
Zero-Knowledge Query Planning

for an Iterator Implementation of
Link Traversal Based Query Execution

Olaf Hartig

Humboldt-Universität zu Berlin
hartig@informatik.hu-berlin.de

Abstract. Link traversal based query execution is a new query execu-
tion paradigm for the Web of Data. This approach allows the execution
engine to discover potentially relevant data during the query execution
and, thus, enables users to tap the full potential of the Web. In earlier
work we propose to implement the idea of link traversal based query
execution using a synchronous pipeline of iterators. While this idea al-
lows for an easy and efficient implementation, it introduces restrictions
that cause less comprehensive result sets. In this paper we address this
limitation. We analyze the restrictions and discuss how the evaluation
order of a query may affect result set size and query execution costs. To
identify a suitable order, we propose a heuristic for our scenario where no
a-priory information about relevant data sources is present. We evaluate
this heuristic by executing real-world queries over the Web of Data.

1 Introduction

While the possibility to query the emerging Web of Data enables exciting oppor-
tunities, executing SPARQL queries over the Web poses novel challenges [1]. It
is impossible to know all data sources that might contribute to the answer of a
query. To tap the full potential of the Web, traditional query execution paradigms
are insufficient because they assume knowledge of a fixed set of potentially rele-
vant data sources beforehand. In [2] we propose a novel query execution paradigm
that conceives the Web of Data as an initially unknown set of data sources and
makes use of the characteristics of Linked Data, in particular, the existence of
links between data items from different sources. The main idea of our approach
is to intertwine the construction of the query result with the traversal of data
links that correspond to intermediate solutions in the construction process. This
strategy, which we call link traversal based query execution, allows the execution
engine to discover potentially relevant data during the query execution.

Different implementations of the general idea of link traversal based query
execution are possible (e.g. [2,3]), each having its own strengths and drawbacks.
In [2] we propose an iterator based implementation approach, including concepts
that improve its execution times. This implementation approach applies a syn-
chronized pipeline of operators that evaluate the query in a fixed order. While

G. Antoniou et al. (Eds.): ESWC 2011, Part I, LNCS 6643, pp. 154–169, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Zero-Knowledge Query Planning for an Iterator Implementation 155

this approach determines query results efficiently, the fixed evaluation order may
prevent finding some query results. In this paper we address this limitation.

As a prerequisite to analyze the iterator based approach we provide a def-
inition of link traversal based query execution, independent of possible imple-
mentation approaches, and, thereby, introduce a completeness criteria. We align
our iterator based approach with this definition: We prove that the approach is
sound and analyze why it cannot guarantee results that satisfy our completeness
criteria. Furthermore, we describe how the evaluation order of the query may
affect result completeness. Since this effect causes the need to select a suitable
order, we discuss the possibilities of query planning and propose a heuristics
based approach as the only applicable strategy in our scenario in which we can-
not assume any information about statistics or data distribution when we start
the execution of a query. To evaluate our heuristic we execute real-world queries.

This paper is structured as follows: While Section 2 defines link traversal
based query execution, Section 3 aligns our implementation approach with this
definition and analyzes the issue of result completeness. Section 4 discusses query
planning and our heuristic for plan selection. In Section 5 we evaluate this heuris-
tic. Finally, we study related work in Section 6 and conclude in Section 7.

2 Definition of Link Traversal Based Query Execution

Link traversal based query execution is a new query execution paradigm devel-
oped to exploit the Web of Data to its full potential. Since adhering to the Linked
Data principles is the minimal requirement for publication in the Web of Data
our approach relies solely on these principles instead of assuming the existence of
source-specific query services such as SPARQL endpoints. This section provides
a formal definition of the general idea of link traversal based query execution.
For the formalization we adopt a static view of the Web, that is, we assume no
changes are made to the data on the Web during the execution of a query.

2.1 Preliminaries

The Linked Data principles require to describe data using RDF. RDF distin-
guishes three distinct sets of RDF terms : U , the (possibly infinite) set of URIs, L,
an infinite set of literals, and B, an infinite set of blank nodes that represent un-
named entities. An RDF triple is a 3-tuple t=(s, p, o) ∈ (U∪B)×U ×(U∪B∪L)
where s is called the subject of t, p the predicate, and o the object.

In the Web of Data entities have to be identified via HTTP scheme based
URIs. Let ULD ⊂ U be the (possibly infinite) set of all these URIs. By looking
up such a URI we retrieve RDF data about the entity identified by the URI.
For our formalization we introduce a function, denoted as lookup, to refer to
the result of such look-ups: lookup is a surjective function which returns for
each URI u ∈ ULD a descriptor object, that is, a set of RDF triples which
i) can be retrieved by looking up u on the Web and which ii) describes the
entity identified by u. Hence, based on the Linked Data principles we expect:

156 O. Hartig

∀u ∈ ULD :
(∃(s, p, o) ∈ lookup(u) : s = u∨o = u

)
. Note, lookup is not injective;

it is possible that the same descriptor object is retrieved by looking up distinct
URIs. In this case, the descriptor object describes multiple entities. For each
t /∈ ULD the look-up function returns an empty descriptor object: lookup(t) = ∅.

