
Elimination of Redundancy in Ontologies

Stephan Grimm and Jens Wissmann

FZI – Research Center for Information Technology, Karlsruhe, Germany
{grimm,wissmann}@fzi.de

Abstract. Ontologies may contain redundancy in terms of axioms that
logically follow from other axioms and that could be removed for the sake
of consolidation and conciseness without changing the overall meaning.
In this paper, we investigate methods for removing such redundancy
from ontologies. We define notions around redundancy and discuss typ-
ical cases of redundancy and their relation to ontology engineering and
evolution. We provide methods to compute irredundant ontologies both
indirectly by calculating justifications, and directly by utilising a hitting
set tree algorithm and module extraction techniques for optimization.
Moreover, we report on experimental results on removing redundancy
from existing ontologies available on the Web.

1 Introduction

Ontologies are subject to an engineering lifecycle as any other technical artifact
in an information system, and methods for their development and maintenance
over time are researched under the label of ontology evolution. Ontologies also
provide features for automated deduction that allow for deriving implicit knowl-
edge from its explicitly stated axioms. These features give rise to a notion of
redundancy in ontologies, meaning the presence of axioms that implicitly follow
from other axioms present in the ontology. One important technique in an on-
tology evolution toolbox is the automated identification and elimination of such
redundancy on demand to provide a means for the consolidation and compacti-
fication of ontologies in the course of their development.

Although there might be scenarios where redundancy can arguably be a de-
sirable feature, we consider cases in which ontology engineers want to identify
and eliminate redundancy to consolidate and clean up their ontologies for the
sake of maintenance. Techniques for keeping ontologies irredundant have many
use-cases in ontology evolution scenarios as redundancy can cause various prob-
lems. Due to the non-locality of redundant information distributed over several
axioms in different places, an ontology can be hard to understand, to maintain
and to be split into separate independent modules. Moreover, deletion or update
of axioms might be semantically ineffective in case they are implied by others.
Furthermore, in scenarios where techniques of automated knowledge acquisition
are utilized, redundancy elimination can reduce the amount of acquired state-
ments for optimising local storage and reasoning. Similarly, it can be used for
undoing materialization.

G. Antoniou et al. (Eds.): ESWC 2011, Part I, LNCS 6643, pp. 260–274, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Elimination of Redundancy in Ontologies 261

Elimination of redundancy can also support other techniques for processing
ontologies. While module extraction techniques typically single out relevant parts
of an ontology for reuse, they do not ensure minimality in axioms, whereas
a combination with redundancy elimination allows for obtaining irredundant
modules. Another use case for irredundant ontologies is the handling of access
rights to axioms of an ontology. There, the problem of concealed axioms being
derived by accessible ones can be avoided when using irredundant ontologies.

In this paper, we study methods for the elimination of redundancy in OWL
DL ontologies. We define various notions around redundancy in the axioms of
an ontology and identify typical cases in which redundancy is introduced unan-
ticipatedly in the course of an ontology’s evolution over time. We provide two
methods for computing all irredundant versions of an ontology: one by means of
calculating justifications combined with internalization, and one by direct iden-
tification of redundant axioms in an optimized hitting-set-tree algorithm that
makes calls to an underlying description logic reasoner. Furthermore, we present
empirical results for eliminating redundancy in existing ontologies based on an
implementation of the above methods, where we report on both the efficiency of
the algorithms and the effect of redundancy elimination applied to prevalent on-
tologies. By this, we contribute an effective and efficient means for consolidating
ontologies on demand to any ontology engineering toolbox.

The paper is organized in sections. After recalling preliminaries and related
work in Section 2, we introduce our notions around redundancy in ontologies
and discuss typical cases of redundancy in Section 3. Then, we describe methods
for an automated elimination of redundancy in Section 4 before reporting on
experimental results in Section 5. We conclude with future work in Section 6.

2 Preliminaries

We introduce some basic notions around ontologies and review related work.

OWL and Description Logics. As a language for ontologies we consider the
prominent Web Ontology Language (OWL) [11], which is based on the descrip-
tion logic (DL) formalism [2]. In description logics, an ontology O is a set of
axioms that express either terminological (T-Box) or assertional (A-Box) knowl-
edge. For details about types of axioms and the way complex concepts are con-
structed from individual, concept and role names, we refer to [2]. Our results are
largely independent from the concrete DL used.

Inference with OWL ontologies builds on the notion of logical consequence,
and we write O |= α to mean that an ontology O logically entails an axiom α,
and O |= {α1, . . . , αn} to express entailment of several axioms.

The signature of an ontology O, denoted by σ(O), is the set of all individual,
concept and role names occurring in O, and thus, its vocabulary.

Moreover, by 〈O〉 we denote the deductive closure of an ontology O, i.e. the
set {α | O |= α} of all DL axioms α that are logical consequences of O.

262 S. Grimm and J. Wissmann

Internalization. A technique called internalization can be used to express an
ontology in form of a single concept inclusion axiom [2]. The internalization of
an ontology O results in an axiom αO that contains all semantic information in
O, i.e. 〈O〉 = 〈{αO}〉. However, OWL ontologies cannot be fully internalized in
their complete expressivity. Certain role axioms cannot be internalized as they
do not syntactically fit the form of the concept inclusion axiom αO (see e.g. [8]).

