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Preface

It is a great pleasure to present to you this rich collection of papers in the form
of the proceedings of the International Conference on Functional Imaging and
Modeling of the Heart held in New York City, USA, during May 25-27, 2011.
This was the sixth in a series of FIMH conferences, following a very successful
meeting in Nice, France in 2009.

FIMH 2011 aimed to integrate the research and development efforts in the
fields of cardiovascular modeling, physiology, and image-based analysis, at a
range of scales and imaging methods. A major goal is to encourage interaction
and collaboration among more technical scientists (e.g., in imaging, signal and
image processing, applied mathematics, biomedical engineering and computer
science), biologically oriented scientists (e.g., cardiac physiology and biology) and
clinicians (e.g., cardiology, radiology and surgery), with a common interest in the
heart. The FIMH 2011 program included three invited talks, original research
paper presentations, and clinical and industrial panels offering interdisciplinary
discussions on related cardiac topics.

The call for papers resulted in 123 submissions. Of these, 105 met the sub-
mission guidelines and were subjected to a rigorous review process. Each paper
was sent to at least four reviewers. Fifty-four papers whose scores were above a
certain threshold were accepted. The top 25 in terms of score were accepted as
orals and the remaining 29 as poster papers.

We would like to thank our three invited keynote speakers, Eugene Grossi
from New York University Medical Center, Ann Bolger from University of Cal-
ifornia San Francisco, School of Medicine and Joao Lima from Johns Hopkins
University, whose excellent presentations were a highlight of the conference. We
would also especially like to thank the team at the Center for Computational
Biomedicine Imaging and Modeling (CBIM) and especially Shaoting Zhang, our
Publications Chair, for the web support, the published proceedings and being
a liaison with the rest of the Organizing Committee. Finally, we would like to
thank Naomi Weinberger for all her assistance with the FIMH 2011 organization.

May 2011 Dimitris Metaxas
Leon Axel
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Anode Make and Break Excitation Mechanisms
and Strength-Interval Curves: Bidomain
Simulations in 3D Rotational Anisotropy

Piero Colli-Franzone!, Luca F. Pavarino?, and Simone Scacchi?

! Dipartimento di Matematica, Universita di Pavia and IMATI-CNR
Istituto di Matematica Applicata e Tecnologie Informatiche,
Via Ferrata 1, 27100 Pavia, Italy
colli@imati.cnr.it
2 Dipartimento di Matematica, Universita di Milano,
Via Saldini 50, 20133 Milano, Italy

{luca.pavarino,simone.scacchi}@unimi.it

Abstract. The shape of anodal strength-interval curves and make
and break excitation mechanisms are investigated in a 2D anisotropic
Bidomain model, with different membrane models and action potential
durations, and in a 3D rotational anisotropic Bidomain model, with ax-
isymmetric or orthotropic conductivity properties. The results have shown
that the LRd model with a long intrinsic APD exhibits a systolic dip
threshold lower than the diastolic threshold, in agreement with previous
experimental data. The spatial and temporal analysis of the excitation
patterns indicates a novel anode make excitation mechanism with delayed
propagation within the transition from break to make mechanisms.

1 Introduction

Optical mappings of cardiac transmembrane action potential, starting in the mid
nineties, has revealed that the extracellular cardiac stimulation by a unipolar
electrode produces a characteristic transmembrane pattern called wvirtual elec-
trodes response, see e.g. [1126/14J28]. After an anodal stimulus, the transmem-
brane potential distribution exhibits a virtual anode (VA), i.e. a dog-bone shaped
hyperpolarized volume around the stimulating electrode, and two wvirtual cath-
odes (VCs), i.e. depolarized regions adjacent to the concave part of the VA
boundary. The central dog-bone VA develops mainly across the fiber direction,
while the two adjacent VCs are aligned along the fiber direction. Conversely, after
a cathodal stimulus, the polarity is reversed. It is well known that only macro-
scopic bidomain models of cardiac tissue with unequal anisotropy ratios of the
intra- and extracellular media are able to generate the observed wvirtual electrode
polarization regions, see [I4)28]. During an anodal stimulation, we distinguish
between the anode make (AM) activation mechanism, if excitation starts at the
two VCs before the stimulus end, and the anode break (AB) activation mech-
anism, if excitation starts at the VA after the stimulus end. These excitation

D.N. Metaxas and L. Axel (Eds.): FIMH 2011, LNCS 6666, pp. 1 2011.
© Springer-Verlag Berlin Heidelberg 2011



2 P. Colli-Franzone, L.F. Pavarino, and S. Scacchi

mechanisms have been investigated by simulation studies, mostly on 2D sheets
or in cylindrical domains, in [2223/20/27|24T8] and by experimental studies in
[11126]; see also the recent surveys [T4J28].

The aim of this work is to investigate the shape of anodal strength-interval
curves and make and break excitation mechanisms in a 2D anisotropic Bidomain
model, with different membrane models and action potential durations, and in
a 3D rotational anisotropic Bidomain model, with axisymmetric or orthotropic
conductivity properties.

2 Methods

The anisotropic Bidomain model. The three-dimensional cardiac domain H
is in contact with a conducting medium {2y, representing either the intracavitary
blood or an extracardiac bath. We define 2 = HUS{2¢ and S = 0 HNJ{2y the com-
mon not insulated interface. The remaining interface 02 is assumed insulated.
The macroscopic Bidomain model (see e.g. [I3/17]) in H is coupled to an elliptic
problem for the extracardiac potential u,. The evolution of the transmembrane
potential v(x,t), extracellular potential u.(x,t), extracardiac potential uy(x, ¢),
gating variables w(x,t) and ionic concentrations c(x, t) is computed using finite
element approximation of the following time splitting method for the Bidomain
model, i.e. given (v",w",c") and iy, at time ¢":

—div(DVuy) = div(D; V") + gy, in H,  —dive,Vuy =gy, in £
nTDiVuZ = —n"D;Vo" on 0H

u? =u},  n'D.Vu? =n’o,Vul on S, nToquZ =0 ondfp\S
w"™ — TR, w" ) = w", T = 1S, w T ) 4 ¢, in H

ot div(D; Vo) = Mo+ div(D; V) + im(v",w"“,c"“) in H.

T T

Here D = D; + D, with D;, D. conductivity tensors op is the conductivity
coefficient of the extracardiac medium, ¢y, tion, gy, denote the capacitance, the
ionic current, the applied current per unit volume, respectively. The reference
potential is determined by imposing || 7 Ue(x,t)dz = 0 and the compatibility
condition [, 5, = 0 must be satisfied.

Membrane model. In [21], the bidomain model with unequal anisotropic ratio
was first proposed and used to establish a theoretical framework able to ex-
plain the make and break mechanisms of excitability in terms of the underlying
virtual electrodes polarization. In addition to the previous virtual electrodes po-
larization, another anode break mechanism has been proposed in [19], related
to the so called funny current Iy, see e.g. [I0/4]. The contribution of Iy to the
anode break excitation has been investigated in [I9/20/23] by performing bido-
main simulations on 2D anisotropic sheets, incorporating /¢ into a Luo-Rudy
I membrane model [I5]. Another active membrane factor contributing to exci-
tation mechanisms is the electroporation current [§]. In this work, we use two
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membrane models: the LR1 model [I5] and the LRd model [I2]. Both models
are augmented with: the funny current Iy, the electroporation current /. and
the outward current I, (see [5]), which has been incorporated in several recent
studies on the effects of defibrillation shocks, see e.g. [2IT8].

Myocardial conductivity tensors and fiber architecture. Recent studies
have shown a laminar organization of the fibers structure evidencing two pref-
erential transverse fiber directions, one tangent and the other orthogonal to the
laminae, respectively, yielding orthotropic conductivity tensors, see e.g. [3] and
the references therein. In this work, we consider both orthotropic conductivity
tensors D;(x) and D.(x) defined by

Die(x) = 0} ay(x)af (x) + 01 ay(x)af (x) + 05° an(x)al(x) ,xe H (1)

and axisymmetric tensors defined analogously but with o%¢ = op°
a;(x),a¢(x),a,(x) are unit vectors parallel to the local fiber direction, tangent
and normal to the cardiac lamina, respectively. ‘71 t are the effective intra and
extracellular conductivity coefficients measured along (1) and across (¢,n) the
fiber direction. The conductivity values mSem ™" of the two different anisotropic
calibrations are the following (see also [6l7]):

: i i 7 e e e
anlsotropy a; Oy g, oy (o (o)

orthotropic 2.31724 0.24350 0.05690 1.54483 1.04385 0.37221
axisymmetric 2.31724 0.24350 0.24350 1.54483 1.04385 1.04385

Computational domain. The cardiac domain H considered in this study is a
cartesian slab of dimensions 0.96 x 0.96 x 0.32 cm?, with the lower face (endo-
cardium) in contact with a smaller slab of dimensions 0.96 x 0.96 x 0.16 cm?,
modeling the extracardiac bath, where o, = 6e=3 2~ tem ™! similar to the blood
conductivity.

Numerical methods. A structured grid of 96 - 96 - 48 hexahedral isoparametric
Q1 finite elements of size h = 0.1 mm is used in space, while the time discretiza-
tion is based on splitting both the ODEs from the PDEs and the elliptic PDEs
from the parabolic one. The large linear systems arising at each time step are
solved by the conjugate gradient method, preconditioned by a Multilevel Hybrid
Schwarz preconditioner (see e.g. [25]) and implemented using the PETSc parallel
library [I]. The simulations are run on 24 processors of a Linux Cluster.

Stimulation site. Stimulation pulses are delivered at the center of epicardium
in a small region of dimensions 0.06 x0.06 x0.03 cm?3. The compatibility condition
is ensured by injecting a stimulation current in a strip of dimensions 0.96 x 0.96 x
0.08 ¢m? in the extracardiac bath with equal strength and opposite polarity of
that used at the subepicardial level. In order to simulate the break excitation
mechanisms during systole, we perform an S1-S2 stimulation protocol.

Strength-Interval (S-I) curves. We determine the threshold strength of the
premature anodal stimulus S2 able to generate a propagating excitation response
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as a function of the time interval elapsed from the previous cathodal excitation
stimulus S1 applied to a resting tissue. This yields a S-I curve in the strength-
interval plane.

Activation time isochrones. During the simulations, we process the distri-
bution of the transmembrane potential v(x,t) in order to define the activa-
tion time ¢,(x) as the first time instant for which v(x,t,(x)) = vup; we choose
Vyp = —50 mV, a value above threshold able to initiate an action potential.

3 Results

Anodal S-I curve: 2D slab. We study the shape dependence of the S-I curve
on the LR1 and LRd models, using a sheet of tissue with parallel fibers. Fig. [l
reports the anodal S-I curves of the LR1 and LRd models with a short intrinsic
APD of about 230—210ms, respectively (panel A), and with a long intrinsic APD
of about 380 ms (panel B). All the S-I curves exhibit break, make stimulation
mechanisms as well as the presence of the following features: a dip close to the
effective refractory period, a subsequent plateau phase and a sudden decrease
close to the end of the relative refractory period. The long APD tissue presents
a S-1 curve with deeper threshold dip than the short APD tissue, (2 mA vs.
2.2 mA for the LR1 model, 1.2 mA vs. 2 mA for the LRd model), and a slightly
longer relative refractory period, (25 ms vs. 20 ms for the LR1 model, 35 ms
vs. 20 ms for the LRd model).

Anodal S-I curve: 3D slab. Fig. [[}C shows the dependence of the S-I curves
on the anisotropy (axisymmetric and orthotropic) for a 3D slab with the LRd
model with a short APD of about 210 ms. The curves are similar, except a
slightly deeper threshold dip and lower break and make threshold values in the
orthotropic case than in the axisymmetric one.
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stimulation threshold (mA)
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Fig. 1. Anodal strength-interval curves. (A): 2D slab, LR1 and LRd (dashed) models
with short APD. (B): 2D slab, LR1 and LRd (dashed) models with long APD. (C):
3D slab, axisymmetric and orthotropic (dashed) anisotropy. Make and break excitation
mechanisms are marked with (- ) and (o), respectively.
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Fig. 2. Orthotropic 3D slab. Top panels. Anode make. Diastolic S2 anodal stimu-
lation at 230 ms with amplitude 0.0864 mA and duration 10 ms. Bottom panels.
Anode break. Systolic S2 anodal stimulation at 205 ms with amplitude 0.1404 mA
and duration 10 ms. Isochrones of activation time on the epicardium (A-C) and on the
two transmural diagonals (B-D). Below each contour plot are reported the minimum,
maximum, and contour step size in ms of the displayed map.

Anode-make excitation mechanism. The epicardial and transmural
isochrones in Fig. BFA,B show that two distinct activation wavefronts arise from
the VCs and propagate outward and inward along the diagonal parallel to the
fibers direction, but when they reach the VA region, a block of the inward prop-
agation takes place. Excitation starts from the VC regions at about 1.5 ms after
S2 onset, hence anode make excitation occurs.

Anode-break excitation mechanism. During the 10 ms of anodal stimula-
tion, on the epicardial face a dog-bone shaped region of strongly hyperpolarized
tissue (VA) surrounding the stimulated area is generated, with two depolar-
ized regions (VCs) developing along the fiber direction. Although the VCs are
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depolarized above threshold, anode make excitation does not occur, because the
surrounding regions are in the refractory period and still inexcitable. When the
stimulus is turned off, the combined effect of discharge diffusion of currents, flow-
ing from the VCs toward the central anodal region, and of the membrane funny
and electroporation currents Iy, I. depolarizes the tissue inside the VA region,
inducing anode break excitation with a delay of about 6 ms. The isochrones of
activation time displayed in Fig.[2LC,D show the typical anode break excitation
pattern, where the first activated point is the epicardial central site of the anodal
region and the excitation wavefronts propagate across fibers with a rim on the
inexcitable obstacle located around the VCs.

Stimulation at the transition of break and make mechanisms. We now
consider an S2 stimulation at 210 ms, instant of transition between break and
make mechanisms (see S-I curve displayed in Fig. [l C), in order to investigate
the dependence of the excitation sequence on the stimulation amplitude.

Axzisymmetric 3D slab. For high stimulation amplitude, e.g. 0.2160 mA, anode
make excitation occurs, see Fig.[BL A, i.e. excitation emanates from the VCs before
the stimulus end. When decreasing the stimulation amplitude to 0.1366 mA, a
different type of excitation is observed, i.e. an anode make/break excitation
mechanism. In fact, two excitation wavefronts are launched from the VCs edges,
thus an anode make mechanism arises, but, since the surrounding tissue is not
fully recovered from refractoriness, these two initiated wavefronts can propagate
only after 10 ms, i.e. after the stimulus is turned off. Therefore, we are in presence
of a break mechanism with respect to the propagating features of the wavefront.
Subsequently, at about 18 ms, an additional wavefront arises and propagates
from the central VA region, triggered by the Iy and I membrane currents, see
Fig. BIB. Hence, this is an additional anode break mechanism. Later on, at
20 ms, three distinct excitation wavefronts spread through the cardiac volume,
subsequently colliding and merging. When decreasing further the stimulation
amplitude to 0.1355 mA, only anode break excitation mechanism occurs at the
center of the VA region, triggered by the Iy and I. currents, see Fig. BFC.

Orthotropic 3D slab. For high stimulation amplitude , e.g. 0.1620 mA, anode make
excitation mechanism occurs (not shown). sharing the same features of Fig. BFA.
When decreasing the stimulation amplitude to 0.0934 m A, anode make excitation
occurs, since before the end of the anodal pulse two wavefronts originates at the
edges of the VCs, but they propagate only after the termination of the stimulus.
The propagating fronts lie on the edges portion of VCs, crossed by the direction
along fiber, and propagate with a counterclockwise twist after 15 ms. Moreover,
after the anodal pulse is turned off, the VA region is excited at about 22 ms by
the collision of the two excitation wavefronts, see Fig. BlD. Decreasing further
the stimulus amplitude, no excitation response occurs, in particular anode break
excitation is not observed.
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(A) Transmembrane potential on the epicardium 2, 6, 10 ms
after the onset of S2 stimulation with amplitude 0.2160 mA.
Anode make mechanism of excitation.

10 ms 18 ms
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-50

-100
-340.81 -16.79 5.00 -82.03 5.22 5.00 -82.69 24.03 5.00

(B) Transmembrane potential on the epicardium 10, 18, 20 ms
after the onset of S2 stimulation with amplitude 0.1366 mA.
Anode make/break mechanism of excitation.

10 ms 24 ms 30 ms
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-340.51 -18.88 5.00 -80.94 18.97 5.00 -82.24 29.36 5.00

(C) Transmembrane potential on the epicardium 10, 24, 30 ms
after the onset of S2 stimulation, amplitude 0.1355 mA. Anode
break mechanism of excitation.

10 ms 16 ms 20 ms
50

-100

-341.21 -12.46 5.00 -82.00 -7.37 5.00 -90.96 24.31 5.00

(D) Transmembrane potential on the epicardium 10, 18, 20 ms
after the onset of S2 stimulation with amplitude 0.0934 mA.
Delayed anode make mechanism of excitation.

Fig. 3. Systolic S2 anodal stimulation at 210 ms, duration 10 ms. (A), (B), (C): axisym-
metric slab, (D): orthotropic slab. Below each contour plot are reported the minimum,
maximum, and contour step size in mV of the displayed map.



8 P. Colli-Franzone, L.F. Pavarino, and S. Scacchi

4 Discussion

The behavior of our S-I curves in an anisotropic 2D sheet of parallel fiber shares
the same qualitative features observed in previous simulation studies employing
various ionic models [22I23]. A qualitative discrepancy is the drop between the
anode break and make portion of the S-I curve, which is less abrupt in the LRd
model. The features of the S-I curve reproduce some qualitative characteristics
of the experimental data, see [9I6]. In particular, the LRd model with a long
intrinsic APD, exhibits a threshold dip value lower than the diastolic threshold
value, in agreement with the experimental data of [9]. We have found that the
S-1 curves in a 3D anisotropic slab show lower break and make threshold values
in the orthotropic case than in the axisymmetric one. Our result of anode make
and break mechanisms in a 3D slab with rotational anisotropy are in agreements
with the transmembrane snapshots previously obtained mainly in symmetric
cylindrical strand with parallel fibers, see [22I23T4]. Finally, we have investigated
the dependence of excitation patterns on the anodal S2 pulse amplitude, applied
at a time instant within the break and make transition. We have identified a
novel anode make mechanism with delayed propagation, in which two wavefronts
emanate from the edges of the two depolarized VCs regions, but they are able to
propagate only after 15 ms, i.e. after the end of the anodal pulse as in the anode
break mechanism. To our knowledge, the experimental investigation of anodal
stimulation mechanisms within the transition from break to make portions of
the S-I curve is still lacking in literature.
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Abstract. Diagnosis of acute cardiac ischemia depends on characteristic
shifts of the ST segment. The transmural extent of the ischemic region
and the temporal stage of ischemia have an impact on these changes.
In this work, computer simulations of realistic ventricles with different
transmural extent of the ischemic region were carried out. Furthermore,
three stages within the first half hour after the occlusion of the distal left
anterior descending coronary artery were regarded. The transmembrane
voltage distributions and the corresponding body surface ECGs were cal-
culated. It was observed how the electrophysiological properties worsen
in the course of ischemia, so that almost no excitation was initiated in
the central ischemic zone 30 minutes after the occlusion. In addition to
these temporal effects, also the transmural extent of the ischemic region
had an impact on the direction and intensity of the ST segment shift.

Keywords: Cardiac Ischemia, Phase 1b, Electrocardiogram, Mathemat-
ical Modeling, ST Segment Shift.

1 DMotivation

The occlusion of a coronary artery due to e.g. atherosclerosis leads to a deficient
blood supply of the heart muscle. This pathology, which is termed acute cardiac
ischemia, leads to lethal heart failure or severe ventricular arrhythmias in many
cases. During the first thirty minutes after the occlusion, two different phases of
arrhythmias can be identified [I]. The so-called phase 1a peaks between 2 and 10
minutes and phase 1b between 20 and 30 minutes after the onset of ischemia [2].

In phase la, mainly three ischemia effects can be observed: hyperkalemia,
acidosis and hypoxia. Due to this, the conduction velocity (CV), the action po-
tential (AP) amplitude and duration are reduced and the resting transmembrane
voltage is increased [3]. These time-dependent electrophysiological changes are
classified with increasing ischemia: 5 to 7 minutes after the occlusion, stage 1
(S1) is reached and stage 2 (S2) after 10 to 12 minutes [4].

Phase 1b is characterized by cellular uncoupling, which means that the gap
junctional conductance decreases. In addition, the extracellular potassium con-
centration ([K*],) and the intracellular calcium concentration ([Ca®*];)
increase, which also favors initiation of arrhythmias [1].

D.N. Metaxas and L. Axel (Eds.): FIMH 2011, LNCS 6666, pp. 11{19] 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Depending on the degree of the occlusion and the occlusion site, ischemia ef-
fects vary spatially. They appear in the subendocardium at first, which is called
subendocardial ischemia. Then, they spread transmurally towards the subepi-
cardium, if the occlusion of the artery continues for longer periods (transmural
ischemia) [B]. However, ischemia effects are stronger in the subepicardial tis-
sue, since, inter alia, the sensitivity of the ATP regulated potassium channels is
higher there [6].

The diagnosis of cardiac ischemia is based on changes in the electrocardiogram
(ECQG), as for example shifts of the ST segment. Depending on the transmural
extent of the ischemic region, ST segment elevation or depression can be ob-
served in leads close to the ischemic region. The reason for these deviations is
the direction of injury currents, which flow from healthy or less injured towards
ischemic tissue [7]. Nevertheless, the exact underlying mechanisms responsible
for these ECG alterations and the dynamic changes during the first thirty min-
utes of ischemia are not completely understood. In order to improve the early
diagnosis of acute cardiac ischemia, computer simulations are a helpful tool. For
this purpose, the electrocardiograms of different ischemic stages of the heart
with varying transmural extent of the ischemic region were investigated in silico
in this work.

2 Methods and Materials

Aiming at simulation of the impact of acute cardiac ischemia on electrocardio-
grams, a ventricular cell model was modified to reproduce ischemia effects at
different stages. Then, the transmembrane voltage distribution was computed in
a realistic model of human ventricles with varying transmural extent of the is-
chemic region. Finally, the corresponding body surface potential maps (BSPMs)
were calculated and the ECGs were extracted.

2.1 Modeling Ischemic Myocytes

The simulation of acute cardiac ischemia was based on the ventricular cell model
published in 2006 by ten Tusscher et al. [§]. The model provides an electro-
physiological description of endocardial, midmyocardial and epicardial myocytes.
Furthermore, the model was modified according to Weiss et al. [3] in order to
simulate phase 1a ischemia effects, which are hyperkalemia, acidosis and hypoxia.
For both stages S1 and S2, different parameter sets were used. The formulation of
the ATP sensitive potassium channel was modified, so that the current was inhib-
ited at healthy ADP concentrations. For this purpose, the half-maximum inhibi-
tion constant was adjusted (K, = (—151.0919+75.5379-[ADP]?-2°6)- K., factor)-
As a consequence, the ADP concentrations at stage 1 and phase 1b were adapted
(compare Table [I]).

For the simulation of phase 1b cardiac ischemia, even more parameters, i.e. the
maximal conductances of Inax, INaCa; Lup and Ire; (PNak, kNaCas Vinazup and
Viet), were modified according to Pollard and coworkers [9]. In this way, changes
of the intracellular calcium handling, pumps and exchangers were considered.
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Table 1. Cell model parameters at different stages of acute ischemia in the central
ischemic zone according to [BIOUIONTT]. gnve and gca,r are the sodium and calcium
channel conductivities, dVi,,na is the voltage shift of sodium channels, and [AT P];
and [ADP)]; are the intracellular concentrations of ATP and ADP

Cell model control stage 1 stage 2 phase 1b

parameter (0 min) (5 min) (10 min) (20-30 min)
[Kt],  (mmol/l) 5.4 8.7 12.5 15.0
gNa,9ca, L (%) 100 87.5 75 50
dVin,Na (mV) 0 1.7 34 34
[ATP];  (mmol/l) 6.8 5.7 4.6 3.8
[ADP];  (umol/l) 15 87.5 99 101.5
Prnak (%) 100 100 100 30
knaca (%) 100 100 100 20
Vinazup (%) 100 100 100 90
Vier (%) 100 100 100 5

Since the background calcium current Ipc, is small compared to other currents
and the calcium sensitive nonselective cation current I,,s ¢, is not implemented
in this model, the metabolic changes of these currents were neglected here. An
overview of the modified cell model parameters is given in Table [Il

2.2 Modeling Heterogeneous Excitation Propagation

The anatomical model of the ventricles used in this work was derived from
MR images of a healthy volunteer. This dataset was interpolated to an isotropic
cubic voxel size of 0.4 mm. The longitudinal intracellular conductivity, which was
scaled through the ventricular wall as described in [I2], was on average 0.26 S/m
resulting in a conduction velocity of approximately 0.65m/s. The anisotropy
factor was set to 2.6. The cardiac fiber orientation was modeled using a rule-
based method as in [12].

Different electrophysiological heterogeneities were considered for the simula-
tions shown in this work. For this purpose, the ventricular wall was divided into
20% epicardial, 40% midmyocardial and 40% endocardial tissue [12]. As already
included in the cell model of ten Tusscher et al. [§], transmurally differing val-
ues for the conductivities of the slow delayed rectifier potassium channel (gxs),
the transient outward potassium channel (gt,) and the corresponding channel
kinetics were used. Furthermore, an apico-basal gradient of g, resulting in a
two times larger value at the apex (compare Fig.[Il) allowed the simulation of a
T-wave comparable to the measurements of the healthy volunteer.

The effects of cardiac ischemia also varied spatially. The half-maximum in-
hibition constant K, of the ATP sensitive potassium channel was largest in
epicardial and smallest in endocardial tissue. This ensured the transmurally dif-
fering sensitivity of this channel to changes of [ATP]; and [ADP]; [3]. The
ischemic region was described by the so-called zone factor (ZF), which described
the regional influence of the occluded coronary artery (see also Fig. ). Its values
ranged from 0 (healthy tissue) to 1 (central ischemic zone, CIZ), intermediate
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Fig.1. Ventricular model showing transmural and apico-basal heterogeneity of gxs
(left) and zone factor (ZF) with a subendocardial ischemic region and coronary arteries
(middle). Border zones of different ischemia effects (right).

values described the border zone (BZ). The different ischemia effects developed
unequally across the BZ, which had a thickness of 5.6 mm in this example. As
in [10], the effects of hyperkalemia underwent a linear course from the beginning
to the end of the BZ, whereas the impact of acidosis began at 50% of the BZ.
However, the effects of hypoxia were fully present after 10% of the BZ (compare
Fig. [[l). In order to model cellular uncoupling during phase 1b, the intracellu-
lar conductivity was linearly decreased from healthy tissue (100%) to the CIZ
(12.5%) [11]. The ischemic regions were modeled as ellipsoids with their centers
on the endocardial surface. In order to investigate the impact of the transmural
extent of the ischemic region on the ECG, a subendocardial, an intermediate and
a transmural ischemic region were created. The total size of the ischemic region
varied between 2.9% (subendocardial ischemia) and 5.6% (transmural ischemia)
of the volume of the left ventricle. The size of the endocardial surface, which was
affected by cardiac ischemia, was equal in all three cases. The ischemic region
was located at the distal left anterior descending coronary artery (see Fig. [I]).

Cardiac ischemia effects at different stages were initialized in a single-cell en-
vironment. Afterwards, simulation of cardiac excitation propagation was carried
out using the parallel monodomain solver acCELLerate [I3] with a time step of
20 us in the 3D ventricular model. For this purpose, an endocardial stimulation
profile as in [I2] mimicking the His-Purkinje conduction system, which describes
the time instant and location of ventricular stimulation, was used.

2.3 Calculation of Body Surface Electrocardiograms

The simulated BSPMs were obtained by solution of the forward problem of
electrocardiography. For this purpose, the previously calculated transmembrane
voltages in the heart model were interpolated onto a high resolution tetrahedron
model of the torso (= 1.3 million nodes). This torso contained the following tissue
types in addition to the heart: blood, lungs, fat, skeletal muscle, intestine, kid-
neys, liver and spleen. After the interpolation, the bidomain equations were used
to determine the corresponding body surface potentials with inhomogeneous
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tissue conductivities as described in [I2]. As in the ventricular simulations, the
intracellular conductivity of the heart was linearly decreased to 12.5% across the
BZ in the ischemic region in case of phase 1b ischemia.