We define our query execution approach for basic graph patterns1. A basic
graph pattern (BGP) is a subset of the set2 (U ∪V)×(U ∪V)×(U ∪V ∪L) where
V is an infinite set of query variables. The elements of a BGP are called triple
patterns. For each triple pattern tp we write uris(tp) and vars(tp) to denote the
set of all URIs and the set of all query variables contained in tp, respectively. A
matching triple in a set of RDF triples G for a triple pattern (s̃, p̃, õ) is any RDF
triple (s, p, o) ∈ G with (s̃ /∈ V ⇒ s̃ = s) ∧ (p̃ /∈ V ⇒ p̃ = p) ∧ (õ /∈ V ⇒ õ = o).

2.2 Link Traversal Based Solutions for Basic Graph Patterns

We define the notion of solutions for the link traversal based query execution of
a BGP using a two-phase approach: First, we define what descriptor objects can
be discovered during link traversal based query execution. Then, we formalize
solutions as sets of variable bindings that correspond to a subset of all data from
all discovered descriptor objects. Notice, while this two-phase approach provides
for a straightforward definition of solutions it does not correspond to the actual
query execution strategy of intertwining the traversal of data links and graph
pattern matching as is characteristic for link traversal based query execution.

To formalize what descriptor objects can be discovered during the link traver-
sal based execution of a BGP we introduce the concept of reachability:

Definition 1. Let b = {tp1, ... , tpn} be a BGP; let D be a descriptor object.
D is reachable by the execution of b iff either

– ∃(s̃, p̃, õ) ∈ b : lookup(s̃) = D ∨ lookup(p̃) = D ∨ lookup(õ) = D
– or there exists another descriptor object D′, a triple pattern tp ∈ b, and an

RDF triple t = (s, p, o) such that i) D′ is reachable by the execution of b, ii) t
is a matching triple for tp in D′, and iii) lookup(s) = D, lookup(p) = D or
lookup(o) = D.

To represent the solutions of BGPs we adopt the notion of a solution mapping as
defined in the SPARQL specification [4]. These mappings bind query variables to
RDF terms. Hence, a solution mapping µ is a set of variable-term-pairs where no
two pairs contain the same variable. The application of a solution mapping µ to
a triple pattern tp, denoted as µ[tp], implies replacing each variable in tp by the
RDF term it is bound to in µ; unbound variables must not be replaced. Similarly,
a solution mapping µ can be applied to a whole BGP b: µ[b] = {µ[tpi] | tpi ∈ b}.
Using solution mappings we introduce our notion of solutions for a BGP:
1 While we consider only BGPs in this paper, the solutions for BGPs that might

be determined using link traversal based query execution, can be processed by the
SPARQL algebra that provides operators for more complex SPARQL graph patterns.

2 For the sake of a more straightforward formalization we do not permit blank nodes
in BGPs as is possible according to the SPARQL specification [4]. In practice, each
blank node in a SPARQL query can be replaced by a new variable.

Zero-Knowledge Query Planning for an Iterator Implementation 157

Definition 2. Let b be a BGP and let D be the set of all descriptor objects
reachable by the execution of b. A solution mapping µ is a solution for b iff
i) it holds3: µ[b] ⊆ ⋃

D∈D D and ii) µ maps only these variables that are in b,
i.e. ∀(v, t) ∈ µ : v ∈ ⋃

tp∈b vars(tp),

2.3 Link Traversal Based Construction of Solutions

While the two-phase definition approach in the previous section defines the no-
tion of solutions for BGPs in the context of link traversal based query execution,
it does not reflect the fundamental idea of intertwining link traversal with the
construction of solutions. Instead, a query execution engine that would directly
implement this two-phase approach would have to retrieve all reachable descrip-
tor objects before it could generate solutions for a BGP. Hence, the first solutions
could only be generated after all data links that correspond to triple patterns in
the BGP have been followed recursively. Retrieving the complete set of reachable
data can take a long time and may exceed the resources of the execution engine.

For this reason, the link traversal based query execution approach requires to
construct the solutions incrementally, using a query-local dataset that is contin-
uously augmented with additional descriptor objects. These descriptor objects
are discovered by looking up URIs that occur in intermediate solution, that are,
solution mappings from which the solutions are constructed. In the next section
we discuss a possible implementation of this strategy.

3 Iterator Based Implementation

In [2] we introduce the idea of link traversal based query execution using an
iterator based implementation of this idea. In this section we align this imple-
mentation approach with the general idea defined in the previous section. We
give an introduction to the approach and discuss soundness and completeness.

3.1 Introduction to the Approach

Our implementation approach applies a synchronized pipeline of operators that
evaluate a BGP in a fixed order. This pipeline is implemented as a chain of
iterators I1, ... , In where each iterator Ii is responsible for triple pattern tpi

from the ordered BGP4 b̄ = [tp1, ... , tpn]. The operation implemented by these
iterators returns solution mappings that are solutions for a BGP consisting of
the triple pattern of the corresponding iterator and all triple patterns of the
3 For the union of descriptor objects we assume that no two descriptor objects share

the same blank nodes. This requirement can be guaranteed by using a unique set of
blank nodes identifiers for each descriptor object retrieved from the Web.

