

and mov∗(T,U) and mov∗(T,U) be the operations defined by

V := {T1|T1 ∈ S, T ⊂ T1};
U := U ∪ V ;
S := S \ V ;

and

W := {T1|T1 ∈ S, T1 ⊂ T };
U := U ∪W ;
S := S \W ;

212 Z. Zeng and L. Chen

with respectively. Then the algorithm for checking if D(n) is not empty can be
described in the following form.

Main Algorithm
1. Initializing: Construct S. Let A = ∅,B = ∅, C = ∅,D = ∅,
2. For all T ∈ S, do procedure (I) in the Sketch Diagram,
3. For all T ∈ B, do procedure (II) in the Sketch Diagram,
4. For all T ∈ C, do procedure (III) in the Sketch Diagram,
5. Output D(n).

The following Sketch Diagram shows the three procedures (I), (II), (III)
for doing operations mov(T,D), mov∗(T,A), mov∗(T,B), and mov∗(T, C) by
using symbolic computation S1, S2, · · · , S7.

(I) : (n, T) S1−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) : mov∗(T,A) ©1

(2) : S2−→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(21) : S3−→

⎧⎨
⎩

(211) : mov∗(T,A) ©2

(212) : mov(T,D) ©3

(22) : mov∗(T, C) ��� (III) ©4

(3) : mov∗(T,B) ��� (II) ©5

(II) : (n, T)|T∈B(n)
S4−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31) : mov∗(T,A) ©6

(32) : S5−→

⎧⎨
⎩

(321) : mov∗(T,A) ©7

(322) : mov(T,D) ©8

(33) : mov∗(T, C) ��� (III) ©9

(III) : (n, T)|T∈C(n)
S6−→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(41) : mov∗(T,A) ©10

(42) : S7−→

⎧⎨
⎩

(421) : mov∗(T,A) ©11

(422) : mov(T,D) ©12

Here (1), (2), · · ·, (422) represent the cases of the results obtained by the symbolic
computation S1, S2, · · · , S7. Thus, the procedure (I) can be transformed to the
following form.

Procedure (I)
For T ∈ S(n) do symbolic computation S1.

if the result belong to Case (1), then mov∗(T,A),
else if the result belong to Case (2), then S2,

if this result belong to Case (21), then do S3,
if this new result belong to Case (212), then mov∗(T,A),

On the Heilbronn Optimal Configuration of Seven Points in the Square 213

else mov(T,D),
else mov∗(T, C) and go to Procedure (III),

else mov∗(T,B) and go to Procedure (II).

In what follows we are going to give a detailed description to the method for
solving the sub-problem SP (n).

1. Initialization. Construct the set S of all subsets of {1, 2, · · · , p}. Let A :=
∅,B := ∅, C := ∅ and D := ∅.

2. Procedure (I). While S �= ∅ do this step. For a subset T ∈ S, say, T =
{1, · · · , r}, analyze the real roots of the semi-algebraic system⎧⎨

⎩
g1 = y0, · · · , gr = y0,
gr+1 > y0, · · · , gp > y0,
y0 < 1/9, 0 < y1 < 1, · · · , 0 < yq < 1

by using Gröbner Basis and Sturm’s Theorem (this corresponds to the sym-
bolic computation S1 in the Sketch Diagram). We compute the Gröbner
Basis of {g1 − y0, · · · , gr − y0} with respect to an appropriate order of
{y0, y1, · · · , yq} to get a set of polynomials G0 ∈ Q[y0, y1, · · · , yq] such that

RealZero({g1, · · · , gr}|V) = RealZero(G0|V)

(V = { 1
12

< y0 <
1
9
, 0 < y1 < 1, · · · , 0 < yq < 1}),

and G0 belongs to one of the following three cases as shown in the Sketch
Diagram.:

(1) 1 ∈ G0;
(2) A univariate polynomial of y0 is contained in G0 and G0 is an ascending

chain of polynomials, that is,

G0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1(y0),
h2(y0, z1, · · · , zl1),
h3(y0, z1, · · · , zl1 , zl1+1, · · · , zl2),
· · · ,
hm(y0, z1, · · · , zl1 , zl1+1, · · · , zl2 , · · · , zq)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

where z1, · · · , zq is a permutation of y1, · · · , yq and 1 ≤ l1 < l2 < · · · < q.
(3) No univariate polynomial of y0 is contained in G0.

