
Chapter 2
Derivative-Free Optimization
for Oil Field Operations

David Echeverrı́a Ciaurri, Tapan Mukerji, and Louis J. Durlofsky

Abstract. A variety of optimization problems associated with oil production in-
volve cost functions and constraints that require calls to a subsurface flow simulator.
In many situations gradient information cannot be obtained efficiently, or a global
search is required. This motivates the use of derivative-free (non-invasive, black-
box) optimization methods. This chapter describes the use of several derivative-free
techniques, including generalized pattern search, Hooke-Jeeves direct search, a ge-
netic algorithm, and particle swarm optimization, for three key problems that arise
in oil field management. These problems are the optimization of settings (pressure
or flow rate) in existing wells, optimization of the locations of new wells, and data
assimilation or history matching. The performance of the derivative-free algorithms
is shown to be quite acceptable, especially when they are implemented within a
distributed computing environment.

2.1 Introduction

Oil and natural gas account for around 60% of the current worldwide primary energy
supply, and the demand for these key resources is expected to increase for several
decades. Because the development of new fields is often very expensive and techni-
cally challenging, it is essential that these operations are performed as efficiently as
possible. In addition, the high expense of discovering and developing new fields pro-
vides a substantial economic incentive to maximize production from existing fields.
Both of these trends provide strong motivation for the development and application
of robust methodologies for the computational optimization of oil field operations.
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The closed-loop reservoir management paradigm [1] provides a framework for
efficiently operating an oil field. This approach relies on the continuous acquisition
of field data, which are then used to calibrate the computational reservoir model.
This represents a data assimilation or history-matching step. The resulting (history-
matched) model is then used for optimizing future production. This can be accom-
plished by either determining optimal settings/controls (e.g., flow rates, well pres-
sures) for existing wells or by finding the best locations for new wells. Given the
fact that many different types of wells can be drilled, such as deviated, horizontal
or multi-branched wells, the determination of the appropriate well type can also be
viewed as an optimization problem.

In this chapter, we address three of the key optimization problems that arise in
reservoir engineering – optimization of well settings, optimization of the placement
of new wells, and data assimilation. Although there are inter-relationships between
these various problems, they have important differences and are typically addressed
in a decoupled manner. Well control optimization usually has real-valued decision
variables, and a nonlinear, simulation-based cost function and constraints. The well
location (often referred to as field development) problem entails, in general, finding
the number, type, location and drilling sequence of new wells. In practice, because
wells are associated to cell centers in the underlying simulation grid, the optimiza-
tion variables are typically integers. The well type is described by categorical vari-
ables. Model calibration (data assimilation) can be formulated as an inverse problem
where we seek to minimize the discrepancy between measured data and model out-
put. The requisite optimization usually involves a very large number of variables
(normally at least one per simulation grid block, and in practical problems there
are O(104 −106) blocks), so parameter reduction and regularization techniques are
commonly applied. The subsurface flow simulations required for all of the afore-
mentioned optimizations entail numerical solutions of sets of discretized partial dif-
ferential equations. These function evaluations can be very costly, and this is a key
consideration when designing the optimization framework.

Although our emphasis in this paper is on the use of derivative-free optimization
methods, it is important to recognize that gradient-based approaches are appropri-
ate in many settings. In particular, when gradients are available through an adjoint
procedure [2], these techniques can be highly efficient. Successful applications of
gradient-based methods to oil field problems have been presented in many papers;
see, e.g., [3, 4, 5, 6].

Gradient-based approaches do, however, have some drawbacks. As a result of the
nonconvex nature of the optimizations considered here, these problems generally
contain multiple optima, and hence, a purely local search, which can get trapped in
local solutions, might not be the best approach. In addition, for some problems (par-
ticularly well placement), the optimization surface can be very rough, which results
in discontinuous gradients. It is also important to recognize that derivative informa-
tion is often not readily available. Adjoint-based techniques, which are a popular
way for computing derivatives efficiently, are invasive with respect to the flow sim-
ulator, and are therefore only feasible with full access to, and detailed knowledge
of, the simulator source code. Numerical gradients are straightforward to calculate,
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though this computation is expensive and may be subject to practical difficulties
(for example, in finite differencing, the selection of the perturbation size and/or
simulation tolerances can be problematic). Thus there is clearly a need for other,
derivative-free, techniques for oil reservoir optimization problems.

The derivative-free techniques considered in this work are noninvasive with re-
spect to the flow simulator. They treat the simulator as a black-box – only cost func-
tion values are required and no explicit gradient calculations are involved. These
methods are therefore much easier to implement than, for example, adjoint-based
techniques, though this advantage is counterbalanced by a significant deterioration
in computational efficiency compared to adjoint approaches. The computational cost
associated with derivative-free methods depends strongly on the number of opti-
mization variables considered (in adjoint-based schemes this dependence is much
weaker). However, most of these algorithms parallelize naturally and easily, and
therefore their efficiency, measured in terms of elapsed time, is usually satisfactory.

Derivative-free optimization approaches can be divided into deterministic (e.g.,
generalized pattern search) and stochastic (e.g., particle swarm optimization) tech-
niques. Stochastic approaches can be useful for dealing with rough functions or
functions that contain multiple local optima. Based on the computational resources
typically available in current practice (e.g., O(100) cores), derivative-free optimiza-
tion methods are appropriate when the number of optimization variables is at most
a few hundred [7, 8].

Although gradient-free methodologies have been in existence for many years,
they have become widely used in only the last 20 years or so [9]. This relatively
recent uptake can be attributed to several factors, including the wide availability
of large numbers of cores (combined with algorithms that parallelize easily), the
significant theoretical results achieved in this period, and the successful applica-
tion of derivative-free techniques in a number of areas. Examples can be found
in molecular geometry [10], aircraft design [11, 12], hydrodynamics [13, 14] and
medicine [15, 16].

Many derivative-free stochastic schemes have also been applied within the oil
industry. The field development problem has often been addressed by means of
global stochastic-search techniques; see, e.g., [17, 18, 19, 20, 21]. These stochas-
tic schemes have also been hybridized with deterministic search techniques, as
presented in [22, 23, 24]. Both global [25, 26] and local (deterministic) [27, 28]
derivative-free search techniques have been applied for well control optimization.
The history matching problem has also been approached from both a stochastic
point of view [29,18,30,31] and using local methodologies combined with regular-
ization and initial guess selection [32, 33].

Our goal in this chapter is to illustrate the applicability of derivative-free opti-
mization methods for three types of problems arising in oil field operations. The
examples presented are taken from [28] (well control optimization), [21] (field de-
velopment optimization), and [32] (history matching). This chapter is structured
as follows. In Section 2.2 we briefly describe the simulation modeling procedures
and basic optimizers considered. Examples demonstrating the use of derivative-
free techniques for well control optimization, field development optimization, and
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history matching are presented in Sections 2.3, 2.4 and 2.5, respectively. En-
hancements to the basic optimization algorithms required for the target problem
are discussed in these three sections. We end the chapter with a summary and
recommendations.

2.2 Basic Methodologies

We now discuss the simulation techniques used in the optimizations, and describe
the basic optimizers considered in this work.

2.2.1 Simulation Techniques

The optimization problems studied here rely on simulations of fluid flow in subsur-
face formations. Additionally, in Section 2.5, equations describing wave diffraction
tomography must also be solved as part of the inverse modeling process. These sim-
ulations require the numerical solution of systems of partial differential equations
(PDEs).

In this work we consider oil-water systems. These two components exist in sep-
arate phases, both of which reside within the pore space of porous rock. Within
the context of oil production, the subsurface formation containing oil (and associ-
ated water) is referred to as a reservoir. The flow of oil and water in a reservoir is
described by statements of mass conservation combined with constitutive (Darcy’s
law) relationships that relate phase flow rates to pressure gradient. For single-phase
flow, Darcy’s law is given by u = −(k/μ)∇p, where u is the Darcy velocity (volu-
metric flow rate divided by total area), k is the absolute permeability, which is a key
property of the rock, μ is fluid viscosity and p is fluid pressure. For two or three-
phase flow, this relationship is modified by the inclusion of the so-called relative
permeability function, which is a scalar function of local phase volume fraction.
Another key quantity is porosity φ , which specifies the fraction of the bulk rock
volume that is pore space.