3 Results

3.1 Cell Simulations

The cell model was initialized, so that the effects of the different stages of acute
ischemia were fully present. Since the changes due to cardiac ischemia were most
prominent in epicardial myocytes, only the results of this cell type are shown
here. The APs at different stages of cardiac ischemia are depicted in Fig.
The changes of the action potential parameters were also consequently great-
est in epicardial cells (see Table B)). The APDgy (measured at 90% repolariza-
tion) gradually decreased to 18.2% of the control value after 30 min of cardiac
ischemia. The resting transmembrane voltage Vi, ,cst increased and the peak
transmembrane voltage Vi, mq, decreased in the course of ischemia.

3.2 Tissue Simulations

Altogether, ten simulations using the 3D ventricular model were carried out: one
control case and three setups with different transmural extent of the ischemic

Table 2. Action potential parameters of epicardial myocytes at different stages of
acute cardiac ischemia

Action potential control stage 1 stage 2 phase 1b

parameter (0 min) (5 min) (10 min) (20-30 min)
APDoy  (ms) 309.1 116.5 72.1 56.3
Vinyrest  (mV) -85.6 -73.6 -64.3 -58.1
Vinymaz — (mV) 38.4 34.9 18.8 16.5
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Fig. 2. Action potentials of epicardial myocytes at different stages of acute ischemia
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Fig. 3. Transmembrane voltages of different ischemia setups at ¢ = 200 ms. The trans-
mural extent of the ischemic region and the stage of ischemia were varied.

-80 mvV

region at three ischemia stages each. The resulting transmembrane voltage distri-
butions at ¢ = 200 ms after beginning of a normal sinus beat are shown in Fig.
The corresponding ECGs, which resulted from these simulations, are plotted in
Fig. @ Since lead V; was closest to the ischemic region simulated in this work,
the changes due to cardiac ischemia were most prominent in this lead.

In the control case, the ventricles were completely in the plateau phase of the
action potential at 200 ms resulting in a nearly zero baseline in lead V. During
cardiac ischemia, this excitation pattern was changed. In case of subendocardial
ischemia, only short APs with low amplitude were initiated in the ischemic
region. The ischemia effects intensified with increasing ischemia stage. Since the
injury current was flowing from healthy epicardial towards injured endocardial
tissue, a pronounced ST segment depression could be observed during phase 1b.

The transmural extent of the ischemic region was slightly increased in the
intermediate ischemic region setup. During the first ten minutes, ischemia effects
were more pronounced in the midmyocardial and epicardial tissue, which resulted
in a slight elevation of the ST segment there. In phase 1b, no excitation was
initiated in the endocardial CIZ, whereas the midmyocardial and epicardial BZ
were activated. This caused nearly a ST segment depression in the later ischemia
stage.
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Fig.5. BSPMs of the transmural ischemia case at ¢ = 200ms at different stages of
acute cardiac ischemia

In transmural ischemia, the CIZ of the ischemic region spanned the entire
ventricular wall. However, a conduction block was only visible in the epicardium
at stage 1 and stage 2. In the endocardium, a delayed activation could be ob-
served. This led to a pronounced elevation of the body surface potential (compare
Fig. [, since the injury current was directed from the less injured endocardium
towards the more affected epicardium. During phase 1b, there was also a con-
duction block in the endocardium. Consequently, the body surface potential was
only slightly elevated close to the ischemic region. Next to this area of elevation,
the potential was similar to that of the control case.

4 Discussion and Conclusions

In clinical practice, the early diagnosis of cardiac ischemia is based on shifts of
the ST segment. In this in silico study, we showed that the changes in the ECG
depend not only on the transmural extent of the ischemic region, but also on the
stage of acute ischemia. Other groups as e.g. [QIIO/TI] also investigated phase
1b of cardiac ischemia. However, the corresponding body surface ECGs and the
differences between several acute ischemia stages were not investigated there.
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The effects of cardiac ischemia worsened in the first thirty minutes. On the
cellular level, the electrophysiological properties, as e.g. the APD or the AP
amplitude, changed gradually. Furthermore, the intracellular conductivity was
reduced in the ischemic region during phase 1b. As a consequence, almost no
excitation was initiated in the CIZ at this stage. As a result, the ST segment
depression was more pronounced in the subendocardial ischemia case and also
in the intermediate ischemia case, a ST segment depression can be seen. In
the transmural ischemia case, the difference between endocardial and epicardial
ischemic tissue decreases during phase 1b compared to the earlier stages. Conse-
quently, ST segment elevation is less pronounced after 20 to 30 minutes. Similar
observations have been made in animal experiments [I4/15], in which the ST
segment elevation decreased at ca. 30 minutes. However, the authors concluded
that this could be explained by transitory improvement of the electrophysiolog-
ical properties of ischemic cells due to a plateau phase of [K ], accumulation.
However, lack of experimental data, i.e. human body surface ECGs of the first 30
minutes of cardiac ischemia, do not allow appropriate verification of the findings
of these simulations.

The exemplary ischemic region presented in this work shows that the diag-
nosis of cardiac ischemia based on ST segment shifts can be very difficult. In
addition to the transmural extent of the ischemic region, also the temporal stage
of ischemia has an impact on the ECG and the direction of the ST segment shift.
Some ischemia cases, as e.g. the subendocardial ischemia at stage 1 or stage 2,
can hardly be identified in the ECG. As a consequence, early diagnosis of cardiac
ischemia should not only rely on 12-lead ECGs. Instead, biomarkers as CK-MB
or troponin or multichannel ECG systems should be more emphasized.

In general, the monodomain model is sufficient for the simulation of cardiac
excitation propagation and body surface potentials using a high resolution for-
ward model [I6]. However, anisotropy ratio may be changed during phase 1b
ischemia, which would require use of the bidomain model. As in [9], the model
of cardiac ischemia used in this work only indirectly simulates metabolic effects
as the inhibition of the Nat-KT pump in order to reduce model complexity.
However, detailed metabolic models as in [17] allow more realistic simulations
of ischemia effects. Furthermore, a diffusion model of the blood flow in the coro-
nary arteries would create more realistic ischemic regions. Another aspect that
should be mentioned is that the spatial resolution of 0.4 mm was a compromise
between computing time and accuracy, since the calculation of a single heart beat
(450 ms) took approximately 8.5h on 16 cores. In future simulations, a higher
resolution of 0.2 mm will be used. In addition, more simulations with different
occlusion sites and varying ischemia size should be carried out in the future.
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Abstract. The occlusion of a coronary artery results in myocardial is-
chemia, significantly disturbing the heart’s normal electrical behavior,
with potentially lethal consequences, such as sustained arrhythmias. Bi-
ologists attempt to shed light on underlying mechanisms with optical
voltage mapping, a widely used technique for non-contact visualization
of surface electrical activity. However, this method suffers from signal dis-
tortion due to fluorescent photon scattering within the biological tissue.
The distortion effect may be more pronounced during ischemia, when
a gradient of electrophysiological properties exists at the surface of the
heart due to diffusion with the surrounding environment. In this paper, a
combined experimental and computer simulation investigation into how
photon scattering, in the presence of ischemia-induced spatial hetero-
geneities, distorts optical mapping recordings is performed. Dual exci-
tation wavelength optical mapping experiments are conducted in rabbit
hearts. In order to interpret experimental results a computer simulation
study is performed using a 3D model of ischemic rabbit cardiac tissue
combined with a model of photon diffusion to simulate optical mapping
recordings. Results show that the presence of a border zone, in com-
bination with fluorescent photon scattering, distorts the optical signal.
Furthermore, changes in the illumination wavelength can alter the rela-
tive contribution of the border zone to the emitted signal. The techniques
developed in this study may help with interpretation of optical mapping
data in electrophysiological investigations of myocardial ischemia.

1 Introduction

Sudden cardiac death accounts for over 300, 000 deaths in the US each year [IJ.
One of the major causes of cardiac arrest is coronary artery occlusion, reducing
the supply of blood to the heart, and resulting in a phenomenon known as
myocardial ischemia.

The ischemic action potential (AP) displays significant morphological changes:
a decrease in upstroke velocity, AP amplitude and duration, and a depolariza-
tion of the resting membrane potential. These changes are mainly due to an
increase in extracellular potassium concentration ([K*],), a decrease in conduc-
tance of the main ion channels carrying sodium and calcium (Iy, and I¢,y) and
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an increase in conductance of the ATP-sensitive potassium current (I K(AT p))
[2]. However, during ischemia, a layer of cells between poorly- and well-perfused
tissue, referred to as the border zone (BZ), does not display fully ischemic ac-
tion potentials (APs) [3l4], and the resulting electrophysiological heterogeneities
increase the likelihood of developing disturbed excitation patterns and cardiac
arrhythmias [5]. During global ischemia, this occurs at the the epi- and endocar-
dial surface (with a BZ thickness of ~1mm), due to diffusion of oxygen and ions
with the environment surrounding the heart and blood within the ventricles [6].

Optical mapping utilizes voltage-sensitive fluorescent dyes to visualize the elec-
trical activity of the heart. Upon excitation at a specific illumination wavelength,
dye molecules transduce differences in membrane potential (V;,,) into changes in
emitted fluorescence. However, penetration of the illuminating light into the tis-
sue (with depth dependent on illumination wavelength [7]) and scattering of the
emitted fluorescent photons, means that the detected signal represents a weighted-
average of V,, levels from within a volume of tissue beneath the surface recording
site. Such effects have been shown in modeling studies to distort optical recordings
[819], in particular causing a prolongation of the AP upstroke.

In this study, we combine experiments and computational modeling to
investigate how optical mapping recordings are affected by ischemia-induced
transmural electrophysiological heterogeneity in the epicardial BZ and photon
scattering. We hypothesize that optical signals will be significantly distorted rela-
tive to actual epicardial APs due to the collection of signals from a depth of tissue
containing the BZ and fully ischemic myocardium. Preliminary dual-wavelength
optical mapping experiments were performed on no-flow globally ischemic rabbit
hearts. Two excitation wavelengths were used to investigate whether differences
between the respective emitted optical signals would appear with time, assuming
ischemia-induced transmural heterogeneities became more pronounced. Compu-
tational simulations, representing both the BZ and the effects of photon scat-
tering on optical mapping signals, were performed to assist interpretation of
experimental data.

2 Methods

2.1 Optical Mapping Experiments

Optical mapping experiments were performed on isolated rabbit hearts (1kg fe-
males, n=3), Langendorff-perfused with 37°C Krebs-Henseleit solution bubbled
with 95% Oz / 5% COs, and maintained in a heated imaging chamber filled with
perfusate. Hearts were stained with voltage-sensitive dye (20uL bolus of 27.3mM
di-4-ANBDQPQ), excitation-contraction uncoupled to eliminate motion-induced
imaging artifacts (10uM blebbistatin), paced at the apex (2ms, 8V bipolar pulse
at 1.25Hz, to ensure maintained capture and avoid alternans during ischemia),
and subjected to no-flow global ischemia. Fluorescence was excited using camera
frame-synchronized LED illumination, alternating 470 4+ 10nm (shallow penetra-
tion) and 640 £ 10nm (deep penetration), and acquired with a 690nm long-pass
filter (which effectively cuts out excitation light) at 922Hz (64x64 pixel 16-bit



22 S. Dutta et al.

CCD camera resulting in 300um/pixel resolution). This allowed paired compar-
ison of short and long wavelength excitation.

2.2 Modeling Ischemia-Induced Alterations in Electrophysiology

We constructed a cuboid ventricular segment model (bmm x 5mm x 5mm) of
global ischemia, including transmurally-rotating fiber architecture and rabbit
ventricular cell membrane dynamics [10], with an added Ixarp) current [11].
We chose to model the cardiac tissue after 10min of ischemia, as the electrophys-
iological differences between the healthy and ischemic tissue are assumed to be
greatest at that time [6]. The BZ, as shown in Figure [l was represented by a
transmural gradient in ischemia-induced changes [6].

1mm 0:5_n_1_m . 0.1mm
el 10mMameaas .0 : O T e i
5 .- 5
g & 2 g Skare) a
E 4mM g = °_".'§ ..... 5 2100 3
i w

Fig.1. Diagram of varying ischemic electrophysiological parameters of the cardiac
tissue model with a BZ: [K1],, Sna, Scar, and Sk(arp) define a BZ of Imm, 0.5mm,
and 0.lmm, respectively

Bidomain simulations, solved using the finite element method within the
Chaste environment [I2], were used to simulate propagation of electrical ex-
citation through the tissue following a supra-threshold stimulus applied to the
bottom plane of the cube, horizontally aligned to the transmural section. To
assess the effects of the BZ, models with/without ischemia-induced spatial het-
erogeneities were considered.

2.3 Optical Mapping Model

Optical mapping signals were simulated using the model presented by Bishop
et al. [§]. Briefly, the steady-state photon diffusion equation was solved using
the finite element method in the Chaste environment to calculate the distri-
bution of photon density throughout the tissue following both uniform epicar-
dial illumination (®;jum) and the resulting fluorescent photon emission (@eyy,):
D 7% @ — j1,® = —w, where the optical diffusivity (D) and absorptivity (js)
were taken at the illumination/emission wavelength (488/669nm): 0.18/0.36mm,
0.52/0.10mm 1 [8]. Zero boundary conditions were used throughout, except dur-
ing illumination where the source term w was set to an arbitrary value of 1 on
the epicardial surface; during emission, w was defined to be a function of @;;;,m
and V,,, as obtained from the bidomain simulations, at each point in the tis-
sue. The recorded optical signal, V,p¢, was then calculated as the outward flux
of @, at each time step across the epicardial surface by applying Fick’s Law:
Vopt = =DM 7 D1, where m is the normal to the epicardial surface.
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The degree of distortion due to photon scattering depends highly on the ef-
fective optical penetration depth (6 = \/ D/uq) at both the illumination and
emission wavelengths [§]. Therefore, we analyzed the effects of high/default/low
values of 521}’}’” (2.45/0.59/0.18mm) and &g} (3.20/1.90/0.18mm) to represent
high and low wavelength penetration depths.

2.4 Data Analysis

The results presented are taken from normalized V,,, and V,,; values of a node
at the center of the epicardium: V5, and V;,. We calculate the APD as the
time difference between the upstroke reaching 0 mV and 90% repolarization and
upstroke duration as the time between V,,, reaching 10% and 90% depolarization.

We define 7, as the ratio of V3, and V7.

3 Results

3.1 Optical Mapping Experiments

Experiments were performed in isolated rabbit hearts to investigate changes
in optical mapping signals during no-flow global ischemia. Normalized voltage
signals, showing the activation wavefront at different times following apical stim-
ulation can be seen in Figure Upstrokes from a 2x2 pixel area on the left
ventricular free wall for the two excitation wavelengths at different times of is-
chemia are shown in Figure Differences between the respective emitted
optical signals increase with time, showing a prolongation in upstroke duration
and a reduced upstroke velocity recorded with 640nm compared to 470nm exci-
tation. We hypothesize that the deeper penetrating wavelength (640nm) displays
more ischemic features, as it gathers information from a larger volume that in-
cludes more ischemic cells than the shallower penetrating wavelength (470nm).
To investigate the source of these differences, we subsequently performed a sim-
ulation study.

3.2 Border Zone Effects on Epicardial Transmembrane Potential

Figure shows the distribution of V) for the two types of tissue: with and
without a BZ. We notice that the repolarization wavefront shapes are signif-
icantly different in the two types of tissue. Cells close to the epicardium and
endocardium depolarize faster and take longer to repolarize in the tissue with a
BZ, than in the homogeneously ischemic tissue.

Figure shows that the AP (sampled from the epicardium) of the fully
ischemic tissue (without a BZ) displays all of the expected ischemia-induced
morphological changes. In the presence of a BZ, the AP displays an upstroke
duration 22% shorter and an APD 11% longer than the homogeneously ischemic
tissue, characteristics of an AP from less ischemic tissue.
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Fig.2. (a) Images of normalized fluorescence emitted from the left ventricle of the
rabbit heart at different times after apical stimulation. (b) Normalized voltage upstroke
after 0, 5 and 10 min of ischemia for 470nm 4+10nm and 640 +10nm excitation with
the respective upstroke durations.
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Fig. 3. Computational model of border zone effects on V,;. (a) Snapshots of V,;, for
tissue with and without a BZ during tissue depolarization (29 ms) and repolarization
(139 ms) following apical stimulation (b) V,;, with and without a BZ, including APD
and upstroke duration values.

3.3 Optical Signal and Transmembrane Potential Comparison

Figure [i(a)] shows the corresponding Vi surface optical APs with/without BZ,
whilst Figure compares differences in upstroke duration and APD relative
to the V traces of Figure As has been shown in previous optical mapping
studies, the emitted signal represents the transmembrane potential of a weighted
average volume of myocardium, due to photon scattering [89]. These effects are
more noticeable in the upstroke than the APD, as shown in Figure even in
the homogeneously ischemic tissue. This is caused by the narrow and fast wave-
front that occurs during depolarization, such that as it crosses the scattering
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Fig.4. (a) Simulated V;,; with and without BZ. APD and upstroke duration values
are shown for the respective APs. (b) Photon scattering effects, represented by 7opt,
on APD and upstroke duration for simulations run on a tissue with and without a BZ.

volume, some cells are in their resting state while others are excited. This is not
the case during the slower repolarization phase, where most of the cells in the
scattering volume will have a similar transmembrane potential. In fact, 7,,¢(app)
values are close to 1 while Topt(upstroke) values are of 2.92 or greater. Therefore,
differences in APD seen in Figure are mainly due to the border zone as
opposed to photon scattering.

Figureshows that 7op¢ values move away from 1 in the presence of a BZ for
both APD and upstroke duration. This arises from the increase in heterogeneities
which lead to differences in AP morphology, in conduction velocity and wave
front propagation. In the presence of a BZ, V3, gathers information from cells
exposed to different degrees of ischemia, while V,} represents the less ischemic
cells at the epicardium. Differences in upstroke duration and APD for simulations
with and without a BZ are attenuated in V, (Figure compared to V
(Figure due to the optical signal representing a weighted average volume
of tissue.

3.4 Varying Optical Mapping Penetration Depth

The trends mentioned above are accentuated as we change the penetration depth.
Figure [§ shows that 7,,; values move away from 1 as the penetration depth in-
creases for both APD and upstroke duration in simulations with and without
a BZ. Differences between V, and V; increase due to the optical signal av-
eraging over a bigger volume for an increased penetration depth. Furthermore,
the differences between 7.,¢ values with and without a BZ become more pro-
nounced for both upstroke duration and APD calculations as the penetration
depth increases. As we increase ¢, the differences between V7, with and with-
out a border zone are attenuated due to a larger scattering volume, such that
more signal is acquired from the deeper ischemic tissue, decreasing the relative
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Fig.5. Varying penetration depth effects, represented by 7,p:, for tissue with and
without a BZ. (a) Upstroke duration and (b) APD, taken at different penetration
depths (Low, Default, and High).

contribution of the BZ. However, a large change remains in V,} with/without
BZ (Figure|3(b)), thus leading to a larger difference in 7, as penetration depth
increases.

4 Conclusions

The aim of this study was to investigate the combined effects of ischemia-induced
transmural heterogeneities and photon scattering on epicardial optical mapping
recordings in a globally ischemic heart. We approached this with a combined ex-
perimental and simulation study. Preliminary dual wavelength optical mapping
experiments in globally ischemic isolated hearts were performed. These showed
a clear difference in voltage-sensitive fluorescence emission between the two exci-
tation wavelengths, which we attribute to the presence of an epicardial BZ. We
investigated this hypothesis with a model of global ischemia, including trans-
mural variation of electrophysiological parameters, combined with a model of
photon density and excitation to simulate the optical signal at the surface of
the heart. Simulations of V,, and V,,; were conducted on a model of ischemic
rabbit tissue with and without a BZ. This demonstrated that the electrophysi-
ological heterogeneities that exist in the presence of an epicardial BZ affect the
optical signal, resulting in a decrease in upstroke duration and an increase in
APD compared to the optical signal from a homogeneously ischemic slab of tis-
sue. Furthermore, as the penetration depth of the optical signal is increased, the
differences between the epicardial V,,; and V;,, are accentuated.

Overall, this study shows that the electrophysiological heterogeneities that
arise at the epicardial surface during ischemia have a significant effect on op-
tical mapping recordings. Furthermore, exciting fluorescent dyes with different
wavelengths has an important impact on the resulting optical signal and may
be used to investigate transmural heterogeneities. These findings provide new
insights into optical mapping data interpretation when investigating the role of
heterogeneity during global ischemia.
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Abstract. The cardiac conduction system (CCS) has been in the spot
light of the clinical and modeling community in recent years because
of its fundament role in physiology and pathophysiology of the heart.
Experimental research has focused mainly on investigating the electrical
properties of the Purkinje-ventricular-junctions (PVJs). The structure of
the PVJs has only been described through schematic drawings but not
thoroughly studied. In this work confocal microscopy was used with the
aim of three-dimensional characterization of PVJs. Adult rabbit hearts
were labeled with fluorescent dyes, imaged with confocal microscopy and
Purkinje fibers differentiated from other cardiac tissue by their lack of
transverse tubular system on the membrane. A semi-automatic pipeline
to segment the network was implemented, using region growing and man-
ual revisions. The resulting three-dimensional reconstructions were used
to compute centerlines of the Purkinje fibers. Highly complex structural
configurations were found at a subcellular resolution including anasto-
moses with furcations of up to 5 paths. We suggest that the presented
analysis and parametrization of the centerline skeleton of the PVJs will
help to improve automated Purkinje network generation algorithms.

Keywords: Purkinje system, cardiac electrophysiology, confocal mi-
croscopy, labeling.
1 Introduction

The Purkinje fibers are a specialized myocardial tissue mainly characterized by its
ability to conduct electric impulses at higher speed than working myocardium[I].

* Corresponding author.
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This functionality improves efficiency of the contraction and pumping by ensuring
an activation pattern that synchronizes the electrical activation of the ventricular
walls. The cardiac conduction system includes several compartments along its ex-
tension differing in cell type and localization within the heart. In the ventricles, the
portion exiting the atrioventricular node is called the bundle of His, which splits
into right and left bundle branches at the basal septum. The fascicular branches
then lead to a complex network of Purkinje fibers, which connect to the ventricles,
and are the most distal portion of the system. Depending on species, the cardiac
conduction system is isolated from the rest of the myocardium by a sheath of con-
nective tissue which prevents the current to flow out from the fibers but at spe-
cific contact points. In some species transitional cells between Purkinje and the
myocardium can be differentiated, for instance in rabbit, dog or pig, but not in
human and bovine [2]. In these species the contact point for transmission of the
electric impulse occurs at the terminal points of the Purkinje network (Purkinje-
ventricular junctions, PVJs) [3/4/5].

The Purkinje network has hit a spot light in recent years in clinical and
academic research, in particular on arrhythmogenesis. On the one hand abnormal
activation of the CCS has been reported to cause electrical macro- or micro-re-
entries. This kind of reentry is produced due to a unidirectional block in the
His-Purkinje system and can give rise to ventricular tachycardia [5]. On the
other hand, it has been found that targeting Purkinje-like-potentials (PLPs)
during radio frequency ablation therapy near the scar border zone in patients
with myocardial infarction is an effective way to prevent recurrence of ventricular
fibrillation [6]. However there is a lack of detailed description of how ischemia in
these sites of PLPs is causing the electrical disturbance. Experimental research
has been focussed primarily on electrical coupling of the PVJs. These regions
have been studied, for example, on how cadmium and isoproterenol affect the
electrical delay of propagation [7]. At a structural level two types of interaction
have been found at this interface: a funnel connection and a transitional layer
(T cells) between the Purkinjes and working myocytes. Tranum-Jensen et al
showed a schematic description of the spatial configuration [2]. But apart from
this study based on light microscopy the structural appearance of the PVJ has
been only sparsely characterized.

More sophisticated techniques such as confocal microscopy allow 3D imaging at
subcellular resolution, which can be used to characterize these junctions in a more
precise way. This paper focuses on the construction of 3D models of PVJs from
microscopy techniques with the final aim of quantitatively characterize them. This
image-based information will provide a solid basis for developing realistic models
of the CCS with important applications to clinical treatment of heart disease.

2 Material and Methods

2.1 Tissue Preparation

The complete methodological pipeline is illustrated in Fig. [l All animal usage
was approved by the Institutional Animal Care and Use Committee (IACUC) at
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Fig.1. Methodological pipeline. We isolated, labeled and imaged sections from
rabbit subendocardial heart tissue. The image data was processed and analyzed using
methods of digital image processing.

the University of Utah. Adult rabbits were anesthetized with pentobarbital and
anticoagulated with heparin. Following thoracotomy hearts were quickly excised
and placed in a modified oxygenated Tyrode’s solution at room temperature. The
hearts were perfused and stabilized with a Langendorff preparation. Tyrode’s so-
lution including wheat germ agglutinin (WGA) conjugated to Alexa Fluor 555
(Invitrogen, Carlsbad, CA), a fluorescent dye that binds to carbohydrates in
the cell membrane and extracellular space, was passed through the hearts. This
method allowed for a homogeneous distribution of the dye throughout the heart.
The hearts were also fixed through the same line of the Langendorff perfusion
with paraformaldehyde. Biopsies were made from left and right ventricle lat-
eral walls (mid and apical), papillary muscles, and septal wall. Afterwards, the
biopsies were stored in paraformaldehyde.

2.2 Image Acquisition

Images were obtained within 2 months after heart isolation. 3D image stacks
were acquired using a confocal microscope equipped with a 40x oil immersion
lens (Zeiss 5 Live, Jena, Germany). Image stacks have a spatial resolution of
0.31 x 0.31 x 0.31um and were obtained with a field-of-view (X x Y) of 318 x
318um extending up to 60um into the myocardium (Z direction). The Z-axis
was parallel to the laser beam direction.

2.3 Geometric Reconstruction and Structural Analysis

The image stacks were pre-processed before the segmentation. A deconvolution
with the iterative Richardson-Lucy algorithm was applied to all the images us-
ing a measured point spread function (PSF) following descriptions from [g].
Images were further processed to remove background signals and corrected for
depth-dependent attenuation. These methods were implemented combining a
customized C++ and MatLab software (MathWorks, Natick, MA).
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3D Slicer software (www.slicer.org) was used for a semi-automatic segmen-
tation of the Purkinje network. Image stacks presented differences due to the
varying levels of diffusion of the WGA in the tissue. An approach using region
growing together with manual segmentation was found the most appropriate
when attempting segmentation on these type of images. Livewire algorithm was
used to perform the manual corrections [9]. Problems arose due to the number of
discontinuities on the cell membrane, which caused the region growing algorithm
to leak through into the extracellular space.

After stacks were fully segmented, centerlines were computed for the recon-
structed surfaces of the Purkinje network in order to analyze in a quantitative
way their branching pattern in following studies. For this, the implementation
of Antiga et al [10] in VMTK was used (www.vmtk.org).

3 Results

The pipeline allowed us labeling, imaging and processing tissue images to charac-
terize PVJs in 3D at high resolutions. First, the field of view and resolution used
in the image acquisition with confocal microscopy proved to be adequate for the
purpose of differentiating Purkinje fibers from working myocytes by observation
of the transverse tubular system (T-system). The WGA labeling marked the
clefts between cells (interstitial space) and to some extend fibrous structures of
the endocardium. Differentiating Purkinje cells from other cardiac tissue based
on the lack of T-system was possible, since Purkinje fibers lack T-system or
present a less developed T-system than working myocytes, depending on the
species [11]. Our XY-images displayed a characteristic dotted pattern due to the
T-tubules in the cell membranes of working myocytes and less pronounced in
Purkinje fibers (Fig. 2)).