Here RealZero(G|V) stands for the set of all real points Y ∈ Rq such that
g(Y) = 0 for all g ∈ G and v(Y) �= 0 for all v ∈ V . In S1, RealZero(G|V) is
obtained by reducing the Gröbner Basis Gb of the {g1, · · · , gr} using Maple
function sturm(h,y,a,b), which returns the number of real roots in the
interval (a,b] of polynomial h in y, as in the following procedures. The pro-
cedure reducing1 removes all univariate factors h(y0) of a polynomial g that
has no real root in (1/12, 1/9) and all univariate factors h(yi)(i = 1, · · · , q)
that has no real root in (0, 1), reducing2 applies reducing1 to all members
of a set of polynomials.

214 Z. Zeng and L. Chen

reducing2 := proc(G) map(reducing1, G) end proc
reducing1 := proc(g)

prd(map(rdc, map2(op, 1, op(2, factors(g)))))
end proc
rdc := proc(g) local x, a, b;

if nops(indets(g)) = 1 then
x := op(1, indets(g));
if x = y_0 then a := 1/12; b := 1/9
else a := 0; b := 1
end if;
if sturm(g, x, a, b) = 0 or g = x - b then 1
else g
end if

else g
end if

end proc
prd := proc(a)

if nops(a) = 0 then 1
else op(1, a)*prd([op(2 .. nops(a), a)])
end if

end proc

If 1 ∈ G0, then move this set T and all set T ′ ∈ S satisfying T ⊂ T ′ to A
(this operation is corresponding to ©1).
If G0 belongs to Case (3), then move T and all set T ′ ∈ S satisfying T ′ ⊂ T
into B (this is corresponding to ©5).
If G0 belongs to Case (2), then check if it is a strictly ascending chain, that
is, it satisfies m = q + 1 and

h2 ∈ Q[y0, z1] \Q[y0],
h3 ∈ Q[y0, z1, z2] \Q[y0, z1],
· · · ,
hm ∈ Q[y0, z1, · · · , zq] \Q[y0, z1, · · · , zq−1],

for some permutation z1, · · · , zq of y1, · · · , yq. This is corresponding to S2 in
the Sketch Diagram. If the answer is negative, then move T to C (which is
corresponding to the Case (22) and operation ©4). Otherwise, i.e., for Case
(21), we compute the interval solutions Ir(G0) of G0 using a Maple proce-
dure IntervalRealRoot (explained later) and verify if there is any possible
optimal solution with optimal tight indices T (this step is corresponding to
S3). Since

RealZero(g1 − y0 = 0, · · · , gr − y0 = 0|V) = RealZero(G0|V)

and G0 has finitely many solutions, we may use Gröbner Basis or Resul-
tant computation together with reducing1 to create a univariate polynomial
h̄i(yi) for each i = 1, · · · , q such that

y ∈ Projectionyi
(RealZero(G0|V)) =⇒ h̄i(yi) = 0.

On the Heilbronn Optimal Configuration of Seven Points in the Square 215

Let h̄0 = h0 ∈ G0. Then we modify realroot in Maple slightly to find all
intervals solutions of a univariate polynomial h in a given interval [a, b], for
example, as follows.

intervalrealroot := proc(h, x, a, b) local a1, b1, r;
a1 := sproot(subs(x = x - a, h), x);
b1 := sproot(subs(x = b - x, h), x);
r := min(gapofroot(h, x), min(a1, b1));
a1 := realroot(h, min(1/2*r, 1/1024));
r := [];
for b1 in a1 do

if a < op(1, b1) and op(2, b1) < b then
r := [b1, op(r)]

end if
end do;
r

end proc
sproot := proc(f, x) local r;

r := 1;
while 0 < sturm(f, x, 0, r) do r := 1/2*r end do;
r

end proc
gapofroot := proc(h, x)

sproot(prd(map2(op, 1,
op(2, sqrfree(resultant(h, subs(x = x + u, h), x)))))/u,
u)

end proc

Note that Maple command map2(f, arg1, expr) applies a function f to
the operands or elements of expr, e.g.,

map2(op, 1, [[x1, y2], [x2, y2], [x3, y3]]) = [x1, x2, x3],

and sqrfree is the function for computing the square-free factorization of
multivariate polynomials. Let

M0 := intervalrealroot(h̄0, y0, 1/12, 1/9),
M1 := intervalrealroot(h̄1, y1, 0, 1),
· · · ,
Mq := intervalrealroot(h̄q, yq, 0, 1),

and
Mr := M0 ×M1 × · · · ×Mq.

Let Ir(G0) = ∅. For each I = (I0, I1, · · · , Iq) ∈Mr, do the following interval
computation (no division included) for all constraints

J1 := g1(I1, · · · , Iq)− I0, · · · , Jr := gr(I1, · · · , Iq)− Iq.