In most reservoir simulators, the governing equations are discretized using a fi-
nite volume numerical procedure. The detailed equations and discretizations can be
found in, e.g., [34, 35]. In practical applications, simulation models may contain
O(105 ∼ 106) grid blocks and may require several hundred time steps (the systems
considered here are somewhat smaller). In addition, the discrete system of equa-
tions is nonlinear and is solved using a Newton-Raphson procedure. Thus the evalu-
ation of reservoir performance is computationally demanding. In this work we apply
Stanford’s general purpose research simulator (GPRS; [36,37]) for two of the cases
considered and the commercial streamline simulator 3DSL [38] for the other cases.
The streamline simulator shares many similarities with GPRS, though it uses the
streamlines from the total velocity field (total velocity is equal to the sum of the
water and oil Darcy velocities) to define a coordinate system that is used to solve
the water transport equation. This introduces some approximations but it provides
a more computationally efficient solution than would typically be achieved using a
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standard simulator. We note finally that, in the examples presented here, some sec-
ondary effects (such as capillary pressure in all cases, compressibility in the stream-
line simulations) are neglected. These effects could be included if necessary though
they would not be expected to impact our basic findings.

Seismic measurements involve first a number of sources, such as dynamite, air
guns, or piezoelectric transducers, which send out elastic waves through the reser-
voir. The transmitted and reflected waves are then recorded on geophones that re-
spond to ground displacement or stresses. The recorded wavefields are processed
and analyzed, and by means of a data assimilation process, such as that described in
Section 2.5, can be used to infer the rock properties needed in the calculation of oil
production forecasts.

In this work diffraction tomography (see e.g., [39, 40, 41]) simulations are used
as seismic measurements. The simulations for diffraction tomography require the
numerical solution of the elastic wave equation, which describes the propagation of
mechanical waves in elastic media. This equation is a statement of conservation of
momentum, combined with the constitutive relation for an elastic material relating
stresses to strains (Hooke’s law). The velocity of the traveling waves depends on
the elastic properties of the rock (Young’s modulus and Poisson’s ratio) and the
density, which in turn depend on the rock type, porosity, and the saturations of the
pore fluids. Rock physics models relate these rock and fluid properties to the seismic
velocities.

The wave equation is solved using the Born approximation [42, 43], which is a
perturbation method applied to the scattering of waves in inhomogeneous media.
In that approximation, the spatial heterogeneities in elastic properties are divided
into a smooth background medium with fluctuations around the background. The
wavefield is also divided into an incident wavefield traveling in the background
medium along with a scattered wavefield from the heterogeneities. The contribu-
tions from the scattered field are expressed in terms of an integral which is computed
numerically.

2.2.2 Optimization Problem Statement

A general single-objective optimization problem, as is addressed in this chapter, can
be stated as:

min
x∈Ω⊂Rn

f (x) subject to g(x) ≤ 0, (2.1)

where f (x) is the objective function (e.g., negative of net present value (−NPV) or
norm of discrepancy between measurements and model output), x ∈R

n is the vector
of control variables (e.g., sequence of well pressures, locations for each well, or
calibration parameters), and g : R

n → R
m represents the nonlinear constraints in the

problem. Bound and linear constraints are included in the set Ω ⊂ R
n. As indicated

above, the objective function (and constraints, in some cases) are computed using
the output from a simulator.

Though the optimization problems considered in this work share some common-
alities, there are important distinctions between them. Well control optimization is
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in most cases formulated in terms of continuous variables and includes nonlinear,
simulation-based constraints. Previous studies demonstrate that this problem often
displays multiple solutions with comparable cost function values [44, 28]. For that
reason, this optimization is usually addressed using local search optimization tech-
niques. By contrast, the optimization landscapes found in field development prob-
lems can be very rough [20], and this motivates the use of global search approaches.

As is the case with most inverse problems, history matching typically involves
more unknowns than informative measurements, which leads to an undetermined
optimization problem. Additionally, noise in the measurements can introduce rough-
ness into the cost function. In our application, many of the multiple optima that can
result from history matching are not consistent with prior geological information,
and should therefore be discarded. Strategies for finding geologically realistic op-
tima include regularization methodologies, performing a global exploration of the
search space, and/or selecting a proper initial guess in local optimization schemes.
Since the number of optimization parameters in history matching can be compa-
rable to the number of grid blocks in the simulation model, parameter reduction
techniques, which can be interpreted in regularization terms, are extremely helpful.
These techniques can be used to assure consistency with prior geological informa-
tion, as described in [45, 46].

Discrete-valued variables are common in optimization problems in the oil and
gas industry. Such problems cannot in general be addressed by gradient-based op-
timizers. In some cases, however, these variables can be treated as real-valued in
order to establish a more amenable optimization problem (in this case we say that
the discrete-valued variable is relaxed to a real-valued variable).

2.2.3 Derivative-Free Optimization Methods

In this section we describe, within an unconstrained real-valued optimization frame-
work, the derivative-free local and global methods applied in this chapter. Most of
these procedures can be extended to cases with discrete-valued variables, bound
and/or linear constraints and, with slightly more effort, to problems with compu-
tationally inexpensive nonlinear constraints (in Section 2.3.1 we provide mathe-
matically sound procedures for handling simulation-based nonlinear constraints).
Additional enhancements of these basic methodologies are introduced for the case
examples when necessary. It is important to note that the variants devised for dis-
crete optimization are generally based on heuristics. In Sections 2.3 and 2.5, a
gradient-based method, sequential quadratic programming (SQP; see [47]), with
numerical derivatives is also considered to enable additional comparisons between
the various approaches. The SQP implementation used in this work is SNOPT [48].

2.2.3.1 Local Search Algorithms

The local search techniques considered here are two different pattern search meth-
ods: generalized pattern search and Hooke-Jeeves direct search. Pattern search op-
timization has recently become popular as a result of the development of a solid
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mathematical convergence theory [49,8,7] and of the increasing availability of par-
allel computing resources. Pattern search schemes evaluate iteratively the cost func-
tion in a stencil-based manner. This stencil is modified as iterations proceed, and
convergence theory requires that the stencil size eventually tends toward zero [8,7].
By using a relatively large stencil size during the first stages in a pattern search tech-
nique, some local minima can be avoided. This strategy may endow pattern search
with a degree of robustness against noisy cost functions. We note that pattern search
schemes (and, in general, most local as well as global optimizers) can be accelerated
by means of computationally inexpensive surrogates. The use of surrogates can be
quite useful for reservoir engineering problems given the large number of expensive
objective function evaluations that are typically required.

Generalized Pattern Search

Generalized pattern search (GPS; [49, 50]) comprises a family of optimization al-
gorithms. By considering different types of stencils and various strategies for evalu-
ating the stencil points (which is known as polling [50]), multiple GPS-based opti-
mizers can be constructed. For unconstrained optimization, the basic GPS iteration,
for a given stencil centered at the intermediate solution x0, is as follows. First, the
objective function is evaluated for a number of stencil points. If some of these points
yield cost function improvement, the current solution is updated with either the best
point (if the full stencil is evaluated) or the first point that improves the solution (if
an opportunistic search is used). The stencil can then be modified, but in most im-
plementations it stays unaltered. If none of the stencil points improves on x0, then
the stencil size is decreased. The search progresses until some stopping criterion is
satisfied (typically, a minimum stencil size).

The stencil should contain a generating set for R
n [8]. A generating set of vectors

has the property that, if ∇ f (x0) �= 0, then at least one element of the set is a descent
direction [8]. Though only n + 1 points are needed to establish a generating set
for R

n, stencils containing 2n elements are commonly used in GPS. We illustrate
these two types of stencils in Figure 2.1(a) and 2.1(b).

