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Abstract This chapter describes how the finite element technique can be used for
the design of elastomeric components for automotive and railway applications. In
the first section a description of the industrial needs regarding the design with these
types of materials and the reasons why they arouse so much interest for engi-
neering applications is given. Also, a complete literature review and explanation of
fundamentals are included concerning different features these materials exhibit
from the mechanical point of view: elasticity, inelasticity, fatigue, and tribology
behavior. The second section includes several details about constitutive models
used for the finite element (FE) modelling of elastomeric materials. Among them,
some basic kinematics of finite elastic deformations are explained as well as details
about constitutive behavior for rubbers and rubber-like materials such as strain
energy potentials usually implemented in FE codes for modelling hyperelasticity,
time and frequency domain viscoelasticity, constitutive models for modelling
inelastic effects, and available approaches for modeling fatigue behavior. In the
third section, a methodology for the design of elastomeric components by means
of the FE method is explained, including valuable information about experimental
testing for material characterization focused on the calibration of former explained
constitutive models. In the fourth and last section, four examples are presented,

‘‘Use of finite element (FE) techniques for the design of elastomeric components for
automotive and railway applications’’.
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related to the application of FE techniques for the analysis and the design of
components for automotive and railway applications. These examples cover the
modelling of different aspects and features of elastomeric materials and demon-
strate the advantages provided by FE techniques in comparison to the experimental
design procedures used until the recent past in the industry.

1 Introduction

1.1 Motivation. Problem Description and Industrial Needs

The use of elastomeric materials in engineering has increased considerably during
recent decades and many products are now made of this type of materials. Elas-
tomers are mainly used in the automotive and railway industries and in numerous
mechanical, civil, electronics and electrical engineering applications.

Reinforced elastomers are materials composed of a matrix of entangled rubber
molecules with reinforcement particles, such as carbon black, oxides of zinc or
sulphur, among others, embedded in the matrix (see Fig. 1). These additives cause
an increase in the stiffness of the material [1] and at the same time significantly
modify their inelastic, hysteretic [2] and stain rate dependent properties So and
Chen [3].

The unique properties of these materials make them very useful for a large
variety of industrial applications such as couplings between stiff structures or for
avoiding or at least reducing transmission of vibrations. Examples of these com-
ponents are: pipes, top mounts, bushings and hydro bushings for suspensions and
shock absorbers, torsion axes, supports for stabilizing bars, compression blocks,
seals and membranes (see Fig. 2).

The complex nature of the behaviour of reinforced elastomers and the huge
variety of existing compounds make it quite difficult to establish general rules and
design guidelines. However, in order to increase competitiveness in high-tech

Fig. 1 Drawing of the
molecular structure of an
elastomeric material
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applications, it is nowadays necessary to have reliable and sufficiently fast design
methods, including those for the characterization of material properties.

The mechanical behaviour of reinforced elastomers is highly non-linear and
strain-rate dependent. It shows hysteresis, permanent deformations and stress
softening under cyclic loads. When a rubber sample is loaded in simple tension, is
un-loaded and is again re-loaded, the stress for the second load is lower than the
first for higher strains than those reached under the initial load. This phenomenon
is known as the Mullins effect and is observed during the first cycles (see Fig. 3).

Another phenomenon, known as the Payne effect or the Fletcher-Gent effect
(see Fig. 4), involves the thixotropic behaviour of the material under dynamic

Permanent 
deformation

Hysteresis

Mullins 
effect

Fig. 3 Inelastic effects in the mechanical behaviour of a reinforced elastomer subjected to cyclic
simple shear

Fig. 2 Example of metal-
rubber components for the
automotive industry
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loads and consists of a substantial decrease of the stiffness modulus (1) when the
strain amplitude of the oscillations of the dynamic load increases.

G0j j ¼ smax

cmax

ð1Þ

During the last two decades, the behaviour of elastomers has been simulated by
means of numerical methods, in particular the finite element (FE) method [4, 5].
Classically, these inelastic phenomena—the Mullins effect [6, 7] and strain rate
dependant properties [8–12] have been studied and modelled independently,
without a constitutive model able to reproduce with accuracy or to combine these
inelastic effects present in the mechanical behaviour of these materials.

The mechanical response experimentally observed in reinforced elastomers can
basically be divided into four effects or phenomena, which taken together char-
acterise their general typical response, except for permanent deformation [13]:

(a) a response characterized by large elastic deformations (behaviour known as
hyperelasticity—see Fig. 5). Elastomeric materials are able to reach strains up
to 500 % under relatively small loads (the maximum tensile resistance of these
materials is between about 10 and 15 MPa, while that of some metals reaches
3000 MPa for strains below 5 %).

(b) a superimposed response of finite viscoelasticity that governs the rate
dependent effects such as relaxation (see Fig. 6) and creep (see Fig. 7).

(c) a superimposed behaviour of finite plasticity responsible for the hysteresis
phenomena which are independent of the strain rate associated to the relaxed
equilibrium states (see Fig. 8) and

(d) a damage response (stiffness reduction) within the first cycles, which induces
in the material a considerable amount of stress softening (the phenomenon
known as the Mullins effect—see Fig. 9).

Although the Mullins effect takes place with the first and more severe load
events, it can influence significantly the long-term behaviour of a reinforced rubber
[14]. The dependence of the stress–strain response in the pre-conditioning implies
that each material point in the non-homogenous deformed component exhibits

Fig. 4 Graphical
representation of the Payne
effect for a reinforced
elastomer subjected to cyclic
simple shear
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different stress–strain behaviour. Although all these material points can behave
more or less according to a hyperelastic constitutive law, such a particular law
varies from point to point. Because of this, a single hyperelastic constitutive law
probably cannot provide realistic predictions. The inclusion of the Mullins effect
allows load and unloading events to be modelled accurately [15].

The basic response under finite elastic tension governs the response of the
vulcanized elastomeric polymers and has been widely investigated as much

Fig. 5 Hyperelastic behaviour of an elastomer

Fig. 6 Phenomenon of
relaxation for the material
for different temperatures

Fig. 7 Creep phenomenon
for the material
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experimentally [16–19] as theoretically [20–24], and numerically [25–28]. As a
result of all these investigations, there is a wide variety of constitutive models
which enable the hyperelastic behaviour of elastomers to be modelled through
different equations for the strain energy density function [18, 27, 29–31]. These
functions are usually restricted to isochoric deformations (that is, deformations
that maintain the volume) and are generally formulated in terms of principal
stretches or of strain tensor invariants, assuming an isotropic behaviour of the
material.

The viscoelastic response is evident in relaxation or creep tests as well as in load
cyclic processes. These last show the typical frequency-dependent hysteresis in
which the width of the hysteresis cycles increases with the applied deformation. This
phenomenon can be explained, from a microscopical point of view, as a rear-
rangement of the secondary weak bonds among the polymer chains during the strain
process. Experimental research works are reported in Ferry [32], Hauser and Sayir
[33], Johnson et al. [34] and Lion [8] and other works of a theoretical and compu-
tational nature in Simo [35], Kaliske [36] and Lion [8] and Holzapfel et al. [37].

Fig. 8 Phenomenon of
hysteresis in load and unload
cycles of a reinforced
elastomer

Fig. 9 Idealized behaviour
of the Mullins effect
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The strain-rate independent elastoplastic response, can be identified as hyster-
esis in the relaxed equilibrium response within the cyclic deformation process [38]
and can be attributed, from a micromechanical point of view, to the processes of
irreversible sliding occurring among the reinforced particles and also with the
polymeric matrix [39, 40]. This behaviour results in the appearance of residual or
permanent strains in the reinforced elastomers subjected to deformation [37]. This
phenomenon is known in the industry as permanent set (see Fig. 10).

The effect of damage independent of the strain rate is identified with the stress
softening that reinforced elastomers suffer during the first load cycles, known as
the Mullins effect [41–45]. From a micro-mechanical point of view this can be
explained as the rupture of the bonds among the polymer chains and the reinforced
particles [46–48].

The Mullins effect can be interpreted as an effect of damage [49, 50], in which
the evolution of the damage depends on the maximum stretch occurring in the strain
history [37] or on the maximum strain energy [35, 51, 52]. The energy required to
cause the damage is not recoverable and is dissipated in the form of heat.

The constitutive models available in commercial finite element (FE) codes for the
modelling of hyperelastic behaviour of elastomeric materials are calibrated from
experimental data coming from uniaxial deformation modes. It is highly desirable
that the material be tested under uniaxial deformation modes similar to those pre-
dominant in the component in order to achieve an accurate characterization.

These hyperelastic models, well known and widely used in the industry, at least
in the automotive sector, are insufficient to model the dynamic behaviour of such
materials. Although there are other viscoelastic or damage models implemented in
FE codes for reproducing the inelastic effects of these materials, it has been
demonstrated that they are not able to model accurately the global behaviour of
reinforced elastomers.

Fig. 10 Schematic representation of the permanent strain (Lo-Ls)
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The dynamic properties of reinforced elastomers are frequency as well as
amplitude dependent. Different experimental testing shows that the viscoelastic
and elastoplastic properties of this type of material can be independently modelled,
and therefore the combination of a viscoelastic and an elastoplastic model in
parallel results in a material model, which sums the elastic, viscous and frictional
forces. The overlay method, initially proposed by Austrell [53] and Austrell et al.
[54], is based on the sum of stress contributions from simpler constitutive models.
Originally, this fraction model was proposed by Besselling [55] and was used for
modelling the plasticity and creep phenomena in metals. The basic concept of this
model is that it considers that the material can be divided into a number of parallel
fractions, each with conventional simple properties. The complex behaviour of the
material is achieved by the combination of the constitutive simple models and
appropriate material parameters. The overlay method allows the dynamic behav-
iour of reinforced elastomers to be reproduced with a certain degree of accuracy,
including the amplitude dependency [56, 57], frequency dependency as well as the
mechanical hysteresis typical of this kind of material. Olsson and Austrell [58]
propose a procedure for the fitting of the constants of the overlay method from
dynamic stationary shear tests. Ahmadi et al. [59] propose a methodology for
calibrating the material parameters of the overlay method from quasi-static
experimental data.

Anti-vibration components are usually made of reinforced elastomers and work
under a preload to which a cyclic strain history is superimposed; dynamic stiffness
and the loss angle are essential properties defining their behaviour. Therefore, their
prediction with a degree of accuracy is quite important at their design stage.

The model of Morman et al. [60], implemented in commercial FE codes such as
ABAQUS [97], MSC. MARC [61] for the analysis of low-frequency vibrations in
viscoelastic solids submitted to a initial static strain, is not able to model the
behavior of reinforced elastomers. These materials show a strong dependency of
the dynamic stiffness with the amplitude [56, 57] but the model only includes the
frequency dependency and does not reproduce the dependency either with the
preload or with the amplitude.

In practice, there is not too much information available about the dynamic
response of reinforced elastomers under complex deformation modes and neither
there is any accepted methodology for the consideration of their properties in FE
analysis for the prediction of dynamic behaviour under cyclic loads. The meth-
odology used to date consists of the characterization of dynamic properties of the
material through testing, scanning a frequency range, average deformations and
amplitudes, resulting in a huge matrix with stiffness modulus and loss angle values
for each of the analyzed conditions [62]. The analyst must decide which conditions
to simulate, depending on the range of values and the design of the applications.

Gómez and Royo [63] developed a methodology which permits considering
these dependencies by modifying the viscoelastic model implemented through
calibrating the viscoelastic parameters and by defining the material behaviour in a
particular way for each element of the model in function of its strain level, preload
as well as amplitude. This methodology is based on the combination of the results
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analysis derived from the material characterization testing and the implementation
of the shift factor functions in commercial FE codes, through user subroutines.

Concerning the fatigue life prediction of elastomeric materials, designers define
this fatigue life through minimising the stress, strain or energy density values,
which are calculated through the FE method, making exclusive use of hyperelastic
material models. The inelastic effects, characteristic of this type of material, are
not taken into account. The main requirement is to obtain material constants that
describe the material behaviour in service conditions. These constants are fre-
quently unknown. In the particular case of elastomers, there remain many unre-
solved questions, which converge in this simple requirement. The properties of
elastomers are strongly dependent on several factors such as the temperature,
humidity, light and load conditions to which they are submitted. All these factors
are able to modify the fatigue properties of the material (crack initiation and
propagation), and therefore the first challenge is to test and asses these properties
accurately, quickly and efficiently. The second, more complex challenge is to
predict the life through numerical models. Furthermore, being able to simplify the
in-service conditions in the experimental testing is important so that the tests may
be viable in cost and duration.

The phenomenon of fatigue is described by Ellul [64] as the progressive
weakness of several physical variables, i.e. stiffness loss, as the result of the slow
growth of cracks produced by the application of cyclic loads or strains. The
microscopic process that starts fatigue in elastomers is not so well known as that of
metals, and consequently the macroscopic and phenomenological approach
remains the most common today. In fact, fatigue treatment in elastomers is mainly
empiric. The problem is faced through durability testing in components or in
simple samples, whose results are extrapolated for fatigue predictions. This
practice is quite limited due to the large number of factors affecting the fatigue life
of this type of material, including mechanical factors such as frequency, load
sequence, load type—relaxing or nor-relaxing load, uniaxial or multiaxial loads,
… -, thermal factors such as temperature, oxygen concentration, ozone, UV rays;
and chemical factors such as material composition, additives and vulcanization.
Up to now, the consideration of all these factors in damage models for rubber
materials has been achieved by means of the calibration of empiric equations to
test results. Several authors such as Lake [65, 66], Cadwell [67] and Roach [68]
have studied several of the aforementioned aspects. It is important to remark that
fatigue failure in elastomers occurs in a fragile way, that is, without previous
plastic deformations, as was indicated by Lake [69] and Lake and Yeoh [70]. It
occurs in two phases: the first, in which the cracks start nucleation around
agglomerate particles in the material, and the second one in which the cracks start
growing until the material fails. For some time, it was believed that the crack
nucleation, growth and final failure could be modelled in terms of the mechanical
behaviour of elastomer fracture [71, 72]. However, there are aspects that only
occur during the nucleation phase which require more careful study. In particular,
it is necessary to understand the aspects of the multiaxial fatigue in the crack
nucleation phase [73].
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One of the weak points relating to fatigue life prediction in elastomers is the
determination of the accumulated damage and the treatment of multiaxial loads.
Flamm et al. [74] demonstrate that, in most cases, the Miner’s linear accumulation
damage rule is inadequate. Besides, an added problem is related with the testing
frequency, especially for bulk samples, in which the heat generated with the cyclic
loading causes degradation of the material. Therefore, the testing temperature
becomes an influential factor especially important in the fatigue life of a reinforced
elastomer.

The non-linear behaviour of rubber (finite strains and quasi-incompressibility)
and the fact that scalar criteria make no reference to a specific material failure
plane imply that it is always possible to construct a non-proportional multiaxial
history that holds the scalar equivalence criterion value constant while simulta-
neously varying the individual components of the history [75, 76]. Therefore,
scalar equivalence criteria predict infinite life under certain kinds of non-propor-
tional cyclic loading which in fact result in finite life. It can therefore be concluded
that an analysis approach that makes specific reference to the failure plane is
needed.

Due to the aforementioned limitations of scalar fatigue criteria, different mul-
tiaxial fatigue criteria have been proposed in literature to overcome these limita-
tions. However, it is worth pointing out that their level of development has been
uneven since most of them have been applied to natural rubber at specimen level
only, excepting the cracking energy density proposed by Mars [72] that has been
applied successfully to automotive components [77].

The influence of non-relaxing cycles hinders crack growth and therefore
increases the expected fatigue life (see Fig. 36). The effect of non-relaxing loads is
of great importance in real components such as shock absorbers, which are sub-
mitted to static preload (because of the assembly process, external loads or vehicle
weight) superimposed on small periodic oscillations. The effects of non-zero
minimum loading on fatigue crack growth have been analysed in the literature for
strain crystallizing rubbers [78, 79] and for non-crystallizing rubbers [80]. The
effects of non-relaxing cycles were incorporated in a fatigue life prediction model
using the model proposed by Mars and Fatemi [75, 76].

Relating tribology in elastomers, it is extremely important to develop a scien-
tific knowledge on tribological behaviour on microscale and even more at nano-
scale levels in order to avoid expensive ‘‘trial and error’’ method, broadly used in
industry. Historically, the majority of friction investigations have been carried out
for metals, being the most significant those proposed by Coulomb and Amonton
(see [81] and [82]). In contrast with other rigid materials, friction of rubbers is
characterized by several macroscopical dependencies: contact pressure, relative
sliding speed and temperature. The particular mechanical characteristics of rubbers
influence their frictional behavior, as has been demonstrated by many authors [83,
84]. Thirion [85] demonstrated that rubber friction coefficient falls markedly when
the contact pressure increases. The surface morphology of the countermaterial also
plays a fundamental role in rubber friction. According to most recent investiga-
tions found in the literature [86, 87], dry friction on rubbers is mainly governed by

262 L. A. Gracia et al.



the hysteretic and the adhesion phenomena, which can be modelled according to
the bulk properties of the rubber material (complex modulus) and the surface
roughness structure of the metallic counterpart. Regarding wear in elastomers,
there is still not a clearly set up classification. The most general classification of
wear types is set up along several decades by authors such as Kragelskii [88], Blau
[89], Zhang [90] and Myshkin [91], including in it wear by abrasion, by erosion,
by fatigue and by adhesion, although other types of wear such as corrosion,
tribochemical or fretting wear, caused in the process during the first wear types, are
also considered in literature (Burris [156], [92–94]). The different influences set up
in the wear process in the elastomer must also be included in the wear modelling.
The vast characterisation was carried out by Meng and Ludema [95], considering
three main approximations about wear modelling: models based on empirical
relationships, models based on contact mechanics and models based on material
failure mechanisms.

1.2 Overview of Mechanical Behaviour of Elastomeric
Materials: Elastic, Inelastic and Fatigue Behaviour

1.2.1 Elastic Behaviour

The most obvious as well as the most important physical feature of elastomers is
their capacity of being deformed under relatively small stresses. The most relevant
features of the elastic behaviour of these materials are as follows [17]:

(i) The stress–strain curve is highly non-linear and therefore it is not possible to
define the elastic behaviour of these materials through the Young modulus
(Hooke law) as in metals. In this type of material, the elastic modulus is
dependent on the strain level [96]. At low strains the modulus is high because
the connections between the reinforcement particles and the matrix are active.
As the strain level increases, this property decreases because the interactions
between the reinforcement particles break and for high strain levels, the
modulus increases again because of the reaction caused by the finite exten-
sibility of the polymer chains.

(ii) The material, depending on its composition, is able to reach high strains
under relatively small loads.

(iii) The behaviour of these materials is practically elastic, that is, once the stress
is removed, the elastomeric material recovers its original shape. This property
is more or less true depending on the composition of the elastomer com-
pound. Depending on the added reinforcement particles this property can
decrease and the material can exhibit the so-called permanent set or residual
strains, which reduce the ability of the material to recover itself.
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The non linear elastic behaviour of rubber can be successfully modelled by
means of the hyperelasticity models available in commercial FE codes [97].

In general, the compressibility of elastomers is quite low. A material is defined
as incompressible when its volume does not vary as it deforms, except for when
the deformation is due to thermal expansion.

Elastomers can be considered as incompressible material, because they show a
big difference between the initial shear modulus (l0) and the initial bulk modulus
(K0). A typical reinforced elastomer for industrial purposes presents a shear
modulus ranging between 0.5 and 6 Mpa and bulk modulus ranging between 2000
and 3000 MPa [98]. The high volumetric compared to shear stiffness indicates a
practically incompressible behaviour.

The relative compressibility of a material can be evaluated by the relationship
K0=l0

. This expression can also be expressed in terms of the Poisson coefficient

through (2).

m ¼
3K0=l0

� 2

6K0=l0
þ 2

ð2Þ

Some investigations [99] have demonstrated that natural rubbers reinforced
with carbon fibres, when submitted to different load conditions (uniaxial, hydro-
static, monotonic, cyclic), suffer from volume changes. The mechanisms of vol-
ume change seem to be related with the damage evolution, chain orientation and
viscoelasticity. At the microscopic scale, thanks to observations with the scanning
electron microscope (SEM), the evolution of the damage with the elongation has
been measured and it has been concluded that, the volume change and the damage
evolution are proportional.

1.2.2 Inelastic Behaviour

The response of elastomeric materials under cyclic loading is of interest for several
applications, especially those related to the absorption and reduction of vibrations
(i.e. for shock absorbers, bumpers and silent-blocks) [100]. Under dynamic loading
elastomers exhibit dissipative phenomena such as the Mullins effect, hysteresis and
strain-rate dependency due to viscoelasticity.

The parameters usually used for describing the dynamic properties of these
materials are the dynamic modulus and the loss angle. These parameters come
from the linear viscoelasticity theory.

Suppose that the excitation load A and the response, F, vary in a sinusoidal
way:

A ¼ A0sinðxtÞ F ¼ F0sinðxt þ dÞ ð3Þ
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where, A0 and F0 are the amplitude of the excitation (displacement) and of the
response (force), respectively, x is the oscillation frequency and d is the delay
between the application of the excitation and the system response.

With these magnitudes, the two parameters defining the dynamic behaviour of
the material are:

• the dynamic stiffness, defined as the relationship between the amplitudes of the
response and the excitation

Kdin ¼
F0

A0
ð4Þ

• the damping, which is related to the delay introduced into the system by the
damper element

g ¼ tan d: ð5Þ
Similarly, instead of relating displacements and forces, stresses and strains are

related and the following expressions are obtained for the dynamic modulus

Edin ¼
r0

e0
ð6Þ

and the damping:

g ¼ Wc

pr0e0
ð7Þ

where Wc is the energy dissipated in one cycle (see Fig. 11).
These expressions are quite simple to obtain when the behaviour of the model is

fully linear and are useful for showing clearly the physical meaning of the two
magnitudes. However, their extension to non-linear behaviour, as occurs in real
components, is not so easy, due to the fact that harmonics deform the time signal
making the measurement of the amplitude as well as the loss angle difficult [101].
The sources for non linearities can be geometrical effects (friction and large

Fig. 11 Hysteresis cycles with linear behaviour (left) and non-linear behaviour (right)

Other Applications: Engineering 265



displacements), type of loading or material properties, and in the case of reinforced
elastomers all these factors at the same time.

Many rubber industrial components suffer from a large variety of dynamic load
types, including non-regular periodic oscillations resulting from a combination of
different frequencies, pulses and random noise. Together with the non-linear
properties of reinforced elastomers, this means that the linear viscoelastic theory
cannot be applied [102, 103].

Viscoelastic damping has a significant presence in many polymeric materials
and this internal damping is a very useful feature in many industrial components. It
has its origin in the molecular structure of the material. The damping comes from
the relaxation and recovery of the polymeric net after deformation. An important
relationship exists between the effect of the frequency and the temperature because
of the direct connection existing between the material temperature and the
molecular movement.

The damping grows with the active presence of reinforcement additives which
result in a two-phase material with constituents of very different mechanical
properties. The phenomenon derives fundamentally from two mechanisms [53]:

• Viscous, a result of resistance to the reorganization of the rubbery phase chains.
This reorganization of very long chains cannot occur suddenly. It depends on the
strain rate causing the viscous nature of the material.

• Hysteretic, caused by the additives that are much stiffer than the rubber matrix in
which they are embedded. These compounds make connections inside the rub-
bery net. When the material is submitted to strain, these C–C and C-rubber joints
break, a process that is rate independent (frequency non-dependent). These
breakages are responsible for the non-linear behaviour with the amplitude.

During a load cycle elastomers dissipate energy causing hysteresis. This means
that the material behaviour is different during the load path than during the unload
path. The hysteresis is a direct consequence of the viscoelastic behaviour of the
elastomers and it provokes a delay between the stress and the strain history. The
reason that the stress, for a certain strain, is lower during the loading paths is that
the material relaxes during the time of the cycle and dissipates energy in the form
of heat. This dissipated energy in the cycle corresponds to the closed area in-
between the loading and unloading paths and it is used in the industry, for instance,
for the damping of vibrations.

The lost energy per cycle Wc (represented by the area enclosed in the cycle) for
a certain frequency is expressed as:

Uc ¼
I

rde ¼ r0e0x
ZT

0

cosðxtÞsinðxt þ dÞdt ¼ pr0e0sind ¼ pA0F0sind ð8Þ

where e0, r0, A0 and F0 are the amplitude of the strain, the stress, the displacement
and the force, respectively and d is the loss angle, which is related to the material
damping by (5).
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When non-linear behaviour is present, the hysteresis cycles are deformed from
the ellipsoidal shape that they exhibit when non-linearities exist. Usually in these
cases the equivalent damping is identified as the area enclosed by the distorted
non-linear cycle (see Fig. 11 with (8)).

When reinforced elastomers are submitted to cyclic loading, from the first, until
the fourth or fifth cycles depending on the compounding, they suffer from sig-
nificant stress-softening. This is known as the Mullins effect [104]. When these
materials are submitted to large strain cycles, they suffer from stress softening, but
only for the subsequent strains lower than those reached previously [105]. After
this softening and for strains higher than the maximum strain level reached pre-
viously, the material tends to retake the stress–strain behaviour of the virgin state.
This phenomenon is attributed to the progressive breakage of the connections
between the rubber matrix and the reinforcement particles, and to the configuration
changes of matrix itself [53]. The Mullins effect can have important implications
for the way in which characterization tests are carried out because the material
behaviour can be considerably affected by the previous testing that it has been
subjected to [96]. In order to obtain stationary behaviour in the testing of rein-
forced elastomers, it is necessary to pre-strain the samples before executing the
tests, a practice commonly known as material preconditioning.

The anisotropy of an elastomer is strain driven [31, 41] and it is usually defined
by the model proposed by Spencer [106] in which the strain energy density
function (W) includes the predominant behaviour directions through one-dimen-
sional arrays (m0

i and n0
i ): W ¼ W C;m0

i ; n
0
i

� �
. This formulation has been used by

different authors to define the behaviour of soft biological materials reinforced
with collagen fibres as blood vessels [107], ligaments [108] or cornea [109].

The use of reinforcement loads or particles increases the damping as well as the
stiffness of the rubber compound and, as has been previously mentioned, the
stress–strain behaviour becomes non-linear, the stiffness being greater at lower
strain amplitudes. This phenomenon is known as the Fletcher-Gent effect or Payne
effect [57]. The loss angle is also amplitude dependent and reaches its maximum
value at a low strain percentage, while decaying considerably for higher strain
amplitudes. This amplitude dependency of the dynamic properties makes the linear
viscoelasticity theory non valid: the higher the percentage of the reinforcement
load, the less applicable is this theory. A feature especially relevant for the iso-
lation of vibrations at high frequencies (usually associated to small amplitude
vibrations) is that the dynamic stiffness value tends asymptotically to a finite value
at small amplitudes [110].

An additional difficulty induced by the use of reinforcement particles is that the
dynamic properties experience a delay in reaching the stationary or equilibrium
state after the application of a sinusoidal strain [56]. If the previous deformation is
lower or null compared to the measurement strain, the dynamic stiffness will decay
until the equilibrium state, while if the previous strain amplitude is higher, there
will be a recovery towards the dynamic stiffness associated to the lower strain.
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This fact suggests that a complete constitutive model for reinforced elastomers
requires frictional as well as viscoelastic elements.

Medalia [111] provides a detailed review of the dynamic properties of rein-
forced elastomers and their dependency with the strain amplitude.

For most industrial applications of reinforced elastomers, the Payne effect, the
time dependency as well as the Mullins effect are non desired but unavoidable
phenomena. It is therefore desirable to be able to quantify them.

1.2.3 Fatigue

When mechanical rubber components are submitted to dynamic loading, they
suffer from fatigue. This phenomenon appears in this type of material as the
progressive weakness of several physical variables, i.e. stiffness loss as the result
of the slow growth of cracks produced by cyclic loads or strains. There is evidence
that the fracture of rubber materials occurs through the presence of defects or
imperfections in the parts. From these imperfections, intrinsic in these materials,
the cracks can grow under a certain load till they reach a sufficient size to cause the
fracture of the material. Due to the initiation of cracks being produced from very
small defects in the parts and to the complex behaviour of the elastomeric mate-
rials, there is a wide disparity in the prediction of the fatigue life in samples
without predefined cracks.