The collagen fibers sheathing the Purkinje fibers provided an effective bound-
ary for its segmentation. Nevertheless, in general the labeling of cell membranes
is not homogeneous in the images. Therefore a region growing method failed in

Fig.2. Exemplary images from 3D-stack. (a) Purkinje fibers (P). Notice the
absence of T-system inside the cells. (b) Ventricular myocytes (V). In these cells the
T-system appears as a very regular dotted pattern in the cell.
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Fig. 3. Multiple-furcation in Purkinje fibers. Star-like arrangement at a branch-
ing site of a fiber. Note in the lower right corner working myocytes below the Purkinje
fibers. The working myocytes follow preferential direction according to the fiber orien-
tation while Purkinje fibers do not have a particular direction.

@) (b)

Fig.4. 3D reconstruction of image stacks. (a) Surface model of a Purkinje net-
work. (b) Zoom into a bundle of cells in a Purkinje fiber. Marked in red is the centerline,
averaged for the bundled of fibers.

multiple instances to segment entirely the Purkinje fibers without leaking into
extracellular space or ventricular myocytes. To avoid this problem, a manual
selection of distributed seeds was necessary to segment the stack. The algorithm
worked in 3D, and provided Purkinje structure spanning over the whole stack of
images. Manual corrections were needed and the Livewire algorithm was helpful
to perform the manual task.

After segmenting a stack the Purkinje network was analyzed in 3D. At fork
points, complex furcations were found. Anastomosis yielded alternative paths to
ensure the delivery of the electric signal. In some cells up to 5 branches were
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Fig.5. Surface model with centerlines. The centerlines (lines in red) were com-
puted taking advantage of the tubular shape nature of the Purkinje fibers.

seen spreading from a star like geometry (Fig. B). To extract quantitative data
from the images, binary 3D masks were created. Following, surface meshes were
reconstructed for each of the segmentations (Fig. @h). Purkinje fibers at that
resolution form tubular complex structures, which tend to show a clear direc-
tionality, and do not run in parallel in many cases. Each fiber was formed by
a few group of cells, in the order of three to four. Inconsistencies on membrane
continuity also occurred in between Purkinje fibers, and thus the tubular shapes
appeared merged at certain segments. These connections might be due to seg-
mentation errors in some cases, although it has been reported that there is lateral
electrical connection between bundle fibers. This fact helped to decide a common
initial site when choosing seed and target points for the centerline computation;
the centerlines bundle a group of cells in the fiber (Fig. @b).

In Fig. Bl a Purkinje fiber structure shows the centerlines computed for the
main directions of a PVJ interface. In this 3D orientation of the structure, ven-
tricular myocytes (endocardial wall) are below the structure. Note the two layers
of fibers and the connection between with anastomosis.

4 Discussion and Conclusions

The complexity of interconnection in our study at high spatial resolution is
in agreement with previous work [I2]. From macroscopic (as early evidenced
from Tawara [I3]) to microscopic resolution, the Purkinje network forms plexus
structures. The reported star-like arrangement of cells in Fig.[3l where a junction
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has more than two paths, has not been considered in modeling approaches of
the Purkinje tree [I4/15]. Here, it was simplified to a parent-branch leading to
two child-branches.

The importance of the Purkinje system to realistic modeling has been demon-
strated in the past [16]. Further development in imaging technologies will enable
us to visualize in vivo the Purkinje network, meanwhile modeling approaches
seem to provide a suitable substitution. Nevertheless, these models should be
enriched by ex-vivo histological data, in order to be physiologically meaningful.
Algorithms for automated construction of Purkinje structures, e.g. [I7], will have
to be extended in order to represent the level of detail for PVJ interconnection
with the surrounding tissue observed in this study.

As future work, the centerlines of the PV Js will be used to quantitatively study
the branching pattern, by means of studying the branch length, and furcation
angle, and other similar parameters. This parametric characterization of the
PVJ structure will be crucial in order to set up spatial growth parameters in
an automated algorithm. We hypothesize that from polygonal patterns seen in
macroscopic data there is a fractal relationship with the plexus forms observed
at microscopic level. This relation could be tested and expanded in the progress
of our research.
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Abstract. Understanding the transmembrane potential (TMP) dynam-
ics of the heart provides an essential guidance to the diagnoses and treat-
ment of cardiac arrhythmias. Most existing methods analyze and classify
the TMP signal globally depending on extracting silent features such as
the activation time. In consequence, these methods can not characterize
the dysfunctions of each cardiac cell dynamically. In order to assess the
electrophysiology of the heart considering pathological conditions of each
cardiac cell over time, one should analyze and classify the TMP behavior
that is differentially expressed in a particular set of time. In this paper,
we utilize a spectral co-clustering algorithm to disclose the abnormality
of the TMP dynamics over a time sequence. This algorithm is based on
the observation that the embedding spectrum structures in the TMP dy-
namics matrices can be found in their eigenvectors through singular value
decomposition (SVD). These eigenvectors correspond to the characteris-
tic patterns across cardiac cells or time sequence. To demonstrate the re-
liability of this approach, our experimental results show great agreement
with the ground truth of the simulated data sets that enable efficient
use of this scheme for revealing abnormal behavior in TMP dynamics,
at the presence of added Gaussian noise to the simulated TMP dynam-
ics. Furthermore, we compare our results against the k-means clustering
algorithm outcomes.

1 Introduction

Electrical activity of the heart triggers myocardial contraction and any distur-
bance of this activity interrupts the rhythmic and coordinated contraction of
the heart, and eventually, weaken the strength of the heart to pump the blood.
The standard noninvasive observation of this signal is the Electrocardiogram
(ECG), and as a result, currently diagnosing cardiac pathology is primary based
on classification and pattern recognition of the ECG signal.

However, ECG signal is not able to provide localized information of cardiac
electrical activity. Therefore, in the last decades many efforts have been put to lo-
calize this electrical activity through estimation of the transmembrane potential
(TMP) of personalized electrophysiological models [2I3/4].

D.N. Metaxas and L. Axel (Eds.): FIMH 2011, LNCS 6666, pp. 36]46] 2011.
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It is difficult to understand the TMP dynamics, i.e. action potential, thor-
oughly as it is three-dimensionally distributed over space and evoluted over time
(3D+T) problem, and in consequence, people tend to extract certain features
from it, especially because early works manifest that certain features are valu-
able in disclosing dysfunctions of the heart in experimental [9], and simulated [5]
studies. Accordingly, many existing methods are based on such approach. In [I],
infarct region was identified by extracting two representative features, activation
time (AT) and action potential duration (APD), and measuring the diversions
of these features from the normal values. K-means clustering algorithm was then
used to differentiate between healthy and diseased regions. In [3], he accuracy
of the personalized TMP activity was measured by optimizing four features, i.e.
AT, APD, conduction velocity restitution and APD restitution, to measure t.

However, various studies [TOJTTIT2JT3IT4], have shown different morphologies
and traits between depolarization segment (DS) and repolarization segment (RS)
in discovering cardiac arrhythmias. Therefore, analyzing either period or extract-
ing certain features can not reflect the cardiac electrophysiological states thor-
oughly and it is important to evaluate both segments dynamically by classifying
them based on their time distributions.

Within a cardiac electrophysiology (EP) context, there are numerous data
mining techniques that can be applied to identify cardiac arrhythmias and to
classify different pathological conditions of heart cells. With knowledge insuffi-
ciency of cardiac cells behavior as a function of time classes, it is appropriate to
design or use partitioning methods that have capabilities revealing latent classes
by benefiting from the correlation between cardiac cells and time sequence. To
the best of our knowledge, no work has been done on the topic of classifica-
tion and quantification of cardiac arrhythmias that consider the dynamics of
the TMP, instead existing methods are mostly based on isochrone features such
as action potential duration [1], [3], [4]. Therefore, the aim of this paper is to
consider the time sequence of the TMP dynamics in disclosing ischemic regions
by gaining from a spectral co-clustering algorithm. Dhillon was the pioneer of
spectral co-clustering algorithm on a bipartite graph (or bigraph), which is a
graph that has two independent sets of vertices and each set of vertices is con-
nected to subset or all vertices in the other set, and it successfully applied to
many applications such as linguistics [6], [7], and bioinformatics fields[8]. Within
cardiac EP, we can benefit from the duality of cardiac cell and time clustering.
Here, cardiac cells clustering induces time clustering, while time sequence clus-
tering induces cardiac cells clustering. We posed the cardiac cells clustering as
a bipartite graph-partitioning problem and by performing co-clustering on the
TMP dynamics, we could reduce this high dimensional data interaction problem
to visualize a selection of abnormal TMP behavior.

2 Methods

We simulate the TMP dynamics using phenomenological monodomain two-
variable modified FitzHugh-Nagumo (FHN) model, i.e. Aliev-Panfilov model
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Fig. 1. Spatiotemporal TMP. (a) Normalized waveform of a single normal left ven-
tricular TMP signal over time (noiseless TMP: blue line and noisy TMP: green line).
(b)-(d) Spatial propagation of the TMP signal through the entire myocardium. Left to
right: 20.63ms, 47.28ms, 215.42 ms after the onset of the ventricular activation. (b)-(c)
Depolarization segment, (d) Repolarization segment.

[19], because it generates realistic TMP shape at macroscopic level. In addi-
tion, it offers a flexible control on TMP shapes that make it easy to mimic
pathological conditions of the myocardium.

The transmembrane potential signal , as shown in figure 1, represents the
normalized electrical activity of a single cardiac cell over time before and after
adding Gaussian noise. At the same time, it represents the myocardium electrical
activity since it propagates from one cell to adjacent cells throughout the whole
cardiac muscle. Since our focus is to cluster the behavior of the TMP dynamics
into meaningful physiological conditions, normal/abnormal, we can reformulate
this clustering problem utilizing graph partitioning technique.

2.1 Co-clustering within a Cardiac Electrophysiology Context

Co-clustering or bi-clustering is a data mining technique that allows for cluster-
ing the samples and features of the data simultaneously. Each data sample is
constituted from these features. It is accomplished by relating each class of the
data features to a class of the data samples that share certain characteristics
and we believe that these characteristics are important in creating such a class.
Within cardiology context, representing each cardiac cell as a data sample and
each time step as a data feature. The scalar TMP value between each cell and the
corresponding time step represent the edge. Therefore, we aim to create clusters
that differentiate between normal and abnormal behavior of TMP dynamics by
splitting data samples and features into two classes.

Given a data set matrix of TMP dynamics with m nodes (samples) that
represent the whole myocardium and n time steps (features), i.e. A = (@i;)mxn,
we consider the clustering of the time steps t, into groups as follows:

bty tsy oty 1yt tg ©{1,2,..,m}, ¢=1,2,3,...,p—1,p. (1)

where U]Z:L--m tq=1{1,2,..,n}, and t;Nt, =0, such that ¢,r =1,...,p, ¢ # 7.

The clustering procedure is done in such a way that time steps are grouped
together should share particular characteristics. In a similar manner, each cardiac
cell ¢4 is assigned to one of the cardiac cells groups:

C1,€2,C€3,...,Cp—1,Cp, Cq g {1327"'7m}7 q:13273a"'ap713p' (2)



Spectral Co-clustering of TMP Dynamics 39

Fig.2. (a) Constructed bipartite graph: C1...Cy, represent cardiac cells and ti...t
represent time sequence of the TMP dynamics (before clustering). (b) Partitioning of
the bipartite graph: The colors (black-white) represent (normal-abnormal) clusters and
the dotted line represent the cut of the graph (after clustering).

where Ug=1,..,p cg =41,...,m}, and ¢ N¢, =0, such that ¢,r =1,...,p, g F#r.

With this procedure, cardiac cells that belong to class ¢, are responsible for
constructing the time steps class ¢4. This dual process of classification is called
co-clustering.

2.2 Bipartite Spectral Graph Co-clustering Algorithm

In the framework of cardiac electrophysiology discipline, we can represent an
undirected weighted bipartite graph, as shown in figure 2, by G(Ve, Vt, E) that
consists of two finite sets of vertices V¢ that represent cardiac cells (samples)
and V't that represent the time sequence of each cell (features), and a finite set of
edges F that signify the association between the two sets of vertices in the graph
[6]. One approach to capture the strength of this association is to have dynamic
edge-weights equal to normalized TMP dynamics of each cardiac cell at specific
time. The cut of this graph captures the separation between different partitions.
In [15], it is shown that one can gain from graph spectrum by observing the
latent characteristics and structure of a graph, i.e. how to partition a graph. To
do so, we can solve matrices that contain eigenvalues and eigenvectors associated
with graphs. Furthermore, [6] proposed a new co-clustering approach on bipartite
graphs and it is straightforward to fit this approach to our problem, 3D+T, where
we can treat each time step as a feature and each cardiac cell as a vector of these
features in the feature space. Thus, the entire myocardium can be represented as
a cell-time matrix whose rows correspond to cardiac cells and columns represent
the time sequence of the TMP dynamics. The underlying assumption is that
cardiac cells that have the same behavior at specific time should be clustered
together. To achieve the clearest electrophysiological characterization of cardiac
cells in TMP dynamics, we subtract the TMP dynamics of each cell from the
reference (normal) TMP dynamics. Since we have the preprocessed data set
ready, we can now introduce the algorithm:

1. Given a data set matrix A,,xn, which represent the TMP dynamics, that
measures the association a; ; of the cardiac cell ¢ at particular time step j.
Construct the normalized matrix
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A, = D;'?AD;'? (3)

where D1(i,4) = >, Aij and Ds(j,j) = >, A;j are diagonal matrices.
Compute the associated singular value decomposition (SVD) of the normal-
ized matrix A,,

SVD(A,) =UxAxVT (4)

where U, xm and VnTX n

Calculate [ = [log, k] singular vectors, us, ..., u;+1 and va, ..., Uj41.

are unitary matrices, A,,x, is diagonal matrix.

These [ singular vectors usually contain k-modal information of the data set.
Construct the [-dimensional data set matrix

7 =

—1/2
D1 1/2 U[Q,...,l+1] (5)
Dy Vi, i41]

Run the k-means clustering algorithm on the /-dimensional data set matrix
Z to obtain the k-way multi-partitioning.

Experimental Results

3.1 Simulated Data Sets

— Modeling Specification: We accomplished our study on the heart model of

the University of Auckland with 836 nodes that represent cardiac cells [16].
We tested the algorithm on 100 simulated cases (27 anterior, 25 inferior, 27
lateral, and 21 septal) of myocardial ischemia and infarction that represent
the TMP dynamics of each cardiac cell over time. Abnormal TMP dynamics
for different pathological conditions are simulated as the gold standard and
then corrupted with Gaussian noises with zero mean of 20dB signal-to-noise
ratio (SNR) as defined in equation 6. This Gaussian noises are assumed to
be spatially variant, but temporarily invariant.

power(signal) mean(signal)

SNR = 10logig = 20log10

(6)

cov(noise) std(noise)

Infarction procedure: In our experiments, we follow [I], [5] procedure in as-
signing ischimic and infarct regions of the heart and used the AHA standard
17-segments devision of the left ventricular [I7], as shown in figure 6 (a).
We define a scar ranging from one to nine combination of segments covering
all left ventricular regions. In each case, we decrease the tissue excitability
gradually from isthmus to the center of the chosen scar segment(s) that no
excitation can be recognized. As an example, we analyze two simulated cases
in more detail.



Spectral Co-clustering of TMP Dynamics 41

(a) (0)

Fig.3. (a) The ground truth of the infarct of case 1 (green area) in a meshfree
representation of the ventricles. (b) The ground truth of the infarct case 2 (green area)
in a meshfree representation of the ventricles. red: normal tissue excitability.

3.2 Results

1. Case 1: Figure 3 (a) shown the ground truth (GT) of the simulated data
for scar location that belongs to segments 4, 10, and 15, which represent
basal, mid, and apical inferior region of the left ventricle respectively. Figure
4 depicts the spectral co-clustering results of case 1 where it reveals the
embedding spectrum of the TMP behavior of each cell with time and cluster
it together. Also, as can be seen from figure 4 the algorithm clusters the
normal/abnormal TMP dynamics cells together in certain time steps. As
an example, the cardiac cell at row 800 depicts an abnormal behavior (red
color) in all time steps. This means that the cell is not excited at all. On the
other hand, the cardiac cell at row 650 reveals the abnormality just in the
repolarization period. Figure 5 displays the dynamic clustering of the TMP
behavior during DS and RS. As can be seen the excitation region difference
between this case and the normal case shown in figure 1 is in the inferior
region.

Furthermore, figure 6 (a) shows the clustered abnormal TMP segments
with their corresponding abnormality percentages. To present different ex-
amples of abnormalities in TMP dynamics, we plot the behavior of abnormal
cells in figure 6 (b-d). The percentage identification of the abnormal TMP
cells is measured by the ratio: the number of identified abnormal TMP cells
behavior to the total number of true abnormal TMP cells behavior. In this
case, the percentage of correctly identified abnormal TMP cells behavior be-
fore adding the noise is 90.51% where the algorithm can discover 124 nodes
out of 137 nodes in the GT. After corrupting the TMP dynamics signal by
adding Gaussian noise with 20 dB, the correctly identified abnormal TMP
cells behavior is 89.05% where the algorithm can discover 122 nodes out of
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Fig. 4. Visualization of co-clustering cardiac cells (y-axis) and time sequence (x-axis)
of case 1. (a) The results of co-clustering with shuffled time sequence of the TMP
dynamics. (b) The results of co-clustering with original time sequence. Colors encode
the embedding spectrum of the data. Green: normal TMP dynamics, red: abnormal
TMP dynamics.

Fig. 5. (a)-(d) Dynamic co-clustering of the TMP cells in case 1. Left to right: 10.38ms,
20.63ms, 215.42 ms, 235.92ms after the onset of the ventricular activation. The color
encodes the TMP value from max (red area) to min (green area) while the black
contours represent isochrones of the TMP.

137 nodes in the GT. In addition, we characterize the regions where the ab-
normality of the TMP cells behavior appears, and found that 84.67% are in
the infarct scar segments, 12.09% are in the isthmus region, and 3.23% are
in distant regions.

2. Case 2: Figure 3 (b) shown the ground truth (GT) of the simulated data for
scar location that belongs to segments 5, 6, 11, 12, and 16, which represent
left circumflex region. Due to the space constraints we display the dynamic
clustering of the TMP during DS and RS periods, figure 7. The distinction
in excitation regions compared with the normal case depicted in figure 1
is in the lateral region. In this case, the percentage of correctly identified
abnormal TMP cells behavior before adding the noise is 91.95% and 95.48%
after adding the Gaussian noise. Also, we quantify the regions where the
abnormality of the TMP cells behavior manifests, and it is found that 95.08%
are in the true infarct scar segments, 4.37% are in the boundary scar region,
and 0.55% are in remote regions.
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Fig. 6. (a) Final clustering results of the TMP abnormality regions with corresponding
percentage of each abnormal segment in case 1. Red area: infarct scar segments and
orange area: isthmus and distant scar segments. (b) Exemplify the delay activation cell
that belongs to infarct scar segments. (¢) Exemplify the early repolarization cell that
belongs to isthmus scar segments. (d) Exemplify the decreasing potential magnitude cell
that belongs to distant scar segments. Green line: normal TMP and red line: abnormal
TMP.

Fig. 7. (a)-(d) Dynamic co-clustering of the TMP cells in case 2. Left to right: 10.38ms,
20.63ms, 215.42 ms, 246.18ms after the onset of the ventricular activation. The color
encodes the TMP value from max (red area) to min (green area) while the black
contours represent isochrones of the TMP.

Table 1. The (mean £ SD) percentages of cells that have abnormality TMP dynamics
on each region

Size of the infarct region Infarct scar region Isthmus scar region Distant scar regions

0-10 % 30.25% + 14.35%  29.25% =+ 7.22% 40.58% =+ 8.26%
10- 20 % 52.8% + 14.88% 23% £ 7.17% 24.4% +10.8%
> 20 % 74.83% £+ 9.66% 13.5% £ 5.57% 11.67% + 8.57%

Table 2. The (mean 4 SD) percentages of cells that have abnormality TMP dynamics
on each location

Location of the infarct Infarct scar region Isthmus scar region Distant scar regions

anterior 69.8% =+ 20.32% 14.4% + 8.82% 15.8% + 12.67%
inferior 62% + 16.29% 18.6% =+ 7.36% 19.4% + 11.88%
lateral 75% £+ 10.81% 14.8% + 6.09% 10.2% + 7.82%

septal 57% +10.74% 32% + 5.19% 10.8% + 6.45%
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Fig. 8. Comparison results: red line: ground truth (GT), black line: co-clustering results
after adding Gaussian noise, green line: K-means results

3.3 Quantitative Analysis

We test the algorithm on 100 simulated cases and observe that the number of
cells with abnormal TMP dynamics changes with the size and location of the
infarct region. This observation coincides with [I8], which indicates that there
is a delay of electrical activation in the isthmus region and additional activation
delay occurred in remote regions. Tables 1 and 2 summarize the percentages
of cells with abnormality TMP dynamics of three different regions based on
the size and location of the infarction. In the infarct scar region, we notice
that while the infarct scar size becomes larger, the TMP dynamics abnormality
increases. Contrarily, in the border and remote regions, when the infarct scar size
gets larger the TMP dynamics abnormality decreases. Also, we observe that the
lateral and anterior segments have larger abnormality TMP dynamics cells in
the infarct scar region. The septal segments have the largest abnormality TMP
dynamics cells in the boarder region, while the inferior segments have the largest
abnormality TMP dynamics cells in remote regions.

4 Discussion and Conclusion

In this study, we presented a novel approach in analyzing TMP dynamics through
spectral co-clustering of cardiac cells and time sequence (3D+T) performed on
a TMP data matrix. The clustered TMP dynamics, i.e. normal/abnormal, ex-
hibits high correlation with certain time steps. The adapted algorithm is robust
because it out performs the simple K-means clustering algorithm even when
adding Gaussian noise, as depicted in figure 8. Furthermore, our experimen-
tal results exhibit the advantage of this scheme in discovering latent classes of
the TMP dynamics with different locations and sizes of the transmural infarct
scars. This opens up new themes that can be investigated for understanding the
TMP dynamics and tissue excitability simultaneously, and considering spatial
classification of the TMP dynamics.
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Abstract. We propose in this paper a new way of calculating an en-
docardial end-systolic deformation parameter from electro-anatomical
data acquired intra-operatively during electrophysiology interventions.
The estimated parameter is then used to study deformation in regions
with different viability properties: scar, border zone and normal myocar-
dial tissue. These regions are defined based on electrophysiological data
acquired with a contact mapping system, specifically with the bipolar
voltage maps and a set of routinely used thresholds. The obtained results
when applying our methodology on a set of 8 cases show statistically sig-
nificant differences between the average deformation values of the scar,
border zone and normal myocardial tissue areas, thus demonstrating
the feasibility of detecting changes in deformation between normal and
non-healthy tissue from electro-anatomical maps. Nevertheless, although
low deformation regions more often correspond to non-healthy tissue,
deformation is not an accurate indicator of viability abnormalities.

1 Introduction

Scar presence and its characteristics play a fundamental role in several cardiac
pathologies. Most of ventricular tachycardias (VTs) present in patients with
ischemia are produced by a re-entrance mechanism associated to the presence of
scars [I], which are composed by areas of dense fibrosis that cause a conduction
block, as well as other areas of fibrosis where it is possible to find myocardial cells
with low-speed conduction [2]. Catheter ablation is an option for recurrent VT
treatment. To improve its applicability and effectiveness, a detailed knowledge of
the ventricular scar and border zone is required. In addition, it has been proven
that scar location, morphology and physiology play an essential role on Cardiac
Resynchronization Therapy (CRT) planning [3].

Several methods have been used to identify the region affected by the scar.
Delay-Enhancement Magnetic Resonance Imaging (DE-MRI) allows quantifying
the area with fibrosis and its level of transmurality, making it possible to detect
and assess the myocardial viability. However, these images are obtained prior
to the intervention, being its use for guidance during the ablation procedure
hampered.

D.N. Metaxas and L. Axel (Eds.): FIMH 2011, LNCS 6666, pp. 47|54] 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Therefore, electro-anatomical mapping is the most used way to locate the area
to be treated. It basically consists in introducing one catheter into the ventricle
and, with a tracking system, recording the position and electrical activity of
different points on the endocardium wall. Since reduced endocardial voltage
indicates electrically abnormal tissue, scar, border zone and normal tissue can be
delimited according to their electrical activity. This approach has the advantage
that it is an intra-procedure method and the same catheter can be used to
perform the ablation. However, some studies have concluded that it is hard to
establish absolute values that can be used to differentiate between scar, border
zone and normal tissue for all patients [4]. Moreover, spatial resolution in this
kind of procedures is usually very low.

To complement electrical information, mechanical properties can also be ana-
lyzed. This is actually possible with current electro-anatomical mapping systems
since trajectories for each acquired point are recorded, allowing motion of the
heart wall to be estimated and hence providing information on cardiac mechan-
ics [B]. During the last few years, the idea of extracting motion/deformation
from electro-anatomical mapping systems has started to be exploited, as it is
the case of NOGA system (Biologics Delivery Systems Group, Cordis Corpora-
tion, Irwindale CA, USA), which provides a linear local shortening index [6] as
an indicator of local contraction of the myocardium.

The main goal of this paper is to propose a new way to calculate deformation
from CARTO XP (Biosense Webster, Haifa, Israel) electro-anatomical data [7]
and to analyze how tissue viability defined by electrical data behaves in terms of
deformation. We focus on deformation analysis rather than motion, since passive
non-deforming regions can show motion due to tethering to adjacent regions and
overall heart motion [§]. The deformation parameter is computed with a strain-
like equation after point filtering, but projecting all points onto an estimation
of the plane tangent to the endocardial surface.

2 Cardiac Deformation Estimation

CARTO XP is an electrophysiological contact mapping system mostly used for
anatomical guidance of ablation procedures. The obtained electro-anatomical
maps consist of electrical signals (recorded at 1kHz) and position data of the
catheter (recorded at 100Hz) over 2.5s.

2.1 Data Pre-processing

Before the deformation analysis, some of the tracked points were removed to filter
out possible acquisition errors, i.e. the catheter sliding over the endocardial wall
or the contact of the catheter on the wall being unstable. For this study, points
were removed according to the following two criteria:

1. Points whose positions in two consecutive cardiac cycles are too far away. We
filtered those points whose distances between two consecutive end diastoles
were greater than 10mm, in a similar way as proposed in [9]. End-diastole is
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taken as reference because CARTO XP synchronizes all points according to
the R-peak of the electro-cardiogram (end-diastole), so it is a good reference.

2. Isolated points that did not have any point closer than 25mm, since it makes
local deformation estimation not reliable enough. This threshold has been
chosen regarding to the mean distance between the points.

Furthermore, since motion and electrical data are sampled with different rates,
motion data have been linearly interpolated.

2.2 Deformation Estimation

The following step in our proposed methodology is the deformation analysis, once
position data have been resampled. For each analyzed point, the Endocardial
End-Systolic Deformation (EESD) can be estimated from its Euclidean distance
to the closest points in space by using the following expression:

pESD — L#p ~LEs (1)
Lgp
where Lgp is the distance between points at end-diastole, and Lgg represents
the same distance at end-systole.

According to Eq.[I] areas with high deformation should ideally have a higher
value (close to 1) for EESD than areas with low deformation (which should be
close to 0), as long as the distance between points in end-systole is smaller than
in end-diastole (which should be the normal situation).

This approach cannot, however, be directly applied over electro-anatomical
data because each point is acquired in different time instants. Even though the
mapping system synchronizes all points to the R-peak of the electro-cardiogram,
there is a lack of synchronization away from this instant that is intrinsic to the
acquisition procedure. This is illustrated in Fig. [I, where we can see two sim-
plified examples of endocardial wall displacement between diastolic and systolic
phases. In the ideal case, when there are no synchronization errors between
neighboring points away from the trigger point, Lgg is shorter than Lgp. On
the other hand, when two adjacent points are not in the same time instant of
the cardiac cycle, Lgg can be equal or larger than Lgp.

In Fig. [ we can appreciate that most of the error is introduced in the radial
direction. Thus, part of the synchronization problem could be eliminated if we
filter motion in this direction. This can be done by projecting the length vectors
in a plane tangent to the endocardial wall surface.

