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Abstract A continuum finite-deformation model is described for the study of the
isothermal electro-elastic deformations of electrostrictive elastomers. The model
comprises general balance equations of motion, electrostatics and electro-
mechanical energy, along with phenomenological invariant-based constitutive
relations. The model is presented in both Eulerian (spatial) and Lagrangian
(material) description. Specialization of the considered model is also presented for
‘‘Dielectric Elastomers’’, which are a specific class of electrostrictive elastomers
having dielectric properties independent of deformation.

1 Introduction

Electrostrictive elastomers are a special kind of ‘‘electroactive polymeric mate-
rial’’ whose electrical and structural behavior is highly non-linear and strongly
coupled. In essence, they are rubber-like dielectric solids that experience large
finite deformations in response to applied electric fields while, at the same time,
alter the existing electrostatic fields in response to the deformations undergone.
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Practical electrostrictive elastomers are polyurethanes [1–3], ferroelectric poly-
mers [4, 5], graft elastomers [6], silicone and polyacrylate elastomers [7–11],
styrene-butadiene and styrene-isoprene-styrene elastomers [11], liquid-crystal
elastomers [12], interpenetrating-polymer-network elastomers and nano-structured
rubber [13–15], as well as a number of other elastomeric composites employing
either conducting, semiconducting or ferroelectric particles as fillers [11, 16–20].
Typical stresses and strains that can be induced in electrostrictive elastomers via
electrical activation are [6, 7, 21]: 2 MPa and 11 % for polyurethanes; 54 Mpa and
7 % for ferroelectric elastomers; 4 MPa and 4 % for graft elastomers; 3 MPa and
120 % for silicone elastomers; 7 MPa and 380 % for polyacrylate elastomers;
1 MPa and 4 % for liquid-crystal elastomers. Typical rates of such electrically-
induced strains are larger than 1,000 %/s for almost all electrostrictive elastomers
[21].

Thanks to the peculiar electromechanical coupling, along with the intrinsic
compliance, lightness, malleability, easy-manufacturability and low-cost, elec-
trostrictive elastomers are perfectly suited for the development of novel solid-state
mechatronic transducers which are more resilient, lightweight, integrated, eco-
nomic and disposable than traditional devices obtainable via conventional material
technologies. Practical transduction devices that can be developed by using
electrostrictive elastomers are [22–27]: compliant muscle-like actuators; compact
and portable Braille displays; distributed force/displacement sensors; solid-state
electrical energy harvester/generators; large solid-state loud-speakers. Potential
applications are in the field of machine interfaces for human assistance and
entertainment, safe and low-cost robotics, as well as disposable and consumable
mechatronics.

To give some example, a linear actuator prototype based on an electrostrictive
elastomer is shown in Fig. 1. As depicted in Fig. 2, the device is a lozenge-shaped
planar actuator featuring two electroactive sheets that are connected to the
opposing sides of a four-bar mechanism having identical rigid links and tension-
tape hinges. Each electroactive sheet is made of three compliant electrodes made
of a carbon conductive grease, which are separated by two acrylic elastomer films

Fig. 1 Lozenge actuator prototype: a actuator inactive and b actuator active
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that are bi-axially pre-stretched and connected along their boundary to the links of
the four-bar mechanism. The placement of an electric potential difference (here-
after also called voltage) between the inner and the outer electrodes of the stack
induces the acrylic elastomer films to shrink in thickness and to expand in area (see
Fig. 1). In this device, the four-bar mechanism constrains the area expansion of the
acrylic elastomer films to be uniform and enables the transmission to the film
boundary of the useful mechanical work which can be performed by any external
force acting on the mechanism links. Further details concerning the design and the
performance of this linear actuator can be found in [28].

Typical force-length characteristic curves of this lozenge actuator are shown in
Fig. 3 for different activation voltages /, where the length x is the distance
between the axes of the two joints of the four-bar mechanism that lie on one of the
lozenge diagonals and the force f is the external equilibrating force acting on the
same joint axes with direction equaling that of the same lozenge diagonal (see
Fig. 1a). As shown in Fig. 3, the electrically-induced deformations occurring in
electrostrictive elastomers can be quite large and rather non-linear. Owing to this
complex multi-physical behavior, the design and the control of practical devices
based on electrostrictive elastomers are extremely challenging problems. Intuitive
approaches are usually defied, which calls for the availability of model-based
engineering simulation tools.

Fig. 2 Lozenge actuator CAD drawings: a actuator exploded view and b four-bar mechanism

Fig. 3 Force-length curves of the lozenge actuator
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The characterization of the electromechanical interaction between a dielectric
body and an electric field has been a topic of intensive research since the end of the
nineteen century [29–67]. Based on diverse interaction models, postulates, and
solution methods, a number of continuum electro-mechanical models with dis-
similar expressions for the electrically-induced force and stress-tensor have been
proposed by different authors [29–67], which have been a subject of controversy
for over a century [36, 50, 52, 53, 59, 64, 66, 68–71]. In particular: some authors
directly postulated a particular expression for the electrically-induced body force
and/or stress tensor, and simply added them to the continuum balance law of linear
mechanical momentum (for instance in [34, 38, 40, 41]); other authors postulated
elementary models, such as charges and dipoles, which characterize the macro-
scopic behavior of the polarized material (for instance in [40, 45, 49, 51]), thus
deriving an expression of the electrically-induced body force and/or stress tensor
from them; other authors postulated that the interaction at the microscopic scale is
characterized by electrons moving in ether, thus obtaining the electrically-induced
force and/or stress tensor by a statistical averaging process (for instance in [33, 47,
54]); other authors postulated a particular form of the global energy balance from
which the coupled balance laws of mass, momenta (directly including the elec-
trically-induced forces and/or stress tensor) and electricity are obtained by
imposing certain invariance properties (for instance in [45, 52, 53, 55]); other
authors postulated a given form of the electric enthalpy from which the coupled
balance laws of linear momentum (directly including the electrically-induced
forces and/or stress tensor) and electricity are obtained via some variational
principle (for instance [38, 56, 63, 66, 67]).

In this context, this chapter presents a finite-deformation electro-elastic con-
tinuum model for the study of the isothermal electrically-induced deformations of
electrostrictive elastomers that are conservative and isotropic. The model relies on
the standard balance laws of mass, momenta (which do not explicitly include any
electrically-induced force and stress tensor term) and electrostatics, and accounts
for the electromechanical coupling via an appropriately chosen phenomenological
constitutive relation which is consistent with the principles of thermodynamics and
based on the theory of invariants. Specialization of the constitutive theory is also
presented for the so called ‘‘Dielectric Elastomers’’ [25], which are a special kind
of electrostrictive elastomers whose dielectric properties are deformation inde-
pendent. The model is formulated both in the Eulerian (spatial) description, which
enables for a more immediate comprehension of the electro-elastic phenomena
that occur in electrostrictive elastomers, and in the Lagrangian (material)
description, which is more suited for the numerical simulation of virtual prototypes
of electrostrictive-elastomer-based devices via engineering tools alike finite ele-
ment analysis software. For further reference, the finite element implementation of
the considered model is discussed in [72], whereas its extension to the study of the
thermo-electro-elastic deformations of electrostrictive elastomers is presented in
[73].
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2 Kinematics of Continuous Media

Consider the closed and electrically isolated system B depicted in Fig. 4, which
comprises dielectric and conducting bodies as well as free space. Both dielectric
and conducting bodies can move and deform under the action of externally applied
loads of both mechanical and electrical origin. During such body motions/defor-
mations, the physical region occupied by B does not remain fixed, but it moves/
deforms accordingly. However, while these body motions/deformations occur: (1)
no mass can enter or leave the boundary of B; (2) energy (in the form of work or
heat) can cross the boundary of B; (3) no interaction occurs between the electrical
charges that lie within B and those outside [i.e. the boundary of B either is
electrically shielded from its exterior or has an infinite extent].

In this perspective, define with =l the known reference (laboratory) frame with
respect to which the motions/deformations of B are measured. For any arbitrary
time instant t� 0, identify the moving/deforming region occupied by an arbitrary
inner subsystem of B with the current (deformed) volume X tð Þ and its boundary
surface oX tð Þ; �X ¼ X t ¼ �t � 0ð Þ and o�X ¼ oX t ¼ �t � 0ð Þ being the referential
(undeformed) volume and boundary surface respectively.