Typical models for predicting fatigue life in rubber follow two overall
approaches. The first one focuses on predicting crack nucleation life, given the
history of quantities defined at a material point, in the sense of continuum
mechanics. Stress and strain are examples of such quantities. The other approach is
based on ideas from fracture mechanics, focusing on predicting the growth of a
particular crack, given the initial geometry and energy release rate history of the
crack.

The crack nucleation approach or e-N approach considers that the material has a
life determined by the stress and strain history at a certain point. The fatigue life
according to this approach could therefore be defined as the number of cycles
necessary to obtain a crack of a certain length. This approach is quite familiar and
convenient for designers as it is formulated in terms of stresses and strains. It is
particularly appropriate when the component under study exhibits cracks or initial
defects of a size several orders of magnitude lower than its characteristics and
when the multiaxial stress state can be related with some accuracy with the stress
state of the fatigue material characterization tests. In order to model the effect of
the multiaxial loads on the fatigue life of elastomers during the nucleation phase, it
is necessary to refer to an equivalence criterion that defines the basis on which to
confirm if a component is valid or not for standing fatigue loading and involves
one or more parameters characterising the mechanical severity of the load history.
The parameters traditionally used in the crack nucleation approach as equivalence
criteria are the maximum principal strain and the strain energy density. To date, it
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seems that only scalar equivalence criteria have been applied for the fatigue life
prediction in elastomers, which cannot account for the crack growth direction.

Critical plane theories rely on the physical process of fracture and make use of
the continuum variables on the actual fracture plane. Many critical plane
approaches have been successively developed in the metal fatigue field, for
instance, the models of Brown–Miller [112], Fatemi–Socie [113], Smith et al.
[114], Wang and Brown [115–117] and Chen-Xu-Huang [118]. However, for
rubber fatigue only a few authors have published crack nucleation parameters
associated with a critical plane idea [75, 76, 119, 120]. The use of strain as a life
parameter has advantages since it can be obtained directly from measured dis-
placements. When the strain energy density is used, it is often evaluated using
hyperelastic material models based on the strain invariants and therefore it is also
based on strains. Strain energy density has been used as a fatigue parameter in
metals [121], although the correlation between experimental and predicted results
is not satisfactory. Rivlin and Thomas [122] proposed a model to study the fracture
of rubber under static loading based on the strain energy density, and this has been
used by many researchers to correlate analysis results to experimental component
life data, considering the strain energy density as a measurement of the energy
release rate of the different flaws present in the material. The application to
components of this approximation carried out by some authors [123, 124] shows
differences in fatigue life to computed strain energy density levels. The main
limitations of the strain energy density are that (a) it is unable to predict the fact
that the crack surface appears in a specific orientation, and only part of the total
spent energy plays a role in the crack nucleation process for multiaxial conditions;
(b) it does not account for crack closure and (c) it fails to predict large life
differences between simple tension and simple compression loadings. Stress has
rarely been used as a fatigue life parameter in rubber [125]. This is related to the
fact that fatigue testing in rubber has traditionally been carried out by displacement
control, and the accurate stress determination in rubber components can be diffi-
cult. The maximum principal strain and the octahedral shear strain have also been
used as fatigue parameters based on strains. The maximum principal strain cri-
terion was introduced by Cadwell et al. [67] for unfilled vulcanized natural rubber
and remains in use nowadays, particularly for uniaxial strain loadings. It also
provides a good correlation for axial/torsion tests, whereas the octahedral shear
strain criterion makes a prediction that is roughly similar to the principal strain
criterion for rubber [75, 76]. However, for an incompressible material both strain
based criteria always satisfy that their values are positive and they are therefore
unable to account for compression states where the crack is closed.

The complementary focus to the e-N approach for the fatigue life prediction of
reinforced elastomers is fracture mechanics Lake [69]. This approach assumes
explicitly the existence of cracks or defects (material inhomogeneities, agglom-
erates or contaminants introduced in the material mixing procedure) in the
material. The fundamental hypothesis is that the crack growth occurs because the
stored potential energy of the component turns into surface energy associated with
new crack surfaces. The basis of the energetic approach is the use of the strain
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energy relaxation velocity or tear energy (T) as a mean of characterizing the
behaviour of the crack growth in the material. Usually, this relationship is obtained
experimentally through crack growth testing in samples where, for a known strain
deformation mode, the tear energy is a function of the sample geometry and/or
applied load. With this process together with quantifying the crack growth speed
through the applied load cycle, it is possible to characterise the crack growth speed
in the material. This approach was successfully applied by Lindley and Stevenson
[126] and Gent and Wang [127] for predicting the fatigue behaviour of elastomeric
components submitted to compression and shear loads by relating the energy
release rate with the strain energy density instead of with the maximum principal
strain. However, there remains much to investigate in relation to the suitable
material characterization for crack growth, influential factors (initial crack growth,
temperature, frequency and load type) and equivalence criteria, which become
essential aspects if FE models are to be used for fatigue life prediction.

Fatigue life prediction for rubber combining the crack nucleation and growth
approaches has been applied successfully by different authors [66, 128]. This
analysis is based on the integration of a crack growth law relating the crack
advance per cycle and the energy release rate or tearing energy. The basis of the
energetic approach is the use of the strain tearing energy, as a means of charac-
terising crack growth behaviour. The relationship between the crack growth rate
dC/dN and tearing energy T is known as the crack growth characteristic of the
material since T is independent of the sample geometry. Typical curves for a
natural rubber (NR) compound cycled under relaxing and non relaxing conditions
(R-ratio of 0.05 and 0.1) are shown in Fig. 36.

The fatigue life of a certain structure can be considered as the number of cycles
necessary for a certain crack present in the material at the beginning of the fatigue
process (c0) to grow up to a critical length (c1) that provokes the final failure of the
component. Given the crack growth behaviour and the energy release rate history,
the fatigue life can be computed via the integration of the crack growth law
between the correct limits [64]. The fatigue life of any rubber component can be
predicted by integrating (9) depending on the energy release rate and its
description according to the crack growth behaviour only.

N ¼
Zc1

c0

dc

f Tmin; Tmaxð Þ

N ¼
ZTf

Ti

1
dT=dc

 !
� dT

f Tð Þ

� � ð9Þ

The Cracking Energy Density (CED) proposed by Mars [72] rationalizes fati-
gue life for specific failure planes across a wide range of states, relates physically
to the fracture mechanical behaviour of small flaws under complex loading and is
well defined for arbitrarily complex strain histories. This parameter accounts for
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the effect of crack closure, which occurs when the stress state causes compression
on a material plane. This fact is of great importance because rubber is most
commonly used in applications which experience a compressive load. Mars and
Fatemi [75, 76] proposed three different critical plane criteria for its use in the
computation of CED, the plane that maximizes the CED peak value, the plane of
maximum CED range and the plane of minimum life.

Saintier et al. [119, 120] investigated fatigue crack initiation under multiaxial
non-proportional loadings in a natural rubber and tested under multiaxial loading.
The proposed fatigue crack criteria is based on the micro mechanisms of crack
initiation such as cavitation, decohesion and micro-propagation, consisting of a
critical plane approach under large strain conditions using a micro to macro
approach. This criterion gives promising results, by predicting the fatigue life,
crack orientations and location even in cases with internal crack initiation although
for the moment this approach is limited to proportional loading histories.

Verron et al. [129, 130] and Andriyana et al. [131] proposed a new predictor for
crack nucleation in rubber based on the configurationally stress tensor to propose a
fatigue life predictor for rubber. This criterion is formulated in terms of continuum
mechanics quantities in order to be combined with the standard FE method in
engineering applications. It takes into account the presence of microscopic defects
by considering that macroscopic crack nucleation can be seen as the result of the
propagation of those microscopic defects. For elastic materials, it predicts privi-
leged regions of rubber parts in which macroscopic fatigue cracks might appear.

Wang et al. [132] proposed a continuum damage model to investigate the
fatigue damage behaviour of elastomers. The elastic strain energy of a damaged
material is expressed based on the Ogden model [24], and the damage strain
energy release rate is derived in the context of continuum damage mechanics.
The damage evolution equation is established to develop a formula to describe the
fatigue life as a function of the nominal strain amplitude under cyclic loading.
The results indicate that the theoretical formula for the fatigue life as a function of
the nominal strain amplitude, derived from the proposed damage model, can
describe experimental data for carbon-filled natural rubbers.

1.3 Overview on Tribological Behaviour of Rubber-Like
Materials: Friction and Wear

In recent decades, tribology has played a remarkable role in mechanical systems in
which components are made of rubber-like materials working under sliding con-
ditions. Such components are important in most industrial sectors, particularly in
automotive and railway applications. Two of the main aspects related with the
tribology of rubber-like materials are friction and wear, which are explained in
detail below.
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1.3.1 Friction of Rubber-Like Materials

As it is commonly known, the classical Coulomb and Amontons friction laws,
which mainly establish that the friction coefficient is independent of the area of
contact, have been proved to be non-valid in the case of rubber-like materials. For
this material type, due to their specific mechanical properties, the friction coeffi-
cient should be expressed as a function of contact pressure, sliding speed, tem-
perature and lubrication regime.

l ¼ l L; T; _c; t;Ra. . .ð Þ ð10Þ

The dependence with the contact pressure is associated to the varying ratio of
real (microscopic level) to apparent (macroscopic level) area of contact when the
vertical load (contact pressure) rises. The problem increases in complexity when
neither the contact pressure distribution nor the ratio of real to apparent area of
contact are uniform along the apparent area of contact, cylindrical contact
geometry being a typical example of this situation.

In the proposed expression (10), several dependencies on external parameters
such as vertical load (contact pressure), temperature, sliding speed, etc., are
introduced as key variables. Rubber-like materials in general and rubbers in par-
ticular have high friction characteristics, a consequence of their low elastic
modulus and their viscoelasticity. Thus, under contact pressure they deform to a
large extent, resulting in high values of the real area of contact. Hence, classical
models for metals are no longer valid in the case of rubber friction.

The high friction coefficient has been exploited in many applications, for
example: tyres, shoe soles, bicycle brake blocks, etc. However, there are many
other applications in which the frictional behaviour of the rubber is expected to
have the opposite characteristics, as for example in the case of windscreen wipers
and seals. In such cases the rubber must be treated to produce low frictional
properties in the case of dry friction, or else the working conditions must be
ensured to be in the hydrodynamic lubrication regime.

It is commonly known that friction coefficient values are difficult to find in the
literature. This is because the friction coefficient can rarely be assumed to be
constant and, as stated in expression (10), it depends on several factors such as
contact pressure (vertical load), sliding velocity, temperature, surface roughness
and lubrication regime, where applicable.

As described in the Sect. 1.2, Amontons and Coulomb established that friction
force is proportional to the vertical load and independent of the geometry of the
contact. Coulomb defined the friction coefficient l as the ratio between friction and
vertical load. For materials obeying this law, l is independent of the vertical load
and thus of the normal stress. Rubber does not obey Amontons’ and Coulomb’s
laws since the friction coefficient falls markedly when increasing normal stress.
For this particular behaviour, an analytical law which became widely used was
defined by Thirion [85]:
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l
¼ aþ b
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E

� �
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where l is the friction coefficient, P is the normal stress, E is the elastic modulus of
the rubber and a and b are empirical constants. Schallamach [133] later showed
how the behaviour described in Eq. (11) may be explained on the assumption that
the friction force is proportional to the true area of contact, resulting in:

l ¼ const
P

E

� ��1
n

ð12Þ

where the value of n is derived from a model which considers the deformation of
the rubber on the asperities of the metallic counterpart and depends on the
geometry and distribution considered for peaks and valleys. In general, n depends
on the nominal normal stress, but for restricted ranges it is considered to be
constant. At sufficiently high normal stresses, the real area of contact becomes
equal to the apparent area of contact, so that the frictional force becomes constant
and l is inversely proportional to P, as described in (12). This particular condition
is referred to as ‘‘saturation’’.

In addition, the lubrication regime plays a substantial role in the frictional
behaviour of rubbers in lubricated (fluid) conditions. The influence of the lubri-
cation regime can cause a drop in the friction coefficient value from one order of
magnitude, depending on whether the lubrication regime is in the boundary state
(direct interaction between the rubber and the micro-asperities of the metallic
counterpart), the elasto-hydrodynamic state (the rubber and the asperities of the
counterpart are separated by the lubricant placed in between, and the frictional
force is caused by the viscous shearing of the fluid) or finally in the mixed regime
(the lubricant thickness is of the order of a couple of molecular chain lengths). The
influence of the lubrication regime on friction is described by the Stribeck curves
(see Fig. 12, [84]), which establish a relationship between the lubrication regime
and a given physical magnitude consisting of the ratio of lubricant viscosity times
sliding speed to vertical load.

Fig. 12 Variable
dependency in friction
between rubber-like materials
and wear
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The first stage of the curve corresponds to boundary lubrication (BL), the
second to mixed lubrication (ML) and the third to elasto-hydraulic lubrication
(EHL). In the curve, l is the friction coefficient, t the kinematic viscosity of the
fluid, _c the sliding velocity, FN the normal load and hfilm the height of the fluid
film.

Finally, prior to the definition of a test configuration for the analysis of the
friction coefficient in rubber-like materials, the micro-scale effects on their friction
mechanisms briefly described above must be taken into account. Thus, within the
experimental and numerical work to be carried out for the definition of the test
configuration, the effect will be evaluated of the macroscopic parameters (vertical
load, sliding speed and temperature) on the measured friction force.

1.3.2 Wear on Rubber-Like Materials

Wear in polymers in general and in rubber-like materials in particular is defined as
the damage done to a solid surface, involving progressive material loss and caused
by the relative movement between contacting surfaces. Some authors, such as
Zhang [90], exclude from the category of wear the fracture or fatigue damage
caused by inner cracks of the solids, the pure corrosion or aging of rubber surfaces
resulting from chemical reactions and plastic deformation without loss of material.
Wear depends on several factors, such as the nature of materials at the surface zone
as well as in the bulk far from the contact zone, on operating parameters, on
geometry at both macroscopic and microscopic level, and on environmental
conditions. Surveys carried out by Rymuza [134], Viswanath and Bellow [93] and
Stachowiak and Batchelor [82] show several dependencies of different variables in

Properties of contact pair 
materials:
-Surface energy
-Elastic modulus
-Specific heat
-Thermal conductivity 
-Hardness

Working conditions:
-Normal load
-Test velocity
-Test duration

External agents:
-Lubricant presence
-Corrosive agents

Additional variables:
-Temperature
-Formation of a material transfer 
layer in contact pair

Contact variables:
-Roughness
-Microstructure

ELASTOMER 
WEAR

Fig. 13 Variable dependency in wear between rubber-like materials and metals
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the dynamics of wear between rubber-like materials and metals, as illustrated in
Fig. 13.

The influence of the most relevant parameters is detailed below.

Formation of a Material Transfer Layer in Contact Pair

Several authors have examined transfer layer formation in the sliding of a rubber-
like material over a counter material with a harder contact surface. A notable
example is the study performed by Buckley [135] with polytetraethylene (PTFE)
sliding over a metallic surface, where a strong adhesion between both materials is
produced, caused on the one hand by the chemical reaction between fluorine and
carbon from PTFE with the metallic counter surface, and on the other hand by the
ease of movement of the material molecules under load conditions. Other authors,
such as Makinson and Tabor [136] and Tanaka et al. [137], have analysed the
transfer mechanism of this material and other materials such as high density
polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE),
observing a discrete sheet formation of material over the metal, producing wear
increase and friction decrease.

In other research, such as that carried out by Thorpe [138], the material was
detached at the asperity zones separately and stuck over the counter surface in a
material transfer type known as lump transfer.

According to analyses by Jain and Bahadur [139], a similar behaviour is pro-
duced in the contact between two rubber-like materials, setting up a material
transfer layer in the material with the weaker cohesion.

Influence of the Counter Material Roughness

Several authors have focussed their studies on the analysis of sliding contact pairs
between rubber-like materials and metals to obtain the optimum material rough-
ness which generates the lowest material wear. On the one hand, authors such as
Birkett and Lancaster [140] suggest that the lower the counter material roughness,
the lower the wear of the rubber-like material. On the other hand, Dowson et al.
[141] established an optimum roughness level within the material manufacture
tolerances, also depending on the sliding velocity of the application. Other sur-
veys, such as that carried out by Barrett et al. [142] on ultra high molecular weight
polyethylene (UHMWPE), established a dependency loss of the roughness with
the wear rate at high sliding velocities due to the faster transfer layer formation and
also to the wear rate stabilization.

In another study, Stackowiak and Batchelor [82] established the penetration
depth of the metallic asperities and the sliding distance as the most influential
parameters on the wear rate. According to the same authors, the wear does not
remain constant over time. After a fast initial increment of the wear rate, it then
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decreases over time once the asperities have been covered by the rubber-like
material transfer layer.

Another additional factor affecting the wear rate, apart from roughness, is the
height distribution in the counter material asperities. Play [143] found important
differences in the wear rate between surfaces with a height Gaussian distribution in
asperities and surfaces with a non Gaussian distribution. This fact also influences
the amount of detached debris, which determines the transfer layer formation
modifying the wear rate as well as the friction, as shown by Blanchett and Ken-
nedy [144] and by Barrett et al. [142].

Influence of the Temperature

Several authors, such as Tanaka and Uchiyama [145], Kar and Bahadur [146] and
Stachowiak and Batchelor [82], have analysed the influence of the temperature in
the wear process of rubber-like materials under sliding conditions with metal. The
temperature rise of the rubber-like material in the wear process, caused by its low
melting point and by its low thermal conductivity, implies a wear process modi-
fication in the contact pair, decreasing the friction and increasing the wear rate.
This process is known by authors like Stackowiak and Batchelor [82] as melting
wear. During this process, the melted rubber-like material is placed on the counter
material surface which is not affected by the temperature rise of the rubber-like
material because the melting point of the counter material is much higher.

Another influential aspect in the rubber-like material wear process is the latent
heat of melting, already analysed by Mc C. Ettles [147] in specimens of poly-
propylene and nylon sliding over steel. This parameter imposes a limit to the
temperature attained at the contact pair, so that although the friction coefficient
changes with the sliding velocity or with the load when the melting point of the
rubber-like material is attained, the temperature at the contact pair remains con-
stant at the yield limit.

Besides, for soft materials such as aluminium, particles of the counter material
can also be transferred to the rubber-like material surface, implying a friction
coefficient increase, according to the researches of Mizutani et al. [148].

Thermal conductivity of the material is another influential factor in rubber-like
material wear, as shown by Watanabe and Yamaguchi [149] in wear tests with
nylon specimens on steel and glass surfaces. For high test velocities and the same
test conditions, melting wear is found in nylon on glass, but not on steel, since the
thermal conductivity of this material is higher than that of glass.

Finally, the combined effect of counter material roughness and the contact
temperature when both parameters have high values causes the wear rate of the
rubber-like material to be extremely high, even without reaching the melting point
of the material [150]. This was proved by Barrett et al. [142]. In this case, severe
abrasion of the rubber-like material surface takes place, beginning with a linear
wear rate of shorter periods of higher wear combined with longer periods of less
significant wear.
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Influence of Lubricant and Oxidant Agents

In general, the inclusion of lubricants reduces friction in contact pairs, the quan-
titative reduction of the friction depending on the type of rubber-like material and
on the lubricant. Authors such as Cohen and Tabor [151] have noticed a sharp drop
in the friction coefficient in tests with nylon and glass in a water bath, obtaining
lower drops in tests with organic substances such as hexane or benzene. The
differences are caused by the polar nature of the polyamide, the main constituent of
nylon. The formation of a transfer layer is also modified by lubricants, decreasing
to very low values under wet conditions, especially under water [152].

The wear rate of the contact pair is also affected by the solubility of the rubber-
like material. In some cases, if a solvent is able to penetrate through the rubber-like
material surface, an accelerated wear increase with cracking in the rubber-like
material surface is produced, mainly caused by the action of the solvent.
According to an analysis by Evans [152], several solvents such as acetone, ben-
zene, tetraclochlorinemethane or toluene show solubility parameters near to that of
different rubber-like materials, causing an accelerated wear as contact is produced.

Regarding the effects of oxidative agents, some polymers such as nylon or
polyethylene show a wear process similar to the corrosive wear of metals, leading
to a reduction in friction coefficient values and to an increase in the wear rate. This
effect is proportional to the surface damage level due to the corrosive agents. This
feature is consistent with the resistance of UHMWPE to chemical agents, observed
by authors such as Batchelor and Tan [153] and Scott and Stachowiak [154].

Influence of Rubber-Like Material Microstructure

It is worth mentioning, according to studies from Bartenevev and Lavrentev [155],
the low friction values and low wear rates at temperature values near the glass
transition point, showing high wear rates at different temperatures, higher or lower
than that point. This behaviour is different from that of other crystalline polymers,
showing a wider temperature range for low friction coefficient and wear rate
values.

Types of Wear in Rubber-Like Materials

A classification of the wear types in rubber-like materials has not yet been clearly
established. Over more than half a century, several researchers including Kra-
gelskii [88] and Blau [89] have proposed several types of classifications from
different points of view. However, to date there is no generally recognised
methodology. Zhang [90] takes into consideration a classification including
abrasive, erosive and fatigue wear, while other authors such as Myshkin et al. [91]
include adhesive wear in this classification. These wear types are the most broadly
accepted in the literature. In some cases, corrosive or tribo-chemical wear are also
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considered, as analysed by Burris [156] and Viswanath and Bellow [93], or fretting
wear, as studied by Je et al. [92] and by Nah [94]. However, these are taken as
particular cases of the most influential phenomena previously referred to. The most
relevant wear types are explained in detail below.

(a) Erosive wear

This is defined as the wear resulting from the interaction between a solid
surface and a fluid stream containing abrasive particles at a certain speed. The
types of erosive wear can be abrasive erosion, if it is caused by a fluid stream
parallel to the solid surface (see Fig. 14a), or impact erosion if it takes place under
a fluid stream perpendicular to the solid surface (see Fig. 14b).

It is important to mention the surveys of Zhang [157, 158] into the wear
mechanism by abrasive erosion of rubber-like materials such as natural rubber
(NR), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR) or poly-
urethanes (PU). These surveys were carried out in an abrasive erosion testing
machine under wet conditions with sodium hydroxide in water. The effects ana-
lysed in these tests by SEM examinations were: delamination, micro cut, micro
crack initiation and propagation or mechanic-chemical degradation. Besides, this
author also studied the influence of the particle wear speed, flow velocity, particle
size and particle concentration for the same rubber-like materials. It is also worth
noting the work of Arnold and Hutchings [159] which studied the erosive wear of
non-reinforced rubber-like materials, finding two different mechanisms: the first at
low impact angles and the second under conditions of perpendicular impact to the
surface, eliminating the material from the surface in both cases by means of fatigue
crack propagation.

(b) Adhesive wear

(a) (b)

Low angle
High angle

Fig. 14 Types of erosive wear. a Abrasive erosion. b Impact erosion

Approach Adhesion Material transfer

Harder 
material

Fig. 15 Adhesive wear
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This takes place as a result of the adhesive forces present in the contact pair
between two solid surfaces, where part of the rubber-like material is transferred
from its surface and adheres to the counter material surface (see Fig. 15). Bely
et al. [160] noticed that the material transfer is the most important characteristic of
adhesive wear in rubber-like materials. The processes associated with other wear
types such as abrasive wear and fatigue wear can also take place together with
adhesive wear.

The material transfer phenomenon caused by friction, where micro size parti-
cles are transferred from one surface to another, is a very common effect in contact
pairs between rubber-like material and metal. This effect was studied by Makinson
and Tabor [136] and by Tanaka et al. [137]. Usually, the soft material film, that of
the rubber-like material, is transferred to the harder material surface, in this case
the metal surface. If the transferred rubber-like material film is continuously being
placed and eliminated, the wear rate increases. If, on the other hand, the rubber-
like material film is maintained, even with changes in the friction force, the
changes in the wear rate vary very slightly. In general, however, it can be stated
that a high degree of adhesion is produced in a contact pair in which rubber-like
material and metal are involved.

In rubber-like materials with low concentrations of additives in the components,
a very slight transfer to the metallic counter surface is produced due to the low
adhesion between both surfaces. This fact implies that the contact pair shows very
inadequate tribological properties [161]. Under other circumstances, the harder
material can be transferred over (onto?) the softer material surface; for instance,
bronze may be transferred to rubber-like material. This results in harder material
particles being set in the rubber-like material surface, acting as abrasive particles,
as analyzed by Myshkin et al. [91].

(c) Abrasive wear

The wear type known as abrasive wear is the most common in polymers in
general and in rubber-like materials in particular. It is caused by the relative
movement between a solid surface and sharp particles of the same or higher
hardness acting against the surface of the first body. Studies carried out by Swain
[162] revealed that indirect mechanisms such as micro cutting, detachment of
individual particles of the material or accelerated fatigue by repetitive deforma-
tions can be involved in the cutting process of the material (see Fig. 16).

In the wear caused by a cutting mechanism, a very sharp tool or a very rough
surface cuts the softer surface, eliminating the material by debris formation.

Fig. 16 Abrasive wear
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Depending on the material hardness, the debris can be detached as a result of crack
propagation or of repetitive deformation of the material [82].

According to Zhang’s [90] surveys, rubber abrasion can be classified into two
categories: pattern and intrinsic abrasion. In the first type of abrasion, parallel
ridges, called abrasion patterns, appear on the surface at right angles to the sliding
direction. Pattern abrasion occurs under unidirectional sliding direction conditions.
On the other hand, intrinsic abrasion arises when the direction of the relative
motion changes periodically. Usually, and under identical conditions, the wear rate
of pattern abrasion is higher than that of intrinsic abrasion. Zhang [90] also
classifies abrasion wear into wet abrasion and dry abrasion, depending on whether
or not liquid exists on the frictional surface. Another classification made by the
same author is based on the type of contact between both surfaces: point contact
abrasion, line contact abrasion and multiple-point contact abrasion.

One of the most widespread techniques for observing the wear process in
rubber-like materials is by means of electronic microscopy (SEM). Some authors,
such as Bhowmick et al. [163], have investigated this process and established that
a cutting mechanism at micromechanical level is present, in which the material is
eliminated by means of wavy sheets. This process is known as micro-cutting.
Kayaba [164] revealed another mechanism involving the formation of grooves
along the sliding direction, identified by means of several observations of speci-
mens tested in a tribometer under the pin-on-disc configuration. This mechanism,
known as ploughing, is less destructive than micro-cutting and does not involve
material being detached, Other authors, such as Myshkin et al. [91], have named
this wear type grooving.

In harder materials, such as thermoplastic polyurethanes (TPU), two different
mechanisms are present in the wear process: macro-delamination and micro-
molecular fracture [165, 166]. Macro-delamination consists of the formation and
growth of cracks, leading the material to tear in terms of parallel grooves, finally
breaking due to tensile stresses. Micro-molecular fracture consists of the detach-
ment of small particles due to the breaking of simple material molecules or any of
its aggregates. At the same time, abrasive wear particles in these materials are also
related with the presence of additives, fillets or plasticizers. Bartenevev and
Lavrentev [155] noticed that plasticizers have a negative effect on the abrasive
wear of several polymers due to their softening.

Zhang [90] has also presented valuable surveys in the quantitative evaluation of
rubber abrasion by means of different methods such as fractal theory, computer-
ized simulation technology and computer-generated image analysis.

(d) Two-body and three-body wear

Abrasive wear is commonly divided in two groups: two-body and three-body
wear.

Two-body wear is caused by sharp protuberances present in one of the surfaces
which can slide over the second one. In this type of wear, some asperities cause the
wear previously referred to as ploughing, while other asperities cause micro-cutting
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wear, depending on two factors: the attack angle of the particle and the shear stress
generated between both contact surfaces [91].

On the other hand, in three-body wear, there are particles trapped in both
contact surfaces which can rotate and slide freely between them. These particles
are detached from the worn surface of the contact pair or come from the lubri-
cation of the contact pair if the test is carried out under wet conditions. They may
also be particles from the environment. The effect, according to research by Singer
and Wahl [167], is a decrease in the friction between both surfaces, setting up
transfer layers but also inducing wear tracks with the detached particles.