Justifications. For debugging ontologies, justifications are used to provide ex-
planations for entailments. A justification is a minimal subset of an ontology
that supports a given entailment, captured by the following definition from [9].

Definition 1 (justification). For an ontology O and an axiom α with O |= α,
a set J of axioms is a justification for α in O if J ⊆ O, J |= α and there is no
set J ′ such that J ′ ⊂ J and J ′ |= α.

Module Extraction. Techniques of module extraction are used to obtain a
fragment of an ontology that is semantically relevant for entailments over a given
signature. Despite containing only a subset of the original ontology’s axioms, a
module preserves all entailments with regard to this signature. We adapt the
definition of a module based on the notion of conservative extension from [4].

Definition 2 (module). Let O and Om be ontologies with Om ⊆ O and Σ be
a signature. Then, Om is a module for Σ in O if for every ontology O′ with
σ(O′)∩σ(O) ⊆ Σ, we have that O′ ∪O |= α if and only if O′ ∪Om |= α for any
axiom α with σ(α) ⊆ Σ.

Related Work. A different notion of redundancy used in the DL literature,
e.g. [2], refers to concept names in ontologies that are entailed to be equivalent
to others, and thus are redundant vocabulary. Our notion of redundancy in
axioms has not been extensively investigated in the context of OWL ontologies
or description logics, and we mainly build on ideas introduced in [10] about
redundant clauses in propositional logic formulas. Moreover, our main method
for eliminating redundancy is largely inspired by the work on the use of a hitting-
set-tree algorithm [12] for finding all justifications in [9].

In various works on normal forms, DL knowledge bases are transformed into a
more compact form, such as prime implicate normal form [3] or linkless concept
descriptions [5]. In contrast to yielding irredundant ontologies, these works are
targeted to pre-processing ontologies for more efficient reasoning.

In [6], reductions of RDFS ontolgies are investigated in terms of RDF graphs
that do not contain entailed triples explicitly, and their uniqueness is related to
subsumption acyclicity of the original RDF graphs. Due to the simpler semantics
of RDFS, however, these results only cover explicit class subsumption.

In [1], the compactification of ontologies has more been studied more with
an application in mind and less focused on a grounding in the formal semantics
underlying OWL.

Elimination of Redundancy in Ontologies 263

3 Redundancy in Ontologies

In many ontology evolution scenarios, redundancy is unconsciously introduced in
the axioms of an ontology, which can make it hard to maintain. In the following,
we introduce useful notions and discuss cases of redundancy in ontologies.

3.1 Notion of Redundancy

For an ontology it is often desirable to derive a minimal version that does not
contain any redundancy in its axioms but has the same semantical “meaning”.
An ontology contains redundancy in terms of expressed axioms if any of the
axioms it contains is entailed by other axioms contained. The removal of such
a redundant axiom would preserve the deductive closure of the ontology due to
this entailment. Accordingly, we define redundancy in ontologies as follows.

Definition 3 (redundancy). An ontology O is redundant if it contains an
axiom α such that O \ {α} |= α.

We also call an irredundant subset of an ontology O that preserves the deductive
closure of O a reduction of O, as defined next.

Definition 4 (reduction). Let O and Ô be ontologies such that Ô ⊆ O. Then,
Ô is a reduction of O if Ô is irredundant and 〈Ô〉 = 〈O〉.
In case an ontology is already irredundant, it is its own reduction. Hence, every
ontology always has a reduction, which, however, need not be unique. For a
focused removal of redundancy from parts of an ontology only, any part can be
replaced by any of its reductions without loosing entailments due to monotonicity
of DLs. For studying cases of an ontology having several reductions, we classify
its axioms according to their level of dispensability, similar as in [10].

Definition 5 (dispensability of axioms). For O an ontology and α an axiom,

– α is indispensable in O if it is contained in all reductions of O
– α is unconditionally dispensable in O if it is in no reduction of O;
– α is conditionally dispensable in O if there are two different reductions

Ô1, Ô2 of O such that α ∈ Ô1 and α 	∈ Ô2.

Indispensable axioms are those required in an ontology, unconditionally dispens-
able axioms those that can safely be removed, and conditionally dispensable ax-
ioms those that are interchangeably replaceable. Clearly, the existence of several
reductions for an ontology is connected to the presence of conditionally dispens-
able axioms, as expressed in a proposition adapted from results in [10].

Proposition 1. An ontology O has a unique reduction if and only if the follow-
ing interchangeable conditions hold:

1. O has no conditionally dispensable axioms;
2. 〈O〉 = 〈Oi〉 for Oi the axioms indispensable in O;
3. there are no distinct sets S1, S2 of axioms conditionally dispensable in O

such that 〈O〉 = 〈O \ S1〉 = 〈O \ S2〉 	= 〈O \ (S1 ∪ S2)〉.