Consider now a general material point P (i.e. a particle) belonging to the
arbitrary subsystem of B, and indicate with X and x tð Þ the position vectors
expressing the location (relative to the origin O of =l) occupied by P when the
system B is in its undeformed (i.e. t ¼ �t � 0) and deformed configuration
respectively. Then, for any X 2 �X and any t� 0, the motion of B can be described
by

x ¼ v X; tð Þ; ð1Þ
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Fig. 4 Electrostrictive elastomer system: undeformed and deformed configuration
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where the map v X; tð Þ is a suitably regular and single-valued vector field (i.e. it is
invertible and possesses continuous time derivatives with respect to both position
and time) that carries all points P from places X (within the referential configu-
ration �X) to places x (in the current configuration X tð Þ at time t). By definition, the
map v needs to satisfy the two conditions X ¼ v X; 0ð Þ and X ¼ v�1 x; tð Þ.

Time differentiation of the map described by Eq. (1) provides the velocity field
of the arbitrary subsystem of B expressed in either the Lagrangian form, V X; tð Þ
(i.e. the material description with respect to the coordinate X in the referential
configuration), or the Eulerian form, v x; tð Þ (i.e. the spatial description with respect
to the coordinate x in the current configuration),

V X; tð Þ ¼ ov X; tð Þ
ot

; ð2Þ

v x; tð Þ ¼ V v�1 x; tð Þ; t
� �

: ð3Þ

The material gradient (i.e. the derivative with respect to the referential coor-
dinate X) and the spatial gradient (i.e. the derivative with respect to the spatial
coordinate x) respectively yield the deformation gradient, F X; tð Þ, and its inverse,
F�1 x; tð Þ,

F ¼ Gradx ¼ ov X; tð Þ
oX

; ð4Þ

F�1 ¼ gradX ¼ ov�1 x; tð Þ
ox

; ð5Þ

which essentially provide the map

dx ¼ FdX; ð6Þ

between the undeformed line element, dX, and the deformed line element dx.
Equation (6) describes the change in length and orientation (i.e. a rigid body
rotation) of a physical line element when system B passes from the undeformed to
the deformed configuration. Whenever the rigid body rotation is not of interest,
one may conveniently resort to the quadratic forms

dxj j2¼ dX � CdX; ð7Þ

C ¼ FT F; ð8Þ

dXj j2¼ dx � B�1dx; ð9Þ

B ¼ FFT ; ð10Þ

where C and B are symmetric tensors usually known as the Green deformation
tensor and the Finger deformation tensor respectively.
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The determinant of the deformation gradient gives the Jacobian, J X; tð Þ,

J ¼ det F [ 0; ð11Þ

which is also known as the volume ratio because of the relationship

dv ¼ JdV; ð12Þ

between the infinitesimal undeformed volume element, dV, and the infinitesimal
deformed volume element, dv.

By considering

dV ¼ dX � NdS; ð13Þ

dv ¼ dx � nds; ð14Þ

where dS and ds are the infinitesimal undeformed and deformed surface elements,
with N and n being the respective unit vector normals, use of Eqs. (6) and (12)
gives the Nanson’s formula

nds ¼ JF�T NdS: ð15Þ

Regarding the differential kinematics, time-differentiation of Eq. (4) and use of
the Schwarz’s theorem together with the definition given in Eq. (2) provides

GradV ¼ _F; ð16Þ

which, because of the chain rule differentiation, makes it possible to write

gradv ¼ GradVF�1 ¼ _FF
�1
: ð17Þ

Moreover, the derivative of the Jacobian with respect to the deformation gra-
dient yields

oJ

oF
¼ JF�T ; ð18Þ

which, by the chain rule differentiation, makes it possible to write

_J ¼ JF�T : _F ¼ J1 : gradv ¼ Jdivv; ð19Þ

where 1 is the 3 9 3 identity matrix, while the operator :ð Þ indicates the double
contraction of two tensors [as defined in Eq. (185)].

Finally, by time-differentiating the identity F�1F ¼ 1, the derivative of the
inverse of the deformation gradient follows as

dF�1

dt
¼ �F�1 _FF

�1 ¼ �F�1gradv: ð20Þ
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3 Conservation of Mass

Under the assumption that the arbitrary inner subsystem of B (which has been
depicted in Fig. 4) is a closed system, no mass can enter or leave the subsystem
boundary oX tð Þ. That is, the overall mass m of the volume X tð Þ must remain
constant at any time instant t� 0. In mathematical terms, this requirement reads as

_m ¼ d
dt

Z

X tð Þ

qdv ¼ 0; ð21Þ

where q x; tð Þ is the spatial mass density. Equation (21) represents the Continuity
Mass Equation (CME) expressed in global form and in the current configuration.

3.1 Continuity Mass Equation in Eulerian Description

Using the Reynold’s transport theorem [Eq. (207)] and since X tð Þ is an arbitrary
volume, Eq. (21) can also be written as

oq
ot
þ div vqð Þ ¼ _qþ qdiv vð Þ ¼ 0; ð22Þ

corresponding to the local (rate) form of the CME in the Eulerian (spatial)
description.

3.1.1 Continuity Mass Equation in Lagrangian Description

Resorting to Eq. (12), (21) can be rewritten in the referential configuration as

_m ¼ d
dt

Z

�X

�qdV ¼
Z

�X

_�qdV ¼ 0; ð23Þ

where �q Xð Þ is defined as the reference mass density

�q ¼ Jq: ð24Þ

By considering that �X is an arbitrary volume, Eq. (23) immediately yields

_�q ¼ 0; ð25Þ

representing the local (rate) form of the CME in the Lagrangian (material)
description.
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4 Balance of Mechanical Momentum

In the framework of Newtonian mechanics, the motion and deformation of the
bodies contained in any arbitrary closed subsystem of B (which has been depicted
in Fig. 4) require the rate of change of the associated mechanical momentum to be
equivalent to the ensemble of forces acting on the enclosed bodies themselves. In
mathematical terms, given the definitions of linear momentum, L tð Þ,

L tð Þ ¼
Z

X tð Þ

qvdv; ð26Þ

and of angular momentum, A0 tð Þ, with respect to a general point identified by the
position vector x0

A0 tð Þ ¼
Z

X tð Þ

r� vqdv; ð27Þ

with r ¼ x� x0, the equivalence requirement stated above amounts to the two
following momentum balance principles

d
dt

L ¼
Z

oX tð Þ

tdsþ
Z

X tð Þ

fdv; ð28Þ

d
dt

A0 ¼
Z

oX tð Þ

r� tdsþ
Z

X tð Þ

r� fdv; ð29Þ

where f x; tð Þ is the (spatial) body force density measured per unit of the current
volume X tð Þ, while t x; t; nð Þ is the Cauchy (or true) traction vector (a force
measured per unit surface area defined in the deformed configuration) acting on the
current surface oX tð Þ and having unit normal n x; tð Þ. In particular, Eqs. (28) and
(29) respectively represent the Balance of Linear Momentum (BLM) and the
Balance of Moment of Momentum (BMM), both expressed in global forms and in
the current configuration.

4.1 Cauchy’s First Equation of Motion in Eulerian
Description

Consider the Cauchy’s Stress Theorem (in the spatial description)

t x; t; nð Þ ¼ r � n; ð30Þ
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where r x; tð Þ denotes a spatial tensor field called the Cauchy (or true) stress tensor
and with the scalar product between tensor r and vector n being defined as in Eq.
(183). Then, by employing the Reynold’s transport theorem [Eq. (207)] and Eq.
(22) to its left-hand side, and the Cauchy’s Stress Theorem [Eq. (30)] and the
divergence theorem [Eq. (204)] to the first term of its right-hand side, Eq. (26)
becomes

Z

X tð Þ

divrþ f � q _vð Þdv ¼ 0; ð31Þ

which represents the global form of the Cauchy’s First Equation of Motion
(CFEM) in the current configuration. By considering that X tð Þ is an arbitrary
volume, Eq. (31) implies

divrþ f � q _v ¼ 0; ð32Þ

that corresponds to the local (rate) form of CFEM in the Eulerian description.