For some time, it was believed that these two wear types were very similar.
However, Zum Gahr [168] identified several differences between them. The wear
rate in three-body wear is around one order of magnitude lower than that obtained
in two-body wear, since the abrasive particles in three-body abrasion wear the
contact surfaces only 10 % of the sliding time, while during the remaining 90 % of
the time they merely rotate between the surfaces [169]. According to Johnson
[170], another difference lies in the fact that two-body wear corresponds to a
material elimination model typical of cutting or micro-cutting, while three-body
wear involves slower mechanisms of material elimination. In the latter case, the
mechanisms common in two-body wear, such as micro-cutting or ploughing, do
not occur. There is instead a random wear mechanism due to the non-controlled
presence of a third body [171].

(e) Fatigue wear

This is a type of wear similar to abrasive wear, produced against a rough
surface. The difference between them, according to Zhang [90], is that the surface
for fatigue wear is formed by small soft rough projections, while for abrasive wear
the surface is formed by hard sharp projections. Fatigue wear as a concept was
presented by Kragelskii [88], being a low intensity wear type compared with
abrasive wear. The main feature of this type of wear is the irreversible damage
suffered by the material under the repetitive action of compressive, tensile and
shear strains in the contact pair. Along the relative sliding between both surfaces,
the polymer interacts with the sharper projections of the rough counter surface,
which leads to the initiation and development of cracks, also helped to propagate
by the presence of internal voids in the material [169]. Several authors, including
Zhang [90], have modified the term of fatigue wear to frictional wear or rolling
wear if the rubber-like material shows low tearing resistance and slides over low
rough surfaces with a high friction coefficient, causing the formation of rolling or
spiral particles at the contact pair. These particles are continuously detached
during sliding. In this type of wear, each asperity of the worn material surface
suffers a sequential load from the asperities present in the contact. Subsequently,
stresses arise at different scales in the surface and subsurface regions. These
stresses are the cause of the material fatigue, which leads to the initiation and
propagation of cracks and to the formation of worn particles. These cracks are
formed at points where the maximum shear stresses occur, their position also
depending on the friction coefficient between both surfaces. The higher the friction
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coefficient, the nearer the point of maximum shear stress to the surface, its depth
increasing as the friction coefficient decreases. At the same time, the initiation of
fatigue cracks is helped by the presence of defects in the material, such as marks,
scratches in the surface, internal voids or impurities. These defects are responsible
for the stress concentrations. With the repetitive action of the load and, conse-
quently, of the material stress, the cracks grow, join each other and intersect
generating the material detachment [91]. Figure 17 shows the fatigue wear
process.

Other authors such as Jain and Bahadur [172] or Neale and Gee [173] consider
this type of wear as abrasive wear on a small scale since the asperities of the
counter surface, at micromechanical level, act as initiating particles of the rubber-
like material abrasion. According to analyses by Jia and Ling [174] of fatigue wear
in polyurethanes caused by the repetitive action of abrasive particles on the
material, and considering that its elastic modulus is within that of a rubber-like and
of a plastic material, the effects of ploughing or crack formation are not directly
generated. Nevertheless, mechanical fatigue is more likely to take place.
According to this study, the repetitive impacts of the abrasive particles with the
material lead to tensile, compressive and shear strains and stresses in the contact
layer, forming fatigue cracks due to the repetitive actions with the interactions.
Other surveys carried out by Liu et al. [175] and by Marchenko [176] show the
highest shear stress at a certain depth under the contact surface. On the other hand,
the highest material strain is located at the surface, a propitious place for crack
initiation although at the same time this is where the highest compressive stresses
are also located which in some way act against crack initiation. As the distance
from the contact surface increases, the compressive stresses decrease faster than
the shear stresses. This means that almost all the stresses are shear stresses which,
being cracks, are more easily formed at a distance from the contact surface.

Another effect taken into consideration by Jia and Ling [174] is the temperature
influence, which is higher in TPU layers near to contact due to friction and
material deformation hysteresis. This heat can be more easily dissipated at the
surface where the temperature quickly drops due to the contact with the envi-
ronment. However, its dissipation is more difficult at a certain depth, and this
decreases the cohesive material energy and consequently cracks are initiated. The
repetitive contact of these particles implies that cracks propagate and intersect with

(a) (b)Sliding direction
Wear particle

Fig. 17 Fatigue wear. a Crack initiation as result of fatigue process. b Crack growth and
propagation and formation of wear particle
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each other, leading to material being detached as debris. Stackowiak and Batchelor
[82] also studied the temperature effect on wear behaviour. They demonstrated that
with the low temperature at which polymers melt, as well as their low thermal
conductivity, the high temperature reached at the contact pair is higher than the
melting point of the material and it thus begins to deform in an effect known as
melting prow. This effect, spread over all the contact surface of the polymer, is
known by other authors such as Bartenevev and Lavrentev [155] as fatigue wave
formation.

Other authors establish in their studies that cracks present in the material
subsurface are exacerbated during application cycles by the plastic deformation of
the material, being propagated to near cracks in a process defined as delamination
by authors such as Johnson [177], Suh et al. [178] and Da Silva [179]. According
to these authors, any particle generated and detached in the wear surface implies a
higher dragging, thereby increasing the friction force. This in turn accelerates the
delamination process.

2 Constitutive Models for F.E. Modelling of Elastomeric
Materials

Hyperelasticity refers to the quality of materials which can experience large elastic
strain that is recoverable. Elastomers such as rubber and many other polymer
materials fall into this category. The microstructure of polymer solids consists of
chain-like molecules. The chain backbone is mostly made of carbon atoms. The
flexibility of polymer molecules allows different types of arrangement such as
amorphous and semi crystalline polymers. As a result, the molecules possess a
much less regular character than metal crystals. The behaviour of elastomers is
therefore very complex. On a macroscopic scale, they usually behave as elastically
isotropic initially, and anisotropic at finite strain as the molecule chains tends to
realign in the loading direction. However, under essentially monotonic loading
conditions a larger class of elastomers can be approximated by an isotropic
assumption, and this has been historically popular in their modelling.

The constitutive behaviour of hyperelastic materials is usually derived from the
strain energy potentials. Also, hyperelastic materials generally have very small
compressibility, often referred to as incompressibility. The hyperelastic material
models assume that the material response is isothermal. This assumption allows
strain energy potentials to be expressed in terms of strain invariants or principal
stretch ratios. Except as otherwise indicated, the materials are assumed to be
nearly or purely incompressible. Material thermal expansion is always assumed to
be isotropic.
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2.1 Modelling the Elastic Behaviour of Elastomers

2.1.1 Basic Kinematics of Finite Elastic Deformations

This section gives a brief description of the finite strain theory, introducing con-
cepts such as gradient tensors, finite strain tensors, stretch ratios as well as com-
patibility conditions. For a detailed description of these concepts, see Holzapfel
[180].

A body whose configuration in terms of size or shape changes under external
loads is defined as a deformable body. A direct result is that distances between
points of the solid vary. Therefore, it is appropriate to consider two different
configurations of this type of solid, the undeformed configuration and the
deformed configuration after applying external loads.

Given a three-dimensional solid deformable body, as shown in Fig. 18, and a
Cartesian reference system (~E1;~E2;~E3), the position vector (~X) for the point P0 in
the undeformed configuration can be written as:

~X ¼ X1~E1 þ X2~E2 þ X3~E3 ð13Þ

After a load application, the solid body is deformed and the point P0 is now in
the position P, whose coordinates are:

~x ¼ x1~E1 þ x2~E2 þ x3~E3 ð14Þ

Undeformed 
configuration

Deformed  
configuration

E1

E3

E2

X

P0

P

x

u

Fig. 18 Deformed and undeformed shape for the deformable body
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The relationship between deformed and undeformed coordinates is the dis-
placement field in the spatial configuration:

~u ¼~x�~X ¼ u1~E1 þ u2~E2 þ u3~E3 ð15Þ

From a Lagrangian point of view, the coordinates for points in the deformed
configuration can be expressed as a function of the coordinates of points in the
undeformed configuration.

~x ¼~x ~X
� �

ð16Þ

The deformation gradient tensor is defined, based on the relationship between
the position vector and the deformed and undeformed configurations, as:

F ¼ oxi

oXj

� �
ð17Þ

In a deformable body, those properties which change along with the defor-
mation of the body might be described either by the evolution of its value along the
trajectory of a given material point, material description (also known as
Lagrangian description), or by the change of its value at a fixed location in space
occupied by (different for each time instant) particles of the body, spatial (Eule-
rian) description.

The rigid body motion can be decomposed in a displacement and a rotation.
Equation (18) relates the initial and final coordinates of the deformable body:

~x ¼ R �~X þ~c ð18Þ

where
K0 ¼ 2

D
translation vector (independent of position).

R rotation tensor, due to its antisymmetry verifies:

RT � R ¼ R � RT ¼ I ð19Þ

In order to separate the movement due to the deformation from the rigid body
motion, the right Cauchy Green strain tensor is defined as:

C ¼ FT � F ð20Þ

If there is only rigid body motion, this tensor is constant and unitary:

C ¼ FT � F ¼ RT � R ¼ I ð21Þ

The left Cauchy-Green deformation tensor is obtained reversing the order of
multiplication in the formula for the right Cauchy Green strain tensor:

b ¼ F � FT ð22Þ
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The deformations can also be expressed using the Green Lagrange strain tensor
defined according to the following expression:

E ¼ 1
2

FT � F� I
� �

¼ 1
2
ðC� IÞ ð23Þ

This tensor is null when there is no deformation.
When the movement of the solid body is due to a displacement and a rotation,

the deformation gradient tensor could be expressed as:

F ¼ R � U ð24Þ

where U is a symmetric tensor called the right stretch tensor, related with the right
Cauchy Green strain tensor through the following expression:

C ¼ FT � F ¼ U2 ð25Þ

(a) Principal stretches

The principal stretch coefficients are now described. Consider two points, P0 and
Q0, in the undeformed configuration of a deformable body, as shown in Fig. 19,
both related by the vector dL. If the body is subjected to a displacement field defined
through the deformation gradient tensor F, the displaced points P and Q in the
deformed configuration are related by means of the dl vector, and this verifies:

F � A ¼ R � U � A ¼ k � a ð26Þ

where
A unity vector of vector dL on undeformed configuration.
a unity vector of vector dl on deformed configuration.
k ¼ dl

dL
stretch coefficient of vector dL, due to deformation.

P0 (X0) 

Q0 (X0 + A L)

A L 

P (x0)

Q (x0 + a l)

l a

Undeformed configuration
Deformed configuration

Fig. 19 Deformation for a deformable body
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Assuming that there are no rotations and dL only changes its modulus due to
deformation, then the following conditions are satisfied:

F ¼ U ð27Þ

A ¼ a ð28Þ

Therefore (26) can be transformed into the following expression:

U � A ¼ k � a ð29Þ

Reordering this expression, it is possible to obtain:

U� kIð Þ � A ¼ 0 ð30Þ

According to (30), A is an eigenvector of U associated to the eigenvalue k.
Since U is a 3 9 3 positive definite matrix, it has three positive and real eigen-
values called principal stretches

k1� k2� k3 ð31Þ

The right stretch tensor U has three principal directions associated to these
eigenvalues, forming an orthogonal coordinate system named the principal axis
system, where the right stretch tensor adopts the following form:

U ¼
k1 0 0
0 k2 0
0 0 k3

2
4

3
5 ð32Þ

Observing the right stretch tensor expressed in the principal axis, and consid-
ering a displacement field defined through the deformation gradient tensor F, the
movement of L0, vector joining two near points in a deformable body, could be
decomposed in two parts:

First, a variation of the L0 modulus expressed in the principal axis as shown in
Fig. 20 �Lf ¼ �L0 þ DL:

The change in modulus for the components of L0 is defined by the principal
stretches (k1; k2; k3) since:

ki ¼
Li � DLi

Li
ð33Þ

And second, the movement is completed with a rotation of the Lf vector
according to the rotation tensor R.

(b) Strain invariants

The deformation of a body can be expressed in terms of the right Cauchy Green
strain tensor invariants. These invariants are defined as:

I1 ¼ C11 þ C22 þ C33 ð34Þ
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I2 ¼ C11C22 þ C22C33 þ C33C11 � C2
12 � C2

23 � C2
31 ð35Þ

I3 ¼ C11C22C33 þ 2C12C23C31 � C11C2
23 � C22C2

31 � C33C2
12 ð36Þ

According to (25), the principal directions of C are the same as of U, and the
eigenvalues of C are k2

1; k
2
2; k

2
3. The right Cauchy Green strain tensor expressed in

the principal axis has the following shape:

C ¼
k2

1 0 0
0 k2

2 0
0 0 k2

3

2
4

3
5 ð37Þ

Expressing C invariants in terms of principal stretches:

I1 ¼ k2
1 þ k2

2 þ k2
3 ð38Þ

I2 ¼ k2
1k

2
2 þ k2

2k
2
3 þ k2

3k
2
1 ð39Þ

I3 ¼ k2
1k

2
2k

2
3 ð40Þ

(c) Elasticity for incompressible materials

A material is incompressible when its volume does not change when is
deformed, excepting deformations due to thermal expansion (see Fig. 21). In any
other case, after applying a load, the volume in the undeformed configuration is the
same as in the undeformed configuration, therefore the volumetric change coef-
ficient J is equal to 1.

Near incompressibility is often a device by which incompressibility can more
readily be enforced within the context of computational formulations. In this case,

A1

A2

A3

L1L3 

L2

ΔL1

ΔL2

ΔL3

L + ΔL Lf = 0

Fig. 20 Principal stretches
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it is usual to split the deformation locally into a so-called volumetric part and an
isochoric part.

F ¼ J
1
3 �F �F ¼ J�

1
3F

C ¼ FT F �C ¼ J�
1
3C ¼ �F

T �F
ð41Þ

J
1
3 is associated with volume-changing deformations, while F is associated with

volume-preserving deformations. We shall call F and C the modified deformation
gradient and the modified right Cauchy-Green tensors, respectively.

2.1.2 Constitutive Behaviour

To characterize isothermal processes, we postulate the existence of a unique
decoupled representation of the strain-energy density function W = W(C) based on
the kinematic assumption (41) such as

WðCÞ ¼ WvolðJÞ þWdevð�CÞ ð42Þ

where Wvol and Wiso are given scalar-valued functions of J and C respectively that
describe the volumetric (or dilational) and the isochoric (or distortional) responses
of the material.

The constitutive equations for compressible hyperelastic materials in the
standard form

S ¼ 2
oWðCÞ

oC
¼ Svol þ Sdev ð43Þ

where the second Piola-Kirchhoff stress S consists of a purely volumetric contri-
bution and a purely isochoric one. This split is based on the definitions

A1 

A2 

A3 

1L1 

2L2 

3L3 

L1 

L2 

L3 

Fig. 21 Deformation for an incompressible solid
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Svol ¼ 2
oWvolðJÞ

oC
¼ JpC�1 and Sdes ¼ 2

oWdevð�CÞ
oC

¼ J�
2
3ðI� 1

3
C�1 � CÞ : �S

ð44Þ

with the constitutive relations for the hydrostatic pressure p and the modified
second Piola-Kirchhoff stress tensor S established as

p ¼ dWvolðJÞ
dJ

and �S ¼ 2
oWdevð�CÞ

o�C
ð45Þ

Compressible isotropic hyperelasticity in terms of invariants, by analogy with
the decouple representation (42) is

W ¼ WvolðJÞ þWdevð�I1ðCÞ;�I2ðCÞÞ ¼ WvolðJÞ þWdevð�I1ðbÞ;�I2ðbÞÞ ð46Þ

with b ¼ J�2=3b the modified left Cauchy-Green tensor and �I1 and �I2 the first two
modified strain invariants of the symmetric modified Cauchy-Green tensor (C and
b have the same eigenvalues) defined by

�I1 ¼ trC ¼ trb ð47Þ

�I2 ¼
1
2
ðtrðCÞÞ2 � trC2 ¼ 1

2
ðtrðbÞÞ2 � trb2 ð48Þ

�I3 ¼ detðCÞ ¼ detðbÞ ð49Þ

The Cauchy stress tensor r is 1/J times the push-forward of S, that is

r ¼ J�1v�ðSÞ; rab ¼ J�1FaAFbBSAB ð50Þ

Elasticity tensors in the material description. The linearized constitutive
equations are required to obtain numerical solutions of nonlinear (boundary value)
problems using iterative solution techniques of Newton’s type. Consider the
nonlinear second Piola-Kirchhoff stress tensor S at a certain point and configu-
ration. Its variation with respect to the right Cauchy-Green tensor C may be written
as

dS ¼ C :
1
2

dC C ¼ 2
oSðCÞ
oC

ð51Þ

with C the elasticity tensor in the material description or the referential tensor of
elasticities. If we assume the existence of the strain energy density W (hyperelas-
ticity), then using expressions (42) and (51), we obtain the well known relation

C ¼ 4
o2WðCÞ
oCoC

ð52Þ
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Given the structure of the decoupled stress relation, the associated decoupled
elasticity tensor may be written as

C ¼ Cvol þ Cdes ¼ 2
oSvol

oC
þ 2

oSdes

oC
ð53Þ

The elasticity tensor in the spatial description or the spatial tensor of elasticities,
denoted by c, is defined as the push-forward of C times a factor of J-1, that is, the
Piola transformation of C on each index.

c ¼ J�1v�ðCÞ; cabcd ¼ J�1FaAFbBFcCFdDCABCD ð54Þ

For a detailed description of the previous expressions (50) and (54), see
Holzapfel [180].

Numerous specific forms of strain-energy functions have been proposed in the
literature to describe the elastic properties of incompressible as well as com-
pressible materials, and more or less efficient new specific forms are published
almost daily. In the next subsections, we present only some of the most used
models of the many available for hyperelastic materials.

2.1.3 Particular Forms of the Strain Energy Potential

FE codes offer several forms of the strain energy density potential in order to
model the behaviour of elastomer materials. The models may be divided into two
groups, according to the formulation of the strain energy density function (based
on strain invariant or principal stretches) or according to continuum mechanics or
statistical theories (phenomenological or predictive models). Additionally, the
strain energy density functions may be classified as phenomenological or pre-
dictive models.

Phenomenological models require a large number of characterization tests in
order to fit correctly the behaviour of the material. Predictive models are based on
micromechanics considerations. The main advantage of these models is their
ability to fit the material behaviour from a reduced set of characterization tests.
They are able to predict behaviour of the material for strain states without any
experimental data to fit the model. Models based on the first strain invariants and
those based on statistical theories fall within this classification.

(a) Polynomial

The form of the polynomial strain energy potential is shown as follows:

W ¼ Wdev þWvol ¼
XN

i;j¼1

Cij �I1 � 3ð Þi �I2 � 3ð Þ jþ
XN

i¼1

1
Di

Jel � 1
� �2i ð55Þ
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where W is the strain energy per unit of reference volume, N is a material
parameter with values equal to or lower than six and Cij and Di are temperature
dependent material parameters.

The initial shear modulus and bulk modulus are defined according to (56)
and (57).

l0 ¼ 2 C10 þ C01ð Þ ð56Þ

K0 ¼
2

D1
ð57Þ

From the general polynomial form shown in (55), some particular forms of
strain energy potential are shown below without considering the volumetric
contribution:

Mooney-Rivlin (N = 2)

Wdev ¼ C10 �I1 � 3ð Þ þ C01 �I2 � 3ð Þ ð58Þ

Three term Mooney-Rivlin (N = 2)

Wdev ¼ C10 �I1 � 3ð Þ þ C01 �I2 � 3ð Þ þ C11 �I1 � 3ð Þ �I2 � 3ð Þ ð59Þ

Signorini (N = 3)

Wdev ¼ C10 �I1 � 3ð Þ þ C01 �I2 � 3ð Þ þ C20 �I1 � 3ð Þ2 ð60Þ

Third Order Invariant (N = 4)

Wdev ¼ C10 �I1 � 3ð Þ þ C01 �I2 � 3ð Þ þ C11 �I1 � 3ð Þ �I2 � 3ð Þ þ C20 �I1 � 3ð Þ2 ð61Þ

Third Order Deformation or James-Green-Simpson (N = 5)

Wdev ¼ C10 �I1 � 3ð Þ þ C01 �I2 � 3ð Þ þ C11 �I1 � 3ð Þ �I2 � 3ð Þ
þ C20 �I1 � 3ð Þ2þC30 �I1 � 3ð Þ3 ð62Þ

(b) Reduced polynomial

Reduced polynomial models are related with the polynomial strain energy
potential and correspond with certain selections of material parameters Cij. For this
model, dependency with the second strain invariant is removed. Sensitivity to the
second strain invariant of strain energy density function is much lower than for the
first strain invariant. The form of the reduced polynomial strain energy potential is
as follows:

W ¼ Wdev þWvol ¼
XN

i¼1

Ci0 �I1 � 3ð Þi þ
XN

i¼1

1
Di

Jel
1 � 1

� �2i ð63Þ
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where U is the strain energy per unit of reference volume, N is a material
parameter with values equal to or lower than six and Ci0 and Di are temperature
dependent material parameters.

The initial shear modulus and bulk modulus are defined according to expres-
sions (64) and (57).

l0 ¼ 2C10 ð64Þ

Derived expressions from the reduced polynomial potential are the Neo-
Hookean and Yeoh forms. The form of both strain energy potentials, without
considering the volumetric part, are shown in (65) and (66) for the Neo-Hookean
and Yeoh potentials, respectively.

W ¼ Wdev þWvol ¼ C10 �I1 � 3ð Þ þ 1
D1

Jel � 1
� �2 ð65Þ

W ¼Wdev þWvol ¼ C10 �I1 � 3ð Þ þ C20 �I1 � 3ð Þ2þC30 �I1 � 3ð Þ3

þ 1
D1

Jel � 1
� �2þ 1

D2
Jel � 1
� �4þ 1

D3
Jel � 1
� �6 ð66Þ

(c) Gent

The Gent model is a phenomenological model based on the concept of chain
extensibility. The form of the Gent strain energy potential is as follows:

W ¼ Wdev þWvol ¼
lJm

2
ln 1�

�I1 � 3
Jm

� ��1

þ 1
D

J2
el � 1

2
� ln Jel

� �
ð67Þ

where U is the strain energy per unit of reference volume, M is the initial shear
modulus, Jm is the limiting value of I1 - 3 and D is the material incompressibility
parameter. As the parameter Jm goes to infinity, the model is converted into Neo-
Hookean form.

The initial bulk modulus is defined according to expression (68).

K0 ¼
2
D

ð68Þ

(d) Potential functions based on principal stretches:

(d.1) Ogden
The form of the Ogden strain energy potential is:

W ¼ Wdev þWvol ¼
XN

i¼1

2li

a2
i

ðkai

1 þ k
a2

2 þ k
a3

3 � 3Þ þ
XN

i¼1

1
Di
ððJel � 1Þ2i ð69Þ

where U is the strain energy per unit of reference volume, N is a material
parameter with values equal to or lower than six and li, ai and Di are temperature
dependent material parameters.
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The initial shear modulus is defined according to (70) while the initial bulk
modulus is a function of the parameter D1, as shown in (57).

l0 ¼
XN

i¼1

li ð70Þ

Other models are based on statistical theories including the definition of the
strain potential parameters with physical interpretation. These models are derived
from simplified models of polymeric chains and statistical considerations of chain
length.

(d.2) Marlow
The form of the Marlow [181] strain energy potential is according to (42),

where Udev depends on the deviatoric part of the first invariant Wdev �I1ð Þ.

(e) Statistical models:

(e.1) Arruda-Boyce
The form of the Arruda-Boyce strain energy potential is as follows:

W ¼Wdev þWvol ¼ l
1
2

�I1 � 3ð Þ þ 1

20k2
m

�I2
1 � 9
� �

þ 11

1050k4
m

�I3
1 � 27
� �(

þ 19

7000k6
m

�I4
1 � 81

� �
þ 519

673750k8
m

�I5
1 � 243
� �)

þ 1
D

J2
el � 1

2
� ln Jel

� �
ð71Þ

where W is the strain energy per unit of reference volume, and l, km and Di are
temperature dependent material parameters. km corresponds to the maximum
stretch until the material stiffness grows significantly.

The initial shear modulus and bulk modulus are defined according to (72)
and (68).

l0 ¼ l 1þ 3

5k2
m

þ 99

175k4
m

þ 513

875k6
m

þ 42039

67375k8
m

 !
ð72Þ

(e.2) Van der Waals
The form of the Van der Waals strain energy potential, also known as the Kilian

model, is:

W ¼ Wdev þWvol

¼ l � k2
m � 3

� �
þ ln 1� gð Þ þ g½ � � 2

3
a

~I � 3
2

� �3
2

( )
þ 1

D

J2
el

2
þ ln Jel

� �
ð73Þ

where U is the strain energy per unit of reference volume, ~I ¼ ð1� b ÞI1 þ b I2

and g ¼
ffiffiffiffiffiffiffiffi
~I�3
km�3

q
.
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l is the initial shear modulus (l0), km is the locking stretch, a is the global
interaction parameter, b is an invariant mixture parameter whose value is com-
prised between 0.0 and 1.0 and D defines the volumetric behaviour.

The initial shear modulus and bulk modulus are defined according to expres-
sions (68) and (74).

l0 ¼ l ð74Þ

2.2 Modelling the Inelastic Behaviour of Elastomers

Several authors have developed constitutive models, some of them phenomeno-
logical models [13, 49, 50, 182–187] and others statistical or micromechanical
based models [11, 12, 188–192], to predict the typical inelastic effects of elastomer
materials (hysteresis, Payne effect, Mullins effect and permanent set). These models
are able to reproduce one or two inelastic effects normally, but a constitutive model
including all the effects with sufficient accuracy has yet to be developed.

A brief summary of the main damage models available in scientific publications
is included in this section as well as detailed descriptions of constitutive models to
incorporate viscoelastic behaviour in the time and frequency domains or inelastic
effects such as the Mullins or Payne effects, frequency dependent behaviour or
mechanical hysteresis into FE codes (basically, descriptions of the Overlay
method, and the Bergström and Boyce, Ogden and Roxburgh and Simo models).

2.2.1 Time Domain Viscoelasticity

The viscoelastic behaviour of elastomers is usually approached by means of
rheological models, basically the generalized Maxwell model, which is imple-
mented in commercial FE codes by means of a Prony series. These concepts are
described in the following paragraphs.

Viscoelastic properties are modelled by means of linear viscoelastic models
(rheological models), combining linear springs and dashpots in the time domain.
The springs model the elastic behaviour while the dashpots are responsible for
viscous dissipation. A basic description of the behaviour of both elements is shown
in Fig. 22.

Fig. 22 Basic elements of a rheological model: linear spring and dashpot
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Combining these elements in serial or parallel, it is possible to construct dif-
ferent viscoelastic models such as those of Maxwell, Kelvin, Zener, etc. Different
models are now analysed in terms of quasi-static and cyclic behaviour in order to
obtain the relaxation and complex moduli.

(a) Maxwell’s model

Maxwell’s model consists of a linear spring-dashpot series, as shown in Fig. 23.
The relaxation behaviour of this model, where the stresses are fully relaxed,

suggests that this element behaves like a viscoelastic linear fluid. Relaxation,
defined through ER(t), is the fundamental function defining viscoelastic behaviour.
By applying a step strain to the model it is possible to obtain its output in terms of
stress.

Since both components are placed in series, the whole element strain is defined
as e ¼ espring þ edashpot and the temporal derivative is:

_e ¼ _espring þ _edashpot ð75Þ

Replacing and reordering (75) with the terms _espring ¼ _r=E and _edashpot ¼ r=g it
is possible to obtain (76), defining the stress–strain relationship for Maxwell’s
model (see Fig. 24).

_rþ E

g
r ¼ E_e ð76Þ

The relaxation modulus ER(t) could be obtained solving (76) for a step strain
condition. For t [ 0 the strain derivative is _e ¼ 0 and therefore:

_rþ E

g
r ¼ 0 t [ 0 ð77Þ

Fig. 23 Maxwell’s model

Fig. 24 Relaxation of Maxwell’s model. Stress is relaxed to zero
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When a step deformation is applied to the element, the dashpot behaves like a
rigid element due to the infinite velocity at the instant of strain application. In this
way, initial stress is defined through the spring behaviour, considering it as an
initial condition to solve the differential equation r(0) = Ee0, that is, the instan-
taneous elastic response. The expression (78) is obtained solving (77):

rðtÞ ¼ Ee0e�
E
gt ð78Þ

This stress relaxation can be observed in Fig. 23 and the relaxation modulus of
Maxwell’s model is extracted as:

ERðtÞ ¼ Ee�
t

tr ð79Þ

where tr ¼ g
E is the relaxation time.