If the stencil polling process is opportunistic then, as soon as a point improving
on the current solution is found, the stencil is moved to that new point. Therefore,
only a subset of stencil points will be polled at a given iteration. We show an exam-
ple of opportunistic polling for a two-dimensional compass stencil in Figure 2.1(c).
The point in the east direction is assumed to yield improvement over x0. As a con-
sequence, the other three points are not evaluated.

In GPS the set of directions in the stencil remains the same at each itera-
tion, which typically provides a coordinate or compass search, as depicted in
Figure 2.1(a). The approach can be further generalized by iteratively varying the
set of directions in the stencil. For example, at a given iteration the stencil for a
two-dimensional optimization problem could be as shown in Figure 2.1(a). Upon
polling success, the new stencil is rotated arbitrarily, as in Figure 2.1(d). If the sten-
cil is randomly selected from an asymptotically dense set of directions, the resulting
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(a) (b) (c) (d)

Fig. 2.1 Types of stencil-based search for a two-dimensional space: (a) positive basis with
2n directions (compass), (b) positive basis with n+1 directions, (c) opportunistic search (the
first point tried, the one in the east direction, is assumed to improve on x0; the other points, for
which the cost function is not evaluated, are plotted with dashed lines), and (d) mesh adaptive
compass search (the stencil changes randomly at every iteration)

algorithm is the mesh adaptive direct search (MADS; [51]). The MADS approach
may be beneficial in situations where the cost function is noisy [51].

If the polling process is not opportunistic (which means the cost function is eval-
uated for all stencil points), generalized pattern search requires on the order of n
function evaluations per iteration. However, the GPS method parallelizes naturally
since, at a particular iteration, the objective function evaluations at the polling points
are completely independent and can thus be accomplished in a distributed fashion.
We note that opportunistic polling is well suited to situations where parallel com-
puting resources are limited or unavailable.

Hooke-Jeeves Direct Search

Hooke-Jeeves direct search (HJDS; [52]) is a compass-based pattern search method.
There are two different types of moves in HJDS: exploratory and pattern. In the ex-
ploratory move the cost function is evaluated at consecutive perturbations of the
stencil center x0 in the coordinate directions. All directions are polled opportunis-
tically. The exploratory move resembles a numerical gradient estimation (with a
perturbation size that may initially be large, but that eventually tends to zero). If
no cost function improvement is found in the exploratory step (and this implies 2n
function evaluations), the stencil size is decreased.

Otherwise, a new point x1 is obtained, and the next exploratory move is cen-
tered at x0 +2(x1 −x0). This aggressive step in the underlying successful direction
is the pattern move, which is somewhat analogous to a line search procedure. The
pattern move can be beneficial in situations where an optimum is far from the cur-
rent solution. If the new exploratory step yields no cost function decrease, another
opportunistic compass search is centered at x1, and if, again, this search yields no
improvement, the step size is reduced, keeping the stencil at x1. Because HJDS is
inherently sequential, it is most appropriate for use with serial computing resources.
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2.2.3.2 Global Search Algorithms

The global search approaches applied in this work are a genetic algorithm and par-
ticle swarm optimization. These techniques share some similarities as they are both
based on abstractions of natural processes, have a markedly stochastic nature, and
apply sequential updating of a set of solutions (population of individuals in genetic
algorithms, swarm of particles in particle swarm optimization).

Genetic Algorithms

Genetic algorithms (GAs) are well known and widely used so our discussion here
will be brief (refer to [53] for a detailed description). GAs are inspired by the the-
ory of natural selection. An iteration starts with a population of individuals, which
is ranked in terms of cost function (referred to as fitness in the context of GAs).
Thereafter, a set of operators, typically selection, crossover and mutation, are ap-
plied to generate a new population. The population size, like the swarm size in
particle swarm optimization, has a marked impact on the performance of GAs. With
a proper population size, a genetic algorithm can be used to explore complex objec-
tive function landscapes, and to thus identify promising regions in the search space.
A thorough global exploration, even for a moderate number of optimization vari-
ables, often requires many function evaluations, and accordingly, a large population
size. However, the cost function computation for all of the individuals can be readily
performed in a distributed manner.

Particle Swarm Optimization

Particle swarm optimization (PSO; [54, 55]) was introduced by Kennedy and Eber-
hart in the mid 1990s. The algorithm mimics the social behaviors exhibited by
swarms of animals. At each PSO iteration, all particles in the swarm move to a new
position in the search space. Let xi,k ∈ R

n be the position of particle i at iteration k,
x∗i,k represent the best position (solution) found by particle i up to iteration k, and y∗i,k
be the best position found by any of the particles in the ‘neighborhood’ of particle i
up to iteration k. The neighborhood can include all of the PSO particles, in which
case the algorithm is referred to as global-best PSO. Other neighborhood specifi-
cations [56] limit particle communication such that particle i interacts with only a
subset of the swarm (this has been observed to be useful in avoiding premature con-
vergence). The new position of particle i at iteration k + 1, xi,k+1, is computed by
adding a so-called velocity term, vi,k ∈ R

n, to the current position xi,k [54, 55, 57]:

xi,k+1 = xi,k + vi,k. (2.2)

The velocity vi,k is in turn calculated as follows:

vi,k = ω vi,k−1 + c1 r1 ◦
(
x∗i,k −xi,k

)
+ c2 r2 ◦

(
y∗i,k −xi,k

)
, (2.3)

where ω , c1, and c2 are weights, r1 and r2 are random vectors in R
n with com-

ponents uniformly distributed in the interval (0,1), and ◦ denotes the Hadamard
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(component-wise) product. Thus, we see that each particle moves to a new posi-
tion based on its existing trajectory, its own memory, and the collective experience
of neighboring particles. These three velocity contributions are referred to as the
inertia, cognitive, and social components [54, 57].

Some constraints can be handled in PSO through use of the ‘absorption’ tech-
nique [56, 58, 59]. With this approach, particles corresponding to infeasible solu-
tions are moved to the nearest constraint boundary, and the corresponding velocity
components are set to zero. We should note that this constraint handling procedure
should be accompanied by an efficient scheme for projecting infeasible points back
into the feasible domain. When this projection algorithm cannot be applied (e.g., for
simulation-based constraints), the penalty function approach is a likely viable alter-
native (though this approach is not exempt from potential issues; see Section 2.3.1).

2.3 Well Control Optimization with Operational Constraints

The optimization of well settings/controls typically entails maximizing either net
present value (NPV) or the cumulative volume of oil produced through time by
finding the optimal well flow rates or pressures (these pressures are referred to as
bottom-hole pressures or BHPs). In many actual scenarios, and in the cases consid-
ered here, water is injected to drive the oil toward production wells and to maintain
reservoir pressure. Secondary objectives could include minimizing the total volume
of water injected or produced, or maximizing the initial oil production rate. The
problem is usually solved subject to operational constraints, such as maximum and
minimum BHP, maximum water injection rate, maximum well water cut (fraction
of water in the produced fluid), etc. The optimization variables are generally real-
valued, and the relationships between these variables and both the objective function
and constraints are in general nonlinear. Thus, the problem can be addressed by non-
linear programming techniques [47].

The production optimization cases presented here involve the maximization of
undiscounted NPV by adjusting the BHPs of water injection and production wells
(well flow rates could also have been the optimization variables). The objective
function we seek to minimize is

f (x) = −NPV(x) = −roQo (x)+ cwpQwp (x)+ cwiQwi (x) , (2.4)

where ro is the price of oil ($/STB, where ‘STB’ stands for stock tank barrel;
1 STB = 0.1590 m3), cwp and cwi are the costs of produced and injected water
($/STB), respectively (produced water reduces NPV due to pumping and separa-
tion costs), and Qo, Qwp and Qwi are the cumulative oil production, water production
and water injection (STB) obtained from the simulator.
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2.3.1 Constraint Handling Techniques

The nonlinear programming methods applied here are generalized pattern search
(GPS), Hooke-Jeeves direct search (HJDS), and a genetic algorithm (GA), with
enhancements introduced to deal with general constraints. Consistent with the
derivative-free spirit of this work, the constraint handling techniques considered,
namely penalty functions and filter methods, allow us to continue treating the simu-
lator as a black-box. These methodologies are not exclusive to gradient-free optimiz-
ers, so they could be implemented with a wide variety of optimization approaches.
The description below of constraint handling techniques follows the discussion pre-
sented in [28].