264 S. Grimm and J. Wissmann

Unfortunately, there is no easy way for distinguishing the conditionally dispens-
able axioms from the unconditionally dispensable ones. However, we can at least
easily identify those axioms as unconditionally dispensable that follow from the
indispensable axioms, according to the following lemma.

Lemma 1. For an ontology O with indispensable axioms Oi, any axiom α ∈ O
with Oi |= α is unconditionally dispensable in O, and thus, an ontology Ô is a
reduction of O if and only if it is a reduction of Oi ∪ {α ∈ O | Oi 	|= α}.
A special case of redundancy covered by Lemma 1 is the presence of tautologies.
Obviously, any tautological axiom in an ontology is unconditionally dispensable,
and thus, no reduction can contain a tautology.

For the computation of reductions, we will be interested in a gradual removal
of dispensable axioms from an ontology one-by-one. Removing single dispensable
axioms from an ontology results in a strict decrease of the set of dispensable
axioms in the respective sub-ontologies, such that reductions do not cease to be
reductions by such removal, as stated in the following lemma.

Lemma 2. Let O be an ontology with dispensable axioms Od and α be an axiom
with α ∈ Od. Then, O′

d ⊂ Od for O′
d the axioms dispensable in O \ {α}, and

thus, any reduction of O \ {α} is also a reduction of O.

3.2 Cases of Redundancy

Since we look at redundancy in ontologies primarily from an ontology engineering
and evolution point of view, we are interested in cases of redundancy as they
occur in an ontology, and in the way redundancy is introduced in such cases.

Ontologies typically evolve over time with their different parts being developed
and maintained in different contexts and separately from each other, which is
a potential source for redundancy if such parts are combined. Moreover, big
ontology development projects involve multiple ontology engineers who might
introduce redundancy in the course of concurrent modeling activities.

Table 1 shows an example of a redundant ontology Ohum about human rela-
tionships that illustrates the notions introduced above. The axioms in Table 1
are listed in the order they were introduced, starting with basic notions about
humans being either male or female, having children and being mother or father.
These are followed by the notion of parent and more precise definitions of what it
means to be father or mother, reflecting the successive expansion of an ontology
in its evolution process. Overall, Ohum has two reductions and occurrences of
both dispensable and indispensable axioms.

We identify cases in which redundancy is introduced in an unanticipated way.

Definition Over Subsumption. Definitions of concept names bear the poten-
tial to overwrite previously introduced subsumption axioms that involve these
names, as they often succeed the introduction of new concepts by simple sub-
sumption axioms. Axioms like A
 B1, A
 B2 become dispensable when adding
a definition A ≡ B1 � B2 for A due to {A ≡ B1 � B2} |= {A
 B1, A
 B2}. In
our example from Table 1, this case applies to the entailment {(10)} |= (8).

Elimination of Redundancy in Ontologies 265

Table 1. An example ontology about human relationships

Ohum

(1) Human � ∃ hasChild− .Human humans are children of humans

(2) Human ≡ Male � Female humans are defined as either male or female

(3) Male � Female � ⊥ males and females are distinct

(4) Father � Human fathers are human

(5) Mother � Human mothers are human

(6) Father � Mother � ⊥ fathers and mothers are distinct

(7)Parent ≡ Human � ∃ hasChild .Human parents are just humans with human children

(8) Father � Parent fathers are parents

(9) Human �= 2 hasChild− .Human humans have exactly two human parents

(10) Father ≡ Male � Parent fathers are male parents

(11) Mother ≡ Female � Parent mothers are female parents

(12) Parent(Peter) Peter is a parent

(13) Male(Peter) Peter is male

(14) Father(Peter) Peter is a father

indispensable:{2, 3, 7, 9, 10, 11}, conditionally disp.: {12, 13, 14}, uncond. disp.:{1, 4, 5, 6, 8}
reductions for Ohum: Ô1 = {2, 3, 7, 9, 10, 11, 14}, Ô2 = {2, 3, 7, 9, 10, 11, 13, 12}

Subsumption Transitivity. Also simple subsumption axioms between con-
cept names can introduce redundancy when explicating transitive parts of the
subsumption hierarchy, e.g. by introducing additional intermediate subclasses.
If A
 C is stated about A first, and later on the intermediate subclass B is
introduced by means of A
 B, B
 C then A
 C becomes dispensable. In our
example from Table 1, this is the case for the entailment {(7), (8)} |= (4).

Conjunctive Strengthening. Simple subsumption axioms between concept
names bear the potential to be overwritten by more complex ones that strengthen
the restrictions on the subsumed class by means of conjunctions. When placing
new concept names in an ontology’s subsumption hierarchy by means of axioms
like A
 B1, and then adding more restrictions by means of conjunction, such
as A
 B1 � B2, at a later stage, the former axiom becomes dispensable. The
entailment {(10)} |= (8) with regard to Table 1 is also an example for this case.

Disjunctive Weakening. Disjunctions on the right-hand side of subsumption
axioms bear the potential to become redundant when some of the disjunctive
cases are excluded later on. An example are so called coverage axioms of the form
A
 B1
B2, which are a common design pattern and thus likely to be introduced
early in the evolution of an ontology. If at a later stage more restrictive subsump-
tions about A are added without replacing the original coverage axiom, such as
A
 B1, then this one becomes dispensable due to A
 B1 |= A
 B1
 B2.