However, we do not have enough data to accurately calculate such a tangent
plane. Thus, we have estimated this plane by finding the spatial center of all
points at end-diastole, so that a vector from one point to this center is a very
coarse approximation to the radial direction. Since this direction is normal to
the tangent plane, we just have to project point distances onto this plane and
calculate the deformation parameter in Eq. [l by using these projections rather
than real distances, as illustrated in Fig.
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Fig. 1. a) Ideal situation for points acquired with electro-anatomical mapping systems,
where Lgg is shorter than Lgp. b) Situation where for a certain acquisition time, two
points are not in the same time instant of the cardiac cycle, so Lrgs can be equal or
larger than Lgp.
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Fig. 2. Projection of end diastolic and end systolic distances onto the tangent plane.
When projecting, Lgs is smaller or equal than Lgp in most cases.

2.3 Statistical Analysis

Data are expressed as mean + standard deviation. Comparisons between all
data were done using a Student’s t-test and results were considered statistically
significant at a p value lower than 0.05.

Moreover, a ROC analysis has been carried out to find out whether EESD
can discriminate between normal and un-healthy tissue.

2.4 Clinical Data

For the deformation analysis, we have used electro-anatomical maps from 4 VT
patients and 4 CRT patients (age 72.25 4 4.71 years). The maps were acquired
with CARTO XP and had an average of 380 £ 219 points (range 83 - 548 points)
for VT patients and 76 + 35 points (range 49 - 124) for CRT patients.

3 Results

Before the deformation analysis, 27.9 4+ 11.6% points were filtered. Afterwards,
EESD maps have been compared between scar, border zone and normal myocar-
dial tissue. Tissue type has been defined according to their electrical activity,
which is the currently used gold standard [10]. Hence, points whose maximum



Cardiac Deformation from Electro-Anatomical Mapping Data 51

FE I T = T
5 8 o o o
4

o
=1

EESD (%)

I
=]

=
==

o

Mormal EBorder zone i Scar
Classification according to maximum bipolar voltage
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Fig. 4. On the left, a ROC curve when classifying normal from un-healthy tissue is rep-
resented. On the right, the cumulated percentage of points as function of deformation
value for scar, border zone and normal tissue is shown.

bipolar voltage is lower than 0.5mV are considered as scar, while points with
maximum bipolar voltage between 0.5mV and 1.5mV are defined as border zone.

Normal tissue showed a larger mean deformation than the border zone (29 £+
13% vs. 24 £10%, p < 0.05) and scar regions (29 + 13% vs. 22 £ 10%, p < 0.05),
while scar regions showed lower mean deformation than border zone (22 4+ 10%
vs. 24 +10%, p < 0.05). Fig. Bl shows the box plots of the EESD distribution for
the points from all patients.

The ROC analysis for the EESD is shown in Fig. [ where the obtained cut-
off value that best discriminates un-healthy from normal tissue is 25.8%. The
cumulated percentage of points for each deformation value is also represented.
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Fig. 5. Reconstruction of the left ventricle for two patients (a and b) from CARTO
XP data. For each patient, maximum bipolar voltages (scale in mV) are shown on the
left, EESD values are shown on the middle and manual segmentation from DE-MRI
on the right. For the voltage maps, regions in red correspond to scar and regions in
blue are related to normal tissue. For EESD maps, colors range from red (low EESD
value) to blue (high EESD value).

Finally, in Fig. B a view of two patient’s left ventricle reconstruction (with
Delaunay triangulation) from CARTO XP data is shown, where both electrical
and EESD data are represented. For visual comparison, a manual segmentation
of scar, border zone and normal tissue from DE-MRI performed by experts has
also been included.

4 Discussion

The obtained results suggest that points in normal myocardial tissue have a
higher deformation than points in the scar. Moreover, points on the border zone
seem to have a higher deformation than scar, but lower than normal tissue.

However, although the differences in EESD between the three kind of tissue are
statistically significant, one can appreciate in Fig. Bl that there is a considerable
overlap in their ranges. This is in agreement with previous studies using the
NOGA system [I1].

The ROC analysis shown in Fig. [ suggests that, for the optimal EESD cut-off
value, specificity and sensitivity are low. Moreover, 25% of normal points have
a lower value for EESD than the cut-off value, and 29% of points in scar have
a higher value. Hence, we can conclude that discrimination based only in the
EESD would not be reliable with the data analyzed in this paper.
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Under the hypothesis that regions with scar have a reduced deformation when
compared to normal tissue, there is a considerable mismatching (as shown in
Fig. []) with respect to tissue classification based on electrical activity. This fact
was partially expected, because deformation and electrical activity show two
different and complementary characteristics of endocardial tissue. It is important
to point out that the classification based on electrical activity has been done
using absolute thresholds for bipolar voltages.

EESD computation is very dependent on the quality and proximity of the
acquired points and thus, we are very conditioned by the acquisition method.
The underlying problem is that, beside the measurement error of the tracking
system, every point is acquired independently, so there is a general lack of syn-
chronization that introduces an error. Furthermore, when acquiring a point, the
catheter usually slides over the endocardial surface, as can easily be appreci-
ated when visualizing its trajectory. Since deformation is very sensitive to small
changes in motion between every two points, it is very affected by all these errors.
It would be possible to filter out some of the artifacts present in the recorded
motion signal if their nature was known. For example, the error introduced by
respiration motion could be removed by filtering the frequencies associated to
it, or the lack of synchronization between points could be overcome by apply-
ing signal re-synchronization methods. Nevertheless, the most important artifact
is produced by the catheter sliding over the endocardial and it would be very
difficult to automatically detect and remove it.

5 Conclusions

In this paper, we have proposed a new way for estimating deformation from
electro-anatomical data acquired with a widely used contact mapping system.
We found that, even though there is a statistically significant difference between
the mean of EESD for scar, border zone and normal tissue, low deformation is
not always an indicator of low electrical activity. Dually, high deformation does
not always correspond to normal electrical activity.

These results are limited by the sparse spatial information and the various
sources of error derived from the acquisition procedure. Hence, it would be
necessary to use data from other intra-operative modalities to improve on the
reliability of the deformation computation.

Future work includes a co-registration of CARTO data to DE-MRI segmen-
tation to quantify its correspondence with the EESD proposed.
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Abstract. X-ray fluoroscopically guided cardiac electrophysiological procedures
are routinely carried out for diagnosis and treatment of cardiac arrhythmias. X-
ray images have poor soft tissue contrast and, for this reason, overlay of static 3D
roadmaps derived from pre-procedural volumetric data can be used to add
anatomical information. However, the registration between the 3D roadmap and
the 2D X-ray data can be compromised by patient respiratory motion. Three
methods were evaluated to correct for respiratory motion using features in the X-
ray image data. The first method is based on tracking either the diaphragm or the
heart border using the image intensity in a region of interest. The second method
detects the tracheal bifurcation using the generalized Hough transform and a 3D
model derived from pre-operative image data. The third method is based on
tracking the coronary sinus (CS) catheter. All three methods were applied to X-
ray images from 18 patients undergoing radiofrequency ablation for the
treatment of atrial fibrillation. The 2D target registration errors (TRE) at the
pulmonary veins were calculated to validate the methods. A TRE of 1.6 mm =
0.8 mm was achieved for the diaphragm tracking; 1.7 mm + 0.9 mm for heart
border tracking; 1.9 mm + 1.0 mm for trachea tracking and 1.8 mm * 0.9 mm for
CS catheter tracking. We also present a comparison between our techniques with
other published image-based motion correction strategies.

1 Introduction

Cardiac electrophysiological (EP) procedures are traditionally carried out under X-ray
fluoroscopic guidance to diagnose and treat cardiac arrhythmias. However, X-ray
images have poor soft tissue contrast and it is difficult to interpret the anatomical
context directly from these images. To overcome the lack of soft tissue contrast, a
three-dimensional (3D) roadmap can be generated from 3D high-resolution computed
tomography (CT)/ magnetic resonance images (MRI), registered and overlaid in real-
time with X-ray fluoroscopy images [1]. Currently, the 3D roadmap remains static
and does not move with the patient’s respiratory motion. In some cases, respiratory
motion can cause a two-dimensional (2D) registration error of over 14 mm [2], which
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is a significant compromise in the accuracy of guidance. A number of groups have
addressed the issue of respiratory motion correction in the literature. Motion-
compensated navigation for coronary interventions based on magnetic tracking was
suggested in [3], but it required additional special hadware. Several image-based
approaches have been developed that use only information from the X-ray
fluoroscopic images themselves. Shechter et al. [4] constructed a model of cardiac
and respiratory motion of the coronary arteries from biplane contrast-enhanced X-ray
image sequences. The model was applied by tracking the motion of the diaphragm in
subsequent (non-enhanced) X-ray images. However, forming the model from X-ray
images under contrast injection means that it will be constructed from a limited
amount of data. Furthermore, the diaphragm is not always in the X-ray field of view,
particularly for obese patients. Brost et al. [S] developed an image-based respiratory
motion correction method for EP procedures by tracking the 3D position of a lasso
catheter from biplane X-ray images. Unlike tracking the diaphragm, this method
directly tracks an instrument very close to the target region of the EP procedure.
However, it also has some limitations. Firstly, the lasso catheter is particular for only
a subset of EP procedures and it does not always remain stationary inside the heart.
Secondly, the majority of X-ray systems are monoplane systems. Finally, the
maximum frame rate of the lasso catheter tracking was only 3 frames per second and
the tracking method required manual initialization.

The aim of our study was to develop and clinically evaluate respiratory motion
compensation techniques for anatomical roadmapping for guiding cardiac EP
interventions, particularly catheter radiofrequency ablation (RFA) for atrial
fibrillation (AF), which is now one of the most common reasons for cardiac
catheterization. The techniques needed to have accuracy within the clinical
requirement of less than 5mm (determined by the typical size of the targeted
structures, i.e. the PVs). They needed to be clinically robust and also have minimal
interference with the routine clinical workflow. For the latter reason, we opted for
approaches that used features present in the X-ray fluoroscopy image data, i.e. 2D
image-based motion correction methods. Three approaches were implemented and
clinically evaluated. The first method was based on tracking the diaphragm or the
heart border, both of which are commonly observed in cardiac fluoroscopic images,
even at very low radiation doses. This method tracks the image intensity within a
manually defined rectangular region of interest (ROI) that lies across the diaphragm
or heart border. The second approach that was used was to automatically track the
tracheal bifurcation using the generalized Hough transform (GHT) for detection. The
third method was to track the coronary sinus (CS) catheter from X-ray images using a
catheter detection technique. We validate these three methods by computing the 2D
target registration errors (TRE) at the pulmonary veins. In addition, we compare our
methods with other published methods in the terms of speed, accuracy and robustness.

2 Method

2.1 Diaphragm or Heart Border Tracking

For the diaphragm or heart border tracking technique, a rectangular ROI was
manually selected in which the motion of the diaphragm or heart border was visible



Comparing Image-Based Respiratory Motion Correction Methods 57

and no other radiographically dense features were present (see figure 1). One X-ray
image was chosen as a reference. The diaphragm or heart border motion of
subsequent X-ray images was determined by computing the 1D translation (along the
long axis of the rectangle) that minimised the mean sum of squared differences
between the intensities in the current image and the reference image within the ROI.
A simple translational model similar to the one commonly employed in MRI image
acquisition [6] was used to apply the 1D displacement of the diaphragm or heart
border to the 3D heart roadmap. The 1D motion scaling factor for diaphragm was set
to 0.6 (same as used in MRI) and the 1D motion scaling factor for heart border was
set to 1 as heart was tracked directly. Finally, the 3D heart roadmap was translated
along the head-to-foot vector of the patient by the 1D displacement.
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(a) diaphragm tracking (b) heart border tracking

Fig. 1. Tracking diaphragm (panel a) and tracking heartborder (panel b) in EP X-ray images.
Red rectangle is the region of interest.

(a) (b)

Fig. 2. (a) An X-ray image showing the tracheal bifurcation. (b) A 3D model of the tracheal
bifurcation derived from CT data is overlaid on to the X-ray fluoroscopic image.

2.2 Tracheal Bifurcation Detection

The tracheal bifurcation is located immediately above the LA and moves in a similar
way to the LA during respiratory motion. It is clearly visible in cardiac X-ray
fluoroscopic images (figure 2a). The Generalized Hough Transform (GHT) was used
to detect the bifurcation in the X-ray images. A 3D model of the trachea (figure 2b)
was derived from the pre-operative image data and then registered and projected onto
the X-ray images to produce a 2D contour model. The contour model was used as a
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template to match similar shapes in the X-ray images using the GHT. For tracking the
tracheal bifurcation in X-ray fluoroscopic images, a Gaussian smoothing filter was
first applied to the X-ray image followed by a Canny edge detector using the Sobel
operator to find all edges. The edge map was then binarized using Otsu’s algorithm
[7] and the edges were iteratively thinned until they were one-pixel wide. Finally the
contour model is used to search the optimal matched position in the binarized edge
map using the GHT.

2.3 CS Catheter Detection

We developed a real time CS catheter tracking technique in [8]. This method first uses
a fast multi-scale blob detection method to detect all possible electrode-like objects in
the X-ray image. Based on prior knowledge of the CS catheter geometry, a cost
function was designed to identify the CS catheter from all catheter-like objects. The
reason for choosing the CS catheter instead of other catheters is that it is ubiquitously
present during EP procedures. The CS catheter has several electrodes which are
highly visible in normal dose and low dose X-ray images. Furthermore, the CS
catheter remains in place throughout the procedure, its position is not routinely altered
and it is normally not close to other catheters. Figure 3 gives an example of CS
catheter detection.

Lasso
catheter

Ablation
catheter

CS
catheter

Fig. 3. An example result from the CS catheter detection method. Green crosses are the
positions of CS catheter electrodes. Red crosses are the positions of other catheter electrodes.
The size of the red circles represents the strength of the blobs.

3 Results

The tracking errors of the methods are first given. CS catheter tracking error was
presented in [8] and we achieved 2D detection error of 0.39 mm + 0.22 mm for all
electrodes of the CS catheter. Then the validation of the motion correction methods is
presented using the lasso catheter.

3.1 Diaphragm and Heart Border Tracking Errors

A clinical expert manually picked a center point along the border of the diaphragm or
heart within the rectangular ROI. The error of tracking is defined as the 1D absolute
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difference between the manually tracked point and the automatically tracked point along
the long axis of the region of the interest. 1145 clinical X-ray fluoroscopic images were
used to test the accuracy of tracking. There were a total of 25 different clinical
fluoroscopy sequences which came from 18 clinical EP cases. 29% of the clinical X-ray
images that were tested were low dose and contained high frequency noise. All X-ray
images were 512x512 pixels in resolution. To estimate the ratio from pixel to mm R

xray
in X-ray images, the X-ray DICOM file header information is used. Although the
DICOM header gives the ratio R, from pixel to mm, it is only correct when the

magnification factor M of X-ray system is 1.0. The magnification factor M is computed
using M = Dy / D, » Where Dg is the distance from X-ray source to the detector and

= Ryoom ! M . The

errors of diaphragm and heart border tracking in normal dose X-ray images were 1.2 +
0.9 pixels (0.3 = 0.2 mm). The errors in low dose X-ray images were 1.9 + 1.3 pixels
(0.5 £0.3 mm).

D, is the distance from X-ray source to the patient. Finally, R,,,,

3.2 Tracheal Bifurcation Detection Errors

The tracheal bifurcation detection method was evaluated on the same dataset.
However, only the X-ray sequences with the tracheal bifurcation within the field of
view were selected. The total number of X-ray images used was 954 from 20
sequences which came from 18 clinical EP cases. 32% of the X-ray images were low
dose and contained high frequency noise. The 3D models of the tracheal bifurcation
were derived from pre-operative image data. There were 6 clinical cases using CT
data, 4 cases using rotation X-ray angiography (RXA) and 8 cases using MRI. The
tracheal bifurcation was automatically segmented from 3D high-resolution whole
heart image data using a region growing algorithm followed by manual correction. To
evaluate the detection errors, the bifurcation point was manually annotated on each X-
ray frame by a clinical expert. This provided the ground-truth. The 3D trachea model
was manually registered with a 2D X-ray image. In the subsequent frames, 2D
translations were applied to the 2D trachea contour model. The detection errors were
defined as the 2D distance between the manually defined bifurcation point and the
bifurcation point in the trachea contour model. The model was positioned in 2D by
the highest score from the GHT. Table 1 gives the errors of the trachea detection. All
calculations were carried out on 512x512 resolution X-ray images.

Table 1. The 2D errors of the tracheal bifurcation detection. (Two figures are given for each
modality: the 50% and 95% percentile errors. These represent the maximum detection errors of
the lowest 50% and 95% of the tests respectively.).

CT MR RXA
50% 95% 50% 95% 50% 95%
Normal dose image | 1.9 pixels | 2.7 pixels 7.7 pixels | 48.7 pixels | 2.0 pixels | 3.1 pixels
0.5 mm 0.7 mm 2.1 mm 12.8 mm 0.5 mm 0.8 mm
Low dose image 5.8 pixels | 40.4 pixels | 44.5 pixels | 55.5 pixels N/A N/A
1.5 mm 10.5 mm 11.7 mm 14.6 mm
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3.3 Validation Using the Lasso Catheter

The intended application of the image-based tracking techniques was to update the
position of a 3D roadmap. Therefore, the target registration error (TRE) was computed
for the main validation of the approaches. Previous papers [2, 4] have reported motion
error figures as a percentage of the total motion recovered. The percentage of motion
recovered is calculated as

Mrec =100% * (TREbefore - TREafter )/TREbefore

where TREy,,, and TRE.,, are the TREs before and after respiratory motion

correction. A lasso catheter is often used in EP procedures. The lasso catheter is
normally placed inside the PVs to be used as a mapping/measurement catheter. For the
image sequences in which the lasso catheter was used for validation of accuracy, it
remained stable in one of the PVs for all the X-ray frames evaluated (assessed by a
clinical expert). For validation using the lasso catheter, 1D or 2D translational motion is
applied to the 2D position of the lasso catheter tip electrode which acts as a surrogate for
the position of the PVs since it is rigidly placed within these structures during the
procedure. For the diaphragm and heart border tracking based motion correction
strategies, the 1D translation along the long axis of the ROI was used. For the trachea
tracking based approach, 2D translational motion was directly used. For the CS catheter
based approach, filtered 2D translational motion was used. The TRE was computed as
the distance error between this predicted position of the lasso catheter tip electrode and
the actual position of the lasso catheter tip electrode in the X-ray data. The positions of
the lasso catheter tip were manually annotated by a clinical expert. The TRE was
calculated at the PVs on 418 fluoro images (8 patients). All X-ray images are normal
dose which is suitable for the trachea-based motion compensation approach. The pre-
operative image was either CT or RXA data. Table 2 gives the comparison of TREs
among all motion correction strategies.

Table 2. TRE before and after motion correction using lasso catheter validation

TRE (mm) Diaphragm Heart border | Trachea CS catheter
Before 4.7+1.7 4.7+1.7 4.7+1.7 4.7+1.7
After 1.6 £0.8 1.7+0.9 1.9+1.0 1.8+0.9
Motion 45%~T5% 41%~T4% 39%~71% 37%~72%
Recovered

4 Conclusion and Discussions

Three image-based motion correction approaches have been developed and evaluated.
Image-based approaches do not require any fiducial markers, additional contrast agent
or special hardware and do not interfere with the clinical work-flow. Each approach
has its advantages and disadvantages. Diaphragm tracking is fast and free of cardiac
cycle motion. Heart border tracking is also fast but can be influenced by cardiac cycle



Comparing Image-Based Respiratory Motion Correction Methods 61

motion. However, considering the case of an obese patient, the diaphragm is not often
in the field of view so heart border tracking can be used instead. Furthermore,
diaphragm tracking requires a motion correction factor (0.6) which may not be valid
for all patients. Both methods require manually defined ROIs which are free of other
features such as guide wires or catheters. The ROI may have to be changed often due
to C-arm rotation, changing contrast and features moving into the region of interest.
However, from the experience of 18 clinical EP cases, tracking the heart border is
easier than tracking the diaphragm as the heart border shadow often has better
contrast than the shadow of the diaphragm and it is always in the field of view. In 2
cases, when the left heart border was tracked and the patient heart was aligned to the
iso-center of the X-ray system, the ROI did not have to be changed even if the C-arm
was rotated through the normal clinical range. Both methods are computationally
efficient and simple to implement. Furthermore, as both methods track soft tissue,
they can be used at anytime during EP procedures.

Tracking the trachea gives only respiratory motion and the trachea is very close to
the primary target of left atrium of the procedures. However, it becomes less robust
and accurate when it is used for low dose X-ray images. This is because low dose X-
ray images have fewer strong edges for the tracheal bifurcation and this causes the
GHT method to detect the wrong object. The trachea detection method requires a 3D
model to generate the 2D GHT contour model. In this study, it was found that the pre-
operative 3D MRI image data was least suitable for generating the 3D tracheal model.
This was caused by the low contrast of the tracheal bifurcation in the MR images and
the region growing method yielded a noisy and truncated model of the trachea.
Truncated bronchi generate less edge information for the GHT contour model and the
GHT becomes less robust. As a conclusion, the trachea detection based motion
correction approach should be used in normal dose X-ray fluoroscopic images with a
pre-operative 3D image data set acquired using CT or RXA. The 2D translational
motion of the tracheal bifurcation can be directly applied to the 3D roadmap to correct
respiratory motion.

As a fully automatic method, real-time CS catheter detection in X-ray fluoroscopy
images was developed and it is accurate and robust even in low dose fluoroscopy
images as CS catheter electrodes remain highly visible. A sub-millimeter accuracy of
CS catheter detection method was achieved. Updating the 3D roadmap by the filtered
2D motion of the CS catheter can significantly improve the accuracy of fluoroscopy
overlays for cardiac EP procedures. The CS catheter detection method has several
advantages. First, it is real-time so that as well as being used to detect respiratory
motion it could potentially also be applied to the detection of the much faster cardiac
cycle motion. Secondly, it does not require any user interaction and can detect the CS
catheter position without defining a ROI in the X-ray image. Similar to the diaphragm
and heart border tracking based approaches, the CS catheter detection based motion
correction does not restrict which kind of pre-operative 3D image data can be used.
However, the presence of cardiac cycle motion in the CS catheter is a potential
disadvantage for respiratory motion correction. Table 3 summarizes the comparison
among the methods as well as the lasso catheter tracking based motion correction
method [5], King et al.’s patient-specific motion correction method [2] and Shechter’s
prospective motion correction method [4].
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Table 3. Comparison among respiratory motion correction methods. (unit of tracking speed is
frames per second).

Tracking Success With Tracking Motion X-ray Image
error (mm) rate cardiac Speed Recovered Dose
motion (average)
Diaphragm 04+0.3 100% No >30 65% Low/Normal
Heart 04+0.3 100% Yes >30 63% Low/Normal
border
Tracheal 0.8+0.2 96.7% * No 3 61% Normal
bifurcation
CS 04+0.2 99.3% Yes 21 60% Low/Normal
catheter
Lasso 0.6+0.3 N/A Yes 3 N/A N/A
catheter
King et al. N/A 100% No >30 66% Low/Normal
Method
Shechter’s N/A N/A Yes N/A 63% Normal
Method

A successful detection is defined as the detection error is within 5 mm, which is the radius of the
pulmonary veins.

*Please note that the success rate of trachea detection excludes tests carried out on the low dose X-ray
images and the clinical cases using MR pre-operative image data.
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Abstract. Delayed-enhancement magnetic resonance imaging is an effective
technique for imaging left atrial (LA) scars both pre- and post- radio-frequency
ablation for the treatment of atrial fibrillation. Existing techniques for LA scar
segmentation require expert manual interaction making them tedious and
prone to high observer variability. In this paper, we propose a novel automatic
segmentation algorithm for segmenting LA scar based on a probabilistic tissue
intensity model. This is implemented as a Markov random field-based energy
formulation and solved using graph-cuts. It was evaluated against an existing
semi-automatic approach and expert manual segmentations using 9 patient
data sets. Surface representations were used to compare the methods. The
segmented LA scar was expressed as a percentage of the total LA surface.
Statistical analysis showed that the novel algorithm was not significantly
different to the manual method and that it compared more favorably with this
than the semi-automatic approach.

Keywords: delayed enhancement MRI, atrial fibrillation, scar segmentation,
graph-cuts, Markov random fields.

1 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia and affects
approximately 2.2 million people in the USA. A common treatment for AF is
minimally-invasive catheter-based radio-frequency ablation (RFA) that aims to
electrically isolate the pulmonary veins (PVs) from the left atrial body. The procedure
is successful in 50-80% of patients. Assessment of the LA substrate in terms of
scarring is important both pre- and post-RFA. The successful imaging of LA scars has
been demonstrated using Gadolinium delayed enhancement (DE) magnetic resonance
imaging (MRI) [1, 2] (see Fig. 1a). However, clinical interpretation of these data is
difficult from tomographic images. Several strategies have been proposed for
visualization including maximum intensity projection (MIP) onto a thick slice [1],
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MIP onto a LA surface model [3] (see Fig. 1b), and 3D volume rendering [2]. Such
visualization techniques provide more intuitive visualization and may have a role for
guiding redo procedures [4], which are very common (20-50%). Quantification of the
DE-MRI has been proposed using thresholding techniques for either endocardial
surface-based segmentation [3] or volumetric segmentation [2]. Such quantification
has been shown to predict likely response to RFA in clinical studies [5]. It will also be
critical for applying cardiac biophysical models of AF for patient selection and RFA
planning [6].

b

Fig. 1. (a) Example of left atrial Gadolinium delayed enhancement MR images; (top) pre-
ablation; (bottom) post-ablation showing enhancement around the pulmonary veins. (b) Left
atrial surface model with color-code scar information (red is scar) generated using maximum
intensity projection of DE-MRI intensity to left atrial surface along surface normals [3]. The
model is superimposed onto live X-ray fluoroscopy data to guide a redo ablation procedure.

Existing techniques [2, 3] for LA scar segmentation require expert user interaction
making them tedious and prone to high inter- and intra-observer variability. In this
paper, we propose a novel automatic LA scar segmentation algorithm based on a
probabilistic tissue intensity model of DE-MRI data. This is implemented as a
Markov random field (MRF)-based energy formulation and solved using graph-cuts.
We evaluated our automatic method using 9 patient data and compare to expert
manual and semi-automatic approaches [3].

2 Methods

2.1 Patient Protocol

9 patients with paroxysmal AF were recruited into the study under a local ethics
committee approved protocol. The patients underwent RFA using wide area
circumferential ablation to achieve isolation of the PVs. At 6 months post-ablation,
the patients underwent MRI (1.5T Achieva, Philips Healthcare, The Netherlands).
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The MR examination included (a) a 3D magnetic resonance angiography (MRA) scan
with whole-heart coverage, reconstructed to 1mm isotropic resolution, following
injection of a 0.4ml/kg double dose of a Gd-DTPA contrast agent; (b) a 3D
respiratory-navigated and cardiac-gated, balanced steady state free precession
(bSSFP) acquisition with whole-heart coverage, reconstructed to 1.3mm isotropic
resolution; and (c) 20 minutes after contrast injection, the delayed enhancement scan,
which was a 3D respiratory-navigated and cardiac-gated, inversion recovery turbo
field echo with whole LA coverage, reconstructed to 1.3x1.3x2mm’ resolution.

2.2 Left Atrium Segmentation and Image Registration

The best quality anatomical scan was selected from either the bSSFP or MRA scans
and the endocardial boundary of the LA was segmented using an automatic approach
based on a statistical shape model [7]. The automatic segmentation was verified by a
clinical expert and manual corrections were made whenever required to achieve a
high-fidelity result. The anatomical images were registered to the DE images using
initialization by the DICOM header data, followed by affine registration [8]. Thereby
the endocardial LA boundary was defined in the DE images.