216 Z. Zeng and L. Chen

If 0 ∈ Ji for all i = 1, · · · , r, then push this I into Ir(G0). Let

Ir := {I|I = (I0, I1, · · · , Iq) ∈ Ir(G0),
0 ∈ gi(I)− I or gi(I)− I ⊂ (0, +∞) for all r + 1 ≤ · · · ≤ p} .

This finishes the computation S3. If Ir = ∅, then move T and all sets T ′ ∈ S
satisfying T ⊂ T ′ into A (corresponding to Case (211) and operation ©2);
otherwise, push (T, Ir) into D and remove T from S (which is corresponding
to Case (212) and operation ©3).

3. Procedure (II). While B �= ∅ do this step. Recall that each T ∈ B, say,
T = {1, · · · , r}, satisfies that no Gröbner Basis of G = {g1− y0, · · · , gr − y0}
contains a univariate polynomial of y0. As a preprocess of S4 we compute
all Gröbner Basis of G with respect to all possible orders of y0, y1, · · · , yq.
If any univariate polynomial h(yi) for some j(1 ≤ j ≤ q) is generated in
the process, do reducing1 defined in Step 2. If reducing1(h) = 1 then
interrupt the computation for this T , move T and all T ′ ∈ B ∪ C satisfying
T ⊂ T ′ to A. If reducing1(h) �= 1 or no univariate polynomial is found, do
LagrangeMultiplier for the following non-linear programming problem:

NLP (n, T) :
max y0,
s.t. g1(y1, · · · , yq)− y0 = 0, · · · , gr(y1, · · · , yq)− y0 = 0;

gr+1(y1, · · · , yq)− y0 > 0, · · · , gp(y1, · · · , yq)− y0 > 0;
1/12 < y0 < 1/9, 0 < y1 < 1, · · · , 0 < yq < 1.

Here we show the outline of LagrangeMultiplier. Let

L = y0 +
r∑

i=1

λi · (gi(y1, · · · , yq)− y0)

and
∂L

∂y0
= 1− λ1 − · · · − λr ,

∂L

∂y1
= λ1 ·

∂g1

∂y1
+ · · ·+ λr ·

∂gr

∂y1
,

· · · ,
∂L

∂yq
= λ1 ·

∂g1

∂yq
+ · · ·+ λr ·

∂gr

∂yq
.

Then compute the Gröbner Basis of

{g1 − y0, · · · , gr − y0, 1− λ1 − · · · − λq,
∂L

∂y1
, · · · , ∂L

∂yq
}

and remove factors that has no real root in the interval (1/12, 1/9) for y0

and (0, 1) for yi(i = 1, · · · , q) using reducing2. This finishes S4.

Let G0 be the obtained result. Then, G0 belongs to one of the following three
cases.

On the Heilbronn Optimal Configuration of Seven Points in the Square 217

(31) 1 ∈ G0;
(32) G0 is a strict ascending chain of polynomials, say, G0 = {h0, h1, · · · , hq}

such that

h0 := h0(y0, z1),
h1 := h1(y0, z1, z2),
· · · ,
hq := hq(y0, z1, · · · , zq),

where z1, · · · , zq is a permutation of y1, · · · , yq.
(33) 1 /∈ G0 and G0 is not a strict ascending chain for any permutation

z0, z1, · · · , zq of y0, y1, · · · , yq with z0 = y0.

For Case (31) we move T and all T ′ ∈ B∪C which satisfies T ⊂ T ′ to the set
A (©6), and for Case (33) move T to set C (©9). If G0 belongs to Case (32),
then (starting S5) use Gröbner Basis or Resultant together with reducing1
to get a univariate h̄i for each j = 1, · · · , q that satisfies

Projectionyi
(RealZero(G0|V)) ⊂ {y|h̄i = 0}

for each j = 1, · · · , q, and use intervalrealroot to get the intervals solu-
tions of h0, h̄1, · · · , h̄q:

M0 := intervalrealroot(h0, y0, 1/12, 1/9),
M1 := intervalrealroot(h̄1, y1, 0, 1),
· · ·
Mq := intervalrealroot(h̄q, yq, 0, 1).

Let Mr := M0 ×M1 ×M1 × · · · ×Mq and

Ir := {I|I = (I0, I1, · · · , Iq) ∈Mr,
0 ∈ gi(I)− I = gi(I1, · · · , Iq)− I0 for all 1 ≤ i ≤ r, and
0 ∈ gi(I)− I or gi(I)− I ⊂ (0, +∞) for all r + 1 ≤ · · · ≤ p} .

