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Preface

These proceedings include the papers selected for presentation at the 5th Work-
shop in Information Security Theory and Practice (WISTP 2011), held during
June 1-3, 2011, in Heraklion, Crete, Greece.

In response to the call for papers, WISTP 2011 received 80 submissions. Each
submission was evaluated on the basis of its significance, novelty, technical qual-
ity, and practical impact, and reviewed by at least three members of the Program
Committee. The reviewing process was “double-blind,” that is, the identities of
the reviewers and of the authors were not revealed to each other. After an inten-
sive discussion in a two-week Program Committee meeting held electronically,
19 full papers and 8 short papers were selected for presentation at the workshop.
In addition to the technical program composed of the papers in the proceedings,
the workshop included three keynotes by David Naccache, Reinhard Posch, and
Pim Tuyls.

WISTP 2011 was organized in cooperation with the IFIP WG 11.2 Pervasive
Systems Security. This workshop was also sponsored by FORTH, Institute of
Computer Science, which took care of the organization under the aegis of ENISA,
and by École Normale Supérieure (ENS) and Intrinsic-ID, who provided support
for the invited speakers.

There is also a long list of people who devoted their time and energy to
this workshop and who deserve acknowledgment. Thanks to all the members of
the Program Committee, and the external reviewers, for all their hard work in
reviewing the papers. We also gratefully acknowledge all the people involved in
the organization process: the WISTP Steering Committee, and Damien Sauveron
and Kostantinos Markantonakis in particular, for their advice; the General Chairs,
Ioannis G. Askoxylakis and Demosthenes Ikonomou, for their support in the
workshop organization; Cheng-Kang Chu and Sara Foresti, for their activity as
Publicity Chairs. A special thanks to the three invited speakers for accepting
our invitation and delivering invited talks at the workshop.

Last but certainly not least, our thanks are due to the authors for submitting
the best results of their research to WISTP 2011 and to all the attendees. We
hope you find the proceedings helpful for your future research activities.

June 2011 Claudio A. Ardagna
Jianying Zhou
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Javier López University of Málaga, Spain
Wenjing Lou Worcester Polytechnic Institute, USA
Mark Manulis Technische Universität Darmstadt, Germany
Fabio Martinelli IIT-CNR, Italy
Carlos Maziero Pontifical Catholic University, Brazil
Chris Mitchell Royal Holloway University of London, UK
Katerina Mitrokotsa EPFL, Switzerland
Jose Onieva University of Málaga, Spain
Ferruh Ozbudak Middle East Technical University, Turkey
Stefano Paraboschi University of Bergamo, Italy
Gerardo Pelosi University of Bergamo, Italy
Raphael Phan Loughborough University, UK
Joachim Posegga University of Passau, Germany
Jean-Jacques Quisquater Catholic University of Louvain, Belgium
Jason Reid Queensland University of Technology, Australia
Kui Ren Illinois Institute of Technology, USA



Organization IX

Reihaneh Safavi-Naini University of Calgary, Canada
Kouichi Sakurai Kyushu University, Japan
Gokay Saldamli Bogazici University, Turkey
Pierangela Samarati Università degli Studi di Milano, Italy
Jose Maria Sierra Carlos III University of Madrid, Spain
Miguel Soriano Technical University of Catalonia, Spain
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Kyushu University, Japan
Michael Tunstall University of Bristol, UK
Wen-Guey Tzeng National Chiao Tung University, Taiwan
Jian Weng Jinan University, China
Chan Yeob Yeun Khalifa University of Science,

Technology and Research, UAE
Heung-Youl Youm Soonchunhyang University, Korea

External Reviewers

Isaac Agudo
Cristina Alcaraz
lessandro Barenghi
Lejla Batina
Jung Hee Cheon
Jihyuk Choi
Sherman S.M. Chow
Gabriele Costa
Giampiero Costantino
Eleni Darra
Isao Echizen
Dominik Engel
Carmen Fernandez-Gago
Kazuhide Fukushima
Dimitris Geneiatakis
Johann Großschädl
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Can Code Polymorphism Limit Information

Leakage?

Antoine Amarilli1, Sascha Müller2, David Naccache1,
Daniel Page3, Pablo Rauzy1, and Michael Tunstall3

1 École normale supérieure, Département d’informatique
45, rue d’Ulm, f-75230, Paris Cedex 05, France

{name.surname}@ens.fr
2 Technische Universität Darmstadt, Security Engineering

Hochschulstraße 10, d-64289 Darmstadt, Germany
mueller@seceng.informatik.tu-darmstadt.de

3 University of Bristol
Merchant Venturers Building, Woodland Road, Bristol, bs8 1ub, uk

{page,tunstall}@cs.bris.ac.uk

Abstract. In addition to its usual complexity assumptions, cryptogra-
phy silently assumes that information can be physically protected in a
single location. As one can easily imagine, real-life devices are not ideal
and information may leak through different physical side-channels. It is
a known fact that information leakage is a function of both the executed
code F and its input x.

In this work we explore the use of polymorphic code as a way of
resisting side channel attacks. We present experimental results with pro-
cedural and functional languages. In each case we rewrite the protected
code code Fi before its execution. The outcome is a genealogy of pro-
grams F0, F1, . . . such that for all inputs x and for all indexes i �= j ⇒
Fi(x) = Fj(x) and Fi �= Fj . This is shown to increase resistance to side
channel attacks.

1 Introduction

From a security perspective, the advent of a software monoculture is an oft
cited problem. Monoculture software is coarsely defined as programs (e.g., In-
ternet Explorer), generated from the same source code by the same compiler
(e.g., Visual Studio) and executed on the same processor family (e.g., Intel x86)
under control of the same operating system (e.g., Windows). The premise is
that monoculture makes attacks easier: an attack against any one member can
be applied directly to the entire population; analogues exist in biology where
monocultures and parthenogenesis are known to ease the spread of disease and
lessen adaptation to environmental changes.

Various (seemingly different) protections attempt to break software monocul-
ture through diversification. A simple example is that of Address Space Layout

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 1–21, 2011.
c© IFIP International Federation for Information Processing 2011



2 A. Amarilli et al.

Randomization (aslr): if each program is executed within a different address
offset, then any assumptions an opponent makes on the location of a particular
datum limits attacks to a smaller subset of the population.

This argument is equally relevant to embedded security and side-channel re-
silience, even if one accepts Kerckhoffs’ principle (that cryptographic security
should lay in the key alone). Defenders endeavor to make attacks harder by ran-
domizing execution: even if opponents know the program being executed, their
task of exploiting leakage is harder since they cannot focus their analysis with
accuracy.

Background and Related Work. Focusing specifically on temporal random-
ization (e.g., ignoring masking and related techniques), the term desynchroniza-
tion is often used. The basic idea is to somehow alter normal program execution
by “shuffling” instructions on-the-fly. This roughly means that the i-th instruc-
tion is no longer executed during the i-th execution cycle: the defender either
swaps it with another instruction or inserts delays that cause the code to execute
during a j-th cycle.

Consider the following randomization of the aes S-box layer [5]. Assuming
that SBOX is a pre-computed table representing the aes S-box, a simple C im-
plementation might resemble the following loop:

for( int i = 0; i < 16; i++ ) {
S[ i ] = SBOX[ S[ i ] ];

}

To randomise the order of accesses to SBOX, one idea would be to maintain a
table T where the i-th entry, i.e., T[i], is initially set to i for 0 ≤ i < 16. This
table can be used for indirection as follows:

for( int i = 0; i < 16; i++ ) {
S[ T[ i ] ] = SBOX[ S[ T[ i ] ] ];

}

Note that this represents what one might term online overhead in the sense
that the indirection’s cost is paid during every program execution. Of course
the trade-off is that table T can be updated, more specifically randomized, at
regular intervals (e.g., after each execution of the program) to ensure that S-box
accesses are reordered. Such re-randomization is achievable using something as
simple as:
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t = rand() & 0xF;

for( int i = 0; i < 16; i++ ) {
T[ i ] = T[ i ] ^ t;

}

This update of T represents what we term offline overhead: although the com-
putational toll is not paid before run-time, the cost is offline in the sense that it
is not borne during the execution of the program itself. Related work includes
(but is certainly not limited to):

– Herbst et al. [7] describe the use of “randomization zones” within an aes
implementation; the basic idea is to randomly reorder instructions within
selected round functions, thus temporally skewing them in an execution
profile.

– May et al. [12] describe nondet, a processor design idiom that harnesses
Instruction Level Parallelism (ilp) within a given instruction stream to issue
instructions for execution in a random (yet valid) order. This essentially
yields a hardware-supported and hence more fine-grained and more generic,
version of the above.

– A conceptually similar idea is the design of re-randomizable Yao circuits by
Gentry et al. [6]; the goal in both cases is to prevent leakage and in a sense
construct per-use programs (circuits) via randomization.

– Many proposals have made use of random timing delays, i.e., temporal skew-
ing. For example Clavier et al. [3] describe a method which uses the interrupt
mechanism while Tunstall and Benôıt [16] describe a similar software-based
approach.

– A vast range of program obfuscation techniques have appeared in the liter-
ature (see [4] for an overview) and are used in industry. The typical goals
are to make reverse engineering harder and diversify the form of installed
software; other applications include the area of watermarking.

Goals and Contribution. We consider the use of program self-modification
as a means to allow a more general-purpose analogue of the above; we aim to
describe an approach which

1. can be automated in a compiler (noting that parallelizing compilers can
already identify light-weight threads in programs), and

2. can be composed with other countermeasures (e.g., masking).

The basic idea is to (randomly) rewrite the program before execution and limit
all overhead to being offline. The online overhead would be essentially nil: the
overhead is associated purely with the number of static instructions in the
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program, i.e., the cost of rewriting, rather than the number of dynamic instruc-
tions executed. A fully randomized rewriting approach would be costly since it
demands analysis and management of instruction dependencies: in a sense, this
would be trying to do in software what a nondet processor does in hardware.
We nonetheless explore this approach concretely using Lisp in Section 5. A con-
ceptually simpler approach would be to follow the reasoning of Leadbitter [11]
who imagines randomization as choices between threads which are already free
from dependencies.

More formally, letting c = F0(k, m) denote a cryptographic program run on
public input m and secret input k in a protected device, we explore ways to code
F0 in such a way that after each execution Fi will rewrite itself as Fi+1 whose
instructions differ from those of Fi before returning c.

In other words ∀i, j, m, k, Fi(k, m) = Fj(k, m), but i �= j ⇒ Fi �= Fj , a
property that makes the attacker’s signal collection task much harder.

2 Algorithmic Description

We represent the straight-line program fragment under consideration as a graph
with n levels; each level contains a number of nodes which we term buckets. Gi

denotes a list of buckets at the i-th level, with |Gi| giving the length of this list.
Gi,j denotes a list of instructions in the j-th bucket at the i-th level, with |Gi,j |
giving the length of the list and Gi,j [k] giving the k-th instruction.

Consider two instructions ins1 and ins2 that reside in buckets at the i-th
and j-th level respectively: ins1 may be dependant on ins2 iff i > j, ins1 and
ins2 must be independent if i = j. Informally, levels represent synchronization
points: for some i > j, no instruction within the i-th level can be executed un-
til every instruction within the j-th level has been executed. As such, buckets
within a level can be viewed as threads and each level as a thread team: for
some i > j and k, instructions within buckets i and j can execute in parallel
(or constituent instructions be scheduled in any order) if both buckets are at
level k.

Our approach is to maintain in memory two copies of program instructions:
a static version (source program) and a dynamic version (target program). The
target program is actually executed at run-time. At some parameterized interval,
the target program is rewritten using instructions extracted from the source pro-
gram. The rewriting process is driven by the program graph which describes the
source program structure: the goal is to use the structure to randomize the order
according to which instructions are written into the target program while pre-
serving dependencies. This is possible since the layer and buckets are essentially
a pre-computed description of instructions inter(in)dependencies. The rewriting
process is performed at run-time with a granularity matching the level of exe-
cution randomization (which relates loosely to the level of security) dictated by
the context.
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Algorithm 1. Initializes the indirection lists driving the program rewriting
process.

Input: A program graph G with n levels representing a source program S.

for i = 0 upto n− 1 do1

Let t be the type of buckets within Gi.;2

Ri ← ∅;3

if t = 1 then4

for j = 0 upto |Gi| − 1 do5

Append j to the list Ri.;6

endfor7

endif8

else if t = 2 then9

for j = 0 upto |Gi| − 1 do10

for k = 0 upto |Gi,j | − 1 do11

Append j to the list Ri.;12

endfor13

endfor14

endif15

endfor16

2.1 Bucket Types

To facilitate rewriting we define two bucket-types. Where we previously denoted
a bucket as Gi,j we now write Gt

i,j for a type-t bucket. Consider two buckets G
and G′, both at level i in the program graph:

Type-1 if the bucket is of type-1 this means we must extract all instructions in
one go. This ensures that if we select G and then G′, the instructions from
G are written in a contiguous block within the target program and then
instructions from G′ are written in a second contiguous block.

Type-2 if the bucket is of type-2 this means we can extract a single instruction
at a time. This means that if we select G and then G′, instructions can be
freely interleaved with each other.

The two bucket types represent a tradeoff. On one hand, using type-2 buckets
is ideal since it allows fine-grained interleaving of instructions and therefore a
higher degree of randomization. However, to preserve the program’s functional
behavior, such buckets must use a disjoint set of registers so that the instruc-
tions can be freely interleaved. Since a given register file is limited in size, this
is sometimes impossible; to avoid the problem, one can utilize type-1 buckets
as an alternative. Here, register pressure is reduced since buckets can use an
overlapping set of registers.

2.2 Rewriting Algorithms

One can remove the restriction at extra cost, but to simplify discussion assume
that all buckets at a particular level in the program graph are of the same type.



6 A. Amarilli et al.

Algorithm 2. Randomly rewrites the source program into a target
program.

Input: A program graph G with n levels representing a source program S.
Output: The target program T representing a valid, randomized reordering of

instructions from S.

Set T ← ∅ ;1

for i = 0 upto n− 1 do2

Shuffle the list Ri.;3

endfor4

for i = 0 upto n− 1 do5

Let t be the type of buckets within Gi.;6

if t = 1 then7

for j = 0 upto |Ri| − 1 do8

j′ ← Ri[j];9

for k = 0 upto |Gi,j′ | − 1 do10

Let I be the next unprocessed instruction in Gi,j′ .;11

Append I to the target program T .;12

endfor13

endfor14

endif15

else if t = 2 then16

for j = 0 upto |Ri| − 1 do17

j′ ← Ri[j];18

Let I be the next unprocessed instruction in Gi,j′ .;19

Append I to the target program T .;20

endfor21

endif22

endfor23

return T ;24

To drive the rewriting process, Algorithm 1 is first used to initialize n indirection
lists: Ri is the i-th such list whose j-th element is denoted Ri[j]. This effectively
sets Ri = 〈0, 1, . . . , |Gi| − 1〉 if the buckets within Gi are of type-1, or

Ri = 〈 0, 0, . . . , 0︸ ︷︷ ︸
|Gi,0| elements

, 1, 1, . . . , 1︸ ︷︷ ︸
|Gi,1| elements

, . . .〉

if buckets are of type-2. The lists relate directly to table T used within the
example in Section 1.

When the program needs to be rewritten, Algorithm 2 is invoked: one level at
a time, instructions from the source program S are selected at random, driven
by the associated indirection list, to form the target program T . Note that before
this process starts, each indirection list is randomly shuffled; this can be done,
for example, by applying a Fisher-Yates shuffling [9, Page 145-146] driven by a
suitable lcg-based prng [9, Page 10-26].
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G1
0,0

G1
1,0

S[ 0 ] = SBOX[ S[ 0 ] ];

G1
1,1

S[ 1 ] = SBOX[ S[ 2 ] ];
· · · G1

1,15

S[ 15 ] = SBOX[ S[ 15 ] ];

G1
2,0

G1
3,0

t0 = S[ 0 ];

t1 = S[ 4 ];

t2 = S[ 8 ];

t3 = S[ 12 ];

S[ 0 ] = t0;

S[ 4 ] = t1;

S[ 8 ] = t2;

S[ 12 ] = t3;

G1
3,1

t0 = S[ 1 ];

t1 = S[ 5 ];

t2 = S[ 9 ];

t3 = S[ 13 ];

S[ 1 ] = t1;

S[ 5 ] = t2;

S[ 9 ] = t3;

S[ 13 ] = t0;

G1
3,2

t0 = S[ 2 ];

t1 = S[ 6 ];

t2 = S[ 10 ];

t3 = S[ 14 ];

S[ 2 ] = t2;

S[ 6 ] = t3;

S[ 10 ] = t0;

S[ 14 ] = t1;

G1
3,3

t0 = S[ 3 ];

t1 = S[ 7 ];

t2 = S[ 11 ];

t3 = S[ 15 ];

S[ 3 ] = t3;

S[ 7 ] = t0;

S[ 11 ] = t1;

S[ 15 ] = t2;

G1
4,0

G1
5,0

t0 = S[ 0 ];

t1 = S[ 1 ];

t2 = S[ 2 ];

t3 = S[ 3 ];

S[ 0 ] = XMUL[ t0 ^ t1 ] ^

t1 ^ t2 ^ t3;

S[ 1 ] = XMUL[ t1 ^ t2 ] ^

t2 ^ t0 ^ t3;

S[ 2 ] = XMUL[ t2 ^ t3 ] ^

t3 ^ t0 ^ t1;

S[ 3 ] = XMUL[ t3 ^ t0 ] ^

t0 ^ t1 ^ t2;

G1
5,1

t0 = S[ 4 ];

t1 = S[ 5 ];

t2 = S[ 6 ];

t3 = S[ 7 ];

S[ 4 ] = XMUL[ t0 ^ t1 ] ^

t1 ^ t2 ^ t3;

S[ 5 ] = XMUL[ t1 ^ t2 ] ^

t2 ^ t0 ^ t3;

S[ 6 ] = XMUL[ t2 ^ t3 ] ^

t3 ^ t0 ^ t1;

S[ 7 ] = XMUL[ t3 ^ t0 ] ^

t0 ^ t1 ^ t2;

G1
5,2

t0 = S[ 8 ];

t1 = S[ 9 ];

t2 = S[ 10 ];

t3 = S[ 11 ];

S[ 8 ] = XMUL[ t0 ^ t1 ] ^

t1 ^ t2 ^ t3;

S[ 9 ] = XMUL[ t1 ^ t2 ] ^

t2 ^ t0 ^ t3;

S[ 10 ] = XMUL[ t2 ^ t3 ] ^

t3 ^ t0 ^ t1;

S[ 11 ] = XMUL[ t3 ^ t0 ] ^

t0 ^ t1 ^ t2;

G1
5,3

t0 = S[ 12 ];

t1 = S[ 13 ];

t2 = S[ 14 ];

t3 = S[ 15 ];

S[ 12 ] = XMUL[ t0 ^ t1 ] ^

t1 ^ t2 ^ t3;

S[ 13 ] = XMUL[ t1 ^ t2 ] ^

t2 ^ t0 ^ t3;

S[ 14 ] = XMUL[ t2 ^ t3 ] ^

t3 ^ t0 ^ t1;

S[ 15 ] = XMUL[ t3 ^ t0 ] ^

t0 ^ t1 ^ t2;

G1
6,0

G1
7,0

S[ 0 ] = S[ 0 ] ^ K[ 0 ];

G1
7,1

S[ 1 ] = S[ 1 ] ^ K[ 1 ];
· · · G1

7,15

S[ 15 ] = S[ 15 ] ^ K[ 15 ];

G1
8,0

Fig. 1. A program graph for one aes round; the graph consists of 9 levels, with levels
0, 2, 4, 6 and 8 acting as synchronization points. Note that SBOX and XMUL represent
precomputed tables for the aes S-box and xtime operation.
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3 Concrete Implementation

Asanexample, consider anaes implementation [5]usinganeight-bit softwaredata-
path; we represent the state matrix using a sixteen-element array S. One can de-
scribe instructions that comprise a standard, non-final aes round (i.e.,
SubBytes�ShiftRows�MixColumns�AddRoundKey), as a program graph. Using
both C and continuation dots for brevity, such a program graph is shown in Figure 1.
– For the example (and in general) one can specialize the program rewriting

algorithm once the source program is fixed. e.g. all loops can be unrolled,
empty levels or levels with a single bucket can be processed at reduced cost
and special case treatment can be applied to levels with a single bucket type.

– The MixColumns layer houses buckets that can be split into smaller parts
depending on register pressure. e.g. within level five one could split the second
phase of each bucket into a further layer with sixteen buckets: each bucket
would compute one element of the resulting state matrix (rather than the
current formulation where four buckets each compute four elements).

4 Experimental Evaluation

Algorithm 2 was implemented on an arm7 microprocessor. In this section we
describe the performance of an unrolled reordered aes implementation and how
one could attack such an implementation. We compare this with a straightfor-
ward unrolled aes implementation.

4.1 Performance

A standard (unprotected) unrolled aes implementation and a polymorphic aes
code were written for an arm7 microprocessor. The polymorphic version is only
1.43 times slower than the unrolled aes (7574 cycles vs. 5285), a time penalty
which is not very significant for most practical purposes. This comparison is only
indicative as faster polymorphic programs are possible (our rewriting function
was written in C with no optimizations). Nonetheless, the polymorphic aes code
requires a significant amount of extra ram which might be problematic on some
resource constrained devices.

4.2 Attacking a Standard aes Implementation

A standard aes code will call each sub-function deterministically. This typically
involves constructing a loop that will go through all the indexes required to
compute a given function in a fixed order. These loops are typically seen in the
instantaneous power consumption, as a pattern of nine distinct patterns corre-
sponding to the aes’ first nine rounds. The last round is typically represented
by a different pattern because of the absence of the MixColumn function.

The different sub-functions of an aes code can be identified by inspecting a
power consumption trace. In the left hand part of Figure 2 two patterns of six-
teen peaks can be seen. These correspond to the plaintext and secret key being
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permuted to enable efficient computation given the matrix representation in the
aes’ specification. This is followed by a pattern of four peaks that correspond to
the exclusive or with the first key byte (the arm7 has a 32-bit architecture). Fol-
lowing this there is a pattern of sixteen peaks that corresponds to the SubBytes
function and two patterns of four peaks that correspond to the generation of
the next subkey. ShiftRow occurs between these functions but is not visible in
the power consumption. The exclusive or with this subkey can be seen on the
right hand side of Figure 2, which means that the remaining area between this
exclusive or and the generation of the subkey is where MixColumn is computed.
However, no obvious pattern can be seen without plotting this portion of the
trace with a higher resolution.

It is known that power consumption is typically proportional to the Hamming
weight of the values being manipulated at a given point in time. This can be used
to validate hypotheses on portions of the secret key being used in a given instance
[2,10]. For example, the correlation between the Hamming weight of SubBytes’s
output the power consumption traces can be computed in a pointwise manner
for a given key hypothesis, in this case we only need to form a hypothesis on
one secret key byte. If the hypothesis is correct a significant correlation will
be visible as shown in the right hand graphic of Figure 2, we note that the
maximum correlation coefficient is ∼ 0.6. If the key hypothesis is incorrect then
no significant hypothesis will be present.

1000 encryption power consumption traces were taken where the secret key
was a fixed value and the plaintext randomly changed for each trace. The right
hand graphic of Figure 2 shows a trace of the correlation between the points of the
power consumption traces and the Hamming weight of the result of the first byte
produced by the SubBytes function given that the secret key is known. That is,
the correlation is computed between the list of Hamming weights and the values
of the first point of each trace, the values of the second point of each trace, etc.
to form a trace of correlation values. The first peak corresponds to the point in
time at which the first byte is produced in SubBytes and indicates which of the
sixteen peaks corresponds to that byte being produced. The subsequent peaks in
the correlation trace indicate the instants where the same byte is manipulated
by MixColumns.

4.3 Attacking an Unrolled aes Implementation

The typical power consumption trace of an unrolled aes is shown in the left part
of Figure 3.

In Figure 4, we note that the maximum correlation coefficient for an unrolled
implementation is ∼ 0.7.

Figure 4 is the analogous of 2 under identical experimental conditions (1000
traces etc). Interpretation remains the same: the subsequent peaks in the cor-
relation trace indicate the instants at which the same byte is manipulated in
MixColumns but have a lower correlation coefficient.

The left graph of Figure 6 shows the maximum observed correlation for all
256 possible hypotheses for one observed key for x power consumption traces.
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Fig. 2. Power consumption trace of a single round of an aes encryption performed by
an arm7 microprocessor (left) and a Differential Power Analysis signal (right)
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Fig. 3. Power consumption trace of an unrolled aes on arm7. Unprotected (left) and
polymorphic (right) codes.
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Fig. 4. The rightmost trace is the correlation between the power consumption and the
output of the S-box that operates on the ⊕ of the first plaintext byte and the secret
key. The leftmost trace shows a sample power consumption, in millivolts, during the
same period of time.
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Fig. 5. The analogous of Figure 4 for the polymorphic code. In the leftmost trace the
round functions are divided up by peaks in the power consumption.
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Fig. 6. Maximum correlation. Unrolled aes (left curve) and unrolled polymorphic aes
(right curve).

Incorrect hypotheses are plotted in grey and the correct hypothesis is plotted
in black. We note that ∼ 100 traces suffice to distinguish the correct hypothesis
from the incorrect hypotheses.

4.4 Attacking a Polymorphic aes Implementation

A polymorphic aes, as described in Section 3 was implemented on an arm7. The
power consumption for the round function changes considerably. In the imple-
mentation, the subset of opcodes used has a lower average power consumption
and features local peaks in the power consumption caused by the call and return
from the subfunctions in the individual round (right part of Figure 3). The in-
dividual round functions can only be identified by the time required to compute
them as the patterns visible in Figure 2 are no longer present. These peaks can
easily be removed by implementing the round function as one function. However,
this feature is convenient for our analysis.

Figure 5 is the equivalent of Figure 4 for a polymorphic aes. Figure 5 features
two groups of peaks, the first of which has a correlation of ∼ 0.06; this group is
caused by the sixteen possible positions where the byte output from the SBOX
indexed by the exclusive-or of the first plaintext byte and the first byte of the
secret key is created. A second series of peaks representing a correlation of ∼ 0.1
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is visible. This series of peaks is caused by the sixteen possible positions where
the same byte can be manipulated in the MixColumn function. We can note that
these correlation coefficients are very low and 20, 000 power consumption curves
were required to produce a correlation coefficient that is significantly larger than
the surrounding noise.

The right graph of Figure 6 shows the maximum observed correlation for all
256 possible hypotheses for one observed key for x power consumption traces.
The incorrect hypotheses are plotted in grey and the correct hypothesis is plotted
in black. We note that ∼ 2, 500 traces are required to distinguish the correct
hypothesis from the incorrect ones. This is considerably more than required to
distinguish the correct hypotheses when attacking a non-polymorphic aes.

5 Can Lisp-Like Languages Help?

A further sophistication step consists in requiring Fi and Fi+1 to have an extreme
difference. While we do not provide a rigorous definition of the word extreme,
the aim of our next experiment, nicknamed Pastis, is to illustrate the creation
of a program able to rewrite itself in a way that does not alter functionality
but potentially changes all its code. We call a code fully polymorphic if any
instruction of Fi can potentially change in Fi+1.

The code was designed with two goals in mind: illustrate the way in which fully
polymorphic code is designed and provide a platform allowing to comfortably
test the efficiency of diverse replacement rules as a step stone towards the design
of a fully polymorphic aes code.

Such techniques can already be seen in polymorphic viruses as a way to foil
signature-based detection attempts by anti-virus software; they also appear in
code obfuscation systems. Readers can refer to [17] for more information on this
topic.

Pastis is written in Scheme for the mit Scheme implementation [15]. The
payload to transform (e.g. an aes) also has to be written in Scheme and is
restricted to the subset of the Scheme syntax which the rewriting system is able
to understand (Of course, since the rewriting engine has to rewrite itself, it is
itself written using this limited subset of Scheme).

Pastis is modular in a way making it easy to install new rewriting rules. Rules
must change the source code’s form while keeping it functionally equivalent.
In this paper we voluntarily provide illustrative rules which could not work
indefinitely because they tend to make the size of the code increase.

5.1 Structure

The top-level Pastis function is pastis-generator. It creates the self-rewriting
program from the payload and a rewriting function (which takes code as input
and produces functionally equivalent rewritten code as its return value).

The produced code behaves functionally like the payload function: it will
be evaluated to the same value if it gets the same parameters. However, it will
additionally print, during the evaluation, a rewritten, equivalent version of itself.
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Of course, the rewritten version is still functionally equivalent to the original
payload and will also produce a rewritten version of itself, which, in turn, can be
run, and so on, ad infinitum (forgetting about the growing size of the rewritten
code, i.e., assuming that we have an infinite amount of memory).

Internal Structure. The use of the pastis-generator function is quite
straightforward; its role is to provide a convenient mechanism to weld the pay-
load and rewriter together to make self-rewriting possible. Here is an example
of the use of pastis-generator. The payload here is a simple function which
adds 42 to its parameter and the rewriter is the identity function.

(pastis-generator

’((payload . (lambda (x) (+ 42 x)))

(rewriter . (lambda (x) x))))

The resulting code-blend produced by the pastis-generator function is
given below.

(lambda (args)

(define (pastis-rewrite x)

((lambda (x) x) x))

(define (pastis-payload x)

((lambda (x) (+ 42 x)) x))

(define (pastis-ls l)

(map (lambda (x) (write (pastis-rewrite x)) (display " ")) l))

(define (pastis-code l)

(display "(")

(pastis-ls l)

(display "(pastis-code ’(")

(pastis-ls l)

(display ")) (pastis-payload args))\n"))
(pastis-code

’(lambda (args)

(define (pastis-rewrite x)

((lambda (x) x) x))

(define (pastis-payload x)

((lambda (x) (+ 42 x)) x))

(define (pastis-ls l)

(map (lambda (x) (write (pastis-rewrite x)) (display " ")) l))

(define (pastis-code l)

(display "(")

(pastis-ls l)

(display "(pastis-code ’(")

(pastis-ls l)

(display ")) (pastis-payload\nargs))\n"))))
(pastis-payload args))



14 A. Amarilli et al.

5.2 Step by Step Explanations

The code generated by pastis-generator seems complicated, but its structure
is in fact very similar to that of the following classical quine1.

(define (d l) (map write-line l))

(define (code l) (d l) (display "(code ’(\n") (d l) (display "))\n"))
(code ’(

(define (d l) (map write-line l))

(define (code l) (d l) (display "(code ’(\n") (d l) (display "))\n"))))

Adding a payload to this quine is quite straightforward.

(define (payload) (write "Hello, World!\n"))
(define (ls l) (map write-line l))

(define (code l) (ls l) (display "(code ’(\n") (ls l) (display "))\n"))
(payload)

(code ’(

(define (payload) (write "Hello, World!\n"))
(define (ls l) (map write-line l))

(define (code l) (ls l) (display "(code ’(\n") (ls l) (display "))\n"))
(payload)))

Given Pastis’s role, it is quite easy to see that it is related to quines. The
only difference is that Pastis has to modify its code before printing it, in-
stead of printing it verbatim as regular quines do. This is also quite easy to
do.

However, deeper technical changes are required if we want to be able to pass
parameters to the payload because the classical quine’s structure does not permit
this. The solution is to make a quine that is also a λ-expression (instead of a list
of statements). This is possible, thanks to S-expressions.

The way the quine works relies on the fact that its code is a list of statements
and that the last one can take a list of the previous ones as arguments. Making
the whole quine a λ-expression in order to accept arguments for the payload
means making it a single expression. But thanks to the language used, it appears
that this single expression is still a list. This enables us to solve our problem.
Here is the result:

1 A quine [8], named after Willard Van Orman Quine, is a program that prints its
own code.
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(lambda (args)

(define (payload x) (+ x 42))

(define (ls l) (map write-line l))

(define (code l)

(display "(")

(ls l) (display "(code ’(")

(ls l) (display "))\n(payload x))"))

(code ’(lambda (x)

(define (payload x) (+ x 42))

(define (ls l) (map write-line l))

(define (code l)

(display "(")

(ls l) (display "(code ’(")

(ls l) (display "))\n(payload x))"))))

(payload args))

5.3 Rewriter

In addition to pastis-generator, we also provide a rewriter function. Its
role is to call specialized rewriters for each keyword, which will call rewriters
recursively on their arguments if appropriate.

Specialized rewriters randomly choose a way to rewrite the top-level construct.
In our example, the implemented rules are any interchange between if, case
and cond (i.e. if � cond � case � if) along with the transformation
if (condition) {A} else {B}� if (!condition) {B} else {A}. It is easy
and trivial to change these rules.

5.4 Results

Pastis was tested with a simple payload and the example rewriter provided.
The code size increases steadily with generations, which seems to demonstrate

that the rewriter function provided often adds new constructs, but seldom
simplifies out the useless ones. As is clear from Pastis’ structure, code size grows
linearly as generations pass (right-hand graphic of Figure 7). In our experiment
code size in megabytes seemed to grow as ∼ 15.35 × generation.

The produced code is still fairly recognizable: keywords are not rewritten and
highly specific intermediate variables appear everywhere in the code. Further-
more, the numerous tautological conditional branches (of the form (if #t foo
#!unspecific)) and useless nesting of operators are also a sure way to iden-
tify code produced by Pastis. It is unclear if such artifacts could be used to
conduct template power attacks to identify and remove polymorphic transfor-
mations. Given that a Lisp smart card does not exist to the best of that authors’
knowledge, we could not practically test the effectiveness of this countermeasure
in vivo.

Here is an example of the code produced by Pastis after some iterations.
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(lambda (args) (define (pastis-rewrite x) ((lambda (x) (define

(rewrite-if s) (define get-cond (rewrite (cadr s))) (define

get-then (rewrite (caddr s))) (define get-else (let ((

key90685615124305205095555138 (not (not (not (null? (cdddr s)))))))

(let ((key45066295344977747537902121 key90685615124305205095555138

))(let ((key34753038157635856050333413 (not (or (eq?

key45066295344977747537902121 (quote #f)))))) (let

((key74822769707555069929340259 (not (or (eq?

key34753038157635856050333413 (quote #f)))))) (cond ((not (not

(not (not (or (eq? key74822769707555069929340259 (quote #t)))))))

(let ((key15300951404900453619092096 #t)) (if (or (eq?

key15300951404900453619092096 (quote #t))) (begin (case #t ((#t) (let

((key8783884258550845645406647 (not (or (eq?

key74822769707555069929340259 (quote #t)))))) (case (not (or (eq?

key8783884258550845645406647 (quote #f))))((#t)(let ((

key41701470274885460121759385 key8783884258550845645406647))(if (not

(not (or (eq? key41701470274885460121759385 (quote #t))))) (if (not

(or (eq? key41701470274885460121759385 (quote #t)))) (let ((

key98134142793119041861980707 #t)) (if (or (eq?

key98134142793119041861980707 (quote #t))) (begin 42)

It is interesting to note that the self-referencing nature of Pastis makes it
extremely hard to debug. When the third generation fails to run, for example,
one needs to find the bug in the third generation code, identify what caused
the second generation to produce it – and finally which code in the first gener-
ation caused the second generation to work this way. Several cases of bugs only
occurring after several generations appeared during the development of Pastis.

Readers wishing to experiment with the three main program modules2 can
download them from [14].

5.5 Possible Extensions

The current rewriter function only serves as an example. First, it leaves sev-
eral recognizable features in the code. More importantly, the transformations
it applies are not very deep, since one could simply decide to only use cond
constructs, systematically rewrite all if and case constructs to cond and fo-
cus on the rewriting of cond. To be more precise, if and case can be seen as
Scheme syntactic sugar; it would probably be better to restrict the rewriting
to a bare bones subset of the Scheme syntax, convert everything to this subset
before rewriting and possibly convert some things back to syntactic sugar forms
to make the rewritten code look more natural.

Several transformations could be applied instead of the simplistic operations
done by our rewriter function. Here are a few ideas:

α-Renaming. The current rewriter does not rename variables at all. A way to
do this would be to keep an environment indicating current renamings. When we
2 rewriters.scm, rewrite.scm and generator.scm
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encounter a definition, we change the name and add the original and rewritten
name to the environment. When we encounter a name, we change it to the
appropriate rewritten name by a simple lookup in the environment. It is assumed
that when the Scheme virtual machine processes names, power signatures caused
by processing different names will differ as well.

β-Reduction and β-Expansion. A possible rewriting method would be to
perform β-reductions (in the usual λ-calculus sense). Conversely, it would also
be possible to perform β-expansions: select a sub-term, replace it by a variable
and replace the whole expression by a function in this variable applied to the
selected sub-term, taking all necessary care to prevent variable capture problems
(roughly, ensuring that the operation does not bind other occurrences of the new
variable and that the bindings of the sub-terms are still the same).

Of course, if we want to do such an operation without changing the semantics,
we must ensure first that there is no breach of referential transparency in the
code we are rewriting. Indeed, if side effects are taking place somewhere, the
planned modifications could change the order of evaluation, or even the number
of evaluations of some sub-terms.

Adding and Removing Definitions. This would be the ability for the rewriter
to add or remove local definitions when possible. When the rewriter sees an ex-
pression E(expr) it could replace it with (let ((const expr)) E(const)).
This is very similar to the aforementioned β-reduction and expansion ideas and
could be implemented in a similar way.

6 Avoiding Code Growth

While Pastis is conceptually interesting, the code growth problem makes Pastis
useless for practical purposes. Let F0 be the first generation of a self-rewriting
program. Besides a payload representing the actual code’s purpose, F0 also con-
tains a non-deterministic rewriting function H . H takes as input a version of
the program and outputs another version, so that ∀i ∈ N, Fi = H(Fi−1) with
i �= j ⇒ Fi �= Fj while retaining the code’s core functionality, i.e. Fi(m, k) =
F0(m, k) ∀ i, m, k, as shown in the left hand-side of Figure 7.

As in the basic Pastis example the size of Fi is monotonically increasing3

(i.e., size(Fi+1) ≥ size(Fi) with overwhelming probability), it is desirable to look
for a different rewriting scheme4.

An interesting alternative approach is to keep a representation of the original
function F0 within Fi and always rewrite F0 differently. To ensure that each
time a different program is created, the index i of the next version is passed
to H : Fi = H(F0, i). Having Fi completely determined by F0 and the index i

3 Code size is monotonically increasing on the average, we neglect the unlikely cases
where rewriting will cause a decrease in code size.

4 Note that it is theoretically impossible to require that both i �= j ⇒ Fi �= Fj and
∀i, size(Fi) < some bound.
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can be helpful, especially for debugging purposes. However, this approach has
a crucial drawback: An attacker may be able pre-compute all Fi and analyze
them for side channel information leakage, thereby weakening the polymorphic
protection. Thus, it is advisable to have an additional randomness source that
makes H non-deterministic. If H is truly non-deterministic, there is no need to
pass i as an argument to H because each call of H(F0) creates a new, randomized
version of F0. The left-hand side of Figure 8 illustrates such a system.

Note that at each rewritten generation, Fi is completely discarded and only
the description of F0 is used again for the new code generation. In addition, the
description of F0 does not need to be included in clear. If desired by the setting,
it can instead be encrypted with a random key. For this, the corresponding en-
cryption and decryption function as well as the random key, must be included
with Fi and upon each code rewrite, the encrypted description of F0 must be
decrypted, rewritten by H , and encrypted again with a new random key. In-
terestingly, if the payload itself contains a block-cipher code, this code can be
also used for encrypting F0; thus no additional encryption routine needs to be
embedded in the program. This encryption approach bears some similarities to
techniques used by polymorphic viruses.

6.1 Separating H From Fi

Pastis is primarily meant for the protection of cryptographic functions from
certain types of side-channel attacks. To this end, Pastis’ primary goal is to
rewrite the payload, while the rewriting process H itself is not directly subject
to such attacks and thus may not need to be rewritten at all. This is because the
functionality of H is independent of the public message input m and the secret
input k.

Thus, it may appear fit for purpose to rewrite only F0 and keep H intact.
Such an approach is interesting as in many cases, H will be much more complex
than the payload and may become even more complex (and maybe less efficient)
after being rewritten, as rewriting rules can have a detrimental effect on the size
and the efficiency of H . However, in some cases side channels emanating from
H may leak information about the rewriting process and thus about the code of
Fi. If this is the case, then the information gained from the attack could be used
to subsequently create attacks on Fi. If, however, such an indirect attack on Fi

is considered infeasible or unlikely for a particular instance of polymorphic code,
then the approach of not rewriting H can be a practicable way to improve code
efficiency. This may also allow for more complex rewriting rules that would not
be possible if H had to be expressed in the possibly restricted realm of rewritable
code (for example, the limited subset of Scheme used in Pastis).

This motivates the suggestion of yet another modification of our paradigm:
Instead of having H be a part of Fi, we may consider H and Fi as separate
functions. On each invocation H is called first. H loads the description of F0

and takes as additional (implicit) input either an index i and/or a source of
randomness and outputs Fi, which – as above – has the same functionality as F0

but is rewritten.
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After rewriting F0 as Fi, H passes the inputs {m, k} to Fi to execute the
desired payload. This is illustrated in the right-hand side of Figure 8.

6.2 Randomizing Compilers: A Practical Approach

It remains to decide how such a “description of F0” that is included in each
code generation should be chosen. From an implementor’s perspective, the form
of F0’s description must be chosen such that it consists only of elements that
are understood by the rewriting engine while at the same time allows for a fast
creation of Fi for all i. While it may appear natural to use the same type for
F0 as for Fi (i.e., code that can directly be executed), using a more abstract
representation has some advantages: For example, if a program is represented
under the form of a syntax tree, it can be straightforward to analyze to find
permutations of code blocks (i.e., subtrees) that do not change the code’s se-
mantics. This is similar to our buckets idea in Section 2. When, in contrast,
the program is represented as virtual machine code, such code rearrangements
may be much more difficult to identify. Thus, F0 should be described in a more
abstract way and converted by H to a more concrete representation. In fact, we
may consider H as a compiler that transforms code from a high-level language
into a less abstract one.

For example, F0 may be represented by a gimple tree. gimple [13] is a rather
simple language-independent tree-representation of functions used extensively by
the gnu Compiler Collection (gcc) in various stages of the compilation process.
Source code from any language supported by gcc is transformed into gim-
ple which is then analyzed and optimized before being converted to the target
language (for example, machine code)5. Representing functions under gimple
removes much of the complexity from the compiler that would be needed when
working directly with a high-level language like C++. This makes compilation
very fast.

gcc applies many optimizations to gimple trees which may change their
form in several ways. This can be used to create very powerful polymorphic
code: randomizing which of these optimizations are done and how exactly they
are applied to the tree leads to many different possible results, all of which yield
semantically equivalent code. Randomization can also be applied to the next
compilation steps which turn the gimple tree into the target language. As there
are many ways to encode constructs like an if or simple arithmetic expressions
into machine code, a great variety of possible realizations of such constructs can
be found.

Thus, an extensive polymorphic framework can be built by using a random-
izing version of the parts of gcc that deal with gimple trees and transform
them to machine code as H . Such a framework would allow the execution of
very elaborate rewriting rules while preserving efficiency by only dealing with
gimple instead of source code.

The implementation of this approach is an idea that is yet to be explored –
left as future work.
5 This description of gcc’s inner workings is – of course – greatly simplified.



Can Code Polymorphism Limit Information Leakage? 21

Acknowledgements

The work described in this paper has been supported in part by the European
Commission ist Programme under Contract ict-2007-216676 ecrypt ii and
epsrc grant ep/f039638/1.

References

1. Bertoni, G., Breveglieri, L., Fragneto, P., Macchetti, M., Marchesin, S.: Efficient
Software Implementation of AES on 32-Bit Platforms. In: Kaliski Jr., B.S., Koç,
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vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

4. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation -
tools for software protection. IEEE Transactions on Software Engineering 28(8),
735–746 (2002)

5. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
6. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryption and

Rerandomizable Yao Circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 155–172. Springer, Heidelberg (2010)

7. Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resis-
tant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)
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Abstract. The pervasive use of mobile phones has created a dynamic
computing platform that a large percentage of the population carries
routinely. There is a growing trend of integrating mobile phones with
electronic identity, giving the phone the ability to prove or support the
identity of the owner by containing, for example, a tuple of name, ID,
photo and public key. While this helps phone owners prove who they
are, it does not prove to them that they are giving their identities to
intended parties. This is important in its own right for reasons of privacy
and avoiding cases of “identity theft”, but all the more important when
identity is being provided to support the transfer of value (e.g. in mobile
payment) or information. In this paper we show how Human Interactive
Security Protocols can support this type of authentication in cases where
PKIs are inappropriate, misunderstood or too expensive, concentrating
on the case of payment.

1 Introduction

A report from International Telecommunication Union (ITU) earlier this year
predicted that there would be 5 billion mobile phone subscribers by the end of
2010 [1]. This number is much larger than the number of personal computers
(1,026 million in 2010) predicted by ITU [2]. At the same time, the comput-
ing power of mobile phones is ever improving: for example, the HTC Desire
mobile phone has a 1 GHz CPU and 576 MB of RAM. In addition to the exist-
ing telephony functionalities, mobile phones, especially smart phones, are inte-
grated with various kinds of sensors as well as powerful connectivity, typically
on-board camera, GPS, motion sensor, light sensor, Bluetooth, NFC, WiFi, and
3G. Most importantly, they provide well designed convenience for people to use
on a daily basis.

Such capabilities have made mobile phones a perfect electronic platform for
various implementations. One of the most significant examples of these is the
integration of different kinds of Electronic Identities (E-Identities), which helps
reduce the number of cards and tokens a person usually carry, for example, ID
card, door-access card/token, and bank card or other payment card. Such E-
Identities may contain a person’s name, photo, fingerprint, public/private keys,
or banking/payment account details.

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 22–37, 2011.
c© IFIP International Federation for Information Processing 2011
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In Japan, the largest mobile operator NTT Docomo began deploying mobile
phones containing the FeliCa contactless IC chip in 2004 [3]. The FeliCa con-
tactless chip transforms mobile phones into carriers of various kinds of identities:
transportation card, personal ID card and bank card.

It is reported that in 2012, banks and mobile phone operators in the Nether-
lands will launch a national NFC service which will enable users to use their
mobile phones as payment card, tickets, coupons or membership cards [4].

In 2010, Chinese mobile phone operators started to implement a national
mobile phone identification policy which requires users to register their mobile
phone numbers under their real names and ID numbers. This will create the
world’s largest mobile phone identification system. At the same time, Chinese
banks and mobile phone operators are working together to create a unified na-
tional platform for NFC based mobile payment service [5].

Thus there is a huge trend of integrating mobile phones with various kinds
of identities, and the most significant use may lies in mobile payment. More
generally, we may consider a mobile phone as a bank/payment card once it has
logged onto a banking web-site or an e-money web-site like Paypal. Almost all
major banks in the US and Europe have opened a mobile banking service.

E-Identities will be communicated between individuals who may or may not
know each other, and from individuals to impersonal devices such as doors,
merchant tills and web-sites. It is natural to require two things: that you only
give your identity to the party that you wanted to give it to, and that you do
not accept an identity which you believe attaches to one party when in fact it
belongs to another. You may not know in advance the name of the party to
whom you are trying to connect.

PKIs are expensive to implement, not usable in cases where the name of the
intended connection is not known in advance, and are frequently misused by
humans. We need a cheap method of authentication, that allows authentication
by context (e.g. that the device you are connecting to is the one in front of
you) and which is hard for humans to misuse. We must place into the last
category any protocol which simply requires the human user to press a button to
say “yes”, because particularly in hurried mobile scenarios humans will become
distracted and complacent. So while, in mobile-to-mobile connections, it may
be a valuable security feature to show each human the photograph of the other,
simply expecting them to say “yes” to the obvious enquiry will give only dubious
security in practice. In this paper we propose what we think is an appropriate
solution to this problem.

To securely transmit an E-Identity, we firstly need to ensure authenticity as
well as integrity of the E-Identity, for example, the receiver can trust that the
received E-Identity originates from the correct sender. Secondly, we must protect
the private E-Identity, no one except from the dedicated sender and receiver
can know the details of the transmitted private E-Identity. Thirdly, we have
to achieve enough pervasiveness which enables a maximum coverage of mobile
phones as well as an implementation of convenient user interfaces.
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To satisfy such requirements, we firstly bootstrap an authentic electronic con-
nection between the two parties by using a Human Interactive Security Protocol
(HISP), and to fulfill the second requirement, we also bootstrap a session key
during the establishment of the connection. In the mean time, a careful selection
of an usable HISP can guarantee the satisfaction of the third requirement. Once
we have a secure connection, an automatic downloading of such E-Identities is
possible, which in some payment processes is made by manually inputting. This
can further reduce the amount of human effort.

HISPs are explained in Section 3, which also presents two major mobile pay-
ment scenarios; The implementation of the two scenarios is discussed in Section
4, and a general security analysis is given in Section 5.

2 Present-Day Payment Solutions

At present, NFC, Bluetooth and SMS are the main channels used to carry au-
thentication information in payment. Below we review how they are used.

2.1 NFC

NFC is based on a short range (<10cm) RF channel (13.6 MHz), which assumes
that the proximity provides sufficient trust of the data transmitted over this
channel. NFC is therefore regarded as a typical out-of-band (OOB) channel.
OOB channels are sometimes termed as empirical channel or authentic channel,
which assumes human trust but allows limited bandwidth of communication.
Such channels are common in our daily life, for example, people talking, writing
messages, typing words, handshaking, comparing images/words/digits.

An NFC enabled mobile phone can be used as a user-trusted touch point to
display and check the received payment amount and the payee’s details, as well
as confirming the payment. Concrete designs of NFC-based mobile payment
can be found in [6,7]. An NFC enabled mobile phone can act as a card or a
terminal, and there is also a mode for peer-to-peer communication and therefore
it enables peer-to-peer payment. It gives the convenience of simply touching our
mobile phones to communicate securely. We also notice that NFC is currently
not widely available among mobile phones, therefore it is not selected in our
implementation in Section 4.

However, using proximity as the only authenticator can lead to attacks. For
example, a practical NFC relay attack on mobile phones is demonstrated in [8].
In addition, a lack of proper protocols that against man-in-the-middle (MITM)
attack may make the implementations of NFC based mobile payment an eas-
ier target to MITM attackers [9]. In addition, without link-level security, the
transmission between two NFC devices may subject to eavesdropping and data
modification [10]. As we were completing this paper there was a press report of
a practical MITM attack on a proximity-based car key mechanism [44].

It is desirable that NFC based communication needs to be enhanced by in-
troducing a security protocol that addresses the MITM attack [9]. For example,
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we can bootstrap a one-time session key between two NFC devices before trans-
mitting any sensitive data. This key is independent to any existing security and
it can be used as an add-on security to NFC.

2.2 Bluetooth

Bluetooth is probably the most popular short-range communication technology
available now. According to the Bluetooth Special Interest Group (SIG), in 2014
Bluetooth will be found in 70 percent of all handsets and 83 percent of all
netbooks [11]. There are many implementations [12,13] as well as researches
[14,15]on using Bluetooth in mobile payments.

Bluetooth (v2.0 and older) is known to be subject to searching attack due to
its reliance on an arbitrarily human selected passkey [16], and its pairing process
generally require a long time which makes it not well user-friendly.

However, the new version Bluetooth v2.1 introduces a Secure Simple Pair-
ing (SSP) scheme which is designed to solve the security problems and falls
into the same class of HISPs that we will be studying later in this paper.
But this immediately introduces a legacy problem: a communication between
a v2.0 mobile phone and a v2.1 mobile phone will be eventually ended as a v2.0
communication.

Any Bluetooth which may fall short of v2.1 is too insecure to support payment.
It will be possible to use v2.1 to support the same model of payment we propose
in Section 3.

2.3 SMS

Telephony is regarded as a relatively secure communication technology in this
paper despite some known attacks [19]. The attacks against telephony network
usually require much larger strength in both resources and knowledge, and there-
fore may not be an “economic” attack against mobile payment. SMS is therefore
frequently considered secure. It worries us, however, that this security has no
logical basis and is based on purely economic and subjective arguments. With-
out a formal and provable basis for security it seems unwise to invest heavily in
a payment technology.

SMS-based mobile payment methods can be laborious and difficult to learn,
and sometimes may not be as instant as other types of mobile payment [17]. The
best case for their use may be in long-distance communication in situations where
the telephone service providers are able to give a good guarantee of authenticity.

2.4 Other Solutions

In [18], the authors discussed an empirical design called MP-Auth which uses
mobile phones to protect online banking. Without any use of hardware supports,
it is regarded as a typical example of using PKI in mobile payment.

MP-Auth uses two public keys, one is pkB shared between the PC and the
bank, the other is pkT shared between the mobile phone and the bank. These
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public keys are used to bootstrap a symmetric key between the mobile phone
and the bank.

In addition, two more procedures are needed: one is to secure the integrity of
the data received from the PC, they use an OOB method which is by displaying
a hashed result1 on the mobile phone and the PC, and the user compares and
selects the matching one on the mobile phone; the other is to install the correct
public key pkT on the mobile phone, which they recommend to use off-line
methods, for example, at a bank branch, through in-branch ATM interfaces, or
using telephony.

The use of public keys like this is appropriate in cases such as electronic
banking when both parties know it in advance. We do not believe it is otherwise
appropriate in the world of ad hoc connections, such as when making a payment
to a previously unknown payee.

The solution we will propose can simplify the above processes by considering
the two connections between the mobile phone and the bank as a single insecure
connection by using an OOB channel between the bank and the mobile phone
(see details in Section 3).

Another novel implementation is called Cronto2: by using the camera on the
mobile phone, the user takes a photo of a square picture similar to a 2-D bar-
code displayed on his PC screen, and then the device translates the photo into
payment details and generates a 6 digits number at the same time, once the
user confirms the payment details, he enters the 6 digits number on his PC. By
using the camera and the https web-site, they create an OOB channel between
the user’s mobile phone and the bank server. It is considered as a good example
of using OOB channels in mobile payment.

3 Using a HISP: Mixing Context, Human Trust and
Security

HISPs achieve what one might at first think impossible: they bootstrap security
over insecure networks such as the Internet and WiFi without any pre-existing
network of secrets. They do this via the transfer of a small amount of non-secret
information, usually by human users, that is authenticated by context.

We hereby assume that in any mobile payment, a payer must have a way
of identifying the proposed payee. This identification might arise from already-
existing familiarity with the payee or from the context (presence in a shop, in
front of a vending machine or through an E-commerce shopping session) in which
the need for the payment arises. To understand this better, think of the scenarios
in which you would be willing to hand over cash: you might trust a merchant
by experience or reputation, you may choose to trust him by context, or you
may “trust” him to receive payment because you have already received goods or
services from him. Note that there is a weaker need for trust if, as with handing
1 They use a correlation function to select the corresponding words to display based

on the hashed results.
2 http://www.cronto.com/
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over cash, you know that the damage that can be caused by an abuse of trust is
strictly limited (i.e. to losing a defined amount of cash).

Even when one trusts a large organisation by reputation, one still needs to
know that a payment one is making to it is within the payment one thinks one
is making.

Some of these means of identification might readily create secure channels:
for example one might have retained a channel used for a previous payment to
a familiar payee. However some do not, and in some cases there may be a secure
channel from a different device (e.g. a browser session on a PC) to the mobile
phone from which we want to make payment. However in the great majority
of contexts where the need for payment arises, there is an opportunity for the
payee to communicate a Short Authentication String (SAS) of 6 digits (say) to
the payee in such a way that the payer knows it has come from the intended
payee within the intended payment. Frequently this will be via an OOB channel
such as those formed by the payee looking at a till display or at the https window
on a browser.

The role of a HISP is to convert well-designed SASs, and the trust that the
payee has in the sender, into robust security. An SAS is much more compact
than other ways in which one might attempt to authenticate a payee, and much
more amenable to incorporation into protocols in a way that is not vulnerable
to human mis-use.

To demonstrate our solution, we give two scenarios of mobile phone payment
applications:

1. peer-to-peer (phone-to-phone): user A wants to send A’s public E-Identity
to user B. For example, after verifying A’s public E-Identity, B can then
make a payment to A3.

2. customer-to-merchant (phone-to-server): customer C wants to send C’s pri-
vate E-Identity to merchant server M . For example, C uploads C’s payment
account details to M . This can be an online or a point-of-sale (POS) mo-
bile payment. A mobile phone can connect to the server via: A. a PC; B.
telephony or GPRS/3G.

To simplify our discussion, Scenario 2 is discussed in this section, and Scenario
1 is discussed in Section 4.1. In this section, a mobile phone is connected to the
server via a PC because this can demonstrate a POS mobile payment as well as
an online mobile payment.

3.1 Choosing a HISP

Over the past few years, a new family of authentication protocols that are based
on human trust and interaction have been introduced. These protocols are often
referred to as HISPs. They use two kinds of channels: a high bandwidth channel
3 This can be completed by sending B’s private E-Identity (payment account details)

to A, or by sending B’s private E-Identity together with A’s public E-Identity to a
trusted third party, for example, a bank.
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(denoted −→N ) subject to the Dolev-Yao attack model [29] and a low bandwidth
OOB channel (denoted −→O). Due to its limited bandwidth, the OOB channel
transmits a Short Authentication String (SAS) that is used to authenticate data
exchanged over the insecure high bandwidth channel.

By comparing an SAS on an OOB channel, human users can authenticate in-
formation received from an insecure high bandwidth channel. Nguyen and Roscoe
wrote an extensive survey [28] of HISPs, comparing their cost and efficiency, of
which [30,32,33] are good examples.

The Symmetric HCBK (SHCBK) protocol [31] is a typical HISP. This, the
general description, connects an arbitrary-sized group.

1. ∀A −→N ∀A′ : A, INFO′
A, hash(A, hkA)

2. ∀A −→N ∀A′ : hkA

3. users compare digest(hk∗, {INFO′
A|A ∈ G}), where hk∗ is the XOR of all

hkA’s for A ∈ G

SHCBK has each node “publish” its name and a collection of information that
it wishes to be authentically connected with that name. It also sends a hash4 of
a randomly generated key hkA coupled with the name. Once it has received that
information from all nodes, and therefore become committed to the set of iden-
tities, INFO and hashed keys it will use, it publishes its previously secret hkA.
The point is that by the time of this last publication, it was in fact committed to
all the data used in the above protocol, even though it does not yet know all the
hkAs. HCBK stands for Hash Commitment Before Knowledge. A careful security
analysis of this protocol (see [31], for example) demonstrates that any attacker
is unable to profit from combinatorial analysis aimed at getting the SASs (i.e.
digests) to agree even though nodes have difference views of the authenticated
information. Good HISPs such as SHCBK therefore offer maximum security for
a given amount of human effort.

3.2 Tailoring a HISP

In our payment scenario, only two parties are involved in the payment: customer
and merchant. Therefore we have modified SHCBK into a pair-wise protocol
which establishes a shared secret key. In the protocol, C represents the mobile
phone, M represents a merchant, and U represents a user.

1. C −→N M : IDC , INFOC , hash(hkC , IDC), hash(k)
2. M −→N C : IDM , INFOM , pkM , hash(hkM , IDM )
3. C −→N M : {k}pkM , hkC

4. M −→N C : hkM

5a. M −→O C : digest(hkC ⊕ hkM , (IDC , IDM , pkM , k, hash(k), INFOC ,
INFOM ))

5b. C compares the digest value5 with its own version.

4 Hash means a standard cryptographic hash function that has two main properties:
collision resistance, and inversion resistance.

5 The digest value represents the SAS that is manually compared by humans.
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In Messages 1 and 2, we have added 6 more components, k is a session key (a
random number) generated by C, it is exchanged by using the uncertified public
key pkM provided by M . To avoid the intruder reflecting hkC back to C as a
supposed hkM in a way that C would accept, we added IDM and IDC as two
one-bit tags to distinguish the hashes generated by C and M . INFOM , INFOC

represent other information that the actual system would require, for example,
date and time, part of the payment details, etc.

Naturally, if the protocol has proceeded uninterfered with, C’s and M ’s values
will be equal. If, however, an intruder has imposed his own values on the receivers
of Messages 1–4, C and M will not agree on all four parameters. For security,
what is important is that they agree on pk and k, so we will concentrate on what
happens if the intruder interferes with these. What we are concerned about is
the chance that the digests agree when these two values do not.

The digest function [30,31] is designed so that, as hk varies, the probability
that digest(hk, X) = digest(hk, Y ) for X �= Y is less than ε, where typically ε is
very close to 2−b for b the number of bits in the output of digest. It must also have
the property that for any fixed value d, the chance that digest(hk, X) = d as hk
varies is less than ε. The right value of ε is debatable because the larger it is, the
more human effort is required. To maintain an acceptable security and usability,
implementors need to examine carefully about the use case and the perceived
risks between the user and the merchant. A standard [36] given by National
Institute of Standards and Technology (NIST) requires that a successful guess
of a secret value should be less than one in 1,000,000. Therefore, we put the
number of digits of the digest value at 6 in our example6.

3.3 The Human Contribution

Depending on human interaction can be dangerous because humans can become
lazy, which can disable well designed security. To standardize the work flow of
using a HISP, we need to clarify step (5a) and (5b).

In step (5a), when conducting online payments at home, those OOB channels
U can directly interact with M are phone calls, SMSs, or using https web pages
(as most of the banks/merchants are still using https service, this does not in-
crease the risks by using it as an OOB channel). Therefore we use a dashed line
to show the transmission of the digest value in Fig 1.

To remove the user’s complacency7 in step (5a), we force the user to type the
digits of the received digest value into mobile phone8. If the comparison of digest
6 The SAS here is not secret, but this provides a good analogy. In any case we believe

that the use of HISPs in payments should usually be backed up by secondary secu-
rity as discussed later. 6 digits happens to be the number used in the experiments
reported in [35].

7 A user may simply keep pressing the OK button regardless of what displayed on the
mobile phone.

8 [35] examines ways of performing this comparison and conclusively demonstrates
that for security the best approach is for the customer to type the digits of the
merchant’s digest value into mobile phone, which then compares the two.
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value failed at stage (5b), a warning will be displayed on the mobile phone, and
we have designed what to do next. In our implementation, we prompt the user to
check if he has entered the SAS incorrectly. If so, the protocol is restarted from
the beginning. If not, the payment will be aborted, because there is a distinct
possibility of the intruder being present.

After a successful run of the protocol, in which C verifies the digest value
received from an OOB channel, and at the same time the protocol authenticates
the uncertified pkM and the one-time session key k. The user is convinced that
a secure connection is established between him and M .

3.4 Demonstrating a HISP

Once the HISP above has been run, there is a channel between the payer’s mobile
phone and the payee that the payer trusts as both secret and authentic. We can
therefore design payment methods which exploit this high-bandwidth secure
channel, thereby increasing the amount of information that can be passed to (a)
authenticate the identity of the payer and (b) secure the payment, for example
against fraud by the payee.

We give an example of making a payment after successfully bootstrapped the
session key k by using a HISP. This largely depends on the actual implementation
of banks and merchants.

The session key can now be used to allow secure downloading of payment
information from M . U is then asked to approve the payment by password
entry. Following this, data necessary to complete the payment can be sent to M
over the channel. This will vary depending on the payment protocol being used.

We recommend that an e-cheque is sent, which is encrypted under a bank key
(and therefore not understandable by M), together with all information that is
not secret from M . This e-cheque might contain M ’s E-Identity, date and time,
amount, hash(hash(Payment Info), Account Info). M sends hash(Payment Info)
to bank. An example protocol is given as below (also see Fig 1):

Fig. 1. Using a HISP (demonstration of a successful run)
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6. M −→N C :{payment amount, M’s E-Identity, date and time, other details}k

7a. U checks payment amount, merchant’s E-Identity, date and time, and other
details displayed on C.

7b. If correct, U authorizes the payment by entering password on C.
8. C −→N M : e-cheque

E-cheques provide a way of combatting sophisticated Man-in-the-Shop (MITS)
attacks which is discussed in Section 5.3.

M can then forward this e-cheque to a bank to get cash.
In each case the fact that the payment details (amount, merchant’s E-Identity,

date and time) are downloaded onto the mobile phone and approved by the
customer gives a considerable secondary security factor over and above that
provided by HISP and password.

3.5 Reverse Authentication

As we have made clear, the unique feature of a HISP is that it gives the cus-
tomer confidence that he or she is connected to the desired merchant within
the context of the intended payment. This both gives extra security and en-
ables us to make the traditional security goal of authenticating the customer
to merchant/bank easier and more thorough. Because it goes in the opposite
direction to the main/tranditional authentication accompanying payments, we
have termed it reverse authentication.

In general, by using reverse authentication, we actually put the users’ safety
at the center of the security design.

4 Implementation

In demonstration implementations of Scenario 1 and 2 discussed at the beginning
of Section 3, we have used the following approaches.

A. Two mobile phones are connected via Bluetooth: the protocol will start af-
ter the Bluetooth discover-and-connect process. An e-cheque is sent to the
payee from the payer. As explained at the beginning of Section 3, it can be
completed in two ways, and to simplify the demonstration, we do not show
a second connection to a bank or a third party.

B. A mobile phone is connected to a server: because this can be remote/online
or POS payment, we use a PC to act as the display on behalf of the server. To
make the connection instant, the connection between the mobile phone and
the server is made by initiating a data call from the server. This is slightly
different from the example given in Section 3.4.

4.1 Implementation of Approach A

The photos above show the image of the users, and this is regarded as a useful
supplement to the security we discussed in Section 3. By incorporating avail-
able biometrics or location information (GPS) into the protocol, we can further
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Fig. 2. Peer-to-peer mobile payment implementation

enhance the security and provide the user more authentic information to verify
each other.

There are two important factors in determining the practicability of this im-
plementation. One is the set-up of connection between two mobile phones, the
other is the input of the digest value. In our implementation, the set-up of Blue-
tooth connection takes around 10 seconds, and the inputing of the 6-digit digest
value takes around 15 seconds. However, if one mobile phone can display the
Bluetooth address as a 2D barcode, and the other mobile phone reads it by its
camera, this can reduce the time of connection set-up. A similar approach can be
taken to digest values when this technology is available. This function depends
on the performance of specific mobile phones because not all mobile phone cam-
eras can easily film a clear picture of 2D barcode, for example, low-end mobile
phone camera can not auto-focus and have difficulty to take clear pictures when
hands are shaking. It is, however, an important aspect of our technology that
this function can be performed quickly and easily by humans alone.

This is implemented on Nokia N95 and Blackberry 9000: a J2ME Midlet is
programmed to run on N95, and a JAVA (on RIM) application is programmed
to run on Blackberry 9000. The Bluetooth is v2.0 and the profile is no security.

4.2 Implementation of Approach B

In this case, a mobile phone acts as a “trusted device”, which is similar to the
current Card Authentication Programme (CAP) readers. And it is required that
the user must activate his or her online banking account or any other payment
account before or during the payment process. By using reverse authentication,

Fig. 3. Customer-to-merchant mobile payment implementation
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the merchant’s E-Identity together with the payment information is downloaded
onto the mobile phone, which can save the human effort of inputting those data
required in most current mobile banking applications.

This is implemented on Nokia N70 and a PC (acting as the server): a Sym-
bian C++ application is programmed to run on N70, and a C++ application is
programmed to run on the PC.

The cryptography functions we have applied in the applications comply with
the guidance published by NIST [37,38].

5 Security Analysis

The security attributes of a mobile payment solution usually include: confiden-
tiality, authentication, integrity, authorization, availability and non-repudiation.
Confidentiality and authentication is easily achieved by bootstrapping a secure
connection prior the payment process. And the use of strong cryptographic func-
tions protects integrity and can detect any data modification. Authorization is
achieved by the verification of: A. user’s password; B. user’s private E-Identity
(banking or payment account details). Non-repudiation is achieved by the use of
an e-cheque: a bank will check and verify such an e-cheque, which contains the
E-Identities of the two parties as well as the payment details. Availability is not
discussed in this paper.

However, except for the above analysis, a few distinct security attributes and
state-of-the-art attacks need to be considered carefully.

5.1 Phishing/Credential Harvesting

By means of disguised emails or web pages, attackers lure users to enter their
credentials into a fake web form, for example, an online banking log-in form.
This is a very common online attack and it is very difficult to defend once the
users are tricked into such a web page.

Most mobile payments are immune to such attacks because they have in-
dependent applications that handle payment processes: the account details are
input locally on the mobile phones rather than on web pages or web forms.

However, without the use of end-to-end security (for example, the use of
e-cheque), sophisticated phishing attacks can be developed against mobile pay-
ment solutions, for example, a phishing attack can be applied against an NFC
based mobile phone by modifying or replacing tags [20]: this can mislead the
user to submit data to a wrong party. And some SMS based mobile payment
solutions require users to submit their account details in clear text to a third
party to log on, and this can lead to an SMS phishing attack: by luring users to
submit their account details to a wrong phone number.

Our solution, which provides authentication as well as confidentiality, can
ensure that the payer has approved the E-Identity of the payee, and the payee can
not reuse anything from the payment. Therefore, it is resistant to the phishing
attack.
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5.2 Malware

Mobile malware is a serious security threat to all mobile phone based applica-
tions. A report from Kaspersky indicates that a total number of 514 pieces of
mobile malware have been cataloged between 2006 and 2009 [21]. Such attacks
can be detected by installing mobile anti-virus software, for example, Kasper-
sky, F-Secure and McAfee. And it can be further mitigated by forcing users to
download software from the official web sites, for example, Android and iPhone
require software to be installed from their official online application shops. How-
ever, it may become more difficult to maintain a high level of security with the
increasing complexity of mobile phone systems. These issues need to be consid-
ered before deciding whether to impose an upper limit on the amount of money
allowed in mobile payments. Some discussions about mobile malware can be
found in [22,23].

5.3 Man in the Middle

Many NFC based mobile payment solutions are believed to be based on EMV
[9,24], which has been found vulnerable to MITM attacks [25]. And the NFC in
itself does lack of a link-level security which may result in eavesdropping, data
corruption and data modification [10]. This may make them attractive to MITM
attackers.

A HISP, which is designed to be resistant to MITM attack, can protect our
solution against any MITM attack (see details in Section 3). However, different
implementations may have different set-outs and policies, some MITM attacks
need to be carefully examined, for example, the man-in-the-browser (MITB)
attack and the MITS attack.

Other types of MITM attack can be found in https [41,42], Bluetooth [43]. [42]
shows a more thorough discussion of MITM attacks in tunneled authentication
protocols.

Man-in-the-browser attack. The MITB attack can be initiated by a MITB
trojan embedded in the user’s browser, for example, Zeus, Adrenaline, Sinowal
and Silent Banker [27], which can then manipulate the online payment session in
real-time and carry out legitimate online payments. Therefore, all the solutions
that relies on or uses the security provided by web browsers to display payment
details on PCs may become vulnerable to MITB attacks.

Defending against MITB attacks can be difficult. For example, the authors
of MP-Auth have declared that such attacks are not addressed in their design.
And a recent report [26] indicates Zeus trojan is now targeting mobile phones,
and it can hijack SMS communication. This will endanger many mobile payment
applications that based on SMS or use SMS authentication.

Our solution, which does not depend on any specific connection or display,
can resist such attacks by carefully choosing an appropriate OOB channel (see
details in Section 3.3). However, the attack on SMS (if successful) does increase
the cost of security, for example, we may have to use phone call to deliver the
digest value in case of an online/remote payment.
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Man-in-the-shop attack. The merchant, the one we usually trust, can not
guarantee the staff it hires are trustworthy. For example, we can find news like
“Don’t use cards at petrol stations” [39] or “Restaurant workers indicted in credit
card scam” [40]. Same problem arises online – merchant might lose customers’
card details or its staff steal data from the server. Various incidents of card data
loss are reported on the web [34]. Therefore, users should not give out their card
or account details to the merchant because of the MITS attack. Such attacks
can be mitigated by using the concept of e-cheque which is discussed in Section
3.4. Or the payment may has to be made by a trusted third party: a bank or a
mobile wallet service provider. And the merchant will be informed and invoiced
by the trusted third party.

6 Conclusion

We have demonstrated that using a HISP on a mobile phone can help the cus-
tomer to create a secure connection which “reversely authenticates” the mer-
chant (the payee), while keeping a low-cost on human’s effort. This solution
helped by the flexibility of an OOB channel which assumes no existing security
can be used to defeat MITM attacks as well as to allow an efficient and secure
transmission of E-Identities. And the discussion of ε would be useful – the bal-
ance between security and usability, which can provide more guidance to future
implementations of online payment solutions based on HISPs.

Acknowledgement

This project was funded in part by grants from US Office of Naval Research and
the Oxford Martin School. We would like to thank Long Nguyen and Ronald
Kainda for their contribution to the background of this work.

References

1. ITU Report, ITU sees 5 billion mobile subscriptions globally in 2010 (2010),
http://www.itu.int/net/pressoffice/press_releases/2010/06.aspx

2. ITU Report, Personal Computers market,
http://www.areppim.com/stats/stats_pcxfcst.htm

3. Srivastava, L.: Japan’s ubiquitous mobile information society. J. Policy, Regulation
and Strategy for Telecommunications 6(4) (2004)

4. Reuters. Dutch deal paves way for mobile payments in 2012 (2012),
http://uk.reuters.com/article/idUKLDE6880OC20100909

5. Finextra. China Telecom, Bank of China and China UnionPay launch mobile
proximity payments,
http://www.finextra.com/news/announcement.aspx?pressreleaseid=36776

6. Pasquet, M., Reynaud, J., Rosenberger, C.: Secure payment with NFC mobile
phone in the smarttouch project. In: Symposium on Collaborative Technologies
and Systems (2008)

http://www.itu.int/net/pressoffice/press_releases/2010/06.aspx
http://www.areppim.com/stats/stats_pcxfcst.htm
http://uk.reuters.com/article/idUKLDE6880OC20100909
http://www.finextra.com/news/announcement.aspx?pressreleaseid=36776


36 C. Bangdao and A.W. Roscoe

7. Kadambi, K.S., Li, J., Karp, A.H.: Near-field communication-based secure mo-
bile payment service. In: Proc. the 11th International Conference on Electronic
Commerce (2009)

8. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical NFC Peer-to-
Peer Relay Attack Using Mobile Phones. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010.
LNCS, vol. 6370, pp. 35–49. Springer, Heidelberg (2010)

9. Anderson, R.: RFID and the Middleman. In: Proc. Financial Cryptography and
Data Security (2007)

10. Haselsteiner, E., Breitfuss, K.: Security in Near Field Communication. In: Proc.
Workshop on RFID Security (2006)

11. Bluetooth SIG. SPECIAL REPORT, Quarter 4 (2010),
http://signature.bluetooth.com/bluetoothsig/2010Q4?pg=22#pg22

12. Chen, J.J., Adams, C.: Short-range wireless technologies with mobile payments
systems. In: Proc. the 6th International Conference on Electronic Commerce (2004)

13. Pradhan, S., Lawrence, E., Zmijewska, A.: Bluetooth as an Enabling Technology
in Mobile Transactions. In: Int’l Conference on Info. Tech.: Coding and Computing
(2005)

14. Zolfaghar, K., Mohammadi, S.: Securing Bluetooth-based payment system using
honeypot. In: Int’l Conference on Innovations in Info. Tech. (2009)

15. Gao, J., Edunuru, K., Cai, J., Shim, S.: P2P-Paid: A Peer-to-Peer Wireless Pay-
ment System. In: Proc. WMCS 2005 (2005)

16. Jakobsson, M., Wetzel, S.: Security Weaknesses in Bluetooth. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 176–191. Springer, Heidelberg (2001)

17. Mallat, N.: Exploring Consumer Adoption of Mobile Payments - A Qualitative
Study. J. Strategic Information Systems 16(4), 413–432 (2007)

18. Mannan, M., van Oorschot, P.C.: Using a Personal Device to Strengthen Password
Authentication from an Untrusted Computer. In: Proc. Financial Cryptography
and Data Security (2008)

19. Mune, C., Gassira, R., Piccirillo, R.: Hijacking Mobile Data Connections (2009),
http://www.blackhat.com/presentations/bh-europe-09/Gassira Piccirillo/

BlackHat-Europe-2009-Gassira-Piccirillo-Hijacking-Mobile-Data-

Connections-whitepaper.pdf

20. Madlmayr, G., Langer, J., Kantner, C., Scharinger, J.: NFC Devices: Security and
Privacy. In: Third Int’l Conference on Availability, Reliability and Security (2008)

21. Gotstev, A., Maslennikov, D.: Mobile Malware Evolution: An Overview,
Part 3, http://www.securelist.com/en/analysis/204792080/Mobile_Malware_
Evolution_An_Overview_Part_3

22. Lawton, G.: Is It Finally Time to Worry about Mobile Malware? J. Computer 41(5),
12–14 (2008)

23. Fleizach, C., Liljenstam, M., Johansson, P., Voelker, G.M., Mehes, A.: Can you
infect me now?: malware propagation in mobile phone networks. In: Proc. WORM
2007 (2007)

24. Sanders, R.: From EMV to NFC: the contactless trail? J. Card Technology To-
day 20(3) (2008)

25. Adida, B., Bond, M., Clulow, J., Lin, A., Murdoch, S., Anderson, R.J., Rivest, R.:
Phish and Chips. In: Security Protocols Workshop (2006)

26. S21sec. ZeuS Mitmo: Man-in-the-mobile, http://securityblog.s21sec.com/

2010/09/zeus-mitmo-man-in-mobile-i.html

27. RSA Lab. Making Sense of Man-in-the-browser Attacks, http://www.rsa.com/

products/consumer/whitepapers/10459_MITB_WP_0510.pdf

http://signature.bluetooth.com/bluetoothsig/2010Q4?pg=22#pg22
http://www.blackhat.com/presentations/bh-europe-09/Gassira_Piccirillo/BlackHat-Europe-2009-Gassira-Piccirillo-Hijacking-Mobile-Data-Connections-whitepaper.pdf
http://www.blackhat.com/presentations/bh-europe-09/Gassira_Piccirillo/BlackHat-Europe-2009-Gassira-Piccirillo-Hijacking-Mobile-Data-Connections-whitepaper.pdf
http://www.blackhat.com/presentations/bh-europe-09/Gassira_Piccirillo/BlackHat-Europe-2009-Gassira-Piccirillo-Hijacking-Mobile-Data-Connections-whitepaper.pdf
http://www.securelist.com/en/analysis/204792080/Mobile_Malware_Evolution_An_Overview_Part_3
http://www.securelist.com/en/analysis/204792080/Mobile_Malware_Evolution_An_Overview_Part_3
http://securityblog.s21sec.com/2010/09/zeus-mitmo-man-in-mobile-i.html
http://securityblog.s21sec.com/2010/09/zeus-mitmo-man-in-mobile-i.html
http://www.rsa.com/products/consumer/whitepapers/10459_MITB_WP_0510.pdf
http://www.rsa.com/products/consumer/whitepapers/10459_MITB_WP_0510.pdf


Mobile Electronic Identity: Securing Payment on Mobile Phones 37

28. Nguyen, L.H., Roscoe, A.W.: Authentication protocols based on low-bandwidth
unspoofable channels: a comparative survey. J. Computer Security (2010)

29. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

30. Nguyen, L.H., Roscoe, A.W.: Efficient group authentication protocol based on
human interaction. In: Proc. FCS-ARSPA (2006)

31. Nguyen, L.H., Roscoe, A.W.: Authenticating ad hoc networks by comparison of
short digests. J. Information and Computation 206 (2008)

32. Vaudenay, S.: Secure communications over insecure channels based on short
authenticated strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
309–326. Springer, Heidelberg (2005)

33. Laur, S., Nyberg, K.: Efficient Mutual Data Authentication Using Manually
Authenticated Strings. In: Proc. Cryptology and Network Security (2006)

34. Dataloss, http://datalossdb.org/search?query=card
35. Kainda, R., Flechais, I., Roscoe, A.W.: Usability and Security of Out-Of-Band

Channels in Secure Device Pairing Protocols. In: Proc. SOUPS (2009)
36. NIST. Security Requirement for Cryptographic Modules. FIPS 140-2 (2002)
37. NIST. Recommendation for Key Management. SP 800-57 (2007)
38. NIST. Cryptographic Algorithms and Key Sizes for Personal Identity Verification.

SP 800-78 (2010)
39. Times Online. Don’t use cards at petrol stations, http://www.timesonline.co.

uk/tol/money/consumer_affairs/article1400176.ece

40. Startribune. Metro restaurant workers indicted in credit card scam,
http://www.startribune.com/local/west/102029153.html

41. Callegati, F., Cerroni, W., Ramilli, M.: Man-in-the-Middle Attack to the HTTPS
Protocol. IEEE Security & Privacy (2009)

42. Asokan, N., Niemi, V., Nyberg, K.: Man-in-the-Middle in Tunnelled Authentication
Protocols. In: Security Protocols Workshop (2005)
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Abstract. Dynamic inter-domain collaborations and resource sharing
comprise two key characteristics of mobile Grid systems. However, inter-
domain collaborations have proven to be vulnerable to conflicts that
can lead to privilege escalation. These conflicts are detectable in inter-
operation policies, and occur due to cross-domain role relationships. In
addition, resource sharing requires to be enhanced with resource usage
management in virtual organizations where mobile nodes act as resource
providers. In this case the enforcement of resource usage policies and
quality of service policies are required to be supported due to the lim-
ited capabilities of the devices. Yet, the ANSI INCITS 359-2004 standard
RBAC model provides neither any policy conflict resolution mechanism
among domains, nor any resource usage management functionality. In
this paper, we propose the domRBAC model for access control in mobile
Grid systems at a low administrative overhead. The domRBAC is defined
as an extension of the standardized RBAC by incorporating additional
functionality to cope with requirements posed by the aforementioned sys-
tems. As a result, domRBAC facilitates collaborations among domains
under secure inter-operation, and provides support for resource usage
management in the context of multi-domain computing environments,
where mobile nodes operate as first-class entities.

Keywords: mobile Grid, role based access control (RBAC), secure inter-
operation, resource usage management, cross-domain authorization.

1 Introduction

In recent years, Grid computing has become the focal point of science and enter-
prise computer environments. The Grid is an emergent technology that can be
defined as a system able to share resources and provide problem solving in a co-
ordinated manner within dynamic, multi-institutional virtual organizations [9].
This definition depends mostly on the sharing of resources and the collaboration
of individual users or groups within the same or among different virtual organi-
zations, in a service oriented approach. In turn, mobile Grid systems incorporate
additional complexity and new challenges, due to the support of dynamic virtual
organizations and the commercialization of Grid services [25]. Access control, in
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such computing systems, is an active research area given the challenges and com-
plex applications. The role of access control is to control and limit the actions
or operations in a system performed by a user on a set of resources. In brief, it
enforces the access control policy of a system and it prevents the access policy
from subversion [3]. An extensive research has been done in the area of access
control in collaborative systems [24], [28]. Nonetheless, further examination is
demanded. This is mainly due to the partial or weak fulfilment of access control
requirements in the aforementioned systems [11].

In this paper, we propose a new access control model called domRBAC to
provide secure inter-operation among domains and resource usage management
in collaborative systems, as the mobile Grid computing paradigm, where mobile
devices can participate as first-class entities. Specifically we examine an incre-
mental integration of individual RBAC policies into a global policy, which is
suitable for dynamic virtual organizations. This is achieved via the definition of
cross-domain mappings between roles. Thus, any user authorized for a role dirm

in a domain di is granted access to all the permissions of its mapped role djrn in
domain dj . Nevertheless, inter-domain collaborations is a challenging task since
they can lead to various types of conflict. Research in [10] has shown that secure
inter-operation in federated systems must conform to the principles of autonomy
and security. The principle of autonomy states that any access permitted within
an individual system must also be permitted under secure inter-operation. Re-
garding the principle of security, it states that any access not permitted within
an individual system must also be denied under secure inter-operation [10]. The
former principles can be preserved in a collaboration, if a number of violations
are successfully identified. Violations in role-based approaches, possibly leading
to privilege escalation, can occur due to conflicts in cyclic inheritance and in
static and dynamic separation of duty relations. In regard to resource usage
management, domRBAC provides the capability of applying usage policies and,
thus, enforcing quality of service rules on sharable resources. The application of
resource usage policies can greatly amplify the adoption of Grid systems. For
instance, it can be applied in Grid systems where ad-hoc mobile devices operate
as first-class entities, or in multi-tenant environments, where usage based pricing
is required.

The structure of the remainder of this paper is as follows. Section 2 provides
information on related work and presents our motivation. Section 3 discuss dom-
RBAC model in a systematic manner. A demonstration of the proposed model
is given in section 4. Finally, we present our concluding remarks in section 5.

2 Relevant Work and Motivation

The access control models implemented by the existing Grid authorization mech-
anisms are either role based or attribute based. Role based access control (RBAC)
approaches have gained considerable attention among researchers, due to ease
of administration and support of a significant number of principles, namely the
least privilege, separation of administrative functions and separation of duty re-
lationships [20]. However, RBAC handles better centralized architectures and is
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rather weak in inter-domain collaborations. Such functionality is absent from the
ANSI INCITS 359-2004 [2]. Attribute based access control (ABAC) approaches
have lately gained a lot of attention due to the development of internet based
distributed systems. ABAC can provide access decisions on resources based on
the requestor’s owned attributes. A basic advantage of ABAC in comparison to
RBAC is that in the former approach it is possible to provide access to users in
a collaborative environment without the need for them to be known by the re-
source a priori. The UCONABC model [15], [19] is a representative ABAC model,
based on a modern conceptual framework, which encompasses traditional access
control, trust management and digital rights management for the protection of
digital resources.

Through time, numerous RBAC-based and ABAC-based models have been
proposed trying to overcome some of the limitation of their initial implementa-
tions. In regard to RBAC and secure inter-operation, research in [21] proposed
an integer programming (IP)-based approach for optimal resolution of the ex-
amined conflicts. A policy integration framework is used for the merging of the
individual RBAC policies into a global policy. However, this approach is not dy-
namic, since the global policy is not a result of an incremental composition of the
inter-domain policies. In [6] an inter-domain role-mapping approach based on the
least privilege principle is suggested. Yet, the applied greedy algorithm may not
compute optimal solutions, and from a security perspective may fail to find a safe
solution. Research in [22] presents a protocol for secure inter-operation, which is
based on the idea of access paths and access paths constraints. Nonetheless, the
protocol does not check for violations during an inter-domain role assignment.
Rather, it assumes that inter-domain role mappings already exist. In [26] the
DRBAC is presented as a dynamic context-aware access control model for Grid
applications. However, the management of inter-domain policies is not tackled.
Resource usage management, to the best of our knowledge, is completely absent
from the existing RBAC-based models. On the contrary, usage control was a sub-
ject of research in the UCON conceptual framework [15], [19], that is an ABAC
model with the capability of enforcing RBAC policies. Nevertheless, UCON lacks
administrative models and requires synchronized attribute acquisition and man-
agement that makes it more complex when applied to large systems.

In Grid systems, the existence of various access control models, inevitably led
to the implementation of different Grid authorization mechanisms. Additionally,
each mechanism tried to further implement features not intrinsically supported
by the implemented model (i.e. support of inter-domain collaborations, quality
of service and so on). Representative authorization mechanisms in Grid systems
are the Community Authorization Service (CAS) [16], the Virtual Organization
Membership Service (VOMS) [1], Akenti [23], PERMIS [4], [5], and Usage Based
Authorization [27]. Regarding mobile Grid systems various architectures have
been proposed to provide solutions, as the virtual cluster approach in [17], the
mobile OGSI.NET [7] and the Akogrimo project [18]. Yet, the proposed autho-
rization mechanisms are complementary to existing Grid authorization services,
as the A4C infrastructure in Akogrimo.
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So far we have outlined the key requirements of mobile Grid systems for ac-
cess control operation and administration, which are explicitly identified by the
need for support of dynamic and secure inter-operation and interaction among
the participating entities. To this extent, the examined access control models
do not provide a solid solution to cope with these requirements of mobile Grid
systems. Nonetheless, they are mostly targeted to general-purpose collabora-
tive systems. Furthermore, the support of resource usage policies, in order to
tackle the enforcement of quality of service policies is absent from RBAC family
of models and only supported by the UCON conceptual framework. However,
as discussed, ABAC solutions are prone to complexity when applied to large
systems and lack administrative models. Therefore, we propose the domRBAC
model, which combines the virtues of RBAC-based models and provides in addi-
tion resource usage management functionality in order to support modern Grid
systems, as described in detail in the next section.

3 The Proposed domRBAC Model for Modern
Collaborative Systems

The domRBAC model is an access control model capable of enforcing restrictive
access control policies in collaborative systems, as the mobile Grid computing
paradigm. The domRBAC model is based on the ANSI INCITS 359-2004 [2].
Thus, it supports all the components of the RBAC model, namely the core
RBAC, hierarchical RBAC, static separation of duty relations, and dynamic of
duty relations. However, domRBAC is enriched with additional functionality to
cope with the requirements posed by modern computing environments. In this
section, we discuss domRBAC model in a systematic manner.

3.1 domRBAC Elements

The domRBAC model consists of the following six basic elements: users, roles,
sessions, operations, objects, and containers. Furthermore, domRBAC can sup-
port access control among domains. A domain can be defined as a protected
computer environment, consisted of users and resources under an access con-
trol policy. This is done to cope with the problem of governing inter-operations
among domains. Figure 1 illustrates the proposed access control model.

Sessions, objects and operations are three concepts that are commonly used in
access control. The latter two form a new element of permissions. A permission
or a privilege is an approval to perform an operation on one or more RBAC
protected objects. In domRBAC, the aforementioned elements provide the same
functionality in their familiar sense. As in all role-based models, sessions are
dynamic elements. They are used as intermediary entities between the users
and roles elements. The user element usually depicts a physical person who
interfaces with a computer system. User elements, in role-based models, are
assigned to role elements and vice-versa. Sessions, in role-based models, are used
to enforce dynamic security policies to computing systems. Each user can be
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Fig. 1. The domRBAC access control model

associated with many sessions, and each session may have a combination of
many active roles. Regarding objects, they are used to represent an entity in a
computing system. Control of access to objects can be coarse-grained or fine-
grained, depending on the computing system. For instance, the sharing of files
and exhaustible system resources can be considered as an example of course-
grained access control. On the contrary, the granting of access in a database
on the level of record or field is an example of fine-grained access control. Yet,
in domRBAC, an object can be associated with many container elements. The
container element is explained in detail later in this section. Lastly, the element
of operations provides a set of allowed operations on objects. Both operations
and objects are system dependent. This means that different type of operations
applies to different objects.

Roles in domRBAC are enriched with the notion of domains, and are expressed
in pairs of domains and roles. For the naming of the roles, we use the DomainRole
notation. Thus, the Domain prefix indicates the role’s domain name, and the
Role suffix indicates the name of the role. A formal definition is given later
in definition 1.ii. The naming notation is used only for the element of roles.
Nonetheless, when assigning users or permissions to roles, it is understood that
the former two are also bound by the role’s domain name. Through the role’s
naming convention, the domRBAC model can distinguish the security policies
enforced among the autonomous domains.

The container is an abstract element that incorporates additional decision
factors employed by the access decision function. The container can handle both
environment and usage level information. The environment attributes are used
to set time constraints, spatial information and so on and so forth. Yet, the
usage level attributes can limit the usage of shared resources. The information
specified in the container element is based on [14]. Thus, a container attribute
can represent a certain property of the environment or usage levels. A container
function provides a mechanism to obtain the current value of a specific container
attribute. Lastly, a container condition is a predicate that compares the current
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value of a container attribute either with a predefined constant, or another con-
tainer attribute of the same domain. A significant enhancement of domRBAC
as compared to the ANSI INCITS 359-2004 is that the element of container can
support resource usage policies.

Moreover, domRBAC can support additional constraints, namely static and
dynamic role cardinality constraints, which can be applied to the process of role
assignment and role activation, respectively. This means that the number of roles
that can be assigned to and/or activated by the users of a system can be man-
aged. The constraint of role cardinality is introduced to fulfil both requirements
posed by the system administrators as well as resource owners. Administrators
can use static role cardinality to limit the assignment of critical roles with users.
Furthermore, dynamic role cardinality can be used for setting quality of service
rules. Resource owners can manage the usage of their resources by limiting the
number of users that utilizes them. Thus, it is feasible to create license agree-
ments between users and resource owners. This leads users to receive high quality
services in a computing system.

Furthermore, the domRBAC model supports the identification of inter-domain
violations, in an automated way, to avoid privilege escalation. The inter-domain
violations are caused due to new immediate inter-domain role inheritance rela-
tions. The supported violations are: cyclic inheritance, violation of static separa-
tion of duty relations in a domain, and violation of dynamic separation of duty
relations in a domain. Formal definitions are given later in this section in the Z
formal description language [12] as in the ANSI INCITS 359-2004.

3.2 domRBAC Definitions

Definition 1. The core domRBAC.
The formal definition of core domRBAC model is based on [2], and is extended
as follows:

i. USERS, ROLES, OPS, OBS, CNTRS, stands for users, roles, operations,
objects and containers, respectively.

ii. ddomainrrole ∈ ROLES is a role expressed in a DomainRole format, where
Domain denotes a domain name and Role denotes a role name. For example,
if a role rm belongs to a domain di, we write dirm.

iii. UA ⊆ USERS × ROLES, a many-to-many mapping user-to-role assignment
relation.

iv. assigned users(dirm:ROLES) → 2USERS , the mapping of role dirm onto a
set of users.
Formal definition: assigned users(dirm) = {u ∈ USERS | (u,dirm) ∈ UA}.

v. PRMS = 2(OPS×OBS), the set of permissions.
vi. PA ⊆ PRMS × ROLES, a many-to-many mapping permission-to-role as-

signment relation.
vii. assigned permissions(dirm:ROLES) → 2PRMS , the mapping of role dirm

onto a set of permissions.
Formal definition: assigned permissions(dirm)={p ∈ PRMS | (p,dirm)
∈ PA}.
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viii. CA ⊆ CNTRS × OBS, a many-to-many mapping container-to-object as-
signment relation.

ix. assigned containers(o: OBS) → 2CNTRS, the mapping of object o onto a
set of containers.
Formal definition: assigned containers(o)={c ∈ CNTRS | (c,o) ∈ CA}.

x. Op(p: PRMS) → {op ⊆ OPS}, the permission to operation mapping, which
gives the set of operations associated with permission p.

xi. Ob(p: PRMS) → {ob ⊆ OBS}, the permission to object mapping, which
gives the set of objects associated with permission p.

xii. SESSIONS = the set of sessions.
xiii. session user(s: SESSIONS) → USERS, the mapping of session s onto a

corresponding user.
xiv. session roles(s: SESSIONS) → 2ROLES , the mapping of session s onto a set

of roles.
Formal definition: session roles(s) ⊆ {dirm ∈ ROLES|(session user(s),dirm)
∈ UA}.

xv. avail session perms(s: SESSIONS) → 2PRMS , the permissions available to
a user in a session =

⋃
dirm∈session roles(s) assigned permissions(dirm).