4 We represent an ordered BGP as a list, denoted by comma-separated elements en-
closed in brackets. In the remainder of this paper we conceive such an ordered BGP
as a logical query plan. Selecting an order for a BGP is a query optimization problem
as we discuss in Section 4. However, in this section we assume a given order.

158 O. Hartig

Algorithm 1. GetNext function for our iterator based implementation approach.
Require: A set D of descriptor objects that always represents the current state of the

query-local dataset; a triple pattern tpi; a predecessor iterator Ii−1 that provides
solutions for {tp1, ... , tpi−1} in D; an initially empty set Mi that allows the iterator
to keep matching triples between calls to this iterator function

1: while Mi = ∅ do
2: μ′ := Ii−1.GetNext
3: if μ′ = NotFound then return NotFound end if
4: tp′

i := μ′[tpi]
5: for all u ∈ uris(tp′

i) do
6: if lookup(u) /∈ D then D := D ∪ {lookup(u)} end if
7: end for
8: Mi := set of all matching triples for tp′

i in
⋃

D∈D D
9: end while

10: tj := an element in Mi

11: Mi := Mi \ {tj}
12: μj := a solution mapping such that μj [tp

′
i] = tj and ∀(v, t) ∈ μj : v ∈ vars(tp′

i)
13: return μ′ ∪ μj

preceding iterators; i.e., each Ii provides solutions for {tp1, ... , tpi}. To determine
these solutions each iterator executes the following three steps repetitively: First,
the iterator consumes a solution mapping µ′ of its direct predecessor5 and applies
this mapping to its triple pattern tpi, resulting in a triple pattern tp′i = µ′[tpi]
(lines 2 to 4 in Algorithm 1); second, the iterator ensures that the query-local
dataset contains these descriptor objects that can be retrieved from looking up
all URIs in tp′i (lines 5 to 7); and, third, the iterator tries to generate solutions
by finding matching triples for tp′i in the query-local dataset (lines 8 to 13).

This approach is sound because each solution determined by the approach
satisfies Definition 2 as we prove in [5]. Moreover, the approach is in fact an
implementation of the idea of link traversal based query execution because it
satisfies the criteria specified in Section 2.3: First, due to the second step, the it-
erators continuously augment the query-local dataset by looking up URIs on the
Web and, second, all solutions are constructed incrementally, using this dataset.

The practicability of this approach is based on the following look-up assump-
tion: If a solution mapping binds query variable v to URI u then the descriptor
object lookup(u) may contain matching triples for triple patterns that contain v.
This assumption is justified by the common practice of publishing Linked Data.

3.2 Missing Query Results

Even if our iterator based approach is a correct implementation of link traversal
based query execution, it does not guarantee to return all solutions that satisfy
Definition 2. In the following we discuss the reasons for this limitation.

5 We assume the first iterator, I1, consumes a single, empty solution mapping once.

Zero-Knowledge Query Planning for an Iterator Implementation 159

The most restricting characteristic of the iterator based approach is the fixed
order in which it evaluates the triple patterns from a BGP. Since the discov-
ery of reachable descriptor objects is aligned with the fixed-order evaluation of
triple patterns, the approach cannot make use of the flexibility in the discovery
as would be possible according to Definition 1. Hence, it may not discover all
reachable descriptor objects and, thus, may miss some matching triples.

Additionally, the iterators dismiss an intermediate solution µ′ consumed from
their predecessor when they consume the next µ′. Hence, each µ′ is used only
once to find matching triples Mi for µ′[tpi]. Due to this “use and forget” strategy
the approach misses matching triples for µ′[tpi] that occur in these descriptor
objects that will be discovered after the next µ′ has been requested.

Finally, to enable an implementation that avoids inconsistencies and concur-
rency issues, the iterators determine all matching triples in isolation as repre-
sented by the set Mi in Algorithm 1. We propose to implement this strategy
with an immutable snapshot of the query-local dataset [2,6]. However, by iso-
lating the triple pattern matching, an iterator misses matching triples for µ′[tpi]
if they occur in descriptor objects that subsequent iterators discover when they
consume the intermediate solutions generated from the current Mi, although the
current µ′ would still be available (in contrast to the aforementioned case).

Even if the iterator based approach may not return all solutions that sat-
isfy Definition 2, it is worth studying: The effort to use this approach to enable
link traversal based query execution in existing SPARQL query engines is com-
parably small, considering that the majority of engines use an iterator based
execution strategy. Furthermore, its limitation may be accepted as a trade-off
to avoid inapplicable long query execution times. Various Linked Data based
applications employ the approach successfully; e.g., Researchers Map [7], Foaf
Letter, AltMed6, and an approach to consume distributed provenance traces [8].

3.3 The Impact of the Evaluation Order on Query Results

As a consequence of using a fixed evaluation order, the order which is actually
being used influences which reachable descriptor objects a query engine discovers
and, thus, which solutions it reports. The following example illustrates this effect:

?x rd f : type <http : / / . . . /X> .
?x ex : p1 ?y .
?y r d f s : l a b e l ? z .
?y ex : p2 <http : / / . . . / a> .