To obtain Maxwell’s complex modulus, it is necessary to solve again Eq. (76),
but for a stationary sinusoidal strain input e� ¼ e0eixt instead of the step strain
input used previously.

C ¼ E
ix

ixþ E=g
e0 ¼ E

ixtr
ixtr þ 1

e0 ð80Þ

The complex modulus for Maxwell’s model is:

E�ðxÞ ¼ E
ixtr

1þ ixtr
ð81Þ

(b) Zener’s model

Zener’s model consists of a set of linear springs and a dashpot placed in
parallel. This model is based on Maxwell’s model, adding an additional spring in
parallel to the spring-dashpot set, as shown in Fig. 25.

Zener’s model is the simplest viscoelastic model with solid properties with
reasonable physical properties, in the sense that the relaxation values are rea-
sonable and the creep time is finite.

If r1 is the stress due to the spring and rM the stress in the Maxwell element,
the total stress for the Zener model is defined according to (82)

E

EFig. 25 Zener’s model
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r ¼ r1 þ rM ð82Þ

Combining Hooke’s law to model the spring behaviour and the constitutive
equation for the Maxwell element, the output of the Zener element to a step strain
input is:

rRðtÞ ¼ E1e0 þ Ee�
E
gte0 t [ 0 ð83Þ

And therefore, the relaxation modulus for Zener’s model is:

ERðtÞ ¼ E1 1þ E

E1
e�t=tr

� �
ð84Þ

These relationships are shown in Fig. 26.
Zener’s complex modulus can be obtained solving Eq. (82) for a stationary

sinusoidal strain.

r� ¼ E1e� þ E
ixtr

1þ ixtr
e� ð85Þ

The complex modulus for Zener’s model is:

E�ðxÞ ¼ E1 1þ E

E1

ixtr
1þ ixtr

� �
ð86Þ

(c) Generalized Maxwell model

Zener’s model can be generalised adding more Maxwell elements in parallel, as
shown in Fig. 27. This model has the same qualitative properties as Zener’s model
but with better capacity to fit experimental data.

Following the nomenclature used in Zener’s model, the total stress in the model
is expressed as:

r ¼ r1 þ rM1 þ rM2 þ � � � þ rMn ð87Þ

The relaxation modulus is obtained adding the individual terms of the different
Maxwell models, obtaining in this way the so called Prony series:

Fig. 26 Relaxation of Zener’s model. Stress is relaxed to a given value for infinite time
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ERðtÞ ¼ E1 þ
Xn

j¼1

Eje
�t=trj ð88Þ

The complex modulus is derived from Maxwell’s model in a similar way:

E�ðxÞ ¼ E1 þ
Xn

j¼1

Ej
ixtrj

1þ ixtrj
ð89Þ

The viscoelastic behaviour of elastomers is approached by a generalized
Maxwell model, which is implemented in commercial FE codes by means of a
Prony series and takes into account the effect of the strain rate.

2.2.2 Frequency Domain Viscoelasticity

Several constitutive models have been developed by Lubliner [193], Johnson et al.
[34] and Simo [35] to analyse large strain viscoelastic behaviour. In the particular
case of simulations of small amplitude oscillations around a base state, the model
proposed by Morman [60] is commonly available in commercial FE codes. This
method can be applied to the analysis of small amplitude oscillations in visco-
elastic solids superimposed on an initial static deformation. The superimposed
oscillation can be small enough in order to linearise the constitutive equations. The
basic constitutive equation was initially formulated by Lianis [194], who derived
viscoelastic small strain theory superimposed on large static deformations using
the finite linear viscoelasticity theory formulated by Coleman and Noll [195]. This
model assumes a separation between preload and time effects. Stiffness equations
defined in the FE method are identical to those that define non linear elasticity,
except for considering complex values for the stiffness matrices and displacement
vectors. Using this method, which is valid for viscoelastic analysis in the

E1 1η

E∝

E2 2η

En n η

Fig. 27 Maxwell’s model
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frequency domain, the steady state response to a small oscillation for a given
frequency is calculated simply by solving a linear equation system (with complex
coefficients) and it has the major advantage of an important reduction of the
computational cost compared with incremental procedures used in the time
domain.

The general formulation of small oscillation loads is:

L� e;xð Þ ¼ D eð Þ þ ixU� e;xð Þ ð90Þ

where
L� e;xð Þ is the complex stiffness modulus expressed as a function of static

deformation and frequency.
D eð Þ is the static stiffness modulus expressed as a function of the static

modelling parameters.
U� e;xð Þ is the cyclic behaviour term depending on the static deformation and

excitation frequency.

As can be observed in the model definition, amplitude dependence is not
considered and this is the main limitation of this model for reproducing the
behaviour of filled elastomers.

Functions in the tensor U� are dependent on the static strain and frequency.
Frequency dependent behaviour is incorporated through the Fourier transform of
the viscous shear relaxation function g*(x) defined in real and imaginary parts as:

g0 xð Þ ¼ 1
2x

G0 xð Þ � G1

G1
ð91Þ

g00 xð Þ ¼ 1
2x

G00 xð Þ
G1

ð92Þ

where
G� xð Þ is the dynamic shear modulus
G1 is the infinite (long term) shear modulus.

2.2.3 Constitutive Models for Inelastic Effects

This section provides a brief summary of different constitutive models available in
the technical literature for including inelastic effects in the material modelling of
elastomers.

Holzapfel et al. [37] formulated a continuous phenomenological model
extending the pseudo-elastic model proposed by Ogden–Roxburgh to include the
effects of permanent set. This damage model allows the Mullins effect and per-
manent set to be reproduced simultaneously. Mechanical and thermal hysteresis,
essentially dependent on the strain rate, is not included. The model idealizes its
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stress response so the unloading path is the same as the loading path. It is based on
a strain energy density function describing the loading path and a damage function
for the unloading path, as Ogden and Roxburgh proposed. The main difference
between the models is that Holzapfel-Stadler-Ogden consider three damage values
to govern the anisotropic damage mechanism as a function of the principal
stretches. (The Ogden–Roxburgh model only considered a single damage variable
for the description of isotropic damage as a function of the strain energy density
instead of principal stretches).

Holzapfel [180] propounded a strain rate independent isotropic damage model
for the finite strain domain. This model can describe the Mullins effect but fails to
reproduce permanent set and hysteresis. Besides, it is limited to loading histories
with very low strain rates, where viscous effects can be neglected. This model is
based on a pure phenomenological approach using a continuous damage model to
describe macroscopic constitutive behaviour for materials with distributed micro
cracks.

Lion [8] suggested a constitutive model based on 3D finite strain visco-plas-
ticity theory to model the inelastic behaviour of reinforced elastomers. The model
has the capacity to predict the Mullins effect as well as nonlinear dependency with
the strain rate and weak equilibrium hysteresis. The basic structure of this model is
the decomposition of the total stress in an equilibrium stress independent of the
strain rate and a strain rate dependent on overstress. The uniaxial model is gen-
eralized in a three dimensional one using dual variables and their derivatives. Non
linear strain rate dependency is represented using a stress-dependent relaxation
time, while equilibrium hysteresis is introduced by means of arc-length. The
Mullins effect is taken into account through a continuous damage model applying
the effective stress concept. An important characteristic of the model is that it does
not use decomposition of the deformation gradient into elastic and inelastic parts.
A notable drawback, especially from the point of view of applicability, is that the
model needs to fit seventeen material parameters, six for the overstress modelling,
eight for equilibrium stress conditions and three for the Mullins effect.

Miehe and Keck [13] propounded a phenomenological material model to
simulate superimposed elastic, viscoelastic and plastic stress responses including
large strain damage. This formulation is suitable for modelling reinforced elas-
tomer behaviour in monotonic and cyclic strain processes in isotherm conditions.
The fundamental idea of this model, based on experimental observations, is to
consider locally stored free energy decomposed in an additive way into three
different contributions acting in parallel: a basic elastic stress response, a strain
rate dependent viscoelastic overstress and a strain rate independent elastoplastic
overstress. Damage is considered isotropic in these three parts. The model is able
to reproduce the hysteresis of the equilibrium response for the material, the fre-
quency dependent hysteresis that provokes an increment in the width of hysteresis
cycles when the strain rate and Mullins effect are increased.

The model proposed by Besdo and Ihlemann [38, 196] is a phenomenological
constitutive model that allows the material hysteresis and permanent set to be
reproduced taking into account the influence of the load history influence to
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simulate damping effects. However, the load direction, temperature and long
deformation processes are not taken into account. The final configuration of the
model is fully three dimensional and the defining expressions contain Lagrangian
stress and strain tensors exclusively. Strain history is represented through a simple
scalar parameter, therefore the loading direction that could provoke an anisotropic
behaviour is not taken into account and it is assumed that stress values are inde-
pendent of strain rate and depend on deformation magnitude only. Rubber quasi-
incompressibility is modelled using linear compression-pressure behaviour with a
high Bulk modulus. For inelastic models, strain energy density is not a potential,
therefore the material model is expressed directly in terms of stresses. Its for-
mulation is based on an approximation of hysteresis cycles measured between two
asymptotic limiting curves. Stress changes in the range compressed between those
lines is described by means of a specific differential equation. Total stresses are
composed of the sum of basics stresses and the solution of the differential equa-
tion. Deviatoric and volumetric contributions are treated separately, so each var-
iable can be decomposed into its deviatoric and volumetric part.

Qi and Boyce [197] proposed a 3D micromechanical constitutive model to
model the Mullins effect adopting the concept of Mullins and Tobin [105], who
considered material softening as an evolution in the hard and soft domains within
the elastomer while the stretch produces a quasi-irreversible rearrangement of
molecular chains, due to a non-related local deformation resulting from short
polymeric chains reaching the extensibility limit. This non-related deformation
provokes a displacement in the molecular network joints with regard to the initial
configuration, producing a rearrangement of the hard and soft domains in the
elastomeric phase with the strain, increasing the effective volume of the soft
domain and therefore a material softening with deformation.

Govindjee and Simo [192] proposed a model to predict the Mullins effect in
reinforced elastomers from a micromechanical point of view. The model is based
on a free energy function with first order precision which is derived from the
compound of free energy densities from its components. Subsequently, the same
authors proposed a phenomenological model based on the former one [6, 7], more
efficient from a computational point of view. The main drawback of microme-
chanical models is that the constitutive equation for the material involves the
integration of a complex expression over a domain dependent on the strain history
in the polymer network space phase. The real application of the model is
unworkable in most cases due to computational problems.

Marckmann et al. [198] proposed a constitutive model to reproduce simulta-
neously the Mullins effect, the hysteretic behaviour of elastomers and strain
amplitude dependence. This model brings together three available models, those of
Arruda and Boyce [28] to model hyperelastic behaviour, Bergström and Boyce
[11, 12] to model material hysteresis and Simo [35] to simulate the Mullins effect.
According to the authors, the three models are based on the physics of polymer
chains and can be put together efficiently in a single constitutive equation. Loss of
stiffness after each successive cycle due to viscoelastic effects is not taken into
account. To improve this situation, especially in the first loading cycles, it would
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be necessary to add a time dependent term to the model. Besides, relaxation
parameters would reduce the influence of the Mullins effect that is overestimated
in the first loading cycles.

Four constitutive models have been selected for detailed description due to their
special interest. One of them has been implemented in commercial FE codes with
modifications (Ogden and Roxburg), another without modifications (Bergstöm and
Boyce), while the Overlay method and Simo damage model could easily be
incorporated into FE analysis of elastomers [199].

(a) Overlay method

The overlay method, proposed by Austrell et al. [54], is based on the sum of
contributions obtained in simple models. Originally, this model was suggested by
Besselling [55] to analyse yield and plasticity in metals. The basic idea behind this
model is that the material is divided into several parallel fractions, each of them
modelled by means of conventional properties. Complex behaviour of the material
is obtained using a combination of simple constitutive models in parallel and
suitable material parameters. The model enables the dynamic behaviour of filled
elastomers to be reproduced with relative accuracy, including the Payne effect as
well as frequency dependent behaviour and mechanical hysteresis. However, this
model is not able to reproduce permanent set or the Mullins effect. Olsson and
Austrell [58] proposed a procedure to fit the model constant using steady state
dynamic experimental shear tests.

The most general form of the model is a multiaxial version of a unidimensional
model proposed by Kümmlee, represented in Fig. 28.

Each fraction has elastic, plastic and viscous strains that are added with the
same strain level for all the fractions considered.

The elastic contribution of the strain in each fraction i, results in an elastic stress
in each fraction re

i , according to Hooke’s law:

Fig. 28 Unidimensional
rheological model proposed
by Kümmlee
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re
i ¼ Ceee

i ð93Þ

where Ce is the elastic modulus tensor and ee
i is the elastic strain in fraction i.

The viscoelastic stress response in the j fraction, rv
j ðtÞ, is defined through the

convolution integral (93) which describes the linear viscoelastic response for an
arbitrary strain history

rv
j ðtÞ ¼

Z t

�1

ERjðt � t0Þdev
j ðt0Þ ð94Þ

where ERj is the relaxation modulus for a Maxwell element (see Fig. 23) for the
fraction j. t and t0 are two time instants and g is the viscosity coefficient.

The elastoplastic stresses for a fraction l, rep
l , can be modelled as shown in

Fig. 29, where rf is the stress in the frictional element and Ep is the elastic
modulus of the fraction.

If rep
l \rf elastic deformationð Þ

For plastic deformation

(
rep

l ¼
Epe
rf

ð95Þ

The total stress is the sum of stresses in each fraction

r ¼
XN

k¼1

wkrk ð96Þ

where r is the total stress, wk is the size of the relative volume for the fraction
k and N is the number of fractions in the model.

The total strain rate deformation tensor is divided for each fraction into elastic,
plastic and viscous parts:

_e ¼ _ee
k þ _ep

k þ _ev
k ð97Þ

Fig. 29 Elastoplastic stress for a simple frictional model
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For reinforced elastomers, the model proposed by Austrell [53], stress fractions
are divided into viscoelastic and elastoplastic fractions with the same weights for
both. Therefore, the Cauchy stress tensor, r, is the sum of contributions of elastic,
viscoelastic and elastoplastic stresses.

r ¼ re þ rve þ rep ð98Þ

where the elastic stress contribution is defined according to Eq. (87), the visco-
elastic contribution as the sum of viscoelastic fractions is:

rve ¼
XMve

j¼1

rve
j ð99Þ

And the elastoplastic stress contribution is the sum of the elastoplastic fractions,

rep ¼
XMep

l¼1

rep
l ð100Þ

expressed by using the ideal plasticity model of Von Mises for simplicity, although
more sophisticated elasto-plastic models could be used. Mve and Mep represent the
number of visco-elastic and elasto-plastic fractions, respectively.

The overlay method can be used in a FE analysis constructing a model with
several identical meshes in parallel, sharing nodes and each one with a different

Fig. 30 Graphical
representation of the overlay
method for its use in FE
analysis
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material behaviour (visco-hyperelastic and elasic-plastic), as shown in Fig. 30.
The overlay method has a significant advantage as it uses constitutive models
available in non-linear FE codes.

(a) Bergström and Boyce model

The model proposed by Bergström and Boyce [11] is micromechanical based,
mainly related with the movement of polymer chains when the material is stret-
ched. Time dependent behaviour is governed by the reptational displacement
combined with the frictional force of polymer chain sections subjected to a rec-
onfigurational movement due to molecular slipping. The mechanical behaviour of
the material can be broken down into two different parts: an equilibrium network
corresponding to stress free configuration after a relaxation time and a second
network which captures the deviation from the equilibrium state depending on the
strain rate. In this way, the material is modelled as two polymer networks acting in
parallel as shown in Fig. 31. This model is able to reproduce the mechanical
stiffness of filled elastomers together with the time dependent behaviour and
hysteresis. Additionally, it is able to predict the material behaviour as a function of
the strain rate accurately and for arbitrary load histories. However, it is not able to
model the stress softening in the first load cycles experienced by the elastomer
material (Mullins effect).

The network A is an ‘‘ideal network’’ and can be modelled through typical
constitutive hyperelastic models. Network B incorporates inelastic effects into the
model according to experimental observations.

The Cauchy stresses acting in network A can be obtained from the eight chain
network proposed by Arruda and Boyce [28], where the deformation gradient is
separated into its distortion and dilatational components. This eight chain model is
defined as an isotropic hyperelastic material model in which the strain energy
density depends only on the effective distortional stretch.

k�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tr C�½ �

3

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
tr B�½ �

3

r
ð101Þ

and the dilatational one

Fig. 31 Unidimensional
rheological model proposed
by Bergström and Boyce
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J ¼ detðFÞ ð102Þ

Therefore, the Cauchy stresses in network A are defined according to the
equation:

rA ¼
l0

A

J�k�
L�1 �k�

klock
A

	 


L�1 1
klock

A

	 
 dev B�½ � þ j J � 1½ �1 ð103Þ

where l0
A, klock

A and j 2 Rþ are material constants, B� ¼ J�2=3FFT and �k� ¼ffiffiffiffiffiffiffiffiffi
tr B�ð Þ

3

q
is the chain effective distortional stretch.

The deformation gradient in network B can be separated into an elastic and a
viscous part using multiplicative decomposition:

FB ¼ Fe
BFv

B ð104Þ

The Cauchy stresses in this network are obtained in a similar way to those
evaluated for network A:

rB ¼
l0

B

Je
B
�ke�

B

L�1 �ke�
B

klock
B

	 


L�1 1
klock

B

	 
 dev Be�
B

� �
þ j Je

B � 1
� �

1 ð105Þ

where

Je
B ¼ detðFe

BÞ ð106Þ

and

�ke�
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðBe�Þ

3

r
ð107Þ

Fig. 32 Unidimensional
rheological model proposed
by Bergström and Boyce to
improve unloading behaviour
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The total stress in the element is the sum of the stress contributions of network
A and B: rA þ rB.

The model, defined in this way, addresses reasonably most situations excepting
unloading behaviour at high strain rates. By adding a frictional element to network
B in the previous model, it is possible to improve this aspect, as is shown in
Fig. 32.

The motivation for this modification is based on the experimental observation
of unloading stresses and their lower dependency on the strain rate, suggesting that
the mechanism involved in the unloading behaviour of network B has a frictional
character.

This idea can be included in a constitutive model for a uniaxial loading state
using a strain rate dependent frictional element governed by the expression:

_ep ¼ _ej j rB

g
ð108Þ

where _e is the strain rate tensor, rB is the stress in network B and g is the viscosity
coefficient which takes different values for the loading or unloading paths. This
idea can be generalised to a finite strain network using multiplicative decompo-
sition of the deformation gradient into three different contributions (elastic, plastic
and viscous):

FB ¼ Fe
BFv

BFp
B ð109Þ

The stress in network B is calculated according to (105) and the kinematic is
defined through the additive decomposition of the total strain velocity gradient in
the three contributions:

LB ¼ Le
B þ Fe

BLv
BFe�1

B þ Fe
BFv

BLp
BFv�1

B Fe�1
B ¼ ~L

e
B þ ~L

v
B þ ~L

p
B ð110Þ

where Lv;p
B ¼ _F

v;p
B Fv;p�1

B ¼ Dv;p
B þWv;p

B and ~L
v;p
B ¼ ~D

v;p
B þ ~W

v;p
B , D ¼ 1=2ðLþ LTÞ

is the symmetric part of the strain deformation gradient or strain rate tensor and

W ¼ 1=2ðL� LTÞ is the anti-symmetric part of the strain deformation gradient or
rotational velocity tensor.

In order to develop a single decomposition, ~W
v
B ¼ ~W

p
B ¼ 0 and therefore,

~D
v
B ¼ _cB

r0B
r0B
 

F

and ~D
p
B ¼

_F
 
g

r0B ð111Þ

with _cB the effective strain rate defined as

_cB ¼ C1
�kv

B � 1
� �C2 s

ŝ

	 
m
ð112Þ

where s ¼ devðrBÞk kF is the effective stress, and C1;C2; ŝ and m are material

constants. For the proposed model, constants Ĉ1 	 C1=̂sm and m are positive while
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C2 is a constant that, based on molecular dynamics, has a probable value near to -

1. And finally, the g parameter is expressed as:

g ¼ gup; If r0 � Dv
B

� �
[ 0

gdown; Otherwise

�
ð113Þ

(b) Ogden and Roxburgh model

Ogden and Roxburgh [51] suggested a phenomenological model to reproduce
the Mullins effect (considering it as a quasi-static effect) and it is valid for the
multiaxial general strain and stress state. The model is based on incompressible
isotropic elastic theory supplemented by an additional continuous parameter,
interpreted as a damage parameter, which modifies the strain energy density. This
parameter controls the material properties allowing a strain energy density func-
tion to be used for the loading and modified in unloading conditions, reproducing
the stress softening. Both behaviours are different from the virgin response of the
material. Dissipation is measured as a damage function depending only on the
damage parameter and the point on the loading path where the unloading starts.
Therefore, this damage function is directly related with the dissipated energy in the
first loading–unloading cycle and the damage parameter can be expressed, in
general, in an implicit form in terms of strain. When the damage parameter is
active, an equation to model damage evolution can modify the strain energy
density function. Since the material response is governed by different strain energy
density functions in the first loading path than in the unloading path, the model is
known as pseudo-elastic.

The model describes the response of the material in terms of a strain energy
density function with the form WðF; gÞ. This definition is used in standard non-
linear elasticity, excepting for the scalar variable g. This function is called the
pseudo-energy function and is the basis of the pseudo-elasticity theory. In this
model, g is considered as a continuous scalar parameter, and the material is
considered incompressible. Therefore, det F ¼ 1, being F the deformation
gradient.

The second stress tensor of Piola-Kirchoff and the Cauchy stress tensor S and r
are defined as:

S ¼ oW

oF
ðF; gÞ � pF�1 and r ¼ F

oW

oF
ðF; gÞ � p1 ð114Þ

where p is a Lagrange multiplier associated to the incompressibility constraint and
1 is the unity tensor.

Equilibrium equations in a body without external forces are expressed by means
of the equation:

divr ¼ 0 in X ð115Þ

And the following equation is necessary due to the inclusion of g in the model:
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oW

og
ðF; gÞ ¼ 0 in X ð116Þ

During a deformation process, the variable g can be active, inactive or can be
activated in a continuous way. When it is inactive, the material behaves as an
elastic material governed by the strain energy density function WðF; gÞ, being g a
constant parameter. When g is active, its value is determined in terms of the
deformation gradient tensor using (117),

g ¼ v Fð Þ ð117Þ

The material stills remains elastic but following the behaviour imposed by the
modified strain energy density function WðF; vðFÞÞ. The model is only applicable
to isotropic materials, therefore the pseudo-strain energy function can be expressed
in terms of positive principal stretches, k1; k2; k3, where k2

i are the eigenvalues of
the right Cauchy stress tensor.

C ¼ FT F ð118Þ

And taking into account the incompressibility constraint,

k1k2k3 ¼ 1 ð119Þ

the pseudo-strain energy functions are expressed as ~Wðk1; k2; gÞ and the Cauchy
stress components are

ri ¼ ki
o ~W

oki
ðk1; k2; gÞ � p ði ¼ 1; 2; 3Þ ð120Þ

Therefore, the equilibrium equation (116) is simplified to

o ~W

og
ðk1; k2; gÞ ¼ 0 ð121Þ

The first loading path for a perfectly elastic material is also the unloading path,
considering ~Wðk1; k2Þ as a way of characterising the loading path. Standard strain
energy density functions can be used for this function, for instance the Yeoh model
(66). Using equation (120) and removing p, the following expression can be
obtained:

~rb � ~r3 ¼ kb ~Wb with b ¼ 1; 2 ð122Þ

where the swung dash indicates the primary loading path and therefore the con-
straint oW

og ¼ 0 is inoperative. The usual constraints are also imposed:
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~Wð1; 1Þ ¼ 0; ~Wbð1; 1Þ ¼
o ~W

okb
ð1; 1Þ ¼ 0 with b ¼ 1; 2

~W11ð1; 1Þ ¼
o2 ~W

ok2
1

ð1; 1Þ ¼ ~W22ð1; 1Þ ¼
o2 ~W

ok2
2

ð1; 1Þ ¼ 2 ~W12ð1; 1Þ ¼
o2 ~W

ok1ok2
ð1; 1Þ ¼ 4l

ð123Þ

where l is the shear modulus of the material.
Unloading is possible from any point in the primary loading path, and the

beginning of unload is the point to activate g. For the first loading and successive
loading–unloading cycles, g varies according to (124), which is supposed to be
solved explicitly for g,

g ¼ vðk1; k2Þ ¼ vðk2k1Þ ð124Þ

Therefore, a strain energy density function for the unload, symmetric in terms
of k1; k2ð Þ and expressed as w k1; k2ð Þ, is defined next:

wðk1; k2Þ ¼ Wðk1; k2; vðk1; k2ÞÞ ð125Þ

Considering ðk1m; k2mÞ as the values of ðk1; k2Þ at the starting point of the
unload implies that vðk1m; k2mÞ ¼ 1, therefore v and w depend on the point where
the unload starts.

The pseudo-strain energy function proposed by Ogden and Roxburgh is:

Wðk1; k2; gÞ ¼ g ~Wðk1; k2Þ þ /ðgÞ ð126Þ

where /ðgÞ is a damage function with the following values for the first unloading
cycle: g ¼ 1 and /ð1Þ ¼ 0. The next expression is obtained substituting (126) into
(121), which defines g in terms of strain.

�/0ðgÞ ¼ ~Wðk1; k2Þ ð127Þ

Considering g ¼ 1 at any point in the first load path where an unloading path is
started, we have

�/0ð1Þ ¼ ~Wðk1m; k2mÞ 	 Wm ð128Þ

and deriving equation (127):

�/00ðgÞ dg
dk
¼ Ŵkðk1; k2Þ ð129Þ

If the unloading path is associated with the reduction of the value associated to
g, the next constraint based on stress softening is /00ðgÞ\0 which is satisfied by
(129). If the material is unloaded completely k1 ¼ k2 ¼ 1, g reaches its minimum
value gm, and it satisfies
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/0ðgmÞ ¼ � ~Wð1; 1Þ ¼ 0 ð130Þ

When the material is damaged, it is unloaded completely and the pseudo-strain
energy function has a residual value

wð1; 1Þ ¼ Wð1; 1; gmÞ ¼ /ðgmÞ ð131Þ

This residual value of energy, /ðgmÞ, is unrecoverable and can be interpreted as
a measure of the dissipated energy required to damage the material. For our
convenience and according to (128), the function f is defined independently of Wm,

/0ðgÞ þWm ¼ /0ðgÞ � /0ð1Þ ¼ f ðgÞ ð132Þ

that satisfies the same constraints as function /, that is,

f ð1Þ ¼ 0; f ðgmÞ ¼ Wm ð133Þ

and integrating (132) with regard to g, we obtain:

/ðgÞ ¼
Zg

1

f ðgÞdgþ ð1� gÞWm 	 Uðg;WmÞ ð134Þ

where function U is defined to reflect the dependency of / with regard to Wm, and
then

/ðgmÞ ¼ Uðg;WmÞ ð135Þ

The dissipation ratio is obtained differentiating (134)

_/ðgmÞ ¼
dU

dWm
ðgm;WmÞ _Wm ¼ ð1� gmÞ _Wm ð136Þ

where the dot indicates a temporal derivative or the derivative with regard to any
other strain parameter that grows with the primary loading path. Since gm
 1 only
happens at the beginning of the first loading cycle and the stored energy in the
primary loading path should increase, that is _Wm [ 0, the dissipation ratio is non-
negative according to (136) (in agreement with the second law of thermodynamics
and the Clausius-Duhem inequality).