Penalty Functions

The penalty function method (see, e.g., [47]) for general optimization constraints
entails modification of the objective function with a penalty term that depends on
some measure of the constraint violation h : R

n → R. The modified optimization
problem

min
x∈Ω

f (x)+ ρ h(x) , (2.5)

where ρ > 0 is a penalty parameter, may still have constraints, but they should be
straightforward to handle (for example, bound constraints). In this work we apply
h(x) = ||g+ (x)||22, with g+ : R

n → R
m defined as g+

i (x) = max{0,gi (x)} (normal-
izing the constraints can be beneficial since they are all weighted equally in the
penalty term). If the penalty parameter is iteratively increased (tending to infinity),
the solution of the modified optimization problem (2.5) converges to that of the
original nonlinearly constrained problem. However, the sequence of values to use
for ρ may require some numerical experimentation and the overall procedure can
lead to significant additional computation. In certain cases, a finite (and fixed) value
of the penalty parameter also yields the correct solution (this is the so-called exact
penalty; see [47]). However, for exact penalties, the modified cost function is not
smooth around the solution [47], and thus the corresponding optimization problem
can be challenging to solve.

Filter Method

The penalty function approach is straightforward to implement but, as discussed
above, can introduce some potential difficulties and complications. Filter meth-
ods [60, 47] provide an alternate and systematic approach for handling general
constraints. A filter is a set of pairs (h(x) , f (x)), such that no pair dominates an-
other pair. The concept of dominance, borrowed from multi-objective optimization,
is defined as follows: the point x1 ∈ R

n dominates x2 ∈ R
n if and only if either

f (x1) ≤ f (x2) and h(x1) < h(x2), or f (x1) < f (x2) and h(x1) ≤ h(x2). In this
work, the constraint violation h associated to the filter method is computed the same
way as described above for the penalty method.
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Filters have been combined with a variety of basic optimization algorithms in-
cluding sequential quadratic programming [60], interior point methods [61], and
pattern search techniques [62, 63]. They can be understood as essentially an add-on
for a basic optimization procedure. Within the context of a pattern search method,
a filter acts to modify the standard acceptance criterion which, as discussed in
Section 2.2.3, is based only on cost function improvement. At a given iteration, the
basic optimization algorithm proposes a number of intermediate solutions. These
solutions are accepted if they are not dominated by any point in the filter. Prior
to continuing with the next iteration, the filter is updated based on all the points
evaluated by the optimizer. Using filters, the original problem (2.1) is thus viewed
as a bi-objective optimization: besides minimizing the cost function f (x), we also
minimize the constraint violation h(x). Using this multi-objective perspective, the
optimization search is enriched by considering infeasible points. We reiterate that
the ultimate solution is intended to be feasible (it may however show a very small
constraint violation).

2.3.2 Production Optimization Example

This example is taken from [28]. The reservoir is a portion of the synthetic SPE 10
model [64]. It is represented on a three-dimensional grid containing 60×60×5
blocks. The reservoir contains oil and water. The 25 wells (16 water injectors and
nine producers) are distributed following a five-spot pattern (see Figure 2.2). This
model is similar to models used in practice except it contains fewer grid blocks.
The variation in permeability, evident in Figure 2.2, strongly impacts the flow field.
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Fig. 2.2 Well configurations and top layer of the geological model considered in the produc-
tion optimization case in Section 2.3. Grid blocks are colored to indicate value of permeabil-
ity (red is high permeability, blue is low permeability). Injection and production wells are
represented as blue and red circles, respectively (from [28]); see online version for colors.



2 Derivative-Free Optimization for Oil Field Operations 31

By optimizing the well settings, we can achieve a more uniform distribution of the
injected water, thus increasing the amount of oil produced and maximizing NPV.

Reservoir production proceeds for a total of 1460 days. The BHP of each well
is updated every 365 days. There are thus a total of four control intervals. Since
there are 25 wells, the number of optimization variables is 100. During each con-
trol interval, the BHPs are held constant. Injection well BHPs are specified to
be in the range 6500 − 12000 psi and production wells are constrained to the
range 500−5500 psi.

The additional constraints, which are nonlinear, specify that (1) the maximum
field-wide water injection rate not exceed 15000 STB/day, (2) the maximum field-
wide liquid (oil+water) production rate not exceed 10000 STB/day, (3) the minimum
field-wide oil production rate not fall below 3000 STB/day, and (4) the fraction of
water in the produced fluid (water cut) not exceed 0.7 in any of the nine production
wells. The oil price considered is $50/STB, and the costs of produced and injected
water are $10/STB and $5/STB, respectively. Additional details of the problem
specification are provided in [65].

Based on results for another nonlinearly constrained production optimization
problem presented in [28], we apply the following four approaches for this case:
sequential quadratic programming (SQP) with numerical derivatives and an active
set constraint handling method [47], generalized pattern search (GPS) with penalty
function, GPS with filter, and Hooke-Jeeves direct search (HJDS) with filter. The
gradients required by SQP were computed using second-order finite differencing,
with a perturbation size of 0.1 psi (this perturbation size was established through
numerical experimentation – we reiterate that this can be an issue when estimat-
ing gradients numerically). In all cases, the initial stencil size for GPS and HJDS
was 1375 psi. The penalty method relies on some heuristics for increasing the
penalty parameter and terminating each corresponding intermediate optimization.
Details on the strategy used here can be found in [28]. The two approaches con-
sidered with the filter method, GPS and HJDS, do not rely nearly as directly on
heuristics.

The initial guess x0 for all methods was the center of the orthotope given by
the bound constraints (i.e., BHP of 9250 psi for all injectors at all times, BHP
of 3000 psi for all producers at all times). This reference case has an associated NPV
of $193.43 million and a constraint violation value of 0.3731. The optimization re-
sults are summarized in Table 2.1. Consistent with the underdetermined nature of

Table 2.1 Performance summary for the production optimization case (from [28])

Optimization approach Number of simulations Max. NPV [$ MM] h

SQP + active set 41004 341.32 0.0031
GPS + penalty function 60001 342.95 0.0000

GPS + filter 39201 342.61 0.0001
HJDS + filter 01618 336.28 0.0001
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the optimization problem, the solutions computed by the four approaches differ. The
NPVs for the first three methods are within 0.5% of one another, though the NPV
for the last method (HJDS with filter) is about 1.5% less. Note that all algorithms
except GPS with penalty function have nonzero constraint violations. For the filter-
based methods, we allowed a constraint violation of 0.0001. Were we to require zero
constraint violation, GPS with filter would provide an NPV of $341.12 million, and
HJDS with filter would provide an NPV of $332.93 million.

All algorithms other than HJDS were implemented within a distributed com-
puting environment (67 cores were used, which provided a speedup factor of
around 50). We therefore observe that, although SQP and GPS with filter required a
factor of about 24 times more function evaluations than HJDS, in terms of elapsed
time, these two methods required only about half the time as HJDS. The procedure
that required the highest number of function evaluations, GPS with penalty function,
needed about 3/4 of the time of HJDS. This highlights the impact of the availability
of multiple cores on algorithm selection. We note finally that, although the results
in Table 2.1 for GPS with penalty function and GPS with filter are similar, the filter
method is less heuristic and may, therefore, be preferable for many problems.