Definition 2. Hierarchical domRBAC.
The hierarchical domRBAC is defined to cope with inter-domain role inheritance
relations, and is enriched with notations from the theory of graphs. The reason
why we choose to use the latter type of notation is bilateral. Firstly, graphs
help in the visualisation of inter-domain role inheritance relations. Secondly,
adjacency matrixes make it easy to find sub-graphs and adjacency queries are
fast. Henceforth, we use i and j to refer to domains, where i = j if we refer
to an intra-domain relation, and i

+= j if we refer to inter-domain relations
(intra − domain ⊆ inter − domain).

i. RH ⊆ ROLES × ROLES is a partial order on ROLES called the inher-
itance relation, written as ≥, where dirm ≥ djrn only if all permissions of
djrn are also permissions of dirm, and all users of dirm are also users of
djrn, i.e., dirm ≥ djrn.
⇒ authorized permissions(djrn) ⊆ authorized permissions(dirm).

ii. authorized users(i,j)(dirm : ROLES) → 2USERS , the mapping of role
dirm onto a set of users on the presence of a role hierarchy.
Formal definition: authorized users(i,j)(dirm) = {u ∈ USERS|djrn ≥
dirm, (u, djrn) ∈ UA}.

iii. authorized permissions(i,j)(dirm : ROLES) → 2PRMS , the mapping of
role dirm onto a set of permissions in the presence of a role hierarchy.
Formal definition: authorized permissions(i,j)(dirm)={p ∈ PRMS|djrn ≥
dirm, (p, djrn) ∈ PA}.

iv. G = (V, E) is the inter-domain role hierarchy directed graph, which consists
of a finite, nonempty set of role vertices V ⊆ ROLES and a set of edges
E. Each edge is an ordered pair (dirm, djrn), i

+= j of role vertices that
indicates the following relation: dirm ≥ djrn.
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v. A path in a G graph is a sequence of edges (dir1, dir2), (dir2, dir3), . . .,
(dirn−1, dirn). This path is from role vertex dir1 to role vertex dirn and
has length n-1. The path represents not immediate inheritance relation
between role vertex dir1 and dirn.

vi. AG is the adjacency matrix representation for graph G = (V, E), which is
a |V | × |V | matrix, where AG[dirm, djrn] = 1 if there is an edge from role
vertex dirm to role vertex djrn, and AG[dirm, djrn] = 0 otherwise.

vii. Given a directed graph G = (V, E) with adjacency matrix AG, we compute a
boolean matrix TG such that TG[dirm, djrn] is 1 if there is a path from dirm

to djrn of length 1 or more, and 0 otherwise. We call T the transitive closure
of the adjacency matrix. For the computation of the transitive closure, the
algorithm in [13] can be used. The algorithm computes the transitive closure
of G in O(|V |3) time and O(|V |2) space.

viii. An adjacency list representation for graph G = (V, E) is an array L of
|V | lists, one for each role vertex in V . For each role vertex dirm, there
is a pointer Ldirm to a linked list containing all the role vertices that are
adjacent to dirm.

ix. DESCENDANT ROLESdirm ⊆ ROLES is a set that contains the role
vertices of adjacency list Ldirm . Thus, DESCENDANT ROLESdirm con-
tains all the roles in the inter-domain collaboration that are immediate or
not immediate descendant roles of a given role dirm.

Definition 3. Constrained domRBAC.
Apart from the support of static and dynamic separation of duty constraints
in each domain, domRBAC supports static and dynamic role cardinality con-
straints. Static role cardinality constraints can restrict the number of users as-
signed to a role, to a maximum number. Moreover, dynamic role cardinality
constraints can restrict the number of users that activate a role, to a maximum
number in all concurrent sessions. In the following, we redefine SSD and DSD in
the presence of domains, and we define static and dynamic role cardinality.

i. Static Separation of duty (SSD): SSD ⊆ (2ROLES × N) is a collection
of pairs (dirs,n) in SSD, where each dirs is a role set in a domain di, t a
subset of roles in dirs, and n is a natural number ≥2, with the property that
no user of domain di is assigned to n or more roles from the set dirs in each
(dirs,n) ∈ SSD.
Formal definition:
∀(dirs, n) ∈ SSD, ∀t ⊆ dirs : |t| ≥ n ⇒ ⋂

dirm∈t assigned users(dirm) = ∅.
ii. SSD in the presence of a hierarchy: In the presence of a role hierarchy

SSD is redefined based on authorized users rather than assigned users as
follows:
Formal definition:
∀(dirs, n) ∈ SSD, i = j, ∀t ⊆ dirs : |t| ≥ n
⇒ ⋂

dirm∈t authorized users(i,j)(dirm) = ∅.
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iii. Dynamic Separation of Duty (DSD): DSD ⊆ (2ROLES ×N) is a collec-
tion of pairs (dirs,n) in DSD, where each dirs is a role set and n a natural
number ≥2, with the property that no subject may activate n or more roles
from the set dirs in each dsd ∈ DSD.
Formal definition:
∀dirs ∈ 2ROLES , n ∈ N, (dirs, n) ∈ DSD ⇒ n ≥ 2.|dirs| ≥ n, and
∀s ∈ SESSIONS, ∀dirs ∈ 2ROLES ,
∀role subset ∈ 2ROLES , ∀n ∈ N, (dirs, n) ∈ DSD,
role subset ⊆ dirs, role subset ⊆ session roles(s) ⇒ |role subset| < n.

iv. Static role cardinality (SRC): If static role cardinality constraint is re-
quired for any role dirm, then dirm cannot be assigned to more than a
maximum number of users.

SRC ⊆ (ROLES × N) is a collection of pairs (dirm, n) in static role
cardinality, where dirm is a role rm in a domain di and n is a natural number
≥ 0, with the property that the number of users assigned with role dirm

cannot exceed the number n in each (dirm, n) ∈ SRC.
Formal definition:
dirm ∈ ROLES, n ∈ N, n ≥ 0,
∀(dirm, n) ∈ SRC ⇒ |assigned users(dirm)| ≤ n.

v. SRC in the presence of a hierarchy: In the presence of a role hierarchy
static role cardinality constraint is redefined based on authorized users rather
than assigned users as follows:
dirm ∈ ROLES, i

+= j, n ∈ N, n ≥ 0,
∀(dirm, n) ∈ SRC ⇒ |authorized users(i,j)(dirm)| ≤ n.

vi. Dynamic role cardinality constraint (DRC): If dynamic role cardinal-
ity is required for any role dirm, then dirm cannot be activated for more
than a maximum number of authorized users in all concurrent sessions of a
system.

DRC ⊆ (ROLES × N) is a collection of pairs (dirm, n) in dynamic role
cardinality, where dirm is a role rm and n is a natural number ≥ 0, with the
property that the number of concurrent role activations by users authorized
for role dirm cannot exceed the number n.
Formal definition:
dirm ∈ ROLES, n ∈ N, n ≥ 0,
∀s ∈ SESSIONS, (dirm,n) ∈ DRC ⇒∑ |dirm ∩ session roles(s)| ≤ n.

After defining both the container element and the DRC constraint, we elaborate
on the supported types of resource usage policies. The first type is via the con-
tainer element, by declaring the required attribute value, function and condition
of the container. However, this type of resource usage policy is unable to provide
quality of service to consumers, since each container element restricts the usage
of a resource on per role activation. A second type of resource usage policy with
quality of service capabilities is provided via the combination of the container
element and DRC constraint. This type of resource usage policy enforcement
restricts the usage of a resource on all concurrent role activations.
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Definition 4. Role Inheritance Management in domRBAC.
The domRBAC model aims at providing a comprehensive solution to secure
inter-operation based on the principles of autonomy, security and containment.
In order to establish a secure inter-operation among the participating domains,
domRBAC provides two new administrative commands for managing inter-
domain role inheritance relations. The administrative commands can be used
by the administrator of each domain, according to the inter-operability require-
ments of each system. Their objective is to check for a number of violations before
committing an inter-domain role inheritance relation. Thus, based on the defini-
tions 4.i, 4.ii and 4.iii, we introduce the InterdomainPolicyViolation function for
the checking of inter-domain violations due to the inter-domain role inheritance
relations, and two new inter-domain administrative commands AddInterdomain-
Inheritance and DeleteInterdomainInheritance for establishing and discarding
immediate inter-domain inheritance relationships, respectively. Our approach
utilizes algorithms derived from the theory of graphs. Intra-domain management
not listed below is handled the same as in the ANSI INCITS 359-2004.

i. Inter-domain violation of role assignment: As stated in [21] an inter-
domain policy causes a violation of role assignment constraint of domain di

if it is allowed to a user u of domain di to access a local role dirm even
though u is not directly assigned to dirm or any of the roles that are senior
to dirm in the role hierarchy of domain di.

We identify role assignment violations by checking for cyclic inheritance in
the inter-domain role hierarchy graph. Role assignment violations can occur
due to the addition of a new immediate inter-domain inheritance relationship
dirmasc � djrndesc

between existing roles dirmasc , djrndesc
, where dirmasc is

a role ascendant of djrndesc
.

The algorithm for detecting inter-domain violations of role assignment is
given in Table 1.

ii. Intra-domain violation of SSD relationships: An inter-domain policy
causes an intra-domain violation of SSD relationships of domain di if it is
allowed to a user u of domain di to be assigned to any two conflicting roles

Table 1. Inter-domain violation of role assignment algorithm

1. ci violation(dirmasc , djrndesc) : boolean
2. for each dir ∈ DESCENDANT ROLESdirmasc

3. for each djr ∈ DESCENDANT ROLESdjrndesc

4. if not ((TG[dirmasc , dir] = 0 or
5. (TG[dirmasc , dir] = 1 and dirmasc ≥ dir)) and
6. (TG[djrndesc , djr] = 0 or
7. (TG[djrndesc , djr] = 1 and djrndesc ≥ djr)))
8. then
9. return true
10. return false
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dirm and dirn of domain di. We identify violations of SSD relationships,
using the following properties [8]:
Property 1: If there are two roles dirm and djrn that are mutually exclusive,
then neither one should inherit the other, either directly or indirectly.
Property 2: If there are two roles dirm and djrn that are mutually exclusive,
then there can be no third role that inherits both of them.
The algorithm for detecting intra-domain violations of SSD relationships is
given in Table 2. Specifically, Property 1 is maintained in lines 6-7, and
Property 2 in lines 8-9.

Table 2. Intra-domain violation of SSD relationships

1. ssd violation(dirmasc , djrndesc) : boolean
2. dir ∈ DESCENDANT ROLESdirmasc

3. djr ∈ DESCENDANT ROLESdj rndesc

4. for each (dirm, dirn) ∈ SSDdi

5. for each (djrm, djrn) ∈ SSDdj

6. if not (TG[dirm, dirn] = 0 and TG[dirn, dirm] = 0 and
7. TG[djrm, djrn] = 0 and TG[djrn, djrm] = 0 and
8. TG[dir, dirm] = 0 and TG[dir, dirn] = 0 and
9. TG[djr, djrm] = 0 and TG[djr, djrn] = 0)
10. then
11. return true
12. return false

iii. Intra-domain violation of DSD relationships: An inter-domain policy
causes an intra-domain violation of DSD relationships of domain di if it is
allowed to a user u of domain di to activate any two conflicting roles dirm

and dirn of domain di. We identify violations of DSD relationships similarly
to definition 4.ii due to the following property [8]:
Property 3: If SSD holds, then DSD is maintained. Thus, properties 1 and 2
must be guaranteed.
The algorithm for detecting intra-domain violations of DSD relationships is
given in Table 3.

iv. InterdomainPolicyViolation: This function checks if violations 4.i, 4.ii
and 4.iii occur during an inter-domain role inheritance relation. It returns
true if a violation occurs from an inter-domain role association, and false
otherwise. Table 4 presents the implementation of the function.

v. AddInterdomainInheritance: This command establishes a new immedi-
ate inter-domain inheritance relationship dirmasc � djrndesc

between exist-
ing roles dirmasc , djrndesc

. The command is valid if and only if dirmasc and
djrndesc

are members of the ROLES dataset, dirmasc is not an immediate
ascendant of djrndesc

, and violations of role assignment and of SSD and DSD
relationships do not occur.
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Table 3. Intra-domain violation of DSD relationships

1. dsd violation(dirmasc , djrndesc) : boolean
2. dir ∈ DESCENDANT ROLESdirmasc

3. djr ∈ DESCENDANT ROLESdj rndesc

4. for each (dirm, dirn) ∈ DSDdi

5. for each (djrm, djrn) ∈ DSDdj

6. if not (TG[dirm, dirn] = 0 and TG[dirn, dirm] = 0 and
7. TG[djrm, djrn] = 0 and TG[djrn, djrm] = 0 and
8. TG[dir, dirm] = 0 and TG[dir, dirn] = 0 and
9. TG[djr, djrm] = 0 and TG[djr, djrn] = 0)
10. then
11. return true
12. return false

Table 4. Inter-domain policy violation function

1. InterdomainPolicyViolation(dirmasc , djrndesc) : boolean
2. return ci violation(dirmasc , djrndesc) or
3. ssd violation(dirmasc , djrndesc) or
4. dsd violation(dirmasc , djrndesc)

Formal definition:
AddInterdomainInheritance(dirmasc , djrndesc

: NAME)�
dirmasc , djrndesc

∈ ROLES;
InterdomainPolicyV iolation(dirmasc , djrndesc

) = false;
¬(dirmasc � djrndesc

);¬(djrndesc
≥ dirmasc)

≥′=≥ ∪{dr, dq : ROLES|dr ≥ dirmasc ∧ djrndesc
≥ dq • dr �→ dq}�

vi. DeleteInterdomainInheritance: This command deletes an existing im-
mediate inter-domain inheritance relationship dirmasc � djrndesc

. The com-
mand is valid if and only if the roles dirmasc and djrndesc

are members of
the ROLES dataset, and dirmasc is an immediate ascendant of djrndesc

. The
new inter-domain inheritance relation is computed as the reflexive-transitive
closure of the immediate inheritance relation resulted after deleting the re-
lationship dirmasc � djrndesc

.
Formal definition:
DeleteInterdomainInheritance(dirmasc , djrndesc

: NAME)�
dirmasc , djrndesc

∈ ROLES; (dirmasc � djrndesc
)

≥′= (� {dirmasc �→ djrndesc
})∗�

4 Use Cases

In this section, we describe two contrived use cases to demonstrate the newly
introduced functionality of domRBAC. The first use case demonstrates how to
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enforce resource usage policies, and the second how to identify security violations
in an inter-domain role inheritance relation.

4.1 Use Case 1: Resource Usage Management

Figure 2(a) shows a simple policy in a domain d1. Role d1ra is a role senior
to d1rb. User Alice requires to share the CPU cycles of her mobile device. Since
the CPU capabilities of the device are limited, she decides to share only 50% of
her CPU cycles, and to provide to each consumer at most 5% of her sharable
CPU cycles. In order to apply the aforementioned policy, role d1rb is assigned to
permission PUC = (Usage, CPU). This means that a usage operation is assigned
to a CPU object. A container cB is assigned to object CPU. Container cB has
the following properties: a container attribute that defines the CPU usage value
equal to 5%, a container function that returns the current CPU usage, and a
container condition ≤. Moreover, a DRC constraint is applied to limit the number
of active users to 10 (DRCd1rb

= (d1rb, 10)). The latter constraint assures that
the number of concurrent active users cannot exceed the 10 users. Thus, in
conjunction with the container element it is assured that the usage of CPU not
exceed the 50%, and that each consumer receive at most 5% of CPU. If the
DRC constraint was omitted, Alice would not be able to limit the usage of her
resources, nor guarantee 5% of CPU usage to the consumers.

Fig. 2. (a) Resource usage management use case. (b) Security violation use case.

4.2 Use Case 2: Security Violation

Figure 2(b) shows a multi-domain policy that allows collaboration between
domain d1 and domain d2. Domain d1 has the following roles: d1ra, d1rb, d1rc,
d1rd and d1re. Role d1ra inherits all permissions of d1rb which further inherits
d1re. Role d1rc inherits all permissions of d1rd which further inherits d1re. A
static separation of duty relation is specified for d1rb and d1rc meaning that
these roles cannot be assigned to the same user simultaneously. Domain d2 has
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the following roles: d2rf and d2rg. Role d2rf inherits all permissions of d2rg.
The policy defines the following inter-operation between domains d1 and d2.

i. Role d1rb inherits all the permissions available to role d2rg.
ii. Role d2rg inherits all the permissions available to role d1rc.

However, the multi-domain policy leads to a violation of a SSD relationship in
domain d1. It allows d1rb to access the permissions of role d1rc through d2rg.
Policy i does not raise any of the discussed violations. Regarding policy ii we
work as follows:

Step 1. We assume that policy ii can be enforced.
Step 2. We construct the adjacency matrix AG, which contains the inter-domain
role hierarchy and we compute the sets of descendant roles for the two roles used
in the multi-domain policy.

AG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1ra d1rb d1rc d1rd d1re d2rf d2rg

d1ra 0 1 0 0 0 0 0
d1rb 0 0 0 0 1 0 1
d1rc 0 0 0 1 0 0 0
d1rd 0 0 0 0 1 0 0
d1re 0 0 0 0 0 0 0
d2rf 0 0 0 0 0 1 0
d2rg 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

DESCENDANT ROLESd2rg = {d1rc, d1rd, d1re}, and
DESCENDANT ROLESd1rc = {d1rd, d1re}.
Step 3. We call function InterdomainPolicyV iolation with function param-
eters d2rg and d1rc, and we compute the ssd violation(d2rg, d1rc). Based on
definition 4.ii: TG[d1rb, d1rc] = 1 ⇒ ssd violation(d2rg, d1rc) = true. The iden-
tification of a inter-domain violation of SSD relation will discard the inter-domain
inheritance relationship, assumed in the hypothesis of step 1.

5 Conclusion

The proposed domRBAC model is an extended RBAC model with enhancements
stemmed from a list of requirements from mobile Grid systems and commercial-
ized applications. The applied enhancements result in a robust, scalable and
dynamic access control model. The domRBAC model takes advantage of all the
virtues of RBAC family of models, and additionally, encompasses features from
ABAC approaches such as multi-domain support and resource usage manage-
ment. Opposed to existing solutions, secure inter-operation among domains in
domRBAC is achieved by checking gradually and dynamically for violations in
inter-domain role inheritance relations, as required by mobile Grid systems. Fur-
thermore, resource usage management is firstly introduced in an RBAC-based
access control model, as a requirement for enforcing quality of service policies.
Future work includes the design of an architecture that will implement the pro-
posed access control model and a performance study.
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Abstract. Most SSL/TLS-based electronic commerce (e-commerce) ap-
plications (including Internet banking) are vulnerable to man in the mid-
dle attacks. Such attacks arise since users are often unable to authenticate
a server effectively, and because user authentication methods are typi-
cally decoupled from SSL/TLS session establishment. Cryptographically
binding the two authentication procedures together, a process referred
to here as SSL/TLS session-aware user authentication (TLS-SA), is a
lightweight and effective countermeasure. In this paper we propose a
means of implementing TLS-SA using a GAA bootstrapped key. The
scheme employs a GAA-enabled user device with a display and an input
capability (e.g. a 3G mobile phone) and a GAA-aware server. We describe
a simple instantiation of the scheme which makes the password authen-
tication mechanism SSL/TLS session-aware; in addition we describe two
possible variants that give security-efficiency trade-offs. Analysis shows
that the scheme is effective, secure and scalable. Moreover, the approach
fits well to the multi-institution scenario.

Keywords: man in the middle, SSL/TLS session-aware user authenti-
cation, Generic Authentication Architecture.

1 Introduction

Most current e-commerce applications (including Internet banking) employ the
Secure Socket Layer (SSL) [12] or the Transport Layer Security (TLS) proto-
col1 [9] to cryptographically protect the communication channel between the
� The author is a PhD student at the South China University of Technology. This work
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1 The minor differences between SSL and TLS are not relevant here, and we thus refer
to them jointly as SSL/TLS throughout.
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client and the server. Typically, when establishing the SSL/TLS session, the
server authenticates itself to the client using a public key certificate. Although
the client could also authenticate itself to the server using a public key certificate
(an option in the SSL/TLS protocol), in practice this rarely takes place since very
few clients have the necessary key pair and certificate [19]. Instead, SSL/TLS-
based applications typically employ a separate user authentication protocol on
top of SSL/TLS, e.g. using a password, personal identification number (PIN),
or a more sophisticated mechanism such as a one-time password system.

The SSL/TLS protocol appears reasonably sound, and the security issues
so far identified [20,26] appear to be relatively minor. However, in practice,
the SSL/TLS protocol does not provide a high level of security because it re-
quires the user to verify with whom the client system is communicating, a task
that is often poorly performed [8]. Man in the middle attacks arise precisely
because of this shortcoming and the fact that the user authentication process
is decoupled from SSL/TLS session establishment. Consequently, any effective
countermeasure against these man in the middle attacks in an SSL/TLS setting
must either enforce proper server authentication or combine the user authen-
tication process with SSL/TLS session establishment. Oppliger et al. [23,25]
introduced the term SSL/TLS session-aware user authentication (TLS-SA) to
describe the latter countermeasure, and proposed an approach of this type using
a non-user-specific hardware token that shares a secret key with the server. How-
ever, this pre-shared key based approach has a number of disadvantages (see also
section 3).

Universal Mobile Telecommunications System (UMTS) networks have been
widely deployed, and there are a huge number of subscription holders across
the world. The Generic Authentication Architecture (GAA) [3] exploits the
UMTS authentication infrastructure to enable the provision of security services,
including key establishment, to third party mobile and Internet applications.
In essence, GAA makes use of the UMTS Authentication and Key Agreement
(UMTS AKA) protocol [2] to bootstrap application-specific session keys between
GAA-enabled devices and GAA-aware servers.

To avoid the disadvantages of the pre-shared key based approach, we propose
a means of implementing TLS-SA using a GAA bootstrapped key. The scheme
employs a GAA-enabled user device with a display and an input capability (e.g.
a 3G mobile phone) and a GAA-aware server, and binds the user authentication
process to the TLS session without modifying the operation of TLS. Analysis
shows that the scheme is effective, secure, scalable and has a degree of flexi-
bility enabling security-efficiency trade-offs. Moreover, the approach fits well to
the multi-institution scenario. The rest of this paper is organised as follows.
In section 2 we describe relevant background. In section 3 we survey related
work with an emphasis on TLS-SA. In section 4 we propose the GAA-based
approach, and also describe two possible variants that give security-efficiency
trade-offs. In section 5 we present a security analysis, and in section 6 we draw
conclusions.
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2 Background

In this section we briefly describe the man in the middle attacks relevant to
SSL/TLS-based applications, as well as relevant details of UMTS AKA and GAA.

2.1 Man in the Middle Attacks

A man in the middle attack targets associations between communicating enti-
ties. Typically, an adversary places itself between the client and the server and
establishes separate associations with them. It then intercepts and selectively
modifies communicated data to masquerade as the legitimate entities. Crypto-
graphic protection does not in itself prevent such an attack, because the ad-
versary engages in association establishment and possesses all the negotiated
cryptographic keys.

We assume the following SSL/TLS setting in this paper:

1. the SSL/TLS protocol is only used to authenticate the server, and
2. user authentication is performed using username and password via an estab-

lished SSL/TLS session.

When establishing the SSL/TLS tunnel, the user should verify the identity of the
remote system with which the client system (e.g. a browser) is communicating.
If not, then certain man in the middle attacks become possible.

Some classes of phishing attacks are examples of such man in the middle
attacks, and attacks of this type have become widespread [1]. In these attacks,
an adversary sets up a fake web site which imitates an existing legitimate site
in order to mislead users and obtain their authentication credentials. Dhamija
et al. [8] show that users often cannot distinguish a legitimate web site from a
fake (including in the case where SSL/TLS server authentication is employed).

Against this background, and as discussed by Oppliger et al. [23], most cur-
rently deployed user authentication mechanisms fail to provide effective protec-
tion against man in the middle attacks, even when they run over the SSL/TLS
protocol. There are two main reasons for this.

1. Verifying the identity of the SSL/TLS-authenticated server is usually done
poorly by näıve end users, if at all.

2. SSL/TLS session establishment is usually decoupled from user authentication.

If both the above assumptions hold, an attacker can first establish a SSL/TLS
session with the client, and fool the user into revealing his or her credentials.
The attacker then establishes a separate SSL/TLS session with the server it
has impersonated, and masquerades as the user by retransmitting the stolen
credentials. Defeating this man in the middle attack requires either proper server
authentication or a means of combining the user authentication process with
SSL/TLS session establishment.
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2.2 Generic Authentication Architecture

The information in this section is mainly derived from Holtmanns et al. [14].
The UMTS AKA protocol provides authentication and key establishment us-

ing a long-term secret subscriber key (K ), shared by a user device (e.g. a 3G
mobile phone) and a mobile network. After a successful UMTS AKA procedure,
a pair of secret session keys is established which are shared by the device and
the network. The established keys are CK, used for confidentiality protection,
and IK, used for integrity protection. We note also that, in the UMTS AKA
procedure, a random challenge (RAND) is sent by the mobile network to the
user device.

The Generic Authentication Architecture (GAA) [3] has been standardised
by the 3rd Generation Partnership Project (3GPP), and its North American
counterpart, the 3rd Generation Partnership Project 2 (3GPP2). The 3GPP
standard versions of GAA build on the widely established mobile authentication
infrastructures (including the GSM and UMTS infrastructures). In this paper we
focus on GAA as supported by the UMTS authentication infrastructure. GAA
consists of two procedures: GAA bootstrapping and Use of bootstrapped keys.

GAA bootstrapping, also known as the Generic Bootstrapping Architecture
(GBA), is the process by which UMTS AKA is used to set up a GAA master
session key (MK ) between a GAA-enabled device and a network, where MK is
the concatenation of IK and CK . The network also sends a transaction identifier
B-TID . B-TID is generated from the RAND value and the network domain name
of the mobile network, and can be used to identify MK and its lifetime to the
GAA-enabled device. Both the GAA-enabled device and the network cache MK,
the lifetime of MK and RAND for later use. The master session key MK is not
bound to a particular application, and can only be used to derive application-
specific session keys.

Use of bootstrapped keys is the procedure by which a GAA-enabled device
employs the bootstrapped keys to secure its exchanges in an application protocol
with a particular GAA-aware application server. Once the GAA-enabled device
decides to engage in an application protocol with a particular GAA-aware server,
it derives an application-specific session key (SK ) from MK, as follows:

SK = KDF(MK , GBAvariant, RAND, IMPI, NAF -Id)

where KDF is a key derivation function, GBA variant indicates the bootstrap-
ping variant (such as GBA ME or GBA U), the IP Multimedia Private Identifier
(IMPI) is derived from the International Mobile Subscriber Identity (IMSI) [6]
which is unique to each mobile phone, and NAF-Id2 is an application-specific
value consisting of the Fully Qualified Domain Name (FQDN) of an applica-
tion server and the identifier of the underlying application protocol. The device
starts the application protocol by sending a request containing B-TID . The
server fetches the same SK, the lifetime of SK, and other relevant information

2 In the GAA specifications [3], the functionality of a GAA-aware application server
is referred to as the Network Application Function (NAF).
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from the corresponding mobile network by forwarding the received B-TID and
its own identifier NAF-Id. Note that B-TID contains the network domain name
of the mobile network, so the application server knows where to send the request.
Normally the network has to authenticate that the requesting server is the gen-
uine owner of FQDN, which forms a part of NAF-Id. In GAA, it is assumed that
a confidential and authenticated channel between the server and the network
has been set up by some means. At this point, the device and the server share
the same value of SK . It is important to note that SK is bound to a specific
application protocol and a particular application server.

In summary, UMTS GAA uses UMTS AKA to bootstrap application-specific
session keys between GAA-enabled devices and GAA-aware servers.

3 Related Work

The incorporation of password authenticated key exchange (PAKE) schemes into
the TLS protocol has been proposed by Steiner et al. [27] and, subsequently, by
Abdalla et al. [7]. More recently, the use of the Secure Remote Password (SRP)
protocol within TLS has been specified in an Internet draft [28]. Despite the
potential advantages of such an approach, migrating from legacy user authen-
tication to a PAKE-based system is non-trivial for a variety of technical and
business reasons [10].

An application of GAA based on Pre-Shared Key (PSK) TLS [11] has been
described in 3GPP documents [4,5]. GAA credentials are used to establish a TLS
session by setting the Pre-Shared Key identity to be the B-TID, and the PSK
to be the application-specific session key. Note the PSK TLS protocol is able to
protect against man in the middle attacks.

Oppliger et al. [23] introduced SSL/TLS session-aware user authentication
(TLS-SA), a lightweight and effective countermeasure [24] to man in the middle
attacks. TLS-SA makes user authentication depend not only on the user’s secret
credentials, such as his or her password, but also on SSL/TLS session state
information. As a result, the server can check whether or not the SSL/TLS
session in which it receives the credentials matches the one employed by the user
to send them. If the two sessions match, it is unlikely that a man in the middle
is involved; however, if they differ, something abnormal must be taking place,
e.g. a man in the middle attack is being performed.

TLS-SA is not a user authentication mechanism or system. Many different
approaches can be used to make a given authentication mechanism SSL/TLS
session-aware and hence resistant to man in the middle attacks. Oppliger et al.
[23] proposed a pre-shared key based approach, and subsequently described a
proof of concept implementation [25]. This scheme involves a hardware authen-
tication token which shares a secret key with the server.

One disadvantage of this pre-shared key based approach is that every server
needs to generate and securely distribute a key-bearing token to every user, which
is likely to be a significant burden in practice. Another disadvantage is its poor
scalability. A subsequent proposal [24] involves the use of a multi-institution
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token which is equipped with a separate secret key for each of a number of
servers; however such a scheme may be difficult to market.

4 TLS-SA Using a GAA Bootstrapped Key

We now propose a means of implementing TLS-SA using a GAA bootstrapped
key. The scheme employs a GAA-enabled user device with a display and an input
capability (e.g. a 3G mobile phone) and a GAA-aware server. During the user
authentication process, an application-specific session key (SK ) is bootstrapped
between the device and the server using GAA. The device uses this GAA boot-
strapped key to compute a user authentication code from a combination of the
user’s secret credentials and state information for the current SSL/TLS session.
The user authentication code is submitted to the server to authenticate the user,
instead of the secret credentials. It is important to observe that, unlike previously
proposed TLS-SA schemes, the system we describe does not require an initial-
isation process. That is, the GAA-enabled mobile device is not user or server
specific, and can be used in the protocol with no registration or configuration
(except for the installation of the necessary application software).

The state information to be used in the computation of user authentication
code must have the following properties: (1) it must be shared by the client
and the server and be distinct for every SSL/TLS session, and (2) the state
information established by a server operated by a man in the middle attacker
must be different from the value established by the genuine server. In the scheme
described below, this is achieved by using as state information a hash of all
the messages exchanged during the underlying SSL/TLS Handshake, computed
using a suitable cryptographic hash function.

In the remainder of this section we first describe a simple instantiation of
the scheme. We then discuss two possible variants that give security-efficiency
trade-offs.

4.1 The Basic Scheme

The following entities play a role in the scheme:

– A user U .
– A SSL/TLS-enabled and GAA-aware server S . We assume that the applica-

tion supporting the scheme and executing in S can access certain elements
of the SSL/TLS session information.

– A SSL/TLS-enabled client (e.g. a browser) C, used by U to access S. We
assume that an application supporting the scheme has been installed in C
(e.g. as a Java applet/browser plug-in). This application must have ability to
access certain elements of the client’s SSL/TLS session information and be
aware of the FQDN of the underlying S and the identifier of the underlying
application protocol.
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– A GAA-enabled user device T (e.g. a 3G mobile phone) with a display and
an input capability. We assume that an application supporting the scheme
has been installed in T . This application must possess a means of communi-
cation with the scheme-specific application in C in order to get the necessary
information, e.g. as provided by a USB cable or a Bluetooth link.

– A mobile network provider N that provides the GAA service, and that is
trusted by users and servers.

These entities are equipped with various parameters and cryptographic keys. U is
equipped with an identifier username and a password (pw), a secret shared with
S . A long-term secret subscriber key (K ) is shared by T (strictly its USIM) and
its home mobile network as part of the subscription. Note that we also assume
that S has the means to establish a secure authenticated channel (e.g. as provided
by an SSL/TLS tunnel) with a mobile network as necessary to use GAA.

1. C ↔ S : establish an SSL/TLS session,
: and generate H .

2. T ↔ N : B-TID, MK, RAND
: and the lifetime of MK ([Tstart, Tend]).

3. C → T : H, the FQDN of S, and the identifier
: of the application protocol.

4. T : derives a session key SK.
5. T : computes uac = f(H , SK , pw , . . .).
6. U(C) → S : B-TID, username, and auc.
7. S ↔ N : SK and the lifetime of SK ([Tstart, Tend]).
8. S : Tcurrent ∈ [Tstart, Tend]?

: if so, S recomputes auc for authentication;
: if not, S discards the request.

Fig. 1. The GAA-based TLS-SA protocol

Figure 1 summarises the GAA-based TLS-SA protocol. We next give a more
detailed description, referring to the step numbers shown in the figure.

When U wishes to access S, U directs its client C to S . C and S then establish
an SSL/TLS session with server authentication using a public key certificate
(step 1)3. Once the session has been established, C and S compute (and cache)

H = h(Msgs)

where h refers to a suitable cryptographic hash function, such as SHA-1 or one
of the SHA-2 family [21] and Msgs denotes all the messages exchanged within
the SSL/TLS session establishment process4.

3 Whether or not the user verifies that S is indeed the server it wishes to communicate
with is not critical to the security of the scheme.

4 Enabling the application to gain access to these messages may require minor mod-
ifications to the SSL/TLS implementation. However, it requires no change to the
SSL/TLS Handshake protocol itself.
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T next checks whether it has a pre-established and valid master session key
MK . If not, T triggers a GAA bootstrapping procedure with its home network.
After successful execution of this process, the values B-TID, MK, the lifetime of
MK, and RAND are shared and cached by T and its home network (step 2).

U employs T to communicate with the scheme-specific application in C to
get H, the FQDN of S and the identifier of the application protocol (step 3). T
then constructs NAF-Id and derives a session key SK, as described in section 2.2
(step 4). Note that SK is not specific to U, and cannot be used to authenticate
U to S .

After derivation of SK, T uses U ’s password pw (which must be input by U
at some point) to compute a user authentication code uac as a function f of SK,
H, pw, and other relevant parameters (step 5), i.e.

uac = f(SK ||H ||pw || . . .),
where here and throughout || is used to denote concatenation. The function f
can be implemented in many ways. One possibility, which complies with clause
5.1.2 of ISO/IEC 9798-4 [16], is to instantiate f using HMAC [18] based on a
suitable cryptographic hash function, where the various inputs to f are simply
concatenated prior to applying HMAC. In this case, uac is computed as:

uac = HMACSK (H ||pw ||“Client”).

As discussed above, H is an SSL/TLS session-specific value, and it plays the role
of the nonce in the ISO/IEC 9798-4 protocol. The fixed string “Client” plays
the role of the entity identifier.

The server authenticates the user U by asking him or her to submit the values
B-TID, username, and uac using the SSL/TLS-protected channel (step 6). Note
that the user is not required to enter these values into the client, since they
can be transferred electronically from T to C . To verify the received uac, S
fetches the same SK, the lifetime of SK, and other relevant information from
T ’s home network using the GAA bootstrapped key usage procedure (step 7).
SK ’s lifetime can be set to be the same as that of MK. Before recomputing uac,
S must check whether or not SK is valid. This is achieved by checking whether
or not the current system time of S is within SK ’s lifetime5. If not, SK is invalid
and U will be rejected; otherwise, S can now use the received SK to recompute
uac for verification6. If the recomputed uac and the uac submitted by U match,
U will be granted access (step 8).

Note that the SSL/TLS implementations in C and S need to provide ac-
cess to session information to the application layer [13,17]. We propose that
the SSL/TLS implementations compute H upon the completion of SSL/TLS
Handshake session establishment, and cache it as part of the connection state
for the SSL/TLS Record layer. However, how this is achieved is application and
SSL/TLS implementation specific, and hence we do not discuss this further here.
5 Note that we assume that the system time of the network and the server are syn-

chronised with each other.
6 S must retrieve H at some point.
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4.2 Variants

In GAA, SK is typically used as a session key to secure application data sent
between client and server. Using SK instead of MK reduces the risk of disclosing
the master key MK, e.g. as a result of cryptanalysis. However, in our case SK is
only used in the computation of the user authentication code, i.e. only a small
amount of data is involved. Other application data is protected by transmission
through an SSL/TLS-protected channel.

Examining the computation of SK (as above), it follows that, during the life-
time of the key MK, the value of SK only depends on NAF-Id. In practice, U
could repeatedly access a particular server using the same application protocol7.
In such a case, U would use the same NAF-Id in the derivation of SK in multiple
user authentication sessions. In fact, the GAA bootstrapping procedure can be
avoided after the first use by setting the lifetime of MK to be sufficiently long. In
this case, T uses the same MK in the derivation of SK in all subsequent authen-
tication sessions, and hence a user can employ the same SK for all authentication
sessions with a particular server which involve a specific application protocol.
As a result, it is reasonable to propose that T and S both cache SK and use it
as a long-term shared key to avoid frequent use of GAA and derivations of SK .
We next describe two variants to achieve this.

In both variants, T and its home network first carry out a GAA bootstrapping
procedure to establish a shared master key MK and other information. The
lifetime of MK must be set to be sufficiently long. This process is performed
before any user authentication processes.

A Straightforward Variant. The user device T can identify SK using NAF-
Id, which is constructed from the FQDN of S and the identifier of the application
protocol. When computing uac, T first tries to retrieve SK from its cache using
the constructed NAF-Id as index. If SK is not present, then T derives an SK
from MK and the constructed NAF-Id, stores the pair (NAF-Id, SK ), and then
uses the derived SK to compute uac. If SK is in the cache, T uses it directly in
the computation of uac.

The server S needs to use both B-TID and NAF-Id to identify SK . U submits
username, B-TID, and uac in the authentication process. Upon receiving an
authentication request from C, S tries to retrieve SK from its cache using the
received B-TID and its own NAF-Id as index. If SK is not present, S requests
it from T ’s home network, stores the received triple (B-TID, NAF-Id, SK ), and
then verifies the uac to authenticate the user. If SK is present, S uses it directly
in the verification process.

A Separate Registration Procedure Variant. In the basic scheme and the
first variant described above, U has to submit username, B-TID, and uac in
order to be authenticated by S . B-TID is submitted so that S can identify
SK . In a standard password-based user authentication process, only username
7 For example, the user might repeatedly interact with a browser to access his or her

bank account via HTTPS.
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and pw need to be submitted. Thus submitting B-TID potentially significantly
increases the traffic load (since B-TID is much longer than a typical password),
and increases the complexity of implementation in settings in which B-TID must
be input by U . In the variant we now describe, S is required to provide a service
which allows U to register SK, enabling S to identify SK from just the username.
As a result, U will only need to submit username and uac in the authentication
process. The registration of SK can be done using a registration procedure of
the type described below.

Before any user authentication process, T derives SK to be used by U to
access a particular server S through a specified application protocol. T stores
the pair (username, SK ). If M = H ||pw , then, in order to register SK, U submits
username, B-TID, and ESK (M ) via a previously established SSL/TLS-protected
channel. Here E is an authenticated encryption technique, e.g. one of those
standardised in ISO/IEC 19772 [15]. Upon receiving the request, S fetches the
same SK, the lifetime of SK and other relevant information from T ’s home
network using the GAA bootstrapped key usage procedure. S can now use the
received SK to decrypt and verify the encrypted version of M to recover H
and pw. S then checks whether the received H matches the current SSL/TLS
session. Finally, S verifies whether username identifies a valid user and pw is the
correct password for this user. If all the verifications succeed, then S registers
the binding between username and SK .

After a successful registration procedure, T and S share the same SK which
can be identified by username. Thus, in the user authentication process, U only
needs to submit username and uac. However, it is important to note that the
binding between U and SK remains weak, and is only useful for the purpose of
identifying SK . That is, successful user authentication will require knowledge of
both SK and pw.

5 Analysis

The GAA-based approach avoids the disadvantages of the pre-shared key ap-
proach discussed in section 3. To implement the GAA-based approach, the user
only needs a GAA-enabled device with a display and an input capability. This
can be implemented using a 3G mobile phone with a valid subscription, and there
are a very large number of subscription holders across the world. The approach
thus has good scalability. Moreover, since a GAA bootstrapped session key is
used in the computation of the user authentication code, there is no need to gen-
erate and securely distribute a key-bearing token to every user. The approach
also fits well to the multi-institution scenario. The system enables server-specific
session keys to be generated using a single GAA-enabled device, where each such
key can be used to help authenticate a user to the appropriate GAA-aware server.
The GAA-enabled device thus acts as a non-institution-specific authentication
token.

However, in deciding whether to use this GAA-based TLS-SA system, the
server S and its users must trust the mobile network provider not to compromise
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its long-term password (see also section 5.1). Such a trust relationship could be
supported by a contractual agreement between application service providers and
mobile operators.

A limitation of the scheme is that use of the system will incur the cost of using
the GAA service. The two variants described in section 4.2 are more cost-effective
in this respect than the basic scheme.

We next give an informal security analysis. We then show that the GAA-based
approach has a degree of flexibility, enabling the implementation of security-
efficiency trade-offs.

5.1 Informal Security Analysis

We consider a threat model in which an attacker A is able to observe and make
arbitrary modifications to messages exchanged between C and S, including re-
playing, blocking and inserting completely spurious messages. This allows a triv-
ial denial of service attack which cannot be prevented. A is also assumed to be
a legitimate user of the UMTS GAA service. However, A is not allows to com-
promise the implementations of T, C or S (e.g. using malware); such attacks on
system integrity are not addressed by the schemes we propose.

The security of the schemes relies on the security of the underlying UMTS
GAA and SSL/TLS protocol. In turn, the security of UMTS GAA is built on
the assumption that learning the subscriber key and/or MK by attacking UMTS
AKA is not possible [14].

We next provide a brief informal analysis of how the schemes meet the in-
tended security goals.

1. Resistance to user authentication code replay.
The GAA-based scheme, like the pre-shared key approach, involves authen-
ticating a user via a user authentication code (uac). The user authentication
code is cryptographically bound to the current SSL/TLS Handshake session
state information. The state information (H ) is a cryptographic hash of all
the messages exchanged during SSL/TLS session establishment.

Suppose A launches a man-in-the-middle attack by establishing two sep-
arate SSL/TLS sessions: one with S (masquerading as C ) and one with C
(masquerading as S ). The value of the uac provided by C to A will be a
function of the messages exchanged by C and A during SSL/TLS session
establishment; similarly the uac expected by S will be a function of the
messages exchanged by A and S during SSL/TLS session establishment.
Even if they are otherwise identical, the first set of messages will include
A’s SSL/TLS server certificate, and the second set of messages will instead
contains S ’s certificate. As a result the uac provided by C will be different
to that expected by S, and hence the attack will fail.

2. Resistance to compromise of a user password (pw).
A could set up an SSL/TLS session with C (impersonating a legitimate S )
and request a uac. The uac is computed using a keyed one way hash function
which takes as input the GAA bootstrapped session key; it is thus infeasible
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to retrieve pw from a valid uac without knowing this session key. That is, A
cannot succeed in a off-line dictionary attack against pw without knowing
the corresponding SK or MK (using MK, A can derive SK ). Similarly, in
the registration procedure, A cannot retrieve pw from the encrypted string
sent to S without knowing the corresponding SK or MK . We assume that
the underlying UMTS GAA is secure [22], that is, it is impossible for A to
learn SK (intended for a legitimate S ) or MK established between T and
its mobile network by attacking UMTS GAA.

Alternatively, A could attack the KDF algorithm used for SK derivation.
In such an attack, A chooses and registers a value for NAF-Id (NAF-IdA,
say) which has the property that

KDF(MK , GBAvariant, RAND , IMPI, NAF -
IdA) = KDF(MK , GBAvariant, RAND , IMPI, NAF -IdS)

for any master key MK, where NAF-IdS is the NAF-Id for a legitimate server
S . A then requests an SK from the mobile network by sending B-TID and
NAF-IdA. The mobile network derives an SK from NAF-IdA, which is equal
to the SK derived from NAF-IdS . As a result, the adversary learns the value
of SK for U and S . However, the KDF algorithm used in GAA is based
on HMAC-SHA-256, which is believed to be a secure MAC function [14],
and hence such a collision attack is believed to be infeasible. The choice of
a cryptographically strong KDF also means that even if A has discovered
a number of SK values, they cannot be used to discover other keys derived
from the same master key MK .

3. Resistance to registration message replay (second variant only).
Note that S can detect such an attack by checking whether the H value
matches the current SSL/TLS session. If not, S simply discards the request.

It is very important to note that the mobile network operator possesses the
GAA bootstrapped session keys and must be trusted since, if it obtains the
authenticator8, it could perform a dictionary attack to find the user’s long-term
password. In practice, users already trust mobile operators not to intercept their
phone calls. This is a high level of trust since operators could, for example,
intercept and misuse a wide range of user secrets (e.g. credit card details).

5.2 Security-Efficiency Trade-Offs

In the pre-shared key approach outlined in section 3, a secret key is used in all
authentication sessions. This is arguably more efficient, since there is no need
for session key establishment (e.g. a GAA procedure) in the user authentication
process. However, in a high security scenario it may be necessary to use a new key
for each authentication session. Secret key re-configuration is highly non-trivial
8 A malicious mobile network provider could potentially set up a phishing website to

try to persuade a user to submit an authenticator. However, such a scenario seems
rather far-fetched, particularly given that a user can choose which network operator
to use.
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in the pre-shared key approach, since tokens have to be distributed to users.
As we show immediately below, the GAA-based approach has the flexibility to
enable security-efficiency tradeoffs.

For a high-security scenario in which a new session key SK is needed for each
authentication session, the basic GAA-based scheme can be used. By setting
the lifetime of MK to be sufficiently short, a new master MK will be estab-
lished between T and its home network in each authentication session. As a
result, a new session key SK will be derived for the computation of each user
authentication code. Of course, this will introduce a significant network traf-
fic and computational overhead, including the establishment of MK using the
GAA bootstrapping procedure, the derivation of the session key SK in T, and
the fetching of SK from the mobile network by S . Such an approach therefore
has relatively high security and low efficiency. In a scenario where security is not
quite such a high priority, one of the variant schemes can be used in which the
key SK is cached and used as a long-term key for multiple user authentication
sessions. As a result, additional GAA procedures and calculations are avoided,
and higher efficiency can be achieved.

6 Conclusions

SSL/TLS session-aware user authentication is a lightweight and effective coun-
termeasure to man in the middle attacks. We propose a means of implementing
SSL/TLS session-aware user authentication using a GAA bootstrapped key. The
scheme employs a GAA-enabled user device with a display and an input capa-
bility (e.g. a 3G mobile phone) and a GAA-aware server. Importantly, the user
device does not need to be registered with the server, and no server-specific de-
tails are stored in the device; that is, the user device is not specific to either the
user or the server. Analysis shows that the scheme is effective, secure, scalable
and has a degree of flexibility enabling security-efficiency trade-offs. Moreover,
the scheme fits well to the multi-institution scenario.
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Abstract. In this paper we propose an efficient forward-private RFID
mutual authentication protocol. The protocol is secure under standard
assumptions. It builds over a recent work, extends it to achieve mu-
tual authentication, and improves it by introducing a resynchronization
mechanism between tag and reader, through which the server-side com-
putation from O(Nω) is reduced to O(N + ω), where N is the total
number of tags in the system, and ω is the maximum number of au-
thentications each single tag can afford during its lifetime. Moreover, the
protocol enables the server to control how many times a tag has been
read by legitimate and fake readers.

1 Introduction

Rfid Technology: basics, development and concerns. The Rfid technology enables
automatic object identification without the need for physical access. Each object
is labeled with a tiny integrated circuit equipped with a radio antenna, called
tag, whose information content can be received by another device, called reader,
at a distance of several meters. Usually the readers are connected to a back-end
server: they forward to the server the read tag content, and get back the result
of the server computation. The interest of the scientific community for the Rfid
technology has grown a lot during the last years simultaneously to the wide
diffusion of the technology and the deployment of applications which partially
deal or embed Rfid components. Indeed, the indubitable advantages come with
new challenges: security and privacy, due to the constrained computational ca-
pabilities of the tags, are non trivial properties to achieve. If some applications
do not need stringent security and privacy measures, applications which have an
impact on the people life style, raise more concerns: in some settings as users
(e.g., in access control applications, in anti-theft tools) we would like to be sure
that a certain tag cannot be impersonated by an adversary; as well as, there are
uses in which tracking features (e.g., postal tracking, pet tracking, airline lug-
gage tracking, waste disposal tracking) are very welcome but others (e.g., when
buying tag-equipped goods from a shop) in which we would like to be sure that
our privacy is preserved, and no adversary is able to build a preference profile
by illegally reading the content of the tags attached to the goods we buy.
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State of art. We refer the interested reader to [14,13] for an overview of the
applications of the RFID technology and of the main security issues, and to [1] for
references to research papers dealing with RFID technology and its challenges1.
Previous work. Roughly speaking, an Rfid authentication protocol enables tags
and readers to be sure they are talking to each other, i.e., to identify and authen-
ticate the other part. It is a key-component for building secure and private Rfid
applications. An RFID authentication protocol is forward-private if an adver-
sary, who tampers a tag and obtains its keys and state information, is unable to
trace the tag, i.e., to associate the tag to previous transcripts of completed pro-
tocol executions he has eavesdropped. Obhuko et al. [15] proposed a simple and
elegant forward-private scheme, which uses two hash functions. The scheme and
its subsequent improvements, however, due to the costs of hash functions, are
unsuitable for a real implementation on a tag. Moreover, such schemes are proven
secure by using the random oracle methodology which is object of debate and
criticism [2,6]. A recent paper [4] introduced a new Obhuko et al. like scheme,
called PFP, which is efficient and is secure under standard assumptions, i.e.,
the existence of pseudorandom number generators and strongly universal hash
function families.
Our contribution. In this paper we propose EFPP , a new forward-private RFID
mutual authentication protocol. It builds over PFP and improves it by intro-
ducing a resynchronization mechanism between tag and reader, similar to the
one used in [11,12], through which the server-side computation from O(Nω) is
reduced to O(N + ω), where N is the total number of tags in the system, and ω
is the maximum number of authentications each single tag can afford during its
lifetime. Since the authors of [10], who focused on the design and the analysis
of Rfid protocols based on symmetric-key primitives, showed that, if keys are
chosen independently and uniformly at random, Ω(N) is a lower bound on the
number of lookup operations the back-end server needs to authenticate a tag,
then it follows that our forward-private scheme is almost optimal.
Related Work. Apart [4], which is our starting point, and [11,12], from which
we borrow the resynchronization technique, other related papers are [17,5]. The
OFRAP mutual authentication scheme, proposed in [17], is elegant, efficient,
and forward-private. It has been analyzed within the UC framework and proven
secure and private under standard assumptions, i.e., the existence of pseudo-
random functions. Moreover, it achieves an O(N) overhead in terms of the num-
ber of lookup operations the server needs to authenticate a tag. Compared to
ours, apart the computational tools, the main difference is that in OFRAP the
server has no way to control the total number of protocol executions a tag has
been subject to, perhaps due to an adversary attack. In our scheme, on the
other hand, we gain control by paying an additive ω factor within the asymp-
totic notation, which enables the back-end server to remove from the system
a tag once its lifetime is over. On the other hand, the PEPS scheme [5] also
1 In the full version of the paper [8] are briefly mentioned the most significant efforts

in order to provide precise notions of security and privacy, and to propose efficient
constructions.
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reduces the O(Nω) server-side computation of PFP [4] to O(N). It has a de-
sign quite similar to OFRAP , and it is secure under the same assumptions. The
main difference between PEPS and OFRAP is that PEPS requires the tag to
generate truly random numbers. We point out that also in PEPS the server has
no way to control the total number of protocol executions a tag has been subject
to. In some applicative settings (e.g., access control, ticketing, automatic tolls
...) such a property is very welcome. The server could estimate the usage of the
tag, as well as whether the tag has been target of attacks. EFPP is a true exten-
sion of PFP, which is efficient and practical, and uses the same computational
tools. To our knowledge, EFPP is also the first efficient RFID forward-private
authentication protocol enjoying the above tag-control feature.

2 Security Model

Every security model for evaluating Rfid authentication protocols focuses on
three aspects: correctness, security and privacy. Loosely speaking, a protocol
is correct if, with overwhelming probability, a legitimate tag and a legitimate
reader successfully authenticate each other in an adversary-free protocol execu-
tion. Then, it is secure if an adversary has a negligible probability of imperson-
ating a legitimate tag to the reader (vice versa, a reader to tag). Finally, it is
private if a tag cannot be traced by analyzing the transcripts of protocol exe-
cutions, and it is forward-private if the adversary does not succeed even if, at a
certain point, gets access to the tag content and tries to trace the tag by using
the transcript of previous completed executions.

Despite the properties we would like to get are intuitively clear, providing
a suitable security and privacy model is a challenging task. Just to exemplify,
the notion of correctness has to take into account a possible desynchronization
attack tag and reader can be subject to at a certain point. What do we need
to require from an adversary-free protocol execution after such an event has
occurred? The models in [18,4,11] formalize this requirement in different ways.
In this abstract, we do not deal with security model issues: since we basically
use the same primitives of [4], for easiness of comparison, we refer to the same
model (extended to deal with mutual authentication) which, as stated by the
authors of [4], is a simplification and an adaptation of [18,16] to the symmetric
setting2.

The Model. Each tag T has an internal state, containing state information and se-
cret keys. Tag secret keys are uncorrelated, chosen independently and uniformly
at random. Part of the tag state is shared with the back-end server, which stores
tag information in a database DB. Each tag can be used at most ω times. Readers
are securely connected to the back-end server. During its lifetime, a tag enters
authentication exchanges with the readers, following a protocol which specifies
which messages have to be computed and exchanged, and how the internal states
of the tag and the back-end server have to be updated. An authentication ex-
change between a tag and a reader either results inside the reader (resp. tag)
2 An analysis of the protocol in different models is left as future work.
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in an authentication success (together with a tag identity for the reader) or in
an authentication failure. A tag cannot handle several authentication exchanges
simultaneously. We assume that tags are exposed to an adversary during an
exposure period, in which the adversary is able to observe and disturb all in-
teractions involving the tag and possibly the reader, without confusing these
interactions with exchanges involving other tags of the system. We also assume
that no physical characteristics (e.g., radiation pattern, response time, et cetera)
allow an adversary to recognize the tag and distinguish it from the other tags of
the system, if the adversary observes it again in another exposure period.

Let A be an adversary with running time upper-bounded by T , allowed to
trigger, observe, disturb and replace up to q < ω authentication exchanges in-
volving the tag and the reader, and to access the outcome of the authentication
protocol. We say that A is a (q, T )-adversary.

Definition 1. An Rfid authentication protocol is said to be (q, T, ε)-correct iff
the probability that a legitimate tag (resp. reader) is not successfully authenticated
by a legitimate reader (resp. tag) in an undisturbed exchange at least once in
its lifetime is upper-bounded by ε, even in the presence of a (q, T )-adversary.
The probability is taken over the initial tag’s secret values, the random numbers
chosen during the protocol executions, and the random numbers chosen by the
adversary.

The definition states that a protocol is correct iff, even in presence of a (q, T )-
adversary which tries to desynchronize tag and reader (i.e., so that they reach
different states), the probability that in its lifetime there exists an adversary-free
execution of the protocol in which the tag (resp. reader) is not authenticated by
the reader (resp. tag), is at most ε. In other words, the protocol is robust against
a (q, T )-adversary and it works almost always well.

Security requires resistance to impersonation attacks, which can be modeled
as two-stage processes: during the first stage a (q, T )-adversary interacts both
with a legitimate reader and a legitimate tag. During the second stage, the ad-
versary only interacts with the reader (resp. tag) and initiates an authentication
exchange to impersonate the tag (resp. the reader). The attack succeeds if the
authentication is successful and the adversary is identified as the tag (resp. as
the reader).

Definition 2. An Rfid authentication protocol is said to be (q, T, ε)-secure (w.r.t.
tag authentication/w.r.t. reader authentication) iff, for any (q, T )-adversary, the
probability that an impersonation attack is successful is at most ε.

The privacy requirement can be formalized through the following privacy ex-
periment: during the first stage, a (q, T )-adversary A interacts with any two
legitimate tags, T0 and T1, and a legitimate reader. At the end of this phase, a
bit b (concealed to A) is chosen. Then, during the second stage, A again inter-
acts with Tb. Then, A is given access to the internal state of Tb. Eventually, A
outputs a guess bit b′ for the value b, and it succeeds if b′ is equal to b.
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Definition 3. An Rfid authentication protocol is said to be (q, T, ε)-private iff
any (q, T )-adversary A has an advantage at most ε in winning the privacy ex-
periment, i.e.,

|Pr[A succeeds ] − 1/2| ≤ ε.

Notice that, in the privacy experiment, we assume that A is given access to the
internal state of the tag when a protocol execution is completed3. This precludes
tag states following a failed protocol execution. The same approach was followed
in [17] and, very recently, in [5], where the authors used the notion of almost
forward private protocol to refer to the above setting with a restricted corruption
capability for the adversary. However, we point out that, by using the same
argument used in [16] (see Thm 1, page 294), it is possible to prove that if
an adversary has the power to corrupt a tag during a protocol execution, then
it easily wins the privacy experiment. Unfortunately, this issue has no protocol
solution without extra hardware assumptions [16,9]. Therefore, the only possible
goal is to look for a protocol which safely locks previous completed executions4.

3 Tools

In this section we review some useful tools and properties needed to analyze the
strength of the protocol. See [4] (Section 4 and the appendices) for proofs and
details.

Let L, n and k be integers such that L = n + k, and let g : {0, 1}n →
{0, 1}L be a binary function, which expands n-bit sequences into L-bit sequences.
A distinguisher for g is a probabilistic algorithm A, which on input an L-bit
sequence, outputs 0 or 1. The advantage of A in distinguishing g from a perfect
random generator is defined as:

Advg(A) = |Pr[A(g(x)) = 1] − Pr[A(y) = 1]|

where the probabilities are taken over x ∈ {0, 1}n (unknown to A) and y ∈
{0, 1}L, chosen uniformly at random, and over the random bits chosen by A.
The advantage in distinguishing g in time T is:

Advg(T ) = maxA{Advg(A)}

for all distinguishers A running in time at most T.

Definition 4. The function g : {0, 1}n → {0, 1}L is a (T, ε)-secure pseudoran-
dom number generator ((T, ε)-PRNG, for short) iff Advg(T ) ≤ ε.

3 Using the language of [11], the tag is clean at the corruption time, i.e., an undisturbed
protocol execution with the reader has been successfully completed and the tag is
ready for a new protocol execution.

4 Notice that similar constraints to get perfect forward-secrecy in the key-exchange
setting were shown in [3] (see Remark 7). It is the same problem which appears in
two different settings.
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By using λ times the function g, we can define an iterated function Gλ. To this
aim, let us denote g(x) = g1(x)||g2(x), where g1(x) ∈ {0, 1}n, g2(x) ∈ {0, 1}k,
and || represents concatenation. Then, let λ be an integer greater than or equal
to 1. The iterated function Gλ : {0, 1}n → {0, 1}n+λk is defined by:

x → (g2(x), g2(g1(x)), . . . , g2(gλ−1
1 (x)), gλ

1 (x)).

Assuming that Tg is the time to compute g, it holds that:

Theorem 1. If g : {0, 1}n → {0, 1}n+k is a (T, εg)-PRNG then, for any λ ≥ 1,
the associated iterated function Gλ is a (T − (λ + 1)Tg, λεg)-PRNG.

Similarly, a duplicated function GN : {0, 1}nN → {0, 1}LN is simply defined by
(x1, . . . , xN ) → (G(x1), . . . , G(xN )). It holds that:

Lemma 1. If G is a (T ′, εG)-PRNG, then GN is a (T ′, NεG)-PRNG.

Finally, a duplicated iterated function GN
λ : {0, 1}nN → {0, 1}(n+λk)N is defined

by (x1, . . . , xN ) → (Gλ(x1), . . . , Gλ(xN )).
Theorem 1 and Lemma 1 were proven in [4] by using standard hybrid argu-

ments. From them, it follows that:

Theorem 2. For any (T, εg)-PRNG g : {0, 1}n → {0, 1}n+k, any λ ≥ 1, and
any N ≥ 1, the associated duplicated function GN

λ : {0, 1}nN → {0, 1}(n+λk)N is
a (T − (λ + 1)Tg, Nλεg)-PRNG.

The second key-tool we need in our construction are function families with special
uniformity properties, referred to as universal classes of hash functions [7]. The
idea of a universal class of hash functions is to define a collection H of hash
functions in such a way that a random choice of a function h ∈ H yields a low
probability that any two distinct inputs x and y will collide when their hashed
values are computed using the function h. A more structured function family is
defined as follows:

Definition 5. A family H = {hs : {0, 1}� → {0, 1}m} of hash functions is called
ε-almost strongly universal if and only if: ∀a ∈ {0, 1}�, ∀b ∈ {0, 1}m, it holds that
Prs∈S [hs(a) = b] = 2−m, and ∀a1 �= a2 ∈ {0, 1}�, ∀b1, b2 ∈ {0, 1}m, it holds that
Prs∈S [hs(a2) = b2|hs(a1) = b1] ≤ ε.

Notice that, the first condition states that any input a is mapped to any hashed
value b with probability 1

2m . The second states that, given that a1 is mapped
to b1, the conditional probability that a2 is mapped to b2, for any a2 �= a1, is
at most ε. A 2−m-almost strongly universal hash function family H is called a
strongly universal hash function family. Further details and applications can be
found in [20,19].

The following lemma was proven in [4]. It states that an adversary who knows
a pair (a0, hs(a0)) and a bunch of pairs (aj , bj), with bj �= hs(aj), has a small
probability of guessing the correct value of the function hs(a) on a new randomly
chosen value a.
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Lemma 2. Let H = {hs : {0, 1}� → {0, 1}m} be an ε-almost strongly universal
hash function family, let s∗ be a (secret) value randomly chosen in S, and let A
be a computationally unbounded adversary who tries to predict the value of hs∗

on a randomly chosen input value a. Suppose that A is given at most one pair
(a0, b0) and at most p ≤ 1

2ε pairs (aj , bj) such that hs∗(a0) = b0 and, for 0 <
j ≤ p, it holds that hs∗(aj) �= bj. Then,

Pra∈{0,1}�,s∗ [A(a) = hs∗(a)] = 2−� + ε(1 + 2pε).

Lemma 3. If s, s′ are chosen independently, then Prs,s′∈S [hs(a)=hs′(a)]=2−m.

In the following, we will denote with Th the time to compute the function hs.

4 Protocol Description

In this section we introduce our protocol. Let us briefly describe PFP , the
forward-private protocol proposed in [4] we start from. Let g : {0, 1}n →{0, 1}n+k

be a PRNG, and let H = {hs : {0, 1}� → {0, 1}m} be a strongly universal hash
function family. Moreover, let g(x) = g1(x)||g2(x), where g1(x) ∈ {0, 1}n and
g2(x) ∈ {0, 1}k. Each tag can be used at most ω times. It stores the descrip-
tion of g and H, and a state variable σ. The back-end server stores the same
information for all tags in its database. The protocol works as follows:

1. The reader chooses uniformly at random a challenge c ∈ {0, 1}n and sends c
to the tag.

2. The tag, receiving c, updates its state σ and chooses a random function hs

from H by computing (σ, s) = (g1(σ), g2(σ)). Then, it computes r = hs(c),
and sends r to the reader.

3. The reader, for each tag T, fetches into the database DB the last known
state for tag T , say σT

j , and checks whether there exists an index i ≥ 0 such
that j + i < ω and hg2(gi

1(σT
j ))(c) = r. If such an index is found, then the tag

is authenticated. Otherwise, it is refused.

In other words, at each protocol execution, the reader checks in DB along chains
of at most ω elements if a match is found. The protocol is correct, secure and
forward-private and, in a system with N tags, it has complexity O(Nω). In the
following we show how to improve the scheme in order to get mutual authenti-
cation and to reduce the complexity from O(Nω) to O(N + ω).

Let us start by describing the information held by tags and readers in the new
protocol.
Common public information: two d-bit values pad1, pad2, used for padding, and
the descriptions of a pseudorandom number generator g (PRNG) and of a
strongly universal hash function family H (SUHF, for short). The PRNG g
is used for identification purposes, for updating tag information, and within the
authentication process. The SUHF H is used within the authentication process.
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As before, we split the values of g : {0, 1}n → {0, 1}n+k in two parts, i.e.,
g(x) = g1(x)||g2(x).

Tag information: a (n-d)-bit randomizer CR, an identification key k, a state
variable σ, the two d-bit values pad1 and pad2, and the descriptions of g and H

Reader information: a DB which stores the description of g and H, the two values
pad1 and pad2, and, for each tag, the tag identifier ID, a counter CNTID, and
two tuples: < Iold, σold, kold, CRold

DB > and < I, σ, k, CRDB > . Let us denote by
DBID[i], for i = 0, 1, the memory locations for the two tuples for tag ID. At the
beginning, when DB is initialized, all counters and old tuples are set to zero, i.e.,
CNTID = 0 and DBID[0] =< 0, 0, 0, 0 > for all N tags. The DB automatically
removes tag ID when CNTID = ω. Moreover, let us denote by σ|n−d the first
n − d bits of σ, and by rnd a value chosen uniformly at random.

Three-round authentication protocol overview:

1. The reader chooses uniformly at random a challenge c ∈ {0, 1}n and sends c
to the tag.

2. The tag updates its state, and computes and sends to the reader a triple,
(I, vT , auth). The first two entries are used for identification and (if the
synchronization is lost) to resynchronize tag and reader. More precisely, the
value I can be seen as a sort of pseudonym, which changes at each invocation,
while the value vT contains information about the current randomizer CR
of the tag. Finally, the value auth is the authenticator, used to authenticate
the tag to the reader.

3. The reader, once received (I, vT , auth), looks in DB for a tuple starting with
pseudonym I. If a tuple is found, the reader checks the received values are
computed correctly from the tag, overwrites the old tuple for the tag with
the current tuple, updates the current tuple < I, σ, k, CRDB >, and sends
to the tag a value which acknowledges the received triple and authenticates
the reader to the tag. Otherwise, it first tries to resynchronize with the tag
and, then, it does the same check and update. If fails then it sends a random
value to the tag.

4. The tag checks whether the received value is equal to the value it is expecting
to receive and, accordingly, updates its key and outputs 1 or outputs 0.

A complete description of the protocol, referred to as EFPP, is given in Figure 1.
The subroutines tag and reader invoke are described below.

Compute(c) Verify(ID, c, I, vT , auth)
I = g1((CR||pad1)⊕ k) s = g2(σ)
(v0, v1) = g((c⊕ I)⊕ k) if auth �= hs(c⊕ I ⊕ vT ) then return (rnd, 0)
vT = (CR||pad2)⊕ v0 (v0, v1) = g((c⊕ I)⊕ k)
CR = CR + σ|n−d if (CRDB||pad2) �= vT ⊕ v0 then return (rnd, 0)
(σ, s) = (g1(σ), g2(σ)) return (v1, 1)
auth = hs(c⊕ I ⊕ vT )
return (v1, I, vT , auth)
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Protocol steps:

1. Reader: chooses c ∈ {0, 1}n uniformly at random, and sends c to the Tag.
2. Tag: sets (v1, I, vT , auth) = Compute(c) and sends (I, vT , auth) to the Reader.
3. Reader: if there exists a tuple tp = (I, σ, k, CRDB) in DB for tag ID

(a) computes (v1, b) = Verify(ID, c, I, vT , auth)
(b) if (b == 1) then invokes Update(ID, tp) and outputs 1; else outputs 0
(c) sets vR = v1 and sends vR

else, if no such a tuple exists, then
(a) sets (CRN , ID) = Lookupkey(I, c, vT ) and d = Resynch(CRN , ID)
(b) if (d == 0) then sets v1 = rnd;

else (v1, b) = Verify(ID, c, I, vT , auth)
if (b == 1) then Update(ID, ID[1]) and outputs 1; else outputs 0

(c) sets vR = v1 and sends vR

4. Tag: if vR == v1, then sets k = g1(k) and outputs 1; else outputs 0

Fig. 1. EFPP: Efficient Forward-Private Protocol

Update(ID, tp)
CNTID = CNTID + 1
DBID[0] = tp
CRDB = CRDB + σ|n−d

σ = g1(σ)
k = g1(k)
I = g1((CRDB||pad1)⊕ k)

Lookupkey(I, c, vT ) Resynch(CRN , ID)
look in DB for a key k for which if (0, 0) then return 0
(v0, v1) = g((c⊕ I)⊕ k) are such that while (CRDB �= CRN and CNTID < ω){
vT ⊕ v0 = (CRN ||pad2) CRDB = CRDB + σ|n−d

and g1((CRN ||pad1)⊕ k) = I σ = g1(σ)
if no k exists, then return(0, 0) CNTID = CNTID + 1
else DBID [1] =< I,σ, k, CRDB > }

return(CRN , ID) if CNTID == ω then return 0
else return 1

5 Properties

The protocol enjoys several properties. Before going through formal proofs, and
in order to get the ideas underlying the design, we provide some observations.

– Desynchronization attacks. An adversary might attack the system by sending
multiple challenges c to the tag. In such a way, the tag updates CR and σ,
which become different from CRDB and σ stored in DB. However, notice
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that the identification key k, stays the same: it is updated only after a suc-
cessful execution with the reader. In such a way, tag and reader, at the first
adversary-free execution, recover the same value of CR and resynchronize
their states. Similarly, an adversary might discard the last message from the
reader to the tag. Again, the attack fails since the server stores new and old
tag records in DB.

– Computational efficiency. PFP , to authenticate the tag to the reader, requires
O(Nω) iterations of the PRNG g. Our scheme requires O(N + ω) iterations
of g. The small extra-amount of tag-side computation at each protocol exe-
cution consistently reduces the server-side computation.

– Forward-privacy. If an adversary corrupts the tag after a successful execution
with the reader has occurred, he gets the current state and identification
key. The assumptions on g (i.e., it is a PRNG) guarantee the property5.

6 Security Reductions

In this section we show that the protocol is private, secure and correct.
Privacy. We prove that the privacy property holds by showing that if there exists
an adversary Ap which wins the privacy experiment for our protocol, then there
exists an adversary Bp which wins the privacy experiment for PFP with the
same advantage. Since PFP is private, we conclude that our protocol is private,
too. Essentially Bp uses the context of his privacy experiment, to simulate the
context of the privacy experiment for adversary Ap, which works against our
protocol. Hence, we need to show how Bp simulates the context for Ap and why
Ap does not distinguish the simulated context from the real one. Adversary Bp

works as follows:

– Bp starts the simulation of 2 ’augmented’ tags, T ′
0 and T ′

1, for the adversary
Ap, by using the real tags T0 and T1 of the privacy experiment for PFP he
is interacting too.

– Bp runs Ap. Bp answers correctly all Ap’s queries relaying modified queries
to the tags and extending tags replies in phase 1. The modified queries
and replies are constructed as follows: if Ap asks the reader to start a new
execution, then Bp chooses a uniformly at random c and sends it to Ap. If
Ap sends c to the tag, then Bp chooses uniformly at random the values I and
vT , and computes c′ = c ⊕ I ⊕ vT . Then sends c′ to the tag and gets back
hs(c′). Hence, constructs the triple (I, vT , hs(c′)), stores it in a database of
simulated transcripts STDB, and sends it to Ap. If Ap sends the triple to the
reader, then Bp checks if the triple is in STDB, simulates acceptance of the
reader and sends (and stores in STDB) v1, chosen uniformly at random, to

5 It is easy to see that, if an Adv corrupts the tag, for example, after sending it a
challenge, then he gets the identification key k (which stays the same as long as
an adversary-free execution tag/reader does not occur) and can trace the tag by
re-computing the pseudonym I . As we have stressed before, such corruptions during
or after failed executions are precluded by the model.
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Ap. If Ap sends v1 to the tag, Bp checks in STDB and simulates acceptance
by the tag. Therefore, Bp (using the real tags) is able to provide a partially
simulated transcript to Ap.

– Let b be the bit chosen by the privacy experiment runner R for PFP , and let
Tb be the target tag. Since Bp is simulating the privacy experiment for Ap,
implicitly the choice of R holds for Bp. (Let us assume that R just removes
from the scene Tb⊕1.) Then, Bp keeps going with the simulation described
before and, when Ap asks to corrupt T ′

b, then Bp corrupts Tb, and forwards to
Ap the state σ (read in Tb memory) and values chosen uniformly at random
for CR and k to complete the amount of information which would be stored
in a real tag T ′

b. Finally, Bp outputs the same bit b′ that Ap outputs.

Bp defeats the privacy of PFP exactly with the same probability with which
Ap defeats the privacy of EFPP . What is left in the proof is to show that Ap

does not distinguish the simulated transcript from a real transcript.
To this aim, notice that the transcript of a protocol execution is given by

tuples of the form (c, I, vT , auth, v1), where c is chosen uniformly at random,
I, vT and v1 are computed through the PRNG g, and auth is computed through
the strongly universal hash function hs, plus CR and k, obtained by corrupting
the tag after a successful protocol execution. Let H0, H1, H2 and H3 (hybrid)
distributions of tuples defined as follows:

– H0 contains tuples (c, I, vT , auth, v1) computed like in the real protocol
– H1 contains tuples (c, I, vT , auth, v1) where I is chosen uniformly at random
– H2 contains tuples (c, I, vT , auth, v1) where I and vT are chosen uniformly

at random
– H3 contains tuples (c, I, vT , auth, v1) where I, vT and v1 are chosen uniformly

at random

Notice that H3 is the distribution of sequences produced in our simulation by Bp.
By showing that, for i = 0, 1, 2, it holds that Hi is indistinguishable from Hi+1,
we infer that H0 is indistinguishable from H3. To show that, for i = 0, 1, 2,
it holds that Hi is indistinguishable from Hi+1, we use the same technique:
if there exists a distinguisher DH between the two hybrids, then there exists
a distinguisher Dg which distinguishes the outputs of the PRNG from truly
random values. Let us report the proof for the first case.

Let Hi and Hj be two distributions over sequences of m tuples. We say that Hi

and Hj are (T, ε)-indistinguishable, iff AdvDHi,Hj
(T ) ≤ ε, for any distinguisher

DHi,Hj running in time at most T.

Lemma 4. If g is a (T, εg)-secure PRNG, then H0 and H1 are (Ti, εi)-indistin-
guishable where Ti = T − 3(m − 1)Tg − (m − 1)Th and εi = εgm

2.

Proof. Let H0,0 be a sequence of m tuples, generated according to distribution
H0, and let H0,m be a sequence of m tuples, generated according to distribution
H1. Moreover, for i = 1, . . . , m − 1, let H0,i be a sequence of m tuples, gen-
erated by choosing in the first i tuples the value I uniformly at random, and
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the remaining m − i as in H0. If there exists a (TH , εH) distinguisher DH0,H1

for the distributions H0 and H1, then there exists an index i such that DH0,H1

distinguishes between H0,i and H0,i+1 with advantage ≥ εH/m. We construct a
distinguisher Dg, by using DH0,H1 as a subroutine, as follows:

– Let V be the challenge-value Dg has to decide (PRNG output or Random).
– Chooses uniformly at random an index i ∈ {1, . . . , m − 1}.
– Constructs a sequence of tuples Hc by following the distribution H0,i.
– Substitutes in the i-th tuple the value of I with the challenge-value V and

provides Hc to DH0,H1 .
– If DH0,H1 outputs 0, then Dg outputs 0. Else Dg outputs 1.

Notice that, when V = g1((CR||pad1) ⊕ k) then Hc = H0,i. On the other hand,
when V is a random value, then Hc = H0,i+1. It follows that Dg distinguishes the
output of the PRNG from a random value with advantage ≥ εH/m2. Moreover,
Dg has running time upper bounded by TH + 3(m− 1)Tg + (m− 1)Th. Since by
assumption g is (T, εg)-secure, if TH + 3(m− 1)Tg + (m− 1)Th < T, we get that
εH/m2 ≤ εg, from which it follows that Hi and Hj are (Ti, εi)-indistinguishable,
where Ti = T − 3(m − 1)Tg − (m − 1)Th and εi ≤ εgm

2. �
Similarly, we can show that if Ap distinguishes CR and k of the simulated

transcript from CR and k obtained by opening a tag after a real successful
protocol execution, then we can construct a distinguisher for the PRNG g. It
follows that Ap does not distinguish a simulated transcript from a real one and
we conclude that:

Theorem 3. If PFP is (q, T, εp)-private, then EFPP is (q, T, εp)-private.

Secure tag authentication. Notice that, restricting the attention to the first two
rounds, our protocol generalises PFP . The first round is the same. In the second,
the tag sends a triple (containing a value of hs) instead of a single value hs.
Along the same line of the proof of [4], we show that, if there exists an efficient
adversary A, which is able to impersonate a tag to the reader, then there exists
an efficient distinguisher B capable of distinguishing outputs of the PRNG Gω

from random values in {0, 1}ωk. By suitably choosing the PRNG g, we show that
the probability with whom B (and hence A) succeeds is small. More precisely,
we construct B as follows:

– B receives in input the sequence of values z1, . . . , zω it has to decide from
which source it comes from.

– Then, it uses the above values z1, . . . , zω to simulate the computations of
the tag T (of unknown state) and the reader with whom A is supposed to
interact. More precisely, B answers all A’s queries in phase 1 as follows: if
A asks the reader to start a new execution, then B chooses a uniformly at
random c and sends it to A. If A sends c to the tag then, assuming it is the
i-th execution, B chooses uniformly at random the values I, v1 and vT , sets
s = zi, and computes and sends to A the triple (I, vT , hs(c⊕ I⊕vT )). It also
stores the triple and v1 in STDB. If A sends the triple to the reader, then
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B checks in STDB whether there exists an entry which matches the triple,
simulates acceptance of the reader and sends v1 to A. If A sends v1 to the
tag, B checks in STDB and simulates acceptance of the tag.

– Let c be the challenge on which A, in phase 2, tries to impersonate T .
B gets back from A the triple (I, vT , hs(c ⊕ I ⊕ vT )). B checks whether
hs(c ⊕ I ⊕ vT ) = hzq+1(c ⊕ I ⊕ vT ) (A has interacted q < ω times with tag
and reader in phase 1) and, if the check is satisfied then accepts and outputs
1; otherwise, it outputs 0.

Notice that, if z1, . . . , zω is pseudorandom (let us denote it as ZGω ), then B
outputs 1 with probability pA. Indeed, it is possible to show that the transcript
of the simulated executions is indistinguishable from the transcript of real ex-
ecutions and, by assumption, on real transcripts, A impersonates the tag with
probability pA. The indistinguishability can be shown by using standard argu-
ments: if A distinguishes between the transcripts, then can be constructed an
efficient distinguisher for g. On the other hand, following the reasoning of [4]
and applying Lemma 2, simple computations show that, if z1, . . . , zω are truly
random values (let us denote them as ZU ), the probability that B outputs 1 is
less than ω(2−� + ε(1 + 2qε)). It follows that:

|Pr[B(ZGω ) = 1] − Pr[B(ZU ) = 1]| ≥ pA − ω(2−� + ε(1 + 2qε)).

However, if g is a (T, εg)-secure PRNG, applying Theorem 1, we get that the
advantage |Pr[B(ZGω ) = 1] − Pr[B(ZU ) = 1]| ≤ ωεg. The last two equalities
show that pA ≤ ω(εg + 2−� + ε(1 + 2qε). Moreover, B’s running time is equal to
A’s running time plus q computations of hs for the tag simulation. Therefore,
we can conclude that:

Theorem 4. If H is an ε-almost strongly universal hash function family, g is
a (T, εg)-secure PRNG, and q ≤ 1/2ε, then EFPP is (q, T ′, εs)-secure (w.r.t tag
authentication) with T ′ = T − (ω + 1)Tg − qTh and εs = ω(εg + 2−� + ε(1 + 2qε)).

Secure reader authentication. An adversary A, to be authenticated as reader from
the tag T, has to send in the third round of the protocol the right value v1 to T.
By using the same argument and simulation we have used before we show that,
if there is an efficient A who guesses v1 with probability pA, then there exists
a distinguisher B which distinguishes outputs of the PRNG Gω from random
values in {0, 1}ωk, and then, by suitably choosing the PRNG g, we show that the
probability pA is small. The distinguisher B uses A as a subroutine and simulates
A’s interaction with tag and reader. Eventually, if A impersonates the reader,
then B outputs 1. Otherwise, if A fails, then B outputs 0. When the sequence
z1, . . . , zω is chosen uniformly at random, then B outputs 1 with probability
at least 1

2k . On the other hand, if z1, . . . , zω is pseudorandom, then, B outputs
1 with probability pA. Indeed, as argued before, the simulated values received
by A from B are indistinguishable from the values of real executions with the
tag T and, by assumption, on real transcripts, A impersonates the reader with
probability pA. It follows that:

AdvGω (B) = |Pr[B(ZGω ) = 1] − Pr[B(ZU ) = 1]| ≥ pA − 1/2k
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Due to Theorem 1, if g is a (T, εg)-secure PRNG, then it follows that AdvGω (B) ≤
ωεg. Hence, it holds that pA ≤ 1/2k + ωεg. In conclusion:

Theorem 5. If g is a (T, εg)-secure PRNG, then EFPP is (q, T ′, ωεg)-secure
(w.r.t. reader authentication) where T ′ = T − (ω + 1)Tg − qTh.

Correctness. In an adversary-free execution, a tag T (resp. reader) is not au-
thenticated by the reader (resp. tag), only if the reader updated twice the tuple
associated to the tag in the database DB and the tag did not or the tag updated
its secret key k and the reader did not. Such events happen only if

1. The adversary is able to impersonate the tag T (resp. the reader).
2. Collisions of g and h occur.

Due to the security of the scheme, as we have seen before, the first possibility
happens with small probability. Hence, we do not need to care about it. Regard-
ing the second, collisions of g and h, we need to consider two separate cases:
during an execution of the protocol, at a certain point, there exists a tuple in
DB associated to another tag either with the same I and matching equations
or with a different I ′ but a secret key k by means of which we get a collision
on c, I, vT , and auth. More precisely, in the first case there exists in DB a tuple
(I, k′, σ′, CR′

DB), associated to tag ID′ �= ID, for which (v0, v1) = g(c⊕ I ⊕ k′)
are such that:

vT ⊕ v0 = CR′
DB ||pad2

∧
g1((CR′

DB ||pad1) ⊕ k′) = I
∧

hs′(c ⊕ I ⊕ vT ) = auth

while, in the second, there exists a tuple (I ′, k′, σ′, CR′
DB) for which (v0, v1) =

g(c ⊕ I ⊕ k′) are such that:

vT ⊕ v0 = CRN ||pad2

∧
g1((CRN ||pad1) ⊕ k′) = I

∧
hs′(c ⊕ I ⊕ vT ) = auth

Notice that g1((CR′
DB ||pad1) ⊕ k′) = I implies that g1((CRDB ||pad1) ⊕ k) =

g1((CR′
DB ||pad1) ⊕ k′) = I i.e., g produces a collision. If g is a (T, εg)-secure

PRNG, then it produces collisions with probability less than εg. Otherwise, it
would possible to construct a simple distinguisher for g which distinguishes pseu-
dorandom values from truly random values with probability higher than εg.
Moreover, due to Lemma 3, the equality hs(c⊕I ⊕vT ) = hs′(c⊕I ⊕vT ) = auth,
for s �= s′, occurs with probability 1/2m. A similar analysis applies to the second
case. In conclusion, it holds that:

Lemma 5. If H is an ε-almost strongly universal hash function family and g
is a (T, εg)-secure PRNG, a collision during an execution of the protocol occurs
with probability < 2 · εg/2m = εg/2m−1.

We need to consider the probability of collisions within the lifetime of the pro-
tocol. If the system has N tags, since each tag can be used at most ω times, the
protocol is useful for at most Nω authentications. By using the above result, we
get that the probability of a collision within the system is pc ≤ (N−1)ω2εg/2m−1.
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Let g be a (T, εg)-secure PRNG, where T ≥ (N −1)ω2Th +(ω +1)Tg. Theorem 2
shows that the PRNG GN

ω , constructed from g (which models tag state updates
and the generation of seeds for hs,) is an ((N − 1)ω2Th, Nωεg)-secure PRNG.
Applying the same steps of [4], we can conclude that the probability of failure of
the protocol is p < (N − 1)ω2εg/2m−1 + Nωεg + εs, where εs is the probability
of impersonation. In conclusion:

Theorem 6. Let g be a (T, εg)-secure PRNG where T ≥ (N−1)ω2Th+(ω+1)Tg,
let H be an ε-almost strongly universal hash function family, and let q ≤ 1/2ε.
The EFPP authentication protocol is (q, T ′, εc)-correct, with T ′ = T − (ω +
1)(3Tg + qTh) and εc = (N − 1)ω2εg/2m−1 + Nωεg + εs.

7 Conclusions

We have proposed an efficient forward-private RFID mutual authentication pro-
tocol, secure under the assumption that exist secure pseudorandom number gen-
erators and strongly universal hash function families. At each authentication,
compared to PFP where the tag computes one time the PRNG g and one time
the hash function hs, the tag has to apply 3 times g and one time hs. On the
other hand, the server, to authenticate a tag, in the worst case, instead of O(Nω)
evaluations of g and hs as in PFP, needs only O(N + ω) evaluations, where N
is the total number of tags in the system, and ω is the maximum number of
authentications each single tag can afford during its lifetime. The server has full
control over the number of protocol executions a tag has been subject to. The
full version of this paper [8] reports an experimental comparison of PFP vs
EFPP, obtained by implementing the protocols.
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Abstract. Affiliation-Hiding Authentication (AHA) protocols have the
seemingly contradictory property of enabling users to authenticate each
other as members of certain groups, without revealing their affiliation to
group outsiders. Of particular interest in practice is the group-discovering
variant, which handles multiple group memberships per user. Corre-
sponding solutions were only recently introduced, and have two major
drawbacks: high bandwidth consumption (typically several kilobits per
user and affiliation), and only moderate performance in scenarios of prac-
tical application.

While prior protocols have O(n2) time complexity, where n denotes
the number of affiliations per user, we introduce a new AHA protocol
running in O(n log n) time. In addition, the bandwidth consumed is con-
siderably reduced. We consider these advances a major step towards de-
ployment of privacy-preserving methods in constraint devices, like mobile
phones, to which the economization of these resources is priceless.

1 Introduction

In cryptography, Authenticated Key Establishment (AKE) protocols are an
essential building block for creation of secure communication channels. Such
schemes offer both the establishment of a strong session key and, simultaneously,
mutual authentication of respective protocol partners. Usually, this authentica-
tion step is PKI-based and explicitly reveals to other users (including adversarial
eavesdroppers) the identities and certificates of participants. This behavior can
be considered a breach of users’ privacy. To tackle this issue, Affiliation-Hiding
Authentication (AHA) in form of Secret Handshakes (SH) [1, 2, 9, 15–17, 29–31]
and key establishment protocols (AHA/KE) [13, 14, 19, 21, 22] emerged in the
last decade.

Generally, in AHA protocols, users authenticate each other on basis of their
affiliation to certain groups, and do so in a privacy-preserving manner: In the
classical ‘exact matching’ approach [2, 9, 15, 17, 29–31], the own affiliation is
revealed to the protocol partner if and only if the protocol partner is member
of the same group. Users become members of groups by registering with the
respective group’s authority (GA). On admission of a new user, GA generates a
corresponding membership certificate and gives it to the user. This credential
allows the user to authenticate itself to other group members in later so-called

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 85–99, 2011.
� IFIP International Federation for Information Processing 2011
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‘Handshake’ sessions. We stress that the attempt to authenticate to non-members
using such a group membership certificate not only fails, but in addition does
not reveal any evidence or even hint about the group membership to given non-
member. This is the pivotal property in affiliation-hiding security.

The main difference between the notions of Secret Handshakes and AHA/KE
protocols is that the former are pure authentication protocols, i.e. are limited
to perform the affiliation-hiding authentication of users, while the latter also
succeed in the generation of a secure session key that may be used to protect
further communication and exchange of digital data. In particular, AHA/KE
protocols guarantee the usual key security properties of AKE protocols [3, 8]
(including forward secrecy, etc).

These properties make AHA/KE protocols very attractive in various settings
where privacy-preserving communication is needed. Their deployment in prac-
tice, especially on resource constraint devices and networks, requires, however,
further research on efficient solutions. As we elaborate in the next sections, cur-
rent proposals have efficiency limitations and are, therefore, less suitable in a
mobile setting. To overcome these limitations we propose a novel AHA/KE pro-
tocol that outperforms existing approaches and minimizes the consumed com-
munication bandwidth.

1.1 Linkable vs. Unlinkable AHA

Affiliation-Hiding Authentication protocols are either linkable or unlinkable. In
linkable schemes [2, 9, 13, 14], users hold identities or have assigned pseudonyms
which they actively reveal in protocol runs. Still, hiding of affiliations is consid-
ered valuable nonetheless, and remains an explicit security goal of those protocols.
Linkable protocols are usually deployed in cases where participants are addressed
by their identities anyway, e.g. in instant messaging, social networks, etc.

In unlinkable affiliation-hiding protocols [1, 15, 17, 31], however, sessions of
users cannot be linked back to them. Obviously, these schemes offer a higher level
of privacy. The challenging part in their design is the support of revocation, i.e.
exclusion of members from the group: even though users do not have explicit
identities, the schemes must provide methods for their individual exclusion.

In practice, linkable AHA protocols enjoy very efficient revocation by black-
listing pseudonyms on public revocation lists, while unlinkable AHA protocols
support revocation either by restricting the number of unlinkable sessions of
users [31], by regularly updating unrevoked membership credentials [15], or by
the considerably costly verification of revocation tokens [17].

1.2 The Challenge of Group Discovery

Classical AHA schemes [1, 2, 9, 15, 17, 29–31] are mostly single-group protocols,
i.e. it is assumed that the participating users are member of one group each,
and the protocol execution checks whether these groups are identical or not. We
argue, however, that this restriction to only one group may not be acceptable
in practice. Consider, for instance, a social network where users are member of
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many, say n, groups. Now, when two participants of the network meet they may
want to investigate in a privacy-preserving manner whether they have any group
in common or not. If they used a classical AHA scheme, they would have to run
n × n protocol instances in parallel to cover all possible combinations, spotting
and reporting only the matching ones. This overhead is clearly unacceptable in
practice for being inefficient, and justifies the need for special group-discovering
(but still affiliation-hiding) protocols. The plurality of existing AHA schemes,
however, ignores the group-discovery problem by design, and only two schemes,
namely [16] and [19], support deployment of credentials for multiple groups in a
single protocol run.

For AHA protocols that support multiple credentials, we need to define what
we consider a successful authentication. It seems that the most useful notion is
the following: If both users provide credentials for various groups in a specific
protocol execution, the authentication is considered successful if there is at least
one group in common. Output of the protocol would be this indication and,
optionally, a list of all matching groups.

1.3 Related Work

The Secret Handshakes in [2, 9, 30] are linkable protocols that have been de-
signed for the main purpose of authentication. While some of them, additionally,
offer the generation of a session key, security of the latter is neither formally an-
alyzed nor does it reach an adequate level of security in practice. In contrast, the
schemes from [14, 21, 22] incorporate a secure key establishment protocol that
satisfies accepted models of key security [3, 8]. Group Secret Handshakes are
presented by Jarecki et al. in [12, 13], where the two-party setting is extended to
multiparty authentication and key agreement. Both works achieve session group
key establishment through a variant of the Burmester-Desmedt technique [7].
In [18, 21, 22], the impact of corrupt GAs on users’ privacy is explored. In par-
ticular, while Manulis et al. [21, 22] act conservatively and harden protocols to
withstand GA attacks, Kawai [18] deviates from the traditional setting by split-
ting the GA’s role among an issue authority and a tracing authority (that are
assumed not to collude).

We remark that unlinkable AHA schemes can generically be obtained from
linkable protocols by using one-time pseudonyms; however, this approach is
clearly impractical for not being scalable. Due to this restriction, several un-
linkable Secret Handshakes [1, 15, 17, 29] based on reusable credentials have
been proposed. Here, the challenging part is revocation of protocol participants:
Ateniese’s protocol [1] does not support revocation at all, Jarecki [15] presents
a protocol in which participants need to regularly contact the GA for an up-
date of users’ internal state, Tsudik [29] introduces a heavy-weight framework
that involves the use of group signatures and broadcast encryption techniques,
while the state-of-the-art scheme [17] by Jarecki et al. uses group signatures with
verifier-local revocation for group management and private conditional oblivious
transfer for the handshake session, in the pairing-based setting.
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Exclusively the protocols in [16, 19] offer support for multiple credentials per
user, i.e. they solve the problem of efficient group-discovery. Still, the scheme
in [16] by Jarecki et al. has the somehow weird and unusual property that GAs
are in the position to fully impersonate any user that is registered to them: First
step of the registration process to a group is that user sends its complete private
key material to the corresponding GA, which then computes the appropriate
user credential from it. Manulis’ scheme in [19] is a rather efficient RSA-based
protocol with two exponentiations per user and group, and can be considered
the state-of-the-art protocol for group-discovering AHA/KE.

In the efficiency analyses, both [16] and [19] distinguish between the so-called
asymmetric and symmetric workload of their protocols. While the former re-
flects the amount of (expensive) public key operations like exponentiations and
pairing computations, the latter covers the remaining (relatively cheap) parts,
including block cipher and hash function evaluations. Claiming that protocols’
efficiency can be adequately estimated by taking into account only their asym-
metric overhead, [16] and [19] promote their schemes as O(n) protocols, where n
is the number of group affiliations per user, although in both cases the real num-
ber of operations is O(n2). Contradicting this reasoning, recent results in [20]
reveal that, in practice, the symmetric overhead of [16, 19] may not be neglected
and limits protocols’ applicability. We stress that our new protocol presented in
Section 3 offers real O(n log n) performance, counting all computations, while
the asymmetric workload remains to be O(n), as in [16, 19].

1.4 Contributions and Organization

The contribution of this work is the construction of a new and highly-efficient
linkable group-discovering AHA/KE protocol that outclasses existing schemes
[16, 19] in several aspects: First, our protocol is the first real O(n log n) so-
lution (consisting of O(n) public key operations plus a simple sorting step in
O(n log n)). Second, the protocol’s bandwidth requirements are impressively low.
Specifically, as we will show in Section 3.3, our protocol consumes only 4% of
the bandwidth when compared to [19].

We consider these improvements as a major step forward to make privacy-
preserving techniques deployable in practice. In particular, on mobile devices,
which are usually restricted in at least computing power or available bandwidth,
without our improvements, execution of AHA protocols would be hardly feasible.

As an application, we envision users managing and exploring their social net-
work relationships through their mobile phones that form ad hoc wireless net-
works of constraint range. In these scenarios, privacy-preserving techniques are
of highest importance.

We start our work by giving insight into our main building block, a Non-
Interactive Key Distribution Scheme (NIKDS), in Section 2. In Section 3 we
present our new protocol, and discuss its efficiency and the selection of reasonable
parameters for deployment in practice. We support the security of our protocol
by giving a formal analysis in form of a model specification (Section 4) and proof
of security (Section 5), in respect to this model.
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2 Non-Interactive Key Distribution

In a multi-user setting, the purpose of a Non-Interactive Key Distribution Scheme
(NIKDS) [5, 11, 23] is the assignment of a (fixed) symmetric key to each pair of
users. The intrinsic property and advantage of NIKDS over (authenticated) key
establishment protocols is that NIKDS are non-interactive, i.e. users can compute
the particular keys shared with other users without any (prior) communication
with them.

Typically, NIKDS are identity based schemes, i.e. users are ‘addressed’ by
their identities, which may be arbitrary strings. In NIKDS, users first register
their particular identity id ∈ {0, 1}∗ with an authority called Key Generation
Center (KGC) to obtain their specific user credential sk[id]. With this credential
they can compute, without any interaction, a key shared between id and id′,
for any other user identity id′ ∈ {0, 1}∗. The notion of NIKDS and its security
properties are formalized next.