(S5 finished here). If Ir = ∅ then move T and all T ′ ∈ B ∪ C with T ⊂ T ′

to A (this is corresponding to Case (321) and operation ©7); otherwise, i.e.,
for Case (322), push (T, Ir) into D and remove T from B (©8).

4. Procedure (III). While C �= ∅ do this step. Recall that for each T ∈ C, say,
T = {1, 2, · · · , r}, the Gröbner Basis G0 of

G = {g1(y1, · · · , yq)− y0, · · · , gr(y1, · · · , yq)− y0}

after reducing2 with respect to

V = { 1
12

< y0 <
1
9
, 0 < y1 < 1, · · · , 0 < yq < 1}

belongs to one of the following two cases.

218 Z. Zeng and L. Chen

(a) G0 contains a univariate polynomial h0(y0), and for some permutation
z1, · · · , zq of y1, · · · , yq,

G0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1(y0),
h2(y0, z1, · · · , zl1),
h3(y0, z1, · · · , zl1 , zl1+1, · · · , zl2),
· · · ,
hm(y0, z1, · · · , zl1 , zl1+1, · · · , zl2 , · · · , zq)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

;

(b) G0 contains no univariate polynomial in y0, that is, for some permutation
z1, · · · , zq of y1, · · · , yq, G0 can be written as

G0 =

⎧⎪⎪⎨
⎪⎪⎩

h1(y0, z1, · · · , zl0),
h2(y0, z1, · · · , zl0 , zl0+1, · · · , zl1),
· · · ,
hm(y0, z1, · · · , zl0 , zl0+1, · · · , zl1 , · · · , zq)

⎫⎪⎪⎬
⎪⎪⎭ .

In both cases, m < q + 1. The non-linear programming restricted on T
becomes to the following form

NLP (n, T) :
max y0,
s.t. h1 = 0, · · · , hm = 0,

gr+1(z1, · · · , zq)− y0 > 0, · · · , gp(z1, · · · , zq)− y0 > 0,
1/12 < y0 < 1/9, 0 < z1 < 1, · · · , 0 < zq < 1.

The problem of this form is a typical cylindrical algebraic decomposition
problem and there are completed algorithms (like QEPCAD) for solving it.
Since in the non-linear programming problems generated by Heilbronn op-
timal configurations, the constraints f1, f2, · · · , f35 are quadratic polyno-
mials of x1, x2, · · · , x14, and all monomials of degree 2 are of x2i−1 · x2j

(i = 1, · · · , 7, j = 1, · · · , 7; i �= j) form, and hence can be considered as lin-
ear combinations of either x2, x4, · · · , x14 or x1, x3, · · · , x13. It is natural to
expect that linear equations also existed in {h1, · · · , hm} and can be used to
eliminate part of variables before applying CAD-based methods, as described
in the following steps (S6).
(i) Find a subset, say, {z1, · · · , zk}, of {z1, · · · , zq} such that h0, h1, · · · , hm

form a system of linear equations with variables z1, · · · , zk. Let

z1 = Q1(zk+1, · · · , zq), · · · , zk = Qk(zk+1, · · · , zq)

be the solution of the linear equations. It is clear that Q1, · · · , Q2 are
fractional polynomials.

(ii) Substitute z1 = Q1, · · · , zk = Qk into the constraints of NLP (n, T), we
get a new optimal problem with less variables.

max y0,

s.t. V1(zk+1, · · · , zq) = 0, · · · , Vm−k(zk+1, · · · , zq) = 0,

U1(zk+1, · · · , zq) > 0, · · · , Us(zk+1, · · · , zq) > 0,

1/12 < y0 < 1/9, 0 < zk+1 < 1, · · · , 0 < zq < 1.

On the Heilbronn Optimal Configuration of Seven Points in the Square 219

(iii) Reduce polynomials V1, · · · , Vm−k, U1, · · · , Us under the condition 1/12 <
y0 < 1/9, 0 < zk+1 < 1, · · · , 0 < zq < 1. Namely, if W |Vi or W |Ui, and
W ∈ Q[y0] such that sturm(W, y0, 1/12, 1/9) = 0, or W ∈ Q[zj](k + 1 ≤
k ≤ q) such that sturm(W, zj , 0, 1) = 0, then W (with possibly a change
of sign) can be removed from the corresponding Vi or Ui.