The term Wm � /ðgmÞ is the recoverable energy and increases with the ratio
gm

_Wm. Function / determines the damage parameter in terms of the strain state
through (127). The selection of /ðgÞ is arbitrary, but subject to the following
constraints:

/ð1Þ ¼ 0;�/0ð1Þ ¼ ~Wðk1m; k2mÞ 	 Wm;/
00ðgÞ\0 con 0\g
 1 ð137Þ

Ogden and Roxburgh selected the function /ðgÞ to be

�/0ðgÞ ¼ m erf�1ðrðg� 1ÞÞ þWm ð138Þ
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with m and r being parameters of the material and erf�1ð�Þ the inverse of error
function

erf ðxÞ ¼ 2ffiffiffi
p
p
Zx

0

e�t2
dt ð139Þ

Parameter m has energy dimensions while parameter r is dimensionless. The
damage parameter is expressed as

g ¼ 1� 1
r

erf
1
m
ðWm � ~Wðk1; k2ÞÞ

� �
ð140Þ

that can be interpreted as the relationship between stress with damage (r) and
stress without damage (~r) in the primary response, see Fig. 33.

The minimum values of g; gm, corresponding to the undeformed configuration
and the dissipation ratio, are defined as:

gm ¼ 1� 1
r

erf
Wm

m

� �
ð141Þ

_/ðgmÞ ¼
1
r

erf
Wm

m

� �
_Wm ð142Þ

Parameter r is a measurement of relative damage to the virgin state. Specifi-
cally, the higher the parameter r, the further from 1 is the value of the damage
parameter g, and the lower the damage in the material.

Parameter m governs the damage dependency on the strain amount. For small
values of m, significant damage takes place for small deformations and the
material response in the small strain region is not very affected for successive
primary loads. For high values of m, there is little damage for small strains, but the
material response changes markedly in the small strain region after the first

Fig. 33 Physical
interpretation of damage
parameter for Ogden and
Roxburg model
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loading process. This parameter can be interpreted as a strain energy density
associated with the primary loading curve.

(c) Simo model

A viscoelastic constitutive model has been proposed by Simo [35], incorpo-
rating damage for large strain by means of a linear law for isotropic and aniso-
tropic behaviours. Decoupling of the deviatoric and volumetric responses is
obtained using multiplicative decomposition of the deformation gradient. Hyper-
elastic behaviour is obtained asymptotically for fast and slow processes. Addi-
tionally, the model incorporates a damage parameter characterized through the
maximum value obtained previously by the strain energy of the material without
damage. In a cyclic test, this viscoelastic damage model predicts a progressive loss
of stiffness and an increasing dissipation as the maximum amplitude is increased,
in accordance with the Mullins effect. It is crucial to assume a free energy potential
function allowing consideration of the stress tensor divided into initial and equi-
librium parts.

Simo proposed a viscoelastic model formulated in terms of three dimensional
finite strain, which incorporates a damage mechanism based on irreversible ther-
modynamics theory to model the Mullins effect. This model is applicable to non-
isotropic behaviour.

The basic characteristics of the model are:

(i) Additive decomposition of the stress tensor into initial and non-equilibrium
parts, that allows for a general anisotropic response.

(ii) Uncoupled deviatoric and volumetric response over any strain range due to
the multiplicative decomposition of the deformation gradient into volumetric
and deviatoric parts.

(iii) Viscous response characterised through a constitutive equation with linear
ratio, implying a convolution representation generalising viscoelastic models
with regard to linearised kinematics (general relaxation functions).

(iv) Isotropic damage mechanism, incorporating stress softening behaviour
(Mullins effect), governed through the maximum value of strain energy for a
material without damage. For a cyclic test, this viscoelastic damage model
predicts the stiffness reduction (Payne or Fletcher-Gent effect) and the
increasing dissipation as the maximum cyclic amplitude is increased.

The constitutive model is especially well-suited for large scale computation,
since the constitutive integration algorithm has the following main characteristics:

(v) It is a generalised mid-point algorithm, which ensures incremental objec-
tivity (that is, the constitutive equations are independent of the reference
during a rigid body motion).

(vi) It can be linearised exactly in a closed form and due to the structure of the
inelastic rate equation, the tangent operator is also symmetric.

(vii) The incompressibility constraint is imposed by means of a mixed FE tech-
nique, based on a Hu-Washizu formulation.
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The damage mechanism is modelled from a phenomenological point of view,
based on continuous damage mechanics and the ‘‘equivalent stress’’ concept
(originally used by [49]). In this context, Simo proposes an isotropic three
dimensional damage model suitable for its numerical implementation. The fun-
damental hypothesis is based on a damage parameter characterized through the
maximum value obtained previously by the strain energy of the material without
damage. Using thermodynamic concepts, this concept is generalised for a three
dimensional situation introducing a strain energy density for the material without
damage as a scalar measure of maximum strain.

Simo proposes the following strain energy density function, W, neglecting
residual stresses in order to characterise the isothermal process and considering
that damage only affects the deviatoric part of the strain energy density function,

WðC;DÞ ¼ WvolðJÞ þ ð1� DÞ �W0ð�CÞ ð143Þ

where WvolðJÞ is a convex function (with a minimum for J ¼ 1) which describes
the elastic volumetric response, �W0ð�CÞ represents the effective deviatoric density
function (convex) without damage or elastic energy stored in the material without
damage, D 2 0; 1½ � and 1� Dð Þ are reduction factors. Stresses for an isotropic
compressible hyperelastic material are obtained deriving this function with regard
to time. The following expression can be obtained using the chain rule,

_W ¼ dWvolðJÞ
dJ

_J þ ð1� DÞ o
�W0

o�C
: �C� �W0 _D ð144Þ

The second Piola-Kirchoff stress tensor S (formulated as the sum of deviatoric
and volumetric responses) is:

S ¼ Svol þ ð1� DÞ�S0 ð145Þ

where

Svol ¼ 2
oWvolðJÞ

oC
¼ J

oWvolðJÞ
oJ

C�1 ð146Þ

�S0 ¼ J2=3DEV 2
o �Wð�CÞ

o�C

� �
ð147Þ

And internal dissipation

Dint ¼ f _D� 0 with f ¼ �W0ð�CÞ� 0 ð148Þ

Inequality (148) shows that damage is a dissipative process. The thermo-
dynamic force f governs the damage process and its physical interpretation is an
effective deviatoric energy �W0, released by the unity reference volume of the
material. The thermo-dynamic force f is related with the internal variable D
through the expression:
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f ¼ �W0ð�CÞ ¼ �
oW

oD
ð149Þ

Therefore, the damage process is controlled as a function of the conjugated
variable instead of the internal variable. The evolution of the damage parameter D
is characterised through the equation for irreversible evolution described as fol-
lows. Defining an equivalent strain Ns

Ns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �W0

�CðsÞ
� �q

ð150Þ

where �CðsÞ is the time-modified left Cauchy-Green strain tensor, s 2 R. If Nt is the
maximum value of Ns along the load history up to time t, that is:

Nt ¼ max
s2 �1;tð �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �W0

�CðsÞ
� �q

ð151Þ

The damage criterion is defined in the strain space using the constraint:

u CðtÞ;Ntð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �W0

�CðtÞ
� �q

� Nt
 0 ð152Þ

Equation u CðtÞ;Ntð Þ ¼ 0 defines the damage surface for the material in the

strain space. Naming N :¼ ou=oC 	 1=Ns

	 

oW0=oC the normal of damage surface,

the following options are available:

u\0 or u ¼ 0 and
N : _C\0
N : _C ¼ 0
N : _C [ 0

8<
: ð153Þ

Finally, the evolution equation specifies the evolution of the damage variable D

dD

dt
¼

�hðN;DÞ _N; if / ¼ 0 and N : _C [ 0
0; in other cases

�
ð154Þ

where �h N;Dð Þ characterises the damage process in the material. If �h N;Dð Þ is
independent of D, then the second deviatoric stress tensor of Piola-Kirchoff can be
expressed in the following way, where the maximum strain in time t, Nt, is defined
using (151)

�SðtÞ ¼ �gðNtÞ
o �W0

�CðtÞ
� �
oC

ð155Þ

with

�hðNÞ ¼ � d�gðNÞ
dN

ð156Þ
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In order to complete the damage model, function �gðNtÞ is specified, or equiv-
alently, �h ¼ � d�g

dN. This function can be specified using experimental data adopting
the exponential form:

�gðxÞ ¼ bþ ð1� bÞ 1� e�x=a

x=a
; b 2 0; 1½ �; a 2 0;1½ Þ ð157Þ

where b and a are considered material parameters.
The starting hypothesis of this phenomenological damage model is that damage

only affects the deviatoric stresses, therefore the evolution of the stress tensor for
the material is defined according to (155). The following expression is obtained
using the chain rule:

�S ¼ �g�C0 � �g
0�S0 � �S0

� �
:

_C
2 si u ¼ 0 y N : _C [ 0

�g�C0 :
_C
2 otherwise

(
ð158Þ

with �g0 ¼ d�g=dE ¼ ��h. Therefore, the deviatoric contribution to the elasticity
tensor is expressed as:

�CðtÞ ¼
�g�C0 � �g0�S0 � �S0 in loading

�g�C0 otherwise

(
ð159Þ

According to Lion [8], the damage model proposed by Simo considers the
Mullins effect as the only source of inelasticity in the behaviour of reinforced
elastomers, without taking into account other sources such as hysteresis or per-
manent set.

2.3 Fatigue Behaviour

Typical models for predicting fatigue life in rubber follow two overall approaches
focussing (a) on predicting crack nucleation life and (b) on predicting the growth
of a particular crack.

The crack nucleation approach [67, 200–202] considers that fatigue life is
determined for a given stress and strain history at a certain point within a material.
Therefore, the fatigue life according to this approach could be defined as the
number of cycles necessary to obtain a crack of a certain length. The most usual
parameters used to predict the nucleation life are based on strain or energy.
Figure 34 summarizes the typical approach to predicting fatigue life following a
crack nucleation scheme, using strain-controlled fatigue tests to obtain the uniaxial
fatigue curve for the rubber material and FE analysis of the component to detect
the critical zones as a function of strain.

The use of strain as a life parameter has advantages since it can be obtained
directly from measured displacements. When the strain energy density is used, it is
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often evaluated using hyperelastic material models based on the strain invariants
and therefore it is also based on strains. Strain energy density has been used as a
fatigue parameter in metals [121] although the correlation between experimental
and predicted results is not satisfactory.

Rivlin and Thomas [122] proposed a model to study the fracture of rubber
under static loading based on the strain energy density. This has been used by
many investigators to correlate analysis results to experimental component life
data, considering the strain energy density as a measurement of the energy release
rate of the different flaws present in the material. The application to components of
this approximation carried out by some authors [123, 124, 203–205] shows dif-
ferences between fatigue life and computed strain energy density levels. The main
limitations of the strain energy density are that it is unable to predict the fact that
the crack surface appears in a specific orientation, only part of the total spent
energy plays a role in the crack nucleation process for multiaxial conditions, it
does not account for crack closure and it fails to predict large life differences
between simple tension and simple compression loadings.

Stress has rarely been used as a fatigue life parameter in rubber (Andre N.
[125]). This is related to the fact that fatigue testing in rubber has traditionally
been carried out under displacement control, and the accurate stress determination
in rubber components can be difficult. The maximum principal strain and the
octahedral shear strain have also been used as strain-based fatigue parameters. The
maximum principal strain criterion was introduced by Cadwell [67] in unfilled
vulcanized NR and remains in use nowadays, particularly for uniaxial strain

Predicted fatigue life

FEA results for the analysed component

Fatigue test at specimen level

Fatigue parameter-N curve

Fig. 34 Typical fatigue life prediction scheme based on a crack nucleation approach
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loadings. It also gave a good correlation for axial/torsion tests [121]. The octa-
hedral shear strain criterion makes a prediction that is roughly similar to the
principal strain criterion for rubber [75, 76], but for an incompressible material
both strain based criteria always satisfy that their values are positive and therefore
are unable to account for compression states where the crack is closed.

Finally, fatigue life prediction on rubber combining the crack nucleation and
growth approaches, also known as the energetic approach to rubber fatigue, has
been applied successfully by Mars [77] to an automotive component. This
approach is described in detail in its principal aspects in the following paragraphs.

When a rubber part is subjected to repeated stresses a certain time passes before
visible fatigue cracks appear. The distinction between crack initiation and prop-
agation is not clear. What matters in practice is how fast a crack of a certain size
will propagate under certain loading conditions. The focus in fracture mechanics is
thus on fatigue crack propagation. An initial crack size is chosen that reflects the
typical size or the maximum crack size detectable present in a given material.
Typical industrial rubber exhibits inhomogeneities on a microscopic scale con-
taining gel particles, voids, and roughness at cut or moulded edges. These inho-
mogeneities form highly localized stress concentrations that initiate the fatigue
failure. For natural rubber the effective size of initial flaws are estimated to be
about 25 lm.

Fracture mechanics seeks to obtain fracture parameters that represent failure
characteristics of the material, independent of geometry and loading. An energy
criterion for crack growth was proposed by Griffith [206]. He contended that every
body contains a distribution of flaws and the failure starts at the largest of these.
Griffith proposed that an initial crack C in a body of thickness l and a fixed
displacement t will grow if the decrease in the total elastic energy W of the body
per unit increase in the crack C is at least equal to the surface energy T required to
form new crack surfaces. Expressed in mathematical terms, this is:

� 1
t

� �
� oW

oC

� �
l

� T ð160Þ

Under conditions where the geometry thickness is not constant, the Griffith
criterion is modified to include the work of the external forces. This concept was
first applied successfully to the tearing of rubber by Rivlin and Thomas [122]. In
this case, T in (160) is no longer equal in magnitude to the surface energy because
rubber is not perfectly brittle. In fact, stresses induced at the tip of a flaw cause
large local deformation and result in much more energy being dissipated. The
strain energy release rate criterion is still valid for rubber, however, provided the
energy dissipation is confined to a small zone at the crack tip.

The tearing energy concept is valid for mechanical fatigue cracking, since the
crack propagation rate dC/dN is a function only of tearing energy T. To apply the
Griffith criterion to a rubber component in an engineering application, it is nec-
essary to calculate the tearing energy for a particular geometry. Fracture
mechanics may also be employed to predict in a given structure the crack size
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range that will propagate slowly under specified loading until it reaches the critical
size from which it will propagate rapidly to catastrophic failure. The fatigue life is
the number of cycles required to break a specimen into two pieces at a particular
load state.

The approach to rubber fatigue known as the energetic approach is based on the
integration of a crack growth law relating the crack advance per cycle and the
energy release rate or tearing energy. The basis of the energetic approach is the use
of the strain tearing energy defined according to (161), as a means of character-
ising crack growth behaviour.

T ¼ � oW

oA
ð161Þ

where W is the total elastic strain energy stored in a part containing a crack and
A is the area of the fracture surface associated with the crack. The partial deriv-
ative indicates that the test piece is considered to be held at constant extended
length, so that the external forces do not work.

The relationship between the crack growth rate dC/dN and tearing energy T is
known as the crack growth characteristic of the material since T is independent of
the sample geometry. Typical curves for a natural rubber (NR) compound cycled
under relaxing conditions (minimum tearing energy equal to zero) are shown in
Fig. 35.

The curve can be described easily in terms of four regions. In region I the
tearing energy T is lower than the threshold tearing energy T0, hence no
mechanical crack growth occurs. T0 is the mechanical fatigue limit, and below T0

crack growth is caused by ozone attack only [207]. In region II, crack growth is

Fig. 35 Typical crack
growth curve in a rubber
material and identification
of the different crack growth
regimes
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dependent on ozone and mechanical factors in an approximately additive way and
following a linear evolution. In region III a power law dependency between crack
growth rate and tearing energy has been found for many rubbers as well as for non
rubbery materials. Finally, region IV corresponds to uncontrollable crack growth
and catastrophic failure.

The crack growth characteristic can be described using a crack growth law. For
example, Lake and Lindley [71] identified the four aforementioned crack growth
regimes and proposed the following set of equations, shown in (162), in order to
describe the crack growth behaviour of a rubber material.

dc

dN
¼

rz T 
 T0

A � T � T0ð Þ þ rz T0\T 
 Tt

rc � T
Tc

	 
F
Tt\T 
 Tc

1 Tc\T

8>>><
>>>:

ð162Þ

Although this description, dividing the crack growth characteristics into four
distinct regimes governed by a set of empirical equations is useful to describe the
behaviour of crack growth, in practice it is oversimplified since many materials
follow more complex empirical relationships. The different parameters used in
(162) are the rate of crack growth under the influence of atmospheric ozone (rz)
when the energy release rate is above the mechanical threshold value of the energy
release rate (T0). The constant A describes the behaviour of the crack growth rate
in the transition regime, when the energy release rate falls between the mechanical
threshold energy release rate (T0) and the transition value of the energy release rate
(Tt). The power law regime is comprised between the transition tearing energy and
the critical value of the energy release rate at which spontaneous fracture ensues
(Tc). It is described by means of the power law exponent (F) and the crack growth
rate where the power law intersects the vertical asymptote at Tc (rc). For a natural
rubber, F is about 2, whereas in general F lies between 2 and 6 for most rubber
vulcanizates depending mainly on the elastomer used and on secondary factors
such as rubber formulation.

The effects of non-zero minimum loading on fatigue crack growth have been
analysed in the literature for strain crystallizing rubbers [78, 79] and for non-
crystallizing rubbers [80]. An important difference between the crack growth
behaviour of crystallizing and non-crystallizing rubbers is that under a static load,
non-crystallizing rubbers can exhibit steady crack growth, while crystallizing
rubbers typically exhibit no crack growth. For non-crystallizing rubbers, the crack
growth rate under static load is a function of the energy release rate. Under cyclic
load, the crack growth rate in non-crystallizing rubbers can be computed as the
sum of steady and cyclic contributions to the crack growth. The fatigue crack
growth rate dc/dN in strain crystallizing rubbers, for instance natural rubber-NR,
depends on the maximum energy release rate Tmax experienced during a load
cycle, but also on the minimum Tmin. Even when dc/dN is expressed as a function
of DT = Tmax - Tmin, a dependence on Tmin remains. The fatigue crack growth
rate in strain crystallizing rubbers depends not only on the maximum energy
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release rate experienced during a loading cycle, but also on the minimum, or
equivalently, the R ratio. The R ratio quantifies the minimum load attained during a
cycle as a fraction of the maximum load.

Typical curves for a natural rubber (NR) compound cycled under relaxing and
non relaxing conditions (R-ratio of 0.05 and 0.1) are shown in Fig. 36, where the
different crack growth regimes are clearly identified. As is also shown, the influ-
ence of non-relaxing cycles hinders the crack growth and therefore increases the
expected fatigue life.

The effects of non-relaxing cycles were modelled by Mars and Fatemi [208],
modifying the crack growth law as a function of the R-ratio:

F Rð Þ ¼ F � eC�R ð163Þ

where F is the power law exponent of the crack growth law proposed by Lake and
Lindley [71], and C is a parameter of the material.

Finally, the fatigue life of a certain structure can be considered as the number of
cycles necessary for a certain crack present in the material at the beginning of the
fatigue process to grow up to a critical length that provokes the final failure of the
component. Given the crack growth behaviour and the energy release rate history,
the fatigue life can be computed via the integration of the crack growth law
between the right limits and according to Ellul [64], and the fatigue life of any
rubber component can be predicted by integrating the following equation
depending on the energy release rate and its description according to the crack
growth behaviour only:

Fig. 36 Typical crack
growth curve in a rubber
material and identification of
the different crack growth
regimes showing the
influence of non-relaxing
conditions
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N ¼
Zc1

c0

f ðTÞ dc ð164Þ

The integration limits indicated in the expression (164), parameters c0 and c1,
are the initial and final crack size. The initial crack size is related to the presence of
flaws, inhomogeneities and defects in the material and can be obtained by means
of transmission electronic microscopy (TEM) on a sample of the material, while
the final crack size is usually neglected since most of the life of a rubber com-
ponent is spent to nucleate a crack. Alternatively, the final crack size is chosen for
each specific application.

Equation (164) allows the fatigue life of a rubber component to be predicted in a
very general way, since the question of how to obtain or describe the evolution of the
tearing energy along a load cycle for a piece of material remains unsolved. Common
methods available to obtain this parameter are based on analytical approximations
through scalar parameters, by means of the combined use of FEA and numerical
analysis or using multiaxial fatigue criteria. These methods are described briefly
below.

The energy release rate can be derived from scalar parameters such as the strain
energy density for simple geometries and loading conditions using empirical
equations that are available in the bibliography. For example, the expression for a
tensile specimen with an edge crack of length c is shown in (165).

T ¼ 2kWc ð165Þ

where W is the strain energy density at the point where the energy is being
evaluated and the parameter k is a function of the engineering strain:

k ¼ 2:95� 0:08e

ð1þ eÞ1=2
ð166Þ

These relationships can be applied to the catastrophic tearing of rubber. The
tearing energy concept is valid for mechanical fatigue cracking, since the crack
propagation rate dC/dN is a function only of the tearing energy T. For more
complex geometries or loading conditions, the tearing energy can be obtained
using a FE simulation of the studied structure with an embedded crack using the
J-integral approach to evaluate the energy release rate for a given crack length.

The non-linear behaviour of rubber (finite strains and quasi-incompressibility)
and the fact that these criteria make no reference to a specific material failure plane
imply that it is always possible to construct a non-proportional multiaxial history
that holds the scalar equivalence criterion value constant while simultaneously
varying the individual components of the history Mars [77]. Therefore, scalar
equivalence criteria predict infinite life under certain kinds of non-proportional
cyclic loading which actually result in finite life and it can be concluded that an
analysis approach that makes specific reference to the failure plane is needed.
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Due to the aforementioned limitations of scalar fatigue criteria, different mul-
tiaxial fatigue criteria have been proposed in the literature to overcome such
limitations, but it is worth pointing out that their level of development is uneven
since most of them have been applied for natural rubber at specimen level only,
excepting the Cracking Energy Density (CED) proposed by Mars [77]. The CED
rationalizes fatigue life for specific failure planes across a wide range of states,
relates physically to the fracture mechanical behaviour of small flaws under
complex loading and is well defined for arbitrarily complex strain histories. This
parameter accounts for the effect of crack closure, which occurs when the stress
state causes compression on a material plane. This fact is of great importance
because rubber is most commonly used in applications which experience a com-
pressive load. Mars and Fatemi have proposed three different critical plane criteria
[75, 76] for use in the computation of CED: the plane that maximizes the CED
peak value, the plane of maximum CED range and the plane of minimum life.

The cracking energy density Wc represents the strain energy density available to
be released due to the growth of small cracks in specific planes, and is defined
according to the expression:

dWc ¼ r : de ð167Þ

where r and d are defined according to Fig. 37 and the following expressions:

r ¼ rTr ð168Þ

de ¼ der ð169Þ

With r the unity vector normal to the selected plane (Fig. 37) and d

de ¼ FT dEF�1 ð170Þ

where F and E are the gradient deformation tensor and the Cauchy-Lagrange strain
tensor respectively.

The relationship between the cracking energy density and the tearing energy, as
proposed by Mars [77], is:

T ¼ KWcc ð171Þ

where K has a value of 2p, and c is the radius of the analysed crack.
A brief summary of this methodology is shown in Fig. 38 as a typical fatigue

analysis scheme for rubber components following the energetic approach.

Crack

r
d

Fig. 37 Cracking energy
density definition

324 L. A. Gracia et al.



3 Methodology for Design of Elastomeric Components

3.1 Introduction

In the design of elastomeric components, a broadly used technique is FE method,
computer assisted technique within CAE (Computer Aided Engineering) to obtain
approximated numerical solutions of the response of physical systems working
under external loads. This technique is based on principle of virtual work or weak
formulation, modelling the whole structure in discrete parts, elements, which are
set up and connected between them by means of nodes. Computers are used, once
restrictions and external loads are applied to the model, to solve the equations
resulting from it, obtaining the unknown variables of the system, displacements
and rotations in nodes, and all the variables derived from them, such as, for
instance, stresses, strains, contact pressures or reaction forces.

Crack growth test Crack growth per cycle

Crack growth characteristic for the material

FEA results + multiaxial fatigue criterion FEA + J-integral analysis Others…

Energy release rate for the component

∫= 1

0

)(
c

c
N f T cd

Predicted fatigue life

Fig. 38 Typical fatigue life prediction scheme based on the energetic approach
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Benefits obtained from the use of FE method in design of elastomeric com-
ponents, preferably beginning from design phase, include: improvement of char-
acteristics and quality of the final product, lower development time of the product
or time-to-market, optimum use of the material, weight saving, verification of the
whole structure before prototyping phase and reduction of development and pro-
duction costs. Besides, capacity to manage reliable predictions can help to reduce
rejection rate of the product during production phase, assuring an increase of its
competitiveness.

The use of codes based on FE method allows carrying out different types of
analyses that reproduce the real behaviour of a component of or a system. These
analyses can be classified into: mechanical or structural, modal, buckling, thermal,
electrical, magnetic, fatigue or mass diffusion. Additionally, some of these types of
analyses can be combined between them resulting in a more complex analysis.
Anyway, the different stages to be followed in a FE analysis are always common.
A scheme of them is shown in Fig. 39.

According to this Figure, the first task consists in analysing which is the
behaviour of the elastomeric component and which are the material effects to be

FINITE ELEMENT MODEL DEFINITION

Preliminary analysis of elastomeric component 
behaviour. Analysis of material properties material 

and effects to be considered in the simulation

Validation of results

Finite element simulation

Sensitivity analysis and 
definition of a design of 

experiments

Definition of a new design

Building up of finite 
element model with CAD 

software

Material model 
characterization with 

experimental tests

Application of boundary 
conditions and loads to 

the model

Fig. 39 Stages set up in a FE calculation
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considered in the FE simulation. Thus, by means of this preliminary analysis, it
must be set up if the material should be characterised only with hyperelastic
material properties or also with other effects such as inelastic, relaxation or fatigue
properties, in case they are determinant in the real component behaviour. Addi-
tionally, other effects such as friction or wear may be also important and in this
case, they must be characterised, too.

Once the preliminary analysis is carried out, the next step consists in the FE
model definition, including its building up by means of pre-processing software,
the material characterisation with results of those experimental tests required from
the first analysis, and the application of boundary conditions and loads according
to the real working conditions of the component.

Whenever is possible, the results obtained from the FE simulation should be
validated with experimental tests in order to check, on the one hand, if the FE
model being built is suitable for simulating the real component behaviour and, on
the other hand, if the considered material effects included in the simulation are
valid or enough, at least. If any of both suppositions is not valid, another loop in
the FE model definition must be done, rebuilding the FE model or carrying out
new experimental tests to include those material effects not included in the first
iteration of the process. If the validation is accurate enough, the next step consists
in carrying out an analysis of the most influential parameters on material behaviour
or which are the most critical on the design improvement. The aim of this analysis
is to optimise the component design in order to improve its efficiency and its
competitiveness, proposing a new design if it is necessary.

3.2 Experimental Material Characterisation Tests

Different tests can be planned to characterise behaviour of elastomeric components.
On one hand, properties of hyperelastic behaviour can be characterised by means of
quasi-static tests on universal test machines under different deformation modes;
usually the deformation modes at which the component works. In these tests, the
sensitivity of the material to the strain rate and to the temperature can be taken into
consideration. On the other hand, inelastic material properties, such as viscoelastic
properties, material hysteresis, permanent set, Mullins effect or Payne effect, can be
set up by means of tests on universal test machines (UTM) or on dynamic-thermo-
mechanical analyzers (DMTA) tests in dynamic analyses, obtaining the time-
dependent response at different frequencies and temperatures. The importance of
the material characterisation is pointed out in Sect. 4, examples of industrial
applications, for instance, in the simulation of a silent block in automotive industry
or in the analysis of rubber block on wheel of railway coach.

Fatigue material properties are also obtained by means of tests on universal test
machines. Finally, by means of tribometer tests, the tribological characterisation of
a contact pair between the elastomeric component and another part in contact with
the first one which usually works as counter material can be set up.
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The tribological characterisation includes the measurement of the friction force, of
the friction coefficient and also the quantification of wear involved in the contact
pair. In this characterisation, different parameters such as contact pressure, sliding
velocity, temperature, lubricant viscosity or coating on the elastomeric surface can
be also analysed. Next, a more detailed description of the required tests to char-
acterise this material properties is carried out.

3.2.1 Obtaining of the Hyperelastic Properties of the Material

Tests on universal testing machines are planned to obtain the hyperelastic prop-
erties of the elastomeric material under different deformation modes, those at
which the component usually works. With the results of these tests, the material
models available in FE codes to reproduce hyperelastic behavior can be calibrated.
The tests usually performed on universal test machines are uniaxial tensile tests,
uniaxial compression tests, shear tests, equibiaxial tests or volumetric compression
tests.