We now illustrate the degree of nonlinear constraint satisfaction provided by the
various optimization algorithms. Figures 2.3 and 2.4 present the field-wide fluid
production rates and the maximum of the water cut in any producer well. The red
horizontal lines in these figures indicate the constraint value. It is evident that, at
late time, the initial guess settings lead to constraint violations. The constraints are
essentially satisfied by the other algorithms, with the exception of SQP. This occurs
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Fig. 2.3 Total field-wide fluid production rate for the initial guess x0 and the four solutions
found for the production optimization case. The red line indicates the maximum total fluid
rate allowed. GPS1 and GPS2 denote GPS with the penalty function and the filter method,
respectively (from [28]); see online version for colors.
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Fig. 2.4 Maximum well water cut for the initial guess x0 and the four solutions found for the
production optimization case. The maximum water cut at a given time is the maximum of the
water cut values for all producer wells at that time. The red line indicates the maximum water
cut allowed for any producer well. GPS1 and GPS2 denote GPS with the penalty function and
the filter method, respectively (from [28]); see online version for colors.

because our SQP stopping criterion does not enforce strict feasibility. SQP does,
however, encounter solutions during the course of the optimization with lower con-
straint violations but also with lower NPVs. Thus, it is clear that the SQP results
could be improved if it was used with a filter.

The quantities that directly impact NPV are displayed in Figure 2.5, where we
show the production and injection profiles for x0 and for the solution computed by
GPS with filter. The peaks in the rates in the optimized solution, evident every 365
days, result from the changes in the well BHPs, which occur at those times. It is
evident that, relative to the initial guess, the optimized controls lead to a significant
increase in cumulative oil production along with a significant decrease in cumulative
water production (note that cumulative oil production corresponds to the integral of
the curve shown in Figure 2.5, and similarly for other quantities). The cumulative
water injection does not vary significantly between the two cases. This example
illustrates the substantial gains that can potentially be achieved in oil field operations
through the use of computational optimization.

2.4 Optimal Well Placement with Particle Swarm Optimization

The general problem of field development optimization involves the determination
of how many new wells to drill, what type of wells these should be (i.e., injec-
tion well or production well; vertical, horizontal or multi-branched well; type of
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Fig. 2.5 Total field-wide production and injection rates for the initial guess x0 and solution
computed by GPS with filter for the production optimization case. Top: Oil (red) and wa-
ter (blue) production rates. Bottom: Water injection rate (from [28]); see online version for
colors.

downhole instrumentation), and the drilling schedule, in order to maximize a pre-
scribed objective function. In previous work, a number of gradient-based and
derivative-free procedures have been developed and applied for this problem (see
[20] for a full discussion). Of the stochastic search approaches employed, many
researchers have applied genetic algorithms (e.g., [23, 66, 24, 67, 68, 19, 69, 70]),
though simultaneous perturbation stochastic approximation algorithms [71], as well
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as other approaches, have also been explored [68]. Mattot et al. [72] evaluated sev-
eral optimization algorithms for a groundwater remediation problem and achieved
the best results using particle swarm optimization (PSO). This motivated the use of
PSO for optimization of oil field development in [20]. Consistent with [72], in [20]
PSO was found to outperform GA for several example cases. All of these examples
involved relatively few wells (20 or less).

The development of large-scale oil fields, however, often involves drilling many
wells. If we restrict ourselves for now to vertical wells (which can be either pro-
duction or injection wells) that penetrate the entire thickness of the formation, the
optimization variables include the areal (x,y) location of each well and a binary
variable b defining the well type. Thus there are a total of n = 3Nw optimization
variables, where Nw is the number of wells. Even given the restriction of fully-
penetrating vertical wells, the optimization problem is challenging. For large-scale
problems, Nw can be several hundred, so the number of optimization variables can
be large. In addition, for large Nw the imposition of well-to-well distance constraints
(which are commonly used in field applications) can lead to a large number of in-
feasible solutions, and this can negatively impact the performance of a population-
based algorithm such as PSO. Another key concern is that the number of wells Nw

should itself be an optimization variable. Direct inclusion of Nw as an integer vari-
able in the set of parameters will further complicate the optimization and will lead
to much larger computational requirements.

2.4.1 Optimization Methodology

In recent work, a field development optimization procedure that addresses some
of the issues raised above was presented [21]. In this implementation, rather than
prescribe Nw and optimize 3Nw parameters, the wells were constrained to be ar-
ranged in repeated patterns (such patterns are commonly used for onshore oil field
development). By optimizing the parameters that define the well patterns, a close-to-
optimal Nw and the locations and types of all wells can be determined. This method
would theoretically be expected to lead to suboptimal results relative to those that
could be achieved by optimizing the number of wells and the associated 3Nw pa-
rameters, but it is much more tractable computationally than the more exhaustive
approach.

In this section we describe and then apply this new well pattern optimization
procedure and a second-stage optimization that perturbs well locations within the
patterns. The core optimizer used is PSO, but the method could be implemented
with other derivative-free optimization algorithms including GA.

2.4.1.1 Well Pattern Description

The basic PSO procedure was described in Section 2.2.3.2. In the well pattern de-
scription (WPD), the optimization parameters define the target pattern. This pattern
is then replicated over the entire domain, with wells that fall outside of the reser-
voir eliminated. The algorithm considers four different well pattern types, as shown
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(a) Inverted five-spot (b) Inverted six-spot

(c) Inverted seven-spot (d) Inverted nine-spot

Fig. 2.6 Illustration of the well patterns considered. The solid black circles represent produc-
tion wells and the circles with arrows represent injection wells. The patterns are referred to
as ‘inverted’ because the injection wells are at the centers of the patterns (from [21]).

in Figure 2.6. Optimization variables include the pattern type (categorical variable
Iwp
i ), the location of one of the wells in the pattern (ξ 0

i ,η0
i ), pattern dimensions

(ai,bi), and parameters associated with a number of pattern operators, which we
now describe.

The patterns determined using the representation above will be quite regular and
oriented with the x − y coordinate system. It may be advantageous, however, to
adjust the orientation of the pattern to better accommodate the reservoir shape or the
spatial variation/correlation of rock properties such as permeability. To accomplish
this, several different pattern operators were introduced in [21]. These include a
rotation operator, a shear operator and a scale operator. Well locations for the target
pattern, after application of these operators, can be expressed as:

WT
out = M WT

in, (2.6)

where Wout and Win are Nwp ×2 (relative) well location matrices, where Nwp is the
number of wells in the pattern, and M is a 2×2 transformation matrix, defined for
each operator. For example, for the rotation operator, we have:

Mθ =
(

cosθ sinθ
−sinθ cosθ

)
, (2.7)



2 Derivative-Free Optimization for Oil Field Operations 37

where θ designates the angle of rotation. M matrices are also defined for shear
and scale operators; see [21] for details. A fourth operator, referred to as ‘switch,’
which acts to convert all injection wells to production wells and vice versa, was also
introduced. This operator changes the target pattern from the so-called ‘normal’
form to the ‘inverted’ form (or back).

The full set of optimization variables for the well pattern description, for PSO
particle i, is given by (with the iteration index k omitted for clarity):

xi = [{Iwp
i , [ξ 0

i ,η0
i ,ai,bi]}︸ ︷︷ ︸

pattern parameters

{Si,1,Si,2, . . . ,Si,No}︸ ︷︷ ︸
operator sequence

{Oi,1,Oi,2, . . . ,Oi,No}︸ ︷︷ ︸
pattern operators

]. (2.8)

Here {Iwp
i , [ξ 0

i ,η0
i ,ai,bi]} are the basic pattern parameters for particle i, No is the

number of pattern operators, {Oi,1,Oi,2, . . . ,Oi,No} are the parameters associated
with the pattern operators, and {Si,1,Si,2, . . . ,Si,No} defines the sequence in which
the operators are applied. The total number of optimization variables depends on
the number and type of operators included, but it is only around 25 when all of the
operators noted above are used. All components of xi are treated as real numbers in
the optimization. Some of these parameters (e.g., Iwp

i and Si, j) are, however, integers.
Where necessary, integer values are determined from real values by simply rounding
to the nearest integer.