2.3 Segmentation of Atrial Lesions

Segmentation Framework. The segmentation approach is based on a MRF-based
energy formulation solved using graph-cuts [9]. Segmentation of scars from DE-MRI
images can be described as assigning a label f,, € {0,1} to every voxel p in the image.
Voxels representing scar tissue are assigned to the foreground class label f,, = 1 and
non-scar tissues are assigned to the background class label f, =0. Given the
observed intensities in the image and prior knowledge about scars, the segmentation
problem can be solved using a probabilistic framework where the maximum a
posteriori (MAP) estimate is computed using Bayes' theorem:

p|H)p(f)
p(D

argmax; p(f|l) = (D

where f is the total label configuration and I are all observed intensities in the image.
The image likelihood p(I|f) describes how likely is the observed image given a label
configuration f. The prior p(f) encodes any prior knowledge of the tissue class labels
(i.e. non-scar and scar tissue classes). Eq. 1 is commonly transformed into an MRF-
based energy function over the neighborhood system N and labeling f:

E(f) = AZpEP Egata (fp) - Z{p,q}EN Eprior(fp' fq) (2)

The introduction of a weighting term A weights the influence of the energy terms. The
intensity energy Egq,., measures the disagreement between the a prior probabilistic
model and the observed data, and Epj, is a smoothness term within a tissue class that
penalizes any discontinuities between voxel pairs {p,q}. The scar segmentation
problem is solved by minimization of the energy function described in Eq. 2. In the
context of images, certain MRF-based energy functions are efficiently solved using
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graph-cuts [9]. In this approach the image is represented as a graph G = (V, E) where
each voxel in the image corresponds to a node. However, the node set V contains two
special terminal nodes called the source and the sink. These represent the foreground
(i.e. scar) and background (i.e. non-scar tissue) classes respectively. Every node in the
graph has an edge to these terminal nodes, as well as neighbour-to-neighbour edge
links that exist between neighboring nodes. The MRF-based energy function in Eq. 2
is coded into the edge weights. The optimal cut or partitioning of the graph into two
disjoint sets with each set containing a terminal node solves the segmentation
problem. The cost of the graph-cut is equal to the total energy of the corresponding
segmentation.

Non-scar Tissue Priors. The intensity model for non-scar tissue provides the source
edge weights in the graph. This is based on prior knowledge about different tissue
classes that could possibly interface with scar. As scar tissue normally borders with a
multitude of tissues, it is not possible to model non-scar tissues using a single, uni-
modal Gaussian distribution. A multi-modal distribution is used that can be
represented as a mixture of Gaussian distributions:

Yit1 a; Gy (u;, 07) (3)

where G; is a Gaussian distribution for tissue i with mean p; and variance g; for some
mixture proportion a; € [0,1] and }}J-; a; = 1. The non-scar tissue model is derived
from the image to be segmented (i.e. unseen image). Given our segmentation of the
LA endocardium from the anatomical images, regions of blood pool, atrial wall and
pericardium can be approximated. This is accomplished by obtaining regions within
fixed distances from the LA endocardium. For example, regions of blood pool and
pericardium are obtained Smm inside and outside the endocardial border,
respectively. The atrial wall region is obtained 0-5 mm from the endocardium. See
Fig. 2 for examples of the healthy tissue mixture model taken from two patients.
However, as scarred tissue is also part of the atrial wall, the Gaussian in the mixture
model most likely resulting from scar tissue is identified and eliminated. This is
possible using an ROI corresponding to scar tissue that is selected by the operator.
Assuming that the mean and variance of scar are g and o2 respectively, then the
Gaussian corresponding to index ¢ has the maximum amount of overlap with the scar
Gaussian within unit standard deviation and is subsequently eliminated:

t = argmax||u; + 0y — lus + ogl|. 4)

Following the elimination of Gaussian G;, the weights of the remaining Gaussians of
the mixture model are normalized to sum to one. It is also useful to take as user-input
an ROI on normal myocardium selected by the operator. To incorporate this new
normal myocardium Gaussian with mean and variance u, and gy, into the existing
tissue mixture model, the weights are adjusted based on p which weights the degree
of confidence on the manual operator’s normal myocardium selection with a higher
ratio assigned for expert operators:

p(1|f, = 0) = (1 — p) 29 a; G, (s, ;) + PGy, ony)- (5)
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Fig. 2. The healthy tissue model computed in two patients. A Gaussian mixture density curve
(in bold) is computed from individual Gaussians of the three tissue classes (L — lungs, P —
pericardium, B — blood pool).

The parameters (aj, 1, 0;) of the Gaussian mixture model are obtained using the
Expectation-Maximization (EM)-algorithm [10].

Scar Tissue Priors. The intensity model for scar is built from training data. This
model corresponds to the intensity energy Eg,¢, in the MRF model (Eq. 2), and thus
the sink edge weights in the flow-graph G. Scar tissue appears predominantly as areas
of bright regions in DE-MRI. To derive an intensity distribution model for scar
tissues, a Gaussian density function can be used:

p(llfy = 1) = e [-%(ﬁ)z] (©)

2mo? o

where r is the ratio of DE-MRI signal of scar tissue to interfacing tissues with mean u
and variance o. These are tissue classes which could possibly interact with scar
tissues in the image. The parameters u and o are derived from training images which
are expert hand-segmentations of scars in DE-MRI. The ratio r for each voxel in the
unseen image is determined as the ratio of its intensity to mean blood pool and
pericardium intensity.

Tissue Class Boundaries for Smoothness. To ensure continuity and smoothness
within voxels of a tissue class through the Ep.,, term of the MRF energy function,
neighboring voxels sharing similar intensities incur an exponentially high cost if they
are classified into different tissue classes. The Lorentzian error norm [11] is
employed, which is a robust metric for measuring intensity differences within a
neighborhood:

() = (1 +§(M)2). )

a

The scale o can be estimated from the DE-MRI image and depends on the variance
of the actual scar and non-scar tissue class intensity distributions. With decreasing
scale, the algorithm becomes less forgiving to small difference in intensities. Given
that it is technically challenging to acquire high quality DE-MRI scans that show a
clear distinction between scar and non-scar tissue, a larger value for the scale o is
almost always preferred. For convenience, neighbour-to-neighbour edge links are
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bounded above and below by [0,1] and thus the edge-link weight assigned between
neighbouring nodes is simply given by 1/(1 + {(p, q)).

2.4 Evaluation of Novel Approach

The proposed automatic algorithm was evaluated with the 9 patient data using the
leave-one-out principle, with 8/9 data used for training and 1/9 used as the unseen
data. For comparison, the LA scars were manually segmented by two expert observers
using the ITKSnap tool (www.itksnap.org). Furthermore, each data set was processed
using the previously published semi-automatic approach of Knowles et al. [3]. This
approach projects the maximum signal intensity from the DE data onto the LA
endocardial surface along the surface normals. The segmentation is then achieved by
applying a user-interactive threshold on the projected data. In order to make a
comparison between the automatic, semi-automatic and manual segmentations, all
segmentation results were projected onto the LA endocardial surfaces. All processing
was carried out a 2.8 GHz PC.

3 Results

The pre-processing (LA segmentation and registration) was the same for each
approach, i.e. automatic, semi-automatic and manual, and took typically 5 minutes.
The novel automatic algorithm completed the segmentation process for each DE
image in typically 30 seconds whereas the semi-automatic approach took typically 5
minutes. Manual segmentation of the scars took typically 45 minutes. See Fig. 3 for
example results.

For each segmentation method, the amount of detected scar expressed as a
percentage of the total LA surface was calculated (Fig. 4). Segmentations using the
automatic algorithm approximated more closely to the manual segmentations than

Automatic Semi-automatic

"_

Observer 2

Obsarver 1

b

Fig. 3. Results from segmentation methods. (a) Automatic segmentations for patient 1 showing
2 example slices from the DE-MRI data; (left) original image data; (right) with segmentation
annotations. (b) Surface representations for segmentations results for patient 2 showing
automatic, semi-automatic and manual segmentations.
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Fig. 4. Comparison of percentage scar in each patient for the different methods. Detected scar
was expressed as a percentage of total LA surface.

Table 1. p-values from paired t-tests between each method with significant differences
underlined. The significance level was set at 0.05.

pvalues Semi-auto Auto Observer 1 Observer 2 .
Semi-auto 0.09 0.10 0.01 ‘
Automatic 0.72 0.87

l i Obsorver 1 0.70

those using semi-automatic method, as confirmed this using a statistical paired #-test
(Table 1). At a significance level of 0.05, there was no significant difference between
the percentage scar detected in automatic and manual methods. In contrast, a
significant difference was found between semi-automatic and one of the expert
observers.

4 Discussion and Conclusion

In this paper, we have presented a novel automatic technique for segmenting scars in
the LA using DE-MRI. The technique was applied to 9 patient data sets and the
results compared to expert manual segmentations and segmentations from an existing
semi-automatic approach. The automatic method was not significantly different from
the manual method and compared more favorably to this than the semi-automatic
approach. Furthermore, using the automatic method produces a considerable time-
saving over using manual segmentation (30 seconds vs. 45 minutes) and some saving
over the using semi-automatic method (30 seconds vs. 5 minutes). Most importantly,
the automatic method results in a volumetric segmentation as opposed to a surface
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segmentation, as for the semi-automatic method. This will be important for assessing
transmurality of post-RFA scars. It is envisaged that user-independent lesion
segmentation with low computational cost, as proposed in this paper, will allow for
standardization of DE-MRI as a marker of cardiac injury. Future work will focus on
improved training of the probabilistic intensity model and validation using a larger
patient cohort with more expert segmentations per data set.
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Abstract. The bidomain and monodomain equations are well estab-
lished as the standard set of equations for the simulation of cardiac elec-
trophysiological behaviour. However, the computational cost of detailed
bidomain/monodomain simulations limits their applicability to scenarios
in which results are needed in real time (e.g. clinical scenarios). In this
study, we present a graph based method which relies on point to point
path finding to estimate activation times in cardiac tissue with minimal
computational costs. Activation times are compared to bidomain simu-
lation results for heterogeneous tissue slabs and an anatomically-based
rabbit ventricular model. Differences in activation times between our
proposed graph based method and bidomain results are less than 10%
of the total activation time and computational performance is orders of
magnitude faster with the graph based method. These results suggest
that the graph based method could provide a viable alternative to the
bidomain formalism for the fast estimation of activation times when the
need for fast performance justifies limited loss of accuracy.

1 Introduction

During the last two decades, the bidomain equations, and the closely related
monodomain equation, have emerged as a gold standard for simulating cardiac
electrophysiology [I]. Although able to provide a sophisticated representation of
cellular mechanisms and intercellular interactions, solving the resulting PDEs
is very computationally expensive. Additionally, in many situations, e.g. when
determining the activation times in a steady state setting, the level of complexity
provided by the bidomain formalism is higher than necessary, making bidomain
simulations inefficient solutions to the problem at hand.

For such situations, several alternative ways of describing cardiac propagation
exist, ranging from early models relying on Huygens principle [2], via cellular
automata models [3], to models explicitly derived from the bidomain equations,
such as the eikonal equations [4]. Common between all of these simplified models
is that finding the order of activation requires a sequence of computations for all
the spatial nodes. Thus, in each step of the algorithm, all data needed to find
the wavefront are computed. While this is desirable in many situations, for some
applications, even focussing the computational efforts on locating the wavefront
is inefficient.

D.N. Metaxas and L. Axel (Eds.): FIMH 2011, LNCS 6666, pp. 71{79] 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Instead of computing the wavefront, we might determine the path the current
takes from a point of initial activation to any point in the tissue, representing the
fastest route between the two points. The analytic calculation of these paths in a
continuous setting remains an open problem for most situations. However, some
progress has been made towards closed form solutions [5], and several algorithms
exist for solving the corresponding problem on graphs. Cardiac tissue can thus
be described as a connected graph, allowing activation times to be approximated
in a very efficient manner.

This paper presents a novel approach to estimating activation times in car-
diac tissue using a graph-based method. Results are compared to finite element
solutions to the bidomain equations in an attempt to characterise method accu-
racy. The comparison is performed in three different models: (1) a succession of
7 cardiac tissue slabs of decreasing resolution to evaluate methods convergence;
(2) a cardiac tissue slab incorporating fiber rotation and a central region of slow
conduction; (3) an anatomically-based rabbit ventricular model.

2 Methods

2.1 The Bidomain Model

The bidomain equations describe the cardiac tissue as two continuous and com-
pletely interpenetrating domains. At each point in space, two electrical poten-
tials exist, one intra-cellular (¢;), and one extra-cellular (¢). This also implies
a transmembrane potential, v, at each point in space, defined as

U:¢i_¢e~ (1)

With the transmembrane potential defined is this way, the bidomain equations
can be written as

OV
ﬁ(Cm ot + Iion(ny Vtrn)) -V (O’,‘V(V:,n + (be)) = ISN

V- ((0;+0¢)Voe + 0:V Vi) = Is.,

(2)

where [ is the cell surface to volume ratio, C,, is the membrane capacitance
per unit area, o; is the intracellular conductivity tensor, o, is the extracellular
conductivity tensor, I, is an external stimulus applied to the intracellular space
and Ig, is an external stimulus applied to the extracellular space. I,y is the
ionic current, a function dependent on the cell model coupled to the bidomain
model. 7 is a vector containing the state variables for the cell model.

2.2 The Graph Based Model

By considering the cardiac tissue as a connected graph, very fast approximations
of activation sequence can be obtained. In this context, a graph consists of spatial
nodes, connected by edges. Every edge in the graph is assigned a cost, based on
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the time it takes the activation wavefront to traverse the corresponding path
between two points in the tissue. Activation is initiated at one or several nodes,
corresponding to the point or points where the tissue is initially stimulated. From
there, the activation travels from node to node along the edges of the graph. At
each node, an estimate of its activation time can be obtained by finding the
accumulated cost of all edges traversed in order to reach it along a specific path.
Typically, a very large number of paths can be taken between two nodes in the
graph, so in order to obtain the best estimate of the activation time, the path
with the lowest cost needs to be found.

Path Finding with the A* Algorithm. In this work, the A* algorithm has
been used to find the lowest cost path though the network [6]. The A* works by
keeping a priority queue of nodes to search. Each node n in the priority queue
is assigned a score, based on the expected cost f(n) of reaching the goal along
a path passing through n, and the queue is ordered according to these scores.
The score f(n) is a sum of two other scores g(n) and h(n). g(n) represents the
accumulated cost of all the edges traversed in order to reach n, while h(n) is a
heuristic estimate of the cost that will be accumulated along the path from n to
the goal.

Starting from a node s in the graph, a basic version of the A* algorithm can
be described as follows:

Add s to the priority queue and calculate f(s).

Select the node n on the queue whose value of f is smallest.

If n is the goal node, terminate the algorithm.

Otherwise, find all connected nodes n; connected to n, calculate f(n;) for
each and add them to the queue.

5. Goto step 2.

-

In the context of this work, two different heuristics have been employed. For the
succession of slabs of decreasing resolution, a weighted Euclidean distance was
used. For the more complex models, the heuristic estimate was based on another
path finding procedure, performed on a down-sampled mesh, which itself used
the heuristic h(n) = 0 for all nodes. The final estimates resulting from this
procedure can thus be viewed as a refinement of initial coarser ones.

Graph Construction. As stated in the introduction, 9 different meshes were
used in this work: 8 discretized slabs and 1 anatomically-based ventricular mesh.
The nodes of the discretized slabs were regularly spaced in the shape of a Carte-
sian grid, while the nodes of the ventricular mesh had a less ordered distribution,
conforming to the more complex geometry. For the regular meshes, the graphs
presented here were constructed by successively processing cubic subgraphs of
2x2x2 nodes, ensuring that all nodes in the subgraphs were 7-connected, so that
an edge existed between any pair of nodes in the subgraph. For the anatomically-
based ventricular geometry, the finite element mesh was used as the graph.



74 M. Wallman, N. Smith, and B. Rodriguez

For each edge in the resulting graphs, costs of traversal was calculated ac-
cording to

T
Ciitl = \/Ui7i+1Mi,i+1Ui,i+17 (3)

where v; ;41 is the vector from node n; to node n; + 1 and M; ;41 is a tensor
describing conduction costs for that edge. For the 3D case, M can be written as

M = [m\2, m\2, mu 2] . (4)

Here, the set of vectors {m;, ms, my} form an orthonormal system, describing
the local fiber direction, while the scalars A;, \;, A\, are the costs of traversal in
the longitudinal, transversal and normal directions defined by this system.

In the results presented below, the conduction costs for the graphs were es-
timated using the full set of activation times resulting from the bidomain sim-
ulations. Starting from the bidomain simulation output, the activation time for
each node was defined as the time when V,,, changed sign from negative to pos-
itive. The three principal directions of conduction in the graph, corresponding
to the my, m; and m,, elements of M (i.e. the fibre direction), were the same as
those used in the bidomain simulations. Conduction costs for these directions,
corresponding to \;, A\; and \,, were estimated using the Nelder-Mead simplex
algorithm. As an objective function, the RMS error between the activation times
estimated using the graph based method and those calculated from the bidomain
simulations was used.

Recently, van Dam et al. [7] used a graph based method to estimate activation
times on a ventricular surface. Although superficially similar, the method differs
from ours in several important ways. While the previous method only considers
nodes on the cardiac surface, our method also takes into account nodes that are
situated within the cardiac walls. Additionally, while the previous method uses
a fully connected graph, our method uses a sparser graph with a comparatively
small number of connections for each node, allowing it to be applied to larger
graphs. Furthermore, our method treats fibre directions in a more explicit way,
using information about the the principal conduction directions in each node
when determining the conduction costs for the graph. Finally, our method relies
on a heuristic path finding algorithm, leading to very low computational costs
for estimating the activation time in individual nodes.

3 Results

Activation times obtained using the graph-based method were compared to cor-
responding bidomain simulations in each of the three different settings: The
succession of seven slabs of decreasing resolution, the slab incorporating fiber
rotation and conduction heterogeneity, and the full ventricular mesh. The slab
succession provides means to compare how the two methods perform for differ-
ent mesh resolutions, while the two more complex settings elucidate how well
the graph based method is able to mimic a given bidomain activation pattern.
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All bidomain simulations presented were done using the Chaste software pack-
age [8]. The relative errors were calculated as F; = (AAT i — AT;)/ATot, where
FE is relative error, 7 is the node index, AT is the approximate activation time,
AT is the correct activation time, and AT} is the time it takes for all the nodes
in the considered mesh to become activated. For the tissue slab with varying
mesh resolution, the activation times from the finest mesh was considered cor-
rect, while for the remaining simulations, the activation times calculated from
the bidomain simulations were considered correct, giving the errors a subtly
different interpretation.

3.1 Method Comparison for Different Mesh Resolutions

The first set of bidomain simulations were performed on a cuboid geometry,
measuring 1.80 x 0.73 x 0.29 cm. The cuboid was discretized at seven different
levels, producing seven tetrahedral meshes with homogeneous element size. The
average node distance for each of the 7 meshes was 684 pym, 622 pm, 442 pm,
306 pm, 179 pm, 132 pm and 75 pm respectively.

For the bidomain simulations, activation of cardiac tissue was initiated by
point stimulation at one of the corners of the mesh. After stimulation, activa-
tion time at each mesh node was calculated. These activation times were also
estimated using the graph based approach, resulting in another set of activation
times. For the bidomain simulation at a mesh resolution of 75 ym mesh, ATiq
was 34 ms.

For comparison between the different discretizations and methods, a grid of
250 points was chosen, with the points evenly distributed throughout the vol-
ume. The activation time values in these points, obtained from the bidomain
simulations and the graph based approximations, were found using the built in
linear interpolation functionality in MATLAB. Results are shown in Fig. [l

From the histograms and graph in Fig. [[l it can be seen that the bidomain
simulations have a lower relative error than the graph based method up to a dis-
cretization of 300 pm, while for coarser discretizations the graph based method
has a lower relative error. The results also show that while the average rela-
tive error of the bidomain equations greatly increases for discretizations above
400 pm, the corresponding error for the graph based method remains almost
constant.

3.2 Method Comparison in a Slab of Heterogeneous, Anisotropic
Tissue

Next, propagation in a tissue slab of 4x4x1 cm (for the z,y and z directions
respectively), with a spatial discretization of 300 pm was simulated. The conduc-
tivity was anisotropic, with fiber directions according to the Streeter model [9].
For the current geometry this implies that fibres were oriented in planes of ho-
mogeneous fibre orientation, perpendicular to the z-axis, with the fibre direction
gradually rotating 120° between the planes z = 0 and z = 1. Additionally, a
region of low conductivity was incorporated at the centre of the tissue, centred
at the point (z,y,2) = (2,2,0) and defined by two ellipsoids. The conductivity
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Fig. 1. Left panel shows histograms of relative errors in activation time for bidomain
(upper row) and the graph based method (lower row). The columns correspond to
different mesh discretizations, with the node spacing increasing from left to right. Right
panel shows the mean relative error in activation time of bidomain (blue line, points
marked with circles) and graph based approximations (green line, points marked with
dots).

opi

IZL] .

graph based

-5 o
relative emor (o)

Fig. 2. The upper left panel illustrates the tissue slab with its central low conductivity
region. The lower left panel shows a histogram of the relative errors of the graph based
activation time approximations. The six right panels show activation isochrones of the
six slab simulations. The upper row corresponds to bidomain results, while the lower
row shows graph based approximations. The columns from left to right correspond to
endocardium, mid-myocardium and epicardium.

inside the larger ellipsoid was 10 times lower than outside. Additionally, in the
region overlapping the smaller ellipsoid, the tissue was modelled using passive
diffusion only. Conductivity in the slow region was isotropic. A bidomain simula-
tion of the activation was performed, with the initially stimulated area situated
just outside the low conductivity region. Again, activation times were computed
for each node, and corresponding activation times were also estimated using the
graph based method. The total activation time for the bidomain simulation was
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120 ms. The geometric model, along with a histogram of relative errors and
activation isochrones for 3 cross sections of the slab, are shown in Fig. 2

From the histogram in Fig. [2] it can be seen that the errors of the graph
based activation time approximations keep within 5% of the total activation
time. Considering the activation isochrones on the right side of Fig. 2l it can
be observed that although polygonal in shape, the activation isochrones from
the graph based method (lower row) show strong similarities in shape to the
isochrones from bidomain (upper row).

3.3 Method Comparison in a Rabbit Ventricular Mesh

Finally, a realistic mesh of the rabbit heart ventricles, derived from MRI [I0],
was simulated. The mesh resolution was 420 um, giving a total of 82619 nodes.
The model was activated at several endocardial points in the lower half of the
ventricles, emulating purkinje activation. Subsequently, the activation times for
each node as obtained from the bidomain simulations were compared to the
corresponding approximations obtained using the graph based method. The total
activation time for the model was 71 ms. Results are shown in Fig. Bl
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Fig. 3. Left panel shows a histogram of relative errors in activation time for graph
based approximations. Right panel shows four rotated views of the distribution of
relative errors in activation time on the epicardium of the rabbit ventricular mesh. The
geometry is rotated 90 degrees between consecutive frames.

The histogram in Fig. Bl shows a fairly narrow distribution of errors, keeping
well within 10% of the total activation time. The spatial distribution of errors
show a largely irregular pattern, with no strong correlation between the distance
from the area of initial stimulation and the magnitude of the errors. The right-
most view show a central accumulation of relatively high positive errors, which
might be due to the greater wall thickness of this area, accentuating effects of
wavefront curvature in the bidomain propagation.

4 Conclusions

We have presented a fast, graph based method for cardiac activation time esti-
mation under steady state conditions. The comparison between the graph based
method and the succession of increasingly coarse slabs show that while the av-
erage relative error for the bidomain greatly increases at discretizations above
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300 pm, the corresponding error for the graph based method stays almost con-
stant for the entire range of resolutions investigated. Additionally, results from
both the slab with anisotropic, heterogeneous conduction and from the ventricu-
lar mesh show that the graph based algorithm is able to approximate activation
times to well within 10% of the total activation time. This suggest that the
method provides a viable alternative for situations where need for fast perfor-
mance justifies limited loss of accuracy.

In the simulations presented here, the wall time for approximating activation
times of isolated nodes in the most complex meshes were of the order of 10 ms
on a standard desktop computer, making them 10* - 10° times faster than the
bidomain simulations for that particular task. The authors are aware of the ex-
istence of alternative fast methods for activation time approximations, such as
the fast marching method [I1]. However, the primary aim of this work has been
to investigate the accuracy of the proposed method. For this purpose the bido-
main equations, representing the state of the art in cardiac electrophysiological
modelling, provide a good basis of comparison. A full comparison of all alterna-
tive methods in terms of computational performance is beyond the scope of this
manuscript. It should however be noted that the computational complexity of
Dijkstra-like methods, such as the fast marching method (FMM), is O(NlogN)
for N nodes, while for the A* algorithm, this complexity provides a very rare
worst case scenario. Additionally, each node expansion is likely to be much more
computationally expensive for FMM than for the A* algorithm. While these con-
siderations do not quantify the difference in performance, they strongly suggest
that the proposed method is less computationally expensive than the bulk of
competing fast methods.
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Abstract. Electrophysiological simulations of the atria could improve
diagnosis and treatment of cardiac arrhythmia, like atrial fibrillation or
flutter. For this purpose, a precise segmentation of both atria is needed.
However, the atrial epicardium and the electrophysiological structures
needed for electrophysiological simulations are barely or not at all de-
tectable in CT-images. Therefore, a model based segmentation of only
the atrial endocardium was developed as a landmark generator to facil-
itate the registration of a finite wall thickness model of the right and
left atrial myocardium. It further incorporates atlas information about
tissue structures relevant for simulation purposes like Bachmann’s bun-
dle, terminal crest, sinus node and the pectinate muscles. The correct
model based segmentation of the atrial endocardium was achieved with
a mean vertex to surface error of 0.53 mm for the left and 0.18 mm for
the right atrium respectively. The atlas based myocardium segmentation
yields physiologically correct results well suited for electrophysiological
simulations.

Keywords: automatic segmentation, computed tomography, cardiac
atrium, atrial fibrillation, electrophysiological structures.

1 Introduction

Although not lethal by itself, atrial fibrillation is the most widespread cardiac ar-
rhythmia and a possible cause of apoplectic seizures and serious cardiac diseases
like cardiac insufficiency and heart failure. According to the ” Copenhagen Stroke
Study”, 18% of all stroke patients are also atrial fibrillation patients [I]. Electro-
physiological (EP) simulations of the atria could improve diagnosis and treatment
of cardiac arrhythmia, like atrial fibrillation or flutter [2/3]. For this purpose, pre-
cise segmentation and patient specific model generation of both atria are needed.
Due to the recent advances in computed tomography, which allow sub millime-
tre resolution 3D images of the human heart, the preconditions for the automatic
segmentation of the atrial endocardium are given [4J5]. However due to the lack of
contrast it is still not possible to automatically detect the atrial epicardium as well
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as the tissue structures contained in the atrial myocardium needed for the elec-
trophysiological simulations mentioned above. To overcome this lack of informa-
tion, we propose an atlas based segmentation procedure of the atrial myocardium
with its respective wall thickness information in the different atrial regions. The
resulting segmentation further incorporates atlas information about tissue struc-
tures relevant for simulation purposes like Bachmann’s bundle, terminal crest, si-
nus node and the pectinate muscles [6]. This atlas based segmentation is guided
by a model based segmentation of the atrial endocardium yielding the landmarks
used for the atlas registration. The atlas information is incorporated in a tetrahe-
dral mesh structure of the atrial complex.

2 DMaterials and Methods

The segmentation process of the atrial myocardium was separated into three ma-
jor steps. A data and atlas generation step, the endocardial surface segmentation
and the atlas registration. Section 2] and cover the first step, the endocar-
dial segmentation is introduced in section 23] and in section [Z.4] the registration
of the atlas with the patient image via thin plate spline transform (TPS) is
explained. Figure [Tl shows an overview of the whole process.

Endocardial

Mean Meshes

W
Endocardium Segmentation Atlas Generation
Pulmonary Vein [ Epicardium ]
Detection \ Generation )
\ : )
[ Mean Mesh [ Tetrahedron Mesh
Prepositioning | Generation )
Shape Constrained | [ Tetrahedron Mesh |
Mesh Adaptation L Labelling )
| Calculation of TPS- . Application of TPS-
5 —:
Transform Transform

Patient Specific Atrial
Myocardium Model

Fig. 1. Generation of patient specific atrial myocardium models
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2.1 Wall Thickness from MR-Data

For the left atrium the wall thickness values for five different areas were used
as proposed by Hall et al. [7]. However, for the right atrium there are only few
and coarse wall thickness values obtainable through literature research. In order
to overcome this lack of information, the right atrium wall thickness values were
manually extracted from 7 magnetic resonance images obtained from 7 different
volunteers via a targeted black blood, fat suppressed, ECG triggered spin echo
sequence [§]. All images had a resolution of about 1.0 mm along the x- and y-axis
and 5.0mm along the z-axis. The atrium was divided into five different regions
each of which was again subdivided into one to three subregions with different
wall thickness values. The final wall thickness values were determined by 940
manual measurements in eleven different regions of the atrium. Additionally 32
reference measurements of the left atrial wall were conducted in order to detect
a possible systematic error resulting from the chosen imaging modality.