4.2 Cauchy’s First Equation of Motion in Lagrangian
Description

Resorting to the volume ratio relationship (Eq. 12), Eq. (28) can be rewritten in the
referential configuration as

d
dt

Z

�X

�qVdV ¼
Z

o�X

TdSþ
Z

�X

�fdV; ð33Þ

where �f X; tð Þ is defined as the reference body force

�f ¼ Jf ; ð34Þ

whereas T X; t;Nð Þ represents the first Piola-Kirchhoff (or nominal) traction vector
(a force measured per unit area defined in the undeformed configuration) satisfying
the relation

tds ¼ TdS: ð35Þ

That is, by definition, the direction of the first Piola-Kirchhoff traction vector,
T, coincides to that of the Cauchy traction vector, t.

Then, resorting to Eq. (25) on the left-hand side, and to both the Cauchy’s
Stress Theorem (in the material description)

T X; t;Nð Þ ¼ P � N ð36Þ
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where P X; tð Þ denotes a material tensor field called the Nominal stress tensor, and
the divergence theorem [Eq. (204)] on the first term of the right-hand side, Eq. (33)
can also be written as

Z

�X

DivPþ �f � �q _V
� �

dV ¼ 0; ð37Þ

which represents the global form of the CFEM in the referential configuration.
Since �X is an arbitrary volume, Eq. (37) entails

DivPþ �f � �q _V; ð38Þ

which corresponds to the local (rate) form of CFEM in the Lagrangian description.

4.3 Cauchy’s Second Equation of Motion in Eulerian
Description

By the Reynold’s transport theorem [Eq. (207)], Eq. (22) and the equivalence
_r ¼ _x� _x0 ¼ v (since _x0 ¼ 0), the rate of the angular momentum A0 tð Þ which is
required on the left-hand side of Eq. (29) reduces to

d
dt

A0 ¼
Z

X tð Þ

_r� vþ r� _vð Þqdv ¼
Z

X tð Þ

r� _vqdv: ð39Þ

Besides, by Eq. (30) and the divergence theorem [Eq. (204)], the first term on
the right-hand side of Eq. (29) becomes

Z

oX tð Þ

r� tds ¼
Z

oX tð Þ

r� r � nð Þds ¼
Z

X tð Þ

r� divrþ E : rð Þdv; ð40Þ

where E indicates the third-order Levi-Civita (or permutation) tensor

E ¼ eijk

� �
; ð41Þ

with eijk being the permutation symbol defined according to Eq. (191).
Then, use of Eqs. (39) and (40), together with Eq. (32), enables to simplify Eq.

(29) as
Z

XðtÞ

E : rdv ¼ 0; ð42Þ

representing the global form of the Cauchy’s Second Equation of Motion (CSEM)
in the current configuration. By considering that X tð Þ is an arbitrary volume, Eq.
(42) gives
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E : r ¼ 0; ð43Þ

or identically

r ¼ rT ; ð44Þ

which implies the symmetry of the Cauchy stress tensor r:

4.4 Cauchy’s Second Equation of Motion in Lagrangian
Description

According to the definitions introduced in the previous sections, Eq. (29) can be
converted in the referential configuration as

d
dt

Z

�X

r� V�qdV ¼
Z

�X

r� _V�qdV ¼
Z

o�X

r� TdSþ
Z

�X

r� �fdV: ð45Þ

Besides, owing to Eq. (36) and the divergence theorem [Eq. (204)], and by the
chain-rule differentiation with Gradr ¼ Grad x� x0ð Þ ¼ F, the first term on the
right-hand side of Eq. (45) can be rewritten as

Z

o�X

r� TdS ¼
Z

o�X

r� P � Nð ÞdS ¼
Z

�X

r� DivPþ E : ðFPÞð ÞdV ð46Þ

As a consequence, with the use of Eqs. (46) and (38), Eq. (45) reduces to
Z

�X

E : FPð ÞdV ¼ 0; ð47Þ

which, under the assumption that �X is an arbitrary volume, gives

E : FPð Þ ¼ 0; ð48Þ

or identically

FP ¼ PT FT ; ð49Þ

highlighting that differently than the Cauchy stress tensor, r, the Nominal stress
tensor, P, is generally not symmetric. This is indeed confirmed by the Piola
transformation

P ¼ JF�1r; ð50Þ

which can be derived by combining Eqs. (35), (30) and (36), together with the
Nanson’s formula (Eq. 15).
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5 Electrostatic Interactions

In the framework of Maxwellian electromagnetism [29], assuming that any
existing magnetic field is stationary, the electrical phenomena acting between the
dielectric and the conducting bodies enclosed in the system depicted in Fig. 4 can
be described by the two following laws: the simplified version of Faraday’s law

Z

S tð Þ

rotE � nds ¼ 0; ð51Þ

where E x; tð Þ is the electric field acting on any arbitrary spatial open surface S tð Þ
that belongs to B, and the Gauss’s law

Z

oX tð Þ�c tð Þ

D � nds ¼
Z

X tð Þ�c tð Þ

udvþ
Z

c tð Þ

usdv; ð52Þ

with

D ¼ D0 þ P; ð53Þ

D0 ¼ e0E; ð54Þ

where e0 ¼ 8:85 e�12F=m is the constant vacuum permittivity, P x; tð Þ and D x; tð Þ
are the electric polarization and the electric displacement permeating any arbitrary
volume X tð Þ that belongs to B, whereas u x; tð Þ and us x; tð Þ are the free-charge
densities per unit of spatial volume and per unit of spatial surface respectively.
Specifically, u resides within the deformed volume X tð Þ (usually in the form of
injected electrons and/or ions), whereas us lies on some deformed discontinuity
surface c tð Þ (usually a conducting surface electrode) comprised in X tð Þ.

5.1 Balance Law of Electrostatic in Eulerian Description

By considering that S tð Þ is a general open surface, Eq. (51) immediately yields

rotE ¼ 0: ð55Þ

That is, the Faraday’s law directly implies the existence of an electric potential
field, / x; tð Þ, such that

E ¼ �grad /ð Þ: ð56Þ

Besides, using the divergence theorem [Eq. (205)] to the left-hand side of Eq.
(52), the Gauss’s law can be rewritten as
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Z

X tð Þ�c tð Þ

divDdvþ
Z

c tð Þ

D½ �½ � � nds ¼
Z

X tð Þ�c tð Þ

udvþ
Z

c tð Þ

usds; ð57Þ

where D½ �½ � � Dþ � D�ð Þ indicates the jump of the quantity D from the positive (+)
side to the negative (-) side of the discontinuity surface c tð Þ. By considering that
X tð Þ and c tð Þ are arbitrary volumes and surfaces, Eq. (57) immediately implies

divD ¼ u; ð58Þ

D½ �½ � � n ¼ us: ð59Þ

Equations (58) and (59) correspond to the local form and the associated
boundary condition of the Gauss’s law expressed in the Eulerian description.

More concisely, by considering Eqs. (53), (54), (56), (58) and (59), the electric
phenomena occurring within any arbitrary subsystem of B (such as the one
depicted in Fig. 4) can be described by the following balance law (expressed in
local form and in the Eulerian description)

e0div grad/ð Þ ¼ divP� u; ð60Þ

along with the associated boundary condition

P� e0grad/½ �½ � � n ¼ us: ð61Þ

5.2 Balance Law of Electrostatic in Lagrangian Description

Considering the Faraday’s law, by the Stoke’s theorem [Eq. (202)] and Eq. (6), the
following holds for Eq. (51)

Z

S tð Þ

rotE � nds ¼
Z

L tð Þ

E � dx ¼
Z

�L

�E � dX ¼
Z

�S

Rot�E � NdS ¼ 0; ð62Þ

where L tð Þ is the closed spatial curve bounding the open spatial surface S tð Þ, �L and
�S are the material counterparts of L tð Þ and S tð Þ, while �E X; tð Þ is defined as the
reference electric field

�E ¼ FT E; ð63Þ

From Eq. (56) and through the chain-rule differentiation, Eq. (63) yields

�E ¼ �Grad�/; ð64Þ

466 R. Vertechy et al.



where �/ X; tð Þ ¼ / x; tð Þ is the electric potential expressed with respect to the
referential configuration.