2.4.1.2 Second-Stage Optimization

Following the determination of the optimum repeated pattern using the well pattern
description (WPD) approach described above, a second-stage optimization can be
applied to further improve the solution. This procedure is based on a well-by-well
perturbation (WWP) and involves the local shifting of wells within patterns. Opti-
mization variables (PSO particles) for WWP optimization are:

xi = {Δξ1, Δη1︸ ︷︷ ︸
well 1

, Δξ2, Δη2︸ ︷︷ ︸
well 2

, . . . , Δξ j, Δη j︸ ︷︷ ︸
well j

, . . . , ΔξNw , ΔηNw︸ ︷︷ ︸
well Nw

}, (2.9)

where Nw is the number of wells determined in the first-stage (WPD) optimiza-
tion and Δξ j and Δη j are the perturbations of the spatial locations of well j. The
minimum and maximum values of Δξ j and Δη j are constrained to keep wells es-
sentially within their original patterns. The dimension of this optimization problem
can be high for large Nw, but the size of the search space is greatly limited by bound
constraints on Δξ j and Δη j . We note finally that this second-stage optimization
could be extended to determine completion intervals (i.e., vertical locations where
the well is open to flow), to eliminate particular wells, or to modify individual well
types.
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2.4.2 Field Development Optimization Example

We now apply the procedures described above to a two-dimensional reservoir
model. This example is taken from [21]; refer to that paper for full details. The
reservoir domain is irregular, as shown in Figure 2.7, where the dark regions along
the boundaries designate non-reservoir zones. Wells that fall outside of the reser-
voir region are eliminated from the set. The model contains a total of 80 × 132
grid blocks. The production and injection wells are prescribed to operate at fixed
bottom-hole pressures of 1200 psi and 2900 psi, respectively. The total production
time is 1825 days. Flow simulations for this case were performed using the stream-
line simulator 3DSL [38]. Streamline simulators are not as broadly applicable as
standard finite-volume based simulators, but when appropriate, as they are in many
waterflood simulations, streamline approaches can be considerably more efficient
than standard procedures.

The well pattern optimization runs used 40 PSO particles and proceeded for
40 iterations. The optimization was run five times. Following these five runs,
the best optimization solution (run 3 in Table 2.2) was used for five subsequent
WWP optimizations. Results for NPV for the well pattern optimizations are shown
in Table 2.2, while those from the subsequent use of WWP are presented in
Table 2.3. It is evident from Table 2.2 that the inverted five-spot was the best pattern
in all runs. We see from Table 2.3 that WWP consistently led to improvements of
around 20% over the unperturbed patterns. The progress of the overall optimization
is displayed in Figure 2.8, where the improvement in NPV during both stages is
evident.

Fig. 2.7 Logarithm of permeability field for field development optimization example (from
[21]).
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Table 2.2 Optimization results using well pattern description (from [21])

Run Best pattern
NPV Well count

($MM) Producers Injectors
1 inv. 5-spot 1377 16 15
2 inv. 5-spot 1459 15 15
3 inv. 5-spot 1460 15 15
4 inv. 5-spot 1372 15 15
5 inv. 5-spot 1342 13 15

Average 1402

Table 2.3 Optimization results using the second-stage procedure relative to run 3 (from [21])

Run
NPV Increase over well pattern description

($MM) ($MM) %
1 1777 317 21.7
2 1787 327 22.4
3 1776 316 21.6
4 1801 341 23.4
5 1771 311 21.3

Average 1782 322 22.1

Fig. 2.8 NPV of best result from well pattern description (WPD), and average NPV of the
best second-stage well-by-well perturbation (WWP) solutions, versus number of simulations
(from [21]).

Figures 2.9(a) and (b) show the optimal well locations from both stages of the
optimization. Repeated five-spot patterns are evident in both figures. It is interesting
to observe that, although the differences in well locations between the two figures
are relatively slight, these perturbations result in an improvement in NPV of 23%.
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(a) WPD

(b) WWP

Fig. 2.9 Well locations for the best well pattern description (WPD) and well-by-well pertur-
bation (WWP) solutions (circles indicate production wells, crosses indicate injection wells).
Logarithm of permeability field is shown as background (from [21]).

We note finally that several other examples demonstrating the use of PSO for
well placement optimization were presented in [20, 21]. In the examples in [20]
the number of wells was always specified, though in some cases the well type
was also optimized (e.g., deviated and branched wells were considered in some
cases). Comparisons to optimizations using a genetic algorithm (GA) were pre-
sented and, as noted above, PSO was shown to consistently outperform the GA
considered. In one of the examples in [21], the well pattern optimization followed by
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well-by-well perturbation was compared to an unconstrained optimization that used
3Nw decision variables (the latter is referred to as the ‘concatenation’ approach).
For this case the two-stage optimization consistently outperformed the concatena-
tion approach. Taken in total, the results in [20,21] display the applicability of PSO
for well placement optimization problems, as well as the potential advantages of the
well pattern description and the two-stage optimization procedure.

It will clearly be useful to combine the well control optimization described in
Section 2.3 with the field development optimization considered here. This coupled
optimization problem will be computationally demanding, but the solutions pro-
vided can be expected to outperform those determined through the sequential appli-
cation of the two procedures. Work along these lines is currently underway.

2.5 Assimilation of Reservoir Data (Inverse Modeling)

The reliability of oil production forecasts, and the ‘optimal’ strategy that is deter-
mined based on these predictions, depend strongly on the proper calibration of the
reservoir simulation model. In essence, this calibration aims at finding appropriate
model parameters given a number of observations. The two model parameters that
(in many cases) most directly impact reservoir flow are permeability and porosity.
Both of these parameters vary spatially. For a given rock type, which is denoted as
facies in this context, porosity and permeability are often correlated, and one can be
estimated from the other. In this work, the calibration parameter is taken to be the
facies in each grid block, and we assume that each facies corresponds to a particular
permeability and porosity.

Historic flow production represents one set of observed data. Such data are cru-
cial because it is precisely the prediction of the reservoir flow response that is the
ultimate purpose of the modeling. However, production data provides direct infor-
mation only at well locations (though of course the flow rates and pressures observed
at wells are impacted by reservoir properties outside the well region). In contrast to
production data, seismic measurements (such as diffraction tomography) provide
more global information and thus can be used to improve estimates of the spatial
distribution of rock properties. Here we consider as observable data both flow and
seismic measurements.

The use of observational data to infer reservoir properties is an inverse problem.
As such, we anticipate that the solution will be non-unique. This is typically the
case because there are more parameters to estimate than there are independent mea-
surements, so many combinations of parameters yield similar model responses. In
addition to the underspecified nature of the problem, additional complications arise
from the approximations used in the forward modeling and from the presence of
noise in the data. Uncertainty quantification/assessment involves finding multiple
solutions of the inverse problem in order to generate a collection of production fore-
casts. For more information on data assimilation under uncertainty in this context,
refer to, e.g., [73, 45, 74].
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2.5.1 Problem Statement

The solutions of a geophysical inverse problem are the set of geological models that,
when forward-modeled to provide simulation data, match the observations to within
some tolerance. Since the approach here, as shown below, involves formulating the
data assimilation process in optimization terms, any model configuration (set of in-
version parameters) will be denoted by x ∈ Ω ⊂ R

n, and Ω is the set of admissible
models. The admissibility criteria can be formulated with respect to geological con-
sistency. Geological consistency typically implies a particular spatial correlation of
parameters (e.g., a given spatial covariance). The model x in this work represents
the facies type associated with every grid block. Thus, the number of optimization
variables n is on the order of the number of grid blocks in the discretized reservoir
model (which can be very large in practical models).

From an optimization perspective, the inverse problem can be stated as follows

min
x∈Ω

‖O(x)−y‖2 , (2.10)

where y ∈ R
m are the observations and O(x) ∈ R

m represent the numerically-
simulated observations. All the observable data considered are concatenated in y
and O(x). Thus, if O1 (x) ∈ R

m1 and O2 (x) ∈ R
m2 are the two sets of observable

data considered, then O(x) = [O1 (x) , O2 (x)], with m1 +m2 = m. In the norm (Eu-
clidean in this work), we can account for data uncertainty and include weights for
the different sets of data. Since the observable data in this work are normalized,
weights are taken to be unity. We reiterate that there are typically a much larger
number of inversion parameters than there are independent measurements (n � m),
and therefore the optimization problem in (2.10) is frequently ill-conditioned.