Cardinality Inclusion. Also numbers in cardinality restrictions might intro-
duce redundancy when applied to the same role but at different places or stages.
The restriction A
≤ 3 r, for example, is overwritten by A
≤ 2 r, due to
A
≤ 2 r |= A
≤ 3 r. For our example from Table 1, we get e.g. {(9)} |= (1).

Inherited Disjointness. Subclasses of respective disjoint classes are again dis-
joint from each other. Hence, disjointness axioms introduced deep down in class

266 S. Grimm and J. Wissmann

hierarchies become dispensable when the respective parent classes are stated to
be disjoint. In our example from Table 1, we have that {(3)} |= (6).
Assertional Redundancy. Also concept or role assertion axioms in ABoxes
can be redundant in combination with TBox information. This might either
happen in case a knowledge engineer describes a situation in an ABox very
explicitly, not having the full information regarding all TBox axioms in mind that
derive part of this situation, or in case a TBox is extended after situations have
been described accurately in the ABox in a way that makes ABox statements
obsolete. In our example from Table 1, axiom (14) is equivalent to {(12), (13)}.

For our experiments with OWL ontologies, we focus on scenarios in which
ontologies are primarily hand-crafted and no techniques of automated knowledge
acquisition are used. In such scenarios, we assume “typical” domain ontologies
as used in the Semantic Web to contain rather little redundancy, since ontology
engineers would most likely model their ontologies in a rather concise way, not
repeating statements over and over in different ways. Therefore, we work with
the following hypothesis for the subsequent computation of reductions.1

Hypothesis 1 (low redundancy). An ontology is expected to contain signifi-
cantly less dispensable axioms Od than indispensable axioms Oi: #Od � #Oi.

4 Computing Reductions

Starting from the notion of redundancy introduced above, we investigate how
irredundant ontologies can be produced from redundant ones in an automated
way. We propose two methods for computing reductions, one that builds on both
internalization and the computation of justifications, and one that computes
reductions directly based on the hitting set algorithm for diagnosis problems.

4.1 Finding Reductions by Computing Justifications

Recall the notion of a justification, which is a minimal subset of axioms of an
ontology that support a particular entailment. As such, a justification has the
property of not containing any redundancy at the level of expressed axioms, since
excluding any of its axioms would give up the entailment. If we expand a single
entailment to cover the whole ontology, we can extend this property from the
restricted set of axioms in the justification to the ontology as a whole. We can do
so by using the mechanism of internalization in order to encode all information
of the original ontology in a single entailed axiom – giving up this entailment
amounts to loosing information with regard to the original ontology. Hence,
algorithms for computing justifications can be used to produce reductions.

Since there can be several justifications for an entailment, this approach results
in several solutions for eliminating redundancy in an ontology. In fact, algorithms
that compute all justifications produce all reductions of an ontology internalized
by the respective entailed axiom, as stated next.
1 In Section 5 we will support this hypothesis with some empirical evidence from

experiments with existing ontologies.

Elimination of Redundancy in Ontologies 267

Algorithm 1. computeRedJust (O; R) – Compute reductions via justifications
Require: an ontology O
Ensure: R is the set of all reductions of O

O′ := R := J := ∅
extractInternalisablePart(O; O′)
internalize(O′; αO′)
computeJustifications(O, αO′ ; J)
for all Ji ∈ J do

R := R ∪ {Ji ∪ (O \ O′)}
end for

Theorem 1. Let O be an ontology and αO be the internalization of O such that
〈O〉 = 〈{αO}〉. Any justification JO for αO in O is a reduction of O such that
〈O〉 = 〈JO〉.
Proof. Let JO be a justification for αO in O. Then, the entailment JO |= αO
holds, and since O and αO are semantically equivalent, also JO |= O. Moreover,
due to JO ⊆ O we also have that O |= JO. This implies 〈O〉 = 〈JO〉.

We have just seen that αO ∈ 〈JO〉 due to JO |= αO. Since JO is a minimal
set of axioms that entail αO, we get that J ′ 	|= αO for any J ′ ⊂ JO. Hence, we
get 〈J ′〉 	= 〈JO〉 for any J ′ ⊂ JO, and by Definition 3, JO is irredundant. �

One drawback of this method is that in OWL not all axioms can in general be
internalized, and axioms not covered, such as transitivity or other role properties,
are not taken into account for the computation of reductions. However, for cases
in which ontologies are expressed in a language fragment that contains such
axioms, at least the internalizable part of an ontology can be freed of redundancy.
Algorithm 1 provides a procedure for this that makes use of procedures for
internalization and computation of justifications like the ones in [9].2 By this,
it provides a way to eliminate redundancy in ontologies by means of the readily
available techniques for internalization and for computing justifications.

Another drawback of this method is its low efficiency. Internalization of the
whole ontology in an axiom to be checked for entailment doubles the input for
the underlying DL reasoner, which has a significant impact on the run time of
the typically exponential time DL reasoning problem. Therefore, we investigate
the direct computation of reductions, next.