Fig. 1. A sample BGP

Example 1. To execute the BGP in Figure 1
we may select a query plan that uses the order
given in the figure. During the execution of this
plan the second iterator I2 requests the first in-
termediate solution from its predecessor I1. I1

ensures that the query-local dataset contains
the descriptor object DX = lookup(http://.../X) 7 and, thereafter, I1 tries
to find matching triples for its triple pattern (i.e. the first pattern in Figure 1).
Unfortunately, DX does not contain such triples (cf. Figure 2). Hence, I1 cannot

6 Find AltMed and Foaf Letter as part of http://www.linkeddata-a-thon.com
7 For the sake of simplicity we assume the URIs at the predicate positions resolve to

vocabulary definitions that do not contain relevant triples for our example.

http://www.linkeddata-a-thon.com

160 O. Hartig

Some of the data in Dx = lookup(http://.../X):

<http://.../X> rdfs:subClassOf
<http://.../Y> .

Some of the data in Da = lookup(http://.../a):

<http://.../b> ex:p2 <http://.../a> .

Some of the data in Db = lookup(http://.../b):

<http://.../b> rdfs:label ”...” .
<http://.../c> ex:p1 <http://.../b> .

Some of the data in Dc = lookup(http://.../c):

<http://.../c> rdf:type <http://.../X> .

Fig. 2. Example descriptor objects and some of their data

provide an intermediate solution and, thus, the overall query result is empty.
Even if we initialize the query-local dataset with all descriptor objects available
from looking up the URIs in the query, i.e. DX and Da = lookup(http://.../a),
we cannot find a matching triple for the first triple pattern. However, an alterna-
tive query plan could use the reverse order, i.e the first iterator is responsible for
the last triple pattern in Figure 1. Executing this plan would result in one solu-
tion for the BGP: µ = {(?x, http://.../c), (?y, http://.../b), (?z, "...")}.

As can be seen from the example, the iterator based approach may return
different result sets for the same BGP depending on the evaluation order of the
triple patterns in the BGP. This effect can be attributed to missing backlinks
and serendipitous discovery, as we discuss in the following.

On the traditional, hypertext Web it is unusual that Web pages are linked
bidirectionally. Similarly, an RDF triple of the form (uris, urip, urio) contained
in lookup(uris) (or lookup(urio)) does not have to be contained lookup(urio)
(or lookup(uris)). We speak of a missing backlink. Due to missing backlinks
it is possible that one evaluation order allows for the discovery of a matching
triple whereas another order misses that triple. For instance, the reason for the
different results in Example 1 is a missing backlink in DX .

Following our look-up assumption each iterator retrieves descriptor objects
because these objects may contain matching triples for the triple pattern tp′i
currently evaluated by the iterator. Thereby, all iterators augment the same
query-local dataset. Thus, even if retrieved for the evaluation of a specific triple
pattern such a descriptor object may also contain a triple t∗ that matches another
triple pattern tp′j which will be evaluated later by any of the iterators. Since it
is not guaranteed that the descriptor object with t∗ is discovered and retrieved
during the evaluation of tp′j , we say that the solution generated based on t∗ has
been discovered by serendipity. If the BGP was ordered differently the descriptor
object with t∗ might only be discovered after tp′j has already been evaluated and
we could never generate the serendipitously discovered solution.

The effect of missing backlinks and serendipitous discovery on the number of
query results is not a characteristic of link traversal based query execution in
general; instead, it is specific to the iterator based implementation. In fact, this
effect is a direct consequence of the restrictions discussed Section 3.2.

The dependency of result completeness on the order of a BGP implicates
that certain orders are more suitable than others. Even if the iterator approach
can not be guaranteed to return all solutions that satisfy Definition 2, selecting
specific orders could provide for more solutions than other orders. In the next
section we discuss the selection of execution orders.

Zero-Knowledge Query Planning for an Iterator Implementation 161

4 Logical Query Planning

In this paper we understand an ordered BGP as a logical query plan. Basically,
the creation of such a plan is the selection of a specific order for the triple
patterns in a given BGP. Since there exist multiple orders it is possible to create
different plans for the same BGP. In this section we discuss how to select one of
these plans for the execution of the BGP: We consider the possibility to assess
and rank query plans and argue that ranking-based plan selection is unsuitable
in our scenario. As a consequence we propose a heuristic for plan selection.

4.1 Assessment of Query Plans

The query plans for a BGP have different characteristics, resulting in different
execution performance. We assess them based on two criteria: cost and benefit.

The cost of a query plan can be measured in terms of, e.g., query execution
time, the amount of network traffic caused, the number of URIs looked up, or
the overall size of retrieved descriptor object. We use the query execution time
to measure the cost because it provides for a more response time oriented plan
assessment and it implicitly includes many of the other measures. For instance,
the query execution time is dominated by delays resulting from the look-up of
URIs, which may require a significant amount of time due to network latencies.
While we propose approaches to reduce the impact of these delays [2], this impact
can only be reduced but never be eliminated. Another factor that affects query
execution time is the amount of retrieved data: With an increasing number of
descriptor objects the time to find matching triples in the query-local dataset
may increase, in particular, if each descriptor object is indexed separately [6].

Usually, traditional query optimization uses cost as the only selection criteria
for query plans. However, in contrast to traditional query execution, the link
traversal based execution of different plans for the same BGP may result in
solution sets of different cardinality as we discuss in Section 3.3. Hence, for
our iterator approach we should assess query plans not only based on their
cost; instead, they must also be assessed by their benefit, that is, the number of
solutions that an execution of the plan returns.