Uniaxial Tensile Tests on Universal Test Machine

These tests should be done if tensile deformation mode is the predominant one of
the elastomeric component. The tests and dimensions of the specimens are detailed
in ISO 37:1994 standard. The specimens used in these tests correspond to
dumbbell specimens, according to dimensions defined in Fig. 40, which values are
enclosed in Table 1.

Dumbbell specimen of Type 1 is the most suitable one to carry out uniaxial
tensile tests. If those dimensions cannot be fulfilled, specimen of Type 2 is that one
recommended and finally, specimen of Type 3 should be tested if Type 1 and Type
2 specimens are not possible to be built up. Three different repetitions under the
same test conditions are recommended to be carried out at least. For each test,
initial preconditioning can be taken into consideration depending on the estimated
strain level attained in the real application. Therefore, the preconditioning level
will be set up as the maximum tensile strain expected in the elastomeric compo-
nent. The velocity to be chosen in the test will depend on the strain rate of the

Fig. 40 Dumbbell
specimens used for uniaxial
tensile tests
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component, but a usual test velocity to consider quasi-static conditions is 10 mm/
min.

Tests will be carried out in equipments with devices able to measure load, grips
displacement and marks distance in the test specimen at all times. This equipment
must have a 1 % accuracy within working range with a constant test velocity
application. To measure deformation, contact or laser extensometer located at the
straight thin part can be used. With contact extensometers, the specimen torsion
must be avoided.

Equipment grips must hold the specimen in the wide ends and must be fixed
when stress is progressively increased along test. To measure specimen dimen-
sions, calibres or micrometers with enough precision must be used, as well as a
durometer to measure elastomeric material hardness. An example of this test is
shown in Fig. 41.

At the same time, other parameters such as the humidity of the test temperature
must be controlled at the beginning of the test.

As result of these tests, engineering stress and stretch values can be expressed
according to (177):

r ¼ F

Sf
¼ F

So
� k ð172Þ

where F is the axial force applied to the specimen and So and Sf are the initial and
final cross sections of the specimen and lambda the strain to be calculated
according to (173).

The strain is calculated as the displacement between specimen marks, expressed
in percentage with regard to the initial distance between them:

k ¼ Ht � H0

H0
� 100 ð173Þ

where Ht is the distance between marks in the time t and H0 is the initial distance
between marks.

Once the tests are carried out, the curves obtained from them must be corrected
to be used in the numerical characterisation by means of the material models

Table 1 Dimensions of dumbbell specimens

Dimensions Type 1 (mm) Type 2 (mm) Type 3 (mm)

A. Total length (min) 115 75 35
B. Width of ends 25 ± 1 12.5 ± 1 6.0 ± 1
C. Length of straight thin part 33 ± 2 25 ± 1 12 ± 0.5
D. Width of straight thin part 6.0 +2 4.0 ± 0.1 2.0 ± 0.1

-0
E. Minor radius 14 ± 1 8.0 ± 0.5 3.0 ± 1
F. Mayor radius 25 ± 2 12.5 ± 0.1 3.0 ± 0.1
Thickness 2.0 ± 0.2 2.0 ± 0.2 1.0 ± 0.1
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available in FE codes. The evolution of strain–stress curves obtained in each
actuation cycle is shown in Fig. 42. The curve chosen to characterise the material
model is that one corresponding to the last actuation cycle. Previously to carry out
the characterisation, it is necessary to correct the permanent strain of the curve, in
this case e0(4), in order to begin the curve without any permanent strain.

To impose that the curve obtained in last cycle passes through the origin in
order to use it in the material model fitting, the next formulas must be applied:

e ¼ e0 � ePð Þ
1þ ePð Þ ð174Þ

r ¼ r0 � 1þ ePð Þ ð175Þ

where e0 and r0 are strain and stress values to be corrected, e and r are the values
already corrected and eP the permanent strain (e0(4) in Fig. 42).

Uniaxial Compression Tests

These tests must be done if compression deformation mode is the predominant one
in the elastomeric component. The tests and dimensions of the specimens are
detailed in ISO 7743:1989 standard. The specimens used in these tests, shown in
Fig. 43, correspond to cylindrical specimens with an aspect ratio (height/diameter)

Fig. 41 Uniaxial tensile test
equipment
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of 0.4. Specimen is compressed by flat plates placed top and bottom of the
specimen. Three different repetitions under the same test conditions are recom-
mended to be carried out at least.

As in case of uniaxial tensile tests, for each test, initial preconditioning can be
taken into consideration depending on the estimated strain level attained in the real
application. Therefore, the preconditioning level will be set up as the maximum
tensile strain expected in the elastomeric component. The velocity to be chosen in
the test will depend on the strain rate of the component, but a usual test velocity to
consider quasi-static conditions is 10 mm/min.

Tests will be carried out in equipments with devices able to measure load and
plates displacement in the test specimen at all times. This equipment must have a
1 % accuracy within working range with a constant test velocity application.
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Fig. 43 Cylindrical specimens and equipment used for uniaxial compression tests
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Deformation will be measured as the displacement between plates, expressed in
percentage with regard to the initial distance between them. Both plates must be
formed by two parallel steel sheets of flat dimension, perfectly polished and fitted
to the equipment. To measure specimen dimensions, calibres or micrometers with
enough precision must be used, as well as a durometer to measure elastomeric
material hardness. The contact face of the plates must be covered by a thin film of
Vaseline oil in order to avoid friction with the specimen and so avoid barrelling in
the sample. At the same time, other parameters such as the humidity of the test
temperature must be also controlled at the beginning of the test.

As result of these tests, engineering stress and strain values can be expressed
according to (176) and (177).

r ¼ F

S
ð176Þ

where F is the axial force applied to the specimen and S is the initial cross section
of the specimen and k the starin to be calculated according to (173).

The strain is calculated as the displacement between plates, expressed in per-
centage with regard to the initial distance between them:

e ¼ Lt � L0

L0
� 100 ð177Þ

where Lt is the distance between plates in the time t and L0 is the initial distance
between plates.

Regarding the correction of the permanent strain of the strain–stress curve, the
criteria set up for the uniaxial tensile test in Fig. 42 is also set up for the uniaxial
compression test.

Shear Tests

These tests must be carried out when shear deformation mode is the predominant one
of the elastomeric component. The tests and dimensions of the specimens are
detailed in ISO 1827:1991 standard. The specimens used in these tests, shown in
Fig. 44, correspond to identical blocks of 4 mm ± 1 mm thickness, 20 mm ±

5 mm width and 25 mm ± 5 mm length, glued in each face of maximum surface to
four rigid plates of same width and enough length to avoid bending during test. As in
the case of uniaxial tests, three different repetitions under the same test conditions are
recommended to be carried out at least.

Initial preconditioning can be taken into consideration depending on the esti-
mated strain level attained in the real application. Therefore, the preconditioning
level will be set up as the maximum tensile strain expected in the elastomeric
component. The velocity to be chosen in the test will depend on the strain rate of
the component, but a usual test velocity to consider quasi-static conditions is
10 mm/min.
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Tests will be carried out in equipments with devices able to measure load and
plates displacement in the test specimen at all times. This equipment must have
1 % accuracy within working range with a constant test velocity application.

As result of these tests, engineering stress values are calculated by only one
rubber blocks, with an applied force of F/2. Stress formula is expressed as:

r ¼ F

2 � S ð178Þ

where F is the axial force applied to the grip and S is the initial shear section of one
of the rubber blocks.

For calculating strain, shear angle c is considered, expressed as (see Fig. 45):

c ¼ arctan
d

2e
� d

2e
ð179Þ

where d is the strain of one of the blocks and e corresponds to its thickness.

γ

e

d/2Fig. 45 Calculation of shear
strain

External plates Internal plates

Fixation tools

Fig. 44 Specimens and equipment used for shear tests
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Biaxial Tensile Tests

These tests must be carried out when tensile deformation mode is the predominant
of the elastomeric component in two perpendicular directions at the same plane.
The specimens used in these tests are square specimens of dimensions 122 mm by
edge, according to Fig. 46. Diameter of holes is the same as the diameter of screws
used to hold it to grips. Three different repetitions under the same test conditions
are also to be carried out at least.

Tests must be carried out in equipment with load capacity of 10 kN, with
devices able to measure load and plates displacement in the test specimen at all
times. This equipment must have 1 % accuracy within working range with a
constant test velocity application. The velocity to be chosen in the test will depend
on the strain rate of the component, but a usual test velocity to consider quasi-
static conditions is 10 mm/min. A tool to stretch the specimen in two perpen-
dicular directions is required in the test, being the specimen fixed to this tool by
means of screws.

To measure specimen dimensions, calibres or micrometers with enough pre-
cision must be used, as well as a durometer to measure elastomeric material
hardness.

To calculate stress, applied load is divided into two perpendicular forces,
resulting F � cos 458 (see Fig. 47). Each force acts against a section equals to the
specimen width times specimen thickness. Therefore, engineering stress is
expressed as:

r ¼ F

S
¼ F � cos 45

A � e ð180Þ

Distance between 
holes is 15 mm, 
except for the 
distance already 
dimensioned in the 
picture

Fig. 46 Specimens used for biaxial tensile tests
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To calculate strain values, specimen is deformed according to Fig. 47 so that
the displacement registered by the equipment is d, while real value produced by
force F � cos 458 is x = d � cos 458. Therefore, strain equals to:

e ¼ DL

L
¼ x

A
¼ d � cos 45

A
ð181Þ

Volumetric Compression Tests

These tests aim to obtain the compressibility of the elastomeric material. This
property is used in the definition of numerical models of elastomeric material.
Specimens of approximated aspect ratio of 1.45 (height Ho/diameter Do, see
Fig. 48) are used. To manage this aspect ratio, several specimens could be piled.

Do

Ho

Fig. 48 Cylindrical
specimens used for
volumetric compression tests

F

Fcos45°Fcos45° x

d

A0

Fig. 47 Specimens used for
biaxial tensile tests
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Tests are carried out by means of two steel plates of flat face, joined to an
indenter and a steel block in which the specimen to be tested is introduced (see
Fig. 49). Tests must be carried out in equipments with load capacity of 10 kN,
with devices able to measure load and plates displacement in the test specimen at
all times. This equipment must have 1 % accuracy within working range with a
constant test velocity application. The velocity to be chosen in the test will depend
on the strain rate of the component, but a usual test velocity to consider quasi-
static conditions is 10 mm/min. Force and displacement between plates must be
measured along test. Three different repetitions must be done.

To calculate engineering stress, next formula is applied (being F the force to
compress the specimen and S its initial section):

r ¼ F

S
ð182Þ

As strain value, the displacement between plates is considered, expressed as
percentage of the specimen height after preconditioning, so that (being Ht the
displacement between plates in a time t and Ho the initial height of the specimen):

e ¼ Ht

Ho
� 100 ð183Þ

3.2.2 Obtaining of Inelastic Properties of the Material

Inelastic material properties can be characterized by means of tests on universal
test machines or on DMTA tests in dynamic analyses. Next, the way of obtaining
some of these properties, such as viscoelastic, material hysteresis, permanent set,
Mullins or Payne effects, are briefly described.

Indenter

Upper plate

Inner plate

Specimen

Fig. 49 Assembly of the
specimen in equipment for
volumetric compression test
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Viscoelastic Properties

Viscoelastic properties can be characterised by means of relaxation tests on uni-
versal test machines or by means of DMTA tests in dynamic analyses.

Relaxation Tests on Universal Test Machines

To carry out relaxation tests, and depending on the predominant deformation mode
of the elastomeric component, the type of test detailed in Sect. 3.1 must be
followed.

In this case, the test control is carried out by strain up to a reference value and
once that strain is attained, the tests is controlled by position, maintaining fixed the
specimen during an established time and registering force data along time.
Figure 50 shows the test control carried out in relaxation tests and Fig. 51 shows
the data obtained from relaxation tests.

From Fig. 51, relaxation rate can be set up according to the next equation:

Relaxation rate (t) ¼ F t0ð Þ � F tð Þ
F t0ð Þ

� 100 ð184Þ

Tests on DMTA

Elastomeric materials present viscoelastic nature with a strong dependence of their
mechanical properties on temperature, time and frequency. This kind of materials

Time

D
is

pl
ac

em
en

tFig. 50 Test control in
relaxation tests

Time

Fo
rc

e
F (t0)

F (t)

t0 t

Fig. 51 Data obtained from
relaxation tests

Other Applications: Engineering 337



are usually used in industrial applications involving extreme conditions of pres-
sure, temperature, load cycles and frequency, which implies significant changes in
the material properties with regard to the original state. In perfectly elastic
materials the energy involved in the system is completely stored; on the other
hand, in purely viscous liquids the energy is totally dissipated. But in polymers,
only part of the energy is dissipated [209]. Nowadays, mechano-dynamic tech-
nique have evolved to the study of the sinusoidal movement at which the visco-
elastic material is undergone, so that in the majority of the devices the specimen is
tested under an oscillatory stress, measuring as result the generated strain or vice
versa, and additionally the offset between excitement and response. Figure 52
shows an example of DMTA test equipment.

Generally, the study of this offset is carried out by means of the mathematical
basis of the simple harmonic movement, which allows separating the elasticity
complex modulus (or shear modulus), E* (or G*), in two orthogonal components,
storage modulus, E0 (or G0) and loss modulus, E00 (or G00).

E� G�ð Þ ¼ E0 G0ð Þ þ iE00 G00ð Þ ð185Þ

where

E0 G0ð Þ ¼ r0=e0

	 

cos d ð186Þ

E00 G00ð Þ ¼ r0=e0

	 

sin d ð187Þ

and r0, e0 and d are, respectively, stress amplitude, strain amplitude and lost angle
between both of them, according to Fig. 53.

Fig. 52 DMTA test
equipment
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Storage modulus is related with the stored energy that can be recovered in strain
terms and corresponds to elastic response. On the other hand, loss modulus is
related to dissipated energy per cycle in heating terms when specimen is deformed,
corresponding to viscous response. The relationship between both of them is:

tan d ¼ E0

E00
ð188Þ

This relationship represents the offset between elastic and loss components,
being called damping as well and representing the material energy loss in its
molecular reordering and in internal frictions. When the variation of modulus and
offset in function of temperature is analysed, maintaining fixed work frequency,
relaxations with implicit changes in molecular mobility can be identified in the
obtained curves.

The whole frequency range behaviour of a viscoelastic material is unfeasible to
be covered. To solve this problem, master curves are used. These curves allow
estimating the mechanical properties of the elastomer in wide ranges of time or
frequency from mechanical tests of short time at different temperatures.

The theoretical basis used to build up a master curve is the time–temperature
superposition principle, that is: the material response at different temperatures is
similar as that one at other perturbation frequencies. The building of these master
curves implies carrying out studies at different temperatures in a previously
defined frequency range. These curves are displaced to superimpose with the next
one resulting the master curve (see Fig. 54). The displacement factor in abscise
direction is not fixed, but usually is constant for each elastomer and is known as aT.
The relationship between these fittings follows the WLF (Williams-Landel-Ferry)
equation [210] (184).

logðaTÞ ¼
�C1 T � Tref

� �
C2 þ T � Trefð Þ ð189Þ

Fig. 53 Input–output offset
in viscoelastic materials
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where Tref is the reference temperature (in K) at which the master curve is built up,
aT is the displacement factor and C1 and C2 are constants with values, respectively,
of 17.4 and 51.6 for many polymers near glass transition temperature.

Williams-Landel-Ferry equation is used to set up time–temperature relationship
for polymers near glass transition temperature. This equation is based on the
hypothesis that free volume increases linearly with temperature over glass tran-
sition temperature. The model also assumes the abruptly decrease of the polymer
viscosity when the material free volume increases.

Other model used to set up a relationship between displacement factor and
temperature is Arrhenius relationship (190):

logðaTÞ ¼
E

R T � Trefð Þ ð190Þ

where E corresponds to the activation energy associated with transition of relax-
ation, being R gas constant (8.314 J/mol �C), Tref the reference temperature at
which the master curve is built up and aT is the displacement factor. Arrhenius
equation is used to set up the glass transition temperature of crystalline polymers.

In the master curve building up, different material and experimental, coming
from instruments, factor must be taken into consideration. A master curve is built
up from accelerated tests, depending on the mechanical properties aimed to obtain.
These tests can be multifrequency dynamic tests or creep/relaxation tests.

The definition of a DMTA test involves the selection of the deformation mode
of the test, the specimen geometry, the test conditions in terms of frequency
ranges, temperature, strain/stress amplitude and other parameters to be defined in
the test.

Before the test definition, several important matters must be taken into account:

• Test temperature should range from lower temperature than glass transition
temperature to 100 �C higher than glass transition temperature. Therefore, a
wide material stiffness range should be covered.

• The different curves obtained from tests (E0, E00 or tand vs. frequency) should
present curvature in order to clearly define the displacement and the superpo-
sition of the curves.

Master curve at 115ºC

Fig. 54 Master curve building from tests at different temperatures
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• The temperature increment between tests near the glass transition temperature
should be lower because the changes of the mechanical properties with the
temperature are much higher at this zone of the curve.

• The tests should lie within the measurement range in temperature and force at all
the times, especially at lowest and highest temperatures.

• Before testing, and if it is possible, it is convenient to obtain as much material
information as possible, especially stiffness data in glass and amorphous states
and an estimation of the glass transition temperature in order to choose the
deformation mode, the specimen geometry and other test conditions. Besides,
the industrial application of the material is also relevant in order to choose the
test and the deformation mode.

• Another important task in the tests definition is the liquid nitrogen required in
the whole testing plan. Tests conditions must be defined in order to fit the liquid
nitrogen quantity to be used.

In the test definition, the deformation mode must be chosen firstly. The
deformation mode is determined by the industrial application of the component
and by the availability of material for testing. However, both matters depend on
the fact that the specimen stiffness can be measured in glass and amorphous states
in order to obtain a master curve in a wide range of frequencies. To do that, there
are recommendations in DMTA devices to use different deformation modes
depending on the kind of tested material. It is worth pointing out that shear test is
the most convenient for most of elastomeric materials. Two deformation modes
usually used in DMTA devices correspond to double bending and shear. Those are
shown in Figs. 55 and 56.

Another important task is the choice of the specimen and its dimensions. There
are several factors to take into account: available material volume, if sheets to
extract specimens are available or not, if the dimension of the specimen is enough
to be put into the DMTA device, the nitrogen consumption and the precision in
load and temperature measurements.

Fig. 55 Double bending deformation mode in DMTA tests
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In case of elastomeric materials, it is necessary to carry out a mechanical
preconditioning to the specimen in order to eliminate Mullins effect to the mate-
rial. To do that, a static test is carried out to the specimen with a load or defor-
mation between 30 and 50 % higher than that one used in the dynamic tests and
eliminating after that the load or deformation. This test is recommended to be
carried out three times in order to assure the loss of the initial material stiffness,
that is, to remove the Mullins effect.

The number of DMTA tests on a same material will depend on the repeatability
of master curves. It is recommended to obtain two master curves with repeat-
ability. The test control is another parameter to choose before testing. The choice
of a particular one: by deformation, by load or by displacement, will depend on the
type of material and on the previous experience. Many times, it is recommended to
change from one to another is the resulting master curve is not well defined,
mainly for high frequencies, corresponding with temperature lower than glass
transition temperature. The cyclic amplitude is another parameter to control, being
interesting to choose a value at which the test is stable for the highest temperature
range as possible.

Permanent Set, Mullins Effect and Material Hysteresis

The mechanical behaviour of elastomeric materials is highly non-linear, depending
on the strain rate, exhibiting hysteresis, permanent strains and stress softening
under cyclic load conditions. From curves obtained in uniaxial tests, those effects
can be characterised. When the specimen is loaded under uniaxial load, the stress
in the second load is lower than that one required in the first load for higher strains
than in the initial load. This effect is known as Mullins effect and it takes place in
the first load cycles. On the other hand, permanent set is set up as the remaining
strain in the last cycle of the uniaxial test carried out in universal test machines.
Hysteresis corresponds to the different behaviour between in the same cycle of
application for loading and unloading conditions. Figure 3 included in Sect. 1
shows these effects in curves obtained from a uniaxial test.

Fig. 56 Shear deformation mode in DMTA tests
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For calibrating the constitutive models able to model these inelastic effects,
the same type of tests above described can be used. The key of this task is in the
procedures and methodology used for managing the experimental data from
the material for the calibration of these models. Some methodology for calibration
of these models is described in Olsson and Austrell [58] and Gracia [199, 211] for
the overlay method, in Bergström and Boyce [12] for the Bergström-Boyce model
and in Hibbit et al. [97] and Gracia [199, 212] for Ogden and Roxburgh model and
Simo model.

3.2.3 Fatigue Tests

The experimental test required to characterise fatigue behaviour in elastomeric
materials are grouped in crack growth tests to characterize the rubber material
crack growth properties and in uniaxial fatigue test to fit the initial crack size and
to check the validity of the material properties fitting carried out from the data
obtained in the previous set of experiments.

Crack Growth Characterisation

Different specimens can be used to analyse the crack growth behaviour on elas-
tomers [64], the typical configurations are pure shear and simple tension speci-
mens. The pure shear specimens are particularly well suited since the equation that
characterizes its behaviour is independent from the crack length, because the
energy release rate T is calculated taking into account the specimen height and the
strain energy density only, according to the next equation:

T ¼ W � h ð191Þ
where W is the strain energy density and h the height of the specimen.

Figure 57 shows, as example, pure shear specimens to perform the crack
growth characterization of the elastomeric material.

The test methodology consists of applying a set of cyclic displacements to the
elastomeric material specimen with increasing amplitude and registering the crack
length evolution. Different amplitudes can be tested to cover the power law crack
growth regime as well as the linear regime. Crack growth can be automatically
recorded at varying intervals via a high speed camera and image analysis system.

Fig. 57 Pure shear specimens for crack growth tests
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The tearing energy T corresponding to each strain level is calculated according
to Eq. (191), evaluating the strain energy density W in the pure shear specimen as
the area under the stress–strain curve for the previous cycle where the crack length
is measured. An example of the test is shown in Fig. 58.

Uniaxial Tensile Fatigue Tests

The initial flaw size is adjusted by means of uniaxial fatigue tests carried out in
simple tension specimens. The test samples to be tested are dumbbell shape
specimens obtained from pure shear specimens.

The number of cycles for each strain level and specimen until the failure is
obtained as a result of the experiment. An example of the geometry of the uniaxial
fatigue test specimens is shown in Fig. 59, while Fig. 60 shows the mounting of
the specimens in the test rig.

Fig. 58 Crack growth tests

Fig. 59 Simple tension
specimens used in the
uniaxial fatigue tests
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3.2.4 Tests on Tribometer

Tribometer constitutes a versatile test instrument for the evaluation of friction and
wear properties of elastomers in dry and lubricated conditions under reciprocating
or rolling movement. The type of test will depend on the relative movement
between the elastomer and the counter material in the real application. If it is
possible, specimens used in the test are extracted by machining from the real
application in order to maintain the same contact pair as in component. Typical
test configurations used in tribometers are detailed in Fig. 61:

Depending on the tribometer and on the configuration, parameters such as
frequency, vertical load, temperature, testing time and stroke can be specified in
the test. Along the test, other parameters such as friction force and contact tem-
perature can be measured, as well as the real values of vertical load and frequency
in order to compare the possible deviations with the theoretical values specified to
the test.

Usually, tribometers are also equipped with high speed data acquisition module
which enables to acquire friction force values at a high frequencies rate in con-
tinuum signal. These additional options enable the storing and displaying of
complete friction cycles during very low speed Stribeck Curve (see Sect. 1.3
Fig. 12) and stick-slip tests, apart from providing typical RMS (acronym for root

Pin-on-flat Flat-on-flat Line-on-flat Pin-on-disc
(reciprocating) (reciprocating) (reciprocating)

Fig. 61 Typical test configurations in tribometer

Fig. 60 Mounting of the
specimens in the uniaxial
fatigue test rig
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mean square, it gives the mean value of a signal) friction curves along the whole
test. In addition, tribometers are equipped with cooler system, which enables to
perform tribological tests at very low temperatures.

In reciprocating configuration, according to ASTM G133-05 standard, the test
consists on a horizontal arm with reciprocating motion. The moving elastomer
specimen is mounted in a carrier, oscillating mechanically against a fixed lower
specimen of a harder material, which acts as counter surface. The mechanical drive
comprises a motor driven cam and scotch yoke assembly, providing pure sinu-
soidal motion. The drive mechanism can run inside a bath in order to perform tests
under lubrication conditions. The fixed specimen is located in a stainless steel
reservoir. The reservoir is clamped to a block that is heated by electrical resistance
elements and the temperature is monitored by a thermocouple pressed against the
side of the specimen or holder. Movement in the horizontal direction is resisted by
a piezo-electric force transducer, which measures the friction forces in the oscil-
lating contact and the output range is set to match expected friction levels in the
contact. Figure 62 shows an image of this configuration in a commercial
tribometer.

Regarding pin-on-disc configuration, according to ASTM G99-05 standard, an
adapter replaces the standard reciprocating head on the machine and allows the
performance of rolling tests, using the machine drive motor and automatic loading
system. In this case, the elastomer specimen is vertically loaded and fixed in the
test, while the harder counter material moves rotating in the test. Figure 63 shows
an image of the pin-on-disc configuration in a commercial tribometer.

To follow a procedure of testing in tribometer, elastomer samples and counter
material must be cleaned before testing by agents like ethanol, petroether or
acetone. Additionally, in wear tests may be necessary to include air blowing over
the count surface in order to eliminate debris, which can acts as a third body
inducing a different wear type. In general, both in friction and wear tests, pre-
conditioning steps are also recommended to set up test conditions, in load and

Fig. 62 Tribometer under
reciprocating conditions
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frequency, in a smooth way, looking for repeatability results under the same
conditions. Remarkable investigations on tribometer friction tests are carried out
by Blau and de Vore [213] and by Plint [214], while investigations on wear tests,
with specimens extracted from a real component, are carried out by Song et al.
[215], by Franklin [216] and by Burris and Sawyer [156].

The results obtained from friction tests are the friction coefficient, obtained
from the ratio between the friction force and the applied load, versus time as a
RMS signal, and the continuum evolution of the friction coefficient. From wear
tests, the weight loss of the specimen is obtained as weight difference before and
after testing.

3.3 Material Characterisation from Experimental Tests

Data obtained from experimental tests detailed in Sect. 3.2 are used to characterize
the behavior of the elastomer. The results of the tests on universal test machines
are used to obtain the elastic and inelastic behavior of the material, those of the
DMTA tests to obtain its viscoelastic behavior, and those of tribometer tests to
obtain the friction and wear behavior of the contact pair between the elastomer and
the corresponding counter material.

3.3.1 Hyperelastic Characterisation of the Material

The elastic behaviour of the elastomer is modelled by means of an energy density
function (EDF). Usual available functions in FE codes are: Arruda-Boyce, Moo-
ney-Rivlin, Neo-Hookean, Polynomial Ogden, Reduced Polynomial, Van der
Waals and Yeoh. The values for the parameters fitting of these models are obtained
from experimental data, allowing the use, at the same time, of data from uniaxial,

Fig. 63 Tribometer under
pin-on-disc conditions
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biaxial, volumetric or plane tests. Material can be considered as totally incom-
pressible or quasi-incompressible, characterising the model from data obtained in a
volumetric compression test or including Poisson’s ratio in the material definition.

In this characterisation, the material is considered as isotropic because the
material molecules are distributed in a random way. Effects like permanent
deformation, viscoelasticity or hysteresis are not included in the material model.

Regarding the experimental data to fit the parameters of the selected EDF,
depending on the predominant deformation mode which is present in the com-
ponent to simulate, it is recommended to use experimental data obtained under the
same deformation mode. In case of there is not a predominant deformation mode,
it is necessary to use a predictive material model (Reduced Polynomials, Arruda-
Boyce and Van der Waals), characterised with data from tensile test, compressive
test or a combination of both of them, checking the obtained prediction with
experimental data of each one of the tests. For polynomial material models, the
polynomial grade is based on the available experimental data. For experimental
curves with not too much data (points separated at 10 or 20 %), low grade
polynomials are recommended (grades from 1 to 3), while experimental data have
higher acquisition data, better results are obtained with higher grade polynomials.
In any case, the range of the curve stability must be checked.