4.2 Finding Reductions by Direct Diagnosis

A straightforward method for computing a single reduction of an ontology is to
successively remove dispensable axioms from the ontology, which requires lin-
early many entailment checks for verifying dispensability of single axioms in the
successive sub-ontologies. In case the ontology’s dispensable axioms have been

2 In our procedural notation, parameters before the ;-symbol are read-only and passed
by value, while those after the ;-symbol are read/write and passed by reference.

268 S. Grimm and J. Wissmann

Algorithm 2. computeSingleReduction (O, Od; Ô) – Compute a single reduction
for an ontology with pre-identified dispensable axioms
Require: an ontology O, the set Od of axioms dispensable in O
Ensure: Ô is a reduction of O

Ô := O
for all α ∈ Od do

if Ô \ {α} |= α then Ô := Ô \ {α}
end for

Algorithm 3. determineDispensableAxioms (O, O∗; Od) – Find dispensable axioms
Require: an ontology O, an ontology O∗ with O∗ ⊆ O and O∗ contains all axioms

dispensable in O
Ensure: Od is the set of axioms that are dispensable in O

Od := ∅
for all α ∈ O∗ do

if O \ {α} |= α then Od := Od ∪ {α}
end for

pre-identified, this can be optimized verifying only dispensable axioms, since
indispensable axioms do not need to be checked for removal, according to Defi-
nition 5. Algorithm 2 provides a procedure for computing a single reduction of
an ontology with possibly pre-identified dispensable axioms in its second param-
eter; in case of not knowing the dispensable axioms in advance, this parameter
is initialized with the whole ontology.

For the task of finding all (or more than one) reductions of an ontology, it
is beneficial to spend the effort of pre-identifying dispensable axioms, since for
all reductions to be computed the indispensable axioms can be neglected, and
due to Hypotheses 1 their relative number is expected to be high. Algorithm 3
provides a procedure for this pre-identification, taking as its second parameter
a subset of the original ontology for optimization in case some axioms can be
excluded from being dispensable, which applies for repeated calls when only a
subset of formerly dispensable axioms needs to be checked due to Lemma 2.

Based on pre-identified dispensable axioms, techniques for ontology module
extraction can be applied to optimize the computation of all reductions of an
ontology. Observe from Algorithm 2 that calls to a DL reasoner for entailment
checking are restricted to axioms dispensable in the original ontology, which can
expected to be few according to Hypothesis 1. Instead of checking entailment
with respect to the full ontology, it is therefore sufficient to only take into ac-
count an ontology module that is computed by means of the signature of all
dispensable axioms to preserve their (non-)entailment according to Definition 2.
The following proposition provides the basis for this optimization.

Proposition 2. Let O be an ontology with dispensable axioms Od and Om be a
module for σ(Od) in O \Od. Then, Ô′ ∪ (O \ (Om ∪Od) is a reduction of O for
any reduction Ô′ of Om ∪ Od.

Elimination of Redundancy in Ontologies 269

Proof. Ô′ ∪ (O \ (Om ∪ Od)) ⊆ O holds due to Ô′ ⊆ Om ∪ Od ⊆ O.
Since Ô′ is a reduction of Om∪Od, we have that 〈Ô′〉 = 〈Om ∪ Od〉, and thus,

〈Ô′ ∪ (O \ (Om ∪ Od)〉 = 〈(Om ∪ Od) ∪ (O \ (Om ∪ Od)〉 = 〈O〉.
Finally, assume that Ô′ ∪ (O \ (Om ∪ Od)) is redundant. Then, there is an

axiom α ∈ Ô′∪(O\(Om∪Od)) with Ô′∪(O\(Om∪Od))\{α} |= α. As α ∈ Od,
and because O \ (Om ∪ Od) contains only axioms indispensable in O, we have
that α ∈ Ô′. Moreover, since α ∈ Od, we get O\{α} = (O\Od)∪(Od\{α}) |= α.
Since Om is a module for σ(Od) in O \Od, the entailment Om ∪ (Od \ {α}) |= α
follows from Definition 2, as σ(Od \ {α}) ∩ σ(O \ Od) ⊆ σ(Od). It implies that
〈Om ∪ (Od \ {α})〉 = 〈Om ∪ Od〉 = 〈Ô′〉, and thus, we get Ô′ \ {α} |= α, since
α ∈ 〈Om ∪ (Od \ α)〉. This contradicts the assumption and Ô′ ∪ (O\ (Om ∪Od))
is therefore irredundant. �

According to Proposition 2, computation of reductions of an ontology can be
restricted to its dispensable axioms combined with a module in its indispensable
axioms computed for the signature of the dispensable axioms. Due to Hypoth-
esis 1 this computation of the module can be expected to potentially filter out
large parts of an ontology irrelevant for elimination of redundancy in a pre-
computation step when pre-identifying dispensable axioms.

To provide an effective and efficient method for computing all reductions of an
ontology, we finally introduce the notion of a reduction tree based on principles
of the hitting set tree algorithm presented in [12] and applied to computing
justifications in [9].