2.1 Definition and Security Model of NIKDS

Definition 1. A Non-Interactive Key Distribution Scheme is a tuple NIKDS =
(Setup, Register, GetKey) of efficient algorithms as follows:

Setup(1λ) :
This algorithm initializes a KGC. On input security parameter 1λ, it outputs
a secret key sk.

Register(sk, id) :
On input KGC’s secret key sk and user identity id ∈ {0, 1}∗, this algorithm
outputs private user credential sk[id].

GetKey(sk[id], id′) :
On input user credential sk[id] and user identity id′ ∈ {0, 1}∗, this algorithm
outputs a key K ∈ {0, 1}λ.

A NIKDS is called correct if for all λ ∈ N, all sk ← Setup(1λ), all user identities
id, id′ ∈ {0, 1}∗, all sk[id] ← Register(sk, id) and sk[id′] ← Register(sk, id′), and
all K ← GetKey(sk[id], id′) and K ′ ← GetKey(sk[id′], id) we have K = K ′. We
consider this key as a shared key between parties id and id′. For convenience,
we denote it by SharedKey(sk; id, id′).

The following security property adopts the classical key indistinguishability
requirements of interactive key agreement protocols [3] to the non-interactive
setting. Note that in [11] an even stronger but less natural computational variant
of this model is analyzed.

Definition 2 (Indistinguishability of NIKDS). A NIKDS = (Setup, Register,
GetKey) is called indistinguishable under adaptive chosen-identity attacks (IND-
CIA), if for all efficient adversaries A = (A1,A2) the advantage function

Adv ind-cia
NIKDS,A(λ) =

∣∣∣Pr
[
Exp ind-cia,1

NIKDS,A(λ) = 1
]
− Pr

[
Exp ind-cia,0

NIKDS,A(λ) = 1
]∣∣∣
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is negligible in λ, where Exp ind-cia,b
NIKDS,A denotes the following experiment:

Exp ind-cia,b
NIKDS,A(λ):

– sk ← Setup(1λ)
– (id, id′, state) ← ARegister(sk,·)

1 (1λ)
– K0

$← {0, 1}λ and K1 ← SharedKey(sk; id, id′)
– b′ ← ARegister(sk,·)

2 (state, Kb)
– output 0 if A queried Register(sk, id) or Register(sk, id′) to its oracle
– else output b′

2.2 A Construction of NIKDS Based on Bilinear Maps (Pairings)

The first efficient NIKDS was constructed in [23] and analyzed in [11] (although
the notion of NIKDS was introduced to cryptography about 20 years earlier,
in [25]). The scheme is described as follows:

Setup(1λ) :
Specify cyclic groups G = 〈g〉 and GT of prime order q, for which an efficient
non-degenerate bilinear pairing ê : G × G → GT is known (see also [5,
Chapter X]). In addition, specify hash functions H : {0, 1}∗ → G and H∗ :

GT → {0, 1}λ. Pick s
$← Zq \ {0} randomly and return secret key sk = s.

Register(sk, id) :
On input secret key sk = s and identity id ∈ {0, 1}∗, user credential sk[id] =
H(id)s is output.

GetKey(sk[id], id′) :
This algorithm outputs key K = H∗(ê(sk[id], H(id′))

)
.

Proof of Correctness. For arbitrary id, id′ ∈ {0, 1}∗, let h ← H(id) and h′ ←
H(id′). We then have sk[id] = hs and sk[id′] = (h′)s, and correctness is implied
by ê(hs, h′) = ê(h, h′)s = ê(h′, h)s = ê((h′)s, h). Note that ê(h, h′) = ê(h′, h)
follows for all h, h′ ∈ G from ê(ga, gb) = ê(g, g)ab = ê(gb, ga). ��
Security of this scheme was established in [11] as follows:

Theorem 1. NIKDS is IND-CIA secure under the Bilinear Diffie-Hellman as-
sumption (BDH) [6] in the Random Oracle Model (ROM) [4].

3 Our Affiliation-Hiding Authentication Protocol

In this section, we present our Affiliation-Hiding Authentication and Key Agree-
ment protocol (AHA/KE). We kept the scheme’s syntax consistent with [19],
where the first practical AHA in the multi-group setting is proposed. Still, we
improve considerably on that protocol in both asymptotic computational per-
formance and bandwidth consumption. In particular, while in both [19] and our
protocol the number of public key operations is linear in the number of affil-
iations n, the remaining ‘symmetric’ workload of [19] is O(n2), in contrast to
O(n log n) in our protocol.
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3.1 Syntax of AHA

An AHA scheme AHA = (CreateGroup, AddUser, Handshake, Revoke) consists of
four efficient algorithms and protocols:

CreateGroup(1λ) :
This algorithm is executed by a Group Authority (GA) to set up a new
group G. On input security parameter 1λ, a public/secret group key pair
(G.pk, G.sk) is generated, the group’s pseudonym revocation list G.prl is
initialized to ∅, and public group parameters G.par = (G.pk, G.prl) and
private key G.sk are output.

AddUser(G, id) :
This algorithm is executed by the GA of group G to add user pseudonym
id ∈ {0, 1}∗ to its group. A private membership credential skG[id] is created
and confidentially handed over to the particular user. Note that users are
allowed to register the same pseudonym id in different groups.

Handshake(Ui ↔ Uj) :
This is the key exchange protocol (handshake), executed between two users
Ui and Uj , that have pseudonyms idi and idj , respectively. Input of Ui is a
set Gi of pairs of the form (skG[idi], G.prl), where all skG[idi] are credentials
on pseudonym idi obtained from the GA of particular G (computed by the
AddUser algorithm), and G.prl is the corresponding revocation list. For user
Uj , the protocol’s input is Gj , analogously.
Users keep track of the state of created Handshake(G) sessions π through
session variables that are initialized as follows: π.state ← running, π.id ←
id, π.G ← G, and (π.key, π.partner, π.groups) ← (⊥,⊥, ∅). At some point
the protocol will complete and π.state is then updated to either rejected or
accepted. In the latter case, π.key is set to the established session key (of
length λ), the handshake partner’s pseudonym is assigned to π.partner, and
π.groups holds a non-empty set of group identifiers.

Revoke(G, id) :
This algorithm is executed by the GA of G and results in the update of G’s
pseudonym revocation list G.prl.

Definition 3 (Correctness of AHA). Assume that two users with pseudonyms
idi and idj participate in a Handshake protocol on inputs Gi and Gj , respectively,
and let πi and πj denote the corresponding sessions. By G∩ we denote the set
of groups that appear in both Gi and Gj with the restriction that neither idi

nor idj are contained in the respective group’s revocation lists G.prl. The AHA
scheme is called correct if (1) πi and πj complete in the same state, which
is accepted iff G∩ �= ∅, and (2) if both sessions accept then πi.key = πj .key,
(πi.partner, πj .partner) = (idj , idi), and πi.groups = πj .groups = G∩.

3.2 Protocol Definition

We are ready to specify our new AHA protocol with implicit group discovery. As a
major building block it uses a generic NIKDS. In particular, the scheme presented
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in Section 2 is suitable. Recall that the algorithms of NIKDS are denoted Setup,
Register, and GetKey.

CreateGroup(1λ) Algorithm. To create a new group, the Group Authority
(GA) sets up a new KGC of a NIKDS by running sk ← Setup(1λ). In addition,
the group’s pseudonym revocation list G.prl is emptied. This algorithm outputs
G.par = (G.prl) and G.sk = sk. Note that a group’s public key is not needed,
and it hence is not specified.

AddUser(G, id) Algorithm. A new user with pseudonym id is added to group
G by registering id to the NIKDS’s KGC: the user’s private membership credential
in group G will be skG[id] ← Register(sk, id), where sk = G.sk.

Handshake(G) Protocol. The specification of our Handshake protocol is given
in Figure 1. The protocol makes use of the following building blocks:

– To achieve forward security of the established session key, a standard Diffie-
Hellman key exchange is incorporated into the protocol (cf. lines 1 and 3).
Hence, we require existence of a cyclic group G = 〈g〉 of prime order q in
which the Computational Diffie-Hellman Problem (CDH) is hard (in respect
to security parameter λ).

– By H : {0, 1}∗ → {0, 1}�, where 
 = 
(λ) is polynomially dependent on secu-
rity parameter λ, we denote a hash function. It will be modeled as random
oracle in the security analysis of the protocol.

– By Sort(M), for a set M ⊆ {0, 1}� of strings of length 
, we denote the
lexicographic ordering of M. It is well-known that Sort( ) is an O(n log n)
algorithm (e.g. ‘Quicksort’), and that look-up in an ordered set is an O(log n)
operation.

We briefly explain the design principles of the protocol from the point of view
of user Ui. For all groups G in which idi is registered (line 5) and in which idj

is not revoked (line 6), the NIKDS key KG shared by idi and idj is computed
(line 7) and used to derive two authentication tags cG,0, cG,1 in lines 8 and 9
(that also will serve for key confirmation). One of the tags is sent to Uj (line 12),
while the other one is stored in state variable Si for later use (line 10). Note that
Uj computes the same tags for all groups that both Ui and Uj are member of.
This intersection set (named groups) is determined in lines 13–16, by recording
all matches of group-specific authentication tags. If Ui and Uj have at least
one group in common (line 17), then the protocol accepts with a secure session
key (lines 1, 3, and 18). Observe that the purpose of the sorting step (center
of line 12) is not only to enable an O(log n) look-up of authentication tags in
line 15, but also to hide the order in which these tags have been computed. This
is an important prerequisite to make the protocol affiliation-hiding.

Notice that the scheme is displayed as four-message protocol for reasons of
better readability. By combining messages mj and Sort(Mj) into a single data-
gram, the scheme can be relieved by one message transmission.
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1

2
3
4
5
6
7
8
9
10
11
12

13
14
15
16

17
18
19
20
21
22

User Ui on input idi and Gi:

ri ←R Zq

sid← mi ‖mj

K ← sid‖grirj

Mi ← ∅, Si ← ∅
for all (skG[idi], G.prl) ∈ Gi:

if idj �∈ G.prl:
KG ← GetKey(skG[idi], idj)
cG,0 ← H(KG ‖K ‖0)
cG,1 ← H(KG ‖K ‖1)
Si ← Si ∪ {(G, cG,1)}

else: cG,0 ←R {0, 1}�

Mi ←Mi ∪ {cG,0}

groupsi ← ∅
for all (G, cG,1) ∈ Si:

if cG,1 ∈ Sort(Mj):
groupsi ← groupsi ∪ {G}

if groupsi �= ∅ then
keyi ← H(K)
partneri ← idj

terminate with “accept”
else

terminate with “reject”

mi = (idi, g
ri)

−−−−−−−−−−−−→
mj = (idj , g

rj )
←−−−−−−−−−−−−−

Sort(Mi)
−−−−−−−−−→
Sort(Mj)
←−−−−−−−−−

User Uj on input idj and Gj:

rj ←R Zq

sid← mi ‖mj

K ← sid‖grirj

Mj ← ∅, Sj ← ∅
for all (skG[idj ], G.prl) ∈ Gj:

if idi �∈ G.prl:
KG ← GetKey(skG[idj ], idi)
cG,0 ← H(KG ‖K ‖0)
cG,1 ← H(KG ‖K ‖1)
Sj ← Sj ∪ {(G, cG,0)}

else: cG,1 ←R {0, 1}�

Mj ←Mj ∪ {cG,1}

groupsj ← ∅
for all (G, cG,0) ∈ Sj:

if cG,0 ∈ Sort(Mi):
groupsj ← groupsj ∪ {G}

if groupsj �= ∅ then
keyj ← H(K)
partnerj ← idi

terminate with “accept”
else

terminate with “reject”

Fig. 1. Specification of Handshake(Ui ↔ Uj). We consider the left party as initiator
and the right party as responder. We intentionally left out indices i, j for variables
sid, K, KG, cG,0, cG,1 as they are expected to have the same value in both Ui’s and Uj ’s
computations.

Revoke(G, id) Algorithm. By setting G.prl ← G.prl ∪ {id}, the group’s
pseudonym revocation list G.prl is extended by the new entry. The updated
prl is distributed authentically to all group members.

3.3 Correctness, Efficiency, and Parameter Selection

Our AHA scheme is correct in the sense of Definition 3. This follows from cor-
rectness of deployed NIKDS and inspection of Figure 1. Recall also the exposition
of design rationale in Section 3.2.

Asymptotically, the protocol is an O(n log n) protocol, where n = |G| denotes
the number of groups per user. This is due to the fact that both the sorting
step (line 12) and the tag-matching step (lines 14–16) are O(n log n). However,
the number of expensive public key operations (i.e. pairing evaluations in the
NIKDS) is linear in the number of affiliations. More precisely: A user that de-
ploys credentials for n groups has to compute n pairings to complete the protocol
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(or even less, when considering the possibility of revoked users). Note that the
AHA schemes from [16] and [19] have O(n2) workload of ‘symmetric operations’.
Although these can be considered rather fast in comparison to big-integer ex-
ponentiations or pairing evaluations, for large n (e.g. n � 100), the quadratic
overhead of [16, 19] will be clearly noticed [20].

Especially in respect to bandwidth consumption, our protocol impressively
outperforms state-of-the-art protocol [19]. In the latter, for being an RSA-based
protocol, more than 4000 bits have to be sent and received per user, affiliation,
and session. In our protocol, however, this number drops to about 160 bits
(80 bits for each authentication tag), for a comparable level of security. Hence,
our protocol consumes only 4% of the bandwidth, when compared to [19].

For practical security, we suggest to use Diffie-Hellman and pairing groups of
about 2160 elements, authentication tags of length 80 bit (lines 8–9), and a 128
bit KDF for key derivation (line 18).

The selection of parameters for an efficient pairing suitable in practice will
not be too complicated. Note that in NIKDS group elements are never transmit-
ted from one party to the other. Hence, care does not have to be taken to find
pairing-friendly curves with ‘nice’ element representations. Although, for reasons
of convenience, only symmetric pairings were considered in Section 2 to build
NIKDS, they can be built from asymmetric pairings as well [11]. At the time of
writing this article, ηT -pairing evaluations on desktop machines in under 500 μs
were feasible [26, 27], i.e. for a user with about 100 affiliations1 we estimate the
total running time of a Handshake execution below 50 ms. Recall from Section 2
that in our NIKDS scheme the first input element to the pairing is always sk[id],
which can be considered a fixed long-term parameter. See [10, 24] for consider-
able optimizations on fixed-argument pairing evaluations. Finally note that all
NIKDS computations are session-independent and can be cached: If the same two
users run the Handshake protocol multiple times they can fall back to previously
computed KG to considerably save computation time.

4 Security Model for AHA

In this section we present the security model for AHA protocols. It takes into
account the challenges implied by the group discovery problem and bases on
the current state-of-the-art model from [19]. Essentially, there exist two central
security properties for AHA: Linkable Affiliation-Hiding security, and Authen-
ticated Key Exchange security (with forward secrecy). Both requirements are
defined with regard to multiple input groups per user and session. As the model
for the latter goal is very similar to standard definitions of AKE security [3, 8],
and only minor modifications are necessary to fit the LAH setting, we abstain
from giving a full description of the model in this article, and refer to [19] for
a detailed exposition. In contrast, LAH security is a non-standard goal and was
only recently modeled [19]. We describe it in full detail below.
1 Note that an average Facebook user is member of about 80 communities or

groups [28].
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4.1 Adversary Model

The adversary A is modeled as a PPT machine that interacts with protocol
participants and can mount attacks via the following set of queries.

Handshake(id,G, r) : This query lets the holder of pseudonym id start a new
session π of the Handshake protocol. It receives as input a set G of groups
G and a role identifier r ∈ {init, resp} that determines whether the session
will act as protocol initiator or responder. If there is a group G listed in
G for which id has no private credential skG[id] then this query is ignored.
Optionally, this query returns a first protocol message M .

Send(π, M) : Message M is delivered to session π. After processing M , the even-
tual output is given to A. This query is ignored if π is not waiting for input.

Reveal(π) : If π.state = running then this query is ignored. Otherwise (π.state,
π.key, π.groups) is returned.

Corrupt(id, G) : Membership credential skG[id] of pseudonym id in group G is
passed to the adversary. Note that this query models the possibility of se-
lective corruptions.

Revoke(G, id) : This query lets the GA of G include id in its revocation list G.prl.

4.2 Linkable Affiliation-Hiding Security

We now define the property of Linkable Affiliation-Hiding (LAH). At a high
level, the goal here is to protect from disclosure of non-shared affiliations to
handshake partners. We model LAH-security using the indistinguishability ap-
proach (similar to that used for encryption schemes). The goal of the adversary
is to decide which of two sets of affiliations, G∗

0 or G∗
1 , some challenge session

π∗ is running on. The adversary specifies these sets himself, and, additionally, is
allowed to invoke any number of handshake sessions, and ask Reveal and Corrupt
queries at will. This intuition is formalized as follows.

Definition 4 (LAH-Security). Let AHA = {CreateGroup, AddUser, Handshake,
Revoke}, b be a randomly chosen bit, and Q = {Handshake, Send, Reveal, Corrupt,
Revoke} denote the set of queries the adversary A has access to. We consider
the following experiment between a challenger and an efficient adversary A:

Exp lah,b
AHA,A(λ, n, m) :

– the challenger creates users U1, . . . , Un and pseudonyms ID = {id1, . . . , idn};
– the challenger creates m groups G = {G1, . . . , Gm} and registers user Ui with

pseudonym idi in group Gj for all (i, j) ∈ [1, n] × [1, m];
– AQ interacts with all participants using the queries in Q; at some point AQ

outputs a tuple (id∗,G∗
0 ,G∗

1 , r∗) where id∗ ∈ ID, G∗
0 ,G∗

1 ⊆ G with |G∗
0 | = |G∗

1 |,
and r∗ ∈ {init, resp}. The set D∗ = (G∗

0 \G∗
1 )∪(G∗

1 \G∗
0) = (G∗

0 ∪G∗
1 )\(G∗

0 ∩G∗
1 )

is called the distinguishing set;
– the challenger invokes a Handshake(id∗,G∗

b , r∗) session π∗ (and provides all
needed credentials);



96 M. Manulis and B. Poettering

– AQ continues interacting via queries (including on session π∗) until it ter-
minates and outputs bit b′;

– the output of the game is b′ if all of the following hold; else the output is 0:
(a) if π∗ accepted and there is a Handshake session π′ with D∗ ∩ π′.G �=

∅ which was in state running while π∗ was in state running, then no
Reveal(π∗) query was asked, and

(b) no Reveal(π′) query was asked for any Handshake session π′ with D∗ ∩
π′.G �= ∅ and π′.partner = id∗ that was in state running while π∗ was in
state running, and

(c) no Corrupt(id, G) query with (id, G) ∈ ID ×D∗ was asked.

We define Adv lah
AHA,A(λ, n, m) :=∣∣∣Pr

[
Exp lah,0

AHA,A(λ, n, m) = 1
]
−Pr

[
Exp lah,1

AHA,A(λ, n, m) = 1
]∣∣∣

and denote with Adv lah
AHA(λ, n, m) the maximum advantage over all PPT adver-

saries A. We say that AHA is LAH-secure if this advantage is negligible in λ
(for all n, m polynomially dependent on λ).

Conditions (a)–(c) exclude some trivial attacks on affiliation hiding. Condi-
tion (a) thwarts the attack where A starts a Handshake(id′,G′, r′) session π′ with
G′ ∩ D∗ �= ∅, relays all messages between π∗ and π′ and finally asks Reveal(π∗).
By protocol correctness π∗.groups would contain elements from D∗ and it would
be trivial to correctly decide about b. Condition (b) handles the same attack, but
from the point of view of π′. Condition (c) prevents A to corrupt a pseudonym
in a group in D∗, to impersonate that user, and to decide about bit b from the
output of its protocol run.

5 Security Analysis of Our Protocol

Following the definitions in Section 4, we claim that our AHA protocol from
Section 3 satisfies the desired security goals.

Theorem 2 (Linkable Affiliation-Hiding Security). The AHA protocol pre-
sented in Section 3.2 is LAH-secure in the Random Oracle Model (ROM) [4],
given that NIKDS is IND-CIA secure.

Proof (Sketch). We prove LAH security of our AHA protocol by using the ‘game-
hopping’ technique, i.e. by presenting a sequence of games that are ‘neighbor-
wise’ computationally indistinguishable from adversary’s point of view. The first
game, G0,b, is identical with Exp lah,b

AHA,A(λ, n, m).
Let G1,b denote the game that is identical with G0,b, except that the chal-

lenger, before even starting the simulation, makes guesses for A’s (future) choice
of attacked identity id∗ and protocol partner π∗.partner. The simulation is
aborted if these guesses are not consistent with adversary’s actions, i.e. with
probability at most 1/n2, as n denotes the number of simulated users.
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Let G2,b denote the game that is identical with G1,b, except that, for all groups
in G∗

b ∩D∗, the NIKDS keys KG shared between id∗ and π∗.partner are replaced
by random values in {0, 1}λ (see Figure 1, line 7). As condition (c) in Defini-
tion 4 assures that adversary A did not obtain a corresponding user credential
skG[id∗] or skG[π∗.partner] by corruption, the probability for A to detect a dif-
ference between G2,b and G1,b can be bound by |G∗

b ∩ D∗| · Adv ind-cia
NIKDS,A(λ) (see

Definition 2), which is assumed to be negligible in λ.
Now note that in messages and keys of the protocol simulated in game G2,b

no information about the groups in G∗
b ∩D∗ remains (all relevant keys KG have

been replaced by random strings). We hence argue that experiments G2,b and
G2,(1−b) are not distinguishable (the stochastic distance is zero).

We conclude the proof by noticing that we have shown

G0,b ≈ G1,b ≈ G2,b = G2,(1−b) ≈ G1,(1−b) ≈ G0,(1−b),

where relation ‘≈’ expresses that two games are only computationally distin-
guishable by an adversary with negligible probability. It follows that

Pr
[
Exp lah,1

AHA,A(λ, n, m) = 1
]
≈ Pr

[
Exp lah,0

AHA,A(λ, n, m) = 1
]
,

and hence Adv lah
AHA,A(λ, n, m) is negligible in λ (cf. Definition 4). ��

As we abstained from formally defining AKE-security in Section 4, we here
only give a qualitative result about key security of our protocol. We refer the
interested reader to [19] for the state-of-the-art key security model that considers
the affiliation-hiding setting. The proof given for the protocol of [19] can easily
be adapted to fit our new scheme.

Theorem 3 (Authenticated Key Exchange Security). The AHA protocol
presented in Section 3.2 is AKE-secure [19] under the CDH assumption in the
Random Oracle Model (ROM) [4], given that NIKDS is IND-CIA secure.

6 Conclusion

We gave a construction of a new and impressively efficient Affiliation-Hiding Au-
thentication scheme with included Key Establishment (AHA/KE). Its asymp-
totic computational performance of O(n log n) compares very favorably to O(n2)
of its predecessors [16, 19]. The same holds for bandwidth consumption, which
amounts to only 4% of that of [19]. Still, the protocol’s syntax and security
properties remain in consistency with accepted security notions for AHA [19].

We consider this work crucial in respect to deployment of privacy-preserving
techniques in devices with limited resources, such as mobile phones in ad hoc
wireless networks. Without the improvements described in the preceding sec-
tions, implementations of AHA protocols would hardly run at acceptable speed
on such equipment.
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Abstract. In side-channel analysis, the waveforms can be acquired
misaligned. Several algorithms have been put forward to resynchronize
signals, as a pretreatment before the attack proper. In this article, we
examine two of them, namely amplitude-only and phase-only correlation
(abridged AOC and POC), and introduce a third one, called threshold-
POC (T-POC) that corrects a flaw of the phase-only correlation. Those
three resynchronization algorithms are computationally efficient insofar
as they find the correct displacement in O(n log n) steps per waveform
made up of n samples.

Former studies on resynchronization algorithms quantified their qual-
ity by their indirect effect on side-channel attacks. We introduce in this
article a formal framework for the evaluation of the resynchronization
algorithms per se. A benchmarking on representative waveforms shows
that there is an adequation between the waveforms and the most suit-
able resynchronization algorithm. On unprotected circuits, the intra-
waveform similarity in amplitude or in phase determines the choice for
either the AOC or the POC algorithm. Circuits protected by hiding
countermeasures have their amplitude made as constant as possible.
Therefore, the intra-waveform similarity in amplitude is lowered and
the POC is better. Circuits protected by masking countermeasures have
their amplitude made as random as possible. Therefore, even if the intra-
waveform similarity in amplitude is high, the inter-waveform similarity
is reduced; hence a trade-off between AOC and POC, namely T-POC, is
the most adequate resynchronization algorithm.

1 Introduction

Side-channel analysis starts with the acquisition of a collection of waveforms,
corresponding typically to the measurement of the power or to the radiated
electromagnetic (EM) field of a targeted device. However, these measurements
can be desynchronized for several reasons. Very often, the attacker does not
have an access to a signal that indicates that the operation to be spied is begin-
ning. Instead, the attacker can approximate the operation boundaries indirectly,
for instance by sending a request and observing the response. Most embedded
systems react in non-deterministic timing because they must handle internally
asynchronous buffering and interruptions. In some other cases, the delay between

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 100–115, 2011.
c© IFIP International Federation for Information Processing 2011
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the external trigger and the operation processing results from a countermeasure,
such as instructions shuffling [17] or random delay insertion [21,3].

Strictly speaking, misalignement of measurements, either due to approximate
synchronization between the acquisition apparatus and target or to intentional
desynchronization, does not prevent attacks. It is shown in [2] that the averag-
ing of the curves is a solution to get round these drawbacks. Let us assume the
desynchronization results from a displacement of the waveforms by a number of
clock periods that varies in the interval �0, t�. We say that t ∈ N∗ is the size of
the desynchronization window. Then, in the extreme case where the desynchro-
nization is uniformly distributed over �0, t� (which is almost achieved by [3]),
the correlation ρ between the waveforms and a leakage model with the misalign-
ment is equal to 1/

√
t times that without any misalignement. Now, the speed

of a correlation power analysis (CPA [1]) is directly linked to these correlation
coefficients. More precisely, the average number of waveforms required to break
a cryptographic implementation is equal to [12,13]:

3 + 8

⎛
⎝ Z1−α

ln
(

1+ρ
1−ρ

)
⎞
⎠2

, (1)

where Z1−α is the quantile of a normal distribution for the 2-sided confidence
interval with error 1 − α. For low values of ρ, the Eqn. (1) is ∝ ρ−2. Therefore,
all in one, the number of traces to break a cryptographic implementation with a
misalignment window t is roughly multiplied by

(
1/

√
t
)−2

= t. This shows that
the countermeasure is not very impeding.

Nonewithstanding, it is better for an attacker to get rid off the misalignement,
so as to attack in the best conditions. Conversely, from the evaluator’s stand-
point, it is important to know if a prospective attacker can indeed manage to
revert the misalignement. Therefore, we focus in this article on the algorithms to
resynchronize the side-channel waveforms, and forget the attack or the analysis
that follows.

In the sequel, we are interested in resynchronizing waveforms that have been
translated in time by an integer number n of acquisition samples. This is a
more general case than the abovementioned displacements of integer number
of clock cycles. Indeed, modern oscilloscopes digitize waveforms at a very high
sampling rate, so that many samples are captured per clock period. Additionally,
we assume the clock frequency is stable and we do not address the reversal of
the varying clock (VC [16,8,22]).

The rest of the article is organized as follows. In Sec. 2, the state-of-the-art
resynchronization algorithms, namely AOC and POC, are introduced. One flaw
of POC is described, and the threshold-POC (called T-POC) is defined. The
complexity of the three algorithms is shown to be optimal. A formal framework
for the evaluation of resynchronization algorithms is described in Sec. 3. The
three algorithms are evaluated based on real side-channel waveforms captured
from representative circuits, without and with side-channel countermeasures.
Finally, the conclusions and the perspectives are given in Sec. 4.
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2 Resynchronization Algorithms

2.1 Problem Statement

Theoretically, a waveform X is a series of real values, i.e. an element of R
Z.

We note Xi the sample of X at date i ∈ Z. Now, the measured waveform Y
is said be desynchronized by an offset of k samples with respect to X if it sat-
isfies: ∀i, Yi = Xi−k. In practice, the (unshifted) reference X is unknown and
the acquisition is limited in time. Thus, a waveform will rather be a finite set
of n samples, belonging to Rn. Given a collection of misaligned waveforms, the
resynchronization problem consists in finding the correct offset for each of them.
In fact, a relative offset is sufficient, because it allows to bring all the waveforms
in phase; whether they are collectively offset by a constant time shift is generally
not an issue. Indeed, most side-channel attacks consist in validating an hypoth-
esis based on the maximization of a distinguisher over both time samples and
key hypotheses. Thus an arbitrary collective offset in time does not change the
side-channel attack’s outcome. More specifically, in this paper, we focus on the
resynchronization with respect to one reference waveform. The resynchroniza-
tion thus comes down to the unitary problem of resynchronizing waveform Y
knowing one reference waveform X .

2.2 AOC: Amplitude-Only Correlation

The cross-correlation X � Y between two waveforms X and Y is a new wave-
form, whose sample i ∈ �0, n� is defined as: (X � Y )i

.=
∑

j∈Zn
Xj · Yj+i. In this

notation, the time indices are considered not in the bounded interval �0, n�, but
in the additive group Zn. Strictly speaking, we choose to consider the sample
indexes modulo n to ease the computations, for instance in the identity involved
in Eqn. (4). But in practice, it also makes “physical” sense, for instance if a
waveform consists in the superposition of the clock activity and some extra sig-
nal incurred by cryptographic operations. This likely scenario is sketched in the
leftmost part of Fig. 1. The straightforward cross-correlation algorithm would
discard non-overlapping samples, resulting in a cross-correlation estimation over
n − k samples when testing for a k-sample offset. This sub-optimal solution
is depicted in the middle part of Fig. 1. To avoid this loss of samples in the
cross-correlation, we suggest to fold the shifted wave. The folded part, provided
it contains only non-cryptographic information, will consistently match the be-
ginning of the waveform, all the more so as the number of samples n divides
the number of clock periods in the waveform. This advantageous situation is
described in the right part of Fig. 1. We focus on this strategy in rest of the
article.

The cross-correlation1 can be used to recover the offset by guessing k̂, as the
offset that maximizes the cross-correlation between X and Y . Formally,

k̂ = argmaxk∈Zn
(X � Y )k . (2)

1 We would like to make clear that we name X�Y auto-correlation and not correlation
to avoid the confusion with Pearson correlation coefficient.
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Correlation on �0, n�: Correlation on Zn:Side-channel trace:

trace=

constant noise (clock)

+ crypto

n− kk k

X

Y

X

Y

k

n

Fig. 1. Typical trace, exhibiting a special cryptographic zone (left), cross-correlation-
based resynchronization without folding (center) and idem with folding (right). The
shaded zone is the interval on which the “scalar product” can be computed between
X and Y shifted by k samples.

Let us note RORk the samples circular right shift operation: ∀i, RORk(X)i =
Xi−k, and A ·B the coordinate-wise product: (A · B)i = Ai ·Bi. The resynchro-
nization algorithm of Eqn. (2) is said sound, since it indeed recovers the correct
offset when Y is equal to the reference waveform X circularly shifted by k′:

argmaxk∈Zn
(X � RORk′(X))k = argmaxk∈Zn

∑
j∈Zn

Xj · Xj+(k−k′) = k′ .

This result comes from the application of the Cauchy-Schwarz theorem to an
auto-correlation.

The cross-correlation between two curves can be computed very efficiently
using the discrete Fourier transform (DFT). The definition of the DFT and of
the inverse DFT (IDFT), as per the library FFTW3 [4], is:{

DFT (X)i
.=
∑n−1

j=0 Xj · exp
(−2πji

√−1/n
)

,

IDFT (X)i
.=
∑n−1

j=0 Xj · exp
(
+2πji

√−1/n
)

.
(3)

The definition of Eqn. (3) is not normalized, since it implies that: DFT◦IDFT =
IDFT ◦DFT = nId. In these equations, expressions are waveforms, i.e. elements
of Rn. Then, we have the following property: DFT(X �Y ) = DFT(X) ·DFT(Y ).
It allows to rewrite the cross-correlation as:

X � Y = IDFT
(

DFT(X) · DFT(Y )
)

/n .

We also call the algorithm presented in this section the “amplitude-only cor-
relation” (AOC):

AOC(X ; Y ) .= X � Y = IDFT
(

DFT(X) · DFT(Y )
)

/n . (4)

2.3 POC: Phase-Only Correlation

The AOC can be contrasted with the phased-only correlation (POC), described
in [6,15,7]. In POC, the DFT of the reference X and desynchronized Y waveforms
are normalized prior to being multiplied. The computed quantity is:
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POC(X ; Y ) .= IDFT

⎛
⎝ DFT(X) · DFT(Y )∣∣∣DFT(X)

∣∣∣ · |DFT(Y )|

⎞
⎠ /n . (5)

The POC is also sound, since if Y = RORk′ (X), then:

argmaxk∈Zn
POC (X ; RORk′(X))k = k′ . (6)

Indeed, DFT (RORk′(X))i = DFT (X)i ·exp
(−2πk′i

√−1/n
)
. Let us note U the

vector of components Ui = exp
(−2πk′i

√−1/n
) ∈ C. Then

POC(X ; RORk′(X)) = IDFT

⎛
⎝ DFT(X) · DFT(X) · U∣∣∣DFT(X)

∣∣∣ · |DFT(X) · U |

⎞
⎠ /n = IDFT (U) /n .

The result of Eqn. (6) comes from the fact that:

IDFT (U)i =
n−1∑
j=0

exp
(
+2πj(i − k′)

√−1/n
)

= n · δi−k′ , (7)

where δ is the Kronecker symbol, that satisfies δi = 0 if i �= 0 and 1 otherwise.
Compared to the AOC, the authors of the POC underline that the former is

able to resynchronize with a resolution that is below the sampling rate. In this
article, we consider only the resynchronization problem stated in Sec. 2.1, i.e.
with an accuracy equal to that of the sample. We address the comparison of the
AOC and POC algorithms empirically in the next section 2.4.

2.4 POC Flaw and Threshold-POC

We base our empirical study on waveforms taken from the DPA contest [20].
The first line of Fig. 2 shows three waveforms to resynchronize. The leftmost
waveform, called X [0], is the reference. On its right, X [1] and X [2] are two
other waveforms from the same campaign that use different plaintexts, and that
have been shifted artificially in time by respectively 31 and 195 samples. The
exact details of these acquisitions is given in Tab. 1. These curves represent one
DES encryption, that computes one round per clock period. The sampling rate is
20 Gsample/s and the DES is cadenced at a clock frequency of 32 MHz. Hence,
one clock period lasts 625 samples. The waveforms are made up of n = 20, 000
samples, thus representing 32 clock periods. The 16 clock periods where the DES
hardware accelerator is computing are in the middle of the waveforms.

In this section, we compare AOC and POC algorithms on X [q], q ∈ {0, 1, 2}.
The application of the first method is illustrated on the second line of Fig. 2. The
three figures show the amplitude of the correlation for various offsets in �0, n�.
It appears clearly that the auto-correlation AOC(X [0]; X [0]) is the greatest for
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Table 1. Detail of the encryption whose side-channel is represented in the first line of
Fig. 2

Waveform Key Message Ciphertext Offset

X[0] 0x6a65786a65786a65 0x67c6697351ff4aec 0xc54baee5fc80756a 0
X[1] 0x6a65786a65786a65 0x29cdbaabf2fbe346 0x857f106855100811 31
X[2] 0x6a65786a65786a65 0xabb2cdc69bb45411 0x04385795f886e215 195

a null offset. However, the auto-correlation features peaks, of smaller amplitude,
for non-zero offsets: there is a peak (local maximum) at each clock period.

Therefore, the computation of the correlations with the shifted curves is max-
imal at the “correct” offsets (31 and 195), but reveals also a local maximum at
the same offsets modulo the clock period. We also notice an especially large peak
at the correct offset plus 16 clock periods: the reason is that DES executes in 16
clock periods and that the acquisition window happens, by chance, to be exactly
equal to 32 clock periods. There is therefore an ambiguity in the correct phase
to choose for the resynchronization. Nonetheless, the maximum peak (indicated
by a “

⊕
” sign) coincides with the actual offset.

The POC’s results are shown on the line below in Fig. 2. The POC alignment
of the reference waveform X [0] versus itself is, as expected, a real Dirac function.
This was indeed proved theoretically in Eqn. (7). Hence, the POC might look
better than AOC to distinguish the correct offset from offsets modulo one clock
period. Indeed, the graphs POC(X [0]; X [1]) and POC(X [0]; X [2]) show a clear
peak at the correct offsets. Although the noise of the POC is high, the correct
offset clearly stands out. But spurious peaks appear at high offsets, especially for
POC(X [0]; X [2]), where the greatest peak occurs at an offset of n−1 (indicated
by a “

⊗
” sign). The reason is the numerical instability, during the computation,

of the ratio:
DFT(X) · DFT(Y )

|DFT(X)| · |DFT(Y )|
for small modulus values of DFT(X) or DFT(Y ), because of a floating point
values resolution problem (we use the C type double).

In order to make up for this computational artifact, we resort to a trick that
consists in preventing the division by too small a quantity if the DFT modulus
is small. To make up for this issue, the denominator is added a small quantity
ε > 0. Thus, the threshold-POC is defined as:

T-POC(X ; Y ) .= IDFT

⎛
⎝ DFT(X) · DFT(Y )∣∣∣DFT(X)

∣∣∣ · |DFT(Y )| + ε

⎞
⎠ /n . (8)

The same empirical protection of the normalization has already been used
in the correlation calculation [11]. Results are shown in Fig. 2 for ε = 10−3.
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The auto-correlation has a less sharp contrast, but the spurious peaks have dis-
appeared. From a theoretical perspective, the T-POC synchronization algorithm
cannot be proved sound any longer.

The value of the positive constant ε to be added at the denominator in Eqn. (8)
is not trivial to find. To have a better idea of the normalization factor, we have
computed the spectrum of a waveform. It is shown in the left part of Fig. 3. The
frequency range is limited to �0, n/2� because on the other half �n/2, n�, the
curve would simply be mirrored. This is due to the fact X [0] is a real waveform;
thus: DFT(X [0])n−i = DFT(X [0])i, hence |DFT(X [0])n−i| = |DFT(X [0])i|. To
choose ε methodically, we could opt to have it equal (by convention) to a frac-
tion of the maximum peak. The log graph on the right of Fig. 3 shows that
|DFT(X [0])| spans 10 decades: a reasoned choice for ε is not obvious. Therefore,
in the sequel, ε is rather considered an empirical parameter.

2.5 Complexity of AOC, POC and T-POC

The computation of (X � Y )i for a given i requires n multiplications. The naive
algorithm to compute the n correlations X � Y corresponding to all the possible
offsets (there are n of them) runs in O(n2). Now, the DFT approach reduces
this complexity down to O(n log n).

Indeed, one DFT or one IDFT costs O(n log n). We note that for all three
formulas (Eqn. (4), (5) & (8)), the DFT(X) on the reference waveform X can
be factored for the synchronization of all the other waveforms. For the AOC, the
recurrent computations consist thus only in one component-wise multiplication
(n operations), one DFT and one IDFT. Regarding the POC, one additional
component-wise division (n operations) is required, which does not change the
computation complexity. Eventually, the T-POC also runs in O(n log n), but is
however the slowest method. Nonetheless, we mention that the three resynchro-
nizations algorithms run very efficiently in practice; the resynchronization using
the DFT is not the limiting operation in side-channel analysis: the attack that
follows the resynchronization is the real bottleneck.

For the experiences presented in the article, we have used FFTW3, that com-
putes Fourier transforms efficiently for every n ∈ N

∗. This is important as the
number of samples in typical campaigns is rather a power of 10 and not a power
of 2. With this FFTW3 library, all the computations can be done in complex
numbers, which has the advantage of simplicity. However, the speed factor and
the memory footprint can be divided by two if we consider the input is real data.
The operations involve an n-sample real-to-complex DFT, that turns an array of
n real numbers into an array of n/2+1 complex numbers. Thus the products and
the divisions in the frequency domain are conducted with complex arrays of size
n/2 + 1. Then, n-(logical) sample complex-to-real inverse DFT transforms the
n/2 + 1 complex array into an array of 2× (n/2 + 1) real numbers. The elements
strictly above index n − 1 are “padding”, and thus ignored for the maximum
peak research.
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Fig. 2. Three waveforms (topmost) and empirical test for the resynchronization, with,
from 2nd line to the 4th, respectively AOC, POC and T-POC with ε = 10−3. In these
campaigns, the number of samples is n = 20, 000. The colored circle indicates the max-
imum of the resynchronization algorithm. When it is green (

⊕
), the resynchronization

is successful, whereas when it is red (
⊗

), it is not.
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Fig. 3. Spectral power of X[0], in regular scale (left) and in log-scale (right)

3 Evaluation of Resynchronization Algorithms

3.1 Formal Framework

To evaluate the several resynchronization methods fairly, we need a formal
framework based on a figure of merit. Basically, such a framework assumes the
knowledge of a correct synchronization and needs to assess the performance
of resynchronisation algorithms based on a relative notion of resynchronization
correction. The general approach is similar to the formal framework introduced
in [18] in the sibling field of side-channel attacks, that introduced a “success
rate” or a “guessing entropy”. These metrics are fully relevant in the context of
key recovery attacks, insofar as only the exact solution for the key is informative
for the attacker. Indeed, an approximation on the key is useless in cryptanalysis,
since all keys are equiprobable. In addition, the other way round, the key ranked
second by a side-channel attack is typically decorrelated from the correct key.

The situation is different for the synchronization problem. Indeed, an approxi-
mate resynchronization (i.e. with an error of only one or few samples) is nearly as
good as an exactly correct resynchronization, because very often the side-channel
leakage remains consistent over some samples. This is all the more true as data
is acquired at a large sampling rate. In the examples of the Fig. 2, a correlation
power analysis (CPA [1]) leads to peaks that are about 50 samples large. This
width, illustrated in Fig 4, is caused by an impedance mismatch between the
side-channel sensor and the spied circuit. Thus a resynchronization algorithm
still performs well if it predicts an offset a few tens of samples away from the
correct offset. This means that the resynchronization cannot be solely evaluated
by its success or failure rates. Indeed, we need a qualitative appreciation.

Obviously, it is better to synchronize by reducing the offset than to still make
it worse. We introduce a factor of merit for the resynchronization accuracy: it is
equal to the average distance to the correct resynchronization value.

This notion can be formalized. We denote by A an algorithm that rates
each possible offset. In this study, A is either AOC, POC or T-POC (defined
in Eqn. (4), (5) or (8)). Given two synchronized waveforms X and Y , and a
maximal offset K, we set up an experiment called “ResynchError”, in which
Y is artificially shifted in time by a uniformly distributed random quantity in
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Fig. 4. Correlation power analysis (CPA) on the first round of the DES [20]. The ap-
proximate width of the peak indicates the tolerated inaccuracy of the resynchronization
algorithms.

�0, K�. The experiment returns the distance between the actual offset and the
best rated by A. This procedure can be expressed as:

Experiment ResynchErrorA(X ; Y ; K)[
k′ R←− �0, K�;
Return

∣∣k′ − argmaxk∈Zn
A (X ; SRLk′ (Y ))k

∣∣ ;
where SRLk′ operates as RORk′ , with the sole difference it inputs k′ zeros on
the left end instead of reinjecting the k′ samples flushed outside from the right
end. A synchronized acquisition campaign C is a collection of Q ∈ �2, +∞�
waveforms. Every waveform C[q], 1 ≤ q < Q is synchronized. The quality of
the resynchronization algorithm A for waveforms randomly misaligned by offsets
uniformly distributed in �0, K� is assessed by:

AvgResynchErrorA(C; K) .=
1

Q − 1

Q−1∑
q=1

ResynchErrorA(C[0]; C[q]; K) .

(9)
Resynchronization algorithm A is said better than A′ if

AvgResynchErrorA(C; K) ≤ AvgResynchErrorA′(C; K) .

We will see in the next Sec. 3.2 that this notion does depend on the campaign
C and on the maximal offset K.

We recall that the POC can be used to resynchronize with a resolution inferior
than the sampling rate. Incidentally, such a method could also be applied to
AOC. However, we have not tested this option, because, as will be shown in
Sec. 3.2, the distinction between the resynchronization algorithm can already
be clearly seen at a resolution equal to the clock period. Furthermore, modern
oscilloscopes digitize waveforms at a very fast sample rate, thereby reducing the
interest of fractional sample resynchronization.



110 S. Guilley et al.

3.2 Benchmarking of Representative Waveforms

We validate the average resynchronization error introduced in Eqn. (9) on five
representative campaigns, corresponding to three setups. One setup is an exper-
imental evaluation environment. On the three setups, the same DES algorithm
(i.e. synthesized from the same VHDL source code) is run. The first setup is that
of the DPA contest first edition [20], where the DES is an ASIC and where the
acquisitions are averaged 64 times by the oscilloscope. The second one is carried
out on an ASIC but with unaveraged acquisitions. Eventually, the third setup is
identical to the second one, except that the device under analysis is an FPGA,
and not an ASIC. More details are provided in Tab. 2. We have selected very
different setups on purpose to gather various representative side-channel types.

Table 2. The three setups studied

Setup Samples/clk Fclk [MHz] Nature Device

#1 625 32.000 Power ASIC (0.13 μm technology, 1.2 Volt)

#2 150 33.333 Power ASIC (0.13 μm technology, 1.2 Volt)

#3 120 8.333 EM FPGA (0.13 μm technology, 1.5 Volt)

The second and third setups are also used to implement side-channel resistant
versions of DES. On the second setup, one campaign is done on a hiding coun-
termeasure [13, Chp. 7]. On the third setup, one campaign is done on a masking
countermeasure [13, Chp. 9]. In the sequel, we represent the five studied cam-
paigns as per Fig. 5, that gives one raw trace for each campaign.

The average resynchronization error is represented in Fig. 6 for those five
campaigns, based on Q = 1, 000 artificial shifts. It gives, for the AOC and
the POC (with 4 values of ε) the mean absolute error of resynchronization
AvgResynchError as a function of the synchronization error window K.

The figure 6 reveals very different behaviors of resynchronization performance
K �→ AvgResynchError(C; K). Notably, the setups #1 and #3 fail to have
their unprotected designs properly resynchronized for some algorithms.

In Setup1 Ref, large errors occur for the POC and the T-POC with the
smallest correction value ε = 10−6. These errors increase almost linearly with
the desynchronization amplitude. More precisely, there is an improvement when
the desynchronization maximal value is not a multiple of half the clock period.
This observation shows that the computational flaw identified in the POC in
Sec. 2.4 is the main limitation to the resynchronization on this campaign.

Interestingly enough, the campaign Setup3 Ref features an opposite be-
haviour. The AOC and the T-POC with a large ε = 103 coefficient both fail. We
notice that when ε becomes larger and larger, then T-POC tends towards AOC,
since the denominator in Eqn. (8) becomes negligible. The reason for the AOC
to fail can be accounted by the nature of the setup: the measurements are noisy,
which makes the identification of the correct phase by the analysis of the wave-
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Fig. 5. Raw traces examples for the five investigated campaigns
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Fig. 6. Average resynchronization performance for the five campaigns presented in
Tab. 5
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Fig. 7. Average resynchronization performance for the five campaigns; vertical zoom
on Fig. 6, that focuses on errors that do not diverge with K

forms amplitude very error-prone. The cause of high noise in the measurement
setup #3 is threefold:

1. Unaveraged measurements have a greater quantification noise than traces
that have been averaged;

2. FPGAs activate a lot of logic per single logical event in the netlist, which
increases the algorithmic noise [1];

3. EM measurements are notoriously more noisy than power measurements.

Nonetheless, this noise is independently and identically distributed (iid) over
the samples. Therefore, the phase information, which is collective over one clock
period, is less affected. In particular, because of the high level of noise, the DFT
transform of the setup #3 waveforms is rich in frequencies, and therefore varies
less than that of Fig. 3. Therefore the POC flaw does not manifest. We observe
in this campaign that the pure POC neither succeeds in resynchronizing well the
curves, but that T-POC with ε = 1 is almost successful 100% of the time. Thus,
for this campaign, the best resynchronization algorithm is a tradeoff between
amplitude- and phase-correlation.

The campaign Setup2 Ref is perfectly resynchronized with all the studied
algorithms. The explanation clearly stands out by looking at the sample wave-
form provided for this campaign in Fig. 5. Every waveform has both a very
clear shape (which favors amplitude-related matching techniques) and an elabo-
rate spectrum (both clock-level and higher frequencies are already visible on the
time-domain trace, which is beneficial for phase-related matching techniques).
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It is interesting to zoom on the resynchronization performance for the cam-
paigns carried out on unprotected circuits. These graphs are provided with in
Fig. 7. AOC definitely best realigns the campaign Setup1 Ref. This is due
to the extremely accurate acquisition in amplitude; notably, the averaging of
the waveforms helps make resynchronization with vertical values reliable. The
characteristic shape for these waveforms, associated with their high resolution,
makes each of them very recognizable. The resemblance (intra-waveform similar-
ity) outperforms the difference between the waveforms (acquired with different
plaintexts). The opposite conclusion can be drawn for the noisy Setup3 Ref
campaign: even if we manage to identify some points of larger amplitude than
others in each individual waveform, the noise makes each waveform dissimilar in
amplitude. As the phase is noisy too, the T-POC is the best tool to extract the
synchronization between waveforms of campaign Setup3 Ref.

Let us now study the two campaigns on protected implementations, namely
Setup2 Hiding and Setup3 Masking. It is straightforward to see in the cor-
responding graphs of Fig. 6 that the AOC is the worst resynchronization algo-
rithm. Two compelling arguments can explain this. On power-constant circuits,
the goal of the countermeasure is to balance the side-channel leakage, by having
its amplitude as constant as possible. Thus, it is expected that resynchroniza-
tion based on amplitude-matching fail. However, it has been noted in [19,10]
that small (much beneath the clock period) discrepancies in evaluation dates
could exist. This phenomenon is referred to as “early propagation effect” in the
specialized literature. The success of the resynchronization using the phase in-
formation of the waveforms might be a confirmation of this effect. On masked
circuits, the shapes of the waveforms are forced to look random in a view to
mitigate first-order side-channel attacks. It is therefore no surprise if AOC is
ineffective in average. Nonetheless, it is noteworthy that the phase of the signals
carry information about the algorithm scheduling. We conjecture that despite
the additional amount of noise carried out by the masking countermeasure, the
sequence of operations (registers evaluation, then maybe the addressing of a
RAM, or the activity that comes from the control block, etc.) might be a char-
acteristic signature of the DES operations.

All in one, the Fig. 7 shows that campaigns acquired from a protected circuit
are more difficult to synchronize than those acquired from unprotected circuits
implemented on the same setups. Nevertheless, our general noting is that the
two prominent countermeasures (hiding and masking) aim at dissimulating the
information in amplitude, but that unexpectedly the phase is still useful to
achieve a correct waveforms realignment. Those conclusions are in line with
many papers focusing on DFT attacks [5,9,14]. They all conclude that the side-
channel waveforms exhibit extremely distinguishable features once turned into
the frequency domain. We note that the best value for ε happens to be small
(ε ≤ 1) for Setup2 Hiding: all the information lays in the waveforms phase.
The optimal ε for Setup3 Masking is exactly the same as for Setup3 Ref.
Indeed, the masking simply increases the algorithmic noise level, but does not
fundamentally affect the acquisition.
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4 Conclusions and Perspectives

Side-channel measurements can be desynchronized for various reasons, especially
in the common case of acquisitions where a reliable trigger signal is not avail-
able. This study introduces a formal practice-oriented evaluation framework for
resynchronization algorithms. In this article, we compare several approaches to
realign the waveforms. We conclude that, in the absence of countermeasures, if
the acquired signal is of excellent vertical quality, then the amplitude should
be used to resynchronise the signals. Otherwise, in the case of noisy measure-
ments, the phase-based correlations are better techniques. We notice that under
some circumstances, the genuine version of the phase-only correlation (POC)
is not efficient, and we introduce the threshold POC (aka T-POC). If a coun-
termeasure is employed, then, undoubtedly, the T-POC (including T-POC with
ε = 0, i.e. the original POC) is the best realignment algorithm. The reason is
that state-of-the-art side-channel countermeasures aim at impeding amplitude-
level waveforms variation, but neglect to protect the information carried by the
phase. Therefore, using POC or T-POC algorithms, we show how to successfully
resynchronize protected waveforms.

Several questions remain however open. For instance, what is the optimal
threshold value ε involved in T-POC? Also, we wonder if a mixed resynchro-
nization techniques (for instance based on wavelets, that feature a compromise
between time and frequency) could bridge the gap between amplitude-only and
phase-only correlation algorithms.
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Abstract. The discrete logarithm problem with auxiliary input (DLP-
wAI) is a problem to find α from G, αG, αdG in an additive cyclic group
generated by G of prime order r and a positive integer d dividing r − 1.
The infeasibility of DLPwAI assures the security of some cryptographic
schemes. In 2006, Cheon proposed a novel algorithm for solving DLP-
wAI. This paper shows our experimental results of Cheon’s algorithm by
implementing it with some speeding-up techniques. In fact, we succeeded
to solve DLPwAI in a group with 128-bit order in 45 hours with a sin-
gle PC on an elliptic curve defined over a prime finite field with 256-bit
elements which is used in the TinyTate library.

1 Introduction

Let G be an additive cyclic group generated by G of prime order r. The discrete
logarithm problem with auxiliary input (DLPwAI) is a problem to find α from
G, αG, αdG ∈ G and a positive integer d dividing r − 1. The infeasibility of
DLPwAI assures the security of some cryptographic schemes including Boneh-
Boyen’s ID-based encryption scheme [2] and Boneh-Gentry-Waters’ broadcast
encryption scheme [5]. In 2006, Cheon proposed a novel algorithm for solving
DLPwAI [7,8]. The time complexity of Cheon’s algorithm (with KKM improve-
ment) is O

(√
(r − 1)/d +

√
d
)

, and especially when d ≈ √
r, the complexity

becomes O( 4
√

r), which is much efficient than that for solving DLP in general
groups (which requires O(

√
r)).

This paper implements Cheon’s algorithm combined with the baby-step giant-
step algorithm [16] as a sub-algorithm and some speeding-up techniques. Then,
this paper reports experimental results of our implementation. In fact, we have
successfully solved a DLPwAI in 45 hours with a single PC in a group with
128-bit order defined on an elliptic curve over a prime finite field with 256-
bit elements, which is used in the TinyTate library [14] for implementing pairing
cryptosystem in the embedded devices (see also Table 1. Note that Jao-Yoshida’s

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 116–127, 2011.
c© IFIP International Federation for Information Processing 2011
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Table 1. Required time for solving DLPwAI

Size of r Required Time

Jao, Yoshida [11] 60 bit 3 hours

Izu et al. [10] 83 bit 14 hours

This paper 128 bit 45 hours

result was not dedicated to an efficient implementation. Also note that Izu et al.’s
result was implemented over a finite field with characteristics 3). Here, solving
DLP on the elliptic curve is regarded to be infeasible (since the order is 128-
bit). As a feedback of our experimental results, it is better to avoid such elliptic
curve when some cryptographic schemes are implemented. We also estimated
the required time and memory for solving DLPwAI with larger r. According to
our estimations, it would be difficult to solve DLPwAI with larger r by the same
approach, namely, Cheon’s algorithm combined with the baby-step giant-step
algorithm.

2 Preliminaries

This section introduces the discrete logarithm problem with auxiliary input
(DLPwAI) and Cheon’s algorithm for solving DLPwAI [7,8]. Implications of
DLPwAI and Cheon’s algorithm on cryptographic schemes are also explained.

2.1 Discrete Logarithm Problem with Auxiliary Input (DLPwAI)

Let G = 〈G〉 be an additive group generated by G of prime order r. The discrete
logarithm problem (DLP) in G is to find α ∈ Z/rZ on input G, αG ∈ G. In
the general setting, the most efficient algorithms for solving DLP require O(

√
r)

in time. In fact, Shanks’ baby-step giant-step (BSGS) algorithm [16] requires
O(

√
r) group operations in time and O(

√
r) group elements in space. On the

other hand, Pollard’s λ-algorithm also requires O(
√

r) in time, but much smaller
elements in space.

In 2006, Cheon defined the discrete logarithm problem with auxiliary in-
put (DLPwAI) as a variant of DLP [7,8], where DLPwAI is a problem to
find α on input G, αG, αdG and an integer d dividing r − 11. At the same
time, Cheon proposed a novel algorithm for solving DLPwAI [7,8]. Cheon’s al-
gorithm (together with Kozaki-Kutsuma-Matsuo’s improvement [12]) requires
O
(√

(r − 1)/d +
√

d
)

group operations in time. Especially, when d ≈ √
r, it

only requires O( 4
√

r) operations, which is much smaller than that required in the
baby-step giant-step algorithm or in the λ-algorithm for solving DLP.

1 There are many possible variations of DLPwAI. However, this paper only deals with
this type.
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Algorithm 1. Cheon’s Algorithm
Input: : G, G1 = αG, Gd = αdG ∈ G, d ∈ Z dividing r − 1
Output: : α ∈ Z/rZ

1: Find a generator ζ ∈ (Z/rZ)∗

2: Set ζd ← ζd, d1 =
⌈√

(r − 1)/d
⌉

3: [Step 1] Find 0 ≤ k1 < (r − 1)/d such that Gd = ζk1
d G

4: Find 0 ≤ u1, v1 < d1 such that ζ−u1
d Gd = ζv1d1

d G
5: k1 ← u1 + v1d1

6: Set ζe ← ζ(r−1)/d, d2 ←
⌈√

d
⌉
, Ge ← ζ−k1G1

7: [Step 2] Find 0 ≤ k2 < d such that Ge = ζk2
e G

8: Find 0 ≤ u2, v2 < d2 such that ζ−u2
e Ge = ζv2d2

e G
9: k2 ← u2 + v2d2

10: Output ζk1+k2(r−1)/d

2.2 Cheon’s Algorithm

A goal of Cheon’s algorithm is to find an integer k ∈ Z/rZ such that α = ζk

for a generator of the multiplicative group ζ ∈ (Z/rZ)∗ (Note that finding the
generator ζ is easy). Here, such k is uniquely determined. To do so, Cheon’s
algorithm searches two integers k1, k2 such that k = k1 + k2(r − 1)/d satisfying
0 ≤ k1 < (r − 1)/d, 0 ≤ k2 < d in the following two steps (see Algorithm 1).

Step 1 searches an integer k1 such that αd = ζk1
d for ζd = ζd, or equivalently,

searches two integers u1, v1 such that

αdζ−u1
d = ζv1d1

d

satisfying 0 ≤ u1, v1 <
√

(r − 1)/d. Here, such u1, v1 are uniquely determined.
In practice, Step 1 searches u1, v1 such that ζ−u1

d Gd = ζv1d1
d G.

Then, Step 2 searches an integer k2 such that α = ζk1ζk2
e for ζe = ζ(r−1)/d in

the similar way, or equivalently, searches integers u2, v2 such that

αζ−k1ζ−u2
e = ζv2d2

e

satisfying 0 ≤ u2, v2 <
√

d (where Ge = ζ−k1G). Here, such u2, v2 are uniquely
determined. In practice, Step 2 searches u2, v2 such that ζ−u2

e G1 = ζv2d2
e G.

In Cheon’s algorithm, searching u1, v1 in Step 1 and searching u2, v2 in Step
2 require another sub-algorithm. Since these problems are very similar to DLP
in the general setting, the baby-step giant-step algorithm or the λ-algorithm
can be used as a subroutine. Since this paper is interested in Cheon’s algorithm
combined with the baby-step giant-step algorithm only, the next section briefly
describes its outline.

Baby-step Giant-step Algorithm. The baby-step giant-step (BSGS) algo-
rithm was introduced by Shanks in 1971 for solving DLP [16]. Instead of finding
α directly, on input G and G1 = αG, BSGS searches two integers i, j such
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that α = i + jm and 0 ≤ i, j < m = �√r	. Here, such i, j are uniquely de-
termined. Since αG = (i + jm)G = iG + jG′ for G′ = mG, we have a relation
G1 − iG = jG′.

BSGS consists of two steps: in the 1st step (the baby-step), we compute

G1, G1 − G, G1 − 2G, . . . , G1 − (m − 1)G

successively and store them in a database. In the 2nd step (the giant-step), we
compute

G′, 2G′, . . . , (m − 1)G′

successively and store them in another database. Then, we search a collision
G1 − iG = jG′ among these databases and thus a solution α = i + jm is
obtained. Since O(m) group operations and O(m) group elements are required in
both steps, the time and space complexity of BSGS are O(

√
r) group operations

and O(
√

r) group elements, respectively.
When BSGS algorithm is used in Step 1 of Cheon’s algorithm, we establish

two databases
ζ0
dGd, ζ−1

d Gd, ζ−2
d Gd, . . . , ζ−d1

d Gd

and
ζ0
dG, ζd1

d G, ζ2d1
d , . . . , ζ

d2
1

d G,

and searches a collision satisfying ζ−u1
d Gd = ζv1d1

d G among these databases.
Thus, Step 1 in Cheon’s algorithm combined with BSGS algorithm requires
2d1 = 2

√
(r − 1)/d elements in space. Similarly, Step 2 requires 2d2 elements in

space.

KKM Improvement. Cheon’s algorithm requires the number of scalar mul-
tiplications for fixed elements G, G1 and Gd. In 2007, Kozaki, Kutsuma and
Matsuo introduced a precomputation table for such multiplications and reduced
the time complexity of Cheon’s algorithm from O

(
log r

(√
(r − 1)/d +

√
d
))

to

O
(√

(r − 1)/d +
√

d
)

.
Let us describe KKM improvement for a scalar multiplication γP (γ ∈ Z/rZ,

P ∈ G) in the followings. For a fixed integer c (which will be optimized later)
and n = � c

√
r	, obtain the n-array expansion of the scalar γ =

∑c−1
i=0 γin

i (0 ≤
γi < n). For all 0 ≤ i < c and 0 ≤ j < n, compute S(i, j) = jniP and store them
in a table in advance to the scalar multiplication. Then, the scalar multiplication
γP is computed by the following way:

γP = γ0P + γ1nP + · · · + γc−1n
c−1P

= S(0, γ0)+S(1, γ1)+· · ·+S(c− 1, γc−1). (1)

Since the precomputation table can be computed by at most c scalar multipli-
cations and cn additions, KKM improvement reduces the time complexity of
Cheon’s algorithm by a factor of log r.
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Complexity of Cheon’s Algorithm. As a summary of this section, when
Cheon’s algorithm is combined with the baby-step giant-step algorithm and
KKM improvement, the time complexity T and the space complexity S are
evaluated by the followings:

T = O
(√

(r − 1)/d +
√

d
)

(group operations),

S = O
(

max
(√

(r − 1)/d,
√

d
))

(group elements).

2.3 DLPwAI in Cryptographic Schemes

In recently proposed cryptographic schemes, new mathematical problems have
been proposed and the infeasibility of such problems assure the security of
the schemes. For example, �-BDHE problem was introduced in Boneh-Gentry-
Waters’ broadcast encryption system [5]. Here, �-BDHE problem is a prob-
lem to find e(G, Ĝ)α�+1

for a given bilinear map e : G × Ĝ → GT on input
G, αG, . . . , α�G, α�+2G, . . . , α2�G ∈ G and Ĝ ∈ Ĝ, where G = 〈G〉, Ĝ = 〈Ĝ〉,
and GT is a multiplicative group with order r. When � > d, Cheon’s algorithm
can be applied to the scheme: by finding α as DLPwAI, an answer of �-BDHE
problem is obtained. Thus, Cheon’s algorithm is an attacking algorithm for such
cryptographic schemes. Note that there are many other recently proposed prob-
lems to which Cheon’s algorithm can be allied such as �-SDH problem [3], �-sSDH
problem [4], �-BDHI problem [2].

3 Implementation

This section describes our strategy for implementing Cheon’s algorithm. We
adopted the baby-step giant-step (BSGS) algorithm as a subroutine, and KKM
improvement for the speeding-up.

3.1 BSGS Algorithm

Databases. In step 1 of Cheon’s algorithm, when BSGS algorithm is used, two
databases

DB1,B = {ζ0
dGd, ζ−1

d Gd, . . . , ζ−i
d Gd, . . . , ζ

−d1
d Gd}

and
DB1,G = {ζ0

dG, ζd1
d G, . . . , ζjd1

d G, . . . , ζ
d2
1

d G}
should be established. In our implementation, an element ζ−i

d Gd in the database
DB1,B is expressed by the following 12-byte representation

i︸︷︷︸
4-byte

||LSB64(MD5(x(ζ−i
d Gd)||y(ζ−i

d Gd)))︸ ︷︷ ︸
8-byte
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where i is assumed to be 4-byte, LSB64(·) represents the least 64-bit (8-byte)
of the data, MD5 is the hash function, and x(G), y(G) represent x- and y-
coordinate values of a point G on an elliptic curve. In the following, i is identified
as the index part and the rest is as the data part. Similarly, in the database
DB1,G, an element ζjd1

d G is expressed by the following 12-byte representation

j︸︷︷︸
4-byte

||LSB64(MD5(x(ζjd1
d G)||y(ζjd1

d G)))︸ ︷︷ ︸
8-byte

.

Thus, the databases DB1,B and DB1,G requires 12d1 bytes, respectively.

Database Search. Then, in step 1 of Cheon’s algorithm, it is needed to find
two integers u1, v1 satisfying ζ−u1

d Gd = ζv1d1
d G among the databases DB1,B and

DB1,G. Since a straight-forward search (namely, compare all ζ−i
d Gd in DB1,B and

ζjd1
d G in DB1,G) is inefficient, we used the following bucket-sort like algorithm [1].

1. Divide each database into 64 sub-databases depending on the most signifi-
cant 6-bit of the index part. When the most significant 6-bit of data ζ−i

d Gd

in DB1,B is � (0 ≤ � ≤ 63), it is stored in the sub-database DB(�)
1,B. Similarly,

when the most significant 6-bit of data ζjd1
d G in DB1,G is � (0 ≤ � ≤ 63), it

is stored in the sub-database DB(�)
1,G.

2. Sort all sub-database DB(�)
1,G (� = 0, . . . , 63). by the comb-sort algorithm [6],

which sorts N elements in O(log N).
3. For each �, search a collision among DB(�)

1,B and DB(�)
1,G. To do so, pick up

an element ζjd1
d G from the sub-database DB(�)

1,B and check whether the same

element is in DB(�)
1,G by the binary search algorithm.

If a collision is found in step 3 for a certain �, then, their indexes are what we
required: set u1 ← i and v1 ← j.

3.2 KKM Improvement

In our implementation, KKM improvement is also used for speeding-up Cheon’s
algorithm. Since our target group G is on an elliptic curve defined over a prime
finite field with a mediate size, the affine coordinate system is used rather than
the projective coordinate system. In the affine coordinate, every elliptic curve
addition requires an inversion computation in the finite field. In order to avoid
heavy operations, we used the Montgomery trick [13], which converts N inversion
computations into 1 inversion and 3(N − 1) multiplication computations. When
the Montgomery trick is used in KKM improvement, only O(log2 c) inversions
are required.
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4 Experimental Results

This section describes our experimental results of Cheon’s algorithm for an
elliptic curve used in the TinyTate library [14]. We successfully solved DLP-
wAI by our implementation in a group G with 128-bit order. Strongly note that
DLP has been believed to be secure in the same group.

4.1 Parameters

We used an addition cyclic group G = 〈G〉 with order r on an elliptic curve
y2 = x3 + x defined over a prime finite field Fp used in the TinyTate library
[14] which was developed by Oliveria et al. for implementing the pairing-based
cryptosystem in the embedded devices. Concrete values of these parameters are
summarized in the following:

p = 0x5387a1b6 93d85f28 8f131dd5 e7f9305c f4436019 a00f3181

168d7b20 8934d073 (256-bit)
= 3778160688 9598235856 7455764726 5839472148 1625071533

3029839574 7614203820 7746163
#E = 0x5387a1b6 93d85f28 8f131dd5 e7f9305c f4436019 a00f3181

168d7b20 8934d074 (256-bit)
= 3778160688 9598235856 7455764726 5839472148 1625071533

3029839574 7614203820 7746164
= 22 · 32 · 1227703 · 5024295160706223327986689772851 · r

r = 0x80000040 00000000 00000000 00000001 (128-bit)
= 1701411885 3107163264 4604909702 696927233

r − 1 = 0x80000040 00000000 00000000 00000000 (128-bit)
= 2102 · 3 · 11 · 251 · 4051

where #E denotes the number of points in E(Fp). In our implementation of
Cheon’s algorithm, we used the following parameters:

d = 12682136550675316736 (64-bit)
= 260 · 11

ζ = 5
ζd = ζd = 1243133183 1021416944 7902414199 634645036

d1 =
⌈√

(r − 1)/d
⌉

= 3662760472 (32-bit)

d2 =
⌈√

d
⌉

= 3561198752 (32-bit)

Here, d is chosen to minimize the time complexity of Cheon’s algorithm, and it
is estimated that our implementation requires about O(232.75) group operations
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Table 2. Computational Environment

CPU Intel(R) CoreTM i7 2.93 GHz
OS Ubuntu 10.04

Compiler gcc 4.2.2
Library GNU MP 4.1.2 [9]

and elements for solving DLPwAI. The generator ζ is chosen as the minimum
generator of the multiplicative group (Z/rZ)∗.

A base point G is randomly chosen from points in E(Fp) with order r. Then,
coordinate values of G, G1 = αG, Gd = αdG for our solution α = 3 are as
follows:

x(G) = 2120028877 3256318148 7254387784 2136477705 5392159948
4324389949 0272291266 930386

y(G) = 2676162370 5989368931 2040187896 9265522293 1214614323
9140635788 4068972949 5767328

x(G1) = 1406565621 3797322149 8774526987 0546365700 1853001649
7338926577 6415100308 801614

y(G1) = 3868330857 4106521926 0782358744 6121629591 2909889285
5061671768 3614580548 353865

x(Gd) = 3249689782 1175066681 3828703556 2385974940 1559994074
9555201487 6205365160 5880230

y(Gd) = 2017849900 8260892062 0757985589 8849092692 3717554232
0859082745 3474597173 7681072

4.2 Results

In the experiment, our implementation of Cheon’s algorithm successfully found
the solution α = 3 in about 45 hours and 246 GByte by using a single PC (other
environmental information are summarized in Table 2).

KKM Improvement. In our implementation, the Montgomery trick is used
for KKM improvement part. By experimental optimizations, we used param-
eters n = 216 and c = 8. The precomputation requires about 4 seconds, and
each scalar multiplication requires about 27 μseconds. About 1.03 mseconds is
required for a multiplication without KKM improvement, about 38 times speed-
up was established. Also, about 54 μseconds is required with KKM improvement
but without the Montgomery trick, about 2 times speed-up was established.

Step 1. Two databases DB1,B and DB1,G are generated in about 14.5 hours
and 82 GByte memory with 4 parallel computations. Then, 1 hour is required
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to divide these databases into 64 sub-databases DB(�)
1,B and DB(�)

1,G (0 ≤ � ≤ 63).
Since the parent databases DB1,B and DB1,G, and their cache are stored in this
divisions, 82 × 3 = 246 GByte are required.

Sorting a sub-database DB(�)
1,B required about 8 minutes, and searching a

collision among DB(�)
1,B and DB(�)

1,G required about 2 minutes. In our experi-
ment, we found a collision when � = 39 and obtained u1 = 2170110422 and
v1 = 846301393. Thus, we found a partial solution

k1 = u1 + v1d1

= 3099799291849047918

in about 22.1 hours.

Step 2. Similarly to Step 1, the database generation required about 14.2 hours
and 80 GByte. Dividing databases required about 1 hour and 80 × 3 = 240
GByte. Sorting a sub-database required about 7 minutes and searching a collision
among sub-databases required about 2 minutes. We found a collision when � = 52
and obtained u2 = 1609744154 and v2 = 718704617. Thus, we found a partial
solution

k2 = u2 + v2d2

= 2559449986726782138

in about 23.2 hours.
Consequently, we successfully obtained

k = k1 + k2(r − 1)/d

= 34337105659404196008394232931084369774

and the solution
α = ζk mod r = 3

in about 45.3 hours and 246 GByte memory.

4.3 Estimations

Based on our experimental results described in the previous section, we estimate
required time (in the worst case) and memory for solving DLPwAI with larger r.
Here, we do not consider the parallel processing. We assume that the parameter
d can be chosen as large as

√
r, namely, required time in Step 1 and Step 2 are

almost same.
Let TC be the required time for generating databases. Since a scalar multipli-

cation is computed in 27 μseconds, TC can be evaluated by

TC = 2 × 27 × 10−6 × 2 4
√

r [Seconds]. (2)
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Table 3. Cost Estimations

r TC TS T = TC + TS SC

128 bit 6 Days 17 Hours 7 Days 288 GByte
132 bit 11 Days 35 Hours 13 Days 576 GByte
136 bit 22 Days 74 Hours 25 Days 1152 GByte
140 bit 45 Days 6 Days 51 Days 2304 GByte

Table 4. Estimated Time for 128-bit r

Estimated Time

Jao, Yoshida [11] 16384 Days

Izu et al. [10] 1195 Days

This paper 7 Days

Then, let us evaluate the required time TS for the database search. Since the
sorting are dominant procedures, we neglect time for other parts. In our imple-
mentation, the comb-sort algorithm requires O(log N) for sorting N elements,
and a sort in a sub-database requires 8 minutes for 128-bit r, TS can be evaluated
by

TS = 2 × 64 × (8 × 60) × ( 4
√

r) log ( 4
√

r/64)
(232) log (226)

[Seconds].

On the other hand, the required memory SC can be evaluated by

SC = 12 × 4
√

r × 3 × 2 [Bytes].

By using these evaluations, estimated required time and memory for various
sizes of r are summarized in Table 3.

According to Table 3, solving DLPwAI seems to be feasible even if r is 140-
bit since the required time is about 50 days. However, the required memory
is beyond 2 TByte in this case. In the computational environment we used,
and in most environments, dealing with such huge memory is too difficult to
proceed. Thus, it is concluded that solving DLPwAI with 140-bit r is infeasible by
Cheon’s algorithm combined with BSGS algorithm. In order to solve such larger
problems, Cheon’s algorithm combined with the λ-algorithm or the kangaroo
algorithm would be employed.

Next, let us compare our results to the previous experiments (summarized in
Table 1) when r is 128-bit by the extrapolation. According to the time complexity
of Cheon’s algorithm, Jao and Yoshida’s implementation2 would require 3 ×√

264/230 = 393216 hours (16384 days) and Izu et al.’s implementation would
require 14×√264/242 = 28672 hours (1195 days) (Table 4). Even if the parallel
computation is applied, solving DLPwAI is infeasible with 128-bit r by these
implementations.
2 Note that Jao-Yoshida’s result was not dedicated to an efficient implementation.
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5 Concluding Remarks

This paper succeeded to solve a discrete logarithm problem with auxiliary input
(DLPwAI) in 45 hours with a single PC in a group with 128-bit order defined on
an elliptic curve over a prime finite field with 256-bit elements, which are used
in TinyTate library for implementing pairing cryptosystem in the embedded
devices. If cryptographic schemes based on problems such as �-BDE problem,
�-SDH problem, �-sSDH problem or �-BDHI problem are implemented, TinyTate
library should avoid using such weak parameters. However, there are pairing-
based cryptographic schemes which are not effected by Cheon’s algorithm such
as Boneh-Franklin’s ID-based encryption scheme.
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Abstract. Side channel attacks analyzing both power consumption and
electromagnetic (EM) radiations are a well known threat to the security
of devices dealing with sensitive data. Whilst it is well known that the
EM emissions of a chip represent an information leakage stronger than
the overall dynamic power consumption, the actual relation between the
emissions and the computations is still a subject under exploration. It is
important for the chip designer to be able to distinguish which portions
of the measured EM emissions are actually correlated with the sensitive
information. Our technique obtains a detailed profile of the information
leakage, identifying which harmonic components carry the largest part
of the it on the measured signals. It may be successfully integrated in
a design workflow as a post-testing feedback from the prototype chip,
in the form of additional constraints aimed at reducing the local wires
congestion up to a point where the emissions are no longer sufficient to
conduct an attack. The analysis allows the design of ad-hoc countermea-
sures (shields and/or EM jammers), which do not require architectural
changes to the chip. We provide a validation of the proposed technique on
a commercial grade ARM Cortex-M3 based System on Chip (SoC), ex-
ecuting a software implementation of AES-128. The proposed approach
is more efficient than a search of the whole frequency spectrum, allowing
to conduct a deeper analysis with the same timing constraints.

Keywords: Side-Channel Attacks, Embedded Systems Security, Differ-
ential Power Attacks, Differential Electromagnetic Attacks.

1 Introduction

A significant part of the security margin provided by a cryptographic device is
represented by its resistance to side channel attacks. Side channel attacks aim
at disclosing the secret key of cryptographic primitives, through measuring envi-
ronmental parameters during their computation. Typical environmental param-
eters from which it is possible to extract information relative to the values being

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 128–143, 2011.
� IFIP International Federation for Information Processing 2011
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processed are: power consumption [6,10], electromagnetic radiation [1,9] and ex-
ecution timing [5]. Depending on the environmental parameter being measured,
the attack techniques are called respectively Differential Electromagnetic Anal-
ysis (DEMA), Differential Power Analysis (DPA) and Timing analysis (TA).

A regular Differential Electromagnetic Analysis (DEMA) or a DPA attack
aims at modeling the variation of the EM emissions or the dynamic power con-
sumption of a chip caused by the different inputs fed to the cryptographic primi-
tive executed on it. Assuming all the values undergoing computation are known,
it is possible to accurately predict the values of the aforementioned environmen-
tal parameters, but, since the value of the secret key is not known to the attacker,
an alternative strategy is devised. The attacker creates a family of a-priori mod-
els, each one depending on a key hypothesis, i.e. an hypothetical value of a small
part of the key. The most common way of modelling either the power consump-
tion or the EM emissions of a digital circuit is taking into account either the
Hamming Weight (HW) of the values being computed or the Hamming Distance
between two subsequent values, during a part of the cryptographic primitive in-
volving the secret key. After building the models, the attacker correlates each of
the predicted results with each sample in the time series of an experimental mea-
surement (trace) of the environmental parameter related to the execution of the
targeted part of the cryptographic primitive. Since only one of the models will
fit, it is possible for the attacker to deduce the right key hypothesis. In order to
obtain a significant estimate of the relation between the models and the physical
parameters being measured, a large number of traces are taken while employing
different inputs (plaintexts or ciphertexts). Pearson’s linear correlation coeffi-
cient is the most common figure of merit employed to assess the goodness of fit
of the a-priori models against the actual measurements [3]. Pearson’s correlation
coefficient turns out to be rather effective in practice since the strength of both
the EM-emissions and the dynamic power consumption depend linearly on the
switching activity of the underlying circuitry [8].

The analysis of EM emissions has proven an effective side channel able to
yield efficient attacks [1, 4, 12], although it implies a quadratic increase in the
number of chip spots to be considered when compared to a DPA technique. A
significant factor for this efficiency is the use of small probes with a consequent
precise spatial localization of the sources of the measured signal.

The signals collected through these kinds of measurements have a high corre-
lation with the data computed by the cryptographic primitive operation consid-
ered in the a-priori models. For example, in [13] the authors show that recording
the emission traces over a particular spot of an FPGA programmed with an
implementation of the AES block cipher (identified as the places where the S-
Box function was synthesized) resulted in an effective reduction of the number
of traces required. Therefore, this kind of enhancements may be expected also
when the device under test is either an ASIC implementation or a general pur-
pose CPU running the same cryptographic primitive. Moreover, an important
advantage of EM analysis is the possibility to bypass common power analysis
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countermeasures, such as voltage pumps, and to ignore the presence of static
dummy cycles inserted to rebalance timing issues.

Within this context, we propose an enhancement of the testing methodology
for a circuit in order to include evaluation of the resistance to EM side channel
analysis as a design step. We propose an information leakage finding algorithm
aiming at recognizing which harmonic components of the measured signals actu-
ally convey the significant part of the exploitable side channel information. The
proposed algorithm is faster than an exhaustive brute force sweeping the whole
frequency range, while preserving the same accuracy for real world scenarios.
The proposed analysis enables to design countermeasures targeted to the spe-
cific leakage pattern of the device and may be conducted also on simulated traces
without any change in the procedure. At the best of the authors’ knowledge, this
is not currently possible due to the lack of publicly available EM emission es-
timation tools from any pre-prototype description of the chip. The availability
of such tools would allow a pre-prototyping evaluation of the EM leakage and
would allow to properly tune the post place-and-route procedure in order to
mitigate the EM leakage. This may be achieved through proper routing of the
wires, which represent the most EM radiating part of the circuit.

The paper is organized as follows: Sect. 2 describes how the proposed method-
ology integrates within the current chip design workflow. Sect. 3 explains the
proposed information leakage finding algorithm and provides insights on its in-
ner workings. Sect. 4 reports a practical validation of the proposed technique on
a commercial grade Cortex-M3 SoC running an industrial grade implementation
of AES-128. Finally, Sect. 5 presents our conclusions.

2 EMA Analysis as a Design Phase

A typical digital circuit design flow is composed of a fixed chain of stages follow-
ing the high level specification of the device, in the form of a netlist description
of the chip. The first steps in tackling the transformation of a netlist into an
accurate blueprint of the chip are: performing a preliminary consumption anal-
ysis on the design, and adding the Built In Self Test (BIST) additional logic
required to perform functional testing of the circuit. After these steps, the chip
description is accurate enough to perform a full placement through the wire
routing and clock tree design process. The obtained description is accurate up
to a full three dimensional representation of the design at single wire level, stored
in the Graphic Database System II (GDSII) common interchange format in or-
der to control the integrated circuit photolithographic etching. After completing
the whole design of the chip, a first prototype of the actual device is realized
and packaged in order to be sent to the testing stage. The prototype chips are
still subject to a series of compliance tests among which the Electromagnetic
compatibility (EMC) ones, aimed at ascertaining that the EM radiations of the
device are not strong enough to disturb the regular functioning of neighbouring
devices. Electromagnetic compatibility tests are oriented to obtain a quantita-
tive measure of the radiated energy, regardless of the information which may
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Fig. 1. Description of a typical digital chip design flow. The proposed EM analysis
stage is highlighted in gray

be carried by the wavefronts. In particular, since the die emits significantly less
than the bonding wires which connect it to the package pins, its emissions are
usually regarded as harmless by the common EM compatibility standards. The
security testing methodology proposed in this paper can easily be integrated in
the EMC compatibility testing phase, since it requires the same equipment to
be performed, and does not add a prohibitive amount of time to be spent at
the workbench. The target of the EM analysis is to provide a more accurate
information on both the spatial location and the informative content of the EM
radiation of the silicon die, through checking if there is a viable side channel for
attacks. After performing the proposed analysis, it is possible for the designer
to employ the gathered information for introducing countermeasures during the
place-and-route (p&r) step. In particular, it is possible to either exploit the free
space on the top layer of the chip, after all the p&r operations have been per-
formed, to introduce a grounded metallic shield over the most radiative zones
or to reroute partially the wires in order to avoid excessive local congestions.
A further possible countermeasure is the introduction of a jamming resonator
tuned on the frequencies which carry sensitive informations out of the chip. Such
a resonator may be easily realised as a simple tuned wire antenna and does not
need to interact with other circuits related to the chip. Thus it is possible to de-
sign it without having any concerns on the actual chip architecture thus, helping
a late-stage introduction, with only a negligible area overhead.

2.1 Electromagnetic Emission Analysis

The first step in the testing methodology is to obtain a map of the intensity of
the electromagnetic emissions of the silicon die. In a region of space close to the
chip surface, it is possible to model the EM emitting components as a set of wires
lying on the die plane. Since the radiated field of a single wire is emitted perpen-
dicularly to direction of the current flow, a probe constituted by a wire coil placed
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parallel to the die surface will not be sensitive to crosstalk from nearby wires1,
thus resulting in a reliable measure of the EM field intensity per underlying
area unit. As a consequence, the parts of the chip which will be radiating more
strongly are the ones characterized by a high wiring density. At the moment, the
routing tools are not considering excessive wiring density as a problem because
the power estimate is usually done before the wires are placed2. Consequently,
it is possible to have strongly radiating zones which are not de-congestioned
automatically by the tool, resulting in EM radiating hotspots. Round coil probes
are already in use to perform EMC testing3 on packaged chips, and may be used
to perform the mapping of the EM emissions as well, thus enabling equipment
reuse during the testing methodology. It is possible to obtain a precise mapping of
the intensity of the EM emissions of a chip per area unit during the computation
of a software cryptographic primitive through recording the field emitted in a
spot and repeating the measurements while sweeping with the probe all over the
die surface.

A kind of chip areas which may be of particular interest to be mapped are
the so-called glue logic areas: sections of the chip where the placement tool is
allowed complete freedom over the component and wire layout thus possibly
causing large wire skeins. Since the recorded emission signals provide the evolu-
tion of the field intensity over time, it also is possible for the designer to locate
exactly which part is emitting through checking either where the chip was active
during a certain time instant or which instruction is being executed on a mapped
CPU. This is particularly interesting in order to focus the analysis only on the
instructions of the running cryptographic primitive dealing with the secret val-
ues thus, avoiding unnecessary concerns about strong EM emissions in unrelated
time instants. We point out that the EM testing is performed in a white-box en-
vironment, where the designer knows all the implementation details of the chip,
including the software running on the general purpose CPU in case the algo-
rithm is not directly implemented as an ASIC. This kind of analysis is the one
warranting the strongest security on the final product, since it already assumes
that the attacker is able to know all the details of the device he will target,
thus considering the position of utmost advantage for him. Indeed, motivated
attackers may apply hardware reverse engineering techniques in order to fully
reconstruct the structure of a chip4. After the strongest emitting spots of the
chip have been located, a set of traces T is collected on top of them in order to
proceed to the frequency analysis of the EM radiation.

1 In a circular wire coil, placed parallel to the surface of the chip, the induced voltage
drop at the ends of the wire is proportional derivative of the sensed magnetic flux
(ΔV =− dφ

dt
).

2 Cadence Design Systems, Inc., Physical Prototyping–Key to Nanometer SoC Chip
Design, Whitepaper. Dec. 2010, http://www.cadence.com

3 International Electrotechnical Commission, IEC/TS 61967-3 ed1.0, ISO-Standard,
Dec. 2010, http://webstore.iec.ch/webstore/webstore.nsf/artnum/035659

4 Chipworks, Report Library & Technical Competitive Analysis, Technical Report, Dec.
2010, http://www.chipworks.com/Report_search.aspx

http://www.cadence.com
http://webstore.iec.ch/webstore/webstore.nsf/artnum/035659
http://www.chipworks.com/Report_search.aspx
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Algorithm 1. Leaked Information Finding Algorithm
Globals: T : set of traces, b: branching factor,

γ: confidence level of the correlation attack

Input: δ: frequency interval on which traces are evaluated; |δ| denotes the
length of the frequency interval

Output: L: list of pairs (δ, nδ), where δ is a frequency interval used to set up a
filter for the measured traces, and nδ is the minimum number of
filtered traces so that the correlation attack succeed with the given
confidence level. Initially, L← ∅

1 begin
2 if (|δ| ≥ η Nthreshold) then
3 Tδ � Filter(δ, T )
4 nδ � CorrelationAttack(γ, Tδ)
5 L � L ∪ { (δ, nδ) }
6 if (nδ = ⊥) then
7 return
8 else
9 {δ0, . . . , δb−1} � SplitUp(δ)

10 for i from 0 to b−1 do
11 Call Algorithm 1(δi)

3 Information Finding Algorithm

In order to automatically determine the harmonic components of the recorded
signals that actually carry the exploitable information, we devised an informa-
tion finding method reported in Alg. 1. This computation is intended to improve
the information leakage characterization by lowering the ratio between the en-
ergies Ef and Et of the filtered and unfiltered version of any trace, respectively.
The output of the algorithm provides all the information required to build an
optimum multi-bandpass filter in order to both maximize the aforementioned en-
ergy ratio, and discard the signal components not related to the key-dependent
computation. The effect on leakage estimation efficiency and precision is mea-
sured through considering the decrease in the minimum number of traces needed
to carry out a successful attack with a reasonable confidence margin. The key
idea is to split the spectrum in equally sized shares and filter the EM traces
with a Finite Impulse Response (FIR) filter whose bandpass keeps only one
share at a time. The shape of the filtering window is driven by the necessity of
having a maximum flat bandpass while retaining moderate aliasing in the time
domain and a reasonable roll-off in the frequency domain. Reasonable choices
are either a Chebyshev (type II) window or a tapered cosine window [11]. Sub-
sequently, a series of attacks on the filtered traces is performed to understand
which is the minimum number of measurements needed to distinguish, with a
reasonable statistic confidence, the correct key hypothesis from the other ones.
In order to perform a computationally efficient search in the frequency space,
Alg. 1 exploits a b-ary split search strategy. The algorithm employs the previously
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Fig. 2. Overlapping windows generated by the search algorithm. This example depicts
the amplitude of four tapered cosine windows, as it could happen on the first run of
the algorithm with b = 4.

collected trace set T as a test bench for the efficiency of the attacks. Let N be the
number of samples in the time series of each trace or, equivalently, the number
of bins of the Fast Fourier Transform (FFT) of the trace, and η the frequency in-
terval corresponding to a single bin (η=2 fNy/N). The frequency interval below
which considering the energy of the signal is still appropriate may be defined as
η Nthreshold, Nthreshold> 1, therefore the FFT bins of each trace may be thought
as a sequence of B=N/Nthreshold slices. The algorithm receives the frequency
interval δ, on which traces are evaluated, as a parameter. If the length of the
frequency interval in input, |δ|, is greater or equal than η Nthreshold, a digital
filter with such a support is applied to each trace in the set T , thus obtaining a
new set of filtered traces Tδ (lines 1–3). Given the set Tδ, a correlation attack on
the filtered traces is carried out in order to obtain either the minimum number
of traces nδ (which enable to recover the secret key) or a null value ⊥ (in case
of a failure of the attack) (line 4). Subsequently, the pair (δ, nδ) is inserted in a
global list L in order to record the shortest frequency intervals where the corre-
lation attack either succeeded or failed (line 5). In case the figure of merit nδ is
different from ⊥ (line 8), the interval δ is split up in b shares, with a 50% mutual
overlap, (as depicted in Fig. 2) and the same procedure is recursively called on
each share (lines 8–11), otherwise the algorithm returns from the call.

At the end of the execution, the list L will contain both the shortest frequency
intervals for which the correlation attack is able to recover the secret key and
the largest frequency intervals for which the measured traces T do not provide
enough information to retrieve the key. The use of a larger trace set may lead the
algorithm to spot more leaking intervals than the ones obtained with less traces
at the cost of a longer computation. After obtaining the output of the algorithm,
the designer is able to exploit the information to design an ad-hoc filter which will
remove all the harmonic components not containing any relevant information.
In order to design the filter, the designer may choose to keep all the parts of
the spectrum where the attack has succeeded with the number of traces at his
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disposal. A more restrictive choice is to keep only the harmonic components
where the attack succeeds with a number of traces smaller than the one needed
for an attack with unfiltered traces. The rationale behind this choice is the
fact that the stricter filtering will yield a higher ratio between the energy of the
filtered signal Ef and the total energy of the signal Et, while retaining most of the
informative content. On the other hand, discarding harmonic components which
are still carrying some information, although more polluted than the original
unfiltered signal, may be detrimental to the analysis, in case the leakage is not
concentrated in a precise number of slices. In the following sections we will refer
to the former spectrum slices as the good ones, while the latter will be indicated
as the acceptable ones.

3.1 Complexity Analysis

Let the running time of the algorithm be expressed as the number of Filter,
and CorrelationAttack operations being executed. Assuming the shortest
possible frequency interval (η Nthreshold) for the application of every digital filter
and correlation attack, a linear scan of the spectrum [0, B η Nthreshold] would
have a temporal complexity equal to Θ(B). It is possible to obtain a significant
reduction of the computational effort needed to detect the leaking components
of the signal through exploiting their sparsity and clustering over the whole
spectrum, since real world scenarios commonly exhibits such a behaviour.

The best case of Alg. 1 happens when the useful information in each mea-
sured trace is concentrated in at most 1 out of b frequency sub-intervals for
each call of the recursive procedure, thus giving a computational complexity of
T (B)=Ω(b logb B).

The worst case of Alg. 1 gives an upper bound to the temporal complexity
T (B) and corresponds to a balanced configuration of the b-tree where at leaves
level each group of sub-intervals has at least a slice where the attack succeeds. We
note that the worst case condition implies the information is uniformly spread
on the entire spectrum. Although this scenario is highly unlikely, it is possible to
mitigate the additional computational complexity that a tree-based search algo-
rithm would imply in such a case. A sensible trade-off is to modify the algorithm,
so that the execution will halt in case the slices reach a size of b Nthreshold, while
all the attacks are still successful. This yields a temporal complexity propor-

tional to T (B)=O(
�logb B�−1∑

i=0

bi)=O(B−1
b−1 ) at the cost of a reduction of a factor b

in the precision of the analysis, while in turn avoiding the only case where the
algorithm is slower than a linear scan.

The average-case running time requires a more accurate analysis. Intuitively,
the information is very clustered over the entire frequency domain, thus the
average running-time is expected to be much closer to the best case than to
the worst case for most part of the practical cases. Let p(j) the probability of
mounting a successful CorrelationAttack when considering the harmonic
components of the traces in T on a single slice of the frequency spectrum:



136 A. Barenghi, G. Pelosi, and Y. Teglia

[ j η Nthreshold, (j + 1) η Nthreshold ), where j∈{0, . . . , B−1}, consequently
the probability that the attack does not succeed is: 1 − p(j).