2.2 Atlas Mesh Generation

An atlas, describing the wall thickness in the different atrial regions and the
EP-structures needed for EP-simulations, was incorporated into a tetrahedral
mesh structure. Therefore, mean surface meshes of the atrial endocardium were
generated from the manually segmented atria in 30 and 44 different patient
images for the left and right atrium respectively and labeled according to the
different tissue types, EP-structures and the orifices present in the atrial wall.
The labels representing the specific tissue structures are inserted manually based
on the results of the approaches presented by Krueger et al. [6], Ho et al. [9]
and Saremi et al. [10]. A list of all inserted electrophysiological structures can
be seen in Table [l

These mean meshes are then dilated, according to the wall thickness deter-
mined for the respective anatomical region in section[2.]] to represent the epicar-
dial surface of each atrium. To combine the two still separate left and right atrial
meshes they are connected by removing their overlapping parts and afterwards
closing the thus produced gap. Secondly, the orifices to the ventricles, the caval

Table 1. Electrophysiological structures inserted into the atrial tissue. Abbreviations:
PM — pectinate muscles, TC — terminal crest, BB — Bachmann’s bundle.

Right atrium Left atrium Septum
Sinus node BB (left branch) Septum
TC BB end point BB

BB (right branch) BB starting point

PM onsets

PM 1-7

TC inflexion point
TC end point
BB end point
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Intersecting =~
epicardium

(f)

Fig. 2. Construction of a double walled atrial mesh consisting of the epi- and endo-
cardium of both atria including the orifices to the ventricles and veins. (a) Depicts the
overlapping epicardium meshes. (b) Shows the two meshes after the intersecting tri-
angles have been removed. (c) Both atrial meshes after the overlap has been removed.
Next the resulting gap between the meshes is closed (d), the epi- and endocardium
meshes are merged (e) and afterwards the orifices are inserted (f).

vein and the pulmonary veins are inserted at the previously labeled locations.
The process is illustrated in Figure 2

Next the surface mesh which consists of the merged endo- and epicardium
of both atria, was used to generate the tetrahedron mesh. The open source
tool TetGen [II] was used to generate a Delaunay tetrahedralization of the
input mesh, suitable for finite element and finite volume methods. Due to the
fact that TetGen does not preserve the mesh labeling, the electrophysiological
labeling was automatically transferred from the triangles of the surface mesh to
the respective closest elements of the tetrahedron mesh. The final results of the
atlas mesh generation process can be seen in Figure Bl

2.3 Model Based Segmentation of the Atrial Endocardium

The actual adaptation of the atrial endocardium in cardiac CT images was con-
ducted with a model based approach similar to the one introduced by Weese et
al. [12]. This segmentation method was enhanced by a label specific parameter
selection to account for the specific situations at the different anatomical regions
of the atrium which each requires different parametrization of the segmentation
process. The mesh used for the segmentation has nine differently labeled regions,
each of which has its own set of adaptation parameters. The most important pa-
rameters are the allowed range of the image gradient feature, the maximum
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_ Bachmann's Bundle

Septum

Fig. 3. Figure (a) shows the final atlas mesh augmented with all EP-structures listed
in Table [ In (b) the mesh consisting only of the EP-structures but without the
surrounding myocardium is illustrated.

feature search distance, the weighting of the external energy as well as a feature
distance penalty. These parameters are automaticaly changed after each iteration
during the segmentation process in order to cope with the different situations at
the different stages of the process. The first step in the segmentation process is
the prepositioning of the endocardial mean meshes introduced in section in
the patient image. This initialization was achieved by the detection of the atria
via generalized hough transform. The thus yielded affine transform was applied
to the atrial mean meshes. To allow for explicit adaptation to the different con-
figurations of the pulmonary venous drainage a method for the detection of the
correct number of right pulmonary veins was applied. According to the detected
number of pulmonary veins a fitting mean mesh can be chosen which prevents
mis-segmentation of the left atrium in this region. The different pulmonary vein
configurations considered here are based on a study performed by Marom et al.
on the anatomical variation of the pulmonary veins using contrast-enhanced CT
data [I3]. The correct pattern of the right pulmonary veins is detected by using
a 3D image based region grower which is constrained to grow into the direction
of a cone originating at a seed point located in the right part of the left atrium
and stretching into the direction of the right pulmonary veins.

2.4 Registration of the Atlas Mesh with Patient Images

To register the volumetric atlas mesh generated in section to patient images
a transformation based on thin plate splines is used [14]. The vertices of the
endocardial surface as detected in section [Z.3] are used as landmarks for the reg-
istration. The transformation is computed between the vertices of the respective
mean endocardium mesh and the according target vertices of the adapted mesh.
The transformation, describing the deformation between the the mean surface
model and the adapted surface model, can now be applied to adapt the mean
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tetrahedron mesh to the patient image. The registration of this mesh results in
a complete segmentation of the atrial myocardium including the electrophysio-
logical structures introduced in table [I1

3 Results

The average wall thickness of 3.3 mm determined in section B-I] combined with
the wall thickness values of the left atrium described in [7], yielded an average
value for both atria of about 2.5 mm. The reference measurements of the left
atrial wall resulted in an average wall thickness of 2.1 mm.

To evaluate the segmentation result of our approach the model based segmen-
tation of the endocardial surface was evaluated automatically as well as, in case
of the right atrium, manually by a physician. The evaluation of the model based
endocardium segmentation yielded a mean vertex to surface error of 0.53 mm
for the left and 0.18 mm for the right atrium and was conducted for 30 refer-
ence meshes of the left atrium and 44 reference meshes of the right atrium in a
leave-one out-manner. In the human evaluation approach, all the automatically
segmented right atria were scored on a scale from 1 to 5 where 1 is the worst
and 5 is the best result. Additionally each result was commented with respect
to the accuracy of the segmentation. The evaluation yielded an over all positive
result with no segmentation scored worse than 3. The average score for all seg-
mentations was 4.2. The CT-images used for the evaluation where acquired with
an average resolution of about 0.5mm in all three spatial directions.

Due to the lack of ground truth data, the atlas based registration of the atrial
myocardium was not evaluated via automatically computed error measurements.
A visual evaluation of the correct positioning of the EP-structures yielded an
over all very positive result which is a direct result of the very accurate model
based segmentation discussed before and the used registration method. The vox-
elized results of the patient specific tetrahedron mesh for one exemplary dataset
are visualized in Figure @l To ensure the fitness of the generated atrial my-
ocardium model for electrophysiological simulations, the correct labeling of the
electrophysiological structures in the generated mean tetrahedron meshes had
to be evaluated. The most important task in the tissue labeling process was the
insertion of the undisrupted terminal crest and Bachmann’s bundle to facilitate
the correct simulation of the electrical behavior of these conduction lines as well
as the complete segregation of the left and right atrial myocardium by the sep-
tum layer. To check the first characteristic a conduction test was performed to
check whether every part of the conduction system could be reached by a region
grower starting from the sinus node. To test whether the septum layer between
both atria is leak proof the region grower was modified to grow over all triangles
but the triangle labeled as septum or the part of the Bachmann’s bundle passing
through the septum. If the layer is leak proof, the grower will not spread into
the left atrium. The generation process proposed in this work meets all these
requirements.
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(a)

Fig. 4. Exemplary voxelized patient specific tetrahedron mesh. (a) Depicts the terminal
crest and the septum, (b) shows Bachmann’s bundle and the septum and (c) illustrates
the pectinate muscles and the lower part of the terminal crest.

4 Discussion and Conclusion

An automatic method for the complete segmentation of both atria and its elec-
trophysiological structures is proposed. The method consists of a model based
segmentation approach of the atrial endocardium and an atlas based segmenta-
tion of the atrial myocardium using the results of the endocardium segmenta-
tion as scaffolding for the registration. The models yielded by this segmentation
approach incorporate statistical information about the wall thickness of the dif-
ferent atrial regions, as well as different electrophysiologically relevant tissue
structures like Bachmann’s bundle, terminal crest, sinus node and the pectinate
muscles.

One important advantage of the method proposed in this work is its high flexi-
bility regarding the information incorporated in the model. The model can easily
be extended with additional label regions. This way, further structures that could
be electrophysiologically relevant, such as the fossa ovalis or the cavotricuspid
isthmus, can be added. Furthermore, supplemental information can be defined
for each volume element, containing e.g. muscle fibre orientation.

A very good segmentation accuracy of the atrial endocardium has been
achieved. Regarding the manually extracted wall thickness values of the right
atrium, the resulting wall thickness of both atria is not completely consistent
with the results stated in [I5]. The difference might result from an overestimated
wall thickness in the MR-images due to signals received from unsuppressed blood
near the atrial walls. The comparison of the left atrial reference measurements
to literature values support this assumption of a systematical error and made a
correction of the overestimated wall thickness possible. The registration of the
atlas mesh and the incorporated EP-structures also yields very good results.
Nevertheless, the actual validity of the adapted meshes will not be proven until
extended electrophysiological simulations are conducted on the basis of these
meshes. Future work will focus on the application of the method to other or-
gans and modalities like MRI as well as the further validation of the proposed
method by extensive conduction of electrophysiological simulations on the basis
of the models generated with our approach. Such simulations could be of great
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value to improve the diagnosis and treatment of cardiac arrhythmia, like atrial
fibrillation or flutter.
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Abstract. In this paper, we present an effective algorithm to construct a 3D shape
atlas for the left ventricle of heart from cardiac Magnetic Resonance Image data.
We derive a framework that creates a 3D object mesh from a 2D stack of contours,
based on geometry processing algorithms and a semi-constrained deformation
method. The geometry processing methods include decimation, detail preserved
smoothing and isotropic remeshing, and they ensure high-quality meshes. The
deformation method generates subject-specific 3D models, but with global point
correspondences. Once we extract 3D meshes from the sample data, generalized
Procrustes analysis and Principal Component Analysis are then applied to align
them together and model the shape variations. We demonstrate the algorithm via
a set of experiments on a population of cardiac MRI scans. We also present modes
of variation from the computed atlas for the control population, to show the shape
and motion variability.

1 Introduction

In the last decade, Magnetic Resonance Imaging (MRI) has been proven to be a non-
invasive tool that can be used to measure the myocardial mass and functional defor-
mation of the heart [8]. Quantification of ventricular mass and function are important
for early diagnosis of cardiac disorders and quantitative analysis of cardiac diseases.
Recent developments in Cine MRI further help diagnose the presence of heart disease
by analyzing the heart function throughout the cardiac cycle. MRI is becoming consid-
ered as a gold-standard for cardiac function [2/6]. In this context, the construction of an
anatomical shape atlas of the structures in the heart has been of particular interest and
its importance has been emphasized in a number of recent studies [10/11113]].

In clinical applications, particularly the delineation of left ventricle endocardium and
epicardium, automatic and quantitative approaches are highly desired to facilitate the
analysis of comprehensive MR data sets. Regarding the needs for automated and quan-
titative methods in clinical applications, an atlas can provide a reference shape for a
family of shapes or can be used to model the consistent deformation of a structure of in-
terest. This could be useful in numerous applications including, but not limited to, statis-
tical analysis of different populations, the segmentation of structures of interest, motion
characterization, functional analysis, and the detection of various diseases [SU11113].
The 3D size and shape characteristics of the left ventricle, and its deformation over a
cardiac cycle, are relatively consistent and can be fairly well characterized by specific
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Fig. 1. From left to right: visualization of 2D slices from MR scans; annotation in the short axis;
annotation in the long axis

models. 2D delineations of the left ventricle is already available from manual segmen-
tation. Accurate 3D manual annotation, however, is difficult and time-consuming.

In this paper, we propose a method for creating a 3D shape atlas of the left ventricle
from 2D manual delineations. It employs currently available 2D databases and could
lead to further novel segmentation methods if further developed. The input to our al-
gorithm is a cloud of points marked on a set of sparse, 2D cardiac slices, as shown in
Fig.[Tl Note here, that the slice thickness is typically several times larger than the pixel
size in cardiac MR images, so that the resolution is poorer in the direction orthogo-
nal to the slice. Thus, creating a 3D model from such sparse data is challenging. Our
proposed framework is based on several steps. First, a 3D binary image is generated
by interpolating 2D labeling. Then a surface is obtained from the 3D binary file, using
Marching Cubes algorithm. Second, geometry processing methods are applied to ob-
tain a high quality mesh. These methods include decimation, detail-preserved smooth-
ing, and isotropic remeshing. In the third step, the one-to-one correspondence for each
vertex is obtained among the sample set of the model by registering a reference shape
model to all the other samples. The transformation is done based on a nonrigid local
deformation method. The mapping of a unique template to all instances provides a con-
sistency among not only the motion model of one cardiac image series, but also shape
and textures model of many cardiac series from different patients, if needed. In the fi-
nal step, shape statistics are computed straightforwardly, using generalized Procrustes
analysis and PCA. The mean shape and major variations are then obtained. Note here,
that the manual delineations do not have to be constrained with any anatomical point
correspondence. Our method automatically resolves that issue, both among multiple
instances of the same phase of a cardiac cycle or sequential phases of one cycle. The
ability to fit the atlas to all temporal phases of a dynamic study can benefit the automatic
functional analysis.

2 Methods

2.1 Algorithm Framework

Fig. 2l shows the algorithm framework. The typical input data is MRI scans, acquired
in different locations, along with their 2D contour labeling. The MRI data can be rel-
atively sparse. Note that the input data can also be previously constructed 3D binary
images or meshes. In such cases the algorithm will just start from the second or the
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Fig. 2. The algorithm flowchart. The diamond shape represents data, and the rectangular shape
denotes algorithms.

third step. Given MRI and 2D contour data, a 3D binary image is generated by inter-
polating values among slices. Then, the Marching Cubes method [4] is employed to
derive the corresponding isosurfaces. The mesh of this surface may be very dense and
contain hundreds of thousands vertices. Furthermore, the shape of this may contain ar-
tifacts caused by the sharp transitions at contours. It is necessary to downsample and
smooth it, without removing the shape detail information. After these geometry pro-
cessing steps, a simplified and high-quality shape is generated. Then, a reference shape
is deformed to fit it, using a shape registration method. Since all resulting shapes are
registered with the same reference shape, they share the same topology and all ver-
tices have one-to-one correspondences. Finally, generalized Procrustes analysis [[143]]
and Principal Component Analysis (PCA) are used to compute the mean shape and
major variations.

2.2 Geometry Processing

In our system, the input data is converted to a isosurface after the preprocessing. Be-
cause of the properties of Marching Cubes, such surface may contain too many vertices
and also may have local artifacts. Thus it is desirable to obtain a simplified and high-
quality mesh, with shape details preserved. We use mesh decimation to downsample
the input shape, and also use isotropic remeshing to guarantee that each vertex has six
neighbors. The remaining difficulty is to smooth the shape without losing the important
details. We use Laplacian Surface Optimization [7]] to achieve this. This method has
previously been employed to reconstruct the left ventricle from tagged MRI [12].

Let the mesh M of the shape be described by a pair (V, E), where V = {vy, ..., v, }
describes the geometric positions of the vertices in R® and E describes the
connectivity. The neighborhood ring of a vertex ¢ is the set of adjacent vertices N; =
{jl(i, ) € E} and the degree d; of this vertex is the number of elements in IN;. Instead
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of using absolute coordinates V, the mesh geometry is described as a set of differen-
tials A = {9, }. Specifically, coordinate ¢ will be represented by the difference between
v; and the weighted average of its neighbors: §; = v; — > JEN; WijVjs where w;; is
computed from cotangent weights [7]. Assume V' is the matrix representation of V.
Using a small subset A C 'V of m anchor points, a mesh can be reconstructed from
connectivity information alone. The z, y and z positions of the reconstructed object
(V) = [y vh,)"p € {2, y,2}) can be solved for separately by minimizing the
quadratic energy:

2 2
1LV, = AP+ 3 el — vapll, (1)
a€A

where L,, is the Laplacian matrix from uniform weights, and the v,,, are anchor points.
L.V, — A||? tries to smooth the mesh when keeping it similar to the original shape,
and Y-, 5 l|vh, — vap||® keeps the anchor points unchanged. The cotangent weights
approximate the normal direction, and the uniform weights point to the centroid. By
minimizing the difference of these two (i.e., L,,V’ and A), the vertex is actually moved
along the tangential direction. Thus the shape is smoothed without significantly losing
the detail. With m anchors, () can be rewritten as a (n + m) x n overdetermined linear

system AV, = b:
L,l., | A
-] @

This is solved in the least squares sense using the method of normal equations
vV, = (AT A)=1 AT'b. The conjugate gradient method is used in our system to efficiently
solve it. The first n rows of AV, = b are the Laplacian constraints, corresponding to
L.V, — Al|?, while the last m rows are the positional constraints, corresponding to
> aea Vb, — vapll*. Tap is the index matrix of V,,, which maps each V, to V.
The reconstructed shape is generally smooth, with the possible exception of small areas
around anchor vertices.

2.3 Shape Registration and Shape Statistics

These simplified and high-quality meshes do not share the same topology. They may
have different numbers of vertices, and there is no one-to-one correspondence for each
vertex. Our solution is to use shape registration to deform a reference shape to fit to
all the others. Since all deformed shapes are registered to the reference one, they ef-
fectively have one-to-one correspondences for each vertex. It is also important that the
deformed reference shape should be almost identical to the target shape. We use an
Adaptive-Focus Deformable Model (AFDM) [9] to do the shape registration task. This
algorithm was originally designed for automatic segmentation and has the property of
maintaining the topology. We have simplified it for shape registration without using
image information. After applying AFDM for each shape, all shapes share the same
topology.

Once the one-to-one correspondence is obtained for each vertex among all shapes,
the shape statistics can be computed straightforwardly using generalized Procrustes



92 S. Zhang et al.

analysis and PCA, like the Active Shape Model [1]] does. Given any two shapes, they can
be fitted to each other using a similarity transformation. Procrustes analysis is used to
find the translational, rotational and scaling components. Since there is no mean shape
in the beginning, generalized Procrustes analysis arbitrarily chooses a shape to use as
the reference and transforms all the rest to fit it. After that, a mean shape is computed
by averaging all transformed shapes. Then, this mean shape is used as a reference shape
in the next round. We repeat this procedure until the mean shape converges to a stable
state. Note that normalization is necessary, as otherwise the mean shape will degenerate
to a single point.

After the alignment, each resulting shape is filled into a matrix as a column vector.
PCA is applied to get the Point Distribution Model (PDM). The important “modes”
(i.e., eigenvectors corresponding to the largest eigenvalues) are selected to cover more
than 80% of the variance. Combining the mean shape and the modes, the PDM is able
to summarize and describe the sample shapes concisely and accurately. Such shape
statistics are used as the atlas or shape prior information.

3 Experiments

We validated our method on 36 3D MRI scans. They are from sequences of images
over the full cardiac cycle. Thus, the shape variances are large. Manual segmentation
was applied in each 2D slice. Then a 3D binary data was obtained by interpolating
values among slices. The Marching Cubes method was used to generate a 3D mesh.
These meshes may contain artifacts and too many vertices. Thus geometry process-
ing methods were necessary to downsample and smooth these meshes without removing
the shape details. Some decimated meshes are shown in Fig. 3l Fig.d visualizes the er-
rors after all geometry processing. The distance between the original surface and the
processed surface is computed and visualized. Most errors of vertices are within one
voxel. Compared to the initial mesh in Fig. [ the processed shapes are more smooth
and most artifacts are removed, while the shape detail is still preserved. Then, shape

Fig. 3. Samples of decimated 3D meshes. The artifacts along the long axis can still be observed.
Note that these shapes don’t have one-to-one correspondence for vertices.
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Fig. 4. Visual validation of geometry processing methods. The errors of each vertex is plotted
using different color. Green means that the error is within one voxel. Blue and yellow denote
errors within two voxels.

Fig. 5. Three modes with largest variations, from —3¢ to 3o. The first row: the first mode rep-
resents the contraction. The second row: the second mode is the movement along the short axis.
The third mode is the twisting.

registration was employed to fit a reference mesh to all the others. This method uses
non-rigid local deformation. Thus, the fitted shape is nearly identical to the target shape.
Furthermore, the resulting meshes have the same topology and one-to-one correspon-
dence since they all start from the same reference mesh.

After obtaining one-to-one correspondence, it is straightforward to compute the mean
shape and its variations, by using generalized Procrustes analysis and PCA. Fig.[Blshows
the major modes having largest variances. The first three modes cover more than 80%
of the variance. Although the shapes of original data are diverse, the modes are very
simple. By changing the variations from —30 to 30, where o is the standard devia-
tion, the first mode just represents the contraction of the heart. The second mode is the
movement along the short axis. The third mode is the twisting.

We implemented this method using Python 2.5 and C++ on a Quad CPU 2.4GHZ
PC. It took about 20 seconds to do geometry processing and shape registration for each
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data, and 5 seconds to construct the atlas and shape statistics from 36 meshes. The
processing time may increase when there are more vertices in each shape. In our test,
each mesh contained around 2,800 vertices and 5,600 triangles.

4 Conclusions

In this paper we presented a framework to construct a 3D shape atlas of the left ventricle
from MRI scans. The framework includes geometry processing, shape registration, and
Principal Component Analysis. It was tested on 36 annotated 3D data. The benefits of
our atlas method are twofold. First, the 3D mesh is generated from existing 2D labeling
and MR scans. Thus, 3D training data can be obtained from 2D annotations. Such high-
quality meshes can also improve the training performance since points evenly distribute
on the surface. Second, the one-to-one correspondences thus established can be used
to generate PDM, which is very important for many segmentation methods such as
ASM. In the future, we plan to use this atlas to facilitate the segmentation and tracking
algorithms, using it as the shape prior information. We will also use this framework to
obtain an atlas for other anatomies, such as liver.
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Abstract. Diffusion anisotropy is the most fundamental and important parameter
in the description of cardiac fibers using diffusion tensor magnetic resonance
imaging (DTI), by reflecting the microstructure variation of the fiber. It is,
however still not clear how the diffusion anisotropy is influenced by different
contiguous structures (collagen, cardiac myocyte, etc.). In this paper, a virtual
cardiac fiber structure is modeled, and diffusion weighted imaging (DWI) and
DTI are simulated by the Monte Carlo method at various scales. The influences of
the water content ratio in the cytoplasm and the extracellular space and the
membrane permeability upon diffusion anisotropy are investigated. The
simulation results show that the diffusion anisotropy increases with the increase of
the ratio of water content between the intracellular cytoplasm and the extracellular
medium. We show also that the anisotropy decreases with the increase of myocyte
membrane permeability.

Keywords: DTI, cardiac myocyte, diffusion anisotropy, myocardial fiber,
Monte Carlo simulation.

1 Introduction

The myocardial fiber structure plays an important role in determining the mechanical
and electrical properties of the ventricles of the human heart. It is very useful for
analyzing the normal and pathologic states of the heart. Up to now, most research on
myocardial fiber structure focuses on fiber orientation, which can be provided by
diffusion magnetic resonance imaging (DMRI). DMRI measures the displacement of
water molecules subject to Brownian motion within the tissues. Since the mobility of
the molecules is conditioned by the microstructure of the tissue, especially the
direction, we can infer the structural orientation information of the later from the
anisotropy of the molecular displacements.

A number of approaches for analyzing the DMRI have been proposed, and the
most popular ones are diffusion tensor magnetic resonance imaging (DTI) [1, 2], high
angular resolution diffusion imaging (HARDI) [3], g-space imaging (QSI) [4] and
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g-ball imaging (QBI) [5]. These methods provide more and more precise knowledge
about the orientation distribution of fibers. However, for typical DMRI, an image
voxel is of the order of about 10 mm’. For cardiac applications, it means that such
voxel contains thousands of cardiac myocytes and other extracellular tissues. In this
condition, it would be difficult to know exactly whether the diffusion anisotropy
measured by the above imaging modalities arises from the intra myocyte
compartment or the extracellular compartment or their combination [6,7]. Meanwhile,
the diffusion of water molecules in each compartment (e.g., collagen, intercalated
disk, membrane, and cytoplasm) is affected by the local viscosity, component,
geometry and membrane permeability, etc. As a result, using DMRI techniques, it is
impossible to analyze the influence of these factors on diffusion anisotropy, because
of the so small size of myocytes, whose length ranges from 50~100um, and diameter
from 10~25um [8].

In order to overcome the technical limitations of these imaging techniques, several
modelling and simulation methods have been developed. In [9], the Brownian motion
of molecules by the Monte Carlo (MC) was simulated in a restricted space to obtain
the diffusion signal. The authors of [10] introduced the concept of spin phase memory
loss during the MC simulation and applied it to describe the diffusion-induced signal
attenuation. In [11] the diffusion anisotropy was simulated with the digital fiber
phantom. The authors of [12] compared the experimental diffusion signal and the
simulated signal for a cylinder fiber. In the present work, we propose to model virtual
cardiac fiber structures (VCFS) and simulate the diffusion behavior of water
molecules in this VCFS. We use the quantum spin theory to compute virtual diffusion
magnetic resonance (MR) images and analyze the contribution of various structure
parameters (such as water content in extracellular space and intracellular cytoplasm)
and the membrane permeability to the diffusion anisotropy. The rest of this paper is
organized as follows. The simulation method is presented in Section 2, the obtained
results and discussion in Section 3, and the conclusion in Section 4.

2 Method

2.1 VCFS Model

In order to mimic the realistic structure of a myocyte as well as that of a myocardial
fiber, and find an easy way to describe some of known variations in the tissue
structure, such as the shape and the location of the myocyte, and their small shape
variation during the beat of the heart, we model the VCFS as a three-dimensional
matrix of realistically shaped myocytes organized into fibers. They are connected
with intercalated disks and plunged in within an extracellular medium. In order to
reduce computation consuming resources, the spatial resolution of the model was
selected as 5 um. The model consists of the mixture of two regions, the intracellular
cytoplasm and the extracellular space. Each myocyte in the model has a size of about
15%25%90 um”® and all the myocytes share the same direction along the long axis but
they are arranged differently in space, which means from a macroscopic viewpoint,
that the anisotropy is uniform, but from a microscopic view, it is not.



Simulation of Diffusion Anisotropy in DTI for Virtual Cardiac Fiber Structure 97

2.2 Diffusion MRI Simulation Theory

The diffusion process can be seen as a sequence of small random walks of water
molecules. If the walk of molecules obeys the stochastic properties of a Brownian

particle, the random 3D walking displacement A;,- of a molecule i during time
interval Jt between two random walks is then given by [12]:

A1, = 6Dt . (1)

where D, is the diffusion coefficient of water molecules.

According to the basic theory of DMRI [13], the phase shift induced by this
displacement is

Ap =2rmq-Ar, . (2)

where & is related to the diffusion gradient G@), qzzlj‘ﬁ(t)dt and 7 is the
V4

gyromagnetic ratio.
Thus, the diffusion signal can be numerically approximated by

E(Ag) :%XCOS(AQ) . AjeP(AP) . 3)

where n designates the number of molecules involved and i the index of the
molecules. The phase A¢, should conform to the distribution P(A¢). By combining
equations (2) and (3), the diffusion signal can be further written as

E(¢)=lzcos(2;z21-A?,»); Ari € P(AF) . 4)
n =
If the diffusion gradient is a constant, according to equation (2), the distribution of
P(Ar) will be the same as that of P(A@) . In our research, this distribution is

simulated by a Monte Carlo method. Designating the diffusion time as A, then the
number of random walk steps m for one molecule is

A
m=— .
ot

molecule induced by the j” walk step is Ary, the

&)

If the displacement for the i"

corresponding phase shift is
¢, =27q-Ary . (6)

At the end of the diffusion, the total phase shift for the i" molecule is

2mq-Arij . (7

M=

g = ¢ij:

J

J

According to equation (4), we then obtain the diffusion signal
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1& 1 m _ _
E(p)=—D) cos(§) =— Y cos(D.27wq - Ary) . ®)
n = n =i j=1

Due to the complex structure of the cardiac fibers, the diffusion of water molecules in
the VCFS model is not free. Therefore, the interaction between the molecules and the
membrane of the myocyte should be considered in the simulation. In this work, such
interaction is modeled by elastic collision and reflection, which means that, after the
collision with the membrane, the molecule does not lose energy and will be reflected
by the membrane in an arbitrary direction.