Considering the Gauss’s law, by Eqs. (12) and (15), Eq. (52) can be rewritten as
Z

o�X��c

�D � NdS ¼
Z

�X��c

�udVþ
Z

�c

�usdS; ð65Þ

where �c is the material counterpart of the discontinuity surface c tð Þ, whereas
�D X; tð Þ, �P X; tð Þ, �u X; tð Þ and �us X; tð Þ are the reference electric displacement, the
reference electric polarization and the reference free-charge densities respectively
defined as

�D ¼ �D0 þ �P ¼ JF�1D; ð66Þ

�P ¼ JF�1P; ð67Þ

�D0 ¼ JF�1D0; ð68Þ

�u ¼ Ju; ð69Þ

�us ¼ usds=dS: ð70Þ

Then, use of the divergence theorem [Eq. (205)] to the left-hand side of Eq. (65)
and since �X and �c are arbitrary volumes and surfaces, the Lagrangian counterparts
of Eqs. (58) and (59) follow as

Div�D ¼ �u; ð71Þ

�D½ �½ � � N ¼ �us: ð72Þ

Moreover, from Eqs. (68), (54) and (63), the Lagrangian counterpart of Eq. (54)
is

�D0 ¼ e0JC�1 �E; ð73Þ

which highlights that the electrostatic analysis of a moving and deforming system
of dielectric and conducting bodies contained in any arbitrary vacuum volume
X tð Þ is equivalent to the study of a fixed system of dielectric and conducting
bodies embedded in a media with fixed volume �X and characterized by an
anisotropic and inhomogeneous dielectric tensor equaling e0JC�1 [54].

Summarizing, by considering Eqs. (71), (72) (66), (73) and (64), the electric
phenomena occurring within any arbitrary subsystem of B (such as the one
depicted in Fig. 4) can be described by the following balance law (expressed in
local form and in the Lagrangian description)

e0Div JC�1Grad�/
� �

¼ Div�P� �u; ð74Þ
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along with the associated boundary condition:

P� e0JC�1Grad�/
� �� �

� N ¼ �us: ð75Þ

6 Conservation of Total Energy

For any arbitrary closed subsystem of B (such as the one depicted in Fig. 4),
energy can cross the system boundary oX tð Þ in the form of heat, electrical work
and mechanical work. Differently than B, the subsystem is not electrically isolated
and thus interactions may exist between the electrical charges that lie within the
volume X tð Þ and those outside, which certainly need to be accounted for in the
balance of subsystem energy. However, since the charges outside the boundary
oX tð Þ can always be replaced, without modifying in any way the electric potential
at any interior point of X tð Þ, by an equivalent single and double layer of charges
that are distributed on oX tð Þ with surface density equaling [34, 35]

ûs ¼ �D � n ¼ ��D � NdS=ds; ð76Þ

then the energy balance of any arbitrary subsystem of B can be performed by
considering an equivalent isolated subsystem as shown in Fig. 5. That is, in
mathematical terms, the balance of electro-thermo-mechanical energy (i.e. the first
law of thermodynamics) for any arbitrary subsystem of B which is bounded by the
surface oX tð Þ reads as

d
dt
Kþ d

dt
W þ d

dt
I ¼ Pme þ Pel þQ; ð77Þ

where K tð Þ, W tð Þ and I tð Þ are the kinetic, electrostatic and internal energies
associated to the physical space contained within the boundary oX tð Þ
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Fig. 5 Electrostrictive elastomer system: arbitrary electrically-non-isolated interior subsystem
and its electrically-isolated equivalent
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K ¼
Z

X tð Þ

1
2
qv2dv; ð78Þ

W ¼
Z

X tð Þ�c tð Þ

1
2
e0E2 þ E � P

� �
dv; ð79Þ

I ¼
Z

X tð Þ�c tð Þ

qUdv; ð80Þ

U x; tð Þ being the internal energy density associated to the bodies contained in the
volume X tð Þ; whereas Pme tð Þ, Pel tð Þ and Q tð Þ are the external mechanical, elec-
trical and thermal powers entering in the system from the outside of its boundary
oX tð Þ

Pme ¼
Z

oX tð Þ

t � vdsþ
Z

X tð Þ

f � vdv; ð81Þ

Pel ¼
Z

X tð Þ�c tð Þ

/
d
dt

udvð Þ þ
Z

c tð Þ

/
d
dt

usdsð Þ þ
Z

oX tð Þ

/
d
dt

ûsdsð Þ; ð82Þ

Q ¼ �
Z

oX tð Þ

Q � ndsþ
Z

X tð Þ

Rdv; ð83Þ

where Q x; tð Þ is the Cauchy heat flux vector entering the system (defined per unit
area of the deformed surface oX tð Þ). And R x; tð Þ is the heat source density (i.e. a
reservoir of heat) defined per unit volume of the deformed X tð Þ.

6.1 Conservation of Total Energy in Eulerian Description

By the Reynold’s transport theorem [Eq. (207)], Eqs. (19) and (22), the three terms
on the left-hand side of Eq. (77) follow as

d
dt
K ¼

Z

X tð Þ

q _v � vdv; ð84Þ

d

dt
W ¼

Z

X tð Þ�c tð Þ

e0E � _Eþ P � _Eþ E � _P
� �

dvþ
Z

X tð Þ�c tð Þ

1
2

e0E2 þ E � P
� �

divvdv;

ð85Þ
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d
dt
I ¼

Z

X tð Þ�c tð Þ

q _Udv: ð86Þ

As for the first term on right-hand side of Eq. (77), by using Eq. (30) and the
divergence theorem [Eq. (204)], and by additionally resorting to Eq. (198), (81)
can also be rewritten as

Pme ¼
Z

X tð Þ

div rvð Þdvþ
Z

X tð Þ

f � vdv ¼
Z

X tð Þ

rT : gradvdvþ
Z

X tð Þ

divrþ fð Þ � vdv;

ð87Þ

which, by considering Eqs. (77) and (32), yields

Pme �
d
dt
K ¼

Z

X tð Þ

rT : gradvdv: ð88Þ

As for the second term on right-hand side of Eq. (77), using Eqs. (59), (76), (12)
and (15), Eq. (82) can be rewritten as

Pel ¼
Z

�X��c

/
d
dt

uJdVð Þ þ
Z

�c

/
d
dt

D½ �½ � � JF�T NdS
� �

�
Z

o�X

/
d
dt

D � JF�T NdS
� �

;

ð89Þ

which, upon differentiation and use of the kinematic Eqs. (19) and (20), becomes

Pel ¼
Z

X tð Þ�c tð Þ

/ _uþ udivv½ �dvþ
Z

cðtÞ

/ _D½ �½ � þ divv D½ �½ � � gradv D½ �½ �
� 	h i

� nds

�
Z

oX tð Þ

/ _Dþ divvD� gradvD
� �� �

� nds:

ð90Þ

Then, application of the divergence theorem [Eq. (205)] to the last two terms on
the right-hand side of Eq. (90) yields

Pel ¼
Z

X tð Þ�c tð Þ

/ _uþ udivv½ �dv�
Z

X tð Þ�c tð Þ

div / _Dþ divvD� gradvD
� �� �

dv;ð91Þ

which, with the use of Eq. (199) and owing to Eq. (56), can be more conveniently
rewritten as
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Pel ¼
Z

X tð Þ�c tð Þ

/ _uþ udivvð Þdv�
Z

X tð Þ�c tð Þ

/div _Dþ divvD� gradvD
� �

dv

þ
Z

X tð Þ�c tð Þ

E � _Dþ divvD� gradvD
� �

dv: ð92Þ

Further, since

div _D ¼ _uþ gradDð ÞT : gradv; ð93Þ

div divvDð Þ ¼ grad divvð Þ � Dþ udivv; ð94Þ

div gradvDð Þ ¼ grad divvð Þ � Dþ gradDð ÞT : gradv; ð95Þ

Eq. (92) simplifies into

Pel ¼
Z

X tð Þ�c tð Þ

E � _Dþ divvD� gradvD
� �

dv; ð96Þ

which, by considering Eq. (85) together with the identities _D ¼ e0
_Eþ _P, divv ¼