Let Xj be the indicator random variable associated with such an event. Hence,
Xj=1 if the CorrelationAttack is successful through filtering the traces on
the interval [ j η Nthreshold, (j+1) η Nthreshold ), j∈{0, . . . , B−1}. Assume each
call of Alg. 1 to be bound to a b-tree node, corresponding to a determined share
of the frequency spectrum B. Denote with X

[h−t]
jt

the indicator random variable
associated with the event of executing a successful CorrelationAttack when
considering the harmonic components of the traces in T on the frequency interval:
[ jt bh−t η Nthreshold, (jt +1) bh−t η Nthreshold ), where jt∈{0, . . . , B/bh−t−1},
t∈{0, . . . , h}, h=�logb B	. Therefore, X

[h]
jh

, X
[h−1]
jh−1

, . . . , X
[0]
j0

may denote the
random variables (from the leaf level to the root level) associated with each node
of the aforementioned b-tree, respecting the following relations:

Pr(X [h]
jh

= 1) = p(jh); jh ∈ {0, . . . , B − 1}

Pr(X [h−1]
jh−1

= 1) =
jh−1·b+b−1∑
jh=jh−1·b

Pr(X [h]
jh

= 1); jh−1 ∈ {0, . . . , B
b − 1}

Pr(X [h−2]
jh−2

= 1) =
jh−2·b+b−1∑
jh−1=jh−2·b

Pr(X [h−1]
jh−1

= 1); jh−2 ∈ {0, . . . , B
b2 − 1}

· · · · · ·

Pr(X [1]
j1

= 1) =
j1·b+b−1∑
j2=j1·b

Pr(X [2]
j2

= 1); j1 ∈ {0, . . . , B
bh−1 − 1}

Pr(X [0]
j0

= 1) =
j0·b+b−1∑
j1=j0·b

Pr(X [1]
j1

= 1); j0 ∈ {0}

The probability density function p(0), p(1), . . . in the above formula must be
either estimated or modelled taking into account (i) the specific operation of the
targeted cryptographic primitive, (ii) the hardware design of the target device
and (iii) the physical characteristics of the environmental parameter measured by
the attack. In common practical cases such as the analysis of EM emissions, the
harmonic components carrying information are usually restricted to a relatively
small bandwidth, since it is reasonable to assume that the resonating conductors
will have reasonably close impedences. The same narrow band consideration
may be made for power consumption measurements, since a synchronous circuit
dissipates most of the dynamic power at each clock edge, thus resulting in a
large part of the informative signal being concentrated on the same frequencies.
Therefore, the probability density function p(0), p(1), . . . it is expected to be
highly clustered (i.e., there are only a few p(k)=0, k∈{0, . . . , B−1}). Such a
probability density function results in a low number of branches requiring a full
depth exploration. Thus the proposed algorithm is faster than a linear scan in
the best and average case and as fast as the linear scan in the worst case.
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4 Experimental Validation

4.1 Workbench

The device under exam was a commercial grade Cortex-M3 based SoC5, endowed
with on die SRAM and Flash memory, both coupled to the CPU, and USB, RS-
232 and GPIO interfaces. The Cortex macrocell is synthesized together with 10+
other IP cores in a single block of glue logic, thus it is not possible to identify
through optical inspection any of the components, nor to infer the placement
of any of IP cores through looking at die surface with an optical microscope.
In order to get as close as possible to the die surface during the measurements,
the top of the chip package was removed through a combination of nitric and
sulphuric acid. The device under profiling was mounted on a regular development
board and affixed to a gas suspended X–Y moving table controlled by the same
computer gathering the data from the oscilloscope. We chose to map the chip area
by moving in 100μm steps and covering the whole zone to be mapped scanning
it line by line. The equipment employed to collect all the measures was a LeCroy
WavePro 7300a digital oscilloscope6 sampling at fs,DEMA=10Gsample/s (thus
resulting in a Nyquist limit for the sampled components at fNy=fs/2=5GHz),
and an EM-profiling oriented Langer ICR H probe7 made of an horizontally
oriented coil with an inner diameter of 150μm, placed roughly at 0.8mm from
the die surface. The signal picked up by the probe was amplified by a low noise
differential amplifier and fed directly into the oscilloscope sampling channel.
We targeted the load operation executed for the first look up in the S-Box.
The start of the acquisition was triggered by the device under test through
the use of a GPIO pin asserted by the enciphering program before the start of
the execution of the first AES-128 round. All the recorded traces was obtained
through averaging 16 measurements taken with the same settings and the same
plaintext in order to reduce the environmental noise.

In order to provide comparative results on Alg. 1, we also conducted a power
consumption measurements campaign. The measurements were collected with a
LeCroy Waverunner WavePro 7100A with a maximum sampling rate of 20Gsam-
ples/s with a LeCroy AP034 differential probe8 connected to a 2� shunt inserted
on the only power supply line available for the Cortex-M3 SoC. The sampling
rate was set to fs,DPA=5Gs/sec (fNy=2.5GHz) in order to provide a sound
safety margin on the sampling of fast dynamics which may be useful during the
analysis. All the signals measured are recorded in an 8-bit per sample raw format
and all signal treatment on a Core i7 920 running 64-bit Linux Gentoo 2010.1.
5 ARM, Cortex-M3 Processor, Technical Specifications, Dec. 2010,
http://www.arm.com/products/processors/cortex-m/cortex-m3.php

6 LeCroy, WavePro 7000 Series, Technical Specifications, Dec. 2010,
http://www.lecroy.com/france/press/articles/images/WavePro7000_DS.pdf

7 Langer EMV-Technik, IC Test Systems–Near Field Microprobes (ICR probes),
Technical Specifications, Dec 2010,
http://www.langer-emv.de/en/products/ic-measurement/

8 LeCroy, AP034 Differential Probe, Technical Specifications, Dec. 2010,
http://www.lecroy.com/Options/

http://www.arm.com/products/processors/cortex-m/cortex-m3.php
http://www.lecroy.com/france/press/articles/images/WavePro 7000_DS.pdf
http://www.langer-emv.de/en/products/ic-measurement/
http://www.lecroy.com/Options/
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Fig. 3. Intensity of the Cortex-M3 SoC EM emissions during the time lapse when the
first round key addition of AES-128 is performed. Clearer zones represent a stronger
EM activity. The magnitude of the current measured by the probe has been normalized
for visual enhancement.

4.2 Experimental Results

Employing the described setup, the silicon die of the device under attack was fully
mapped in order to determine which components were emitting and which parts
of the device logic were most active during the computation. The collected traces
were processed in order to obtain a temporal sequence of maps of the emissions
of the chip through adding the values of the emitted signal for 50 consecutive
samples at once. The result of this preprocessing was a movie depicting the
evolution of the emission during the whole running time of the AES-128, with
a time accuracy of 5ns per frame. Through the knowledge of the code running
on the chip, and thanks to the synchronization provided by the trigger raised
by the Cortex-M3 board, it was possible to locate when the CPU was doing
active computation at the beginning of the first AES round thus, obtaining the
frame depicted in Fig. 3. Figure 3 depicts the amount of emitted EM radiation,
measured as the intensity of the current running through the probe, where clearer
colours indicate a higher EM activity. The overlain boxes point out which areas of
the chip are optically recognizable. Through examining the map, it is possible to
distinguish which zone of the glue logic is occupied by the Cortex-M3 core, thanks
to the higher radiation caused by the ongoing switching activity. The second zone
having non negligible radiating activity is the flash memory: this activity can be
ascribed to the ongoing instruction fetch operation, performed in pipeline with
the CPU execution phase. A possible cause of the lower radiation activity shown
by the flash memory is the metal tiling added at manufacturing time to flatten
the photolithographic layers which partially shields the emissions. Nonetheless,
the memory electromagnetic activity is still strong enough to be measured by the
probe. Placing the probe directly above the center of the hotspot (at the bottom
right of the map) we collected 1100 traces of the EM emissions of the chip during
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(a) (b)

Fig. 4. Minimum number of traces necessary to perform an attack in Alg. 1 considering a
single slice. Figure (a) depicts the results for the EM traceset, while Fig.(b) for the power
consumption traceset. The leftmost dashed line indicates the least number of traces em-
ployed per slice, the rightmost the number of traces necessary with the unfiltered traces.
The omitted part of the spectrum has no slices where the attack succeeds.

the execution of the AES-128 algorithm employed in the previous phase, while
changing the input plaintexts. Each of the 1100 measurements is obtained as
the average of 16 measurements taken with the same plaintext in input to the
cipher. In order to perform efficiency analyses also on the power consumption
traces, 10000 traces of the power consumption of the same chip were collected.
Each recorded trace was the result of the averaging of 64 executions of the first
round of AES-128 with the same plaintext.

During the execution of Alg. 1, all the attacks were performed considering the
Hamming weight of the output of one byte of the S-Box as the emission intensity
model of the observable value. The branching factor of the b-tree was set to b=20
and the branching depth employed was 2. The precision achieved for the EM spec-
trum leakage detection was Nthreshold,DEMA·ηDEMA=80·1.25MHz=100MHz,
while for the power spectrum was Nthreshold,DPA·ηDPA=250·0.2MHz=50MHz.
Figure 4(a) shows the minimum number of traces required to successfully per-
form an attack on a specific slice of the spectrum (indicated on the y-axis). For
the sake of clarity, all the slices where the attack does not succeed have been repre-
sented having 0 as the minimum number of traces (instead of the maximum number
available for each traceset). The two vertical dashed lines, for each picture, repre-
sent the minimum number of traces required to perform an attack keeping only a
single slice of the spectrum (leftmost line) and the number of traces required to
perform an attack with the unfiltered traceset (rightmost line). Both figures show
that the effective part of the spectrum carrying information is rather small and, in
particular, concentrated towards the low end of the spectrum. In particular, the
power traces (Fig. 4(b)) show only two zones containing significant information
for the analysis, while the EM spectrum (Fig. 4(a)) is richer in terms of leaking
components. We note that many components of the EM spectrum contain more
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Fig. 5. Time-wise variance of the whole traceset for EM emission before (grey) and after
(black) the filtering with the filter encompassing both good and acceptable slices

(a) (b)

Fig. 6. Correlation analysis of filtered EM traces assuming a confidence level γ=80%
(a), and γ=99% (b)

noise than information with respect to the unfiltered traces. Indeed, a significant
number of attacks succeed with a greater number of traces than the one needed for
the unfiltered ones (this is indicated by the horizontal bars exceeding the second
dashed threshold).

Figure 5 depicts the variance of the whole EM trace set, computed sample-
wise. The black plot depicts the variance of the traces where a filter keeping
both good and acceptable slices has been applied, while the grey plot depicts
the variance of the unfiltered traces. It can be easily seen that evicting all the
frequency components found to be unrelated by the Alg. 1 yields a time series
where it is easy to spot which time instants have a large variation among different
inputs, and are thus expected to leak a significant amount of information. This
allows the designer to spot the other temporal locations where the information is
leaked by the same physical location of the chip. After obtaining the two filters,
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Table 1. Comparison among the efficiency of the filter construction technique on EM
and power consumption traces

Statistical
No Filtering Good Slices Accept.+Good Slices

Confidence Min. Num. Min. Num. Ef/Et
Min. Num. Ef/Et

of Traces of Traces of Traces

DEMA
80% 310 240

-63.8 dB
210

-61.6 dB
99% 660 400 410

DPA
80% 5800 300

-62.4 dB
450

-55.8 dB
99% 5800 800 800

one containing only the good slices, the other containing both the good and
the acceptable ones, we compared the attacks run with both the filtered and
the raw traces. In order to obtain a robust evaluation of the precision of the
characterization performed, we chose the minimum number of traces necessary
for the attack to succeed as a figure of merit. Since this figure is dependent on
a point estimate of a statistical value (Pearson’s coefficient) it is important to
take into account its level of confidence in order to properly evaluate the results.
This, in turn, implies that, instead of comparing the correlation coefficient of
the correct key with the best guess among the wrong ones (i.e., the most likely
error for an attacker), we checked when the two confidence intervals for the two
values are disjoint. This occurs when the value of the estimate of the correlation
coefficient for the correct key is above the one for the best mistake an attacker
will make, with a statistical significance (80% and 99%, respectively, in Tab. 1)
given by the width of the confidence interval. An example of the trend of the
correlation coefficient when employing a growing number of traces is presented
in Fig. 6. The figure depicts how the estimate of the correlation coefficients
of filtered traces stabilizes with respect to the number of traces employed to
perform the attack: the value of the figure of merit can be directly read (240
traces at 80% confidence level (see Fig. 6(a)) and 410 at 99% confidence level (see
Fig. 6(b)). The correlation values for the DPA attacks follow the same pattern,
except for the required number of traces which is higher. This may be attributed
to the large amount of uncorrelated power consumption which happens on the
SoC during the computation.

Table 1 reports the quantitative improvements obtained through the applica-
tion of the profiling technique to both DEMA and DPA. The first row of the
table shows how employing the automatically designed filters improves the effi-
ciency of the attack on a set of measurements. The eviction of the part of the
frequency spectrum unrelated to the observed value reduces the number of mea-
surements needed to detect the leakage by 22.5% employing only dense zones
and by 32% employing also the sparse ones thus, enhancing the quality of the
analysis of the radiated emissions. The quantity of noise removed by the filtering
is particularly relevant: the ratio between the energy of the filtered signal Ef and
the one of the raw acquisition Et is in the −60 dB range, implying that only a
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small part of the radiated emission is actually correlated with the critical com-
putation. Nonetheless, EM attacks are still able to succeed, if more resources are
devoted to take a large number of measurements from the chip. The second row
of the table reports the gains when the automatic filtering design methodology
is applied to power traces. The results suggest that also the correlation analysis
on the power consumption signals benefits from employing proper filtering on
the measured signals. The number of measurements is reduced by an order of
magnitude, coherently with the fact that the power traces, taking into account
the consumption of the whole chip, are expected to contain more content unre-
lated to the attack. In both cases, the enhancement in the efficiency allows the
designer to take into account the real entity of the threat, which would have
been masked by the environmental and systematic noise. One particular effect
is that, while DPA attacks benefit from employing only harmonic components
where the obtained information is dense, DEMA attacks perform better when
including also sparse ones. This may be ascribed to the fact that the leakage in
power consumption is concentrated in a few harmonic components [2].

The running time of the algorithm was sensibly lower than the linear scanning
of the spectrum for both cases. In particular, the analysis of the EM traces
required only 20 attacks at the first level and 40 at the second level of the b-tree
(thus 60 calls to CorrelationAttack instead of 400), while the analysis of
the power traces required 20 attacks at the first level and 20 at the second (40
calls versus the 400 needed for a linear scan). Taking into account the time for a
single attack the overall running time of Alg. 1 was of 2.5 hours (against a 16.6
for a full linear scan) for the power consumption profiling and of 19 minutes for
the EM profiling (against a 3 hours and 10 minutes long linear scan).

5 Conclusion

In this work we proposed a new technique able to obtain a characterization of
the information of the EM leakage and demonstrated its viability employing an
ARM Cortex-M3 chip running an implementation of AES-128. The proposed al-
gorithm is able to obtain a precise characterization of the harmonic components
of the side channel measurements (up to a 1/400th of the measured bandwidth
in our experiments), within an acceptable time frame on a single desktop. We
note that the information obtained from the spatial and frequency profiling of
the EM traces allows the designer to introduce ad-hoc countermeasures to the
information leakage. This results either in savings in terms of shielded area or
in the introduction of non-architecturally invasive active countermeasures into
the chip to selectively choke up the EM emitted information. As future develop-
ments for reinforcing the security of cryptographic devices, through employing
signal processing techniques, we plan to investigate topics about blind source
separation (BSS) methods [7]. After a proper mapping of the targeted device,
these techniques provide an interesting tool to separate the signal components
bound to the cryptographic primitive computation from the signals emitetted
from other active parts of the device.
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Abstract. The Elliptic Curve Digital Signature Algorithm (ECDSA)
and the Advanced Encryption Standard (AES) are two of the most pop-
ular cryptographic algorithms used worldwide. In this paper, we present
a hardware implementation of a low-resource cryptographic processor
that provides both digital signature generation using ECDSA and en-
cryption/decryption services using AES. The implementation of ECDSA
is based on the recommended Fp192 NIST elliptic curve and AES uses
128-bit keys. In order to meet the low-area requirements, we based our
design on a sophisticated hardware architecture where a 16-bit datapath
gets heavily reused by all algorithms and the memory is implemented
as a dedicated RAM macro. The proposed processor has a total chip
area of 21 502 GEs where AES needs only 2 387 GEs and SHA-1 requires
889 GEs.

Keywords: Cryptographic Processor, ECDSA, ECC, AES, SHA-1, ASIC
Implementation, Low-Resource Constraints.

1 Introduction

In a world where an innumerable amount of pervasive devices communicate with
each other, the need for security increases heavily. Cryptographic services like
secure symmetric and asymmetric authentication as well as confidentiality build
the basis for contactless security applications like access control, mobile payment,
and product authentication.

Most of the published hardware implementations of cryptographic services
optimize a single algorithm or even a part of it and often do not account for
higher-level protocols and applications. Turning such cryptographic primitives
into a working product turns out to require a multiple of resources in the end. In
this paper, we investigate the implementation of a cryptographic processor for
low-resource devices. We present a complete integrated solution which is based
only on standardized algorithms and protocols.

In particular, using standardized algorithms and protocols with an appropri-
ate level of security is important to assure the interoperability between devices

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 144–159, 2011.
� IFIP International Federation for Information Processing 2011
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and to allow reuse of existing infrastructures in back-end applications. Even
in the very cost-sensitive market, people get more and more convinced that
standardized solutions are inevitable. Two of the most important standardized
algorithms are the Elliptic Curve Digital Signature Algorithm (ECDSA) [23]
and the Advanced Encryption Standard (AES) [21]. ECDSA, which is for exam-
ple used for secure identification in e-passports, generates digital signatures for
message and entity authentication. AES is the successor of the Data Encryption
Standard (DES) and today the most frequently used symmetric block cipher for
encryption and authentication.

Hence, we target the implementation of our cryptographic processor on these
two algorithms. The reason why we have chosen to implement both algorithms
in one module is that the public-key scheme ECDSA can be used for offline
authentication in open-loop applications while AES is much faster when the
verifier has online access especially in closed-loop scenarios. Furthermore, with
our approach of reusing components like the memory and the controlling engine
we want to demonstrate that these high-security algorithms can be migrated
to very resource-constrained devices such as mobile devices, embedded systems,
wireless sensors, and RFID devices.

In this paper, we present the first ASIC hardware implementation of a crypto-
graphic processor that is able to perform both the ECDSA using the NIST el-
liptic curve over Fp192 and the AES (encryption and decryption) with 128-bit
keys. Our implementation targets low-resource devices which implies fierce re-
quirements concerning chip area (costs) and power consumption (due to a possible
contactless operation). We meet the ambitious design goals by using a sophisti-
cated hardware architecture where the main components memory, datapath, and
controlling engine are reused by all implemented algorithms. Using a 16-bit dat-
apath with a multiply-accumulate unit and a dedicated RAM macro instead of
a flip-flop based memory minimizes the chip area. Next to several algorithmic-
level improvements, we present a very efficient arithmetic-level implementation
of a modular multiplication with interleaved NIST reduction over Fp192. The en-
tire processor needs 21 502 GEs where 2 387 GEs are required to support AES and
889 GEs are needed for SHA-1. This is because AES and SHA-1 reuse several com-
ponents of our processor such as the microcontroller and the common memory.

The article is structured as follows. Section 2 summarizes related work on AES
and elliptic-curve hardware implementations. An overview of the system is given
in Section 3 and the hardware architecture is described in detail. Arithmetic-
level implementation are given in Section 4 where we describe the NIST modular
multiplication. Section 5 shows the implemented algorithms such as SHA-1, AES,
and ECDSA. Results of our work are presented in Section 6. Conclusions are
drawn in Section 7.

2 Related Work

There exist many articles that describe hardware architectures for AES and
elliptic-curve based algorithms. One landmark paper that reports a low-resource
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implementation of AES is due to M. Feldhofer et al. [4] in 2004. Their imple-
mentation needs 3 595 GEs and performs a 128-bit encryption within 1 016 clock
cycles. P. Hämäläinen et al. [7] presented an encryption-only AES architecture in
2006. Their design needs only 3 100 GEs. Similar results have been reported also
by J.-Kaps et al. [14] and M. Kim [15] who presented an encryption-only AES
implementation with around 4 000 GEs.

In view of elliptic-curve cryptography (ECC) there exist several implementa-
tions that propose efficient hardware architectures for scalar multiplication, e.g.
S. Kumar et al. [17] and L. Batina et al. [1]. Architectures with implementations
of also higher-level protocols have been proposed by A. Satoh et al. [24] and
J. Wolkerstorfer [27] who proposed a dual-field ECC processor for low-resource
devices. Y. K. Lee et al. [18] and D. Hein et al. [9] presented an ECC co-processor
over binary fields F2163 . The work of Lee integrates a tiny microcontroller for
higher-level arithmetics while the work of Hein includes a digital RFID front-
end supporting the ISO 18000-3-1 standard protocol. ECDSA implementations
have been realized by J. Wolkerstorfer [27], F. Fürbass et al. [5], and E. Wenger et
al. [26]. They based their design on prime-field arithmetics to support ECDSA.

Our work is based on an ECDSA implementation of M. Hutter et al. [10].
We extended the work by implementing AES-128 (supporting encryption and
decryption) as a main contribution and show that it can be integrated into
the processor with low resources. We further give a detailed description of the
arithmetic-level and algorithmic-level implementation of the processor and dis-
cuss the results in Section 6.

3 System Overview

The implementation of our proposed processor is based on the recommended
NIST Weierstrass elliptic curve over Fp192. This has mainly two reasons. First,
our processor should be as flexible and scalable as possible while keeping the
required chip area low. A processor over Fp allows us to support different pro-
tocols and algorithms on the processor without the need of any additional logic
circuits. However, the costs for that choice are a lower performance compared to
binary-extension field processors. Second, fixing the implementation to a stan-
dardized elliptic curve provides interoperability with existing applications like
X.509 public-key infrastructures (PKI), citizen cards, and e-passports. Further-
more, it allows several optimizations in hardware like the NIST modular reduc-
tion [8] to gain additional performance.

We decided to implement a 16-bit architecture. During our investigations, it
has shown that a 16-bit data width provides an optimum for reducing the chip
area and the power consumption while keeping the required number of clock
cycles within limitations.

3.1 Hardware Architecture

In order to design a low-resource processor, we minimized the required hard-
ware resources by reusing components like the memory and the controller for all
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Fig. 1. Architecture of the Cryptographic Processor

implemented algorithms. Especially for the AES this means that the overhead
is very low because the ECDSA dominates the memory requirements and the
controlling effort.

The cryptographic processor consists of three main components as depicted
in Figure 1. The first component is the controller, which is responsible for se-
quencing the desired algorithms and the generation of the control signals for the
memory and the datapath unit. The second module is the memory, which holds
data during computation, constants like curve parameters, and also non-volatile
data like the private key (for ECDSA) and the secret key (for AES). The third
module is the datapath, which performs the arithmetic and logic operations for
ECDSA and AES.

The memory of the processor can be accessed by a memory-mapped I/O.
Via an AMBA interface it is possible to write and read data to and from the
RAM (e.g. the message to sign or the generated signature) but also to access the
EEPROM or the instruction register. In very complex algorithms and protocols
like ECDSA with implicit SHA-1 calculation and random-number generation,
the controlling effort in terms of design complexity and chip area gets more and
more dominant. Hence, we investigated a totally new concept where a micro-
controlled approach makes the implementation more flexible but keeps also the
hardware complexity low compared to dedicated finite-state machines.

Memory Unit. The memory unit comprises the three types RAM, ROM,
and EEPROM in a 16-bit linear addressable dual-port memory space. The
128 × 16-bit dual-port RAM is realized as a dedicated macro block. This halves
the chip area of this memory resource. In detail, ECDSA needs 7 × 192 bits
for calculating the point multiplication, one 192-bit value to store the message
that has to be signed, and one 192-bit value for the ephemeral key k. Addition-
ally, we reserved 192 bits for storing the seed that is used in both ECDSA and
AES to generate the needed random numbers. The ROM circuit stores 128 16-bit
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constants like ECC parameters, SHA-1, and AES constants. It is implemented
as an unstructured mass of standard cells. The EEPROM stores non-volatile
data like the ECDSA private key, the public-key certificate, the AES secret key,
and potentially other user-specific data up to 4K bits, which can be written in
a personalization phase or during the protocol execution.

Datapath Unit. The datapath of our processor is shown in Figure 2. It is
mainly composed of an ECDSA and AES datapath. Both datapaths share one
single 40-bit accumulator register which pursues the strategy of reusing com-
ponents for ECDSA and AES. The 40-bit register is used as accumulator for
ECDSA (multiply-accumulate unit) as well as intermediate storage for AES.

The AES datapath is mainly composed of an S-box submodule, a MixColumns
submodule, five multiplexers, one XOR gate, and two 16-to-8 bit converters. The
converters are used since we decided to implement the AES operations with 8 bits
instead of 16. The remaining 8 bits are used to store random values which are re-
quired to perform dummy operations1. The AES datapath has been implemented
similar to the work of M. Feldhofer et al. [4]. For the S-box operation, we calculated
the substitution values using combinatorial logic instead of a look-up table, which
reduces the number of additional gates. Furthermore, the MixColumns operation
has been realized as an individual submodule which generates one byte of the AES
State using one single clock cycle. The ShiftRows and AddRoundKey operations,
in contrast, have been realized without expensive logic circuits. These operations

1 Dummy operations are types of hiding countermeasure techniques against side-
channel attacks (see [19] for more details).
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need several controlling signals and one XOR gate. The AES constant Rcon has
been externally stored in the ROM memory. In addition, we integrated an operand-
isolation technique (also often referred to as sleep logic) to reduce the power con-
sumption of the processor. If AES in enabled, the operands for AES get isolated
from the ECDSA datapath. This eliminates unnecessary power dissipation and
reduces the power consumption of the processor by about 13 %.

The ECDSA datapath is mainly composed of a 16 × 16-bit multiplier, two
40-bit adders, and five multiplexers. For low-area reasons, we decided to use a
16-bit multiply-accumulate (MAC) architecture to perform a finite-field multiple-
precision multiplication. For this, partial products are calculated and accumulated
in the common register to perform a multiplication. The implemented algorithm
for the multiple-precision modular multiplication is described in Section 4.

SHA-1 is an integral part of ECDSA and is used to hash digital messages.
Thus, we decided to integrate all needed components to perform SHA-1 opera-
tions into the ECDSA datapath. These are four additional 16-bit logic gates, i.e.
AND, OR, XOR, and NOT. The logic operations are directly connected to port
A and port B of the entire datapath. The bitop and mux multiplexer are then
used to output the result of the appropriate operation. For a detailed description
of the SHA-1 standard see the FIPS-180-3 [22] standard.

Low-Resource Microcontroller. A sophisticated two-layer approach was nec-
essary to efficiently implement the controlling of the cryptographic processor.
The generation of control signals for various irregular algorithms and protocols,
which require in total several 100 000 clock cycles, is very complex. The highest
layer of the controller comprises an 8-bit microcontroller with a highly opti-
mized instruction set. It performs higher-level functions like protocol handling,
point multiplication, and invocation of round functions for SHA-1 and AES,
for instance, due to its ability for looping and subroutine calls. The advantage
of having a microcontroller is that it is very flexible because of extending the
functionality by simple Assembler programming. Basically the microcontroller
sets up and calls certain instructions which lie in a subsequent microcode ROM
table (the second control layer). For the execution of such instructions, which
can take up to 102 clock cycles, the start address in the microcode ROM has to
be provided. While the microcode ROM provides instructions for the datapath
and the memory via the instruction and the address decoder, the microcontroller
can set up the next instruction. This avoids idle cycles of the datapath during
execution of the algorithm.

Our proposed microcontroller is based on a Harvard architecture, i.e. program
memory and data memory are separated. Such a design has the advantage that
the program memory can have a different word size than the data memory. The
microcontroller is a Reduced Instruction Set Computer (RISC) supporting 32
instructions that have a width of 16 bits. The instructions are mainly divided
into four groups: logical operations like XOR and OR, arithmetic operations like
addition (ADD) and subtraction (SUB), control-flow operations like GOTO and
CALL, and microcode instructions (MICRO).
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4 Arithmetic-Level Implementation

Modular multiplication is the most resource-consuming operation in an ECC im-
plementation. In fact, more than 80 % of the execution time is due to finite-field
multiplications. In the following, we describe the implemented modular multipli-
cation with interleaved NIST reduction. Modular addition and subtraction have
a minor impact on the overall performance and they have been implemented
according to [8].

NIST P-192 Modular Multiplication. The given algorithm is based on
a product scanning (Comba) method and performs a modular multiplication
using t2 single-precision multiplications, where t represents the number of words
of the processor, i.e. 12 in our case. In general, a multiplication by two 192-bit
integers a, b ∈ [0, p < 2Wt) will result in a 384-bit result c, where W represents
the number of bits of a word (e.g. 16) and p represents the NIST prime p =
2192 − 264 − 1. Instead of storing the 384-bit result in memory, we reduced
the result during the multiplication (interleaved reduction and multiplication).
Thus, no additional memory is needed for the multiplication. We make use of
the following congruency [25], i.e.

Algorithm 1. Modular multiplication with interleaved NIST P-192 reduction.
Require: a, b ∈ [0, p− 1], S ∈ [0, 23W − 1], ε ∈ [0, t + t/3− 1].
Ensure: c = a ∗ b (mod 2192 − 264 − 1).

1. S ← 0.
2. for i from 0 to t− 1 do
3. for j from t− 1 to i do
4. S ← S + A[j]*B[i + t− j].
5. end for
6. C[i] ← (S mod 2W ); S ← (S �W ).
7. end for
8. C[t − 1] ← (S mod 2W ). S ← 0.
9. for i from 0 to t/3 do

10. S ← (S + C[i] + C[i + 2t/3]).
11. C[i] ← (S mod 2W ); S ← (S �W ).
12. end for
13. for i from 0 to t/3 do
14. S ← (S + C[i] + C[i + t/3]).
15. C[i+t/3]← (S mod 2W ); S← (S�W ).
16. end for
17. for i from 0 to t/3 do
18. S← (C[i+ t/3] - C[i] - S) + C[i+2t/3].
19. C[i + 2t/3] ← (S mod 2W );
20. S ← (S �W ) (mod 2).
21. end for
22. ε← S

23. for i from 0 to t− 1 do
24. for j from 0 to i do
25. S ← S + A[i− j]*B[j].
26. end for
27. if (ε = t/3) then
28. S ← S + C[i] + ε.
29. else
30. S ← S + C[i].
31. end if
32. C[i] ← (S mod 2W ).
33. S ← (S �W ).
34. end for
35. ε← S
36. for i from 0 to t− 1 do
37. if (ε = t/3) then
38. S ← S + C[i] + ε.
39. else
40. S ← S + C[i].
41. end if
42. C[i] ← (S mod 2W ).
43. S ← (S �W ).
44. end for

return (c).
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c ≡ c52128 + c5264 + c5 (1)
+ c42128 + c4264

+ c3264 + c3

+ c22128 + c1264 + c0 (mod p),

where ci are 64-bit integers. Equation (1) shows that c can be reduced by simple
additions. The first three lines reduce the higher part chigh = c52320 + c42256 +
c32192. The result is then added to the lower part clow = c22128 + c1264 + c0.

The algorithm for the modular multiplication with interleaved NIST reduction
is given in Algorithm 1. First, the higher part of the 384-bit result is calculated
(line 1-8). Second, the higher part is reduced by subsequent additions to the
lower part of c (line 9-21). After that, the lower part of the 384-bit result is
calculated and added to the already reduced result (line 23-34). In line 27-31,
the carry ε is reduced by adding ε to the accumulator variable S at word index
0 (line 22) and t/3 = 4 (line 28). Finally, a last reduction is performed in line
35-44 to reduce the final carry ε.

The modular multiplication has been implemented as a fully unrolled mi-
crocode instruction. It needs 204 clock cycles to perform a modulo multiplication
of two 192-bit numbers. Modular addition and subtraction need 31 clock cycles.

5 Algorithm-Level Implementation

5.1 The SHA-1 Algorithm

For our ECDSA processor, we decided to sign messages with a fixed length of 16
bytes. This constraint allows us to reduce the SHA-1 implementation to only one
512-bit message block W . In addition, the message padding can be implemented
a priori by storing the length of the message in ROM. Thus, the 16-byte message
can be simply copied into the RAM before signature generation. Message padding
is done during the computation of ECDSA by copying the length of the message
at the end of the input block W .

We implemented 13 different microcode instructions for SHA-1 and made sev-
eral modifications to improve the performance (see Algorithm 2). First, since line
13 and line 20 are the same, i.e. F ← (B ⊕ C ⊕ D), we implemented only one
microcode instruction that is invoked two times during the computation. Second,
instead of copying the values of the state variables (A,B,C,D,E,T) as shown in
line 25+26, we simple rotated the addressing of the variables. Thus, no additional
clock cycles are needed and the addresses get shifted by the microcontroller in
every loop iteration. Third, all bit-shift operations are realized by multiplication.
A left shift by one (line 6) is a simple multiplication with the constant 2, a shift
by five (line 8) is a multiplication by 32, and a shift by 30 (line 24) is realized
by a multiplication with 16 384. Thus, no dedicated shifting unit is necessary in
the datapath of the processor and the multiplier of the ECDSA datapath gets
simply reused by the design. Fourth, the constants K0...K4 and the initial val-
ues for H0...H4 are stored in ROM and are loaded by the microcode instructions.
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Algorithm 2. The Secure Hash Algorithm (SHA-1) [22].
Require: 512-bit block W ; H0, H1, H2, H3, H4, T, F, A,B, C, D, E ∈ [0, 232 − 1].
Ensure: h = SHA-1(W ).

1. A = H0; B = H1; C = H2;
2. D = H3; E = H4.
3. for i from 0 to 79 do
4. if (i ≥ 16) then
5. W[i] ← W[i-3] ⊕ W[i-8] ⊕
6. W[i-14] ⊕ W[i-16]  1.
7. end if
8. T ← (A  5) + W[i].
9. if (i < 20) then

10. F ← (B ∧ C) ∨ (B∧ D).
11. T ← T + 0x5A827999.
12. else if (i < 40) then
13. F ← (B ⊕ C ⊕ D).
14. T ← T + 0x6ED9EBA1.
15. else if (i < 60) then

16. F ← (B ∧ C) ∨ (B ∧ D) ∨
17. (C ∧ D).
18. T ← T + 0x8F1BBCDC.
19. else
20. F ← (B ⊕ C ⊕ D).
21. T ← T + 0xCA62C1D6.
22. end if
23. T ← E + F.
24. B ← B  30.
25. E ← D; D ← C; C ← B;
26. B ← A; A ← T.
27. end for
28. H0← H0 + A; H1← H1 + B;
29. H2← H2 + C; H3← H3 + D;
30. H4← H4 + E;

return (H0, H1, H2, H3, H4).

Fourth, the round loop i is done by the microcontroller which also performs the
branching at certain loop indices. Since the microcontroller can prepare the loop-
index calculation during the execution of a microcode instruction, additional
clock cycles are saved. In total, our processor needs 3 639 clock cycles to hash a
512-bit message.

5.2 The AES Algorithm

For AES, we implemented 11 microcode instructions. As already stated in Sec-
tion 3.1, we extended the 16×8-bit AES State to 16×16-bit where 8 bits are used
to store the real State and the other 8 bits store random values (r0...r15).

Figure 3 shows the processing of the first AES State. The first operations are
SubBytes and ShiftRows which transform the State column-wise, i.e. four byte
blocks. First, each byte of the State is loaded and substituted by the S-box unit.
In order to implicitly shift the bytes of the State for the ShiftRows operation, we
simply addressed the appropriate bytes in the State. Thus, each byte of a column
is addressed accordingly (address 0, 5, 10, and 15 in our example) and substituted
afterwards. The result is stored in the accumulator of the datapath. After that,
the bytes are loaded from the accumulator and processed by the MixColumns op-
eration. The output is then XORed with the key within the AddRoundKey op-
eration. Finally, the result is stored back into the AES State. Since we processed
the bytes of a column without the ShiftRows operation (in fact the bytes have not
been shifted before MixColumns), we stored the resulting bytes in the correct po-
sition within the State. However, to avoid overwriting of data, we simply swap
the values of the real and dummy State. Thus, after the first round, the dummy
values are stored in the lower 8 bits and the real values are stored in the higher 8
bits of the State.
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Fig. 3. The processing of the State in the first AES round

In order to make the implementation less attractive to side-channel attacks,
we integrated several countermeasures described in the following. As a first coun-
termeasure, we integrated dummy operations before and/or after the actual Ad-
dRoundKey operation. 16 dummy operations are performed in total where the
actual operation is widespread over 17 different locations in time.

As a second countermeasure, we randomized the processing of the bytes in
the AES State which is often referred as byte-shuffling countermeasure. For this,
we randomized the byte position after the SubBytes operation. The transformed
bytes are stored in the accumulator with a random offset. After MixColumns
and AddRoundKey transformation, the offset is incorporated through the right
addressing of the State.

As a third countermeasure, we added 16 dummy rounds to the actual rounds.
In fact, we performed dummy rounds only in the first and second round and the
last two rounds of AES. This has its reason in the fact that side-channel attacks
need to target intermediate values which can be generated by a model with less
computational effort. Targeting intermediates of higher rounds would increase
the computational effort significantly to generate values for each possible key. It
is therefore sufficient to consider only the first and last two rounds of AES to
obtain an appropriate protection.

All implemented countermeasures are commonly used in practice and pro-
vide a state-of-the-art protection for cryptographic devices. For a more detailed
description about dummy operations and shuffling (hiding techniques), see the
work of Mangard et al. [19].
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5.3 ECC Scalar Multiplication

We applied the Montgomery ladder as scalar multiplication method given in Al-
gorithm 3. This is due to the fact that it provides security against several attacks,
e.g. Simple Power Analysis (SPA) attacks [16,19] and safe-error attacks [28].
Furthermore, it allows to perform all group operations with x-coordinate only
formulae [12].

We applied the idea of N. Meloni [20] and Y. Lee et al. [18] and performed the
computations in a common-Z coordinate representation. The idea is to satisfy
that the Z coordinate of each curve point is the same during each Montgomery
ladder iteration. Only three coordinates have to be maintained during every
differential addition and doubling operation instead of normally four, i.e. X0,
X1, and Z. By applying the method, we did not reduce the needed number of
intermediate registers but rather improved the point-multiplication performance.
One Montgomery loop iteration needs therefore 12 finite-field multiplications, 4
squarings2, 9 additions, and 7 subtractions. The memory stores three coordinates
(X0, X1, and Z) and four intermediate values of 192 bits.

Algorithm 3. The implemented ECC scalar multiplication method based on
the Montgomery ladder.
Require: Base point P = (xP , yP ) ∈ E(Fp192), k ∈ [1, n− 1], random λ
Ensure: Q = kP , where Q = (xQ, yQ) ∈ E(Fp192)
1: (X0, Z0)← (λxP , λ).
2: (X1, Z1)← Dbl(P ).
3: X0 ← X0 · Z1, X1 ← X1 · Z0, Z ← Z0 · Z1.
4: for i = 190 downto 0 do
5: (Xki⊗1, Xki , Z)← DifferentialAdditionAndDoubling(Xki , Xki⊗1, Z).
6: end for
7: (X0, Y0, Z0)← Y recovery(X0, X1, Z, P ).
8: if Z′

0(Y ′2
0 − bZ′2

0 ) �= X ′
0(X ′2

0 + aZ′2
0 ) abort.

9: xQ ← X0 · Z−1
0 .

10: Return (xQ).

As a side-channel countermeasure, we applied the randomized projective co-
ordinate (RPC) countermeasure as proposed by S. Coron [2] in 1999. Before
starting a point multiplication, we generate a random number λ and performed
one finite-field multiplication to randomize the affine x-coordinate of the base
point xP to obtain the randomized projective coordinates (X0, Z0) = (λxP , λ).

After scalar multiplication, we perform a check if the point is still a valid
point on the elliptic curve. For this, we recovered the coordinates (X0, Y0, Z0)
according to Izu et al. [11] and evaluated Z ′

0(Y ′2
0 − bZ ′2

0 ) = X ′
0(X ′2

0 + aZ ′2
0 )

according to N. Ebeid and R. Lambert [3]. Finally, the projective coordinates
(X0, Z0) are transformed back into affine coordinates by applying a finite-field
inversion and multiplication, i.e. xQ ← X0 · Z−1

0 .

2 The squaring operation is realized by a simple multiplication operation.
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5.4 ECDSA Implementation

After scalar multiplication, all performed operations are done modulo the prime
n. The implemented ECDSA signature generation algorithm is shown in Algo-
rithm 4. Modulo multiplication has been implemented according to the Mont-
gomery multiplication algorithm proposed by G. Hachez and J. J. Quisquater [6].
We implemented five microcode instructions to perform the operation. The
Montgomery inversion has been implemented by the algorithm proposed by
B. Kaliski [13]. For that operation we implemented seven microcode instructions.

Algorithm 4. Signature Generation using ECDSA.
Require: Domain parameters D = (q, FR,S, a, b, P, n, h), private key d, message m.
Ensure: Signature (r, s)
1: Select k ∈ [1, n− 1]
2: Compute Q = kP = (xQ, yQ).
3: Compute r = xQ mod n. If r = 0 then go to step 1.
4: Compute e = SHA-1(m).
5: Compute s = k−1(e + dr) (mod n). If s = 0 then go to step 1.
6: Return (r, s).

Random numbers have been generated according to the FIPS 186-2 [23] stan-
dard. The standard describes a hash-based pseudo-random number generator
that can be realized with the SHA-1 algorithm. Our decision has mainly two
reasons. First, the process of random number generation is based on a stan-
dard specification and is considered to be cryptographically secure. Second, we
already need a hash calculation for the message-digest calculation in ECDSA
and we can simply reuse the implementation of the SHA-1 algorithm for that
purpose. The prerequisite is to load a true-random seed from an external source
into RAM. The random number is hashed and the message digest is stored as
a seed key (XKEY). This seed key is then used in any higher-level protocol to
generate any random numbers needed to provide the cryptographic service.

6 Results

We implemented our processor in a 0.35 μm CMOS technology using a semi-
custom design flow with Cadence RTL Compiler as synthesis tool. The summa-
rized results are shown in Table 1 and Table 2. The total chip area of 21 502GEs
includes datapath, ROM, RAM macro, and controller for ECDSA, SHA-1, and
AES (including microcontroller and microcode control and ROM). Note that we
included a standard RAM macro needing 8 727 GEs that can be further mini-
mized using an area-optimized RAM block.

We also synthesized our processor without the AES datapath and microcode
entries resulting in 19 115 GEs. This means that the integration of AES needs
2 387 GEs which is lower than existing stand-alone (and finite-state machine
based) AES modules. The same has been done with SHA-1. Even though ECDSA
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Table 1. Area of chip components

Component GE

Datapath 3 393

Memory without RAM 729

RAM macro (128x16-bit) 8 727

Controller 8 653

ECDSA+SHA1+AES Total 21 502

Overhead of AES 2 387

Overhead of SHA-1 889

Table 2. Cycle count of operations

Component Cycles

PRNG generation (4× SHA-1) 14 947

Point multiplication 753 393

Point-validity check 29 672

Final signing process 65 097

ECDSA Total 863 109

SHA-1 3 639

AES with shuffling 4 529

required SHA-1 for signing of messages, we removed any SHA-1 related imple-
mentation to validate the overhead. These are program-ROM entries, microcode
instructions, decoder circuits, and the logic operations in the ECDSA datapath.
After synthesis, we obtain 20 613 GEs which means that SHA-1 needs an area of
889 GEs (180 GEs for program ROM, 546 GEs for microcode instructions, and
163 GEs for the datapath).

In view of ECC, our processor needs 753 393 clock cycles for one point mul-
tiplication. The entire ECDSA signing process needs 863 109 clock cycles in-
cluding side-channel and fault-attack countermeasures (RPC and point-validity
check). AES with byte shuffling needs 4 529 clock cycles and 15 577 cycles with
10 dummy-round operations enabled. Note that the number of clock cycles for
AES thus varies depending on the number of added dummy rounds. The more
dummy rounds, the higher the security level and the higher the needed number
of clock cycles. SHA-1 needs 3 639 clock cycles for hashing a 512-bit message
block. The SHA-1 algorithm has also been used to generate random numbers.
For ECDSA, four SHA-1 computations are performed to generate the needed
random numbers which needs 14 947 clock cycles. We also evaluated the critical
path of our processor and determined a maximum clock frequency of 33 MHz.

The mean current of the circuit is 485 μA at 847 kHz and 3.3 V and has been
simulated using Synopsis NanoSim. This value includes the power consump-
tion of the entire processor including microcontroller, ECDSA, SHA-1, and AES
datapath, and memory. Note that we based our design on a rather old CMOS
process technology (0.35 μm) so that further power reductions can be achieved
by using a smaller process technology (for example CMOS 0.13 μm).

We compare our implementation with existing ASIC solutions over prime-field
arithmetic. Since there does not exist any implementation of both ECDSA and
AES within one processor, we have to compare it with ECC (or ECDSA) only
implementations. The processor of F. Fürbass et al. [5] needs 23 656 GEs and
502 000 clock cycles, J. Wolkerstorfer [27] needs 23 800 GEs and 677 000 clock
cycles, and M. Hutter et al. [10] need 19 115 GEs and 859 188 clock cycles. The
work of A. Satoh et al. [24] needs 29 655GEs and 4 165 000 clock cycles for the
same size of prime-field arithmetic and E. Wenger et al. [26] need 11 686GEs and
1 377 000 clock cycles. Note that a fair comparison is largely infeasible since the
implementations differ in several ways, for example they do not use RAM macros
and do not contain an AES implementation.
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7 Conclusions

In this article we presented the first stand-alone cryptographic processor which
performs ECDSA using the recommended NIST elliptic curve over Fp192 and
AES-128. We improved the state-of-art of building cryptographic processors for
low-resource devices on the arithmetic level, on the architectural level (combined
ECDSA, SHA-1, and AES module), and on the implementation level. The pro-
cessor’s architecture has an optimized 16-bit datapath and a controller with an
integrated 8-bit microcontroller, both implemented in standard-cells. The entire
chip has an area of 21 502 GEs where AES requires 2 387 GEs and SHA-1 re-
quires 889 GEs. Currently, we are about to manufacturing the chip on a 0.35 μm
CMOS process technology. The chip will be integrated in a passively powered
Near Field Communication (NFC) device.
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Abstract. Cryptographic hash functions are an omnipresent compo-
nent in security-critical software and devices; they support digital sig-
nature and data authenticity schemes, mechanisms for key derivation,
pseudo-random number generation and so on. A criterion for candidate
hash functions in the SHA-3 contest is resistance against side-channel
analysis which is a major concern especially for mobile devices. This pa-
per explores the implementation of said candidates on a variant of the
Power-Trust platform; our results highlight a flexible solution to power
analysis attacks, implying only a modest performance overhead.

1 Introduction

Within the cryptographic community, open “contests” to evaluate, select and
standardise the use of secure and efficient primitives have become de rigueur.
The most high-profile example is the Advanced Encryption Standard (AES)
contest run by NIST from 1997 to 2000 to find a replacement for DES, the
incumbent block cipher design. This model was repeated in 2007 when, partly
motivated by increasingly able attacks [1, 2] on SHA-1 [3], NIST launched the
SHA-3 contest [4] to develop a new cryptographic hash function. Briefly, a hash
function

H : {0, 1}∗ −→ {0, 1}n

maps an arbitrary-length input (or message) to a fixed-length, n-bit output
(or digest). Hash functions support, for example, digital signature and data
authenticity schemes, mechanisms for key derivation and pseudo-random number
generation and are indispensable for security-critical devices. As such, various
security requirements (e.g., the need for H to be collision resistant) are outlined
in [5]. However, in common with the AES contest, other metrics are important
for SHA-3; specifically, efficiency in hardware and on a variety of software-based
platforms is paramount.

Within the context of embedded and mobile computing, such metrics are par-
ticularly pertinent: they represent the exact resources in short supply. The same
context may imply additional requirements in the sense that physical security
(e.g., against side-channel and fault attacks) is also a valid metric. Example at-
tacks on hash functions are given by [6, 7, 8, 9, 10, 11]; these are exacerbated by
the wide range of use cases. Ideally one has an idea of the trade-offs different
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countermeasures offer so as to select the right one before deployment, but in
practice this topic has not drawn much attention (for example, note the discus-
sion triggered by Rivest’s question [12] on the matter).

Keeping this difficulty in mind, one attractive approach is to provide a “generic”
countermeasure. For power analysis based attacks, and focusing on hardware im-
plementation, this can be realised by utilising a so-called secure logic style. The
idea is to take a generic circuit and automatically replace CMOS cells with al-
ternatives such as SABL [13] or WDDL [14]. To consider a similar approach for
software, one must instrument a generic countermeasure so that each instruction
is prevented from leaking information during execution. Several proposals exist,
such as NONDET [15], but a more concrete and complete implementation is pro-
vided by Power-Trust [16,17]. The SPARC V8-based Power-Trust platform houses
a secure zone, implemented in a secure logic style, and security-critical instruc-
tions are executed only by this zone to avoid leakage; the result is a generic coun-
termeasure, mounted in a general-purpose processor, which offers an extremely
flexible solution. The question is, how does this solution fare wrt. the SHA-3 use-
case? Does it, for example, imply a performance overhead low enough to allow
secure deployment of the selected SHA-3 candidate in embedded and mobile
applications?

Focusing on 6 of the 14 remaining (as per round two) SHA-3 candidates,
this paper addresses three points all stemming from the same underlying work,
namely investigation of said candidates on the Power-Trust platform:

Performance of candidates, i.e., assuming that Power-Trust provides an ad-
equate countermeasure against power analysis attacks, what overhead does
this imply and is this the best approach? Section 2.1 presents a concrete
attack scenario; the criteria for performance includes throughput and in-
struction mix (e.g., any bias toward memory access).

Agility of SPARC V8 analogous instructions, i.e., given a set of protected
instructions required for one SHA-3 candidate, can we implement another can-
didate with the same set?

Potential for advanced Instruction Set Extensions (ISEs), i.e., for which
candidates can we find useful ISEs? For example, we suggest several generic
(i.e., not Power-Trust-specific) instruction set extensions which could be used
to accelerate BMW.

One can view the second and third points as evaluating the Power-Trust design
itself; the novel aspect in this respect is the workload used (namely the SHA-3
candidates), which is more diverse than previously studied.

2 Background

2.1 Side-Channel Attacks on Hash Functions

There are numerous examples of successful side-channel attacks on specific hash
functions, and a variety of specific countermeasures have been proposed [6,7,8,9,
10,11]. However, within the context of developing hash functions it is attractive
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Fig. 1. Protecting HMAC from side-channel attack: only the operations and values
drawn with solid lines need to be protected

to be more general (both for attacks and countermeasures) since this allows far
easier high-level comparison. As such, we keep our model of side-channel attack
as generic as possible within practical limits:

Simple Power Analysis (SPA) is possible whenever the sequence of opera-
tions performed during execution of H depends on a fixed, security-critical
input.

Differential Power Analysis (DPA) is possible when the input to an invo-
cation of H combines fixed security-critical data and variable data which
can be controlled by the attacker. That is, invocation resembles H(s, m) for
a fixed, security-critical s and variable m.

Timing Attacks are possible whenever a security-critical input affects the time
taken to execute H ; examples include conditional branches or cached table
look-ups based on said input.

Additionally, for all three types of attacks we allow the attacker to perform a
profiling step to create templates. In the following, Hi(si−1, mi) denotes the i-th
invocation of the compression function used by H with the state (or chaining
variable) s and message m as input.

Neither SPA nor timing attacks matter for the hash functions that we are con-
sidering: they always use the same instruction sequence (i.e., there are no input-
dependant branches), and do not use any table look-ups. Indeed, CubeHash [18,
Page 3] makes this an explicit design criterion. On the other hand, DPA does
matter. Fig. 1 illustrates this fact for H used within the popular HMAC con-
struction. The outputs of H0 and Hf0 are intermediate states; they are both
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fixed (they depend only on constant values) and security-critical (since they are
derived directly from sk, the key used to authenticate messages). Thus, H1 and
Hf1 fall squarely into our attack scenario:

H1

(
H0(IV, sk ⊕ i pad)︸ ︷︷ ︸

constant, secret

, m1︸︷︷︸
variable

)
Hf1

(
Hf0(IV, sk ⊕ o pad)︸ ︷︷ ︸

constant, secret

, H((sk ⊕ i pad) ‖ m)︸ ︷︷ ︸
variable

)

To roughly outline a potential DPA attack, notice that the attacker can repeat-
edly invoke the HMAC construction with an m of his choice. By observing the
power consumption during execution, correlation between the data-dependent
interaction of m and the secret constant allows him to hypothesise about the
value of the constant and ultimately to recover it, thus undermining security.

This scenario demonstrates the value of an agile solution via two points. First,
an inflexible solution dictates the H to be used; this is unattractive because if H
is (seriously) broken, one might hope to change it without incurring significant
cost. Second, notice that the vulnerable invocations are H1 and Hf1 only, while
H2,...,n need no protection as long as the compression function is one-way. An
inflexible hardware-oriented approach might implement a countermeasure for all
invocations, hence incurring a performance overhead in each. A more flexible
solution would apply the countermeasure only where necessary, and potentially
provide a performance advantage in other cases.

2.2 The Power-Trust Platform

The so-called “Power-Trust platform” is a SPARC V8-based ASIC prototype of
a side-channel resistant embedded processor implementing the security concept
developed in the context of the Power-Trust project [16, 17]; its main goal is to
evaluate the validity and effectiveness of the security concept as a whole. Further-
more, the prototype allows to investigate various design options and trade-offs
in practice, e.g., different management instructions, exception handling features,
and secure logic styles. The Power-Trust prototype has integrated support for
AES and ECC, but the security concept itself is principally suited for handling
a wide range of cryptographic workloads.

The basic idea of the security concept used in Power-Trust is to combat side-
channel leakage directly in the processor hardware. The main concern are power
and EM analysis attacks, but also timing attacks are mitigated. As a first mea-
sure, the circulation of potentially vulnerable datums is restricted to a tiny por-
tion of the processor (essentially the functional units) by masking them whenever
they are not required. This includes values which pass through various pipeline
stages or which are written to caches and memories. The second measure pro-
tects all remaining vulnerable parts of the processor containing the unmasked
data values themselves, the masks, and any values related to mask generation,
by implementing them in a secure logic style. This part of the processor is re-
ferred to as “secure zone” and shown in Fig. 2. The secure zone offers a range
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Fig. 2. The secure zone of the Power-Trust platform

of instructions which can be executed within its boundaries. From its interface,
the secure zone looks very similar to a regular functional unit, which facilitates
integration into the processor.

In the following, we explain the secure zone concept from a programmer’s
point of view. In order to implement a cryptographic algorithm in a power-
analysis resistant manner, the following steps are necessary:

– Before execution, the inputs to the cryptographic algorithm are masked ex-
plicitly by the caller.

– Any instructions which produce potentially vulnerable values must be exe-
cuted within the secure zone.

– Depending on the implementation and the secure zone capabilities, it might
be required to save some masks to memory and restore them later on to the
secure zone.

– Once the output of the cryptographic algorithm has been calculated, the
mask is removed by the caller.

Explicit masking and unmasking of inputs and outputs can be seen as transfer-
ring values between “normal” domain and “masked” domain. In the masked
domain, values can only be manipulated by instructions of the secure zone
(in the following denoted as secure zone instructions)1, and consequently a
1 Of course, masked values could be manipulated by “normal” processor instructions,

but this would mean that masked values and masks become desynchronised, leading
to erroneous output from the algorithm.
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cryptographic algorithm can only be protected if it can be implemented with
secure zone instructions. The number of masked values which are readily avail-
able for processing is limited by the number of masks that the secure zone can
actually store. However, masks can be swapped in and out of the secure zone in
order to extend the number of masked values at the expense of some additional
mask management instructions and storage.

In relation to the workload of typical cryptographic algorithms, masking and
unmasking constitute only a minor overhead. Implementations using secure zone
instructions can even see a considerable speed-up in comparison to the use of
native processor instructions, since secure zone instructions can be tailor-made
to fit specific algorithms or classes of algorithms. However, the management of
masks might entail overheads, especially if a large number of masked values is
required. Thanks to the flexibility of the mask management instruction set, this
overhead can often be minimised by exploiting the structure of the protected
cryptographic algorithm.

A mask may never directly leave the protection of the secure zone, as otherwise
an attacker might launch a higher-order attack [19] on masked data and the
corresponding mask. However, masks need to be extracted if the secure zone
runs out of storage entries for masks or if there is a task switch. For this case,
masks can be represented as a specific state of the mask generator unit which
originally produced the mask and the number of steps the mask generator has
taken till it produced the mask. The secure zone features mask management
instructions for extracting the state of the mask generator and the step count.
Similarly, instructions for setting the mask generator state and regenerating
masks from a given step count exist for restoring masks to the secure zone.

In the Power-Trust prototype, the mask generator state consists of 128 bits
and the step count (including some additional meta-information) is another 32
bits; therefore in the worst case a 32-bit mask requires five 32-bit words of
storage. However, several stored masks can relate to the same state of the mask
generator, thus greatly reducing the required memory. Similarly, the software
can take steps to ensure the step count from a given mask generator state is
low when a mask is written out to memory. In this way, when the mask is then
restored, the required number of instructions is limited.

2.3 Our Variant of the Power-Trust Platform

We made two additional choices at the architectural level in order to ensure
realistic and comparable results:

– We needed to decide on the number of masks that can be held within the
mask storage, selecting 32 as a trade-off between 8 masks supported by the
current IC prototype and the upper bound of 210 which could principally
be supported by the architecture. We believe this to be at the upper-edge
of economic possibilities, but will demonstrate that some candidates can be
implemented with a much smaller mask store.
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– We only add instructions to the secure zone if they can be executed in one
cycle and do not affect the critical path. Designing more elaborate functional
units (e.g., multipliers) for the secure zone is principally possible but would
require considerable design effort and is left for further research.

Based on these choices, we are confident that any subsequent prototypes can
support our candidates without significant differences in performance from the
original.

A third choice had to be made on the software level; any consideration of op-
erating system influences such as trap handling, interrupts and context switches
would have biased our results towards a specific use case, e.g., toward smart-
cards. However, we want our results to be as generic as possible, and therefore
did not consider any operating system.

3 Implementation of Hash Functions on the Power-Trust
Platform

To make comparison easier, we chose the following hash functions for implemen-
tation on the Power-Trust platform:

– BLAKE-32 and its third round version BLAKE-32v3 ( [20], [21])
– BlueMidnightWish−256 ( [22], [23])
– CubeHash160+16/32+160-256 and CubeHash16+16/32+32-256 which was

suggested for the third round ( [18], [24])
– Keccak[1088, 512, 32] ( [25], [26])
– SHA-256 ( [27])
– Shabal-256 ( [28], [29])
– Skein-256-256 (this is the “low-memory” proposal of [30])

In the following we will motivate these choices, and highlight noteworthy specifics
in our implementations. Where possible we follow the notation of the original
submissions.

BLAKE-32 and SHA-256 were easy to implement for us due to their small in-
ternal states; for BLAKE-32 we followed the example of the “Optimized 32bit”
implementation provided by the BLAKE team. We also give numbers for the
third round version BLAKE-32v3 which increases the number of rounds from 10
to 14.

CubeHash operates on a state that is too large to fit completely into the regis-
ters, and uses a large number of round function iterations within each Hi; this is
a bad combination for Power-Trust because masked data has to be swapped in
and out of memory frequently. However, by choosing a suitable memory layout
the number of memory accesses can be reduced. The 1024-bit CubeHash state
is represented as a 5-dimensional cube state [] [] [] [] [] of two 32-bit words per
dimension but can be split into four 3-dimensional subcubes state [x1] [] [] [] [x5]
with x1,5 ∈ {0, 1} requiring 8 masked registers each. The first 9 steps of the
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round function can be computed first on the two subcubes state [x1] [] [] [] [0],
and then on the two subcubes state [x1] [] [] [] [1] since there are no interdepen-
dencies during these 9 steps. Therefore, no more than two of these subcubes
have to be kept in registers at any point of time. The 10-th (and last) step swaps
the subcubes state [1] [] [] [] [x5] which can be implemented simply by swapping
pointers. Overall, this means that only three subcubes have to be loaded and
stored per iteration of the round function.
Keccak[1088, 512, 32] allows a separation in the memory layout similar to that
afforded by CubeHash if one follows the example given by the unrolled “Opti-
mized 32bit” implementation by the Keccak team. However, one has to deal with
ten memory blocks of five 32-bit values, using 10 masked registers for each of
the intermediate variables D[5][2] and C[5][2].
BMW256 had to be implemented without optimisation regarding memory usage
since its internal state can not be separated into bigger blocks, as it was for
CubeHash or Keccak, due to its high interdependency. However, we were able to
identify two possible sets of generic ISEs that implement the six s0,...,5-functions

si∈{0,...,3}(x) := SHR(x, ci,0) ⊕ SHL(x, ci,1) ⊕ ROTL(x, ci,2) ⊕ ROTL(x, ci,3)
si∈{4,5}(x) := SHR(x, ci,0) ⊕ x

where SHR, SHL, and ROTL denote right shift, left shift, and left rotate, respec-
tively, and ci,j are constants specifying the number of bits to shift or rotate.
Furthermore, they always occur in combination with a modular addition

z ← si(x) + y mod 232

where y in some cases is the output of another s-function. Thus we implemented
and compared three versions of BMW256:

BMW Plain: This implementation of BMW256 uses no ISEs.
BMW “generic s”: This implementation uses one ISE, namely

SZ BMWS %x, %i, %z

to compute
z ← si(x).

BMW “special s”: This implementation uses six ISEs, namely

SZ BMWSi %x, %y, %z

to compute
z ← si∈{0,...,5}(x) + y mod 232.

Shabal-256 , according to our results, has significantly worse performance on
Power-Trust than other SHA-3 candidates. One of the main reason is the rela-
tively large internal state comprising forty-eight 32-bit words which exceeds the
number of processor registers. Additionally, it requires a relatively large amount
of iterations with a high interdependency between the internal state variables.
The resulting memory accesses for masked values generate considerable overhead
on the Power-Trust platform.
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SHA-256
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SZ SLL

SZ SUB

SZ XOR

SZ ROTR

SZ ADD
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SZ AND

SZ OR

SZ ADDcc

SZ ADDX

Fig. 3. Generic commands required from the secure zone to implement SHA-3 can-
didates. With the exception of SZ ROTR they have an unprotected equivalent in the
SPARC V8 instructions (see appendix B, [31]).

Skein offers two replacements for SHA-256, a “primary proposal”
Skein-512-256 and a “low-memory” proposal Skein-256-256 targeted at embed-
ded devices; since our platform is intended for mobile and embedded devices
we chose to implement Skein-256-256. The Skein family is optimised for 64-bit
architectures, but most of the Skein-256-256 kernel can be easily implemented on
our 32-bit architecture; the exception is addition of 64-bit values. To implement
it, we use SZ ADDcc and SZ ADDX commands analogous to the SPARC V8 ADDX
and ADDcc instructions which require a carry flag within the secure zone2. The
flag has to be taken care of by the scheduling algorithm of the operating system
and is not reflected in our analysis any further.

Other hash functions. We did not consider the AES-based candidates (e.g.,
ECHO) since we expect they can be implemented using variants of the existing
AES-oriented ISEs within Power-Trust. In addition, we did not consider candi-
dates requiring multiplication (e.g., SIMD); as mentioned before, implementation
of sufficiently efficient multipliers for the Power-Trust secure zone is a non-trivial
task which we reserve for future work.

4 Results

4.1 Instruction Set Agility

Many SHA-3 candidates have been developed with ISEs in mind: CubeHash, for
example, can capitalise on the availability of SSE-based ISEs on x86 platforms.
2 One straight forward possibility to do this is to provide a command that reads the

value of the flag (and all other flags if there are any) into a masked registers which
can then be stored to memory and another command to restore the flags from a
masked register.
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Table 1. Total number of instructions required for one iteration of the compression
function Hi(·, ·), to hash a one-block message (denoted by H) and the register usage
of the implementations

Hash Function
#Ops #Ops/byte #Registers code size

Hi(·, ·)Hi(·, ·) H Hi(·, ·) H masked in total

BLAKE-32 4142 4142 64.72 64.72 18 23 17.28kB

BLAKE-32v3 5678 5678 88.72 88.72 18 23 23.53kB

BMW256 6042 15068 94.41 235.44
29 32

25.44kB
BMW256, “generic s” ISE 4686 12356 73.22 193.06 20.15kB
BMW256, “specialised s” ISEs 4622 12228 72.22 191.06 19.90kB

CubeHash160+16/32+160-256 14880 160540 465.00 5016.88
17 21

62.00kB
CubeHash16+16/32+32-256 14880 44444 465.00 1388.88 62.01kB

Keccak[1088, 512, 32] 107960 107960 812.35 812.35 30 32 456.68kB

SHA-256 6833 6833 106.77 106.77 22 27 27.12kB

Shabal-256 128387 513548 2006.05 8024.19 31 32 556.66kB

Skein-256-256 (“low-memory” variant) 13222 39666 413.19 1239.56 28 31 54.72kB

see Fig. 4 see Fig. 5

Table 2. Total number of load and store instructions required for one iteration of the
compression function Hi(·, ·) and to hash a one-block message (denoted by H)

Hash Function
#load #store #load+store

Hi(·, ·) H Hi(·, ·) H Hi(·, ·) H

BLAKE-32 192 192 26 26 218 218

BLAKE-32v3 256 256 26 26 282 282

BMW256 512 1634 302 757 814 2391

CubeHash160+16/32+160-256 1256 13814 1668 17544 2924 31358

CubeHash16+16/32+32-256 1256 3830 1668 4872 2924 8702

Keccak[1088, 512, 32] 14674 14674 9810 9810 24484 24484

SHA-256 328 328 48 48 376 376

Shabal-256 20268 81072 12111 48444 32379 129516

Skein-256-256 (“low-memory” variant) 544 1632 541 1623 1085 3255

see Fig. 6

In a similar way, certain candidates can exploit ISEs available in the Power-Trust
platform. For example, it already provides AES-oriented ISEs and, in Section 3,
we outlined various extensions for BMW256.

Despite the advantage this implies on platforms which support such ISEs, the
approach is a potential disadvantage on platforms which do not: on many mobile
and embedded platforms, for example, SIMD ISEs are missing (unless one counts
packed arithmetic within word-sized values). As a result, it is useful to consider
the agility of a minimal instruction set as a design metric for Power-Trust. That
is, given there is an inherent cost associated with adding an ISE to Power-
Trust, it is attractive to support a broad workload (i.e., many different SHA-3
candidates) using as few secure zone instructions as possible. This is especially
important when considering the need to support migration from SHA-256 to
SHA-3 within the device lifetime. With this in mind, we investigated which
Power-Trust instructions are required by each candidates; the result is shown in
Fig. 3. A major feature of the results is that a secure zone processor that provides
instructions which can implement SHA-256, also provides all instructions needed
for BLAKE-32 and CubeHash as well. For all the other candidates considered,
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additional instructions must be implemented in the secure zone and will incur
additional expenses.

4.2 Performance

To optimise performance, we fully unrolled all implementations, hard-coded any
constants and ran them on a cycle-accurate simulator of the platform. We did
not implement message padding; instead we assumed having a padded but un-
masked message block stored in memory which is loaded when appropriate and
then masked. As shown in Section 2.1, the most common case for hash function
implementations with countermeasures against side-channel attack will have a
preformatted, unmasked message in memory which has to be hashed without
leaking information on the previous states. The code can easily be adopted to
hash masked messages and the costs of loading a masked message block is to
some extent absorbed by the then superfluous message masking. However, this
would have required a convention with the calling function how to store a masked
message and the related mask information.

The performance results of our implementations are shown in Table 1; the
instruction counts show the candidates separated into three distinct but con-
stant groups. The first group is formed by BLAKE-32, BLAKE-32v3, SHA-256
and all three BMW256 implementations. The second group comprises
CubeHash16+16/32+32-256, Keccak[1088, 512, 32] and Skein-256-256; the
ranking within this group varies depending on the performance criteria.
Most notably, it shows the performance disadvantage CubeHash16+16/32+32-256
and Keccak[1088, 512, 32] incur in software implementations for supporting
only one state size for all security parameters. The third group comprises
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CubeHash160+16/32+160-256 (which has been superseded by
CubeHash16+16/32+32-256) and Shabal-256. Both are not competitive on this
platform. (See also Fig. 4 and Fig. 5.)

Another interesting metric are the number of load and store instructions con-
tained within the total number of instructions; these are listed in Table 2. The
ISEs for BMW256 have, as expected, no influence on the number of memory ac-
cesses. The ranking of algorithms in respect to memory access is not very different
from the ranking in respect to instructions per byte; while Keccak[1088, 512, 32]
ranks better on the number of instructions per byte than Skein-256-256 and
CubeHash16+16/32+32-256, it is behind them in the number of memory access.
The poor ranking of Shabal-256 with respect to any of the instruction counts is
easily explained by the high number of memory access required to implement it;
about 28% of all instructions are memory accesses.

Working in the design phase of a processor architecture, we can only present
operation counts that do not represent the costs of load and store instructions
properly. Therefore we decided not to compare our results with other studies
such as eBASH [32] as they measure their results in processor cycles.

5 Conclusions

In this paper we demonstrated the flexibility of the Power-Trust platform wrt.
to provision of generic countermeasures against side-channel attacks at reason-
able costs; these metrics are paramount in the design and deployment of hash
functions on secure embedded and mobile devices. Furthermore, our analysis
contributes to the SHA-3 competition by highlighting, for the first time, the cost
each candidate incurs from hardware protection. We additionally provided the
first example of (non-AES) ISEs for BMW256, and outlined design requirements
for general ISEs in this area. Furthermore, the effort to produce human-optimized
code for these hash functions highlights the need to develop a compiler for this
platform in the future; this work will then provide a good base to measure the
compiler’s efficiency.
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Abstract. In this paper, we study and compare two popular methods
for post-processing random number generators: linear and Von Neumann
compression. We show that linear compression can achieve much better
throughput than Von Neumann compression, while achieving practically
good level of security. We also introduce a concept known as the ad-
versary bias which measures how accurately an adversary can guess the
output of a random number generator, e.g. through a trapdoor or a
bad RNG design. Then we prove that linear compression performs much
better than Von Neumann compression when correcting adversary bias.
Finally, we discuss on good ways to implement this linear compression in
hardware and give a field-programmable gate array (FPGA) implemen-
tation to provide resource utilization estimates.

Keywords: bias, linear correcting codes, entropy, random number
generators, post-processing.

1 Introduction

Hardware-based random number generators (HRNGs) are sometimes preferred
over algorithm-based bit generators. The randomness in the raw bitstream gen-
erated by HRNGs depend on the highly unpredictable nature of certain physical
processes and are therefore less prone to the risks of cryptanalytic attacks, which
are more applicable on deterministic bit generators. However, the raw output of
HRNGs tends to be slightly biased and may even deteriorate over time.

To address this problem, HRNG implementations typically add an additional
post-processing step to ameliorate symptoms of non-randomness in the raw bit-
stream. Basically, a compression function is applied to the raw bitstream before
it is output at the user’s end. If the raw bitstream starts out with an unusu-
ally high bias, the post-processing step would transform the bitstream such that
the bias becomes more acceptable. Sometimes this may come at the expense of
throughput, for example, the processed bitstream of [4] is half as long as the raw
bitstream.
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Common techniques used in the post-processing step include hashing or block-
wise XOR-ing. A well-known method that makes use of the Von Neumann correc-
tor [3] is sometimes used. Each of these methods has its pros and cons. Another
technique, proposed by several authors [4,6,9] recently, uses linear compression
functions based on good linear codes. Since there is a large pool of linear codes
to choose from, it becomes possible to trade-off different aspects of a HRNG’s
performance, unlike in the other methods. For example, we show in Section 3
that if a RNG has random bias 0.001, using Von Neumann compression will pro-
duce perfect correction with bias= 0 but throughput equal to 25% of its original.
However, if we use a [255, 191, 17] BCH code, we could get a good bias of 2−153

and three times the throughput at 75% of the original transmission speed.
In Section 4, we introduce a concept called the adversary bias, which measures

how accurately an adversary can guess the output of a RNG. This may occur,
for example, if a user buys a RNG from a dishonest vendor who installed a
trapdoor; or it may arise from an inherent weakness/bad design of a RNG.
We show that linear compression can lower the adversary bias by much more
than Von Neumann compression. In [6,9], the authors suggested using BCH
codes with parameters [255, 21, 111] and [256, 16, 113] for linear compression,
which do not seem to offer any advantage over Von Neumann compression in
terms of throughput and correction of random bias. However, we show that these
BCH codes are many times more effective than Von Neuman compression for
correcting the adversary bias.

In addition, we look at two explicit constructions for implementing linear
corrector functions based on BCH codes. One is based on multiplication by the
generator polynomial, while the other is based on taking the remainder after
division by the parity check polynomial. We compare the two methods and show
when one is more advantageous over the other for different parameters. Finally,
we implement this post-processing function in field-programmable gate array
(FPGA) hardware circuitry to provide some resource utilization figures.

2 Known Techniques for De-Biasing

2.1 Compression with Cryptographic Hash

A cryptographic hash function is a deterministic algorithm that takes in an arbi-
trary block of data as input and returns a string of fixed size as output. When the
size of the data input is larger than the stipulated size of the output, a compres-
sion is done on the data block by the hash function. The fundamental require-
ments of a cryptographic hash function are one-wayness, pre-image resistance,
second pre-image resistance and collision-resistance. Examples of cryptographic
hash functions include the SHA family of hash functions [1].

In [2], it is stated that if the data input has high entropy, the cryptographic
hash output on this data will be close to a uniform distribution, thus de-biasing
the input. However, it is hard to quantify how good the output bias is with
respect to the input bias. Moreover, as hash functions are non-linear functions,
there are hardware limitations and they may not be efficient to implement.
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It is common to use hash functions for post-processing RNG output. However,
because it is hard to quantify their strength and compare with other de-biasing
methods, we shall leave hash functions out of our discussion in this paper.

2.2 Compression Using the Von Neumann Corrector

The Von Neumann corrector [3] is a well known method for post-processing a
biased random stream. It is a simple method that produces perfectly unbiased
outputs. Suppose an input stream has independent but biased bits. The corrector
processes the stream of bits as a stream of non-overlapping pairs of successive
bits and generates outputs as follows:

(1) If the input is “00” or “11”, the input is discarded (no output),
(2) If the input is “01” or “10”, output the first bit only.

Suppose the input bits have bias e , this means that for an input bit x,

Pr(x = 0) =
1
2

+ e and Pr(x = 1) =
1
2
− e. (1)

Then for a given output bit y,

Pr(y = 1) = Pr(y = 1| there is an output )

=
Pr(“10”)

Pr(“01”or“10”)

=
(1
2 − e)(1

2 + e)
(1
2 + e)(1

2 − e) + (1
2 − e)(1

2 + e)

=
1
4 − e2

2(1
4 − e2)

=
1
2
.

Thus the Von Neumann corrector output bits with zero bias.
However, the rate of such a corrector is fairly slow. The rate a desirable pair

(i.e. “01” and “10” ) occurs is 2(1
2 + e)(1

2 − e) which is 2(1
4 − e2). However, each

pair gives an output half its length. Hence the rate of the corrector is given by
1
4 − e2. Thus the rate of the Von Neumann corrector is at best 1

4 with at least
75% of the input bits discarded. This means that the input size needs to be
much larger than the output size and there may be a long wait before there is an
output (in the event where there is a long stream of ‘undesirable’ bits of “00”s
and “11”s). Thus, despite its excellent de-biasing property, the Von Neumann
method is not ideal.

2.3 Compression Based on Good Linear Codes

In this section, we describe a technique proposed by Lacharme [6], which derives
good linear compression for random number generation based on good error
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correcting codes. The input is a random stream where each input bit has bias
e. The output will be a “more” random stream where each output bit has bias
e′ < e.

The method is a generalization of a construction by Dichtl [4]. An example of
Dichtl’s construction is given by L : GF (2)8 × GF (2)8 → GF (2)8:

L(X, Y ) = X ⊕ (X ≪ 1) ⊕ (X ≪ 2) ⊕ (X ≪ 4) ⊕ Y.

The above function takes 16 independent random bits, each with bias e, and
compresses it to 8 bits. In the process, the bias of each compressed bit becomes
24×e5. Thus a RNG which has deteriorated over time, say to give output streams
having a bias of 0.05 can be corrected to give a bias of 24 × 0.055 = 0.000005,
which is more random. The compression rate is 1/2 which is the same as XOR:
L(X, Y ) = X ⊕ Y . However, XOR only improves the bias from e to 2e2.

Thus we see that constructing better linear correctors can achieve better bias
while maintaining the same compression rate. Moreover, these compression func-
tions are linear, which makes them efficient to implement on both hardware and
software. While Dichtl constructed specific 16 to 8 bit linear correctors, Lacharme
generalized his method to apply to more scenarios:

Proposition 1. ([6, Theorem 1]) Let G be a linear corrector mapping n bits to
m bits. Then the bias of any non zero linear combination of the output bits is
less than or equal to 2d−1ed, where e is the bias of each input bit and d is the
minimal distance of the linear code constructed by the generator matrix G.

The above result can be proved by noticing that each output bit of G is an XOR-
sum of at least d input bits each with bias e, and then we apply the well-known
Piling-Up lemma [5] to get the resulting bias 2d−1ed.

Thus we can deduce by Proposition 1 that the linear corrector L(X, Y ) gives
output streams with bias 24× e5 because L is the generator matrix of a [16, 8, 5]
error correcting code.

3 Comparison of Random Bias of Different
Post-Processing Functions

In the existing literature, the idea of using post-processing functions based on lin-
ear codes is not new. Examples of this can be found, in [6] and [9], where BCH
and extended BCH codes were used to construct linear corrector functions. We
note, however, that the particular codes picked in these papers do not offer signif-
icant advantages over the Von Neumann corrector. We shall illustrate this point
numerically.

The codes [255, 21, 111] and [256, 16, 113] codes were used in [6] and [9] respec-
tively. Suppose that the bias of the input bit stream is 0.25, then the bias and
throughput, on applying the [255, 21, 111] corrector, is 2110 × (0.25)111 = 2−112

and 21
255 = 0.0824 respectively. In comparison, we get zero bias and a through-

put of 1
4−0.252 = 0.1875 if we had used the Von Neumann corrector. Clearly, the
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Table 1. Rate and Output Bias

XOR Von Neumann Linear Code [n, k, d]

Rate 1
2

1
4
− e2 k

n

Output Bias 2e2 0 ≤ 2d−1ed

corrector based on the [255, 21, 111] code has no advantage over the well-known
Von Neumann corrector in these aspects.

The same can be said of the corrector based on the [256, 16, 113] code. With
the same input bit stream bias of 0.25, we get an output bias and throughput of
2112 × (0.25)113 = 2−114 and 16

256 = 0.0625. Again, the Von Neumann corrector
is better in these aspects.

Linear code based correctors still have their merits despite what the above
examples suggest. We shall show that if the linear code is chosen wisely, such
correctors can be preferred over other forms of post-processing methods.

Although we can achieve zero output bias with the Von Neumann corrector,
the rate is at best 1

4 , which may be inadequate if there are stringent demands
on the output bit throughput. For this reason, it may be desirable to use a
different corrector that has a better rate if we are willing to tolerate a small bias
in the output bits. The other two methods we looked at in the previous section,
hashing and linear compression, can both achieve better throughput than Von
Neumann compression. However, hashing is an intuitive approach in which we
cannot quantify the bias reduction of the output stream and we therefore leave
it out in our analysis. We shall concentrate on the comparison between Von
Neumann and linear compression method in the rest of our paper.

To recap, let us suppose that the bias of the input bits is e, then we have the
following results for the various correctors described thus far:

We can observe from Table 1 that the rate for the XOR corrector is at least
twice that of the Von Neumann corrector, while the output bias for the latter
is much better than for the former. However, the weaknesses of these correctors
are as outstanding as their strengths. The Von Neumann corrector has a low
throughput of at most 1

4 , while the XOR corrector does not improve the output
bias very significantly. It is desirable to construct a corrector that offers a better
trade-off between the rate and the output bias. We shall demonstrate that with
proper choices of n, k, and d, the Linear Code (more specifically, BCH code)
corrector fulfills this purpose.

In Table 2, we have compared the rate and output biases for the XOR, Von
Neumann, linear correctors based on various BCH codes with n = 255 and
different input bias values, e. The numbers in square brackets are in the usual
[n, k, d] notation used to represent BCH codes. The linear codes we have chosen
are such that they produce a throughput greater than that of the Von Neumann
method. Table 2 lists the rate and output bias for values of e = 0.25, 0.1, 0.01
and 0.001.

The throughputs for the BCH code correctors vastly outperform that of the
XOR and Von Neumann correctors. The output biases are also very much smaller
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Table 2. Rate and Output Bias for Various Input Bias, e

e = 0.25 XOR Von Neumann [255, 223, 9] [255, 171, 23] [255, 107, 45] [255, 55, 63]

Rate 0.5 0.1875 0.875 0.671 0.420 0.216

Output Bias 0.0625 0 ≤ 2−10 ≤ 2−24 ≤ 2−46 ≤ 2−64

e = 0.1 XOR Von Neumann [255, 231, 7] [255, 171, 23] [255, 115, 43] [255, 63, 61]

Rate 0.5 0.24 0.906 0.671 0.451 0.247

Output Bias 0.01 0 ≤ 2−17.3 ≤ 2−54.4 ≤ 2−100.8 ≤ 2−142.6

e = 0.01 XOR Von Neumann [255, 247, 3] [255, 191, 17] [255, 131, 37] [255, 71, 59]

Rate 0.5 0.2499 0.967 0.749 0.514 0.278

Output Bias 0.0001 0 ≤ 2−17.9 ≤ 2−96.9 ≤ 2−209.8 ≤ 2−334.0

e = 0.001 XOR Von Neumann [255, 247, 3] [255, 191, 17] [255, 131, 37] [255, 71, 59]

Rate 0.5 0.249999 0.969 0.749 0.514 0.278

Output Bias 0.000001 0 ≤ 2−27.9 ≤ 2−153.4 ≤ 2−332.7 ≤ 2−529.0

than that of the XOR corrector. In all cases, to just outperform the throughput
of Von Neumann corrector, d only needs to be at most 63. If the input bias is
small, i.e. 0.1 or 0.01, we can use a code with very low d to obtain a throughput of
nearly 1 at the cost of a small output bias of less than 2−17. The near quadrapling
of the throughput is a large improvement over the Von Neumann method.

We have shown that with a proper choice of BCH code, a better trade-off
between the throughput and output bias can be achieved. Although the output
bias is non-zero, it is small enough to be acceptable in some applications.

4 Comparison of Adversary Bias of Different
Post-Processing Functions

Sometimes, an adversary might be able to predict the output of a random number
generator with probability more than 1/2. The reasons might be due to:

(1) A black box random number generator might be bought from a dishonest
vendor, who planted some bugs/backdoor to leak information on the random
stream output.

(2) The random number generator designer might make an honest mistake and
design a weak RNG, where the output stream is predictable.

Because of the above scenarios, we make the following definition.

Definition 1. Suppose an adversary can predict the output of a random number
generator with probability pA. Then the adversary bias eA = |pA − 1/2|.

4.1 Adversary Bias after Linear Compression

Next we shall show that using linear correctors for random stream compression
is better than using Von Neumann compression to lower the adversary bias. First
we shall demonstrate the effect with a numerical example.
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Example 1. Suppose a random number generator produces the following 16-bit
random stream and the adversary knows 12/16 = 75% of the random output:

Random stream: 0101101010001101
Adversary stream: 0101011010111101.

Then Von Neumann on the random stream gives 001110 while Von Neumann on
the adversary’s stream gives 000110. Now the adversary knows 5/6 = 83% of the
compressed stream, the adversary bias actually increase during Von Neumann
compression!

If we had used the linear corrector L(X, Y ) = X ⊕ (X ≪ 1) ⊕ (X ≪
2) ⊕ (X ≪ 4) ⊕ Y , then the random stream compresses to 10101111 while the
adversary’s stream compresses to 01111011. Now he only knows 4/8 = 50% of
the random stream. ��
The reason why the linear corrector outperforms Von Neumann compression
when correcting adversary bias is as follows. Let L(·) be the linear corrector,
AS denote the output stream known to the adversary and RS be the actual
random stream. Also let eL be the adversary bias after compression and eA be
the adversary bias before compression, then

eL = |Pr(L(AS) = L(RS)) − 1/2|
= |Pr(L(AS) ⊕ L(RS) = 0) − 1/2|
= |Pr(L(AS ⊕ RS) = 0) − 1/2|
= 2d−1ed

A where eA = |Pr(AS = RS) − 1/2|.

This computation shows that the reduction in adversary bias is as good as the
reduction in random bias for linear compression. However, we showed in the
previous example that the adversary bias after Von Neumann compression can
become worse (higher), although we have perfect correction for the random bias.

4.2 Adversary Bias after Von Neumann Compression

Von Neumann compression can be deemed as irregular due to the irregularity
of the production of outputs. According to the definition of the Von Neumann
compression in Section 2.2, we see that there is a probability of 1

2 where the
compression gives no output.

In the worst case assumption, we assume a knowledgeable adversary who
is able to have information on the timing when there is no output after Von
Neumann compression. This is a possible scenario due to trapdoors or lack of
buffer in the generator, or in side channel attacks where the difference in timing
of outputs is analysed. When there is no output from the compression in the
middle of the stream, the timing between a first output and a second output is
longer due to the missing output in the middle. This constitutes a valid analysis
on the Von Neumann output stream.
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Table 3. Adversary Stream Prediction Probabilities

RS input 01 10 00 11 Total probability

AS input (= RS input) 01 10 00 11 p2
A

AS input ( �= RS input) - - 11 00 q2
A(p2

R + q2
R)

V N output “0” “1” “X” “X” p2
A + q2

A(p2
R + q2

R)

In these cases, the adversary will be able to guess the nonproduction of output
and hence, have auto-correlation in the output streams for comparison. Thus,
we will consider this condition in this section. We will also show in Section 4.3
that, in the worst case assumption, linear compression will still outperform Von
Neumann compression even if the adversary is resourceful enough to know the
timing when no output is produced from the compression.

A theoretical bound on Von Neumann compression can be derived if we con-
sider 3 types of output, namely “0”, “1” and “X” (no output). Let V N(·) be the
Von Neumann corrector, AS denote the output stream known to the adversary
and RS be the actual random stream. Also let eR be the bias of the random
stream and eA be the adversary bias before compression. Since the bias of the
random stream eR is the bias of the input bits to the Von Neumann corrector,
this means that for an input bit x of the random stream,

pR = Pr(x = 0) =
1
2

+ eR and qR = Pr(x = 1) =
1
2
− eR. (2)

Similarly for adversary bias eA and an input bit x′ of the adversary stream,

pA = Pr(x′ = x) =
1
2

+ eA and qA = Pr(x′ = x) =
1
2
− eA. (3)

Every two input bits will give one output bit through the Von Neumann cor-
rector. Therefore, the probabilities of the adversary predicting the Von Neumann
output correctly under the two conditions, AS = RS and AS = RS, are given
in Table 3 below.

It is clear that if the adversary guessed the input bits correctly, the proba-
bility of getting the same output as with the random stream is the same as the
probability of guessing the two input bits correctly, which is p2

A.

Pr(V N(AS) = V N(RS)| AS = RS ) = p2
A. (4)

In the case of adversary guessing the wrong input bits, there are only two
situations where the adversary gets the same output. That is, when the random
stream input is “00” and the adversary’s guess is “11”, or vice versa. In this
case,

Pr (V N(AS) = V N(RS)| AS = RS )
= Pr(RS = “11”, AS = “00”) + Pr(RS = “00”, AS = “11”)
= q2

Rq2
A + p2

Rq2
A

= q2
A(p2

R + q2
R).
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Hence, the total probability pV of the adversary guessing the output of the
Von Neumann corrector correctly is given by

pV = Pr(V N(AS) = V N(RS))
= Pr(V N(AS)=V N(RS)| AS=RS )+Pr(V N(AS)=V N(RS)| AS = RS )
= p2

A + q2
A(p2

R + q2
R)

= (
1
2

+ eA)2 + (
1
2
− eA)2[(

1
2

+ eR)2 + (
1
2
− eR)2]

= (
1
4

+ eA + e2
A) + (

1
4
− eA + e2

A)[(
1
4

+ eR + e2
R) + (

1
4
− eR + e2

R)]

= (
1
4

+ eA + e2
A) + (

1
4
− eA + e2

A)(
1
2

+ 2e2
R)

= (
3
2

+ 2e2
R)e2

A + (
1
2
− 2e2

R)eA +
1
2
e2

R +
3
8
.

As a result, the adversary bias eV of the output after Von Neumann compres-
sion will be

eV = |pV − 1
2
| = |(3

2
+ 2e2

R)e2
A + (

1
2
− 2e2

R)eA +
1
2
e2

R − 1
8
|. (5)

4.3 Linear Compression Outperforming the Von-Neumann
Compression

Let us define some notations and also give a summary of the results we have
derived at so far.

In section 3, it is shown that although the random bias after linear compression
is always greater than that after Von Neumann, we can have the random bias
lowered to a value close to zero which makes it comparable to the Von Neumann
compression. In other words, although eRL > eRV but by choosing a large enough
d, we can have eRL ≈ eRV .

Next we compare the adversary bias after each compression. Figure 1 below
illustrates the adversary bias after each compression for the case where eR =
0.1. The modulus graph denoted by eAV shows the adversary bias after Von
Neumann compression while the eAL graph shows the adversary bias after linear
compression for d = 3, 4 and 20.

Table 4. Bias after Compression

Bias After Bias After
Von Neumann Compression Linear Compression

Random Bias, eR eRV = 0 eRL ≤ 2d−1ed
R

Adversary Bias, eA eAV = eAL ≤ 2d−1ed
A

|( 3
2

+ 2e2
R)e2

A + ( 1
2
− 2e2

R)eA + 1
2
e2

R − 1
8
|
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Fig. 1. Impact of compression on adversary bias

Consider the case d = 3. The graph shows that linear compression gives a
better reduction of adversary bias most of the time except for 0.15025 ≤ eA ≤
0.19219. Linear compression can outperform Von-Neumann compression (i.e. eAL

is smaller than eAV ) by as much as 0.0632 while Von-Neumann compression out-
performs linear compression (i.e. eAV is smaller than eAL) by at most 0.0178. As
d increases, the range of eA where Von Neumann compression outperforms linear
compression will get narrower where its size tends to zero, the advantage of Von
Neumann compression in this range will also tend to zero while the advantage
of linear compression will increase substantially. For the case where d = 20, lin-
ear compression is comparable to Von Neumann compression when eA = 0.1644
while it outperforms Von Neumann compression for all other values of eA. The
maximum advantage occurs when eA = 0.4408, where the advantage of linear
compression is eAV − eAL = 0.3869 − 0.0402 = 0.3467. Table 5 summarizes our
discussion and compare the advantage of linear compression for different d.

Similar results hold for varying values of eR. Summarising, the linear com-
pression reduces the adversary bias much more than the Von Neumann, except
over a negligible range of eA with d suitably large, say d = 20. Moreover, in the
unlikely event that the Von Neumann outperforms the linear compression, the
large d will reduce the adversary bias to a value close to zero, which makes it
comparable to the Von-Neumann . Thus we conclude that the linear compression
is much more effective in lowering the adversary bias than the Von Neumann.
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Table 5. Maximum Advantage of Linear Compression over Von Neumann Compres-
sion, eR = 0.1

d Small Range where Max Advantage of Max Advantage of
Von Neumann outperforms Linear Von Neumann Linear

3 0.1502 < eA < 0.1922 0.0178 0.0632

4 0.1594 < eA < 0.1714 0.0058 0.1158

5 0.1625 < eA < 0.1665 0.0019 0.1551

6 0.1638 < eA < 0.1651 0.0006 0.1859
...

...
...

...

20 0.1644 − δ < eA < 0.1644 + δ, δ negligible 10−5 0.3467

4.4 The Use of Linear Codes with Large d

In Section 3, we pointed out that the codes [255, 21, 111] and [256, 16, 113]
does not offer any advantage over Von Neumann compression in terms of both
throughput and random bias correction. However, it is very effective for correct-
ing adversary bias.

Suppose we have a RNG whose random bias is eR = 0.005, which is not too
bad. But it is bought from a dishonest vendor who planted a trapdoor and is able
to guess the RNG output with bias eA = 0.3. Using the formulae from Sections
4.1 and 4.2, linear compression with [255, 21, 111] would give adversary bias:

eAL = 2110 × (0.3)111 = 2−82.8,

while Von Neumann compression would give adversary bias (Table 3):

eAV = (0.8)2 + (0.2)2 × (0.5052 + 0.4952) − 0.5 = 0.16.

I.e. the probability of the adversary guessing the output is reduced from 80% to
very close to 1/2 for linear compression while it is still 66% for Von Neumann
compression.

5 Implementation

In this section, we describe two constructions for implementing linear corrector
functions based on BCH codes. We also aim to estimate the resources required
to implement the linear codes in ASIC technology, as well as provide resource
utilization results for our FPGA implementation.

5.1 Construction of Linear Corrector Functions Based on Cyclic
Codes

BCH code is a family of cyclic codes with high hamming distance that can be
derived from a generator polynomial. As such the generator matrix can be easily
derived and the code is efficient in lowering both the random bias and adversary
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Fig. 2. [255, 247, 3] hardware implementation using the generator polynomial

bias when used as a linear compression. A list of generator polynomials and their
corresponding parity check polynomials of [n, k, d] BCH codes with n = 255 is
given in Appendix A for reference.

Either the generator polynomial or the parity-check polynomial can be used in
the implementation. Both methods provide efficient hardware implementation.
We first describe the generator polynomial method.

For input X = (xn−1, · · · , x0)T , the output Y = (yk−1, · · · , y0)T is defined as
the product of the generator matrix G and the vector X :

Y =

⎛
⎜⎜⎜⎝

gn−k · · · · · · · · · g0 0 · · · 0
0 gn−k · · · · · · · · · g0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 gn−k · · · · · · · · · g0

⎞
⎟⎟⎟⎠

k×n

⎛
⎜⎜⎜⎝

xn−1

xn−2

...
x0

⎞
⎟⎟⎟⎠

n×1

where gn−k, · · · , g0 are the coefficients of the generator polynomial g(x).
This transformation mapping can be implemented using the circuit shown in

Fig. 2 [10]. In the first n − k + 1 cycles, the input bits are shifted (MSB first)
into a register of n − k + 1 bits (shift register 1). In the next k cycles, while
the remaining input bits are shifted into shift register 1, the output bits are
produced by XOR-ing certain bits of shift register 1 and fed into a register of
k bits (shift register 2). The position of the XOR taps is determined by the
generator polynomial g(x). In this example of the [255, 247, 3] BCH code with
generator polynomial g(x) = x8 + x4 + x3 + x2 + 1, a total of 256 registers and
4 XOR gates are required for the implementation.

Next, we describe the parity-check polynomial method, which is a modular
polynomial reduction [6]. By definition, parity-check polynomial h(x) = (xn −
1)/g(x) is at most of degree k. Using polynomial modulo under h(x), the output
has at most k bits. The function for this mapping from input vector X to output
vector Y is defined by:

Y = X mod h(x)

The circuit for this method is similar to a Galois LFSR, shown in Fig. 3. Again,
the position of the XOR taps is determined by the parity-check polynomial h(x).
In this example of the [255, 21, 111] BCH code with parity-check polynomial
h(x) = x21 + x19 + x14 + x10 + x7 + x2 + 1, a total of 21 registers and 6 XOR
gates are utilized.
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Fig. 3. [255, 21, 111] hardware implemention using the parity-check polynomial

5.2 Resource Utilization

As the linear corrector function can be constructed using either the generator
polynomial or the parity-check polynomial, the implementation which uses fewer
resources is preferred. In ASIC technology, a rough comparison can be made by
estimating the Gate Equivalent (GE) of the resources used. Consider the [255,
247, 3] code in Appendix A. Its generator polynomial is of weight 5 whereas
its parity check polynomial is of weight 128. Implementing with the generator
polynomial, we need 256 registers and 4 XORs. Suppose a XOR uses 2.67 GE
while a register uses 6 GE [11], the total resources required is then 1,546.68
GE. On the other hand, implementing the parity check polynomial will require
1,821.09 GE. The resources for the two different implementations of the codes
in Appendix A is calculated and summarized in Table 6 below. As observed in
the table, generating the whole codespace using g(x) is better than using h(x),
in terms of resources usage, only for the first 3 codes of dimension [255, 247, 3],
[255, 231, 7] and [255, 223, 9]. Using h(x) for the other codes is better as fewer
resources are required for implementation.

In FPGA technology, the same comparison cannot be made easily. This is
because different FPGA devices have different logic cell architectures, and FPGA
design tools may apply optimizations automatically. Therefore, the more efficient
construction to use for the FPGA in interest is best found out through actual
implementation.