Based on the above hypothesis, we add diffusion gradients along different
directions to get the diffusion weighted images of the VCFS model. In order to
analyze the influence of different parameters upon the diffusion anisotropy, we
calculated the diffusion tensor [14, 15] and fractional anisotropy (FA). In the present
work, the number of gradient directions was selected as 30, which were obtained from
the Siemens MRI machine. Let 4, , 4, and A, represent respectively the three

eigenvalues of the diffusion tensor. The FA is then given by [14, 15]

A \fJ(ﬂl A+ =) + (A = 4)
/11+ﬂz+/13

(€))

3 Results and Discussion

In order to choose an appropriate distribution P(Ar) of random walking step lengths,

we compare two situations with respectively Gaussian and uniform distributions,
which are often used in simulations [10-12]. Then, the diffusion weighted images
(DWI) of the myocytes are simulated and the influence of the water content ratio in
different compartments upon diffusion anisotropy is analyzed by means of the
diffusion tensor. Finally, the influence of membrane permeability upon diffusion
anisotropy is also investigated.

3.1 Monte Carlo Simulation of the Restricted Diffusion

We assume that water molecules diffuse in two infinite parallel plates spaced by a
distance of 2a (Eq.10). If the diffusion gradient is applied along the direction normal
to the plates, the thus resulting diffusion corresponds to the restricted diffusion.
However, if the gradient is added in the direction parallel to the plates, it then
concerns free diffusion of the water molecules in this direction. For the restricted
diffusion and the free diffusion, the corresponding analytical diffusion equations are
given respectively by

E . =sin*(zqa)/ (rqa)’® . (10)

retrict

Eg,

e

. =exp(=bD,) . (11)

which correspond to two modeling situations.
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Fig. 1. Monte Carlo simulation of DMRI signal of diffusion between two plates

In all the simulations, the number of molecules was set to 2x10® in order to obtain
the results with high accuracy. At the beginning, the molecules are uniformly
distributed in space. Then, they walk randomly with either uniform or Gaussian
distribution of walk step lengths, but with the same distribution of directions (between
0 and 27). After a given time, according to equation (8), the diffusion signals in the
directions both normal and parallel to the plate are calculated. All simulations were
performed on a PC machine cluster; the computation time was about 16 hours. The
simulation results with the corresponding parameters are illustrated in Fig. 1. It can be
seen that the simulation with the uniform distribution conforms better to the
theoretical results. For this reason, in the following, all the diffusion processes will be
simulated using the uniform distributed walking step length.

3.2 Simulation of VCFS

In order to approximate the actual structure of myocytes, we represent it by a random
hexagons combination. In the transverse plane, the myocyte location is randomly
distributed on the surface. Based on the Voronoi theory, a myocyte is formed by
combining the nearest neighbor hexagons. Fig.2 provides a histological image for the
transverse section of myocytes and its corresponding simulation model. It can be seen
that our model is fairly realistic, and that it can generate myocytes with certain regular
organization but varying shapes.

3000,

2500}

Fig. 2. (a) histological image for the transverse section of myocyte (Reference [16]) (b) The
VCEFS transverse model



100 L. Wang et al.

From this transverse slice, a three-dimensional myocyte is constructed by changing
the length of the myocytes. By choosing the hexagon as the basic modeling element,
we can control various parameters of diffusion simulation such as the boundary
condition for the random walk, the simulation spatial resolution, the computation
complexity, etc. In the present study, the hexagon edge length was chosen as Sum.

3.3 DTI Simulation and Anisotropy Analysis

As mentioned in Section 2.2, diffusion tensor imaging data can be simulated by
applying diffusion gradients along different directions. The DTI data are simulated at
three different scales. The first DTI scale concerns that of one hexagon, which
corresponds to one voxel having a dimension of 5x5x5 um’. The second scale is at the
level of one myocyte whose spatial resolution is about 25um, and the final scale is
dealt with the simulation of several myoyctes. In the present study, we chose only
four myocytes with a resolution of about 100um, for the sake of the heavy
computation load.

3.3.1 Influence of Water Content on Diffusion Anisotropy

From the research of Denis Le Bihan [17], it is considered that water molecules
diffuse quickly in the intra and extra spaces, but diffuse slowly near and across the
membrane. The dimension of the membrane of cardiac myocytes being about 7.5 nm
[18], it is so small in comparison with that of cytoplasm and extracellular space that it
will be ignored in the present simulation. The diffusion coefficient in the cytoplasm

and the collagen is selected as the same, which is D, =1000um’/s, because both of

them belong to the quick diffusion region. Moreover, the dimension of water
molecules is about 3.2A, and in the cytoplasm the water content is 78%, of which
92% is immobilized [19]. Thus, for our voxel (8x8x8 pm3), there are about 3x10"
water molecules. In practice, it is almost impossible to simulate with such a number
of water molecules. A trade-off between computing time and simulation accuracy
should then be done. We selected 1000 molecules for one voxel. For the diffusion
gradient, the amplitude was chosen as 2 Tesla/um (note however that, in real imaging,
it is about 1.5 Tesla/m), the diffusion time as 50 ms, and the number of random walks
during this period as 300. Since there are some contradictory conclusions in the
literature about the water content in the myocyte and extracellular space, it is
necessary to simulate the effects of the ratio of water contents on diffusion anisotropy.
Fig. 3(a) shows a 3D simulated structure of myocytes, (b) a single transverse slice and
(c) the corresponding diffusion image of the later in one gradient direction d (red
color) which is illustrated in Fig.3(d). For this illustrated situation, water was
distributed only in the extracellular space in order to distinguish it from the structure
information.

To investigate the influence of water content in different compartments, the ratio of
water content in cytoplasm and extracellular space was chosen respectively as 1/6,
1/5, 1/4, 1/3, 1/2, 1(Pointl, Fig. 4(a)), 2, 3 (Point2, Fig. 4(a)), 4, 5 and 6. The
simulation results are given in Fig. 4, where Fig. 4(a) shows the variation of diffusion
anisotropy with the water content ratio changes in extracellular and intracellular
spaces. We compare the diffusion images along the same direction for different water
content ratio. It can be seen that for each pixel the diffusion signal intensity changes a
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Fig. 3. 3D Myocyte structure and diffusion image

little, which means, from a microscopic view, that the change in water content ratio
does not influence greatly the anisotropy. This can also be verified by the diffusion
tensor for each voxel shown in Fig. 4(b) and 4(c). However, for a larger scale of
single myocyte or several myocytes, the diffusion FA increases if the water content in
the myocyte is bigger than that in the extracellular medium, as illustrated by global
diffusion tensor comparison in Fig. 4(b) and 4(c). This phenomenon is caused by the
combination effects of diffusion in the intra- and extra- cellular compartments in the
large scale measurement. All these imply that for modeling MRI diffusion signal with
DTT in large scales, the water content influence should be taken into account.

3.3.2 Influence of Permeability on Diffusion Anisotropy

According to [20], there are some aqueous pores in the myocyte membrane, which
allow water molecules to exchange between different compartments (intra- and extra-
cellular). Following [21], the membrane permeability of a myocyte ranges from 0 to
100 pm/s. During their random walk process, water molecules will pass through the
membrane with a certain probability p, determined by the permeability p, , the

diffusion coefficient D, and the random walk step length s. Their relationships is

ruled by
p=p,xslD, . (12)

The simulation results are shown in Fig. 5.

The results show that the diffusion anisotropy decreases with the increase of the
membrane permeability. In the present work, walk step length is lum that
corresponds to a diffusion time of 1/6 ms for one step. In this condition, when the
membrane permeability is smaller than 50um/s, its influence can be ignored.
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Influence of water content on the diffusion anisotropy
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In practice, diffusion time in DMRI ranges from several ms to several seconds. As a
result, for such long diffusion process, the contribution of permeability to FA should

be considered accordingly.
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4 Conclusion

A fairly realistic virtual cardiac fiber structures (VCFS) model has been constructed,
and its diffusion weighted image and diffusion tensor image were simulated by Monte
Carlo method. From the thus simulated images, the influences of the water content
and membrane permeability upon diffusion anisotropy have been investigated. The
results show that the diffusion anisotropy increases with the increase of ratio of water
content between intra- and extra- cellular media, and that it decreases with the
increase of membrane permeability. Consequently, for different spatial resolutions in
practical imaging, the contribution to FA of water content in different compartments
and permeability should be taken into account accordingly. For the future work, we
will improve the VCFS model to make it more realistic and compare the thus obtained
results with practical imaging techniques such as polarized optical imaging.
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Abstract. The reliability of non-invasive myocardial shear measurements based
on MRI tagging is evaluated in relation to the influence of possible edge effects
close to myocardial borders. Automatic cardiac motion tracking is performed
with SinMod, a method based on sinusoidal wave modeling. Shear results are
evaluated for simulated images with a known imposed motion field, as well as
for real short-axis acquisitions from 10 healthy volunteers. To evaluate accuracy
and precision in vivo, automatic results are compared with manual tracings.
Results show that estimation of circumferential-radial shear is feasible in vivo,
where edge effects close to myocardial borders play a minor role as compared
with those found in synthetic images. In healthy subjects, circumferential-radial
shear and rotation of the myocardium appear negatively correlated.

Keywords: MRI tagging, left ventricle, myocardial mechanics, transmural
gradient, shear, SinMod, Harp.

1 Introduction

Transmural deformation gradients in the left ventricle (LV), estimated non-invasively
by means of MRI tagging (MRIT), have been reported in literature for healthy
subjects [1] as well as for aortic stenosis patients [2]. Being closely related to the
myocardial fiber arrangement in the LV, such gradients can be used, along with
torsion and circumferential shortening, to analyze and validate computational models
of cardiac mechanics [3].

The amount of tags along the radial direction in MRIT images of the heart is
limited, due to the fact that tag spacing usually ranges between 1/2 and 1/3 of the
myocardial thickness. Edge effects inducing errors in displacement estimation close to
epicardial and endocardial borders could therefore hamper the assessment of
transmural displacement gradients. In this regard, the aim of this study is to evaluate
the accuracy and precision in measuring LV rotation angle and circumferential-radial
shear (E.,) using MRIT. The automatic tracking method used, SinMod [4], is based on
local sine wave modeling. Measurements have been evaluated using synthetic images
with a known imposed motion field, as well as comparing automatic and manual
tracings of endocardial and epicardial markers in real MRIT acquisitions from 10
healthy subjects.
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2 Materials and Methods

2.1 MRIT Acquisitions and Bandpass Filtering

Horizontal and vertical MRIT image sequences of the LV, acquired from 10 healthy
adults using spatial modulation of magnetization [5], were analyzed. Short-axis MR
images were acquired with a 1.5 T Gyroscan NT Intera (Philips, The Netherlands).
Tag spacing was set to 6 mm in both directions. Grid images were generated by
subtracting horizontally tagged images from the vertically tagged ones, and were
stored for processing. For each subject, 3 short axis slices were considered: basal,
equatorial and apical. The distance of basal and apical slices from the equatorial one
ranged between 8 and 12 mm, depending on heart size. The first frame in each
sequence was acquired 21 ms after the R-top of the ECG. The frame rate varied
between 42 and 56 Hz, depending on the heart rate of the subject. Motion tracking
was carried out on the first 12 frames in each sequence, starting at end diastole and
covering most of the ejection period.

MRIT images were bandpass filtered in the frequency domain. The center
frequency corresponded to the spatial frequency of the tags. The bandwidth to center
frequency ratio was set to 1.0. The transmission factor of the bandpass filter was a
squared cosine window, circularly symmetric in the domain of the complex logarithm
of frequency [4].

2.2 LV Motion Tracking with SinMod

SinMod, an automatic MRIT tracking method, was implemented as described in [4].
MRIT images were modeled as moving sinusoidal wavefronts. The displacement
components along horizontal (u(x,y)) and vertical (u,(x,y)) directions were obtained,
yielding a complete displacement map evolving in time. The center frequency w, of
the bandpass filter was tuned to either direction x or y. Thereafter, two additional
filters were defined in the passband, respectively skewed towards low and high
frequencies. At each pixel of the deformed image, estimates of @, and u along either
direction were calculated from low frequency power (P,,), high frequency power (Ppyy)
and cross-power maps (Pcc) of the complex images resulting from the skewed filters:

Py (x.7)

o, (x,y)=w,
Py (x.)

(D

_ arg(Pee ()

@, (x,y)

u(x,y) 2

The implementation of SinMod took advantage of a shift in the frequency domain,
allowing faster calculations in the spatial domain thanks to lower amounts of
processed pixels. Furthermore, noise was suppressed by using a local criterion for fit
quality of the sinusoidal model [4].
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2.3 Lagrangian Shear Strain in Synthetic and Acquired Images

The Lagrangian circumferential-radial shear (E.,;) was automatically estimated both
for real and for synthetic MRIT images. The latter were generated by imposing a
known motion field to a myocardium-like tagged circular region, with either uniform
or tagged external background (fig. 1).
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Fig. 1. Synthetic MRIT images. The circular myocardium is subject to a motion field
combining rigid rotation, circumferential shortening, radial thickening and circumferential-
radial shear. a) and b) show the last frame of the sequence in the cases of uniform and tagged
background, respectively.

Lagrangian E,,, can be estimated using the u, and u, displacement maps obtained
pixel-by-pixel with SinMod. The Cartesian components of the Lagrangian strain
tensor E, namely E,,, E,, and E,,, were computed by properly combining the spatial
derivatives of the displacements [6]. E.,; was then expressed as:

E,, =sin(6) - cos(6) - (Eyy - Eﬂ)+ (0082(6) - sinz(H))- E, . 3)

where 0 represents the angular coordinate with respect to the LV center position at the
reference frame. To compensate for potential edge-effects near myocardial borders, a
Hanning weighing in the radial direction was used. This weighing enhanced the
midwall values of E.,; when averaging over the myocardial region of interest (ROI),
which for acquired images was retrieved with manual endocardial and epicardial
delineation.

2.4 Rotation and Shear Estimated with 16 Markers

To validate in vivo automatic estimation of myocardial rotational shear, 16 markers (8
endocardial and 8 epicardial) were manually tracked throughout all the analyzed
MRIT frames. Markers were placed on tag centers, trying as much as possible to
distribute them equally along the circumferential direction. The images were tracked
after bandpass filtering in order to reject noise. An example is shown in fig.2.
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Fig. 2. End-diastolic, mid-systolic and end-systolic frames (from left to right) of an MRIT
acquisition (apical slice). Manually tracked epicardial and endocardial markers are represented
by white squares and white circles, respectively. Timing of each frame with respect to the ECG
R-top is also shown. Images are bandpass filtered as reported in section 2.1.

Manual and automatic tracings of the 16 markers were compared. The rotation
angle a of each marker with respect to the left ventricular center point was calculated,
both for manually and automatically tracked positions. Rotation is positive
counterclockwise, looking from the apex. The LV center point was retrieved at frame
1 by means of a best-fit circle over the myocardial ROI. To avoid the interference of
rigid body translation with the calculation of rotation, the center point position was
adjusted at each time frame using the average LV displacement.

Once the rotation angle was known for each marker, the mean rotation of all 16
markers and the average transmural rotation difference Ady = (0pi — Oengo) Were
calculated. Based on the latter, the time course of the circumferential-radial shear E,,
can be estimated for each analyzed MRIT slice:

_ Repi (t) + Rendo (t) ) AaT (t)

E. ()= ; )
2 Repi (t) - Rendo (t)

where R,,; and R,,4, are the average epicardial and endocardial radiuses, respectively.

3 Results

In order to compare SinMod results with a standard tracking method for MRIT
images, Harp [7] was also implemented after the bandpass filtering described in
section 2.1. Harp estimates myocardial displacements based on the differences in
harmonic phase between consecutive images.

In synthetic images, E.,; errors depend strongly on the background texture and on
the amount of rigid rotation applied. Both for SinMod and Harp, high errors in the
estimation of E,,; are present for the tagged background case (fig. 1b), reaching on
average 180% of the true E.; value when a rigid rotation of 20 degrees is
superimposed to shear. With uniform background (fig. 1a), E.,; errors are about 10
times lower.
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Fig. 3 shows in vivo manual and SinMod results for E., estimated by means of
marker tracking (eq. 4), as well as SinMod-based estimates of E,,; (eq. 3) for the whole
myocardium. Since E,,; is an element on the secondary diagonal of a symmetric tensor
[6], it is expected from theory that the ratio E./E,,; is on average about 2.
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Fig. 3. Circumferential-radial shear results in a healthy subject. White panels: manual and
SinMod estimations of E, combining 8 epicardial and 8 endocardial markers; grey panel:
Lagrangian E,,; tracks averaged throughout the whole LV ROL. The ratio E,/E,,; is on average
about 2. A systematic difference in circumferential-radial shear is present at end systole
between apical (solid), equatorial (dashed) and basal (dash-dotted) tracks.
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Fig. 4. Rotation (left panel) and E,, (right panel) averaged among 10 healthy subjects in late
systole (frames 7 to 12 of the analyzed MRIT sequences). Estimations are performed with
manual tracings (circles), SinMod (triangles) and Harp (squares). Vertical bars indicate + 1
standard deviation. Rotation and E,, appear negatively correlated.
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Basal, equatorial and apical rotation and E., in late systole are shown in fig. 4,
averaged over all of the 10 healthy subjects analyzed. Mean rotation is assessed
accurately by both SinMod and Harp. It is also clear how, contrarily to what found in
synthetic images, the estimation of circumferential-radial shear is feasible in vivo. E,,
values assessed with either SinMod or Harp follow the ones measured manually, and
the bias is low (fig. 4).

Bland-Altman plots [8] relating the performance of SinMod with respect to manual
tracking for rotation and E,, are presented in Fig. 5.

Table 1 presents, for both rotation angle and E,,, the standard deviation of the
differences between manual and automatic estimates in all images, expressed as
percentage of the mean value across all subjects for the specific slice.
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Fig. 5. Bland-Altman plots for SinMod (S) with respect to manual tracking (M). Grey panels
(left) represent rotation, and white panels (right) E,,, for base, equator and apex respectively
(top to bottom). Solid horizontal lines represent the average difference (bias) between SinMod
and manual tracking, whereas dashed lines delimit the + 1 standard deviation range.

Table 1. Standard deviation (SDy) of the in vivo estimation error, for both rotation and E,,,
expressed as percentage of the respective mean measured values in base, equator and apex.
Estimations with SinMod are less affected by noise, especially for base and equator.

Rotation SD4[%] E. SD4[%]
SinMod Harp SinMod Harp
Base 5.9 8.3 115.1 168.4
Equator 4.0 6.4 495 674
Apex 5.1 4.9 52.5 59.9
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4 Discussion and Conclusion

When testing automatic tracking on synthetic images, the results for E. are not
indicative of E., inaccuracies in vivo for SinMod and Harp, but are due to the
unrealistically abrupt gradients found at the myocardial borders in synthetic images.
Compared to fig. 1b, for instance, images acquired in vivo do not present the same
high grey level discontinuities across the epicardial border. Hence, edge effects in
vivo, even though being present due to the limited bandwidth of the bandpass filtering
(section 2.1) and of the tagging imaging protocol, are not affecting the estimates as
much as in simulations. This is also supported by the fact that, for the calculation of
Lagrangian E.; in real MRIT acquisitions, hardly any effect is noticed when
switching on or off the Hanning weighing across the myocardial thickness.

Both Harp and SinMod accurately estimate rotation (fig. 4). SinMod performs
better than Harp for the estimation of E,,. The right panel of fig. 4 indicates that inter-
subject bias and variability of E., estimation are lower for SinMod than for Harp.
Also, Table 1 shows that SinMod presents lower errors with respect to Harp.

The standard deviation of the E., estimation error shown in Table 1 is relatively
high because the myocardial thickness is relatively small with respect to tag spacing.
Thus, small errors in displacement estimation on either epicardium or endocardium
have a large impact on the measurement of transmural angle differentials and E,,.
However, fig.4 shows that the standard deviations of manual and automatic estimates
across the analyzed population are similar. The slice with the lower relative precision
for E,, is the base (Table 1). Interestingly, as shown in fig. 4, the base is also the slice
with the lower absolute variations in E.. Bland-Altman plots (fig. 5) show that
SinMod is not biased when compared to manual tracings. These plots also show that
errors are not dependent on the mean value of either rotation or E,,.

In conclusion, this study suggests that automatic estimation of myocardial rotation
and transmural shear in vivo can be performed accurately and precisely, by tracking
non-invasive MRI tagging images. SinMod proves to be a reliable algorithm for such
task. Edge effects in real images play a minor role as compared with those found in
synthetic images. It is observed that at end ejection the LV apex presents a
circumferential-radial shear higher in amplitude with respect to the base. This pattern
has already been reported in previous studies [3], and is consistent with a base-to-
apex gradient in the maximum transmural component of myofiber orientation. The
negative linear correlation between the apex-to-base courses of rotation and
circumferential-radial shear (fig. 4) is a feature of LV motion, and not an artifact,
because both manual and automatic assessments show it. Further developments could
include investigating the relation of myocardial shear strain with other quantities such
as torsion and circumferential shortening, both for healthy and pathological subjects.
Also, further investigations could be aimed at the comparison between SinMod and
DENSE [9] for the calculation of E,. Non-invasive estimates of transmural
circumferential-radial shear have the potential to unveil mechanistically relevant
patterns of myocardial motion.
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Abstract. Quantitative analysis of left ventricular motion can provide
valuable information about cardiac function. Echocardiography is a non-
invasive, readily available method that can generate real time images
of heart motion. Two methods that have been used to track motion in
echocardiography are shape tracking and speckle tracking. Shape track-
ing provides reliable tracking information on the boundaries of the my-
ocardium, while speckle tracking is reliable across the myocardium. The
complementary nature of these methods means that combining them can
lead to a better overall understanding of ventricular deformation. The
methods presented here use radial basis functions to combine displace-
ments generated from the two methods using information from multiple
sequential frames. Ultrasound data was acquired for six canines at base-
line and also, for three of these, after myocardial infarction induced by
surgical coronary occlusion. Mean segmental radial strain values showed
significant decreases in the infarct regions. Comparison to tagged MRI
strain values for two of the animals showed good correlation.

1 Introduction

Left ventricular (LV) deformation analysis has long been an active area of re-
search in the medical imaging community. Quantitative analysis of LV defor-
mation can provide information about the location and extent of myocardial
injury, as well as information about treatment efficacy. In order to obtain this
type of quantitative information, accurate tracking of myocardial deformation
is required. Many different methods have been proposed to quantify myocardial
deformation over the cardiac cycle. Shape tracking methods have been used to
track feature points between image frames [I2]. The feature points used in these
methods are generally located on the endocardial and epicardial boundaries of
the myocardium. These feature points are matched between adjacent frames to
find a sparse set of displacements. The sparse displacements are then interpolated
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into a dense displacement field over the entire myocardium for deformation anal-
ysis. Image noise is especially difficult to overcome in echocardiography, which
makes it difficult to calculate feature points.

Echocardiography has excellent temporal resolution and portability while be-
ing relatively inexpensive. The high frame rate at which images can be acquired
allows for real time imaging of cardiac deformation. In ultrasound, speckle track-
ing methods have been proposed to track cardiac deformation [3]. Speckle is
a unique pattern generated in an ultrasound image by the underlying tissue
micro-structure. This pattern remains temporally consistent for small deforma-
tions and can be used as a feature for motion tracking. Tracking is performed
by calculating the maximum correlation between speckles in neighboring frames.
Performing speckle tracking on the raw radio frequency (RF) signal has proven
to be effective for tracking small deformations, which can be achieved by imaging
at a high frame rate [4]. Speckle tracking provides good tracking results across
the myocardium where the temporal coherence of the signal remains more con-
sistent. Speckle tracking methods perform poorly on the endo- and epicardial
boundaries due to inhomogeneities in the signal at the tissue boundaries.

The displacements calculated through shape and speckle tracking methods
provide complementary information. Shape tracking gives more reliable infor-
mation on the boundaries of the myocardium, while speckle tracking gives more
reliable displacement values across the myocardium. For this reason combining
these two methods can lead to improved quantification of myocardial deforma-
tion over the cardiac cycle. Since speckle tracking provides displacement val-
ues across the myocardium, models are no longer required to calculate dense
displacement fields (as when using shape information alone). Speckle tracking
has difficulty tracking motion lateral to the ultrasound beam due to the lower
sampling rate and lack of phase information in the RF signal. Shape tracking
information can be used to improve lateral tracking because it is not affected by
beam orientation. The methods presented here use radial basis functions (RBFs)
in a multilevel framework to combine displacement information from shape and
speckle tracking. RBFs have been used extensively in scattered data approxi-
mation [BJ6], as well as in medical imaging for modeling the deformation field
in image registration [7] and motion tracking [8J9]. A major advantage of using
RBF methods for interpolation is that data is not required to be in a regular grid.
This makes them very suitable for sparse displacements that are scattered over
the complex geometry of the left ventricle. Using RBFs avoids the complicated
meshing step that is required in some other modeling strategies [2/10].

2 Methods

2.1 Shape Tracking Methods

A Drief description of the generalized robust point matching (G-RPM) used for
shape tracking is provided here. For a more detailed description of the algorithm
see [10]. G-RPM is used to track a set of feature points, with associated feature
values, across a set of image frames. The G-RPM algorithm uses soft-assign and
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deterministic annealing techniques to jointly estimate a nonrigid transformation
and correspondences between point sets. For a data point-set X, with template
point-set Y, and their associated feature values an objective energy function is
minimized to find the displacements from X to Y. A correspondence matrix is
calculated to determine the quality of the point matches. The feature points for
shape tracking are found directly from image intensity information using area
based operators. Partial derivatives are taken on the image intensity values in
order to find Gaussian curvature values at each point. These curvature values
are then thresholded and non-maximum suppression is performed to find feature
points that will remain consistent through the cardiac cycle.

2.2 Speckle Tracking Methods

Methods for RF speckle tracking have been presented in [3] and are briefly dis-
cussed here. Each pixel in the initial analytic image has both a magnitude and
a phase. A two-dimensional correlation kernel is defined with a spatial extent
equal to approximately one speckle. A speckle is defined as the full-width at half
maximum in both dimensions of the two-dimensional auto correlation function
of the initial complex image [I1]. Following deformation the kernel in one image
is cross-correlated with the next complex image. Initial correlations are found us-
ing only the magnitudes and then refined using the phase information. The peak
correlation is found and the two-dimensional values are given for the displace-
ment. The magnitude of the correlation can be used as a confidence measure for
the quality of the displacement values. Speckle tracking feature points are found
by using displacement values that correspond to a correlation value above a set
threshold.

2.3 Combined Method with RBFs

Combining the shape and speckle tracking data can be posed as a data interpola-
tion problem for a given set of distinct nodes X = {z; f\:{M C R? with function
values {fl}fv:”;M C R2. We need to find an interpolant s : R? — R such that
s(z;) = fi, i =1,...,N. Where {z1,...,xn}and {f1,..., fn} are from shape
tracking, and {zny1,...,2pm} and {fny1,..., fa} are from speckle tracking.
These methods are performed here on two-dimensional data, but the nature of
radial basis functions will allow for transition to three-dimensions in the future.

For data at nodes xj,...,xN in d dimensions, the general form of an RBF
approximation is

N
F(X):ZAM(HX*&'H) (1)

where ||-|| denotes the Euclidean distance between two points and ¢(r) is defined
for r > 0. Scalar function values of f; = f(x;) can be found from calculated
displacements and the coefficients \; can be found by solving a system of linear

equations
AN=f (2)
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Fig. 1. Sparse input vectors (left) with shape tracking shown in red and speckle tracking
showing in green. Output of dense displacement field (right).

where the interpolation matrix 4 is defined as a;; = ¢ (||x; — x;||). The interpo-
lation matrix, A, is guaranteed to be non-singular for many choices of ¢ [12]. In
this work we use a compactly supported RBF (CS-RBF) for ¢(r) . CS-RBFs use
only local information to calculate a displacement value at a given point. When
solving Equation 2 CS-RBFs also provide a computational advantage over glob-
ally supported functions. Wu’s compactly supported positive definite RBFs were
used:

o0 =0 (1) s e )

o(r)=(1- r)i (3?3 + 12r% 4 167 + 4) forr >0 (4)

where (1 —r), = max(1—7,0), and s is the region of support for the basis
function. This function was selected because it exhibits C? continuity and the
function ¢ is guaranteed to be positive definite for dimensions up to three [5].