Definition 6 (reduction tree). For an ontology O with indispensable axioms
Oi, a reduction tree is a tree structure T with nodes labelled by sets of axioms
and arcs labelled by axioms. Let O∗ := Oi ∪ {α ∈ O | Oi 	|= α}, P (n) be the set
of axioms along the path of arcs from the root node of T to node n, Od(n) be the
axioms dispensable in O∗ \P (n), Od(n, α) be the axioms of Od(n) dispensable in
O∗ \ (P (n)∪ {α}), Om(n) be a module for σ(Od(n)) in O∗ \P (n) and Om(n, α)
be a module for σ(Od(n, α)) in Om(n) . The tree T is defined recursively:

– T has at least one node, the root node n0, which is labelled by Ô′ ∪ (Oi \
Om(n0)) for some reduction Ô′ of Om(n0) ∪Od(n0);

– if n is a node of T with node label Ôn then n has a successor node nα for
each axiom α in Ôn ∩ Od(n) with the following properties:
• nα is connected to n by an edge labelled by α;
• the label of nα is Ô′∪(Oi\Om(n, α)) for some reduction Ô′ of Om(n, α)∪
Od(n, α).

We show that a reduction tree can be used as a means to compute all reductions
of an ontology in the following theorem.

Theorem 2. The set of all node labels of a reduction tree for an ontology O is
the set of all reductions of O.

Proof. We will prove the following two claims: a) the label of any node in T is a
reduction of O; b) for any reduction Ô of O there is a node in T with label Ô.

270 S. Grimm and J. Wissmann

a) The proof is by induction over the tree structure of T .
The label Ô′∪(Oi\Om(n0)) of n0 is equivalent to Ô′∪(O∗\(Om(n0)∪Od(n0))),

since O∗ \ Od = Oi. Due to Proposition 2 Ô′ ∪ (O∗ \ (Om(n0) ∪ Od(n0))) is a
reduction of O∗, and due to Lemma 1 it is also a reduction of the semantically
equivalent O.

Now, let n be any node in T with label Ôn a reduction of O and nα be any
successor node of n connected to n by an edge labelled α. Then, the node label
Ô := Ô′ ∪ (Oi \ Om(n, α)) of nα is equivalent to Ô′ ∪ ((O∗ \ (P (n) ∪ {α})) \
(Om(n, α) ∪ Od(n, α))), since O∗ \ (P (n) ∪ {α} ∪ Od(n, α)) = Oi. Hence, Ô
is a reduction of O∗ \ (P (n) ∪ {α}) due to Proposition 2, since Od(n, α) are
just the dispensable axioms in Ô. Due to Lemma 2 Ô is also a reduction of
O∗ \P (n), because of α ∈ Od(n). Since also Ôn is a reduction of O∗ \P (n) (due
to Proposition 2), we have that 〈Ôn〉 = 〈Ô〉. Hence, the irredundant Ô is also a
reduction of O, as is Ôn.
b) Let Ô be a reduction of O. Again by induction, we show that Ô is a node
label along some branch in T .

For the root node n0 we have that Ô ⊆ O∗ = O∗ \ P (n0). Now, let n be any
node in T with Ô ⊆ O∗ \ P (n). If the label of n is not Ô then it contains some
axiom α with α 	∈ Ô, since different reductions of O deviate by conditionally
dispensable axioms due to Proposition 1. In this case, there is a successor node
nα, connected to n by an edge labelled α, such that Ô ⊆ O∗ \ (P (nα)).

Due to the strict decrease of the set O∗ \ P (n) down the paths the tree is
finite and at a certain point Ô must be the label of some node. �

With Algorithm 5 and Algorithm 4 we present procedures to compute all re-
ductions of an ontology in an optimized way. A call to the procedure com-

puteReductions initiates the computation with a call to the recursive procedure
computeAllReductions, which traverses the reduction tree and makes use of
Lemma 2 when passing subsets of dispensable axioms down the tree structure.
The procedure computeModule computes a module of an ontology based on a sig-
nature with the properties according to Definition 2 using techniques from [4],
while the procedure determineUncondDispAxioms in Algorithm 6 identifies part of
the unconditionally dispensable axioms according to Lemma 1. In addition to
pre-identification of dispensable axioms and module extraction, we can also make
use of optimizations for node label reuse and tree pruning that have been devised
for hitting set tree algorithms. They are described in [12] and are implemented
in the conditions of the if-statements in Algorithm 4, similar to [9].