Table 6. Comparison of estimated Gate Equivalents for n = 255

Polynomial
w1 = w2 = Using g(x), # GE = Using h(x), # GE = requiring

k wt(g(x))− 1 wt(h(x))− 1 6(n + 1) + 2.67w1 6k + 2.67w2 less GE

247 4 127 1, 546.68 1, 821.09
231 14 111 1, 573.38 1, 682.37 g(x)
223 20 123 1, 589.40 1, 666.41

191 38 87 1, 637.46 1, 378.29
171 42 85 1, 648.14 1, 252.95
131 58 67 1, 690.86 964.89
115 74 57 1, 733.58 842.19 h(x)
107 72 47 1, 728.24 767.49
71 84 47 1, 760.28 551.49
63 104 31 1, 813.68 460.77
55 92 27 1, 781.64 402.09
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Table 7. Comparison of FPGA implementation resources for n = 255

Using g(x), Using h(x),
k # slices # slices

247 148 145

231 148 136

223 149 132

191 149 112

171 141 101

131 140 77

115 145 67

107 140 63

71 135 42

63 142 37

55 128 32

We implemented the codes in Appendix A on a Xilinx Spartan 3A-DSP
XC3SD1800A. The number of slices utilized is shown in Table 7. From the ta-
ble, we can see that the implementation using the parity-check polynomial uses
fewer resources than that of the generator polynomial for all cases. This can be
explained as follows. As the number of XOR gates required is always less than
the number of registers, the slice utilization is largely dominated by the number
of registers required. Thus, since the parity-check polynomial (k registers) al-
ways uses less registers than the generator polynomial (n + 1 registers), its slice
utilization is also less.

In general, for Xilinx FPGA, the implementation with the parity-check poly-
nomial should utilize fewer resources in most cases. However, this may not hold
true for FPGA devices from other vendors. Therefore, as mentioned earlier, the
construction which is more resource-efficient for a particular FPGA is best found
out through actual implementation.

6 Conclusion

In this paper, we studied the benefits of using linear compression for post-
processing random number generators over the Von Neumann and XOR correc-
tor. We find that when suitable linear codes of dimension [n, k, d] are selected,
the random bias and adversary bias can be greatly lowered while maintaining
a high throughput. The general idea is to select a d large enough to lower both
biases to acceptable values. In our study, we found that for eR = 0.1, d = 20
is generally sufficient to reduce both random and adversary bias to approxi-
mately zero. Also, the rate given by k

n will be more efficient compared to the
Von Neumann corrector. For instance, using [255, 171, 23]-BCH code as a lin-
ear corrector reduces biases to approximately zero after linear compression with
a higher throughput of 171

255 ≈ 67%, compared to Von Neumann compression
with zero bias of throughput 24%. A suggested list of BCH codes for n = 255,
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their generator and parity check polynomials are given in the appendix. Im-
plementation issues and results of resource utilization are discussed in the last
section.
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A Appendix: BCH Codes

The generator polynomials g(x) and parity-check polynomials h(x) = (xn −
1)/g(x) are represented in hexadecimals such that in the binary form, the right-
most bit represents the coefficient of the constant term 1 and the leftmost non-
zero bit represents the degree of the polynomial.

Example 2. The generator polynomial g(x) for BCH code [255, 247, 3] is repre-
sented as 11D in Table 8. In binary form, hexadecimal 11D is (000100011101)2,
which represents x8 +x4+x3 +x2+1 in polynomial form. The rightmost bit rep-
resents the coefficient of the constant term (x0) and the leftmost non-zero bit is in
the 9th position from the right, representing the degree of the polynomial as 8. ��

Table 8. Generator and Parity Check Polynomials of BCH Codes

Code Parameters Generator Parity-check
[n, k, d] Polynomial g(x) Polynomial h(x)

[255, 247, 3] 11D 8E25C0C93720ADACB0FB7
AE886C79CC5A452A7767B
F4CD460EABE509FE178D

[255, 231, 7] 1BBA1B5 E7400884547D0D3D1A82
98CB0B2497ECD4CAD9
60F1F70B471667357EE5

[255, 223, 9] 1EE5B42FD CA1E95439F31F12A925E
61E1BF5DE175C668DA
9B159BC7A1F93FF66D

[255, 191, 17] 16CE707E26B6F9977 BF5F0B83A04CF7C58047CBF0
B8C8A5D8E28C2C4609020D6B

[255, 171, 23] 1B0E46229C4EE1F8C7319F E3E79B7AFE3243AA9A400A
CAB2138885EBF0B40BBE3

[255, 131, 37] 11BCB6CCE6906958 8D493EDCA6106BE2A
AA17F2231050EB39 FA4F85A2A3DE6879

[255, 115, 43] 1855B6B7A2029D679E FDD74802A09D1F
826017CEAB732E75DF 88718D4B97B1EA3

[255, 107, 45] 1242FE9A4365732A1EC 905F8D71982A80
04EB9E207EBE7A0D921 0DE9456B55D21

[255, 71, 59] 140A722A1A468D36D87A2536 AAFC7EA6FFFBEF0A8D
4E685922A1E56FD1A478C1D

[255, 63, 61] 11EC9E8B4E7646AB351EEFE38 8FC22EFA9CC296C1
0F6C49EB4B56F8BD770AC6C1

[255, 55, 63] 1D9B1541D04805B06AF58C1A1 D466E1C119DAB3
635618D6F6822DE248B076778F
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Abstract. In this paper, we present a framework for protection against
the recent related-key differential and boomerang attacks on AES by
Biryukov et al. Then we study an alternative AES key schedule pro-
posed by May et al. at ACISP 2002 as a possible candidate to protect
against these related key attacks. We find that there exist equivalent
keys for this key schedule and in response, we propose an improvement
to overcome this weakness. We proceed to prove, using our framework,
that our improved May et al.’s key schedule is secure against related-
key differential and boomerang attacks. Since May et al.’s key schedule
is not on-the-fly (which is a requirement for some hardware implemen-
tations), we propose an on-the-fly AES key schedule that is resistant
against related-key differential and boomerang attacks.

Keywords: Related-key attacks, differential cryptanalysis, boomerang
attacks, AES key schedule.

1 Introduction

In [4], Biryukov et al. launched the first known key-recovery attack on AES-256.
It is a related-key differential attack that exploits a differential characteristic
path of high probability, where we allow both the plaintext and key to have non-
zero differentials. The attack has a time/data complexity of 2131 and requires 265

memory in addition to 235 related key pairs. Later in [3], Biryukov and Khovra-
tovich used a shortened version of the related-key differential characteristic of [4]
to construct a distinguisher for the related-key boomerang attack on AES-256.
This allowed the authors to avoid the majority of the active S-boxes in the differ-
ential characteristic of [4], which resulted in a much improved attack with time
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and data complexity of 299.5, requiring 277 memory and just 4 related keys. A
similar approach was used to derive a related-key boomerang attack on AES-192
with data complexity 2123, time complexity 2176, and memory complexity 2152

in addition to 4 related keys. This is also the first known key-recovery attack on
full AES-192. However, we need adaptive ciphertext decryption for the attack of
[3] whereas only chosen plaintext encryption is needed for the attack of [4]. In
our paper, we present a framework for practical resistance against Biryukov et
al.’s related-key differential attacks from [3,4].

The structure of the AES-256 cipher is still very secure as the best non related-
key attacks can work up to at most 8 of the 14 rounds [9]. The more devastating
related key attacks [3,4] exploits the high linearity in the AES-256 key schedule.
If we look only at a key schedule differential characteristic path, it is possible to
find paths which involve only one active S-box. Thus a key point in securing AES
against the latest related-key differential/boomerang attacks is to make the key
schedule more nonlinear, so that any related-key differential path would involve
more active S-boxes in the subkey differences1.

1.1 Our Contribution

We design two new AES variants to protect against the related-key attacks of
[3,4] by making the AES key schedule more nonlinear, while keeping the main
AES cipher the same. Thus we retain the strong security of AES against non
related-key attacks.

Construction 1: In Section 3, we consider the possibility of using an alternative
AES key schedule by May et al. [11]. This key schedule was shown to have
good statistical properties while achieving the strong property of round key
irreversibility and resistance against previously known related-key attacks [1].
However, we show in Section 3.1 that there are pairs of equivalent keys that
produce the same encryption functions. We propose an improvement of their
key schedule in Section 3.2 that avoids this weakness. Based on our framework,
we prove in Sections 3.3 and 3.4 that the improved May et al.’s key schedules
for AES have practical resistance against related-key differential and boomerang
attacks. This key schedule is also secure against related-cipher attacks and slide
attacks, and has round key irreversibility.

Construction 2: However, our improved May et al.’s design uses three AES
rounds to derive a subkey. This is too expensive for hardware implementation,
which requires on-the-fly key schedule. In Section 4, we propose an on-the-fly key
schedule design for AES-128, AES-192, and AES-256, where the time needed to
derive each round key is no more than the computation of 1.25 (amortized) AES
rounds. Furthermore, we prove that this new key schedule has practical resistance
against related-key differential and boomerang attacks. This key schedule is also
1 Our observations also correspond with those made by Kim et al. in Section 2.6 of

[10] where it is mentioned that if the key schedule of the cipher is complex enough
and does not have “good” differential properties, then the number of keys required
for the attack becomes infeasibly large.
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secure against related-cipher attacks and slide attacks, and has partial round
key irreversibility.

2 Framework for Protection against Related Key
Differential and Boomerang Attacks

2.1 Some Definitions and Notation

We first define some notation and concepts which form the basis of differential
attacks.

Given a block cipher, the plaintext, secret key and ciphertext are denoted by
P , K and C respectively. The encryption and decryption processes are denoted
by C = EK(P ) and P = E−1

K (C) respectively. We denote the input of the first
round by P0, and the output of the ith round by Pi, i = 1, . . . , NR, where NR
is the number of rounds. Similarly, we write Ki, i = 0, . . . , m, for the m + 1
subkeys generated by the key schedule.

To launch a differential attack, one attempts to find a pair of differences
in the plaintext and ciphertext that occur with high probability. This usually
involves finding a sequence of round inputs and outputs that occur with high
probability. We write ΔP and ΔC to denote a plaintext and ciphertext difference
respectively, and ΔPi to denote the difference in the round output of round i. A
differential characteristic refers to a sequence of input differences to the rounds

(ΔP0 −→ ΔP1 −→ · · · −→ ΔPNR)

We abbreviate the above expression to (ΔP
dc−→ ΔC).

Similarly, to launch a related-key differential attack, one attempts to find a
set of differences for (P, K, C) that hold with high probability. We shall see that
this can be done by finding a sequence of differences in the key and subkeys
generated by the key schedule, and the plaintext and round outputs generated
by the main cipher, such that these differences occur with high probability.

We first consider a differential characteristic in the key schedule alone. We
denote a difference in the key by ΔK, and differences in the subkeys ΔKi,
i = 0, . . . , m. We note that the subkeys are not necessarily derived sequentially
from each other, so the concept of a differential characteristic ‘path’ may not
exist in this sense. We therefore write (ΔK

dc−→ ΔK0, . . . , ΔKm) for a differential
characteristic in the key schedule.

Now we consider a differential characteristic in the key schedule and the main
cipher. We write this as

(ΔK
dc−→ ΔK0, . . . , ΔKm, ΔP0 −→ · · · −→ ΔPNR)

which we abbreviate to (ΔP, ΔK
dc−→ ΔC). We also define:

pk = Prob(ΔK
dc−→ ΔK0, . . . , ΔKm),

pc|k = Prob(ΔP
dc−→ ΔC|ΔK

dc−→ ΔK0, . . . , ΔKm).

It is easy to see that Prob(ΔP, ΔK
dc−→ ΔC) = pk × pc|k by Bayes’ Theorem.
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2.2 Protection against Related-Key Differential Attack of [4]

The attacker must run through p−1
k key pairs on average in order to find one that

satisfies the specified differential characteristic in the key schedule. For each key
pair, the differential attack has complexity O(p−1

c|k) and needs the same number of
chosen plaintexts, so in total the complexity is O((pc|kpk)−1). In the attack of [4],
we have pk = 2−35, pc|k = 2−93, and with some computational overheads get an
attack complexity of 2131. The interested reader should refer to [4] for the details.

We can defend against this attack by having pk × pc|k < 2−NK where NK is
the key size of the cipher, for any related-key differential characteristic, i.e. no
good distinguisher can be found that can be exploited in a related-key differential
attack. The attack also cannot be applied if pc|k < 2−NB, where NB is the block
size of the cipher, as there would be insufficient plaintexts to launch the attack.

2.3 Protection against Related-Key Boomerang Attack of [3]

The main idea behind the boomerang attack [2,15] is to use two short differential
characteristics of high probabilities instead of one long differential characteristic
of low probability. We assume that a block cipher E : {0, 1}NB × {0, 1}NK →
{0, 1}NB can be described as a composition of two sub-ciphers, i.e. E = E1 ◦E0.
Here, NB and NK denote the block size and key size of the cipher respectively.
Suppose we have a related-key differential characteristic α → β of E0 (excluding
a couple of rounds at the beginning of the cipher) under a key difference ΔK0

with probability p and another related-key differential characteristic γ → δ for
E1 under key difference ΔK1 with probability q. Here, p = pk × pc|k where pk is
the probability that the differential characteristic path in the key schedule corre-
sponding to E0 will be satisfied while pc|k is the probability that the differential
characteristic path in the main cipher, α → β in E0, will be satisfied given that
the key differential characteristic is satisfied. Likewise, q = qk × qc|k with similar
definitions pertaining to E1. The differential characteristic trails of E0 and E1

are called upper and lower trails respectively.
The related-key boomerang process involves four different unknown but re-

lated keys. The relation between the keys can be an arbitrary bijective function
R chosen in advance by the attacker. A plaintext pair results in a quartet with
probability p2q2 whereas for a random permutation, the probability of obtaining
a good quartet is 2−NB.

The attacker must run through (pkqk)−2 quartets of related keys on average
in order to find one that satisfies the specified differential characteristic in the
key schedule. For each quartet, the attack has complexity O((pc|kqc|k)−2), so in
total the complexity is O(1/(pc|kpk)). In the attack of [3], we have (pkqk)2 =
1, (pc|kqc|k)2 = 2−96, and with some computational overheads get an attack
complexity of 299.5. The interested reader should refer to [3] for the details.

We can defend against this attack by having (pkqk)2(pc|kqc|k)2 < 2−NK where
NK is the key size of the cipher, for all decompositions of the cipher into
two smaller sub-ciphers and for all differential characteristics for these sub-
ciphers. This would mean that there do not exist any boomerang quartets of
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high probability that can be exploited. The attack also cannot be applied if
(pc|kqc|k)−2 < 2−NB, where NB is the block size of the cipher, as there would
be insufficient plaintexts to launch the attack.

3 Security of Improved May et al.’s AES Key Schedule
against Related-key Attack

To protect AES against related-key differential and boomerang attacks, one
strategy is to use a strengthened key schedule with good differential proper-
ties. One possible candidate is an alternative key schedule for AES proposed by
May et al. in [11] in 2002. At that time, there was already a 9-round related-key
square attack [9] on AES-256 which exploited the slow diffusion of relatively few
non-linear elements in the key schedule. May et al. wanted to design an efficient
key schedule with more nonlinear components and better diffusion to defend
against such attacks.

Their key schedule for AES-256 is shown below. Here, NR=14 is the num-
ber of rounds; a, b are 128-bit values derived from the Master Key MK =
MK0|MK1| . . . |MK32, a = a0|a1| . . . |a15 (the MKi and ai are 8-bit values,
and | represents concatenation), r is the round number and Kr is the 128-bit
round subkey for Round q. Each round subkey is the 128-bit output after the
execution of three rounds of the cipher algorithm, using the master key (with
the addition of different round constants) as both data and key input.

for r = 0 to NR
for j = 0 to 15

aj = MKj ⊕ S[r ∗ 16 + j] ⊕ S[MKj+16]
bj = MKj+16 ⊕ S[r ∗ 16 + j] ⊕ S[MKj ]

for i = 0 to 2
SubBytes(a)
ShiftRows(a)
MixColumns(a)
AddRoundKey(a, b)

Kr = a

May et al.’s Key Schedule for AES-256

In [11], the authors conducted statistical tests to show that for their proposal, there
is no bit leakage between round subkeys. Furthermore, each round key satisfies
both the frequency and Strict Avalanche Criterion (SAC) tests, indicating good
pseudorandomness properties such as bit confusion and diffusion. The authors con-
cluded that previously published attacks that exploit the key schedule such as the
standard related-key attacks [1] will not work on their proposed key schedule.

Moreover, the key schedule achieves the property of round key irreversibility,
by which we mean that given any subset of the round keys, it is hard to derive the
remaining round keys. This forces an adversary to attack all the round keys. This
is in contrast to the AES key schedule, which is reversible - given any two round
keys, one can derive all the other round keys. The obvious countermeasures for
preventing related-key attacks on AES, such as increasing the number of rounds
and hashing the key before expanding it, also produce key schedules which are also
reversible.
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3.1 Equivalent Keys in May et al.’s Key Schedule

Despite the good cryptographic properties of May et al.’s key schedule as men-
tioned in the previous section, we shall show that their key schedule has equiv-
alent keys as shown in the following proposition.

Proposition 1. In May et al.’s key schedule for AES-256, there are 2271 equiva-
lent key pairs {(MK, MK ′) : MK = MK ′} such that AESMK(·) = AESMK′ (·),
i.e. they produce the same encryption output.

Proof. Consider the 4-byte tuple (MKi, MK ′
i, MKi+16, MK ′

i+16) for each index
i. We look for those that satisfy the equations:

MKi ⊕MK′
i =S[MKi+16]⊕ S[MK′

i+16 ], S[MKi]⊕ S[MK′
i ]=MKi+16 ⊕MK′

i+16. (1)

By a computer simulation, there are 65644 tuples (MKi, MK ′
i, MKi+16, MK ′

i+16)
that satisfy equation (1). In that case,

Δai = ΔMKi ⊕ ΔS[MKi+16] = 0 and Δbi = ΔMKi+16 ⊕ ΔS[MKi] = 0

Thus for i = 0, 1, 2, . . . , 15, if we let (MKi, MK ′
i, MKi+16, MK ′

i+16) satisfy
equation (1) for s ≥ 1 of the indices i and let (MKi, MKi+16) = (MK ′

i, MK ′
i+16)

for the rest of the 16− s indices, we will have Δa = 0 = Δb. From the definition
of May et al.’s key schedule, this implies the subkeys derived from MK and MK ′

are the same and they will produce the same encryption output. The number of
such equivalent key pairs are given by:

16∑
s=1

(
16
s

)
× 65644s × (2562)16−s ≈ 2272.

When (MK, MK ′) is an equivalent key pair, (MK ′, MK) is also an equivalent
key pair. Thus we divide the total number of equivalent key pairs by 2 to get
2271. ��

3.2 An Improved May et al.’s Key Schedule

From Section 3.1, we have seen that the three AES rounds used to generate each
round key in May et al.’s key schedule help to ensure that the round keys have
good statistical properties and attain round key irreversibility. The problem is
the initialization of a and b which allows an adversary to force a, b to have zero
differential by choosing an appropriate pair of related secret keys.

Below, we propose an improved version of the May et al.’s key schedule.
Basically, we simplify the initialization of a, b so that each byte of a and b only
depends on one instead of two bytes of the secret key. This prevents an adversary
from using the technique in Proposition 1 to force Δa and Δb to be zero. We also
make use of key-length-dependent counters keylen to defend against the related-
cipher attack [16], which was first applied to the alternative AES key schedule
proposed by May et al. In the algorithm shown, keylen − 1 refers to the key
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length of the cipher (minus 1) encoded as a byte. A more detailed explanation
of the related-cipher attack can be found in [16].

This key schedule, as with the original key schedule by May et al., has the
property of round key irreversibility.

Next, we shall show in the following section that the improved May et al.’s
key schedule can protect AES against related-key differential and boomerang
attacks.

for r = 0 to NR
for j = 0 to 15

aj = S[MKj ] ⊕ S[r ∗ 16 + j] ⊕ (keylen − 1)
bj = S[MKj+16] ⊕ S[r ∗ 16 + j] ⊕ (keylen − 1)

for i = 0 to 2
SubBytes(a)
ShiftRows(a)
MixColumns(a)
AddRoundKey(a, b)

Kr = a

Improved May et al.’s Key Schedule AES-256

3.3 Improved May et al.’s Key Schedule is Secure against
Related-Key Differential Attack

Our aim in this section is to study the security of our improved May et al.’s key
schedule against the related-key differential attack which was recently used by
Biryukov et al. [4,3,5] to attack full-round AES-256.

We have the following technical lemma which will be used to prove the main
results of this section later on.

Lemma 1. For any round subkey generation using the key schedule proposal
described above, if we have a pair of master keys with nonzero difference, then
the differential characteristic path either has at least four active S-boxes, or it
has at least three active S-boxes and an additional four active S-boxes resulting
from the generation of a and b.

The proof of this lemma can be found in Appendix A of this paper. Based on
the above result, we may deduce the following corollary.

Corollary 1. If we have a pair of master keys with nonzero difference, then our
improved May et al.’s key schedule for AES-256 has at least 43 active S-boxes
involved in the generation of 13 subkeys.

Proof. By Lemma 1, the differential characteristic path for each subkey gen-
eration has at least three active S-boxes, and if there exists a subkey whose
differential characteristic path produces only three active S-boxes occurs, then
there will be four additional S-boxes involved in generating a and b. This would
give at least 13×3+4 = 43 S-boxes in total. On the other hand, if the differential
characteristic path for each subkeys produces at least four active S-boxes, there
are at least 13 × 4 > 43 S-boxes in total. ��
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In the attacks on AES, we always consider an (NR−2)-round attack involving
NR− 1 subkeys, in keeping with [4] where the attack is based on an (NR − 2)-
round related-key differential characteristic.

Theorem 1. AES-256 using our improved May et al.’s key schedule is resistant
to related-key differential attack.

Proof. We apply Corollary 1 for AES-256 assuming an NR−2 round attack, i.e. a
12-round attack which involves 13 subkeys. Since each active S-box has probability
at most 2−6, this gives a probability of at most pk×pc|k = (2−6)43×pc|k = 2−258×
pc|k < 2−256. Therefore, we may conclude that AES-256 with the strengthened key
schedule is indeed resistant to related-key differential attacks. ��
May et al. also proposed alternative key schedules for AES-128 and AES-192.
The key schedules proposed by May et al. in [11] for AES-128 and AES-192
are largely the same as that for AES-256, except that a and b are generated in
slightly different ways: for r = 0 to NR, j = 0 to 15.

(1) For AES-128: aj = bj = MKj ⊕ S[r ∗ 16 + j].
(2) For AES-192: aj = MKj ⊕ S[r ∗ 16 + j] ⊕ S[MKj+8]; bj = MKj+8 ⊕ S[r ∗

16 + j] ⊕ S[MKj].

It is easy to see that equivalent keys similar to those in Proposition 1 exist for
May et al.’s key schedule for AES-192. Thus we propose a similar improvement
to May et al.’s key schedule for AES-192 below. As before, we also tweaked
the key schedules a bit by introducing key-length-dependent counters keylen for
protection against the related-cipher attack [16].

(1) Improvement for AES-128: aj , bj = MKj ⊕ S[r ∗ 16 + j] ⊕ (keylen− 1).
(2) Improvement for AES-192: aj = MKj ⊕ S[r ∗ 16 + j] ⊕ (keylen − 1); bj =

MKj+8 ⊕ S[r ∗ 16 + j] ⊕ (keylen− 1).

Based on the above description of the schedules for AES-128 and AES-192, it is
easy to deduce the following corollary from the proof of Lemma 1.

Corollary 2. If we have a pair of master keys with nonzero difference in our
proposed improvement of the key schedule of [11] for AES-128 and AES-192,
then there are at least 3 active S-boxes involved in the generation of each subkey.

Corollary 2 allows us to prove Theorem 2.

Theorem 2. AES-128 and AES-192 using the key schedule of [11] for AES-128
and our improvement for AES-192 are also resistant to related-key differential
attack.

Proof. In our improved key schedule for AES-128 and AES-192, we see that if
a pair of master keys has non-zero difference, then one of Δa or Δb is non-zero.
Thus we can use the fact that every differential characteristic path of a round
subkey generation has at least 3 active S-boxes (excluding the generation of a
and b) from the proof of Lemma 1.
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For AES-128, an 8-round attack involves 9 subkeys. Assuming that each ac-
tive S-box has probability 2−6, this gives a probability of at least pk × pc|k =
(2−6)(9×3) × pc|k = 2−162 × pc|k < 2−128.

Similarly for AES-192, a 10-round attack involves 11 subkeys. The differential
characteristic probability is at least pk×pc|k = (2−6)(11×3)×pc|k = 2−198×pc|k <
2−192.

Therefore, AES-128 and AES-192 with the strengthened key schedule are
resistant to differential related-key attacks. ��
Remark 1. Our proofs show that the original May et al.’s key schedule is also
resistant against related-key differential attack. This is because if a pair of keys
is an equivalent weak key pair, then they produce the same roundkeys and we
have normal differential attack instead of related-key differential attack. If they
are not an equivalent key pair, then Δa or Δb is non-zero and we can apply2

Lemma 1 to prove Theorem 1 for May et al.’s key schedule.

3.4 Improved May et al.’s Key Schedule is Secure against
Related-Key Boomerang Attack

We consider an arbitrary decomposition of AES, with our improved key schedule,
into two smaller sub-ciphers. The generation of the subkeys by the key schedule
will be split between the two sub-ciphers. Since the subkeys are independently
generated, pkqk is simply the product of the probabilities that the differential
characteristics hold for the generation of each subkey.

We note that it may be possible to bypass one subkey for the round at which
the cipher is split into two using a boomerang switch. Furthermore, we assume
that two rounds at the start can be ignored by not specifying the differences in
the differential trail (as in [3], where one round at the start is ignored). Hence,
for AES-128, we consider the generation of 7 subkeys; for AES-192, 9; and for
AES-256, 11.

By Lemma 1 and Corollary 2, we see that there are at least 3 active S-boxes
involved in the generation of each subkey for all three versions of AES. For
t subkeys, the product of the probabilities that the differential characteristics
hold for each subkey is (2−6)3t. Since pkqk ≤ 2−18t, (pkqk)2 < 2−NK holds if
(2−18t)2 < 2−NK .

If t ≥ 4, we have (pkqk)2 < 2−128; if t ≥ 6, we have (pkqk)2 < 2−192; and
if t ≥ 8, we have (pkqk)2 < 2−256. For AES-128, t = 7; for AES-192, t = 9;
and for AES-256, t = 11. Hence, for AES with the strengthened key schedule,
for any decomposition into two sub-ciphers, there does not exist a boomerang
quartet of high probability which can be exploited. Therefore, we have proved
that AES-128, AES-192 and AES-256 using the strengthened key schedule of
[11] are resistant to related-key boomerang attack.

By a reasoning similar to Remark 1, the original May et al.’s key schedule is
also resistant against related-key boomerang attack.
2 We can apply Lemma 1 because both the improved and original May et al.’s key

schedule uses the same 3-round AES structure to generate each roundkey.
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4 A New On-the-fly Key Schedule for AES Secure against
Related-Key Differential and Boomerang Attacks

We present here a new key schedule for AES that offers several advantages
over both the original key schedule (security against related-key differential and
boomerang attacks) and that proposed by May et al. [11] (better efficiency).

The key schedule shown below generates fifteen 128-bit round keys Ki, 0 ≤
i ≤ NR = 14 from a 256-bit master key or thirteen 128-bit round keys Ki, 0 ≤
i ≤ NR = 12 from a 192-bit master key. Round key Ki is used in the ith round
of encryption. For a 256-bit master key, one subkey SK0 is not converted into
a usable round key, and for a 192-bit master key, three subkeys SK0..2 are not
converted into usable round keys.

Here, Cj denote 128-bit strings which are initialized by equating them to
integers j encoded as 128-bit strings. keylen− 1 refers to the key length of the
cipher (minus 1) also encoded as a 128-bit string. 1R AES(x) refers to one round
of unkeyed AES with the plaintext x. The AddRoundKey operation in the AES
round can be omitted or provided with a null key.

These proposed key schedules for AES-192 and AES-256 are partially
irreversible, by which we mean that, given two round keys, it is hard to derive
the rest of the round keys. However, given certain combinations of three or more
round keys, it may be possible to derive the rest of the round keys. For example,
if we have SKi, SKi+1 for i = 1 or 2, as well as SK4, then we can obtain K1 from
SKi, SKi+1, and then we either have, or can compute SK3, and then use SK4 to
get K2. In this sense, this proposed key schedule is weaker than the original and
improved key schedules by May et al. Nonetheless, partial irreversibility is a desir-
able property which is lacking in the original AES-192 and AES-256 key schedules.

if AES-192
f = 1

if AES-256
f = 2

for j = 0 to 15
K1j = MKj

K2j = MKj+(8∗f)

for j = 0 to 15
Cj = j

C0 = C0 ⊕ K1 ⊕ (keylen − 1)
C4 = C4 ⊕ K2
C8 = C8 ⊕ K1
C12 = C12 ⊕ K2

SK−1 = K1, I−1 = 0
for i = 0 to 15

Ii = 1R AES(Ii−1 ⊕ Ci)
SKi = Ii ⊕ SKi−1
if AES-192

Ki−3 = SKi

if AES-256
Ki−1 = SKi

New key schedule proposal for 192-bit and 256-bit keys
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The following key schedule shown generates eleven 128-bit round keys Ki, 0 ≤
i ≤ NR = 10 from a 128-bit master key. One subkey SK0 is not converted into
a usable round key.

for j = 0 to 11
Cj = j

C0 = C0 ⊕ MK ⊕ (keylen − 1)
C4 = C4 ⊕ MK
C8 = C8 ⊕ MK

SK−1 = MK, I−1 = 0
for i = 0 to 11

Ii = 1R AES(Ii−1 ⊕ Ci)
SKi = Ii ⊕ SKi−1
Ki−1 = SKi

New key schedule proposal for 128-bit keys

Our proposed key schedule for AES-128 is also partially irreversible in that
at least two round keys are needed to derive the rest of the round keys, and only
certain combinations of keys can work. In contrast, the original AES-128 key
schedule requires only one round key to derive all the other round keys.

Theorem 3. AES-128, AES-192 and AES-256 with the key schedules proposed
in this section are resistant against related-key differential and boomerang at-
tacks.

Proof. In this proof, we use the fact that the differential characteristic probabil-
ity of four consecutive AES rounds is bounded by 2−150 [8, page 33]. This result
holds only when the input differential is non-zero and encryption is under a fixed
key, i.e. the subkey differentials are zero.

For an attacker to control the round key differences ΔKi to launch a related-
key attack, he would need to control the output differential ΔIi of the key
schedule internal state. Thus we need to prove that the differential probabil-
ity of this internal state is low enough to prevent related-key differential and
boomerang attacks. Since we are considering related key differential attack, we
assume ΔMK = 0.

Key schedule for AES-128: ΔMK = 0 implies the input differential to the
first four AES rounds of the internal state is non-zero. Therefore the differential
characteristic probability of the key schedule internal state Ii is bounded by
2−150.

Key schedule for AES-192, AES-256: ΔMK = 0 implies Δ(K1, K2) = 0.
Thus, we consider the three cases ΔK1 = 0, ΔK2 = 0; ΔK1 = 0, ΔK2 = 0 and
ΔK1 = 0, ΔK2 = 0.

When ΔK1 = 0, ΔK2 = 0, the first round corresponding to internal state
I0 will have a non-zero differential input ΔK1. Rounds 2 to 8 corresponding to
I1 to I7 will have zero input key differences. Thus the differential characteristic
probability of these eight rounds, and consequently, of the entire key schedule
internal state Ii is at most (2−150)2 = 2−300.
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When ΔK1 = 0, ΔK2 = 0, the first four rounds corresponding to I0 to I3

will have zero differential characteristic probability since there is a zero input
difference and no input key differences for all four rounds. The fifth round cor-
responding to I4 will have a non-zero differential input ΔK2. Following this,
rounds 6 to 12 corresponding to internal state I5 to I11 will have zero input
key differences. Thus the differential characteristic probability of these eight
rounds, and consequently, of the entire key schedule internal state Ii is at most
(2−150)2 = 2−300.

When ΔK1 = 0, ΔK2 = 0, the first round corresponding to internal state I0

will have a non-zero differential input ΔK1 while rounds 2 to 4 corresponding to
I1 to I3 will have zero input key differences. This gives a differential characteristic
probability of at most 2−150 for the first four rounds. The differential output after
these four rounds is ΔI3. If ΔI3⊕ΔK2 = 0, then we have a non-zero differential
input to the next four AES rounds corresponding to I4 to I7. Since rounds
6 to 8 corresponding to internal states I5 to I8 have zero key differences, this
gives a differential characteristic probability of at most 2−150 for rounds 5 to 8. If
ΔI3⊕ΔK2 = 0, then there is no differential characteristic probability associated
with rounds 5 to 8. But ΔK1 will be a non-zero differential input to the next
four AES rounds while rounds 10 to 12 corresponding to internal states I8 to I11

have zero input key differences. This gives a differential characteristic probability
of at most 2−150 for rounds 9 to 12. In both cases, the differential characteristic
probability of the key schedule internal state Ii is at most (2−150)2 = 2−300.

For protection against related-key boomerang attack, when we split the ci-
pher into two sub-ciphers E0, E1, the corresponding internal state Ii of the key
schedule for one of the sub-cipher will contain 4 unkeyed AES rounds with a
non-zero input differential. This means one of pk or qk is bounded by 2−150 and
that (pkqk)2 ≤ 2−300. Thus our cipher is secure against related-key boomerang
attack. ��
For protection against other attacks on the key schedule, the use of round coun-
ters defeats slide attacks [6,7]. As in the case for the improved May et al.’s key
schedule, the use of key-length-dependant counters keylen defeats the related-
cipher attack [16].

The key schedule offers better efficiency than the proposal by May et al.
which invokes three AES rounds and a few S-box lookups per round key. Our
key schedule proposal invokes at most an (amortized) 1.25 AES rounds per round
key, making it more suitable for hardware implementation. If two AES round
functions are implemented in parallel, it is three times as fast as the May et al.
key schedule to encrypt; or if a single AES round function is implemented, it is
twice as fast.

4.1 Hardware Implementation

Usually hardware implementations of encryption algorithms are optimized for
high throughput, i.e. first for speed and then for area. If we look on these typically
round-based architectures, our proposed new AES key schedule introduces only
minor timing overheads compared to the original AES key schedule. Then for the
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encryption of one block with a 128-bit key 11 clock cycles are required (compared
to 10 clock cycles for standard AES) and for 192-bit and 256-bit keys we need
15 clock cycles compared to 12 and 14 clock cycles, respectively. Note that for
AES-256 -which suffers most from recent related key attacks and needs to be
fixed most urgently- this is an overhead of only 7%.

At the same time, the similarity of the key schedule and the data path allows
a better time-area trade-off and thus more flexibility for implementation. A
designer can choose to implement both data paths (as described above, variant
A) or to share resources between them (variant B). The latter variant B allows to
save area at the cost of additional clock cycles (21 for AES-128, 25 for AES-192
and 29 for AES-256). The proposal by May et al. invokes three AES rounds and
a few S-box lookups per round key. Therefore it cannot compute the round keys
on-the-fly and will never achieve the same speed as the standard AES or our
proposal, regardless of the hardware spent. Using a shared data path (variant
B), our proposal is twice as fast as the proposal by May et al., and using two
separate data paths (variant A) it is three times faster.

Also the area overhead of our proposal is very moderate as the following
estimations, which are based on the 180 nm UMCL18G212D3 standard-cell
library from UMC [14], indicate. In a round-based implementation, we need two
128-bit XOR gates to add MK and SK (600 GE) and a 4-bit XOR gate to
add Ci (10 GE). Depending on the key length we need a 7-bit XOR gate (17
GE) or an 8-bit XOR gate (19 GE) and for AES-192 and AES-256 we also need
a 128-bit MUX (342 GE). Finally a 128-bit AND gate (170 GE) is required to
handle the proper addition of MK and the variables I and SK need to be stored
in flip-flops (1536 GE). If the master key is never changed, it can be hardwired
and requires no gates. Otherwise we have an additional storage overhead of 768
GE for AES-128, 1152 GE for AES-192, and 1536 GE for AES-256. For variant
A an additional complete round of AES is required. Since the gate count for an
AES round depends on a wide variety of design choices, an estimation of the
total overhead for variant A is difficult. We therefore concentrate on variant B,
which only needs an additional 128-bit AND gate (170 GE). For variant B our
proposal introduces an overhead of 2505 GE with a hardwired MK and 3270
GE with a flexible MK for AES-128. For AES-192 it sums up to 2850-4000 GE
and for AES-256 to 2850-4385 GE.

To put these overhead figures into perspective, please note that a typical
throughput-optimized co-processor implementation of AES-128 requires tens of
thousands of GE: Satoh et al. report such an implementation on a 0.11 μm
technology with 54,000 GE [13], while the implementation of Pramstaller et al.
on a 0.6 μm technology requires 85,000 GE [12].
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A Proof of Lemma 1

A.1 Notation

Referring to Figure 1 in Appendix B, for i = 0, 1, 2, let Δa
(i)
0 , Δa

(i)
1 , and Δa

(i)
2

be the input differences to the SubBytes, MixColumns, and AddRoundKey op-
erations respectively in the ith round of the subkey generation. Also, let Δb be
the difference in b at each round. Therefore, Δa

(0)
0 is the data input difference

to the subkey generation function and Δb is the key input difference to each
round of the subkey generation function, where (Δa

(0)
0 )j = Δaj = ΔS(MKj)

and (Δb)j = ΔS(MKj+16). The output difference Δa
(3)
0 is the difference in the

round subkey.
We make a few observations about these differences.

(1) After applying the SubBytes operation to the state, the positions of the
active bytes are unchanged. The ShiftRows operation preserves the number
of active bytes, so the input difference to the SubBytes operation Δa

(i)
0 and

the output difference of the ShiftRows operation Δa
(i)
1 have the same number

of active bytes.
(2) Furthermore, if Δa

(i)
1 has one active column, and it contains more than one

active byte, ShiftRows−1 spreads them to different columns, so Δa
(i)
0 must

have more than one active column, each containing one active byte.
(3) Δa

(i)
2 = MixColumns(Δa

(i)
1 ). The MixColumns function is maximal distance

separable, so its branch number is 5. Thus t active bytes in one column of
Δa

(i)
1 spread to at least 5 − t active bytes in the same column of Δa

(i)
2 .

In particular, one active byte in Δa
(i)
0 gives one active byte in Δa

(i)
1 which

spreads to one column of at least four active bytes in Δa
(i)
2 .

(4) The AddRoundKey operation gives Δa
(i+1)
0 = Δa

(i)
2 ⊕ Δb.

A.2 Proof of Lemma 1

Proof. We denote n and m to be the number of nonzero bytes in Δa and Δb

respectively, and we write k and l for the number of nonzero bytes in Δa
(1)
0

and Δa
(2)
0 respectively. Then the number of active S-boxes in the differential

characteristic path is n + k + l. We also note that if ΔMK = 0, then Δ(a, b) =
(0, 0). We consider the various cases below.

(1) n = 0
We have Δa = 0, so Δb = 0 and m = 0. Since Δa

(1)
0 = Δb, we must have

k = m.
If Δa

(1)
2 has one active column, then it has at least 5 − m active bytes, and

the active bytes of Δa
(1)
0 = Δb are all in different columns. Then Δa

(2)
0 =

Δa
(1)
2 ⊕Δb has at least 5−m−1 active bytes, i.e. l ≥ 4−m. Then n+k+ l ≥

0 + m + 4 − m = 4.
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If Δa
(1)
2 has more than one active column, then, Δa

(1)
2 has at least 8 − m

active bytes. If m ≥ 4, we have n + k + l ≥ 4. If m ≤ 3, then Δa
(2)
0 =

Δa
(1)
2 ⊕ Δb has at least 8 − 2m active bytes, i.e. l ≥ 8 − 2m, which gives

n + k + l ≥ 0 + m + 8 − 2m = 8 − m ≥ 5.

(2) k = 0
We have Δb = Δa

(0)
2 , so m ≥ 5 − n. We also have Δa

(2)
0 = Δb, so l = m.

Then n + k + l ≥ n + 0 + 5 − n = 5.

(3) n ≥ 1, k ≥ 1, l = 0
From l = 0 we have Δb = Δa

(1)
2 = MixColumns

(
Δa

(1)
1

)
.

If k = 1, Δa
(1)
0 = Δa

(0)
2 ⊕ Δb has one active byte. We have Δa

(0)
2 =

MixColumns
(
Δa

(0)
1

)
, and we can write Δa

(1)
0 = MixColumns(α), where α

has four active bytes. Equating the two expressions for Δb, we get Δa
(1)
2 =

Δa
(1)
0 ⊕Δa

(0)
2 , and by the linearity of MixColumns we get Δa

(0)
1 = Δa

(1)
1 ⊕α.

Then Δa
(0)
1 has at least three active bytes, as does Δa

(0)
0 , and so n ≥ 3, giv-

ing n + k + l ≥ 3 + 1 + 0 = 4.
If k = 2, Δb = Δa

(1)
2 has either one or two columns active. If it has two

columns active, then all eight bytes in the two columns are active, and we
also know that Δa

(1)
0 has two active bytes. If Δa

(1)
2 has one column active,

then at least three of the bytes in that column active, and the two bytes of
Δa

(1)
0 must be in different columns. Either way, Δa

(0)
2 = Δa

(1)
0 ⊕ Δb has at

least two active columns, so we must have n ≥ 2. Then n+k+l ≥ 2+2+0 = 4.
If k ≥ 3, then because n ≥ 1, we have n + k + l ≥ 4.

(4) n ≥ 1, k ≥ 1, l ≥ 1
We either have n = k = l = 1, or n + k + l ≥ 4. Assume n = k = l = 1.
Then n + k + l = 3, and since Δa

(0)
2 has four active bytes and Δa

(1)
0 has one

active byte, Δb = Δa
(0)
2 ⊕ Δa

(1)
0 has at least three active bytes, i.e. m ≥ 3.

Since n + m ≥ 4, we have at least four active S-boxes from the generation of
a and b. ��
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B Figures

Fig. 1. Flow of differences for one round subkey generation
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Abstract. In the recent years, side channel attacks have been widely
investigated. In particular, second order attacks (2O-attacks) have been
improved and successfully applied to break many masked implementa-
tions. In this context we propose a new concept to hinder attacks of all or-
der: instead of injecting more entropy, we make the most of a single-mask
entropy. With specially crafted bijections instantiated on the mask path,
we manage to reduce the inter-class variance (method we call “leakage
squeezing”) so that the leakage distributions become almost independent
from the processed data. We present two options for this countermea-
sure. The first one is based on a recoded memory with a size squared
w.r.t. the unprotected requirement, whilst the second one is an enhance-
ment alleviating the requirement for a large memory. We theoretically
prove the robustness of those implementations and practically evaluate
their security improvements. This is attested by a robustness evaluation
based on an information theoretic framework and by a 2O-DPA, an EPA
and a multi-variate mutual information analysis (MMIA) attack metric.
As opposed to software-oriented 3O-DPA-proof countermeasures that
seriously impact the performances, our is hardware-oriented and keeps
a complexity similar to that of a standard 2O-attack countermeasure
with an almost untouched throughput, which is a predominant feature
in computing-intensive applications.

Keywords: Higher-Order Differential Power Analysis, Variance-based
Power Attack (VPA), Multi-variate Mutual Information Analysis (MMIA),
Masking Countermeasure, Leakage Squeezing, FPGA.

1 Introduction

During the last ten years, a lot of effort has been dedicated towards the research
about side-channel attacks [1, 10] and the development of corresponding coun-
termeasures. In particular, there have been many endeavors to develop effective
countermeasures against differential power analysis (DPA) [11] attacks.

Amongst the two major countermeasures against DPA, hiding and masking,
the latter is certainly the least complex to implement when applied at the algo-
rithmic level. The idea of masking the intermediate values inside a cryptographic
algorithm has been suggested in several papers [2, 4, 12] as a possible counter-
measure to power analysis attacks. Masking ensures that every single variable

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 208–223, 2011.
c© IFIP International Federation for Information Processing 2011
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is masked with at least one random value so that a classical (first order) DPA
attack cannot be successfully carried out anymore. However other attacks, such
as the Higher Order DPA attacks [19, 20, 24], exist that can defeat masking.

In fact, masking can be defeated if the attacker knows how to combine the leak-
ages corresponding to the masked data and its mask. This is known as second-
order, or more generally higher-order, power analysis (abridged 2O-DPA and
HO-DPA) and was originally suggested by Thomas S. Messerges in [19]. Investi-
gating 2O-DPA, however, is of major importance for practitioners as it remains
a good alternative that is powerful enough to break real-life, DPA-protected
security products.

The attacker is allowed to profile the leakage in order to exhibit a relationship
between the statistical distribution of the leakage and the value of a sensitive
variable. Once this relationship is determined, the likelihood of key guesses is
estimated given the distribution of the leakage. Such attacks are based on the
same principle as the template attacks introduced by Suresh Chari et al. in [5].
These attacks have been successfully applied by Éric Peeters et al. in [20] to
break some masked implementations more efficiently than any combining 2O-
DPA. Moreover, Houssem Maghrebi et al. in [14] proposed a 2O-DPA based
on variance analysis, called Variance Power Analysis (VPA), which is powerful
enough to practically break a masked DES implemented in an FPGA. More
recently, a generic multi-variate attack called MMIA has been introduced by
Benedikt Gierlichs et al. [8] to attack high-order countermeasures. Therefore,
there is a need for countermeasures thwarting 2O-DPA in particular and HO-
DPA in general. We describe in the present paper a methodology to squeeze the
leakage distributions so that any partitioning becomes almost indistinguishable.

The paper is organized as follows. Section 2 presents the state-of-the-art of first
order masking and describes its weaknesses against 2O-DPA. The description of
the concept of leakage squeezing is provided in section 3. The section 4 presents
two variants of implementations and includes the experimental results about the
complexity and robustness evaluation. Finally, section 5 concludes the paper and
opens some perspectives.

2 State of the Art

2.1 First Order Masking Overview

Let us consider the masked DES studied at UCL [23], whose principle is illus-
trated in Fig. 1. This algorithmic masking associates a mask ML, MR to the
plaintext L, R.

At each round i ∈ [1 : 16] an intermediate mask MLi, MRi is calculated in
parallel with the intermediate cipher word Li, Ri. If we let apart the expansion
E and the permutation P , the DES round function f is implemented in a masked
way by using a set of functions S and a set of functions S′:

{
masked data: S(xm ⊕ k) = S(x ⊕ m ⊕ k) = S(x ⊕ k) ⊕ m′ ,
mask m′ = S′(xm ⊕ k, m) = S′(x ⊕ m ⊕ k, m) .

(1)



210 H. Maghrebi, S. Guilley, and J.-L. Danger

  MLi MRi RiLi

MR0

L RiLi

E

E

P

P

S’

S

plaintext

ciphertext

inverse initial permutation

initial permutation

R

ML0

m

xm

Equation (1)

S(x ⊕ k) ⊕ m′
xm ⊕ k

m′

k

Fig. 1. ROM Masked DES

The variable m′ is a new mask reusable for the next round. The set of functions
S contains the traditional S-boxes applied on masked intermediate words. The
size of each S is 64 words of 4 bits when implemented with a ROM. S′ is a new
table which has a much greater ROM size of 4K words of 4 bits, as there are
two input words of 6 bits.

The two operations of Eq. (1) can be executed sequentially, as in software. In
hardware, they can be executed simultaneously. We call it “zero-offset” masking,
and it will be our case of study in the rest of this article.

2.2 Vulnerability of the Masking against 1O-Attacks

It has been reported in [17] that first order DPA could be conducted on masked
circuits. As investigated in [18], it happens that the leakage does not come from
the registers, but from the combinational parts of the design. This logic is sus-
ceptible to produce glitches, whose appearance can be correlated with unmasked
data during the internal demasking of the variables.

In this article, we reduce the number of glitches by confining the sensitive
combinational logic in ROMs. The same approach has already been suggested in
other papers, such as [9, §IV.1] Although this is not formally a guarantee that
sensitive glitches disappear, we benefit all the same from the low-power design
of the memory blocks that suppresses most of the non-functional activity.

For the proposed countermeasure to be evaluated clearly, we focus the rest
of the article on the protection of registers: we assume a toggle count leakage
model (aka Hamming distance model), and we consider only attacks targeting
this model.
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2.3 Vulnerability of the Masking against 2O-Attacks

Implementations were studied to thwart attacks of high order, as that of Mehdi-
Laurent Akkar [3] which uses constant masks. However to obtain an important
robustness the price to be paid is a strong increase of the complexity. As illus-
tration, it has been demonstrated by Jiqiang Lv in [13] that the DES algorithm
requires at least three different masks and six additional S-boxes for every S-box
to be resistant against high order attacks using this method. Another method,
such as that used by François-Xavier Standaert et al. [23], consists in recomput-
ing a new mask in every iteration at the same time as S-box, as Fig. 1 shows for
the DES algorithm. The masked variable x⊕m of the register R is associated in
every round with a new mask m stemming from the register M . So at the end
of a round the variable x ⊕ m is transformed in S′(x) ⊕ m and the new mask
m′ which is calculated according to m and x ⊕ m by means of new S-box S′.
This method offers a good compromise of complexity because it associates only
a new S-box S′ with every existing S-box S.

S ′S

R M

k

mx ⊕ m

m′S(x ⊕ k) ⊕ m′
ROM ROM

Fig. 2. Masked DES using two paths, implemented with ROM

This implementation remains subject to the 2O-DPA of Éric Peeters [20].
The figure 2 represents the S-box implementation S′ in ROM. For reasons of
simplicity the figure disregards the expansion and permutation functions ap-
propriate for the DES algorithm. The so-called “zero-offset” HO-DPA attack of
Éric Peeters [20] concerns variables x ⊕ m and m which are stored in R and M
registers. The principle consists in studying the distributions of the activity at
the register outputs for various values of x. In CMOS logic, a model of activity,
noted A, can be the Hamming distance, noted HD, between two consecutive
words:

A(x ⊕ m, m) .= HD(x ⊕ m, S(x ⊕ k) ⊕ m′) + HD(m, m′)
= HW (x ⊕ S(x ⊕ k) ⊕ m ⊕ m′) + HW (m ⊕ m′)

= HW (Δ(x) ⊕ Δ(m)) + HW (Δ(m)) ,

where HW corresponds to the Hamming Weight and Δ is the difference between
two consecutive values of a register output:

Δ(x) .= x ⊕ S(x ⊕ k) and Δ(m) .= m ⊕ m′. (2)
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If x and m fit on a single bit, the corresponding activity is 2 · HW (Δ(m))
if HW (Δ(x)) = 0, whereas if HW (Δ(x)) = 1, the corresponding activity is
HW (Δ(m)) + HW (Δ(m)) and is thus constantly equal to 1. The knowledge of
the consumption distributions for every HW (Δ(x)) values allows to build the
HO-DPA attack by observing the consumption distributions and by comparing
them with the predicted activity for a key hypothesis included in x.

2 4 6 41 3 5 70 2 4 6 8 3 5Activity A

4/164/16

1/16

2/16

8/16

16/16

4/16

1/16

6/16

2/16

6/16 6/16

4/16

8/16 8/16

HW (Δ(x))=0 HW (Δ(x))=1 HW (Δ(x))=3HW (Δ(x))=2 HW (Δ(x))=4

Fig. 3. Ideal (i.e. noise-free) probability density functions (pdf) corresponding to the
five possible values of HW (Δ(x)) without 2O-DPA protection [14]

Considering 4-bit registers, there are five possible distributions depending on
the HW (Δ(x)) values. They are shown in Fig. 3. It appears a clear difference
between the five distributions, which could be exploited by a HO-DPA attack.

In [20], Éric Peeters proposed an improved higher-order technique to bypass
the masking countermeasure. It is based on the efficient use of the statistical
distributions of the power consumption described in figure 3 and it consists in
computing the maximum likelihood of key guesses. Another alternative is to take
advantage of the fact that the distributions showed in figure 3 all have the same
mean value and only differ in their variances. This fact allows to understand
the origin of previous attacks, as the one in [14], so-called Variance-based Power
Attack where it is proposed to compute the difference of variance between the
five possible distributions depending on the secret state of the implementation
HW (Δ(x)) values. This attack is quite efficient on “zero-offset” implementation
and requires a reasonable number of traces (200K) [14]. Moreover, in [15] a novel
approach to information-theoretic HO attacks, called the Entropy-based Power
Analysis (EPA) was introduced using a weighted sum of conditional entropies as
a distinguisher. It is designed to ease the distinguisability between hypotheses
on candidate keys by computing the difference of conditional entropies between
the distributions. Moreover, a novel approach, Multivariate Mutual Information
Analysis MMIA, was proposed in [8]. This attack works in software masking but
has never been applied on zero-offset implementations.

Therefore, there is a need for countermeasures thwarting 2O-DPA in particular
and HO-DPA in general, by balancing the leakage distributions described in
figure 3 so that any partitioning becomes almost indistinguishable whatever the
secret state HW (Δ(x)).
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3 Proposed Masking Method for “Leakage Squeezing”

Indeed, we implement the S-boxes in (synchronous) ROMs of FPGA, which are
much less if not totally immune to spurious glitching activity. We have checked
that with a standard masking scheme, 2O-DPA succeeds but not 1O-DPA [14].
Also, unlike other initiatives, we do not attempt to add extra masks to incre-
ment the order n of resistance against nth-order DPA; our philosophy has been
to stick with one sole mask, but to adapt the masking scheme and the leak-
age function. This approach is deliberately pragmatic and tightly linked to a
specific leakage model, namely the “transition count” model, which has been
experimentally verified for registers in FPGAs and ASICs. Such a methodology
is of high practical interest for practitioners, because some theoretically backed
countermeasures have been shown to present vulnerabilities and because most
of them are almost impossible to implement in throughput-driven circuits due
to excessive overhead.

3.1 Masking Principle

The “leakage squeezing” approach is not a countermeasure dedicated only to
fight 2O-Attacks (for instance by making the distribution second order indis-
cernible, but by opening the door to an attack of still higher order). Instead,
it consists in making the overall leakage indiscernible in order to reduce the
information leakage provided by the countermeasure, thereby anticipating any
adversarial strategy. The principle is somehow similar to static power balancing
countermeasures (information hiding, with dual-rail for instance [16, Chp. 7]):
this methodology is also attack-agnostic.

Following this philosophy, we do not concentrate on a particular characteristic
of the squeezed leakages (such as the nth momentum) but instead consider a
global metric.

The principle consists mainly in making the activity of the register storing
the mask m independent from the activity of the register containing the masked
variable x⊕m. A second action is to use ROMs for the implementations in order
to avoid or at least strongly reduce the glitching activity. The first point is that if
the variable x does not influence the consumption distributions for the variable
and the mask register, we obtain similar (and ideally identical) distributions for
every HW (Δ(x)) values, and as a result it is not possible any more to mount a
successful 2O-DPA as that of Peeters [20] or the VPA attack [14].

The similarity between the five consumption distributions can be made by
modifying the structure of the mask path without touching the path of the
masked variable.

A simple approach consists in modifying the mask m by using a bijective
transformation B before storing B(m) in the mask register M . It is shown in
Fig. 4. Indeed, the presence of Δ(m) twice in the leakage function, (Eqn. (2)),
tends to reduce the effect of the masking countermeasure as the two terms com-
pensate partially so that there remains a residual dependency in HW (Δ(x)).
To decorrelate those two terms, we need a Boolean function that implements
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S(x ⊕ k) ⊕ m′ B(m′
)

x ⊕ m B(m)

m

k

m′

ROM

or ROM

Gates

B

MR

B−1

S S S

Fig. 4. Mask path with bijections for “Leakage squeezing”

good confusion, namely an S-box B. The activity of the variables x ⊕ m and
B(m) should be ideally decorrelated. This activity of the registers R and M is
expressed by:

AB = HW (x ⊕ S(x ⊕ k) ⊕ m ⊕ m′) + HW (B(m) ⊕ B(m′))
= HW [Δ(x) ⊕ Δ(m)] + HW [ΔB(m)] . (3)

With the bijection, the leakage (Eqn. (3)) is squeezed becauseΔ(m)andΔ(B(m))
do not cancel as easily as previously.

The bijection and its inverse can be implemented as internal encodings in
a table. The figure 4 describes a hardware architecture, where the registers R
and M are protected against Hamming distance attack via a squeezing of their
leakage. The rest of the schematic is combinational logic : either gates or memory
blocks.

By choosing the appropriate bijection B we can obtain very close distribu-
tions which should not allow the adversary to take advantage of the residual
mismatches.

3.2 Formal Security Assessment and Motivation for Some Bijections

In order to evaluate the information revealed by the squeezing countermeasure,
we follow the information theoretic approach suggested in [22]. Namely we com-
pute the mutual information between the sensitive variable k and the leakage
function AB of Eqn. (3).

In our experiments, we will consequently assume that the leakage is affected
by some Gaussian noise. Thus, the physical observations are represented by a
variable : O = AB + N (0, σ2).

For comparison purposes, we compute the mutual information value (I(k; O))
as proposed in [22] for several bijection functions. The lower the mutual infor-
mation, the better the countermeasure.
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The mutual information is represented in figure 5 for the different bijections,
in function of the signal-to-noise ratio (SNR = 10 · log10

ε2

σ2 ), where ε and σ
respectively denote the standard deviation of the signal and the noise emanated
from the implementation.

These results demonstrate the information leakage reduction implied by the
use of bijections functions. The linear function already decreases significantly
the mutual information. Then, the non-linear functions still achieve a better
improvement. It appears that Serpent S-boxes are leaking less than the randomly
generated bijection or than the Gamma function of Noekeon. This justifies the
use of the S-boxes crafted for strong symmetric algorithms.

This first analysis allows us to observe that the gain is high when the leakage
squeezing is applied, because the mutual information is almost zero whatever the
SNR. On the other hand, these results justify the best choice of the bijection to
be used in our implementation. Indeed, the knowledge of this bijection (that can
even be made public) is of no help for the attacker since the mask is unknown.
Therefore, in all the cases, we assume a partitioning according to HW (Δ(x)),
that is independent of B.

4 Experiments on Masked DES Implementations

In this section, we apply the principle of leakage squeezing introduced in sec-
tion 3.1 to DES. It requires an adaptation since its round function is more
elaborate than x �→ S(x ⊕ k). Also, it is unrealistic to use 32-bits bijections.
Therefore, we show how to split the bijection B (refer to Fig. 4) into smaller
bijections. Two implementations are proposed: a ROM based architecture and a
simpler structure called “Universal S-box Masking” (USM).
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4.1 ROM Implementation

For DES we can use eight different bijections1, denoted B1, one for each S-box.
To further protect the new mask m′, we compose the DES parts by using external
encodings with bijections B2, for instance:

B−1
1 ◦ E ◦ S ◦ P ◦ XOR(L) ◦ B1︸ ︷︷ ︸

ROM

= B−1
1 ◦ E ◦ S ◦ B2︸ ︷︷ ︸

ROM

◦ P ◦ B−1
2 ◦ XOR(L) ◦ B1︸ ︷︷ ︸

LUT network

,

(4)
where B1 and B2 are 4-bit bijections, E, S, P and XOR(L), respectively the
Expansion, S-Box, Permutation and Left part recombination of the DES algo-
rithm. As the expansion E needs 6 bits, specific care has to be taken for the
4-bit bijections. This point is discussed further.

This principle of internal encodings has already been proposed by Chow et
al. in [6] in the context of white box cryptography. This protection method has
already been attacked for the DES and for the AES. However these attacks
should not apply for the mask path as it is random and consequently no values
can be imposed at the table inputs.

The general ROM implementation is given in figure 6. With respect to figure 4,
the intermediate data (e.g. Sboxes output) have been protected by the same
strategy, so as to provide a seamless “squeezing” throughout the combinational
logic.

The bijection B2 is constrained to be a xor operation with a constant, as
the permutation P on 32 bits causes the ROM output bits to be split for the
next round. The implementation of the mixing L with the left part can be done
by a Look Up Table (LUT) network in FPGAs rather than a ROM in order to
reduce the complexity. This requires that the bijections are a set of three 2-bit
bijections to take advantage of LUT having 4 inputs (LUT4) in FPGAs, or two
3-bit bijections if LUT6 are available.

If we compare this implementation to the one proposed in [23] and described
in figure 1, we have the same ROM complexity which is of eight 212 words of
four bits.

4.2 USM Implementation

The ROM implementation can be replaced by a more simple structure which
is the Universal S-box Masking (USM) studied in [14]. This implementation
presents some security weaknesses as discussed in [14]; the weakness can be
exploited successfully by a classical CPA. If we apply function compositions
as for Eq. (4) with new bijection encodings, the CPA and second order DPA
attacks could be thwarted. Figure 7 illustrates the mask path of DES with USM
implementation taking advantage of the “leakage squeezing” method. It is made
up four stages which can be protected by using bijections B1, B2, B3 and B4.
All the bijection are on four bits except B2 which is on six bits.

1 The same bijection can be reused eight times without compromising the security.
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Fig. 6. Leakage squeezing of DES with a masked ROM implementation

Every stage can be implemented by a set of LUT networks or a ROM.
The bijection B4 is constrained to be a xor operation with a constant, as the

permutation P on 32 bits causes the output bits to be split.
All the stages can be implemented with a LUT network based on sets of 2-bit

bijections. The second stage with the S-box could also be implemented in a small
64 × 4 ROM.

In this stage the mask m is xored with the masked data x ⊕ k ⊕ m and the
expansion E is performed as 6 bits of masks are considered.

4.3 Complexity and Throughput Results

The proposed implementations have been tested in a StratixII FPGA which is
based on Adaptative LUT Module (ALM) cell. They have been compared with
non protected DES, masked ROM and masked USM implementations without
any leakage squeezing.

The table 1 summarizes the memories needed for each implementation and
the estimated throughput.

These results show that the leakage squeezing method on hardware imple-
mentations has little impact on complexity and speed compared with software
implementation against HO-DPA [21]. Moreover the USM implementation is
particularly efficient as it avoids the use of large ROMs while keeping a high
throughput.
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Table 1. Complexity and speed results. “l. s.” denotes the “leakage squeezing” coun-
termeasure.

Implementation ALMs Block mem- M4Ks Throughput

-ory [bit] [Mbit/s]

Unprotected DES (reference) 276 0 0 929.4

DES masked USM 447 0 0 689.1

DES masked ROM 366 131072 32 398.4

DES masked ROM with l. s. 408 131072 32 320.8

DES masked USM with l. s. 488 0 0 582.8

network
LUT

network
LUT

ROM or LUT

network
LUT

network

#2

#1

#3

S(x ⊕ k) ⊕ m′

B1(mr)xr ⊕ mrxl ⊕ ml
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Fig. 7. Leakage squeezing of DES with a masked USM implementation

In order to validate our implementations, we conduct in the next sections an
evaluation of the leakages resulting from the leakage squeezing implementation.
In [22], a theoretical framework was consequently introduced and suggests an-
alyzing side-channel attacks with a combination of information theoretic and
security metrics. These metrics respectively aim at evaluating the amount of in-
formation provided by a leaking implementation and the possibility to turn this
information into a successful key recovery.



Leakage Squeezing Countermeasure against High-Order Attacks 219

4.4 Information-Theoretic Evaluation of the Proposed Solutions

As it was suggested in [22], we computed the mutual information between the
secret state k and the leakage function in the Hamming weight model with Gaus-
sian noise for our two implementations and the others for comparison purposes.

Figure 8 (a) shows the mutual information values obtained for each kind of
leakage with respect to an increasing noise standard deviation over [0.1, 10] (i.e.
an increasing SNR over [-20 , 20])

These results demonstrate the information leakage reduction implied by the
use of the leakage squeezing technique. As expected, the two implementations
based on leakage squeezing leak less information than the zero offset implementa-
tion and the unprotected DES for all SNRs. The somewhat surprising conclusion
of our experiments is that the mutual information is almost zero which proves
the robustness of this technique. In figure 8 (b), we zoom on the evolution of
the mutual information in the case of the implementations based on the leakage
squeezing technique in order to make a comparison between them.

We clearly see that when the SNR increases the mutual information for the
USM implementation tend asymptotically to the value 1e−4 bit and remains
below the mutual information leaked in the case of the ROM implementation
(i.e. 5e−4) and then is the most robust implementation.

We can explain this results by the fact that the leakage squeezing techniques,
(i.e. by applying bijection), aim at balancing the leakage distributions described
in figure 3 so that any partitioning becomes almost distinguishable whatever
the secret state HW (Δ(x)) and as a consequence the information leakage is
reduced. We showed in figure 9 the five possible values of HW (Δ(x)) for the USM
implementation with the squeezing leakage technique using the sixteenth serpent
S-Box (i.e. proved to be the most appropriate bijection, see subsection 3.2).
These distributions are clearly identical.

4.5 Evaluation of the Implementations against 2O-Attacks

After the information theoretic evaluation, the second step to evaluate the ro-
bustness of a leaking device is the security evaluation using various distinguishers
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Fig. 8. Mutual information metric computed on several DES implementations
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Fig. 9. Probability density functions (pdf) corresponding to the five possible values of
HW (Δ(x)) with Leakage Squeezing protection
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Fig. 10. First order success rate of 3 distinguishers, FPGA implementation

to see how the information leakages translate into success rate under different
assumptions.

First, we applied several side-channel distinguishers to leakage measurements
simulated in the Hamming weight model with Gaussian noise. We not only ap-
plied (HO)-DPA, but also other kinds of attacks, namely MMIA. We chose to
test these three side channel distinguishers against different kinds of masking,
firstly because they are the most widely used in the literature, and secondly
because they represent a brand spectrum of adversary capabilities.

Afterward, we performed these attacks against real power consumption mea-
surements of our FPGA implementations in order to check them in a real-world
context.

For each scenario, we acquired a set of 25, 000 power consumption traces
using random masks and plaintexts. We performed the first order success rate
as in [22].
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We showed in figure 10 our experimental results also for these attacks on the
“zero offset” hardware implementation used here for comparison purposes with
our hardware solution based on the leakage squeezing technique.

We can see that the attacks based on various distinguishers perform well
in the case of the “zero offset” implementation. About 5, 000 traces suffice to
achieve a success rate of 50% and starting from about 13, 000 traces the MMIA
attack reveals the correct key with success rate of 100%. The VPA and EPA
attack perform well also. For the EPA, the success rates stay well above 50%
even when using 11, 000 measurements, but eventually reaches success rate of
95% using 18, 000 traces.

For our proposed countermeasure, the attacks perform worse. The success
rates stay under 10% even when using 25, 000 measurements.

We conclude that the experiments on a real circuit shows the evidence of
benefit of our countermeasure since it leaks little information which are not
exploited by the adversary to mount a successful attack.

5 Conclusion and Perspectives

Second order DPA attacks not only allow to theoretically invalidate some coun-
termeasures, but can break them in practice. We presented in this paper a method
called “leakage squeezing” which aims at balancing the power consumption distri-
bution on hardware masked implementations. This method consists in using bi-
jective encodings composed of functional operations and implemented in ROMs
or LUT networks. Two implementations have been proposed and evaluated. They
provide a great robustness against 2O-DPA (VPA, EPA) and MMIA as none of
the subkeys have been guessed using 25k traces. The robustness is corroborated
by an information theoretic analysis of the leakage. Moreover the performances
decrease in terms of complexity and speed are very limited, which is particularly
true for the USM implementation which does not require large memories.

The main perspective of this work is to compare our countermeasure based fun-
damentally on Boolean masking with others solutions such the affine masking [7]
scheme which also provides good performance-security against HO attacks.
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Some Attacks (Paris, France). In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES
2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001)



222 H. Maghrebi, S. Guilley, and J.-L. Danger

3. Akkar, M.-L., Goubin, L.: A Generic Protection against High-Order Differential
Power Analysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 192–205.
Springer, Heidelberg (2003)

4. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, p. 398. Springer, Heidelberg (1999) ISBN: 3-540-66347-9

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
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Abstract. In this paper we present a differential fault attack that can
be applied to the AES using a single fault. We demonstrate that when
a single random byte fault is induced at the input of the eighth round,
the AES key can be deduced using a two stage algorithm. The first step
has a statistical expectation of reducing the possible key hypotheses to
232, and the second step to a mere 28.

Keywords: Differential Fault Analysis, Fault Attack, Advanced
Encryption Standard.

1 Introduction

The Advanced Encryption Standard (AES) [10] has been a de-facto standard
for symmetric key cryptography since October 2000. Smart cards and secure
microprocessors, therefore, typically include implementations of AES to protect
the confidentiality and the integrity of sensitive information. To satisfy the high
throughput requirements of such applications, these implementations are typi-
cally VLSI devices (crypto-accelerators) or highly optimized software routines
(crypto-libraries).

Several applications of DFA to AES have been reported in the literature.
In [3], authors describe an analysis based on faults induced in one byte of the
ninth round of AES that requires 250 faulty ciphertexts. An attack reported
in [1] allows an attacker to recover the secret key with around 128 to 256 faulty
ciphertexts. In [2], Dusart et al. show that using a fault which affects one byte
anywhere between the eighth round MixColumn and ninth round MixColumn,
an attacker would be able to derive the secret key using 40 faulty ciphertexts. The
authors of [12] describe an attack on AES with single byte faults that requires
two faulty outputs, where a fault is induced in the input of the eighth or ninth
round, extended to one 32-bit fault in the ninth round in [8].

We can note that when the assumptions are on the value of a byte (either it
being faulty or uncorrupted) the number of faulty pairs is quite small. However,
it is difficult to be able to affect a given value with any certainty. When numerous
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faulty ciphertexts are required this problem is amplified, since an attacker needs
to find a method of determining which faulty ciphertexts correspond to the
desired model. We can, therefore, state that the attacks that are most likely to
be realizable require the least faulty ciphertexts and assumptions on the effect
of the fault.

In [9] a fault attack against AES was proposed, which suggested that a secret
key can be derived using a single byte fault induction at the input of the eighth
round. The attack exploited the inter-relations between the fault values in the
state matrix after the ninth round MixColumn operation and reduced the number
of possible keys to around 232. However it may be noted that this work, like the
previous fault attacks on AES does not use the effect of the fault maximally in
an information theoretic sense [7]. The work proposed in this paper improves
the previous fault analysis on AES-128 and reduces the key space to its minimal
possible set of hypotheses attainable using a single byte fault. In this paper, we
describe the extended version of this attack, where an attacker could reduce the
exhaustive search to 28.

Notation

In this paper, multiplications are considered to be polynomial multiplications
over F28 modulo the irreducible polynomial x8 + x4 + x3 + x + 1. It should be
clear from the context when a mathematical expression contains integer multi-
plication.

Organization

The paper is organized as follows: In Section 2 we describe the background to
this paper. In Section 3 we describe an attack based on one of the fault models
given in Section 2. In Section 3 we extend this attack. In Section 4 we compare
this paper to work described in the literature, and we conclude in Section 5.

2 Background

2.1 The Advanced Encryption Standard

The structure of the Advanced Encryption Standard (AES) , as used to per-
form encryption, is illustrated in Algorithm 1. Note that we restrict ourselves
to considering AES-128 and that the description above omits a permutation
typically used to convert the plaintext P = (p1, p2, . . . , p16)(256) and key K =
(k1, k2, . . . , k16)(256) into a 4 × 4 array of bytes, known as the state matrix. For
example, the 128-bit plaintext input block P which produces fault free (CT ) and
faulty ciphertexts (CT ′) are arranged in the following fashion

P =

⎛
⎜⎜⎝

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

p4 p8 p12 p16

⎞
⎟⎟⎠ CT =

⎛
⎜⎜⎝

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16

⎞
⎟⎟⎠ CT′ =

⎛
⎜⎜⎝

x′
1 x′

5 x′
9 x′

13

x′
2 x′

6 x′
10 x′

14

x′
3 x′

7 x′
11 x′

15

x′
4 x′

8 x′
12 x′

16

⎞
⎟⎟⎠
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Algorithm 1. The AES-128 encryption function.
Input: The 128-bit plaintext block P and key K.
Output: The 128-bit ciphertext block C.

X ← AddRoundKey(P, K)
for i← 1 to 10 do

X ← SubBytes(X)
X ← ShiftRows(X)
if i �= 10 then

X ← MixColumns(X)
end
K ← KeySchedule(K)
X ← AddRoundKey(X, K)

end
C ← X

return C

where xi ∈ {0, . . . , 255} ∀i ∈ {1, . . . , 16}. We also define the key matrix for
the subkeys used in the ninth and tenth round as K10 = {k1, . . . , k16} and
K9 = {k′

1, . . . , k
′
16} that are arranged in a state matrix as described above.

The encryption itself is conducted by the repeated use of a number of round
functions:

– The SubBytes function is the only non-linear step of the block cipher. It is
a bricklayer permutation consisting of an S-box applied to the bytes of the
state. Each byte of the state matrix is replaced by its multiplicative inverse,
followed by an affine mapping. Thus the input byte x is related to the output
y of the S-Box by the relation, y = Ax−1 + B, where A and B are constant
matrices. In the remainder of this paper we will refer to the function S as
the SubBytes function and S−1 as the inverse of the SubBytes function.

– The ShiftRows function is a byte-wise permutation of the state.
– The KeySchedule function generates the next round key from the previous

one. The first round key is the input key with no changes, subsequent round
keys are generated using the SubBytes function and XOR operations. This
is shown in Algorithm 2 which shows how the rth round key is computed
from the (r − 1)th round key. The value hr is a constant defined for the rth

round, and << is used to denote a bitwise left shift.
– The MixColumn is a bricklayer permutation operating on the state column

by column. Each column of the state matrix is considered as a 4-dimensional
vector where each element belongs to F(28). A 4×4 matrix M whose elements
are also in F(28) is used to map this column into a new vector. This operation
is applied on all the 4 columns of the state matrix. Here M and its inverse
M−1 are defined as:

M =

⎛
⎜⎜⎝
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎞
⎟⎟⎠ M−1 =

⎛
⎜⎜⎝
14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14

⎞
⎟⎟⎠
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All the elements in M and M−1 are elements of F(28) expressed as a decimal
digit.

– AddRoundKey: Each byte of the array is XORed with a byte from a corre-
sponding array of round subkeys.

Algorithm 2. The AES-128 KeySchedule function.
Input: (r − 1)th round key (X = xi for i ∈ {1, . . . , 16}).
Output: rth round key X.

for i← 0 to 3 do
x(i<<2)+1 ← x(i<<2)+1 ⊕ S(x(((i+1)∧3)<<2)+4) ;

end
x1 ← x1 ⊕ hr ;
for i← 1 to 16 do

if (i− 1) mod 4 �= 0 then
xi ← xi ⊕ xi−1 ;

end

end

return X

2.2 The Fault Model

The implementation of AES we target is an iterative one, i.e. where a round
function is executed in a loop as described in Algorithm 1. An attacker can
typically predict at what point in time certain events take place, e.g. when a
particular round commences. Moreover, the time certain events take can often
be determined by analyzing a suitable side channel.

The fault model that we consider is the same as that used in many other
papers, for example [9], where we assume that the effect of an induced fault is
to change one byte to a random value.

For example, an attacker could attempt to use a glitch in the clock to create
a fault at the input of a particular round with a certain probability. An iterative
design helps in this regard, as the attacker is able to control the timing of fault
induction by simply counting the number of clock edges from the start of an
encryption.

3 The Fault Analysis

3.1 The First Step of the Fault Attack

If a fault is induced in a byte of the state matrix, which is then input to the
eighth round, the MixColumn operation at the end of the round propagates this
fault to the entire column of the state. The ShiftRow operation at the beginning
of the following round will then shift these bytes to occupy different columns.
The next MixColumn operation will then propagate the fault to the remaining
twelve bytes.
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This process is shown in Figure 1 where we show the diffusion of a byte
fault induced at the input of the eighth round. The XOR difference of the state
matrices of the two results, one fault free and the other faulty, is shown. This is
what we use as basis for a differential fault analysis.
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Fig. 1. Propagation of Fault Induced in the input of eighth round of AES

If, given a fault in the input to the eighth round, we consider the state of
the differences after the ninth round shift row, we can obtain the following set
of equations that include the values of the key bytes k1, k8, k11 and k14, thus
giving an expression for 32 bits of K10.

2 δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′
1 ⊕ k1)

δ1 = S−1(x14 ⊕ k14)⊕ S−1(x′
14 ⊕ k14)

δ1 = S−1(x11 ⊕ k11)⊕ S−1(x′
11 ⊕ k11)

3 δ1 = S−1(x8 ⊕ k8)⊕ S−1(x′
8 ⊕ k8)

,

Where δ1, k1, k8, k11 and k14 are all unknown values ∈ {0, . . . , 255}.
The above system of equations can be used to reduce the possibilities for

these 32 bits of the key. An attacker would select a value for δ1 and determine
which values of k1, k8, k11 and k14 satisfy the equations using four independent
exhaustive searches. Each equation will return 0, 2, or 4 hypotheses [11]. If any of
the four equations cannot be satisfied, i.e. there is an impossible differential [6],
then any hypotheses for that value of δ1 can be discarded.

As noted in [4,8] one can apply the same technique to recover information on
the remaining bytes of the last sub key. That is, information on the remaining
key bytes can be derived by using the following sets of equations: In order to
obtain information on k2, k5, k12 and k15 an attacker can use
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3 δ2 = S−1(x5 ⊕ k5) ⊕ S−1(x′
5 ⊕ k5)

2 δ2 = S−1(x2 ⊕ k2) ⊕ S−1(x′
2 ⊕ k2)

δ2 = S−1(x15 ⊕ k15) ⊕ S−1(x′
15 ⊕ k15)

δ2 = S−1(x12 ⊕ k12) ⊕ S−1(x′
12 ⊕ k12)

.

In order to obtain information on k3, k6, k9 and k16 an attacker can use the
following equations:

δ3 = S−1(x9 ⊕ k9) ⊕ S−1(x′
9 ⊕ k9)

3 δ3 = S−1(x6 ⊕ k6) ⊕ S−1(x′
6 ⊕ k6)

2 δ3 = S−1(x3 ⊕ k3) ⊕ S−1(x′
3 ⊕ k3)

δ3 = S−1(x16 ⊕ k16) ⊕ S−1(x′
16 ⊕ k16)

Finally, in order to obtain information on k4, k7, k10 and k13 an attacker can
use the following equations:

δ4 = S−1(x13 ⊕ k13) ⊕ S−1(x′
13 ⊕ k13)

δ4 = S−1(x10 ⊕ k10) ⊕ S−1(x′
10 ⊕ k10)

3 δ4 = S−1(x7 ⊕ k7) ⊕ S−1(x′
7 ⊕ k7)

2 δ4 = S−1(x4 ⊕ k4) ⊕ S−1(x′
4 ⊕ k4)

It can be noted that the equations have an identical structure, and, therefore,
the solutions are of similar nature. An evaluation of each set of equations will be
expected to return 28 unique hypotheses for the key bytes concerned. Therefore,
an attacker would expect to have 232 key hypotheses for the secret key used.

3.2 Analysis of the First Step of the Fault Attack

The first step of the fault attack uses four sets of equations to reduce the key
space of AES. In this section we determine the expected number of key hypothe-
ses that an attacker will have at each stage of an attack.

In order to analyze the number of valid hypotheses in the first stage of the
attack we consider the first set of equations given in Section 3.1. In this set of
equations δ1 is ∈ {1, . . . , 255}. If δ1 is equal to zero then one could say that
the expected fault has not been injected. If δ1 is zero it would imply that x1 is
equal to x′

1 and all 256 key hypotheses are possible. Let us first consider the first
equation in this set:

2 δ1 = S−1(x1 ⊕ k1) ⊕ S−1(x′
1 ⊕ k1)

We know the values of x1 and x′
1 from the correct and faulty ciphertexts

respectively. For a given value of 2 δ1 there will 0, 2 or 4 valid key hypotheses. The
mean hypotheses for all δ1 ∈ {1, . . . , 255} is approximately one, and, therefore,
256 key hypotheses when all δ1 ∈ {1, . . . , 255} are considered.
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The same can be said for each of the four equations in the set given above.
However, for a given value of δ1 each of the four equations would be expected to
return approximately one hypothesis for a key byte. These values will give one
hypothesis for the quartet of key bytes {k1, k8, k11, k14}. Given that an attacker
will have to take into account all the values in {0, . . . , 255} there will be 256
possible values for the quartet {k1, k8, k11, k14}. After an attacker has analyzed
the four equations defined in Section 3.1 there would be an expected 232 key
hypotheses.

3.3 The Second Step of the Fault Attack

In order to further reduce the key hypotheses we use the relationship between
the ninth round key and the tenth round key.

We consider the key-scheduling algorithm (see Algorithm 2), the ninth round
key, K9, generates the tenth round key, K10. The key schedule is invertible and
K9 can be expressed in terms of elements of K10. The value of K9 can be
expressed as ⎛

⎜⎜⎝
k1 ⊕ S(k14 ⊕ k10)⊕ h10 k5 ⊕ k1 k9 ⊕ k5 k13 ⊕ k9

k2 ⊕ S(k15 ⊕ k11) k6 ⊕ k2 k10 ⊕ k6 k14 ⊕ k10

k3 ⊕ S(k16 ⊕ k12) k7 ⊕ k3 k11 ⊕ k7 k15 ⊕ k11

k4 ⊕ S(k13 ⊕ k9) k8 ⊕ k4 k12 ⊕ k8 k16 ⊕ k12

⎞
⎟⎟⎠ .

We can observe that the fault values in the first column of the state matrix
at the output of the eighth round MixColumn is (2 f ′, f ′, f ′, 3 f ′), where f ′ is
a non-zero arbitrary value in F28 . Using the InverseMixColumn operation and
using the inter-relations between the fault values, we can define the following
equation:

2 f ′ = S−1(14 (S−1(x1 ⊕ k1)⊕ ((k1 ⊕ S(k14 ⊕ k10)⊕ h10))) ⊕ 11 (S−1(x8 ⊕ k8)⊕
(k2 ⊕ S(k15 ⊕ k11))) ⊕ 13 (S−1(x11 ⊕ k11)⊕ (k3 ⊕ S(k16 ⊕ k12)))⊕
9 (S−1(x8 ⊕ k8)⊕ (k4 ⊕ S(k13 ⊕ k9)))) ⊕ S−1(14 (S−1(x′

1 ⊕ k1)

⊕ ((k1 ⊕ S(k8 ⊕ k10)⊕ h10))) ⊕ 11 (S−1(x′
8 ⊕ k8)⊕ (k2 ⊕ S(k15 ⊕ k11))⊕

13 (S−1(x′
11 ⊕ k11)⊕ (k3 ⊕ S(k16 ⊕ k12))) ⊕ 9 (S−1(x′

8 ⊕ k8)⊕
(k4 ⊕ S(k13 ⊕ k9))))

Similarly, we can define the following equations:

f ′ = S−1(9 (S−1(x13 ⊕ k13)⊕ (k13 ⊕ k9)) ⊕ 14 (S−1(x10 ⊕ k10)⊕ (k10 ⊕ k14)))⊕
11 (S−1(x7 ⊕ k7) ⊕ (k15 ⊕ k11))⊕ 13(S−1(x4 ⊕ k4)⊕ (k16 ⊕ k12)))⊕
S−1(9 (S−1(x′

13 ⊕ k13)⊕ (k13 ⊕ k9)) ⊕ 14 (S−1(x′
10 ⊕ k10)⊕ (k10 ⊕ k14)))⊕

11 (S−1(x′
7 ⊕ k7) ⊕ (k15 ⊕ k11))⊕ 13 (S−1(x′

4 ⊕ k4)⊕ (k16 ⊕ k12)))
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f ′ = S−1(13 (S−1(x9 ⊕ k9)⊕ (k9 ⊕ k5)) ⊕ 9 (S−1(x6 ⊕ k6)⊕ (k10 ⊕ k6)))⊕
14 (S−1(x3 ⊕ k3)⊕ (k11 ⊕ k7))⊕ 11 (S−1(x16 ⊕ k16)⊕ (k12 ⊕ k8)))⊕
S−1(13 (S−1(x′

9 ⊕ k9)⊕ (k9 ⊕ k5)) ⊕ 9 (S−1(x′
6 ⊕ k6)⊕ (k10 ⊕ k6)))⊕

14 (S−1(x′
3 ⊕ k3) ⊕ (k11 ⊕ k7))⊕ 11 (S−1(x′

16 ⊕ k16)⊕ (k12 ⊕ k8)))

3 f ′ = S−1(11 (S−1(x2 ⊕ k2)⊕ (k2 ⊕ k1)) ⊕ 13 (S−1(x5 ⊕ k5)⊕ (k6 ⊕ k5)))⊕
9 (S−1(x12 ⊕ k12) ⊕ (k10 ⊕ k9))⊕ 14 (S−1(x15 ⊕ k15)⊕ (k14 ⊕ k13)))⊕
S−1(11 (S−1(x′

2 ⊕ k2)⊕ (k2 ⊕ k1)) ⊕ 13 (S−1(x′
5 ⊕ k5)⊕ (k6 ⊕ k5)))⊕

9 (S−1(x′
12 ⊕ k12) ⊕ (k10 ⊕ k9))⊕ 14 (S−1(x′

15 ⊕ k15)⊕ (k14 ⊕ k13)))

The second stage of the attack is coupled with the first stage, and can be used
to further reduce the number of key hypotheses.

3.4 Analysis of the Second Step of the Fault Attack

The expected number of hypotheses produced by the second step of the attack
follows a similar reasoning to the analysis of the first step, given in Section 3.2.

If we consider the second equation defined in Section 3.3, it can be rewritten
as

f ′ = A ⊕ B ,

where A and B are defined as

A = S−1(9 (S−1(x13 ⊕ k13)⊕ (k13 ⊕ k9))⊕
14 (S−1(x10 ⊕ k10)⊕ (k10 ⊕ k14)))⊕ 11 (S−1(x7 ⊕ k7)⊕
(k15 ⊕ k11))⊕ 13 (S−1(x4 ⊕ k4)⊕ (k16 ⊕ k12)))

and

B = S−1(9 (S−1(x′
13 ⊕ k13) ⊕ (k13 ⊕ k9))⊕

14 (S−1(x′
10 ⊕ k10) ⊕ (k10 ⊕ k14))) ⊕ 11 (S−1(x′

7 ⊕ k7)⊕
(k15 ⊕ k11)) ⊕ 13 (S−1(x′

4 ⊕ k4) ⊕ (k16 ⊕ k12)))

.

We can consider A and B to be random values in F28 . For a given values of
f ′ the difference between A and B will be equal to f ′ with a probability of 1

28 .
Using the same reasoning, the probability of all four equations being valid is(

1
28

)4 = 1
232 .

We have to consider all the possible values of f ′, i.e. {0, . . . , 255}. A given
key hypothesis will, therefore, be valid for some arbitrary value of f ′ with a
probability of 28 × 1

232 = 1
224 . The first step of the attack is expected to return

232 hypotheses each of which still be under consideration at the end of the second
step with a probability of 1

224 . One would, therefore, expect the second step of
the attack to produce 28 possible key hypotheses.
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3.5 Attacking other Bytes

In the previous sections we describe an attack where we base our Differential
Fault Analysis on the knowledge that a fault has been induced in the first byte
of the state matrix. However, we can note that the analysis returns a very small
number of hypotheses. We can, therefore, conduct 16 independent analyses under
the assumption that a fault is induced each of the 16 bytes of of the state at
the beginning of the eighth round. An attacker would expect this to produce
24 × 28 = 212 valid key hypotheses, which is still a trivial exhaustive search.

4 Comparison with Previous Work

There are several versions of fault-based differential cryptanalysis that are able
to reduce the number of key hypotheses from two faults injected into an imple-
mentation of AES, as described in [5, 9, 12]. However, the analysis proposed in
this paper is more effective, since the resulting exhaustive search can be reduced
to a trivial size using one fault. The number of key hypotheses returned by pre-
vious work would be somewhat time consuming. The advantage of the proposed
attack is that it does not need to reproduce a successful attack in order to able
to determine a secret key. Acquiring multiple faulty ciphertexts can be problem-
atic as faults are only successful with a certain probability, and the effect cannot
always be predetermined. This would mean that an attacker could potentially
have to search among numerous faulty ciphertexts to find a pair that both have
the desired fault.

5 Conclusion

This paper proposes a fault-based differential cryptanalysis of AES, that is an
extended version of the attack described in [9]. An attacker would expect to be
able to reduce the number of key hypotheses from 2128 to 28 with one well placed
fault. As noted in [8], these attacks can be conducted without any knowledge
of the plaintext being enciphered, as an attacker would just need to know the
plaintexts were the same.

There are many descriptions of a fault-based differential cryptanalysis of AES
that could be prevented by repeating the last two or three rounds of an implemen-
tation of AES, to verify that no exploitable fault has been inserted [1,2,3,12,13].
However, to prevent the attack described in this paper the last four rounds
would need to be repeated to check no fault was injected. Moreover, given how
much information can be gleaned from one fault, one would expect there are
attacks that require more faulty ciphertexts that would be able to make use of
faults in earlier rounds. One would, therefore, suggest that in order to protect
an implementation of AES the last five rounds should be protected against fault
injection.
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Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

13. Takahashi, J., Fukunaga, T., Yamakoshi, K.: DFA mechanism on the AES schedule.
In: Fault Diagnosis and Tolerance in Cryptography 2007 — FDTC 07, pp. 62–72
(2007)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/


Entropy of Selectively Encrypted Strings

Reine Lundin and Stefan Lindskog

Department of Computer Science
Karlstad University

Sweden
{reine.lundin,stefan.lindskog}@kau.se

Abstract. A feature that has become desirable for low-power mobile
devices with limited computing and energy resources is the ability to
select a security configuration in order to create a trade-off between se-
curity and other important parameters such as performance and energy
consumption. Selective encryption can be used to create this trade-off
by only encrypting chosen units of the information. In this paper, we
continue the investigation of the confidentiality implications of selective
encryption by applying entropy on a generic selective encryption scheme.
By using the concept of run-length vector from run-length encoding the-
ory, an expression is derived for entropy of selectively encrypted strings
when the number of encrypted substrings, containing one symbol, and
the order of the language change.

Keywords: computer security, security measures, selective encryption,
entropy.

1 Introduction

The ability to select a security configuration is a feature that has become desirable
for low-power mobile devices acting in heterogeneous wireless network environ-
ments with limited computing and energy resources. A selective security service
is a service that provides various security configuration at run-time to create a
trade-off between security and other important parameters such as performance
and energy consumption. Selective security is also a way to comply with the prin-
ciple of adequate security, which states that resources should only be protected to
a degree consistent with their value and only until they lose their value.

The concept of selective encryption was introduced in 1995 and 1996 for the
purpose of reducing the amount of encrypted MPEG data in a video stream while
still providing an acceptable level of confidentiality [9]. Selective encryption has
also been used to save energy and processing time for H.264/AVC video streams [7],
JPEG images [6], speech compressed with the G.729 speech encoding standard
[10], and a wireless video camera [3]. Previous work on selective encryption has
mainly focused on performance and/or energy saving issues and on making selec-
tively encrypted information perceptively secure to a certain protection level: that
is, to determine which parts of the information to encrypt to distort its percep-
tion beyond a desired threshold. In this paper, we continue the investigation in [5]

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 234–243, 2011.
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of the confidentiality implications of selective encryption by applying entropy on
the generic selective encryption scheme presented in [4]. Using the concept of run-
length vector from run-length encoding theory, an expression is derived for en-
tropy of selectively encrypted strings when the number of encrypted substrings,
containing one symbol, and the order of the language change.

The remainder of the paper is organized as follows. Sect. 2 introduces termi-
nology and definitions of languages and entropy. Selective encryption is discussed
in Sect. 3, and this section also presents the concept of run-length vector from
run-length encoding. The expression for entropy of selectively encrypted strings
is derived in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Terminology and Definitions

Terminology and definitions of languages and entropy are introduced in this
section.

2.1 Languages

In language theory an alphabet Σ is a finite non-empty set of symbols and a
string s over Σ is a finite sequence of symbols drawn from that alphabet. The
length of a string, |s|, is the number of symbols in the string. If no symbol
is drawn from the alphabet, the empty string ε is created, having |ε| = 0. The
concatenation operator | is used to join two strings together by appending. Hence,
the string s1|s2 is produced by appending s2 to s1. This is often written as s1s2

without the concatenation operator. Concatenation of a string with the empty
string yields the string itself, sε = εs = s; thus ε is the identity string during
concatenation.

The set of all strings over an alphabet Σ is called the transitive closure Σ∗

and every set L ⊂ Σ∗ is called a language. The size of a language, |L|, is the
number of strings in the language. An n-language, Ln, is a subset of a language
L containing the strings of length n, hence

Ln = {s ∈ L; |s| = n} (1)

Note that the union of all n languages constitutes the whole language, hence
L =

⋃k
n=0 Ln, where k is an arbitrarily large integer. Furthermore, L0 = {ε}

and L1 = Σ. Thus, L1 can both refer to a language with strings of length one
and the constructing alphabet.

The symbols in a language will normally have different probabilities that de-
pend on preceding symbols. Orders of languages, ω, to approximate the originally
language were proposed in [8]. The idea is shown in the following list.

L0 Zero-order language, symbols are independent and uniformly distributed.
L1 First-order language, symbols are independent and distributed as in L.
L2 Second-order language, symbols are dependent on one preceding symbol with

probabilities as in L.
Ln n-order language, symbols are dependent on n − 1 preceding symbols with

probabilities as in L.
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2.2 Entropy

Entropy H(X) [8] is a measure that gives the average amount of information of
a discrete random variable X . However, entropy can also be seen as a measure
giving the average number of guesses in an optimal binary search attack. The
discrete random variable X is a variable that attains values from finite sample
space X = {x1, . . . , xn} with probability distribution pi = p(X = si) = p(X i).
From this, entropy is defined as follows.

Definition 1. The entropy H(X) of a random variable X with probability dis-
tribution pi is defined as

H(X) = −
∑

i

pi log2 pi (2)

Definition 1 can be extended to joint and conditional entropy [1].

Definition 2. The joint entropy H(X0, X1) of a pair of random variables
(X0, X1) with joint probability distribution pij is defined as

H(X0, X1) = −
∑
i,j

pij log2 pij (3)

Definition 3. The conditional entropy H(X1|X0) of the random variable X1

given the random variable X0 with conditional probability distribution pj|i is
defined as

H(X1|X0) =
∑

i

piH(X1|X i
0) = −

∑
i,j

pij log2 pj|i (4)

Definition 2 can be generalized to n random variables that are related in the
chain rule as follows.

H(X0, . . . , Xn−1) = H(X0) +
n−1∑
i=1

H(Xi|X0, . . . , Xi−1) =
n−1∑
i=0

Hi (5)

3 Selective Encryption

As stated above, the main idea of selective encryption is to create a trade-
off between confidentiality and performance by encrypting chosen substrings
of a string while leaving the remaining substrings unencrypted, compressed or
encrypted with another encryption algorithm. In this paper, the substrings are
assumed to be of equal size, containing one symbol, and the remaining substrings
are assumed to be unencrypted and given in position.



Entropy of Selectively Encrypted Strings 237

The generic selective encryption scheme presented in [4] consists of three basic
entities: the string s to be selectively encrypted, the bit vector b that controls
which substrings of s to encrypt and the selectively encrypted message E(s). In
the scheme, s is divided into n equally sized substrings si, 0 ≤ i < n, hence

s =
n−1

|
i=0

si (6)

Furthermore, si is encrypted if bi mod |b| = 1 and left unencrypted if bi mod |b| = 0.
Without a loss of generality it can be assumed that n = |b|, hence the modulus
operator can be removed. The selectively encrypted string E(s) is now con-
structed as follows.