To combine the two sources of information CS-RBFs are implemented in a
hierarchical fashion with varying levels of support. Large scale functions capture
the larger motion trends while the smaller scale functions fill in finer details of
the displacement field. The final deformation field, F'(x), can then be computed
as F(x) = Fi(x) + -+ 4+ Fr(z) with L being the total number of levels used.
In this work L = 4. A level is defined as a given center spacing and region of
influence. Centers are initially spaced equally over the myocardium at diastole.
At each subsequent level the number of centers increases and the spacing between
centers decreases. The region of influence for each level is set to twice the spacing
distance between centers. This value was found experimentally to be the smallest
value that would yield smooth results.

For each level of the algorithm a decision is made to determine if a specific
region needs to be modeled using smaller scale functions. Regions with fine detail
would need smaller scale functions in order to avoid smoothing out important
information. Some regions that appear to have a high level of detail may be
image noise and we use larger scale functions to smooth the noise. In order to
determine if a region contains important details or noise we look at the dis-
placement variance and correlation values within the region. A noisy region is
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characterized by high variance with low correlation and modeled by a small num-
ber of functions with a large region of support. A region with fine details would
have high variance with high correlation and is modeled in subsequent levels
of the algorithm with an increasing number centers with decreasing regions of
support. The values for variance and correlation that determine if a region needs
further sampling have been determined experimentally.

For a given basis function center there will be a set of feature points from
speckle tracking and a set of points from shape tracking that lie within the
region of influence. The periodic nature of cardiac motion also allows this region
of influence to be extended temporally. For image frame ¢, information from the
previous two frames i — 2 and ¢ — 1 and information from the following two
frames i + 1 and i + 2 is used. The weighting used on the displacements from
neighboring frames is inversely proportional to time. These feature values are
used to generate the f. values to solve Equation[2l For a given center c at frame
1 the value f. is found as a weighted sum of speckle and shape tracking values.

fi = afspeckle + (1 - a)fshape (5>
2
fspeckle = w(t)fspeckle,i + Zw(t) (fspeckle,ift + fspeckle,i+t) (6)
t=1
1 N
fspeckle = NZIQS (| ‘fﬂc — Tspeckle,i |) dspeckle,i (7)
2
fshape = w(t)fsha,pe,i + Zw(t) (fshape,i—t + fsllape,i+t) (8>
t=1
1 M
fshape = MZ¢ (| ‘IIJC - xshape,i' ) dshape,i (9)

i=1

where fipeckle and fshape are the weighted means of the values contained within
the region of influence in the current frame and in the two neighboring frames
weighted by w(t). For a given center location, Z., Zspeckle and Tshape are the
locations for the N and M number of points with displacement values dspeckle and
dshape from speckle and shape tracking respectively. The parameter o weights
the contribution of each of the two data sources.

3 Results

2D cardiac short-axis US images were acquired at 122-149 fps using a modified
Philips iE33 system with an X7-2 phased array transducer at 4.4 MHz. The probe
was suspended in a water bath over the heart for six anesthetized, open-chested
canines. All subjects were imaged at baseline and three subjects were also imaged
after surgical occlusion of the left anterior descending coronary artery. All studies
were performed with approval of the Institutional Animal Care and Use Com-
mittee. RF and B-mode ultrasound data were exported for speckle and shape
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Fig. 2. (Left) Six Region Partition: (1) Anterior, (2) Anterolateral, (3) Inferolateral,
(4) Inferior, (5) Inferoseptal, (6) Anteroseptal and (Right) Sample radial strain map
over the myocardium for a baseline frame near peak systole
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Fig. 3. Radial strain values for six cardiac segments in a single canine pre- and post-
occlusion

tracking, respectively. Tagged magnetic resonance (MR) imaging was performed
for two baseline animals on a 1.5T Sonata MR scanner using a 1:1 SPAMM pulse
sequence [I3] and a harmonic phase (HARP) MR software analysis package to
compute radial strains [I4].

For US data, manual contours of the endocardium and epicardium are traced
were traced at end-diastole. The displacement fields were calculated between
subsequent frames using the methods outlined in Section 2. The initial contours
were warped to each subsequent frame using the calculated displacement field. In
this way, the regions of interest were defined with minimal manual input. Radial
strains were then calculated from the accumulated frame to frame displacements.
For analysis radial strain values were calculated over the entire myocardium and
mean radial strain values were also obtained for each of the six regions shown
in Figure Bl The radial strain map is shown for a single frame of a baseline
acquisition in Figure 2l The radial strain is greatest near the endocardium with
lower values closer to the epicardium, as expected.

Figure Bl shows the differences in radial strain values between the baseline and
post-occlusion conditions for a single animal. Physiologically, the anterior and
anteroseptal regions of the myocardium are most affected by the left anterior
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Table 1. Mean correlation of radial strain values across six cardiac segments for two
baseline US data sets and corresponding MR data sets

Ant. Anterolat. Inferolat. Inf. Inferosep. Anterosep.
R 0.916 0.880 0.825 0.976 0.984 0.924

descending coronary artery occlusion. This is shown by the large scale changes
in radial strain values in those regions. The inferoseptal and anterolateral regions
border the area affected by the occlusion and also show a slight decrease in strain,
while the inferolateral and inferior regions do not change significantly. Analysis
of pooled data from all animals showed similar behavior. Mean radial strain
values in the anterior and anteroseptal regions were found to have statistically
significant differences pre- and post-occlusion by ANOVA analysis (p<0.01 and
p=0.01, respectively).

Data in Table[Ilshows that there is good correlation between the strains gener-
ated from the combined method on US data and the strains generated from MR.
For the baseline data we see reasonable correlation between the two methods.
The differences in how these strains are calculated could lead to the discrepancies
in the strain values on the borders of the infarct. The combined US methods gen-
erate a strain map over the entire myocardium, while the MR methods calculate
strains along three hand traced contours placed on the endocardium, mid-wall,
and epicardium.

4 Conclusion

A new method for combining shape tracking and speckle tracking displacement
values in echocardiography has been presented. This method uses RBFs in a
multi-level fashion to calculate a deformation field for a single image frame using
multiple frames for analysis. These methods take advantage of the complemen-
tary nature of the two tracking methods to find dense displacement and strain
fields over the entire myocardium without the need for a complex meshing step
or model based interpolation. We have shown that our combined method is able
to distinguish between normal and infarcted regions of the myocardium. We also
see consistency with corresponding MR tagged data. Future directions will ex-
tend these methods to 3D to ensure that out of plane motion of the myocardium
is captured.
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Monitoring Treatment Outcome: A Visualization
Prototype for Left Ventricular Transformation

Stefan Wesarg

Interactive Graphics Systems Group (GRIS), TU Darmstadt, Germany

Abstract. The analysis of cardiac dynamics — especially of the left ven-
tricle — is a means for evaluating the healthiness of the heart. In case that
a malfunction has been detected and afterwards has been treated, the
question arises whether the treatment was successful or not. On a longer
time scale, it is of clinical interest to compare the results of follow-up
studies with those of former examinations.

In this paper, we address both issues by presenting a visualization
prototype for the comparison of left ventricular dynamics obtained from
cine-MRI data. Our approach is based on the computation of differences
for standard cardiac parameters between two time series which have been
acquired prior to and after treatment. For their visualization, we use a
series of bull’s-eye displays allowing for an in-depth examination of the
treatment outcome. Here, we focus on the special clinical application
ventricular reduction surgery where we perform a retrospective evalua-
tion for cine-MRI data acquired prior to and right after surgery as well as
several months later. We compare our results with diagnosis information
obtained from clinical experts.

1 Introduction

In cardiac imaging, the heart is captured at multiple points in time allowing
for an examination of its dynamics. There, cardiologists are mainly interested in
detecting any abnormalities related to the contraction and relaxation of the left
ventricle (LV). For this purpose, cine-MRI (magnetic resonance imaging) is the
imaging modality of choice that provides a series of 3D volumes which cover the
whole cardiac cycle. In these data sets, the blood pool of the LV has different
gray values compared to the myocardium, which permits to easily segment these
two regions. Based thereon, the volume of the LV can be computed, and the two
boundaries of the myocardium — endocardium and epicardium — can be defined.

Standard LV analysis uses the volume of the blood pool in order to extract
end-systole (ES) as well as end-diastole (ED). Afterwards, cardiac parameters
are computed [I]. In 2002, the American Heart Association (AHA) has published
a set of recommendations concerning LV analysis [2]. The most important issues
are the segmentation of the LV into 16/17 regions and the usage of a bull’s-eye
(BE) display for a standardized visualization.

Hennemuth et al. [3] employed a BE display for the visualization of perfusion
information and delayed-enhancement image data. The approach presented by
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de Sa Rebelo et al. [4] uses BE displays in order to show the three components
of velocity vectors for the endocardial wall motion. Mantilla et al. [5] visualized
computed radial and longitudinal contraction as well as torsion values for the LV
in a BE display. A method for computing the degree of asynchronous wall mo-
tion and wall thickening has been introduced by Wesarg & Lacalli [6]. There, a
BE display is used for the visualization of the corresponding values. A visualiza-
tion combining 3D rendering and a BE display has been proposed by Termeer
et al. [7]. Coronary territories derived from simulated perfusion data are color
coded in both visualizations, and in addition, the coronary arteries are projected
onto the BE plot. In order to distinguish between a normal and a hypokinetic
heart, Kermani et al. [8] compute the path length and visualize these values in a
BE display.

Most of the aforementioned works employ one single, static BE display for
the parameter visualization. Solely, the approach by de Sa Rebelo et al. [4] uses
simultaneously two BE displays — one showing the parameters at ED and a
second one for ES. A visualization method for cardiac dynamics which employs
a set of polar plots and that is closely related to our work has been introduced
by Breeuwer [9]. The so-called uptake movie consists of successive images which
represent the uptake of a contrast agent in the myocardium for the purpose
of perfusion examination. In conjunction with the perfusogram — a rectangular
layout of temporal and spatial perfusion parameters — a convenient navigation
through the uptake movie is provided.

The computation of cardiac parameters can be performed for a single study
only, i.e. analyzing cine-MRI data acquired at one specific day. However, the
examination of changes of LV dynamics over a longer period is also of clinical
interest. This may be a monitoring of medication related effects or a follow-up

Fig. 1. Ventricular reduction surgery where the apical region is modified. The upper
row shows the pre-operative situation, the lower row the status a few days after surgery.
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study for investigating surgery outcome. In this work, we focus on the latter
where the change of cardiac parameters caused by ventricular reduction surgery
(VRS) [T0/IT] is examined. Our data sets originate from patients where the apical
region has been reduced in order to give the LV a better overall shape (Fig.[]). For
the visualization of surgery outcome, the standard static 2D representation of the
BE display is extended to a 2D+t representation. Dynamic BE data is computed
for two cine-MRI data sets: a first one acquired prior to surgery and a second
one a few days and a few months, respectively, after the intervention. Computing
the differences of cardiac parameters between these two data sets allows for a
quantification and a detailed examination of left ventricular transformation.

2 Computation of Left Ventricular Transformation

Cardiac image data. Clinical cine-MRI data used for the analysis of left
ventricular dynamics is typically represented as short axis (SA) slices. Employing
an algorithm specifically designed for the segmentation of the left ventricle, the
endocardium as well as the myocardium of the LV can be extracted for all
N time steps. We use our own semi-automatic segmentation approach [12] for
the extraction of the left ventricular blood pool as well as endocardial borders.
However, the method described here is independent from the used segmentation
algorithm. In addition to the LV extraction, we obtain a division of the LV into
16 segments (apex is neglected) for each single volume of the time series. For
each of the segments, the regional volume is computed and the endocardial (and
epicardial) boundaries are sampled on a regular grid of size I x J (Fig. 2l left).
Thus, the BE data consists of a number of equally distributed values which
represent a specific parameter.

Based on the delineated cine data, the geometrical measure endocardial dis-
tance A" n € {1,..., N} — being the distance of the sampled wall positions from
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Fig. 2. Sampling of the endocardial border for one mid-cavity segment. The I x J

sampling points are equally distributed over the segment of the endocardium (a) and
the corresponding distances A™ from the long axis can be computed (b).
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Fig. 3. Two sets Dy and Dy, of dynamic BE data with different temporal resolution &
and j are aligned in order to match ED. The lower resolution data set Dy, (middle) is
upsampled to D7 using a linear interpolation of the values (bottom).

the LV long axis — (Fig. 2] right) can easily be computed. Similarly, the regional
volume Q" of the blood pool covered by each of the 16 segments can be derived.
If these values are available for each of the N time steps, a series of BE data
can be obtained. Thus, in contrast to the conventional approach, where one sin-
gle BE display — typically related to ED and ES — is computed, we generate a
series of BE data comprising all time steps. (Here, we consider only the blood
pool and its boundary — the endocardium. But, similar computations can also
be performed for the myocardial wall thickness.)

Temporal alignment. We aim on the comparison of two cine-MRI data sets.
Assuming that for each of them the segmentation, the sampling of the bound-
aries as well as the computation of the BE data has been done for all time
steps, the BE data has to be aligned spatially as well as temporally in order to
compute differences for the cardiac parameters. This alignment could be done
on the cine-MRI data directly. For this, several methods have been proposed:
spatio-temporal free-form registration [13], level-set motion [I4], multichannel
diffeomorphic demons [15].

In contrast to these works, we follow a straightforward matching approach
based on the BE data and not on the cine-MRI data itself. Spatial correspondence
between the BE data is given, since the initial image data has been aligned
corresponding to the AHA recommendations and the boundaries are sampled
with the same number of points. Due to the fact that in the majority of cases,
the temporal resolution is different, a temporal interpolation for the BE data has
to be performed. Here, we ignore the rotational motion and deformation since
the temporal resolution of our data sets differs only slightly: up to 2 time steps
per cardiac cycle.

For performing the temporal alignment, the BE data Dy with the higher
temporal resolution is selected and the BE data Dy, for the other data set is
interpolated (Fig. [3)). This is done by first aligning the ED phases of both data
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sets and afterwards computing the missing information. For each time step where
data exists in Dy, new values for Dy, are interpolated linearly. Thus, a temporally
upsampled data set Dj is obtained.

Computation of difference values. After the temporal alignment, the dif-
ference values for the parameters endocardial distance A™ as well as regional
volume 2™ between two image acquisition dates can be computed. For instance,
the differences between pre-operative and post-operative situation are given as:
L= D;‘ost — D;‘Te and O = Dﬁ)st — Dgfw respectively. This results in new dy-
namic BE data sets £ and O describing each parameter change caused by the
treatment.

Visualization. The computational output of the above steps is a set of differ-
ence values which are related to specific positions in a BE display. Considering
the fact that these values are available for all time steps, dynamic BE displays for
the changes of endocardial distances as well as regional volumes can be created.
For their visualization, several approaches can be used: interactively scrolling
through the stack of BE displays, using a multiple window layout, dynamic vi-
sualization as animation loop. The computed parameter values are displayed
by mapping them to color. For this, we use a perceptually based color ma
(Fig. ). The value ranges for this mapping are (—10...10 mm) for the endo-
cardial distance differences and (—5...5ml) for the regional volume differences.
These settings are based on normal value ranges given in the literature [T6I17].

3 Clinical Example

Our clinical partner provided us cine-MRI data obtained from over 30 patients
who underwent VRS. That data comprised the pre-operative situation, the post-
operative status a few days later as well as image data from a follow-up study
performed several months after surgery. Due to space constraints, we show results
for only one representative patient who underwent VRS.

The diagnosis reported a slightly improved overall LV function right after
surgery (global EF increased from 36 % to 38%) but a re-deterioration — occuring
quite often for those patients [II] — seen in the follow-up study with a newly
increased size of the LV and dramatically reduced EF (now only 28 %). Using
our method, these findings are confirmed and can be investigated in more detail.
For this, the differences between the values of the endocardial distances and of
regional volumes related to the pre-operative situation (18 time steps) and those
values for the post-operative (18 time steps) and follow-up data (16 time steps),
respectively, are displayed.

Right after surgery (Fig. [l top), the apical wall does virtually not move at
all. The endocardial distances for these regions are larger around ES but smaller
around ED compared to the pre-operative ones. In addition, the distances in the
basal regions are increased around ED, thus compensating for the reduced apical

! Taken from http://colorbrewer2.org
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regions. Consequently, the regional volume displays show significantly increased
values for the apical region around ES and an increase for the mid-cavity and
basal segments around ED.

Nine months later (Fig. @ bottom), the wall distances for the apical regions
are even larger than before surgery. Between basal anterior and lateral regions
the endocardial distances are decreased. The end-systolic volume values for basal
and mid-cavity regions are increased showing a lowered contractibility of the LV.
In addition, the apical LV volume values are globally increased.

4 Discussion

In this work, we have presented an approach for an improved visualization of
cardiac parameters related to left ventricular transformation. For this, we have
adopted the idea of Breeuwer [9] to display a set of successive polar plots and
extended it to a comparison of two dynamic cardiac image data sets. In case that
two or more 4D data sets for the same patient are available, our method allows
for an in-depth examination of the temporal evolution of cardiac parameters.
Differences between the cardiac parameters can be computed and dynamic BE
data can be generated. Choosing the clinical application VRS, we have shown
how to benefit from our approach for gaining more insight into the changes
of cardiac anatomy and function. Furthermore, it can directly be applied to
other clinical purposes where the monitoring of treatment outcome after cardiac
surgery or drug administration is of interest.

As an extension of the recommended usage of a BE display as preferred means
for visualizing the analysis results for the LV [2], the dynamic BE display can
easily be understood by cardiologists. There is no need for adapting to a new visu-
alization method, nor is the visualization overloaded with too much information.
Solely the temporal dimension is added to the display, making the information
accessible which is available in any case. The visualization method presented in
this work is currently in a prototypic stage. Initial tests with clinical images from
our database related to VRS patients — containing data for over 30 patients —
show evidence for providing more detailed information. However, an extensive
clinical evaluation is needed for an ultimate verification of the assumed benefit.

Acknowledgment. We want to thank the Department of Thoracic and Car-
diovascular Surgery of the J.W. Goethe University Frankfurt, Germany for pro-
viding us the image data and sharing the diagnosis information.
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Abstract. Local incompressibility can be used to improve fitting and
analysis of ultrasound-based displacement data using a heart model. An
analytic mathematical model incorporating inflation, torsion, and axial
extension was generalized for the left ventricle. Short-axis and long-axis
images of mouse left ventricles were acquired using high frequency B-
mode ultrasound and myocardial displacements were determined using
speckle tracking. Deformation gradient components in the circumferen-
tial and longitudinal directions were fitted using linear regressions. The
slopes of these lines were then used to predict motion in the radial direc-
tions. The optimized kinematic model accurately predicted the motion
of mouse left ventricle during filling with normalized root mean square
error of 4.44+1.2%.

1 Introduction

While diagnoses and therapies for cardiovascular diseases (CVD) have improved
in recent years, CVD remain a major global health concern. In the United States,
heart disease is the leading cause of death, accounting for 33.6% of all deaths
in 2007 [1I]. In an effort to curtail CVD mortality, patient-specific left ventric-
ular (LV) modeling has been introduced to facilitate improved and individu-
alized diagnoses [2I3]4]. Unfortunately, patient-specific modeling is currently a
labor-intensive process, involving multiple medical imaging modalities (typically
magnetic resonance imaging (MRI) and computed tomography (CT)), and de-
tailed geometric modeling using finite element analysis (FEA) that requires ex-
tensive manual tracings. Thus, current approaches to patient-specific modeling
are very expensive. We therefore sought a modeling approach to fitting and inter-
preting ultrasound data that could provide some of the advantages of patient-
specific FEA, such as incorporating known aspects of myocardial mechanics,
without requiring detailed knowledge of fiber structure, material properties, etc.,
for each heart.

Models using simple geometric shapes appropriate to the LV have been in-
fluential in studying cardiac mechanics. Cylindrical models have been used to
predict distribution of stress and strain around the myocardium [5]. They have
also been used to estimate material properties of the myocardium [6]. While these
models have been instrumental in understanding regional ventricular function,
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they are only accurate at the mid-ventricular section of the LV and are inade-
quate in modeling regions near the apex. Other models using prolate spheroidal
and actual heart geometries have had better success in describing motion near
the apex as well as other modes of motion observed in LV that cannot be modeled
with a cylinder [7].

While there is a plethora of established cylindrical heart models [6/8], existing
models are similar in that the radial motion is often assumed to be uniform
and axisymmetric around the myocardium. In this paper, we derive a kinematic
model describing myocardial deformation using a classic cylindrical model and
myocardial incompressibility. We then generalize the model by using actual heart
geometry to allow radial motion to vary as a function of R, © and Z. This
formulation allows more freedom in describing cardiac motion but retains the
incompressibility of myocardium as a constraint on the fitted displacement field.

In addition to studying cardiac mechanics, geometric models can also operate
as a filter by imposing geometric constraints on allowed myocardial motion. This
can be used to discard and correct improbable motion estimates derived from
motion tracking techniques. For example, the incompressibility constraint has
been used to improve both automated segmentation [9/10] and motion estima-
tion [TIVT2UT3]. This is particularly useful in small animal imaging using ultra-
sound, where motion estimates using speckle tracking techniques are often noisy.
In mouse heart imaging, high heart rate and associated low number of image
frames per cardiac cycle can result in significant decorrelation between frames.
Additionally, signal dropout, attenuation and anatomical related artifacts (e.g.
sternum, rib or lung related multipath reverberation) can also degrade image
quality. Under these scenarios, motion estimates are frequently inaccurate and
unreliable. While there are disadvantages in using ultrasound images, there exist
many post image processing techniques to partially compensate for poor image
quality, including clutter and artifact reduction using finite impulse response
(FIR) filters [14] and principal component analysis via blind source separation
method [I5]. Compared to MRI and CT, medical ultrasound imaging is inexpen-
sive, radiation free, and has high temporal image resolution. For these reasons,
patient-specific modeling may therefore be feasible in a clinical setting.

2 Methods

2.1 Model Formulation

A general form of cylindrical model describing inflation, torsion and extension of
a deformable thick-walled cylinder was adopted from Adkins [16]. A cylinder can
inflate and deflate radially, corresponding to LV expansion from end-systole (ES)
to end-diastole (ED) and LV contraction from ED to ES, respectively. Simple
torsion occurs on the plane perpendicular to the axis of the cylinder, and axial
extension and compression along the axis of the cylinder. In the initial cylinder
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model, undeformed and deformed states were defined at ES and ED, respectively.
Left ventricular filling from ES to ED is simulated using equation (1):

r=r(R),0=00)+7Z,z=2(2). (1)

(R,©,7) and (r,0,z) are the radial, circumferential and longitudinal compo-
nents in undeformed and deformed cylindrical coordinates, respectively. During
filling, the LV expands radially as a function of R; twists circumferentially as a
function of © and proportionally to Z by constant 7; and extends longitudinally
as a function of Z. We generalized this model to account for spatial nonuniformity
expected in an actual heart due to mismatch between the assumed (cylindrical)
and actual geometry, regional ischemia, dyssynchrony, etc. Specifically, we al-
lowed radial inflation to vary with circumferential and longitudinal coordinates:

r=r(R,0,7),0 =0(6,2),2 = 2(2). (2)

LV deformation from ES to ED can be described using a deformation gradient
tensor. In cylindrical polar coordinates and using equation (2), the deformation
gradient matrix, F, is [17]:

or 1 0r Or or 1 0r Or
OR ROO 0Z OR ROO® 07
00 r 960 00 r 00 00
=|r r = r (3)
OR ROO® 07 ROO 07
0z 1 0z 0z 0 0 0z
OR ROO® 0Z oz

To find a closed form solution to equation (2), the myocardium is assumed
to be incompressible. This is a reasonable assumption since the myocardium is
composed of 80% water [I819], and water is almost perfectly incompressible.
While studies have shown that myocardial volume is not isovolumetric due to
blood perfusion in the heart, the change in volume is no more than 4% [20].
Using incompressibility, the determinant of the deformation gradient matrix is

equal to unity:
or r 00 0z
det(F)(aR> (m@) (M) 1 )

Integrating equation (4) and applying boundary condition at the endocardium
gives:

r(R,0,7) = \/?EO_ %% +12,£(6,2) = (gg) (gg) (5)

Ry is the endocardial radius at ES and 7y is the endocardial radius at ED.
The solutions to § = 8(0, Z) and z = z(Z) can be determined by fitting circum-
ferential and longitudinal displacement data, and are used to predict the radial
deformation that is consistent with local geometry (Ry and ry), circumferential
and axial deformation, and myocardial incompressibility.
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2.2 Mouse Heart Imaging and Motion Estimates

Short-axis (SA) and long-axis (LA) cine B-mode images of 6 healthy male
C57BL/6 mice (10- to 12- weeks old, 24 to 26 g) were acquired using a Visual-
Sonics Vevo2100 scanner (Toronto, Ontario, Canada) with a MS400 transducer
operating at 30 MHz. Imaging frame rate was approximately 350 fps, and the
average heart rate of mice under anesthesia was 462+14 bpm. Serial SA images
were acquired at 0.5 mm interval, with 10 to 12 slices throughout the LV for
each mouse. One LA cine loop through the major axis of the LV was acquired
for each mouse.

Displacement fields across the myocardium were determined by speckle track-
ing with approximately 0.2 mm x 0.2 mm pixel block size using a minimum sum
absolute difference (MSAD) algorithm and parabolic fit derived sub-pixel res-
olution [21I]. Displacement components were transformed into cylindrical polar
coordinates and fitted to the model.

2.3 Optimization of Model Parameters

For normal mouse hearts, a linear relationship was observed between 6 and ©,
and between z and Z. From this observation, the final system of equations is
expressed as follows:

R? — R}

L H3.0(6,2) =aB + 72+ b2(Z) =cZ +d. (6)

r(R,0,7) = \/

In diseased mouse hearts, higher order polynomials or piece-wise functions
might better explain the motions in circumferential and longitudinal directions.
For healthy mouse hearts, the constants a, b, ¢, and d can be determined using
linear regression on the observed displacement data in the circumferential and
longitudinal directions; however, these constants, specifically a and ¢, do not
optimize the model as a whole, since errors in the radial direction are not taken
into consideration. To optimize these constants, the normalized root mean square
error (NRMSE) between observed, (r;, 6;, z;), and predicted, (73, 0;, Z;), position
after deformation in each direction is calculated:

1
NRMSE =, /n > : (7)

xT — Tmi
2 (r,0,2) mazx min

The combination of parameter values that yields the minimum NRMSE is
determined to be the optimal values:

(a,b,c,d,7) = argmin(NRMSE(a,b,c,d,1)). (8)



An Ultrasound-Driven Kinematic Model of the Heart 133
3 Results

Motions in the circumferential and longitudinal directions were modeled using lin-
ear functions. Longitudinal motion is obtained using lateral displacement data de-
rived from tracking LA cine loops. The 0 mm-position is defined at the apex at
ES. As shown in figure 1A, tissues that are slightly above the apex did not have
any longitudinal displacement, while tissues at the basal level move upward and
tissues at the apical level move slightly downward. This effectively results in LV
extension. Circumferential motion is illustrated in figure 1B. The 0-rad reference
is defined at the section between the papillary muscles, and increases in counter-
clockwise direction. A difference in phase shift is observed at different levels of the
LV. Using the midventricular layer as a reference, the basal and apical layers are
observed to rotate in opposite directions. This results in LV torsion.

The coefficients determined using linear regression are optimized in their re-
spective components. Therefore, they are not necessarily optimal for the system.
Since b, d, and 7 are not used in 7(R, ©, Z), these parameters can be easily opti-
mized individually after a and ¢ are optimized for the system. A range of values
in the neighborhood of the regression coefficients a and ¢ are simulated using the
model, and the NRMSE of each combination are shown in figure 2. These coef-
ficients were determined individually for each mouse. A statistical summary of
the mean and standard deviation of the values for these coefficients are reported
in table 1.

The NRMSE of the system using the optimized val