To rank and select query plans it is necessary to assess each of them without
executing it. Since cost (and benefit) cannot be measured without execution,
traditional query optimization techniques apply functions that calculate (or es-
timate) such measures. In our case it would be necessary to take the whole plan
into account for such a calculation: The evaluation order of all triple patterns
determines what intermediate solutions µ′ an iterator Ii consumes from its di-
rect predecessor, what triple patterns µ′[tpi] it has to evaluate, what URIs it
has to look up and, thus, which reachable descriptor objects it discovers. In this
context it is important to note that even the construction of those intermediate
solutions which cannot be used for the construction of solutions by subsequent
iterators might be beneficial: These solution mappings might be necessary to dis-
cover descriptor objects that contribute to completely different solutions as the

162 O. Hartig

discussion of serendipitous discovery illustrates (cf. Section 3.3). Notice, due to
these dependencies it is impossible to apply the popular dynamic programming
approach [9] to generate optimal query plans.

We do not propose actual functions to calculate (or estimate) cost and ben-
efit. Such a calculation requires information about reachable data and the data
sources involved in the execution of a plan. In our scenario of link traversal based
query execution we do not assume any of such information. We just have a query
and an empty local dataset. Hence, before we start executing the query, we do
not know anything about the descriptor objects we will discover; we do not even
know what descriptor objects will be discovered. Based on this complete lack
of information we could only assume a uniform distribution of input values for
a cost (or benefit) function. The consequence would be an equal ranking of all
possible query plans so that we could at best select a random plan. For this rea-
son we propose to use a heuristic based approach that allows us to make at least
an educated guess. However, we note that after starting the query execution it
becomes possible to gather information and observe the behavior of the selected
plan. This may allow the query system to reassess candidate plans and, thus, to
adapt or even replace the running plan. While we do not discuss such a strategy
in this paper we will investigate adaptive query planning in the future.

4.2 Heuristic Based Plan Selection

Due to the complete lack of information at plan selection time the application
of a cost (and benefit) based ranking of plans is unsuitable in our scenario. For
this reason we propose to select query plans based on the following four rules:

– Dependency Respect Rule: Use a dependency respecting query plan.
– Seed TP Rule: Use a plan with a seed triple pattern.
– No Vocab Seed Rule: Avoid a seed triple pattern with vocabulary terms.
– Filtering TP Rule: Use a plan where all filtering triple patterns are as

close to the seed triple pattern as possible.

These rules are based on our experience with the data that is currently available
as Linked Data, on analyses of the queries executed with our prototypical query
engine, and on our experience developing applications that use our query engine.
In the remainder of this section we introduce and motivate these rules.

The Dependency Respect Rule proposes to use a dependency respecting
query plan, that is, an ordered BGP in which at least one of the query variables
in each triple pattern occurs in one of the preceding triple patterns. Formally, an
ordered BGP b̄ = [tp1, ... , tpn] is dependency respecting iff for each i ∈ {2, ... , n}
it holds: ∃ v ∈ vars(tpi) :

(∃ j < i : v ∈ vars(tpj)
)
. For BGPs which represents

a connected graph8 it is always possible to find a dependency respecting query
plan. For the sake of simplicity, we assume all BGPs represent a connected graph.

Dependency respect is a reasonable requirement for query plans in our con-
text because it enables each iterator to always reuse some of the bindings in
8 A BGP b = {tp1, ... , tpn} represents a connected graph iff it holds:
∀b1, b2 ⊂ b : b1∪b2 =b ∧ b1∩b2 =∅ ∧ (∃tpi ∈ b1, tpj ∈ b2 : vars(tpi) ∩ vars(tpj) 	= ∅).

Zero-Knowledge Query Planning for an Iterator Implementation 163

intermediate solutions µ′ consumed from their predecessor iterator. This strat-
egy avoids what can be understood to be an equivalent to the calculation of
cartesian products in RDBMS query executions.

The Seed TP Rule proposes to use a plan in which the first triple pattern
is one of the potential seed triple patterns, that are, triple patterns in the BGP
which contain at least one HTTP URI. The rationale for using one of the poten-
tial seed triple patterns as the first pattern of a plan –which we then call the seed
triple pattern of that plan– is the following: While query execution begins with
an empty query-local dataset, any HTTP URI contained in the query may serve
as a starting point to find matching triples. According to our look-up assump-
tion (cf. Section 3.1), matching triples for a triple pattern might be found, in
particular, in descriptor objects that were retrieved by looking up the URIs that
are part of this pattern. Therefore, it is reasonable to select one of the potential
seed triple patterns as the first triple pattern in the query plan.

The No Vocab Seed Rule proposes to avoid query plans with a seed triple
pattern which contains only URIs that identify vocabulary terms. Such a URI
can be identified with high likelihood by a simple syntactical analysis of a triple
pattern: Since URIs in the predicate position are always vocabulary terms a
preferred seed triple pattern must contain a URI in subject or object position.
However, in triple patterns with a predicate of rdf:type a URI in the object
position always identifies a class, i.e., also a vocabulary term. Hence, these triple
patterns should also be avoided as seed triple patterns.