E(s) =
n−1

|
i=0

{
si if bi = 0
E(si) if bi = 1 (7)

From the number of encrypted substrings in E(s), controlled by b, the encryption
level is defined as

EL =
∑n−1

i=0 bi

n
(8)

The concept of run-length vector from run-length encoding theory [1] is used
in this paper in order to capture the distribution of zeros and ones in the bit
vector. In run-length encoding, information is stored as a run-length value and
a single instance of the corresponding data entity, where a run is the longest
substring from the current position containing identical data entities. Thus the
description length of information containing long runs will decrease. However, if
the information does not contain long runs, the description length of the informa-
tion might instead increase. The sequence of run-length values of the information
is called the run-length vector r. For instance, the bit vector (0, 0, 0, 1, 1, 0, 0) can
be written as (302120), with the corresponding run-length vector r = (3, 2, 2).
Note how r captures the distribution of runs of zeros and ones in the bit vector.
By using the convention of letting the first element in the run-length vector ex-
press the run-length of zeros at the beginning of the bit vector, even if there are
none, r2j will then give the run-length of zeros and r2j+1 will give the run-length
of ones in the bit vector. The elements in r will thus alternate between giving
the run-lengths of zeros and ones of the bit vector, starting with zeros.

From the notation of the 1-norm [2], also called the taxicab geometry or
Manhattan distance, the partial cumulative sum of a vector v will be denoted

||v[k,l]|| =
l∑

i=k

|vi| (9)

where k is the starting position and l the ending position of the vector. Note that
||v[k,l]|| = 0 if k > l, and if |v| = n then ||v[0,n−1]|| = ||v||1. From this notation
the run-length vector can be calculated from the bit vector as

ri = max{k + 1 ; ||¬ib[||r[0,i−1]||,||r[0,i−1]||+k]|| = 0} (10)
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where ¬i is the negation operator to the power of i. In a similar way, the bit
vector can be calculated from the run-length vector as

bi = min{k ; ||r[0,k]|| > i} mod 2 (11)

The elements in the bit vector will be one when k is an odd integer. By setting
αj = ||r[0,2(j−1)]|| and βj = ||r[0,2j−1]||, this will happen for the index sets
Ij = [αj , βj) where J = [1, � |r|

2 �]. Since Ij1 ∩ Ij2 = ∅ if j1 �= j2, the union of all
index sets

I =
⋃
j∈J

Ij (12)

indexes all ones in the bit vector while still preserving the uniqueness of the
indexing.

4 Confidentiality of Selective Encryption

To investigate how the entropy changes for selectively encrypted strings, let each
of the n equally sized substrings of a selectively encrypted string be associated
with a random variable as

X0, . . . , Xn−1 = E(s) =
n−1

|
i=0

{
Xi = si if bi = 0
Xi = E(si) if bi = 1 (13)

Since the entropy is affected only when bi = 1, unencrypted substrings only
affect the entropy indirectly; it is sufficient to use the index set I in (12) to
describe how entropy changes. Hence, by using (5), (12) and (13), the entropy
of selectively encrypted strings can be written as

Hω(X0, . . . , Xn−1) =
∑
i∈I

Hi
ω =

∑
j∈J

∑
i∈Ij

Hi
ω =

∑
j∈J

HIj
ω = HI

ω (14)

4.1 Zero- and First-Order Languages

The random variables are independent for L1 languages. Hence, the conditional
entropies in (14) becomes

Hi
1 = H(Xi) (15)

By using (15) in (14)

HI
1 =

∑
i∈I

H(Xi) = |I|H(X0) (16)

where the last step comes from the fact that the random variables are identically
distributed. In [5] it was shown for first-order languages that the entropy is given
by the expression H(X0)

∑n−1
i=0 bi. However, since |I| =

∑n−1
i=0 bi, the expressions
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are equal. The symbols are also uniformly distributed for L0 languages, hence
(16) transforms to

HI
0 = |I| log2 |L1

0| (17)

From the derived expression, no confidentiality can be achieved for L1 or L0-
languages if the number of encrypted units is zero, |I| = 0, or if the alphabet
contains only one symbol, |L1| = 1. Furthermore, intuitively and obviously,
encrypting more substrings or having a larger alphabet will increase the level
of confidentiality. Note also that the entropy tends to infinity as the number of
encrypted substrings or the number of symbols in the alphabet tends to infinity.

4.2 Second-Order Languages

For L2 languages the probability distribution of the symbols depends on one pre-
ceding symbol. Thus, when deriving an expression for HI

2 , the symbol preceding
a run of ones must be taken into consideration. In [5], two cases were shown to
affect the expression of HI

2 . The first case deals with a run of ones starting at
the beginning of the bit vector, i ∈ I1 = [0, β1), and the second case deals with
runs of ones not starting at the beginning of the bit vector, i ∈ Ij = [αj , βj)
with αj �= 0 and X

hj

αj−1. However, a single expression for HI
2 combining the two

cases was not derived in the paper.
The conditional entropies in Definition 3 is defined as the average of the

entropies of the conditional distributions, averaged over the conditioning dis-
tribution. Hence, in the first case, the conditional entropies in (14) can for L2

languages be written as

Hi
2 = p(X0, . . . , X

l
i−1)H(Xi|X l

i−1) = p(Li−1
2 X l

i−1)H(Xi|X l
i−1) (18)

where p(Li−1
2 X l

i−1) is a row vector of the second-order probabilities of the strings
ending with the substring X l

i−1 and H(Xi|X l
i−1) is a column vector of the con-

ditional entropies. By using (18) in (14), the expression of the first case becomes

HI1
2 = H(X0) +

β1−1∑
i=1

p(Li−1
2 X l

i−1)H(Xi|X l
i−1) (19)

In the second case, the conditional entropies in (14) can for L2 languages be
written as

Hi
2 = p(Xαj−1, . . . , X

l
i−1|Xhj

αj−1)H(Xi|X l
i−1)

= p(Li−αj

2 X l
i−1|Xhj

αj−1)H(Xi|X l
i−1) (20)

By using (20) in (14), the expression of the second case becomes

H
Ij

2 =
∑
i∈Ij

p(Li−αj

2 X l
i−1|Xhj

αj−1)H(Xi|X l
i−1) (21)
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Table 1. The probability distribution that gives HI
1 < HI

2 if X1
0 and HI

2 < HI
1 if X2

0

pij X1
1 X2

1

X1
0 0.2 0.2

X2
0 0.2 0.4

If α1 �= 0, then it is only necessary to sum over all Ij in (21) to derive HI
2 .

However, if α1 = 0, then (19) needs to be included in the sum. To combine the
two cases, the alphabet L1 must be extended with a new special symbol δ to
L

1 = L1
⋃{δ}. Language L

2 is constructed as an extension to language L2 by
setting p(δ) = 1, p(δ|γi) = 0 and ∀γi ∈ L1 p(γi|δ) = p(γi). Thus, all strings in L2

start with the to L2 independent substring δ and then continue as in L2. Now,
by setting Xh1

−1 = δ, it is possible to rewrite (19) as follows.

HI1
2 = p(X l

−1|Xh1
−1)H(X0|X l

−1) +
β1−1∑
i=1

p(Li−1
2 X l

i−1|Xh1
−1)H(Xi|X l

i−1)

=
∑
i∈I1

p(Li−α1
2 X l

i−1|Xh1
α1−1)H(Xi|X l

i−1) (22)

Note that (22) is a special case of (21) with j = 1, hence

HI
2 =

∑
j∈J

∑
i∈Ij

p(Li−αj

2 X l
i−1|Xhj

αj−1)H(Xi|X l
i−1) (23)

For L1 languages (23) transforms as

HI
2 =

∑
j∈J

∑
i∈Ij

p(Li−αj

1 Xi−1)H(Xi) =
∑
i∈I

H(Xi) = HI
1 (24)

Furthermore, HI
2 can be larger or smaller than HI

1 . For instance, the probability
distribution in Table 1 gives HI

1 < HI
2 if X1

0 and HI
2 < HI

1 if X2
0 . In Fig. 1

the eight different states of a selectively encrypted string containing three sub-
strings are illustrated with encrypted substrings colored gray and unencrypted
substrings colored white. The states are grouped into columns according to the
encryption level, with arrows pointing towards the next state containing the en-
crypted substrings of the current state. By using (23) the entropy of the different
states becomes

1. HI
2 = 0

2. HI
2 = H(X0)

3. HI
2 = H(X1|Xh1

0 )
4. HI

2 = H(X2|Xh1
1 )

5. HI
2 = H(X0, X1)

6. HI
2 = H(X0) + p(X l

1|Xh2
1 )H(X2|X l

1)
7. HI

2 = p(X l
0|Xh1

0 )H(X1|X l
0) + p(L1

2X
l
1|Xh1

0 )H(X2|X l
1)

8. HI
2 = H(X0, X1, X2)
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Fig. 1. The eight states of a selectively encrypted string containing three substrings

4.3 Third-Order Languages

For L3 languages, the probability distribution of the symbols depends on the
two preceding symbols. Thus, when deriving an expression for HI

3 , two sym-
bols preceding a run of ones must be taken into consideration. Note that it is
only the first preceding symbol of a run of ones that is known with certainty
to be unencrypted. The second preceding symbol could either be encrypted or
unencrypted; this will be denoted X†

i .
From the alphabet L1 = L1

⋃{δ}, language L3 is constructed as an extension
of language L3 by setting p(δ2) = 1, p(δ|γi) = 0 and ∀γi ∈ L1, p(γi|δ2) = p(γi).
Thus, all strings in L3 start with the independent substring δ2 and then continue
as in L3. The conditional entropies in (14) can now be written for L3 languages
as

Hi
3 = p(Xαj−2, . . .X

l1
i−2, X

l2
i−1|X†

αj−2, X
hj

αj−1)H(Xi|X l1
i−2, X

l2
i−1)

= p(Li−αj

3 X l1
i−2, X

l2
i−1|X†

αj−2, X
hj

αj−1)H(Xi|X l1
i−2, X

l2
i−1) (25)

Hence,

HI
3 =

∑
j∈J

∑
i∈Ij

p(Li−αj

3 X l1
i−2, X

l2
i−1|X†

αj−2, X
hj

αj−1)H(Xi|X l1
i−2, X

l2
i−1) (26)

By using (26), the entropy of the different states in Fig. 1 becomes

1. HI
3 = 0

2. HI
2 = H(X0)

3. HI
2 = p(X l2

0 |Xh1
0 )H(X1|X l2

0 )
4. HI

2 = p(X l1
0 , X l2

1 |X†
0 , Xh1

1 )H(X2|X l1
0 , X l2

1 )
5. HI

2 = H(X0, X1)
6. HI

2 = H(X0) + p(X l1
0 , X l2

1 |X†
0 , Xh2

1 )H(X2|X l1
0 X l2

1 )
7. HI

2 = p(X l2
0 |Xh1

0 )H(X1|X l2
0 ) + p(X l1

0 , X l2
1 |Xh1

0 )H(X2|X l1
0 , X l2

1 )
8. HI

2 = H(X0, X1, X2)
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4.4 n-Order Languages

For Ln languages the probability distribution of the symbols depends on n − 1
preceding symbol. Thus, as before, from the alphabet L

1 = L1
⋃{δ}, language Ln

is constructed as an extension of language Ln by setting p(δn−1) = 1, p(δ|γi) = 0
and ∀γi ∈ L1, p(γi|δn−1) = p(γi) Thus, all strings in Ln start with the indepen-
dent substring δn−1 and then continue as in Ln.

To shorten the notation in the following expressions

X
n−1
i−1 = X l1

i−(n−1), . . . , X
ln−1
i−1 (27)

and

Y
n−1
αj−1 = X†

αj−(n−1), . . . , X
hj

αj−1 (28)

By using (27) and (28) the conditional entropies in (14) can now be written for
Ln languages as

Hi
n = p(Li−αj

n X
n−1
i−1 |Y n−1

i−1 )H(Xi|Xn−1
i−1 ) (29)

Hence,

HI
n =

∑
j∈J

∑
i∈Ij

p(Li−αj
n X

n−1
i−1 |Yn−1

αj−1)H(Xi|Xn−1
i−1 ) (30)

5 Concluding Remarks

We have in this paper continued the investigation of the confidentiality implica-
tions of selective encryption by applying entropy on a generic selective encryption
scheme. By using the concept of run-length vector from run-length encoding the-
ory, an expression was derived for entropy of selectively encrypted strings when
the number of encrypted substrings, containing one symbol, and the order of the
language change.

To further understand the confidentiality implication of selective encryption
we will investigate how entropy changes when the substrings are of different sizes
larger than one. Moreover, the conditional probabilities in the paper are used left
to right. That is, if b = (0, 1), then the first string gives information about the
second string. However, if b = (1, 0), then the second string also gives informa-
tion about the first string. In our future work we will also aim to investigate how
the entropy changes for different sources of information and appearances of the bit
vector.
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Abstract. HB and HB+ are a shared secret-key authentication proto-
cols designed for low-cost devices such as RFID tags. HB+ was proposed
by Juels and Weis at Crypto 2005. The security of the protocols relies
on the “learning parity with noise” (LPN) problem, which was proven to
be NP-hard.

The best known attack on LPN by Levieil and Fouque [13] requires
sub-exponential number of samples and sub-exponential number of oper-
ations, which makes that attack impractical for the RFID scenario (one
cannot assume to collect exponentially-many observations of the protocol
execution).

We present a passive attack on HB protocol in detection-based model
which requires only linear (in the length of a secret key) number of
samples. Number of performed operations is exponential, but attack is
efficient for some real-life values of the parameters, i. e. noise 1

8
and key

length 152-bits. Passive attack on HB can be transformed into active one
on HB+.
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1 Introduction

The HB/HB+ Scheme. HB [12] is a lightweight secret-key protocol for RFID
tag identification. It is based on the human-to-computer authentication protocol
designed by Hopper and Blum (HB, [11]). The security of the HB/HB+ schemes
is provable – it is based on the “learning parity with noise” (LPN) problem,
which was proved to be NP-hard [2].

Previous Attacks. Over the last years, several attacks on the LPN problem have
been proposed. Most of them (e.g. LF2 from [13] or [14]) are tune-ups of the
BKW algorithm (Blum, Kalai, Wasserman 2003) [3].

The BKW algorithm takes a sub-exponential (in the size of the secret key)
number of samples and then tries to find out a secret key by adding up sample
vectors to obtain vectors from a canonical basis of a vector space. An algorithm
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proposed in [14] manages from a small number of samples to generate exponen-
tially many of them and then use the BKW algorithm.

HB+ is vulnerable to man-in-the-middle attack proposed by Gilbert, Rob-
shaw, and Silbert [7]. Since then, many other schemes have been proposed to
design an LPN-based protocol which is secure against man-in-the-middle attacks
[4,15,9] and some of them have been already broken – see [6,8,16].

Our Results. We present a different approach to attack LPN problem. Our attack
has worse asymptotic time-complexity that the best algorithms solving LPN
problem, but it is efficient for real-life sizes of the parameters – parameters that
may be used in RFID devices. Some ideas of our algorithm are already used as
a sub-protocol in [6] to attack LPN-based protocols.

We need only to collect two successful executions of the HB protocol in order
to start an attack (while other solutions need much larger samples). We assume
that a single execution of the HB protocol uses parameters suggested in [13], i. e.
number of bits sent during a single execution of the protocol is O(n2), where n is
the length of a secret key. Number of bits required by the best known algorithm
is Ω(2n) while we need only to collect O(n3) bits (i. e. O(n) protocol executions).

Our first implementation of the algorithm breaks 88-bit HB with noise pa-
rameter 1

4 and 152-bit HB with noise parameter 1
8 . We estimate that algorithm

presented is able to practically break HB for noise parameter 1
4 for keys of the

length up to n = 96.
Let us also notice that the presented passive attack on HB can be transformed

into active one on HB+.

2 Description of the HB and HB+ Protocols

The HB Protocol. The Tag and the Reader share public values: n, ε, η(ε) and a
secret key x of the length n. The protocol proceeds in r 2-move rounds as shown
in Figure 1: the tag generates a challenge a(i) ∈R {0, 1}n and sends it to the tag;
the tag computes (a(i) ·x)⊕ ν(i), where ν(i) ∼ Ber (ε). The reader authenticates
the tag if the number of i′s, for which z(i) �= a(i) · x does not exceed ηr.

Public parameters: n, ε, η(ε)
Shared secret key: x ∈ {0, 1}n

Reader Tag

choose a(i) ∈R {0, 1}n a(i)−→
ν(i) :=

{
1 with probability ε
0 with probability 1 − ε

check z(i) ?
= a(i) · x z(i)

←− z(i) := (a(i) · x) ⊕ ν(i)

Fig. 1. The i-th round of HB protocol
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Efficiency of the HB. Efficiency of the HB protocol depends on three values:
n, ε, r (in fact r = r(n, η)). The number of bits sent during an authentication
process by the reader is equal to Nr(n, η) = n · r(η), the tag responds with
Nt = r(η) bits. Unfortunately, the simplicity in hardware design influences on
the communication complexity. The number of bits sent required by a reliable
authentication, according to [13], are presented in the table below (all values in
KB, 1KB = 8192b).

Table 1. Number of bits sent during the authentication (in KB)

n η = 1/20 η = 1/8 η = 1/4

128 4 7 18
512 16 28 73

So, for some parameters of the HB/HB+ protocol, it may take seconds to
authenticate even an expensive tag. The meaning of the “high-speed data rate”
for RFIDs depends on the manufacturer and varies usually from 20KB/s to
40KB/s. Low-end RFIDs are even 10-times slower.

This leads to the observation that for cheap RFIDs a key length and a number
of rounds and thus a noise parameter ε should be adjusted at the relatively low
level.

The HB+ Protocol. The HB+ was proposed as a protocol robust against active
attacks (while HB is immune against passive attacks). Use of the blinding factor
y turns an active attack on HB+ into a passive attack on HB.

In the HB+ scheme the tag and the reader share public values: n, ε, r(n, ε)
and secret keys x, y. The protocol proceeds in r 3-move rounds as shown on
Figure 2.

Let us notice that if an attacker wants to break actively the HB+ tag i. e. by
sending appropriate values of a, she has to be able to passively break HB.

Public parameters: n, ε, η(ε)
Shared secret keys: x, y ∈ {0, 1}n

Reader Tag

choose a(i) ∈R {0, 1}n a(i)
−→
b(i)
←− choose b(i) ∈R {0, 1}n

ν(i) :=

{
1 with probability ε
0 with probability 1 − ε

check z(i) ?
= (a(i) · x) ⊕ (b(i) · y)

z(i)
←− z(i) := (a(i) · x) ⊕ (b(i) · y) ⊕ ν(i)

Fig. 2. The i-th round of HB+ protocol



Practical Attacks on HB and HB+ Protocols 247

3 Passive Attacks on HB Protocol

Basic notation. Let x ∈ {0, 1}n be a n-bit shared secret between the tag and
reader. Suppose that a passive adversary has collected m authentications of the
HB protocol. Let us consider that A = {ai ∈ {0, 1}n : i = 1, . . . , m} be a matrix
of challenges sent by a reader (each challenge is a row of the matrix) and let
z = {zi ∈ {0, 1} : i = 1, . . . , m} be a vector of collected responses for the tag.

The subset B = {bi | i = 1, . . . , n} ⊆ A is called a basis of {0, 1}n treated
as an n-dimensional vector space over GF (2) if vectors bi for i = 1, . . . , n are
linearly independent and span whole space {0, 1}n.

Problem. We re-formulate the HB protocol as follows. The reader sends matrix
A of challenges to the tag. The tag responses with a vector z = (A · x) ⊕ v,
where v is m-bit vector of “noise”. Then the reader checks if |(A ·x)⊕z| ≤ η ·m,
where | · | is the Hamming weight.

During eavesdropping, an attacker collects samples S = (A, z) as a matrix A
of challenges and vector of responses z, therefore the problem of breaking HB is:
to find a vector x′ such that |(A · x′) ⊕ z| ≤ η · m.

Further we show that such x′ has to be equal to the secret-key x with high
probability. This problem is know in the literature as the Learning Parity in the
present of Noise (LPN problem).

k-Basis Property. Let us assume that we have collected m samples S = (A, z)
of the HB protocol. Further, we have found such a matrix B ⊆ A of size n × n
with vector of responses zB such that B is a basis and vector zB has all correct
responses (zB = B · x). In such a case we can easily find a secret x. Since we
have a system of linear equations over GF (2), thus we can solve it very fast
by Gaussian elimination. Let us notice that linear equations have exactly one
solution since B form a basis. The secret can also be found by possessing inverse
matrix of B as follows: x = B−1 · zB. However situations that we are capable
to find such a basis are quite rare. Thus we introduce the notion of k-basis.
A k-basis is a basis with exactly k responses wrong.

Definition 1. A k-basis for a HB protocol instance (n,x, ε, η, r) and samples
S = (A, z) is a subset B ⊆ A with a vector of responses zB which satisfies the
following conditions:

– B is a basis of an n-dimensional vector space {0, 1}n,
– |(B · x) ⊕ zB| = k.

We call a k-basis test a procedure of verification if both conditions of the defini-
tion of k-basis hold.

3.1 Simple Walker Algorithm

Our first algorithm (called a Simple Walker Algorithm) is quite simple proba-
bilistic algorithm which implements the idea presented in previous subsection
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i. e. one collects samples and then finds 0-basis. As we mentioned before, pos-
sessing 0-basis is equivalent to finding a secret key x. Simple Walker Algorithm
can be treated as a slightly different version of the natural brute-force algo-
rithm. However simulations show that even such simple algorithm works quite
well in practical settings and there is still room for improvements. In Algorithm 1
we presents pseudo-code of the algorithm which finds secret x and needs only
m ≥ n + C samples of the “single authentication step of HB protocol” (Fig. 1),
where C is a small constant needed to assure that one can find a basis of n
dimensional space in a set of m = n + C vectors each of the length n (for more
information see [10]). Input of the algorithm is a set of samples S = (A, z), n, ε, η)
and the output is a secret vector x.

Algorithm 1. SimpleWalker(S = (A, z), n, ε, η)
1: m← length of the vector z
2: find subset B ⊆ A such that it is a basis with responses zB

3: A′ ← A ·B−1

4: repeat
5: ν ← choose a random vector ∈ {0, 1}n, provided that |ν | ∼ Bin(n, ε) (i.e. the

number of 1’s in ν is Binomially distributed with parameters n, ε)
6: z′

B ← zB ⊕ ν
7: until |(A′ · z′

B)⊕ z| ≤ η ·m
8: return x← B−1 · z′

B

The SimpleWalker could be impractical even a few years ago, but since
it can be very easily implemented in distributed fashion collecting even small
number of samples and access to computers, an adversary can easily find a
secret key. Moreover, remarkable progress in multi-core processors makes the
HB protocol even more vulnerable to SimpleWalker. Further, it is worth to
mention that SimpleWalker has very low memory requirements.

3.2 k-Basis Walker Algorithm

The main drawback of SimpleWalker algorithm is that it is purely probabilis-
tic and do not try to take advantage of using data that were already computed in
previous attempts. Therefore, we introduce second algorithm k-BasisWalker.
Let us describe the main idea behind the algorithm. The algorithm takes a set
of the samples S = (A, z), where A is a set of challenges, z is a set of responses.
Then it divides S into two parts (U, zU) and (V, zV). The samples (U, zU) are
used as a “universe” from which the algorithm picks at random potential 0-Basis.
It is called the testing set while the samples (V, zV) are used for k-Basis-testing
and are called the observations set. It is important to make this division cor-
rectly i.e. in a way that does not change the fraction of incorrect responses. For
instance, let W(z) denote an expected percentage of the incorrect bits in vector
z, then the division of the samples set has to satisfy: W(z) = W(zU) = W(zV).
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Notice, that performing such division can be done as follows. Let α be some
adjustable parameter. Thus, if one eavesdropped l correct executions of the HB
protocol then �αl� of these executions could be treated as (U, zU) and the rest
of executions �(1 − α)l� could be treated as (V, zV).

As we show later, we need that the sample set has to contain at least |A| ≥
n + n

1−η = O(n) vectors. The size of the testing set should be at least of the
size of the length of authentication packet n. We also need about n

1−η samples
(vectors) to be sure that in the sample space there exists at least one 0-Basis.
For parameters suggested in [13] and small keys (length smaller than 128), it
occurs that our algorithm needs to collect observations from only 2 successful
executions of the HB.

Input of the algorithm is a set of samples S = (A, z), n, ε, η, k) and the output
is a secret vector x.

Algorithm 2. k-BasisWalker(S = (A, z), n, ε, η, k)
1: divide (A,z) into (U, zU) and (V, zV)
2: m← length of the vector zV

3: loop
4: repeat
5: B ∈R U draw at random n row vectors and the corresponding vector zB ⊆ zU

6: until B is a basis of an n-dimensional vector space {0, 1}n
7: V′ ← V ·B−1

8: for 1 ≤ i1 ≤ n do
9: ν ← n-bits vector with 1 at position i1

10: z′
B ← zB ⊕ ν

11: if |(V′ · z′
B)⊕ zV| ≤ η ·m then

12: return B−1 · z′
B

13: end if
14: end for

15:
...

16: for 1 ≤ i1 < i2 < . . . < ik ≤ n do
17: ν ← n-bits vector with 1’s at positions i1, i2, . . . , ik
18: z′

B ← zB ⊕ ν
19: if |(V′ · z′

B)⊕ zV| ≤ η ·m then
20: return B−1 · z′

B

21: end if
22: end for
23: end loop

After execution of the above algorithm we get a basis B and the corresponding
set of responses zB. Because one has to check if the 0-Basis test holds, one has
to find a representation of the testing-vectors. It takes a while, so is worth to use
the same basis several times. To find a representations of test vectors in a basis
B it takes O(n2 · |V|), so it is worth to check if the set B is 1-Basis or 2-Basis,
because checking i-Basis property requires

(
n
i

) · |B| operations.



250 Z. Gołębiewski et al.

Let us call by 012-Basis Walker Algorithm (012-BWA, BWA) a modification
of the 0-Basis Walker Algorithm which checks also 1- and 2-Basis property for
every picked set. As we will see later this has a good influence on the efficiency
of the algorithm.

4 Algorithm Analysis

First, let us find a probability that k-BasisWalker finds a k-basis (line 4–6 of
the Algorithm 2).

Lemma 1. Let (n,x, ε, η, r) be a instance of HB protocol. Let S = (A, z) be a
sample of the HB protocol divided into (U, zU) and (V, zV) such that |U| = t.
Then, the probability that the matrix B picked uniformly at random from U is
k-basis equals to

pk = pB

(
n

k

) �η·t�∑
j=k

(
t − n

j − k

)
εj(1 − ε)t−j , (1)

where pB ≈ 0.2887 denote the probability that randomly chosen set B is a basis
of an n-dimensional vector space {0, 1}n.

Proof. The probability that random chosen set B of size n from U is k-basis
can be calculated as follows. Let Cj denotes an event that there are exactly j
incorrect responses in (U, zU). Then from the Bernoulli trails we have: Pr[Cj ] =(

t
j

)
εj(1 − ε)t−j . Let A be an event that B ∈R U is a basis and Bk be an event

that B has exactly k incorrect responses. Thus, the probability that B is k-basis
is equal to pk = Pr[A ∧ Bk]. By the law of total probability we obtain that
Pr[A∧Bk] =

∑�η·t�
j=k Pr[A∧Bk ∧Cj ] =

∑�η·t�
j=k Pr[A|Bk ∧Cj ] · Pr[Bk|Cj ] · Pr[Cj ].

Since B is k-basis, then U must have at least k incorrect responses, thus the
sum starts from j = k. The upper bound of the sum is �η · t� because we assume
that U comes from successful authentications. The probability pB that set B is a
basis of {0, 1}n is independent on the choices of the responses and pB ≈ 0.2887
has been already calculated in the paper [5]. Thus Pr[A|Bk ∧ Cj ] = pB. The
probability that one taking n bits from the vector of zU responses of length t,
takes exactly k wrong responses is equal to Pr[Bk|Cj ] =

(
t−j
n−k

) ·(j
k

) ·( t
n

)−1. After

elementary simplifications, we obtain that ( t−j
n−k)(j

k)
(t

n) · (t
j

)
=
(
n
k

) · (t−n
j−k

)
.

Thus, the proof of the lemma follows. ��

The expected value and the variance of basis that should be tested. Let Xk denote
a random variable that counts the number of basis that should be tested before
at most one k-basis is found. It easy to see that the variable Xk is geometrically
distributed with the success probability pXk

=
∑k

i=0 pi. Thus the expected value
for geometrically distributed random variable is E[Xk] = 1/pXk

and the variance
Var[Xk] = (1 − pXk

)/p2
Xk

. Notice that we are not interested in asymptotic
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Table 2. The expected number of basis that should be tested in case of the 012-BWA

Size of a sample m = 3 · n Size of a sample m = n2

n ε = 0.125, ε = 0.25, ε = 0.125, ε = 0.25,
η = 0.256 η = 0.348 η = 0.256 η = 0.348

48 68 24172 44 5271

64 348 1.39 · 106 167 146704

80 1963 9.04 · 107 694 4.55 · 106

96 11865 6.33 · 109 3062 1.51 · 108

112 75287 4.67 · 1011 14108 5.30 · 109

128 495413 3.59 · 1013 67206 1.92 · 1011

144 3.35 · 106 2.84 · 1015 328581 7.21 · 1012

160 2.32 · 107 2.30 · 1017 1.64 · 106 2.76 · 1014

behavior, since in practice the size of the secret key is at most 512. Thus, in
Table 2 we present only the numerical results of E[Xk] for different value of
protocol parameters.

Finding Wrong Secrets. Now we deal with the problem of getting secret keys
different from the searched ones. In the Lemma 3 we show how often a “bad“
basis passes the test.

Lemma 2. Let x be n-bit secret key. Let A be a matrix of challenges and zA

be a m-bit vector of responses. We assume that B ⊆ A is a k-basis with vector
zB ⊆ zA of responses and x′ = B−1 · zB is a potential secret key. Then

Pr[(a · x) ⊕ ν �= a · x′] =

{
ε if k = 0,

1
2 if k ≥ 1,

(2)

where a ∈R {0, 1}n and ν is 0 − 1 random variable such that Pr[ν = 1] = ε.

Proof. By the law of total probability we get

Pr[(a · x) ⊕ ν �= a · B−1 · zB] =

Pr[a · x �= a · B−1 · zB] · Pr[ν = 0] + Pr[a · x = a · B−1 · zB] · Pr[ν = 1].

Notice that if B is 0-basis then x = B−1 · zB. Thus Pr[a · x �= a · B−1 · zB] = 0
and Pr[a · x = a · B−1 · zB] = 1. Therefore for 0-basis we obtain

Pr[(a · x) ⊕ ν �= a · B−1 · zB] = Pr[ν = 1] = ε .

Let k > 0. Consider that B is k-basis. We need to calculate the probability
Pr[a · x �= a · B−1 · zB]. Let zcorr = B · x be a vector of correct responses. Then

Pr[a · x �= a · B−1 · zB] = Pr[a · B−1 · zcorr �= a · B−1 · zB]

= Pr[a · B−1 · (zcorr − zB) �= 0] .

Since zcorr − zB has 1’s on k ≥ 1 positions and B−1 has linearly independent
vectors. Then, by fact that if (Xi)i=1,...,k are independent random 0-1 variables
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Pr[Xi = 1] = 1/2, then Pr[
⊕k

i=1 Xi �= 0] = 1/2. Moreover, notice that Pr[Xi ⊕
ν = 0] = Pr[Xi = 0]·Pr[ν = 1]+Pr[Xi = 1]·Pr[ν = 0] = (1/2)·ε+(1−ε)·(1/2) =
1/2. Therefore Pr[a · x �= a · B−1 · zB] = 1

2 . Thus, the proof is complete. ��
Lemma 3. Let S = (A, z) be a sample of the HB protocol divided into (U, zu)
and (V, zv) such that |V| = m. Let B ⊆ U be a k-basis for k ≥ 1 with vector
zB of responses. Thus x′ = B−1 · zB is a wrong secret key. Then the probability
that x′ passes a test |(V · x′) ⊕ z| ≤ η · m is given by 1

2m ·∑η·m
i=0

(
m
i

)
.

Proof. By Lemma 2 for k ≥ 1, we obtain that single vector gives us a correct
response with probability 1/2. Then the probability pi that exactly i vectors
from V disagree is equal to

(
m
i

) (
1
2

)i (1 − 1
2

)m−i =
(
m
i

) (
1
2

)m
. Therefore, the

probability that at most η · m out of m vectors passes a test we can obtain by
adding the probabilities pi for i = 0, 1, . . . , η · m. ��

5 Experimental Results

We have implemented and tested our algorithm for several values. We have
broken HB for the parameter ε = 0.125, η = 0.256, n = 144 and it took about 3
hours on home PC. For the parameters ε = 0.25, η = 0.348, n = 80 it takes on
average 10 hours on home PC.

This results and the values in the Table 2 suggest, that we are able to break
n = 96 bit version of 0.25-HB and n = 154 bit version of 0.125-HB protocol.

Parallelization of the presented algorithm is very easy. We are currently work-
ing on the CUDA-version of the implementation. First results show that even a
cheap GPU allow for about 8-time speedup of a protocol compared to the execu-
tion times run on CPU. The new graphic cards that have been recently appeared
on the marked can run 8-times more threads than the one which we used for
“pre”-testing. Use of GPUs allows to break keys that are few bits longer (≈ 10).

6 Conclusions

We have shown a passive attack for the HB protocol which allow to perform an
active attack for HB+ scheme (not man-in-the middle). Our attack needs only
O(n) eavesdropped pairs of challenge-response, where n is the length of a secret
key, while the best known algorithm LF2 ([13]) needs exponential number of
samples.
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Abstract. Yeh et al. have recently proposed a mutual authentication protocol 
based on EPC Class-1 Gen.-2 standard. They claim their protocol is secure 
against adversarial attacks and also provides forward secrecy. In this paper 
we show that the proposed protocol does not have cited security features 
properly. A powerful and practical attack is presented on this protocol where-
by the whole security of the protocol is broken. Furthermore, Yeh et al.'s  
protocol does not assure the untraceabilitiy and backwarduntraceabilitiy 
attributes. We also will propose our revision to safeguard the Yeh et al.'s pro-
tocol against cited attacks. 

Keywords: RFID, authentication, EPC C-1 G-2 standard, Security analysis, 
Traceability attack. 

1   Introduction 

Nowadays Radio Frequency Identification (RFID) technology has been incorporated in 
our daily life and employed in many applications e.g. public transportation passes [1], 
supply chain management [2], e-passport [3]  etc. RFID systems include tags, readers 
and back-end server. The tag is a low cost device with a constraint microchip, small 
memory and antenna to communicate with the reader. The readers are placed between 
tags and back-end server as an intermediary for message transmission. Not surprising-
ly, the back-end server has the whole information and secret values of all tags. 

EPC Class-1 Gen.-2 standard is a framework for RFID communications, defined 
by EPC global (Electronic Product Code) organization [4, 5] but  RFID authentication 
protocols based on it have undergone noticeable difficulties to satisfy the perfect 
security characteristics.  

In order to have secure authentication protocols, an adversary should not be able to 
obtain any information about the target tag. Privacy and untraceability are two impor-
tant issues relevant to RFID systems. Thus, an authentication protocol should assure 
the privacy characteristics including untraceability and backward untraceability for 
tags and their holders [6]. On the other side, RFID authentication protocols are under 
different threats, defined as follows. 

Information leakage: the tag and reader perform an authentication protocol and ex-
change some messages with each other. Since the wireless communication channel is 
insecure, it can be eavesdropped by an adversary. Hence, each authentication protocol 
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should be designed in a way that the adversary, with reasonable computational capa-
bilities, does not be able to exploit the exchanged messages [7]. 

Tag Tracing and tracking: Tag tracing and tracking are damaging problems in RF-
ID systems. Even when the leakage of information isimpossible, the untraceability of 
tag and its holder is not guaranteed in RFID systems. Untraceability means that if an 
adversary eavesdrops message transmission between a target tag and a reader at time 
t, he does not be able to distinguish an interaction of that tag at time t' t [8]. 

DoS attack: denial-of-Service (DoS) is another attack on RFID systems. An adver-
sary tries to find ways to fail target tag from receiving services, e.g. in the desynchro-
nization attack, as one kind of DoS attacks, the shared secret value between the tag 
and the back-end server is made inconsistentby an adversary. Then, the tag and back-
end server cannot recognize each other in future and tag becomes disabled [9].  

Many RFID authentication protocols have been proposed [10, 11, 12, 13, 14, 15]. 
Although these protocols tried to provide secure and untraceable communication for 
RFID systems, however many weaknesses have been found in them [16, 17, 18, 19, 
20, 21]. In this context, Yeh et al. have recently proposed a RFID mutual authentica-
tion protocol compatible with EPC C-1 G-2 standard [22] that we name SRP (Secur-
ing RFID Protocol) in this paper. The authors have claimed that not only SRP does 
not reveal any information but also it has forward secrecy and robustness against DoS 
attack. In this paper, we prove that SRP is vulnerable to a powerful and fatal attack 
that needs only 216 off-line PRNG (pseudo random number generator) computations. 
Furthermore, the whole security of this protocol will be destroyed inasmuch as the 
RFID system is most vulnerable to tag and reader impersonation, DoS attack, untra-
ceability and backward untraceability. Finally we propose our revision to prevent the 
mentioned attacks. 

2   Review SRP 

2.1   Initialization Phase  

The nine secret values , , , , , , EP , RID and DATA cor-
responding to each tag is loaded in database. Besides, random values ,  and  
are generated by manufacturer and the recorded values are set in a way that 

= = , = =  and = = . Each tag records four values 
= , = , =  and EP . 

2.2   The (i+1)th Authentication Round 

In this part, the SRP protocol is briefly described. The following steps explain the 
protocol in the round (i+1). 

1. The reader generates number  randomly and sends it to the tag. 
2. Receiving , the tag generates random number  and computes: 

M1=PRNG(EP ⨁ )⨁ , D= ⨁ and  E= ⨁PRNG( ⨁ ). Then the 
tag forwards ( , M1, D, E) to the reader. 

3. The reader computes V=H(RID⨁ )and sends ( ,M1,D,E, ,V)to the  
database. 
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Receives ( , M1, D, E, ,V ), the database performs the following procedure: 

a) For each stored RID, computes H(RID⨁ ) and compares it with V to find 
whether the computed value is equal to V. If it is true, the database will au-
thenticate the reader.  

b) Based on value , one of the two following procedures is occurred:  
 

i. The database computesPRNG(EP ⨁ ), =M1⨁  and =M1⨁  
provided that  = 0, because it means the first access. Then it checks whether 

 or  correspond to PRNG(EP ⨁ ). This process is regularly repeated 
until a match equality is founded. X is set to either old or new provided that ei-
ther  or  is the match, respectively. 

ii. If  0, the database uses  as an index to find the corresponding recorded 
entry. When the database finds an entry correspondent to , then the value of  
X is determined either old  or new provided that =  or  respectively. 
Corresponding  and EP  are extracted to check whether 
PRNG(EP ⨁ )⨁  is equal to M1 or not. 

The database obtains  with the aid of KX and D, and ensures whether ⨁PRNG( ⨁ ) is equal to the received E. 

c) Computes M2=PRNG(EP ⨁ )⨁ and Info=(DATA⨁RID), and sends them to the reader. 
d) If X = new, it updates the stored values as follows: = , =PRNG( ), = , =PRNG( ), = , =PRNG( ⨁ ). But if X=old, it just updates  as =PRNG( ⨁ ). 

 

4. The reader does XOR operation with RID and the received Info and extracts 
DATA, and sends M2 to the tag. The tag picks up the stored  and computes ⨁M2to find whether it is equal to PRNG(EP ⨁ ). If the matching is found, 
the database is authenticated and the tag updates as follows: =PRNG ( ), =PRNG ( ), =PRNG ( ⨁ ). 

3   Vulnerabilities of SRP 

In this section we show the vulnerabilities of SRP. First a practical and powerful 
attack on SRP is presented. Then, we show that an adversary obtains the most impor-
tant secret value of a tag which calledEP , and show that SRP is vulnerable to  
tracing attacks. Hence, we show that the SRP does not provide backward untraceabi-
lityand untraceability. 

3.1   Reveal EP  

Since  and  are XORed with EP , we can conclude the  and  bit lengths 
are the same as EP  bit length. Furthermore, ,  and  bit length must be equal to 
the PRNG bit length inasmuch as they are updated by PRNG.  Due to the fact that the  
 



Attacks on a Lightweight Mutual Authentication Protocol under EPC C-1 G-2 Standard 257 

EP  bit length is very short and fix in all rounds of the SRP, an adversary can exploit 
this subject to get EP . He just needs to perform two consecutive sessions with the 
target tag and calculate 2  off-line PRNG computations. The procedure of our attack 
is explained as follows. 1. The adversary starts a session with the target tag Ti in the round (i+1) by 

sending random number  and Ti replies with ( , M1 , , ). The adver-
sary reserves M1 and terminates the session. He performs the second session 
with Ti by transmission of  and gets tag's response as ( , M1 , , ). 2. Since the first session is not completed, Ti does not update its secret key  for 
the second session. Hence M1 and M1  are constructed as follows:  

M1 =PRNG(EP ⨁ ) ⨁ , M1 =PRNG(EP ⨁ )⨁ . 

3. A omits  by XORing M1 andM1 : M1 ⨁M1 =PRNG(EP ⨁ )⨁ ⨁ 
PRNG(EP ⨁ )⨁ =PRNG(EP ⨁ )⨁PRNG(EP ⨁ )= , Where  
is a 16-bit string as a result of M1 ⨁M1 . 

4. Let L={ ,  , …, } be the set of all bit strings with length 16. Since EP  is a 
bit string with length 16, EP ∈L. Therefore, the adversary with the aid of , 

and , executes below algorithm to reach correct EP  the adversary 
proceeds according to the below algorithm: 

 

Algorithm 1 

For 1  i 2  
Choose ∈L 

 =PRNG( ⨁ )⨁PRNG( ⨁ ), If   =  then return  as EP  
End for 

 
After at most 2  execution of the algorithm, the adversary finds the correct EP . As 
a result of the above attack, we present three noticeable attacks on SRP including tag 
impersonation, reader impersonation and DoS attack. 

3.1.1   Tag Impersonation 
An adversary simply gets the secret key  by a passive attack. Indeed, he listens to 
the communication channelbetween the legitimate reader R and the target tag Ti in 
the round (i+1) to obtain  and ( , M1 , , ). Since the adversary has EP , he 
computes PRNG (EP ⨁ ). Thus the secret key  is computed as: 

=M1 ⨁(EP ⨁ ) and =PRNG( ). The random number  is computed 
as: =D⨁ and finally the index for the next session is computed as =PRNG( ⨁ ). Now, the adversary starts a new session with the reader. R sends  to him and he replies ( , M1 , , ) where M1 =PRNG(EP ⨁ )⨁ , = ⨁  and = ⨁PRN( ⨁ ). Since these values are correctly com-
puted, the database accepts the adversary and authenticates him. 
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3.1.2   Reader Impersonation and DoS Attack 
SRP is also vulnerable by two other attacks. By revealing EP , the adversary can 
forge a legitimate reader and then desynchronize the target tag. The procedure of 
these attacks is explained as follows. 

1. The adversary listens to the communication between R and Ti in the round (i+1) 
to obtain , ( , M1 , , ) and M2 . As the adversary has EP , he com-
putes PRNG(EP ⨁ ) and  gets the secret key  as: 

=M1 ⨁PRNG(EP ⨁ ) and =PRNG( ). The secret key  is got-ten as: =M2 ⨁PRNG(EP ⨁ )  and  =PRNG( ) where = ⨁ . 
2. He begins a new session with Ti and sends  to it. Ti replies with ( , 

M1 , , ), created by EP , , ,   and . 
3. After receiving the tag's response, the adversary extracts  ( = ⨁ ), 

computes M2 =PRNG(EP ⨁ )⨁ and sends it to the tag. 
4. Ti checks whether M2 ⨁ is equal toPRNG(EP ⨁ ) or not.Ti authenti-

cates the adversary and updates its secret values provided that the equation will 
be true: =PRNG( ), =PRNG( ), =PRNG( ⨁ ). 

 
Eventually, the stored secret values on Ti are ( , , , EP ) whereas the 
database has stored ( , , , , , ,RID, EP , DATA). Therefore, the tag 
and reader have been desynchronized because the secret stored values in database are 
completely different from the values stored in the tag. 

3.2   Privacy Analysis 

The authors of SRP have specified that not only their protocol have forward secrecy, 
but also SRP is resistant to the tracing attacks. We show that SRP does not have for-
ward secrecy and we also present a traceability attack on SRP. 

3.2.1   Privacy Model 
There are privacy models for the evaluation of RFID protocols [6, 23, 24, 25, 26]. We 
analyze SRP protocol based on Ouafi and Phan model [26] which is based on [24] and 
[6]. The model is summarized as follows. 

The protocol parties are tags (T) and readers (R) which interact in protocol ses-
sions. In this model an adversaryA controls the communication channel between all 
parties by interacting either passively or actively with them. The adversaryA is  
allowed to run the following queries:  

• Execute (R, T, i ) query. This query models the passive attacks. The adversary 
A eavesdrops on the communication channel between T and R and gets read 
access to the exchanged messages between the parties in session i of a truthful 
protocol execution. 

• Send (U, V, m, i ) query. This query models activeattacks by allowing the 
adversary A to impersonate some reader U ∈R (respectively tag V∈T  ) in 
some protocol session i and send a message m of its choice to an instance of 
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some tag V ∈T(respectively reader U ∈R ). Furthermore the adversary A is 
allowed to block or alert the message m that is sent from U to V (respectively 
V to U) in session i of a truthful protocol execution. 

• Corrupt(T, ) query. This query allows the adversaryA to learn the stored se-
cretK of the tagT∈T, and which further sets the stored secret to . Corrupt 
query means that the adversary has physical access to the tag, i.e. the adversary 
can read and tamper with the tag’s permanent memory. 

• Test (i, To, T1) query. This query does not correspond to any of A’s abilities, 
but it is necessary to define the untraceability test. When this query is invoked 
for sessioni, a random bit b∈{0, 1} is generated and then, A is  
givenTb ∈ {To, T1). Informally, Awins if he can guess the bit b.  

 

Untraceable privacy (UPriv) is defined using the game g played between an adver-
sary A and a collection of the reader and the tag instances. The game gisdivided into 
three following phases: 

• Learning phase:A is given tags To and T1 randomly and he is able to send any 
Execute, Send and Corrupt queries of its choice to T0, T1 and reader.  

• Challenge phase: A chooses two fresh tags T0, T1 to be tested and sends a 
Test (i, To, T1) query.  Depending on a randomly chosen bit b∈ {0, 1}, A is 
given a tag Tb from the set {T0, T1}.Acontinues making any Execute, and 
Send queries at will. 

• Guess phase: finally, A terminates the game g and outputs a bit b' ∈{0, 1}, 
which is its guess of the value of b.  

 

The success ofA in winning game g and thus breaking the notion of UPrivis quanti-
fied in terms A advantage in distinguishing whetherAreceivedT0 or T1 and denoted 
by    (k) where k is the security parameter.    (k) =| pr (b = ΄) – pr (random flip coin) |= | pr (b' = b) -  |   where               

0   (k) ≤ . 

Besides, the notion backward untraceability is defined as: "backward untraceabili-
ty states that even if given all the internal states of a target tag at time t, the adversary 
shouldn't be able to identify the target tag's interactions that occur at time t' < t" [6]. 

3.2.2   Backward Traceability 
In this section we show how to break the notion backward untraceability in the SRP 
protocol. Because EP  is constant in the all rounds of SRP, an adversary A can 
track the target tag with doing the following steps: 

• Learning phase: A sends a Corrupt(T0, ) query in the round (i+1) and ob-

tains ( , , , , ). 
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• Challenge phase: A chooses two fresh tags (T0, T1) to be tested and sends a 
Test (i, To, T1) query.  Depending on a randomly chosen bit b∈{0, 1}, A is 
given a tag Tb from the set {T0, T1}. A makes an Execute (R, Tb, i) query in 
the round (i) and as a result, A is given messages 

{ , ,( 1 , , ,  )}. 

• Guess phase: finally, A terminates the game g and outputs a bit b'∈{0, 1} as 
its guess of the value of b.  In particular, A performs the following proce-

dure to obtain the value b': 
1. He computes PRNG( , ⨁ , )⨁ 1 =  where  is a 16-bit string. 

2. Autilizes the following simple decision rule: 

b' = ⨁ = ⨁PRNG ⨁ = 0 = 1  

Hence we have:   (k) =|pr (b' = b) – pr (random flip coin)|=|pr(b'=b) -  | = |1 - |=   
 

Proof: By the fact that EP is a permanent value in the all rounds of the protocol, we 
have EPC , = EPC , . Thus we have the following procedure: 

If Tb=T0 ⇒ PRNG(EPC , ⨁N , ) =PRNG( , ⨁N , )                              (1) 

If Tb=T0 ⇒ M1 =M1 =PRNG(EPC , ⨁N , )⨁K                                       (2)       (1), (2) ⇒ PRNG(EPC , ⨁N , )⨁M1 =PRNG(EPC , ⨁N , )⨁ M1 =  
PRNG(EPC , ⨁N , )⨁PRNG(EPC , ⨁N , )⨁K =K =                          (3) 

      If Tb=T0⇒ ⨁  = ⨁  = , ⨁K ⨁ , ⨁PRNG(C ⨁K )= K ⨁PRNG(C ⨁K )= ⨁PRNG(C ⨁ )= ⨁PRNG( ⨁ )               (4) 
3.2.3   Traceability Attack 
An authentication protocol for RFID systems should assure the privacy of a tag and 
its holder. However, many RFID protocols put it at risk by designing protocols where 
tags answer reader's queries with permanent values. Thus performing traceability 
attacks not only possible but trivial.  

Now, we prove the SRP does not guarantee privacy location and allows tags  
tracking. 

• Learning phase: A sends an Execute (R, T0, i+1)query in the (i+1)th round by 

sending NR1 and obtains ( 1 , , ,  ). 
• Challenge phase: A chooses two fresh tags (T0, T1 ) to be tested and sends a 

Test (i+1, To, T1) query.  Depending on a randomly chosen bit b∈ {0, 1}, A is 
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given a tag Tb from the set {T0, T1}. A makes an Execute (R, Tb, i+1) query 

by sending NR1 and as a result, A is given messages ( 1 , , ,  ). 
• Guess phase: finally, A terminates the game g and outputs a bit b' ∈{0, 1} as 

its guess of the value of b.  In particular, Autilizes the following simple deci-
sion rule: 

b' = if  1 = 1 = 0 otherwise                                         = 1 

Hence we have:   (k) =| pr (b' = b)–pr (random flip coin) |= | pr (b' = b) -  |=|1 - |  =  

Proof: According to the protocol, we have the following equations:  1 =PRNG( , ⨁NR1)⨁                                             (5) 1 = PRNG( , ⨁NR1)⨁                                           (6) 

Note that T0 does not update its secrets in the Learning phase and uses the same 
secret key  in both Learning and Challenge phase. Now we have the following 
result: 

 If Tb=T0 ⇒ 1 =PRNG( , ⨁NR1)⨁ =PRNG( , ⨁NR1)⨁    
= 1                                                                                                            (7) 

4   Revised Protocol 

In order to eliminate the mentioned vulnerabilities in 3.1 and 3.2 subsections, we can 
modify the message M1 as: M1=PRNG(EP ⨁ ⨁Pi)⨁ . Although the cited vul-
nerabilities are fixed by the above modification, the traceability problem still will be 
unsolved. Hence, we need to construct the message M1 as following: 
M1=PRNG(EP ⨁ ⨁NT)⨁  to provide a secure protocol against all cited attacks. 

4.1   Security Analysis 

Now, we analyze the security of the revised protocol as following. 
Untraceability: Due to the fact that NT is a random and fresh value, the tag’s res-

ponses are different whenever an adversary sends query and therefore, the adversary 
is unable to trace a tag. 

Backward untraceability: If an adversary knows EPCs and NR in worth case, he 
cannot recognize any previous interactions by a tag inasmuch as he does not know NT. 

RevealEPCs: Since EPCs is constant and its length is short, the mentioned attacks 
in 3.1 subsection happened successfully. We have added the random and fresh value 
NTin construction of M1 to remove these flaws. As a result, when an adversary wants 



262 M.H. Habibi, M.R. Alagheband, and M.R. Aref 

to reveal EPCs, he has to perform 248 calculations rather than 216. It is a noticeable 
improvement in SRP security.  

5   Conclusion 

In this paper, the significant security flaws in the Yeh et al. mutual authentication 
protocol were showed. We presented a powerful and practical attack on SRP which 
reveals the permanent secret value of the target tag. This attack leads to tag and reader 
impersonation and desynchronization attack on the protocol. Moreover, we proved 
that this protocol did not provide untraceability and backward untraceability. Our 
privacy analysis has been presented in a formal privacy model. Finally, to eliminate 
all cited vulnerabilities, we revised the SRP protocol and constructed the message M1 
in a new way. 
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Abstract. As a lot of sophisticated duties are being migrated to mobile
phones, they are gradually becoming hot targets of hackers. Actually,
during the past few years, It has appeared many malware targeting mo-
bile phones and the situation is getting worse. Under this circumstance,
we may ask a serious question: whether can those infected phones be
organized to a botnet? In this paper, we present a design of such a bot-
net using Short Message Service (SMS) as its Command and Control
(C&C) medium. We cover all the aspects of the botnet design including
the stealthiness protection, the topology selecting and the botnet main-
taining. Our simulations show that in our proposed SMS-based botnet
a newly issued C&C message can be covertly propagated to over 90%
of the total 20000 bots within 20 minutes based on a simple flooding
algorithm. Moreover, in this process each bot sends no more than four
SMS messages and the botnet is robust to both random and selective
node failures. Thereby, we demonstrate that the proposed mobile botnet
is indeed a serious threat on the security of the mobile computing en-
vironment. For this reason, we further explore several effective defense
strategies against such a botnet. In doing so, we hope to be one step
ahead of the hackers to discover and prevent this upcoming threat.

1 Introduction

1.1 Background and Motivation

During the past few years, a significant evolution has taken place in the field
of smart phones: firstly, their computing power is growing rapidly: some smart
phones like iPhone have already outperformed the early desktop. Secondly, as
the popularization of 3G and near future’s 4G, they are also getting closer to
the desktop in the communication capability. For these reasons, more and more
sophisticated applications like financial markets, online banking, etc. are being
migrated to the smart phones from the traditional PCs. Then, smart phones are
inevitably becoming the next hot targets of the hackers with the constant rising
of their business values.

In fact, since 2004 many malware targeting mobile phones have already
emerged. These worms or viruses can propagate and infect vulnerable smart
� Supported by the governmental scholarship from China Scholarship Council.

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 264–279, 2011.
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phones through all kinds of mediums including Internet [1,2], Storage Cards [3],
SMS [4], MMS [5], and even some local wireless protocols like Bluetooth [6,7].
Based on this, people may ask a serious question: can those infected mobile
phones be carefully organized into a botnet by the hackers as they did in the PC
world? For this question, although by now there’s no major outbreak of mobile
botnets, most researchers believe that the answer is positive: mobile botnets will
appear sooner or later [8,9,10,11] and it’s just a matter of time.

If the mobile botnet is unavoidable, it becomes quite meaningful for us to
investigate the potential technologies that can be used to construct them from
the perspective of the hackers. By doing so, we can get our defense strategies
ready before the real outbreaks of mobile botnets and avoid being left behind
again by the hackers as we really did in the desktop battlefield. In this paper, we
follow this motivation to evaluate whether the Short Message Service (SMS) can
be used to construct an effective mobile botnet. We choose to study SMS because
of two reasons: firstly, as a mandatory function SMS is supported nearly by all
the existing phones. It is text-based and system-independent. So the hackers
can utilize this service to propagate commands among heterogeneous platforms.
Secondly, SMS is quite simple and reliable: all you need is a phone number, and
you can immediately send the corresponding phone a message with a very small
error rate. Therefore, SMS may provide the hackers an ideal C&C medium.

1.2 Related Works

In 2009, Traynor et al.[11] propose using a mobile botnet to launch a DDoS attack
against the core infrastructure of the cellular network. Their simulation and
analysis demonstrate that their attack can cause nation-wide outages with even
a single-digit infection rate, which teaches us a good lesson about the astonishing
destructive power of mobile botnets. However, their work does not discuss how
to construct a mobile botnet in details, especially how to construct an efficient
C&C medium.

The first detailed work in the mobile botnet construction is done by Kapil et al
[12]. They investigate the possibility to construct and maintain a mobile botnet
via Bluetooth. In their design, botnet commands are propagated via Bluetooth
when those infected mobile phones move into each other’s radio range. Through
several large-scale simulations based on some publicly available Bluetooth traces,
they demonstrate this malicious infrastructure is possible. However, since this
botnet is highly relied on the human mobility, its real performance is hard to
guarantee especially when the density of hijacked phones is not high: according
to their simulations, a command can only reach 2/3 of the bots even after 24
hour in a botnet with 100 bots.

Zeng et al. [13] later propose another mobile botnet using SMS to implement
a Kademlia-like P2P network as its C&C channel. However, because Kademlia is
quite complex, too many SMS messages are required to send for a bot to locate
and get a command. According to their simulations, even in a small botnet with
200 nodes, on average 20 messages are needed to send for a single command
lookup. In addition, since the nodes in this botnet don’t know when a new
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command will be issued, they have to probe continually, which also wastes a lot
of messages. As we known, all the SMS messages are under the monitoring of
telecom operators and they may also cost money. Sending too many abnormal
messages will make the botnet prone to being detected both on the service
provider side and the user side.

Recently, Mulliner et al.[23] also investigate several methods to construct a
mobile botnet. They first introduce a SMS-only C&C which uses the tree as
the underlying topology. This topology suffers an obvious drawback that when
one node fails, all its subnodes are isolated from the botnet and can no longer
receive any commands. As a result, the botmaster has to continually broadcast
ping messages to locate the failed nodes and then repair the tree, which brings
great side effects to the stealth and the feasibility. They then introduce another
improved SMS-HTTP hybrid C&C, which first hangs command SMS messages
on some website and then informs several random selected bots to download and
send them. The weak point is that although those SMS messages are encrypted,
they may still disclose the destination bots because the decryption keys are
embedded in the URLs. In addition, those random selected nodes are also prone
to being captured because they may send unusual high number of SMS messages
if the botnet is very large.

1.3 Challenging Issues

Generally, the hackers have to overcome the following challenges to design an
effective SMS-based mobile botnet:

(1) The proposed botnet should have an efficient C&C architecture, in which
a command issued by the botmaster can reach most of the bots in a short time.
What’s more, for security reason each bot should only send a small number of
SMS messages in this process.

(2) Because all the SMS messages are under the monitoring of the telecom
operators, we need special measures to disguise the botnet messages as the legal
ones to evade being filtered out.

(3) Once a botnet is constructed, we need special mechanisms to maintain it.
This mainly involves two issues: Firstly, the botmaster usually wants to mas-
ter the runtime statuses of their controlled bots. Thereby, besides a command
propagation channel, we need another reporting channel from the bots to the
botmaster. Secondly, the botmaster has the requirement to update the malware
distributed on the bots regularly. The sizes of these updates usually greatly
exceed the maximum payload of a single SMS message, so we need an extra
updating mechanism.

1.4 Our Works and Contributions

In this study, we mainly focus on investigating the above challenges to develop
a proof-of-concept SMS-based mobile botnet in advance of the hackers. In par-
ticular, we make the following contributions:
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(1) We propose a proof-of-concept SMS-based mobile botnet. It uses SMS to
propagate C&C messages based on a simple flooding algorithm. We discuss how
to guarantee the stealth of this botnet both on the user side and the service
provider side by combining the data-encryption and the data-hiding.

(2) We do simulations to evaluate the performance of our proposed botnet
with different topologies. We find that in the Erdos-Renyi random graphs the
propagation of commands can be very fast and robust to both random and
selective node failures. In particular, a message can reach over 90% of the total
20000 bots within 20 minutes from any node. And each node sends no more than
4 messages in this process.

(3) We then present a method to construct the desired random graph topol-
ogy for our botnet under the help of an internet server. We also introduce a
mechanism to maintain the constructed botnet by associating our mobile botnet
with a traditional PC botnet.

(4) Based on the above, we demonstrate that it’s entirely possible to utilize
SMS for Mobile Botnet Command and Control. Therefore, in the end of this
paper we explore several potential defense strategies against this mobile botnet.

2 The Overview of the Proposed SMS-Based Botnet

In this section, we present the overview of our proposed SMS-based mobile botnet
with the sample in Fig. 1. For simplicity, we neglect technical details here and
just show our basic idea.

In our proposed botnet, each compromised smart phone, namely bot is made
to maintain a partial list of the other peers as its virtual neighbors. For instance,
in the sample botnet in Fig.1, the bot P1 maintains a peer list (A2, A6), where
A2 and A6 are the phone numbers of P2 and P6, respectively. By doing so,
P1 gets to know that P2 and P6 also belong to the botnet and it is enabled to
directly send them SMS messages. Then, the botnet commands are propagated in
this special architecture based on a modified flooding algorithm: The botmaster
can first send his command to any node via SMS. And then, for each node,
whenever it receives the new command, it is made to continually select un-
communicated neighbors as the destinations to forward this command via SMS
until the forwarding count reaches a pre-defined upper bound.

Here, two things we have to point out. Firstly, the bots do not use the group
messaging to forward their received commands. Instead, we make them forward
a command to their neighbors one by one with random time intervals. We make
this decision because the use of group messaging will provide the service provider
extra detection signatures. What’s more, with this mechanism the number of for-
wardings may be also reduced: while a bot is waiting for the next forwarding
window, it may receive the same command from a bot it is planning to for-
ward the command to. As a result, these redundant forwardings can be avoided.
Secondly, since sending SMS messages may cost money, we have to limit the
number of forwardings made by each bot. Otherwise, if too many messages are
required to send to propagate one command, a bot will face a high risk of being
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Fig. 1. An example of our proposed SMS-based mobile botnet

noticed while its user receives an unexpected high bill. That’s why in the above
we introduce a upper bound for the forwarding times of each bot.

If this simple botnet is made true, we will get a complete P2P botnet: each
node is equivalent and there’s no centralized infrastructure. In addition, because
each bot only knows a limited number of others, the resistance of this botnet
to the bot capture is high: de-infection of one bot only discloses its neighbors,
which brings limited effects to the whole botnet. Now, let’s discuss the details
of this SMS-based mobile botnet in the following sections.

3 Stealthiness Study

As we known, the long live of a botnet is relied on its stealthiness, i.e., the ability
to work without being noticed by the defenders. Therefore, at first we discuss
the stealthiness of our proposed SMS-based botnet. This mainly involves two
aspects: the stealth on the user side and the stealth on the service provider side.

On the user side, the most important thing is to enable the bot code to send
and receive SMS messages carrying botnet commands without being noticed
by the users. Besides, the bot code itself as well as the related processes and
resources should be also hidden from the users. This requires us to implement
a rootkit on the compromised mobile OSs. This is hard but not impossible.
Recently, Papathanasiou and Percoco [14] introduced a method to implement a
Linux KLM-based rootkit on Google’s Android platform. Based on their work,
we implement a prototype rootkit that can hijack the system call table to cover
our malicious behaviors including secret message sending and receiving. The only
problem is that we haven’t thought of any elegant ways to persist this rootkit
to make it survive from the reboots. This is quite important because mobile
phones subject to frequent reboots. In addition, as we said before, because SMS
message may cost money each bot should only send a limited number of messages
in the process of command propagation. Otherwise, they face a high risk of being
perceived when their users have to pay an abnormally high bill. We will show in
the next section that by carefully selecting a topology for our botnet a command
can quickly reach over 90% of the total 20000 bots in 20 minutes with each bot
sending no more than four messages, which is quite stealthy.
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On the service side, since all the SMS messages go through the gateways of
telecom operators, the stealth is much more difficult to guarantee. In the tradi-
tional networks, since different subnets are administrated by different organiza-
tions, it’s difficult to uniformly deploy a defense system against some security
events even if the system is proven effective. However, in the cellular network,
the situation is totally different. All the communications in this network are
usually monitored by only one telecom operator. It’s easy for them to quickly
popularize a defense system within the whole network. For this reason, the C&C
messages of our mobile botnets should never be broadcasted in their original
forms. Otherwise, once one message forwarded by a bot is recognized as a bot-
net command, it will be easy for the telecom operators to compose a signature
to filter out all these messages and further detect all the infected mobile phones.
Hence, more complicate technologies are needed to guarantee the stealth of our
bontet on the server side.

Our solution is to encrypt the C&C messages before they are transmited. We
make each pair of neighbors share a unique secret key. And then commands sent
from one node to another are encrypted and decrypted with their unique key. By
doing so, the same command forwarded by different nodes to different destina-
tions will appear in different forms. As a result, even if a command is captured
by the service provider, it’s still impossible for him to create a uniform signa-
ture to filter out all the command messages sent by different bots. Hence the
stealth is greatly improved. However, this solution suffers a critical drawback:
after the encryption, the obtained SMSs become random texts that are greatly
different from those normal messages. So we further utilize some text steganog-
raphy algorithms[15,16] to convert those ugly cipertexts to texts more closer
to the natural language. Fig. 2 shows such an example. After being encrypted
with the Rijndael cipher [17], the command ”SYN F 233.123.23.45/23 10/8/20
12:30”, which informs the bots to launch a SYN attack against 233.123.23.45/23
at 12:30 on August 20, 2010, will become unreadable random texts. However, if
we further convert the ciphertext with the Stego! steganographic algorithm [16],
we can obtain a stegotext that at first glance looks like a English text. Therefore,
it will become more difficult for the service provider to determine the presence
of a botnet command within a SMS message in a short time.

4 Topology Study Based on Simulation

As shown in Fig. 1 the proposed SMS-based botnet can be regarded as a graph
G = (V, E), where V is the set of nodes and each node is corresponding to a
bot; E is the set of edges and for arbitrary two nodes v1, v2 ∈ V , they are linked
(∃eij = (vi, vj) ∧ eij ∈ E) if and only if their phone numbers are contained in
each other’s neighbor list. Obviously, the efficiency of the command propagation
is closely related to the topology of the botnet graph. Therefore, in this section,
we construct different topologies to study their different performances based on
some simulations. By doing so, we hope to find an efficient topology for our
SMS-based mobile botnet.
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Fig. 2. Steganography Example

4.1 Simulation Setup

We mainly study three common topologies: Erdos-Renyi random graphs [18],
Barabasi-Albert scale-free graphs [19] and Watts-Strogatz small world graphs
[20]. We choose to study these three graphs because they are the most com-
mon complex networks in our world and also hot candidates in the design of
traditional PC botnet [21].

All the topologies were implemented in the C programming language with
the igraph C library [22]. We generated twenty graphs for each topology. And
all their average node degrees are set to 6. We choose this value because it
makes our simulated graphs become approximated connected graphs (The largest
connected components covers more than 99% of the nodes). This is a necessary
condition for a command to be eventually propagated to most of the nodes in
the botnet. The simulations were driven by discrete events in seconds. When a
node receives a command in an event, it will register new forwarding events in a
central event queue one by one until the forwarding times reach a pre-set bound
b. In each event, the node randomly selects an un-communicated neighbor as
the target to forward this command. The time interval between two continuous
forwarding events is a random value between [60s, 120s]. All the results for each
topology presented in the following are the averages of the data obtained from
the simulations on their own twenty graphs.

4.2 Simulation Results

We select three key measures to compare the effectiveness of the three topologies:
Reachabilities from nodes, Influence of the forwarding Bound and Resistance to
node failures. We present the details and the comparison results below:

Reachabilities from nodes: with our decentralized C&C infrastructure, the
botmaster can issue his command to the botnet from any node within the bot-
net. Therefore, a key performance measure is the distribution of the reachabilities
from different nodes in our botnet by an appointed time. Here, the reachability
from a node at time t refers to the percentage of nodes that a command can
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Fig. 3. Inverse cumulative distributions of the reachabilities after 15 and 20 minutes

reach by t from that node. In our study we use I(r, t), the inverse cumulative
distribution of the reachability to quantify this measure. It represents the number
of nodes whose reachabilities at time t are larger than r.

Fig. 3 presents the simulation results of I(r, t) in the three topologies when
t = 15 and 20 minutes. These simulations assume no forwarding bound and no
node failure. We can find that the efficiency of our botnet is very high in this case:
no matter which of the three topologies is selected, a command can reach over
90% of the total nodes in 20 minutes from almost any node. In particular, the ER
random model outperforms the other two: nearly 100% of the nodes in the ER
model can make a 50% reachability within 15 minutes, while in the WS graphs
and BA graphs no more than 2000 nodes can achieve this. In our opinion, this is
quite reasonable: firstly, compared with the ER graph, the nodes in the WS graph
show a property of high local clustering. As a result, the command forwardings
made by local neighbors in this topology are more prone to conflict, which greatly
reduces the propagation speed of commands. Secondly, the node degrees in the
BA graph follow a power law distribution which means that some nodes in this
topology having much higher degrees compared with others. As a result, these
nodes attract many redundant forwardings because they are connected by more
nodes. Thus, the command propagation in this topology is also slowed down.

Influence of the forwarding Bound: as we said before, to guarantee the
stealth of the botnet, we introduce an upper bound for the forwarding times
of one command on each node. Although this may greatly affect the command
propagation in our botnet, it is necessary at some time. For instance, in our first
simulation without forwarding bound, we found some nodes in the BA model
sent more than 20 messages for one command, which have been enough to cause
the attention of their users. Hence the success of our botnet is based on the
premise that commands can be well disseminated even if the forwarding times
are constrained to a small value on individual bots. So we did more simulations
to study the impacts of the forwarding bound in the three topologies. Fig. 4
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Fig. 4. Effects of the forwarding bound

presents the simulation results of I(r, t) at the time of 20 minutes while the
forwarding bound is set to 2, 3, 4, respectively. We can find that the ER random
model is least affected by the forwarding bound: the reachabilities of most nodes
in this topology can still exceed 90% after 20 minutes so long as the forwarding
bound is no less than 3. For the other two topologies, although they are more
affected, the effects of the forwarding bound can be also removed when b � 4.
Since the cost of four SMS messages are too small to draw the attention of the
users, we conclude that the stealth of our mobile botnet is high.

Resistance to Node Failures: by now, all our simulations make an assump-
tion that all the nodes in the botnet are active and work correctly while the
botmaster issues a command. However in reality, hijacked smart phones may be
turned off by their users, be out of energy or even be disinfected and removed
from the botnet forever. In all these cases, the bots will become inactive and lose
the ability to receive and forward messages temporarily or perpetually. This is so
called node failures. Obviously, the resistance to these node failures is critical to
the success of a mobile botnet. Therefore, we do further simulations to test the
performance of the three topologies when node failures happen. In the first test,
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Fig. 5. Resistance to random node failures
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Fig. 6. Resistance to selective node failures

we randomly removed 10% of the nodes from the botnet before each simulation.
And then we observe the command propagation within the remained botnet.
The simulation results are shown in Fig. 5. We can find that in the ER Graph
the reachability can still exceed 90% from most of the nodes in 20 minutes; how-
ever, in the WS Graph only half of the nodes can make this and the situation
in the BA Graph is even worse: the maximal reachability percentage can only
exceed 80% if the start node is carefully selected. Therefore, we know that the
ER random topology is more robust to the random node failures compared with
the scale free and the small world topologies. Beside random node failures, we
also test the resistance of the three topologies to the selective node failures. In
this test, instead of random removing, we removed 10% of the nodes that are
the most connected (i.e., nodes with the highest degrees). The simulation results
for this case are shown in Fig. 6. Obviously, the influence is enlarged. In the ER
Graph no node can reach 90% of the other nodes in the botnet within 20 minutes
now and only about 70% of the nodes can achieve a reachability of 80%. The
situation in the WS Graph is a little better: there are still around 7000 nodes
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that can make a reachability percentage over 90%. Compared with them, the sit-
uation in the BA Graph is much worse: less than 4000 nodes (20%) can achieve
a reachability of 40%. We then extended the simulation time to 25 minutes. At
this time, almost all the nodes in the ER Graph and the WS Graph can achieve
a reachability larger than 90%. However, in the BA Graph the situation is still
worse: only less than 4000 nodes can bypass a reachability of 80%. Thereby, the
ER Graph and the WS Graph are less affected by the selective node failures.

Conclusion: based on the simulations and analysis above, we can conclude
that in general the ER model is appropriate to build our SMS botnet. Under
this topology with 20000 nodes, if each node knows 6 other peers on average, a
command can be propagated to over 90% of the nodes in 20 minutes from any
node. And in this process no more than 4 messages are required to send on each
node. It’s also robust to both random and selective node failures.

5 Botnet Construction

In the last section, we know that the ER random graph is a suitable topology for
our SMS-based mobile botnet. So in this section we introduce a mechanism to
construct this topology. We do not discuss the ways to infect mobile phones but
simply assume that a number of mobile phones have already been compromised.
What we concern is how these mobile phones get to know each other and finally
form a botnet with the random graph topology.

Our proposal utilizes an internet server to help the construction. In this
scheme, we first set up a helper server on the internet. And then when a mobile
phone is infected by the malware of the botnet, it is made to actively connect
to the helper server through internet to register itself and get a list of neighbors
assigned by the server. Of course such kind of communication should be also
hidden from the users under the help of our rootkits. The details of the above
construction process are shown in Fig. 7, which can be divided in to four steps:

1. For a specific node (mobile phone) ni, after being infected, it registers itself
on the helper server by informing its phone number.

2. The helper server replied to ni with a unique handshake sign si and a
neighbor set L containing dm

N nodes randomly selected from the infected phones
that have already registered on the server. The handshake sign si will be used
later by other bots to start a neighbor making process with this node. We de-
note by d, m, N the expected average degree of the botnet, the current count of
registered phones and the expected population of the botnet, respectively. For
each element j ∈ L, it consists of two parts: its phone number and its handshake
sign sj . The server will refuse further registration once the total number of the
registered infected phones reaches N ;

3. After receiving the reply, ni begins to make neighbors with those nodes
appeared in L one by one. This is done by sending them their specific handshake
signs via SMS.
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Fig. 7. Construction Protocol

4. When a node nj receives its handshake message from ni, it knows that it
has been selected as a neighbor of ni by the helper server. It then replies to ni

with a random selected normal message from its inbox or outbox. And several
bytes at a fixed location in this message will be used as the secret key for the
future communication between ni and nj . Based on this scheme, we can obtain
a SMS botnet with the ER random graph topology, which is strongly desired.
The proof for this assertion is given as follows:

Proof. Assume ni is the i-th node that registers on the helper server. Then,
for each earlier registered node nj that j < i, it is selected as a neighbor of
ni with the probability 1

i−1 · d(i−1)
N = d

N ; i.e., in the generated topology graph
the probability that ni is connected with nj (j < i) is d

N . On the other hand,
for each latter registered nodes nk, k > i, ni will be selected as its neighbor
with the probability 1

k−1 · d(k−1)
N = d

N ; i.e., in the generated topology graph the
probability that ni is connected with nk (k > i) is also d

N . Thereby, we obtain
the conclusion that the generated topology is our desired random graph. And
the average degree is d.

For this construction mechanism, we have to notice that the introduced helper
server may become the single failure point of the whole botnet especially when
the infected mobile phones connect to it via the cellular network. Because once
this server is disclosed, the telecom operators can easily create a signature based
on the destination IP or URL to capture all the following infected phones trying
to register themselves. To deal with this problem, the botmaster can take the
following measures:

(1) Instead of using the cellular network like 3G, make the bots first search for
available WiFi access points to communicate with the helper server. Compared
with the cellular network, WiFi is much more stealthy because all the incoming
and outgoing data are out of the monitoring of the telecom operators.

(2) Limit the time period for the construction stage. When the botnet size
reaches an expected value or the time exceeds a predetermined threshold, directly
refuse the later registration and even remove the server.

(3) Use a popular Internet service like HTTP to communicate between the
server and the bots. In addition, all these communications should be encrypted.

(4) Use multiple helper servers instead of just one. This increases the hardness
of the filtering.



276 J. Hua and K. Sakurai

6 Botnet Maintaining

Another major challenge in the design of a botnet is how to maintain a botnet
after it is constructed. This involves two aspects: first, the botmaster may want
to learn the runtime statuses of his controlled bots, such as how many bots
are online, the results of an attack, etc. Therefore, in addition to an effective
C&C channel, the botmaster also needs an effective report channel. Second, for
’security’ reason, the botmaster has to update bot codes regularly. Therefore,
we also have to design an effective updating mechanism.

It’s difficult to fulfill these two tasks simply relied on SMS. For the botnet
reporting, it’s a process of information aggregation. If the botmaster collects bot
reports via SMS messages, the used mobile phone will be quickly overwhelmed
by a mass of messages and be noticed by the defenders. For the botnet updating,
the data required to transfer usually greatly exceed the maximum payload of a
single SMS message. So it’s also unsuitable to deliver the updates via SMS.

As we known, after a long time developing, the traditional PC botnets usually
have implemented some mature channels to collect and distribute data among
their controlled bots. Therefore, if we can associate our mobile bots with some
PC bots, the traditional PC botnet can help to maintain the mobile botnet. Our
maintain mechanism showed in Fig. 8. is based on this idea. First of all, the bot-
master has to collect a set of PC zombies that are visible on the internet, which
means remote computers can actively connect to them if a malware installed
on them listens on some ports. These zombies do exist because many network
firewalls allow inbound connections to some special ports like 80. With this set,
when the hijacked phones register themselves on the helper server, we assign
each of them such a zombie. Then, after being equipped with a special malicious
daemon these zombies can be used to collect reports and deliver updates for the
botmaster: when the botmaster wants to learn the runtime information of the
mobile botnet, he first issues a report command to the moble botnet via the SMS

Fig. 8. Maintaining of the SMS-based mobile botnet
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channel. After receiving the command, the smart phones are made to covertly
connect to their assigned PC zombies to upload their information. Then, the
botmaster can collect these information by commanding the PC botnets. Sim-
ilarly, when the botmaster wants to update their malware, he first distributes
the updates to the PC zombies through the C&C channel of the PC botnet.
And then he issues an update command in the SMS botnet to ask the hijacked
phones to download the updates from their associated zombies.

In the process of maintaining, we may take the following measures to increase
the stealth of our mobile botnet:

(1) The same as in the construction process, bot phones should try to use
WiFi instead of cellular network to communicate with their internet peers.

(2) The communication between the bot phones and the PC zombies should
be encrypted with individualized keys, which means different pairs of phones
and zombies use different encryptions.

(3) The mobile bots should change their associated PC zombies regularly.

7 Defense Strategies

The modeling and simulation in the previous sections have shown that it’s en-
tirely possible to construct an efficient and stealthy mobile botnet using SMS as
its C&C channel. We are not smarter than the hackers. They may also have dis-
covered this powerful tool. Therefore, in this section we consider several defense
strategies against this threat.

According to our analysis, the most effective defense strategy against out SMS
botnet is to disable the ability of malware to send or receive SMS message with-
out the knowledge of the users. The best way to achieve this is to add some
non-software-controlled signals (ringing, light flash, vibration, etc.) on the hard-
ware level to inform the users that their mobile phones are sending or receiving
SMS messages. Now, when an infected mobile phone attempts to send a botnet
command covertly, the user can learn it immediately. This mechanism can be
also extended to defend other mobile malware that utilize sensitive resources like
WiFi by introducing hardware signals for the uses of these resources.

The second defense strategy has to first develop some special honeypots to
capture the malware installed on the bots. This should take the propagation
method of the malware into consideration. If they spread via local wireless pro-
tocol like Bluetooth or WiFi, the defenders can distribute vulnerable honey
phones in crowded places with their Bluetooth or WiFi modular open to wait
for being attacked and installed malicious codes. If they spread via social engi-
neering by sending spam mails or hanging horses on the websites, the defenders
can actively visit URLs contained in the spam mails or malicious sites to down-
load and analyze the malicious codes. Then, once the malicious codes of our
botnet are captured, defenders can take at least two further measures to detect
or disable the botnet. Firstly, as we introduced earlier, our botnet is constructed
via a helper server on the internet. Therefore, the defenders can perform reverse
engineering of the obtained malicious codes to extract the embedded IP address
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or the URL of this server and then deploy a targeted filtering signature on the
internet access points in their controlled cellular network to detect all the bots
trying to connect with this server. Secondly, the defenders can also simply run
the malicious codes to infiltrate the botnet. Then they can learn all the neighbor
bots as well as the associated PC zombies used to upload runtime information
and download updates. So the defenders can keep the latest version of the bot
codes. In addition, after infiltrating the botnet, the defenders can receive the
newest command issued by the botmaster as those ordinary bots. Then if this
command is to attack a specific server, phone or send spam, the defenders can
quickly deploy corresponding filtering signatures in the appropriate places in the
cellular network to detect and block all the infected phones that are launching
these attacks.

8 Conclusion

In this paper, we aim to investigate the possibility to utilize SMS as a medium
for the mobile-botnet command and control. For this purpose we design a proof-
of-concept SMS-based botnet based on a simple flooding algorithm. We mainly
study the performance of this botnet under three different topologies including
the random graph topology, small world topology and the power law topology.
According to our simulations, the random graph topology outperforms the other
two. Within this topology, a newly issued command can reach over 90% of the
total 20000 bots in 20 minutes and no more than 4 messages are required to send
for each bot in this process, which is quite efficient. This topology is also robust
to both random and selective node failures. We then discuss how to construct
and maintain this botnet. Based on these studies, we obtain the conclusion that
the SMS-based botnet is indeed a serious threat on the security of the mobile
computing environment. Therefore, we further explore several defense strategies
against this botnet.
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Abstract. In this paper, we propose a new technique that uses fault
injection to reverse-engineer a private block cipher implemented with an
unknown S-box. The private algorithm we wish to retrieve differs from a
known algorithm in the choice of the S-Box, which we find using a novel,
fault-injecting technique. The main idea is to consider the components
of the S-Box as the solutions of a linear boolean system, whose equations
stem from the faults injected, using existing fault models. We focus on
two well-known block ciphers, DES and AES, and prove it to be feasible
to retrieve the the S-Box for both cases. We present the fault models
used, the equations extracted from the faults injected, and analyse the
final results. Given the detailed analysis, the technique can be applied
with ease to most ciphers employing an S-box.

1 Introduction

According to Kerckhoffs’s principle, a cryptosystem should be secure even if ev-
erything about the system except the secret key is public knowledge [9]. Even
though this became a fundamental principle of modern cryptology, it is mod-
erately common for companies and sometimes even standards bodies to keep
the inner workings of a system secret [1,6]. We then talk about security through
obscurity, or black-box cryptography.

Under Kerckhoffs’s principle, cryptanalysis consists in retrieving the cipher
key. But when dealing with security through obscurity, the goal is now modified
to also retrieve information on the private algorithm. This is called reverse-
engineering. Nowadays, with the omnipresence of embedded cryptography, it has
become crucial to be able to perform attacks on electronic devices embedding
unknown cryptosystems.

Previous attempts at reverse-engineering unknown cryptosystems were either
through (electro-)optical means, such as the discovery of the MIFARE algorithm
[6], or through the use of side-channel analysis [11]. Side-channel analysis was
originally devised to find the secret key through the measurement of physical
characteristics of the chip such as power intake. Guilley et al. [7] employed this
technique to retrieve the internals of black-box ciphers. This is called the side-
channel analysis for reverse-engineering (SCARE) attack.

In this paper, we present a new type of attack employing the principle of fault
injection [2] to retrieve the unknown S-box of a black-box cipher. Fault injection
was originally devised to retrieve the secret key through injection of faults into
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� IFIP International Federation for Information Processing 2011
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the chip executing the algorithm and observing the modified output. Our attack
injects faults into the chip, collects the output from the chip, performs analysis of
this data and finally converts the data into a set of equations in binary variables,
which are finally solved using Gaussian elimination to retrieve the S-box. This
new type of attack we call fault injection for reverse engineering (FIRE).

The rest of the paper is organised as follows. In Sect. 2, we describe the state
of the art, such as physical attacks of cryptosystems and linear systems solving.
In Sect. 3, we present a DES-based cryptosystem, and a FIRE attack on it. Then,
in Sect. 4, we describe an AES-based cryptosystem, and its corresponding FIRE
attack. Finally, in Sect. 5 we conclude this paper.

2 State of the Art

2.1 Physical Attacks on Cryptographic Systems

Most of the cryptographic algorithms used in serious applications are supposed
to be secure against algorithmic attacks. However, they are implemented on phys-
ical components, and hence become vulnerable against physicals attacks. Once
such algorithms are implemented, either on dedicated hardware or as software
on a micro-controller, the different physical properties of the algorithm can be
observed. Over the years, sophisticated attacks have been developed to attack
cryptographic devices through such observations.

Side-channel attack. The physical implementation of a cipher may reveal use-
ful information about the secret key in an indirect way. Kocher in [10] and in
[11] published two novel attack techniques exploiting side channel leakage of
cryptographic devices. Computation requires time, consumes power and causes
electromagnetic radiations: all these are possible sources of information related to
the secret key. These techniques are powerful, as they allow to reduce the com-
plexity of a brute-force attack by several orders of magnitude. However, they
require physical access to the device to collect the necessary measurements.

Fault-injection attack. Fault attacks is the active way of attacking the physical
implementation of an algorithm. During the proper functioning of the device, the
attacker perturbs it by injecting hardware faults which produce an erroneous (or
faulted) output. The attacker then exploits this to retrieve secret information.
As explained in [8], the most common ways to carry out such an attack are
manipulating the supply voltage or the the external clock, or applying laser or
X-ray beams.

The SCARE attack. More recently it has been shown ([3,5,7]) that side-channel
attacks could be used to retrieve secret parts of private algorithms. This is
called side-channel attack for reverse-engineering, or simply SCARE. when a
side-channel is used to retrieve an S-box on a private block cipher such as DES
or AES, the attacker studies the transition y = SB(x ⊕ k). In a classical side-
channel attack, SB is known and we wish to retrieve k. In SCARE, we assume
to know k and wish to retrieve SB.
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2.2 Solving Linear Boolean Systems

If we consider an S-box as a boolean function fn→m (i.e. a boolean function
from {0, 1}n to {0, 1}m), we can split it into m and fn→1, called the components.
Each one of the components will be considered as a vector s ∈ {0, 1}2n

, being
the solution of a linear system in 2n variables. Each one of the faults injected
brings a certain l number of equations (depending on the fault model), that
the component s must satisfy. This means that each component s is one of the
solutions of the system in {0, 1} of l equations:

A · X = B. (1)

where A is a l×2n boolean matrix, and both X and B are vectors of 2n elements.
The equations are of the form

⊕2n−1
i=0 ai ·xi = bi. Let L be the set of solutions

of the system L = {s ∈ {0, 1}2n

: A · s = B}. Let us note that

s ∈ L ⇔ s̄ ∈ L (2)

It stems from the fact that if α and β are boolean variables, then α⊕ β = ᾱ⊕ β̄.
This property will be important for the rest of the study, since the minimum
of candidates returned will be 2. To solve this linear system of equations, we
have used the Sage software [14] to perform the Gaussian elimination, but any
mathematical software is adequate for the job, as the matrices are typically quite
small.

3 The Case of DES

We first give a description of a FIRE attack on a DES-like cryptosystem. Even
if the attack has already been shown by Biham & Shamir in [2], it gives us a
good foundation to proceed during the more complex case of a SPN such as AES
in Sect. 4.

The Data Encryption Standard (DES) was developed in the 1970s by the
National Bureau of Standards with the help of the National Security Agency. Its
purpose was to provide a standard method for protecting sensitive commercial
and unclassified data. IBM created the first draft of the algorithm, calling it
LUCIFER. DES officially became a federal standard in November of 1976 [12].
DES is a symmetric cryptosystem, specifically a 16-round Feistel cipher. It has
a 64-bit block size and uses a 56-bit key. From this key, 16 sub-keys are created
and are used at each round. The input is split in two halves. The progression of
the cipher is described in Fig. 1.

The round function, applied to a 32 bits register R and a 48 bits round Key K,
F (R, K), consists in the succession of 4 sub-functions: first, E is an expansion
function applied to R which returns a 48 bits output. The key K is then XOR-ed
to E(R). S is the substitution function. It consists in 8 S-Boxes SB0, . . . ,SB7

each of which map a 6-bit input to a 4-bit output. A 32-bit permutation P is
finally applied to the output of S.
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IP

m

L0 R0

F

L1 = R0 R1 = L0 ⊕ F (R0, K1)

F

R1 = L0 ⊕ F (R0, K1)

R2 = L1 ⊕ F (R1, K2)

R14 = L13 ⊕ F (R13, K14)

R16 = L15 ⊕ F (R15, K16)

L2 = R1

L15 = R14

L16 = R15

F

IP−1

c

Fig. 1. The DES cipher, a 16-round Feistel cipher. IP is a 64 bit permutation. The
round function applies F to the right half of the register, XORs the result to the left
half, and exchanges the roles of the halves.

We consider the fault model introduced by Biham and Shamir in [2]: it assumes
that the attacker is able to inject faults at the last round, round no. 15, on
the right register R15. We consider that the substitution function S has been
modified and kept secret. We then wish to retrieve SB0, . . . , SB7, the 8 S-Boxes
which compose it.

Let c = (L16, R16) be the correct and c� = (L�
16, R

�
16) be the faulty ciphertext,

resulting from the same plaintext m and secret key K. If we consider that the
secret key is not known but fixed to a certain value, we will not retrieve the
exact S-boxes, instead we will retrieve the function x �→ SBi(x ⊕ ki), where ki

is key input of the ith S-Box.
Without loss of generality, let us consider that the key is known for the attack,

hence we can ignore it for our present discussion. We thus have:

R16 = L15 ⊕ F (R15) = L15 ⊕ F (L16)
and R�

16 = L15 ⊕ F (R�
15) = L15 ⊕ F (L�

16).
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hence we get:

R16 ⊕ R�
16 = F (L16) ⊕ F (L�

16)
R16 ⊕ R�

16 = P [S(E(L16))] ⊕ P [S(E(L�
16))]

P−1[R16 ⊕ R�
16] = S(E(L16)) ⊕ S(E(L�

16)).

Since c and c� are known, the only unknown register, L15, disappears once R16

is XOR-ed with R�
16. The intrinsic design of Feistel block-ciphers allows us to

have the knowledge of the fault injected, and its effect during the cipher, giving
us the difference at the input and output of the S-Boxes. We note Δin and Δout,
those differences:

Δin = E(L16) ⊕ E(L�
16)

Δout = P−1[R16 ⊕ R�
16].

where Δin and Δout are 48 and 32 bits long. However, if we focus on the ith

S-box Sbi for instance, we can consider Δi
in and Δi

out as 6 and 4 bits long. We
know x = E(L16)[6 ∗ i : 6 ∗ (i + 1)], the 6 bits input of SBi during the unaltered
cipher, x� = E(L�

16)[6 ∗ i : 6 ∗ (i + 1)], the 6 bits input of SBi during the faulty
cipher. We have the relation:

Sbi(x) ⊕ Sbi(x�) = Δi
out.

Our goal is to retrieve Sbi, which is a boolean function from {0, 1}6 to
{0, 1}4. Let’s consider it component-wise, i.e. as 4 functions from {0, 1}6 to
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Fig. 2. Attacking component 0 of the first S-Box of DES: On the x axis, the number
of faults injected, on the y-axis the mean of #L1,0,x after 1000 tries. In the end, we
only have 2 candidates.
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{0, 1}: (s0, s1, s2, s3). From each injected fault, we must have:

For j = 0, . . . , 3, sj,x ⊕ sj,x� = Δi
out(j), (3)

where Δi
out(j) is the jth bit of Δi

out. For each injected fault and for each compo-
nent j, sj must satisfy the previous equation. It is then added to the final system.
We now have a distinguisher, we can define Li,j,N as the set of candidates for
the jth component of the ith S-box. Considering N fault injections, giving us
(xk, x�

k, Δout,k) ( k from 1 to N), we have:

Li,j,N = {s ∈ {0, 1}64 such that ∀k, k ≤ N : sxk
⊕ sx�

k
= Δi

out,k(j)}.
Simulating an error perturbing randomly one single input bit of an S-box

of DES, we reach the final set of two candidates mentioned at eq. (4) after
approximately 130 fault injections. Fig. 2 illustrates the mean progression of
#L1,0,N with 1000 experiments. This attack converges to the expected solution,
meaning that, since we have the property (2),

∃n0 such that ∀n > n0, Li,j,n = {sj, s̄j}. (4)

Note that in order to fully retrieve the 8 S-boxes, one has to test both candidates
for all the 32 components. This leads to an exhaustive search in 232, which is
trivially feasible.

4 The Case of AES

AES is a widely used symmetric-key encryption by Daemen and Rijman [4],
adopted as a standard by the National Institute of Standards and Technology of
the US. It is based on a design principle known as a Substitution Permutation
Network (SPN). AES has a fixed block size of 128 bits and a key size of 128, 192,
or 256 bits. It operates on a 4× 4 array of bytes, termed the state (where 1 byte
= 8 bits). Most calculations carried out by the cipher are done in the finite field
of GF(28).

The AES cipher is specified as a number of repetitions of transformation
rounds, each round made up with 4 round transformations: SubBytes, Mix-
Columns, ShiftRows and AddRoundKey. Note that the last round is ex-
empt from MixColumns.

Without loss of generality, since we consider that the cipher key is known,
we set it to 0, and we also discard the final ShiftRows operation since it
can trivially be inverted. Hence we only consider operations MixColumns and
SubBytes, as explained below in detail.

MixColumns applies a linear transformation to a column of the state:

MixColumns

⎛
⎜⎜⎝
⎡
⎢⎢⎣

x
y
z
t

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
t

⎤
⎥⎥⎦ ,

where the operations are performed in GF(28).
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SubBytes is a non linear transformation which is applied to each byte of the
state. It is traditionally implemented as a S-box, which can be seen as a boolean
function SB from 8 bits to 8 bits. Note that SubBytes is a bijection.

SubBytes

⎛
⎜⎜⎝
⎡
⎢⎢⎣

x
y
z
t

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

SB(x)
SB(y)
SB(z)
SB(t)

⎤
⎥⎥⎦ .

In our attack, this function is unknown, and the goal is to retrieve it.

4.1 Fault Injection

Let us assume that we are able to inject a fault on one byte of the block, just
before the last MixColumns, during the 9th round. The attack is column-wise,
meaning that we only care about the column on which the fault is injected.
For example, let us look at the first column of a regular cipher, from the last
MixColumns until the end of the cipher. We have:⎡

⎢⎢⎣
α
β
γ
δ

⎤
⎥⎥⎦ MC−−→ MC

⎛
⎜⎜⎝
⎡
⎢⎢⎣

α
β
γ
δ

⎤
⎥⎥⎦
⎞
⎟⎟⎠ SB−→

⎡
⎢⎢⎣

x
y
z
t

⎤
⎥⎥⎦ = c. (5)

Now, the same data is processed, but with a fault ε injected before the last
MixColumns. Fig. 3 illustrates the propagation of the error.

Round 9 Round 10

MixCol SubByte
Output

Fig. 3. Propagation of the fault on our simplified AES: we perturb a byte just before
the last MixColumns. The error propagates to the whole column.