1 : gradv and E � gradvDð Þ ¼ E� Dð Þ : gradv [E� D indicating the tensor product
between vectors E and D as defined in Eq. (181)], yields

Pel �
d

dt
W ¼

Z

X tð Þ�c tð Þ

�P � _Eþ 1
2

e0E21� E� D

� �
: gradv


 �
dv: ð97Þ

As for the last term on right-hand side of Eq. (77), by the divergence theorem
[Eq. (203)], Eq. (83) can be rewritten as

Q ¼
Z

X tð Þ

R� divQð Þdv: ð98Þ

In summary, by considering Eqs. (86), (88), (97) and (98), and by assuming that
no discontinuity across any surface c tð Þ exists in the variables q, r, and Q, Eq. (77)
reduces to

Z

X tð Þ�c tð Þ

�P � _E� q _U þ R� divQþ rT � E� Dþ 1
2
e0E21

� �
: gradv


 �
dv ¼ 0

ð99Þ

which, since X tð Þ and c tð Þ are arbitrary volumes and surfaces, yields

�P � _E� q _U þ R� divQþ rT � E� Dþ 1
2

e0E21

� �
: gradv ¼ 0; ð100Þ

Electro-Elastic Continuum Models for Electrostrictive Elastomers 471



representing the local form of the First Law of Thermodynamics (FLT) for
electrostrictive elastomers expressed in Eulerian description.

6.2 Conservation of Total Energy in Lagrangian Description

According to the notation introduced in the previous sections, the Lagrangian
counterparts of Eqs. (78–80) are

K ¼
Z

�X

1
2

�qV2dV; ð101Þ

W ¼
Z

�X��c

1
2

�E � �D0 þ �E � �P
� �

dV; ð102Þ

I ¼
Z

�X��c

�q�UdV; ð103Þ

where �U X; tð Þ ¼ U x; tð Þ is the internal energy density expressed with respect to
the referential configuration. Time derivation of Eqs. (101–103) directly yields

d
dt
K ¼

Z

�X

�q _V � VdV; ð104Þ

d

dt
W ¼

Z

�X��c

1
2

_�E � �D0 þ �E � _�D0 þ �P � _�Eþ �E � _�P
� 	

dV; ð105Þ

d
dt
I ¼

Z

�X��c

�q _�UdV: ð106Þ

Besides, the Lagrangian counterparts of Eqs. (81)–(83) are

Pme ¼
Z

o�X

T � VdSþ
Z

�X

�f � VdV; ð107Þ

Pel ¼
Z

�X��c

�/
d
dt

�udVð Þ þ
Z

�c

�/
d
dt

�usdSð Þ �
Z

o�X

�/
d
dt

�D � NdSð Þ

¼
Z

�X��c

�/ _�udVþ
Z

�c

�/ _�usdS�
Z

o�X

�/ _�D � NdS; ð108Þ
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Q ¼ �
Z

o�X

�Q � NdSþ
Z

�X

�RdV; ð109Þ

where the Piola-Kirchhoff heat flux, �Q X; tð Þ, which is defined per unit area of the
reference surface o�X, and the heat source, �R X; tð Þ, which is defined per unit
reference volume, read as

�Q ¼ JF�1Q; ð110Þ

�R ¼ JR: ð111Þ

Starting with Pme tð Þ, use of Eq. (36), of the divergence theorem [Eq. (204)] and
of Eq. (200), enables to write

Pme ¼
Z

�X

Div PVð ÞdVþ
Z

�X

�f � VdV

¼
Z

�X

PT :Grad Vð ÞdVþ
Z

�X

DivPþ fð Þ � VdV; ð112Þ

which, by considering Eqs. (38) and (16), yields

Pme �
d
dt
K ¼

Z

�X

PT : _FdV: ð113Þ

Skipping to Pel tð Þ, considering Eqs. (71) and (72), Eq. (108) can be rewritten as

Pel tð Þ ¼
Z

�X��c

�/Div _�DdVþ
Z

�c

�/ _�D½ �½ � � NdS�
Z

o�X

�/ _�D � NdS; ð114Þ

which, by applying the divergence theorem [Eq. (205)] to the second term on the
right-hand side, and because of Eqs. (201) and (64), gives

Pel tð Þ ¼
Z

�X��c

�/Div _�DdV�
Z

�X��c

Div �/ _�D
� 	

dV ¼
Z

�X��c

�E � _�DdV: ð115Þ

From Eqs. (105) and (115), the Lagrangian counterpart of Eq. (97) is

Pel tð Þ � d

dt
W tð Þ ¼

Z

�X��c

��P � _�Eþ 1
2

�E � _�D0 � _�E � �D0

� 	
 �
dV; ð116Þ

which, since

�E � _�D0 ¼ �E � d
dt

e0JC�1 �E
� �

¼ _�E � �D0 � e0J 2E� E� E � E1ð ÞF�T : _F; ð117Þ
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simply reduces to

Pel tð Þ � d

dt
W tð Þ ¼

Z

�X��c

��P � _�E�PT
M : _F

h i
dV; ð118Þ

where

PM ¼ JF�1rM; ð119Þ

rM ¼ rT
M ¼ e0 E� E� 1

2
E � E1

� �
; ð120Þ

rM being the well known Maxwell stress tensor (i.e. a true stress tensor) for the
vacuum [29] expressed in the spatial description, whereas PM being its material
counterpart (i.e. a nominal stress tensor).

Regarding Q tð Þ, use of the divergence theorem [Eq. (203)] enables to rewrite
Eq. (109) as

Q ¼
Z

�X

�R� Div�Qð ÞdV: ð121Þ

In summary, by considering Eqs. (106), (113), (118) and (121), and by
assuming that no discontinuity across any surface �c exists in the variables �q, P,
and �Q, Eq. (78) also reads as

Z

�X��c

��P � _�E� �q _�U þ �R� Div�Qþ PT �PT
M

� �
: _F

h i
dV ¼ 0 ð122Þ

which, since �X and �c are arbitrary volumes and surfaces, yields

��P � _�E� �q _�U þ �R� Div�Qþ PT �PT
M

� �
: _F ¼ 0; ð123Þ

representing the local form of the FLT for electrostrictive elastomers expressed in
Lagrangian description.

7 Entropy Inequality Principle

In addition to Eq. (77), complete description of the energy transfer occurring
across any arbitrary subsystem of B (such as the one depicted in Fig. 4) also
requires the total entropy, which is produced during all the admissible thermo-
electro-mechanical processes, to be non-negative. In mathematical terms, this can
be stated by the inequality

d
dt
S �H� 0; ð124Þ
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where S tð Þ and H tð Þ are the total entropy of the subsystem occupying the volume
X tð Þ and the rate of entropy input entering from the subsystem boundary oX tð Þ
respectively, and defined as

S tð Þ ¼
Z

X tð Þ

qgdv; ð125Þ

H tð Þ ¼ �
Z

oX tð Þ

Q

T
� ndsþ

Z

X tð Þ

R

T
dv; ð126Þ

g x; tð Þ and T x; tð Þ (with T x; tð Þ� 0) respectively being the entropy density (per
unit mass) and the absolute temperature both expressed in the current
configuration.

7.1 Entropy Inequality in Eulerian Description

By applying the Reynold’s transport theorem [Eq. (207)] and Eq. (22) to the time
derivative of Eq. (125), and by employing the divergence theorem [Eq. (203)] to
the first term on the right-hand side of Eq. (126), (124) reads as

Z

X tð Þ

q _gþ div
Q

T

� �
� R

T


 �
dv� 0; ð127Þ

which, since X tð Þ is an arbitrary volume, yields

q _gþ div
Q

T

� �
� R

T
� 0; ð128Þ

corresponding to the local form of the Clausius-Duhem inequality in the Eulerian
description.