2.5.2 Methodologies for Data Assimilation

The optimization problem in (2.10) presents a number of challenges in addition to
ill-conditioning. The cost function requires costly simulations, and in many cases
derivative information is expensive to obtain or not available. The number of opti-
mization variables is often large and the objective function can be non-smooth due
to, for example, the presence of noise in the observations. These difficulties can be
addressed by means of the following strategies.

The integration of disparate data in reservoir modeling has been suggested in a
number of publications (e.g., [75,76,77]) as a means to alleviate the ill-conditioned
character of (2.10). In essence, the use of different data types provides a degree
of regularization for the inverse problem. Here, as in [32], we use as observable
data oil and water production rates and diffraction tomography data. These data sets
are complementary since they measure system responses on different spatial and
temporal scales.

We can also expect a better conditioned optimization problem if the number of
parameters is decreased. Instead of searching in n dimensions, we consider a sub-
space of dimension nR. This subspace selection is not arbitrary and essentially aims
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at reducing the correlation between inversion parameters. The parameter reduction
used here is based on principal component analysis (PCA), or the Karhunen-Loève
transform, and can also be interpreted from a data compression perspective. The
statistical information needed is generally obtained from a prior (rough) knowledge
of the reservoir properties, and provides the inversion with geological consistency.
We essentially follow the PCA-based parameter reduction technique used in [6],
though that approach considers only flow production data and is invasive with re-
spect to the flow simulator (thus it is very efficient but requires source-code access
to implement).

In the example in Section 2.5.3, both production and seismic measurements
provide the observable data. We reduce the number of optimization variables and
introduce geological consistency through principal component analysis, and we ap-
proach (2.10) by derivative-free local optimization with an initial guess selected by
a heuristic procedure that is based on information obtained by PCA. The use of
numerical derivatives and a global procedure (GA) are also considered for com-
parison. All of these black-box approaches are more demanding computationally
than an invasive adjoint-based gradient procedure but, as mentioned above, can
be significantly accelerated through distributed computing. We briefly present be-
low the fundamentals of PCA, since that transformation is a key component of our
methodology.

2.5.2.1 Parameter Reduction Using Principal Component Analysis

Principal component analysis (PCA) optimally selects a subspace of dimension nR

from a larger space of dimension n. Given N possible models sampled from Ω ,
the region of the search space where plausible optimal solutions are expected,
{xk}N

k=1 ⊂ Ω ⊂ R
n, PCA seeks an affine transformation

x̂k =
nR

∑
i=1

(
sT

i (xk − μ)
)

si + μ ,

with μ ∈ R
n and the set {si}nR

i=1 ⊂ R
n orthonormal. We note that this transforma-

tion is essentially an orthogonal projection. PCA is optimal in the sense that the
Euclidean reconstruction error ‖x̂k−xk‖2, averaged over {xk}N

k=1, is minimized (or,
equivalently, that the average reconstruction energy is maximized).

The optimal solution [78] implies that μ is the average of the N models sam-
pled {xk}N

k=1, and that each si is an eigenvector for the covariance matrix associated
with these models. Additionally, it can be seen that the covariance matrix for the nR

PCA coefficients for {xk}N
k=1 is a diagonal matrix, and that the contribution to the

average reconstruction error from each of the PCA basis components si is equal to
the corresponding eigenvalue.

The selection of the N models {xk}N
k=1 is crucial and is done based on prior

information. If these models provide an acceptable representation of Ω , a large part
of the nR-dimensional search space will provide solutions that are (in this case,
geologically) consistent. Therefore, PCA not only reduces the search space, but also
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helps to ensure that the solutions obtained are practically acceptable. The value nR

is typically much smaller than n. Low values of nR yield low-dimensional search
spaces that are easier to explore, but the reconstruction error can be unacceptably
large. In other words, the optimal search would take place only in a small part of Ω ,
and thus the solutions obtained in that reduced space may be clearly suboptimal. The
determination of the appropriate value for nR is application specific and is typically
done through numerical experimentation.

A ranking for the PCA components can be established based on their respective
eigenvalues – the higher the eigenvalue, the higher the rank (and thus the impor-
tance) of the associated PCA basis vector. This, together with the fact that the co-
variance matrix for the PCA coefficients is diagonal, suggests that a sequence of
one-dimensional optimizations aimed at computing coefficients for the highest-rank
PCA basis vectors may be beneficial in the overall optimization. Based on this ob-
servation, a heuristic PCA-based procedure for computing the initial guess in (2.10)
can be obtained (please consult [32] for details).

2.5.3 Data Assimilation Example

The case study is taken from [32] and is based on a ten-layer synthetic model (with
20× 20× 10 = 4000 cells) extracted from the Stanford VI reservoir model [79].
This approach provides a good framework for comparing inversion methodologies
since the true model is known. We simulate a five-spot well pattern (four injectors
in the corners, and one producer in the center of the domain; see Figure 10(a)).
The optimization variable x is a binary facies indicator in every grid block (desig-
nating the block as either sand or shale). Though this variable is binary valued, it
can be relaxed to a continuous variable. Thus, a value of 0.5 indicates that in the
corresponding grid block, sand and shale are distributed equally.

The observable production data consists of the total field cumulative oil produc-
tion and water injection, obtained at intervals of ten days up to 90 days (therefore,
m1 = 10+10 = 20). The production data are computed by solving the (discretized)
reservoir flow equations. Here we use Stanford’s general purpose research simula-
tor (GPRS; [36,37]). The permeability and porosity fields are functions of the facies
parameter x. Given a (real-valued) facies parameter for grid block i, designated xi,
we compute the associated porosity φi by the following expression

φi(xi) = φ0 exp(xi ln(φ1/φ0)),

where the coefficients φ0 and φ1 are the porosity values associated with the shale
and sand facies (in practice, these values can be determined through measurements
on rock cores or regression). We relate the block permeability ki to the porosity φi

using the Kozeny-Carman equation (see, e.g., [80])

ki(φi) = α
φ3

i

(1−φi)2 ,

with the parameter α calculated from measurements or regression.
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(a) (b)

(c) (d)

Fig. 2.10 Layer 4 from (a) the true model studied in Section 2.5 (injection and production
wells are indicated as blue and red circles, respectively), (b) corresponding reconstruction
after PCA with N = 1000 realizations and nR = 30, (c) model selected randomly from the set
of N = 1000 realizations, and (d) corresponding reconstruction after PCA with nR = 30. Red
and blue represent sand and shale facies, respectively. The original facies model is binary-
valued, but after PCA it becomes continuous (from [32]); see online version for colors.

The second set of observable data is derived from crosswell diffraction tomogra-
phy. In crosswell tomography, sound wave sources are placed in one (usually ver-
tical) well and recorded and placed in another well (typically some hundred meters
away). By recording the waves propagating from one well to another, it is possible
to reconstruct approximately the structure of the earth in between the wells. The
estimated earth image is sometimes called a crosswell section. In this example we
have two crosswell sections obtained by associating diagonally the injectors in the
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five-spot pattern in Figure 10(a). Each section involves the ten layers in the model
and is discretized by a 20×20 matrix of velocities (hence, m2 = 400+400 = 800).
The tomographic data along these two perpendicular crosswell sections are com-
puted only once, after 90 days. The seismic observable data depends on certain rock
properties (elastic bulk modulus and density) which in turn are functions of the fluid
saturations at each grid block [80]. The input for the seismic tomography simula-
tor thus includes the model x, which provides the porosity for each grid block, and
fluid saturations. These quantities, together with rock physics models, are used to
compute the elastic velocities [80]. In all tomography calculations, both for the ob-
servations and during optimization, a simplified geometry for the top of the reservoir
is considered, and the associated corrections are not included.

A priori knowledge of the reservoir geology, in the form of a so-called training
image [81], together with facies data obtained at the well locations, allow the gener-
ation of N = 1000 geologically consistent model realizations, all conditioned to the
prior information. These models are generated using a multipoint geostatistical al-
gorithm [81], which can represent complex spatial structures. Through application
of PCA to these 1000 realizations we reduce the number of inversion parameters
from n = 4000 to nR = 30. In Figure 2.10 we show two of these models (one of the
ten model layers is shown) and their corresponding reconstructions. For our appli-
cation, these PCA reconstructions are acceptable.