By narrowing down the set of query plans using the No Vocab Seed Rule

we expect to increase the average benefit of the remaining set of plans. This ex-
pectation is based on the following observation: URIs which identify vocabulary
terms resolve to RDF data that usually contains vocabulary definitions and very
little or no instance data. However, according to our experience the majority of
queries asks for instance data and does not contain patterns that have to match
vocabulary definitions. Hence, it is reasonable to avoid seed triple patterns that
are unlikely to link to instance data as a starting point for query execution. Ex-
ample 1 illustrates the negative consequences of ignoring the No Vocab Seed

Rule by selecting the rdf:type triple pattern as seed. Notice, for applications
that mainly query for vocabulary definitions the rule must be adjusted.

The Filtering TP Rule proposes to prefer query plans in which filtering
triple patterns are placed as close to the seed triple pattern as possible. A filtering
triple pattern in an ordered BGP contains only query variables that are also
contained in at least one preceding triple pattern. Formally, a triple pattern
tpi in an ordered BGP b̄ = [tp1, ... , tpn] is a filtering triple pattern iff it holds:
∀ v ∈ vars(tpi) :

(∃ j < i : v ∈ vars(tpj)
)
.

The rationale of the Filtering TP Rule is to reduce cost: During query
execution, each intermediate solution µ′ consumed by an iterator that is respon-
sible for a filtering triple pattern tpF , is guaranteed to contain bindings for all
variables in tpF . Therefore, the application of these µ′ to tpF will always result
in a triple pattern without variables, i.e. an RDF triple. If this triple is con-
tained in the query-local dataset, the iterator simply passes on the current µ′;
otherwise, it discards this intermediate solution. Thus, the evaluation of filtering

164 O. Hartig

(a) (b)

Fig. 3. Measurements for all query plans executed for the “Mylan” query in Figure 4

triple patterns may reduce the number of intermediate solutions but it will never
multiply this number. Notice, for other triple patterns we cannot predict such a
behavior, neither a reduction nor a multiplication of intermediate solutions.

The Filtering TP Rule is similar to the selection push-down that RDBMSs
use to reduce the cost of query plans. However, for link traversal based query
execution this rule might not always be beneficial because it reduces the like-
lihood for serendipitous discovery of matching triples and, thus, solutions (cf.
Section 3.3). However, during the evaluation of our heuristic on the current Web
of Data we did not experience such a hypothetical reduction of benefit.

5 Experimental Evaluation

In the previous section we argue that cost based plan selection is unsuitable
for our iterator implementation of link traversal based query execution. As an
alternative we propose a heuristic to select plans. In this section we evaluate the
effectiveness of this heuristic.

5.1 Setup

For the evaluation we use three representative BGP queries. None of these queries
can be answered using data from a single data provider alone. For each query we
generated all dependency respecting query plans that have a seed triple pattern.
We executed all these plans sequentially, using a new, initially empty query-
local dataset for each plan. For each plan we measured the query execuction
time, the number of retrieved descriptor objects, and the number of results. We
ran each sequence of plans 6 times where the first run was for warm-up and
was not considered for the measurements. These warm-up runs avoid measuring
the effect of Web caches and enable servers that contributed data discovered
during query execution to adapt their caches. The measurements of the other
5 runs were combined by calculating the arithmetic mean in order to minimize
the potential for tampering the experiment by unexpected network traffic.

We executed the query plans using SQUIN9 which is a prototype of a query
engine that implements link traversal based query execution using the presented

9 http://squin.org

http://squin.org

Zero-Knowledge Query Planning for an Iterator Implementation 165

iterator approach. Retrieved descriptor objects are stored separately, each in
a main memory index that contains six hashtables to support the typical ac-
cess patterns10 during triple pattern matching [6]. The experiment was con-
ducted on an Intel Core 2 Duo T7200 processor with 2 GHz, 4 MB L2 cache,
and 2 GB main memory. This machine was connected through the university
LAN. Our test system runs a recent 32 bit version of Gentoo Linux with Sun
Java 1.6.0.

5.2 Results

SELECT ?cn ?bd2 WHERE {
dai lymed orga : Mylan Pharmaceuti cal s Inc .

dailymed : producesDrug ?bd .
?bd dailymed : gener icDrug ?gd .
?gd drugbank : po s s i b l eD i s e a seTarge t ?dt .
? dt diseasome : name ”Epi l epsy” .
?bd dailymed : a c t i v e I n g r e d i en t ? a i .
?bd2 dailymed : ac t i v e I ng r ed i en t ? a i .
? c dailymed : producesDrug ?bd2 .
? c r d f s : l a b e l ? cn . }

Fig. 4. A SPARQL BGP query (prefix decl.
omitted) that asks for companies which use the
active ingredient of Mylan Pharmaceuticals’ anti-
epilepsy drug in their drugs as well

For the discussion of our mea-
surements we mainly focus on
the query in Figure 4. Nonethe-
less, we point out notable find-
ings from the measurements
taken for the other queries. The
BGP in the query in Figure 4
contains 8 triple patterns; one
of them qualifies as seed triple
pattern according to the No

Vocab Seed Rule. For this
BGP exist 35 different, depen-
dency respecting query plans with seed triple pattern, each of which has the
diseasome:name triple pattern as filtering triple pattern.