If 1 ∈ GröbnerBasis(V1, · · · , Vm−k), or the set L1 > 0, · · · , Lt > 0 of all
linear constraints in the reduced problem forms an empty set, or the solution
y0 of the following linear programming LP (n, T)

max y0,

s.t. L1(y0, zk+1, · · · , zk) > 0,

· · · ,
Lt(y0, zk+1, · · · , zk) > 0,

satisfies y0 ≤ 1/12, then move T and all T ′ ∈ C that satisfies T ⊂ T ′ to A
(this is corresponding to Case (41) and operation ©10). Otherwise (i.e., for
Case (42)), solve the following quantifier elimination problem QE(n, T):

∃y0∃z1 · · · ∃zq [V1 = 0 ∧ · · · ∧ Vm−k = 0 ∧ U1 > 0 ∧ · · · ∧ Us > 0
(1/12 < y0 < 1/9) ∧ (0 < zk+1 < 1) ∧ · · · ∧ (0 < zq < 1)] ,

where polynomials Ui, Vj ∈ Q[y0, zk+1, · · · , zq] are reduced under 1/12 <
y0 < 1/9, 0 < zk+1 < 1, · · · , 0 < zq < 1. This is S7 in the Sketch Diagram.

If the quantifier elimination QE(n, T) has no solution (Case (421)), then
again we move T and all T ′ ∈ C that satisfies T ⊂ T ′ to A (©11), otherwise,
push (T, QEsolutions) into D and remove T from C (Case (422) and opera-
tion ©12 in the Sketch Diagram), here QEsolutions is a set of the following
q + 1 array of intervals (I0, I1, · · · , Iq) that satisfies QE(n, T) and

I1 = Q1(Im+1, · · · , Iq), · · · , Ik = Q1(Im+1, · · · , Iq).

Computation shows that this preprocess is very useful since for the most
T ∈ C, the simplified non-linear programming problem obtained in Step
4.3 has only one or two free variables, for which the quantifier elimination
method is very effective. It is also found that for all T ∈ C, the quantifier
elimination problems obtained in Step 4.3 have no solution. This means, all
possible optimal configurations are contained in the set D generated in Steps
2 and 3.

5. Final Processing. Analyze the possible optimal configurations recorded in D.
Computation shows that A �= ∅ only for n = 1 and n = 5, which correspond
to (5C92) and (5C81), respectively. In both cases, A has only one member.
This means that there are at most two possible optimal configurations for
Heilbronn’s seven points in a unit square. It is easy to verified the following
two properties.

220 Z. Zeng and L. Chen

(i) The configuration decided by (5C92) is symmetric to the configuration
decided by (5C81) about the axis y = x;

(ii) Both configurations are congruent to the configuration suggested by
Francesc Comellas, J. Luis A. Yebra in [1].

Therefore, we finally proved the conjecture on the optimal configuration for seven
points in a square. The results we proved through computation reads as follows.

Theorem 2. For any seven points contained in a unit square, the smallest area
of the triangles formed by these seven points can not exceed 1/12 if the convex
hull of these seven points is a hexagon, and can not exceed the smallest positive
root of

u3 +
3
38

u2 − 7
76

u +
1

152
= 0,

which is, u = 0.0838590090 · · · = 1/11.9247772 · · ·, if the convex hull is a
pentagon. Q.E.D.

5 Open Problems Related to the Heilbronn Configuration
of Eight Points in the Square

Comellas and Yebra conjectured that the Heilbronn configuration of eight points
in the unit square is the configuration as shown in the Fig. 10(a) and the smallest
triangle is (

√
13 − 1)/36 = 0.072376 · · ·. The best configuration known before

Comellas and Yebra was (2 −
√

3)/4 = 0.066987 · · · given by Goldberg in 1972,
as shown in the Fig. 10(b).

Let {p1, p2, · · · , p8} be any eight points in the unit square. It is easy to prove
that if the convex hull of these points is a triangle or a tetragon, then the smallest
area of triangles formed by these points is not great than h4,4 = (2 −

√
3)/4 in

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) (b)

Fig. 10. Comellas and Yebra’s conjecture and Goldberg’s on the Heilbronn Configura-
tion of eight points in the square

On the Heilbronn Optimal Configuration of Seven Points in the Square 221

view of Lemma 1. If the convex hull is a pentagon, say, p1p2 · · · p5, and therefore,
p6, p7, p8 ∈ p1p2 · · · p5, then it is also easy to prove that either one of pipjpk(0 ≤
i < j < k ≤ 5) contains two points of p6, p7, p8, or each of the following five
triangles

p1p2p3, p2p3p4, p3p4p5, p4p5p1, p5p1p2

contains one of p6, p7, p8. Thus, we have also

h5,3 = min{area(pipjpk)|0 ≤ i < j < k ≤ 8} ≤ max{2−
√

3
4

,
1
3
·
√

3
9
} =

2−
√

3
4

.