5 Oberservations on Reduction Computation

In order to evaluate the practicability of removing redundancy from ontolo-
gies, the above algorithms were implemented using the latest version of the
OWL API3. We used the Pellet reasoner [14] (v2.1.1) to check entailments, com-
pute regular justifications and to extract modules. The tests have been performed

3 http://owlapi.sourceforge.net

http://owlapi.sourceforge.net

Elimination of Redundancy in Ontologies 271

Algorithm 4. computeAllReductions (O, Od, Om, P ; R, Pc, Po) – Collect all
reductions of an ontology recursively
Require: an ontology O, the set Od of axioms dispensable in O, a module Om for

σ(Od) in O \ Od, a set P of axioms with P ∩O = ∅
Ensure: R contains all reductions of O, Pc . . . , Po . . .

if R
= ∅ and P ∩O∗ = ∅ for any O∗ ∈ R then
Ô := O∗

else
Ô := ∅
computeSingleReduction (Om ∪ Od, Od; Ô)
Ô := Ô ∪ (O \ Om)
R := R ∪ {Ô}

endif
O′

m := O′
d := ∅

for all α ∈ Ô ∩ Od do
if not (P ∪{α} ⊇ P ∗ for any P ∗ ∈ Pc or P ∪{α} = P ∗ for any P ∗ ∈ Po) then

determineDispensableAxioms (O \ {α}, Od \ {α}; O′
d)

computeModule (Om, σ(O′
d); O′

m)
computeAllReductions (O \ {α}, O′

d,O′
m, P ∪ {α};R, Pc, Po)

endif
Po := Po ∪ {P ∪ {α}}

end for
Pc := Pc ∪ {P}

Algorithm 5. computeReductions (O; R) – Calculate all reductions of an ontology
Require: an ontology O
Ensure: R contains all reductions of O

Od := ∅
determineDispensableAxioms (O, O; Od)
Om := ∅
computeModule (O \ Od, σ(Od); Om)
Ou := ∅
determineUncondDispAxioms (Om ∪Od, Od; Ou)
R := Pc := Po := ∅
computeAllReductions (O \ Ou, Od \ Ou, Om, ∅; R,Pc, Po)

Algorithm 6. determineUncondDispAxioms (O, Od; Ou) – Determine uncondition-
ally dispensable axioms
Require: an ontology O, the set Od of axioms dispensable in O
Ensure: Ou contains only axioms that are unconditionally dispensable in O

Ou := ∅
for all α ∈ Od do

if O \ Od |= α then Ou := Ou ∪ {α}
end for

272 S. Grimm and J. Wissmann

Table 2. Results of redundancy elimination with all optimizations enabled.

reduced to dispensability

Ontology DL #O #{Ôi} max. min. #Oi #Oc #Ou tfirst tmean

1 HumanRel ALCIQ 14 2 50% 57% 6 3 5 0.19 0.10
2 Generations ALCOIF 38 5 87% 87% 25 2 11 0.10 0.04
3 Nautilus ALCHF(D) 38 1 84% 84% 32 0 6 0.06 0.06
4 PeriodicTable ALU 58 1 97% 97% 56 0 2 0.29 0.29
5 People ALCHOIN 108 1 93% 93% 88 0 20 0.52 0.52
6 DOLCE Lite SHIF 351 58 54% 56% 134 157 60 7.73 4.61
7 Pizza SHOIN 712 12 58% 59% 404 26 282 20.38 2.21
8 Transportation ALCH(D) 1157 3 90% 90% 1011 6 140 32.10 10.87
9 Economy ALCH(D) 1625 3 43% 44% 705 4 916 43.46 21.74

10 Process ALCHOF(D) 2578 15 94% 94% 2210 29 339 172.66 14.56
11 Wine SHOIN (D) 657 3 40% 40% 262 5 390 338.99 57.30
12 FlyAnatomy EL++ 10471 5 98% 98% 10289 14 168 2845.76 576.78

on a laptop with 2.4 GHz dual core processor, with Java 1.6, assigning 1 GB
memory to Java. A selection of publicly available ontologies (as shown in Table 2)
varying in size and expressivity have been used in the experiments.4

Before we conducted our main experiments with the optimized hitting set
tree approach, we tested the elimination of redundancy via justifications as de-
scribed in Algorithm 1 on the same set of ontologies. Small and inexpressive
ontologies could be reduced properly in acceptable time. Especially, reductions
for the human relationship example (1) could be computed in 2,24s, for the
Nautilus ontology (3) in 4,98s and for the PeriodicTable (4) in 9,7s. No redun-
dancy was found in the Generations ontology (2) and the People ontology (5) as
their redundancies depend on uninternalized RBox axioms. Unfortunatly, com-
putations for all other ontologies in our test set either terminated with heap
space exceptions or did not terminate at all within a timeframe of several hours.
These results lead us to the belief that a more scalable method both in terms of
performance and with no restrictions regarding axiom types is preferable.

As an alternative, we evaluated redundancy elimination with the optimized
hitting set tree approach as described in Algorithm 4. As Table 2 shows, the
achieved reduction rates ranged from 40% to 98%. In most cases the number
of dispensable axioms is considerably smaller than the number of indispensable
ones, which empirically supports Hypothesis 1. Exceptions are ontologies de-
signed as example showcases, such as the human relationship or pizza ontology.
Further note that Hypothesis 1 was formulated with focus on reducing TBoxes.
If we, for example, consider ABoxes with large amounts of materialized knowl-
edge, such as transitive role assertions, the situation might be different and the
optimizations would need to be configured accordingly.