To select an EDF, the behaviour of the selected EDFs must be evaluated under
simple deformation modes, so that the selected function shows a stable behaviour
in the strain range of interest (strain attained in the simulation), as well as a
minimum deviation with regard to the experimental data is obtained. If the
material is specially confined in a particular application, the material compress-
ibility will be also important and must be characterised previously.

As summary, to define the hyperelastic and inelastic behaviour of an elasto-
meric material, the next steps should be followed:

1. Definition of the hyperelastic behaviour: providing parameters model directly
or fitting them from the next data sets:

• Elastic behaviour (and its dependence on temperature, in required case).
• Volumetric behaviour (in required case).
• Thermal expansion coefficient (in required case).

2. Selection of an EDF from a set of simple deformation mode characterisations
(for instance, see Figs. 41, 43 or 44).

3.3.2 Inelastic Characterisation of the Material

Viscoelastic Properties

The viscoelastic characterisation of the material is carried out from master curves
of the storage modulus (G0), loss modulus (G00) and damping factor (tan d)
obtained in DMTA tests. Once the set of tests are carried out in the range of
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frequencies under study and multiple test temperatures, the subsequent results
must be treated to construct master curves of G0, G00 and tan d at a reference
temperature which is selected to be the glass transition temperature.

To carry out this task, commercial software can be used to deal with the data in
an automatic way. With this software, master curves at the glass transition tem-
perature as reference temperature from DMTA test data can be constructed. The
program calculates the corresponding shift factors from the temperature of each
cyclic test to the reference temperature (Tg) of the master curve. The program also
provides the value of the glass transition temperature by evaluating the DMTA
results.

To implement the viscoelastic material characterisation in a FE code, a user
subroutine must be programmed to enable the shifting of the master curve at the
reference temperature to any other desired temperature of analysis directly inside
the main FE simulation. By means of this user subroutine, parameters corre-
sponding to the expression for the Williams Landel Ferry calculation and the
Arrhenius correction term for temperatures below glass temperature (Tg) are
specified.

Once master curve is built up, the complete fitting of the FE material model
must be carried out from both hyperelastic and viscoelastic characterisation tests,
carried out with universal test machines and DMTA tests respectively. In this
model, the quasi-static and time-dependent mechanical responses or the rubber
material are included. Both parts are available in FE codes by selecting the most
adequate models for each one and providing the adequate constants for their
parameters.

For the hyperelastic part, a simple material model, like for instance a
Neo-Hookean, can be selected. It is known from literature that its corresponding
parameter C10 equals to the shear modulus of the rubber material divided by a
factor of two. The hyperelastic model offers the possibility to fit the parameter
values to the instantaneous response of the rubber material (modulus at very high
frequencies) or to the relaxed response (very low frequencies). Based on the
assumption that the relaxed response of the rubber obtained in a uniaxial test
should take several hours or even days, and therefore to fit the model parameter
from the uniaxial quasi-static tests probes not valid under a strictly theoretical
point of view (although provides good approximation for quasi-static FE analysis
where time has no physical sense in simulation), the instantaneous value of the
shear modulus provided by the DMTA tests can be used to fit the C10 parameter of
the Neo-Hookean model.

For the viscoelastic part, a Prony series can be adjusted by means of the soft-
ware. The Prony series terms, corresponding to a generalized Maxwell model of 30
terms, can be obtained by fitting to the shear storage modulus master curve (G0).

Once both hyperelastic and viscoelastic models are developed, a checking with
one-element FE simulation for simple tests is carried out, in order to analyse that
the dynamic response (quasi-static and time-dependent mechanical response,
including temperature dependent behaviour) of the FE material model predicts
adequately the experimental results obtained in universal test machine. The FE

Other Applications: Engineering 349



simulations must be therefore executed at the same strain rates and temperatures
than the uniaxial tests.

In addition, correlation between experiment results obtained from universal test
machine and FE simulations of one element will be used to re-adjust the value of
the C10 Neo-Hookean parameter. This is necessary since the corresponding cyclic
frequencies equivalent to the universal test machine tests, although certainly low,
cannot be fixed with enough accuracy. Therefore, several FE simulation loops are
carried out until the readjusted Neo-Hookean parameter value enables good cor-
relation with the universal test machine tests. The importance of the viscoelastic
characterisation can be observed, for instance, in the Sect. 4, examples of indus-
trial applications, in the simulation of a rubber block absorber in automotive
industry.

3.3.3 Characterisation of Fatigue

According to the definition of the crack growth characteristic proposed by Lake
and Lindley [71] and expressed in (162), a fitting of parameters is required to feed
the elastomeric material fatigue model in the different crack growth regimes.
Additionally, it is necessary to define the initial and final crack growth lengths in
order to define the integration limits of the equation properly.

3.3.4 Characterisation of Friction and Wear of Contact Pair

Once friction and wear tests on tribometer are carried out, friction and wear laws
must be characterised from test results to be implemented in a FE code.

Friction Characterisation

Classic Coulomb’s and Amonton’s friction laws, which mainly establish that the
friction coefficient is independent of the contact area, are proven to be invalid in
the case of rubber-like materials. Friction coefficient can be expressed as function
of several variables such as contact pressure (by means of vertical load F), sliding
speed (v), temperature (T), lubrication regime (by means of lubricant viscosity t)
or roughness of counter material (Ra) (192).

l ¼ l F; T ; v; t;Ra; . . .ð Þ ð192Þ

The dependence with the contact pressure is associated to the varying ratio of
real contact area, at microscopic level, to apparent contact area, at macroscopic
level, when vertical load rises. The problem increases in complexity when neither
the contact pressure distribution nor the ratio of real to apparent contact area are

350 L. A. Gracia et al.



uniform along the apparent contact area, as in case of a contact geometry different
from flat to flat configuration.

Rubber-like materials in general and rubbers in particular, have high friction
characteristics, a consequence of their low elastic modulus and their viscoelas-
ticity. Thus, they deform in a large extent, resulting in high values of the real
contact area. Hence, classical models for metals are no longer valid for the case or
rubber friction.

As it was previously referred, Amonton and Coulomb established that friction
force is proportional to the vertical load and independent of the contact geometry.
Coulomb defined the friction coefficient l as the ratio between friction and vertical
load. For materials obeying this law, l is independent of the vertical load and thus
of the normal stress. Rubber does not obey Amonton’s and Coulomb’s laws since
the friction coefficients falls markedly when increasing of normal stress. For this
particular behaviour, an analytical law, which later would be of wide use, is due to
Thirion [85] (193).

1
l
¼ aþ b

P

E

� �
ð193Þ

where l is the friction coefficient, P is the normal stress, E is the elastic modulus of
the rubber and a and b are empirical constants. Schallamach [133] showed later
how behaviour described in (16) may be explained on the assumption that the
friction force is proportional to the true contact area, resulting in (194)

l ¼ const � P

E

� ��1=n
ð194Þ

where the value of n is derived from a model, which considers the deformation of
the rubber on the asperities of the metallic counterpart and depends on the
geometry and distribution considered for peaks and valleys. In general, n depends
on the nominal normal stress, but for restricted ranges is considered to be constant.
At sufficiently high normal stresses, the real contact area becomes equal to the
apparent contact area, so that the frictional force becomes constant and l is
inversely proportional to P, as described in (194). This particular condition is
referred to as ‘‘saturation’’.

A methodology to implement friction coefficient can be obtaining frictional
force from tribological test results, and the contact pressure distribution and the
contact area for each load level from FE simulations. The relationship between the
frictional force and the contact pressure can be set up according to the following
expression (195).

Ff ¼
Z

A

l Pð Þ � P � dA �
X

i
l Pið Þ � Pi � Ai ð195Þ
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where Ff is the frictional force measured by the tribometer, A is the contact area,
P is the contact pressure and l(P) is the friction coefficient dependent of the
contact pressure.

The integral can be transformed into a sum due to the FE discretization. Next
step is to approximate the friction coefficient by an analytical function. Choosing a
polynomial form allows the friction coefficient curve to take the form desired and
gives some advantages when manipulating the sum above (195). This way,
approximating the friction coefficient by an order n polynomial form (196) and
substituting in (195), a system of n ? 1 unknowns is obtained. Figure 64 shows
the identification of the variables involved in the next equations.

l Pð Þ ¼
Xn

j¼0

kj � P j ð196Þ

Ff ¼
X

i

Xn

j¼0

kj � P j
i

 !
� Pi � Ai ð197Þ

Manipulating adequately (197):

Ff ¼
Xn

j¼0

X
i

Ai � Pjþ1
i

 !
� kj ð198Þ

Taking into account the number of different load levels used in the tribological
test, and the order of the polynomial chosen, a different number of equations
systems can be obtained. In general, N being the order of the chosen polynomial, to
solve the system it is necessary to consider N ? 1 tests, all of them at different
values of normal load.

Wear Characterisation

The widespread characterisation about wear modelling in different materials was
carried out by Meng and Ludema [95], which classified more than three hundred
wear model equations along last century. These authors consider in the classification

Load

Displacement

Ff

Contact pressure at point i 
Pi associated to a contact
area Ai at the same point

Ff

Fig. 64 Sketch of friction characterisation in a ‘‘flat-on-cylinder’’ configuration
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three main approximations about wear modelling: models based on empirical rela-
tionships, models based on contact mechanics and models based on material failure
mechanisms.

According to the results obtained in the tribometer tests, the most appropriate
models to set up a starting point from which a wear model can be developed are
those based on contact mechanics. Regarding the rest of models, those based on
empirical relationships, like those developed by Barwell [217] and Rhee [218] are
specific to the particular test for which they are fitted and it is difficult to be
adapted to new test conditions; on the other hand, models based on material failure
mechanisms, like those described by Cantizano et al. [219] and by Torrance [220],
include material parameters such as fatigue properties, shear failure or surface
parameters obtained from surface characterisation techniques, so that available
tribometer test data are not enough to characterise this kind of models. Therefore,
models based on contact mechanics are the most suitable to characterise an initial
wear model because most of them relate worn volume with a material property like
Young’s modulus or hardness, properties that can be easily obtained from test data.

Within models based on contact mechanics, that one proposed by Archard [221]
is one of the most broadly used in literature, being expressed in (199):

W ¼ k

H
� F � c ð199Þ

where W (mm3) represents material worn volume, F (N) is the applied normal
load, c (m) is the travelled distance, k [-] is a wear constant particular to the
contact pair and H (N/mm2) is the material hardness. When experimental results
are interpreted, hardness of the contact layer may not be exactly known and
therefore, a more appropriate parameter to express wear behaviour in Archard’s
model is the ratio k/H (mm3 N-1 m-1), known as K and so-called dimensional
wear coefficient of specific wear rate. Therefore, (199) can be expressed as (200):

W ¼ K � F � c ð200Þ

Archard model referred in (200) is applied to the stationary stage of the wear
curve shown in Fig. 65, where the wear rate on the surface is attained in a constant
and uniform way. According to Archard model, and with the rest of variables of

Time or distance

Accelerated wear 
stage

Initial wear stage

K

W
ea

r Stationary wear 
stage

Fig. 65 Wear curve applied
to Archard model
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(200) known, K can be considered as the characteristic wear coefficient of the wear
process. Figure 66 shows an example of application of the Archard’s law stated in
equations (199) and (200).

Other authors have proposed modifications and improvements of the Archard’s
model: Greenwood and Williamson [222] included particles deformation, Sarkar
[223] included the friction coefficient dependency, Liu and Li [224] proposed an
Archard’s law modification in order to take in consideration material properties for
high elastic materials by means of its strain energy and Molinari et al. [225]
included the dependency of material hardness with temperature using an elasto-
plastic material model for contact bodies.

With the tribometer test results, Archard’s model can be taken as starting point
to firstly study the dependencies, applied force and travelled distance, obtained in
these results. Depending on the obtained dependency between variables, rela-
tionship stated by Archard can be modified if the linearity is not fulfilled, stating
the dependency that better characterises tribometer test results.

3.4 FE Model and Related Aspects

In general, the FE simulation of an elastomeric component requires to know as
precisely as possible how the system to simulate works. Generally, as the elas-
tomeric components have an important interference in the housings in which are
assembled, auxiliary parts have to be used in the mounting of the elastomeric
component in the model. This fact will be pointed out in the Sect. 4, examples of
industrial applications, in the simulation of a window seal of a railway coach.

The geometry of the component to simulate has to be simplified if it is possible,
including fillet radius in sharp edges so that the mechanical behaviour of the
component is not significantly modified. A compromise between the accuracy of

Load Specimen fixation tool

Specimen 

Counter material

Sliding direction

Load

Fig. 66 Sketch of wear characterisation in reciprocating configuration
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the results obtained with the model and the calculation time must be set up, in
order to build up a suitable model fine enough at the zones of interest but within a
reasonable computation time.

Elastomeric material is modelled from results obtained in elastic or ineslastic
characterisation tests. If only elastic behaviour is available, the model that better
reproduces the experimental characterisation will be used in the FE simulation. If
inelastic behaviour is available, it can be implemented with the data detailed in
Sect. 1.2.2 by means of material user subroutines available in FE codes.

Models to be used in FE simulations with elastomeric components are usually
three dimensional models. Hyperelastic elements are considered as deformable
bodies, while in the case of other parts made of a material with much higher
stiffness than elastomeric material, such as steel of rigid plastic elements, and if a
stress analysis is not focused on them, can be modelled as rigid parts and modelled
as rigid surfaces. When the model shows symmetry in geometry and loads, axi-
symmetric models or models with half or a quarter of symmetry must be used to
reduce the computational cost of the simulations, especially important task in non-
linear calculations like those in which elastomeric components are included (non-
linearities are present in material formulation and in contact algorithms).

Deformable elements are modelled so that the mesh reproduces accurate
enough the zones of interaction between surfaces, with a suitable precision in the
calculation results. In general, linear hexahedron elements with full integration and
hybrid formulation are used in three dimensional problems, while axisymmetric
elements with four nodes and hybrid formulation are used in problems with
axisymmetry.

The simulation of an elastomeric component, in general, can be divided into
two parts. Firstly, the component is assembled in its housing in order to obtain the
assembly or nominal position. If the friction between the elastomeric component
and the housing is significant, the assembly must be carried out accurate enough in
order to obtain in the simulation the same position as in real conditions. Secondly,
the working conditions of the system are applied to the simulation in subsequent
steps.

Loads and boundary conditions are applied by means of contact pairs between
the elastomeric component and the housing. The housing is usually built up by
means of analytical rigid surfaces because their stiffness is higher than that one of
the elastomeric component. Each analytical rigid surface is defined with a refer-
ence node, used to define the boundary conditions and loads over the component.

In the definition of the contact pairs, the elastomeric component modelled as
deformable body and that one of the rigid surfaces of the housing, sharp edges and
zones with an incorrect definition of the normal vector must be avoided in order to
obtain enough convergence in the simulation. The definition of the analytical rigid
surfaces must be done with its normal opposite to that one of the surface of the
deformable part. The friction model will be characterised from, if it is possible,
tribometer test results or, if not, estimated from previous results or from literature
under similar conditions. In case of characterisation from tribometer test results is
used, the dependencies obtained between the friction coefficient and the rest of
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parameters with the model detailed in Sect. 1.3.2 can be implemented by means of
a friction user subroutine available in FE codes.

In case of wear effects in elastomeric components are to be taken into con-
sideration and a wear model from tribometer tests is available, it can be imple-
mented in a FE code via user subroutine in order to simulate the wear by means of
a FE simulation.

3.5 Results Interpretation

The results of the FE simulations that include elastomeric components are usually
analysed by means of the same results that can be available in experimental tests.
It can included, for instance: curves of reaction force–displacement in the rigid
parts, variable that can be usually validated with experimental results, with the
same conditions than those stated in the FE simulation. Other variables that can be
analysed are true strain distribution maps in the elastomeric component modelled
as deformable part, real strains, real or Cauchy stresses, contact pressures and
shear stresses at the contact surfaces with the rigid parts and variables which relate
both stress and strain variables such as strain energy density.

Results from tribometer friction tests are usually used to characterise the fric-
tion model that feed the FE simulation. Anyway, the results attained in these tests
can be also validated by comparing the results obtained from tests, like friction
force or friction coefficient. Similarly, results from tribometer wear tests are also
used to characterise the wear model, but these results can also be post-processed in
the wear simulation of an elastomeric component by means of wear distribution
maps.

4 Examples of Industrial Applications

In the present section, some examples related to the application of FE techniques
for the analysis and design of components for automotive and railway applications
will be presented, as demonstration of the advantages which these techniques
provide compared to the experimental design procedures used until recent past in
the industry.

As will be shown, the main advantages of using virtual prototyping (FE based)
techniques constitute mainly the significant reduction in cost and time of the
design cycles, compared to the large and expensive experimental testing series
performed in industry on component prototypes. Other advantages are related to
the increase of knowledge in the mechanical functional behaviour of the compo-
nent and also of its constituting material, which allow obtaining designs with
optimised mechanical functionalities and with extended functionalities.
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The following examples are collected as demonstrators of FE analysis as virtual
prototyping tool applied to design of industrial components: rubber seal of a
railway coach, silent-block in automotive industry, rubber block on wheel of
railway coach and rubber shock absorber in automotive industry. Each example
describes the scope in the complexity of the applied rubber material model and the
FE simulation assumptions, according to the boundary conditions and the needed
accuracy of the results. The FE code used in each simulation depends on its
suitability to reproduce the desired effects. These FE codes are ABAQUS Standard
[97] and MSC.MARC [61].

All the examples that are included in the present chapter have been extracted
from real design and development projects, which have been carried out by the
Instituto Tecnológico de Aragón (Spain) in collaboration with industrial clients.

4.1 Example 1: Window Seal of Railway Coach

The first example consists of the analysis of the functional behaviour of a rubber
seal located in the window of a railway coach. The analysis aims to study the seal
in terms of strain distributions and to identify critical areas under wind pressure
conditions inside and outside the coach (static condition), studying also the
mounting position on the window frame.

4.1.1 Finite Element Model Description

The elements that are included in the FE model are the main glass window, the
aluminium frame and the rubber seals between glass and aluminium. Both rubber
components are characterised by a Shore A 65 hardness. Figure 67 represents the
mentioned elements included in the model development.

Since the requirements for the loading conditions are considered as static, as
well as the FE analysis itself, the mechanical stress–strain response of the rubber
will be modelled by means of a hyperelastic model, assuming therefore isotropic
and incompressible behaviour with no dissipative effects included in the model
(viscoelasticity and hysteresis). In this case, the range of strains that is expected to
be obtained in FE simulation suggests using a reduced order polynomial with three
constants (N = 3; Yeoh model).

The Yeoh hyperelastic model constants can be fitted in two ways, by means of
fitting to experimental quasi-static tests performed on samples of the same
material, or using analytical (experimental based) laws which relate Shore A
hardness values to estimations of the shear modulus. If the latter case, the material
model fitting is considered only as estimation which in most of the cases probes
valid enough. In the present case, the Yeoh model constants are estimated as
C10 = 0.86 N/mm2, C20 = 0.07 N/mm2 and C30 = -0.0015 N/mm2. Figure 68
shows the stress–strain response assumed at room temperature:
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According to the analysed geometry of the window structure, a 2D model which
considers a plane strain deformation state is constructed to spare computational
cost. For this reason, the glass window and the aluminium frame are also con-
sidered as rigid bodies since their stiffness is assumed to be several orders of
magnitude higher than that of the rubber material. The model is constructed using
plane strain elements with hybrid formulation, resulting in a model size of 34000
nodes and 33000 elements. The analysis is performed by means of the commercial
FE code ABAQUS [97].

Fig. 68 Mechanical stress–strain response modelled by Yeoh hyperelastic model
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seals
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The simulation cases to be considered correspond to the static pressure con-
ditions on the outer and inner sides of the window mentioned previously, corre-
sponding to component test specifications: Starting from the mounted position, the
first case considers therefore the static pressure applied on the outer side of the
window and, in a similar way, the second case considers the static pressure applied
on the inner side.

4.1.2 Results of the Static Finite Element Simulations Cases

The present section shows a summary of the most relevant quantitative and
qualitative results that can be obtained from any of the two performed simulation
cases. In this case, the results shown correspond to the first condition of outer
pressure, being the type of analysis the same as in the second simulation case.

Static Pressure on the Outer Window Side

Figure 69 shows the zones at which results are analysed and compared.
The values of the most important variables of analysis (principal strains and

stresses and also contact pressures) can be analyzed for a specific FE simulation
instant, as well as during their evolution along FE simulation progress. In Fig. 69,
the critical zones of the seals sections have been labeled. In these zones, the most
relevant variables of analysis can be studied in detail, comparing the initial
assembled position with the final one after pressure application. For example, in
the critical ‘‘zones 1 and 2’’ of the outer seal, the maximum values of principal

Zone 1
Zone 4

Zone 2

Contact 
zone A

Zone 3

Fig. 69 Analysis zones
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strains and stresses drop 10 % in average, whereas in the inner seal, there is an
increase of them around 50 % at the labeled critical zones. Values of contact
pressures between the rubber and rigid bodies can be also studied in FE simulation.
As example, the labeled ‘‘contact zone A’’ suffers from a significant increase in the
contact pressure due to the displacement of the glass towards inside.

Finally, Fig. 70 shows the evolution of equivalent force and pressure on glass
against its main displacement due to the uniformly applied outer pressure.

Among the conclusions that can be obtained from the previous curve, it can be
drawn for example that the glass displacement value at which the change in the
slope of the curve occurs correspond to the point of the simulation at which the
gasket and the inner seal contact each other (contact zone A).

4.1.3 Conclusions

From the FE analysis presented in this section, it can be concluded that modelling
the mechanical stress–strain behaviour of rubber, assuming isotropy, incom-
pressibility and with no dissipative effects by means of a hyperelastic model
probes accurate enough in those cases in which the load specifications can be
considered static or quasi-static, such as the presented one.

The scope of the obtained results includes the stress and strain states of the
rubber component under different functional conditions and their interaction with
the surrounding metallic components, which enable to check the accomplishment
of the design limits.

Fig. 70 Curve of equivalent force and pressure on glass for the case of 3800 Pa outer side
pressure
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4.2 Example 2: Silent-Block in Automotive Industry

The second example consists of the analysis of the static, including inelastic effects
in the analysis, and dynamic mechanical behaviour of a vibration isolation mount
made out of filled rubber. Filled rubber is a material composed of a matrix of
vulcanised gum where different filler particles are gathered. These fillers, such as
carbon black, silica, etc. provide to the material an increase on stiffness and at the
same time, an increase of inelasticity.

Due to its special properties, filled rubber is commonly used in the manufacture
of vibration isolation mounts. Silent-blocks usually experience small oscillatory
loads superimposed on large static deformation and their static and dynamic
stiffness are required in order to meet the performance of load bearing and iso-
lation. These characteristics of a filled rubber mount are often very complex in
nature, due to the fact that the filled rubber material response is dependent on
several variables, such as frequency, amplitude [57, 56], pre-strain and
temperature.

In the present section, two FE analysis approaches are presented: first one
considers a static analysis which includes also the typical inelastic effects which
characterise the mechanical rubber behaviour to predict the axial stiffness of the
rubber component. The second approach focuses on the prediction of its dynamic
stiffness under cyclic loading.

4.2.1 Static Analysis Including Inelastic Effects

Figure 71 shows the silent-block analyzed in this section. The component consists
of an inner steel ring over which the rubber is moulded. The resulting assembly is
then mounted on an outer ring as shown:

The selected experimental conditions to be later simulated by FE method
correspond to the axial stiffness test. This test consists of applying an axial dis-
placement on the inner ring while outer ring is maintained fixed. The history of

Ring

Bushing

Fig. 71 Silent-block studied in the present FE analysis
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load applied on the inner ring in the test is four loading cycles loading at two
displacement levels (0.5–1 mm) in compression. Figures 72 and 73 show the
experiment.

From the previous experimental results in Fig. 74, it can be checked that almost
all the material softening due to Mullins effect occurs between the first and second
load cycles, being this effect almost negligible in the successive cycles. Other
remarkable effect is the permanent set that the material shows after the first cycle,
which causes that the second and third cycles do not restart from the XY origin,
but from a displaced position at Y axis.

The simulation of the axial stiffness test in compression will be carried out by
using the following material models: the overlay method for modelling the

Fig. 72 Axial stiffness test

Fig. 73 Load history in axial
stiffness test

362 L. A. Gracia et al.



hysteresis of the material [211] and the Ogden-Roxburg or Simo models for
modelling of Mullins effect [212]. Figure 75 shows the FE model that, with this
purpose, is developed with the FE code ABAQUS [97]: the rubber component has
been considered as the deformable body and both the inner and the outer rings as
rigid bodies.

Fig. 74 Force–displacement curves obtained for axial stiffness test

Fig. 75 FE mode of the
silent-block in the FE code
ABAQUS
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4.2.2 Results of the Finite Element Simulation of the Static Stiffness
of a Silent-Block with the Overlay Model

The adjustment of the parameters of the overlay method for modeling the hys-
teresis has been carried out according to the methodology proposed by Gracia
[212], by means of calibration with uniaxial compression tests. Table 2 shows the
values for the overlay model parameters.

The results for this model compared with the experimental results are displayed
in Fig. 76. Results with the overlay model show that this model adequately
reproduces the stiffness of the material, with differences, regarding the experi-
mental behaviour, lower than 10 % for 0.5 mm of compression and lower than
5 % for 1 mm, what points out that the characterization of the hyperelastic con-
tribution is correct. Regarding the amount of dissipated energy in the cycle, var-
iable governed by the frictional contribution of the material, the overlay model
predicts a lower amount of hysteresis than that exhibited by the experimental
results. The hysteresis of the experimental cycles from second to forth is more
similar to that one predicted by the model. However, it can be concluded that the
overlay model calibrated from uniaxial compression test data is able to predict in
an acceptable way the material behaviour in the test.

Table 2 Parameters for the overlay model calibrated from uniaxial compression tests [201]

Hyperelastic contribution (MPa) Frictional contribution (MPa)

Elastic modulus Yield strength

C10 0.45789 0.485760 0.0244235
C20 0.01687 0.085889 0.0103116
C30 -6.97406 E-4 0.148014 0.0355299

Fig. 76 Force–displacement curves obtained for axial stiffness test, compared to FE simulation
with the overlay model [201]
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Logically, the overlay model does not reproduce the permanent deformation of
the material observed in the experimental response because this is not a feature
incorporated in the model.

4.2.3 Results of the Finite Element Simulation of the Static Stiffness
of a Silent-Block with the Ogden–Roxburgh Model

The adjustment of the parameter of the Ogden–Roxburgh model is carried out
according to the methodology proposed by Gracia [212], by means of calibration
with uniaxial compression tests. Table 3 shows the B-model parameter values.

Figure 77 shows the results in terms of force–displacement obtained for the
Ogden–Roxburgh model compared with the experimental results of the axial
stiffness test on the silentblock.

The overall stiffness predicted by the Ogden–Roxburgh model is appropriate
with differences of 10 % for -0.5 mm displacement and only 1 % for -1 mm,
what again indicates that the characterization of the hyperelastic contribution is
suitable. In this model the dissipated energy, that is, the area enclosed by the cycle,
is only determined by the damage phenomenon (136), because of this model does
not include any other dissipation mechanism (neither hysteretic, nor viscous). This
model predicts acceptable energy dissipation within the cycle, what also indicates
that the characterization of the parameters of the Ogden–Roxburgh model from
uniaxial compression tests is also suitable for this application.

Neither Ogden–Roxburgh model reproduces permanent deformation of the
material, because it does not include this feature.

4.2.4 Dynamic Experimental Characterisation

The analysis aims to reproduce the effect of these dependencies, which can be
absolutely critical in capturing the dynamic stiffness of the component. The pre-
sented analytical method for predicting these response characteristics makes
possible to design elastomeric components without performing costly design
iterations which involve design, testing and redesign.

To predict the dynamic stiffness of filled rubber mounts, a modification of the
viscoelastic mechanical behaviour model, typically implemented in FE codes, is

Table 3 Parameters for the Ogden–Roxburgh model calibrated from uniaxial compression
tests [202]

Hyperelastic contribution (MPa) Mullins effect (O-R)

C10 0.40 b 2.3524
C20 0.0158745 m 0.0
C30 -6.97406 E-4 r 1.001
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proposed, considering not only the static pre-strain but also the dynamic strain-
dependent properties. This is accomplished by changing the viscoelastic material
parameters element by element, depending on the strain level, due to pre-strain and
amplitude of each element.