2.5.3.1 Inversion Results and Prediction

We compare here sequential quadratic programming (SQP) using numerical gradi-
ents with generalized pattern search (GPS), Hooke-Jeeves direct search (HJDS), and
a genetic algorithm (GA). The initial guess for the local optimizers is computed as
outlined above (see [32] for details). The GA population is 60 individuals and the
algorithm is run for 100 generations. The initial population in the GA does not con-
tain the initial guess taken for the local optimizers. In this way, we can test if GA can
be beneficial in cases when useful initial guesses are not available. The distributed
computing environment consists of a cluster with 48 nodes, and it is used for the
SQP, GPS and GA optimizations. Each observable data value is assigned random
noise with an amplitude of 5% of the standard deviation of the corresponding data
type.

The models determined through inversion are shown in Figure 2.11. These results
are for the same layer as shown in Figure 2.10, though they are generally represen-
tative for all ten layers in the model. As noted earlier, after PCA the original binary
facies model is continuous (it could be transformed back to binary values using
thresholding if necessary). It is evident that all of the methods provide reasonable
models. A carefully selected initial guess is crucial for obtaining acceptable inver-
sion results with the SQP, GPS and HJDS methods. Our process for determining the
initial guess relies on some heuristics and therefore is not fully general, though it
appears adequate for this case. The GA result appears slightly less accurate than the
others, though the main model features are captured.
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(a) (b)

(c) (d)

Fig. 2.11 Inverse model results for layer 4 of the reservoir section studied in Section 2.5.
Facies distribution obtained by (a) sequential quadratic programming, (b) generalized pattern
search, (c) Hooke-Jeeves direct search, and (d) a genetic algorithm. The genetic algorithm,
because of its global nature, does not require an initial guess. The true distribution for layer 4
is shown in Figure 10(a). Red and blue represent sand and shale facies, respectively. Though
the original facies model is binary-valued, after PCA it becomes continuous (from [32]); see
online version for colors.

Figure 2.12 illustrates the performance of the local optimizers used for this prob-
lem. In this plot the horizontal axis is the number of equivalent simulations, which
is defined as the total number of simulations divided by the speedup obtained by
the parallel implementation. The concept of equivalent simulation is used to en-
able comparisons, in terms of elapsed time (not total computation time), between
HJDS and the other (parallel) procedures. Since HJDS is inherently serial, for that
algorithm the number of equivalent simulations coincides with the total number of
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Fig. 2.12 Performance results for the local optimizers studied in the model inversion in Sec-
tion 2.5 (from [32]); see online version for colors.

simulations. Note that one simulation involves calls to both the flow and seismic to-
mography simulators and that the initial guess computation for the local optimizers
requires roughly five equivalent simulations. It is evident from Figure 2.12 that SQP
provides the most efficient performance for this case. However, we expect that SQP
performance would degrade if the cost function was less smooth. If the comparison
was made in terms of total computation time, HJDS would be the most efficient al-
gorithm for this problem (HJDS would thus be the method of choice in the absence
of distributed computing resources).

The best individual in the initial GA population had a cost function of 0.036.
After around 200 equivalent function evaluations, the objective function for GA de-
creased to about 0.006, though more gradually than for the other methods shown in
Figure 2.12. This performance is promising since the GA was run without providing
any initial guess as input. If a larger population is used, GA can explore the global
search space and, as a consequence, potentially identify multiple solutions that are
comparable in terms of the cost function. These solutions could then be used for
uncertainty assessment.

The oil production and water injection forecasts over 360 days, for the model
obtained using SQP, are shown in Figure 13(a) (we note that the inversion involved
data over only the first 90 days). Agreement is generally very close, though slight
mismatches are evident at later times, and these mismatches grow with time. In or-
der to achieve accuracy over long simulation periods (up to 2000 days), the solution
determined by SQP was adjusted as follows. A new data assimilation was performed
after the first 1000 days. The observable data considered were the cumulative pro-
duction of oil and water, together with two new crosswell tomographies at the end
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Fig. 2.13 (a) Oil production and water injection forecast (360 days) for the solution obtained
by SQP. (b) Oil and water production forecast (2000 days) for the solution recalibrated after
1000 days. In both cases the noise in the observations has been removed (from [32]); see
online version for colors.

of the interval. The calibration at 1000 days started with the previously determined
model (as shown in Figure 2.11) and it involves only one additional parameter (λ ).
This parameter simply scales globally the facies distribution; i.e., the new model is
given by λ x, where x is the (old) model obtained using data for the first 90 days.
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The attendant one-dimensional optimization problem in λ required approximately
two additional equivalent simulations.

Figure 13(b) shows predictions from the new model for oil and water production
over 2000 days. The model provides accurate predictions over the entire period.
This type of recalibration can be done in practice whenever the deviation between
the prediction and the corresponding data is larger than some acceptable tolerance.
Since this new calibration is performed using a solution calculated previously, the
number of parameters considered can be relatively small. Alternative approaches, in
which more parameters (or the entire model) are computed, could also be applied.

2.6 Concluding Remarks

In this chapter we have applied derivative-free optimization methods to three dif-
ferent problems relevant to oil field operations. The examples considered are repre-
sentative of a wide range of practical simulation-based optimization problems and
involve oil production optimization with general operating constraints, field devel-
opment using a well pattern description, and data assimilation based on flow and
seismic measurements. These problems involved continuous, integer and categori-
cal variables, and the search spaces contained at most 100 dimensions. The success-
ful use of derivative-free methods for these problems clearly demonstrates that these
algorithms are viable for a range of oil field applications.

The derivative-free algorithms studied include generalized pattern search, Hooke-
Jeeves direct search, a genetic algorithm, and particle swarm optimization. In order
to enable additional comparisons, we also tested a gradient-based method, sequen-
tial quadratic programming, with derivatives estimated numerically. With the ex-
ception of Hooke-Jeeves direct search, all of these procedures can be readily paral-
lelized and as such benefit immensely when implemented in a distributed manner.
When parallel computing resources are limited or nonexistent, Hooke-Jeeves direct
search represents a promising serial derivative-free optimization strategy.

The performance of derivative-free approaches depends strongly on the dimen-
sion of the search space, and for the computational resources typically available,
these approaches are applicable when the number of optimization variables is on
the order of a few hundred or less. Therefore, it may be necessary in some occa-
sions to combine these approaches with some type of parameter reduction strategy.
In this work, in one case we limited the size of the search space by restricting wells
to be located within patterns, while in another case we applied principal component
analysis to reduce the number of inversion parameters.

There are still a number of challenges related to the problems considered in this
chapter. Though categorical (decision) variables were included in the optimal field
development example presented in Section 2.4, a comprehensive study on the use
and limitations of derivative-free algorithms for this type of mixed-integer nonlinear
optimization problem would be of great interest. In addition, further comparisons
between local and global methods, and the development of hybrid procedures, will
also be useful. It will be beneficial to jointly address field development optimization
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and well control optimization, as the optimal well locations will in general depend
on how the wells are operated. Multi-objective optimization may be of interest for
this and other applications.

The efficient treatment of uncertainty in all of the problems considered is also a
topic of great importance. Data assimilation methodologies that generate multiple
solutions consistent with observed data are required. Optimization techniques that
can efficiently handle multiple models are also needed. Finally, because the forward
simulations required for our optimization methods are themselves often very time-
consuming, the development of fast and reliable surrogate models will be of great
use. Research in many of these areas is currently underway.

Acknowledgements. We are grateful to the industry sponsors of the Stanford Smart Fields
Consortium and the Stanford Center for Reservoir Forecasting for partial funding of this
work, and to the Stanford Center for Computational Earth and Environmental Science for
providing distributed computing resources. We also thank Obiajulu J. Isebor (Stanford Uni-
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