The ontologies in Table 2 are sorted according to the time it took for the first
reduction to be computed. The quickest work in real-time (1–5), some take up
4 The wine ontology may be retrieved from http://www.w3.org/TR/2003/

PR-owl-guide-20031209/wine. All other ontologies used may be found in the
TONES ontology repository at http://owl.cs.manchester.ac.uk/repository.

http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine
http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine
http://owl.cs.manchester.ac.uk/repository

Elimination of Redundancy in Ontologies 273

to seconds, others take up to minutes, and the last one reveals the computational
limits of the approach. The combination of both size and expressivity determine
the efficiency of redundancy elimination although the results indicate that the
impact of reasoning complexity is considerably higher. Notably, the wine on-
tology (11) needed longer time to process than ontologies (8–10), which have
more axioms but are less expressive; e.g. it took more than seven times longer
to compute the first wine (11) reduction than the first economy (9) reduction
despite the significantly smaller size. Interestingly the Pizza ontology does not
need as long although it is also expressed in SHOIN . It is however known that
certain configurations of concept descriptions are especially hard for automated
reasoning as it is the case in the wine ontology as discussed by [13].

We investigated the effect of different configurations of optimizations. As ex-
pected, the pre-identification of dispensable axioms brings a large performance
benefit. The computation time for the first reduction is in general significantly
larger than the computation times for successive reductions.

In our current experiments we considered two configurations for module ex-
traction: firstly only an initial module extraction with no further extraction
during the hitting set exploration, and secondly the repeated extraction of mod-
ule throughout the algorithm, and compared these with the computation times
when just using hitting-set optimizations. We observed that for small ontologies
(1–3) the cost of modularization was higher than the gain. Here the modulariza-
tion slowered the computation up to factor of two to three. At ontologies (4–9)
a break-even seems to be reached for initial modularization while inner modu-
larization is still costly. For the larger and more expressive ontologies we find a
gain in modularization, though no clear gain of repeated modularization is vis-
ible in the current setting. An introspection of the results showed however that
the size of the extracted modules decreased within the first two or three com-
putations and then remained the same or just change very little. For example,
in ontology 12 the first three modules have the size 10289, 10133, 9931. As the
following extraction steps return modules of constant size 9931 the computation
is counterproductive. However, this also indicates a positive effect of repeated
modularization for large ontologies but also that a more fine-tuned approach to
when to start or stop modularization is desirable.

6 Conclusion

We have introduced notions around redundancy in OWL ontologies and have
identified typical cases where redundancy is introduced in the course of ontology
evolution in an unanticipated way. We have provided two methods for eliminating
redundancy: one utilising readily available techniques of computing justifications
and internalization, and another one based on a hitting-set-tree algorithm further
optimized by module extraction. We have shown our optimized methods to be
effective and efficient on typical ontologies used in the Semantic Web context,
based on a prototypical implementation.

For future work, we plan to investigate the elimination of redundancy in parts
of axioms to yield a more fine-grained notion of redundancy, similar to work

274 S. Grimm and J. Wissmann

on laconic justifications in [7]. Moreover, we want to target the comparison and
evaluation of different reductions and to provide measures that help a knowledge
engineer to decide for one.

References

1. Alani, H., Harris, S., O’Neil, B.: Winnowing Ontologies Based on Application Use.
In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 185–199.
Springer, Heidelberg (2006)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, Cambridge (2007)

3. Bienvenu, M.: Prime Implicate Normal Form for ALC Concepts. In: AAAI 2008:
Proc. of the 23rd Conference on Artif. Intelligence, pp. 412–417. AAAI Press, Menlo
Park (2008)

4. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Extracting Modules
from Ontologies: A Logic-based Approach. In: Stuckenschmidt, H., Parent, C.,
Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 159–186.
Springer, Heidelberg (2009)

5. Furbach, U., Obermaier, C.: Knowledge Compilation for Description Logics. In:
Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790. Springer,
Heidelberg (2007)

6. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of Semantic
Web Databases. In: PODS 2004: Proceedings of the Twenty-third ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp.
95–106. ACM, New York (2004)

7. Horridge, M., Parsia, B., Sattler, U.: Laconic and Precise Justifications in OWL.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Hei-
delberg (2008)

8. Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: Proc.
of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2006), pp. 57–67. AAAI Press, Menlo Park (2006)

9. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding All Justifications of
OWL DL Entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
267–280. Springer, Heidelberg (2007)

10. Liberatore, P.: Redundancy in Logic I: CNF Propositional Formulae. Artif. In-
tell. 163(2), 203–232 (2005)

11. W3C, O.W.L.: Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, October 27 (2009), http://www.w3.org/TR/

owl2-overview/
12. Reiter, R.: A Theory of Diagnosis from first Principles. Artif. Intell. 32(1), 57–95

(1987)
13. Sirin, E., Cuenca Grau, B., Parsia, B.: From Wine to Water: Optimizing Descrip-

tion Logic Reasoning for Nominals. In: KR, pp. 90–99. AAAI Press, Menlo Park
(2006)

14. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A Practical
OWL-DL Reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

	Elimination of Redundancy in Ontologies
	Introduction
	Preliminaries
	Redundancy in Ontologies
	Notion of Redundancy
	Cases of Redundancy

	Computing Reductions
	Finding Reductions by Computing Justifications
	Finding Reductions by Direct Diagnosis

	Oberservations on Reduction Computation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