As requirement to feed the FE material model, experimental characterisation of
these dependencies is carried out and these data are applied to the prediction of the
dynamic stiffness of the filled rubber under different vibration conditions (pre-
strain, amplitude, frequency). Dynamic tests on components are also performed in
order to validate the material model. To characterize the viscoelastic behaviour of
the material and its cyclic response, tests are conducted to evaluate the depen-
dencies of excitation parameters: pre-strain, amplitude and frequency.

The material used is a Shore A 67.5 rubber hardness natural rubber compound
(NR) used in rubber-metal parts for automotive industry. Data from harmonic
displacement controlled loading of compression specimen, cylindrical block
compressed by two parallel plates as shown in Fig. 78, are obtained for a wide
range of frequency, pre-strains and strain amplitudes.

F

F 

Fig. 78 Compression test specimen used in material characterization tests

Fig. 77 Force–displacement curves obtained for axial stiffness test, compared to FE simulation
with the Ogden–Roxburgh-model [202]
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The dynamic modulus and damping are obtained for each condition according
to (6) and (7). The complex shear modulus is obtained as a function of the complex
uniaxial modulus with (201):

G� ¼ 3K�E�

9K� � E�
ð201Þ

Considering that the bulk modulus is very large compared to the shear modulus,
the material can be considered to be incompressible and the expressions simplify
further to (202):

G� � E�

3
ð202Þ

By means of an Instron servo hydraulic universal testing machine, dynamic
tests are carried out with all combinations of the parameters listed in Table 4.
Experiments are performed with harmonic excitation to determine the dynamic
modulus of the material.

First, the minimum static pre-strain is applied and the dynamic excitation starts
with the smallest strain amplitude. The frequency varies from the smallest to the
highest value. After the frequency variation the static pre-strain remains constant
and the amplitude is increased to the next higher value. The frequency sweep is
carried out again and this procedure is applied until the highest amplitude is
reached. The static pre-strain is then set to the next level and the test continues in a
similar way until the highest pre-strain level in compression has been reached.
Representation of the different dependencies obtained experimentally is shown in
Figs. 79, 80 and 81

4.2.5 Dynamic Material Model Development and Validation

The material model is implemented in MSC.MARC [226], which allows performing
mechanical analysis of incompressible solids in which a small amplitude time har-
monic oscillation is superposed on a static finite deformation field. The amplitude of
the superposed vibrations is considered to be sufficiently small that the relevant
equations can be linearized and the response to the static preload is computed on the
basis of purely elastic behavior in the elastomeric parts of the model. This FE code
treats the finite elasticity material behavior using the finite linear viscoelasticity
constitutive equations proposed by Morman [60] for predicting the response of

Table 4 Parameters for dynamic material characterization tests

Parameter Levels

Pre-straina (%) 10, 15, 20, 25, 30, 35
Amplitudea (%) 0.125, 0.25, 0.5, 1, 2.5, 5, 10, 15, 25
Frequency (Hz) 2, 5, 15, 20, 50, 100, 150, 200, 250, 300
a Engineering strains
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statically deformed components subjected to small amplitude vibrations in the fre-
quency domain.

According to the Morman’s model, the frequency domain viscoelastic material
model implemented in MSC.MARC describes frequency-dependent material
behavior in small steady-state harmonic oscillations for those materials in which
dissipative losses caused by ‘‘viscous’’ (internal damping) effects must be modeled
in the frequency domain and assumes that the shear (deviatoric) and volumetric
behaviors are independent in multiaxial stress states. The FE code linearizes the
problem around the equilibrium state and considers all effects of the nonlinear
deformation on the dynamic solution. These effects include the initial stress,

Fig. 79 Measured dynamic stiffness for the compression test (NR material). Pre-strain dependence

Fig. 80 Measured dynamic stiffness for the compression test (NR material). Amplitude
dependence
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change of geometry and influence on constitutive law. The vibration problem can
be solved as a linear problem using complex arithmetic.

As mentioned, the frequency-domain viscoelastic model implemented in
MSC.MARC is only able to consider the frequency dependence and the dynamic
behavior is characterized with only one dynamic simple shear test, through the
complex shear modulus (storage (G0) and loss (G00) moduli) versus frequency.
These variables are defined in MSC.MARC by means of the UPHI subroutine. The
model presented here proposes to modify this subroutine for considering the pre-
strain and amplitude effects, including them in the material parameters for each
element, depending on the strain level, due to pre-strain and amplitude.

As shown in the Morman’s model definition, strain and frequency effects are
separated, and the frequency-dependent part of the material’s response, defined
above, is not affected by the magnitude of the pre-strain. This separability
assumption is not suitable for filled rubber. To consider it, first it is needed to
modify the long-term shear modulus, which varies with the amount of static pre-
strain. This is obtained from the static (long term) characterization of the material.

G1 ¼ G1ðe0Þ ð203Þ

To consider pre-strain and amplitude effects on the complex shear modulus G*,
shift factors are introduced to the constitutive equation in order to describe both
effects, assuming that these effects are separable. These shift factors, fitted with
experimental data and self-computing inside the subroutine, allow correcting the
data introduced to feed the viscoelastic model at fixed pre-strain and amplitude
conditions, to consider the real strain levels of individual elements.

G�ðx; e0; AmpÞ ¼ G�ðxÞ � ae0 � aAmp ð204Þ

where G*(x, e0, Amp) is the material viscoelastic parameter defined for each
element depending on strain levels, G*(x) is the material viscoelastic parameter of

Fig. 81 Measured dynamic stiffness for the compression test (NR material). Frequency dependence
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input file, obtained from material characterization at fixed pre-strain and amplitude
and aPo and aAmp are the shift factors for each element depending on pre-strain and
amplitude, defined from influence analysis on material characterization curves

As a first step, the experimental compression tests used to feed the numerical
model are simulated in order to check the validity of the assumptions considered.
Geometry and meshing of the compression specimen used in the experimental
cyclic characterization tests is carried out by means of MSC.MARC non linear FE
code. Compression specimen is meshed with four nodes, quadrilateral axisym-
metric solid elements with Herrmann formulation (element type 82 available in
MSC.MARC libraries). The FE model used in the calculations is shown in
Fig. 82.

The hyperelastic material model used in the calculations is a Yeoh model
(particular form of the Mooney strain energy density function). The material
viscoelastic properties (and frequencial dependence) are considered by means of
the Gstore and Gloss experimental values for fixed static pre-strain and cyclic
amplitude through the UPHI user subroutine fitted. The material is assumed as
isotropic and incompressible. Different experimental test are simulated in order to
validate the fitting of the viscoelastic model for different static preloads, cyclic
amplitudes and frequencies. Table 5 resumes the different simulations performed
in terms of static pre-strain and cyclic strain.

The simulations results obtained are enclosed from Figs. 83, 84, 85 and 86 in
terms of dynamic stiffness calculated as the ratio reaction force/harmonic ampli-
tude imposed. These simulations have been run with the same input data, taken
from experimental curves at fixed pre-strain and amplitude, changing the preload
of the static case and the amplitude of the harmonic one. The experimental results
corresponding to the same conditions simulated are also included in order to
compare the predicted results with the experimental ones.

The FE simulation results obtained for a simple geometry under uniaxial
compressive load show an excellent agreement with the experimental values;
therefore the next step is the application to the FE analysis of the dynamic stiffness
of the real industrial component: rubber silent-block.

Imposed displacement

Fixed displacements in dir 
X

Axisymm
etric axis

Fig. 82 Axisymmetric FE model used in the uniaxial compression test simulations
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4.2.6 Results of the Finite Element Simulation of the Dynamic Stiffness
of a Silent-Block

The rubber silent-block used in this study (see Fig. 71) consists of a part of the
same NR compound that was characterized and is subjected to axial, radial, tor-
sional or conical loads, giving an inhomogeneous multiaxial state of deformation.

Table 5 Experimental cyclic test conditions simulated

Static pre-strain (%) Cyclic amplitude (%)

Simulation 1 10 5
Simulation 2 20 10
Simulation 3 30 0.125
Simulation 4 30 15

Fig. 83 10 % of static preload and 5 % of cyclic amplitude

Fig. 84 20 % of static preload and 10 % cyclic amplitude
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The FE model is created in MSC.MARC [226]. To simulate the assembly of the
bushing with the test ring, an axisymmetric model with half section is used,
considering a static radial assembly as shown in Fig. 87.

Once the bushing is assembled with the ring, the model is revolved 1808 with
regard its axisymmetry axis (due to symmetry only one-fourth of the bushing is
modeled) and the initial conditions extended (axi to 3D). On this 3D configuration
(Fig. 88) harmonic load case is calculated.

Material properties are the same than those defined in previous section. A
modification in the user subroutine has to be incorporated to relate the shear strain
amplitudes in the material characterization with the element load level in the
multi-axial case in each FE.

After the assembly, that means a static pre-strain on the rubber, the bushing is
loaded harmonically in the radial direction at frequencies ranging from 5 to

Fig. 85 30 % of static preload and 0.125 % cyclic amplitude

Fig. 86 30 % of static preload and 15 % cyclic amplitude
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105 Hz and considering an amplitude of 0.2 mm. Results, in terms of dynamic
stiffness (N/mm), are compared with experimental data obtained in the same
component (Fig. 89).

It is important to note that if the pre-strains or amplitudes or frequencies of the
FE model get out of the measured range, the data has to be extrapolated, that
means a certain deviation from the results obtained on tests depending on the
method used. To avoid that, it is recommended to extend the material character-
ization ranges to those obtained on the real part.

4.2.7 Conclusions

In the present section, two FE analysis approaches are presented: static analysis,
which includes also the typical inelastic effects which characterise the mechanical

Fig. 88 3D FE model of the bushing for the harmonic analysis

Fig. 87 Axisymmetric FE model of the bushing before and after assembly
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rubber behaviour, and dynamic analysis. Both are intended to predict mechanical
rubber behaviour: axial stiffness in compression and dynamic stiffness of the rub-
ber component.

Regarding the FE simulation of the axial stiffness in compression of the si-
lentblock, different models which include hyperelastic response and inelastic
effects have been used. Most of them show good agreement in the prediction of the
stiffness response of the material due to the accuracy of typical hyperelastic
models. On the other hand, dissipative effects are captured with more or less
success due to the phenomena that are implemented on each model. However,
none of them is able to reproduce the permanent set in compression. The FE code
used in this phase is ABAQUS due to its flexibility to develop FE models with
high complexity degree, as is the case of the overlay methodology.

Regarding the FE simulation of the silentblock dynamic stiffness, the FE
modelling procedure presented in this section shows good agreement with
experimental data for the prediction of dynamic stiffness of filled rubber parts, as
shown in the current industrial application: a silent-block of the automotive
industry.

For this, it has been necessary to apply a modification of the frequency domain
viscoelastic model implemented in a commercial FE code (MSC.MARC) through
user subroutine. This model considers the vibration as a harmonic perturbation of
small dynamic strain amplitude around the elastically predeformed state. The used
FE code is in this case suitable due to the possibility of programming the dynamic
behaviour of the rubber material through user subroutine.

This model provides an accurate description of the dynamic behavior of filled
rubber material, by means of the modification of input data through shift factors to
consider the individual static pre-strain and amplitude strain of each element.
Because the model is implemented in frequency domain, that means solve a linear

Fig. 89 Measured dynamic stiffness and calculated one given by the modified model for the
silent-block
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system of equations (with complex coefficients), is computationally very efficient,
yielding very fast solutions compared to time stepping procedures.

The material model developed is applied to predict the dynamic stiffness of a
silent-block, showing good agreement with experimental data obtained from
dynamic tests on the same component.

4.3 Example 3: Analysis of Rubber Block on Wheel
of Railway Coach

In the present section, the analysis by means of FE simulation of the static
mechanical behaviour under complex compression conditions of a rubber block is
presented. The rubber block is part of the damping system of a classical elastic
wheel concept of a railway coach, which is shown schematically in Fig. 90.

The herewith presented analysis procedure is similar to the two previous
examples collected in the present section: first, a material model for predicting the
rubber mechanical behavior is developed, according to the design functional
requirements and boundary conditions of the real component, from experimental
characterization tests on samples of the same rubber used in the block. Once
validated, the rubber material model is applied to the FE simulation of the real
component mechanical behavior under service conditions and design specifica-
tions to be later applied to virtual prototyping design cycles.

4.3.1 Finite Element Model Description

The FE model developed for the analysis consists of a 3D model of one single
block (the elastic wheel consists of several blocks placed in circumferential
direction), mounted on its placement between the wheel inner and outer tires
(Fig. 91).

Two assumptions have been applied for the development of the rubber material
model for the block, depending on the validity of incompressibility in the
mechanical behaviour of the rubber, therefore leading to two different FE material
models which will be evaluated in parallel. First, the used hyperelastic material

Z=Radial

Y=SidewaysX=Circumferential

Fig. 90 Sketch of one rubber block mounted on the wheel inner tire
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model is characterised by means of the Marlow expression for the strain energy
density function in both materials. Second, in one case, the rubber material is
considered incompressible, whereas in the other, compressibility is assumed by
means of a volumetric behaviour model. This model is therefore fed with exper-
imental data from a volumetric compression test.

In both cases, the mechanical behaviour is considered isotropic with no dissi-
pative effects (viscoelastcity and hysteresis). Figures 92 and 93 show the stress–
strain curves obtained from experimental uniaxial compression tests in two dif-
ferent rubber materials: data from one of them will feed the incompressible
material model, whereas the other data will feed the compressible one, for which
volumetric compression tests are also available.

In the present case, the hyperelastic Marlow model is fed with compression
data, for which the raw data from the stress–strain curve are given as input instead
of performing a fitting of constants.

The 3D FE model which has been constructed considers the rubber block as a
deformable body, meshed by means of linear 8-node hexahedrons with hybrid
formulation and constant pressure, resulting in a model size of 30000 nodes and
27000 elements, including half symmetry. In addition, both inner and outer tires
have included in the FE model as rigid bodies since their stiffness is assumed to be
several orders of magnitude higher than that of the rubber material. The simula-
tions have been carried out with the commercial FE code ABAQUS. Figure 94
shows the developed FE model according to the previous description.

The FE model includes, in addition to the rigid surfaces which simulate the
inner and outer tires, two auxiliary rigid surfaces which numerically ease to
simulate the mounting procedure (they are deactivated for the rest of the FE
simulation). This procedure is usually considered a preliminary step to the main
FE simulation, being of great importance the final mounting position correlation
with the real one. Figure 95 shows the rigid bodies included in the model.

Rubber block

Outer tire

Inner tire
Y

Z

X

Fig. 91 Sketch of the rubber block assembly
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The simulation cases to be considered correspond to two different typologies
depending on the complexity of the compression conditions: Simulation of type 1:
compression test from an initial position in which the block is downloaded to a
radial compression of 15.5 mm from its nominal mount position at which it is

Fig. 92 Stress–strain curves obtained from experimental uniaxial compression tests on both
materials

Fig. 93 Stress–strain curve obtained from experimental volumetric compression test
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already subjected to a compression preload. Simulation of type 2: the block is
subjected to a cyclic loading in positive and negative directions around an initial
position (0.4, 1 or 2 mm) corresponding to the nominal one.

The previously described compression conditions correspond to two different
tests of static characterization which have been carried out on real samples of the
rubber block. The objective of these FE simulations is to validate the material
model used and to select the most adequate one for applying this procedure to the
design cycle of the rubber block under compression conditions. All simulations are
of static type.

4.3.2 Results of the Static Finite Element Simulations Cases

The results shown in this section are presented in terms of force–displacement
curves in radial direction (Z-axis on Fig. 91) and deformed configurations com-
pared to real experiments performed on real samples of the rubber block.

Rubber block

Outer tire

Inner tire

YZ (half) symmetry plane

Y 

Z

X

Fig. 94 FE model of the rubber block ? inner and outer tires

Auxiliary mount surface 2
Outer tire

Inner tire

Auxiliary mount surface 2

Y

Z

X

Fig. 95 Rigid bodies included in FE simulation

378 L. A. Gracia et al.



Simulation of Type 1: Compression Test

Figure 96 shows the results obtained from the static FE simulation of the com-
pression case type 1, compared to the experimental results from the rubber block
sample of the first material (assumed incompressible in FE simulation).

In Fig. 97 the deformed configuration obtained for the nominal position of the
rubber block in the FE simulation of the test is shown in the figure, compared with
the deformed configuration obtained from the experimental one.

Comparing the deformed configuration obtained by FE simulation with the one
observed experimentally, there are discrepancies in the amount of rubber that is
extruded between outer and inner tires (see zones A and B in Fig. 97), being
considerably higher quantity of extruded from the simulation to test material.

Figure 98 shows the results obtained from the static FE simulation assuming
compressible rubber material, compared to the experimental results from the
rubber block sample of the second material.

In Fig. 99, the deformed configuration obtained for the nominal position of the
rubber block in the FE simulation of the test is shown, compared with the
deformed configuration obtained from the experiment.

In the case of considering compressible material, it is observed that the
deformed shape obtained through simulation presents a level of extrusion of
material in areas A and B (see Fig. 99) very similar.

Fig. 96 FE simulation of the compression test type 1. Incompressibility assumption
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Zone A Zone B

Y

Z
X 

Fig. 97 Deformed configuration from the FE simulation of the compression test type 1.
Incompressibility assumption

Fig. 98 FE simulation of the compression test type 1. Compressibility assumption
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Simulation of Type 2: Cyclic Compression Test

Figure 100 shows the results obtained from the static FE simulation of the case 2
of cyclic compression around the nominal position of the rubber block for
amplitudes of 0.4, 1 and 2 mm, compared to the experimental results from block
samples of the first material (assumed incompressible in FE simulation).

In Fig. 100 it can be seen a good correlation between numerical and experi-
mental data for the three analyzed cyclical amplitudes.

It is necessary to clarify that, although numerical results presented in Fig. 100
show a hysteresis cycle similar to that observed experimentally, it is due only to
the effect of the friction between contact surfaces present in the FE model (so as
sliding). While in the experiment, apart from the contribution of friction and slip
(if any), the contribution of the viscoelasticity and the hysteresis of the material are
present.

Results in terms of rigidity, calculated as the maximum force least minimum
divided by the total displacement of the simulations, can be analyzed by this
procedure: The deviations in terms of stiffness from FE simulation to experimental
results are less than 3 % in the case of the amplitudes of 1–2 mm. In the case of
the amplitude of 0.4 mm, obtained deviation is 18 %. Experimental results show
static rigidity component versus cyclic amplitude dependence, showing behaviour

Zone A Zone B

Fig. 99 Deformed configuration from the FE simulation of the compression test type 1.
Compressibility assumption

Other Applications: Engineering 381



similar to that seen in other materials in the case of dynamic stiffness (a less
dynamic stiffness, increased amplitude).

Figure 101 shows the results obtained from the static FE simulation of the case
2 of cyclic compression around the nominal position of the rubber block for
amplitudes of 0.4, 1 and 2 mm, compared to the experimental results from block
samples of the second material (assumed compressible in FE simulation).

Also in this case, the results in terms of rigidity (calculated as the maximum
force least minimum divided by the total displacement of the simulations) are
analyzed: yielding to conclusions which can be similar to the commentary for the
first assumed incompressible material. The FE simulation results show a depen-
dency of static stiffness versus the cyclic amplitude imposed, increasing stiffness
value as amplitude decreases. However, deviations between experimental and
numerical results show are significantly higher for the assumed compressible
rubber, being the minimum deviation around 18 %.

4.3.3 Conclusions

From the results presented in the current example, it can be concluded that the
incompressibility assumption probes accurate enough for the simulation of the two
radial compression cases. However, it should be remarked that in the simulation
type 2 there are some inelastic effects (such as relaxation, viscoelasticity and
hysteresis) that are not included in FE simulation and therefore treated just as
fitting parameters, thus, the application of FE analysis should be restricted to static
simulation and only for the specified boundary conditions.

Fig. 100 FE simulation of the compression test type 2. Incompressibility assumption
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4.4 Example 4: Rubber Shock Absorber in Automotive
Industry

In the present example, the FE analysis of a rubber automotive component
working on shock absorbing conditions is described. The shock absorber is a filled
rubber component which is used in the power steering system of the vehicle to
absorb the impact generated by the steering bar when it travels to its end lock
positions at maximum speed, avoiding the transmission of peak forces to the rest
of the elements in the steering system and therefore protecting them. The rubber
component, which is then assumed to work in high strain rate conditions due to the
impact of the steering bar, will be modelled by means of the commercial FE code
ABAQUS.

The basic elastic behaviour of the rubber material will be modelled by means of
one of the hyperelasticity models which are available in the referred FE code. With
regard to the dissipative effects caused by the high strain rate conditions of the
impact, it will be assumed a rate dependent mechanical response which will be
modelled by means of a linear viscoelastic behaviour model. This model is based
on a generalized Maxwell model which is formulated by a Prony series. The
parameters of the Prony series terms will be evaluated by fitting to mastercurves of
storage and loss moduli obtained from dynamic tests run on dynamic mechanical
thermal analysis equipment (D.M.T.A.). Since the complex modulus characterises
the stiffness and the viscous behaviour of a rubber material, dynamic test results
should, in principle, yield characteristic data which would describe the viscoelastic
behaviour and therefore allow calculations to predict these strain rate effects.

Fig. 101 FE simulation of the compression test type 2. Compressibility assumption
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Finally, the constitutive model developed as described above will be adjusted
by means of uniaxial tests at material level run at different strain rates and finally
validated with high strain rate tests on the main rubber component, which in fact
are defined as representative of its shock absorbing behaviour.

4.4.1 System Geometry

The typical function of the power steering in a vehicle is to turn the front wheels
by transferring the torque from the drive through the steering bar, which executes a
linear movement depending on the angular speed of the steering wheel. At the end
lock positions of the steering bar, a shock absorbing component is located. This
component is made of filled rubber (the base material is natural rubber) and its
arrangement is to absorb the energy generated by the steering bar when it impacts
against its end lock positions at maximum speed, avoiding the transmission of
peak forces to the rest of the elements in the steering system and therefore
avoiding damage.

Figure 102 shows a sketch of the shock absorbing system where the rubber
component is placed. This systems exhibits circumferential symmetry and is
composed of a main housing made out of steel where the rubber damper is inserted
between the housing walls. An external actuator clamped to the steering bar
impacts directly on the rubber part at maximum linear speed.

The FE model developed in this study has been reduced to the rubber com-
ponent and its nearest metallic housing, which is composed by actuator and
housing (see Fig. 102). The system is simulated with the shock absorber as the
deformable body and with the rest of the parts (actuator and housing) considered as
rigid surfaces. The model of the rubber shock absorber is meshed with 2D-axi-
symmetric solid continuum hybrid elements with four nodes and reduced inte-
gration with hourglass control. The surfaces defined in the simulation are
considered as rigid bodies and are modelled as axisymmetric rigid surfaces. The
whole model geometry and FE discretization are shown are shown schematically
in Fig. 103.

4.4.2 Development of Material Model

As commented previously, the developed numerical rubber model consists of a
hyperelastic part to account for the non linear elastic stress–strain response of the
rubber, and of a viscoelastic part to account for the strain rate dependent effects.
The material model has been developed from experimental tests at material level:
The mechanical behaviour has been modelled by means of uniaxial tests (com-
pression), in order to obtain the hyperelastic properties, as well as DMTA tests, in
order to analyse the dynamic behaviour and sensitivity to strain rate of the rubber
material.
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The hyperelastic part, which is assumed to be independent of the strain rate, is
modelled by means of the Marlow formulation for the strain energy density
function. This formulation has been chosen since, from one side, the available
experimental tests comprise only uniaxial tests. From the other side, the main
deformation mode of the component is compression; therefore it is preferred to
have a prediction as accurate as possible until high strain levels in compression,
although loosing quality in the prediction of the behaviour in other deformation
modes.

The fitting of the parameters of the Marlow model is performed internally by
the ABAQUS code, for which uniaxial test data are provided. The test plan for the
quasi-static uniaxial compression characterization of the rubber material in uni-
versal test machine has been arranged for a selected test speed of 10 mm/min

Fig. 102 Sketch of a section of the shock absorbing system of the steering system
(circumferential symmetry)

Rubber

Actuator

Housing

Fig. 103 Axisymmetric FE model of the rubber shock absorber (circumferential symmetry)
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(0.013 s-1), which is assumed slow enough to obtain the relaxed stress–strain
response of the rubber (Fig. 104).

With the previous experimental data, the hyperelastic Marlow model is then
defining the stress–strain behaviour of the rubber as the long term response.

DMTA test enables to obtain the master curve of the storage modulus (E0), loss
modulus (E00) and damping factor (tan d) over a range of frequencies from cyclic
tests at a reference temperature (RT). The cyclic test used to obtain the master
curves corresponds to a uniaxial compression test because the main deformation
mode in the component is compression. In order to define the viscoelastic FE
model parameters, a Prony series for each material has been adjusted. The Prony
series terms, corresponding to a generalized Maxwell model of 15 terms, are
obtained by fitting to the storage modulus master curve (E0).

Figure 105 shows the master curve E0 and the checked prediction of E 00 with the
Prony series.

Using previous hyperelastic and viscoelastic FE rubber material models, a one-
element simulation (patch test) of simple compression test has been carried out in
order to check the response of the FE material model. The FE simulation, which
has been run considering that time has physical sense (dynamic, implicit inte-
gration procedure), has been executed at the same strain rates than the experi-
mental uniaxial compression tests performed specifically for validation at 10 mm/
min (0.013 s-1) and 1000 mm/min (1.3 s-1). Comparative curves are shown in
Fig. 106.

Fig. 104 Uniaxial compression stress–strain curves obtained in the universal testing machine at
0.013 s-1
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4.4.3 Results of the Dynamic Finite Element Simulation of the Impact

The experimental characterization results at component level that will be used to
validate the whole FE simulation has been obtained in terms of axial force—axial
displacement response. Experimental test consists of: three pre-cycles (10 mm/s),
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Fig. 105 Master curves

Fig. 106 Comparison one-element simulation with uniaxial compression tests
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a fourth cycle at quasi-static speed (10 mm/s) and a fifth cycle at impact speed
(100 mm/s).

The impact FE simulation of the shock absorber has been carried out by means
of a VISCO procedure. This type of analysis is an implicit procedure defined in
ABAQUS/Standard with following assumptions:

• Time-dependent material model considered, so velocities in the model get
significance.

• Inertia effect neglected, so the mass of actuator is not considered and acceler-
ations don’t get meaning.

• Automatic incrementation has been used by means of a tolerance parameter
which limits the maximum inelastic strain rate change allowed over an
increment.

FE simulations of the shock absorber have been done according to defined
characteristics of the FE model and of the corresponding FE material model.
Results has been analysed in terms of force–displacement response and compared
to experimental result in order to obtain a validated FE simulation procedure. In
order to adjust the adequate compressibility level of rubber, three Poisson coef-
ficients are considered: 0.499748, 0.49757 and 0.475 to feed the simulation.
Comparative force–displacement responses for the component at two velocities
and different compressibilities are shown in Fig. 107.

Poiss1 = 0.499748                    
Poiss2 = 0.49757
Poiss3 = 0.475

Fig. 107 Force versus displacement comparison curves on tests on component at impact rates
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4.4.4 Conclusions

A tool for virtual prototyping to be used to optimise the shock absorbing behaviour
of the analysed rubber component using FE method has been developed, including
an advanced material model and a methodology of impact FE simulation using
dynamic implicit integration algorithm.

The full strain-rate dependency on the rubber material under impact conditions
has been successfully predicted in FE simulation by means of an hyperelastic
model for the non linear stress–strain response and a viscoelastic model for the
time-dependent response, both developed from tests at material model, and also
from a compressibility model, implemented by means of the Poisson coefficient
which has been treated as a fitting parameter to real component tests of the impact.

The fully incompressible assumption is not adequate for the rubber material due
to the deviations from FE simulated stiffness response and the experimental
component test at the same strain rates. The compressibility has been fitted from
experimental tests at component level by means of adjusting the Poisson
coefficient.
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