Resorting to Eq. (100), (128) becomes

qT _g� q _U � P � _Eþ rT � E� Dþ 1
2
e0E21

� �
: gradv� Q

T
� gradT � 0; ð129Þ

which, by considering the following Legendre transformation (i.e. a procedure
used to replace one or more variables with their conjugate counterparts [74])

W ¼ U � Tg; ð130Þ

where W x; tð Þ is a free-energy function, can also be written as

qg _T þ q _Wþ P � _E� rT � E� Dþ 1
2

e0E21

� �
: gradvþ Q

T
� gradT 	 0: ð131Þ
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Further, by considering that heat does not flow against a temperature gradient,
i.e.

Q � gradT 	 0; ð132Þ

Eq. (131) can be reduced into the stronger form

qg _T þ q _Wþ P � _E� rT � E� Dþ 1
2
e0E21

� �
: gradv	 0; ð133Þ

which represents the local form of the Clausius-Planck Inequality (CPI) of ther-
modynamics for electrostictive elastomers expressed in the Eulerian formulation.

7.2 Entropy Inequality in Lagrangian Description

According to the notation introduced in previous sections, the Lagrangian coun-
terparts of Eqs. (125) and (126) are

S tð Þ ¼
Z

�X

�q�gdV; ð134Þ

H tð Þ ¼ �
Z

o�X

�Q
�T
� NdSþ

Z

V �X

�R
�T

dV; ð135Þ

�g X; tð Þ ¼ g x; tð Þ and �T X; tð Þ ¼ T x; tð Þ being the entropy density and the absolute
temperature expressed with respect to the referential configuration.

By differentiating Eq. (134) and by employing the divergence theorem [Eq.
(203)] to the first term on the right-hand side of Eq. (135), (124) can also be
rewritten as

Z

�X

�q _�gþ Div
�Q
�T

� �
�

�R
�T

� �
dV� 0; ð136Þ

which, since �X is an arbitrary volume, yields

�q _�gþ Div
�Q
�T

� �
�

�R
�T
� 0; ð137Þ

corresponding to the local form of the Clausius-Duhem inequality in the
Lagrangian description.

Resorting to Eq. (123), (137) becomes

�T�q _�g� �q _�U � �P � _�Eþ PT �PT
M

� �
: _F�

�Q
�T

Grad�T � 0; ð138Þ
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which, by considering the following Legendre transformation

�W ¼ �U � �T�g; ð139Þ

where �W X; tð Þ ¼ W x; tð Þ is the same free-energy function defined in Eq. (130) but
expressed with respect to the reference configuration, can also be rewritten as

�q�g _�T þ �q _�Wþ �P � _�E� PT �PT
M

� �
: _Fþ

�Q
�T

Grad�T 	 0: ð140Þ

Furthermore, considering the Lagrangian counterpart of Eq. (132)

�Q � Grad�T 	 0; ð141Þ

Eq. (140) reduces to the stronger form

�q�g _�T þ �q _�Wþ �P � _�E� PT �PT
M

� �
: _F	 0; ð142Þ

representing the local form of the CPI of thermodynamics for electrostrictive
elastomers expressed in the Lagrangian description.

8 Constitutive Equations

According to the relations described in the previous sections, complete knowledge
of the thermo-electro-mechanical state of the closed and electrically isolated
system depicted in Fig. 4 requires the determination of the variables q, v (or F), r,
u, us, E, P, Q, R, T , W and g [or equivalently by their Lagrangian counterparts �q,
V (or F), P, �u, �us, �E, �P, �Q, �R, �T , �W and �g], whose evolution is subjected to the
balance Eqs. (22), (32), (44), (56), (58), (59), (100) and constrained by the
inequalities (132) and (133) [or equivalently governed by the balance Eqs. (25),
(38), (49), (71), (72), (123) and constrained by the inequalities (141) and (142)].
Despite the free-charge densities, u and us, and the heat source, R, are usually
externally imposed (and thus known) quantities, the balance equations are not
sufficient by themselves to make the problem determined. Therefore, other rela-
tionships need to be introduced.

In the derivation of the balance laws, no specification was provided regarding
the nature of the substance constituting the dielectric and conducting deformable
bodies comprised within the closed system B depicted in Fig. 4. Balance laws are
indeed valid for all types of substances (e.g. gas, fluids, or solids having a variety
of different properties). Of course, complete determination of the thermo-electro-
mechanical problem requires the phenomenological properties of specific mate-
rials to be considered and adequately expressed in clean mathematical forms,
usually known as constitutive relations. Contrarily to balance equations, consti-
tutive relations are only aimed at modeling the important features of material
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responses such as stress-strain behavior, material electrical polarizability, as well
as cross-effects alike electrostriction.

Constitutive relations can be physically-based or phenomenological invariant-
based. The former are mechanistically motivated relationships which come from a
microstructurally-based statistical mechanics treatment of the interaction between
matter and field. The latter are mathematically motivated relationships which come
from a continuum mechanics treatment of the matter-field interaction.

Notwithstanding the approach used, constitutive equations require certain
constants to be determined from a (preferably small) number of experiments. In
the case of mechanistically motivated theories, these constants are physically-
based parameters which are independent of the thermo-electro-mechanical state of
the material and usually provide the constitutive model with strong predictive
capabilities. Instead, in the case of mathematically motivated theories, these
constants lack a direct physical connection to the underlying mechanism of matter-
field interaction and, therefore, provide the constitutive model with weaker pre-
dictive capabilities and require a stability check after the constitutive equations
have been fitted to the experimental data.

Though the use of physically-based approaches should be best advised because
of their inherent stability and because of the enhanced predictive capabilities, since
theories of this kind have not yet been developed for electrostrictive elastomers, a
phenomenological invariant-based constitutive theory is described in the following
[54, 57, 60, 62]. This theory should suffice in most cases whenever the resulting
constitutive equations are made fit experimental data which are representative of
the effective working state of the material in the practical system under
investigation.

8.1 Requirements of Phenomenological Constitutive
Theories

Systematic development of phenomenological constitutive equations requires the
necessary satisfaction of certain physical and mathematical requirements, also
called axioms, which are either verified experimentally or considered as obvious.
No matter the physics under investigation, the basic axioms for the construction of
consistent constitutive equations are thoroughly described in [75]. For electro-
strictive elastomers with no memory effect (i.e. with no dependence on the specific
history of the occurring thermo-electro-mechanical processes), the fundamental
axioms to be satisfied are [54, 76]:

• Axiom of Admissibility: Constitutive equations must be consistent with balance
laws and entropy inequalities.

• Axiom of Causality: Deformation, temperature and electric field of any material
point belonging to an electroelastic body are self-evident and observable in any
thermo-electro-mechanical behavior of the system and can be considered as
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independent variables. Correspondingly, the density, the free-energy density, the
entropy, the stress tensor, the electric polarization and the heat flux vector are
considered as dependent variables.

• Axiom of Neighborhood: Constitutive relations are subjected to continuity
requirements.

• Axiom of Equipresence: Constitutive relations should be considered as depen-
dent on the same constitutive variables, until the contrary is deduced.

• Axiom of Objectivity (Principle of Material Frame Indifference): Constitutive
relations need to be form-invariant under arbitrary rigid motions of the spatial
frame of reference as well as under a constant shift of the origin of time. That is,
the thermo-electro-mechanical properties of materials cannot depend on the
motion of the observer.

• Axiom of Time Reversal: Entropy production must be nonnegative under time
reversal.

• Axiom of Material Invariance: Constitutive relations must be form-invariant
with respect to rigid body motions superimposed on the referential configuration
as well as to microscopic time reversals representing specific material symmetry
conditions.

In the following, these axioms are used to develop an appropriate constitutive
theory for the isothermal electro-elastic behavior of conservative and isotropic
electrostrictive elastomers. According to this restriction, the study of the system
depicted in Fig. 4 simplifies since the energy balance equations [either Eq. (100) or
Eq. (123)] can be neglected together with the constitutive equations for the heat
flux vector (either Q or �Q).