We thus have:⎡
⎢⎢⎣

α
β
γ
δ

⎤
⎥⎥⎦ FI−→

⎡
⎢⎢⎣

α ⊕ ε
β
γ
δ

⎤
⎥⎥⎦ MC−−→ MC

⎛
⎜⎜⎝
⎡
⎢⎢⎣

α ⊕ ε
β
γ
δ

⎤
⎥⎥⎦
⎞
⎟⎟⎠ SB−→

⎡
⎢⎢⎣

x�

y�

z�

t�

⎤
⎥⎥⎦ = c�. (6)

Now that we have a triplet (c, c�, ε). Let us examine how we could exploit Fault
Injection to extract information on SB. We start the attack from the ciphertexts,
we retrieving SB−1, which is exactly the same since SB is bijective in SPNs.
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We have, from eq. (5) and eq. (6):

SB−1(c) ⊕ SB−1(c�) = MC

⎛
⎜⎜⎝
⎡
⎢⎢⎣

α
β
γ
δ

⎤
⎥⎥⎦
⎞
⎟⎟⎠⊕ MC

⎛
⎜⎜⎝
⎡
⎢⎢⎣

α ⊕ ε
β
γ
δ

⎤
⎥⎥⎦
⎞
⎟⎟⎠

= MC

⎛
⎜⎜⎝
⎡
⎢⎢⎣

ε
0
0
0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

02 · ε
ε
ε

03 · ε

⎤
⎥⎥⎦ ,

because MixColumns is linear. It translates into the system

SB−1(x) ⊕ SB−1(x�) = 02 · ε
SB−1(y) ⊕ SB−1(y�) = ε

SB−1(z) ⊕ SB−1(z�) = ε
SB−1(t) ⊕ SB−1(t�) = 03 · ε

. (7)

4.2 Translation of the FI into Equations

Let us remind ourselves that SB−1 is a boolean function from {0, 1}8 to {0, 1}8.
Considering it component-wise, i.e. as 8 independent functions from {0, 1}8 to
{0, 1}:

SB−1 = {SB−1
0 ,SB−1

1 , . . . ,SB−1
7 } with SB−1

i : {0, 1}8 �→ {0, 1}}.

Now, SB−1
i can be seen as a set of 256 boolean variables:

SB−1
i = {si,0, si,1, . . . , si,255}.

If we consider bit-wise the equations given in (7) then for a fault injected, we
know that, necessarily, for i = 0 . . . 7, SB−1

i has to satisfy

si,x ⊕ si,x� = (02 · ε)i

si,y ⊕ si,y� = εi

si,z ⊕ si,z� = εi

si,t ⊕ si,t� = (03 · ε)i

. (8)

These four equations are to be manipulated according to the fault model, and
used to build the final system that is solved with Gaussian elimination to finally
give the solutions.

4.3 Random and unknown Faults

First, we discuss the fault model that is close to the one presented by Piret and
Quisquater in [13]. The error is injected on the first byte of the state, just before
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the last MixColumns. It is random and unknown. By adding lines of the system
(7), without any knowledge of the value of ε, we have:

SB−1(x) ⊕ SB−1(x�) ⊕ SB−1(y) ⊕ SB−1(y�) ⊕ SB−1(t) ⊕ SB−1(t�) = 0
SB−1(x) ⊕ SB−1(x�) ⊕ SB−1(z) ⊕ SB−1(z�) ⊕ SB−1(t) ⊕ SB−1(t�) = 0

,

since 03 · ε ⊕ 02 · ε ⊕ ε = 0. The operations are made on GF(28).
Each one of the 8 components of SB−1 has to satisfy these equations. Now that

we have removed ε, we can inject them into the system. Once solved, this system
returns all the satisfying candidates, including the eight solutions. Considering N
fault injections, giving us (ck, c�

k) (k from 1 to N), we can define the distinguisher
LN for the attack of SB−1:

LN =
{

s ∈ {0, 1}256 such that ∀k <N,
sxk

⊕ sx�
k
⊕ syk

⊕ sy�
k
⊕ stk

⊕ st�
k

= 0
sxk

⊕ sx�
k
⊕ szk

⊕ sz�
k
⊕ stk

⊕ st�
k

= 0 ,

}
.

It so happens that after n0 ≈ 400 faults injected, we have a constant set of
solutions S:

∀n > n0, Ln = S.

More precisely, the attack converges to a set S with 512 candidates. First we
describe in detail this set S, and then we discuss the possible conclusion of the
attack through exhaustive search.

To account for the 512 solutions, we consider S as an orbit of the 8 compo-
nents of SB−1: we have always SB−1

0 ,SB−1
1 , . . . ,SB−1

7 ∈ S. But we also have
(0, 0, . . . , 0) and (1, 1, . . . , 1) in S (they indeed satisfy all the equations brought
by the distinguisher), we then state that:

Proposition 1. u, v ∈ S ⇒ u ⊕ v ∈ S.

Proof. Without loss of generality, we shorten the definition of S to a single
boolean equation, which does not change with the real context. For instance:

S = {s ∈ {0, 1}256 such that sy ⊕ s�
y ⊕ sz ⊕ s�

z = 0}.
Now let u, v ∈ S.

uy ⊕ uy� ⊕ uz ⊕ uz� = 0 , and vy ⊕ vy� ⊕ vz ⊕ vz� = 0.

Then uy ⊕ uy� ⊕ uz ⊕ uz� ⊕ vy ⊕ vy� ⊕ vz ⊕ vz� = 0.

Then (u ⊕ v)y ⊕ (u ⊕ v)y� ⊕ (u ⊕ v)z ⊕ (u ⊕ v)z� = 0.

Finally u ⊕ v ∈ S.

We now can define S such that:

S = {a0 · SB−1
0 ⊕ . . . a7 · SB−1

7 ⊕ a8 · (1, . . . , 1), ai ∈ {0, 1}}.
We can remove from S the trivial solution (1, . . . , 1) and (0, . . . , 0): in fact, it
is mandatory for a SPN S-box to be bijective, and it would not be the case if
(1, . . . , 1) or (0, . . . , 0) was one of the components.
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From this set, how can the full S-box be efficiently retrieved? We have 510
candidates that must be replaced into the correct position out of 8 possible
choices. A naive exhaustive search would lead to C510

8 × 8! ≈ 271 possibilities.
However, as we have already noticed, ∀s ∈ S, s̄ ∈ S. We can form 255 groups

of elements of S, each of them including a candidate and its complement. For
an optimal exhaustive search, one has to select 8 of those groups, and then
test the 256 possibilities. This would lead to 28 × C255

8 ≈ 257 possibilities to
finish the attack. This computational complexity is moderately high, but can
be achieved with a large set of modern GPUs and/or FPGAs, and is not out of
reach of any major organisation such as multinational companies or governments.
However, we also propose another solution by finishing the attack using the
SCARE method.

4.4 SCARE Conclusion of a FIRE Attack

In this section, we propose a finishing of a FIRE attack when we are in the
context described in Sect. 4.3. We have a set S, of 510 candidates containing the
8 component of SB−1.

In order to use side-channel information to finish the attack, we use the curves
of the DPA-Contest [15] to find SB−1. The context is the following. We have

– N power traces corresponding of the functioning of the components with
known inputs/outputs/cipher keys.

– The set S of a reduced amount of candidates for the components of SB−1.
Here, 510.

It is well-known that the power consumption of components strongly depend on
the data processed, and more exactly the number of bit-flips completed. This
number is given by the hamming distance between a register at a time t and
t+1. We then talk about Hamming distance model. We study here the transition
during the last SubBytes of the AES chiper.

For every candidates s ∈ S, for every component j of SB−1, we compute
what would be the hamming distance between c (which is known) and the state
at the input of the last SubBytes, if we would have s = SB−1

j . We then use a
distinguisher (Pearson’s correlation) in order to measure the dependence between
those hamming distances and the power traces.

On Fig. 4, the correlation traces resulting from the attack of the 7th component
by using SCARE. This means that we are looking for SB−1

7 amongst the 510
members of S. On the figure, by using 10000 traces, we clearly can identify SB−1

7

in red and bold, ¯SB−1
7 , the symmetric below, and the 508 bad candidates, giving

a correlation close to zero. An adversary able to perform fault injections on a
component is very likely to be able to get a campaign of acquisition of power
traces in order to conclude the attack this way. Hence it alleviates the burden
on the attacker of making the exhaustive search in 257 as munitioned at the end
of Sec. 4.3.

Note that the SCARE attack is feasible here since we have a very restricted
number of candidate for the solutions. When dealing with SCA, the number
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Fig. 4. SCARE on the 7th component of SB−1, with N = 10000 power traces. We have
the 510 correlation traces: on the x-axis the time samples of the power traces, on the
y-axis, the value of the correlation. We clearly identify here the solution (on the top)
and its complementary (on the bottom)

of candidates to test is very important: 256 hypothesis to test when we want
to retrieve a key byte, but 228

hypothesis to test when we are looking for a
single component of SB−1. Here the FIRE attack carried out most of the job by
reducing the 228

to 510.
On Fig. 4, we have the results with N = 10000 power curves. However, from

N = 5000 curves (taken randomly from the ones available for the DPA Contest),
the attack is feasible, meaning that we are able to extract the solutions.

4.5 Results with Various Fault Models and Contexts

In this section, we present several other realistic fault models, or context allowing
us to perform a FIRE attacks.

Random and known faults. Let us consider the strongest fault model: we
are able to inject a random and known fault during the cipher execution.

The advantage with this model, is that, since we know ε, we are able to target
which one of the components of SB−1 we are attacking.

Considering N fault injections, giving us (ck, c�
k, εk), k = 1, . . .N , we can

define the distinguisher Li,N for the attack of the ith component of SB−1:

Li,N =

⎧⎪⎪⎨
⎪⎪⎩s ∈ {0, 1}256 such that ∀k < N,

sxk
⊕ sx�

k
= (02 · εk)i

syk
⊕ sy�

k
= εk

i

szk
⊕ sz�

k
= εk

i

stk
⊕ st�

k
= (03 · εk)i

⎫⎪⎪⎬
⎪⎪⎭ .



FIRE: Fault Injection for Reverse Engineering 291

100 110 120 130 140 150 160 170 180 190 200
0

10

20

30

40

50

60

70

80

90

100

Number of faults injected

N
u
m
b
e
r
 
o
f
 
S
o
l
u
t
i
o
n
s
 
r
e
t
u
r
n
e
d

Case of AES

Fig. 5. Attacking component 0 of AES S-Box inverse. On the x-axis, the number of
faults injected, on the y-axis the mean of #L0,x after 100 tries. In the end, we only
have 2 candidates.

This model, combined with the technique described in Sect. 4.2, allows us
to retrieve the full SB−1 in less than 180 faults injected. Fig. 5 illustrates the
progression of L0,N , simulating an error occurring randomly on the first byte of
the state just before the last MixColumns.

Stuck-at model. It has been shown that it is possible for an attacker to force
a byte to a certain value, that it can choose. If we suppose that, just before the
last SubBytes, one can force the first byte to a given value τ :⎡

⎢⎢⎣
α
β
γ
δ

⎤
⎥⎥⎦ FI−→

⎡
⎢⎢⎣

τ
β
γ
δ

⎤
⎥⎥⎦ SB−→

⎡
⎢⎢⎣

x�

y�

z�

t�

⎤
⎥⎥⎦ = c�.

Hence he has access to x� which is equal to SB(τ). It leads to a trivial attack,
since with 256 accurate stuck-at injections, one can retrieve the full S-Box.

Note that even one single stuck-at injection, we get a lot of information to
bring into the system, if we decide do use different models during the attack.

In the case where it is not possible to inject a stuck-at fault at the input of
the last SubBytes, but that it can be done just before the last MixColumns:⎡

⎢⎢⎣
α
β
γ
δ

⎤
⎥⎥⎦ FI−→

⎡
⎢⎢⎣

τ
β
γ
δ

⎤
⎥⎥⎦ MC−−→ MC

⎛
⎜⎜⎝
⎡
⎢⎢⎣

τ
β
γ
δ

⎤
⎥⎥⎦
⎞
⎟⎟⎠ SB−→

⎡
⎢⎢⎣

x�

y�

z�

t�

⎤
⎥⎥⎦ = c�.



292 M. San Pedro, M. Soos, and S. Guilley

In that case, even if we know the value of τ , α is assumed to be random. But we
have:

∃ε ∈ GF(28) such that τ = α ⊕ ε.

It hence leads to the fault model presented at Sec. 4.3, just as if we would have
injected an unknown and random ε.

5 Conclusion

In this paper, we have introduced a new tool to reverse-engineer a private algo-
rithm. This new FIRE attack allows us to retrieve the S-Box of private block-
ciphers in a reasonable number of faults injected and under plausible and existing
fault models. For the sake of practical demonstration, we have carried out the
attack on two major ciphers, AES and DES, but the attack can be made to work
on almost any cipher containing and unknown S-Box. In the case of the DES
S-boxes, around 1000 Fault Injections are needed and a final exhaustive search
in 232 is necessary to fully retrieve all the 8 S-Boxes. For AES, under the most
plausible model, around 400 fault injections suffice and lead to a finite set of 510
candidates. We can then either conclude the attack using exhaustive search in
257, or perform a data acquisition campaign and finish the attack using SCARE.
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Abstract. The separation design and fabrication process in the semi-
conductor industry leads to potential threats such as trojan side-channels
(TSCs). In this paper we design a new family of TSCs from physical
unclonable functions (PUFs). In particular, a dedicated attack on the
PRESENT block cipher is described by using our PUF-based TSCs. Fi-
nally we analyze the performance of our PUF-based TSCs and discuss
other potential applications.

1 Introduction

With the rapid developments of semiconductor technology, integrated circuits
(ICs) are fast becoming an overwhelming presence in our daily lives. Since infor-
mation security attracts more and more concerns, security chips are widely used
to provide hardware support of cryptographic algorithms and obtain trust com-
puting bases. In most cases, it becomes theoretically infeasible to directly attack
a well-analyzed cryptographic algorithm (e.g., AES) within a security chip by
using traditional cryptanalysis. Although a security chip can resist the attacks
at the algorithm level, the weaknesses in the implementation level might be an-
alyzed for practical attacks. For instance, the side-channel information, such as
differential time or power analysis, is widely investigated to break the security
protection of embedded systems [11,13].

The original ideas of trojan side channel attacks and covert channels were first
proposed by Simmons [15]. As an aggressive example of side-channel attacks, Lin
et al. [7] introduced the concept of trojan side channels (TSCs). A TSC can be
viewed as a malicious circuit that can compromise information from an embed-
ded crypto core, afterwards it can send out the information via side-channel
signals. Only the attacker who implements the TSC can decode the informa-
tion. Although TSCs require extra hardware costs, it is hard to detect since
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they usually occupy a negligible amount of area in the genuine IC. The current
IC supply chain, such as outsourced manufacturing, also provides great oppor-
tunities to implant malicious circuits into the genuine IC to compromise their
security. Nevertheless, many governments and agencies require that companies
who use encrypted communications systems (e.g., mail services from Blackberry)
to allow these institutions to recover encrypted information with a feasible ef-
fort. Normally this requirement leads to two options for vendors: either choose
key escrow or weak design of cryptography. Implementing TSCs can match this
requirement without relying on the above options.

On the other side, detecting flaws in the lithography process is usually done
with extra hardware supports and it is often used to check if the functionality is
correct. Verification of the functionality is often with some extra hardware at-
tached to the IC. Recent developments showed that it is possible for an attacker
to modify chip designs and add malicious circuits without changing the function-
ality. In the literature, many approaches have been proposed for trojan hardware
detection, such as visual inspections, test patterns to find unexpected behavior,
side-channel and path delay profiles [3]. Currently, it is still infeasible to detect
a large amount of security chips whether they have been affected by a trojan
hardware with very small gate counts. In order to keep the TSC undetectable,
it is also crucial to blind the side-channel information for other parties except
the original attacker. In [7], Lin et al. suggest to use a LFSR for encoding. This
results a practical problem that every chip implemented with the same LFSR
will output the same stream. Therefore, if anyone resolves the polynomial that
constructs the LFSR, it will be straightforward to decode the information from
every TSC based on this LFSR.

In 2001, Pappu et al. [12] introduced the concept of physical unclonable func-
tions (PUFs, also known as physical random functions). Since it is practically
impossible to model, copy, or control the IC manufacturing process variations,
PUFs can make chips unique and effectively unclonable. In this paper we propose
a new familty of TSCs based on PUFs. The advantages of using a PUF-based
TSC are two-fold: 1) for every TSC, it is unnecessary to be implemented with dif-
ferent LFSRs (or keys) but a PUF with the same circuits to blind its side-channel
information. The one-wayness of the PUF protects the side-channel information
can only be decoded by the attacker who implemented the TSC. 2) An attacker
can trace the side-channel information from a certain chip by using the phys-
ical unclonable property of PUFs. It also means mathematically modeling one
chip for recovery will be useless to other chips. We propose a PUF-based TSC
attack on the PRESENT block cipher to show the relatively negligible hardware
implementation cost compared to genuine ICs.

The remainder of the paper is organized as follows: Section 2 reviews the
preliminaries for TSCs and PUFs, Section 3 first describes a generalized model
for PUF-based TSC attacks, after which propose a PUF-based TSC attack on
the PRESENT block cipher, Section 4 discusses other applications of PUF-based
TSCs, and Section 5 concludes the paper.
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2 Preliminaries

2.1 The Trojan Side-Channel Model

It is widely accepted that a well-defined model must be formalized on the system
that requires analysis. In [7], Lin et al. introduces the parties and activities that
are involved with the Trojan Side-Channel (TSC) model. Here we will refine the
TSC model from a more general perspective of the TSC scenario.

Entities & Activities. A TSC can be used either by a malicious attacker or
by an anti-counterfeiting analyzer. Without loss of generality, we call the party
who implants the Trojan hardware into the circuits tracer T , and the party who
attempts to detect those TSCs evaluator E . For malicious applications, T will
try to hide the usage of TSCs, while E will try to verify the correctness and
integrity of circuits. For anti-counterfeiting usages, T will try to expose the side-
channel information of TSCs, while E will try to discover and hinder the leakage
by TSCs. Except for the implanted TSCs, we assume that the genuine ICs are
tamper-resistant and no other side-channels can be found by T . E can exten-
sively test the functionality of the genuine ICs and capture the signals leaked
out by TSCs.

Requirements. To evaluate its implementation quality, a TSC must obey the
following conditions.

– Circuit properties:
• Imperceptibility. Compared to the genuine IC, a TSC must only increase

a negligible area of logic gates to reduce the possibility of detections by
evaluators.

• Conformity. A TSC must not affect the correctness and integrity of the
genuine ICs. Moreover, the timing properties of the genuine ICs (e.g.,
cycles for an encryption/decryption) will not be affected overtly by an
implanted TSC.

– Signal properties :
• Blindness. Except for tracers who implanted the TSC, side-channel in-

formation leaked out by a TSC must be blind to other parties. That is
to say, evaluators cannot distinguish the difference between information
leaked out by TSCs and bits from a pseudorandom number generator.

• Latency. To avoid the detection, a TSC will be latent unless it is trig-
gered with a certain condition predefined by tracers. The trigger must
be imperceptible from extensive functionality testing of the genuine ICs.

2.2 Physical Unclonable Functions

It is known that PUFs exploit the physical characteristics of the silicon and the
IC manufacturing process variations to uniquely characterize each and every sil-
icon chip. The unclonability property comes from the fact that a PUF consists
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of a finite number of random components, which is infeasible to exactly control
over the manufacturing process. Each PUF uses these random components to
map challenges to responses (CRPs). A challenge is a stimulus that is applied
to the PUF and a response is the reaction of the PUF obtained through mea-
surements. Due to the complex interaction of the stimulus with the physical
microstructure of the device, each PUF will trigger a response that is highly un-
predictable and unique. PUFs are often used to setup secure channels between
devices. At the manufacturing process the manufacturer creates a set of CRPs
with a PUF and hands them over to user. Therefore, a user can set a secure
channel using the CRP by sending a challenge C to the PUF. Since the response
R of the PUF is also known to the user, it can be used as a shared secret key
for secure communication.

In the literature, many types of PUFs have been proposed based on different
physical properties. By using the position of light as the challenge, Pappu et
al. [12] proposed a PUF based on the scattering of light when shining a laser
on a bubble-filled transparent epoxy wafer. In [6], Lim et al. introduced a new
family of PUFs based on arbiters (APUF). An APUF consists of two identically
configured delay paths that includes a number of switches. The switches are set
by the stimulus and determine a unique path that signals have to travel. In order
to generate response bits for an APUF, a signal is activated simultaneously on
both delay paths. At the end of the delay paths there is an edge triggered flip-flop
which determines the fastest signal by outputting a signal bit.

3 PUF-Based TSC Attacks

3.1 A Paradigm on PRESENT

The key objective of a TSC is to compromise key information from a crypto
engine without altering or delaying the process of the genuine IC. Altering or
delaying might reveal the existence of the TSC to evaluators. When a tracer T
exploited the side-channel information, T will first decode the information to
the original message. By retrieving the saved CRPs of the implanted PUFs, T
can identify which IC leaked out the side-channel information, and then recover
the compromised key information. In [7], Lin et al. adapted the concepts from
spreads-spectrum communications (also known as code-division multiple access
(CDMA)) to distribute the compromised bits as a covert channel to T . For
simplicity, we also choose it as the leakage circuit for PUF-based TSCs. Figure
1 depicts a generalized model for PUF-based TSC attacks.

Since TSCs also require signal blindness, traditional PUFs are not resource-
efficient for ensuring the randomness of long length CRPs. Here we propose a
new variant of PUF which is suitable for TSCs. Basically, our design (see Figure
2) is constructed from a combination of a feedback shift register (FSR) and a
number of APUFs. The FSR can store a bit string with the length C and shift
P bits in every cycle. Each APUF consists of C switch elements, and the number
of APUFs is P . The FSR provides each APUF with an identical challenge, as
the output of the APUFs is inserted back in the FSR and is sent out over the
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Fig. 2. A new variant of TSC based on PUFs. The top rectangle is a c-bit shift-register.
The register is shifted by p-bits per cycle. Each bit is tapped and used to set the set the
switch components of the PUFs. The output Oi produced by the PUFs are feedback
to the shift-register and XORed with the keybits.

covert channel. We denote that a PUF-based TSC with only a single APUF to
be a serial PUF-based TSC.

Initially, the FSR is loaded with a unique identifier (ID). To prevent the de-
tection caused by the power usage, the PUF-based TSC processes and transmits
key information (Key) at the same time as encryption occurs. In order to trans-
mit the side-channel information, we suggest the following format for the covert
channel.

PUF(ID)||PUF(Key)|| · · ·PUF(ID)||PUF(Key) · · ·
Using this format T can first decode the signal and retrieve the PUF(ID) which
can be looked up in the list of devices. Afterwards, T can decode the PUF(Key)
because the CRPs of each APUF are stored (to a database) beforehand. The
length of an APUF (i.e., the number of switches) determines the storage
requirement per device.
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For a PUF-based TSC, the security and performance of a given structure
determine its area costs. The first parameter is the length of the APUF which
regulates the security of the structure. The second parameter is the number of
APUFs which determine the performance of a PUF-based TSC by clock cycles.
The gate equivalents (GE) of the PUF-based TSC also relies on the implementa-
tion of the cryptosystem. In [10], Ozturk et al. showed that a PUF with a 64-bit
challenge and a single bit response using a tri-state APUF can be implemented
in 351 gates. We will consider smaller challenges in our PUF-based TSCs for the
imperceptibility.

PRESENT. At CHES 2007, Bogdanov et al. proposed an ultra-lightweight
block cipher which is named PRESENT [2]. PRESENT is an example of an SP-
network and consists of 31 rounds. The block length is 64 bits and two key lengths
of 80 and 128 bits are supported. The hardware requirements for PRESENT
are competitive. Using the Virtual Silicon (VST) standard cell library based
on UMC L180 0.18µm 1P6M Logic Process (UMCL18G212T3), PRESENT-80
and PRESENT-128 are estimated to require 1570 and 1886 gate equivalents,
respectively [2]. Since Bogdanov et al. do not expect the 128-bit key version
to be used until a rigorous analysis is given, the term PRESENT means the
80-bit key version in hereafter. A high-level algorithm of the round function of
PRESENT is depicted in Figure 3.

generateRoundKeys(k)→ {k1, k2, · · · , k32};
for i = 1 to 31do

addRoundKey(STATE, ki);
sBoxLayer(STATE);
pLayer(STATE);

end for
addRoundKey(STATE, k32).

Fig. 3. The round function of PRESENT

The key schedule. PRESENT uses a hardware-efficient key schedule to avoid
the scheduling weaknesses, which may be used for the related-key attack and the
slide attack. The user-supplied key is stored in a key register K and represented
as k79k78 · · ·k0. At the i-th round, the leftmost 64-bit of the current key register
becomes the subkey Ki = k79k78 · · · k16. Subsequently, the key register K is
updated as follows.

– Cycling left shift 61 bits such that [k79k78 · · · k0] = [k18k17 · · · k20k19],
– The leftmost 4 bits are passed through the PRESENT S-box such that

[k79k78k77k76] = S[k79k78k77k76],
– The round counter value is XORed with bits k19k18k17k16k15.

Based on the key schedule of PRESENT, we can design a lightweight TSC as
follows. For each round, TSC will try to leak out the rightmost 4 bits of K. Since
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the key register is cycling left shift 61 bits, the rightmost 4 bits will not repeat
themselves within 21 rounds (as illustrated in Figure 4). Thus we can obtain
the whole key bits after 21 rounds of PRESENT. Since only the leftmost 64 bits
in the key register will be used in the addRoundKey algorithm, compromising
the rightmost 4 bits will not imply any unexpected behavior or path delay on
PRESENT.

Round 1 : k79k78k77k76 · · · k3k2k1k0

Round 2 : k18k17k16k15 · · · k22k21k20k19

Round 3 : k37k36k35k34 · · · k41k40k39k38

Round 4 : k56k55k54k53 · · · k60k59k58k57

· · ·
Round 11 : k29k28k27k26 · · · k33k32k31k30

· · ·
Round 21 : k59k58k57k56 · · · k63k62k61k60

Fig. 4. Key Scheduling of PRESENT

Instead of recovering a full-length key, a parameterized approach can be used
to lower the length of sending bits via side channels. Similar to the above attack
on PRESENT, one can carefully choose a combination of key bits and rounds for
a TSC. For instance, we can make a TSC that leaks 4 bits in each round and
stops after 11 rounds. After 11 rounds of PRESENT, we can obtain 40 bits of
the original key and execute an exhaustive search for the rest of 40 bits key. The
exhaustive search only requires a time complexity of about O(240), which can
be executed in minutes on current PCs. Consequently, a PUF-based TSC attack
on PRESENT can be implemented as follows.

1. Send a pre-distributed identifier ID as the challenge to the PUF, obtain the
response r1 = PUF(ID).

2. Eavesdrop each of the rightmost 4 bits of 11 rounds subkeys from the un-
derlying PRESENT encryption/decryption. Input the compromised bits C to
PUF, obtain the response r2 = PUF(C).

3. Encode the complete message R = r1||r2, which will be sent by the covert
channel.

Although the key scheduling algorithm of PRESENT has no security problems so
far under cryptanalysis, our proposed attack endangers its security in practical
implementations. We note that the above attack on PRESENT can also be
extended to other ciphers designed with a “simple” key scheduling algorithm. If
a key scheduling algorithm has a low non-linear complexity (i.e., mainly relies
on linear operations such as bit shifts), a TSC attacker can easily recover the
entire secret key by eavesdropping a few bits of the subkey in each round. If
TSC attacks are considered in the adversary model, the non-linearity of the key
schedule should be carefully strengthened by algorithm designers.
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3.2 Performance Analysis

To estimate the lower-bound GE of our PUF-based TSC, we take the formula
P · (5 ·C + 4) + 4 ·C) where C is the length of the challenge and P is the number
of the APUFs. Our lower-bound GE estimation is based on the implementation
of PUF-based TSC in Xilinx ISE Design Suite 12.2. If we consider a 24-bit
challenge for the PRESENT implementation where 4 key bits are snooped per
cycle, the lower-bound of GE of the PUF-based TSC can be 592 gates. It is
possible to lower the GE by lowering the number of APUFs. Table 1 gives an
overview of the performance of implementations that are derived from different
parameters of the PUF-based TSC. The results start with a low-area and low-
performance implementation (serial PUF-based TSC), to a high-area and high
performance implementation (TSC with 4 APUFs). It is obvious from the results
that performance comes at a cost in area and storage while the length of APUF
only significantly results in storage requirements.

Table 1. The performance our PUF-based TSCs

TSC width
(bit)

FSR length
(bit)

CRPs storage Performance in cycles Area in GE

Serial PUF-based TSC 1 24 16MB 68 220
TSC with 2 APUFs 2 24 32MB 34 344
TSC with 4 APUFs 4 24 64MB 17 592

Serial PUF-based TSC 1 36 420MB 80 328
TSC with 2 APUFs 2 36 840MB 40 512
TSC with 4 APUFs 4 36 1.68GB 20 880

3.3 Evaluation

The Imperceptibility of a PUF-based TSC heavily depends on the size of the
genuine chip. If a chip only contains gates nearly or below a thousand level,
the TSC can be easily spotted. Our proposed TSC requires 592 gates, where
as PRESENT requires 1570-1886 gates. This is almost 30-40% of the area of
the attacked cipher. In [1], Agrawal et al. comments the that hardware trojans
are detectable if the size of the trojan is more than 0.01% of the floorplan.
But if a chip has thousands of gates, or a million chips need to be examined,
spotting the TSC becomes increasingly difficult. Moreover, we recognize that
it is a possible and clever way to hide this type of TSC in a protection mesh,
such as in smartcards. In [14] Ruhrmair et al. presented a modeling attack on
PUFs by using linear regression to a mapping a large amount of challenges to
responses and deriving a model of the PUF. But in our PUF-based TSC attacks,
the challenge for the PUF is derived form the round key. For an attacker to
construct an key such that specific bits are set in the round key, it is infeasible
to build a modeling attack on such CRPs of a PUF.

Besides that PUFs are well known and easily implementable in FPGAs [8,9],
Devadas et al. showed in [5] how PUFs can be practically implemented in ASICs.
Since our PUF-based TSC heavily relies on the implementation of PUFs, it can
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also be feasibly implemented even on a large scale. Although its feasibility and
imperceptibility still require deeper investigation, our PUF-based TSC has many
advantage over the TSC presented by Lin et al. [7]. Firstly, our PUF-based TSC
can provide unpredictable outputs that are related to physical unclonability,
which increases the blindness and the uniqueness of side-channel information.
Secondly, PUF-based TSCs can be parameterized by the consideration of per-
formance and resource limitations. This gives a high level of adaptability as
shown with the attack on PRESENT. Note that our PUF-based TSC attack on
PRESENT can be extended for other block ciphers with a similar bit-shifting key
schedule.

Although Lin et al. [7] have not described how to activate the TSC in their
proposal, here we provide a possible design for triggering the PUF-based TSC.
Since PRESENT has a round counter for 31 rounds key schedule, while our
proposed attack only requires the leakage bits of 11 rounds, a possible trigger
can start the PUF-based TSC between 0 ≤ i < 20 where i is the round counter.
The number i is variable and can be selected attacker at the manufacturing stage.
This trigger requires some additional administration (i.e., 4 bits per PUF-based
TSC) as the attacker needs to know which key bits of which round are sent.

4 Other Applications

Except direct attacks on key recovery, PUF-based TSCs can be used in many
other applications. Two interesting examples are described as follows.

Personal communication eavesdropping. Nowadays, mobile devices are
widely secured with cryptographic algorithms. If a PUF-based TSC is implanted
to a certain user’s device, a tracer can not only eavesdrop side-channel informa-
tion, but can also identify such signals sent from a certain device that belongs
to a certain user.

Parameterized backdoor. Some countries have restrictive regulations on the
exporting of security chips, which impose that only chips lower than a certain
security level can be shipped. Our parameterized TSC on PRESENT shows it
can also be used as a factor to lower the security level of a tamper-resistant chip
and therefore matches those exporting limitations.

5 Conclusion

In this paper we introduced a new type of flexible TSC based on PUFs. A ded-
icated PUF-based TSC has been proposed for attacking PRESENT. Compared
to Lin et al.’s original proposal, our PUF-based TSCs cleverly uses the physical
unclonability to obtain the blindness of side-channel information. The imple-
mentation results support that PUF-based TSCs can also be lightweight in logic
gates, which is an important factor for the imperceptibility of TSC circuits. In
future, we are interested in designing PUF-based TSCs on other cryptographic
primitives that are practically used in security chips.
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Abstract. Security metrics are usually defined informally and, there-
fore, the rigourous analysis of these metrics is a hard task. This analysis
is required to identify the existing relations between the security metrics,
which try to quantify the same quality: security.

Risk, computed as Annualised Loss Expectancy, is often used in order
to give the overall assessment of security as a whole. Risk and security
metrics are usually defined separately and the relation between these in-
dicators have not been considered thoroughly. In this work we fill this gap
by providing a formal definition of risk and formal analysis of relations
between security metrics and risk.

1 Introduction

Quantification of security is a problem which has gained much attention recently
[7,10,24,25]. The results of such quantification are needed for various purposes.
First of all, the classical purpose is to understand how secure the system is
and to determine if additional security controls are required [7,10]. The second
purpose is to compare the level of security of a system with others [17,21]. Nowa-
days, Service Oriented Architecture becomes more and more popular. Therefore,
quantification of security is required for advertisement of a good protection level
of a service, for accurate stating the quality of protection level in service level
agreements, and for selection of the most suitable and secure services [12,3,21].

There are a number of security metrics which are used in order to analyse the
strength of security systems [7,10,20,17,21]. Although these metrics are widely
used in security literature none of them (even a finite set of such metrics) can
give a complete view of security strength. Moreover, the relations between the
metrics, their contribution to the overall level of protection, and sensitivity are
unclear. In other words, we do not know which metric is the best approximation
of security level. Without this knowledge we appear in a situation when usage
of different metrics leads to very different decisions.

Risk analysis is the most widely used method for analysing the complete pic-
ture of security state [23,2,5]. The main goal of this analysis is to compute the
amount of possible losses which are caused by occurrences of various threats.
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Although this technique is not perfect [10,22], it has many advantages: the tech-
nique is general enough to be applied to any system, its results provide the
complete vision of security, it helps to justify investments in security, and such
justification is understandable for financial managers and general directors.

Currently, security metrics and risk exist apart from each other and the rela-
tion between these indicators, although assumed, is not specified. On the other
hand, risk is supposed to be one of the most general security indicator. Thus, risk
already must incorporate some security metrics, but it is unclear how different
metrics contribute to the overall risk value. Moreover, risk analysis is blamed for
providing results with low precision and consuming huge amount of time [10]. In
some situations, usage only of security metrics contributing to the overall risk
value may facilitate the analysis and make a preliminary assessment.

1.1 Contribution

In our previous work [13] we provided a formal description of various security
metrics which relate only to a system (out of context) and investigated the rela-
tions between them. We have found that though some metrics are influenced by
other metrics, in a wide sense, the existing metrics measure distinct aspects of
security. On the other hand, the metrics must contribute to the overall security
level. In contrast, in this work we have the main goal to establish the relation
between security metrics and the most general and high-level way of security
assessment – risk analysis. The formal model we propose explicitly connects var-
ious security metrics and indicates how they contribute to the overall assessment.
Note, that we do not provide a new security assessment method, but analyse the
existing ones.

The paper is organised as follows. In Section 2 we recall our definition of per-
fectly secure system, which we defined in [13], and describe our attack model.
Section 3 is devoted to our formal definition of risk. Section 4 establishes the con-
nection between the probability of successful exploitation of an attack and two
types of cost. We analyse contributions of existing metrics to risk in Section 5.
Related work (Section 6) and Conclusion (Section 7) conclude the paper.

2 Background

Definition 1. Let S be a process modelling behaviour of a system and X a
process modelling behaviour of an attacker. A system and an attacker perform
some actions al ∈ A and move from one state to another one. We denote a trace
of actions accomplished by a system or an attacker as γ (γ ∈ Γ ). γ′•γ′

X denotes
that one trace of actions is merged with another one in any way preserving the
order of events. We say that the system is (perfectly) secure if and only if

∀X , ∀γ, S γ′
−→ S′ ∧ X γ′

X−−→ X ′, γ = γ′ • γ′
X

S‖X γ−→ S′‖X ′ ⇒ Psec(S′‖X ′) = ∅ (1)
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Function Psec(S′‖X ′) returns the set of possible threats (attacker’s goals) which
may occur in the reached state S′‖X ′ when the system and the attacker work in
parallel. In other words, the attacker has achieved a state where some malicious
actions are possible and valuable assets can be compromised (e.g., the attacker
has access to a database). A set of possible attackers is X. We define an attacker
X simply as a set of possible traces the attacker can launch against the system.
We write γ ∈ X to show that a specific attacker knows the trace (attack). We
also use a ∈ γ notation to denote that action a is contained in trace γ. A
trace of events is denoted in the following way preserving the order of actions:
γ = a1 ◦ a2 ◦ · · · ◦ an. To avoid ambiguity, we always use index l for actions, i for
attacks, j for attackers.

In this work we extend our previous model and consider security of a system
in a specific context. In our current model context includes protected assets and
possible attackers. In particular, we need the amount of possible losses, caused
by affecting valuable assets, and preferences of attackers.

For our new model we need a more detailed formal model of attacker.

Definition 2. An attacker is a process which is characterised by the following
tuple: X =< Γ, goal, skill, res, money >, where Γ is a set of attacks the attacker
can launch against the system; goal is the goal of the attacker1; skill - the level
of skills the attacker possesses; res - the amount of resources the attacker is
willing to spend to achieve its goal; money is the amount of money the attacker
is ready to spend in order to make an attempt to compromise the system.

Here we would like to consider money (money) and resources (res) required for
an attack apart. In our model, money are needed for buying the tools without
which the attack is impossible (e.g., in order to crack a safe a special drill is
required). When the attacker starts its attack he spends some resources in order
to achieve its goal. The more resources are spent the more chances for success the
attacker has (e.g., the more time a bugler spends for studying and attempting
to open a lock the more probably he will be able to open the safe). Sometimes
money and resources can be considered as one parameter, but for understanding
the different nature of these expenditures we consider them as two distinct sets.
In the sequel, any attribute of a specific attacker is used with a corresponding
index. For example, a set of possible attacks and amount of available resources
for an attacker Xj are represented as Γj and resj correspondingly.

Considering every attacker separately is an impractical approach. Usually
similar attackers considered as one collective entity, or an attacker profile. We
assume that all members of the same group of attackers have the same goal. For
example, cyber terrorists are aimed at shutting down a system for a long time,
cyber thieves (hackers) - at receiving economical benefits, insiders - at commit-
ting a fraud. Thus, we group the attackers according to their goals assuming that
the attackers which have the same goal have also the same skills and resources
(i.e., we assume small dispersion). Sometimes, there are attacker profiles which

1 In our model every attacker has only one goal.



Formal Analysis of Security Metrics and Risk 307

have the same goal but should be grouped differently (e.g., terrorists which usu-
ally have high skills and large amount of resources, and vandals, who simply
behave as hooligans and have very limited amount of resources). Such groups
can be separated, and this separation will not affect our further discussions.

3 Formal Definition of Risk

Let the total number of attackers be |X| = NX and number of attacks available
for attackers Xj ∈ X is |Γj | = NΓ

j . Now, let a number of attacker profiles be

NX,pr and each profile j has |Xj | = NX
j attackers (NX =

∑NX,pr

j=1 NX
j ).

Definition 3

∀Xj ∈ X, ∀γi ∈ Γj , ∃γ′ S γ′
−→ S′ ∧ X γi−→ X ′,

S‖X γ′•γi−−−−→ S′‖X ′ ⇒ Psec(S′‖X ′) � goalj

Risk(S) =
NX,pr∑
j=1

NX
j ×

NΓ
j∑

i=1

pv(γi,Xj) × pt(γi,Xj) × d(γi,Xj) (2)

where pv(γi,Xj) is the probability of successful execution of attack γi by Xj ;

pt(γi,Xj) is the probability of selection of attack γi by Xj ;
d(γi,Xj) is the damage which Xj causes by successfull execution of γi.

Note, that an attacker which is going to attack the system has to select one
of the available attacks leading to achievement of its goal. Therefore, we have

complete probability space here: ∀Xj ,
∑NΓ

j

i=1 pt(γi,Xj) = 1. On the contrary,
probability of successful execution of an attack does not depend on other attacks,
but only on the attacker and the attack. Therefore, the complete probability
space for the probability of successful execution of attack γi by Xj is pv(γi,Xj)
and ¬pv(γi,Xj).

If we know that a randomly taken attacker belongs to group Xj with proba-
bility pX

j we can find the number of attackers in this group if the overall amount
of attackers is known.

NX
j = NX ∗ pX

j (3)

Naturally,
∑NX,pr

j=1 pX
j = 1

Proposition 1. Definition 3 is a fine-grained form of the classical formula for
computation of risk (annualised losses) [6,10]:

Risk(S) =
NX,pr∑
j=1

AROj ∗ SLEj (4)

Where AROj is annual rate of occurrences of threat j (goalj) and SLEj is single
loss expectancy of threat j.
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Proof: First, we consider AROj . AROj gives us the average number of suc-
cessful attacks which realise threat j. Let preal

j be the probability that the next
attack is successful in realisation of threat j. Then, the number of successful
attacks can be found if a number of all attackers (attempts to compromise the
system) and probability preal

j are known AROj = NX × preal
j . To execute an

attack an attacker has to select the threat and then successfully realise it. There-
fore, expanding preal

j AROj can be seen as AROj = NX × V ulnj × Threatj,
where V ulnj is the average probability that threat j is successfully realised ;
Threatj is the probability that threat j is selected.

The selection of threat j is equivalent to the probability that the selected
attacker is from profile j (recall that a “threat” and an “attacker goal” in our
work are synonymous), therefore, Threatj = pX

j . Using the probability theory
we can compute the average probability that a concrete threat will be successful
if we know all attacks which lead to realisation of this threat (goal). This set of
attacks is the same set that a specific group of attackers knows.

V ulnj =
NΓ

j∑
i=1

pv(γi,Xj) × pt(γi,Xj) (5)

SLEj is the expected damage in case threat j occurs. Note, that SLEj is
the average damage with the condition that the attack is successful. Indeed, in
practice, the average damage is computed using the data collected from previous
occurrences of threats. Therefore, we need to use conditional probabilities for
computation of the average damage. Thus, the probability that attack γi has
successfully occurred with the condition that at least one attack realising threat
j has occurred is p(γi/Γj) = p(γi)

p(Γj) , where p(γi) is the probability that attack γi

is successfully executed, and p(Γj) is the probability that one attack out of Γj

has been successful. Thus, the formula for computation of SLEj is the following:

SLEj =
NΓ

j∑
i=1

p(γi)
p(Γj)

× d(γi,Xj) =
NΓ

j∑
i=1

pv(γi,Xj) × pt(γi,Xj) × d(γi,Xj)∑NΓ
j

i=1 pv(γi,Xj) × pt(γi,Xj)
(6)

Now, if we multiply and divide at once the part of formula 2 after the first

sum by
∑NΓ

j

i=1 pv(γi,Xj)pt(γi,Xj) and substitute NX
j as shown in Equation 3:

Risk(S) = NX ×
NX,pr∑
j=1

[pX
j ×

(
NΓ

j∑
i=1

pv(γi,Xj) × pt(γi,Xj)) ×
∑NΓ

j

i=1 pv(γi,Xj) × pt(γi,Xj) × d(γi,Xj)∑NΓ
j

i=1 pv(γi,Xj) × pt(γi,Xj)
] (7)
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Finally, using Equations 5 and 6 and recalling that Threatj = pX
j we get:

Risk(S) = NX ×
NX,pr∑
j=1

Threatj × V ulnj × SLEj =
NX,pr∑
j=1

AROj × SLEj (8)

�

4 Probability vs. Cost

Cost of attack is a metric which is often used for analysis of security. Cost is con-
sidered as a one-time payment which an attacker has to make in order to exploit
a vulnerability. An example could be the average amount of money required for
bribing an employee in order to get access to the network or to buy information
about an unknown vulnerability on a black market [21]. Such model is not entirely
correct. First, one-time payment is usually an indispensable condition, but not a
sufficient one. Possessing the information about an existing vulnerability and re-
quired tools do not always imply its successful exploitation. Second, in many cases
different amount of investments may result in different probabilities of success. For
example, the higher the bribe the higher the probability it is accepted. Third, in
contrast to the real world criminals (e.g., buglers or thieves), hackers do not often
need special equipment, but a computer, tools (likely, simply downloaded) and
access to the Internet (or to the internal network). In other words, exploitation of
most of vulnerabilities often does not require one-time investments.

Therefore, in this paper we propose to consider two types of cost: a fixed
cost (Cf ) and a changing cost (Cc). The first cost is the common one-time
investment. Such investment is required to allow the attacker to make an attempt
to exploit a vulnerability. The changing cost is the investment which influences
the probability of successful exploitation of a vulnerability. Such investment is
often only the time the attacker devotes to exploitation of a vulnerability. We
can express this time in currency by simple multiplication of the time spent by
the cost of an hour of the attacker (a way of transformation does not affect the
further discussion). The idea behind this cost is the following one: anyone can
exploit a vulnerability spending some time trying to do this (see, for example,
the work of E. Jonsson and T. Olovsson [11] where even unskilled attackers were
able to compromise the system after considerable time).

In order to model such dependency we can use either lognormal [18] or Weibull
distributions. Both these distributions are used for modelling faults. In our case
we can see the problem as how long the system withstands an attack. We also can
apply multiplicative degradation argument here. In every small amount of time
an attacker gets a tiny amount of knowledge about how to exploit a vulnerability.
In this case system is “degrading” until it is broken. Such degradation is modelled
by lognormal distribution [1].

We define the probability of successful execution of action al as a function
of cost Cc

l and specific for the attacker profile (attacker skill level): pc(al,Xj) =
Fj,l(Cc

l ), where Fj,l is some distribution function (the exact formula, although
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desirable, is not important for the further discussion). We assume that this
function depends on such attributes as, e.g., hardness of the exploitation of al

and skill level of the attacker (skillj). The function returns the probability that
the action will be successful when at most Cc amount of resources is spent.

Definition 4. The probability of successful attack is the maximal probability to
accomplish successfully all required actions, if the overall sum of resources spent
for the overall attack is equal to the amount of resources the attacker has.

pv(γi,Xj) = max{
∏

∀al∈γi

Fj,l(Cc
l )|

∑
∀al∈γi

Cc
l = resj} (9)

The fixed cost is used for defining the set of attacks available for the attacker:

Γj = {γi | ∃γ′, S γ′
−→ S′ ∧ X γi−→ X ′,

S‖X γ′•γi−−−−→ S′‖X ′ ⇒ Psec(S′‖X ′) � goalj ∧
∑

∀al∈γi

Cf
l ≤ moneyj} (10)

Minimal cost of attack (see Definition 11) has sense only for the fixed cost
(Cf ), but as we noted, possessing this amount of money does not always guar-
antee successful exploitation. The changing cost (Cc) simply cannot be minimal
because even with a little effort an attacker has a chance (but a very small
chance) to achieve its goal. Example could be the password cracker who finds a
strong password after a couple of attempts by sheer luck.

5 Relation between Metrics and Risk

First, we define four levels of relations which can be established between two
metrics. For brevity, lets call the metric which we observe and use for defining
the dependency as a dependee metric, when the metric which behaviour we would
like to determine as a depender metric.

Definition 5. Let S and Ŝ be the system before and after some changes.
Correspondingly, M(S) and M(Ŝ) are values of a dependee metric for the two
versions. We can denote a depender metric as a function which depends on
the dependee metric f(M(S)) or f(M(S), M1(S), ..., Mn(S)) depending on how
many dependee metrics are required for the computation. Let also �M(S) be the
simplest change of the dependee metric M(S) such that no other changes may
occur at the same time.

Level 1. Weakest monotonicity. There is a weakest monotonicity relation be-
tween a depender and dependee metrics if the smallest increases of dependee
metric cause the corresponding changes of the depender metric, while all
other parameters required for computation of the depender metric are left
the same. Formally,

If M(Ŝ) = M(S) + �M(S) , M(Ŝ) > M(S) ⇒
f(M(Ŝ), M1(Ŝ), ..., Mn(Ŝ)) > f(M(S), M1(S), ..., Mn(S)) (11)

∀k, Mk(Ŝ) = Mk(S)
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Level 2. Weak monotonicity. There is a weak monotonicity relation between
two metrics if any resulting changes of dependee metric allows to judge about
changes in the depender metric. All other parameters required for computa-
tion of the depender metric are left the same. Formally,

M(Ŝ) > M(S) ⇒ f(M(Ŝ), M1(Ŝ), ..., Mn(Ŝ)) > f(M(S), M1(S), ..., Mn(S))
(12)

∀k, Mk(Ŝ) = Mk(S)

Level 3. One-way monotonicity. Changes of dependee metric imply correspond-
ing changes in the depender metric, even if we consider different systems
(other parameters, if any, may change as well). Formally,

M(Ŝ) > M(S) ⇒ f(M(Ŝ)) > f(M(S)) (13)

Level 4. Equivalence. Changes of dependee metric imply corresponding changes
in the depender metric, and visa versa:

M(Ŝ) > M(S) ⇔ f(M(Ŝ)) > f(M(S)) (14)

The four levels are defined for monotonically increasing functions only for sim-
plicity. Monotonically decreasing functions can be also used by the definitions
(simply change M(Ŝ) > M(S) to M(Ŝ) < M(S)).

Naturally, the first two levels are more relevant for considering the relations
when a depender metric is a function of several dependee metrics, while the last
two levels are applicable when only one dependee metric is required. Knowing
what kind of relations exists between two metrics an analyst is able to predict
changes of a more complex metric observing changes in another one (more easy
to collect). Every monotonic relation can be either sensitive or insensitive.

Definition 6. Sensitive relation notices every change in the dependee metric
behaviour. A monotonic relation is insensitive otherwise.

For example, weak monotonicity is sensitive if

M(Ŝ) > M(S) ⇒ f(M(Ŝ), M1(Ŝ), ...) > f(M(S), M1(S), ...) (15)

and insensitive if

M(Ŝ) > M(S) ⇒ f(M(Ŝ), M1(Ŝ), ...) ≥ f(M(S), M1(S), ...) (16)

Now, our goal is to find how changes in security metrics affect risk level.

Number of attacks.
Definition 7. We define number of attacks metric as the number of possible
sequences of actions which contain the minimal number of actions required for
satisfaction of attacker’s goal.

Natt(S) = |{γ′
i | ∃Xj ∈ X, γ′

i ∈ Γ ′
j ∃γ′, S γ′

−→ S′ ∧ Xj
γ′

i−→ X ′
j ∧

S‖Xj
γ′•γ′

i−−−−→ S′‖X ′
j ⇒ Psec(S′‖X ′

j) � goalj ∧ (17)

� ∃γ̂′
i, γ̂, γ′

i = γ̂′
i • γ̂ ∧ S‖Xj

γ′•γ̂′
i−−−−→ S′‖X ′

j ⇒ Psec(S′‖X ′
j) � goalj}|



312 L. Krautsevich, F. Martinelli, and A. Yautsiukhin

Proposition 2. There is only the insensitive weakest monotonicity between risk
and number of attacks metric (Level 1).
Proof: Consider two cases. The first case is when all Γj contain only the at-
tacks the attackers can afford (see Equation 10). Thus, the attack can be exe-
cuted (otherwise γi �∈ Γj) and pv(γi,Xj) �= 0; can be selected, even with very
small probability, (otherwise γi �∈ Γj) and pt(γi,Xj) �= 0; and has some im-
pact on the system (otherwise we do not consider it as an attack γi �∈ Γj and
d(γi,Xj) �= 0. Thus, if the number increases (�Natt(S) > 0) more summands
(pv(γi,Xj) × pt(γi,Xj) × d(γi,Xj)) will contribute to the overall risk and the
risk level increases. If the number decreases then less summands contribute to
the risk and the risk level decreases. Note, the change of risk because of sev-
eral changes in number of attacks is unpredictable (because the value of the
summands is unknown).

In the second case we assume that some attacks are too expensive for attack-
ers. Thus, there are attacks with 0 impact and the situation when �f(Natt(S)) =
0 is possible and new summands are not added/deleted when number of attacks
metric changes. Thus, in some situation the relation is insensitive. �

Maximal probability of success. In this paper we provided a new definition for
probability of successful exploitation shown in Equation 18 (using pv(γ′

i,Xj)
from Equation 9).

Definition 8. This metrics is simply the maximal probability of successful ex-
ploitation of one of possible attacks.

Pmax(S) = max{pv(γi,Xj) | ∀Xj , γi ∈ Γj} (18)

Proposition 3. Risk is an insensitive weak monotonic function of maximal
probability of success (Level 2).
Proof: Maximal probability of success Pmax(S) is just one of the probabilities
of execution used for computation of risk. Therefore, if Pmax = pv(γq,Xz) for
an attack γq (γq ∈ Γz) conducted by attacker Xz we can see the Equation 2 as

Risk(S) =
NX,pr∑
j=1

NX
j ×

∑
∀i�=q

pv(γi,Xj) × pt(γi,Xj) × d(γi,Xj)+

∑
∀j �=z . γq∈Γj

NX
j × pv(γq,Xj) × pt(γq,Xj) × d(γq,Xj)+

NX
z × Pmax × pt(γq,Xz) × d(γq,Xz) (19)

Thus, clearly, if Pmax(S) increases/decreases the overall risk decreases/increases
only if all other parameters are left the same (Level 2). Note, that if the attack
with maximal cost is too costly for the corresponding attackers than no changes
will be noticed. �
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Shortest attack.

Definition 9. The shortest attack metrics indicates the length of an attack
which contains less actions than others.

Lmin(S) = min{L(γi) | ∀Xj , γi ∈ Γj} (20)
where L(γ) = n iff γ = a1 ◦ a2 ◦ · · · ◦ an

Proposition 4. There is only the insensitive weakest monotonicity between risk
and the shortest attack metric (Level 1).
Proof: The shortest attack Lmin(S) affects only the probabilities which cor-
respond to the same attack γq {pv(γq,Xj), ∀j}. If the shortest attack becomes
longer/shorter the corresponding probabilities will decrease/increase according
to Definition 8. We isolate all the affected summands in Equation 2.

Risk(S) =
NX,pr∑
j=1

NX
j ×

∑
∀i�=q

pv(γi,Xj) × pt(γi,Xj) × d(γi,Xj)

∑
∀j . γq∈Γj

NX
j × pv(γq,Xj) × pt(γq,Xj) × d(γq,Xj) (21)

Thus, only the second sum descreases/increases when Lmin increases/decreases.
Note, that the shortest attack affects probabilities of success only if it has been
either increased or decreased (not both at the same time) because of different
magnitudes of changes in the probabilities. In other words, we have relation
of Level 1. And, again, the change is noticeable only if the attack is not too
expensive. �

Percentage of compliance. Some authors propose to measure security according
to its compliance with a standard (e.g., ISO 177992 [8]). Percentage of compliance
is often used as an indicator [4].

Definition 10. Check list is a set of actions recommended for a system Γ cl ⊆ Γ .
Let a set of satisfied items in the list be Γ S = {γ|γ ∈ S ∧ γ ∈ Γ cl}. The check
list metric is the following ratio

CLM(S) = |Γ S |/|Γ cl| (22)

Proposition 5. There is only the insensitive weakest monotonicity between risk
and the percentage of compliance metric (Level 1).
Proof: Since we consider a static system we will not take into account the
requirements related to a process of security maintenance. Lets also assume that
adding a new countermeasure does not have any negative effect on security of the
system. We already have shown in [13] that this metric is not sensitive because
some suggested countermeasures could be ineffective in a concrete system.
2 Currently, the standard has been extended and is called ISO 27000 family.
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Every security mechanism may work in three ways:

1. reduce the probability of successful exploitation of some vulnerabilities (e.g.,
password generation policies) – pv(γi,Xj);

2. reduce the amount of attackers willing to perform a specific attack (e.g.,
monitoring mechanisms). Such security mechanisms have double effect:
(a) reduce the probability of attack selection pt(γi,Xj) and
(b) reduce the total amount of attackers NX

j which know the attack;
3. reduce the possible impact (e.g., back up mechanisms) d(γi,Xj).

Reduction of amount of attackers caused by installation of a new security
mechanism causes redistribution of pt-s, since

∑
∀i pt(γi,Xj) = 1. In this article,

we follow the strategy common for risk assessment methodologies: some attackers
are no longer a threat for the system. We do not consider a more complex scenario
when an attacker changes its mind and tries another attack [22]. Such analysis
requires deeper understanding of how probabilities of selection are determined
using behaviour of attacker. We are going to consider this issue in the future
work.

Current redistribution of probabilities is connected only with reduction of one
probability of selection caused by �CLM(S). In order to simplify mathematics
and avoid re-computation of the probabilities, for our proof is enough just to
imagine that we have a bogus attack with risk 0, but its probability of selection
is a non-zero value pt

0 > 0. Thus if some pt(γi,Xj) has been reduced by �pt we
simply add this value to the zero attack: pt

0 +�pt. In such a way we reduce only
the summands which correspond to attack γi and, as a result, the risk reduces.

For reduction of other parameters (probability of successful exploitation and
impact) similar to arguments for the shortest attack metric we can separate
the summands which are affected by new countermeasures (or by deletion of
countermeasures). The separated summands decrease if new countermeasures
are installed and, thus, risk decreases. �

Minimal cost of attacks. As we have shown in Section 4 minimal cost makes
sense only for the fixed cost.

Definition 11. Minimal fixed cost of attack can be see as:

Cf,min(S) = min{
∑

∀al∈γi

Cf
l | ∀Xj , γi ∈ Γj} (23)

Proposition 6. Risk is an insensitive weak monotonic function of minimal fixed
cost metric (Level 2).
Proof: This cost affects only the process of selection of available attack paths
(see Equation 10). In other words, the attack which had a minimal cost value may
become too expensive for an attacker if the minimal cost value increases. In this
case, the formula for risk loses one non-negative summand and risk decreases.
Note, that if the increase in the cost is small and the attacker still can use the
attack risk level is left the same. �
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Average probability of penetration.

Definition 12. In order to find the average probability of penetration for the
whole systems we should first find the average probability for an attacker profile
and then find the average probability of penetration among the attacker profiles.

P avg(S) =
NX,pr∑
j=1

pX
j ×

NΓ
j∑

i=1

pv(γi,Xj) × pt(γi,Xj) (24)

Proposition 7. There is only the sensitive weakest monotonicity between risk
and the average probability of penetration metric (Level 1).
Proof: Although this metric uses the same components as risk does, there is
no direct relation between risk and this metrics. Effects of changes of pt and pv

have been discussed in the proof for percentage of compliance metric. Increase
of number of attackers of one kind (pX

j ) increases the average probability of
penetration and risk (see Equations 2 and 3). In general, without knowledge of
exact magnitudes of changes in several probabilities we cannot correctly predict
behaviour of risk level, since risk is weighted with impact. Thus, we have a
relation of Level 1. Since risk reacts on the change of every parameter required
for P avg the relation is sensitive. �

Attack surface metric. Attack surface metric (ASM) [17] is defined as follows.

Definition 13. Let us have 3 assets which can be affected by an attack: method
(m), data items (d), channel (c). Let us know the damage-potential level of ev-
ery asset damp(γ) and the level of privileges required for execution of attack
γi priv(γi) (maximal difference in level of privileges among required actions
of the same attack). Then, for every system we can assign the following tuple
ASM(S) = 〈Riskm, Riskc, Riskd〉 where

Riskm =
∑

∀γi∈Γ m

damp(γi)
priv(γi)

; Riskc =
∑

∀γi∈Γ c

damp(γi)
priv(γi)

;

Riskd =
∑

∀γi∈Γ d

damp(γi)
priv(γi)

). (25)

where Γ m, Γ c, Γ d are the sets of attacks leading to compromise of the corre-
sponding asset.

Proposition 8. Attack surface metric is equivalent to risk with a number of
assumptions (Level 4).
Proof: Since there are three values required for computation of ASM we also can
compute risk for three possible damages separately. Assume that there are no at-
tacks on the system others than the ones targeting the three assets (NX,pr = 3).
The authors assume that the metric does not depend on the attacker. Thus,
we do the same assumption for our risk formula. The authors also assume that
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the damage-potential value is proportional to the real value of loss, and the
required level of privileges is reversely proportional to the probability to perform
the attack: damp(γi) = z1 ∗ d(γi) and priv(γi) = z2/pv(γi). Here we have to
make another assumption: all assets of the same class have the same cost and
an attack required the same level of privileges have the same probability to be
successful. Finally, we get almost the same formula we have for risk, but one
compound: threat level. In other words, we also need an assumption that all
attacks are equally frequent (∀γi pt(γi) = pt). Now we can rewrite equation 2
using the assumptions we already made:

Risk(S) =
NX,pr∑
j=1

NX
j ×

NΓ
j∑

i=1

pv(γi) × pt(γi) × d(γi) =

NX,pr∑
j=1

NX
j ×

NΓ
j∑

i=1

pt × z2/priv(γi) × damp(γi)/z1 = pt z2
z1

×

(NX
m

∑
∀γi∈Γ m

damp(γi)
priv(γi)

+ NX
c

∑
∀γi∈Γ c

damp(γi)
priv(γi)

+ NX
d

∑
∀γi∈Γ d

damp(γi)
priv(γi)

) (26)

Here we have the overall risk, while ASM does not combine the three values
together. We can do the same considering the three summands separately. �

Summary. In order to summarise the results we collect the findings in Table 1.
We can see that most metrics have only the lowest level of relation with risk
(weakest monotonicity). Thus, usage of only these metrics in order to predict
the behaviour of risk level is impractical, although, changes of these metrics do
contribute to changes of risk. Maximal probability and minimal fixed cost could
be used for prediction of risk behaviour, but only if the corresponding attacks are
considered. Such situation happens if attackers always select the most probable
or less costly attack. Finally, we see that attack surface metric is equivalent
to computation of risk, but relies on very strong assumptions. Moreover, most
relations are insensitive and, thus, changes of the metrics do not always indicate
change of risk.

Table 1. Relations between metrics and risk

Metric Relation level Sensitivity

Number of attacks Natt Level 1 No

Maximal probability P max Level 2 No

Shortest attack Lmin Level 1 No

Minimal fixed cost Cf,min Level 2 No

Avg. probability of penetration P avg Level 1 Yes

Attack surface ASM Level 4 Yes

Percentage of compliance CLM Level 1 No
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6 Related Work

Most security metrics are defined informally. Such definition leads to many un-
certainties in the actual meaning of the metrics. Informal definitions also do not
allow to analyse metrics, find overlapping and relations between them. Unsur-
prisingly, NIST stated that one of the future directions in security metrics should
be definition of formal models for security metrics [9].

An example of formally defined metric could be the attack surface metric
[15,17]. The authors formally defined the notion of channels (attack path) intro-
ducing the notion of exit points and described how the metric is computed. In
our work, we adapted the model of the authors to our model and formally proved
that this metric is equivalent to risk, if the specified assumptions are taken into
account. Nevertheless, the focus of our paper is formal analysis of large number
of existing metrics, while the authors of attack surface metric focus on definition
of this metric.

The authors of papers on attack graphs are also often use formal models.
Moreover, a number of security metrics are defined for evaluation of a system
based on attack graphs are: probability of successful attack [26], minimal cost of
attack [20], minimal cost of reduction [27], shortest path [19]. The formal model
is usually applied to the definition of the graph itself and only rarely used for
the definition of metrics (e.g., [20]). In contrast, our work has the primary focus
on formal definition and analysis of metrics.

Another example of formally defined metric is “mean time to failure” metric
by Madan et al. [14]. This metric assumes that only one-step attacks are possible,
when we consider multi-step attacks.

In our previous work [13] we formally modelled and defined several security
metrics which measure security system out of the context. The metrics were
analysed in order to check if some of them provide the same evaluation. We have
found that in general metrics are mostly independent, but in specific cases some
metrics can be used interchangeably. In this work, we formalised risk and have
shown how these (and some other) metrics contribute to risk.

7 Conclusion

In this paper we formalised risk analysis. We have shown how existing security
metrics relate to this the most general security evaluation. We can see that all
metrics play only a small role when the overall risk is computed. Thus, we make
a conclusion that none of single metrics is enough to predict behaviour of the risk
value. The only metric which is as general as risk is the attack surface metric,
but it relies on many strong assumptions. In this work we considered probability
of successful execution of an attack as a function of cost. We have not identified
which function must be used, but have shown that other approaches fail to model
the relation between these two metrics correctly.

Currently, we consider a very generic attacker model. Our future work is to
consider behaviour of attackers and determine models for computation of proba-
bilities of attack selection. Introducing the behaviour of attackers (e.g., adapting
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Dolev-Yao model for assessment of systems) will enhance our attacker model and
will allow us to analyse different strategies of attackers. The probability of attack
selection is often left out of the scopes of existing approaches and we are going
to make some progress to fill this gap.
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Abstract. Security Management is a necessary process in order to ob-
tain an accurate security policy for Information and Communication Sys-
tems (ICS). Organizations spend a lot of money and time to implement
their security policy. Existing risk assessment, business continuity and
security management tools are unable to meet the growing needs of the
current, distributed, complex IS and their critical data and services. Iden-
tifying these weaknesses and exploiting advanced open-source technolo-
gies and interactive software tools, we propose a secure, collaborative
environment (STORM) for the security management of ICS’s.

Keywords: Security Management, Risk Management, Vulnerability
Assessment tools, Security Tools, Collaboration.

1 Introduction

The most critical and sensitive data of the organizations is hosted in their Infor-
mation and Communication Systems (ICS). Degradation, interruption or impair-
ment of their ICS has serious consequences on safety, loss of sensitive data, loss
of reputation or loss of service making security management one of the most im-
portant organizational concerns [2]. Current ICSs are distributed; complex and
multidimensional resulting to the fact that security management is a cooperative
obligation requiring the involvement and participation of all ICS participants.

Existing security management (e.g. ISO-15408 [31], ISO-17799 [32], ISO-27001
[33], ISO-27002 [34]) and risk assessment (e.g. Cobra [12], CRAMM [13], EBIOS
[17]) tools do not enable collaboration and they do not consider all aspects
(technological, business, legal, economical) that influence the evaluation of the
ICS threats and vulnerabilities leading to incomplete and ineffective security
management, with generic security policies and incomplete security procedures.

The risk management for current complex organizations (e.g. large-scale in-
frastructures, critical infrastructures, large enterprises) requires many interviews
with all participants in order to identify the architecture of the ICS, the assets,
and their interdependency, risks and criticality (from an organizational, techno-
logical, legal, business and economical perspective).

Furthermore, it does not exist an automated collaborative tool embedding
security standards, methodologies, tools and guidelines that continuously guide
and train the participants in the security management in order to:

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 320–335, 2011.
c© IFIP International Federation for Information Processing 2011
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– Perform risk assessment for risk identification
– Conduct vulnerability assessment
– Execute penetration tests/scenarios
– Implement appropriate countermeasures
– Design security policy and procedures
– Design security business continuity and disaster recovery plans

The aim of this paper is to contribute to the above challenge by providing a
collaborative security management tool (STORM) which provides:

– Innovative collection of security knowledge. Using the STORM en-
vironment the necessary information will be collected from all participants,
minimizing the gathering time, reducing costs for the organizations and most
importantly taking into account the security knowledge of all participants of
the ICS in order to obtain an accurate security policy.

– Secure dependable and collaborative environment. By the use of
STORM modules, the governance of complex organizations will be able to
establish and maintain a secure cooperate environment for their local and
external users.

STORM is a prototype of a new generation, collaborative, innovative security
management environment, which will be able to provide the necessary level of
confidentiality, reliability, interactivity and interoperability of the organizations
and their ICS’s. The proposed STORM environment is an open and cost effective
approach that is based on widely used collaborative web 2.0 technologies such
as wikis, blogs, RSS and forums.

The rest of the paper is organized as follows: Section 2 describes existing
standards and methodologies for Security Management and analyzes the ICS
complexity. Section 3, describes the STORM architecture and its basic compo-
nents. Finally, Section 4 draws conclusions.

2 State of The Art

Security Management is a continuous and systematic process of identifying, an-
alyzing, handling, reporting and monitoring operational risks of an organization
[6][18]. Security Management is an important governance and administration
procedure aiming at the protection of an organization from internal and external
risks that would negatively affect the achievement of its operational objectives.

Current ICS’s are characterized by growing complexity, distribution of their
Information System (IS) (network, hardware, software, human resources) in var-
ious locations (rooms/buildings/cities) and by the plethora of electronic ser-
vices. In addition, these complex ICS’s interact, interwork and their business
become dependent on other organizations (e.g. providers, partners, banks, insur-
ance companies, Tax authorities). They have a large number of users (internal,
external administrators, users, providers), and they face a growing number of
different types of spatial and temporal dispersion effects of attacks.
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Despite the growing need for effective security management within the organi-
zations, the existing security-related methodologies, standards and frameworks
are inadequate to meet the above needs of current ICS in a holistic and integrated
way. More specifically:

– Existing security management standards/frameworks/methodologies for the
establishment of corporate security governance (e.g Cobit [11], ITIL [10],
ValIT [56], ISO-17799 [32], ISO-27001 [33], ISO-27002 [34]), have not been
implemented in a tool since they present specific limitations. They usually
define principles and provide only guidelines mostly in the form of recom-
mendations rather than strict rules that should be followed.

– Existing risk management methodologies (i.e. Cramm [13], Octave [43], ISO-
15408 [31]) and their automated tools (e.g. Cramm [13], Cobra [12]) are
costly, they require numerous and time consuming face-to-face interviews
with all the administrators, not allowing collaboration, resulting to the in-
sufficient collection of all available security knowledge of all participants.

– Most of available methodologies and frameworks for security testing [4], [52],
[60], [50], [46], [25], [8] describe test cases and they indicate tools that can be
used in each test providing merely a description of their capabilities. Nev-
ertheless, the tracing and the correct configuration of the required vulnera-
bility assessment tools is a time consuming process which requires specific
expertise. Therefore, there is a need for consolidated vulnerability assess-
ment information pertaining to the proper configuration and installation of
the VA tools as well as the provision of an integrated VA environment that
offers a comprehensive and large collection of security-related tools.

– Disaster Recovery and Business Continuity standards (i.e. BS 25999-1 [9],
BCI GPG [7], ITIL V3 [10], HB 292 -2006 [24]) are unable to meet the needs
of the current distributed IS’s since they have not been implemented in an
automated tool.

– The renewal, updating and awareness of these security documents (security
policy, Disaster Recovery and Business Continuity plans) is done manually
every time something changes in the ICS or in the security procedures which
are costly and time consuming processes requiring a variety of organizational
resources.

Therefore, there is an imperative need for continuous, collaborative, holistic and
effective security management of the ICS. The proposed STORM environment,
described in the following sections is an open, cost-effective, collaborative ap-
proach to security management.

3 STORM Collaborative Environment

Because of the changing conditions under which an organization operates to-
day (distributed, complex and diverse technological environment, globalization,
economic crisis), the implementation and maintenance of an accepted level of
ICS security is requiring a planned and organized task. STORM contributes
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to the creation, enhancement, monitoring and assessment of the security of the
information and communication systems providing an innovative, interactive col-
laborative environment that encompasses a bundle of primitive services which
allow the organization to:

– identify and depict the ICS infrastructure;
– identify the applying security policies, procedures, standards and guidelines;
– specify, evaluate and classify daily risks and threats of the ICS continuously

collecting the security knowledge of all operational ICS participants (admin-
istrators, users, providers);

– recognize the impacts (business, economical, technological, legal) of upcom-
ing incidents on the operations of the ICS;

– execute technical vulnerability assessment with live scenarios (based on ac-
cepted vulnerability assessment methodologies and techniques) identifying
at real time the security needs of the ICS;

– select reliable and appropriate countermeasures to achieve the confidential-
ity, availability and integrity of data;

– on-line generation/formulation/monitor/renew/update all the security doc-
uments (security policy, Business Continuity and Disaster Recovery Plans);

– continuously monitor new laws, standards and best practices.

In order to achieve these, the STORM collaborative environment is composed
of four layers as depicted in the following Figure.

Fig. 1. STORM collaborative environment

STORM architecture, its basic components and their functionalities, are de-
scribed in the following sections.
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3.1 STORM Architecture and Services

STORM aims to become the harbinger of a new generation security management
tool for ICS, stimulating the collaboration among all stakeholders. Figure 1
depicts the proposed architecture that encompasses the core participants and
entities distributed in four distinct layers as follows:

Layer 1 - STORM Users: This first layer consists of the four groups of users
namely, Security and Business Continuity Team, Administrators, local Users,
external users. Considering the fact that local and cooperate users may not
perceive critical security factors (e.g. threats, vulnerabilities, impacts) the same
way as security experts, different access privileges to the STORM services have
been applied to the aforementioned user groups. Remarkably, only the members
of the Security and Business Continuity Team are responsible for properly and
adequately providing initial content to the system and specifically all the primary
information assets comprised at Layer 2 of its architecture, that are necessary
for harmonizing security management procedures.

Layer 2 - The STORM Framework: The main components and the individ-
ual systems that comprise the core STORM environment.

Layer 3 - STORM Services: At this layer, an integrated bundle of security
services is provided that aids the organization to apply an accurate, reliable and
flawless corporate security management of ICS.

Layer 4 - STORM Primary Information Assets: All related standards,
methodologies, best practices, related legislation are the assets of the STORM;
typical examples are: Business Continuity and Disaster Recovery Standards,
Security Management Standards methodologies, Risk Analysis questionnaires,
Vulnerabilities scenarios, Security Policy, Disaster recovery/Business Continuity
plans, Disaster Scenarios. These assets are structured documents in STORM
Document Library.

3.2 Layer 1 - STORM Users

The STORM participants as described in Layer 1 are the following:

– The administrators of the IS who continuously inform the collaborative tool
with all the necessary information (technical instructions, manuals, samples
of business continuity and disaster recovery plans, international standards,
best practices, open source security tools and scenarios etc.), create the ques-
tionnaires and the necessary recovery forms, define the responsibilities of
users, control and renew the lists of the installed software and hardware of
the information system.

– The members of the security and business continuity team, make an as-
sessment of the criticality of services, analysis and evaluation of risks, risk
management using appropriate countermeasures and implement all the pro-
cedures of the security policy. They are able to continuously be informed
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with the new standards and best practices and apply them directly on the
system.

– Local users of information systems (e.g. accounting user etc) will be able
to actively participate in the collaborative security process, find informa-
tion on technical and security procedures and as a result any difficulties
may be treated effectively. Also they will be trained/informed about all
the security procedures through the STORM communication module (with
wiki/forum/polls).

– Cooperate users which cooperate with the organizations (e.g. custom of-
fices, banks, agencies, suppliers, service providers, other organizations) can
be informed about security rules and conditions for safe interconnection and
access to the information systems of the organizations. In this way there will
be safeguards put in place, minimization of threats, and trust in the quality
of services.

3.3 Layer 2 - The STORM Framework

The STORM framework consists of two central entities. The fist is the Identity
and Access Management (IAM) System which properly specifies and enforces
security and privacy policies, used to control access to STORM services. IAM
incorporates security mechanisms and policies that enhance the STORM plat-
form with proper authentication and authorization properties and Single-Sign-
On (SSO) procedures, enclosing end-user’s preferences and requirements. Based
on the above procedures, different user roles (administrators, local users etc.)
have access to specific STORM services according to their business needs and
requirements. This component is based on open source Open SSO [44].

The second major entity of the framework is STORM System that is com-
prised of the following components:

– Web portal: A Web Interactive System, which provides secure access to
security related information and content, retrieved and processed from di-
verse sources, in a unified and user-friendly way. This system is based on
collaborative Web 2.0 technologies and automated, open, interactive and re-
liable technological tools (such as collaborative forums, blogs, Wikis etc.).
The STORM system will actually provide a consistent look and feel with
secure access control and procedures for the integrated applications of the
project. The STORM Web portal will serve as a unified secure access and
presentation point to the full range of security services.

– Enterprise Service Bus (ESB): ESB is essentially a lightweight mes-
saging framework integrating different technologies, devices and data trans-
fer protocols, ensuring that different systems and applications communicate
through a common channel to exchange information with other organiza-
tions.

– Business Process Modelling (BPM): It undertakes the responsibility to
monitor, manage, analyze and implement the business logic of complex and
distributed workflows of the services provided by the STORM system.
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– Decision Support System (DSS): DSS facilitates the combination of a
set of information in order to solve problems and reach tactical and strategic
decisions in several security and privacy issues. These decisions can be con-
sidered more in the form of suggestions and recommendations rather than
strict injunctions that should be followed. The users will be able to mod-
ify, complete, or refine these decision suggestions according to their needs.
Representative example is the definition of a security and privacy risk miti-
gation strategy taking into consideration the enterprise financial status and
the applied countermeasures.

– Ontologies and Semantic Structures (Knowledge Base): A collec-
tion of semantic structures (notably ontologies/taxonomies) modelling the
STORM content as well as their semantic relationships will be designed,
implemented and integrated within the STORM system. Thematic, security
and privacy related ontologies/taxonomies will be defined to better orga-
nize the various quantities of the assets stored in the repository. These will
bring context to words, topic areas and search results, providing a hierarchi-
cal structure of asset categories, from general to specific. We conveniently
call the set of semantic structures of the STORM system, as the STORM
Knowledge Base.

– Content Management System (CMS) responsible for creating, editing,
management and publication of all the primary and processed content in a
consistent and structured way. It consists of:
– advanced content management tools (e.g. rich text editors, live page edit-
ing and scheduling, and advanced document managers) in order to provide
the STORM friendly environment;
– intuitive front end user interfaces that share a set of common characteris-
tics to promote user friendliness and accessibility;
– functionality for collecting, organizing and managing content from multi-
ple sources (e.g., databases, repositories) and multiple formats;
– STORM taxonomies for better access to the STORM primary assets and
content.

– STORM Repository: All STORM primary assets (all related standards,
methodologies, best practices, legislation, Risk Analysis questionnaires, Se-
curity Policy, Disaster recovery/Business Continuity plans) are stored in a
repository.

All the aforementioned elements are the backbone infrastructure of the STORM
framework. They will be combined in an effective way to establish a highly agile
automation Services Oriented Architecture (SOA) environment that can boost
both re-engineering and the integration of a set of security and privacy related
services that will be described in the following section.

3.4 Layer 3 - STORM Services

The services offered by STORM (Layer3) are depicted at the figure 2 and de-
scribed in detail as follows:
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Cartography module: The main objective of this module is to describe critical
information and communication systems in order to depict all their security-
related aspects. These aspects are not confined only to technical issues, but
they are also concerned with the business processes in which the systems are
embedded. In order to describe the information and communication systems,
STORM has adopted and integrated an object modeling approach based on the
ISO Reference Model for Open Distributed Processing systems (RM-ODP) [57]
standard in combination with the Unified Modeling Language (UML). The RM-
ODP offers a general framework and a reference model based on five different
viewpoints that identifies the crucial characteristics that qualify the systems
while the UML provides the notation for representing the identified features.

The five viewpoints as described by RM-ODP and adopted by STORM are
the following:

– Enterprise viewpoint. A viewpoint of the system and its environment that
focuses on the technical guidelines and policies associated with the system
as well as the system’s purpose of operation, scope and business require-
ments. Also, it deals with aspects of the enterprise such as its organizational
structure, which affect the system.

– Information viewpoint. A viewpoint which specifies and describes the infor-
mation structure of the system. Specifically, it focuses on the information
that is stored, processed and exchanged in the system.

– Computational viewpoint. A viewpoint which focuses on functional decom-
position of the system into objects which interact at interfaces.

– Engineering viewpoint. A viewpoint which describes the way different objects
of the system interact with each other as well as the resources required for
this communication.

– Technology viewpoint. A viewpoint which focuses on the individual hardware
and software components which compose the system.

The proper and accurate analysis and representation of the information and
communication systems aid the early discovery of security vulnerabilities, incon-
sistencies and redundancies in these systems.

Theoretical Risk Assessment Module: providing the following functionality:

– Online Forms for user identification (responsibilities, roles etc.), asset iden-
tification (servers, routers, switches, applications, databases etc), reporting
of their interdependencies with other systems, description of applications,
detailed record of operational procedures.

– Collaborative Questionnaires. Embedded online questionnaires for the ac-
complishment of:
– IT assets (software and hardware) identification
– impacts determination (based on various security scenarios related to
availability, integrity and confidentiality loss),
– threats, vulnerabilities and risk identification.

The posted questionnaires are filled in by all participants and are collected and
analyzed by the corresponding users through charts .The participants, answering
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Fig. 2. STORM Security Management Services

the questionnaires, will be able to give their knowledge from their own perspec-
tive (e.g. deficiencies, security incidents, backup procedures, countermeasures of
their department). This allows the accumulation of objective information that
can be used as input for the execution of the risk analysis and risk management
procedures in an effective and efficient manner.

Vulnerability (Practical Risk) Assessment module: This module consists
of the following three subcomponents:

1. Methodologies repository. An inventory of the most wide-used and accepted
vulnerability assessment (VA) methodologies and frameworks (i.e. OWASP
[4], OWASP Code review [52], NIST SP800-42 [60], Special Publication 800-
115 [50], Penetration Testing Framework (PTF) [46], OSSTMM [25], ISSAF
[8])defined and released by the standardization bodies and the research com-
munities. This acts as a reference point of existing methods for network and web
application security testing and assessment as well as for forensics analysis.

2. Tools Repository. An inventory of open source and freeware tools that can
be used in combination with the VA methodologies and frameworks for the
deployment of specific security tests. A set of tools-related information con-
cerning installation guides for various operating systems, links to sources
codes and executable files as well as expert notifications about capabilities,
problems and limitations is also provided.
Within STORM, the VA tools are divided in the following categories taking
into account the provided functionality:

– Reconnaissance and Discovery: information gathering from publicly
available sources and online databases such as IP registries, DNS infor-
mation, public web sites and search engines (e.g. Dnsmap [15], DNSPre-
dict [16], Fierce [22], Metagoofil [39], Gooscan [23]).

– Network Mapping: acquisition of detailed information about the targets
(e.g. Hping3 [27],Nmap [41], TCPtraceroute [54], P0f [47], Zenmap [62],
Httprint [28] ).
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– Vulnerability Identification: discovery and enumeration of candidate
vulnerabilities of the examined systems (e.g. OpenVas [45], W3AF [59],
Nessus [40] ).

– Penetration/Exploitation: exploitation of specific vulnerabilities aiming
at gaining unauthorized access to the target systems (e.g. MEF [38],
ExploitDB [21] ).

– Privilege Escalation: gaining privileged access to the compromised sys-
tems (e.g. Hydra [29], [35], Medusa [37] ).

– Further Enumeration: discovery of further information (e.g. passwords,
network mapping) (e.g. EtterCap [20], Wireshark [61] )

– Maintaining Access: establishment of covert channels, back door instal-
lation and deployment of rootkits (e.g 3proxy [1], ProxyTunnel [48],
TinyProxy [55]).Digital Forensics Analysis: preservation and analysis
of digital evidence (e.g. Autopsy [5], [14], Sleuth [51], Volatility [58]).

In addition, a VA environment (VA platform) has been configured and is
available in STORM providing a user-friendly access to a comprehensive
and large collection of security-related tools ranging from sniffers and traffic
analyzer to web scanner and WEP/WPA cracking. The preconfigured envi-
ronment is a Linux distribution based on Debian 5 that is available as a Live
DVD. This allows the potential users either to boot the platform directly
from any portable media or to install it to the hard disk or even to run it as
a virtual machine. Configuration guidelines of the platform are also available
strengthening the trust of the potential users. The main aim of this inventory
is to assist individuals and organizations to establish a well-defined security
”laboratory” environment enabling them to perform self-assessment in order
to improve the security level of their infrastructure.

3. Lesson Learned Repository. This component acts as an inventory of common
attacks. Its main objective is to bring into focus some of the theoretical and
practical concerns of the most common threats. In this context, a compre-
hensive description of a set of attacks is provided covering all their aspects
including exploitable security flaws, applied scenarios, tools which can be
used, as well as mitigation recommendations and countermeasures that can
be adopted. The attacks have been categorized as follows:

– Network Attacks: include any methods, processes or means used to mali-
ciously attempt to compromise the security of a network. Representative
examples of this type are Distributed Denial of Services attacks, Spoofing
attacks, Eavesdropping etc.

– Application Attacks: include any methods, processes or means used to
maliciously attempt to compromise the security of an application. Injec-
tion (e.g. sql, soap, ldap), Cross-Site Scripting (XSS), Buffer Overflow
attacks are examples of this type.

In addition, a number of case studies that can be considered as lesson learned
can be provided in STORM. These are more in the form of challenges
rather than strict rules that must be followed. The challenges are discrim-
inated in two types. The first concerns case studies of attacks’ deployment
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(e.g. Distribution Denial of Service (DDoS), Denial of Service (DoS)) aiming
at the evaluation and validation of the security controls and countermeasures
that are integrated in an infrastructure. The impact of the attacks on the
target is calculated and recorded in the system as it has to be the prime
consideration for further investigation. The second type of case studies gives
the opportunity to the potential users (individuals and organization) to an-
alyze the attacks and post their findings in STORM CMS. The challenges
concern a wide range of forensic issues such as the detection and analy-
sis of suspicious software/malware, hash analysis, image analysis, partition
recovery, signature analysis, file header reconstruction, password recovery,
registry analysis, steganography and encryption. Furthermore, the results of
case studies conducted within the activities of a set of national initiatives
such as HONEYNET [26], CERT Exercises Handbook [19] can be also ana-
lyzed and presented in depth in the system. In this way, the users learn not
only about the threats, but also how to deploy and analyze them.

Risk Management module: This module via online forms and library aid
the organization for the selection of the appropriate taking into account the
result of the risk assessment procedure. All participants will be able to give their
opinion by using the communication module and agree or propose their new
countermeasures.

Security Policy Module: This module provides the appropriate functionality
for the design and creation of the security policy of the organization using the
collaborative forms that are embedded in this STORM module. In addition, all
the information related to security policies, procedures, guidelines, rules and re-
sponsibilities and credentials at the information and communication systems and
services are also available and accessible by all the corporate users via this module.

Administrators and security team will edit and update this module so all the
other users of the organization will be able to find information about the security
procedures, rules and their responsibilities and credentials at the applications
and services.

Disaster Recovery (DR) / Business Continuity (BC) Module: The aim
of this module is to provide the functionality required for the design and creation
of BC and DR plans. It also contains all the disaster recovery procedures and
relevant information such as responsibilities and contact information that are
necessary in case of disaster or an emergency event. Further, the module provides
forms for building of possible disaster scenarios and for real time responsibilities
assignment. More detailed, there have been implemented forms for:

– user responsibilities,
– contact details,
– supplier contact details,
– incident report,
– incident handling,
– recovery procedures,
– backup infrastructure and procedures
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Collaborative Communication Services: Provision of a group of communi-
cation services.

– Forum for exchanging ideas about security topics or reach consensus on
evaluation of risks. This will help all participants to find quickly solutions
about daily security or other problems so they will solve their difficulties
quick. Also they will be able to discuss about security problems, accept or
not the proposed countermeasures or recommend their security safeguards.

– Polls so users will be able to discuss critical security issues allowing them to
reach solutions in a collaborative, cost and time effective manner.

– Wiki, based on which, all users will be able to find or propose their own
solutions regarding security issues or find details about risk assessment, risk
management and vulnerability and the security policy of their organization,
so they will be able to solve any difficulty directly.

– Interactive user screens which are used for collaborative risk management
and for reporting protection measures.

3.5 Layer 4 - STORM Primary Information Assets

STORM users will be able to perform various actions depending of their roles e.g.
local and cooperate users will be able to access the STORM assets which support
the STORM services as described in Section 3.4. In particular the following assets
will be included: the cartography analysis report of the organization as produced
in the Cartography module; the risk assessment questionnaires provided by the
Theoretical risk assessment module; all the security related information per-
taining to the technical vulnerability assessment (VA) i.e. methodologies, open
source and freeware VA tools, installation guides, VA scenarios, case studies; the
countermeasures proposed by the Risk management module; security corporate
documentation i.e. security policies, Disaster recovery, Business continuity Plans
as generated by the Security Policy and the DR/BC modules respectively.

4 Implementation

The development and integration of the main components of the STORM frame-
work is based on the innovative integration of mature technological solutions and
tools as follows:

– Social Networking Tool: A social networking open source solution that is
based on Symfony Framework [53] has been adopted and integrated in the
STORM system. This solution is an open source software platform available
for social networking that provides a number of Web2.0 components such as,
Document Library, Team Calendar, Wikis, Blogs, Forums (Message Boards),
Private Site and separate secured areas, Instant Messaging, Announcements
& Alerts and Email.
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– Content Management System: The management of the content, documents,
files, information and data related to the security services provided by the
STORM system is performed by a CMS solution based on the Symfony
Framework [53].

– Business Process Management (BPM): A holistic business process manage-
ment tool, ADONIS [3], has been adopted for the composition of an integrated
SOA environment. The tool utilizes notations like Business Process Execution
Language (BPEL) standards in order to enable modelling, composition and
deployment of service workflows. This tool is also be used in order to imple-
ment the Decision Support System that shall be integrated in the system.

– SOA Environment: An open SOA strategy has been adopted based on XML
technologies and web services-based standards and will be followed for the
design, development and implementation of the STORM system. For the
integration of the middleware infrastructure [36] (i.e. application servers,
enterprise service bus) an Open Source Enterprise Server, has been deployed
that hosts the SOA environment.

– Identity Management System (IMS): The STORM framework has incorpo-
rated a solution, Open SSO platform [44], that provides core identity services
such as strong authentication and authorization mechanisms as well as sup-
port and implement a transparent single sign-on (SSO) procedure.

As indicated in the brief analysis of STORM main technological components,
the proposed integration framework is totally based on open-source technologies
and software tools, rendering the final product (STORM Environment) a cost-
effective and easily adopted innovative solution. This critical characteristic could
be also considered as the fundamental benefit and added value of STORM, given
that nowadays, key organisational decision makers and business managers (e.g.
CIOs, CISOs, CFOs, etc.) are seeking urgently and massively, in a constantly
evolving pace, for more efficient and cost-effective risk management solutions in
order to reduce operational costs and resist the existing economic crisis. Espe-
cially in cases where security is falsely considered as a secondary need and disre-
garded due to the required additional costs (outsourcing to security consulting
companies to perform risk assessment and management activities), an efficient
solution that is able to provide reliable risk assessment and management services
at extremely low cost is considered as an indispensable property.

Achieving this, STORM constitutes an innovative security management plat-
form that is able to confront and effectively manage the trade-off between low
cost and security management expertise by harnessing corporate knowledge,
leveraging existing infrastructures and boosting work productivity.

5 Conclusions - Future Work

STORM is an open, innovative, collaborative security management environment,
which can used in various organizations (from large organizations hosting critical
infrastructures to SMEs and mEs) in order to effectively address their security
and privacy needs.
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The STORM environment has been proposed [42] as the preferred solution in
order to provide security management services to the port Information systems.
It will also be implemented in the S-PORT project [49] funded by the National
research program ”Cooperation” (NSRF 2007-2013) of the GSRT (General Sec-
retariat for Research and Technology Development Department) in three Greek
commercial Ports (Piraeus Port Authority S.A., Thessaloniki Port Authority
S.A, Municipal Port Fund Mykonos).

STORM has also been selected as the appropriate architecture for policy
making in collaborative environments and it will be implemented in the E.C.
FP7 project ImmigrationPolicy2.0 [30].
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Abstract. Establishing a trust relationship in decentralized wireless
mesh networks (WMN) is an open question to date. In MANETs and ca-
ble bound meshed networks (like the Internet) there are a lot of proposals
and solutions for trust establishment and for authentication.

In this paper we examine those existing solutions and analyze them
for their applicability to wireless mesh networks.

We investigate the special demands of WMN, show the differences to
existing network types and finally propose a trust agreement scheme that
is particularly adapted to WMN.

Keywords: Wireless Mesh Networks, Trust Agreement, Reputation,
Authentication, Authorization, Web of Trust.

1 Introduction

Imagine a group of wireless users in a city. These users are interconnected and
some of them provide services like internet access or even an email service.
Usually, the provider of a service does not want to offer his service to the whole
world but only to a limited group of trusted users. On the other side there are
users who only want to rely on trustful services, since no customer would like to
use an email provider who eavesdrops on all his emails. The demand for a trust
management system emerges.

Identification or at least the recognition of other users is an important is-
sue for trust relations, because one can only have trust relations to users that
you are able to authenticate. Authentication has been discussed widely for the
classical internet and mobile ad-hoc networks (MANETs) [4][5]. But as far as
we know, there is no feasible solution for authentication, recognition nor for
trust establishment of nodes in Wireless Mesh Networks (WMN), which differ
in several points from MANETs. WMN consist of static nodes, which have no
computational nor battery power constraints and are able to do WiFi typical
throughputs (11M, 54M, 300M) between neighboring nodes.

Wireless mesh networks are the “missing link” between the classical internet
and mobile ad-hoc networks. Nodes in a MANET are mobile, whereas nodes
on the internet are completely stationary. Wireless mesh networks are located
in between, as the backbone of a WMN is mainly stationary. Nevertheless the
availability and reachability of nodes is not nearly as good as on the internet due
to wireless communication. Wireless interference has a big influence on the links
and plays therefore a big role in wireless mesh networks, as it does in MANETs.
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In practice, wireless mesh networks can be found in community networks like
SeattleWireless [2] or MIT Roofnet [1], industry projects (e.g. metalworking in-
dustry) and even military projects. Most of these networks grow irregularly while
being bound to a specific environment, thus we cannot assume a clear network
structure in most cases. We therefore assume that a WMN is a decentralized
network without a central node that is reachable all the time (due to the limited
reachability in WMN).

In this paper, we propose a protocol scheme for trust establishment that is
optimized for wireless mesh networks. There are several solutions in the MANET
and peer-to-peer world that support reaching the goal, e.g. offline CAs with hi-
erarchical trust structure, virtual or distributed CAs (e.g. with threshold cryp-
tography), ID-based key agreement, reputation management systems, the web
of trust technique and many more [12][13][10][9].

We discuss the existing approaches regarding their feasibility for wireless mesh
networks and conclude with a new trust agreement scheme for wireless mesh
networks that combines and extends the most feasible ideas.

2 Differences to MANETs

Our contribution is particularly directed to wireless mesh networks. In order to
delimitate our results from MANET solutions, we outline the essential differences
between MA-NETs and WMN.

Mobile ad-hoc networks consist of a loose aggregation of mobile nodes. This
means, the wireless link quality and also the link duration is fluctuating very
randomly. When a node’s link disconnects or a new link is established, the routing
topology changes. Therefore it is not assured that each node can be reached at
any time. Wireless mesh networks also rely on wireless links, but their nodes
are more or less static in their position. Therefore the link duration is notably
longer, although the link quality may fluctuate due to wireless interference. The
frequency of topology changes in WMN is more similar to the internet than to
MANETs and thus the proposed authentication mechanisms can be optimized
for longer living connections.

Moreover most MANETs (e.g. sensor networks, VANETs and many more) are
based on simple hardware components, so that there is usually limited compu-
tation power and sometimes even a limited energy supply, i.e. we have battery
powered devices. These limitations are not present for WMN, leading to the
capability of performing longer and more complex computations.

Due to the minor mobility of WMN nodes and no power limitations, WMN
nodes can be equipped with more than one radio interface, using different wireless
channels. This leads to far higher bandwidth as can be provided by MANETs,
since half-duplex effects can be avoided and wireless interference is reduced.

2.1 Technical Design Goals

We design a trust establishment scheme that is particularly adapted to wireless
mesh networks. For optimal compliance with this kind of network, the design has
to be influenced by the advantages and restrictions that are provided by WMN.
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The desired scheme should make use of local broadcasts, since they are cheap
in wireless networks due to the wireless propagation of the signals.