On the other side, it is known (see [10]) that for any convex octagon p1p2 · · · p8

the following inequality holds:

min{area(pipjpk)|0 ≤ i < j < k ≤ 8} ≤ 2−
√

2
8

· area(p1p2 · · · p8),

and, in any convex octagon p1p2 · · · p8 there exists a convex octagon (called
H-octagon) q1q2 · · · q8 such that

area(ql1qlql+1) = min{area(pipjpk)|0 ≤ i < j < k ≤ 8}, l = 1, 2, · · · , 8,

here q0 = q9, q9 = q1. Since (2 −
√

2)/8 = 0.073223 · · · is slight larger than
(
√

(13)−1)/36 = 0.072376 · · ·, we can not simply prove that all convex octagons
p1p2 · · · p8 contained in the unit square satisfy

min{area(pipjpk)|0 ≤ i < j < k ≤ 8} ≤
√

13− 1
36

.

For this, we have the following open problem.

Open Problem 1. Prove that if p1p2 · · · p8 is a convex octagon contained in
the unit square, then

h8,0 = min{area(pipjpk)|0 ≤ i < j < k ≤ 8} ≤ 1
16

.

This problem can be reduced to prove that q1q2 · · · q8 is an H-octagon, that is,

area(ql−1qlql+1) = a,

and ABCD is the smallest parallelogram containing q1q2 · · · q8, then a ≤ 1/16 ·
area(ABCD). Using similar analysis to Lemma 2 we can prove that if ABCD
is the smallest parallelogram containing an H-octagon, then the collocation of
q1q2 · · · q8 with ABCD must be the case as shown in the following Fig.11 up to
a permutation of indices. Note that the following relations

q1q2//q8q3, q2q3//q1q4, · · · , q8q7//q6q1.

hold for all H-octagons q1q2 · · · q8.
For a complete proof to the conjecture of Comellas and Yebra on Heilbronn

configuration of eight points in the unit quare, we have the following open
problem.

222 Z. Zeng and L. Chen

A B

CD

q1 q2

q3

q4

q5

q6

q7

q8

Fig. 11. The smallest parallelogram covering an H-octagon

Open Problem 2. (a) Prove that if p1p2 · · · p6 is a convex hexagon contained
in the unit square, and p7, p8 are contained in the hexagon, then

h6,2 = min{area(pipjpk)|0 ≤ i < j < k ≤ 8} ≤
√

13− 1
36

.

(b) Assume that p1p2 · · · p7 is a heptagon contained in the unit square, and p8 a
point contained in the heptagon. Compute the maximal minimum

h7,1 = maxmin{area(pipjpk)|0 ≤ i < j < k ≤ 8}.

The numerical searching for the optimization configuration in the case (b) of
the Open Problem 2 shows that h7,1 ≥ 0.067108 · · ·, the positive real root of the
following cubic equation:

45796x3 + 12714x2 − 225x− 56 = 0,

as shown in Fig.12, which is slightly larger than h4,4 = (4−
√

3)/4 = 0.066987 · · ·,
the optimal value in Fig.10(b).

The following open problem is an analogue to Lemma 7 for finding the optimal
configuration of eight points whose convex hull is of unit area such that the
smallest area of triangles formed by the eight points is maximal.

Open Problem 3. Let p1, p2, · · · , p8 be any eight points in the plane such that
the area of the convex hull of p1, p2, · · · , p8 is 1. Find the maximal value H8 of
the smallest area of triangles formed by p1, p2, · · · , p8.

Our conjecture to the answer of the last problem is that

H8 =
1

14 cos(π/14)
= 0.079279 · · · ,

and the optimal configuration is formed by the seven vertices of an affine regular
heptagon and the center of the heptagon, as shown in the Fig. 13.

On the Heilbronn Optimal Configuration of Seven Points in the Square 223

Fig. 12. A local optimization configuration for h7,1

P3

P2P1

P7

P6

P5

P4

P8

Fig. 13. An affine convex octagon with its center

6 Conclusion

We presented in this paper a proof to the Conjecture of Comella and Yebras on
the Heilbronn configuration of seven points in a unit square. We first investigated
the combinatorial types of the possible optimal configurations and the collocation
of (the convex hull of) the seven points with the edges of the square, and therefore
reduced the proof to solving of 226 non-linear programming problems of the
following form:

max x0,

s. t. Si,j,k(x1, · · · , xq) ≥ x0, (1 ≤ i < j < k ≤ 7)
0 ≤ x1, · · · , xq ≤ 1

where x1, · · · , xq are the coordinates of the seven points, Si,j,k are quadratic
polynomials of x1, · · · , xq and satisfy degree(Si,j,k, xl) ≤ 1 for all x1, · · · , xq. The
analysis significantly reduced the number of unknown coordinates from 14 to
6 ≤ q ≤ 8. For the enumeration of combinatorial types formed by seven points