Figure 3(a) illustrates the relationship between the average query execution
times (QET) and the average number of solutions measured for the 35 plans.
Each point in the chart represents a single plan. As can be seen from the chart,
the number of discovered solutions, 84, was the same for all plans. However, the
time required to determine these solutions differs significantly. To investigate
the reasons that caused these differences we cluster the 35 plans by their QET
into 4 groups. Table 1(a) summarizes statistics for these groups: the interval
of QET that defines each group (QET interval), the number of plans in each
group (# of plans), the arithmetic mean of the average number of descriptor
objects retrieved by each plan in the group (avg.#DO), and the arithmetic
mean of the position of the filtering triple pattern in each plan of the group
(avg.fTPpos).

The avg.fTPpos values confirm the effectiveness of our heuristic, in partic-
ular, the Filtering TP Rule: The less efficient plans in groups G3 and G4

contain the filtering triple pattern in the seventh or eighth position; for the
more efficient plans in group G1 it is the fourth or fifth position, hence, closer
to the seed triple pattern at the first position. The avg.#DO values indicate
that during the execution of the less efficient plans more descriptor objects have
been retrieved than for the efficient plans. Figure 3(b) illustrates this observa-
tion in more detail by representing the plans individually. These measurements

10 Subject given, predicate given, object given, subj.+pred., subj.+obj., pred.+obj.

166 O. Hartig

Table 1. Statistics about groups of query plans for (a) the “Mylan” query in Figure 4
and (b) the “drug picture” query in Figure 5(a), grouped by the QET of the plans

(a)

G1 G2 G3 G4
QET interval < 20s [20s,35s] [35s,60s] > 60s

of plans 4 5 18 8
avg.#DO 923.9 1494.0 1695.8 2208.5

avg.fTPpos 4.8 6.0 7.5 7.6

(b)

G1 G2 G3
QET interval < 50s [50s,100s] > 100s

of plans 4 3 3
avg.#DO 375.3 496.3 490.9

avg.fTPpos 4.8 6.0 6.0

support the assumptions that motivated the proposal of the Filtering TP

Rule: The higher number of discovered descriptor objects indicates that more
intermediate solutions have been processed by the less efficient plans.

For the other two queries we observed basically the same behavior. The sec-
ond query, shown in Figure 5(a), contains 6 triple patterns; one qualifies as
seed triple pattern according to the No Vocab Seed Rule. 10 dependency
respecting query plans are possible, containing one filtering triple pattern each.
The difference between the number of descriptor objects retrieved by the more
and the less efficient plans is not as significant for this query as for the other
queries (cf. the avg.#DO values in Table 1(b) and the corresponding chart in
Figure 6). We attribute this to a low selectivity of the filtering triple pattern.

Table 2. Statistics about the query plans
for the “American Badger” query in Fig-
ure 5(b), grouped by the QET of the
plans. The additional lines in this table
list: the arithmetic mean of the average
number of solutions determined by each
plan in a group (avg.#Sol), the arith-
metic mean of the triple patterns be-
fore the first filtering triple pattern in
each plan of a group (avg.b4fTP1), the
arithmetic mean of the triple patterns af-
ter the second filtering triple pattern in
each plan of a group (avg.afTP2), and
the arithmetic mean of the triple patterns
between the two filtering triple patterns
in each plan of a group (avg.fTP1Δ2).

G1 G2 G3 G4
QET interval <20s [20s,70s] [70s,130s] >130s

avg.#Sol 0 0 28.1 27.6
of plans 30 6 12 8
avg.#DO 13.0 15.6 205.1 309.3

avg.b4fTP1 3.03 3.33 3.67 4.50
avg.afTP2 0.63 0.00 0.67 0.25

avg.fTP1Δ2 1.33 1.67 0.67 0.25

The third query, shown in Figure 5(b),
contains 7 triple patterns of which two
qualify as seed following the No Vo-

cab Seed Rule. There are 56 depen-
dency respecting query plans that can
be grouped into two subsets, accord-
ing to the selected seed triple pattern.
Interestingly, all plans in one of these
groups did not provide any solutions
(cf. Figure 7). An investigation reveals
that this problem can be attributed
to a missing backlink; this backlink
has not be discovered by starting the
query execution with the seed triple
pattern selected for all plans in the
corresponding group. It was impossi-
ble to anticipate this problem auto-
matically before executing the query.
However, the plans that determined
solutions exhibit the expected behav-
ior (cf. Table 2). As the only difference
to the other two queries we note that
each plan contains two filtering triple
patterns.