8.2 Constitutive Equations for the Isothermal Behavior
of Conservative and Isotropic Electro-Elastic Solids

Owing to the axioms of causality, neighborhood and equipresence, the free-energy
function, W (and �W), the entropy density, g (and �g), the stress tensor, r (and P),
and the electric polarization, P (and �P), are taken as continuous functions of F, E

(or �E) and T . In particular

W ¼ W F;E; Tð Þ ¼ �W F; �E; Tð Þ: ð143Þ

Then, according to Eq. (143), the CPI given by Eqs. (133) and (142) can
respectively be rewritten as

q gþ oW
oT

� �
_T þ Pþ q

oW
oE

� �
� _Eþ q

oW
oF

FT � rT � E� Dþ 1
2
e0E21

� �
 �

: gradv	 0;

ð144Þ
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�q �gþ o �W
oT

� �
_�T þ �Pþ �q

o �W

o�E

� �
� _�Eþ �q

o �W
oF
�PT þPT

M

� �
: _F	 0; ð145Þ

which, for all admissible thermo-electro-mechanical processes (i.e. for the axioms
of admissibility and time-reversal), yield the following identities in the Eulerian
description

g F;E; Tð Þ ¼ � oW
oT

; ð146Þ

P F;E; Tð Þ ¼ �q
oW
oE

; ð147Þ

rT F;E; Tð Þ ¼ q
oW
oF

FT þ E� D� 1
2

e0E21; ð148Þ

or equivalently

rT F;E; Tð Þ ¼ 2q
oW
oB

Bþ E� D� 1
2

e0E21; ð149Þ

and the following identities in the Lagrangian description

�g ¼ � o �W
oT

; ð150Þ

�P ¼ ��q
o �W

o�E
; ð151Þ

PT ¼ �q
o �W
oF
þPT

M; ð152Þ

or equivalently

PT ¼ 2�qF
o �W
oC
þPT

M: ð153Þ

Equations (146–153) highlight that the complete solution of the isothermal
electro-elastic problem only requires the definition of the free-energy function, W
(or identically �W).

In this regard, for the axiom of objectivity [75, 76], the free-energy function of
the considered materials needs to satisfy

W F;E; Tð Þ ¼ W RF;RE; Tð Þ; ð154Þ

for every proper orthogonal tensor R (i.e. RT
R ¼ 1 and detR ¼ þ1) representing

an arbitrary rotation superimposed on the current configuration. Note that the
objectivity requirement given by Eq. (154) is immediately guaranteed whenever
the free-energy is an explicit function of the Green deformation tensor C and the
reference electric field �E:
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Besides, for isotropic electrostrictive elastomers, the axiom of material
invariance also requires

�W F; �E; Tð Þ ¼ �W FRT ;R�E; T
� �

; ð155Þ

for every proper orthogonal tensor R (i.e. RT
R ¼ 1 and detR ¼ þ1) representing

an arbitrary rotation superimposed on the reference configuration. Note that the
isotropy requirement expressed by Eq. (155) is immediately guaranteed whenever
the free-energy is an explicit function of the Finger deformation tensor B and the
spatial electric field E; in which case, owing to the representation theorem for
invariants [77], W (and �W) admits the following irreducible representation [78–82]

W ¼ W I1; I2; I3; I4; I5; I6; Tð Þ ¼ �W �I1;�I2;�I3;�I4;�I5;�I6; Tð Þ ð156Þ

in terms of the minimal set of invariants

I1 ¼ trB ¼ �I1 ¼ trC ð157Þ

I2 ¼
1
2

trBð Þ2�tr B2
� �h i

¼ �I2 ¼
1
2

trCð Þ2�tr C2
� �h i

ð158Þ

I3 ¼ det B ¼ �I3 ¼ det C ¼ J2 ð159Þ

I4 ¼ E � E ¼ �I4 ¼ �E � C�1 �E
� �

ð160Þ

I5 ¼ E � BEð Þ ¼ �I5 ¼ �E � �E ð161Þ

I6 ¼ E � B2E
� �

¼ �I6 ¼ �E � C�Eð Þ ð162Þ

Of course this irreducible representation is also objective since Eq. (156), with
Eqs. (157–162), immediately satisfies Eq. (154).

Then, by assuming a free-energy function in the form of Eqs. (156)–(162), and
with the definition

ai ¼ oW=oIi ¼ o �W
�
o�Ii; for i ¼ 1; . . .; 6 ð163Þ

the constitutive laws for the electric polarization and the stress tensor reduce to

P ¼ �2q a4Eþ a5BEþ a6B2E
� �

ð164Þ

rT¼ 2q a1 þ a2I1ð ÞB� a2B2 þ a3I31
� �

þ e0 � 2qa4ð ÞE� E� 1
2
e0I41þ 2qa6 BEð Þ � BEð Þ


 �
ð165Þ

for the Eulerian description, and

�P ¼ �2�q a4C�1 �Eþ a5
�Eþ a6C�E

� �
; ð166Þ
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PT ¼ 2�qF a1 þ a2I1ð Þ1� a2Cþ a3I3C�1 þ e0

2�q

ffiffiffiffi
I3
p
� a4

� �
C�1 �E
� �


� C�1 �E
� �

� e0

4�q

ffiffiffiffi
I3
p

I4C�1 þ a6 �E� �E

� ð167Þ

for the Lagrangian description. Of course, Eqs. (164) and (166) identically satisfy
Eq. (67), whereas Eqs. (165) and (167) identically satisfy Eq. (50).

8.3 Reduced Constitutive Equations for Dielectric
Elastomers

Among the class of electrostrictive rubber-like solids, Dielectric Elastomers are a
special type of elastic insulating material whose spatial electric polarization, P,
only depends on the spatial electric field, E(and not on the deformation gradient
F). Consequently, in mathematical terms, Dielectric Elastomers can be charac-
terized by a free-energy function with the form

W ¼ Whyp I1; I2; I3;Tð Þ � ea � e0ð Þ
2�q

I4
ffiffiffiffi
I3
p

; ð168Þ

where Whyp I1; I2; I3;Tð Þ is some hyperelastic strain-energy function (i.e. a free-
energy only depending on deformation), while the material parameter ea is the
absolute permittivity of the dielectric elastomer. Note that the absolute permittivity
may depend on the isothermal temperature of the material, i.e. ea ¼ ea Tð Þ (see for
instance in [73]).

Then, substitution of Eq. (168) into Eqs. (164–167), provides the following
constitutive equations for general Dielectric Elastomers in isothermal conditions

P ¼ ea � e0ð ÞE; ð169Þ

rT¼ 2q a01 þ a02I1
� �

B� a02B2 þ a03I31
� �

þ eaE� E� 1
2

eaE21


 �
; ð170Þ

for the Eulerian description, whereas

�P¼J ea � e0ð ÞC�1 �E; ð171Þ

PT ¼ 2�qF a01 þ a02I1
� �

1� a02Cþ a03I3C�1 þ ea

2�q

ffiffiffiffi
I3
p

C�1 �E
� �

� C�1 �E
� �


� ea

4�q

ffiffiffiffi
I3
p

�E � C�1 �E
� �

C�1

� ð172Þ

for the Lagrangian description. In Eqs. (170)–(172), the quantities a0i read as
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a0i ¼ oWhyp

�
oIi; for i ¼ 1; . . .; 3: ð173Þ

Furthermore, for typical Dielectric Elastomers that are incompressible (i.e.
I3 ¼ J ¼ 1) and with deviatoric deformation response which is well described by a
Yeoh’s hyperelastic model [83], the strain-energy function can be assumed as

Whyp I1; I2; I3; Tð Þ ¼ c1 I1 � 3ð Þ þ c2 I1 � 3ð Þ2þc3 I1 � 3ð Þ3�p
ffiffiffiffi
I3
p
� 1

� �h i.
�q;

ð174Þ

where c1, c2 and c3 are material parameters only depending on the temperature of
the material (see for instance in [73]), while p is an hydrostatic pressure which can
only be determined from the equilibrium equations and the associated boundary
conditions. Accordingly, use of Eq. (174) into Eqs. (170) and (172), respectively
provides the following constitutive equations for the Cauchy’s and the Nominal
stress tensors of incompressible Dielectric Elastomers in isothermal conditions

rT¼� p1þ 2 c1 þ 2c2 I1 � 3ð Þ þ 3c3 I1 � 3ð Þ2
h i

Bþ eaE� E� 1
2

eaE21; ð175Þ

PT ¼ F �pC�1 þ 2 c1 þ 2c2 I1 � 3ð Þ þ 3c3 I1 � 3ð Þ2
h i

1þ ea C�1 �E
� �h

� C�1 �E
� �

� ea

2
�E � C�1 �E
� �

C�1
i
;