224 Z. Zeng and L. Chen

in a square the readers may get general information from [1,2]. Then we worked
to reduce the number of quadratic constraints in the 226 non-linear programming
problems. In the third stage we used symbolic computation to get strict proof
to that configuration suggested by Comellas and Yebras is the unique solution
(up to congruent) to the non-linear programming problems by regarding them
as quantitative eliminations. We also analyzed the possible ways to prove the
Conjecture of Comellas and Yebra on eight points. Our impression is that the
symbolic computation may have potential for this job if there are more effective
methods to search the combinatorial types of the possible optimal configurations,
to reduce the number of unknowns, and to simplify the constraints of non-linear
programming problems associated with the optimal configurations.

References

1. Aichholzer, O., Aurenhammer, F., Krasser, H.: Enumerating order types for small
point sets with applications. Order 19(3), 265–281 (2002)

2. Aichholzer, O., Krasser, H.: Abstract order type extension and new results on the
rectilinear crossing number. Computational Geometry: Theory and Applications,
Special Issue on the 21st European Workshop on Computational Geometry 36(1),
2–15 (2006)

3. Comellas, F., Yebra, J.L.A.: New lower bounds for heilbronn numbers. Electr. J.
Comb. 9(6), 1–10 (2002)

4. Dress, A.W.M., Yang, L., Zeng, Z.: Heilbronn problem for six points in a planar
convex body. In: Combinatorics and Graph Theory 1995, vol. 1 (Hefei), pp. 97–118.
World Sci. Publishing, Singapore (1995)

5. Goldberg, M.: Maximizing the smallest triangle made by n points in a square.
Math. Magazine 45(3), 135–144 (1972)

6. Yang, L., Zeng, Z.: Heilbronn problem for seven points in a planar convex body.
In: Dingzhu, D., Pardalos, P.M. (eds.) Minimax and Applications (1995)

7. Yang, L., Zhang, J., Zeng, Z.: On exact values of heilbronn numbers for triangular
regions. Tech. Rep. 91-098, Universität Bielefeld (1991)

8. Yang, L., Zhang, J., Zeng, Z.: On goldberg’s conjecture: Computing the first several
heilbronn numbers. Tech. Rep. 91-074, Universität Bielefeld (1991)

9. Yang, L., Zhang, J., Zeng, Z.: A conjecture on the first several heilbronn numbers
and a computation. Chinese Ann. Math. Ser. A, 13, 503–515 (1992)

10. Zeng, Z., Shan, M.: Semi-mechanization method for an unsolved optimization prob-
lem in combinatorial geometry. In: Proceedings of the 2007 ACM Symposium on
Applied Computing, pp. 762–766. ACM, New York (2007)

Author Index

Bourgeois, Gérald 1

Chen, Liangyu 196
Chen, Xiaoyu 22
Chou, Shang-Ching 189

Fünfzig, Christoph 163

Gao, Xiao-Shan 189
Grégoire, Benjamin 42

Huang, Ying 22

Kapur, Deepak 60
Kredel, Heinz 86

Lasaruk, Aless 116

Magaud, Nicolas 141
Michelucci, Dominique 163
Minimair, Manfred 60

Narboux, Julien 141

Orange, Sébastien 1

Pottier, Löıc 42

San Segundo, Fernando 179
Schreck, Pascal 141
Sendra, J. Rafael 179
Sturm, Thomas 116

Théry, Laurent 42

Wang, Dongming 22

Ye, Zheng 189

Zeng, Zhenbing 196

	Title
	Preface
	Organization
	Table of Contents
	Contributed Papers
	Dynamical Systems of Simplices in Dimension Two or Three
	Introduction
	The General Problem
	The Case d=3
	The Case d=2
	Computational Aspects of the Proofs

	Standard Definitions and Results about Tetrahedra
	General Tetrahedra
	Isosceles Tetrahedra

	Deformation from T0 to T1 (d=3)
	Parameters and Notations
	Inequalities

	Solution of the Case d=3. Part 1
	Solution of the Case d=3. Part 2
	Taylor Series I
	Taylor Series II
	Proof of the Property (*)
	The Main Result in Dimension Three

	Sequence of Cyclic Quadrilaterals
	Degenerate Simplices
	A Particular Case
	About the Limit

	Solution of the Case d=2
	The Parameters
	Deformation from T0 to T1
	Convergence of the Triangles
	The Main Result in Dimension Two