In contrast to cable bound networks, we have higher packet loss rates in
wireless networks because of wireless interference, range constraints and thereof
resulting route changes. Usually, the occurence of packet loss in wireless networks
is not uniformly distributed which results in phases with a good link and phases
where nearly no packet passes through the network. It is sensible to minimize the
number of messages to compensate the packet loss effect by having shorter send-
ing periods. But if there is a connection, we are normally able to retrieve a high
throughput in WMN (several radios, several channels, more transmit power than
in MANETs). A good choice for the packet size is therefore near the maximum
transfer unit (MTU), for the reason that the currently given throughput should
not be limited by protocol overhead. To prevent packet fragmentation which
would introduce a higher dropping probability (for the aggregated packet) and
the need for a more complex retransmission mechanism, the packet size should
obviously not exceed the MTU.

Furthermore the design has to consider a decentralized structure where no
particular node can be a single point of failure, since wireless links (meshed
wireless links are even worse) are not reliable in comparison to wired links.

As distinguished from MANETs, we have a much greater computation power
and memory, while having no power constraints. This allows us to use complex
mathematics like asymmetric cryptography, also elliptic curve based cryptogra-
phy is imaginable. Trivial parts like an integrated clock or persistent memory,
which can be absent in low cost devices, are furthermore assumed to be available
in WMN devices.

Finally there is a further important point that will influence the design of the
trust establishment scheme: The differentiation between important and and less
important nodes. Important nodes are nodes that forward a lot of userdata, e.g.
nodes that are located in the middle of the network or right before an internet
uplink. These nodes obviously need a higher trust level than less important nodes
that are e.g. located at the border of the network and do not forward any foreign
data.

3 Related Work

On the way to our goal there are some issues to solve, e.g. there is the need for
recognizing other users, since it is not possible to establish trust relations with a
group of users that cannot be distinguished. This can on the one hand be handled
by recognition techniques (e.g. a self signed public key pair) and on the other
hand by common authentication schemes. In this section we give an overview
about existing approaches for authentication from neighbouring research fields
like the internet communication, MANETs and peer-to-peer networks.

– An authentication server, i.e. an AAA server or online certification author-
ity (CA), authenticates clients to a wireless network. Cheikhrouhou et al.
[3] and Lin et al. [8] proposed schemes that realize authentication between
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clients and authenticators (i.e. border gateways, access points). Both pro-
posed schemes need an online Trusted Third Party (TTP) in the background
for authenticating clients and authenticators. These schemes do not provide
mutual authentication between the clients.

– An offline certification authority (CA) issues public key certificates for each
user. Each user is then able to verify public key certificates from other users
by verifying the certification chain up to the CA. This idea is widely spread
on the internet and in the MANET world [12][13][7]. The CA can either be
inactive or offline as long as no user joins or leaves the group. If a new user
wants to join, a certificate must be issued. If a user leaves the group, a certifi-
cate revocation is required to preserve the consistency of the authentication
process.

– A distributed or virtual CA issues public key certificates for each user, e.g.
with the techniques from threshold cryptography [7]. A group of k + 1 ran-
domly chosen CAs (or users) cooperates issuing or revocating a certificate for
a certain user. Thus, revocation is possible without a particular TTP. Since
for each new certificate or revocation a group of users (virtual/distributed
CA) must cooperate, the solution is quite complex (in comparison with other
solutions) and the deployed network protocol may need several rounds to
complete. One proposal is given by Noack et al. [10].

– Symmetric keys for each pair of users. Each user shares a pairwise symmetric
key with each other user of the network, leading to a large number of keys
(exponential in the number of users). Certificate revocation lists or similar
approaches are not needed, because single keys can be invalidated easily.
Consider that when a new user joins or an active user leaves, all other users
have to perform one key operation.

– ID-based private keys issued by an on demand CA. An on demand CA issues
a private key (matching to the user’s public key) for each new user. The spe-
cial point is that everyone can compute the public keys of all users by using
a common public value and the user’s ID. Since everyone can compute the
public keys and does not have to obtain them from a certain source, revoca-
tion is a challenging task. Zhang et al. proposed an ID-based authentication
and billing scheme [14].

– Self computed public key pairs (e.g. self signed certificates) allow users to be
cryptographically recognized. This idea can be extended with trust agree-
ment schemes, like the web of trust technique, to add authentication due
to transitive trust relations. However, for initial trust relationships there
is the need for a trusted channel, i.e. a phone call to compare the public
key fingerprints of each other. In completely autonomous networks without
user interaction the trusted channel phase can be replaced by a multifactor
authentication (i.e. public key certificate, MAC address, neighbourhood, be-
havior fingerprinting, cryptographic token, etc.).
The revocation of trust values can be handled by the trust agreement mech-
anism itself, similar to a certificate revocation.

– Reputation management schemes are used to classify the behavior or the grade
of authentication of particular users. The global reputation of a particular user
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is calculated by the aggregation of votes by other users. Nithyanand et al. pro-
posed a privacy preserving reputation management scheme for peer-to-peer
networks [9]. Kamvar et al. introduce the EigenTrust reputation management
algorithm to peer-to-peer networks, which helps to eliminate inauthentic files
in file-sharing networks [6]. On the internet, reputation systems are also very
common (i.e. ebay.com, amazon.com, etc.) [11], whereby the idea that is be-
hind reputation management still remains untouched.

Wireless mesh networks have a decentralized structure that enables an autocon-
figuration and self-healing ability. To preserve these abilities, a trust agreement
or an authentication scheme (as a part of it) should not depend on a single party
leading to a single point of failure.
Keeping this in mind, three techniques remain suitable for wireless mesh net-
works:

(1) a virtual or distributed CA that issues public key certificates,
(2) the use of self signed public key certificates with trust agreement mechanisms

as trust anchor and
(3) a decentralized reputation management scheme.

However, virtual/distributed CAs need at least k+1 cooperating users to perform
operations, whereas trust agreement and reputation management schemes do not
have such restrictions. Therefore a mixture of trust agreement and reputation
management turns out to be appropriate for a wireless network that does not
provide full reachability of the nodes at any time.

4 Trust Agreement

Trust between users is an important point in wireless mesh networks. Only if a
trust relationship is given, confidentiality and integrity make sense. Informally
spoken, trust has a recognition (or authentication) part and a valuing part.
Recognition is needed for being able to distinguish a user from other users which
is obviously very important for trust relationships. The latter part of trust is a
valuing part, used to express how trusted a user is.

Definition 1. Trust Agreement means the establishment of trust relationships
between all users of a group, whereby a trust relationship is the recognition of a
particular user and a value that describes, how trusted this user is.

In this section, we introduce a trust agreement technique to establish trust rela-
tions in WMN. To create a common trust base, we use direct as well as transitive
trust relations between particular peers and combine them to a common view.
The final goal is to create a trust network, in which each of the mesh networks’
peers are included and each peer has a trust opinion of all other peers.

We proceed with a distinction of Trust Agreement and Web of Trust, which
are important to not confuse with each other. Later on we present our idea
of abstract trust requirements, define trust in WMN and propose a technical
solution for creating trust in a network. All the steps are combined to a full
trust agreement scheme in section 5.
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4.1 Trust Agreement vs. Web of Trust

Trust agreement and web of trust are completely different concepts for dealing
with trust in a network. The most important difference between trust agreement
and web of trust is the trust view on the network. With trust agreement, one
common trust view for all users is computed, whereas each user in a Web of
Trust has its own trust view on the network.

Both solutions have advantages: Web of Trust is closer to reality, since it is
natural that trust to a certain person is different for two independent persons.
Usually your wife has a higher trust in you than a randomly chosen person
from the street. Trust agreement, however, creates one global trust value for
each user. Though this is not a realistic circumstance, trust agreement has some
crucial advantages over web of trust. Firstly, if trust opinions on one user differ
very much, the relevance of these opinions decreases for all other participants,
since they probably do not have the ability to choose the right opinion. This
is a general problem of trust, which is adapted by the web of trust technique
and which can only be handled with a complete (transitive) trust view or a
sensible average function. Secondly, most users do not know every other user of
the network from the beginning. An initial trust value has to be assumed for
unknown users. Trust agreement solves this by providing a sensible initial trust
value for each user that was computed in a collective manner. After becoming an
active participant of the network, you are able to influence the agreed trust value
of a certain user with own trust impressions. Thirdly, if the system is operated
autonomously, we require a simple system for authentication or recognition.
Web of trust is problematic, since it does not provide a single trust view on
the network that would be needed to create a robust network. Different trust
opinions on one user can lead to divergency problems, e.g. a fully authenticated
path for Alice may not be authenticated for Bob.

Therefore the best tradeoff is providing a trust agreement scheme that pro-
vides a globally agreed trust value for each user. This is what we are proposing
in the following.

4.2 Abstract Trust Requirements

Wireless mesh nodes have different trust requirements concerning their position
in the mesh network graph. We are beginning with the assignment of abstract
trust requirement levels to different positions in the WMN. The idea of dif-
ferentiating several positions in the network is similar to the different roles of
autonomous systems in internet routing (stub, multi-homed and transit AS).

We assign numbers between “1” and “3”, whereby a higher number means
a higher trust requirement. Nodes with only one edge are mesh participants,
who do not forward any data from other nodes. Since their responsibility and
trustworthiness is quite low, they just need a low trust requirement (indicated
by “1” in figure 1).

Nodes with at least two edges have a higher trust requirement, because they
are forwarding data from other nodes. We distinguish between nodes, for which
an alternative path exists and nodes, that cannot be avoided by at least one
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Fig. 1. Abstract trust requirement levels in a WMN

other node. So we introduce two trust requirements: “2” for routing nodes that
can be circumvented and “3” for routing nodes without an alternative path.

Trust requirements are allocated on behalf of the amount of foreign data that
passes a node. We think that it is very important to care for the honest handling
of foreign data, which is transmitted in cleartext in the most practical wireless
mesh networks to date. Thus we only refer to security and exclude availability
and performance in this paper. Of course a reduced availability of a node will
have impact on its trust value, but only because of a shorter availability time.

Additionally to the given trust requirements we provide an extended version
in Appendix A.1, introducing a more practical and precise classification.

4.3 Definition of Trust in Wireless Mesh Networks

There are two different understandings of trust in wireless mesh networks: local
and global. Local trust (later used as trust assignment) is the reputation mean-
ing, one has towards a particular user. Global trust is the final trust level, a user
gains after aggregating all local trust values.

In this section, we define the composition of trust in general. By our defini-
tion, trust in wireless mesh networks consists of two parts:

Definition 2. Trust in wireless mesh networks is determined by a trust tuple
(α, θ). α ∈ NN+ represents the authentication and θ ∈ RR+ the grade of autho-
rization.

The first part is the recognition or authentication part which is necessary to dis-
tinguish nodes from each other. Recognition means that every node has a distinct
cryptographic attribute (e.g. a self signed certificate) that proves his binding to
a self chosen identity. Authentication extends this by creating a cryptographic
binding to an approved identity. Actually, authentication and recognition are
binary decisions, because there are always only two possibilites: you have iden-
tified a user or you have not. After all, the authentication value α is determined
by the addition of all binary authentication results. However, the value of α (if
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greater than one) is not the determining part of the trust level, it just represents
the number of nodes who authenticated a certain node.

The second part of trust is a valuing component, namely how trusted a user is.
We call this part authorization value, since it will be used to authorize users to
become part of the network. Later on, the authorization value can also be used
for choosing the best (most trustful) route for a packet through the network,
if our scheme is combined with a source routing algorithm. Authorization is
expressed by the real value θ.

4.4 Creating the Trust Network

Trust agreement bases on a simple reputation assignment and signing mechanism
with the following basic idea:

If a particular user Ui trusts another user Uj with i �= j (local trust), Ui

creates a trust assignment Tij = (αij , θij , VD) and broadcasts this assignment
together with a corresponding signature σi (signed with Ui’s private key SKi).

– αij ∈ {0, 1} represents the recognition/authentication from Uj towards Ui

as a binary value (1 → trusted, 0 → untrusted). However, an authentication
is always a binary decision, since there are only two possibilities: Ui knows
Uj or not. Revocation can also be handled with αij ; its value has to be 0 in
that case.
In autonomous networks, recognition of other users is usually used instead
of a full authentication. In this case, αij is 1 if the user Ui has made any
experiences with user Uj, else αij is 0. If a full authentication scheme is
used, Ui has to fetch an authentication evidence of Uj . This can be done by
a personal meeting of both users, a comparison of the public key fingerprints
by phone, a multifactor authentication or via many other ways.

– θij ∈ {0 . . . θi} is the grade of authorization given by the user Ui to the user
Uj . The upper bound of the issued authorization value is fixed by the user
Ui’s own (global) authorization value.

– VD (Validity Date) represents the date, when the given trust assignment
expires. Therefore, trust assignments have to be refreshed regularly. A trust
assignment with a posterior Validity Date replaces previous ones.

Definition 3. A valid trust assignment (local trust) for user Uj issued by Ui

consists of a vector Tij = (αij , θij , VD) and a signature σi over this vector Tij.
The signature σi is computed with the secret key SKi of Ui.
Furthermore the trust assignment must have the following properties:

1. The validity date VD must not be expired.
2. The authentication value αij must be 1 (if no revocation is intended).
3. If the issued authorization value θij is intended to increase the authorization

value of Uj: The issuer Ui’s authorization value θi is bigger or equal than
the receiver’s θj plus the trust assignment’s θij. (θi ≥ θj + θij)

4. If there is a trust assignment with αij = 0, all trust assignments Tkj from
Uk with (θk < θi) ∧ (VDkj < VDij) are invalid.
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A trust assignment Tij with an authentication value αij = 0 is called revo-
cation assignment. If a revocation assignment Tij was issued to Uj , all trust
assignments Tkj from Uk with lower authorization levels (θk < θi) and shorter
validity dates (VDk < VDi) become invalid.

The global trust value of a particular user Uj is computed from all trust
assignments (local trust) intended to him. A valid trust assignment contains
a valid (not expired) VD and is signed from a user with a higher trust level,
to prevent fraud. All valid trust assignment tuples are summed up component-
wise, whereby each single authorization value θij is multiplied with a coefficient
ω before.

The coefficient ω is necessary in order to prevent a user Ui from transfering
his complete trust to another user Uj , thus creating a more or equally trusted
user than himself. ω is defined as 1

s , whereby s equals the average number of
ascertained trust assignments in the whole wireless mesh network.

Definition 4. A user Uj’s global trust value is computed as:

(αj , θj) := (
∑

∀i:Ui∈S

αij ,
∑

∀i:Ui∈S

ω · θij)

whereby S is the set of users Ui who issued valid trust assignments.

Each wireless mesh network has a founder F , who plays a distinguished role in
the trust agreement scheme. The founder F has the highest authorization level
θF of the network and due to the design of our scheme, no one is able to reach
that level if F does not transfer his trust level directly. If the founder F leaves
the network, the user with the highest trust level becomes the new founder.
Trust assignments from F are summed up directly, without applying ω, to allow
the network to grow faster.

Only summing up the particular trust assignments is the simplest and also
the most obvious approach. Actually this might not be the best solution, so we
give another (more complex) approach in Appendix A.2.

5 Trust Agreement Scheme

In this section, we define a full trust agreement scheme for wireless mesh net-
works in two steps: a startup phase to create a trust network from scratch and
a subsequent phase for normal operation. We make use of the trust agreement
technique introduced in the previous section and combine this with trust re-
quirements for particular node positions in wireless mesh networks.

5.1 Startup

Each wireless mesh network is initiated by a founder node F resp. UF . All
nodes Ui that are directly connected to F (not yet providing connectivity for
other nodes) need a trust level of “1” according to the trust requirements from
section 4.2.
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Then, if an authentication scheme is used, UF interacts with his neighbor nodes
Ui, determining their identity e.g. with a multifactor authentication method. An
example for a multifactor authentication may be the verification of: public key
fingerprint + MAC/IP address + position in the network + hardware hash. If a
recognition scheme is deployed, UF only requests the identifying attributes (in-
cluding a proof of possession) of his neighbor nodes Ui.

UF issues trust assignments TFi = (αFi, θFi, VD) and a signature σF for
each, whereby αFi is 1, θFi is at least 1.0 (depending on the designated trust
requirement for the node) and VD a date in the future.

5.2 Normal Operation

From now on, our trust agreement scheme is able to work decentralized, that
means an operation without the founder. The trust agreement scheme is oper-
ating according to the following conditions:

(1) IF Authorization value θi at date Dnear future < trust requirement
THEN
Request trust assignments Tji from surrounding nodes Uj.

(2) IF Authorization value θj of neighbor Uj < trust requirement
THEN
Exclude Uj from routing.
Do not join network, if Uj provides the only connectivity.

(3) IF Uj behaves dishonestly, i.e. dropping or manipulating packets
THEN
Reduce assigned trust to Uj by sending a new Tij with lower θij.

(4) IF Uj behaves trustworthy for a time period Pthreshold

THEN
Raise assigned trust to Uj by sending a new Tij with higher θij.

(5) IF Revocation assignment Tij was issued to Uj

THEN
Trust assignments Tkj from Uk with (θk < θi) ∧ (VDkj < VDij) have to be
renewed.

Trust assignments Tij are broadcasted through the whole network, enabling
all nodes to compute a complete trust view over the mesh network. To make
the network more robust, each node broadcasts his own trust value at regular
intervals: Hi := (αi, θi, VD) and a corresponding signature σi.

If a trust assignment Tji (intended for Ui) does not reach all hosts, the pro-
vided Hi value by Ui will differ from the computed trust value on these (non
reached) hosts. In this case, all trust assignments intended for Ui can be re-
quested directly from Ui, who saves them locally.

Both time values Dnear future and Pthreshold are to be chosen in respect to the
practical scenario and the security requirements.



346 A. Noack

6 Security Considerations

We outline the security of the presented scheme with an informal security proof.
At first we give an overview about possible attacks on our scheme, followed by
how our scheme is able to resist those attacks. Consider an adversary A as a
probabilistic Turing machine, who has control over all communication channels.

(1) Trust incrementation. An adversary gains a higher authorization level by
spoofing trust assignments (adressed to him).

(2) Mutual trust incrementation. n adversaries increase their authorization
levels in a mutual way to gain a higher impact on the mesh network.

(3) Malicious behavior. An inside adversary revocates randomly or distributes
bad trust assignments to trustful nodes.

(4) Revocation circumvention. When an adversary is revocated, he blocks
the revocation messages by trustful nodes to stay alive in the mesh network.

(5) Adding virtual aversaries. One or a group of adversaries add new virtual
adversaries, simulating their whole communication, to infiltrate the network.

(6) Denial of service. An adversary exhausts the node’s computation power
by forcing them to do diffcult and/or multiple computations like signature
creation or signature verification.

For resisting the above mentioned attacks, our scheme provides several security
mechanisms. In the following, we describe these counter-measures.

(1) Trust incrementation. A trust assignment TiA needs a valid signature
σi to become valid. Since we can assume that an computational bounded
adversary A is not able to forge a digital signature from an uncompromised
user Ui, we conclude that this attack cannot be successful.

(2) Mutual trust incrementation. Due to definition 3 (property 3), the is-
suer’s authorization level is always greater or equal than the reveiver’s autho-
rization level. We follow that the highest authorization level within a group
of adversaries cannot be increased without interaction of external nodes (i.e.
trustful users).
Consider k adversaries and θmax, the authorization level of the most trusted
adversary in the group. The maximum trust level, an adversary is able to
gain, is: (k − 1) · θmax

ω .
(3) Malicious behavior. If an adversary revocates a trustful member Ui, all

issuers of trust assignments to Ui with a lower authorization level than the
adversary have to renew their trust assignments towards Ui. Random revo-
cating can thus result in a denial of service attack, leading members with
low authorization levels to trigger the authentication process (with Ui) over
and over again. Therefore, if their authentication process returns a positive
result, the revocation of the adversary will be valued as misbehavior and the
adversary’s authorization level will be reduced.
The same applies for exaggerated reduction of authorization levels.
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(4) Revocation circumvention. Trust assignments have a validity date (VD).
When this date expires, the authentication process must be renewed (and
a new trust assignment must be issued). Thus blocking of revocation as-
signments does work as long as the other trust assignments towards the
adversary are not expired. Remark that trust and revocation assignments
are broadcasted through the whole network, so blocking particular messages
is not a simple task.

(5) Adding virtual aversaries. If one or a group of adversaries create virtual
members, the authorization levels of these virtual members are bound by
the adversaries’ authorization levels, since the adversaries are the only group
members who assign trust assignments to the(ir) virtual members. The ad-
versaries impact on the whole mesh network is not raised due to their virtual
members, since their own authorization level cannot be increased by their
virtual members.
Nevertheless, the problem of virtual members cannot be removed nor de-
tected (despite from some timing or physical aspects), if a virtual member
simulates the normal behavior of a trustful mesh network member.

(6) Denial of service. To reduce the effect of denial of service when verify-
ing bogus data, we propose RSA with a small public exponent as signature
algorithm, since verification is very efficient in this case. Then, signature cre-
ation by a trustful user should only be done, if the requestor is authenticated
successfully.
Further, all users Ui can make a guess (based on the validity date of their
last sent trust assigment Tij to user Uj), when the next request by Uj should
arrive. If the request is not received within this time range, Ui may deny to
create a new trust assignment Tij .

7 Evaluating the Behavior of other Nodes

In general, evaluating the behavior of other nodes and finding an appropriate
trust estimation is not a trivial problem. Although we just have dealt with a
general trust agreement solution in this paper, we want to outline shortly, how
a behavior evaluation can look like.
There are two major cases to consider: A wireless mesh network with human
interaction and an autonomously operated network.

With human interaction, trust assignments can be based on personal expe-
riences with other network participants. This can be the case in community
networks like SeattleWireless [2] or MIT Roofnet [1]. The trust opinion towards
another user can be influenced by the confidentiality on the forwarded data, he
provides. If your neighbor suddenly knows personal facts about you, that you
have e.g. communicated via e-mail, you will probably lower his authorization
level. Furthermore if you note that your data is not forwarded properly (maybe
due to the ratio between forwarded and generated packets) or there is another
misbehavior according to section 6, you will do the same. Increasing a trust level
is done when noticing an ordinary behavior for a longer time period.
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The case is much more complicated in an autonomously operated network,
since there is no user interaction. Trust opinions can be based on non mali-
cious behavior (see security considerations) and other actions that can be rated
automatically. This is e.g. a reduced reliability when forwarding data, or the
modification of data. In order to realize an automatic estimation of a neighbor’s
trust level, it is recommendable to deploy a local intrusion detection system
(IDS).

8 Conclusion

We have presented the first trust agreement scheme that is especially designed
for wireless mesh networks. The scheme can be operated in autonomous WMN
to establish and maintain a trust relationship between the nodes of the network.
Trust in wireless mesh networks consists of an authentication and an authoriza-
tion part, whereby the first part is the number of nodes who authenticated a
particular node and the latter part is used to value the behavior resp. misbehav-
ior of a node.

An important part of our presented scheme is the introduction of abstract
trust requirements for different positions of nodes in the network. Obviously, a
node that forwards a lot of data from other nodes, needs more trust than a node
that does not forward any data. Combining the new trust definition for WMN
and the trust requirements, we propose a scheme that withstands a variety of
attacks. An informal security proof concludes our contribution.

Future work is to analyze the behavior and misbehavior of mesh nodes in
practice and to create rules for categorizing their behavior to be able to react
with appropriate trust assignments. There is up to now no concrete proposal
for an automated authentication process using a multifactor authentication (i.e.
location based, fingerprint of public key, MAC address, hardware hash, etc.).
Additionally it is open work to create more exact trust requirements for wireless
mesh networks, as it is started in appendix A.1.
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A Extension for the Authentication Scheme

In this section, we give some proposals for the extension of the introduced trust
agreement solution for mesh networks. We begin with an advanced abstract trust
requirement scheme that allows a higher granularity.

A.1 Abstract Trust Requirements

It is obvious that nodes in the middle of the mesh network will forward more
messages than nodes located at the margin. Given random pairs of nodes, the
probability is above average (Idea: Pick a random node and partition the network
into two halfs. The probability is 1

2 that a second node is located in the other
half. When picking n pairs of nodes, n

2 of them will communicate through the
middle.) that they communicate through the middle.

Therefore it is smart to expect a higher trust from nodes in the middle of the
mesh network than from nodes at the margin. For wireless mesh networks with
internet gateways, this is even more complicated, since the communication will
not be uniform as supposed in the former case. Nodes near the internet gateway
and especially the internet gateway itself need a far higher trust requirement
since they are forwarding the majority of the data. In addition to the introduced
trust requirement values from section 4.2, we propose new values between “1”
and “4”: Nodes at the margin need less than “2”, nodes in the middle need a
trust level near to “3” and nodes in the near of an internet gateway need even
more than “3”. The internet gateway, however, should not have a trust level
below “4”.

http://eprint.iacr.org/
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A.2 Another Approach for Computing Global Trust

Definition 4 (section 4.4) shows how to compute a user’s global trust value by
summing up the particular local authorization levels and multiplying with the
factor ω. This was the most obvious approach. However, there is a whole research
field about optimizing trust aggregation e.g. in peer-to-peer, social networks and
many more scenarios.

We head to the solution from Nithyanand et al. [9] who dealt with reputation
management in peer-to-peer networks. They propose the ordered weighted aver-
age (OWA) function for the computation of the global reputation (global trust
in our case). The advantage of this solution in comparison to our approach is
that lower trust values become more weight, thus creating a more conservative
scheme. We redefine Definition 4 as follows:

Definition 4*. A user Uj’s global trust value is computed as:

(αj , θj) := (
∑

∀i:Ui∈S

αij ,

∑|S|
k=0 sortk({θij}, ∀i : Ui ∈ S) · Wk

s ·∑|S|
k=0 Wk

)

whereby S is the set of users Ui who issued valid trust assignments. s is the
average number of ascertained trust assignments to the mesh nodes. The function
sortk arranges all input values from the lowest to the highest value and returns
the k’th element of this array.

Last but not least there is the weight function W undefined. In [9], the weight
function Wk realizes that lower values have a higher impact. We present two
alternatives for the weight function W :

Wk = W (k) = d
√

|S| − k + 1

whereby d ∈ ZZ>0. d lowers the impact of the weight function by moving the
results closer to 1 and must be chosen in respect to the practical scenario.

The previous solution just achieves that lower values have a higher impact.
Another approach is to weight the particular trust assignments by the relation
of the transmitted authorization value and the maximum that could have been
transmitted.

W =
θij

θi

To prevent recursions, θi must be assumed as a fixed value and may not depend
on the global trust level of Uj (which is currently computed). If there is no value
for θi yet, the maximum authorization value used in the network is used for θi.
The advantage of this solution is that for each trust assignment the intention of
the issuing user, whether this is a very positive or quite negative assignment, is
included.

Actually, to provide even better results, both proposals can be combined.
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Abstract. The existing secure e-auction schemes are shown to be too
costly for users using mobile devices in wireless network as they heav-
ily depend on costly asymmetric cipher. A new secure e-auction effi-
cient enough for devices with low computation capability and limited
communication bandwidth is designed in this paper. Most of its oper-
ations are symmetric cipher computations and the only asymmetric ci-
pher operations it needs for a bidder are several multiplications. With so
high efficiency, its still achieves the normal security properties of secure
e-auction.

1 Introduction

E-auction is a popular e-commerce application to distribute resources. In
e-auction applications, the bids are often sealed for fairness and security. More
precisely, the bidders seal their bids and submit them to one or more auction-
eer, who then open the bids and determine the winner. In sealed-bid e-auction
applications, the following security properties are usually desired.

– Correctness: the auction result is determined strictly according to the auction
rule, while no bid is ignored or tampered with.

– Fairness: all the bidders make their unique choice at the bidding phase and
cannot change their bids afterwards such that no bidder can take advantage
over other bidders.

– Robustness: in abnormal situations (e.g. at presence of invalid bid), the auc-
tion can still run properly.

– Privacy: no secret information (e.g. the losing bid) except for the auction-
result is revealed. More precisely, the auction transcript including all the
published information in the auction can be simulated by a party without any
secret knowledge but the auction result such that the simulating transcript
is indistinguishable from the real auction transcript.

– Verifiability: operations of the bidders and the auctioneer(s) can be verified
to detect invalid operations.

Usually, multiple auctioneers are employed to share the bid-opening capabil-
ity such that if the number of malicious auctioneers is not over a threshold, the
auction is guaranteed to be correct and private. An obvious solution to protect
privacy in e-auction is secure multiparty computation (called secure evaluation

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 351–360, 2011.
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in [11]) as e-auction can be regarded as computation (evaluation) of some secret
inputs (the bids) to obtain an output (the auction result). Secure-multiparty-
computation-based solution to e-auction includes a few schemes [9,5,4,3,2,8]. As
analysed in [11]1, these schemes are not efficient as they employ general multi-
party computation techniques designed to evaluate any function. In comparison,
special techniques designed to handle e-auction only are usually more efficient.
A very popular such method is homomorphic bid opening [6,7,1,10,14,12,11,15].
With this mechanism, each bidder employs a homomorphic encryption algo-
rithm or a homomorphic secret sharing algorithm to seal their bids, while the
auctioneers exploit homomorphism of the encryption algorithm or secret sharing
algorithm to open the bids collectively instead of separately so that no losing
bid is revealed. Homomorphic e-auction schemes usually employ binary search
to determine the winning bid and are more efficient than the e-auction schemes
employing the costly downward search [17,19,20,16,13].

To the best of our knowledge, the existing secure e-auction schemes heav-
ily depend on asymmetric cipher in bid sealing, bid opening and verification of
validity. So attempts to improve their efficiency are limited by an unchange-
able fact: asymmetric cipher operations like bid encryption and decryption and
zero knowledge proof usually cost some exponentiations whose bases, exponents
and multiplicative moduli are hundreds of bits long. Such exponentiations and
large integers involved in them lead to much higher cost than symmetric cipher
operations in both computation and communication and they are inevitable in
asymmetric-cipher-based e-auction. So, the existing secure e-auction schemes are
not suitable for applications with critical requirements on efficiency.

With the development of wireless network and mobile computation-and-
communication devices like mobile phone and smart cards, more and more users
of e-auction hope to bid using wireless mobile devices in a wireless network.
Such devices usually have much lower computation capability and communi-
cation bandwidth than the normal computers in high-speed networks. So the
existing secure e-auction schemes cannot meet this new trend in e-auction ap-
plication. Therefore, if security cannot be compromised in e-auction of mobile
users, a more efficient secure e-auction scheme needs to be designed.

The only solution to break the efficiency limit of the existing secure e-auction
schemes and design efficient e-auction for mobile users using wireless mobile
devices is replacing asymmetric cipher with symmetric cipher. A symmetric-
cipher-based e-auction scheme is proposed in this paper. Most operations in it
are based on symmetric cipher and the only asymmetric cipher operations for
a bidder are several multiplications. No costly exponentiations in asymmetric
cipher is needed. With such a strict requirement on efficiency, it still achieves
the security properties desired in secure e-auction. Our new e-auction scheme is
proposed in two steps. An unverifiable prototype is proposed in Section 2 and
it is optimised to be verifiable in Section 4. The new e-auction scheme can

1 It is shown in [11] that the most recent and efficient secure-multiparty-computation-
based e-auction scheme [8] is less efficient than some homomorphic e-auction
schemes.
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be applied to auction applications with critical requirements on efficiency and
mobile users can use it to bid in a wireless network.

2 An Unverifiable Prototype

The parameters and symbols used in our e-auctions schemes are as follows.

– There are m auctioneers A1, A2, . . . , Am and n bidders B1, B2, . . . , Bn.
– Integer t smaller than m is the trust threshold such that cooperation of at

least t auctioneers is necessary to open any bid.
– The biddable prices are denoted as P1, P2, . . . , PL in descending order.
– Ek() and Dk() denote the encryption algorithm and decryption algorithm

using key k of a symmetric cipher like AES, where the key space, message
space and cipher space of them is Zδ.

– ρ is the largest prime no larger than δ.
– H() is a one-way and collision-resistent hash function to map a long message

to Zρ.
– H ′() is a one-way and collision-resistent hash function to map a long message

to Zδ.
– pj and qj are secret large primes chosen by Aj , who publishes Nj = pjqj .

As a asymmetric cipher parameter, each Nj should be larger than any key
of the symmetric cipher, which is s useful property.

The unverifiable e-auction protocol is as follows.

1. Initial Phase
(a) Each Bi chooses ki,j for every Aj , the session key to communicate with

Aj . He sends it to Aj in the form (ai,j , bi,j) = (r2
i,j mod Nj , ki,j ⊕

H ′(ri,j mod Nj) where ri,j is randomly chosen from ZNj .
(b) Each Aj calculates his session keys ki,j = bi,j ⊕ H ′(a1/2

i,j ) mod Nj for
i = 1, 2, . . . , n using his knowledge of pj and qj .

2. Bidding and bid opening
The auctioneers cooperate to run a binary search for the winning price among
the biddable prices. The binary search starts at PL/2 and the auctioneers test
whether there is any bidder willing to pay that price. If there is, the search
goes on to the higher prices; otherwise it goes on to the lower prices. Next
search step is just like the previous one, starting in the middle and going
on to one side. As the binary search goes on, the searched range of prices
becomes smaller and smaller and finally the search ends at the highest price
any bidder is willing to pay. The search at a price Pl on the binary searching
route is as follows.
(a) Each Bi chooses his bid at that price: bi,l. If he is willing to pay Pl, bi,l

is random positive integer in Zρ; otherwise it is zero.
(b) Each Bi builds a polynomial fi,l(x) =

∑t−1
j=0 αi,l,jx

j mod ρ where αi,l,0 =
bi,l and αi,l,j for j = 1, 2, . . . , t − 1 are random integers chosen from Zρ.

(c) Each Bi sends every Aj an encrypted bid share ci,l,j = Eki,j (fi,l(j)).
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(d) Any t auctioneers can cooperate to calculate the sum of the all the bids at
Pl as follows where the set of the indices of the participating auctioneers
are denoted as S.

i. Each Aj calculates sj,l =
∑n

i=1 Dki,j (ci,l,j) mod ρ.
ii. The auctioneers cooperate to calculate sl =

∑
j∈S sj,luj mod ρ where

uj =
∏

k∈S,k �=j k/(k − j) mod ρ.
(e) If sl > 0, the search goes to the higher prices; otherwise it goes to the

lower prices. Finally, the binary search stops at a price PL, which is the
winning price.

3. Winner identification
The auctioneers opens all the bids at PL

bi =
∑
j∈S

si,L,juj mod ρ for i = 1, 2, . . . , n.

A bidder Bi is a winner if bi > 0. If there is only one winner, he wins the auc-
tion. If there are multiple winners, the final winner is determined according
to a tie-breaking algorithm. Depending on the concrete auction application,
the tie-breaking algorithm may differ. For example, it may employ the first-
come-first-win strategy or ask the winners to bid again in a new round of
auction.

This prototype is called Protocol 1. It actually employs Shamir’s threshold
secret sharing based on a polynomial [18] to share the bids among the auction-
eers. When the auctioneers and the bidders are honest, Protocol 1 can work and
the correct winning price and winner can be found as illustrated in Theorem 1,
which is based on homomorphism of polynomial-based threshold secret sharing
defined in Definition 1.

Definition 1. In Shamir’s threshold secret sharing, suppose β1,1, β1,2, . . . , β1,m

are shares of β1 and β2,1, β2,2, . . . , β2,m are shares of β2. Then β1,1 +
β2,1, β1,2 + β2,2, . . . , β1,m + β2,m are shares of β1 + β2. More gener-
ally, if βi,1, βi,2, . . . , βi,m are shares of βi for i = 1, 2, . . . , n, then∑n

i=1 Riβi,1,
∑n

i=1 Riβi,2, . . . ,
∑n

i=1 Riβi,m are shares of
∑n

i=1 Riβi where Ri is
any integer.

Theorem 1. In Protocol 1, if the bidders and auctioneers are honest, with an
overwhelmingly large probability sl is non-zero if and only if there is at least one
bidder willing to pay Pl.

In Protocol 1, all the bids are shared among the auctioneers and every share is
encrypted. So no losing bid is revealed if the employed encryption algorithm is
secure and the number of malicious auctioneers is smaller than t. So correctness
of auction is achieved in Protocol 1 when the auctioneers and bidders are hon-
est and its privacy is achieved under a threshold thrust assumption. For each
bidder, the only operations in asymmetric cipher are m instances of session key
distribution, each costing a square. For each auctioneer, the only operations in
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asymmetric cipher are n instances of session key extraction, each calculating a
square root. All the other operations are efficient symmetric cipher operations.
Moreover, most of the integers transfered in the communication of Protocol
1 are ρ-bit integers used in symmetric cipher, which are much shorter and cost
much less communication than the integers used in the asymmetric-cipher-based
e-auction schemes. So high efficiency is achieved in Protocol 1 and it can be ap-
plied to mobile bidders with limited computation capability and communication
bandwidth. However, when there are dishonest auctioneers and bidders, they
can break robustness of Protocol 1 using the attacks described in Section 3.

3 Attacks by Dishonest Auctioneers and Bidders

As the operations of neither the auctioneers nor the bidders are verified in Pro-
tocol 1, they may deviate from Protocol 1 and launch some attacks. An obvious
attack is for a malicious auctioneer to tamper with the bid shares to lead the
auction to an incorrect result. For example, at a price Pl which no bidder is
willing to pay, a malicious auctioneer Aj can publish a random sj,l in Zρ. As sj,l

is randomly distributed in Zρ, the secret reconstructed from t shares including
it, namely the opened sum of bids at Pl, is non-zero with a probability 1 − 1/ρ,
while the sum of the bids at Pl should be zero as every bidder submits zero at
that price to indicate their unwillingness to pay. Under this attack, the auction-
eer will declare a winning price higher than the highest bid and cannot find any
winner at the that price, and so the auction fails. In this attack, the malicious
auctioneer have some other options. For example, he can tamper with the bid
share of a bidder at Pl as well to help the bidder to change his bid and win
the auction. Moreover, the malicious auctioneer can use a changed bid share to
make sl discovered as zero in secret reconstruction while there is some positive
bid at Pl.

One or more dishonest bidder can attack Protocol 1 as well. For example, a
malicious bidder may submit a set of inconsistent shares to the auctioneers such
that some subsets containing t of them hold shares of zero and some subsets
containing t of them hold shares of an positive integer. Usually this attack hap-
pens at a high price and a malicious bidder can carry it out as follows to break
fairness of the auction.

1. The malicious bidder expects that he can win an auction by bidding Pμ,
while the highest price he is willing to pay is a higher price Pν .

2. He submits his bids at all the prices normally except at Pν . More precisely,
he submits and shares a positive integer at the prices no higher than Pμ and
zero at the prices higher than Pμ except for Pν , while at Pν , he shares zero
among some auctioneers and positive integers among other auctioneers.

3. If the malicious bidder wins the auction at Pμ (e.g. Pν is not on the binary
search route or the auctioneers carrying out bid opening at Pν get shares of
zero from the malicious bidder), the malicious bidder does nothing. If Pμ is
not high enough and another bidder submits a positive bid at a price higher
than Pμ, the malicious bidder can dispute the auction result and claim his
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winning at Pν . More precisely, if Pν is higher than the other bidders’ positive
bids, the malicious bidder claims winning at Pν and ask the auctioneers
sharing zero from him to carry out bid opening at Pν to recover the malicious
bidder’s positive bid.

Even if this attack can be detected afterwards and the malicious bidder may
be punished, this attack is still harmful as it makes the auction liable to two pos-
sible auction results depending on which t auctioneers participate bid opening.
Actually, malicious bidders have more options in their attacks, some of which are
even simpler and more effective. For example, two malicious bidders can even
attack Protocol 1 without collusion of any auctioneer to break its fairness as
follows.

1. Two colluding bidders Bμ and Bν submit and share among the auctioneers
d and ρ − d respectively at the highest price they are willing two pay. At
other biddable prices, they bid normally (e.g. only submitting non-zero bids
at the prices no higher than their expectation of winning bid).

2. After bid opening, if either Bμ or Bν wins, they accept the auction result
and do nothing. If another bidder wins at a price lower than the highest
price they are willing two pay, they claim winning and publish their bids at
the highest price they are willing two pay to prove their claim.

The two attacks by malicious bidders allow them to win the auction at a price
as low as possible while keeping their right to win at a higher price when being
challenged by other bidders. This obviously violate fairness of sealed-bid auction,
which does not allow any bidder change or choose his bid after bid submission.
The attacks in this section shows that robustness of protocol is weak.

4 Verifiable E-Auction for Capability-Limited Mobile
Bidders

If the operations of the auctioneers and bidders are verified, the attacks in Sec-
tion 3 can be prevented. So Protocol 1 can be optimised into a verifiable e-auction
protocol to achieve stronger robustness. Of course, high efficiency and suitabil-
ity for mobile bidders with limited computation capability and communication
bandwidth cannot be compromised. More precisely, costly asymmetric cipher op-
erations like zero knowledge proof cannot be adopted in the optimisation. Our
optimisation employs several efficient verification mechanisms to detect dishon-
est behaviours of the bidders or auctioneers. Firstly, the shares of the bids are
verified by the auctioneers to guarantee their validity and consistency. More pre-
cisely, besides the bid another random integer is shared at every biddable price
by each bidder among the auctioneers and the two sets of shares are randomly
combined such that validity of the combined shares can guarantee validity of
the bid shares with an overwhelmingly large probability. Secondly, the bids from
all the bidders are randomized before they are summed up such that no matter
how the bidders choose the integers in their bids, the sum of the randomized
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bids at any price is zero if and only if all the bids at that price are zeros with
an overwhelmingly large probability. Thirdly, bid opening is verified against the
public commitments of the bidders about their bids such that cheating auction-
eers carrying out invalid bid opening can be detected with an overwhelmingly
large probability except that all the auctioneers participating in bid opening
are dishonest. The optimised e-auction protocol is described in details in the
following.

1. Initial phase is not changed and the session keys ki,j for i = 1, 2, . . . , n and
j = 1, 2, . . . , m are exchanged between the bidders and auctioneers.

2. Bidding and bid opening
The auctioneers cooperate to run a binary search for the winning price among
the biddable prices like in Protocol 1. The search at a price Pl on the binary
searching route is as follows.
(a) Each Bi chooses his bid at that price: bi,l. If he is willing to pay Pl, bi,l

is random positive integer in Zρ; otherwise it is zero.
(b) Each Bi builds a polynomial fi,l(x) =

∑t−1
κ=0 αi,l,κxκ mod ρ where

αi,l,0 = bi,l and αi,l,κ for κ = 1, 2, . . . , t − 1 are random integers cho-
sen from Zρ.

(c) Each Bi builds a polynomial gi,l(x) =
∑t−1

κ=0 γi,l,κxκ mod ρ where γi,l,κ

for κ = 0, 1, . . . , t − 1 are random integers chosen from Zρ.
(d) Each Bi publishes encrypted bid shares ci,l,j = Eki,j (fi,l(j)) for j =

1, 2, . . . , m.
(e) Each Bi publishes another set of encrypted shares c′i,l,j = Eki,j (gi,l(j))

for j = 1, 2, . . . , m.
(f) wi,l = H(ci,l,1, ci,l,2, . . . , ci,l,m, c′i,l,1, c

′
i,l,2, . . . , c

′
i,l,m) for i = 1, 2, . . . , n

are challenges to validity of bidding and bid opening.
(g) Each Bi publishes φi,l,j = wi,lαi,l,j + γi,l,j mod ρ for j = 0, 1, . . . , t − 1.
(h) Each Aj verifies that his share from Bi is valid as follows.

i. He calculates si,l,j = Dki,j (ci,l,j).
ii. He calculates s′i,l,j = Dki,j (c′i,l,j).

iii. He verifies

wi,lsj,l,j + s′j,l,j =
∑t−1

κ=0 φi,l,κjκ mod ρ. (1)

If the verification fails, Aj claims that Bi has sent him an invalid bid
share. He publishes ki,j , si,l,j and s′i,l,j such that any one can verify
failure of (1) and that si,l,j and s′i,l,j are shares sent to Aj by Bi. This
public verification can detect dishonest bidders, who are kicked out and
their bids are deleted.

(i) After the shares are verified and only valid shares are kept, any t auc-
tioneers can cooperate to calculate the sum of the all the bids at Pl as
follows where the set of the indices of the participating auctioneers are
denoted as S.

i. Each auctioneer Aj in S calculates sj,l =
∑n

i=1 wi,lsi,l,j mod ρ.
ii. Each auctioneer Aj in S calculates s′j,l =

∑n
i=1 s′i,l,j mod ρ.
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iii. Each auctioneer Aj in S publishes Sj,l = H(sj,l, s
′
j,l).

iv. After Sj,l for j = 1, 2, . . . , m are published, each auctioneer Aj in S
publishes sj,l and s′j,l.

v. It is publicly verified Sj,l = H(sj,l, s
′
j,l) for j = 1, 2, . . . , m. Any

auctioneer failing to pass the verification is required to publish sj,l

and s′j,l again. Any auctioneer cannot provide correct sj,l and s′j,l is
replaced by one of the n − t stand-by auctioneers.

vi. sl =
∑

j∈S sj,luj mod ρ and s′l =
∑

j∈S s′j,luj mod ρ are calculated
where uj =

∏
k∈S,k �=j k/(k − j) mod ρ.

vii. I can be publicly verified

sl + s′l =
∑t−1

κ=0(
∑n

i=1 φi,l,κ)jκ mod ρ. (2)

The auction continues only if the verification is passed. If the verifi-
cation fails, another set of t auctioneers is selected to carry out bid
opening. If at least t auctioneers are honest, correct bid opening is
obtained.

(j) If sl > 0, the search goes to the higher prices; otherwise it goes to the
lower prices. Finally, the binary search stops at a price PL, which is the
winning price.

3. Winner identification is not changed and all the bids at the winning price
are opened to identify the winner(s).

This optimised e-auction protocol is called Protocol 2. It can detects dishon-
est behaviours of bidders and auctioneers and achieve robustness. Theorem 2,
Theorem 3 and Theorem 4 illustrate that invalid operations in bidding and bid
opening in Protocol 2 can be detected by the receiving auctioneer. More pre-
cisely, Theorem 2 shows that invalid bid sharing by any malicious bidder can
be detected by the auctioneers with an overwhelmingly large probability; Theo-
rem 3 shows that no matter how the bidders choose the integers in their bids the
auction result is correct with an overwhelmingly large probability if the auction-
eers carries out bid opening honestly; Theorem 4 shows that invalid bid opening
operation can be detected with an overwhelmingly large probability.

Theorem 2. If (1) is satisfied for a bidder Bi with a probability larger than 1/ρ
at a price Pl, any share si,j,l from that Bi at the price Pl is guaranteed to be the
jth share generated by a unique polynomial.

Theorem 3. If the auctioneers follow Protocol 2 to recover sl, sl = 0 iff
b1,l, b2,l, . . . , bn,l are all zeros with an overwhelmingly large probability.

Theorem 4. Unless all the t auctioneers in S are dishonest, satisfaction of (2)
with a non-negligible probability guarantees that the auctioneers strictly follow
Protocol 2 to recover sl.

All the additional verification operations in Protocol 2 are symmetric cipher
operations, which are efficient in both computation (using simple calculation)
and communication (transferring short integers). So they do not increase cost of
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the e-auction scheme significantly. Therefore, like Protocol 1, Protocol 2 is an
efficient e-auction protocol suitable for mobile users with limited computation
capability and communication bandwidth.

5 Conclusion

The secure e-auction scheme proposed in this paper satisfies the desired security
properties in e-auction and is very efficient. Most of its operations only involve
symmetric cipher so are efficient in both computation and communication. The
only asymmetric cipher operations needed in the new e-auction scheme are sev-
eral squares for a bidder and some calculation of square root using knowledge
of factorization of multiplicative modulus for an auctioneer. In comparison, the
existing secure e-auction schemes [9,5,4,3,2,8,17,19,20,16,13,6,7,1,10,14,12,11,15]
cost a lot of modulo exponentiations in asymmetric cipher operations for both the
bidders and auctioneers and transfer large integers used in asymmetric cipher. So
our e-auction scheme is especially suitable for e-auction schemes requiring both
strong security and high efficiency like e-auction in wireless network with mobile
users who use mobile wireless devices with limited computation capability and
communication bandwidth.
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Abstract. Online Social Networks form an increasingly important part of  
people’s lives. As mobile technologies improve accessibility, concerns about 
privacy and trust are more apparent as advertising becomes a critical component 
of most social network’s economic model. In this paper we describe the PICOS 
project’s research into privacy preserving advertising options for social net-
works. We introduce an architecture that includes new concepts and technolo-
gies specifically designed to improve privacy and trust as well as advertising 
opportunities within social networks. 
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Marketing, Mobile Social Networks, Privacy, Trust. 

1   Introduction 

Online social networks1 such as Facebook, MySpace, and LinkedIn, provide commu-
nication services that support the activities of virtual and real world communities  
(cf. [1], [2], [3]). Nowadays people spend increasing amounts of work and leisure 
time in using these services for professional and private collaboration and communi-
cation purposes. Mobile communication also allows the provision of services that 
make use of context information (e.g., location, time), thereby enabling a deeper inte-
gration of peoples’ virtual (mobile) and real world communities (e.g., Loopt, Junaio, 
match2blue)2. Advertising, as a specific marketing activity, is an important way for 
social network providers to generate revenues, and is hence an integral part of many 
providers’ business models. However, while classical online display advertising is 
focused on the more general target groups, with advertising activities in social  
networks often lacking success [2, 22, 23], advertisers are now looking for greater 
assurance that targeted audiences will be interested in their offerings. Social networks 
are especially attractive for targeted advertising and viral marketing campaigns [18].  
                                                           
1 Also referred to as “social communities”. If not stated otherwise, both terms are used syn-

onymously in this paper.  
2  www.loopt.com, www.junaio.com, www.match2blue.com 
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However, the inclusion of personal information regarding users in these activities 
raises questions about user privacy and the use of their personal data. The desire by 
users for privacy within social networks on the one hand, and the need for advertising 
in these social networks on the other hand, creates a certain tension between the inter-
ests of the involved stakeholders. A balance needs to be achieved between these par-
tially diverging interests of the involved parties, namely users, advertisers and the 
social network provider [3]. 

1.1   Research Question and Approach  

Consequently, a new approach to identity management in social networking services 
is required in order to meet the stakeholders’ different needs. Within the PICOS pro-
ject3, we had the goal to develop such a new approach to identity management that 
would enhance trust, privacy and identity management aspects of social networking 
services, while at the same time enabling 3rd party services including marketing and 
advertising.  

PICOS started with a phase of preliminary activities, including the analysis of related 
contemporary research and an investigation of the context of communities (e.g., legal, 
technical and economic aspects) (c.f. [9], [10], [3]). Based on requirements of three ex-
emplary mobile communities (anglers, online gamers, taxi drivers), we designed a com-
munity platform architecture including concepts to address the gathered requirements [5]. 
The developed concepts were implemented as prototype community platform and com-
munity applications, which we subsequently tested in user trials and evaluated with re-
gard to trust, privacy, usability, ergonomics and legal issues (c.f. [17]). 

This paper reports on the PICOS community platform architecture [5], focusing in 
particular on the targeted advertising component4. The following section provides a 
brief overview of the PICOS architecture and its concepts. Section 3 focuses on the 
advertising component, as a part of the architecture. Section 4 briefly provides details 
about the prototypical implementation of the architecture and the advertising compo-
nent implementation in particular. Section 5 provides an overview of related work and 
section 6 concludes and indicates aspects for further research. 

2   PICOS Architecture 

The PICOS architecture has been designed to satisfy the needs of several stake-
holders, and in so doing minimise the tensions around privacy and trust that would 
otherwise discourage contributions from any or all parties’ involvement in the com-
munity. To address the users requirements, the architecture consists of components 
which provide different functionalities (concepts).  

PICOS functionality is delivered as a service. Services could be hosted locally, but 
in the case of PICOS they are hosted centrally. In this client-server topology, clients 
(e.g. smart phones) process local services but rely on the social network for shared 
services and for services that are too demanding (in terms of computing and storage 
resources) for the client to host.  
                                                           
3  The research leading to these results has received funding from the European Community's 

Seventh Framework Programme (FP7/2007-2011) under grant agreement n° 215056. 
4  For a more general overview of the PICOS architecture, see further [17]. 
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2.1   Stakeholders  

In situations where personal information is being shared, it is common for the various 
stakeholders to have different opinions about the use of the data. In social networks 
these stakeholders are: 

• Members/users: The subject of the personal data. 
• Community providers: Community service and/or communications provider.  
• Community operators: The entity responsible for the operation of the com-

munity. 
• 3rd parties: E.g. advertisers, regulators, external service providers. 

2.2   Components and Concepts  

The PICOS architecture comprises a number of new concepts designed to enhance 
user privacy. The overall intention is to provide users with tools that help them man-
age their visibility within and outside of the community. The three main categories of 
concepts are:  
 

Enhanced Identity Management. Based on the concept of mobile identity manage-
ment [11], the PICOS architecture supports users in managing the disclosure of their 
current position and mobile identity in communities. E.g. Sub-communities help users 
in selectively sharing personal information, as they represent a restricted area in 
which the sharing of content is limited to a sub-group of community members. Partial 
Identities [12] allow users to create different identities for use in different contexts 
and purposes. With the help of Partial Identities users are able to have a set of several 
identities in a single community, and decide for each identity what personal informa-
tion they want to disclose.  
 

User controlled Information Flows. A balance is needed between revealing (pub-
lishing) personal information in order to use functionalities provided by the commu-
nity, and maintaining a degree of privacy [3]. Location Blurring gives users the  
enhanced ability to hide their exact position without being completely invisible to 
others. It foresees the obfuscation of a user’s position on a map at various levels. The 
users can control, who is able to see their exact and their blurred position. Privacy 
Policies enable users to selectively define policies that control who is allowed to see 
which kind of personal information. 
 

Privacy Awareness Support. Managing privacy by means of Partial Identities is a 
complex task. The Privacy Advisor component is designed to provide guidance on 
privacy related matters that may affect members as they interact with the community. 
Privacy (and trust) is subjective, and it is often difficult to find a single ‘right answer’ 
to questions and concerns about privacy. Hence, the Privacy Advisor is context sensi-
tive and provides hints in specific situations that involve users’ personal information 
(e.g. disclosure of location information, registration and profile management). It 
warns users when disclosure of information might place their privacy at risk. 
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3   The Advertising Component 

The advertising component enables advertising activities to be carried out with due 
consideration of context and users’ privacy preferences, managed by the aforemen-
tioned concepts. The foundation for this component was initially outlined in [24]. 
Within PICOS we targeted an exemplary application that was extended to include this 
advertising approach, resulting in a concrete social network service solution that gives 
users control over the use of their personal data. This unique approach is part of our 
community platform architecture and within one of our community application proto-
types (gaming community prototype).  

3.1   Approach 

Communication can be regarded as one of the main activities conducted in social net-
works [32]. Hence, in order to include marketing (and in particular advertising) activi-
ties into social networks, these activities need to be integrated into the context of the 
communication processes, in order to be able to receive the attention of the participat-
ing users [24, 25]. Advertising can contribute to the communication in two ways: First, 
advertisers can provide targeted communication (targeted advertising) to social net-
work users (Business-to-Consumer communication (B2C)). Second, advertisers can 
support the communication between users (viral marketing) (Consumer-to-Consumer 
communication (C2C)). While the targeting of advertising activities provides a benefit 
to the targeted users [2, 33], at the same time viral marketing is used in existing social 
networks5 to benefit from the intensive social interactions between users. By support-
ing both in a novel way, communication between marketers and users is tailored more 
to an individual user’s needs and is consequently more relevant. Further, users are 
encouraged to communicate with each other about such relevant advertisements  
[20, 21]. 

3.2   Component Elements 

To support B2C and C2C communication processes, the social network provider acts 
as an intermediary between advertisers and users. This ensures that personal data of 
users is neither given to 3rd parties nor that 3rd parties have any direct access to it. 
Instead, the social network provider (e.g. a game developer in the case of the gaming 
community example) serves both the advertisers and the consumers, while respecting 
their specific interests (e.g. privacy of users).  

Support of B2C communication. In order to support direct communication between 
advertiser and user, the social network provider needs to identify the users for which a 
particular advertisement might be relevant. He thereby conducts a matching operation 
between the users (consumers) and advertisers (represented by advertisements), based 
on profile, context and communication information. More targeted advertisements 
generally receive more attention by users, especially with regard to mobile usage 
scenarios [27, 36]. On the other hand, users can set their privacy preferences (e.g. 
using privacy policies and blurring settings) in response to the purpose of targeted 

                                                           
5 See e.g. Facebook Advertising (www.facebook.com/advertising). 
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advertising. This enables social network provider to respect privacy preferences and 
satisfy users’ needs for relevant advertisements, while at the same time enabling ad-
vertisers’ to fulfil their interests and reach their target audience.  

 

Fig. 1. The process to support targeted advertising (B2C) (Based on [24]) 

The whole process of supporting B2C communication can be divided into four steps, 
which are reflected in the design of the PICOS advertising component as follows 
(Figure 1). 

Configuration. The advertising component provides a graphical interface, which al-
lows configuring different advertising activities. As similarly described in e.g. [28, 
29, 35] the advertiser can configure, which message he wants to deliver and whom he 
wants to target. Hence, the dimensions the advertiser needs to configure are the adver-
tisement itself and the target profile. The form of an advertisement can be a selection 
of different types, e.g. banners, pop-up, etc. By defining the attributes of the target 
profile, the advertiser can describe his targeted users. Example: Target Profile: “male, 
20-35 years, within 2 km around my shop, between 12 h and 18 h, key word in com-
munication: ‘lunch’” 

The advertiser can configure how many attributes need to be equal in order to 
achieve a “matching” of target profile and user profile. For each attribute, the adver-
tiser can also configure if this attribute needs to match in every case. In such a situa-
tion, no matching can be achieved if these “necessary” attributes are not fulfilled. 
E.g., if a user needs to be at least 18 years of age in order to receive an advertisement.  

Analysis. In order to determine which advertisement might be relevant for which user, 
information about the user is needed, which is gathered from the user profile, the 
context and communications/interactions with other users [24]. The user profile con-
tains attributes such as age, interests and favourite locations. The context is mainly 
described by the current location of the user (as geo-coordinates) in combination with 
the time and information which might be derived from the location (e.g. current 
weather conditions at this location). Communications could be all kinds of interac-
tions in which a user communicates with other users, e.g. directly (mailing or chat-
ting) as well as indirectly (e.g. via contributions in sub-communities). Such additional 
information, which has not been combined in previous approaches in a similar way, 
allows a more precise characterization of users and to draw conclusions about what 
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users are doing, in addition to who they are. The gathered information leads to a dy-
namic user profile, which contains the profile, the context and communication infor-
mation about the user. 

Matching. The dynamic user profile characterises the user in his current context. In 
the “Matching” process the dynamic user profile and the target profiles are compared. 

There are different ways to realise such matching in an actual implementation, and 
which of these ways is chosen  might depend on various economic, organisational or 
technical reasons. In our case a comparison of attributes is conducted. If a pre-defined 
number of attributes are equal, a match is given. In the approach described by [24], 
the matching additionally contains a comparison between the communicating users. 
This is to identify similarities and common interests between them and present match-
ing advertisements not only to one but to both of them. 

Display. In the final step of the process, the actual advertisement needs to be shown to 
the identified matching users. In practice this also includes further considerations 
regarding the users’ device. It might be necessary to adapt the advertisement due to 
technical specifications or limitations of particular devices and/or operating systems. 
 
Support of C2C communication. The support of C2C communication is based on 
the principle of viral marketing, that is to initiate a marketing message and let it 
spread from one user to other users (who distribute it further) like a virus [cf. 18]. The 
goal here is to establish and support such a viral (marketing) process.  

In literature and practice there is a varying understanding about how viral market-
ing works in detail [26]. In many social networks viral marketing is conducted by 
introducing a product or brand to the community (e.g. with a related profile or group 
on Facebook). The difference in our case is that viral marketing is designed to work in 
a targeted way, in order to address several opinion leaders who further spread the 
message [16]. This process comprises the following steps: 
 
Configuration. As in B2C support the advertiser has various options to configure an 
advertisement and to describe the targeted users, including targeted characteristics 
(e.g. age, interests). The configuration also includes options regarding the form of the 
delivery (e.g. pop-up, text message, etc.).  

The distinctiveness is that the advertiser defines the characteristics of the “key us-
ers”, which should be addressed in order to further spread the advertisement. These 
users are regarded as opinion leaders, which have a stronger influence on their social 
surrounding [21, 26]. Depending on the actual advertisement which shall be deliv-
ered, there are different definitions of who the “key users” are, e.g. users who are very 
active with regard to communication, or users who have many relationships to other 
users (friends) or certain characteristics (e.g. a certain age). The definition of key 
users might also be a combination of such different characteristics. 

Analysis & Matching. The analysis of user information (profile, context, communica-
tion) leads to a dynamic user profile, consisting of profile, context and communication 
information, as described previously. In the “matching” step, the characteristics of the 
key users (target profile) are compared to the dynamic profile of a user. The difference  
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to the Matching process for targeted advertising is that only a limited number of 
matching users are addressed, namely the key users. These users are the users which 
match best with the target profile and fulfil the mentioned characteristics of key users. 

Seeding. This phase includes the actual delivery of the advertising message to the 
identified key users, the so-called “seeding”, in order to allow them to pass on the 
delivered message. Depending on how an advertisement is configured the form of 
delivery may vary. To support the action of forwarding (spreading) of the delivered 
message, advertisements need to contain a possibility to immediately and easily share 
them with other users (e.g. context Link on a specific site, Banner with possibility to 
forward, etc.).  

Triggering. The whole viral marketing process is intended towards the viral distribu-
tion of the advertisement. Hence, an important part in this approach is not only to 
identify adequate users and provide them with the advertising message, as described 
before, but also to provide or support a motivation to these Users to forward adver-
tisements they receive [30]. One step to support this is already the targeting itself, 
considering that we aim to provide only highly relevant advertisements to users. Fur-
ther, an already existing intrinsic motivation of users to forward advertised messages, 
can be supported by the availability of technical possibilities, which allow and sim-
plify a further recommendation to other users (e.g. “forward” button). 

4   Prototypical Implementation 

The PICOS architecture is a service oriented architecture consisting of 1) access and 
user management features, and 2) service delivery features. The current J2ME6 based 
embodiment consists of a set of hosted web-based services, which implement the 
described concepts.  

The advertising component is implemented based on the example of “commercial 
points of interest” (CPOI), e.g. cafés, shops, etc. For these CPOI’s, a target user pro-
file can be defined for some exemplary attributes (e.g. age). A matching is realised by 
comparing the attributes between this profile and profiles of users within a certain 
proximity of the CPOI. Under consideration of users’ privacy preferences, advertise-
ments are provided to matching users. The PICOS Privacy policies enable users to 
select the information which may be used for advertising. A recommendation mecha-
nism further allows supporting user-to-user communication (C2C). Therefore a  
recommendation button is directly integrated in an advertisement.  

5   Related Work 

The aspect of privacy in online social networks is discussed intensively in the  
research area (cf. e.g. [13, 14, 15]), but there with focus on online social networks 
usually not considering the special aspects of mobile social networking services. 

                                                           
6  Java 2 Platform, Micro Edition (http://www.oracle.com/technetwork/java/javame/overview). 
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Other projects, such as PRIME7, PrimeLife8, PEPERS9 and DAIDALOS10, have 
carried out work in this area.  However, their work was focused on different aspects, 
e.g. on privacy and identity management in general (PRIME, PEPERS, DAIDALOS) 
or privacy in communities but not with regard to a specific application domain 
(PrimeLife). There are also some concepts in theory and practice which aim to help 
the user with regard to privacy. For instance, the “Privacy Bird” from AT&T11 ad-
vises users on the privacy of website, using a P3P12 policy matching algorithm. The 
Trustguide13 research confirmed that openness backed up by education, which to-
gether provide enhanced understanding and awareness, engenders trust. This is par-
ticularly true when applied to situations involving privacy. 

Regarding work in relation to the advertising approach, there are a few publica-
tions that focus on this aspect with regard to social networks. While some address 
general aspects, such as business models [4, 25], many focus on the application of 
viral marketing in the context of communities (e.g. [6, 7, 8, 31]). As mentioned, [24] 
is concerned with a deeper integration of marketing into the communication processes 
within social networks, and provides the basis for the advertising approach described 
in this paper. 

6   Conclusion 

The PICOS Architecture serves as a basis for integrating privacy enhancing concepts 
and advanced advertising into (mobile) community infrastructures. The architecture 
enables providers, users and involved 3rd party stakeholders to provide and use pri-
vacy enhancing social networking features. The advertising approach adopted by the 
architecture shows how a deeper integration of advertising is possible in (mobile) 
social networks and how the tension between diverging interests of the involved 
stakeholders can be addressed. The prototypical implementation of the PICOS archi-
tecture has further shown the feasibility of enclosed concepts such as those focused on 
in this paper. The currently ongoing analysis and evaluation of the PICOS user trial 
results will give additional insights on this. 

Nevertheless, further research on the integration, usage and benefits of the  
concepts, and in particular advertising in social networks, remains a challenge for 
advertisers and social network providers. Much research in this area considers  
specific aspects of marketing or advertising. However, holistic approaches are needed 
in order to consider the different stakeholders in social networks and the factors which 
influence the success of marketing activities. In one of our next steps our research 
activities will focus on specific application scenarios, considering the diversity of 
social networks and as well the diversity of products and brands which are subject to 
marketing.  

                                                           
 7 www.prime-project.eu 
 8 www.primelife.eu 
 9 www.pepers.org 
10 www.ist-daidalos.org 
11 www.privacybird.org/e 
12 www.w3.org/P3P/ 
13 http://trustguide.org.uk/ 
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Abstract. With the outbreak of applications for smartphones, attempts
to collect personal data without their user’s consent are multiplying and
the protection of users privacy has become a major issue. In this paper,
an approach based on semantic web languages (OWL and SWRL) and
tools (DL reasoners and ontology APIs) is described. The proposed se-
mantic firewall takes its decisions (authorize or forbid some action) on
the basis of a set of privacy protection rules grounded on two ontolo-
gies respectively modeling identity of mobile phone’s users and privacy
policies. To validate this ontology-based approach, a proof of concept
involving a real privacy threat scenario is implemented in Java and the
porting of the semantic firewall to the Android platform is outlined.

Keywords: Privacy protection, ontologies, smartphones, semantic
firewall.

1 Introduction

In the past few years, the mobile market has rapidly evolved from feature phones
to smartphones [1]. It is assumed that the smartphone market will continue to
grow in the upcoming years [2]. That evolution is impacting the mobile appli-
cation market. In particular, the distribution model is progressively switching
from a market controlled by telecom operators to online markets such as the
App Store or the Android Market. The result of this opening is the recent boom
in the number of mobile applications. Since many of these applications are col-
lecting personal data with or without the consent of the user [3], the issue of an
enhanced protection of the user’s privacy must be addressed.

In this paper, we claim that an ontology-based firewall can effectively protect
the user’s digital identity and personal data. Ontologies provide a shared vocab-
ulary, which can be used to model a domain, that is, the type of objects and/or
concepts that exist, together with their properties and relations [4]. Thanks to
an explicit knowledge representation of the data requested by any mobile appli-
cation, the firewall can determine whether the application requests are permitted
or forbidden, according to predefined customized security policies.

C.A. Ardagna and J. Zhou (Eds.): WISTP 2011, LNCS 6633, pp. 371–380, 2011.
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This paper is organized as follows. In section 2, several ontologies for digi-
tal identity and privacy protection mechanisms are reviewed and discussed. In
section 3, our approach to achieve privacy protection for smartphones is de-
tailed: the global architecture of the firewall is described, as well as the two
distinct ontologies that have been specified and implemented in OWL language
[5]: one dealing with digital identity and the other with privacy concerns. In or-
der to explain how the proposed firewall responds to a common privacy threat,
a basic scenario using policy rules expressed in SWRL [6] (Semantic Web Rule
Language) language is explained step by step and the porting of the semantic
firewall to the Android platform is oulined. Conclusions and future work are
given in section 4.

2 Related Works

2.1 Protection on Smartphones

To protect their operating systems from malicious software, operating system
developers have implemented various protection mechanisms. On iOS or Black-
Berry OS for instance, applications are made available to customers after going
through an agrement process that verifies that they do not contain unwanted
code. Android also encourages developers to sign their applications with a trusted
certificate but it is not mandatory.

In addition to this signature mechanism, Android and BlackBerry prompt
the user with a manifest during the installation process. This manifest shows
the permissions granted to the application and the user must accept them in
order to install the application. The problem with that kind of protection is that
users tend to accept the manifest without really assessing all its consequences.
The BlackBerry OS tries to address this issue by allowing a modification of the
permissions for each application outside the installation process.

However, to our knowledge, there is no real-time privacy protection mech-
anisms implemented on current platforms that can prevent an application to
access specific data.

2.2 Identity Ontologies

Before building a semantic firewall that can efficiently protect users from privacy
breaches, an exhaustive record of all the data that need to be protected must be
done. Thanks to their declarative form, ontologies are the best way to explicitly
represent the manifold digital identity of users that are juggling daily with several
avatars, nicknames, passwords, telephone numbers, email accounts, homepages
and so on.

On social networks, countless people are describing themselves and part of
their private life on their home page. FOAF (Friend Of A Friend) uses W3C’s
RDF technology to represent such information as an ontology [7]. The core
of FOAF describes characteristics of people and social groups, the networking
being achieved thanks to the foaf:knows property. In addition to the FOAF core
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terms, one can also describe Internet accounts, mailboxes, homepages etc. This
general-purpose ontology is well suited for social network identities but it lacks
information regarding mobile phone identities.

Some of this missing information can be found in the vCard file standard
format for electronic business cards. vCards contain the user’s personal and
professional affiliation, address and geolocalisation, email, URLs, photos, logos
and even audio clips. They can be attached to email messages, directly embedded
in web pages (hCard microformat for (X)HTML) or represented into XML/RDF.
The corresponding ontology can be found in [8]. Thanks to that ontology, it is
possible to specify fine grained information, for instance indicating that a phone
number is also a fax number or telling which email address should be given
preference to others.

2.3 Privacy Protection Ontology-Based Policies

A policy is an enforceable, well-specified constraint on the performance of a
machine-executable action by a subject in a given situation. Web semantic lan-
guages are particularly suited for representing, reasoning and enforcing policies.
Thanks to policies, it is possible to adapt the behaviour of a complex system
without changing pieces of code. In [9], three approaches are compared and dis-
cussed: Ponder, Rei and KaoS. Only the last two are ontology-based and are
both written in OWL language.

Rei [10] proposes an application-independent ontology to represent the con-
cepts of rights, prohibitions, obligations and policy rules. It also includes a gen-
eral class describing the action to be performed, together with preconditions,
target objects and results. KaoS has been developed within the broad context
of multiagent and distributed systems. It is a complete framework for domain
and policy services. Among KaoS features, there is a GUI called KPAT (KAoS
Policy Administration Tool) allowing people to manually specify, analyze, and
modify authorization and obligation policies, thus hiding the complexities of
OWL from end-users. Policy decisions are performed by so-called Guards that
store precompiled policies and maintain a history of actions. KAoS framework is
a very rich environment. However, a simplified framework without the multiagent
paraphernalia would better suit our needs.

3 Our Approach

Our objective is to create a semantic firewall between the applications and the
private data of the smartphone owner. We use ontologies to represent both the
concepts of identity and personal data and also to model privacy policies. The
proposed firewall relies on those ontologies to block or authorize a request. A
request consists in some actions performed by an agent on another agent data.
In our model, the applications are issued by a service provider and we consider
that the data requests are made on its behalf.
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3.1 Architecture

The global architecture (Figure 1) is grounded on a smartphone ontology written
in OWL that includes two ontologies: the ontology designed to represent privacy
policies and the ontology of the digital identity stored in the mobile. The firewall
is in charge of populating the smartphone ontology with the individuals corre-
sponding to the specific request. When a request is made, the firewall processes
the request by calling the description logic reasoner (DL reasoner) in charge
of inferences. These inferences are performed according to a set of policy rules
written in SWRL. Our algorithm is inspired by the SOUPA algorithm [11]; three
cases can occur after classification:

1. There is no policy to manage the request. The firewall then applies the de-
fault rule, which can be either liberal (all actions permitted) or conservative
(all actions forbidden).

2. Two or more policies are in conflict. As in the first case, the default rule is
applied.

3. An adapted policy exists. It is applied and the action is classified either as
permitted of forbidden.

The interactions between the service provider and the firewall are described on
the sequence diagram of figure 2. The firewall first identifies the service provider
that makes the request. The firewall successively registers the service provider and
the request by creating them as individuals in the ontology. Then, the DL reasoner
is launched to classify the concepts of the ontology and decide the type of action
(permitted/forbidden). Finally, if the action is permitted, the firewall provides the
appropriate data and logs the request in the ontology for history purposes.

Fig. 1. Flowchart of the semantic firewall
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Fig. 2. Sequence diagram of the semantic firewall

3.2 Ontology of Identity on Smartphone

The ontology of identity on smartphone describes the concepts on which the
privacy rules are applied. We have defined the following classes and properties:

– name, first name, date of birth and place of birth;
– contact information: postal address, phone number, email address;
– location data: GPS, IP address, Cell Id;
– IMSI: International Mobile Subscriber Identity;
– IMEI: International Mobile Equipment Identity;
– directory of contacts;
– certificates and cryptographic keys.

These concepts are organized under three main classes: the Agent that can
either be an individual or an organization, the agent’s IdentityInformation and
the agent’s Data. The building of this ontology was done with the Protégé-OWL
editor [12]. We also used Protégé to populate the ontology with individuals such
as telecom operators and personal data.

3.3 Lightweight Ontology for Privacy Policy

To model privacy policies applied to smartphones, a lightweight ontology (figure
4) was built with Protégé. The two main classes of this ontology are Policy and
Action. A policy controls an action, is created by an agent and has a date of cre-
ation. An action has the following attributes: date of the action, actor, context
in which the action is performed and finally the data on which it is performed.
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These information are used to manage the history of the request. As previously
mentioned in the architecture description, that ontology is the key element for
the classification of action in two categories: permitted or forbidden. We used
the Pellet DL reasoner [13] plugin for Protégé to check that this classification
is accurate. Due to the fact that the two classes PermittedAction and Forbidde-
nAction are not disjoint, in case of conflict, the action will be classified under
both. That is how our firewall detects conflicts.

3.4 Rules for Privacy Protection

The firewall is based on the application of privacy rules defined in SWRL. This
rule format was chosen because it is both supported by Protégé and the DL
reasoner. The rule base is stored appart from the ontology. Rules are separated
from the ontology in order to make the addition of new rules and maintenance
easier. Listed below are some rules in the case of a liberal default policy which
explains why they all are forbidding rules.

Rule 1: Forbid any action made by a service provider with an invalid
certificate.

[policy1: (?s rdf:type id:ServiceProvider) , (?a rdf:type id:Action),
(?c rdf:type id:InvalidCertificate), (?s id:hasCertificate ?c)
-> (id:policy1 id:forbids ?a)]

Rule 2: Forbid access to location data if the service provider is SP1.

[policy2: (?a rdf:type id:Action), (?a id:hasActor id:SP1),
(?d rdfs:domain id:LocationData), (?a id:hasTarget ?d)
-> (id:policy2 id: forbids?a)]

Fig. 3. Digital identity ontology for smartphones
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Fig. 4. Privacy ontology for smartphones

Rule 3: Prevent a service provider form obtaining postal address if it has
already gathered the phone number.

[policy3: (?a rdf:type id:Action), (?c rdf:type id:ServiceProvider),

(?a id:hasActor ?c), (?d rdfs:domain id:Postal), (?a id:hasTarget ?d),

(?c id:hasHistoricTarget id:phoneNumber1) -> (id:policy3 id: forbids ?a)]

3.5 Validation
Privacy threat scenario
To demonstrate the interest of an ontology-based firewall, we devised a privacy
threat scenario in which we want to prevent the collection of location data (GPS,
IP address and wireless information) from a service provider (SP2). Our exper-
imentation was conducted in three steps. First, the SWRL rules corresponding
to our scenario were written. In our case, only one rule is required, since the IP
address, wireless information or GPS are all subclasses of LocationData:

[policy5: (?a rdf:type id:Action) (?a id:hasActor id:SP2)
(?d rdfs:domain id:LocationData) (?a id:hasTarget ?d)
-> (id:policy5 id:forbids ?a)

Then, all the individuals needed by the scenario were created under the
Protégé editor: SP2 as an instance of ServiceProvider, the user as an instance of
Person with all his location data and SP2’s request under the Action class. The
rule base was launched within Protégé and policy rule number 5 was triggered.
The DL reasoner was then executed to classify individuals. As explained before,
the classification under the ForbiddenAction class confirmed that SP2 was not
allowed to collect location data.

Proof of concept
A proof of concept of our firewall was implemented as a client/server applica-
tion. We chose the client/server approach because we wanted to mimic a real
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Fig. 5. Android porting of the semantic firewall

access scenario where the application (client) requests the data through a fire-
wall (server). Both the client and the server are developed in Java since it is
widespread for mobile phone programming. The Java language is also interesting
because it supports specific API, such as JENA [14], for ontology interactions.
The server was developed to be as generic as possible while the client was de-
signed to match our test case. However, a graphical user interface was added on
the client side to allow the tuning of the request parameters.

Our tests were done on a standard PC and they validate our approach by
successfully preventing the access to any location data. The two ontologies (94ko)
contain around fifty classes and a hundred object/data properties. In our tests,
with five policy rules and around twenty individuals, the execution time is less
than 100ms which is reasonable for a mobile usage.

Smartphone architecture
The next step of our work was to implement the semantic firewall on an actual

smartphone based on the Android OS. Due to the specific nature of the Android
smartphone platform, our client/server application had to be adapted. The major
modifications to our firewall are described in the next paragraphs.

First of all, we chose the Android platform as it is free and allows modifications
of the operating system. In fact, the operating system is the mandatory entry
point of any data request made by any application. It thus appeared to us as
the perfect place to implement our semantic firewall. Moreover, Android is also
written in JAVA and a JENA API porting is available: AndroJENA [15]. Finally,
the way to exchange data is centralized on Android as every request has to go
through a single class: ContentResolver.

The major modification we had to make to our initial model was to review the
way an application requests data. In our PC proof of concept, we made the sim-
plistic assumption that the requests made on the client-side could be processed
on-the-fly by the semantic firewall. It is unrealistic to hope that application de-
velopers will follow such an approach. To address this issue, a parser was added
to the semantic firewall. It is charge of extracting from the request an <actor,
action> pair and of providing a default context of execution. The actor, action
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and context of execution are then reified as instances of our ontology and fed to
the DL reasoner. The new firewall complying with the Android specifications is
described on Fig. 5.

4 Conclusions and Future Work

As semantic web techniques, languages and tools are coming of age, developing
ontology-based applications is getting more straightforward. This paper demon-
strates that it is possible to build a convincing prototype of semantic firewall for
smartphones. The proposed firewall answers a growing concern: data collection
without the user’s explicit consent. It takes advantage of the expressiveness of
OWL. Thanks to the Open Data Movement [16], more and more ontologies are
available and can be reused and adapted to fit specific needs. Our application
makes the most of the powerfulness of DL reasoners: all useful inferences are
made by the classification mechanism. Policy rules are defined declaratively and
separately from the ontologies. Thus the addition of new rules is made easier.
The firewall is implemented in Java, using the Jena ontology API and response
times to requests are less than what was expected, the call to the DL reasoner,
being the most time-consuming operation.

Future works will mainly focus on extensive unit testing of our Android port-
ing. Only once the functioning of the semantic firewall is satisfactory can we
focus on the delicate issue of the storage of the ontology. Since smartphones are
coupled with an embedded SIM card [17], one has to decide whether the whole
ontology, or only part of it, can be stored directly on the SIM card. In particular,
we think that the Smart Card Web Server technology [18] can be a promising
solution for allowing some part of the handset operating system to be interfaced
with the embedded SIM card ontology. The use of SWRL to write policy rules
may also change, since RIF (Rule Interchange Format) has recently become a
W3C Recommendation (june 2010) [19].
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Abstract. This paper presents a study on the expansion of urban Wi-Fi
networks and the degree of users’ awareness about their characteristics.
It involves an experiment contacted at the area of Serres, a Greek city
of around 70,000 inhabitants. The findings revealed that although the
number of Wi-Fi networks is quite high, their owners are unaware of their
technical settings. As a result many networks remain either unlocked
or with WEP encryption while many adjacent networks use the same
channel thus reducing their performance.

Keywords: Wi-Fi networks usage, wireless security, war driving, urban
networks.

1 Introduction

It has been around seven years since the introduction of Asymmetric Digital Sub-
scriber Line (ADSL) as a high speed Internet access service in Greece. Despite
the initial reluctance by home users to upgrade their previous dial-up connec-
tions to ADSL, currently a large number of Greek homes or enterprises connect
to the internet through ADSL. It is a mainstream practice for providers to sup-
ply a wireless modem/router/access point for every new connection, mainly in
the form of a subscription gift. This has gradually filled Greek cities with Wi-Fi
networks. These devices typically use the 802.11b/g protocols with a 100mW
antenna at 2.4 GHz. Transmission occurs in one of 13 overlapping channels [1].

The present paper explores the use of the resulted Wi-Fi networks which in
turn provides clues for the degree of user awareness on wireless security. The
main tool used in this research is the method of war driving [2]. War Driving is
the act of searching for Wi-Fi wireless networks by a person in a moving vehicle
using a Wi-Fi equipped computer, such as a laptop or a PDA. It is similar to
using a radio scanner, or to the ham radio practice of DXing.

War driving is a play of words on the older term war dialing, which is auto-
matically calling various telephone numbers to look for any that have a modem
attached. War dialing, in turn, comes from the 1983 movie War Games now
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written in the cult lore of computer geek circles. In the movie a young cracker
(Matthew Broderick) is using war dialing to look for games and bulletin board
systems. However, he inadvertently ends up with a direct connection to a high-
level military computer that gives him control over the U.S. nuclear arsenal [3].

The paper proceeds as follows. The next section defines the hypotheses of
the experiments, its subjects, methods and materials and the problems that
occurred during its execution. Section 3 lists the results, while in the last section
the outcomes of our work along with suggestions for improvements and future
work are discussed.

2 Description of the Experiment

2.1 Motivation and Hypotheses

The survey discussed in this paper has two objectives. The first one is to investi-
gate the penetration of Wi-Fi networks considering the provincial city of Serres
as a case study. The outcome may not only be used to demonstrate their wide
spread but also to confront the reluctance of home users to operate a wireless
network due to health considerations. Measurements of the Signal-to-Noise Ra-
tio (SNR) will confirm that the whole city is covered by a number of wireless
networks. Therefore, if someone is surrounded by neighbors owning Wi-Fis, she
is already exposed to some RF radiation anyway. Moreover, this RF exposure is
normally thousands of times below international standards [4].

Our second objective is to examine the manner of usage of Wi-Fi networks and
to demonstrate the ignorance of their owners when it comes to simple security
of performance settings. The knowledge, for example, to choose the type of
encryption or to adjust the Wi-Fi channel is important for the good operation of
a network, yet the vast majority of wireless access point (WAP) users are either
oblivious or inconsiderate when it comes to their network.

Although WiFi technology security vulnerabilities are well known, the ex-
tent of these vulnerabilities may be surprising. War driving may identify many
potential points of entry [5].

2.2 Subjects

Serres is the capital of the Serres Prefecture located in the Central Macedonia
Periphery of Greece. The city has a population of around 70,000 inhabitants
(56,145 in the last official census of 2001) and is an important trade centre for
tobacco, grain, and livestock. In our view, it represents a sound choice for an
experimental subject since it reflects the average situation regarding wireless
networks in Greece. It is situated in a location which is neither near the cutting-
edge capital (Athens) nor one found in less developed places. For the better
interpretation of results, we divided the city into the following areas:

– City centre: The area where mainly commercial shops or companies exist.
Wireless networks in this area are expected to have been setup by profes-
sional technicians.
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– Around the city centre: A residential area with few shops or companies.
– Suburban and densely populated: A residential area with block of flats of

four to six floors.
– Suburban and sparsely populated: The outskirts of the city, a residential

area with houses.
– Student area: The area around the technical university (T.E.I. of Serres)

populated with students. Some of them study in the Informatics and Com-
munications Department, hence a higher degree of technical expertise and
involvement is expected from them.

– Difficult to approach: The area consisting of the hills around the old part of
the city with old houses and narrow roads.

2.3 Methodology and Tools

The method used to carry out the experiment is war driving, in other words,
driving around the city and stopping regularly to discover wireless networks.
The density of these stops is specified by:

– The surrounding area: In densely populated areas stops are every 10–15m
since networks of the top floors must be discovered and the number of ex-
pected networks is high. On the other hand, in sparsely populated areas the
scheduled stops are around 20–30m.

– The surrounding environment: Parked coaches and large trees hinder the
discovery of networks.

The tool used is Network Stumbler which is a widely used tool that provides all
required information [6]. This is the WAPs MAC address and SSID which were
used to identify unique networks, the communication channel, the encryption
standard, the type of the device, e.g. WAP or station, and the SNR.

Regarding the first objective of our experiment we measure:

– The number of unique Wi-Fi networks at each stop. The uniqueness requires
checking if a network has appeared in adjacent measurements.

– The SNR of each network and the maximum SNR for each point of mea-
surement.

For the use of Wi-Fi networks we examine the following parameters:

– The encryption used, i.e. no encryption, WEP, WPA and WPA2. In the case
of unencrypted networks we also try to login to the administration console
to check if the user has changed the default username and password

– The SSID used, i.e. if it is the default one or it has been altered
– The Wi-Fi channel to which the network is adjusted.

From a legal perspective, there is no restriction of examining wireless networks
broadcasting in a public place, especially for academic purposes. Moreover, we
have just searched for the existence of wireless networks in a non-intrusive way,
with no ulterior motive. Adding to this, no attempt was made to interfere or jam



384 S. Mousionis, A. Vakaloudis, and C. Hilas

the wireless traffic nor did we try to correlate the networks or their traffic with
specific persons. We, also, do not publicize the exact location and owner of the
individual insecure APs. What is illegal is the unauthorized access to a wireless
network in order to steal internet access, steal information, alter the network’s
configuration or commit other computer crimes. As a result, for networks that
were found unlocked, our action stopped to the point of examining whether the
user still uses the default security settings. We want to stress out that this may
not always be legal in other countries.

2.4 Problems

Although war driving seems to be a time-consuming, yet straightforward process,
a number of issues appeared during its execution. Stopping even for one minute
in the city centre is not always permitted or it may cause the annoyance of other
drivers. Consequently, it may take a few attempts to take a single measurement.
Likewise, a stop on a street with parked cars on each side causes interruption
of the traffic. Furthermore, some streets are one-way traffic which increases the
time needed to reach a desired point. Finally in the difficult to approach section,
driving must be very cautious to avoid damaging the car. There were cases where
war driving turned out to be war walking.

Since the experiment took place during the summer, the leaves of the trees
were a source of reduced SNR values. Hence, the measurement should not take
place at points below or nearby large trees.

Finally, an updated map had to be used since the city is expanding and an
outdated map was inconsistent with the real picture; for instance there were
sections of roads that had been widened or even replaced by squares or round-
abouts.

All the above, while solvable, increased the expected time planned for each
session of war driving.

3 Results

The war driving part of the experiment took place over the three summer months
of 2010. It took 14 sessions of 10 hours each to cover the whole city. The pro-
cessing of the results included printing the screenshots of Network Stumbler,
identifying unique networks along with their maximum SNR.

Overall, 1021 measurements were made and 5374 Wi-Fi networks were found
(Table 1). From the 677 (12.6%) unlocked ones, 268 had retained the default ac-
cess to the administration console. As regards the use of encryption 840 (15.6%)
networks were using WEP, 3782 WPA and just 75 WPA2. 3728 were still using
the default SSID and the rest 1646 had changed their SSID. The average SNR
for each measurement point was 34.2 dB. Considering that WEP encryption is
only little better than no encryption we see that almost one third of the networks
are susceptible to eavesdropping.

The channels used for Wi-Fi are separated by 5 MHz in most cases but have
a bandwidth of 22 MHz. As a result channels overlap and it is possible to find
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Table 1. Number of Wi-Fi networks found at each of the areas described in subsec-
tion 2.3

Area Unlocked WEP WPA WPA2 Default Altered Total
SSID SSID

City Centre 103 68 521 52 459 285 744
Around City Centre 181 276 1186 13 1199 457 1656
Densely populated 167 235 820 10 867 365 1232
Sparsely populated 64 63 217 0 258 86 344
Student Area 41 81 211 0 1199 457 1656
Difficult to approach 121 117 827 117 730 335 1065

Total 677 840 3782 75 3728 1646 5374

Table 2. Active networks per channel

1 2 3 4 5 6 7 8 9 10 11 12 13

1575 40 34 38 45 2296 50 45 57 42 1107 12 33

Fig. 1. Positioning and population of Wi-Fi networks. The size of the spheres correlates
to the number of networks.

a maximum of three non-overlapping channels. Therefore, if there are adjacent
pieces of WLAN equipment that need to work on non-interfering channels, there
is only a possibility of three.

In Table 2 the channel usage of the surveyed networks is shown. Channels
1, 6 and 11 do not overlap with each other and are the preferred choices when
setting up a WAP. Channel 6 is usually the default factory setting. The findings
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Fig. 2. Wi-Fi coverage of the city. Measured SNR values are visualized by the size of
the sphere.

Fig. 3. Percentage (per channel) of neighboring networks that were found using the
same channel

in Table 2 coincide with the common practice. Interestingly, there are WAPs set
up to work on channels other than the three most common.

In Fig. 1 the position of the discovered networks in the city is depicted. The
number of identified networks at each location is visualized by means of spheres
of variable sizes. The size of each sphere correlates to the number of networks
at the point. In Fig. 2 the SNR measurements at each position are visualized.
One may observe that the city seems covered with Wi-Fi signals. In Fig. 3 the
findings of Table 2 are further clarified. The bar chart displays the possibility
two or more adjacent networks to use the same Wi-Fi channel.
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4 Conclusions and Discussion

4.1 Interpretation of Results

This experiment demonstrated that a medium-sized city (for Greek standards
of population) is almost fully covered by Wi-Fi networks. The only blank points
where squares or the outer limits of the city. The number of unique networks
discovered is translated to one network per around 11 inhabitants. This indicates
a good penetration of the wireless technology plus that there is still room for
more networks to be added. It also illustrates a wide-spread interest of people
in Greece for wireless internet access.

As the number of base stations and local wireless networks increases, so does
the RF exposure of the population. Recent surveys have shown that the RF ex-
posures from base stations range from 0.002% to 2% of the levels of international
exposure guidelines, depending on a variety of factors such as the proximity to
the antenna and the surrounding environment. This is lower or comparable to
RF exposures from radio or television broadcast transmitters [4].

Our measurements of the SNR also confront the fear of not installing a home
wireless network because of health risk concerns [7]. If a specific apartment is
surrounded by Wi-Fi networks, it is already susceptible to their electromagnetic
radiation. However, considering the very low exposure levels and research results
collected to date, there is no convincing scientific evidence that the weak RF
signals from wireless networks cause adverse health effects [4].

An important question, left to be answered, is whether users actually access
the Internet over a wireless and not over a wired medium. In other words, we
can not be sure whether all the discovered networks serve their purpose or are
idle.

On the issue of configuring a Wi-Fi network, our evaluation of the experiment’s
results is carried out under the perspective that the performance and security of
wireless networks are topics of general interest, regularly brought up in ordinary
discussions. Users are concerned with security and desire faster internet access.

At the same time, the basic configuration of a wireless access point is a pro-
cedure that does not require advanced technical expertise or understanding of
the wireless technology. In addition, most devices are shipped, by the ISPs, with
manuals detailing simple settings alterations e.g. how to change the channel or to
apply encryption. And while encryption or Wi-Fi channel numbers are notions
whose exact meanings are unknown to the common user, the provided web-based
interfaces are simple enough to facilitate their management.

Nevertheless, our survey revealed that despite the importance of security and
the easiness for its application, very few users are confident enough to change
their WAP settings. As a result, only 1.4% encrypts their data with WPA2.
The only exception to this rule is the city centre where 7% of the networks use
WPA2. Even though this can be explained by the higher number of business
related networks, these are usually setup by specialized technicians and hence
this percentage should have been much higher. No WAP using WPA2 was found
in the student populated area which took us by surprise as we expected to find
more technically competent users there.
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It was found that around 70% of Wi-Fi networks are encrypted with WPA.
We assume that this is because WPA is the default encryption for the devices
preset by Greek ISPs in the last couple of years. Older subscribers still use the
unsecured WEP or no encryption at all.

Another evidence of security unaware users is the number of default SSIDs
found. Keeping the default SSID can not be considered as a security risk on its
own, but it prompts a potential hacker to try to penetrate to such a network.
Default SSIDs provide clues about the apparatus model and imply that there is
a good possibility that the default administration authentication has also been
kept.

The ignorance of users is further exposed when it comes to channel collisions,
i.e. the use of the same Wi-Fi channel by many neighboring networks. It is found
that when interference exists, the throughput of the system is reduced. It there-
fore pays to reduce the levels of interference to improve the overall performance
of the WLAN equipment. Although users crave for faster internet access they do
not take the corresponding actions. Our survey shows that in 87% of the cases
another nearby network was using the same channel. This causes interference
among such networks and reduces their throughput.

4.2 Relation to other Works

To our knowledge no similar experiment has been contacted in Greece. A study
on war driving in Dartmouth college campus is published in [8], while the Pro-
fessional Information Security Association (PISA) of Hong Kong reports the
findings of war driving in Hong Kong and Macau [9].

The first one is a survey that focus primarily on the accuracy of the WAP
position estimation and the impact it has on pervasive-computing applications
that depend on knowledge of user location. The article also comments on the
effect of using estimated WAP locations in computing AP coverage range and
estimating interference among WAPs.

The findings of the second survey are similar to ours, although it was made 3
years earlier (2007). An increasing adoption of encryption settings was identified
although 72% of the encrypted sites used WEP. Also, more that 40% of the WAPs
kept the default SSID settings while 20% of the rest used individual/family
names or organization names as their SSID.

Also, RSA, the security division of EMC2 Corporation, has commissioned
annual research over the past seven years, as part of its campaign to promote
and improve best practices in wireless security [10].

4.3 Impact for Practitioners

The fact that Wi-FI APs come with WPA encryption on their default settings has
improved the overall security of home networks. We propose a similar approach
to be adopted regarding the Wi-Fi channel setting. Randomizing the assigned
channel per WAP will reduce the probability of interference and thus will improve
performance.
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It should be noticed that although all manufacturers provide advanced secu-
rity measures in their appliances such as modifiable network identifier names and
passwords, address filtering, firewalls and WPA to protect wireless networks, it
is the consumer who must make the final steps in order to install, configure and
adjust all features for maximum security. Thus, it would be very helpful to spare
a few pages in user manuals with detailed step-by-step guides on security and
performance.

The ignorance or fear to manipulate device settings seems to be apparent in
the behavior of professional technicians as well and this is a situation that has
to be addressed.

4.4 Research Agenda

The same experiment will be repeated next year to examine changes in the
penetration of networks and the use of channels/encryption so as to find out
any progress in these issues. We also plan to perform similar experiments in
other cities in order to compare the relation of the public to wireless networks
in different areas. The parameter of checking MAC filtering will also be added.
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