ð176Þ

which, by masking the hydrostatic electrically-induced terms into the unknown
pressure p, identically read as

rT¼� p1þ 2 c1 þ 2c2 I1 � 3ð Þ þ 3c3 I1 � 3ð Þ2
h i

Bþ eaE� E; ð177Þ

PT ¼ F �pC�1 þ 2 c1 þ 2c2 I1 � 3ð Þ þ 3c3 I1 � 3ð Þ2
h i

1þ ea C�1 �E
� �

� C�1 �E
� �h i

:

ð178Þ

9 Conclusions

This chapter presented a fully-coupled electromechanical continuum model for the
study of the isothermal electro-elastic large deformations of general electrostric-
tive elastomers which are conservative and isotropic. The model comprises the
standard equilibrium equations of both electrostatics and finite elasticity, along
with their associated boundary conditions, and a specific electro-hyperelastic
constitutive equation which accounts for all the coupling effects that arise from the
interaction between polarizable elastic bodies and electrostatic fields. As a special
case of this electromechanical model, a specific electro-elastic continuum model
for Dielectric Elastomer materials has been also deduced. To enable for both
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immediate understanding on the underlying electro-mechanical coupling and easy
implementation in numerical multi-physics simulation environments, the model
has been formulated both in the Eulerian (spatial) description and in the
Lagrangian (material) description.

Acknowledgments Rocco Vertechy acknowledges the financial support from the EC, in the
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Polymers for Wave Energy Conversion (FP7–ENERGY.2012.10.2.1, grant: 309139).

Appendix A. Mathematical Operators

This appendix defines the mathematical operators that have been employed
throughout this chapter.

Consider the 3 9 1 vectors, a and b, and the 3 9 3 matrices, A and B,

a ¼ ai½ � ¼
a1

a2

a3

2

4

3

5; b ¼ bi½ � ¼
b1

b2

b3

2

4

3

5; A ¼ Aij

� �
¼

A11 A12 A13

A21 A22 A23

A31 A32 A33

2

4

3

5; B ¼ Bij

� �

¼
B11 B12 B13

B21 B22 B23

B31 B32 B33

2

4

3

5

ð179Þ

The scalar product of vectors a and b, yielding a scalar quantity, is defined as

a � b ¼
X3

l¼1

albl: ð180Þ

The tensor product (or the dyad) of vectors a and b, yielding a 3 9 3 matrix, is
defined as

a� b ¼ a� bð Þij
h i

¼ aibj

� �
: ð181Þ

The product between a matrix A and a vector b, yielding a 3 9 1 vector, is
defined as

Ab ¼ Abð Þi
� �

¼
X3

l¼1

ailbl

" #

: ð182Þ

The scalar product between a matrix A and a vector b, yielding a 3 9 1 vector,
is defined as
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A � b ¼ A � bð Þi
� �

¼
X3

l¼1

alibl

" #

: ð183Þ

Note that Eqs. (182) and (183) differ in the matrix index used for the
summation.

The product between matrices A and B, yielding a 3 9 3 matrix, is defined as

AB ¼ ABð Þij
h i

¼
X3

l¼1

AilBlj

" #

: ð184Þ

The double contraction between matrices A and B, yielding a scalar, is
defined as

A : B ¼
X3

m¼1

X3

l¼1

AlmBlm: ð185Þ

Given a third-order tensor A ¼ Aijk

� �
, the double contraction of A and a matrix

B, yielding a 3 9 1 vector, is defined as

A : B ¼ A : Bð Þi
� �

¼
X3

l¼1

X3

m¼1

AilmBlm: ð186Þ

Given the spatial position coordinate x ¼ x1 x2 x3½ �T , the spatial gradient
(grad) of a scalar quantity / ¼ / x; tð Þ, t being the time variable, is defined as

grad/ ¼ grad/ð Þi
� �

¼ o/=oxi½ �; ð187Þ

whereas the spatial gradient (grad), divergence (div) and rotation (rot) of a vector
a ¼ a x; tð Þ, yielding 3 9 3 matrix, a scalar and a 3 9 1 vector respectively, are
defined as

grada ¼ gradað Þij
h i

¼ oai

�
oxj

� �
; ð188Þ

diva ¼
X3

l¼1

oal=oxl; ð189Þ

rota ¼ rotað Þi
� �

¼
X3

l¼1

X3

m¼1

eilmoam=oxl

" #

; ð190Þ

where eijk is the permutation symbol such that

eijk ¼
1; for even permutation of i; j; kð Þ; ði:e: 123; 231; 312Þ
�1; for odd permutation of i; j; kð Þ; ði:e: 132; 213; 321Þ
0; if there is a repeated index

8
<

:
: ð191Þ
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Besides, the spatial divergence (div) of a matrix A ¼ A x; tð Þ is defined as

divA ¼ divAð Þi
� �

¼
X3

l¼1

oAli=oxl: ð192Þ

Given the material position coordinate X ¼ X1 X2 X3½ �T , the material gra-
dient (Grad) of a scalar quantity / ¼ / X; tð Þ is defined as

Grad/ ¼ Grad/ð Þi
� �

¼ o/=oXi½ �; ð193Þ

whereas the material gradient (Grad), divergence (Div) and rotation (Rot) of a
vector a ¼ a X; tð Þ are respectively defined as

Grada ¼ Gradað Þij
h i

¼ oai

�
oXj

� �
; ð194Þ

Diva ¼
X3

l¼1

oal=oXl; ð195Þ

Rota ¼ Rotað Þi
� �

¼
X3

l¼1

X3

m¼1

eilmoam=oXl

" #

: ð196Þ

Besides, the material divergence (Div) of a matrix A ¼ A X; tð Þ is defined as

DivA ¼ divAð Þi
� �

¼
X3

l¼1

oAli=oXl: ð197Þ

With regard to the divergence of the products between vector a and either
matrix A or scalar /

div Aað Þ ¼ divA � aþ AT : grada; ð198Þ

div /að Þ ¼ /divaþ grad/ � a; ð199Þ

Div Aað Þ ¼ DivA � aþ AT : Grada; ð200Þ

Div /að Þ ¼ /Divaþ Grad/ � a: ð201Þ

Appendix B. Fundamental Mathematical Theorems

This appendix summarizes the fundamental mathematical theorems that have been
employed throughout this chapter.

For any open surface S tð Þ with bounding closed curve L tð Þ, the Stokes’ theorem
states
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Z

S tð Þ

rota � nds ¼
Z

L tð Þ

a � dx: ð202Þ

where ds is the infinitesimal surface belonging to S tð Þ and with unit normal n,
whereas dx is the infinitesimal line element belonging to L tð Þ:

For any volume V tð Þ with bounding closed surface oV tð Þ, the Gauss’ diver-
gence theorem states

Z

V tð Þ

divadv ¼
Z

oV

a � nds; ð203Þ

Z

V tð Þ

divAdv ¼
Z

oV

A � nds; ð204Þ

where dv is the infinitesimal volume belonging to V tð Þ, whereas ds is the infini-
tesimal surface belonging to oV tð Þ and with unit normal n. In the presence of a
discontinuity surface c tð Þ, within volume V tð Þ, across which some vector a and
tensor A admit non-continuous values, the Gauss’ divergence theorem states

Z

V tð Þ�c tð Þ

divadvþ
Z

oc tð Þ

a½ �½ � � nds ¼
Z

oV�c tð Þ

a � nds; ð205Þ

Z

V tð Þ�c tð Þ

divAdvþ
Z

c tð Þ

A½ �½ � � nds ¼
Z

oV�c tð Þ

A � nds; ð206Þ

where a½ �½ � � aþ � a� and A½ �½ � � Aþ � A� indicate the jumps of vector a and
matrix A from the positive (+) side to the negative (-) side of the discontinuity.

For any given scalar quantity / (x,t), the Reynolds’ transport theorem states

d
dt

Z

V tð Þ

/dv ¼
Z

V tð Þ

_/þ /divv
h i

dv ¼
Z

V tð Þ

o/
ot
þ div /vð Þ


 �
dv: ð207Þ
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