	Conclusion
	References

	On the Design and Implementation of a Geometric Knowledge Base
	Introduction
	Motivation
	State of the Art
	Problem

	Representation of Geometric Knowledge Objects
	Identification of Knowledge Data Elements
	Formalization of Data Elements
	Structure Design within Knowledge Objects

	Modeling of the Structure for the Knowledge Base
	Analysis on the Structure for the Knowledge Base
	Representation of the Structure of the Knowledge Base

	Implementation of the Knowledge Base System
	Naming Objects in the Knowledge Base
	Browsing and Querying the Knowledge Base

	Conclusion and Future Work
	References

	Proof Certificates for Algebra and Their Application to Automatic Geometry Theorem Proving
	Introduction
	Nullstellensatz Theorem and Gröbner Basis
	Division of Polynomials
	Gröbner Bases

	Buchberger's Algorithm and Certificates
	Reflexive Method to Verify Large Certificates in Proof Assistant
	Geometry Theorem Proving
	Conclusion
	References

	Multivariate Resultants in Bernstein Basis
	Introduction
	Preliminaries
	Multivariate Resultants and Projection Operators
	Macaulay-Style Approach
	Bézout/Cayley/Dixon-Style Approach
	Multivariate (Tensor-Product) Bernstein Bases

	An Analogue of Macaulay-Style Resultant Construction
	Bézout/Cayley/Dixon-Style Resultant Construction
	Unmixed Bernstein Basis Degrees
	Mixed Bernstein Basis Degrees
	Dixon Resultant

	Applications
	A Theorem on Drawing by Compass and Ruler
	Surface-Curve Intersection
	Geometric Benchmarks

	Conclusion and Future Work
	References

	Unique Factorization Domains in the Java Computer Algebra System
	Introduction
	Related Work
	Outline

	Introduction to JAS
	GCD Class Layout
	Design Overview
	Interface GcdRingElem
	Recursive Methods
	Conversion of Representation

	GCD Implementations
	Polynomial Remainder Sequences
	Modular Methods
	GCD Factory
	GCD Proxy

	GCD Performance
	Relative Algorithm Performance
	Comparison with other CAS
	Application Performance

	GCD Evaluation
	Factorization
	Class Layout
	Modular, Integer and Rational Coefficients
	Algebraic Number Coefficients
	Absolute Factorization
	Factor Factory

	Real Roots
	Real Algebraic Numbers

	Conclusions
	References

	Automatic Verification of the Adequacy of Models for Families of Geometric Objects
	Introduction
	An Outline of Our Method
	A Formal Description of Our Method
	Complexity
	Example Computations for Geometric Primitives
	Lines and Spheres in 2-Space
	Planes and Spheres in 3-Space

	Tori
	Circle Rings in 2-Space
	Tori in 3-Space

	Conclusions
	References

	Formalizing Projective Plane Geometry in Coq
	Introduction
	Axioms
	A First Set of Axioms
	Another Axiom System for Projective Plane Geometry
	Implementation in Coq

	Duality
	Principle of Duality
	Applications

	Models
	Finite Models
	Infinite Model: Homogeneous Coordinates

	Desarguesian and Non-desarguesian Models
	Desargues' Property
	Fano's Plane Is Desarguesian
	Independence of Desargues' Property

	Conclusion and Future Work
	References

	Linear Programming for Bernstein Based Solvers
	Introduction
	Tensorial Bernstein Bases, Definitions, Main Properties
	Definition of the Bernstein Polytope
	Univariate Polynomials
	Multivariate Polynomials

	Linear Programming
	Range Bound for a Polynomial
	Domain Reduction

	Use in Interval Newton Solvers
	New Solver
	Technicalities
	Scaling
	Inaccuracy Issues
	Guarantees and Theorems
	Solver Implementation

	Conclusion and Future Work
	References

	Offsetting Revolution Surfaces
	Introduction
	Surfaces of Revolution
	Implicitization of Revolution Surfaces
	Offsets to Revolution Surfaces
	References

	An Introduction to Java Geometry Expert
	Introduction
	The Parts of JGEX
	The Manual Input Method
	The Automated Methods
	Visualization of Fixpoints
	Conclusion
	References

	On the Heilbronn Optimal Configuration of Seven Points in the Square
	Introduction
	Reducing the Optimal Configuration to 226 Local Optimizations
	Checking the Loose Constraints of Non-linear Programming Problems
	Solving Non-linear Programming With Symbolic Computation
	Open Problems Related to the Heilbronn Configuration of Eight Points in the Square
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