Zero-Knowledge Query Planning for an Iterator Implementation 167

SELECT ?gd2 ?p WHERE {
?gd db : drugCategory

drugbank category : a n t ima l a r i a l s .
?gd db : brandedDrug ?bd .
?c dm: producesDrug ?bd .
?c r d f s : l a b e l ” P f i z e r Labs” .
?gd owl : sameAs ?gd2 .
?gd2 f o a f : d ep i c t i on ?p . }

(a)

SELECT ? s ?M WHERE {
g eo spec i e s : 4 qyn7 gs : inFamily ? f .
? f skos : nar rowerTran s it ive ? s .
? s skos : closeMatch ?m .
?m rd f s : subClassOf ?M .
? s gs : i sExpectedIn ? l o c .
? l o c rd f : type gs : State .
g eo spec i e s : 4 qyn7 gs : i sExpectedIn ? l o c .}

(b)

Fig. 5. Additional queries (prefix decl. omitted) used for the evaluation: (a) asks for
pictures of generic drugs that are categorized as antimalarial and that are drugs, cat-
egorized as antimalarial and branded by “Pfizer Labs”, (b) asks for species and their
genus that are classified in the same family as the American Badger, Taxidea taxus,
and that are expected in the same states as the American Badger

Fig. 6. Measurements for all query plans executed for the query in Figure 5(a)

Fig. 7. Measurements for all query plans executed for the query in Figure 5(b)

6 Related Work

In earlier work Mendelzon and Milo introduce an approach to execute SQL-like
queries on the traditional, hypertext Web that includes the traversal of links [10].
They formalize the Web as a relational model and propose a two-phase approach
to execute queries: First, all “reachable documents are retrieved, and then the
query is evaluated on them.” The same two-phase approach has been formalized
by Bouquet et al. for the Web of Data [11]. While we also use two phases to
define solutions in Section 2.2, the idea of link traversal based query execution
is to intertwine query evaluation and link traversal instead of simply applying
the two-phase approach for the actual execution of queries.

Harth et al. present an alternative approach that also uses URI look-ups to
query the Web of data [12]. Instead of traversing links they use a data summary
to identify descriptor objects that might be relevant for a query and should be
retrieved for the execution. While this approach often performs better than our

168 O. Hartig

link traversal approach [3], it requires that all descriptor objects have been dis-
covered, retrieved and summarized before queries can be executed. Furthermore,
changes to the data of descriptor objects are not reflected in the summary.

There is only one other implementation approach for link traversal based
query execution that we are aware of: In contrast to our synchronized pipeline of
iterators, Ladwig and Tran recently proposed an asynchronous implementation
that uses symmetric hash joins [3]. While the authors report that their approach
returns first results earlier, they measured the same overall query execution
times for both approaches. We aim to analyze their approach in the context of
the definitions presented here and compare it to our iterator based approach.

7 Conclusion

In this paper we analyze an iterator based implementation approach for the link
traversal based query execution paradigm. We study its limitations and discuss
how it benefits from a strategy that selects suitable query plans. Such a strategy
must work without any statistics, data distribution records or other information
about data and data sources because we do not assume any information when
we start the execution of a query. Since traditional query planning techniques
are unsuitable for this scenario we propose a heuristic for plan selection.

As future work we aim to develop our plan selection rules into a strategy that
directly generates the most promising plans only. Furthermore, we investigate
how to relax our zero knowledge assumption using information collected during
previous query executions. Finally, the integration of adaptive query processing
techniques shows great promise to improve our iterator based implementation.

References

1. Hartig, O., Langegger, A.: A database perspective on consuming Linked Data on
the Web. Datenbank-Spektrum 10(2) (2010)

2. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web of
linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

3. Ladwig, G., Tran, D.T.: Linked data query processing strategies. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469. Springer,
Heidelberg (2010)

4. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Rec.
(2008), http://www.w3.org/TR/rdf-sparql-query/

5. Hartig, O.: Iterator based implementations of link traversal based query execution
(2010), http://squin.org/doc/IteratorImplementation/

6. Hartig, O.: A main memory index structure to query linked data. In: Proc. of the
4th Int. Linked Data on the Web workshop (LDOW) at WWW (2011)

7. Hartig, O., Mühleisen, H., Freytag, J.C.: Linked Data for building a map of
researchers. In: Proc. of 5th Workshop on Scripting and Development for the
Semantic Web (SFSW) at ESWC (2009)

http://www.w3.org/TR/rdf-sparql-query/
http://squin.org/doc/IteratorImplementation/

Zero-Knowledge Query Planning for an Iterator Implementation 169

8. Hartig, O., Zhao, J.: Publishing and consuming provenance metadata on the Web
of Linked Data. In: Proc. of the Int. Provenance and Annotation Workshop (2010)

9. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access
path selection in a relational database management system. In: Proc. of the Int.
Conference on Management of Data (1979)

10. Mendelzon, A.O., Milo, T.: Formal models of Web queries. Information Systems
23(8) (1998)

11. Bouquet, P., Ghidini, C., Serafini, L.: Querying the web of data: A formal approach.
In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp.
291–305. Springer, Heidelberg (2009)

12. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data
summaries for on-demand queries over Linked Data. In: Proc. of the 19th Int.
Conference on World Wide Web, WWW (2010)

	Zero-Knowledge Query Planning for an Iterator Implementation of Link Traversal Based Query Execution
	Introduction
	Definition of Link Traversal Based Query Execution
	Preliminaries
	Link Traversal Based Solutions for Basic Graph Patterns
	Link Traversal Based Construction of Solutions

	Iterator Based Implementation
	Introduction to the Approach
	Missing Query Results
	The Impact of the Evaluation Order on Query Results

	Logical Query Planning
	Assessment of Query Plans
	Heuristic Based Plan Selection

	Experimental Evaluation
	Setup
	Results

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

